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Editorial

Editorial for the Special Issue on Physical Diagnosis and
Rehabilitation Technologies
Tao Liu 1,* and João Paulo Morais Ferreira 2,*

1 State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering,
Zhejiang University, Hangzhou 310027, China

2 Electrical Engineering Department, Superior Institute of Engineering of Coimbra, 3030-199 Coimbra, Portugal
* Correspondence: liutao@zju.edu.cn (T.L.); ferreira@isec.pt (J.P.M.F.)

Recently, physical diagnosis and human motion analysis have become active research
topics in bioelectronics, and they have a broad range of applications, such as pathology
detection, rehabilitation, prosthesis design, biometric identification, and humanoid robotic
locomotion. Clinical human motion analysis methods aim to provide an objective means
of quantifying the severity of pathology. A set of pathology-related human motion dis-
orders have been identified and can be used to support diagnosis and the development
of new assistive and rehabilitation technologies. This Special Issue in Electronics, titled
“Physical Diagnosis and Rehabilitation Technologies”, compiles some of the recent research
accomplishments in the field of robotics and sensors for human assistance. It consists of
10 papers, which cover rehabilitation robots, human–computer interaction, and sensor and
data augmentation, including two review papers. These papers can be categorized into
four groups as follows:

(1) Rehabilitation robot: Li et al. [1] proposed an upper-limb rehabilitation training system
based on an fNIRS-BCI system. The paper mainly focuses on the analysis and research
of the cerebral blood oxygen signal in the system, and gradually extends the analysis
and recognition method of the movement intention by using the cerebral blood
oxygen signal to implement the actual brain–computer interface system. Some crucial
technologies and typical prototypes of active intelligent rehabilitation and assistance
systems for gait training are introduced in [2]. The limitations, challenges, and future
directions, in terms of gait measurement and intention recognition, gait rehabilitation
evaluation, and gait training control strategies, are also discussed. Han et al. [3]
reviewed rehabilitation exoskeletons in terms of the overall design, driving unit,
intention perception, compliant control, and efficiency validation. They also discussed
the complexity and coupling of the human–machine integration systems, and wanted
to guide the design of lower-limb rehabilitation exoskeleton systems for elderly and
disabled patients. Shi et al. [4] developed a control strategy based on torque estimation
and made it responsible for the intention understanding and motion servo of this
customized system. Gao et al. [5] provided a dual-armed robotic puncture scheme
to assist surgeons. The system was divided into an ultrasound scanning arm and a
puncture arm. The robotic arms were designed with a compliant positioning function
and master–slave control function.

(2) Human–computer interaction: Based on the results of the users’ spatial controllability,
Wu et al. [6] proposed two interaction techniques (non-visual selection and a spatial
gesture recognition technique for surgery) and four spatial partitioning strategies for
human–computer interaction designers, which can improve the users’ spatial control-
lability. To facilitate further developments in flexible display interactive technology,
Yin et al. [7] introduced a FlexSheet that can simulate the deformation environment.

(3) Sensor: Han et al. [8] presented a wearable PFC oxygen saturation measurement
system using dual-wavelength, functional, near-infrared spectroscopy. The system
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was designed for user-friendly wearing, with the advantages of comfort, convenience,
portability, and affordability. A novel solid–liquid mixture pressure-sensing module
is proposed in [9]. A flexible film with unique liquid-filled structures greatly reduces
the pulse measurement error caused by sensor misalignment. The device is expected
to provide a new solution for continuous wearable BP monitoring.

(4) Data augmentation: An integrated modeling approach incorporating a war trauma
severity scoring algorithm (WTSS) and deep neural networks (DNN) is proposed
in [10]. The experimental results verified that the proposed approach surpassed the
traditional manual generation methods, achieved a prediction accuracy of 84.43%,
and realized large-scale and credible war-trauma data augmentation.
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A Wearable Prefrontal Cortex Oxygen Saturation Measurement
System Based on Near Infrared Spectroscopy
Yi Han 1,2,† , Qian Zhai 1,† , Yinkai Yu 1, Shuoyu Wang 2 and Tao Liu 1,*

1 State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering,
Zhejiang University, Hangzhou 310027, China; 258012g@gs.kochi-tech.ac.jp (Y.H.);
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2 Department of Intelligent Mechanical Systems Engineering, Kochi University of Technology,
Kochi 782-8502, Japan; wang.shuoyu@kochi-tech.ac.jp

* Correspondence: liutao@zju.edu.cn; Tel.: +86-0571-87951314 (ext. 6221)
† These authors contributed equally to this work.

Abstract: The measurement of blood oxygen saturation in the prefrontal cortex (PFC), especially
during sleep, is of great significance for clinical research. Herein, we present a wearable PFC oxygen
saturation measurement system using dual-wavelength functional near-infrared spectroscopy. The
system is well designed for user-friendly donning and has the advantages of comfort, convenience,
portability, and affordability. The performance of the proposed system is investigated by the calibra-
tion and experimental results. The wearable system has demonstrated great potential to conduct the
physiological monitoring of PFC, and it can be widely deployed in daily life.

Keywords: near infrared spectroscopy; wearable; portable; prefrontal cortex oxygen saturation

1. Introduction

The prefrontal cortex (PFC), responsible for complex thinking and decision-making, as
well as emotional regulation, is fundamental to the physiological activities of humans [1].
Nightly sleep restores the brain and is correlated with physical repairs and memory consol-
idation. A sufficient and stable oxygen supply to cerebral cortex tissue is essential for the
relaxation of the brain [2]. Several diseases cause various local microvascular or respiratory
modifications, resulting in changes of tissue oxygen saturation [3,4]. Subtle alterations in
sleep quality result in consequential next-day changes in emotion or intentness [5]. There-
fore, the accurate measurement of blood oxygen saturation in the PFC tissue is of great
significance for clinical research. In this way, physiological information can be acquired,
and then corresponding effective treatments can be taken in time [6].

In the 1870s, Jobsis [7] first obtained blood oxygen changes and deep physiological
information in the heads of animals through near infrared light. The absorption of light by
the main absorbers (i.e., oxyhemoglobin (HbO2) and deoxyhemoglobin (Hb)) in the blood
varies with the oxygen saturation. Hence, the absorbed components of the light reflected
from the human tissue can be analyzed to obtain the blood oxygen saturation [8]. With the
advantages of portability, affordability, low susceptibility to noise, and moderate temporal
resolution compared with the medical polysomnography (PSG) procedure, functional near-
infrared spectroscopy (fNIRS) based technologies have attracted increasing attention [9].
Oniz et al. investigated the refreshing property of sleep in terms of sleep stages using fNIRS
to measure PFC hemodynamics [10]. Nguyen et al. investigated the brain’s functional
connectivity in rest and sleep states using fNIRS [11]. Ahn et al. combined fNIRS with
multimodal EEG/ECG/EOG data to quantify mental fatigue during performed simulated
driving under two different conditions (well-rested and sleep-deprived) [12]. The previous
research works have demonstrated that some of the activities and states during sleep are
relevant to the blood oxygen changes of PFC. The fNIRS-based technologies enable the
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non-invasive sensing of these physiological phenomena. Combined with other modal-
ities, fNIRS can aid in characterizing and understanding the complex phenomena and
be applied in sleep monitoring. Nevertheless, sleep disorders, such as obstructive sleep
apnea, significantly deteriorate the cerebral oxygen supply to the brain. Little research has
illuminated the effects of respiratory modifications during sleep using fNIRS. There are also
some well-known commercial products, such as Somanetics INVOS [13], CASMED FOREE-
SIGHT [14], Hamamatsu NIRO [15], and Shimadzu OM-100, which have been applied in
clinical monitoring. These devices are complex, expensive, and restricted to hospitals. The
past decade has witnessed an increasing expectation for in-home health management [16].
However, the fNIRS-based research on PFC physiology, especially during sleep, is primary,
and the current measurement systems are not suitable for daily monitoring. To monitor the
physiological activities of PFC continuously and conveniently, the aim of this research is
to design a novel fNIRS-based wearable system, validate the performance of monitoring
PFC oxygen saturation, and investigate its potential for sensing-related activities, especially
during sleep. The system is miniaturized, user-friendly, affordable, and convenient for
applications in non-hospital facilities.

The rest of the paper is organized as follows. In Section 2, the analytical model and
the measurement system are presented in detail. Section 3 describes the experimental
setup and protocols. In Section 4, the results are illustrated and discussed. Finally, a brief
conclusion is drawn.

2. Measurement System Description
2.1. Analytical Model

Assuming that the absorption rate and scattering coefficient of biological tissue are
constant, the blood oxygen saturation is highly relevant to the decay of light intensity
due to the absorption of Hb and HbO2 [17]. The modified Lambert–Beer law describes the
quantitative relationship between the light absorption and the characteristics of the tissue:

Bλ = log(
I0

I
) = (αλ

HbO2
CHbO2 + αλ

HbCHb) · DPF · r + G, (1)

where B is the attenuation of light intensity, I0 and I are the incident light intensity and
emitted light intensity, respectively, α is the absorption coefficient of the chromophores at a
specific wavelength, λ is the wavelength of the light, CHbO2 and CHb are the concentrations
of HbO2 and Hb, DPF denotes the differential path factor (e.g., 6.53 in our application [18]),
r is the distance between light source–detector pairs, and G is a geometry-dependent factor
representing the intensity loss caused by scattering. When the concentrations of HbO2 and
Hb change, the attenuation of light intensity changes homogeneously:

∆Bλ = log(
I0

I
) = (αλ

HbO2
∆CHbO2 + αλ

Hb∆CHb) · DPF · r, (2)

If the absorption changes are measured at two wavelengths, λ1 and λ2, the concentra-
tion changes of HbO2 and Hb can be computed as

∆CHbO2 =
∆Bλ1 αλ2

Hb − ∆Bλ2 αλ1
Hb

DPF · r · (αλ2
Hbαλ1

HbO2
− αλ1

Hbαλ2
HbO2

)
,

∆CHb =
∆Bλ1 αλ2

HbO2
− ∆Bλ2 αλ1

HbO2

DPF · r · (αλ1
Hbαλ2

HbO2
− αλ2

Hbαλ1
HbO2

)
,

(3)

The blood oxygen saturation rSO2 can be calculated as

rSO2 =
CHbO2

CHbO2 + CHb
=

αλ1
Hb − αλ2

Hb
Bλ1

Bλ2

Bλ1

Bλ2
(αλ2

HbO2
− αλ2

Hb)− (αλ1
HbO2

− αλ1
Hb)

. (4)
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Since light with a wavelength longer than 900 nm is easily absorbed by water and
light with a wavelength shorter than 700 nm is excessively absorbed by hemoglobin, the
dual wavelengths of 760 nm and 850 nm are selected for measurement.

2.2. System Structure

The structure of the fNIRS-based measurement system is shown in Figure 1. The
system consists of the micro-processor unit (MPU), infrared emission module, sampling
module, Bluetooth transmission module, and graphical user interface (GUI). The infrared
emission module is fixed to the forehead of subjects and controls the emission of near-
infrared light. Then, the sampling module detects the intensity of the received light. Finally,
the blood oxygen saturations at different positions in the PFC are calculated by the MPU.
The results will be transmitted to the GUI via Bluetooth.

MPU
NID Driver

ADC

FilterAmplifier

NID

Photodiode

GUI

Infrared emission module

Sampling module

Figure 1. The schematic diagram of the designed system structure.

The infrared emission module consists of near-infrared diodes (NID) and an NID
driver. In consideration of light intensity and penetration depth, the module utilizes the
diodes (e.g., W760/850-O4L) that integrate sources of dual wavelengths (i.e., 760 nm and
850 nm). It has the advantages of a small size, low cost, and embedability. The MPU and the
constant current driver (e.g., MBI5168) with multiple outputs control the emission timing
of multiple NIDs. The sampling module consists of photodiodes, a filter, an amplifier,
and an analog-to-digital-converter (ADC). The photodiodes (e.g., OPT101) receive the
emitted near-infrared light and convert light signals into electrical signals. They have high
sensitivity within the wavelength from 700 nm to 900 nm. Since the change of the PFC
oxygen saturation is relatively low compared with external noises, low-pass filters are
employed to eliminate high-frequency interference. Then, the filtered signals are magnified
by the amplifier (e.g., AD623) and are converted into digital signals by the ADC channels.
Moreover, we select STM32 for timing control and oxygen saturation calculation, HC-05 for
Bluetooth transmission, and SPX3819 for power supply.

2.3. Wearable Design

Figure 2 illustrates the distribution of the NID and photodiodes in one probe module.
One NID is placed in the center of four photodiodes, and the distance between each NID–
photodiode pair is approximately 28 mm. Hence, the near-infrared light can transmit
through the deeper tissue layers.

As shown in Figure 3, two probe modules are employed in the system, and the distance
between the NIDs is approximately 60 mm. To minimize the interference resulting from the
environment or movement, it is essential to block out the natural light from the detection
area and ensure a tight connection between the sensor and the forehead. In each probe
module, a baffle is fixed in the back as a shelter. The connection of probe modules adopts
the hinge structure, and silicone is used for the contact between modules and forehead to
better fit the various subjects and improve wearing comfort.
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NID

Photodiode Photodiode

PhotodiodePhotodiode

40 mm

4
0
 m

m

Figure 2. The distribution diagram of the probes.

Baffle

Opaque Silicone

Hinge

Buckle

Figure 3. The wearable design of the measurement system.

3. Experiments

Firstly, the optical integrating sphere model as illustrated in Figure 4 is exploited to
simulate human tissue [19]. The emitted near infrared light that transmits through the
sphere model has the same optical power as the incident light. By adjusting the light
filter, the model can imitate the attenuation effect of human tissue with a different oxygen
saturation and realize the multi-point calibration of oxygen saturation measurement.

Light-filterBaffle

Lambert Surface

Emitted light Incident light

Figure 4. Diagram of the optical integrating sphere model.

In order to verify the performance and reliability of the system, a forearm arterial
occlusion experiment, motor imagery experiment, and sleep experiment were performed.
Participants aged from 20 to 25 years old were recruited for the experiments. The par-
ticipants had no major diseases, and the blood pressure of each participant was normal
and stable.

As shown in Figure 5a, each participant wore an inflatable airbag in the forearm
arterial occlusion experiment. When the inflated airbag pressed the arm, the concentrations
of HbO2 and Hb changed correspondingly. The steps of the forearm arterial occlusion
experiment were implemented as follows:

1. Let the participant sit upright in the chair and place his right arm parallel on the table;

6
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2. Fix the measurement system to the front side of the arm and fix the airbag to the
upper arm of the participant;

3. Turn on the measurement system when the participant relaxes;
4. Fifteen seconds later, inflate the airbag to press the upper arm;
5. Fifteen seconds later, release the airbag;
6. Turn off the measurement system.

Airbag

Sensor

(a) Forearm Block Experiment

Sensor

Participant

(b) Motor Imagery Experiment

Sensor

Participant

(c) Sleep Experiment

Figure 5. (a) Each participant wore the measurement system and an inflatable airbag on their arm
in the forearm arterial occlusion experiment. (b) Each participant wore the measurement system
on their forehead in the motor imagery experiment. (c) Each participant lay in a pod and wore the
measurement system on their forehead in the sleep experiment.

The PFC is responsible for complex thinking and decision-making. The blood oxygen
saturation of this brain region will change with physiological activities. To detect the
movement intention, each participant wore the measurement system on their forehead,
as shown in Figure 5b in the motor imagery experiment. The steps were implemented as
follows:

1. Let the participant sit in the chair and fix the measurement system onto their forehead;
2. Turn on the system and let the participant close their eyes throughout the experiment;
3. Ten seconds later, ask the participant to imagine walking upstairs;
4. Forty seconds later, let the subject stop imagining and relax;
5. Turn off the measurement system.

Different biological processes through the sleep cycle probably affect breathing or
the muscles. Deep breathing or sleep apnea will result in a change of the blood oxygen
saturation in the PFC. As shown in Figure 5c, the participants lay in a nap pod and were
asked to breathe normally, breathe deeply, and hold their breath. Clinical medical staffs
were consulted to help subjects to conduct the experiments and record the events. The
steps were implemented as follows:

1. Let the participant lie in the nap pod and fix the measurement system onto their forehead;
2. Turn on the system and let the participant close their eyes throughout the experiment;
3. Fifteen seconds later, ask the participant to breathe deeply or hold their breath;
4. Thirteen seconds later, let the subject breathe normally;
5. Turn off the measurement system.

4. Results

Figure 6 shows the calibration results where the triangles represent the measured
values, the red line represents the ideal line, and the black line represents the fitted line.
The measurement range of the oxygen saturation is between 0.5–0.75, which is the same
as human tissue. The correlation coefficient between the fitted line and ideal line is about
0.98, and the result demonstrates the accuracy of the system.
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StO2 (%)

rS
O

2
(%

)

Figure 6. The calibration result of the system.

Figure 7 shows one example of the measurement result in the forearm arterial occlusion
experiment. At the beginning, the concentrations of HbO2 and Hb remained stable when
the participant stayed relaxed. When the airbag was inflated and the forearm arterial was
occluded, blood flow to the forearm was restricted as well as the oxygen. Hence, HbO2 in
the forearm was partially converted into Hb when the oxygen was consumed. Consistently,
the measured concentration of HbO2 increased and the concentration of Hb decreased in
Figure 7. After the airbag was released, the two concentrations returned to the normal state.

Release

Compression

−

−

Figure 7. Example of results in the forearm arterial occlusion experiment.

Figure 8 shows one example of the measurement result in the motor imagery exper-
iment. The concentrations of HbO2 and Hb were unchanged in the relaxing condition.
When the participant started to imagine walking upstairs, the blood flow in PFC and the
transmission of oxygen increased. It is also illustrated as in Figure 8 that the concentration
of HbO2 increased sharply and the concentration of Hb also had a slight increase.

Figure 9a shows one example of the measurement result in the deep breath experiment.
The deep breath improved the blood supply to the brain. When the participant started to
breathe deeply, the concentration of HbO2 increased rapidly and the concentration of Hb
decreased. Finally, the concentrations returned to the normal level. Figure 9b shows one
example of the measurement result in the apnea experiment. Holding breath increased the
intrathoracic pressure, resulting in restricted blood flow. When the participant started to
hold their breath, the concentration of HbO2 decreased, and the concentration of Hb had a
slight increase as shown in Figure 9c. When the participant breathed normally again, the
concentrations slowly returned to the normal level.
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Figure 8. Example of results in the motor imagery experiment.
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(b) Apnea Experiment
Figure 9. (a) Example of results in the deep breathing experiment. (b) Example of results in the apnea
experiment.

5. Discussion

The calibration and experimental results demonstrate that the changes of the concen-
trations of HbO2 and Hb in PFC can be measured accurately by the system. The correlation
coefficient of 0.98 in the calibration is comparable with a coefficient larger than 0.95 in [8].
The physiological phenomenon in the forearm arterial occlusion experiment and motor
imagery experiment are consistent with results in [8,20], respectively. The measurement
system has dimensions of 17.5 × 7 × 3.5 cm and weighs around 600 g, which is smaller and
lighter compared with the system that has dimensions of 18.5 × 7.5 × 7 cm and a weight of
around 1200 g in [21]. Moreover, conventional near-infrared blood oxygen measurement
devices have some disadvantages, such as a complex structure, large size, high cost, and
wearing discomfort. The proposed sensor unit employs a hinge in its structure to enable
adaptive deformation and soft silicone as a material for flexible contact with the forehead.
With the miniaturization and lightweight design, the wearable system is comfortable,
convenient, and not expensive. It has great potential to get rid of site restriction and be
promoted to non-hospital facilities.

Currently, the proposed system also has some limitations. First, the system is verified
based on healthy subjects only, and we do not focus on a specific population, such as

9



Electronics 2022, 11, 1971

patients with sleep apnea. Second, the sensor units may generate pressure on the forehead
to ensure the stable contact. Third, the human-computer interface and measurement
region are preliminarily designed for non-clinical experimental tests. For future work, the
software interface will be further optimized for clinical application. Then the system can be
employed to implement experiments of patients and record over-night sleep events. We
will explore methods to detect the physiological activities including sleep apnea.

6. Conclusions

A wearable PFC oxygen saturation measurement system based on fNIRS is proposed
in this research. The system is comfortable, easy-to-use, portable, and low-cost. The
performance of the wearable blood oxygen saturation measurement system is investigated
by the calibration accuracy and experimental results. The changes of the hemoglobin
concentrations in PFC can be measured accurately by the system. It is demonstrated that
the proposed system has great potential to conduct the physiological monitoring of the
PFC, and it can be widely deployed in non-hospital facilities and in daily life.
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Abstract: Gait recognition and rehabilitation has been a research hotspot in recent years due to its
importance to medical care and elderly care. Active intelligent rehabilitation and assistance systems
for lower limbs integrates mechanical design, sensing technology, intelligent control, and robotics
technology, and is one of the effective ways to resolve the above problems. In this review, crucial
technologies and typical prototypes of active intelligent rehabilitation and assistance systems for gait
training are introduced. The limitations, challenges, and future directions in terms of gait measure-
ment and intention recognition, gait rehabilitation evaluation, and gait training control strategies
are discussed. To address the core problems of the sensing, evaluation and control technology of the
active intelligent gait training systems, the possible future research directions are proposed. Firstly,
different sensing methods need to be proposed for the decoding of human movement intention.
Secondly, the human walking ability evaluation models will be developed by integrating the clin-
ical knowledge and lower limb movement data. Lastly, the personalized gait training strategy for
collaborative control of human–machine systems needs to be implemented in the clinical applications.

Keywords: rehabilitation and assistance system; lower limbs; intention recognition; gait training;
gait evaluation; human–machine interaction control strategy

1. Introduction

Walking is one of the most common behaviors in human daily life, and the ability to
walk is an important factor for human beings to live independently. However, neurological
diseases such as stroke sequelae and Parkinson’s disease can lead to impairment of human
motor function and decline in walking ability [1], which can seriously affect the quality of
life and health of patients. The World Health Organization survey shows that the incidence
of stroke in China ranks first in the world, and stroke is characterized by high incidence
rate, high disability rate, high mortality rate, and high recurrence rate [2]. According to the
report of the National Bureau of Statistics of China, the elderly population in China will
reach 267 million, accounting for 18.9% of the national population in 2022. The accelerated
process of aging has increased the number of people suffering from neurological diseases,
and the conflict with the lack of medical resources has become a serious problem in the
health care system [3]. At present, human beings cannot break the laws of nature to prevent
the decline in their own motor functions, and many injuries to the body’s motor function
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are irreversible. It has become one of the urgent problems in society to help the elderly or
patients overcome movement disorders, restore their walking function, and improve their
daily living ability.

Active intelligent gait training systems are robotic devices that actively interact with
human lower limbs to provide support and assistance for the body’s motor function. State-
of-the-art rehabilitation training walkers or robotic systems mainly have problems such as
poor gait adaptability, inability to quantify and feedback rehabilitation effect, single training
strategy, and limited sensor usage environment [4–12]. Facing major national needs and
the main economic battlefield, it is of great significance to develop intelligent rehabilitation
equipment to realize gait perception, evaluation, and feedback in the home environment,
and to help rehabilitation physiotherapists to assist patients in restoring motor function. The
gait training system is a large area of research which integrates mechanical design, sensing
technology, intelligent control, and robotics technology. At the forefront of the research
of intelligent gait training systems and evaluation methods, there are three important
basic scientific problems to be solved, which include: (1) the measurement of lower limb
movement and the prediction of movement intention, (2) the construction of a walking
ability evaluation model based on clinical knowledge and lower limb movement data, and
(3) the formulation of personalized gait training strategy of collaborative control of human–
machine system. Therefore, the key words “gait measurement and intention recognition”,
“gait evaluation”, and “gait training control strategy” were used in the literature review.
Additionally, this review not only selected publications that directly describe or introduce
any gait training system, but also retains those publications that focus on any of the three
basic scientific problems mentioned above.

In this review, the current active intelligent gait training systems are investigated and
discussed from three perspectives, in accordance with three critical scientific problems
put forward above, which are measurement and prediction of lower limb movement,
evaluation of the effect of gait rehabilitation, and the control strategy of gait training. The
main limitations and challenges are then discussed, and potential future directions of
intelligent gait training systems are put forward.

2. Human Gait Measurement and Intention Recognition
2.1. Gait Movement Measurement

The active intelligent gait training systems have the ability to monitor patient’s move-
ment in real time [13]. At present, human’s body movements are mainly measured through
the fixed force platform and optical motion capture system [14–16] in the gait laboratory,
or multiple movement and force sensors worn on the limb [17–19]. The former is highly
accurate but limited by the measurement environment, and the latter may interfere with
the normal human movement.

The current main human movement measurement methods used in gait training
systems are shown in Figure 1. Gait motion measurement techniques used in each of
the included studies [14–36] and their characteristics are shown in Table 1. Vision-based
methods are one of the important methods for monitoring the posture and movement
of the human body and have a wide range of applications [20–23]. Based on the image
global joint summation problem or the hierarchical detection fusion problem, deep learning
methods have been widely studied for the estimation of human pose [24,25]. However,
visual methods have problems such as clothing occlusion, dark environment, high system
complexity, difficult installation, and privacy issues, and there are limitations in actual
human–machine coordinated movement. The wearable sensing system of human body
dynamics analysis consists of multiple sensors, including gyroscopes, pressure sensors,
angle sensors, inertial sensors, etc., but it has difficulties in obtaining displacement and
relative poses from human to machine. The radio frequency (RF) signal-based method
can use the data characteristics of the human body and its motion in the radar image to
measure the three-dimensional relative pose and radial velocity [35]. The latest research [36]
shows that it has obvious advantages in solving problems such as occlusion and three-
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dimensional reconstruction, but at present it still needs in-depth research on issues such as
decoupling RF signals of human and machine movement, fusion understanding based on
physical models and data, and generalized measurement of abnormal gait. Therefore, it
is necessary to study a new type of non-contact sensing technology solution, combining
the kinematics information of the lower limbs and plantar pressure detection to form a
composite information perception system to accurately predict the movement trend of the
patient’s lower limbs and use it to evaluate the patient’s health and athletic ability.
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Table 1. Gait motion measurement techniques used in each of the included studies and their charac-
teristics.

Study Sensing Techniques Advantages Challenges

Jensen et al. [14] One camera Motion capture systems
represented by Vicon are
currently regarded as the

“gold standard” for motion
capture by their high

accuracy

Greatly affected by the
environment, high system

complexity, difficult to
install, and privacy issues

Xie et al. [20] Three noncontact cameras
Bao et al. [21] Pupil Labs eye tracking system

Steinert et al. [22] 2D smartphone camera
Tran et al. [23] Seven Kinect sensors(cameras)

Toshev et al. [24] Images taken by a camera

Yang et al. [35] Radio-frequency identification
(RFID) tags

Measure in the presence of
occlusions, baggy clothes,

and bad lighting conditions

Decoupling of RF signals of
human–machine

coordinated movementZhao et al. [36] Radio frequency (RF) signals from
RF-Avatar

Veilleux et al. [15] Six large force platforms
No image information will

be left, and user privacy will
not be violated

Only in the laboratory

Zeng et al. [16] Smart sensor shoes
Unrestricted use

environment, simple to use,
user privacy will not be

violated

May intervene with the
normal motion, difficulties
in obtaining displacement

and relative pose of
human–machine

Mazhar et al. [17] A flex sensor on a leather shoe
Trkov et al. [18] inertial sensors on lower limbs

Li et al. [19] Designed strain gauge on leg
Schicketmueller et al. [26,29] Inertial measurement units

Martini et al. [27] Embedded joint angle sensors
Unrestricted use

environment, simple to use,
user privacy will not be

violated

May intervene with the
normal motion, difficulties
in obtaining displacement

and relative pose of
human–machine

Wang et al. [30] Foot pressure sensor and IMU
Bae et al. [31] Force sensors in the foot plates

Livolsi et al. [32] Hip encoders, pressure-insoles
Bae et al. [33] Inertial measurement units

Chen et al. [34] A single IMU
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2.2. Movement Intention Recognition

For patients with impaired motor function but can still move and do some daily
activity, the willingness to actively participate in gait training is especially important in
the rehabilitation process [37]. Clinical studies have shown that active involvement of
patients in the rehabilitation training is more effective in the neurological reconstruction and
motor function recovery. Therefore, as an important input information of active intelligent
rehabilitation and assistant robotics device, human lower limb movement intention needs
to be captured in real time.

The current typical intention recognition methods used in gait training systems and
the statistics of recent research studies using each method are shown in Table 2. The
neuro-rehabilitation training robotics devices should show “transparency” in the patient’s
walking assistance process, that is, reduce the intervention of the patient’s active gait
as much as possible [38], and the key lies in the understanding and prediction of the
patient’s movement intention. Current intention recognition methods are mainly based
on bioelectric signals and motion signals. The electroencephalogram (EEG) signals are the
overall reflection of the movement intentions in brain [39], and have the shortest latency, but
it has a low signal-to-noise ratio, easily interfered by noise [40,41]. The Electromyographic
(EMG) signals reflect the state of muscle activation and the feedback control based on
EMG signal can effectively improve the human–machine coordination in rehabilitation
training [42–45], but it has strong ambiguity and is affected by factors such as surface
contact status, muscle displacement, and muscle fatigue [46]. The intention recognition
method based on motion signal mainly uses kinematic signals such as position, angle,
and speed, and kinetic signals such as interaction force/torque, which has high reliability,
robustness, and accuracy [47–50]. Xu et al. [51] proposed a compliance control algorithm
for walking-aid robots based on multi-sensor fusion, which allows the robot to obey human
movement by recognizing user intentions. Esteban et al. [52] also carried out related
research, using EMG signals and Artificial Neural Network (ANN) algorithms to recognize
human walking intention and proposed a robotic knee exoskeleton for assistance and
rehabilitation. Wu et al. [53] put forward a coordinated control strategy based on human–
machine interaction and the principle of minimum interference. However, the information
of human motion and force is the result of the movement, with a certain time lag between
the motion intent. Therefore, in response to the active adjustment needs of human-in-
the-loop control, it is necessary to study new motion perception systems and intention
prediction models with self-learning capabilities, and to improve the stability, synergy and
adaptability of human–machine collaboration based on active intention feedback.

Table 2. Intent recognition method used in each of the included studies and their characteristics.

Intent Recognition
Methods Study Characteristic

Electroencephalogram (EEG)
signal method

Liu et al. [39] High accuracy: 80.16 ± 5.44%
Engemann et al. [40] The best model depends on noise

Bi et al. [41] To recognize intention under the attended and distracted states

Electromyographic (EMG)
signal method

Zhuang et al. [42] Proved to be better than interaction-torque based method
Zhang et al. [43] Back Propagation (BP) neural network was used

Xie et al. [44] General regression neural network optimized by golden section
algorithm was used

Rabe et al. [45] Anterior sonomyography sensor fusion with surface EMG
Fougner et al. [46] 3.8~18% average classification error due to muscle fatigue

Mora-Tola et al. [52] Artificial Neural Network (ANN) algorithms were used
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Table 2. Cont.

Intent Recognition
Methods Study Characteristic

Kinetic signals method

Guo et al. [47] A robot dynamics model including the active force of human was
established, and contact force was used to analyze intention

Pinheiro et al. [50] The interaction torque’s direction and magnitude were both used
Xu et al. [51] A compliance control algorithm based on intent was proposed

Wu et al. [53] A minimal-intervention-based admittance control strategy was
developed

Kinematic signals method Gong et al. [48] Two IMUs and an imbedded BPNN-based algorithm were used
Zhu et al. [49] Recognition accuracy rate can reach 97.64%

3. Evaluation of Gait Rehabilitation

Clinical gait analysis and evaluation is of great significance in active intelligent gait
training systems. Quantitative analysis methods based on sensor data are important
methods for gait rehabilitation evaluation. An increasing number of researchers in physical
therapy, bioengineering, neurology and rehabilitation have been participating in this field
of study. In the early research studies, gait analysis and evaluation usually took the form
of scales, such as the Fugl-Meyer exercise scale [54]. According to the scale, medical
staff perform the diagnosis and evaluation of motor function, the monitoring of disease
progression, and the evaluation of curative effect. The result of evaluation is often affected
by a large number of subjective and inaccurately measurable parameters in the clinical
scale [55].

Table 3 shows number of gait evaluation studies, which sensors and features were used
in each research [56–77], and the real-time of gait evaluation. Gait parameters are usually
used to assist medical staff in diagnosis, rating and scoring of motor function, monitoring
the progress of the patient’s condition, and evaluating curative effect. Gait measurement
equipment such as motion capture systems and wearable inertial sensors have been widely
used in clinical practice. Some researchers used the gait parameters measured by these large
systems to predict Parkinson’s diagnosis and Hoehn-Yahr (H-Y) classification [67,68]. There
are also researchers who used the changes in gait parameters before and after the patient
receives treatment and training to evaluate the treatment effect [69]. Caramia et al. [70]
used eight inertial measurement units placed on the lower extremities and trunk to estimate
several gait parameters such as step length, stride speed, etc. and extract features from
them to distinguish between healthy people and patients with H-Y grades 1 to 3 in order to
achieve diagnosis and grade prediction. However, there are problems such as inconvenient
use of sensing equipment, lack of clinical significance of data features, difficulty in matching
the scale, and an incomplete assessing system. Wang et al. [71] carried out preliminary
research based on clinical needs, using as few human sensor measurement data as possible,
and using nonlinear data classification methods to achieve quantitative evaluation of
dyskinesias in patients with abnormal gait. Skvortsov et al. [72] also investigated the
feasibility of gait analysis and walking function evaluation based on the stance phase of
stroke patients using biofeedback technology.

Muscle synergy theory describes a potential neuromuscular control mechanism of
vertebrate limb movement [73]. According to the muscle synergy theory, nerves do not
control a certain muscle alone, but recruit muscles on the spinal cord to form muscle
groups, that is, muscle synergy. The muscles in the same muscle synergy are activated at
the same time. Compared with controlling each muscle individually, using one control
signal to activate multiple muscles theoretically provides a simplified system. Numerous
experimental research results support this theory [74,75]. Studies have shown that muscle
activation during motor tasks can be described in terms of low-dimensional control that
reflects muscle synergy. The downward commands of the nervous system to the muscu-
loskeletal system are manifested in muscle synergy, which is reflected in muscle activation
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through spinal cord circuits or reflexes, thereby forming a force in the musculoskeletal
system, driving the musculoskeletal system to move and producing specific actions.

Table 3. Sensors and features used in gait evaluation method in each of the included studies.

Study Sensors Used Features Used in Gait Evaluation Real-Time

Anaya-Reyes et al. [56] Vicon MX T20 Step phase durations and cadence −
Alberto et al. [57] 3-D motion capture system Stride width and gait velocity −

Ma et al. [58] Three Force Sense Resistors Knee and hip joints and FSRs data −
Chomiak et al. [59] Ambulosono system Step length, distance traveled, velocity, and

cadence +

Tran et al. [60] A motion capture system and four force
sensors

Center of mass, the center of pressure, and
step parameters −

Park et al. [61] Force sensors Angles, active force, and resistive force −
Sconza et al. [62] Dynamometer Knee extensor strength, double-time

support, and step length ratio −
Wang et al. [65] 3-D motion capture system Cadence and single stance time −

Tamburella et al. [66] Angle sensors Gait speed −
Wahid et al. [67] 8-camera video motion analysis system Stride length, step length, and double

support time −
Rehman et al. [68] GAITRite instrument Step velocity and step length −
Carlotta et al. [70] Inertial measurement units (IMU) Step length, step time, and stride speed −

Wang et al. [71] Inertial measurement units (IMU) Right spatial-temporal and kinematic gait
parameters +

Skvortsov et al. [72] Neurosens inertial sensors Knee and hip joint range of motion −
Cheung et al. [74]

EMG sensors EMG signals (muscle activity)
−

Safavynia et al. [75] −
Longatelli et al. [77] −

Rinaldi et al. [76] EMG sensors, Vicon, and force platform Both gait parameters and muscle activity −
Seo et al. [78] EMG sensors and IMU −

Abbreviations: + real-time evaluation; − off-line evaluation.

Based on the muscle synergy theory, many research studies have been carried out
to diagnose gait disorders and neurological diseases by measuring the activation state of
lower limb muscles during walking [76–80]. However, the existing methods for measuring
muscles exercise have drawbacks. On the one hand, Surface Electromyography (sEMG)
signal measurement has limitations which include the lack of ability to test the deep
muscles, the easily interfered EMG sensors, and the difficulty for the extraction process of
the EMG signal envelope to accurately demodulate the neural excitation when the motor
neuron action potential is generated. On the other hand, Indwelling Electromyography
(iEMG) causes a certain degree of damage to human muscles, which is not suitable for
long-term exercise detection with multiple measurements. At the same time, the existing
simulation software is generally based on a variety of rule constraints such as muscle force-
length relationship constraints, muscle force and joint motion coupling constraints, etc., and
optimization theories such as minimizing physiological consumption. However, according
to the results of human motion modeling and analysis by related researchers [79,80], in
patients with gait disorders, it is often difficult to meet the above constraints due to nerve-
muscle-skeletal damage, and the dynamic representations such as joint torque are affected
by motion compensation under the condition of external load changes.

4. Control Strategy of Gait Training Systems

Traditional walking devices, such as crutches, walkers, wheelchairs, etc., are mostly
passive devices, which cannot solve the problem of coordinated dynamic training of body
and lower limb muscle when the elderly and patients walk [81]. On the contrary, active
intelligent mobility assistance devices interact physically with the human body, as well as
coordinated movement, to provide support and assistance for the body’s motor function
and help the body maintain and restore its motor function to the greatest extent [82,83].
The typical control diagram of active intelligent gait training systems is shown in Figure 2.
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A walker is a walking rehabilitation assistive device used to assist users in standing
and walking activities which can effectively help users improve their walking ability
and is of great significance to a large number of disabled or elderly people. Based on
this, intelligent walking rehabilitation assistive robotics devices effectively use the current
rapid development of technology to help users break through the original limitations of
walking ability to a certain extent and improve their mobility to meet their daily needs.
These technologies include mechanical design technology, embedded system technology,
sensing and detection technology, automatic control technology, motor control technology,
microelectronics technology, interface technology, and software programming. Table 4
shows several gait training systems and their control strategies from recent studies [84–102].
Pure force/position control means the gait training systems make corresponding operations
by detecting human gait events, but do not care about the information of human–machine
interaction, while systems with impedance/admittance control strategy use the human–
machine interaction information such as interaction force/torque and relative position.
Novel human-in-the-loop control represents a large number of control strategies that both
recognize the motion intention of humans and detect the human–machine interaction
information, described as ‘human-in-the-loop’ because the information of the human body
takes part in both the input and feedback of the closed-loop control. Yu et al. [84] developed
an intelligent three-wheeled mobility aid, which is equipped with infrared sensors and laser
rangefinders to ensure human–machine–environmental intelligent interaction in motion.
Tao et al. [85] studied the intelligent mobility assistance rehabilitation training device
for the needs of standing and gait rehabilitation. A standing support and gait training
system that maximizes the patient’s own rehabilitation exercise ability was developed by
using the pressure sensor on the sole of the foot to detect the user’s balance or falling
state and feeding back the human lower limb joint and muscle force to a load-reducing
suspension system. Zhao et al. [88] developed a gait rehabilitation robot to improve the
safety and availability of rehabilitation training for patients. A built-in-robot camera was
used to obtain leg movement data, and the knee angle was estimated by a New-type ESMF
algorithm to deal with the problem of the brief disappearance of the marker point in the
field of view.
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Table 4. Gait training systems and control strategies of each included.

Device Name Control Strategy References

Gait rehabilitation device Open-loop position control based on GRFs Tao et al. [85]
Novel Robotic Walker Position control based on gait event Ye et al. [86]
Gait Training Robot Force control method based on gait event Miyake et al. [87]

Walking Assist Robot Position control based on fall detection Zhao et al. [88]
Hybrid Rehabilitation Robot Manually changed training modes and speed control Kim et al. [91]

C-ALEX Open-loop force control base on gait event Hidayah et al. [96]
Gait Assist Robot Training mode switch based on task and gait feature Scheidig et al. [99]

Lower-Limb Exoskeleton Speed control based on gait parameters Ma et al. [100]

Intelligent Mobility Aid Admittance-based mobility controller Yu et al. [84]
Rotational Orthosis Admittance control of the ankle mechanism Mu et al. [89]

Gait rehabilitation robot Adaptive admittance control based on interactive force Guo et al. [90]
Improved rotational orthosis Admittance control based on ankle force Mu et al. [92]

Clinic gait training robot Admittance control based on relative position Shunki et al. [93]
2-DOF Exoskeleton Admittance control based on interactive force Chen et al. [101]

Robot Assisted Gait Training Assist-as-needed Control based on prediction Zhang et al. [94]
GAREX Logic compliance adaptation and assist-as-needed Zhong et al. [95]

Ankle Robotic Orthosis Assist-as-needed Impedance Control Strategy Lopes et al. [97]
Biofeedback Exoskeleton Speed control based on predicted user response Zhang et al. [98]

AGoRA Closed-loop control based on intention and gait feature Mayag et al. [102]

Functional Electrical Stimulation (FES) is a method of applying low-frequency pulsed
current or amplifying it through signal-current conversion and then sending it into the
human body to produce immediate effects, artificially causing movement in humans who
are paralyzed by damage to the central nervous system. Recently, a large number of research
studies proposed robotic systems for gait rehabilitation based on FES method [103–105].
Studies have proven that, combined with FES, the assistive torque required of the gait
training systems can be reduced and the muscle strength and joint range of motion of the
human body can be improved. However, due to the use of electrode pads, this rehabilitation
strategy still has problems such as the inability to stimulate deeper muscles or the trauma
of electrode implantation in sEMG and iEMG in Section 3.

Locomat is a robotic gait training system. It is used for gait training for patients with
abnormal gait caused by brain injury, spinal injury, neurological injury, muscle injury,
and orthopedic diseases, and to improve the motor ability of patients with neurological
diseases. In the first few generations of prototypes, Locomat also used the common
impedance control based on torque feedback [106], but in the latest generations of Locomat
Pro, novel control strategy such as automatic gait-pattern adaptation and path control
strategy are applied. Locomat Pro can also perform diagnostic evaluation of patients’ gait
and there are many cases of clinical application [107–109]. However, it is difficult for such
a bulky and expensive product to enter millions of households, and the compliance of
the control can still be improved. For patients who have lost their mobility due to nerve
damage, how to fully mobilize the patient’s own movement intention instead of “passive
walking” so as to achieve the treatment of nerve injury diseases is a difficult point in the
study of the intelligent gait rehabilitation training systems.

5. Limitations and Challenges

Rehabilitation and training of gait is a current research hot spot. From the systematic
analysis of the current research status of the active intelligent gait training systems, it is not
difficult to see that there are still key issues in terms of sensing, evaluation, and control.
Key technologies such as the decoupling of radio frequency signals of human–machine
coordinated movement, the understanding based on fusing physical models and gait data,
and the generalized measurement of abnormal gait are in urgent need of breakthroughs.
To be specific, when capturing patients’ motion using RF signals, both the wearable gait
training device and the human body reflect RF signals. That makes the decoupling of the
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return signals from the two very important, and it is also the limitation of current research
studies. The methods of lower limb movement analysis and movement intention prediction
based on radio frequency principles need to be further studied. As the current intention
recognition based on EEG signals is easily interfered by noise, the EMG signals-based
method has strong ambiguity. Moreover, the intention recognition based on kinematic or
kinetic signals has a long latency.

As a mobility aid for gait rehabilitation and training, if the evaluation criteria for
the rehabilitation effect are difficult to define and the efficacy cannot be guaranteed, it
will be difficult to meet the diverse and personalized needs of users. The current clinical
scale for gait analysis and evaluation relies on the subjective assessment of the doctor
and the self-perception of the patient. In addition, the existing sensing data features
lack clinical significance and are difficult to correspond to the scale, and the evaluation
system is inadequate. How to quantitatively evaluate the effect of gait training with
multi-dimensional information still needs in-depth research.

A crucial problem of control of the active intelligent rehabilitation assistance devices for
lower limbs is that it needs to allow the users to spontaneously participate in motion, which
is of great importance for patients with nerve injury. However, the current gait rehabilitation
training systems have difficulty accurately recognizing the user’s movement intentions to
make corresponding assistance strategies. As users’ requirements for comfort and safety
continue to increase, the human-in-the-loop control, with information of human body
taking part in both the input and feedback of the controller, is receiving increasing attention.
However, due to the difficulty of quickly and accurately identifying the user’s intent, the
research studies on human–machine cooperative intelligent control for personalized gait
rehabilitation training is still too preliminary.

6. Future Directions

To address the core problems in the sensing, evaluation, and control technology of the
active intelligent gait training systems, the following possible future research directions are
proposed. We believe that the key is to focus on scientific issues such as the decoding of
lower limb movement intention based on the principle of radio frequency, the construction
of a walking ability evaluation model combined with clinical knowledge base and lower
limb movement data, and the personalized gait training strategy for collaborative control
of human–machine systems.

Among the many methods of detecting and sensing human lower limb movement,
the method based on the radio frequency signal is relatively preliminary, but it has obvious
advantages and broad prospects. A new type of non-contact motion sensing method based
on the principle of millimeter wave echo reflection needs to be studied. For instance, a
non-contact small radio frequency sensor such as a millimeter wave radar first needs to be
developed. Using the signal features generated by human motion on the radar image and
Doppler signal spectrogram as target features, similar to Daniel et al. [110], and using the
space occupancy status and motion frequency shift information contained in the frequency
characteristic data of the range view as input, the features in the input data are encoded
by the convolutional neural network (CNN) method, and an estimator is generated to
output the joint position and motion information of the object [111]. By combining the
real-time data with the models of the kinematics and dynamics of human lower limbs, the
human lower limb movement may be predicted. In conclusion, it is of important scientific
significance to study a new non-contact sensing principle and the method of model-driven
and data-driven fusion, to integrate the characteristics of different information dimensions,
to build a more concise, fast, and accurate online decoding model of composite information
for patient’s gait training, and to predict patient’s movement intentions.

Based on the knowledge of rehabilitation medicine, combined with the results of
motion recognition and prediction, the evaluation model of gait rehabilitation training
effects needs to be established, and the method of generating personalized rehabilitation
training prescriptions needs to be studied. Based on the extracted non-steady-state motion
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signals of the lower limbs, the time–frequency characteristics of the vital signs signals such
as EMG signals can be analyzed. In order to evaluate the movement synergy of the healthy
and abnormal limbs of the human body, the mechanism of human muscle synergy needs to
be further studied. Combining the lower extremity musculoskeletal model with the static
optimization algorithm to calculate the muscle activation degree during human walking,
the evaluation method of the muscle coordination degree on the lower extremity muscle
movement coordination ability of the patient’s exercise training can be studied. Finally, the
evaluation of gait training effects for different ages and different training stages will be
realized.

The workflow of an ideal gait training system should be as follows: based on the
evaluation of walking ability and the needs of gait rehabilitation training, the movement
mode of gait training can be determined. The corresponding human motion intention and
motion reference trajectory are obtained through the non-contact motion sensing system.
After this, the desired motion trajectory of the gait training system is generated. Combined
with the motion intention of the lower limbs of the human body and some simple control
methods, the gait training system will flexibly assist the patient to complete the desired
action. All in all, the key to the formulation of control strategies is gait evaluation and
intention recognition, while obscure and sophisticated control theory is secondary. By
studying the collaborative control method of the gait rehabilitation training system and the
patient, based on principal component analysis, multiple regression, and neural network,
the association model between gait data and clinical evaluation can be constructed, and a
personalized gait training strategy with multi-layer, and cooperative closed-loop control
of “human in the loop” can be designed. Based on this, carrying out research on the
collaborative control of human–machine systems based on personalized rehabilitation
strategies, evaluating the perception and control performance of the gait training system,
and generating clinical evaluation reports on the effects of rehabilitation training have
important academic significance and extensive clinical application value.
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Abstract: Human intention recognition belongs to the algorithm basis for exoskeleton robots to
generate synergic movements and provide corresponding assistance. In this article, we acquire
and analyze the mechanomyography (MMG) to estimate the current joint torque and apply this
method to the rehabilitation training research of the upper extremity exosuit. In order to obtain
relatively pure biological signals, a MMG processing method based on the Hilbert-Huang Transform
(HHT) is proposed to eliminate the mixed noise and motion artifacts. After extracting features and
forming the dataset, a random forest regression (RFR) model is designed to build the mapping
relationship between MMG and human joint output through offline learning. In addition, an upper
extremity exosuit is constructed for multi-joint assistance. Based on the above research, we develop a
torque estimation-based control strategy and make it responsible for the intention understanding and
motion servo of this customized system. Finally, an actual test verifies the accuracy and reliability
of this recognition algorithm, and an efficiency evaluation experiment also proves the feasibility for
power assistance.

Keywords: joint torque estimation; upper extremity exosuit; mechanomyography signal processing;
rehabilitation training; MMG; human movement assistance

1. Introduction

As is the case for most of the potential technical equipment for rehabilitation training
and movement assistance, the exoskeleton system has always attracted attention in related
research fields for the elderly and the disabled [1,2]; however, with some key issues not
being resolved, the performance of this wearable robot remains relatively limited [3].
Among them, human intention perception belongs to a pretty critical research point and
needs to be studied further. Traditional methods try to achieve this function by monitoring
limb kinematics data [4] or human-machine interaction information [5], but problems such
as response lag greatly restrict its actual effect. In recent years, recognition methods based
on biological signals have emerged and gained wide attention [6], which are expected to
realize more effective intention understanding.

Biological signals are often generated before the execution of corresponding actions,
which show a certain degree of motion predictability and can make intention recognition
more timely and accurate. In addition to eye tracking and galvanic skin response (GSR) [7],
which are not suitable for combining with exoskeleton control technology, commonly
used types in current research mainly contain electroencephalogram (EEG) [8], surface
electromyogram (sEMG) [9], and mechanomyography [10]. The EEG signal originates from
the potential of the external electrical field that fluctuates around nerve cells in the brain,
and is often applied to classify specific movement patterns [11,12]. Due to its instability
and susceptibility to interference, EEG-based methods for data collection, signal processing,
and intent identification needs to be further improved and optimized. The sEMG signal
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represents the total action potentials of different motor units innervated by certain motor
neurons, which can be obtained through electrodes placed on the corresponding muscle
tissue [13]. It has the advantage of high sensitivity and low delay, but many factors will
diminish its effectiveness for data collection, such as skin surface cleanliness, air humidity,
and patch electrode position [14]. MMG reflects the mechanical vibration signal generated
when the skeletal muscle contracts, and it contains abundant information, such as the
number of muscle fibers participating in the exercise, and the amplitude and frequency of
vibration [15]. Compared with the above two signals, it has the following advantages [16].

• The measuring device can be used directly without touching the skin, which simplifies
the preparation before data collection;

• the signal has strong anti-interference ability and will not be affected by environmental
variables such as sweat, humidity, or electromagnetics;

• the equipment cost is pretty low because the data collection task can be completed by
using an acceleration sensor that meets the accuracy requirements.

However, there are still some limitations in the practical application of MMG. For
example, it is easily contaminated by low-frequency motion artifacts, and sensitive to
sudden step noises; therefore, a suitable signal processing algorithm is needed to extract a
relatively pure sequence.

At present, classification and regression algorithms have been widely used in many
studies, such as the trajectory control of a redundant robot [17] and hand gesture recognition
for teleoperated surgical robot systems [18], which can also complete the analysis of
human motion intention. As a relatively common and easy-to-use method, motion pattern
recognition [19,20] aims at establishing the mapping relationship from sensor information
to finite human motion states through classification models. Then, the control subsystem
will generate corresponding commands according to current motion pattern and will
deliver them to underlying drivers. Joint angle prediction attempts to calculate the limb
position at the next moment based on regression models [21,22], which can effectively
avoid the response lag of the exosuit. After that, the motion state of the power-assisted
system can be dynamically adjusted through position closed-loop control. Joint torque
estimation also belongs to a direct and effective method of obtaining intentions [23,24].
The desired torque can be calculated through the Hill type model [25] or obtained from
the biological signals using machine learning algorithms [26], and can act as the input
parameter of torque closed-loop control to regulate the motor output. The last method
will provide a reference for the direct control of external torque that assists joint motion,
which is quite practical for upper extremity exosuits that need to achieve an expected
power-assisted efficiency.

If we want to use the abovementioned MMG signal to estimate the joint torque, it
is obviously quite difficult through conventional mathematical derivation. The machine
learning algorithm can train the mapping model very well based on the existing data,
and it shows an excellent fitting ability in many research fields, such as breathing pattern
detection [27] and human activity identification [28]; therefore, this method should be able
to describe the complex and nonlinear relationship between MMG and joint torques.

The inherent characteristics of the soft exosuit based on Bowden cables greatly in-
creases the difficulty for designing control strategies [29,30]. The gravity compensation
algorithm is a simple and common method for motion generation, which will output an
active torque to offset the joint load imposed by the limb weight [31,32]; however, due
to the large error of compensation model and the ignorance of dynamic characteristics,
it may cause the system response to, more or less, mismatch the joint movement. The
exosuit named CRUX [33] tries to control the target arm to follow the reference trajectory
of the healthy one, consequently completing the active rehabilitation training process [34].
This method will limit the subjective initiative of the wearer to a certain extent, and is
not suitable for situations where both arms need assistance. Some scholars from Italy
have proposed a threshold method based on sEMG [35]. When the signal amplitude of
the wearer’s measured muscle exceeds the set value, the wearable system starts to pro-
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duce a power-assisted effect for motion immediately. The most obvious disadvantage of
this method is that it only outputs a constant driving force, but the required joint torque
changes dynamically under different motion states. In general, the control logic for the
upper extremity exosuit still has some defects, and remains to be further explored.

In this paper, we intend to complete data preprocessing and feature extraction using
MMG, then establish the mapping relationship from this signal to the joint torque based on
the machine learning algorithm, and finally apply it to the rehabilitation training research of
upper extremity exosuit. MMG is collected through an inertial measurement unit (IMU) and
synthesized by the linear accelerations along three axes. The HHT will filter this original
signal to obtain a relatively pure result. We extract three features from the processed data
and combine them with the collected joint torque to form data sets for training and testing.
A RFR model is designed as the algorithm framework for joint torque estimation, and
its parameters are determined through offline training. According to the above research
results, a control algorithm based on joint torque estimation will take charge of the motion
control for an upper extremity exosuit. Eventually, some experiments are carried out to
test the accuracy of torque estimation and the efficiency of power assistance. The main
contributions and highlights of this study are summarized as follows.

• We have attempted to use the MMG signal as the medium for the exosuit to understand
human intentions, and to demonstrate the feasibility and effectiveness of this approach.

• A series of MMG-related methods for signal acquisition, filtering, and feature extrac-
tion have been developed.

• A regression model reflecting the nonlinear relationship between muscle activation
and joint output is constructed.

• A torque estimation-based control algorithm is designed and applied to the multi-joint
motion assistance of upper extremity exosuit, which can significantly amplify the
limb strength.

The remaining research content of this article is organized as follows. Section 2
describes the measurement and calculation methods for MMG, its corresponding joint
torque, and how to process the original signal to construct data sets. Section 3 introduces
the design details of RFR model and uses a large amount of test data to fit the desired
quantitative relationship. In Section 4, we have developed a control strategy for the upper
extremity exosuit based on torque estimation. Section 5 proves the feasibility of the above
methods through some experiments. Section 6 is the conclusion.

2. Data Sets Acquisition
2.1. Raw Information Collection

In order to obtain the MMG signal and corresponding joint torque at the same time,
we built a measurement platform for joint information collection. Figure 1a shows how to
use this device to get relevant data about elbow static flexion and extension.
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Figure 1. Information collection process during elbow static flexion/extension: (a) measurement
platform; (b) joint torque calculation model for elbow.
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During this process, a six-dimension force sensor and a high-performance IMU are
responsible for detecting forces along three directions at the end of limb, and gathering
MMG at the brachioradialis of forearm, respectively. When subjects hold the force measur-
ing rod and try to perform specific actions, this platform will transmit corresponding data
to the host computer through a data line and save them in files.

With readings from a six-dimension force sensor (Fx and Fy) as input, the joint torque

(
→
T elbow) can be calculated by a certain mathematical relation. The mechanical model of the

elbow is shown in Figure 1b, where
→
A,
→
F , and L, respectively, represent the current posture

vector of human arm, the resultant force vector at the end, and the length of forearm. Then,
we can dynamically obtain the joint torque values during elbow static flexion and extension
through the following formulas.

→
F =

→
F x +

→
F y (1)

→
T elbow= L(

→
A

|
→
A|
×
→
F) (2)

During dynamic flexion/extension without using the platform, it can be seen in
Figure 2 that when the measured muscle contracts or relaxes and drives the human joint to
rotate, the IMU can perceive some regular acceleration signals in the x, y, and z directions
synchronously, and the same is true for the process of static joint output. In order to
integrate all the effective information, we calculate the sum of linear acceleration vectors
along three axes (ACCx, ACCy, and ACCz), and take its modulus as the original MMG signal
(MMG(t)), which can be expressed as the following equation.

MMG(t) =
√

ACC2
x+ACC2

y + ACC2
z (3)
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Figure 2. The IMU data during elbow dynamic flexion/extension with low strength: (a) three-axis
euler angles; (b) three-axis accelerations.

2.2. MMG Signal Processing

However, the method of using linear acceleration values for MMG characterization
inevitably mixes low-frequency artifacts into the collected original signal, such as gravi-
tational acceleration, IMU posture changing artifacts caused by muscle deformation, and
motion artifacts introduced by upper limb movements. Moreover, high-frequency white
noise may also be superimposed on it. In order to improve the quality of data and lay the
foundation for subsequent feature extraction, an effective filtering method must be applied
to eliminate the abovementioned interferences. Traditional signal processing methods are
mostly based on Fourier analysis, but these ones have limited effects in practical applica-
tions of processing MMG due to its non-linear and non-stationary characteristics. With
reference to related literatures, we decide to use HHT to analyze the original data, which is
more suitable for these kinds of signals.
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The HHT consists of two parts, namely empirical mode decomposition (EMD) and the
Hilbert transform. EMD can decompose a complex signal into a limited number of intrinsic
mode functions (IMFs) and a residual based on the local time scale characteristics of itself.
The specific implementation steps are as follows. First, we find all the local maximum points
and local minimum points of the original MMG signal and fit their respective envelopes
through the cubic spline curve. Then, the mean value of the upper and lower envelopes
(U(t) and L(t)) will be subtracted from the original sequence to get the remaining part with
the low frequency information removed (x(t)).

x(t) = MMG(t) − 1
2
(U(t) + L(t)) (4)

If the number of extreme values and zero crossings on the entire data set of x(t) differs
by 0 or 1, and the average value of its two envelopes remains zero at any time, then
IMFi(t) = x(t), otherwise it is necessary to let MMG(t) = x(t), and repeat the above steps
until these two conditions are met. Next, we remove the obtained IMFi(t) from MMG(t) and
repeat all the above steps again with the remaining part (ri(t)) to get other IMF components
until ri(t) is a constant or monotonic function. As shown in Figure 3a, the original MMG
signal is decomposed into 9 IMFs and 1 residual (res(t)) according to the signal frequency,
which can be expressed as follows.

MMG(t) =∑9
i=1 IMFi(t) + res(t) (5)
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curves of the first four IMFs.

After completing the above analysis, it is time to select the IMFs dominated by MMG
through certain methods and reorganize them to obtain a relatively pure signal. To eliminate
the noise-dominated IMFs, we introduce the concept of autocorrelation (RIMF(t1,t2)), which
reflects the correlation degree of signal values at different times (t1 and t2). Its normalized
expression form, (ρIMF(τ)), can be obtained with the following formula, where τ = t1 − t2.

RIMF(t 1, t2) = E[IMF(t 1)·IMF(t 2)] (6)

ρIMF(τ) =
RIMF(τ)

Rx(0)
(7)

If the normalized autocorrelation curve belongs to an impulse function close to the
zero point, it can be ascertained that the corresponding IMF is dominated by noise, because
noise has randomness and a weak correlation at every moment. After the calculations in
Figure 3b, the first IMF can be classified as such a disturbance.

To exclude the IMFs dominated by motion artifacts, we try to find the discrimination
basis from the energy distribution of each order component. After calculating the energy
value (Ei

IMF) of each IMF according to the following Formula (8), it is revealed that energy
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contained in each IMF has increased significantly, starting from the sixth order. By analyzing
the data of different participants, we find that removing these IMFs as motion artifacts can
achieve a better result.

In the end, we believe that IMF2~IMF5 can effectively characterize the muscle activity,
and the filtered signal can be obtained with them being recombined. It can be seen from
Figure 4 that there is a pretty clear correspondence between the processed MMG and
joint torque.

Ei
IMF =

1
n ∑n

j=1 [IMF i(j)]2 (8)
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2.3. Feature Extraction

Considering that the change in limb strength is often accompanied by the fluctuation
of the muscle fiber’s vibration amplitude, we select the root mean square (RMS) as the time
domain characteristic of MMG. It reflects the effective value of data amplitude and can be
calculated with the following formula.

RMSMMG =

√
1
N ∑N

i=1 X2
i (9)

Due to the correlation between muscle activity and its vibration frequency, mean
power frequency (MPF) is used to represent the frequency domain characteristic of MMG.
It is necessary to perform the Hilbert transform on the filtered MMG to analyze its frequency
spectrum, and then integrate it on the time axis to obtain the Hilbert marginal spectrum
that characterizes the relationship between signal frequency (fi) and energy (Ei). Then, MPF
can be calculated through the following equation.

MPFMMG =
∑N

i=1 fiEi

∑N
i=1 Ei

(10)

The MMG signal may contain information about the number of muscle fibers involved
in power output; therefore, we additionally introduce the concept of sample entropy
(SampEn) to describe the characteristic from a non-linear perspective, which can quantify
the complexity of the time series.

In order to not lose continuity information in the sequence, we apply the sliding
window strategy to extract these characteristic values of the filtered MMG signal. The
window length and step length are set as 500 ms and 50 ms, respectively. So far, the data set
of elbow static flexion/extension is established with RMS, MPF, and SampEn of the MMG
signal as features, and joint torque as the label. We can also use similar methods to obtain
relevant information of shoulder static flexion/extension and static adduction/abduction.

3. Off-Line Torque Estimation
3.1. Regression Model Design

There is a relatively complicated non-linear relationship between MMG and human
joint torque, which seems difficult to accurately describe using the traditional polynomial
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regression model. We try to introduce a machine learning method to solve this problem,
using a large amount of test data to fit the real mapping law. Considering that the joint
torque estimation algorithm is oriented to a wearable power-assisted system, the require-
ment for its stability and reliability must take precedence over that of other aspects. Since
RFR (shown as Figure 5) has these advantages, it can be well qualified for this task.

Electronics 2022, 11, x FOR PEER REVIEW 7 of 15 
 

 

3. Off-Line Torque Estimation 

3.1. Regression Model Design 

There is a relatively complicated non−linear relationship between MMG and human 

joint torque, which seems difficult to accurately describe using the traditional polynomial 

regression model. We try to introduce a machine learning method to solve this problem, 

using a large amount of test data to fit the real mapping law. Considering that the joint 

torque estimation algorithm is oriented to a wearable power−assisted system, the require-

ment for its stability and reliability must take precedence over that of other aspects. Since 

RFR (shown as Figure 5) has these advantages, it can be well qualified for this task. 

 

Figure 5. Schematic diagram of RFR algorithm. 

The RFR belongs to a bagging type algorithm of ensemble learning, which aims at 

improving overall performance by packaging and combining several weak models, 

namely decision trees, into a strong one. The entire model consists of multiple classifica-

tion and regression trees (CARTs) that are not related to each other. All CARTs jointly 

determine the final output result. The specific implementation steps of the algorithm are 

described as follows. 

1. Randomly extract any number of samples from the training set to form multiple new 

sub−training sets; 

2. use each sub−training set to train a CART separately. During this process, it is neces-

sary to randomly obtain any number of features from all the features, and then select 

the optimal segmentation point to cut the subtree; 

3. repeat step 2 to obtain multiple trained CARTs; 

4. calculate the average of all the CARTs' prediction results and use it as the final esti-

mated value. 

Only when more than half of the CARTs make wrong predictions will the output of 

the RFR model seriously deviate from the true value. Even if an abnormal data point ap-

pears, it does not affect the performance of entire algorithm too much, which fully reflects 

the strong robustness to stop interference signals. 

3.2. Off-Line Training and Testing 

We recruited three healthy adult men to participate in training data acquisition. 

Based on the abovementioned platform and methods, the information collection experi-

ment for three motion modes obtains 150,000 sets of sample data in total. In accordance 

with the idea of cross−validation, one−fifteenth of them are selected as the test set, and the 

remaining data act as the training set. Finally, on the basis of setting the number of sub−re-

gression trees of the RFR to 10, and the minimum leaf size to 1, the training process has 

been carried out, and the verification result of the test set is also obtained. 

Figure 5. Schematic diagram of RFR algorithm.

The RFR belongs to a bagging type algorithm of ensemble learning, which aims
at improving overall performance by packaging and combining several weak models,
namely decision trees, into a strong one. The entire model consists of multiple classifi-
cation and regression trees (CARTs) that are not related to each other. All CARTs jointly
determine the final output result. The specific implementation steps of the algorithm are
described as follows.

1. Randomly extract any number of samples from the training set to form multiple new
sub-training sets;

2. use each sub-training set to train a CART separately. During this process, it is necessary
to randomly obtain any number of features from all the features, and then select the
optimal segmentation point to cut the subtree;

3. repeat step 2 to obtain multiple trained CARTs;
4. calculate the average of all the CARTs’ prediction results and use it as the final

estimated value.

Only when more than half of the CARTs make wrong predictions will the output of the
RFR model seriously deviate from the true value. Even if an abnormal data point appears,
it does not affect the performance of entire algorithm too much, which fully reflects the
strong robustness to stop interference signals.

3.2. Off-Line Training and Testing

We recruited three healthy adult men to participate in training data acquisition. Based
on the abovementioned platform and methods, the information collection experiment for
three motion modes obtains 150,000 sets of sample data in total. In accordance with the
idea of cross-validation, one-fifteenth of them are selected as the test set, and the remaining
data act as the training set. Finally, on the basis of setting the number of sub-regression
trees of the RFR to 10, and the minimum leaf size to 1, the training process has been carried
out, and the verification result of the test set is also obtained.

Taking shoulder static adduction/abduction as an example, Figure 6a shows that the
minimum mean square error (MSE) decreases and tends to be stable with the increase in
iterations, and Figure 6b indicates that the difference between the predicted results and
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the actual values on the test set is relatively small. In general, the model training effect has
reached the desired level.
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process with training set; (b) verification result of test set.

To measure the predictive performance of trained RFR model, a root mean square error
(RMSE) and a coefficient of determination (R2) are introduced as evaluation indexes. The
RMSE is a commonly used method to express numerical errors, representing the sample
standard deviation of the difference between the predicted value and the actual one. It can
be calculated by using the following formula.

RMSE =

√
1
n ∑n

t=1(ŷt − yt)
2 (11)

The R2 reflects how much the regression relationship can account for changes to the
dependent variable. A higher value indicates that the regression model can produce better
prediction results. The corresponding calculation process is shown below.

R2= 1− ∑n
t=1 ŷt − yt)

2

∑n
t=1 (y t − y)2 (12)

4. Test Platform Construction
4.1. Overview of the Upper Extremity Exosuit

We intend to take advantage of the abovementioned research to design a control logic
for an upper extremity exosuit, so that it can perform rehabilitation training functions
according to human intentions. As shown in Figure 7, this wearable system aims at
providing active assistance for shoulder flexion/extension, shoulder adduction/abduction,
and elbow flexion/extension of the left arm.
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It contains three sets of cable-driven modules, each of which is responsible for driving
the bidirectional motion for one degree of freedom. The sensing network consists of three
IMUs, six tension sensors, and three absolute encoders which are integrated in motors, and
are in charge of completing multiple tasks, such as MMG signal collection, limb posture
perception, human-machine interaction information acquisition, and servo motor state
reading. As the main control board, STM32F407IGH6 will serve as the brain of the system
to perform core functions such as feature extraction, motion intent identification, and
motor servo control. Components communicate with each other through CAN bus for data
feedback and instruction delivery.

On the basis of the abovementioned hardware, the exosuit can be driven to assist the
human limb coupled with a suitable control algorithm.

4.2. Torque Estimation-Based Control Strategy

As shown in Figure 8, the control logic framework of the upper extremity exosuit
consists of two layers, namely, the intent analysis part based on torque estimation, and the
motion control part based on torque closed-loop.
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When subjects wear this exosuit for collaborative movement, the upper controller
will obtain the triaxial accelerations from the target muscle through the accelerometer
embedded in the IMU, and synthesize them into an original MMG. After completing the
EMD-based filtering operation, it screens out relatively pure signals and extracts the three
characteristics including RMS, MPF, and SampEn. The trained RFR model uses these
features as an input to estimate the expected joint torque value at the current moment.
Finally, the corresponding control commands will be sent to the lower layer.

The lower controller calculates the actual joint torque using the tension sensor readings
at the end of the Bowden cable and compares it with the expected joint torque received
from the upper layer to obtain their error value. Then, a standard PID algorithm generates
motor drive commands based on the torque error, and controls the cable-driven module to
provide appropriate assistance at the joint.

To realize this control strategy through a program code, we develop an embedded
software based on the µC/OS III operating system. Five sub-tasks, including sensing
data reception, signal processing, feature extraction, torque estimation, and motor servo
control, are set up in order of priority from high to low. The execution frequency of each is
assigned by setting different cycle times. Through the division of the abovementioned sub-
task modules, we strengthen the real-time performance of programs under the premise of
clarifying the control code logic for the upper extremity exosuit. In addition, it is convenient
for subsequent optimization work.
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5. Experiment on Exosuit
5.1. Reliability Analysis Experiment for Torque Estimation

The parameters of the RFR model are determined by offline training on a PC. After
transplantation to the control system of the exosuit, an evaluation experiment needs to
be carried out to examine its actual application effect for different people. We recruited
three male volunteers aged 22–27 to complete this experiment. Among them, two subjects
(marked as Subject 1 and Subject 2) who have taken part in the training data set collection for
torque estimation, are selected to join the experimental group, and one (marked as Subject 3),
who did not participate in that process, is assigned to the control group. It is worth noting
that volunteers should not have done any high-intensity exercise 24 hours before the tests,
to avoid affecting the physiological state of the muscles. During the experiment, they are
told to exert an external force that changes approximately in accordance with the sine law
on the measurement platform. All subjects knew and agreed with relevant experimental
procedures in advance. Research related to this article was approved by the Laboratory
Academic Committee of the State Key Laboratory of Robotics and System, Harbin Institute
of Technology.

The embedded system, mounted on an upper extremity exosuit, calculates the esti-
mated torque in real time, and sends them to a PC after being processed. The sensor on
the measurement platform obtains the force data at the end of the arm, which is converted
into the actual torque value in the PC. As it only aims to evaluate the reliability of torque
estimation, we have shielded the subtask of the motor servo control in the program, so as
to avoid the influence of man-machine coupling.

Figure 9 demonstrates the elbow joint torque estimation results of the upper extremity
exosuit on three subjects. In the experimental group, it is obvious that the estimated torque
looks very close to the actual value in terms of magnitude and variation trend. Under
this condition, the model performance behaves in a relatively stable manner, and the
identification result remains rather accurate; however, in the control group, the estimated
torque cannot effectively follow the change of the actual value.
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We use the RMSE and R2 introduced above to quantitatively describe the identification
effect for different subjects. It can be seen from Table 1 that the RMSE of the experimental
group is lower than that of the control group, indicating that the error between the actual
and estimated value is smaller for the joint torque of Subject 1 and Subject 2. Moreover, the
R2 in the experimental group comes up to 100%, which, when closely compared with the
control group, means that the trained RFR model can perform better when utilizing the
biological signals of Subject 1 and Subject 2.
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Table 1. Evaluation results of torque estimation on three subjects.

Groups Participants RMSE R2

Experimental group Subject 1 1.9812 0.9532
Subject 2 1.7008 0.8620

Control group Subject 3 3.4261 0.6824

From the above qualitative and quantitative description, the following two conclusions
can be obtained.

• If we have collected a person’s MMG signal for training the RFR model offline, the
reliability of the online torque estimation will remain at a pretty high level when they
wear the exosuit that uses the trained model;

• utilizing a trained model to estimate the joint torque of unknown subjects online may
significantly weaken the effectiveness of identification.

The reason may be that muscle activation varies among different people when they
output the same joint torque, or different thicknesses of adipose layers more or less in-
fluences MMG propagation; therefore, when using the exosuit for power assistance, it is
necessary to independently train a matching torque estimation model for the wearer based
on his/her biological information.

5.2. Efficiency Evaluation Experiment for Power Assistance

In order to verify the actual power-assisted effect of this method, we selected a healthy
subject, and collected his MMG signals at the brachioradialis, deltoid, and ectopectoralis
to customize a set of RFR models for him. After transplanting these trained models to the
embedded system, and enabling all the subtasks of control program, the subject wears the
exosuit to perform elbow static flexion/extension, shoulder static flexion/extension, and
shoulder static adduction/abduction on the measurement platform, and tries to complete
three evaluation experiments. Other conditions and requirements are basically the same as
the above experiment. An emergency stop switch needs to be held by the right hand all the
way through the experiment, to ensure that the experiment can be stopped in time if an
accident occurs.

Figure 10 shows the performance evaluation experiments for joint movement assis-
tance. We take three torque values, which are estimated by the RFR model, calculated by
the tension sensor on the cable, and converted by the six-dimension force sensor on the mea-
surement platform as human-exerted, exosuit-generated, and the total output, respectively.
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Figure 10. Actual power-assisted experiments: (a) experiment for elbow static flexion/extension;
(b) experiment for shoulder static flexion/extension; (c) experiment for shoulder static
adduction/abduction.

Figure 11 describes the changing situation of different torques in the typical time
period of each motion mode. Obviously, it can be seen that the upper extremity exosuit can
produce additional assistance in the three degrees of freedom of the shoulder and elbow
joints, although its actual output is smaller than the torque estimated by the physiological
signal. This error can be attributed to the loss of power transmission caused by friction
between cable and sheath, or the calculation model deviation induced by suit deformation.
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Moreover, the total output far exceeds the human effort, indicating that this exosuit can
significantly enhance joint strength.
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Figure 11. Variations of different torques in each motion mode: (a) torque curves for elbow static
flexion; (b) torque curves for shoulder static flexion; (c) torque curves for shoulder static abduction.

We introduce the sum of absolute values (ASUM) to quantitatively reflect the average
level of the three torques in different motion modes, and the corresponding results are
shown in Figure 12.

ASUM =
1
n ∑n

i=0|Ti| (13)
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Figure 12. ASUM of different torques under each joint movement.

It is obvious that the sum of torque generated by the exosuit, and that exerted by
a human, is not equal to the actual total output. The combined effect of factors such as
identification error, transmission error, and calculation error, may lead to this gap between
the expected and the actual. We expect to describe the power-assisted efficiency (P) through
analyzing the ratio of ASUMexosuit to ASUMtotal.

P =
ASUMexosuit
ASUMtotal

(14)

The calculation results show that when the upper extremity exosuit independently
assists elbow static flexion/extension, shoulder static flexion/extension, and shoulder static
adduction/abduction, the corresponding power-assisted efficiencies come up to 30.81%,
29.66%, and 25.78%, respectively. These data mean that when a person is equipped with
this wearable robot, the output torque for each joint of the upper limb can be roughly
reduced by a quarter to a third.
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6. Conclusions and Future Work

In this article, we propose a MMG-based joint torque estimation algorithm which
realizes the decoding from biological signals to limb strength, and transplant it into the
control system of an exosuit to calculate the motor commands for assisting the multi-joint
motion of the upper limb. Two sets of experiments are carried out to test the reliability of
torque estimation and the efficiency of power assistance.

The data collection and signal processing methods used in this paper effectively
establish the data sets which reflect human body information. The specially designed
measurement platform can obtain the MMG of muscles and corresponding joint torque in a
relatively accurate and convenient way. The HHT successfully eliminates the interference
components in the original MMG signal, and lays a solid foundation for future extraction.

A technical approach to estimate joint torque from the MMG signal is built through
training the RFR model offline. The reliability analysis experiment shows that this method
can enable the exosuit to accurately identify the wearer’s current joint torque, but the model
parameters need to be specially trained for everyone.

A torque estimation-based control strategy is successfully applied to the motion control
of the upper extremity exosuit. The efficiency evaluation experiment indicates that the
exosuit using this algorithm can significantly enhance the limb strength of wearers.

Based on the actual execution of the research, we believe that the current work has
the following limitations. First of all, the nonlinear disturbance caused by transmission
friction and motion hysteresis significantly reduces the control performance and power-
assisted efficiency of the upper extremity exosuit. In addition, the MMG-based torque
estimation algorithm has limitations in its application. The model parameters may be
trained separately for each person, and even each muscle.

Therefore, future work and research directions should aim to break through the
above limitations. First, an error compensation algorithm for this cable-driven system
should be introduced into the control logic, in an attempt to offset interferences caused by
nonlinear characteristics. Second, more general intention recognition algorithms need to be
studied further, which can meet the usage requirements of every wearer without additional
training preparation.
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Abstract: Traditional renal puncture surgery requires manual operation, which has a poor puncture
effect, low surgical success rate, and high incidence of postoperative complications. Robot-assisted
puncture surgery can effectively improve the accuracy of punctures, improve the success rate of
surgery, and reduce the occurrence of postoperative complications. This paper provides a dual-armed
robotic puncture scheme to assist surgeons. The system is divided into an ultrasound scanning arm
and a puncture arm. Both robotic arms with a compliant positioning function and master–slave
control function are designed, respectively, and the control system is achieved. The puncture arm’s
position and posture are decoupled by the wrist RCM mechanism and the arm decoupling mechanism.
According to the independent joint control principle, the compliant positioning function is realized
based on the single-joint human–computer interactive admittance control. The simulation and tests
verify its functions and performance. The differential motion incremental master–slave mapping
strategy is used to realize the master–slave control function. The error feedback link is introduced to
solve the cumulative error problem in the master–slave control. The dual-armed robotic puncture
system prototype is established and animal tests verify the effectiveness.

Keywords: puncture robot; renal puncture; master–slave control; admittance control

1. Introduction

A kidney biopsy is currently the main method that can achieve a clear diagnosis of
diffuse renal diseases [1]. At present, there are two methods to achieve needle biopsy,
namely the freehand puncture and ultrasound guided puncture. Freehand biopsy in the
traditional way is labor-intensive. With the progression of the operation, the operation
accuracy declines continuously. In addition, the inevitable tremor during the puncture
operation greatly affects the puncture effect, leading to a low success rate of punctures. The
operation is accompanied by mild or severe complications, which seriously endangers the
health of the patient [2]. Thus, it is necessary to develop a robot-assisted percutaneous
puncture system, to enable doctors to perform renal puncture operations more accurately
and efficiently and further reduce the pain of the patient during the operation.

Due to the strong clinical demand for puncture surgery, many institutions have carried
out related research. Stoianovici et al. [3] developed a spinal and renal puncture surgery
robot named “Acubot”, and a pneumatically driven puncture surgery robot that can re-
place the puncture mechanism [4]. Mitchell et al. [5] developed a retinal surgery robot.
Üneri et al. [6] and He et al. [7] improved its human–computer interaction performance and
obtained EyeRoBot2 and EyeRoBot2.1, respectively. The navigation of puncture surgery
robots mainly uses external image guidance [8], including CT [9,10], MRI [11,12], and ultra-
sound [13–16], among which ultrasound image guidance is widely used. Boctor et al. [13]
developed an ultrasound-guided hepatic puncture surgical robot. Hong et al. [14] devel-
oped an ultrasound-guided puncture robot, UMI, which can adjust the puncture needle
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path through real-time ultrasound navigation. Kettenbach et al. [15] designed a tissue
biopsy puncture robot, B-Robot-I, based on ultrasound navigation. Bassan et al. [16] de-
veloped a three-dimensional ultrasound navigation robot for prostate tumor puncture
surgery. Although the puncture robot has been studied for years, it lacks practicality. A
very important reason is that the existing system is unable to meet the safety requirement
of surgery and satisfy the usage habits of surgeons.

The clinical demand for robot-assisted surgery has also promoted the research of surgi-
cal robot systems. Computer Motion has developed the ZEUS surgical robot system [17,18].
Intuitive Surgical has developed the master–slave teleoperation da Vinci surgical robot
system [19]; after system improvement, the da Vinci Xi [20] and da Vinci SP systems have
been developed, whose effectiveness is widely accepted. Hannaford et al. [21] developed
the open-source surgical system Raven II. Konietschke et al. [22] and Hagn et al. [23] devel-
oped the DLR MiroSurge lightweight surgical robot system. Although most robot-assisted
surgery robots interpret the meaning of minimally invasive, commercial systems pay more
attention to the preoperative docking effect and the master–slave operation during the op-
eration. In a sense, whether docking and master–slave operation are easy to use determines
whether the puncture robot can be applied to clinical applications.

At present, there are few clinical applications on the robotic system for renal puncture.
The main contributions of this paper are as follows. (1) A dual-armed robotic system
prototype with master–slave control and a dragging docking function for percutaneous
puncture is reported to assist the traditional renal puncture. The system is divided into an
ultrasound scanning arm and a puncture arm. The puncture arm is designed with a position
and posture decoupling function to guarantee the puncture safety. (2) An interaction force
control method is proposed for the positioning arm during the docking operation. (3) The
robotic system for renal puncture is verified by animal tests.

This paper is organized as follows. Section 2 describes the mechanical design and the
kinematic modeling of the dual-armed robotic system. Section 3 presents the robot control
system and control strategy. Section 4 describes the simulation analysis of the control
strategy and the animal tests. In the last part, the designed dual-armed robotic system for
renal puncture is summarized and prospected.

2. System Design and Modeling

The system architecture of the dual-armed robotic system is shown in Figure 1. The
dual-armed robotic system is divided into an ultrasonic (US) scanning arm and a puncture
arm. The ultrasonic robotic arm is designed to provide image guidance for the operation.
The puncture arm with the position and posture decoupling function performs the puncture
operation, with the consideration of the puncture safety. During the docking operation, the
two arms are positioned on the patient by dragging. During the surgery, the surgeons can
use one master operator to control the US arm moving on patients for scanning, while using
another master operator to control the puncture arm to adjust the posture of the needle.

Figure 1. Dual-arm puncture robot system architecture.
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2.1. Mechanical Design and Kinematic Modeling of Puncture Arm
2.1.1. Mechanical Design of Puncture Arm

During the dragging process, the robotic arm is easily restricted by the flexible working
space and joint singularities of the robotic arm. In order to make the dragging process
simple and easy, the puncture arm adopts a position and posture decoupling mechani-
cal structure.

The puncture arm is divided into the arm and wrist. The arm and wrist determine
the position and posture of the puncture needle, respectively. Regardless of the rotation
of the puncture needle, the puncture arm only needs five degrees of freedom to complete
the positioning of the puncture needle. However, redundant degrees of freedom are
required for doctors to avoid some surgical positions. Thus, we provide a redundant
degree of freedom at the end of the arm. The wrist provides two posture angles for the
puncture needle. The arm is decoupled from the wrist, and the arm is responsible for giving
the position of the puncture point and the redundant posture angle. The arm structure
is shown in Figure 2a. The wrist adopts a two-dimensional Remote Center of Motion
(RCM) mechanism (see Aksungur [24]), and its distal virtual point is the required puncture
point. The range of motion of the two-dimensional RCM mechanism can be calculated
by the required puncture angle. The arm is actually a decoupling mechanism. The RCM
mechanism used in this paper is shown in Figure 2b. The final mechanical structure of the
puncture arm is shown in Figure 2c.

Figure 2. Puncture arm structure design. (a) Arm decoupling mechanism; (b) Wrist RCM mechanism;
(c) Puncture arm structure.

2.1.2. Kinematic Modeling of the Puncture Arm

Due to the existence of the arm decoupling mechanism, a passive joint is introduced.
Thus, the puncture arm actually contains seven joints with kinematic meaning but has only
six degrees of freedom. The D-H coordinate system is established for the mentioned seven
joints, as shown in Figure 3. Among them, joint J3′ is the redundant passive degree of
freedom caused by position and posture decoupling and joint 7 represents the RCM point
at the end. The positive kinematics equation contains seven joint variables and defines six
generalized variables q1 − q6 corresponding to motors. The D-H parameters are expressed
by generalized variables, as shown in Table 1.

Figure 3. D-H coordinate system of the puncture arm.
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Table 1. D-H parameters of the puncture arm expressed by generalized variables.

Link 1 2 3 3′ 4 5 6

θi q1 q2 + 90◦ q3 − q2 − 90◦ −q3 q4 − 90◦ q5 + 90◦ q6 + 90◦

2.2. Mechanical Design and Kinematic Modeling of Scanning Arm
2.2.1. Mechanical Design of Scanning Arm

The function of the scanning arm is to provide image guidance for the puncture
operation. High-quality images are conducive to the improvement of the accuracy of the
operation. Thus, it is necessary to have different operation modes for doctors to choose.
However, it has no special requirements for the structure design, so the choice of the
scanning arm is a common 6-degree-of-freedom universal robotic arm with an ultrasonic
probe, as shown in Figure 4a. These six joints are all rotary joints, and the axes of joints 2, 3,
and 4 are parallel to each other, which has good working space and operation dexterity.

Figure 4. The structure and D-H coordinate system of the scanning arm. (a) Scanning arm structure;
(b) Scanning arm link coordinate system.

2.2.2. Kinematic Modeling of Scanning Arm

The six joints of the scanning arm are all designed as rotating joints. The linkage
parameters and D-H coordinate system of the scanning arm are shown in Figure 4b. The
positive kinematics equation contains six joint variables, and the D-H parameters expressed
by joint variables are shown in Table 2.

Table 2. D-H parameters of the scanning arm represented by joint variables.

Link 1 2 3 4 5 6

θi
θ1

(+90◦)
θ2

(+90◦) θ3
θ4

(+90◦)
θ5

(−90◦)
θ6

(+90◦)

3. The Implementation of the Control System

The dual-armed puncture system adopts a centralized–distributed architecture, as
shown in Figure 5. The upper-level control algorithm is centralized to the industrial
computer to realize, and the joint motor servo control algorithm is distributed to the
independent driver on the bus to realize. The upper layer and the bottom layer are linked
together through the connection layer, including the software interface that connects the
PLC and Numerical Control (NC), and the hardware interface including an EtherCAT
coupler and general IO module.
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Figure 5. Dual-arm puncture system control architecture.

3.1. Master–Slave Control Strategy

This paper adopts the master–slave mapping strategy of differential motion increment
based on the inverse Jacobian matrix, and the master hand uses Omega7 of the Force
Dimension company. The master–slave mapping strategy uses the differential displacement
increment in a small time period to replace the instantaneous speed, and the linear solution
can be obtained only by using the Jacobian matrix, which is convenient for programming
and calculation.

The linear solution equation for the discretized scanning arm inverse kinematics
problem can be described as:





∆q = J(q)−1∆xe

∆q = q̇∆t

∆xe =
[

ṗe φ̇e
]T∆t

(1)

where ∆q is the differential increment of the joint space, ∆xe is the differential motion
increment of the position and Euler angle of the end of the scanning arm in Cartesian space,
and the time interval is ∆t.

In addition, this method of linearly equivalent generalized velocity to differential
motion increment has the following errors:

e = ∆xe − J(q)∆q. (2)

The error e is a high-order error and can be ignored in the calculation. However, this
kind of small error will continue to accumulate, leading to a large master–slave following
error of the end effector. Thus, the differential motion incremental master–slave mapping
algorithm based on the inverse Jacobian matrix needs to introduce a feedback link, to
eliminate the accumulation of errors.

The master–slave real-time control algorithm in this paper is as follows. Collecting
the differential motion increment of the position and posture of the master hand Omega7,
the working space of the master hand and scanning arm are combined to determine the
master–slave space mapping function. Then, the expected differential motion increment of
the end effector’s position and posture of the scanning arm is obtained through mapping.
After this, the inverse Jacobian matrix is used to calculate the expected differential angle
increment of each joint of the scanning arm, and finally the expected angle of each joint is
calculated. Lastly, the expected angle of each joint is used as the input of the underlying
control algorithm of the joint motor module.

The master–slave control strategy based on the differential motion increment of the
inverse Jacobian matrix with error compensation is shown in Figure 6. The control process
uses speed as a variable, but in the actual algorithm, the differential motion increment is
used for programming calculations instead of speed. This kind of master–slave control
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algorithm reduces the calculation time, and the design of the error feedback link also
improves the accuracy of the master–slave control algorithm.

Figure 6. Master–slave control of inverse Jacobian matrix with error compensation.

3.2. Control Strategy for Positioning during Docking

The positioning control strategy can realize the preoperative positioning of the arm
during docking operation. The surgeons can drag the arm directly to determine the
position and posture of the puncture operation. In this situation, the arm needs to provide
a compliant operating experience. According to the characteristics of the puncture arm and
the architecture of the control system, this paper proposes a joint-space admittance control
strategy to achieve compliant positioning operation, which is based on the admittance
control strategy for independent joint control. This method actually superimposes the
admittance control to an independent joint control strategy, to obtain the compliant control
effect. During the drag process of the puncture arm, it will be affected by the gravity
moment and the nonlinear coupling moment. In the drag application, the acceleration is
small enough, and the nonlinear coupling moment can generally be ignored. However, the
gravity moment cannot be ignored. In this paper, joint torque sensors are installed for each
drive joint for gravity moment identification.

3.2.1. Design of Mass Damping Controller

The principle of the human–computer interaction admittance control is shown in
Figure 7. The interaction force acts on each joint, so there is no need for the transformation
of the transposed Jacobian matrix. In the actual design of the controller, it can be considered
that the output of the admittance controller is a speed command. The admittance of the
controller [25] is defined as

Y =
q̇d

Fext
. (3)

In the controller, admittance Y only represents the conversion from drag force Fext to
control speed q̇d.

Figure 7. Human–computer interaction admittance control principle.

The most ideal equal admittance control system of the robotic arm joint is a mass
damping system. The process of dragging a robotic arm joint equals dragging a mass.
The mass and damping of the mass and the equal stiffness of the human arm determine
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the dragging experience and effect. The equivalent control block diagram of the human–
computer interaction system considering the operator is shown in Figure 8.

Figure 8. Equivalent control block diagram of human–computer interaction system.

A simple approximation is made here. The operating system (the human) is equivalent
to a fixed stiffness KH . Thus, the equivalent model of the entire system is linearized as a
second-order system, which can be described as

Y =
KH

Ms2 + Cs + KH
, (4)

when the admittance controller selects the mass damping system, expressed as

Y =
q̇d

Fext
=

1
Ms + C

. (5)

The system represented by Equation (4) can be obtained. The second-order system is
the simplest form of the control system, and the desired effect can be easily achieved by
adjusting the parameters. However, this situation is not in line with reality, so the purpose
of the admittance controller is to choose a suitable controller architecture, to make the
system as close to the ideal form as possible.

3.2.2. Design of Human–Computer Interactive Admittance Controller

The human–computer interaction system shown in Figure 7 is actually nonlinear. The
nonlinearity of the operator’s arm system [26] is difficult to describe with an accurate
mathematical model, but a reasonable approximation can be made, assuming that the
operator’s arm is a variable stiffness impedance system, which can be linearized and
approximated. The result after the linear approximation is shown in Figure 9. In the
linearized model, the factors affecting the human–computer interaction performance mainly
include three aspects: the stiffness of the human arm KA, the designed admittance controller
Y, and the servo drive models G and S. The control of the linearized model is actually
a series correction of the system. In fact, when the admittance controller adopts the
lag correction strategy, the best effect is achieved. The typical lag correction strategy is
as follows:

Y =
q̇d

Fext
= KY

T1s + 1
T2s + 1

. (6)

After adding the operator system and admittance controller to form a new system,
system stability should be reconsidered. The stability of the system is mainly affected by the
stiffness KA of the human arm and the admittance controller Y. The arm stiffness KA and
the gain KY in the admittance controller can be equal to the coefficient K for consideration.

Figure 9. Human–computer interactive admittance control system after linearization approximation.
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3.3. Joint Gravity Moment Modeling and Parameter Identification

Since the puncture arm has seven degrees of freedom, there are seven gravity moment
parameters for seven generalized variables q. As shown in Figure 10, all the link combi-
nations in kinematics are given, where L1x is the length of links for axis 1, L2x for axis 2
and so on. Obviously, gravity moments g1 and g4 for q1 and q4 are zero. As the position
and posture are decoupled, the motions of joint 2 and joint 3 will not change the posture of
joints 5, 6, and 7. Thus, we can make the following simplification:

g1(q) = g4(q) = 0

g2(q) = ac2 + bs2

g3(q) = dc3 + es3,

(7)

where c2 denotes cos(q2), s2 denotes sin(q2). a, b, d, e denote the parameters of the corre-
sponding links. Similarly, for g5, g6 and g7,

g5(q) = AT [c5 s5 s5c6 s5s6 d7s5c6]
T

g6(q) = BT [s6 c6 c5s6 c5c6 d7c6 d7c5s6]
T

g7(q) = CT [s6 c5c6]
T ,

(8)

where d7 denotes the displacement of needle feeding motion on axis 7. Moreover, A ∈ R5,
B ∈ R6, and C ∈ R3 are parameter vectors to be identified.

Figure 10. The link combinations in kinematics.

For parameter identification, the least squares method is adopted. Take joint 5 as
an example, define input variable x = [c5 s5 s5c6 s5s6 d7s5c6]

T and output variable
y = g5(q), parameter vector A. The vector formula is expressed as

y = xT A + e, (9)

where e is the residual errors. N(N > 5) times of identification shall be carried out to
obtain vectors X, Y , and E. Apply the least square method to find the vector A.

A = (XTX)−1XTY , (10)

The above analysis has obtained the identification method of the gravity moment of
all generalized joint variables. During the identification process, the robot arm needs to
keep moving at a low speed, and the value read by the joint torque sensor can be regarded
as the joint gravity moment. After obtaining the identification parameters, during the
force setting and dragging process, the data of the torque sensor are subtracted from the
calculated joint gravitational moment to obtain the human–computer interaction torque.
Since the configuration of the US arm is conventional, the parameter identification method
will not be repeated here.
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4. System Simulations and Animal Tests

During a renal puncture operation, two stages are performed for the dual-armed
puncture system. We call them “docking” and “surgery”. During the docking process, the
operator positions the two arms at the patient’s kidney and needle entry point, respectively.
During the surgery process, master–slave control is the main operation for the puncture
system. In this section, the authors verify the master–slave control motion and arm posi-
tioning during docking by simulation. Then, a cycled reciprocating motion of dragging test
is carried out for verification. In the end, an animal renal puncture test is reported.

4.1. Master–Slave Control Algorithm Simulation

To form a master–slave control system, the algorithms are respectively packaged in
the form of functional blocks and integrated into the TwinCAT software control system.
Select each joint angle of the current position of the scanning arm as θ1 = 90◦, θ2 = 75◦,
θ3 = 90◦, θ4 = 105◦, θ5 = −90◦, θ6 = 90◦, and use the randomly generated incremental
sequence as the differential motion increment of the master hand to simulate the motion
of the master hand. Then, the movement of the master hand is mapped to the end of the
scanning arm through the master–slave mapping function, and the inverse Jacobian matrix
is used to calculate the joint control amount. The master–slave control algorithm with or
without an error feedback link is used to calculate the following error. The master–slave
following error comparison of the two algorithms is shown in Figure 11. This algorithm
has an obvious effect on reducing the following error.

Figure 11. Comparison of following error with (red line) and without (blue line) error feedback link.

In Figure 11, the following error generated by the master–slave control algorithm
without the error feedback link is significantly greater than the result after adding the
error feedback link. Moreover, the following error generated by the master–slave control
algorithm without error feedback accumulates with the movement of the master hand.
Therefore, the faster the master hand, the longer the movement time, and the larger the
following error obtained by the master–slave control algorithm without error feedback. In
the simulation, the given speed of the main hand is large, which means that the following
error generated is also large. The error gradually accumulates and reaches 8.7 mm finally,
which is unacceptable for the surgical robot. After adding the error feedback link, the
error accumulation situation is greatly improved, and the maximum accumulated error is
reduced from 8.7 mm to 0.04 mm, which has a significant error reduction effect.

4.2. Simulation of Admittance Controller for Arm Positioning

The admittance controller is divided into the gain part and zero pole part. The gain
in the admittance controller can be combined with the equivalent stiffness of the arm for
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analysis. Adjusting the gain of the admittance controller can be regarded as changing the
stiffness of the arm. The output of the admittance controller is the speed command, which
is used as the feedforward input of the servo controller. Its integral and derivative can be
respectively used as the position and acceleration feedforward input. This is actually a
continuous system simulation of the trajectory planner.

First, consider the case where the admittance controller is pure gain. During the
simulation process, the stiffness of the arm is fixed to 100. When the gain of the admittance
controller is changed, it can be considered that the stiffness of the arm changes. Figure 12
shows the case where the admittance controller is pure gain. It can be seen from the figure
that when the gain increases, the system’s low frequency gain and shear frequency will
also increase, which means that the response speed and tracking accuracy of the system
will increase. Moreover, the high tracking accuracy will reduce the interaction force of the
system, thereby improving the dragging experience. However, the gain cannot be increased
indefinitely; high gain will make the system unstable.

Figure 12. Admittance controller in the case of pure gain.

When the mass damping controller is introduced as the admittance controller, it needs
to be discussed in two cases of stable gain and unstable gain. As shown in Figure 13a, when
the gain part of the admittance controller stabilizes the system, and the mass damping
controller is selected for the zero-pole part, it is equal to introducing a pole. If the pole is
located after the shear frequency, it will not affect the low-frequency part of the system,
and a small quality parameter needs to be set to obtain a larger pole. If the pole is located
before the shear frequency, it will adversely affect the system, reducing the shear frequency
and stability margin of the system, and it may even make the system unstable in severe
cases. When the gain or arm stiffness is too large and the system is unstable, as shown in
Figure 13b, the system can be stabilized by introducing a mass damping controller. This is
actually obtaining the leading phase angle by sacrificing the shear frequency of the system,
but one pole also causes the lag of the phase angle. The effects of the two cancel out each
other, and it is difficult to obtain a higher stability margin.
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Figure 13. Analysis of the introduction of mass damping controller. (a) Stable gain introduces mass
dampling controller; (b) Unstable gain introduces mass dampling controller.

In fact, the mass damping controller is equal to a low-pass filter for the interactive
force signal. In the actual robotic arm, the interaction force is obtained by subtracting the
gravity from the force sensor information, and it will be influenced by the low-frequency
vibration interference of the robotic arm and the high-frequency interference of the electrical
signal. The force sensor acquisition card can easily filter out high-frequency interference,
and the low-frequency mechanical vibration needs to be filtered a second time. Thus, the
bandwidth of the selected filter will be very low, which is equal to the pole of the mass
damping controller being very small, and this will harm the system. In the above analysis,
it is found that the effect of the single-pole mass damping controller is not obvious. In fact,
the control of the linearized human–computer interactive admittance control system can be
regarded as a problem of series system correction.

When the high gain makes the system unstable, the introduction of a lag corrector can
work well, as shown in Figure 14. Lag correction is different from the single-pole mass
damping controller, which can bring a larger phase angle margin through the additional
zero pole points. After applying the lag correction, the system can tolerate a large system
gain, which means that it can accept a greater arm stiffness.

Finally, it is found that the decisive factors for the force positioning function are
actually the joint kinetic features of the robotic arm and the performance of the servo
driver. The admittance controller is only used as a system correction device. For example,
the following performance of the force positioning control depends on the maximum
acceleration and deceleration capacity of the robotic arm joints. The admittance controller
can only be used to ensure the stability of the system when the stiffness of the human arm
changes drastically.

4.3. Cycled Reciprocating Motion of Dragging Tests

After comparison of the admittance controller with pure gain and with a lag corrector,
cycled reciprocating motion of dragging tests are carried out. This work uses an open-loop
admittance controller, with parameters d = 5 Ns/m, m = 1 kg. The two tests are situations
of high dynamic performance and high sensitivity. The methods and results are shown in
Figures 15 and 16.
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Figure 14. Analysis of lag compensation as admittance controller.

Figure 15. High dynamic performance motion test of dragging operation: (a) contact force; (b) robot
velocity; (c) robot position.

Figure 16. High sensitivity motion test of dragging operation: (a) contact force; (b) robot velocity;
(c) robot position.

Figure 15 shows robot performance data in high dynamic performance and high stabil-
ity. It can be seen that when the positioning amplitude is 50 mm, the positioning frequency
reaches 2 Hz, the contact force does not exceed 15 N, and the maximum positioning speed
in Cartesian space is as high as 800 mm/s. The data are stable and there is no divergence.
In Figure 16, under low-speed conditions, the positioning amplitude is 50 mm, and the
robot speed does not exceed 400 mm/s. The contact force does not exceed 3 N. The robot
exhibits high sensitivity.
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4.4. Animal Tests

Several animal renal puncture tests are carried out using the dual-armed robotic
puncture system. Figure 17 shows the robotic puncture system prototype, including a US
arm, a puncture arm, an operating console, and an ultrasonic monitor. Figure 18 shows
the arm positioning operation (a and c) and master–slave control (b). Figure 18d shows
the surgery process of the animal test. The animal tests verify the effectiveness of the
dual-armed robotic puncture system.

Figure 17. The prototype of dual-armed robotic puncture system and system composition.

Figure 18. Process of the animal tests. (a) US arm docking operation; (b) master–slave control of
US arm for image guidance; (c) puncture arm docking operation; (d) the surgery process of the
animal test.

5. Conclusions

This paper proposes a dual-armed robotic puncture system for renal puncture. For
the docking process, surgeons can position the arms by dragging. For the surgery process,
surgeons can use the master operator to control the arms for image guidance and adjust the
needle posture, respectively. This paper describes the mechanical design, control system
design, and animal tests of the dual-armed robotic puncture system, which consists of a US
arm that provides ultrasound guidance and a puncture arm with a position and posture
decoupling function. The control strategy of each robotic arm has been selected according
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to the needs of puncture surgery and verified by a simulation and tests. The results show
that the dual-armed robotic puncture system in this paper is easy to operate during the
docking process, and the master–slave control can meet the demand of image guidance
and puncture operations. The animal tests are reported to verify the effectiveness of the
system prototype.

In the future, the dual-armed robotic puncture system can be used for clinical trials,
which is expected to improve the kidney retreat and the up-and-down displacement caused
by breathing during the puncture process, reducing the degree of rupture of the renal
parenchyma and renal capsule. This will increase the success rate of puncture surgery and
reduce the occurrence of complications, so the system has good application prospects.
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Abstract: Research on the lower limb exoskeleton for rehabilitation have developed rapidly to
meet the need of the aging population. The rehabilitation exoskeleton system is a wearable man–
machine integrated mechanical device. In recent years, the vigorous development of exoskeletal
technology has brought new ideas to the rehabilitation and medical treatment of patients with motion
dysfunction, which is expected to help such people complete their daily physiological activities or
even reshape their motion function. The rehabilitation exoskeletons conduct assistance based on
detecting intention, control algorithm, and high-performance actuators. In this paper, we review
rehabilitation exoskeletons from the aspects of the overall design, driving unit, intention perception,
compliant control, and efficiency validation. We discussed the complexity and coupling of the man–
machine integration system, and we hope to provide a guideline when designing a rehabilitation
exoskeleton system for the lower limbs of elderly and disabled patients.

Keywords: exoskeleton; intention perception; rehabilitation; medical treatment; efficiency evaluation

1. Introduction

At present, there are a large number of people in China who suffer various movement
dysfunctions at different levels caused by stroke, spinal cord injury, and aging. It causes
a dual physical and mental impact on patients themselves and brings a heavy medical
burden to society and family [1]. Statistics from the Disabled Persons’ Federation of China
showed that the total number of disabled people had exceeded 85 million, accounting for
approximately 6% of the national population, among which about 24 million people were
suffering from physical disability [2], which requires care. Stroke is the deadly diseasewith
a high mortality and disability rate, which has shown explosive recent growth; 85% of
stroke patients lose their walking ability [3]. Moreover, trauma and degeneration are
the main causes of paralysis accompanied by motion and sensory dysfunction. There
are 2.5 million people worldwide who have suffered from this disease, and the number
has increased to 130 thousand annually [4]. The seventh national census of China shows
that the elderly above 60 account for 18.7% of the population, while the latest forecast of
United Nations population data shows that the elderly population in China will approach
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470 million, accounting for more than 30% of the total population in 2025. This means that
China will become the country with the highest degree of an aging population in the world,
bringing severe challenges to the elderly care service system [5].

Elderly or disabled people with lower limb motor dysfunction, who stay in bed or sit
for a long time, will gradually develop a series of complications, such as pressure ulcers,
muscle atrophy, organ dysfunction, edema, or osteoporosis, which will further worsen
the health condition [6]. In order to improve the quality of life of such people, there is
already effective auxiliary walking equipment, such as crutches and wheelchairs, but such
devices are unintelligent and inconvenient to use [7] for the people who have lost their
moving ability. On the other hand, appropriate medical treatment is also an essential
procedure, and rehabilitation doctors need to formulate detailed treatment plans according
to the patient’s condition and complete regular procedures of body exercise training [8].
However, facing such a large number of patients with movement dysfunction, the relevant
professional technicians will be in short supply with the aging population. The recovery
of patients depends directly on the professional quality and clinical experience of the
technicians. The rehabilitation training process will also seriously consume the physical
energy of the physician, which is not conducive to improving efficiency and saving costs. To
meet the increasing demand, which is combining the professional rehabilitation procedures
with daily assistance, exoskeleton technology has drawn increasing attention to achieve
intelligent training and evaluation.

The vigorous development of exoskeletal technology has brought new ideas regarding
the rehabilitation and medical treatment of patients with motor dysfunction, which is
expected to help such people complete their daily physiological activities or even reshape
their motion function [9]. To fully understand the efforts on rehabilitation exoskeletons, this
paper reviews the published works on rehabilitation exoskeletons from 2003 to 2021 in the
Web of Science database [10]. When the papers were reviewed, keywords “rehabilitation
exoskeleton” and “lower limb exoskeleton” were combined with “for the disabled” or
“for the elderly” to collect the published literature. The keywords search generated more
than 136 journal and conference papers related to rehabilitation exoskeletons. Papers not
related to the research topic, repetitive articles, and articles related to walking aids for the
blind and children’s rehabilitation aids were excluded. We selected 96 papers to review the
exoskeletons from the point of manufacturing the rehabilitation exoskeletons. Based on
their contents, the key points of these papers can be categorized into five aspects: ergonomic
design, actuation, perception, control, and validation methods.

The exoskeleton systems were identified as wearable man–machine devices made
through anthropomorphic design, providing active assistance to the users according to
their motion intention. This is one of the most promising potential technical studies to deal
with the problems of disabled care and elderly assistance and rehabilitation [9]. The design
of rehabilitation exoskeletons should match the ergonomic principles to guarantee that the
system can correspond with the distribution of human joints. To achieve rehabilitation
procedures, the structure of the system should be specified, including sensors, actuators,
and controllers. Based on our surveyed literature, most exoskeletons were actuated by
motors and some artificial actuators such as pneumatic muscles (PMs) [11] and shape
memory alloy (SMA) [12] were reviewed. The control methods determined the performance
of the exoskeletons conducting assistance and rehabilitation. The control algorithms were
set to maintain human–machine interaction and send the precise control commands to
drive the actuators to perform corresponding auxiliary actions. Most interaction methods
were achieved by feedback control based on detecting the information of the exoskeletons,
the users, or the man–machine coupling system. Many behavioural and physiological
sensors were introduced into the rehabilitation system to represent the status of the man–
machine system, where the behavioural and physiological sensors describe the kinematic
features (such as joint angles, velocity, acceleration, etc.) and human physical status (such
as heart rate, Electromyogram (EMG), electroencephalogram (EEG), etc.). Whether it is
helping patients with daily physiological activities such as walking or performing regular
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rehabilitation training in accordance with the treatment plan, the exoskeleton system could
easily and effectively complete the rehabilitation goals. Finally, it is necessary to evaluate
the effectiveness of the exoskeleton systems and the performance of the assistance and
rehabilitation.

Developed countries represented by the United States, Switzerland, and Canada
started to explore the design and application of rehabilitation medical exoskeleton robots
very early [13]. So far, a series of commercial products have been developed to meet
various needs, which has greatly promoted the research process of exoskeleton technology
in helping the elderly and the disabled. During the 11th Five-Year Plan of China, according
to the growing demand for domestic social development (especially the elderly and the
disabled), rehabilitation robots started as a key research project. In the 12th Five-Year
Plan, a further concept was proposed regarding rehabilitation. The 13th Five-Year Plan
carried out a continuous special research plan for rehabilitation robots [14]. At present,
both universities and institutes have been committed to the research, and a large number
of rehabilitation exoskeletons have also emerged [15].

The ergonomic design determined the matching performance of the exoskeletons,
which plays a fundamental role to achieve assistance and rehabilitation. The actuators,
sensors, and controllers are the basic elements to conduct motion, perception, and control,
which are the essential parts of the rehabilitation exoskeletons. The validation methods
were designed to confirm the effectiveness of the rehabilitation procedure and the ex-
oskeletons. In this paper, we reviewed the rehabilitation exoskeletons from the aspects
of ergonomic design, actuation, perception, control, and validation. We discussed the
advantages and limitations of the man–machine interaction systems and stated our con-
siderations of designing and developing the rehabilitation exoskeletons in the future. We
hope this paper can provide an overall guideline to design a rehabilitation exoskeleton
system. The contributions of this paper include: (1) as a paper dedicated to reviewing the
rehabilitation exoskeletons, five aspects are listed to summarize state of the art technologies;
(2) the advantages and limitations for every aspect are proposed; (3) the challenges of the
ergonomic design, sensor-based motion perception, actuation, and control were discussed.
We hope this paper could provide a guideline when designing a rehabilitation exoskeleton
system for the lower limbs of the elderly and disabled.

2. Design of the Rehabilitation Exoskeletons

Due to the differences in the degree and location of the loss of motor function of
the wearer, the structural forms of the exoskeleton helping the elderly can be designed
according to the different rehabilitation goals. The unpowered exoskeletons, which do
not contain any powered elements (such as a battery, electric motor, etc.), provided a rich
experience for the ergonomic design because the matching performance determined the
distribution and transmission of the force [16]. There were already several representatives of
passive exoskeletons, such as OX, UPRISE, Niudi, and FORTIS [16]. The OX was designed
by the Australian Government Department of Defense, and it can transfer two-thirds
of the pressure borne by a soldiers’ shoulders, spine, and legs to the ground. Mawashi
Co. (Quebec, Canada) developed UPRISE transferring 50–80% of the pressure borne by
a soldiers’ shoulders to the ground without interfering with normal motion. UPRISE is
constructed by using high-strength titanium alloy. Niudi Co. (Chongqing, China), LTD
from China proposed a modularized UE that can withstand 70 kg but weighs only 6 kg. The
FORTIS is designed by Lockheed Martin Co. (Bethesda, MD, USA) to help workers carry
heavy tools. The unpowered exoskeletons have great potential in the military, industry,
rescue fields, etc. The passive exoskeletons were well-bionic designed and constructed by
dexterous structure. The ergonomic design of the passive exoskeleton could be referred to
as the design of rehabilitation exoskeletons.

The rehabilitation exoskeletons were designed for the elderly and the disabled who
have been suffering from moving dysfunction. Compared with the power-enhanced
exoskeleton worn for people with normal mobility, the safety and stability of the man–
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machine interaction process must be guaranteed through the special design of the system
itself in structure. To achieve this basic requirement, the overall scheme of the existed
systems was divided into a platform-based exoskeleton, crutches-based exoskeleton, and
self-balanced exoskeleton. The Swiss Locomat [17] and American ALEX III [18] belong
to the first type of rehabilitation exoskeleton. The users were equipped with lower limb
exoskeletons under the protection of the weight support structure and completed the
walking process on the treadmill, which can safely achieve the intensive training of lower
limb muscle strength, as shown in Figure 1c,d. The second type of system combines
crutches with the exoskeleton. The Israeli ReWalk series [19] introduced the users’ upper
limbs to maintain stability by using crutches for patients with lower motion dysfunction, as
shown in Figure 1b. The mode switching buttons were set in the crutches helping the users
adjust movement modes such as tuning walking speed, navigation, and interaction. The
third category uses the balance control algorithm to automatically adjust the movement
posture of the human–machine system, which can operate normally without structural
assistance, such as the New Zealand Rex [18].
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Figure 1. Overall exoskeleton plan for helping the elderly and the disabled. (a) Schematic diagram to
describe the structure of exoskeletons. (b) Based on crutches, reprinted from ref. [19]; (c) Based on the
platform, reprinted from ref. [17]; (d) Based on the self-balance design, reprinted from ref. [18].

In terms of active freedom configuration, the existing exoskeletons also showed dif-
ferent characteristics, and the summary of the existing exoskeletons is shown in Table 1.
The working form of the rehabilitation exoskeletons were divided into treadmill based and
over-ground. The treadmill-based exoskeletons constructed a specific trajectory in space,
and the patients’ legs were constrained [17]. The over-ground exoskeletons usually allowed
the patients to walk on the ground [18,19]. Motors were still the common actuators to
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drive the motion of the exoskeleton, which were easily controlled based on the developed
algorithms. The devices were designed based on the level of losing mobility. Most of the
exoskeletons were targeted to the hip joints and could assist the patient to walk based
on balance control. Some exoskeletons introduced crutches to avoid a tumble. However,
there is still a lacking of standard validation methods to confirm the effectiveness of the
exoskeletons. Some systems drive a single joint such as the knee and ankle, and the wearer
often participates in a fixed posture to complete daily physical activities such as walking.
In order to enable the exoskeleton to assist patients with basic gait and active hip and
knee, such as Indego of Parker Hannifin Corporation [20–23], ROBIN of Korea Industrial
Technology Institute of Parker Hannifin [24,25] and MINDWALKER of Delft Polytechnic
University in the Netherlands. In addition [26], a few systems set multiple active joint
mobilities to achieve self-balance or motor flexibility. For example, Rex of Rex Bionics, New
Zealand and ATLAS 2020 [27], developed by the Spanish National Research Council, have
10 active degrees of freedom.

Table 1. Summary of existing exoskeletons and their related technical details (treadmill-based
exoskeletons: The man–machine system operates on the treadmill. Over-ground: The man-machine
system can operate on the ground).

Devices Working Form Actuator Control Strategies Target Parts of
Human

Keywords of
Validation Methods

Lokomat [17] Treadmill based
exoskeleton Motor Position and impedance Hip and knee EM activity

ALEX III [18] Over-ground Motor Balance and impedance Hip, knee and ankle Reshape walking
ability

ReWalk [19] Over-ground Motor Force and impedance Hip and knee Walking assistance

Indego [23] Over-ground Motor Position and
force control Hip and knee Walking assistance

Mindwalker [26] Over-ground SEA-motor
Electroencephalogram

(EEG)-based
position control

Hip, knee and ankle Reshape walking
ability

BLEEX [28] Over-ground Hydraulic Cylinders Position and
force control Hip, knee and ankle Reshape walking

ability

Ankle-foot
Exoskeleton [29] Over-ground Pneumatic Muscle Position and

force control Ankle Reduction in
Metabolic (21%)

LOPES [30] Treadmill based
exoskeleton

Bowden Cable-based
Series Elastic Actuator Torque Hip, knee and ankle Improving the control

compliance

Rex [31] Over-ground Motor Balance and
force control Hip, knee and ankle Reshape walking

ability

HAL [32] Over-ground Motor EMG-based force control Hip, knee and ankle Walking assistance

The wearable form of the rehabilitation exoskeletons guarantees the exoskeletons can
assist in an ergonomic way. The exoskeletons must be designed based on the distribution
of the humanoid characteristics such as muscle distribution, tendon-based transmission,
and skeleton-based support. The position of the actuators should be placed along with
human joints. The passive exoskeletons applied in military and industry fields showed great
development in ergonomic design. Unlike the unpowered exoskeletons, the external energy
should be introduced into the man-machine system because the rehabilitation exoskeletons
are targeted to reshape or maintain the mobility of the people with moving dysfunction.
Therefore, the rehabilitation exoskeletons should be powered exoskeletons, including
actuators, sensors, and control methods. In our surveyed literature, the motors were the
most traditional actuators used in rehabilitation systems, which have been developed for
decades. Some novel actuators were introduced into the rehabilitation exoskeletons, such
as PM and SMA, inspired by their bionic characteristics.
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3. Actuation

The joint actuators belong to the execution part of the exoskeleton movement, deliv-
ering the desired power to achieve the auxiliary movement. The moving performance
was determined by key characteristics such as the power effect, composition shape, and
response speed of the actuators. In terms of the current technology of the actuators of
exoskeletons for the elderly and the disabled, it can be divided into three aspects motor
drive, air pressure drive, and functional electric stimulation based on surveyed papers.

Motor-driven exoskeleton drives the system joints by a straight or rotating motor. Most
rehabilitation training equipment with compact structure and fast response was driven by
electric motors [33–37], as illustrated in Figure 2b. Meanwhile, the structure of the reha-
bilitation exoskeletons was bulky because of the big batteries and motors. Galle et al. [29]
proposed a powered ankle–foot exoskeleton to reduce the metabolic cost which is driven
by pneumatic artificial muscle, as shown in Figure 2b. Timing control was optimized
and implemented, and the experimental results showed a 21% reduction in metabolic
cost. However, prolonged rehabilitation training causes muscle fatigue, such as in the US
Vanderbilt system [38] (Figure 2c). Similar to the PM-actuated exoskeletons, the hydraulic
exoskeletons depended on the pressure supplies [28]. The electrohydraulic actuator in-
cluded a motor, gear pump, and antagonistic installed cylinders [39]. The cylinders were
controlled by servo valves and powered by combustion engines or electric motors.
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In addition, new driving solutions for joint assistance are also being explored and
developed. Chinese Academy of Sciences applies magnetic rheological actuator to robot
rehabilitation system, which can act as a brake or clutch according to the working state
of the system (human activity mode/manual activation mode) for energy consumption
saving [41]. The University of Carlos III introduced the design, test, and analysis of SMA
drives under various configurations and explained the feasibility of the method in soft
robots and light exoskeletons [42].

The electric motors were still the most used actuators for the rehabilitation exoskele-
tons. Generally, the motors increase the torque by decreasing the rotation speed by the
reduction boxes. That is how the electric motors were limited by requiring transmission
elements to convert their high-speed, low-torque output features to low-speed and high-
torque features [30]. The rehabilitation exoskeletons could provide a powerful force to
lift users’ body and keep balance. However, the rehabilitation exoskeletons were of large
volume because of the motors, reducers, and batteries which made the system bulky and
nonflexible. Therefore, there was a tradeoff between the flexible system and powerful
output force. For the rehabilitation process, the movements of rehabilitation were achieved
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slowly to guarantee safety during training. It implied that the motors were suited to assist
people with slow speed, which was appropriate for the disabled and the elderly.

The PMs were studied for decades from modelling, design, and control [43,44]. The
PMs were compliant actuators mimicking human muscles, which were lightweight, had a
high power-to-weight ratio, and were compliant [45]. However, there was an inevitable hys-
teresis between the inflation and deflation process. The hydraulic actuators were selected
to drive exoskeletons because of their high-specific power [39], high-force output [28], wide
control bandwidth, smooth actuation [46] etc. However, a significant limitation of the
pneumatic and hydraulic actuators was the dependence on non-portable pressure supplies.
Both the pumps and air compressors were too heavy and large to carry. Their applications
were limited to the platform-based rehabilitation fields with no or low portability.

The other novel actuators were proposed and applied to the rehabilitation system. The
SMA-actuated soft exoskeletons achieved finger motions. Due to the limited scale of the
output force, novel actuators were suitable for precise rehabilitation with a small motion
range. There is still a long road to transfer the novel actuators from lab to prototype.

4. Motion Intention Perception

Essentially, every person has a unique gait pattern, and it is inaccurate to set a fixed
gait pattern [38]. Therefore, it is necessary to percept human motion to provide feedback to
the exoskeleton system. Human motion intention recognition is involved in obtaining man–
machine interaction and state information, data fusion algorithm to achieve the purpose of
human motion, or even predict the human motion based on multiply sensors.

According to the difference in intention information acquisition mode, it can be divided
into three intention perception methods based on motion signal, biological signal and mixed
man–machine hybrid signal [38]. The motion signals described kinematic and dynamic
characteristics such as motion acceleration, walking speed, joint angles etc., which can be
measured by the gyros or accelerators. The biological signals represented the physiological
information such as muscle fatigue, neural activation, etc., which can be measured by EMG,
EEG, etc. The man–machine hybrid signals described the interaction forces.

The first method had been widely used in typical exoskeletal systems such as the
LOPES [47] American eLEGs [48] through conventional sensors distributed in man–machine
connections or system motor parts, such as an inertial measurement unit mounted on the
limb, a contact force sensor in insoles. The second method could effectively reduce the
hysteresis of intention perception based on extracting and processing EEG or myography
data. For example, the University of Houston used non-invasive brain-computer interface
technology to control the Neuro Rex exoskeleton in real-time, explain the wearer’s intention
through EEG signals and finally achieve the goal of assisting paraplegic patients to com-
plete walking independently [31]. The HAL exoskeleton developed by the University of
Tsukuba in Japan can detect and obtain electrical signals generated by muscle movement on
the skin surface, which was processed as input to the system control [32]. The third method
comprehensively considers the advantages and disadvantages of the above two methods
and establishes a man–machine sensor network to comprehensively utilize biological and
motion signals. The high reliability and low latency of intention perception have now
become one of the focuses of research on exoskeleton technology.

A single sensing data can only reflect limited information of the man-machine inter-
action process. It requires the fusion processing of multimodal information of different
sources, different levels and different manifestations to ensure the speed and accuracy
of intention perception. For data fusion algorithms, according to the difference of data
processing levels, it can be divided into data level, feature level, and decision level fusion.
More common methods include D-S evidence theory, artificial neural network, adaptive
weighted average, Bayesian estimation, fuzzy set theory, etc. For example, Northwestern
Industrial University has achieved data fusion of EEG and EMG through D-S (Demp-
ster/Shafer) evidence theory and backpropagation neural network [49]. The integration
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of the data collected by the three sensors improves the recognition accuracy of various
motion modes.

Human motion information has been drawing researchers’ attention from the aspects
of the portable and wearable form, high accuracy, and low latency. Fortunately, the motion
sensors can be manufactured into tiny types based on the current semi-conductor develop-
ment. However, the accuracy of the motion recognition was still limited. The most popular
physiological information was represented by EEG and EMG, depicting the command from
the brain and execution from muscles [31,32]. Moreover, there were no non-invasive sen-
sors with a high signal–noise ratio measuring the intention information [50]. The invasive
sensors showed great potential in improving signal quality, but it is still unclear whether
the invasive sensors interfere with normal human motion. MINDWALKER combined the
EMG and EEG to extract the motion features to improve the accuracy [26,51,52].

Besides, motion intention could be obtained by the kinematics parameters. Indego [23]
introduced inertia measurement units (IMU) to recognize gait patterns. Then, they tuned
the center of pressure to track the desired movements. Peruzzi et al. [53] implemented
gait evaluation based on multiple IMUs. Integrating was conducted to obtain the velocity
and displacement. However, the IMUs-based motion detection would introduce inevitable
errors when conducting integration. Wang et al. [54,55] implemented zero velocity state
detection by judging the difference between the forward acceleration measured by the
accelerator and the forward acceleration derived by the differential of angular velocity
measured by gyros.

The most efficient sensors with a high signal–noise ratio and low latency represented
the motion behind the human, which introduced inevitable latency of the man–machine
system. Motion prediction based on kinematic and dynamic information could solve the
problem essentially. It is still feasible to use the current sensors to conduct perception
during rehabilitation because the rehabilitation process was usually slow-speed, and the
latency of the sensors was acceptable in the slow process of rehabilitation.

5. Control Methods

The exoskeleton compliant control strategy is based on the result of intention percep-
tion. Controlling the joints to assist the human body in accordance with the wearer’s motion
intention or the rehabilitation physician’s plan was key to ensure that the system generated
the desired motion and produced auxiliary effects. Li et al. sorted the control strategies
for lower limb rehabilitation exoskeletons with eight categories [56]. At present, common
control algorithms for helping the elderly and the disabled mainly include gait trajectory
planning, impedance/guide control, biological signal-based control algorithm, etc.

The trajectory planning control was usually used to perform movement tasks when
humans lost the motor ability completely and conducted passive rehabilitation at the early
stage of damage [57]. In the gait trajectory planning algorithm, the exoskeleton joints
were controlled to produce periodic motions according to the pre-designed path, which
simulated the gait of humans completing daily activities achieving the coordination of
human and machine actions. The reference movement trajectory can be set in a variety
of ways. Firstly, the gait trajectory playback strategy that directly uses healthy human
gait parameters was widely used in rehabilitation medical exoskeleton. Systems such
as WPAL [58,59] in Japan and Mina [60,61] in the United States can collect gait data of
normal wearers and reproduce the movement process when assisting patients. Secondly,
a mathematical model-based gait trajectory generation method can also be employed
to calculate the required motion parameters through related theories. Rex from New
Zealand generated a gait based on the ZMP model so that the system had self-balancing
ability. ATLAS in Spain planned the corresponding motion trajectory based on the inverted
pendulum model and calculated the key parameters such as step length and step height
required to complete the desired gait [62].

Furthermore, to activate the muscle participation in the rehabilitation process and achieve
compliant interaction torque and voluntary muscle torque, the impedance/admittance model
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was established to realize the mixed control of the force and position of the joint motion. The
impedance control could provide assistance that is proportional to the difference between
the human limb and the given trajectory [63,64]. McGill University in Canada designed a
new adaptive impedance control strategy, which combined backstepping control, time delay
estimation, and interference observer, improving the effect of passive assisted rehabilitation
training [65]. The University of Twente in the Netherlands had designed and verified the
admittance controller on the LOPES II exoskeleton, which could generate the gait trajectory
of the impaired based on the healthy leg [66].

The most classic biology-based control methods were based on EMG and EEG [57].
Both of them control the exoskeletons based on the direct motion intention [67,68]. The
control algorithm based on biological information analyzed the control input required for
the movement of the exoskeleton on the basis of collecting and analyzing the bioelectric
signal of the human body. The Italian Institute of Technology combined the Hill muscle
model and EMG signals to estimate the driving torque required for the knee joint to
complete the exercise in real-time [69]. The University of Michigan in the United States used
an adaptive gain proportional EMG controller for ankle joint assistance, relying on dynamic
gain to map the wearer’s muscle activity to actuation control signals. The experimental
trials showed that the system significantly enhanced ankle strength and reduced metabolic
consumption [70]. EEG-based control is manipulating the exoskeletons based on the brain–
computer interface (BCI). Evidence has shown that a patient with tetraplegia could be able
to control an exoskeleton by using BCI [71]. Vouga et al. [72] enabled a monkey wearing
an exoskeleton to track the cursor on a screen based on continuous regression methods.
EEG parsing has been the hot research for decades, and they usually resorted to a black
box model. EEG has shown great potential in controlling rehabilitation exoskeletons [73].

The interaction control theory has been developed for a long time, and it has been
rather mature for the rehabilitation exoskeletons during one rehabilitation process. There
was no need to demand the real-time performance of the control methods because the
rehabilitation process was usually reduced to a slow process [9]. However, there was lacking
rehabilitation strategy control which usually was made by the doctors. The rehabilitation
strategy is to set the rehabilitation control with different groups of parameters related
to users’ status. The optimization methods should be implemented to select the best
parameters based on the judgement of the rehabilitation stage.

6. Validation of the Rehabilitation Exoskeleton

Quantitative evaluation of the auxiliary effect of the exoskeleton was necessary to
test and optimize the system. The evaluation indicators need to be determined according
to the requirements of rehabilitation training. The efficiency evaluation of rehabilitation
exoskeletons can be divided into task-based evaluation, kinematic and kinetics evaluation,
and interaction evaluation. In task-based evaluation, walking speed and walking distance
are direct indicators of the training results, and the corresponding data can be obtained
through the 5 min walking test (5MWT) [9], 6 min walking test (6MWT), 10 m walking test
(10MWT) [74], and timed up and go (TUG). Besides, endurance [75], versatility [76], and
max speed [77] were used to evaluate the performance of the rehabilitation exoskeletons
under specific tasks.

The validation methods for rehabilitation exoskeletons focuses on sensors used for
biomechanics and energetics measurements. In general, kinematic and dynamic measure-
ment was used to evaluate the flexibility of the rehabilitation exoskeletons and to predict
energy expenditure indirectly. The most popular kinematic parameters were used to vali-
date the exoskeletons were joint angular trajectories, range of motion (ROM), speed, and
COM position [9]. Joint torque output [78], peak power [79], and maximal torque [80]
were used to test the validation of the proposed exoskeletons. Metabolic cost measurement
represented how much energy was saved by the rehabilitation exoskeletons. The EMG
signal represented the activity of the muscle, which can be used to describe the fatigue of
the muscles [74]. Kinematic parameters describe the changes of displacement in linear or
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angular position and their derivatives, such as linear velocity, linear acceleration, angular
velocity, and angular acceleration. They can be obtained by the camera-based recognizing
and wearable recognizing system. Kinetics aims to study forces that affect human motion.
These forces can change the linear or angular motions. Force data can be obtained directly
by using force and torque sensors. GRF is the representation of the human body’s impact
on the ground measured by force plates, which can be used to analyze the force provided by
exoskeletons. The energy for human motions comes from the chemical energy by digesting
food, and it flows in three directions: entropy, maintenance, and muscle energy. The energy
of metabolic cost is part of muscle energy, and it can be measured indirectly by recording
respiratory flow, respiratory flow rate, heart rate, muscle activity, etc.

Comfort reflected the subjective sense of patient interaction with the device. Generally,
we collected the feedback about comfort based on the questionnaire. The strategies of
online detection of physiological data such as heart rate and oxygen consumption can
also be used to intuitively reflect the physiological state of the human body. Besides, the
ergonomic parameters determined the matching performance when humans wore the
exoskeletons, which represented the effectiveness of the design [9]. However, the current
evaluation methods were good at confirming the effectiveness of the exoskeletons, but they
failed to confirm the effectiveness of the rehabilitation process. Clinically, doctors adjust the
rehabilitation process based on the score-based evaluation methods, which is currently the
golden standard [81]. The multi-information collected by the sensors should be introduced
into the evaluation process to confirm the rehabilitation stage.

7. Discussion and Conclusions

At present, countries all over the world have achieved considerable research results
concerningexoskeleton technology for rehabilitation medical treatment [9]. Prototypes
and commercial products with different forms and functions are emerging, bringing new
ways to help the rehabilitation of the elderly and the disabled. However, in terms of the
current technical conditions, it is still facing serious challenges to realize the comprehensive
promotion of the exoskeleton in the social rehabilitation service system.

1. The matching performance between the exoskeletons and the human body is signifi-
cantly low. The exoskeleton system with more active degrees of freedom has better
flexibility, but complex structural composition and hardware lines affect the overall
performance of the system. The most popular ergonomic indicators were human-robot
relative position, interface displacements, anthropometric database percentiles, and
adaptability to different height ranges [82]. The joints of the human body and exoskele-
ton have obvious rotation centers misalignment during movement, which will reduce
man-machine interaction. The coupling system may be deformed and misaligned
during the interaction, which may reduce the power-assisted effect. Problems similar
to the above are widespread in existing systems and severely disrupt ergonomics. To
make the wearable exoskeletons more comfort, the unpowered exoskeletons inspired
the novel design of rehabilitation exoskeletons. The materials and manufacturing
methods for lower limb exoskeletons are important because they guarantee a safe and
ergonomically comfortable interface with the human [83,84].

2. Sensor-based motion feedback is the basis of exoskeleton controlling and rehabilita-
tion [56]. The joint angle and interaction torque were the frequently used feedback
in most studies. The joint angle can be used to describe the difference between the
given trajectory and output and calculate the force by joint angle deviation [85], the
impedance by derivation of the ankle joint [86]. The interaction torque was usually
used to generate real-time trajectory [87] and provided reference to correct the tra-
jectory [88]. The recognition and prediction of human movement intention are not
accurate enough. The motion intention is estimated by the mechanical signal obtained
by the sensor; although the result is reliable and stable, there is a large hysteresis which
is generated by the signal conversion and decoding process [89]. The human intention
based on biological signal analysis has good timeliness, but the data is unstable, and
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the use process is cumbersome. Therefore, it is necessary to set up a steady communi-
cation pipeline between the rehabilitation exoskeletons and humans. Moreover, there
were many kinds of existing data fusion algorithms such as radial basis function neural
networks [90], convolutional neural networks [91], musculoskeletal model [92], etc.,
but motion mode recognition is often difficult to meet the requirements of safety and
reliability accuracy. Previous work has proposed machine learning-based predictors
based on EMG, kinetics, and kinematics to estimate the desired motion intention.
More recently, several researchers have explored using teleceptive sensing of terrain
to improve the prediction of desired locomotion [93]. The above difficulties are urgent
problems to be solved in human intention recognition and prediction. It is feasible to
combine the physical model of human motion with the motion data to achieve fast
and stable intention perception [93]. The body domain network is designed to obtain
the information of human body movement, physical parameters and state.

3. Lightweight and high power/weight ratios of driving units are difficult to achieve.
Existing exoskeletons’ actuators are often with lower power/weight ratios, and they
have large volumes and mass, such as Lokomat [63] and ALEX [18], resulting in large
and bloated overall structural forms. Hydraulic [39] and pneumatic actuators [11]
improved the power/weight ratio but introduced non-portable pressure supplies
and control difficulties. The series elastic actuators combined the performance of
easy to control and the compliant features [67]. However, it is necessary to explore
more effective driving forms as well as innovative design and optimization methods
of high-power density driving units. A permanent magnet servo motor should be
designed by using conservative optimization design methods to realize the lightweight
of permanent magnet servo motor [94]. The speed closed-loop control strategy and
position closed-loop control strategy should be designed to drive the permanent
magnet motor to achieve high precision control.

4. The deviation between system motion control and human motion is prominent. The
strong autonomy of human motion, the strong coupling of man-machine interaction,
and the complexity of the system model have made it difficult for many control
algorithms to achieve the goal of man-machine coordination and interaction [56]. The
exoskeleton system should meet the needs of the wearer to complete all kinds of
basic movements and basic movement transformation. For the passive rehabilitation
process, the trajectory-based control is enough to replay the predefined trajectory [60].
But the predefined trajectory is not suitable for different individuals. Introducing
human motion intention input into man-machine interaction control was an effective
method to achieve more dexterous in assisting human motion [95]. Dynamic control
strategy should be implemented in the rehabilitation system, and the stability should
be confirmed based on real-time state detection and stability criteria. Dynamic control
involved the dynamic modelling of the system, for example, a simple mass-spring-
damper model to characterize series elastic actuator [96], actuated dynamic model [97],
and hybrid dynamic model [98]. Finally, optimization control methods [99] should be
introduced to ensure the reliability and consistency of the rehabilitation.

A number of typical products, such as Lokomat [17], Rewalk [19], HAL [32], etc., have
been successfully developed, and application verification has been initially carried out.
However, due to the difficulty of lightweight design, weak motion intention identifica-
tion ability and poor motion control, it is difficult to obtain the qualitative efficiency to
improve the existing exoskeleton assistance. It does not have the technical level of system
lightweight, accurate identification and smooth motion, which restricts the promotion
and application of such exoskeletons. Therefore, it is urgent to study high torque density
motor lightweight driving system design theory and method. The multi-mode human
movement biological information decoding and transmission mechanism should be re-
vealed [92], and a multi-source body and exoskeleton coordination movement compliant
control strategy need to be established. The final goal is to solve the key scientific problems
in the engineering application of the exoskeleton robot for the elderly and the disabled and
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provide the theoretical foundation and technical support for the development of wearable
electromechanical systems.
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Abstract: To improve the efficiency of computer input, extensive research has been conducted
on hand movement in a spatial region. Most of it has focused on the technologies but not the
users’ spatial controllability. To assess this, we analyze a users’ common operational area through
partitioning, including a layered array of one dimension and a spatial region array of two dimensions.
In addition, to determine the difference in spatial controllability between a sighted person and a
visually impaired person, we designed two experiments: target selection under a visual and under a
non-visual scenario. Furthermore, we explored two factors: the size and the position of the target.
Results showed the following: the 5 × 5 target blocks, which were 60.8 mm × 48 mm, could be easily
controlled by both the sighted and the visually impaired person; the sighted person could easily
select the bottom-right area; however, for the visually impaired person, the easiest selected area was
the upper right. Based on the results of the users’ spatial controllability, we propose two interaction
techniques (non-visual selection and a spatial gesture recognition technique for surgery) and four
spatial partitioning strategies for human-computer interaction designers, which can improve the
users spatial controllability.

Keywords: target selection; spatial controllability; gesture recognition; spatial regions; visual and
non-visual; regional division

1. Introduction

In the field of human-computer interaction, there has been a wealth of related research
on improving computer input efficiency, including voice input and gesture input, and
among which interaction technologies based on common spaces and interaction technolo-
gies based on gesture recognition have also been commercialized and applied. Therefore, it
is necessary to study the space operation range commonly used by users and combine the
advantages of air gesture operation to obtain a new type of human-computer interaction
input channel to improve the interaction experience and efficiency.

Spatial gestures and related recognition techniques have been widely used in various
scenarios, such as intangible user interfaces and large-screen interactions. Generally, those
gestures are to be executed by users in spatial areas within easy reach. Movement of the
hands as a change of 3D positional data is an increasingly important input modality for
computer interaction. In this mode, users often move their hands up and down in space to
achieve a corresponding purpose.

1.1. Gesture Recognition

The field of gesture recognition has been a hot topic, with various potential applica-
tions from playing games to medical treatment. Different researchers have utilized various
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devices to conduct studies in this area. In terms of gesture data collection, common methods
include: data gloves [1]; Kinect video capture devices [2]; Leap Motion capture devices [3];
collecting data through the device’s first-view camera in the AR/VR environment [4,5];
and the use of heterogeneous sensors to collect data to improve the recognition rate [6]. In
terms of experiment types, image segmentation [4] and image classification [2] are more
common, and researching non-contact tactile feedback in AR/VR environments [5]. In [7],
a cross-label recognition system is proposed. Promoting gesture recognition by improving
large data intelligent editing processes [6]. There is also an identification method that
measures the distance and angle between the fingers [1,8] studied arm gestures. Gesture
recognition has many applications, such as gestures that interact with animation in shadow
puppet shows [6] and interact with television [9]. In the area of medicine, doctors can use
gestures to safely interact with computers to control images without the need to touch an
operating room screen [10]. Navigating and manipulating large amounts of data suitable
for high-resolution wall displays [11]. In the driving field, by exploring the space in front
of an in-car screen, in-car touchscreen interaction can be expanded with the careful appli-
cation of a target expansion strategy, allowing interaction with in-car systems to be more
convenient [12]. Gesture recognition uses several technologies. In [1], the recognition rate
is improved through a deep learning-based gesture spotting algorithm. In [4], a gesture
recognition deep neural network was proposed which recognizes ego hand gestures from
videos (videos containing a single gesture) by generating and recognizing embeddings
of ego hands from image sequences of varying lengths. A novel deep neural network is
designed in [7], which embeds gestures in the high-dimensional Euclidean space. It tackles
the spatial resolution limits imposed by RF hardware and the specular reflection effect of
RF signals. In [2], the support vector machine (SVM) classifier is used to classify the data.
Ultrasonic haptic technology is used in E to develop and integrate air haptics that do not
require wearing or holding any equipment in the virtual reality game experience [5]. This
paper presents a set of spatial partitioning strategies for designers as guidelines that can
improve the types of technologies described.

1.2. Interaction Based on a Spatial Region

Gesture interaction has developed rapidly as one of the important research areas
of human-computer interaction. However, we have checked the existing literature and
found that researchers are more concerned with new interactive technologies developed by
interactive channels such as large screens, cameras, and sensors. These studies have made
great contributions to improving the efficiency of human-machine interaction. Human ac-
tivities and space are closely linked, so researchers must pay attention to the controllability
capabilities of users’ space. Interaction techniques based on a spatial region array are novel
and promising and have a wide range of applications. To achieve multi-layer interaction,
a novel multi-layered gesture recognition method using Kinect has been proposed and
explores the essential linguistic characters of gestures [13]. The method can obtain relatively
high performance. Multi-layer interaction techniques divide the interaction space into
multiple interaction layers. Each layer has a special function; users can access different
commands by accessing the different layers. The overall interaction height and different
minimum layer thicknesses for vertical and horizontal search tasks were experimentally
explored in [14]. In [15], three target selection techniques were developed for air pointing:
small angular ray casting movements, large movements in a 2D plane, and movements in
a 3D volume. Although those techniques were designed systematically to use from one
to three dimensions, the target selection techniques were presented without strategies of
common space partitioning. Many researchers have designed techniques based on spatial
regions, but they have not focused on the division of space [16,17]. Some researchers have
tried to divide the space using angles [18–22]. However, there is a lack of basic research on
common spatial partitioning. The purpose of this paper is to explore common operational
spatial partitioning in the user interface.
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1.3. Interaction of Visually Impaired Individuals

There is a need for computer interactions that can also be used by visually impaired
individuals; meeting this need has appealed to many researchers. A framework was pro-
posed for exploring the differences between the spatial sense ability of visually impaired
and sighted persons in three longitudinal models [23]. Through exploring the effect of
spatial ability on a visually impaired person’s sense of position within web pages, we
know users can obtain an accurate overview of a web page with audio feedback when
using a touchscreen [24]. By connecting the use of touch sensation and other multime-
dia design elements, it was found that touch sensation plays a critical role in improving
application design for people with visual impairments [25]. Although there is a lack of
systematic study on the common operational spatial region array of a visually impaired
individual, gesture-free interaction by the status of thumb (GIST) is a wearable gestu-
ral interface that uses a depth camera to collect a users’ hand gestures and can help a
visually impaired individual perform everyday tasks [26]. There are techniques based
on the two-dimensional structures of a keyboard surface that explore different methods
of non-visual interaction [27]. To enable the blind to read the text, an affordable mobile
application for the visually impaired person was proposed. The text could be read into
speech format using text-to-speech conversion in a Text to Speech (TTS) framework [28].
Immersive virtual reality (VR) to provide a realistic walking experience for the visually im-
paired is proposed in [29]. A novel immersive interaction using a walking aid, i.e., a white
cane, is designed to enable users with visual impairments to process ground recognition
and inference processes realistically.

In summary, interactive technology based on spatial gestures has been integrated into
people’s daily lives, including visual users and visually impaired people. Therefore, further
research on interaction technology based on spatial gestures is beneficial to improve the
interaction efficiency between users and computers in daily life.

2. Materials and Methods

The extensive research mentioned above has focused on design techniques. However,
this paper focuses on developing a set of guidelines based on spatial partitioning strategies.
To assess users’ spatial controllability, we attempt to reveal the common operational region
when executing spatial gestures. Thus, in this paper, we have focused on investigating
input modalities based on a spatial region array for hand gesture interfaces. We conducted
a systematic study of human performance when selecting targets with a spatial region
array, and developed two interaction techniques and four spatial partitioning strategies as
design guidelines for human-computer interaction designers.

A Leap Motion M010 controller, a computer (including a keyboard and a display
screen), and an experimental model designed by Unity 3D in the C# language were used in
the experiment. The Leap Motion device can detect the hand’s position in a range from 25◦

to 165◦ and is symmetrical. The experimental program was designed in Visual Studio 2019
and the Unity 3D Environment and ran on a 3.60 GHz AMD Ryzen R5-3600 CPU PC with
Windows 10 Professional. The display resolution was set to 1000 × 800 pixels in the pilot
studies and 1920 × 1080 pixels in Experiment 1 and Experiment 2.

To improve the users’ spatial controllability, we first focused on the height and width
of a rectangle (in front of and parallel to the screen) representing the average range of
hand movements when a user sits down at a desk. We first determined the common
operation area through a pilot study, which was realized by Leap Motion and unity 3D,
as shown in Figure 1a. Leap Motion systems can detect and track hands, fingers, and
finger-like tools. Its visual range is an inverted pyramid with the spire in the center of the
equipment, as shown in Figure 1b. Leap motion’s system adopts the right-hand Cartesian
coordinate system, and the returned values are in real-world millimeters. The origin is
at the center of the leap motion controller. The x-axis and z-axis are on the horizontal
plane of the device, the x-axis is parallel to the long side of the device, the z-axis is parallel
to the short side, and the y-axis is vertical upward, as shown in Figure 1c. Leap motion
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provides a set of dataset updates, and each frame of data contains a list of basic tracking
data. When a hand is detected, it is assigned a unique ID indicator. For as long as the
motion is analyzed, the leap motion program will give the frame motion factors based on
the motion of the hand. Through the hand object, the current position information of the
hand can be obtained. Unity 3D is a tool for creating interactive applications. It adopts a
graphical development environment and can deploy projects to multiple platforms such
as Windows. Unity’s coordinates are world coordinates, which are consistent with leap
motion, so we can accurately locate the hand motion in unity’s world coordinates.

Figure 1. Schematic figure of experimental process and equipment: (a) experimental process, including pilot study,
experiment 1 and 2; (b) the detectable spatial area of Leap Motion; (c) coordinate system of Leap Motion.

We imported a toolkit that supports Leap Motion gesture development in Unity. The
toolkit contains prefabricated hands, related gesture action scripts, and case demonstra-
tions, all of which can be used to help developers complete Leap Motion development
work. The next step was to build an experimental development platform and add the
“LeapHandController” prefab to the created scene. By observing whether the hand on the
interface was within the capture range of the camera, we adjusted it to a suitable position
and adjusted the size of the hand controller. The parameter was set to 1 to make it the same
size as the real hand, so that the real hand could be moved in real-time to control the move-
ment of the virtual hand, which is convenient for the user interaction operation described
later. We imported the “Vectrosity” plug-in to meet the interface drawing requirements in
our experiment. In this experiment, the plug-in was used to edit the experimental interface
and achieve dynamic performance (for example, green represented a random target; when
the target was selected, it appeared red; and yellow indicated the movement trajectory of
the hand, etc.). To achieve the purpose of collecting experimental data, we recorded the
acquired data in an Excel file and saved the file to the local disk. The logic processing of the
business was implemented by C#. The logic included the method of drawing rectangles,
the method of drawing UI interface, the method of setting the timer, the method of deleting
rectangles, the method of randomly generating non-repeated layers, the method of setting
data table, and the method of writing data to the Excel table.

2.1. Pilot Study

The study focused on designing, conducting, and analyzing a users’ performance on
a spatial region array, and addressed the following issues:

• Finding the physical limits of the common operational spatial region in the vertical
and horizontal direction and setting this region as a study object.

• Finding the threshold of the target size levels when the users accomplish the target
selection tasks under the visual and non-visual scenarios.

• Finding the relationship between the target regions when the users accomplish the
target select operations under the visual and non-visual scenarios.
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Many possible factors impact the interaction between the users and the Leap Motion
controller. For example, the size of the spatial region array, the sensitivity of the Leap
Motion device, a visual or non-visual task, and whether the users’ performance of the task
used the left or right hand. For the study’s manageability and validity, we restricted our
investigation to a situation where users sat in front of the Leap Motion device, centering it
between the computer screen and the users’ body, as Figure 1a shows.

2.1.1. Participants

Twelve students (two females, 10 males) participated in the user study. Their ages
ranged from 22 to 30 (M = 25, SD = 2.08). The average body height was 168.17 cm (SD = 8.96).
All of them were daily computer users.

2.1.2. Task & Procedure

To test the users’ horizontal and vertical common range, we set visual cues to let the
user move their hands horizontally and vertically while selecting the target block. First, the
user pressed the “Start” button, and a green target block appeared randomly in a horizontal
or vertical direction, as shown in Figure 2a,b. Taking the spatial position corresponding
to the target block as a reference, when the user’s hand moved to the spatial position in
front of the screen corresponding to the target block, the block would turn red. A second
target block would then randomly appear. In this and subsequent target selection tasks,
the target block was always displayed in red when a gesture was made toward it. When
the user thought their hand overlapped the target block, they could select the target by
pressing the left Ctrl button. At the same time, the position of the users’ hand was saved
into an Excel file, and the next target selection task began.

Figure 2. The beginning interface of the pilot experiment: (a) the horizontal experiment; (b) the
vertical experiment.

Prior to the formal experiment, the participants were allowed to warm up by practicing
until they understood and performed the task correctly. Taken together, these two experiments
included the following: 12 subjects× 8 block levels× 14 repetitions× 2 directions = 2688 target
selection trials.

2.1.3. Result

We analyzed the frequency of the user’s hand position at each interval. We then were
able to reach a conclusion regarding the user’s vertical and horizontal common range,
which was used as the study object of the following experiments.

After analyzing the collected data, we found that individuals manipulated their hands
horizontally within the range (−220, 240) and vertically over the range (30, 370). The
effective horizontal range was an interval of (−190, +190), and the vertical range was an
interval of (50, 350), as Figure 3a,b show. We then chose 80% of this interval as the most
common operational range, which was defined as a rectangle. The vertical interval was
(80, 320), and the horizontal interval was (−152, +152). So the common operational region
was an area of 240 mm × 304 mm, located 80 mm above the desktop.
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Figure 3. The results of the pilot study: (a) the results of the horizontal experiment; (b) the results of the vertical experiment.

Based on these results, we set this common operational region as a study object and
divided it into differently sized target arrays and target regions through even spatial
partitioning. The common operational region was divided into four evenly sized sections,
as shown in Table 1. There were six target-size levels, as shown in Table 2. We then
designed experiments in which the participants attempted target selection tasks at different
target-size levels, and with target positions within the different regions.

Table 1. The position of each region.

Region A B C D

Position Upper Left Upper Right Bottom Left Bottom Right

Table 2. The target size (length × width) at each level of the experimental condition.

Level 3 × 3 4 × 4 5 × 5 6 × 6 7 × 7 8 × 8

Size (mm) 101.33 × 80 76 × 60 60.8 × 48 50.7 × 40 43.43 × 34.29 38 × 30

In addition, differences between sighted and visually impaired individuals were also
considered. The participants finished target selection tasks under both visual and non-visual
scenarios. We then analyzed the data collected, including the average time and error rate.

The contributions of this work are:

1. It improves understanding the users and their controllability of space by identifying
the common spatial region of users and the thresholds of target size and position.

2. We proposed two interaction techniques and four interaction strategies concerning
the target size and position in the spatial region.

3. Experiment 1: Visual Scenario

To test the users’ performance accuracy when conducting the interaction task, we set
a visual cue for sighted users.

3.1. Participants & Apparatus

The participants and apparatus in Experiment 1 were the same as in the pilot study.

3.2. Task & Procedure

In Experiment 1, the current position of the users’ hand mapping to the current block
was shown on the experiment screen in real time. The target block turned from green to
red while the current block overlapped with it, as shown in Figure 4. The user sat in a chair
at the desk before the computer as they did in the pilot study.
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Figure 4. The experiment interface of Experiments 1 and 2: (a) experiment interface of the 5 × 5 level;
(b) experiment interface of the 8 × 8 level.

To maintain consistency in the experimental data, we saved the data to an Excel file at
the end of a single target selection task, which was the moment the left Ctrl button was
pressed. In addition, the experiment recorded a standard timestamp for an incremental
time in the Unity 3D program. Once the user pressed the left Ctrl button to complete
a target, the next target selection task began timing. To ensure an equal time for task
selection, the user always placed their left index finger on the left Ctrl button. Before the
formal experiment, participants were allowed a warm-up practice session until they could
understand and perform the task correctly. In total, the experiment consisted of the following:
12 subjects × 6 target size levels × 4 target regions × 2 blocks × 3 repetitions = 1728 target
selection trials.

3.3. Results
3.3.1. Selection Time

In the process of the experimental data analysis, we set the target level (3 × 3, 4 × 4,
5 × 5, 6 × 6, 7 × 7, and 8 × 8) and the target region (A, B, C, and D) as independent
variables. In this way, we performed repeated measurements ANOVAs (α = 0.05) on
the time and accuracy of the target selection. The target selection time was defined as
beginning from when the user clicked the Start button or pressed the left Ctrl button to
when the user pressed the left Ctrl button again.

There was a main effect on the average time of the different regions (F2.058, 22.634 = 11.460,
p < 0.001), see Figure 5a. The post hoc tests showed that there were no significant differences
among the regions (p > 0.05) except for between regions B and C (p = 0.035) and regions B
and D (p < 0.001). Region B had the fastest completion time, and region D had the slowest
completion time.

Figure 5. The average time of Experiment 1. The error bars represent a 95% confidence interval: (a) average selection time
with different regions; (b) average selection time with different target size levels; and (c) average selection time for different
target size levels and different regions (A, B, C, and D).

There was a main effect for the average time of the different levels of target size
(F2.321, 25.531 = 20.714, p < 0.001), see Figure 5b. The post hoc tests showed that the shortest
time was for the 3 × 3 level, and the longest was for the 7 × 7 level. There were no
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significant differences between the 3 × 3, 4 × 4, and 5 × 5 levels (p > 0.119). There were no
significant differences between the 6 × 6, 7 × 7, and 8 × 8 levels (p > 0.05).

Further analysis of the level of target size × target region on selection time showed
there was no significant interaction (F4.272, 46.992 = 1.601, p = 0.187), see Figure 5c. When the
users selected a target in the 3 × 3 level, the shortest selection time was needed on average,
while the 7 × 7 level had the longest time.

3.3.2. Selection Error Rate

The percentage of trials in which subjects made erroneous selections was defined as
the selection error rate.

As shown in Figure 6a, there was a main effect on the average error rate of the different
regions (F3, 33 = 4.240, p = 0.012). Post hoc tests showed no significant differences among
all the regions (p > 0.052), except between regions B and D (p = 0.033). Region D had the
lowest completion error rate, and region C had the highest completion error rate.

Figure 6. The error rate of Experiment 1. The error bars represent a 95% confidence interval: (a) average error rate with
different regions; (b) average error rate with different target size levels; and (c) average error rate for different target size
levels under different regions (A, B, C, and D).

As shown in Figure 6b, different target sizes had no significant effect on the average
error rate (F2.402,26.419 = 2.617, p = 0.083). The post hoc tests showed no significant differences
among all the target size levels (p > 0.157). The 3 × 3 level had the lowest error rate, and
the 8 × 8 level had the highest. The higher the target size level, the higher the error rate
when selecting the target. The largest increase in the error rate for adjacent levels was from
the 5 × 5 to the 6 × 6 level. Thus, a target size of 5 × 5 (60.8 mm length and 48 mm width)
provided a threshold for the most selections without a noticeable change in error rate.

Further analysis of what effect target size level × target region had on selection
error rate showed there was no significant interaction (F4.256, 46.816 = 1.665, p = 0.171), see
Figure 6c. The 3 × 3 target size level had the lowest selection error rate. The second-lowest
selection error rate was the 4 × 4 level. The 8 × 8 level produced the highest error rate.
The participants had the lowest error rate (0%) when the target region was D (bottom-right
corner) and the highest error rate (3.54%) when the target region was C (bottom-left corner).

In previous literature [19], the author studied pointing at virtual buttons. The space is
divided into 5 different sizes according to the angle, that is, the number of buttons. The
experimental results show that the error rates are 0, 3.6%, 2.2%, 16.0%, 3.2%, respectively.
As shown in Figure 6a, the error rates of our results are 0.31%, 0.83%, 1.39%, 2.78%, 2.22%,
3.06%, and the overall error rate is better. We also divided the regions, discussed the
situation of each region, and the comprehensive situation of region and size. The literature
only considers the error rate and not the task completion time. We comprehensively analyze
the error rate and time and give suggestions for designing interactive technologies based
on spatial regions, which are more convincing. Next, we studied the division of spatial
regions in the absence of vision and give suggestions for designing interactive technologies
based on spatial regions in the absence of vision.
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3.4. Comparative Experiment 1

The participants in Experiment 1 were the same as in the pilot study, so they were
trained and familiar with the experiment. To eliminate this influence, we invited 12 external
participants who didn’t know the experiment in advance. The experiment process was the
same as experiment 1.

3.4.1. Selection Time

There was a main effect on the average time of the different regions (F2.058, 22.634 = 11.168,
p < 0.001), see Figure 7a. The post hoc tests showed that there were no significant differences
among the regions (p > 0.05) except for between regions B and C (p = 0.023) and regions B
and D (p = 0.002). Region B had the fastest completion time, and region D had the slowest
completion time.

Figure 7. The average time of comparative Experiment 1. The error bars represent a 95% confidence interval: (a) average
selection time with different regions; (b) average selection time with different target size levels; and (c) average selection
time for different target size levels and different regions (A, B, C, and D).

There was a primary effect regarding the average time of the different levels of target
size (F2.321, 25.531 = 20.870, p < 0.001), see Figure 7b. The post hoc tests showed that the
shortest time was for the 3 × 3 level, and the longest was for the 7 × 7 level. There were no
significant differences among the 3 × 3, 4 × 4, and 5 × 5 levels (p > 0.37). There were no
significant differences among the 6 × 6, 7 × 7, and 8 × 8 levels (p > 0.05).

Further analysis of the level of target size × target region on selection time showed
there was no significant interaction (F4.272, 46.992 = 1.635, p = 0.178), see Figure 7c. When the
users selected a target in the 3 × 3 level, the shortest selection time was needed on average,
while the 7 × 7 level had the longest time.

3.4.2. Selection Error Rate

As shown in Figure 8a, there was a primary effect on the average error rate of the
different regions (F3, 33 = 3.996, p = 0.016). Post hoc tests showed no significant differences
among all the regions (p > 0.063). Region D had the lowest completion error rate, and
region C had the highest completion error rate.

As shown in Figure 8b, there was no significant effect for the average error rate of
the different target sizes (F2.109, 23.199 = 2.184, p = 0.133). The post hoc tests showed no
significant differences among all the target size levels (p > 0.122). The 3 × 3 level had the
lowest error rate, and the 8 × 8 level had the highest.

Further analysis of target size level × target region on selection error rate showed
there was no significant interaction (F4.9, 53.903 = 1.628, p = 0.17), see Figure 8c.
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Figure 8. The error rate of comparative Experiment 1. The error bars represent a 95% confidence interval: (a) average error
rate with different regions; (b) average error rate with different target size levels; and (c) average error rate for different
target size levels under different regions (A, B, C, and D).

Compared with Experiment 1, the error rate of this experiment was slightly higher,
and the average time was slightly longer, caused by the fact that new participants were
not familiar with the experiment. The results showed that the regions (and levels) with the
highest or lowest error rates were the same as Experiment 1. The regions (and levels) with the
fastest or slowest average time were the same as Experiment 1, as shown in Figures 7 and 8.

4. Experiment 2: Non-Visual Scenario

To test the accuracy when the users performed the task with an eyes-free scenario,
we set voice guidance for a visually impaired individual. The position of the users’ hand
mapping to the current block was shown on the experiment screen in real time, and the
target block turned from green to red while the current block overlapped it.

4.1. Participants & Apparatus

The participants and apparatus in Experiment 2 were the same as in the pilot study.

4.2. Task & Procedure

The design and tasks were almost the same as in Experiment 1. The difference in
Experiment 2 was that there was no visual feedback for the users, only voice guidance. The
beginning guide audio was “The target block is X”, and it would then announce the number
of the block of the users’ hand in real time. The participants already knew the number of the
target block. This cycle would continue until the task was completed, and then the audio
would announce, “This round of the experiment ends”. Before the formal experiment,
participants were allowed to warm up with a practice session until they could under-
stand and perform the task correctly. In total, the experiment consisted of the following:
12 subjects × 6 target size levels × 4 target regions × 2 blocks × 3 repetitions = 1728 target
selection trials.

4.3. Results
4.3.1. Selection Time

We found a main effect on the average time of different regions (F3, 33 = 13.496, p < 0.001),
see Figure 9a. The post hoc tests showed a significant difference between regions A and
C (p = 0.007) and regions A and D (p = 0.002). There was a significant difference between
regions B and C (p = 0.042) and regions B and D (p = 0.002). Other regions had no significant
differences (p > 0.975). Region B had the fastest completion time, and region D had the slowest.
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Figure 9. Average times of Experiment 2. Error bars represent a 95% confidence interval: (a) average selection time with
different regions; (b) average selection time with different target size levels; and (c) average selection time for different
target size levels under different regions (A, B, C, and D).

As shown in Figure 9b, there was a primary effect on the average time of the different
target sizes (F2.222, 24.445 = 24.893, p < 0.001). A post hoc test showed no significant difference
between the 3 × 3 and 4 × 4 levels (p = 0.231). There was no significant difference between
the 5 × 5 and 6 × 6 levels (p = 0.270). There was no significant difference between the
7 × 7 and 8 × 8 levels (p = 0.142). The 3 × 3 level had the fastest completion time, and the
8 × 8 level had the slowest completion time. The higher the target size level, the longer the
time needed to select the target. The largest increase in selection time for adjacent levels
was from the 6 × 6 to the 7 × 7 level. Thus, the target size of 6 × 6 (50.67 mm length and
40 mm width) provided a threshold of the most selections without a noticeable change in
selection time.

Further analysis of target size level × target region on selection time showed there
was no significant interaction (F4.912, 54.027 = 1.575, p = 0.184), see Figure 9c. The shortest
selection time was needed when users selected a target in the 3 × 3 level. The second
shortest level was the 4 × 4 level, while the 8 × 8 level took the longest time.

4.3.2. Selection Error Rate

There was no significant effect concerning the average error rate of the different
regions (F3, 33 = 0.909, p = 0.447), see Figure 10a. The post hoc tests showed no significant
differences among all the regions (p = 0.670). Region B had the lowest completion error
rate, and region C had the highest.

Figure 10. The error rate of Experiment 2. The error bars represent a 95% confidence interval: (a) average error rate with
different regions; (b) average error rate with different target size levels; (c) average error rate for different target size levels
under different regions (A, B, C, and D).

As shown in Figure 10b, there was no significant effect concerning the average error
rate of the different target sizes (F5, 55 = 4.388, p = 0.002). The post hoc tests showed
no significant differences among all the levels of target size (p > 0.156), except for the
3 × 3 level and 6 × 6 level (p = 0.030). The 3 × 3 level had the lowest completion error
rate, and the 8 × 8 level had the highest completion error rate. The higher the target size
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level, the higher the error rate needed to select a target. The largest increase in the selection
error rate for adjacent levels was from the 4 × 4 to the 5 × 5. Thus, a target size of 4 × 4
(76 mm length and 60 mm width) provided a threshold of the most selections without a
noticeable change in selecting error rate.

Further analysis of the target size level × target region on selection error rate showed
there were no significant interaction (F5.122, 56.337 = 1.524, p = 0.196), see Figure 10c. On
average, the 3 × 3 target size level had the lowest selection error rate. The second-lowest
selection error rate was for the 4 × 4 level. The 8 × 8 level produced the highest error rate.
The participants reached the lowest selection error rate (3.54%) when the target region was
B (upper-right corner), and the highest error rate (6.31%) when the target region was C
(bottom-left corner).

4.4. Comparative Experiment 2

The participants in Experiment 2 were the same as in the pilot study, so they were
trained and familiar with the experiment. To eliminate this influence, we invited 12 external
participants who did not know the experiment in advance. The experiment process was
the same as experiment 2.

4.4.1. Selection Time

We found a main effect on the average time of different regions (F3, 33 = 13.474, p < 0.001),
see Figure 11a. The post hoc tests showed a significant difference between regions A and
C (p = 0.007) and regions A and D (p = 0.003). There was a significant difference between
regions B and C (p = 0.042) and regions B and D (p = 0.002). Other regions had no significant
differences among them (p > 0.994). Region B had the fastest completion time, and region
D had the slowest completion time.

Figure 11. The average time of comparative Experiment 2. The error bars represent a 95% confidence interval: (a) average
selection time with different regions; (b) average selection time with different target size levels; and (c) average selection
time for different target size levels and different regions (A, B, C, and D).

As shown in Figure 11b, there was a main effect on the average time of the different
target sizes (F2.222, 24.445 = 25.009, p < 0.001). A post hoc test showed no significant difference
between the 3 × 3 and 4 × 4 levels (p = 0.227). There was no significant difference between
the 5 × 5 and 6 × 6 levels (p > 0.05). There was no significant difference between the
7 × 7 and 8 × 8 levels (p > 0.05). The 3 × 3 level had the fastest completion time, and the
8 × 8 level had the slowest completion time.

Further analysis of target size level × target region on selection time showed there
was no significant interaction (F4.912, 54.027 = 1.574, p = 0.184), see Figure 11c.

4.4.2. Selection Error Rate

There was no significant effect for the average error rate of the different regions
(F3, 33 = 0.883 p = 0.46), see Figure 12a. The post hoc tests showed no significant differences
among all the regions (p > 0.05). Region B had the lowest completion error rate, and region
C had the highest completion error rate.
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Figure 12. The error rate of comparative Experiment 1. The error bars represent a 95% confidence interval: (a) average error
rate with different regions; (b) average error rate with different target size levels; and (c) average error rate for different
target size levels under different regions (A, B, C, and D).

As shown in Figure 12b, there was no significant effect for the average error rate of
the different target sizes (F5, 55 = 3.193, p = 0.013). The post hoc tests showed no significant
differences among all the levels of target size (p > 0.109). The 3 × 3 level had the lowest
completion error rate, and the 8 × 8 level had the highest completion error rate.

Further analysis of the target size level × target region on selection error rate showed
there were no significant interaction (F6.461,71.069 = 1.085, p = 0.381), see Figure 12c. Com-
pared to Experiment 2, the error rate of this experiment was slightly higher, and the average
time was slightly longer, caused by the fact that new participants were not familiar with
the experiment. The results showed that the regions (and levels) with the highest or lowest
error rates were the same as in Experiment 2. The regions (and levels) with the fastest or
slowest average time were the same as Experiment 2, as shown in Figures 11 and 12.

5. Discussion & Conclusions

In this work, we analyzed the users’ common operational area regarding partitioning
and the difference in spatial controllability between a sighted and a visually impaired
individual. We introduced three experiments and a pilot study concerning the common
spatial range and the thresholds of the target size level in the spatial region for a sighted
and visually impaired individual. We compared the speed and accuracy of the target
dimensions of six different levels and the difference in speed and accuracy among the four
azimuth regions of A, B, C, and D in both visual and non-visual scenarios. Many of our
performance study results were statistically significant, which allows us to draw many
meaningful conclusions about human-computer interaction in spatial regions that can be
used for designing techniques for sighted and visually impaired individuals. This paper
focused on systematically analyzing the common operational range of one dimension and
the threshold of two dimensions. The results are as follows:

• Common operational range. As a result of the pilot study, the horizontal range of the
common operational range was the interval of (−152, +152), and the vertical range
was the interval of (80, 320), which means that the rectangle’s length was 304 mm, and
the width was 240 mm.

• Threshold of target size levels. For a sighted person, the threshold target size was the
5 × 5 level, whose length was 60.8 mm, and the width was 48 mm. For a visually
impaired individual, the threshold target size was the 4 × 4 level, whose length was
76 mm, and the width was 60 mm.

• Target region thresholds. For a sighted individual, the threshold target regions were
region B with the shortest selection time, and region D with the lowest selection
error rate. There was a significant difference between regions B and D. For a visually
impaired individual, the threshold target region with the shortest selection time was
region B. There were no significant differences in the error rate of target selection
among all the levels.
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Based on the above results and findings, we have developed a set of preliminary
guidelines regarding target selection in spatial partitioning scenarios:

1. For visual scenarios, Region D (the bottom-right corner) is not recommended when
high speed in selecting a target is needed. However, due to its lower error rate, region
D remains a good alternative for scenes with higher requirements for a correct rate.

2. For visual scenarios, the 6 × 6 level (50.7 mm × 40 mm) is not recommended because
both its error rate and the average time were high. We recommend the 5 × 5 level
(60.8 mm × 48 mm) after considering the selection time and error rate.

3. For non-visual scenarios, we recommend region B (the upper-right corner) after
considering the selection time and error rate. Another reason is that region B costs
the least time and error rate when selecting targets.

4. For non-visual scenarios, we recommend the 4 × 4 level (76 mm × 60 mm) after
considering the selection time and error rate because it served as the threshold.

In the case of vision, researchers can refer to the design suggestions in Table 3 when
studying the space operation capabilities between users and computer screens or designing
interactive technologies based on spatial regions. In the case of non-vision, researchers can refer
to the design suggestions in Table 4 when studying the space operation capabilities between
users and computer screens or designing interactive technologies based on spatial regions.

Table 3. Design suggestions for selecting spatial targets under visual conditions.

Longest
Time

Shortest
Time

Time
Threshold

Highest
Error Rate

Lowest Error
Rate

Error
Threshold Proposal

Size 43.43 × 34.29 60.8 × 48 60.8 × 48 38 × 30 101.33 × 80 60.8 × 48 60.8 × 48
Region D B / C D / D

Table 4. Design suggestions for selecting spatial targets under non-visual conditions.

Longest
Time

Shortest
Time

Time
Threshold

Highest
Error Rate

Lowest Error
Rate

Error
Threshold Proposal

Size 38 × 30 50.7 × 40 50.7 × 40 38 × 30 101.33 × 80 76 × 60 76 × 60
Region D B / C B / D

Based on these results, we propose two techniques for two different application
scenarios, described in the following paragraphs.

A spatial gesture recognition technique for surgery can help users select targets
by using spatial region cognition and hand gestures during surgery. This technique is
designed based on the partitioning strategies of a common operational spatial region array.
This technique can meet the strict requirements of sanitary conditions during surgery (as
opposed to a touchscreen and most other existing interfaces).

Non-visual selection is a system integrated with screen reading software allowing a
visually impaired person to select targets easily. This technique is designed based on the
partitioning strategies of a common operational spatial region array. Users can use this
system to interact with the internet and web more easily. In addition, the user no longer
needs a keyboard because this system uses Leap Motion to detect a users’ hand motions
and provides voice guidance when choosing targets and to do further work.

In the future, we will further expand the results of this study and contribute to
technology accessibility for visually impaired individuals, including the exploration of a
threshold for three-dimensional interaction.
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Abstract: The deformable input provides users with the ability of physical operation equipment to
interact with the system. In order to facilitate further development in flexible display interactive tech-
nology, we devised FlexSheet, an input device that can simulate the deformation environment. This
paper presents two forms of deformation input, bending and twisting, with regard to three selection
techniques. We conduct a controlled experiment to select discrete targets by combining two input
forms and three selection strategies, taking into account the influence of visual feedback. Further,
we use the deformation angle to reflect the degree of deformation and map it to the experimental
variables. In accordance with the experimental results, we analyze the experimental performance
under three evaluation indexes and prove the viability of our selection technology in bending and
twisting input modes. Finally, we provide suggestions on the control level in bending and twisting
input modes, respectively.

Keywords: flexible display; bending input; twisting input; selection technology

1. Introduction

General displays have achieved good performance after technical iterations, like
liquid crystal display (LCD), which have been widely used in everyday life. Limited
to its own structural characteristics, it can only express two-dimensional information
and the degree of freedom of interaction is limited to the screen surface [1]. With the
introduction of the concept of organic user interfaces (OUIs) [2], the research on deformable
user interfaces (DUI) [3,4] and its interaction technology is becoming increasingly extensive.
The interactive feature of flexible devices is that we can change their shape in accordance
with different functions, such as using deformation as input parameters to open music [5,6],
manipulate maps [7], and even prove that it can be used to input passwords, which
enhances interactive security during the process of innovation [8], thereby providing an
advantage that traditional screen technology does not have. This additional input mode not
only greatly increases the bandwidth of human-computer interaction [9] but also inspires
researchers to explore greater possibilities of this interaction technology.

The design of the deformation simulation prototype is the premise and foundation
of this kind of researches, and the main objective is to simulate the input environment of
deformation equipment. Certain researchers use electrical components as deformation
sensors [5,8,10–12]. The principle is that when electrical components are deformed, their
voltage changes accordingly. Moreover, different degrees of deformation can be simulated
by tracking the reflective ball attached to the surface [7,13]. There are some other related
work, such as the use of optical sensors [14,15] and the use of fiber-based deformation
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sensor clusters [16] to detect human intentional deformation, etc. Our implementation
scheme is based on the OptiTrack motion capture system. In this system, multiple infrared
cameras collect reflective identification points in space in real time and calculate the
intersection of multiple direction vectors after completing target correction and recognition
in order to determine the world coordinates. In addition, this infrared optical positioning
technology can effectively eliminate visible light interference, improve system robustness,
and yield a high data transmission rate, which is similar to what has been found in extant
research [17].

There are numerous studies on enhancing interactive expressiveness based on proto-
types. The works of deformation gesture has attracted the interest of many researchers. The
remarkable feature of gesture operation is that it can give users a more intuitive experience
and a strong sense of participation in the interaction process. Some researchers directly
bind specially designed deformable gestures with functional requirements to improve
interactive bandwidth, such as controlling smart TV [18]. A larger trend is that researchers
collect user-defined deformation gesture consensus sets [19,20] to understand users’ natural
interaction habits and solve some practical problems.

In the process of exploring deformation gestures, researchers found that devices
using bending gestures are the most effective for rapid response to continuous bipolar
variables [21], and suggested to maintain two orders of magnitude [22]. If it is a one handed
operation, the deformation gesture in the upper right corner is a better choice [23].

In addition to taking the deformation degree of the equipment directly as the input
parameter [5,7,17], many researchers have also discussed the input potential of the combi-
nation of deformation and other input methods, such as pressure [24,25], touch [26,27], and
even provide new interaction methods for people with visual impairment by combining
hearing [28] and kinesthetic [27].

Certain researchers believe that the advantage of deformation input is not only a single
command binding. In other words, this interactive technology has a vivid metaphor, which
is related to the user’s behavior and ideas in a few cases. For example, by reading [13],
we can simulate the feeling of actual physical paper on the deformation device. When we
need to turn the page [10], it is like using real documents. Scenes in virtual games—such
as fishing, archery, or golf games are similar examples [11], and embodied in intelligent
wearable healthcare equipment [29].

In this study, we design a prototype called FlexSheet that supports deformation as
input and based on the OptiTrack motion capture system. This prototype can provide the
interactive characteristics of flexible devices to simulate a deformable input environment
(Figure 1). We call this the deformation controller. The deformation controller consists
of two thin and soft polyvinyl chloride (PVC) parts of size 20 cm × 20 cm on which
the reflective traceable ball is fixed. We use two input forms: bending and twisting. In
addition, two visual feedback mechanisms are set up—full vision (FV) and partial vision
(PV). Simultaneously, we use an angle to describe the degree of deformation. With the
increase in force feedback [20,30], the angle of deformation becomes increasingly larger.
For the quantitative analysis of deformation, we mapped the angle to the experimental
variables and took the maximum bending angle of 180◦ in the horizontal state. Finally,
through a simple input form, we checked the user’s ability to control deformation input in
order to obtain relevant design guidelines.

The remainder of the paper is organized in the following manner. Section 2 intro-
duces the experimental materials, including input mode, visual feedback, and selection
technologies. Section 3 describes controlled experiments used to study deformation input
performance. Section 4 analyzes the experimental results from the perspective of three
indexes: completion time (MT), error rate (ER), and crossing times (NC); thereafter the best
order of magnitude suggestions under the two input modes are provided, respectively.
Section 5 discusses and summarizes the paper.
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This simulates a situation in which expert users may learn to use deformation input intu-
itively and without excessive cursor support or visual cues, which is similar to the behav-
ior that expert users display when tagging menus [31]. 

Figure 1. Composition and operation of deformation input: (a) Deformation input environment diagram; (b) Experiment
with OptiTrack and FlexSheet.

2. Materials Instruction
2.1. Input Modes

Most flexible screen studies have demonstrated that bending and twisting are two
basic types in the design of deformation gestures. Combined with our research content, we
provide the following design guidelines for deformation gestures:

1. The deformation gestures must be universal (that is, they can be realized on as
many materials as possible), because different materials allow different forms of
deformation; plastic sheets are the most similar type of flexible display material that
is currently available [18];

2. The deformation gestures must give the feeling of using real thing [19];
3. The deformation gestures must have a high degree of consistency in orientation [10];
4. The deformation gestures must have powerful powerful metaphors [19].

According to the above design principles, we examined two kinds of deformation
gestures: bending and twisting. The basic operation example is depicted in Figure 2.
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2.2. Visual Feedback

As depicted in Figure 3, we used two visual feedback conditions: FV and PV. Under FV
conditions the cursor is always visible, as illustrated in Figure 3a,b. Under PV conditions,
the cursor is only displayed at the initial state of the selection task and is hidden once
the selection task is initiated, as depicted in Figure 3c,d. Under PV conditions, the user
must depend on previous experience in FV conditions to complete target selection. This
simulates a situation in which expert users may learn to use deformation input intuitively
and without excessive cursor support or visual cues, which is similar to the behavior that
expert users display when tagging menus [31].
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2.3. Selection Technologies

Once the cursor enters the target, the user must have a mechanism to identify and
select options in the general graphical user interface (GUI), as general determination
measures are usually performed by clicking the buttons on the mouse. Consequently, we
tested three alternative technological solutions to replace the traditional mouse functions:

1. Click: Move the cursor by bending or twisting the FlexSheet. When the cursor appears
within the target rectangle, click the task button to complete the target selection;

2. Dwell: Bending or twisting the FlexSheet to move the cursor until it appears within
the target, then keep the cursor in the target for a specified period of time to complete
the target selection (in our experiment, a delay of 0.7 seconds was used);

3. Quick Release: Move the cursor by bending or twisting the FlexSheet. When the
cursor appears in the target, quickly remove the FlexSheet from the deformed state.

3. Controlled Experiment

Through this experiment, our objective was to study the human ability to complete
the task of selecting discrete string targets when using deformation inputs. This mainly
includes the influence of visual feedback on the selection process and selection results,
actual performance of three target selection strategies as well as the control level under
different input modes.

3.1. Participants

We recruited 12 participants, including ten males and two females, aged 23–31 years,
with an average age of 26 years. All participants are right-handed and have some user
graphical interface experience, but have no experience of using deformation input.

3.2. Apparatus and Environment

The experiment was conducted on Lenovo computers running Windows10, 3.8 GHz,
screen size of 27 inches and resolution of 1920 by 1080 pixels. The experiment also used a
motion capture device, OptiTrack, which is composed of eight cameras with Prime13/13W
specification and connected through Cisco switch. The deformable plate is made of a plastic
sheet (20 cm × 20 cm), and markers accessories is fixed to the prototype. The products
in the experiment were compiled by the NatNetSDK3.0.1 provided by OptiTrack official
website and run in the Visual Studio 2015 environment.

3.3. Task

Our long-term goal is to explore the general design criteria for deformation inter-
actions, with a particular emphasis on developing design guidelines for deformation
interactions based on bending and twisting modes.

We used a serial target selection task. Control the cursor to move vertically by de-
forming the FlexSheet. The deformation value of 180◦ is uniformly mapped to 256 pixels.
Within the distance of 256 pixels, we draw a set of continuous rectangular targets. In each
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experiment, a target rectangle to be selected will be highlighted in purple. The user’s task is
to apply appropriate deformation and move the cursor to the target rectangle with different
distances and different widths. When the cursor enters the range of the target rectangle,
the target rectangle changes from purple to green to give visual feedback to the subject.

It should be noted that the cursor is displayed in the initial state of the task. Since we
provide two different visual feedback mechanisms, when the cursor starts to move, the
full visual feedback supports the full display of the cursor, while the cursor under partial
visual feedback will be hidden.

After the target to be selected gives color feedback, the subject needs to use the
three selection technologies we provide to quickly complete the target selection, and the
experimental task is over. Subjects will then repeat this task many times under different
combinations of conditions.

3.4. Performance Measures

MT is the dependent variable of the experimental task, which represents the time it
takes to select each target, defined as the time (milliseconds) from moving the cursor after
the target appears until the target is selected; ER means the number of incorrect selections in
the target selection task accounts for the total number of selections the ratio; NC represents
the cumulative number of crossovers that enter the target and then leave the target when
selecting each target. The functions of these evaluation indicators complement each other.
ER and MT provide us with an overview of the overall success rate, and NC provides us
with an indication of the degree of control of the user’s application of deformed input.

3.5. Procedure and Design

A within-subjects full factorial design with repeated measures was used. The inde-
pendent variables were selection modes (Bending and Twisting), selection technologies
(Click, Dwell and Quick Release), visual feedback condition (FV, PV), the distance from the
starting point to the target (D = 37, 72, 109, 144) and the target width (W = 15, 18, 22.5, 30,
45). The units of distance and width are represented by the deformation angle.

For each visual feedback, each participant will be exposed to two input modes. In
each input mode, participants need to complete the experiments of all three selection
technologies. For each selection technology, 20 D-W combination conditions are included
and presented in random order. The experiment order was counterbalanced among
participants using a Latin Square design.Each participant repeated the entire task three
times to complete a total of 8640 individual tasks. In summary, the experiment consisted of:

• Selection modes (Bending and Twisting);
• Visual feedback conditions (FV and PV);
• Selection technologies (Click, Dwell and Quick Release);
• Target distance (D = 37, 72, 109, 144);
• Target width (W = 15, 18, 22.5, 30, 45);
• 12 Participants
• 3 Repetitions

Before the experiment, we explained the task, and performed a brief demonstration.
Participants were given a short warm-up set of trials to familiarize themselves with input
modes, visual feedback and selection technologies. Participants were instructed to perform
the task as quickly and accurately as possible. Participants can take a short break during the
experiment. The experiment lasted approximately 1 hour for each participant. To analyze
the experimental results, we recorded the relevant parameters of each target selection task,
including input modes, target size, target distance, time spent, errors, and crossing times.

4. Results

We analyzed the collected measures by conducting a repeated measures ANOVA
(α = 0.05) that used the three-interaction technique and two-visual feedback condition as
independent variables. Further, we used Greenhouse-Geisser corrected values in the analy-
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sis when the assumption of sphericity was violated (tested with Mauchly’s test). Pairwise
t-tests with Bonferroni corrections were used for post hoc tests. The test was considered
an outlier if the time required to complete the task exceeded two standard deviations of
the average completion time of the task. A total of 282 outliers were eliminated, which
accounted for 3.3% of the collected data.

4.1. Time

As depicted in Figure 4, in bending mode, we found that different selection techniques
had no significant effect on performance time (F1.342,14.764 = 2.504, p = 0.129). Further,
we found no significant interaction between interaction technique and visual feedback
(F2,22 = 3.286, p = 0.056), as shown in Figure 5.

Electronics 2021, 10, x FOR PEER REVIEW 6 of 13 
 

 

selection task, including input modes, target size, target distance, time spent, errors, and 
crossing times. 

4. Results 
We analyzed the collected measures by conducting a repeated measures ANOVA (α 

= 0.05) that used the three-interaction technique and two-visual feedback condition as in-
dependent variables. Further, we used Greenhouse-Geisser corrected values in the analy-
sis when the assumption of sphericity was violated (tested with Mauchly’s test). Pairwise 
t-tests with Bonferroni corrections were used for post hoc tests. The test was considered 
an outlier if the time required to complete the task exceeded two standard deviations of 
the average completion time of the task. A total of 282 outliers were eliminated, which 
accounted for 3.3% of the collected data. 

4.1. Time 
As depicted in Figure 4, in bending mode, we found that different selection tech-

niques had no significant effect on performance time (F1.342,14.764 = 2.504, p = 0.129). Further, 
we found no significant interaction between interaction technique and visual feedback 
(F2,22 = 3.286, p = 0.056), as shown in Figure 5. 

 
Figure 4. Elapsed time with diverse selection techniques in bending mode (error bars indicate 95% 
confidence intervals). 

 
Figure 5. Elapsed time for each selection technique under diverse visual feedback in bending mode 
(error bars indicate 95% confidence intervals). 

Although there was no significant difference in the performance of time between the 
three interactive technologies, it can be found that the most time was spent in Dwell, fol-
lowed by Quick Release, and the then Click. 

As illustrated in Figure 6, in twisting mode, we found that different selection tech-
niques had no significant effect on performance time (F1.165,12.818 = 2.284, p = 0.154). As de-

Figure 4. Elapsed time with diverse selection techniques in bending mode (error bars indicate 95%
confidence intervals).

Electronics 2021, 10, x FOR PEER REVIEW 6 of 13 
 

 

selection task, including input modes, target size, target distance, time spent, errors, and 
crossing times. 

4. Results 
We analyzed the collected measures by conducting a repeated measures ANOVA (α 

= 0.05) that used the three-interaction technique and two-visual feedback condition as in-
dependent variables. Further, we used Greenhouse-Geisser corrected values in the analy-
sis when the assumption of sphericity was violated (tested with Mauchly’s test). Pairwise 
t-tests with Bonferroni corrections were used for post hoc tests. The test was considered 
an outlier if the time required to complete the task exceeded two standard deviations of 
the average completion time of the task. A total of 282 outliers were eliminated, which 
accounted for 3.3% of the collected data. 

4.1. Time 
As depicted in Figure 4, in bending mode, we found that different selection tech-

niques had no significant effect on performance time (F1.342,14.764 = 2.504, p = 0.129). Further, 
we found no significant interaction between interaction technique and visual feedback 
(F2,22 = 3.286, p = 0.056), as shown in Figure 5. 

 
Figure 4. Elapsed time with diverse selection techniques in bending mode (error bars indicate 95% 
confidence intervals). 

 
Figure 5. Elapsed time for each selection technique under diverse visual feedback in bending mode 
(error bars indicate 95% confidence intervals). 

Although there was no significant difference in the performance of time between the 
three interactive technologies, it can be found that the most time was spent in Dwell, fol-
lowed by Quick Release, and the then Click. 

As illustrated in Figure 6, in twisting mode, we found that different selection tech-
niques had no significant effect on performance time (F1.165,12.818 = 2.284, p = 0.154). As de-

Figure 5. Elapsed time for each selection technique under diverse visual feedback in bending mode
(error bars indicate 95% confidence intervals).

Although there was no significant difference in the performance of time between
the three interactive technologies, it can be found that the most time was spent in Dwell,
followed by Quick Release, and the then Click.

As illustrated in Figure 6, in twisting mode, we found that different selection tech-
niques had no significant effect on performance time (F1.165,12.818 = 2.284, p = 0.154). As
depicted in Figure 7, we found a significant interaction between technology and visual
feedback (F1.171,12.882 = 4.749, p = 0.044). The visual feedback condition has a significant
effect on Click time (p = 0.002) as well as on Dwell and Quick Release times (p < 0.001,
p = 0.002). The overall trend is that the Quick Release time under PV is significantly higher
than that under FV (p = 0.004, p = 0.034); there was no significant difference among all
technologies (p > 0.1).
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4.2. Accuracy

In bending mode, we found that selection technology has a significant effect on the
accuracy (F1.243,13.673 = 7.9, p = 0.01), as illustrated in Figure 8. The post hoc tests revealed no
significant differences among the technologies except Click and Quick Release (p = 0.021)
(p > 0.07).
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As illustrated in Figure 9, there was a significant interaction between selection tech-
niques and visual feedback (F2,22 = 3.609, p = 0.044).

The level of visual feedback had no obvious effect on the error rate for Click (p = 0.604);
however, a significant effect was found on the error rates for Dwell and Quick Release
(p = 0.006, p = 0.005). The general trend was that the error under PV was significantly
higher than that under FV. The post hoc tests revealed that under FV conditions, there were
no significant differences between technologies; under PV conditions (p > 0.1), Click and
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Quick Release were significant (p = 0.012). In addition, there are no significant differences
among other technologies (p > 0.1).

Electronics 2021, 10, x FOR PEER REVIEW 8 of 13 
 

 

As illustrated in Figure 9, there was a significant interaction between selection tech-
niques and visual feedback (F2,22 = 3.609, p = 0.044). 

The level of visual feedback had no obvious effect on the error rate for Click (p = 
0.604); however, a significant effect was found on the error rates for Dwell and Quick Re-
lease (p = 0.006, p = 0.005). The general trend was that the error under PV was significantly 
higher than that under FV. The post hoc tests revealed that under FV conditions, there 
were no significant differences between technologies; under PV conditions (p > 0.1), Click 
and Quick Release were significant (p = 0.012). In addition, there are no significant differ-
ences among other technologies (p > 0.1). 

 
Figure 9. Error rate for each selection technique under diverse visual feedback types in bending 
mode (error bars indicate 95% confidence intervals). 

As depicted in Figure 10, in twisting mode, we found a main effect on the error rate 
of different selection techniques (F1.167,12.839 = 11.812, p < 0.001). 

The post hoc tests showed significant differences among all selection technologies (p 
= 0.02, p = 0.00, p = 0.047). Further, as illustrated in Figure 11, we found no significant 
effect between selection techniques and visual feedback (F1.305,14.35 = 1.406, p > 0.2). 

 

Figure 10. Error rate with different selection techniques in twisting mode (error bars indicate 95% 
confidence intervals). 

 

Figure 11. Error rate for each selection technique under diverse visual feedback in twisting mode 
(error bars indicate 95% confidence intervals). 

Figure 9. Error rate for each selection technique under diverse visual feedback types in bending
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As depicted in Figure 10, in twisting mode, we found a main effect on the error rate of
different selection techniques (F1.167,12.839 = 11.812, p < 0.001).
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Figure 10. Error rate with different selection techniques in twisting mode (error bars indicate 95%
confidence intervals).

The post hoc tests showed significant differences among all selection technologies
(p = 0.02, p = 0.00, p = 0.047). Further, as illustrated in Figure 11, we found no significant
effect between selection techniques and visual feedback (F1.305,14.35 = 1.406, p > 0.2).
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Figure 11. Error rate for each selection technique under diverse visual feedback in twisting mode
(error bars indicate 95% confidence intervals).

4.3. Indication of Control

As illustrated in Figure 12, in bending mode, we found that this technique had a
significant impact on the number of performance crosses (F1.254,13.791 = 8.527, p = 0.008).
The post hoc tests revealed that there was no significant difference among all technologies,
except Dwell and Quick Release (p = 0.022) (p > 0.05).
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intervals).

As presented in Figure 13, there was no significant interaction between technology
and visual feedback (F1.769,19.464 = 2.771, p = 0.092).
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As depicted in Figure 14, in twisting mode, we found that different techniques had a
significant effect on the NC (F1.353,14.885 = 17.716, p < 0.001).
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There was no significant difference between Click and Dwell (p = 0.032), as revealed
by the post hoc tests, but there was no significant difference between Click and Dwell
(p = 0.066, p = 0.069).

As depicted in Figure 15, there was no significant interaction between technology and
visual feedback (F1.218,13.397 = 5.783, p = 0.026). In addition, the level of visual feedback has
no significant effect on the NC of Click (p = 0.084), Dwell (p = 0.169), and Quick Release
(p = 0.009). The general trend was that the NC under PV condition is significantly higher
than that under FV condition. In FV condition, Click and Quick Release (p = 0.011), Dwell
and Quick Release (p = 0.007) differed significantly among different technologies, except
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Click and Dwell (p = 1). Under PV conditions, Click and Quick Release (p = 0.01) differed
significantly from Dwell and Quick Release (p = 0.007), except for Click and Dwell (p = 1).

Electronics 2021, 10, x FOR PEER REVIEW 10 of 13 
 

 

As depicted in Figure 15, there was no significant interaction between technology 
and visual feedback (F1.218,13.397 = 5.783, p = 0.026). In addition, the level of visual feedback 
has no significant effect on the NC of Click (p = 0.084), Dwell (p = 0.169), and Quick Release 
(p = 0.009). The general trend was that the NC under PV condition is significantly higher 
than that under FV condition. In FV condition, Click and Quick Release (p = 0.011), Dwell 
and Quick Release (p = 0.007) differed significantly among different technologies, except 
Click and Dwell (p = 1). Under PV conditions, Click and Quick Release (p = 0.01) differed 
significantly from Dwell and Quick Release (p = 0.007), except for Click and Dwell (p = 1). 

 

Figure 15. NC rate for each technique under diverse visual feedback in twisting mode (error bars 
indicate 95% confidence intervals). 

4.4. Optimum Number of Deformation Levels 
One of the intentions of this research is to ascertain the number of independent bend-

ing levels (nLevels) a user can distinguish under a given level of device performance. Ex-
cept the Quick Release, when nLevels ≤ 8, all selection technology error values between 
1–2%, and there was no significant difference in the error rate (Figure 16). Except Quick 
Release, when nLevels ≤ 6, the NC of FV was stable around 1.1 in each selection technol-
ogy; moreover, all the selection technologies of NC had no significant differences (Figure 
17). In bending mode, these results indicate that six levels of deformation were a reason-
able number in bending mode. 

 

Figure 16. ER with nLevels under FV condition (bending mode). 

 

Figure 15. NC rate for each technique under diverse visual feedback in twisting mode (error bars
indicate 95% confidence intervals).

4.4. Optimum Number of Deformation Levels

One of the intentions of this research is to ascertain the number of independent
bending levels (nLevels) a user can distinguish under a given level of device performance.
Except the Quick Release, when nLevels ≤ 8, all selection technology error values between
1–2%, and there was no significant difference in the error rate (Figure 16). Except Quick
Release, when nLevels ≤ 6, the NC of FV was stable around 1.1 in each selection technology;
moreover, all the selection technologies of NC had no significant differences (Figure 17).
In bending mode, these results indicate that six levels of deformation were a reasonable
number in bending mode.
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Except the Quick Release, when nLevels ≤ 8 and when all selection technology error
values are between 1% and 3%, there were no significant differences between the error rates
of the technology selected (Figure 18). In addition to Quick Release, when nLevels ≤ 8, of
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all stable technologies of NC in 1.1%, there was no significant difference (Figure 19). In
twisting mode, these results indicate that eight levels of deformation were a reasonable
number for humans to comfortably control in twisting mode.
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5. Discussion and Conclusions

In this study, we examined the interaction technology of a flexible screen and designed
a simulation prototype called FlexSheet, which can support deformation inputs. Among
with the OptiTrack system, a deformation input environment was constructed. In this
context, we summarized two basic deformation models: bending and twisting. In order to
study the ability of humans to control deformation, we introduced the deformation angle
as a reflection of the degree of deformation. Further, we designed a discrete object selection
experiment using three selection techniques (Click, Dwell, and Quick Release) and two
types of visual feedback FV and PV to simulate novice and expert users. According to the
experimental performance of participants, a series of performance indicators were analyzed
in detail. The results revealed that in two input modes, less time was spent on simple Click
than Dwell and Quick Release, a finding that is in keeping with our hypothesis. The main
reason is that the Click selection is more in line with a user’s operating habits. Another
reason is that the other two selection methods need to be implemented with a certain time
delay, thereby reducing the selection efficiency. In terms of accuracy, both models had
similar performance, with the lowest error rate for Click, followed by Dwell, and then
Quick Release. In terms of stability (NC), from the input mode, the number of twisting
intersections was lesser than that of bending intersections, but the overall performance is
similar. From the perspective of different selection technologies, the average number of
intersections to Dwell is the lowest, followed by Click, and then Quick Release. This is
consistent with the feedback of participants that rapid release is more difficult to control
than other technologies, and it is easier to remain within the target range using bending
input, which leads to higher time cost, error rate, and crossing times. According to our
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measurement and analysis, the maximum deformation grade can be divided into six levels
in bending and eight levels in twisting. The division basis of deformation levels comes
from the mapping of deformation angle to width variables in the task, and the division
results are reflected by user feedback. It is worth noting that in each index analysis, the
overall performance of FV is better than that of PV.

Further, although we discussed the specific performance of the two deformation input
modes, respectively, we believe that the research on the combination of the two input
modes has good potential in future research on flexible screen technology. In addition,
we believe that the research on ergonomic models based on deformation input is of great
significance. We are optimistic regarding the future of flexible interactive technology,
and our study can provide designers a few useful guidelines for designing interactive
techniques based on flexible screen.

Author Contributions: Conceptualization, funding acquisition, project administration, supervision,
J.Y.; methodology, data analysis, experimental verification, writing, S.B.; investigation, supervision,
Y.H.; investigation, supervision, X.Z.; software, data curation, S.D.; investigation, supervision, S.W.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China
(61741206).

Acknowledgments: The authors would like to thank the editor and anonymous reviewers for their
useful comments for improving the quality of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Inoue, Y.; Itoh, Y.; Onoye, T. TuVe: A flexible display with a tube. In SIGGRAPH Asia 2018 Emerging Technologies (SA’18);

Association for Computing Machinery: New York, NY, USA, 2018; pp. 1–2.
2. David, H.; Roel, V. Organic user interfaces: Designing computers in any way, shape, or form. ACM 2008, 51, 48–55.
3. Mone, G. The future is flexible displays. Commun. ACM 2013, 56, 16–17. [CrossRef]
4. Girouard, A.; Eady, A.K. Deformable User Interfaces: Using Flexible Electronics for Human mputer Interaction. In Proceedings of

the International Flexible Electronics Technology Conference, Ottawa, ON, Canada, 7–9 August 2018. [CrossRef]
5. Lahey, B.; Girouard, A.; Burleson, W.; Vertegaal, R. PaperPhone: Understanding the Use of Bend Gestures in Mobile Devices with

Flexible Electronic Paper Displays. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’11),
New York, NY, USA, 5–10 May 2011; pp. 1303–1312. [CrossRef]

6. Gomes, A.; Priyadarshana, L.; Carrascal, J.P.; Vertegaal, R. WhammyPhone: Exploring Tangible Audio Manipulation Using Bend
Input on a Flexible Smartphone. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology
(UIST’16 Adjunct), Tokyo, Japan, 16–19 October 2016; pp. 159–161.

7. Gallant, D.T.; Seniuk, A.G.; Vertegaal, R. Towards more paper-like input: Flexible input devices for foldable interaction styles. In
Proceedings of the 21st Annual ACM Symposium on User Interface Software and Technology (UIST’08), New York, NY, USA,
19–22 October 2008; pp. 283–286. [CrossRef]

8. Maqsood, S.; Chiasson, S.; Girouard, A. Bend Passwords: Using gestures to authenticate on flexible devices. Pers. Ubiquitous
Comput. 2016, 20, 573–600. [CrossRef]

9. Ramos, G.; Boulos, M.; Balakrishnan, R. Pressure widgets. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, New York, NY, USA, 24–29 April 2004; pp. 487–494. [CrossRef]

10. Watanabe, J.I.; Mochizuki, A.; Horry, Y. Bookisheet: Bendable device for browsing content using the metaphor of leafing through
the pages. In Proceedings of the 10th International Conference on Ubiquitous Computing (UbiComp’08), New York, NY, USA,
21–24 September 2008; pp. 360–369. [CrossRef]

11. Ye, Z.; Khalid, H. Cobra: Flexible displays for mobilegaming scenarios. In Proceedings of the CHI’10 Extended Abstracts on
Human Factors in Computing Systems (CHI EA’10), New York, NY, USA, 10–15 April 2010; pp. 4363–4368. [CrossRef]

12. Schwesig, C.; Poupyrev, I.; Mori, E. Gummi: A bendable computer. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI’04), New York, NY, USA, 24–29 April 2004; pp. 263–270. [CrossRef]

13. Holman, D. Paper windows: Interaction techniques for digital paper. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI’05), New York, NY, USA, 2–7 April 2005; pp. 591–599.

14. Weigel, M.; Steimle, J. DeformWear: Deformation Input on Tiny Wearable Devices. Proc. ACM Interact. Mob. Wearable Ubiquitous
Technol. 2017, 1, 23. [CrossRef]

102



Electronics 2021, 10, 2991

15. Hosono, S.; Nishimura, S.; Iwasaki, K.; Tamaki, E. Gesture Recognition System using Optical Muscle Deformation Sensors. In
Proceedings of the 2019 2nd International Conference on Electronics, Communications and Control Engineering (ICECC 2019),
Phuket, Thailand, 13–16 April 2019; pp. 12–15.

16. Fellion, N.; Pietrzak, T.; Girouard, A. FlexStylus: Leveraging Bend Input for Pen Interaction. In Proceedings of the 30th Annual
ACM Symposium on User Interface Software and Technology (UIST’17), Quebec City, QC, Canada, 22–25 October 2017; pp.
375–385.

17. Herkenrath, G.; Karrer, T.; Borchers, J. Twend: Twisting and bending as new interaction gesture in mobile devices. In Proceedings
of the Extended Abstracts on Human Factors in Computing Systems (CHI’08), New York, NY, USA, 5–10 April 2008; pp.
3819–3824. [CrossRef]

18. Lee, S.S.; Maeng, S.; Kim, D.; Lee, K.P.; Lee, W.; Kim, S.; Jung, S. FlexRemote: Exploring the Effectiveness of Deformable
User Interface as an Input Device for TV. In HCI International 2011—Posters’ Extended Abstracts. HCI 2011; Stephanidis, C., Ed.;
Communications in Computer and Information Science; Springer: Heidelberg/Berlin, Germany, 2011; Volume 174. [CrossRef]

19. Lee, S.S.; Kim, S.; Jin, B.; Choi, E.; Kim, B.; Jia, X.; Lee, K.P. How users manipulate deformable displays as input devices. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’10), New York, NY, USA, 10–15 April
2010; pp. 1647–1656.

20. Borah, P.P.; Sorathia, K. Natural and Intuitive Deformation Gestures for One-handed Landscape Mode Interaction. In Proceedings
of the Thirteenth International Conference on Tangible, Embedded, and Embodied Interaction (TEI ’19), Tempe, AZ, USA, 17–20
March 2019; pp. 229–236. [CrossRef]

21. Ahmaniemi, T.T.; Kildal, J.; Haveri, M. What is a device bend gesture really good for? In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI’14), New York, NY, USA, 26 April–1 May 2014; pp. 3503–3512.

22. Warren, K.; Lo, J.; Vadgama, V.; Girouard, A. Bending the Rules: Bend Gesture Classification for Flexible Displays. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (CHI’13), New York, NY, USA, 27 April–2 May 2013; pp.
607–610. [CrossRef]

23. Girouard, A.; Lo, J.; Riyadh, M.; Daliri, F.; Eady, A.K.; Pasquero, J. One-Handed Bend Interactions with Deformable Smartphones.
In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, New York, NY, USA, 18–23 April
2015; pp. 1509–1518.

24. Gotsch, D.; Zhang, X.; Carrascal, J.P.; Vertegaal, R. HoloFlex: A Flexible Light-Field Smartphone with a Microlens Array and a
P-OLED Touchscreen. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology (UIST’16), New
York, NY, USA, 16–19 October 2016; pp. 69–79. [CrossRef]

25. Ansara, R.; Girouard, A. Augmenting bend gestures with pressure zones on flexible displays. In Proceedings of the 16th
International Conference on Human-Computer Interaction with Mobile Devices & Services (MobileHCI’14), New York, NY, USA,
24–27 September 2014; pp. 531–536. [CrossRef]

26. Kildal, J.; Lucero, A.; Boberg, M. Twisting touch: Combining deformation and touch as input within the same interaction cycle on
handheld devices. In Proceedings of the 15th International Conference on Human-Computer Interaction with Mobile Devices
and Services (MobileHCI’13), New York, NY, USA, 27–30 August 2013; pp. 237–246.

27. Borah, P.P. Deformation Gesture-based Input Method for Non-visual Primitive Geometric Shape Drawing. In Proceedings of
the Fourteenth International Conference on Tangible, Embedded, and Embodied Interaction (TEI ’20), Sydney, Australia, 9–12
February 2020; pp. 911–915. [CrossRef]

28. Ernst, M.; Girouard, A. Bending Blindly: Exploring Bend Gestures for the Blind. In Proceedings of the 2016 CHI Conference
Extended Abstracts on Human Factors in Computing Systems (CHI EA’16), New York, NY, USA, 7–12 May 2016; pp. 2088–2096.
[CrossRef]

29. Heo, J.S.; Shishavan, H.H.; Soleymanpour, R.; Kim, J.; Kim, I. Textile-based stretchable and flexible glove sensor for monitoring
upper extremity prosthesis functions. IEEE Sens. J. 2020, 20, 1754–1760. [CrossRef]

30. Michelitsch, G.; Williams, J.; Osen, M.; Jimenez, B.; Rapp, S. Haptic chameleon: A new concept of shape-changing user interface
controls with force feedback. In Proceedings of the CHI’04 Extended Abstracts on Human Factors in Computing Systems (CHI
EA’04), New York, NY, USA, 24–29 April 2004; pp. 1305–1308. [CrossRef]

31. Burstyn, J.; Banerjee, A.; Vertegaal, R. FlexView: An evaluation of depth navigation on deformable mobile devices. In Proceedings
of the 7th International Conference on Tangible, Embedded and Embodied Interaction (TEI’13), New York, NY, USA, 10–13
February 2013; pp. 193–200. [CrossRef]

103





electronics

Article

An Alignment-Free Sensing Module for Noninvasive Radial
Artery Blood Pressure Measurement

Binpeng Zhan , Chao Yang, Fuyuan Xie, Liang Hu, Weiting Liu * and Xin Fu

Citation: Zhan, B.; Yang, C.; Xie, F.;

Hu, L.; Liu, W.; Fu, X. An

Alignment-Free Sensing Module for

Noninvasive Radial Artery Blood

Pressure Measurement. Electronics

2021, 10, 2896. https://doi.org/

10.3390/electronics10232896

Academic Editors: João Paulo

Morais Ferreira and Tao Liu

Received: 9 October 2021

Accepted: 21 November 2021

Published: 23 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering,
Zhejiang University, Hangzhou 310007, China; 11825032@zju.edu.cn (B.Z.); 21825224@zju.edu.cn (C.Y.);
21925162@zju.edu.cn (F.X.); cmeehuli@zju.edu.cn (L.H.); xfu@zju.edu.cn (X.F.)
* Correspondence: liuwt@zju.edu.cn

Abstract: Sensor–artery alignment has always been a significant problem in arterial tonometry
devices and prevents their application to wearable continuous blood pressure (BP) monitoring.
Traditional solutions are to use a complex servo system to search for the best measurement position
or to use an inefficient pressure sensor array. In this study, a novel solid–liquid mixture pressure
sensing module is proposed. A flexible film with unique liquid-filled structures greatly reduces the
pulse measurement error caused by sensor misplacement. The ideal measuring location was defined
as −2.5 to 2.5 mm from the center of the module and the pressure variation was within 5.4%, which
is available in the real application. Even at a distance of ±4 mm from the module center, the pressure
decays by 23.7%, and its dynamic waveform is maintained. In addition, the sensing module is
also endowed with the capability of measuring the pulse wave transmit time as a complementary
method for BP measuring. The capability of the developed alignment-free sensing module in BP
measurement was been validated. Twenty subjects were selected for the BP measurement experiment,
which followed IEEE standards. The experimental results showed that the mean error of SBP is
−4.26 mmHg with a standard deviation of 7.0 mmHg, and the mean error of DBP is 2.98 mmHg with
a standard deviation of 5.07 mmHg. The device is expected to provide a new solution for wearable
continuous BP monitoring.

Keywords: alignment-free; noninvasive; wearable; continuous blood pressure measurement; liquid-filled

1. Introduction

Cardiovascular disease is the leading cause of death in the world [1]. It is estimated
that about 270 million people suffer from hypertension in China and nearly 1.13 billion
people worldwide [2,3]. Hypertension at any age is associated with a cognitive decline
in different abilities [4]. However, prehypertension has few noticeable symptoms, and it
is difficult to recognize when lacking frequent blood pressure (BP) examinations because
there are many considerable influences on human BP, such as circadian rhythm and the
environment. Compared to intermittent BP measurement, continuous BP monitoring is of
great significance by providing more comprehensive information for the clinical diagnosis
and control of hypertension [5].

As a result of the expansion of health care, commercial wearable BP monitoring
devices are already available on the market. For example, Bpump Inc. launched a BP
measurement watch (WF1610B) in 2017, and Omron Inc. launched ‘HeartGuide’ in 2019.
However, their measurement principle is still based on the traditional oscillometric method,
which cannot meet the requirements of continuous BP monitoring. The clinical available
continuous BP monitoring devices include Finometer PRO (Finapres Medical Systems BV,
Amsterdam, The Netherlands), BP-8800 (Omron, Colin Co., Ltd., Tokyo, Japan), TL-200
(Tensys Medical Inc., CA, USA), and BPro (Healthstats International Pte. Ltd., Singapore).
Their servo-mechanism makes them bulky and prevents their application in daily life.
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Research on noninvasive wearable continuous BP measurement is ongoing. For mea-
suring methods, photoplethysmogram (PPG), arterial tonometry, and pulse wave transit
time (PWTT) methods have been widely studied [6]. Several scholars have contributed
to modern BP measurements from theoretical and algorithmic perspectives, such as the
establishment of multifactor mathematical models [7–9], the use of the adaptive filter to
reduce motion artifacts [10,11], and the application of machine learning to assist in calcula-
tions [12–14]. Another research field is the enhancement of the sensing device. Nonetheless,
a miniaturized, alignment-free, and high sensitivity sensor has always been desired [15].
However, noninvasive BP monitoring is still difficult to accomplish with current sensors.
In addition, the sensors are generally specialized, so it is not easy to combine different mea-
surement methods. Specifically, the PPG method is always matched with a photoelectric
sensor, which is energy intensive; sensors for the PWTT method mostly use a distributed
placement and are challenging to integrate; and for arterial tonometry, a pressure sensor
is commonly used. Some scholars have presented excellent solutions with developing
technologies, such as liquid capsule structures [16], ultrasonic patch devices [17], and a
smartphone-based oscillometric finger-pressing method [18]. In the areas of noninvasive,
portable, and continuous measurement, there is still much space for progress.

In this study, the authors proposed an alignment-free compact sensing module.
The main obstacle to arterial tonometry is the rigorous placement of the sensor. Therefore,
the sensing module was designed as a solid–liquid composite structure, which aims at
reducing the pressure measurement error caused by misplacement. Furthermore, it has the
potential to combine the PWTT method with arterial tonometry. In order to demonstrate
its BP monitoring capability in daily life, the sensing module was integrated into a wear-
able BP device. The performance of the device was systematically verified by simulation
and experiment.

This paper is organized as follows. The theoretical method and device development
process are presented in Section 2. The experimental results are described and discussed in
Section 3. Finally, the conclusion and prospects are summarized in Section 4.

2. Device Development

The radial artery BP measurement device includes a wrist wearable device and a
smartphone-based arterial blood pressure (ABP) recording APP, as shown in Figure 1.
Data transmission between the wearable device and the recording APP is via Bluetooth
Low Energy (BLE), which removes the need for an enormous data acquisition system,
and satisfying the need for the portability of continuous BP measurement in daily life.
The measuring principle of the device is mainly based on that of arterial tonometry, com-
bined with the PWTT measurement.

2.1. Theory

Arterial tonometry is a noninvasive BP measurement method proposed by Pressman
and Newgard in 1963 [19]. A cross-sectional view of the human wrist is shown in Figure 2a.
The radial artery is located between the epidermal tissue and the radius, flanked by the
flexor and extensor muscles. After wearing the measurement device, the changes in
the radial artery are shown in Figure 2b. Due to the squeezing of the wearable device,
the sensor puts external pressure on the radial artery. As a result, the epidermal tissue,
radial artery, and radius are close to each other, leading to deformation of the radial
artery. When the external pressure is appropriate, the radial artery section will become flat,
as shown in Figure 2c. In this case, the tension of the arterial wall is completely horizontal;
thus, pressure measured by the sensing module will be equal to the pressure in the artery
(BP) if the elastic attenuation of the epidermal tissue is neglected.
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radial artery.

According to the principle of arterial tonometry, the module has to be directly above
the radial artery and remain fixed during measurement. Otherwise, it is possible to
introduce considerable measuring errors. However, it is relatively difficult to align the
center of the module to the central line of underneath the vascular vessel, whose diameter
is relatively small (about 3 mm). Usually, the sensor alignment can only be roughly
determined by feeling the pulse with the finger.

2.2. Sensing Module Design

The size of the sensing module is 16 mm × 14 mm, and the width of the module is
considered as the distance between the radial protrusion and the musculus flexor, because
it is convenient to find the appropriate circumferential position of the module with the help
of the radial protrusion and musculus flexor. However, the distance between the radial
protrusion and the flexor muscle is an individualized parameter. In order to cover the
different ages and weights of all possible users, so that they can easily align the sensing
module to the artery, the module should still be positionally robust. The wrist circumference
in adults is typically between 140 and 180 mm, and the distance difference between the
radial protrusion and the musculus flexor is less than 8 mm. Therefore, the module needs
to be robust with a minimum of 8 mm tolerance in the width direction, i.e., the signal

107



Electronics 2021, 10, 2896

measured within this range should be distortion-free and genuinely reflect the pulse state
if motion artifacts are ignored.

Inspired by the principle of finger-feeling pulse in traditional Chinese medicine [20],
we designed a solid–liquid composite sensor structure, and details are shown in Figure 3.
Inside the sensing module is a cavity as shown in Figure 3b, which is filled with silicone
oil and connected to the outside through two channels above, one for liquid injection and
the other for pressure transfer. The sensitive areas are the two semicylindrical bulges on
the bottom of the module as shown in Figure 3c. When a stimulus is received, the bulges
deform and generate compressive stress, which can be efficiently transmitted to the pressure
sensing element according to Pascal’s law. Theoretically, regardless of where the bulges are
pressed, the pressure transmitted to the sensing element should be the same.
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Figure 3. Sensing module details: (a) module structure schematic; (b) cross-section of the cavity;
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The designed sensing module is a dual-channel signals sensor, as shown in Figure 3d,
which can measure the pulse at two adjacent locations. The first purpose is to facilitate
the alignment of the module in the axial direction of the wrist because at least one of the
two channels can be supported by the radius. The second is that the PWTT can be derived
by the time difference between the pulse signal in two different locations. PWTT is a
BP-related variable and can be used to derive BP [21]. The result calculated by PWTT can
be cross-validated with arterial tonometry.

2.3. Fabrication

The sensitive area of the sensing module, i.e., the area in contact with the skin of
the wrist, is made of a thermoplastic polyurethane (TPU) film with good plasticity and
biocompatibility. The cavity is filled with non-volatile and biocompatible dimethyl silicone
oil (Dow Corning Inc., Michigan, USA, pmx-200). The pressure sensing element of the
module is a silicon piezoresistive die (Uni Sense Technology Co. Ltd., Shenzhen, China,
US9173) based on micromachining technology.

The preparation process of the sensing module is shown in Figure 4. First, the TPU film
with two semicylindrical bulges was produced by hot extrusion forming through a mold.
Then the formed film was glued together with the 3D-printed base. Second, the pressure
sensing element was glued to the base in alignment with the pressure transmission channel.
Third, the cavity was filled with degassed silicone oil through the liquid injection channel
in a vacuum environment, and then the liquid injection channel was sealed. Finally,
after cleaning the pressure sensing element, it was connected to the peripheral circuit
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using ultrasonic gold wire bonding technology. The sensing module prepared by this
process overcomes the disadvantages of stress transfer attenuation and non-uniform stress
distribution in the traditional elastic layer.
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2.4. Signal Process

The processing flow of the signal collected by the sensing module is shown in Figure 5.
The lower left of the figure is a photo of the processing circuit, which integrates power
management, signal acquisition, signal processing, and BLE communication functions. It is
mounted in the controller with the battery underneath as shown in Figure 2b.
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The raw signal measured by the sensing module is insignificant, as shown in Figure 5c.
First, a distinct pulse signal is obtained through a conditioning and amplifier circuit.
Then the heart rate fH can be obtained by Fourier transform of the pulse signal and taking
the dominant frequency, as shown in Figure 5e. The baseline separation circuit consists of a
high-pass filter and a low-pass filter circuit. After passing through the two filters separately,
two pure pulse wave signals and two mean pressure signals are available; the typical
signals are shown in Figure 5f. The mean pressure of the two channels is defined as P1 and
P2, respectively. The mean pressure here is influenced by the mean BP (MBP) and external
pressure, so it can be used to extract the MBP when the external pressure is controllable.
The oscillating pressure of the two channels, i.e., the peak-to-peak values of the pure pulse
wave signals, are defined as ∆P1 and ∆P2, respectively. The oscillating pressure can be
used to extract the difference between systolic and diastolic pressure. Then, the 2nd order
differential sequence of the pulse wave is derived, and the moment when it reaches its
peak is considered as the initial ejection point of the heart [22]. The pulse wave transmit
time (PWTT) in the artery can be obtained as the time difference ∆t between the initial
ejection time of two channels, as shown in Figure 5g. Moreover, the pulse wave velocity
(PWV) in the artery can be calculated according to the distance ∆d and PWTT between the
two signal channels of the sensing module.

Through wireless BLE communication, the measured information can be synchronized
to the smartphone for saving and further processing, enabling real-time monitoring of
arterial blood pressure.

3. Experiment and Discussion
3.1. Simulation Results on Static Load

In this section we use finite element analysis (FEA) to demonstrate that the structure
of liquid sealed in a film allows the pressure to be uniformly transmitted to the pressure
sensing element, realizing the insensitivity to the stimulus location. The static simulation
analysis was performed based on ANSYS. A simulation model for the basic structure of the
sensing module was built first, and the same load was applied to different positions on the
bulge structure, as shown by the arrows in Figure 6a. The red arrow is the center loading
position, and the yellow arrows are the loading positions when the load is offset to the left
by 0.5 mm each time (symmetric on the right). The pressure value at the sensing element
was calculated separately for each loading position and defined as the output pressure.

The calculated results of the FEA are shown by the red curve in Figure 6b. The Y-axis
of the curve is the output pressure attenuation relative to the central loading position
(red arrow) when loading at other positions (yellow arrows). Results indicate that the
output pressure varies with the position of the load, and the attenuation becomes more
pronounced away from the center. The output pressure is attenuated by 5.6% at 2.5 mm
away from the center and 25% at 4 mm. This means that the output pressure is nearly the
same when the stimulus position is within 5 mm of the middle of the sensing module,
and the output pressure error is less than 25% within 8 mm. Even at the furthest edge,
the sensing module can obtain a valid signal within 30% attenuation. By consideration
of adult vessel size, 2.5 mm away from the center is the location that the whole vessel
maintains above the sensing bulge; more misplacement leads to the vessel being only
partly above the sensing bulge, which results in a larger measuring error. Fortunately,
the approximate pulse finger feeling method can easily guarantee that the module is fixed
within the ±2.5 mm misplacement tolerance range.
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Figure 6. Finite element simulation: (a) loading positions; (b) results of output pressure and film
deformation.

3.2. Location Robustness on Dynamic Stimulation

The location robustness in a static load was verified in the simulation analysis. How-
ever, the effects of pulse oscillation and epidermal tissue elasticity on pressure signal were
not considered in the simulation. Therefore, in this section, the response to the stimulus
location of the sensing module under near-real and controlled dynamic conditions is exper-
imentally investigated. The schematic diagram of the experimental platform is shown in
Figure 7a. A peristaltic pump was used to simulate the heartbeat, a rubber hose to simulate
the blood vessel, and a silica gel pad to simulate the epidermal tissue. The peristaltic pump
rollers squeeze the rubber hose from left to right in sequence, intermittently pumping the
water through the region where the sensing module is located. The diameter of the rubber
hose was 3 mm, which is similar to that of the radial artery vessel. The thickness of the
silica gel pad was 5 mm and the hardness was 5 HA, similar to those of the epidermal
tissue. The rigid substrate beneath the silica gel pad was used to simulate the radius
supporting the radial artery. Figure 7b shows the right elevation of the sensing module
and the rubber hose, which illustrates the change in the rubber hose location relative to the
sensing module from −5 to 5 mm during the experiment. The photo of the experimental
platform is shown in Figure 7c, including a peristaltic pump, a segment of rubber hose,
a silica gel pad, a sensing module, a processing circuit, and a smartphone-based recording
APP. Figure 7d–f show the close-up photos of the rubber hose positions at the leftmost
(−5 mm), middle (0 mm), and rightmost (5 mm), respectively.
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The rotational speed of the peristaltic pump is set to 30 rpm and with the three rollers
in one circle, i.e., the fluctuation frequency is 90 Hz, which is close to the human heart rate.
As each roller passes through the rubber hose, the peak pressure is generated. The signals
collected at each location of the sensing module are shown at the bottom of Figure 7g.
The top of the figure shows the extracted average oscillating pressure versus its location,
and the Y-axis is the oscillating pressure attenuation relative to the central location. As can
be seen from the figure, the dynamic experimental results are almost the same as the static
simulation results. At a distance of ±4 mm from the center, the oscillating pressure decays
by 23.7%. The ideal measuring location is from −2.5 to 2.5 mm and the oscillating pressure
variation is within 5.4%. Another important result is that the waveforms maintained a
close agreement at all the misalignment locations, which is one of the key performances
desired in real BP monitoring. In this manner, the designed sensing module demonstrated
its capability of alignment-free tonometry BP measurement.

Based on the developed alignment-free sensing module, it was necessary to examine
its appropriate capability in BP measuring, which is presented in the following sections.

3.3. Individualized Calibration

In this section, the arterial blood pressure (ABP) measured by the sensing module
is investigated. The subject’s ABP was artificially and quantitatively altered through an
in vivo BP control platform to establish a link with the output of the sensing module.
This calibration method combines ABP with hydrostatic pressure and is able to assess the
effect of individualization factors, such as vessel thickness and epidermal tissue stiffness.
The calibration results can be applied to BP tracking for long-term wear. In this study,
artificial alteration of ABP was achieved by adjusting the height of the subject’s wrist
relative to the heart. According to Bernoulli’s principle, for every 1.3 cm increase in the
height of the wrist relative to the heart, the ABP at the measuring point decreases by
1 mmHg. However, due to the difference in physiological characteristics of the individual
body, the signal collected by the sensing module varies from person to person even if the
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ABP variation is the same. Therefore, it is necessary to recalibrate the sensitivity by the
controlled ABP and the corresponding sensor output.

The experimental setup includes a wrist height adjustment platform, as shown in
Figure 8a, which is designed with a sliding track allowing the subjects to maintain the
posture while changing the height of the wrist. The subject selected for the experiment
was healthy, did not smoke, drink, or exercise before the experiment, and was in a resting
state without any stimulus during the experiment. Therefore, the BP of the subject was
considered to be stable and did not fluctuate significantly during the experiment. The ex-
perimental procedure started with finding the height of the heart and defining it as 0 cm.
The wrist height was adjusted within ±20 cm, starting from −20 cm and rising 10 cm each
time. Each position measurement lasted 30 s, and the measured pulse wave is shown in
Figure 8b.
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By the analysis of the experimental data, it can be found that the primary change
in the signal as the wrist height rises is the decrease in mean pressure. The change
rate is −4.25 mV/cm; that is, the sensitivity of the sensing module is 5.7 mV/mmHg.
However, the sensitivity of the sensor was previously calibrated as 8.7 mV/mmHg in a
precise pressure chamber. The error between the measured and calibrated sensitivity is a
reflection of the individualization factor. This can be explained in two ways. One is that the
epidermal tissue induces an attenuation effect on pressure transmission [23,24]. The other
is that only part of the sensitive area is in contact with the arterial blood vessels during
the measurement, as shown in Figure 5a. The first factor is related to the elasticity and
thickness of the epidermis, and the second factor is influenced by the thickness of the artery.
Both factors can be attributed to the individualized discrepancies and can be eliminated
by recalibration.
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3.4. BP Calibration

The individualized factor calibration characterizes the relationship between the vari-
ation in the sensing module output and BP during ambulatory BP measurements. How-
ever, because the wearing state is different each time, the initial BP also needs to be
calibrated. The characteristics of the transmural pressure can be used to calibrate the initial
BP. The transmural pressure represents the combined pressure of intravascular pressure,
applied pressure, and hydrostatic pressure. It is generally accepted that the compliance
of the vessel increases to a maximum value as the transmural pressure goes to zero [25].
In addition, the transmural pressure equal to zero means that the intravascular pressure,
i.e., the MBP, is equal to the extravascular pressure when the hydrostatic pressure is equal
to zero. This also means that the pulse oscillating pressure measured by the sensing module
is the largest [26]. Furthermore, maximum vascular compliance also means that the same
pressure change in the vessel causes the most significant change in vessel volume and,
therefore, the most extended PWTT [27]. Thus, there can be two ways to determine the
initial BP—when the pulse oscillation amplitude reaches its maximum and when the PWTT
is the longest. In this study, the transmural pressure was varied by changing the applied
pressure of the sensing module, and was decreased to zero and then increased in reverse as
the applied pressure increases.

The experimental setup containing a pressure controller, a gasbag, and an ABP mea-
surement device is shown in Figure 9a. The pressure applied to the wrist by the sensing
module was controlled by the pressure controller and a gasbag above the module. Before
the experiment, the subject was required to align the sensing module with the gasbag
after wearing the ABP measurement device, and the subject’s wrist remained stationary
throughout the experiment. The pressure on the wrist was then controlled to increase
gradually and uniformly until the acquired pulse waveform begins to distort, indicating
that the artery is almost closed.
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The experimental results for one subject are presented in Figure 9b. The mean pres-
sure measured by the sensing module keeps rising uniformly with the increase in the
applied pressure. The oscillating pressure and the PWTT also progressively increase at the
beginning due to the decreased transmural pressure. As the applied pressure continued to
increase, the oscillating pressure and the PWTT started to decrease from a certain point be-
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cause the transmural pressure decreased to zero and then increased in reverse. The turning
point is the MBP state for the subject, as shown by the dashed line in Figure 8c. The mean
pressure at this point corresponds to the MBP, and the oscillating pressure corresponds to
the difference between systolic and diastolic pressures.

According to the IEEE standard [28], twenty healthy adults were selected for evaluat-
ing the effectiveness of the designed BP measurement device. Their personal information
and BP measured by a commercial sphygmomanometer (Omorn Inc., Japan, HEM-7124)
5 min before the test are shown in Table 1. The initial BP was calibrated by the same
method for the 20 subjects, and the extracted mean and oscillating pressures are presented
in Figure 10. The calibration results of the MBP are shown in red.

Because the BP procedure in this study is based on arterial tonometry, the MBP was
obtained from the corresponding mean pressure, and the differential pressure (DP) between
systolic pressure and diastolic pressure was obtained from the corresponding oscillating
pressure. The BP measurement results of the subject were determined by the MBP and
the DP. In order to enable comparison with the commercial cuff sphygmomanometers,
the results were converted to SBP and DBP by the 4/6 principle. Then, the Bland–Altman
method was used to analyze the correlation between the derived BP and the BP measured
by the commercial sphygmomanometer; the results are shown in Figure 11. All measuring
results fall within the confidence interval. The mean error of SBP is −4.62 mmHg with
a standard deviation of ±7.0 mmHg, and the mean error of DBP is 2.98 mmHg with a
standard deviation of ±5.07 mmHg. The BP measurement results are in accordance with
the AAMI standard [29] of 5 ± 8 mmHg. The above experimental results indicate that the
BP measurement device proposed in this paper has considerable stability and can adapt to
different people.

Table 1. BP information for the 20 subjects.

Subject SBP DBP Gender Age Weight
(mmHg) (kg)

1 120 73 Male 23 64
2 116 75 Male 22 57
3 115 61 Male 22 65
4 125 85 Male 21 76
5 116 74 Male 22 75
6 113 84 Male 22 72
7 122 76 Male 22 50
8 111 69 Female 22 62
9 115 78 Male 24 60

10 102 75 Female 22 46
11 122 74 Male 22 100
12 129 85 Male 23 61
13 137 84 Male 22 70
14 106 76 Male 23 70
15 128 83 Male 23 70
16 99 69 Male 22 65
17 121 78 Male 23 79
18 104 79 Male 23 78
19 101 71 Male 23 69
20 97 64 Male 23 70
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4. Conclusions

Arterial tonometry is a noninvasive BP measurement method with high accuracy.
However, sensor–artery alignment is a major problem that obstructs the application of
arterial tonometry. In this study, a novel solid–liquid mixture pulse sensing module was
proposed to address the existing problems. The flexible film with semicylindrical bulges
and unique liquid-filled structure greatly reduces the pulse measuring error caused by

116



Electronics 2021, 10, 2896

position deviation. Having a rational circuit and algorithm design, it is able to extract
the mean and oscillating pressures of the subject’s pulse. In addition, the device has the
ability to measure PWTT, which can serve as a complement to arterial tonometry and is
especially suitable for ambulatory BP monitoring. The location robustness of the sensing
module was verified by simulation and experiment. The ideal measuring location ranges
from −2.5 to 2.5 mm of the module and the pressure variation is within 5.4%, which can be
easily achieved by finger feeling in a real application of a wearable BP monitoring scenario.
At a distance of ±4 mm from the module center, although the pressure decays by 23.7%,
the dynamic waveform is conserved well, which is important for wearable application.
For different potential users, the individualization factor can be calibrated by an ABP
control platform, and the initial BP can be calibrated by an applied pressure regulation
platform. The alignment deviation errors can be further eliminated by the individual
calibration procedure in a practical BP measuring step. BP measurement experiments
were performed on 20 subjects, and the experimental procedure followed IEEE standards.
The results indicate that the wearable device performs well for BP measurements and the
error of the results meet the AAMI standards. The device is expected to provide a new
solution for wearable continuous BP monitoring.

In next phase, we plan to (1) combine arterial tonometry and the PWTT method for BP
measurement, and use the device for noninvasive continuous BP measurement in clinical
trials; (2) study the interference of human motion on the measurement, and improve the
accuracy of the measurement in motion in terms of the device structure design and an
anti-motion algorithm.
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Abstract: The demand for large-scale analysis and research of data on trauma from modern warfare
is increasing day by day, but the amount of existing data is not sufficient to meet such demand. In
this study, an integrated modeling approach incorporating a war trauma severity scoring algorithm
(WTSS) and deep neural networks (DNN) is proposed. First, the proposed WTSS, which uses
multiple non-linear regression based on the characteristics of war trauma data and the medical
evaluation by an expert panel, performed a standardized assessment of an injury and predicts its
trauma consequences. Second, to generate virtual injury, based on the probability of occurrence,
the injured parts, injury types, and complications were randomly sampled and combined, and then
WTSS was used to assess the consequences of the virtual injury. Third, to evaluate the accuracy of the
predicted injury consequences, we built a DNN classifier and then trained it with the generated data
and tested it with real data. Finally, we used the Delphi method to filter out unreasonable injuries and
improve data rationality. The experimental results verified that the proposed approach surpassed
the traditional artificial generation methods, achieved a prediction accuracy of 84.43%, and realized
large-scale and credible war trauma data augmentation.

Keywords: artificial intelligence; data augmentation; war trauma severity score; deep neural network

1. Introduction

War trauma data are the core elements of wargaming, military medical service training,
and medical decision-making [1]. With the continuous development of modern warfare, the
analysis and research of physical war trauma data have become more and more important.
However, the amount of existing data is not sufficient to support large-scale analysis and
evaluation, and the confidential nature of war trauma data makes them hard to collect and
obtain from public channels. Therefore, efficient and credible data augmentation of war
trauma data has become a research work with great practical significance. To the best of
our knowledge, research on this topic has been limited. In the currently used method, the
additional physical trauma data are still artificially generated by well-trained experts or
doctors based on their professional knowledge and experience. However, this method is
not only inefficient, time-consuming, and labor cost-intensive, but also inherently biased
due to its dependence on personal subjective cognition, which is difficult to overcome. In
addition, different experts have no unified standard for assessing injury consequences.
Furthermore, the amount of artificially generated war trauma data is too small to meet the
actual needs. Therefore, we developed a standardized evaluation algorithm to improve the
quality of assessment of injury consequences and find an automatic, efficient, and credible
approach for small-sample augmentation of war trauma data.

More than half a century since the concept of artificial intelligence (AI) was first
formally proposed at the Dartmouth Conference [2], the AI technology has empowered
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amazing developments in many fields. Meanwhile, the external environment and chal-
lenges faced by the development of AI have also undergone profound changes [3]. These
changes are especially prominent in certain fields, such as big data, virtual reality, super-
computing, and mobile payment. Therefore, under the trend that the overall environment
is getting closer to big data, deep learning (DL), which is based on machine learning, has
become the core element of the application of AI [4] and has led to satisfactory applica-
tion results in many fields, such as cloud computing [5], image identification [6], sports
training [7], and AlphaGo [8]. Recently, AI technologies such as DL started to be gradually
applied in the field of medical research, including in promoting disease management [9],
computer-aided diagnosis [10], biomedical information processing [11], medical image
recognition [12], and disease prediction [13]. Especially in disease prediction, AI has been
recognized as one of the key elements of an accurate and robust prediction system [14].
For example, deep neural networks (DNNS), which are AI tools, are now used to assist
physicians and for automatic diagnosis. Specific application cases include early detection
of cardiovascular disease [15], cancer diagnosis [16], survival prediction [17], and injury
severity assessment [18].

Compared with machine-learning methodologies and shallow neural networks, DL,
which is now the core of the AI method, overcomes the research drawbacks of limited
samples and low generalizability by training large-scale annotated sample data to au-
tomatically extract complex sample features and fully optimize the model parameters
layer by layer. Thus, DL can carry out a more essential characterization of the data and
demonstrates a superior feature-learning ability [19]. In other words, with the existing
technology level, the larger the scale and the higher the quality of the annotated data are,
the better the performance of the model will be. Therefore, DL can effectively solve many
complex problems in the medical field [20,21]. In the prediction and diagnosis of some
diseases, the accuracy and efficiency of predictive DL models have surpassed those of
professional doctors and experts [22] and have thus made outstanding contributions to the
development of the medical field.

2. Related Work

Currently, there are two main methods of data augmentation: oversampling and
generative adversarial network (GAN). The principle of oversampling is as follows: if the
samples of different classes are imbalanced, the training data can be expanded by copying
the training samples of the minority class or adding noises to create new ones [23]. To solve
the imbalanced dataset learning problem, in 2002, Bowyer et al. [24] created a synthetic
minority oversampling technique (SMOTE), which generated synthetic minority class
samples. In 2005, Han et al. [25] proposed a borderline SMOTE algorithm, which considered
the minority instances near the borderline and the neighboring instances. The following
year, David et al. [26] proposed a cluster SMOTE; Bai et al. [27] proposed an adaptive
synthetic sampling approach (ADASYN) for imbalanced learning in 2008; Barua et al. [28]
suggested a MWMOTE in 2014; Douzas et al. [29] proposed a SOMO method in 2017.
Most of these methods focused on imbalanced learning by adding oversampling examples
to the imbalanced datasets. However, physical war trauma data are not imbalanced but
insufficient in every class. Therefore, the abovementioned oversampling techniques are
not suitable for the augmentation of physical war trauma data.

A GAN is a data augmentation model based on DL, which can be used to learn the
potential distribution of complex data, generate large-scale and high-quality synthetic sam-
ples, effectively solve the problem of insufficient data due to factors such as difficulty and
cost of sample acquisition [30]. Thus, the GAN has become one of the most promising data
augmentation approaches in recent years. A GAN is intrinsically a generation model [31]
that does not depend on a priori hypotheses but on the internal confrontation between
the data and the model itself to achieve unsupervised learning. To solve the inadequate
problem of real data, a GAN can generate synthetic samples of the existing data with the
same distribution [32]. A GAN’s structure consists of two feedforward neural networks:
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a generator G and a discriminator D. In the learning process, G continuously generates
new synthetic samples while D discriminates between the synthetic samples and the real
samples as accurately as possible, then gives feedback. In this way, the GAN has created
a game similar to “counterfeit currency identification” in which both sides of the game
continue to improve their abilities through confrontation.

However, the samples processed by a GAN are mainly two-dimensional data such as
pictures and voice signals. A GAN generates virtual images by rotating, scaling, cropping,
and changing the brightness, contrast, hue, saturation and adding random noise to image
data. However, the GAN is not a good choice for augmenting physical war trauma data.

In the medical field, the application of medical scoring is increasingly maturing,
especially in medical treatment, early diagnosis, trauma assessment, and other aspects to
the point that it now plays an important auxiliary role. For example, Gabriele Canzi et al.
introduced the comprehensive facial injury (CFI) score for comprehensively evaluating
severity of facial injuries [33]. Hasanka Ratnayake et al. used a laboratory-derived early
warning score to predict in-hospital mortality and admission to the intensive care unit
(ICU) [34]. Konlawij Trongtrakul et al. created the acute kidney injury (AKI) risk prediction
score for early prediction of the condition among critically ill surgical patients [35].

The trauma score is a common type of medical score that predicts severity of an injury.
It uses scientific scoring to quantitatively or semi-quantitatively assess injury severity and
its consequences to the injured [36]. The scoring standard was developed by a panel of
experts in the field who will continue to improve and optimize it based on feedback from
the application of the trauma score as well as from related research progress. Recently,
several improved injury severity score (ISS) methods have been proposed. Cristiane et al.
created a novel trauma and injury severity score (TRISS) for survival prediction [37]; Yang
et al. used a revised injury severity score (RISS) to evaluate the severity of injuries of
patients hospitalized due to an accident [38]; Shi et al. developed a weighted injury severity
score (WISS) to improve adult trauma mortality prediction [39]. For example, RISS divides
the human body into six public parts: the head, the face, the chest, the abdomen, the limbs,
and the body surface. Then, it squares the standard ISS for each of the most serious injuries
of the three most serious body parts of the patient and puts them together. As for the
second most serious injuries, only their ISS values are put together. If there are more than
four injured parts, the standard injury severity score of the most serious injuries of the
fourth part is added. The RISS equation is as follows:

RISS = (A2
1 + A2) + (B2

1 + B2) + (C2
1 + C2) + D (1)

where A1, B1, and C1 mean the most serious injuries of the three most serious body parts;
A2, B2, and C2 mean the second most serious injuries of the three most serious body parts;
D means the standard injury severity score of the most serious injuries of the fourth part.

Taken together, various novel scientific scoring methods have gradually become doc-
tors’ helping hands in evaluating patients’ injuries. Medical scoring belongs to the category
of predictive science. Because different scoring mechanisms have different limitations,
it is impossible to achieve 100% accuracy in prediction. However, with the continuous
advancements in medicine and with the revision, expansion, and improvement of the
scoring mechanisms by researchers in the related domains, medical scoring approaches are
expected to become more scientific, practical, and in line with objective reality [40].

On the other hand, the DL technology combined with knowledge from different
disciplines for interdisciplinary field research is an emerging trend. For example, Yang
et al. enhanced PIR-based multiperson localization by combining DL with the domain
knowledge [41], and Ding et al. combined the domain knowledge and DL for domain
adaptation in machine translation [42]. Therefore, combining DL with the domain knowl-
edge of medical experts according to the characteristics of war trauma data is key to the
successful application of DL to the augmentation of war trauma data.

Based on the above research, to solve the data augmentation problems with small-
sample war trauma data by studying the GAN’s idea and the medical trauma scoring
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method, this article proposes an approach that combines a WTSS with a DNN [43]. The
WTSS–DNN integrated model simulates the generative model in thought, including sample
generation and discrimination. The injuries are generated through random sampling and
evaluated with WTSS, and then marked with an injury consequence label; this is the
sample generation link. The assessment of the prediction accuracy of the DNN classifier
is combined with the discrimination of unreasonable injuries by the expert panel; this
is the discrimination link. After the accuracy and plausibility of the synthetic samples
have been judged, the expert panel provides feedback, based on which, on the one hand,
the characteristics of the synthetic samples are further investigated while the necessary
optimization and adjustments to the WTSS algorithm are made; and on the other hand, the
unreasonable synthetic samples are filtered out to improve data rationality. Eventually, the
accuracy and plausibility of the augmented data are expected to stabilize and be optimized
to generate credible samples.

This data augmentation approach is the first attempt to combine war trauma assess-
ment in the medical field with DL in the AI field. The WTSS–DNN integrated model can
automatically generate large-scale and credible virtual war trauma data, making it possible
to carry out related data-based military research, which has great practical significance. In
addition, this approach not only helps to solve the war trauma data augmentation problem,
but the WTSS algorithm we have proposed also provides a practical auxiliary tool for
quickly evaluating soldiers’ injuries and formulating treatment strategies.

3. Materials and Methods

In this section, we first explain the overall process of the research, then introduce the
WTSS algorithm in detail. Next, we introduce the structure of our DNN classifier, and then
determine the multiclassification metrics used in the algorithm to evaluate the performance
of the classifier. Finally, the method of judging the plausibility of the generated synthetic
samples is introduced.

3.1. Workflow of the Study

To solve the data augmentation problem and the supervised learning problem, an
integrated modeling approach that incorporates the war trauma severity scoring algorithm
(WTSS) and a DNN model was proposed. This approach’s workflow is summarized as
follows (Figure 1).

1. Based on the known probability distributions, the injured parts, injury types, and
complications were randomly sampled and then combined to form a complete war
trauma injury condition. Next, we used the WTSS algorithm to calculate the severity
score and evaluate the consequences, after which the injury consequence label was
marked.

2. After the data preprocessing, to test the accuracy of the injury consequence prediction,
we trained a DNN classifier with the generated data and tested it with real data.

3. Through the Delphi method, the expert panel reached a consensus on unreasonable
multiple injuries based on the domain knowledge [44] and then filtered out the
unreasonable synthetic samples after the data generation.

4. After the predicted accuracy was evaluated and the unreasonable synthetic samples
were filtered out, credible virtual war trauma data were finally output.

3.2. Random Injury Generation

In the injury generation process, we first randomly sampled the injured part according
to the probability of occurrence; then, we randomly selected the possible injury types
according to the injured part; finally, we randomly sampled whether it is accompanied by
complications; if there were complications, we randomly selected the possible complica-
tions.
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Figure 1. Workflow of the WTSS–DNN integrated approach.

3.3. WTSS Algorithm

After injuries were randomly generated, the focus of the research was on how to
conduct standardized and accurate injury assessments. To solve this problem, we con-
ducted multiple rounds of discussions and communication with the expert panel and
finally decided to carry out a standardized quantitative assessment of various injuries by
proposing a war trauma severity scoring algorithm.

Via in-depth summary of the various existing trauma scoring algorithms and based on
the idea of multiple nonlinear regression and the key factors that affect severity of an injury
(injured part, injury type, complications, and whether there are multiple injuries), after
several rounds of testing and optimization, the equation for WTSS was finally determined
as follows:

F(P, X, C) = a +
6

∑
i=0

PiXi + Ci (2)

where F represents the severity score; Pi represents the weight coefficient of injury severity
for each of the seven body parts; Xi shows whether the corresponding body part was
injured (if not injured, the corresponding Xi value equals 0; otherwise, it equals the injury
severity standard score for the corresponding body part); Ci shows whether the injury was
accompanied by complications (if there were no complications, Ci equals 0; otherwise, it
equals the corresponding severity score); the bias a is the correction value for multiple
injuries (if there were multiple injuries, a equals −20; otherwise, it equals 0).

Next, we calculated F according to the predictive factors Pi, Xi, Ci, and a, then selected
the corresponding score interval according to the magnitude of F. Finally, we labeled
the synthetic samples with the consequences of the injury. The pseudocode of WTSS is
provided in Algorithm 1.
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Algorithm 1. War trauma severity score (WTSS).

Input: Weight coefficient of injury parts: Pi = {P0, P1, ..., P6}.
Injury type score: Xi = {X0, X1, ..., X6}.
Complication score: Ci = {C0, C1, ..., C6}.
Correction value for multiple injuries: a = −20.

Output: Severity score: F(P, X, C).
1: n = 0
2: for i = 0 to 6 do
3: if Pi 6= 0 and Xi 6= 0 then
4: F(P, X, C) += Pi*Xi
5: n += 1
6: end if
7: if Ci 6= 0 then
8: F(P, X, C) += Ci
9: end if
10: end for
11: if n > 1 then
12: F(P, X, C) += a
13: end if
14: return F(P, X, C)

The WTSS algorithm is a nonlinear model which ignores complicated details of the
injury and uses a good correlation between the injuries’ consequences and the severity of
the injured parts and the injury types [45]. The weight coefficients of injuries in different
body parts are shown in Table 1, and the example of the standard severity score for injury
types and complications are shown in Figures 2 and 3. The score intervals for the injury
consequences are listed in Table 2.

Table 1. Weight coefficients of each body part.

Body Part Weight Coefficient

Head 8
Face 8
Neck 8

Chest / back 7
Abdomen 6.5

Pelvis / hip 6.5
Limbs 5

In a situation wherein different injury types or complications have the same standard
injury severity score in a certain injured part, we coded them to distinguish. Taking the
abdomen as an example, the coding method is shown in Figure 4.

As an independent scoring algorithm to determine severity of war trauma, WTSS
does not perform an extremely accurate diagnosis of a specific injury. Instead, it performs
standardized assessment and prediction of the most probable consequences of injuries from
an objective perspective to ensure accuracy of the injury consequence assessment. Addi-
tionally, WTSS is not only the core of our WTSS–DNN integrated model that contributes to
large-scale analysis and evaluation of war trauma data, but it also helps to quickly evaluate
and diagnose soldiers’ injuries on the battlefield and determine the treatment strategy. Fur-
thermore, in complex battlefield environments, the soldier’s age, physical constitution, and
other factors may cause different consequences of the same trauma. Consequently, WTSS
only objectively assesses the injury without considering the age and other physiological
indicators to meet the requirements of the ideal scoring method that is “easy to implement,
objective, and accurate” [38].
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Figure 2. Standard severity score for different injury types. In this Figure, I indicate that the injury is
a blast injury, II indicates that the injury is a gunshot wound.

Figure 3. Standard severity score for different complications.

Table 2. Description of the score intervals.

Score Interval Consequence Label

0–25 Minor injury 1
26–50 Moderate injury 2
51–75 Serious injury 3
75+ Critical injury and death 4
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Figure 4. Example of injury coding in the abdominal area.

3.4. Deep Neural Network

Because the WTSS algorithm is a complicated nonlinear model, this article used a DNN
as a classifier model to test the accuracy of injury consequences. The DNN classifier consists
of an input layer, an output layer, and several hidden layers. It uses multilayer nonlinear
information processing, which can be widely and flexibly used to solve problems such as
classification, regression, dimensionality reduction, feature extraction, and clustering. First,
we built a suitable DNN classifier network structure according to the actual needs, and
the network structure was determined to be 22–16–16–16–4 after the experiment. Next,
to test whether such a classifier has excellent generalization ability, we trained it with
synthetic samples and tested it with real samples. To verify its performance, we used four
multiclassification metrics based on a confusion matrix: accuracy, precision, recall, and the
F1 score [46]. Among these metrics, the F1 score is the harmonic average of precision and
recall. Finally, we adjusted and optimized the hyperparameters and then determined the
best learning rate and the training sample size. The confusion matrix is shown in Figure 5.

Figure 5. Graph of the multiclassification confusion matrix.

In Figure 5, L represents the class number, nii and nij—the number of class Ci samples
correctly predicted as class Ci and incorrectly predicted as class Ci, respectively; Ri and Pi
indicate the recall and the precision of class Ci, defined in Equations (3) and (4), and the
accuracy and the F1 score are defined in Equations (5) and (6).

Pi =
nii

L
∑

j=1
nji

(3)
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Ri =
nii

L
∑

j=1
nij

(4)

Accuracy =

L
∑

i=1
nii

L
∑

i=1,j=1
nij

(5)

F1 score = 2

L
∑

i=1
Ri

L
∑

i=1
Pi

L
∑

i=1
Ri +

L
∑

i=1
Pi

(6)

3.5. Discrimination of Unreasonable Injuries Based on the Delphi Method

After data generation, to improve the data plausibility of the synthetic samples, the
expert panel reached a consensus on multiple unreasonable injuries based on the domain
knowledge and provided feedback. Based on this feedback, we analyzed the law of
unreasonable injury combinations and filtered out the unreasonable synthetic samples to
improve data plausibility. Finally, we outputted the credible synthetic samples.

4. Empirical Analysis

Due to the high confidentiality and difficulty of access to war trauma data, it is gradu-
ally attracting greater attention from the army, military academies, and related hospitals.
To eliminate obstacles to related research, an efficient and credible data augmentation
approach is urgently needed in order to support large-scale war trauma data research and
war game deduction. Our proposed integrated model provides a new and feasible way to
meet the real need for large-scale and automated generation of credible war trauma data.

4.1. Data Collection

In this study, we collected and organized two types of real war trauma data at a certain
scale: data on gunshot wounds and blast injuries. We selected 338 cases (minor injury,
114 cases; moderate injury, 82 cases; serious injury, 74 cases; and critical injury and death,
68 cases) complete with the available data to form the test set. After the preprocessing
operations such as one-hot encoding, data standardization, and feature reduction, our war
trauma data had a total of 22 features.

4.2. Results Analysis

We implemented our proposed WTSS–DNN integrated model in Python 3.7.7 and
conducted experiments on a personal computer with a Windows 64-bit operating system.
After a series of tests on the DNN, the optimal values of all the hyperparameters were
determined. The classifier’s input dimension was 22, equal to the feature dimension of the
war trauma samples. The number of hidden layers of the classifier was set at 4, with each
using ReLUs as the activation function. The softmax function was used as the output layer,
and categorical cross-entropy was used as the loss function. We used TensorFlow 2.0.0 and
GPU to train our DNN classifier; the epoch was set at 1000 and the batch size was set at
256. We chose Adam as our optimization algorithm as it performed best compared to SGD
and RMSProp3 [47].

After determining the best network structure of the DNN classifier (22–16–16–16–16–4),
we conducted contrast experiments at different learning rates [48]. Specifically, we kept
the network structure and other hyperparameters unchanged, then set the values of the
learning rate to be 0.05, 0.02, 0.01, 0.005, 0.002, 0.001, 0.0005, and 0.0001, respectively.
Table 3 shows accuracy, precision, recall, and the F1 score at different learning rates on the
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same training set with a sample size of 10,000. The results show that the 0.001 learning rate
led to the best overall model performance and thus was selected and used.

Table 3. Comparison of the multiclassification metrics at different learning rates.

LR Accuracy Precision Recall F1 Score

0.05 48.82 48.89 51.11 49.98
0.02 49.41 49.47 51.85 50.63
0.01 59.99 67.35 66.59 66.97
0.005 65.43 72.51 71.15 71.82
0.002 73.19 78.46 80.37 79.40
0.001 81.57 88.08 87.70 87.89

0.0005 78.33 86.33 85.74 86.03
0.0001 73.37 79.57 80.85 80.20

Next, we explored the best training sample size (n). On the one hand, low numbers of
training samples cannot fully teach sample features and meet the requirements of model
accuracy; and on the other hand, too high numbers of training samples can increase the
calculation costs and time costs and are not conducive to optimizing the hyperparameters.
Therefore, we sought to determine the best training sample size in the range of 1000–20,000
through the trial and error method [49]. In the search process, to avoid the impact of class
imbalance on the experimental results, synthetic samples of the four classes were extracted
at the same proportion to form a training set for the experiment and test. The overall
performance results of the multiclassification metrics at different training sample sizes are
shown in Table 4.

Table 4. Comparison of the multiclassification metrics at different sample sizes.

n Accuracy Precision Recall F1 Score

1000 73.17 78.51 79.00 78.75
2000 75.15 81.67 80.96 81.31
4000 78.99 85.14 84.70 84.91
8000 80.88 87.97 86.81 87.39

12,000 84.33 90.07 88.44 89.25
16,000 82.36 89.07 89.10 89.08
20,000 80.18 87.21 88.33 87.77

The experimental results showed that the small-scale training set did not meet the
requirements for model accuracy. As the training sample size continued to increase, the
predicted accuracy gradually increased. When the training sample size was 8000, the
accuracy reached 80.88%; and when the training scale increased to 12,000, the accuracy
increased to 84.33%. However, model performance became deteriorated when the training
scale was greater than 12,000, which indicates that blindly increasing the training scale
could not guarantee a consistently higher classification accuracy. Besides, when the training
scale was increased, as the harmonic average of precision and recall, the trend of the F1
score was basically consistent with that of accuracy. Therefore, we supposed that selecting
a training sample size of 12,000 can achieve the best compromise between the training cost
and the classification performance.

Finally, our DNN classifier achieved the best overall performance with 84.33% accu-
racy, 90.07% precision, 88.44% recall, and an 89.25% F1 score.

4.3. Evaluation of WTSS Combined with a DNN

In this section, we first explored the accuracy of injury assessment of different classifier
models. Subsequently, to evaluate the respective contributions of the WTSS algorithm and
the DNN classifier in the WTSS–DNN data augmentation method, we set up an ablation
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experiment. Finally, we provided the prediction results of the DNN for real data through
the confusion matrix.

First, we compared our DNN model with three classic machine-learning classifiers:
random forest (RF) [50], XGBoost [51], and naïve Bayes (NB) [52].

The RF, XGBoost, and NB models and our DNN model were trained with the same
training set and then tested with the same real samples. As shown in Figure 6, our DNN
classifier performed better than the three classic machine-learning models. The NB model
showed the weakest performance in comparison with the other classifier models because
when the number of features is large or when the correlation between the features is high,
the NB classification effect is poor. These results indicate that classic machine-learning
models cannot be effectively trained when there are few samples and verified that a DNN
classifier trained with a large amount of data has better classification performance.

Figure 6. Performance of the different classification strategies.

Next, to evaluate the respective contributions of the WTSS algorithm and the DNN
classifier in the WTSS–DNN integrated model, we set up an ablation experiment. Specifi-
cally, we combined different injury assessment methods with different classifier models
to observe performance of various combinations. Injury assessment methods include the
WTSS algorithm and the manual assessment method (MA); classification models include
DNN, RF, XGBoost, and NB. The results of the ablation experiment are shown in Table 5.

Table 5. Ablation experiment of different injury assessment methods and classifier models.

Assessment Method Classifier Model Accuracy Precision Recall F1 Score

MA

RF 69.39 70.21 70.47 70.34
XGBoost 68.86 69.12 70.07 69.59

NB 53.86 55.20 53.41 54.29
DNN 71.24 72.66 70.81 71.72

WTSS

RF 81.46 85.06 83.01 84.02
XGBoost 82.08 82.00 85.07 83.51

NB 64.08 68.60 63.56 65.98
DNN 84.33 90.07 88.44 89.25

From the results of the ablation experiment, we can see that the WTSS algorithm is
better than the traditional manual evaluation method, the prediction performance of the
DNN classifier is better than that of the machine-learning model, and the combination of
WTSS and the DNN performs best. Therefore, the combination of WTSS and the DNN can
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effectively solve the data augmentation problem of war trauma data and shows superiority
compared with artificial generation methods.

Finally, we provided the prediction results of the DNN for real data through the
confusion matrix.

From Table 6, we can see that the prediction accuracy for minor injuries and moderate
injuries is very high, but the prediction accuracy for critical injuries is only about 60%,
which is caused by the complexity of critical injuries.

Table 6. Confusion matrix of injury consequence identification.

Real

Predicted
Minor Injury Moderate Injury Serious Injury Critical Injury and Death Total

Minor injury 114 0 0 0 114

Moderate injury 3 73 6 0 82

Serious injury 0 7 60 7 74

Critical injury and death 0 10 20 38 68

Total 117 90 86 45 338

4.4. Data Filtering

The Delphi method, also known as the “expert investigation method”, was invented
in 1946 by RAND Corporation in the United States. The Delphi method is based on the key
assumption that predictions from groups are usually more accurate than predictions from
individuals. The goal of this method is to use a structured iterative approach to obtain
consensual opinions from an expert panel [44].

For the multiple injuries data generated, some injury combinations are unreasonable—
they are almost impossible to appear in a real war. To improve plausibility and usability of
the synthetic samples in our experiment, we decided to use the Delphi method to evaluate
unreasonable multiple injuries and filter them out. After several rounds of identification
and discussions, the expert panel reached a consensus on the unreasonable multiple injuries
based on the domain knowledge. We analyzed the experts’ feedback and then filtered out
the unreasonable synthetic samples to improve data plausibility to output credible samples.
Next, to verify whether the data plausibility improved or not, we randomly selected 300
original multiple-injury synthetic samples and 300 filtered ones, put them into three groups,
and conducted contrast experiments. Then, we counted the number of reasonable samples
before and after filtering. The experimental results are shown in Figure 7.

Figure 7. The numbers of reasonable samples in the synthetic samples.
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The experimental results showed that data plausibility of the synthetic samples filtered
out was significantly improved in comparison with that of the original ones and came close
to 100%.

5. Discussion

For the WTSS–DNN integrated model, plausibility and effectiveness of the WTSS
algorithm play a crucial role in the performance of WTSS–DNN. Therefore, we evaluated
plausibility and effectiveness of the WTSS algorithm through the two methods described
below. First, the expert panel intervention and assistance. The parameter setting and the
scoring standard of the algorithm were determined after multiple rounds of discussions and
evaluations with the expert panel, which is highly reasonable and professional. Second, we
tested plausibility and effectiveness of the algorithm through ablation experiments. In the
ablation experiments, on the one hand, we used the DNN classifier to verify accuracy and
plausibility of the algorithm in injury assessment. The experimental results show that the
prediction accuracy rate reached 84.43%, which is a satisfactory result. On the other hand,
we compared the WTSS algorithm with the traditional manual assessment method, further
verified plausibility and superiority of the WTSS algorithm in injury assessment. Therefore,
compared with the artificially generated methods, the performance of the proposed WTSS
algorithm combined with a DNN in war trauma data augmentation is superior, can ensure
high data quality, and automatically generates large-scale war trauma data on demand.

However, the experiment also showed that the prediction accuracy of the severity of
multiple injuries was lower than that for a single injury due to the complexity of multiple
injuries. Furthermore, after determining the WTSS standards, the proposed approach no
longer relies on additional professional knowledge due to the characteristics of DL. Thus,
for nonprofessionals, the proposed approach has a low barrier to successful application.
Although we were able to generate credible virtual trauma data only for blast injuries and
gunshot wounds in this study, with the continuous real data collection, the types of war
trauma we can generate will become more abundant. Finally, the combination of DL with
medical scoring algorithms can be used for other types of injury data augmentation, such
as for surgical injuries and emergency injuries.

6. Conclusions

In this article, the WTSS algorithm combined with a DNN was presented for the aug-
mentation of war trauma data. Compared with the traditional artificial data augmentation
method, our integrated modeling approach not only improves the quality of injury con-
sequence assessment, but can also automatically generate large-scale and credible virtual
war trauma data. The generated data make it possible to carry out related data-based
military research, which has great practical significance and value. In addition, it also
provides a practical auxiliary tool for quickly evaluating soldiers’ injuries and formulating
treatment strategies, which are of crucial significance to the analysis and evaluation of
war trauma data. Finally, because this study was the first attempt to combine DL and the
trauma scoring algorithm for the augmentation of war trauma data, it still had some short-
comings, but with the continuous improvement of the WTSS algorithm, the performance
of our WTSS–DNN integrated model will become more superior. That is also the focus
and direction of our future research, to continuously improve the comprehensiveness and
applicability of our integrated modeling approach.
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Abstract: This paper aims at realizing upper limb rehabilitation training by using an fNIRS-BCI system.
This article mainly focuses on the analysis and research of the cerebral blood oxygen signal in the
system, and gradually extends the analysis and recognition method of the movement intention in the
cerebral blood oxygen signal to the actual brain-computer interface system. Fifty subjects completed
four upper limb movement paradigms: Lifting-up, putting down, pulling back, and pushing forward.
Then, their near-infrared data and movement trigger signals were collected. In terms of the recognition
algorithm for detecting the initial intention of upper limb movements, gradient boosting tree (GBDT)
and random forest (RF) were selected for classification experiments. Finally, RF classifier with better
comprehensive indicators was selected as the final classification algorithm. The best offline recognition
rate was 94.4% (151/160). The ReliefF algorithm based on distance measurement and the genetic
algorithm proposed in the genetic theory were used to select features. In terms of upper limb motion
state recognition algorithms, logistic regression (LR), support vector machine (SVM), naive Bayes (NB),
and linear discriminant analysis (LDA) were selected for experiments. Kappa coefficient was used as
the classification index to evaluate the performance of the classifier. Finally, SVM classification got the
best performance, and the four-class recognition accuracy rate was 84.4%. The results show that RF
and SVM can achieve high recognition accuracy in motion intentions and the upper limb rehabilitation
system designed in this paper has great application significance.

Keywords: brain–computer interface; intent recognition; SVM; ensemble learning

1. Introduction

The upper extremity is an important part of the human body. Research has found that
80% of severe stroke patients have upper extremity motor dysfunction. It is a relatively
feasible and efficient treatment method to perform rehabilitation training by using rehabili-
tation robot equipment to drive patients. However, in the traditional rehabilitation robot
training scheme, the robot usually assists the patient to complete the training action after
the specific training process is set [1]. The form of this program is very simple, and patients
may feel negative and slack during the training process due to boredom.

Many previous studies have shown that the process of autonomous training by patients
is very important. Compared with passive exercise training, the active willingness of pa-
tients to participate in training can better promote neurocortical reconstruction and motor
function recovery [2]. As a new human-computer interaction method, the brain-computer
interface (BCI) can bypass the function of nerve transmission channels and muscle parts, and
directly establish information communication channels between the brain and the external
environment, and control external devices. The application of BCI in the field of rehabilitation
has helped a lot of patients with limb dysfunction to carry out rehabilitation training and
accelerate their rehabilitation process. Therefore, in the field of rehabilitation medicine, the
study of feasible BCI technology has very important social significance [3–5].
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At present, many BCI researchers at home and abroad have focused on applying BCI
technology to the field of upper limb motor function rehabilitation, and have obtained
excellent research results. Anirban of the University of Essex and his research partners
successfully developed a hybrid BCI device to control the exoskeleton of the hand in order
to overcome the problem of low recognition accuracy in BCI system. The system combines
EEG and EMG signals. After the grasping intention of the subject is successfully detected,
the exoskeleton will perform finger flexion and extension. Finally, the recognition accuracy
of the system reached (90.00 ± 4.86)%, significantly improving the performance of BCI
system [6]. Zhai Wenwen hoped to improve the life independence of patients with severe
motor dysfunction through BCI technology. The upper-limb movement-related instructions
can control the robotic arm to complete the rehabilitation training of the shoulder, wrist and
elbow. The recognition accuracy of the system is as high as 93% [7]. Yoshiyuki Suzuki studied
the effects of human corticospinal excitability on motor tasks in the process of imagining
or observing the upper limbs. The experiments have shown that kinesthetic MI, including
visualizing and observing the virtual hand, can cause phase-dependent muscle-specific
corticospinal stimulation of wrist muscles that match those in the actual hand [8]. Although
they have achieved remarkable research results in the field of sports rehabilitation technology,
there are still many key technologies that need to be improved. For example, the recognition
accuracy of multi-classification tasks is low, real-time performance needs to be improved, and
it is difficult for users to autonomously control the pace of rehabilitation training.

This paper proposes a set of upper limb rehabilitation training robot system based
on user spontaneous movement fNIRS-BCI. Four upper limb movement paradigms are
designed: Lifting up, putting down, pulling back, and pushing forward. The start of
each task and the rest time were all controlled by the subjects autonomously without any
prompts from the outside world [9]. A variety of classifiers such as RF and SVM were
selected for evaluation, and a high accuracy rate was achieved. Furthermore, the most
suitable multiclass recognition algorithm was selected.

2. Experimental Design
2.1. Participants

A total of 50 volunteers were recruited for this experiment. Among them, 29 were male
volunteers and 21 were female volunteers. The ratio of male to female was approximately
3:2. All volunteers were right-handed, in good health, and had no history of mental illness
or cardiovascular and cerebrovascular diseases. In addition, all volunteers participated in
the experiment for the first time and only once. Before the experiment, all volunteers were
informed of the experiment details and signed the informed consent form of the experiment.

2.2. Experiment Paradigm

In order to increase the controllability and practicability of upper-limb auxiliary equip-
ment, four common upper-limb movement paradigms in daily life designed in daily life:
Lifting up, putting down, pulling back and pushing forward. During the experiment, the
near-infrared data of the subjects in different motion states were collected to provide a su-
pervised learning data set for subsequent research on motion intention recognition. The
experimental process is shown in Figure 1. Tasks 1, 2, 3, and 4 in the figure represent the four
action paradigms of lifting up, putting down, pulling back, and pushing forward, respectively.

During the experiment, the subjects should keep their scalp clean and keep their hair
dry before the experiment. It should be noted that the subjects need to rest for about 60 s
before the start of the experiment. The rest time between lifting and lowering actions was
10 s, and the rest time between other actions was about 50 s. The start of each task and the
rest time were all controlled by the subjects autonomously without any prompts from the
outside world. The specific paradigm of the experiment is shown in Figure 2. Figure 2a–d
represents the four action paradigms of lifting up, putting down, pulling back, and pushing
forward, respectively.
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Figure 2. The experimental diagram of upper limb movement. (a) Lifting up, (b) putting down,
(c) pulling back, and (d) pushing forward.

2.3. Cortical Regions

The FOIRE-3000 near-infrared acquisition system of Shimadzu Corporation was used
as a brain signal acquisition device to record the changes in the concentration of oxygen,
deoxygenation, and total oxygen hemoglobin in the experiment [10]. Because this experi-
ment emphasized the spontaneous movement intention of the subjects, task execution and
rest time were controlled by the subjects spontaneously, we chose to use continuous mode
to measure the cerebral hemoglobin information during the experiment. The equipment
sampling time was 130 ms.

This study used the internationally recognized 10–20 system as the positioning stan-
dard to locate brain functional areas. The experiment designed a 4 × 4 headgear layout
to detect the above key functional areas. There were a total of 24 effective test channels.
The overall headgear layout is shown in Figure 3. In the layout, the Cz point was used as
a reference point for the relative position, and the distance between Cz and the center of
the 23rd channel was 1.5 cm. The entire layout can cover four brain functional areas: PFC,
SMA, PMC (PMC = PMCL + PMCR), PMCR, and M1 brain area function [11].
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3. Data Analysis
3.1. Data Preprocessing

The interference components in the near-infrared signal mainly include baseline drift,
physiological interference, and high-frequency noise. Mathematical morphology has a very
strict data theoretical basis, and research shows that this method achieved good results
in nonlinear signal processing. Corrosion calculation and expansion calculation were the
basic calculation methods of this method. Based on the corrosion expansion calculation,
two different morphological calculations were used for the combination of opening and
closing. Among them, the open operation used the first expansion and then the corrosion
operation method to eliminate the peak of the signal to filter the peak noise above the
signal, and the closed operation used the first erosion and then the expansion operation
to fill the signal trough to smooth or suppress the signal valley noise. We combined the
on-off filter to eliminate both positive and negative impulse noises in the signal to avoid
unidirectional deviation of the filtered signal [12,13].

3.2. Data Preprocessing
3.2.1. Action Initiation Intent Feature Extraction

In order to accurately and quickly detect the time point of the subject’s transition
from resting to exercise, the selected feature has the ability to detect sudden changes and
singular signals. Near-infrared signals are non-stationary and nonlinear. Among a variety
of feature categories based on biological information to distinguish resting/exercise status,
Teager–Kaiser energy operator and slope value were used in many initial detection studies
of biological signals [14,15]. By calculating the Teager–Kaiser energy operator at each time
point and the blood oxygen slope characteristics at each time point, the instantaneous
changes attributed to the signal at each time point were obtained, and the waveform
changes of the measured signal were tracked in real time.

3.2.2. Motion State Feature Extraction

In the exercise state classification task, the goal was to recognize the exercise intention
before the real action. Therefore, it was necessary to extract the data of the real pre-exercise
time period for analysis. The training time period selection method is shown in Figure 4.
Took the starting point of the real action as the reference point (0), took the signal from −3 s
to 0 s as the training time period, and applied the sliding time window method. The length
of the window was set to 20. The overlapping length of two adjacent sliding windows was
three sampling points. Then, we calculated the features within the time window to obtain
the feature data set.
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3.3. Feature Selection
3.3.1. Action Initiation Intention Feature Selection

During the data collection process, because the subjects were at rest time and the
length of time in the task was different, there were also differences in the number of
samples in the rest segment and the number of samples in the task segment in the collection
of data. The construction of the action initiation intention recognition model faced the
problem of sample imbalance between different categories. Compared with the traditional
RF feature selection algorithm, this paper proposes an improved feature selection method
based on RF. For the original feature set, the algorithm first set the final number of retained
features, then used the sequential backward search method to remove the features with
low importance score from the feature set, until the number of features was the specified
number, the algorithm stopped, and the reserved feature subset was taken as the final
feature set [14,15].

3.3.2. Movement State Feature Selection

Facing the high dimensionality of features in multi-classification tasks, this paper
proposes a combined feature selection method based on ReliefF algorithm and genetic
algorithm. In order to eliminate irrelevant features and redundant features in the original
feature space, the ReliefF algorithm was first applied to evaluate the feature importance
based on the distance measurement between sample features, and features with higher
feature importance were retained as a feature subset [16,17]. On this basis, genetic algorithm
was applied to find the optimal feature combination under the current feature subset. The
flow of the feature selection method is shown in Figure 5.
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4. Results
4.1. Data Preprocessing Results

In order to obtain the ideal morphological filtering effect, the signal-to-noise ratio and
mean square error were used as evaluation indicators to conduct experiments on filters
with different structural elements, different amplitudes, and different widths. We selected
the parameter combination with the best comprehensive performance to construct the
morphology learn filters. Table 1 shows the maximum signal-to-noise ratio SNRmax the
minimum filtering error MSEmin and the corresponding combination of amplitude and
width of the near-infrared signal after filtering by different structural elements.
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Table 1. The filtering effect of various structural elements on the near-infrared signal.

Structural Element Amplitude Width SNRmax MSEmin

Cosine 0.8 70 11.9419 0.000219995
Triangle 1.2 60 8.19086 0.000320125

semicircle 1 70 13.0082 0.000197746
Straight line 1 50 14.9635 0.000162624

4.2. The Results and Analysis of Initial Intention Detection
4.2.1. The Results of Initial Intention of the Action

The initial intention detection task of this action divided the data samples of 50 subjects
participating in the experiment into a data set, of which the experimental data of 40 subjects
were used as the cross-validation set, the total number of samples was 65,354, and the
experimental data of the remaining 10 subjects were used as a test set, the total number of
samples was 16,392. Figure 6 shows the test results of the participants’ initiation of action
during the experiment. The red dashed line represented the start time of the action, and
the green dashed line marked the end of the task. In the example in the figure, “0” and “1”
were used to indicate the rest state and task state, respectively. If it was judged as “0” in
the rest period, it was regarded as correct, and when it was judged as “1”, it was regarded
as a misjudgment, it was judged in the task segment. If it was “1”, it was deemed correct.
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In order to explore the impact of different feature dimensions and different probability
thresholds on the classification results, we used 40, 50, 60, 70, 80, and 90 as the feature
dimensions, and applied the “threshold shift method” with 0.3, 0.4, 0.5, 0.6, and 0.7,
respectively, as probability threshold to carry out the experiment. We used RF and gradient
boosting tree (GBDT) classification algorithm to detect the initial intention of the action.
It can be seen that when the feature dimension was 60 and the threshold was 0.4, both
classification algorithms maintain their optimal performance. The optimal recognition
results of the RF and GBDT are shown in Tables 2 and 3.

By comparing the comprehensive indicators of the two classifiers of RF and GBDT,
the RF is finally selected as the final classification algorithm.
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Table 2. Optimal results of the RF algorithm.

Accuracy Rate False Judgment
Rate

Discrimination
Delay (s)

Comprehensive
Index

Train 94.4% 1.1% −0.267 1.200
Test 92.5% 2.1% −0.067 0.971

Table 3. Optimal results of GBDT algorithm.

Accuracy Rate False Judgment
Rate

Discrimination
Delay (s)

Comprehensive
Index

Train 92.5% 1.4% −0.202 1.113
Test 90.0% 2.5% −0.073 0.948

4.2.2. Feature Analysis

The distribution of the brain areas of each feature and the feature weight proportion
of the blood oxygen type were sorted out. The results show that among the three types of
characteristics of oxygen, deoxygenation, and total oxygen, the dominant characteristic
channels were channels 1, 4, and 5, and the important characteristic channels were 6, 12, 13,
19, 20 channels. The remaining channels are generally active channels, which are helpful to
the recognition task.

4.3. The Results and Analysis of Exercise Status Recognition
4.3.1. Recognition Results of Motion State

In this classification task, the 50 test data samples participating in the experiment were
divided into data sets. Among them, the experimental data of 40 subjects were used as the
cross-validation set, the total number of samples was 160, and the experimental data of the
remaining 10 subjects were used as the test set. The total number of samples was 40.

By comparing the final convergence results of the genetic algorithms of different
classification algorithms, the final iterative results of the four classification algorithms are
shown in Table 4. The final classification algorithm was sorted from highest to lowest score
as SVM > LR > LDA > NB. Therefore, for the classification task of this data set, SVM was
selected as the classifier of the final results [18]. The SVM algorithm’s recognition results
for all subject samples are shown in Table 5.

Table 4. The best evaluation indicators of different classifiers.

Classifier SVM Logistic Regression Naive Bayes LDA

Best Kappa coefficient 0.792 0.775 0.692 0.758

Table 5. Multi-state classification and recognition results.

Lifting-Up Putting Down Pulling Back Pushing Forward Average Variance Kappa Coefficient

Train 90.0% 82.5% 82.5% 82.5% 84.4% 0.001 0.792
Test 90.0% 70.0% 90.0% 80.0% 82.5% 0.007 0.767

4.3.2. Feature Analysis

The distribution of the brain regions of each feature and the weight ratio of the blood
oxygen type were classified and statistics [19]. In the characteristics of oxygen content, the
dominant characteristic channels are channel 1, 4, 5, and 12, and the important characteristic
channels are channel 6, 11, 13 and 15, among which channel 2, 21, 23, and 24 have no
relevant characteristics, and other channels are generally active. Among the deoxygenation
characteristics, the dominant characteristic channels are channel 1, 4, 5 and 6, and the

141



Electronics 2021, 10, 1239

important characteristic channels are channel 3, 7, 11, 12, 15, and 19. Channel 24 has no
relevant characteristics, and other channels are generally active. Among the total oxygen
characteristics, the dominant characteristic channels are channel 1, 4, 5, 6, 9, 12, and 13, and
the important characteristic channels are channel 7, 8, 10, 17, 19, and 20. Channel 22, 23,
and 24 have no relevant characteristics, while other channels are generally active.

5. Discussion

This paper proposed a set of upper limb rehabilitation training robot systems based on
user spontaneous movement fNIRS-BCI. Four upper-limb movement paradigms that are
highly related to daily life were designed. The combined filtering method of morphological
filtering and Butterworth band-pass filtering was used to preprocess the signal. In terms
of the recognition algorithm for detecting the initial intention of upper limb movements,
GBDT and RF were selected for classification experiments. Finally, RF classifiers with
better comprehensive indicators were selected as the final classification algorithm. The best
offline recognition rate was 94.4% (151/160), the false positive rate was 1.1% (733/65354).
The ReliefF algorithm based on distance measurement and the genetic algorithm proposed
in the genetic theory were used to select features. In terms of upper limb motion state
recognition algorithms, LR, SVM, NB, and LDA were selected for experiments, and Kappa
coefficient was used as the classification index to evaluate the performance of the classi-
fier. Finally, SVM classification got the best performance. The Kappa coefficient of the
classification result was 0.792, and the four-class recognition accuracy rate was 84.4%.

This study has many advantages: First of all, in the process of the experiment, the
corresponding tasks were automatically controlled by the subjects, during which there was
no task hint and no external stimulation. Four upper-limb movement paradigms that are
highly related to daily life were designed. At present, numerous research subjects need
to carry out experiments according to stimulus cues (mostly visual or auditory stimulus).
Kus et al. instructed the subjects to imagine left/right/feet movements according to the
prompts displayed on the screen, and tried to classify different imaginary movements [20].
Tengfei Ma et al. instructed the subjects to perform left/right hand finger tapping task
guided by a voice prompt [21]. Furthermore, in this paper, the research on upper limb
movement intention was based on the blood oxygen signal before the real action task. Ac-
cording to the brain signal before the actual action, the motor intention was judged, which
provided an important practical basis for the realization of real-time control application
based on brain computer interface technology. Now the majority of research on motor
imagery is based on the extraction of real motion signals for experiments, but this cannot
guarantee great real-time performance. For example, Trakoolwilaiwan et al. extracted
the time samples of the subjects during the resting and left and right hand movement
tasks for training and recognition [22,23]. Finally, in this paper, a variety of algorithms
(including ensemble learning) were selected for experiments and achieved high accuracy.
In the aspect of the initial intention recognition algorithm of upper limb movement, GBDT
and RF are selected for classification experiments. RF classifier with better comprehensive
indicators was selected as the final classification algorithm. The best offline recognition
rate was 94.4%(151/160). In the aspect of upper limb motion state recognition algorithms,
LR, SVM, NB, and LDA were selected for the experiment. SVM got the highest recogni-
tion accuracy in four classification recognition (84.4%). Now, the recognition accuracy of
multi-classification tasks on motor imagery is relatively low in a lot of research. Keum
Shik Hong et al. simultaneously obtained fNIRS signals of mental arithmetic (MA), right
hand motor imagery (RI) and left hand motor imagery (LI) from prefrontal cortex and
primary motor cortex. Multiclass linear discriminant analysis was utilized to classify MA
vs. RI vs. LI with an average classification accuracy of 75.6% across the ten subjects, for a
2–7 s time window during the 10 s task period [22,24]. Wang Wenle et al. collected fNIRS
signals of 16 subjects’ brain motor areas during the actual and imaginary movements of six
types of sign language tasks. Finally, they used AdaBoost.M1, SVM, LDA, HMM, NB, and
KNN algorithms to recognize the fNIRS signals. Finally, LDA achieves the highest average
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classification accuracy (78.70% ± 1.78%) [23,24]. The recognition accuracy in our paper is
higher than 75.6% and 78.70% ± 1.78%.

Although this study has the above advantages, there are still some areas that need
improvement. For example, the cascade structure adopted by the current system will cause
errors to occur between different classification tasks, during which a problem in a certain
recognition link will affect the final overall recognition rate. Therefore, in future research,
it is expected that other real-time algorithm frameworks can be used to make up for this
deficiency, such as parallel structure and hybrid structure.
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