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1. Introduction

Today’s power system faces the challenges of environmental protection, increasing
global demand for electricity, high-reliability requirements, clean energy, and planning
restrictions. To move towards a green and smart electric power system, centralized gener-
ation facilities are being transformed into smaller and more distributed generations. As
a result, the microgrid concept is emerging, where a microgrid can operate as a single
controllable system and can be viewed as a group of distributed energy loads and resources,
which can include many renewable energy sources and energy storage systems. Energy
management of a large number of distributed energy resources is required for the reliable
operation of the microgrid.

Microgrids can allow better integration of distributed energy storage capacity and
renewable energy sources into the power grid, therefore, increasing its efficiency and
resilience to natural and man-caused disruptive events. In addition, microgrids and
nanogrids are potential solutions for providing a better electrical service for both insuffi-
ciently supplied and remote areas. Microgrids networking with optimal energy manage-
ment will lead to a sort of smart grid with numerous benefits such as reduced cost and
enhanced reliability and resiliency [1]. As microgrids, nanogrids are an effective solution
to promote renewable energy consumption and build a low-carbon and environmentally
friendly power grid. They include small-scale renewable energy harvesters and fixed
energy storage units typically installed in commercial and residential buildings.

In this challenging context, the objective of this special session is to address and
disseminate state-of-the-art research and development results on the implementation,
planning, and operation of microgrids/nanogrids, where energy management is one of the
core issues.

2. Special Issue Contributions

This section briefly presents the special issue published papers’ main contributions.
Liu et al. in [2] addressed the issues of operation cost and energy waste caused by wind

and light abandonment. Indeed, energy management systems efficiency is a major concern
for wind-PV and storage electric vehicle systems, where optimized operation and flexible
scheduling are coordinated with the power grid. In this context, a time-sharing scheduling
strategy has been proposed based on the storage system’s state of charge and flexible
equipment. A quantum mayfly algorithm has also been designed to implement the strategy.
The scheduling results have shown that the proposed time-sharing scheduling strategy can
reduce the system cost by 60%, and the method decreases energy waste compared with
ordinary scheduling methods when using the quantum mayfly algorithm.

Ahmed et al. in [3], consider power quality problems such as voltage sag, swell, and
harmonics can significantly affect the systems performance. To address these issues, the
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dynamic voltage restorer became very popular while to become effective fast responsive-
operating, fast and accurate detection of sag and swell is essential. However, calculating the
voltage magnitude, for comparison purposes, can be tricky in the presence of nonlinearities
such as harmonics. In this context, a single-phase quasi-type-1 phase-locked loop, including
a pre-loop filter composed of a frequency-fixed delayed signal cancellation method, and a
two-stage all-pass filter has been proposed. This pre-loop filter is easy to implement and
can provide rejection of any measurement offset thanks to the frequency-fixed nature. The
carried out experiments have shown that the proposed method is fast in detecting and
compensating any grid voltage anomalies to maintain constant load voltage despite voltage
sag, swell, and harmonic distortions.

Roldán-Blay et al. in [4], analyzed the benefits of sharing two stand-alone facilities
from a reliability standpoint. In this context, a random sequential Monte Carlo simulation
was applied to a cooperative microgrid to evaluate the impact of a simple cooperative
strategy on cluster reliability. It was found that the reliability of the system increases
when cooperation is allowed. Furthermore, at the design stage, this allows for more cost-
effective solutions than individual sizing with a similar level of reliability. The proposed
study should be beneficial in optimizing energy consumption, generation, and storage in
neighboring communities with distributed energy resources.

Nematollahi et al. in [5], addressed the problem of microgrids distributed generations
optimal sizing and sitting with the objectives to minimize the resources generation cost and
mitigate power losses. In this context, it has been proposed to use the lightning attachment
procedure optimization It has been shown that this procedure outperforms the artificial
bee colony approach in terms of convergence speed and the accuracy of solution-finding.
In addition, to handle PV generation and load forecasting uncertainties, the lognormal
distribution model and the Gaussian process quantile regression (GPQR) approaches have
been adopted.

Bouzid et al. in [6], addressed the issues of microgrids stability and performance
optimization for different types of loads, including the problem of harmonic cancellation
and output voltage disturbance mitigation of distributed generation resource systems
caused by nonlinear loads. In this context, robust proportional-resonant controllers with a
harmonics compensator based on the internal model principle have been proposed. These
controllers ensure robust tracking of sinusoidal reference signals in distributed energy
resource systems subject to load variation with respect to sinusoidal disturbances.

Kharrich et al. in [7], proposed to address microgrids challenge of optimal design of
the hybrid system while considering both economic cost and location installation feasibility.
In this context, a smart algorithm has been developed; namely the quasi-oppositional
Bonobo optimizer for the optimal economic design of a stand-alone microgrid in Aswan,
Egypt. The proposed study achieved results that highlighted the efficiency of the adopted
optimization algorithm for different hybrid system scenarios. Furthermore, a sensitivity
analysis has shown that the PV system sizing is critical as it significantly impacts the
microgrid’s overall performance.

Vink et al. in [8], carried out a study to evaluate the potential of long-term forecasting
of energy production and demand in microgrids. In this context, in terms of the scale of
a research building, both energy demand and production on a long-term scale have been
proposed to be predicted using R software in combination with microgrid data records.
The proposed study identified supporting evidence supporting the potential to model both
solar power generation and the microgrid (building in this study) energy consumption
simultaneously, based on the parameter of solar irradiance and in combination with known
time parameters affecting building occupancy.

Jackson et al. in [9], proposed a comprehensive overview of state-of-the-art trends in
hierarchical microgrid control. This review-based study has shown the variability of coordi-
nated control schemes in terms of objectives and applications. This review highlighted de-
centralization and centralization technique characteristics, along with non-communication
versus communication approaches. Primary and secondary levels were described by
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showing different modes of operation as a hierarchical control strategy. Furthermore, a
comparative study highlighted the pro and cons of controllers, including the inner loop,
power sharing, voltage and frequency restoration, and grid synchronization schemes.

3. Conclusions

Although submissions for this special issue have been completed, more in-depth
re-search in the field is being collected in a new special issue: “Microgrids/Nanogrids Im-
plementation, Planning, and Operation, 2nd Volume” (https://www.mdpi.com/journal/
applsci/special_issues/2Z946DAPHE, accessed on 23 September 2022).
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Abstract: The current paradigm in integrating intermittent renewable energy sources into microgrids
presents various technical challenges in terms of reliable operation and control. This paper performs
a comprehensive justification of microgrid trends in dominant control strategies. It covers multilayer
hierarchical control schemes, which are able to integrate seamlessly with coordinated control strategies.
A general overview of the hierarchical control family that includes primary, secondary, tertiary controls
is presented. For power sharing accuracy and capability, droop and non-droop-based controllers are
comprehensively studied to address further development. The voltage and frequency restoration
techniques are discussed thoroughly based on centralized and decentralized method in order to
highlights the differences for better comprehend. The comprehensive studies of grid synchronization
strategies also overviewed and analyzed under balanced and unbalanced grid conditions. The details
studies for each control level are displayed to highlight the benefits and shortcomings of each control
method. A future prediction from the authors’ point of view is also provided to acknowledge which
control is adequate to be adopted in proportion to their products applications and a possibility
technique for self-synchronization is given in this paper.

Keywords: microgrid; hierarchical control; primary; secondary control; droop control; frequency
restoration; voltage restoration; grid synchronization

1. Introduction

The current paradigm in the renewable green energy sector is on the penetration of renewable
energy sources (RES) into the electrical system. RES promises an alternative approach for electricity
suppliers to produce more sustainable energy as well as to reduce global warming as reported in
decarbonization policies [1]. Due to their abundance, RES can penetrate the existing electrical power
system and gradually counter the dependency on conventional fossil fuel generation. Worth mentioning,
it is a new challenge to meet the energy demand because the power production is not consistent and
the demand increases year by year. Henceforth, power electronic converters have mainly dominated in
the implementation to increase the efficiency of RES and the reliability of power production with stable
generation. For this reason, an embedded electricity generation at a smaller scale is formed and known
as distributed generation (DG) units. With the inconsistency of RES power production, the microgrid
(MG) has been proposed to manage power distribution and quality aspects [2]. The fundamental

Appl. Sci. 2020, 10, 8355; doi:10.3390/app10238355 www.mdpi.com/journal/applsci
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components in microgrids are depicted in Figure 1, including the scenario during islanded and
grid-connected modes.

Figure 1. Fundamental microgrid configuration with variable operation modes.

The microgrid can be defined as a cluster of DG units, loads and energy storage system (ESS)
operating in coordination to sustainably supply electricity and connecting to the distribution level
at a single point of connection, the point of common coupling (PCC). It is designed in such a way so
that the power can flow either to the loads and the ESS or to the main grid when the power supply
exceeded the microgrid’s capacity. A microgrid is capable of operating in two modes: connected
to the existing grid network or disconnected from the grid, generally referred to as grid-connected
mode (grid-following) and islanded mode (grid-forming), respectively [3–7]. It is achievable because
significant power electronic-interfaced converters are acting as voltage source inverters that enables the
power converter operates in voltage-controlled mode (VCM) for islanded-mode and current-controlled
mode (CCM) during grid-interactive. Henceforth, control strategies also critical impact on power
converter interfaced under unbalanced conditions. Theoretically speaking, the MGs controller should
be able to determine the accessibility of microgrid operation modes under occurrence of unbalanced
loads or weak grids. Thus, the controller mechanism enables the operation of power converter operates
either or not accessible in VCM or CCM [8–10]. In VCM, always the inverter yields a controlled output
while regulating its amplitude and frequency. On the other hand, CCM adjusts the output current to
the reference value and always correlated with the grid synchronization strategies.

The MG’s task is to regulate the active and reactive powers generated by the DG units and
distribute them according to the load demand. In addition, the surplus power in the microgrid can be
exported into the main grid and also can grant essential support to the primary network. In the islanded
mode of operation, the microgrid operates as an autonomous entity. Both voltage and frequency are
controllable parameters within the DG units, which means that they are no longer supported by the
main grid. The active and reactive powers are simultaneously generated within the DG units and
accumulated within the microgrid to ensure accurate power load sharing.

There are two definitions of islanding detection: intentional and unintentional islanding.
Intentional islanding can be prompted by the scheduled maintenance or when the power quality
from the main grid jeopardizes the microgrid operation. Unintentional islanding occurs due to grid
faults and unplanned events that are unknown to the microgrid. Hence, an international standard
has been established so that microgrids are able to meet several criteria in order to provide reliable
ancillary services. The interconnecting of distributed energy resources is stated in IEEE Standards
1547 and 2030 [11–13] so that the transition mode from one state to another can be achieved effectively.
For instance, the microgrid can sustain itself when there is a presence of a weak grid and reconnects
when the situation is remedied. The assistance of static transfer switch (STS) offers the first action
by detecting and disconnecting the microgrid from the grid network, thus guaranteeing continuous
power supply to the local loads and protecting the distributed energy source and ESS.

6
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Contributions and Paper Organization

The motivation of this paper is to provide a reviewed on various control strategies of the
interconnection of microgrid with the main grid from synchronization, frequency, and voltage
restoration perspective under balanced and unbalanced grid conditions. An overview of the microgrid
multilayer control trends along with their benefits and shortcomings are carried out in order to
help researchers to identify appropriate techniques for their products. There are numerous review
studies over the years on this subject matter, however, there is a gap in the discussion on the
state-of-the-art coordinated controls in the hierarchy level in proportion of their objectives and
applications. A comparative studied for the grid synchronization techniques based on phase-locked loop
(PLL) and non-PLL, i.e., synchronverter, frequency-locked loop, discrete Fourier transform, weighted
least square estimation are comprehensively discussed and surveyed in detail. The performance
comparison of various voltage and frequency regulation controller are also investigated and overviewed
in order to provide better power sharing capability. With various multilayer controller strategies and
applications, therefore, the findings of this paper should be able to categorized and differentiates the
diversification of controller strategies in order to bridge the research gap for further study.

This paper comprises five sections. Microgrid topologies are delivered in Section 2. Section 3
presents the multilayer hierarchical controls with coordinated control. Meanwhile, the primary and
secondary state-of-the-art controls are discussed in Sections 3.2 and 3.3, respectively. Section 4 presents
key features and recommendations for potential further developments. The conclusion is presented
in Section 5.

2. Microgrid Hierarchical Control Group

It is significantly challenging to identify which control method is adequate, and most commonly,
the application predominantly depends on the microgrid’s traits. The fundamental control objective in
a microgrid topology is to ensure reliable and flexible operation, while maintaining close regulation
of the microgrid’s voltage and frequency as compulsory targets. In general, there are two main
state-of-the-art control principles for a microgrid: centralized and decentralized. A centralized control
relies on a set of data collection in a dedicated central controller. It continuously monitors and controls
the computation taking action at a single central point for the relevant units via low-bandwidth
communication between the central controller unit and the controlled groups [14–16]. In contrast with
the centralized approach, the decentralized control requires that all DG units and the ESS have a local
controller and operate independently based just on local measurements [17–19]. A valid argument
between those controls can be attained within the hierarchical control scheme. In this approach,
three control levels are distinguished: primary, secondary, and tertiary [20,21], as depicted in Figure 2
with their respective responsibilities. The primary and secondary controllers are responsible for the
islanded mode, while the tertiary control mainly serves and is managed at the grid side.

Figure 2. Hierarchical control with respective obligations for each level.
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2.1. Primary Control

Also called the internal control or local control, the primary control is defined as the first stage
in the control hierarchy group by presenting locally collected information at the fastest response
and requires no communication between the controllers. All information are gathered locally and
have a certain intelligence level to operate in a decentralized operation mode. According to [22],
the decentralized approach should highlight the following fundamental concerns: the integrated units
should share the desired total load, stability assurance is provided on a global scope, and the inverter
control is capable of providing DC voltage offset avoidance.

The inverter output control’s architecture is distinguished from the outer loop for voltage
control and internal control for current regulation, as illustrated in Figure 3. The state-of-the-art
inner-loop control for the grid-side converter controllers are mainly associated with their reference
frames: synchronous frame (dc), stationary frame (αβ), and natural frame (abc). The synchronous and
stationary reference frames served the dc and sinusoidal variables, respectively, and are associated
with the proportional integral (PI)-based controllers and proportional resonant (PR)-based controllers,
respectively. Generally, the natural reference frame is employed in the controllers’ approach as PI, PR,
dead-beat, and hysteresis controls. The use of PI controllers is the most comprehensive method for
control loop design [23].

Figure 3. Primary control structure’s block diagram.

On the other hand, the state-of-the-art outer loop serves as the power sharing control. This control
is significant to control the DG unit as well as the associated local loads to meet the balancing between
the active and reactive powers. As for the synchronous generator, three prime components are used to
realize the output control and power sharing, which are the voltage regulator, governor, and the inertia
obtained from the synchronous machine itself [24]. Droop controllers have been used to emulate the
droop traits of the synchronous generator; by purposely simulating the synchronous generator, it has
shown the fastest response. It utilizes the correlation of active power-frequency (P/f ) and reactive
power-voltage (Q/V) by controlling the values of voltage amplitude and frequency to realize power
sharing. The droop-based approach attracts a lot of research efforts due to the advantage it provides
over other control options, such as the capability of plug-and-play implementation, flexibility due to
non-communication network, simple design, etc. From another perspective, a virtual synchronous
generator’s (VSG) concept also generally being adopted as presented in [25,26]. The relationship
between power productions and voltage-frequency regulations can be achieved through virtual inertia
and damping factor into the control loop that mimics the dynamics of the existing synchronous
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generator. By means the characteristic of the VSG-inverter based is accessible to the main upstream
grid system.

In addition, the independency on non-communication control also can be offered as a communication
control between the devices and could be applied according to the requirements. Hence, power sharing
and voltage regulation could be achieved accurately. Despite adjustment accuracy, communication-link
methods can increase the capital cost of microgrids over non-communication methods [27]. Various
ways have been presented over the years; for instance, these include master and slave; concentrated
control, which has two variants—central limit control and power deviation; instantaneous current
sharing; circular chain; and distributed control, among others. Subsequently, the communication-based
approach is enormously intricate in extended microgrids and it can degrade system performance
during faults at the communication network.

2.2. Secondary Control

The secondary hierarchy control level is subject to reliable monitoring, which guarantees and
protects the operation of microgrids in both grid-connected and islanded modes. Monitoring the system
variables means supervising both voltage amplitude and frequency deviations to make the required
adjustments. It is also referred to as the microgrid energy management system (EMS) by regulating
the power flow and power quality within the microgrids. The EMS approach can be classified as
centralized and decentralized approaches that serve to manage the unpredictability and intermittent of
RESs and load demand [28]. The secondary control guarantees that frequency and voltage deviations
are controlled near zero within the load variations or generation in the microgrid and serves the power
system by rectifying the grid frequency deviations to within permissible limits [16]. For islanded
microgrid operation, the secondary control family is considered as the highest rank in the hierarchical
level. According to [2,6], the secondary control has a slower behavior in dynamic response when the
secondary unit is detached from primary control, which lessens the communication bandwidth by
using sampled measurements of the microgrid variables to permit enough time to execute intricate
calculations. A central controller is relatively essential to ensure that the power system operates as
seamlessly as possible during significant disturbances and during grid synchronization and transition
between the microgrid modes (islanded to grid mode and vice versa) as per market requirements.
It can be realized by utilizing an external centralized controller to restore permanent voltage and
frequency deviations produced by the primary control.

The architecture of the centralized approach consists of a central controller, which delivers pertinent
information of each DG unit and load within the microgrid, and the network itself. The implementation
of the centralized method allows for the completion of online optimization routines, given that all
the relevant information are collected at a sole point. For instance, the measurements of the main
grid’s frequency and voltage are realized to generate reference signals and are used by the secondary
control loop to provide grid-connected operation mode. The optimal dispatch in [29] mainly performs
the analyzed offline calculation in terms of cost and system performance in low-voltage microgrids.
In addition, at this level, it is significant to interface the DGs and the ESS via master-slave units [30].
Through this approach, all slave converters can be modeled as current sources. In the islanded
operation mode, the battery bank itself operates as a master converter that provides the reference
voltage and operating frequency for other sources, which act as slave units. Whereas in grid-connected
mode, the latter works as master units and serves to provides the reference voltage and frequency to the
PCC. The studies in [31,32] has demonstrated the effectiveness of isolated mode control in an islanded
microgrid system including PV system, diesel generator, ESS and even tidal turbine. Other approaches
include optimal power flow [33] and terminal sliding mode [34], among others, for several feasible
scenarios of the microgrid.

On the other hand, the decentralized method is primarily addressed in the microgrid central
controller (MGCC) throughout the multi-agent system (MAS) framework. MAS consists of multiple
intelligent agents that operate by relying upon local information, which interacts with one another to
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achieve global and local objectives. A comprehensive review of the MAS approach is presented in [35].
Meanwhile, MAS implementation is proposed in [36,37]. An approach in [38] includes an additional
agent (fuzzy cognitive maps) to reduce the risk of total system breakdown since a possible failure of
some decentralized agents is not distinguished from a total EMS failure.

2.3. Tertiary Control

This high rank in the hierarchy control family is primarily associated with the main host grid and
generally can be defined as the power flow management according to set points depending on the
primary network and is coordinated with the regulations of voltage amplitude and frequency. It is in
charge of organizing the operation of multiple microgrids cooperating in the system by measuring the
active and reactive power ratio at the PCC, and the comparison of the grid’s active and reactive powers
against the desired reference values can be realized. The dynamic response of this control is slow in
order of several minutes when delivering signals to the secondary level controls at the microgrid and
other sub-systems that form the full grid.

According to Figure 4, when the microgrid is operating in grid-tied mode, the power flows can
be controlled through frequency adjustment by altering the phase in steady state and the voltage
amplitude inside the microgrid [39]. The measured P/Q through the STS, PG, and QG are compared
with the desired P* and Q* to obtain the desired reference values. Distribution network operator
(DNO) and market operator (MO) are among the multivalent controller approaches. DNO is needed
when there are more than one microgrids in the distribution system, whereas MO is accountable
for the microgrid market management; both are part of the primary grid, which means that they
are unaccountable for the microgrid management. Henceforth, there will be no further discussion
concerning the tertiary control approach.

 
Figure 4. Standard structure’s block diagram consisting of secondary and tertiary controls.

3. Hierarchical State-of-the-Art Control

This section discusses the microgrid control family. As previously mentioned, the primary control
is responsible for providing the current reference signal according to the voltage source inverter (VSI)
operation modes, either in VCM or CCM. These characteristics can be determined according to the
electrical grid conditions at the PCC. All the different controller approaches significantly provide
better steady-state error requirements and improve the disturbance rejection. A brief discussion on the
variability methods from the very simple to the sophisticated analytical approaches is presented here.
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However, the primary control permanently causes voltage and frequency variations, which
considerably affects the power sharing performance as well as the dynamic response. Other than that,
the conventional droop approach does not meet the specific criteria when the parallel system is obligated
to share nonlinear load portion because the control units have to consider the harmonic current while,
at the same time, retaining the active and reactive powers at the demand level. Henceforth, numerous
studies have discussed the secondary control groups to address these inherent issues.

3.1. Overview of the Inner-Loop Control Methods

As previously mentioned, the use of power electronic interfaces is able to make the microgrid
operate in both islanded and grid-connected modes. Thus, VSI realizes the flexibility of microgrid
operation modes by relying upon VCM and CCM behaviors. For instance, VCM is used in islanded
mode to maintain the stability of voltage. In contrast, in grid-connected mode, CCM is commonly used
to inject current into the primary grid. The inner current loop is mandatory to provide the current
reference associated with the external voltage control loop.

• Proportional Integral (PI): The PI method is the most applied over the years to serve different
purposes and is practically employed with the synchronous reference frame associated with
dc variables. It delivers numerous benefits, such as less complicated controller designs, applicability
in linear time-invariant systems, practicability for the single-input-single-output (SISO) system,
etc. For instance, [40] discusses the effects of the fractional order of the PI method for load-sharing
revamping, and the same method is proposed in [41] and [42] in their respective applications.
The PI controller does not solely correspond on the dc variables but also on the sinusoidal variables.
As mentioned in [43], the PI current controller integrators associate with the stationary frame
under undesirable and distorted operating conditions. It offers low computational burden with
zero steady-state error for current harmonics concerns.

• Proportional resonant (PR): A viable alternative to the synchronous frame PI controllers is the
stationary frame PR compensators [44]. The PR controller is often interpreted as a sinusoidal
controller as it is widely associated with the stationary reference frame (αβ) as well as the natural
reference frame (abc) due to its capability of forcing errors to be zero and for its harmonics
compensation [45,46]. Similar methods are proposed in [47] for the distributed power generation
systems (DPGS). Studies demonstrate that resonant controllers are an adequate option for inner
current control loops to show anticipated performances. It has a high gain around the natural
resonant frequency,ω [48], as it is able to introduce a low-order harmonics compensator to improve
the current controller. It offers no excessive computational resources, fast transient performance,
and the capability of zero steady-state error at the AC frequency, among others.

• Dead-beat control (DB): Among discrete-time linear controls, dead-beat is the most commonly
employed due to its fast transient response in different applications, which makes it a suitable
approach for current regulation. The DB control is able to place all the closed-loop poles at
zero [49]; thus, the tracking error settles to zero within a few sampling steps equivalent to the
SISO systems. Worth mentioning, the DB control is in the predictive family, which forecasts the
effect of the control action by tracking the current reference accurately without any error. Some in
literature have proposed methods to improve the conventional DB controller’s limitations,
such as being vulnerable to model uncertainties, sensitive to model and parameter mismatch,
etc. For instance, [50,51] employ an adaptive self-tuning for the pulse-width modulated (PWM)
converter by adopting a delay compensation caused by voltage calculation, synchronous frame
rotation, and the PWM converter itself in order to be homogeneously relocated outside the
closed-loop control system, thus compensating for their effects on the closed loop’s stability.
The implementation of the current controller with a higher degree of disturbance rejection enables
swift current tracking with higher bandwidth qualities. In [52], the study uses a combination of a
DB controller with neural-network identification to present nonlinear estimation problems and
to operate as a grid voltage estimator to realize a grid voltage sensorless scheme to guarantee
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high-quality power injection. However, while the DB controller provides robustness in its
performance, its implementation leads to a suffocated control structure.

• Hysteresis control (H): In the hysteresis approach, the designed controller has to be attached to an
adaptive band to achieve fixed switching frequency. The output is the state of the switches that
offers variable switching frequency. Worth mentioning, the hysteresis approach is allocated to
the predictive control group. Numerous techniques and algorithms to achieve fixed switching
frequency are presented in the literature [53–56]. In [57], a hysteresis current regulator is applied for
the neutral-point clamped inverter as well as the flying capacitor three-phase inverter, where the
measured switched phase-leg voltages are adjusted to the phase leg according to the switching
frequency. The hysteresis current regulator is distinguished for its robustness against load
variations, for exhibiting high-speed transient performance, and for its simple implementations.
Despite the several advantages of the hysteresis controller, it still has drawbacks, such as the high
switching frequencies in the inverter due to being interphase-based.

• Predictive control (P): Predictive control is a sophisticated control process satisfying a set of
constraints. It uses the system model to forecast the future behavior of the controlled variables.
In such a way, it can accurately track the reference current while minimizing the forecasting
error within zero error. The model predictive power control (MPPC) and voltage control (MPVC)
are proposed in [58]. These schemes can ensure stable DC-bus voltages of BESS as well as a stable
AC-bus voltage output and a decent power sharing. Both control schemes provide a simpler control
algorithm and better performance. However, the predictive control is prone to network variations.
Therefore, in [59], a robust disturbance observer for model predictive control has been proposed
for a grid-connected inverter to regulate the current output. The observer is designed to estimate
the lumped disturbances (model uncertainties and grid voltage disturbances). An improvement
in the reference error tracking is made in [60] by applying an adaptive reference model predictive
control to track virtual references rather than actual references. A flexibly modeled virtual multi-
input-multi-output (MIMO) generates the error and thus no tuning process is required for different
operating points. A seamless transition of mode operations of VSI is presented in [61] through
predictive detection and the estimation of control algorithm. It can be achieved through the
cost function, thus simplifying the controller’s algorithm. The advantage of predictive control
design-wise is that it can be implemented more simply depending on the applications. Despite
the simple implementation, some predictive controls can be more complicated.

• Sliding mode control (SMC): This control is recognizable by having a robust performance and a
fast response time in the variability of system parameters over sizeable operating points [62].
The controller takes vigorous actions if the plant experiences deviations from its average operating
point [63]. In such a way, the desired dynamics can be ensured through an essential selection of
desired dynamics and control law. However, SMC’s performance significantly deteriorates due
to the chattering phenomenon in discrete implementation. Therefore, the enhancement of SMC
has been made through the output ripple optimization. The works in [24,64] have shown that
SMC is employed in the secondary control scheme and is used in both frequency and voltage
regulators to enhance power sharing performance and battery charging scheme. SMC shows
reliable performance during transients and has better disturbance rejection and low sensitivity to
parameter value changes.

• H-infinity control (H∞): The primary task of the H∞ controller is to inject a pure sinusoidal current
to the main network in both linear and nonlinear loads even during grid voltage distortions.
Reducing the disturbance effect and computation delay is vital to avoid instability in the system
caused by the digital control delay. Therefore, active damping is presented in [65] by applying a
capacitor current feedback into the controller design process. It not only increases the tracking
efficiency but also is able to reduce the harmonic noise in current output. In [66], the study
distinguishes the performance of reference signal tracking by showing a minimal number of errors.
It is capable of adjusting to the system voltage and frequency equivalent to their nominal values
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after system load variations. As a result, the H∞ scheme offers a robust dynamic performance
even in model uncertainties and unbalanced conditions, reduces tracking error, and has an
easy implementation.

According to the aforementioned, the comprehensive review on various power, current and
voltage control strategies are summarized as advantages and shortcomings in Table 1. A microgrid
designer needs to identify which potential method is adequate to suit the application. An efficient
control application should provide robust dynamic performance.

Table 1. The advantages and shortcomings of the inner-loop controllers’ scheme.

Controller Advantages Shortcomings

PI
[43]

Straightforward implementation.
A zero steady-state error in the dq reference frame.

Performance degrades under distorted condition.
Displays steady-state error in an unbalanced system.

PR
[50]

Robust performance during disturbances.
No excessive computational required.

Relatively zero steady-state error.

Frequency variation sensitivity.
Harmonics regulation difficulty.

DB
Accurate current reference tracking within zero error.

Closed-loop stability compensation.
Fast transient response with lower THD.

Vulnerable to model uncertainties and parameter mismatch.
High THD in nonlinear load.

H
[55,57]

Fast transient response.
A robust operation against load variations.

Straightforward implementation.

Resonance problems in high switching frequency.
Prone to harmonics issues.

P
[67,68]

Obtains a swift transient response.
Involves less switching frequency.

Provides accurate tracking with low THD.

Vulnerable to parameter variations.
High computational burden.

A precise filter model is vital.

SMC
[62,69]

A robust and dynamic response.
Decent performance in adaptivity under parameter changes.

Excellent disturbance rejection.

Experiences a chattering phenomenon.
Requires excessive computational operation.

H∞
[70]

Robust performance in both linear and nonlinear loads.
Fast response with deficient THD issues.

Reduced tracking error.

High computational burden.
Relatively slow dynamics.

3.2. Power Sharing for Primary Control

Power sharing is allocated in the second phase within the primary control level. This control
can be ordered depending on whether or not it utilizes the concept of the droop method. Meanwhile,
a power sharing control employing a centralized controller belongs to the secondary control [71].
The advantages and drawbacks of each technique are listed in Table 2.

3.2.1. Droop-Based Control

The droop-based control method is the most widely applied method to control DG units, as distinguished
in the literature [3,9,72–77]. The well-established control method is frequency and voltage droop.
The main advantage of droop-based control is that it is solely based on local information. Hence, it offers
a higher degree of operation in terms of flexibility and reliability. However, the conventional droop
control experiences various constraints that could affect the power sharing accuracy among the parallel
DG units. These are due to several factors, such as (i) voltage amplitude and frequency deviations,
(ii) slow transient response, as it requires low-pass filters (LPF), (iii) vulnerability to nonlinear loads or
unbalanced conditions, which introduce circulating currents (harmonic currents), and (iv) the mismatch
on the inverter output impedance. Therefore, various research efforts have been presented to counter
the inherent limitations of the conventional droop control scheme.

• Virtual output impedance (VI): VI is widely applied to advance the power sharing capability and
stability of the system under line mismatch. The inverter output impedance would be in resistive
and inductive behaviors. The conventional droop approach in large power systems is entirely
operating in inductive line impedance. However, when applied in power electronics, the output
impedance relies upon the control strategy used by the inner control loop. In [78], the study
demonstrates a robust performance of the inverter with resistive output impedance against
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numerical errors, disturbances, feeder impedance and parameter mismatch by compensating
the voltage drop at the load effect and the droop effect itself. As for inductive impedance [79],
adaptive droop control is achieved through a self-adjusted VI to provide the decoupling of
active and reactive powers, thus guaranteeing accurate power sharing as well as reliable voltage
assistance throughout the voltage compensator. A single line-current feedforward control at the
voltage reference is widely applied in the conventional VI approach. An enhancement method is
presented in [80] to provide VI at both the fundamental and harmonic frequencies by controlling
via the DG current loop and the feedforward PCC voltage, respectively. Thus, VI compensates the
impacts of the mismatched in the physical feeder impedances and simultaneously achieves precise
adjustment of the DG unit’s corresponding impedance at both fundamental and selected harmonic
frequencies. An adaptive VI proposed in [81] relies upon an extra small injection of AC signal in
the output voltage of the parallel inverter to significantly highlight the unbalanced and harmonic
power sharing problems caused by the feeder impedance mismatch. Whereas in [82], an adaptive
VI is used for accurate reactive power sharing in an islanded microgrid. The compensation
of voltage drop mismatch across the feeders is counteracted by employing communication to
facilitate the tuning. In [83], the distributed adaptive VI is employed to suppress large circulating
currents caused by the slight differences in both magnitudes and phases in the output voltage of
the DG units.

• Adaptive droop (AD): The current paradigm in autonomous power sharing is by utilizing the
voltage deviation in multi-terminal DC (MTDC) grids. The regulation of voltage deviation, as well
as frequency deviation, can be realized through the outage stage of the voltage source converter
(VSC) and instantaneously performs power sharing. This method is becoming an alternative
approach for system planners and operators. In MTDC grids, the AD approach is applied to offer
a better performance of the VSC, which enables the sharing of the burden of power mismatch.
For instance, [84,85] include frequency support and ensure sufficient power sharing by considering
the available headroom of each converter station into the control action. This means that when the
VSC relatively achieves the operating point (close to limits), it has the capability to constrain the
burden of loss sharing to a great extent to the neighboring converters with higher headroom and
spare capacity. The relationship of voltage–current–frequency (V-I-f ) characteristics is derived
to establish the correlation between frequency and DC voltage. It can adjust its DC voltage
reference autonomously according to grid frequency deviation. Hence, it offers the avoidance of
overloading and burden in a desirable way. In [86], it is reported that a better dynamic security
assessment is performed and autonomous power sharing is provided following the outage of the
VSC. It offers stability-constrained adaptive droop gains through the trajectory sensitivity analysis
(TSA)-based approach. Meanwhile, the enhancement of power load sharing and the minimization
of circulating currents in low-voltage DC microgrid are presented in [87,88]. It can be achieved by
applying AD resistance and instantaneous virtual resistance shifting to compensate the trade-off
between the difference in current sharing and the adaptive voltage positioning. Fast transient
response is shown through the right-half-plane zero analysis method, where the stability of the
system is guaranteed when the series resistance zero is above the equivalent to right-half-plane
zero. The integration of wind farm converters in MTDC grids can be found in [89]. Power sharing
improvement and voltage deviation minimization under the presence of any faults and power
imbalances in the system can be achieved by employing the voltage droop control with the help of
the derated operation of the wind farm converters. It offers control freedom over the active power
adjustment and provides ancillary services to the primary grid. In [90], the study integrates a
wind farm converter with fuzzy logic-based control. The method can update the droop coefficient
through the availability of power capacity of the converters, which revamps the conventional fixed
droop coefficient. Through this method, the scheme continuously tracks the dynamic behaviors of
the converters and realizes desirable responses under different outage scenarios. As found by the
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authors, the AD scheme ensuring good transient response within proper power sharing, its still
experience high computational burden and slow dynamic response.

• Robust droop (RD): An RD controller based on the uncertainty and disturbance estimator (UDE)
for the nonaffine nonlinear system is presented in [91–93]. The UDE control algorithm relies upon
the assumption that uncertainties and disturbances can be estimated through a filter with an
adequate bandwidth. In such a way, the system disturbances and the model nonlinearity can be
determined and compensated thoroughly. This method offers a straightforward implementation
and does not require inner current control and voltage control schemes. Meanwhile, the regulation
of DC-link voltage and robust power sharing in grid-connected VSC-MTDC grids is introduced
in [94] by considering the impacts of the droop controller’s response, instantaneous power,
and DC-side uncertainties. The realization of the controller parameter tuning is through the
polynomial method to fix the poles of the equation’s trait under possible variations in the droop
gain. As a result, it ensures rigid performance under sizeable differences in the converter’s
operating point to a great extent, as well as under parametric uncertainties and during the
occurrence of disturbances. It can increase the system stabilization’s effectiveness as well as
guaranteeing a robust performance within the system. According to [95], the enhancement of
the load voltage drop due to the load and the droop effect can be realized via proportional load
sharing. The RD control scheme is integrated with the secondary control. Thus, the load voltage
can be retained within the desired range around the nominal value, providing better stability and
robustness against disturbances, feeder impedance, and component mismatches. The work in [96]
concerns the robust dynamic droop’s power sharing for the integration of wind turbines and fuel
cells. It employs reverse and direct droop controls, where the reverse droop control is responsible
for active and reactive power regulation, while the direct droop control is for the frequency and
voltage outputs, which are significantly used for the fuel cells. The adjustment of frequency and
voltage within the microgrid can be tracked robustly at specifically designed set points and
instantaneously provides better power sharing performance. In the case of a low-inertia wind
turbine, a robust control method that is invulnerable against system nonlinearities and changes in
the network is reported in [97]. The control scheme exploits multivariable H∞, which integrates
with the centralized multi-input-multi-output (MIMO) controller (set reference of active and
reactive powers) and the local measurements of active and reactive powers of the droop controllers.
The application has excellent power sharing performance against significant disturbances and
interconnection operation. In high-voltage microgrid applications, the work in [98] utilizes the
signal detection on the high-voltage side of the coupling transformer as the feedback signal.
The line impedance is the dominated part of grid impedance (coupling transformer), and hence
the impact of line impedance on the power load sharing can be mitigated significantly, especially
on the reactive power relationship.

• Feedforward control: An enhanced power flow control is demonstrated in [72] by introducing a
feedforward control of the primary grid voltage amplitude and frequency to mitigate the impacts
of grid fluctuation on power flow control. It offers improvement in controller stability and provides
seamless transitions for grid-connected operation. A similar approach observed in [99] through
an adaptive feedforward compensation provides better steady-state power sharing performance
while keeping the voltage and frequency regulation. Thus, the robustness of the system stability
is enhanced against droop coefficients and network uncertainties.

3.2.2. Non-Droop-Based Control

Apart from droop-based methods, various techniques can be applied that may or may not require
communication. These techniques are listed below:

• Master and slave: Similarly considered as a secondary control, it consists of a voltage controller for
controlling the output voltage to provide a current reference for the other units that assigns the
master-slave units. A literature review on this particular method can be found in [30,100–102].
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The master unit can be defined through a fixed module arbitrarily or based on the maximum
current. In the case of a grid-connected mode, the grid itself is presented as the master unit and no
specific control is required for grid-connected and islanding operations. For instance, in [103,104],
a supplemental control algorithm is proposed to provide speedy response and sophisticated
operating conditions for multiple inverters in an autonomous microgrid; thus, the active and
reactive powers are shared accurately according to load demands. In [105], a voltage controller is
added with a robust controller that is combined with an automatic master control for the precision
of output voltage.

• Concentrated control: The operation of this method is based on a central controller by means of a
communication link between the central control and the other units. This method consists of the
central limit control of power deviation, and their reviews can be found in [106–108]. The current
reference value is regulated by the voltage controller. It provides a higher degree of power quality,
whether in ideal or transient conditions. However, it requires a high-bandwidth communication
link, which increases capital cost.

• Instantaneous power theory (IPT): In [109,110], power sharing could be achieved among parallel DGs
devoid of any communication between the devices. An enhancement of IPT is included in [111],
which uses a new signal decomposition technique with a great extent of selectivity, thus making
it immune to unbalanced and nonlinear power systems. A similar approach in [112] makes the
necessary modifications in the fundamental computation to remedy the compensation under any
condition of the voltage supply. Another method is presented in [113] for grid-connected VSI
under transient conditions, employing an adaptive transformation that instantaneously makes
adjustments accordingly to the dynamic voltage conditions, which allows control over constant
and oscillating instantaneous power.

• Direct Power Control (DPC): The DPC algorithm has become an alternative for power sharing
control, particularly in grid-connected mode of operation. To provide the reference value of power,
it solely relies upon the p-q theory to adjust the instantaneous active and reactive power errors
and maintaining them within a constant hysteresis band [114,115]. Due to the straightforward
implementation, it offers several benefits: (1) no grid voltage information is required, as it can be
realized through a binary algorithm, (2) compatibility with both sinusoidal and non-sinusoidal
voltage signals, and (3) minimal commutation on converter switches.

Following the discussions above, Table 2 addresses the advantages and shortcomings of each
control method to deliver an idea that can bridge the gaps among the control approaches. The designed
controller should have several features that are immune to the uncertainty model and parametric
variations of the microgrid and to load variations. Hence, the advanced algorithms controller complexity
can be reduced for further implementation in practical systems.
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Table 2. The advantages and shortcomings of the power sharing control.

Technique Advantages Shortcomings

Droop-based
[79,80]

Straightforward implementation.
No critical communication line is required.

Significant reliability and flexibility of operations.

Inaccurate power sharing.
Performance degrades under nonlinear load and

unbalanced conditions.
Relatively slow in transient response.

Virtual
impedance

[83,88]

Fast transient response.
Improved current harmonics sharing.
Better output voltage with low THD.

Excellent voltage and frequency regulation.
Better dynamic response.

Relatively poor active and reactive power
sharing performance.

If the line impedance of the parallel inverters is
mismatched, transformation angles will differ and

not be synchronized.

Adaptive droop
[89,90]

Decent transient response.
Good active power sharing.

Compensates circulating current.
Better voltage and frequency adjustment.

Enhances power sharing accuracy and system stability.

Sophisticated implementation.
High computational burden.
Sluggish dynamic response.

Robust droop
[97,101]

Ensures dynamic stability.
Better voltage and frequency adjustment.

Robust dynamic performance against load variations.

Relatively poor reactive power sharing performance.
Involves high THD in current components.

Non-droop-
based

[106,112,115]

Power sharing enhancement.
Straightforward implementation.

Improves the dynamic stability of power sharing and quality.
Robustness in parametric variation (system and controlled).

Slow dynamic performance.
Performance degrades when communication

malfunctions at a single point.
Communication line increases capital and

maintenance cost.

3.3. Voltage and Frequency Restoration for Secondary Control

As well-known, the deviation of voltage and frequency in the primary droop-based controller in a
microgrid is permanent. The secondary control is proposed in the hierarchy level to compensate these
deviations. Therefore, numerous approaches have been proposed to enhance the research efforts to
tackle this issue by considering whether or not to require a central controller.

1. Centralized controller: The principle of the centralized control approach is identical with the
inner loop control, as described in Section 3. As previously mentioned, MGCC is responsible
for power management, voltage and frequency regulations, and the interconnection with the
utility grid. The tprincipal operations are via a communication link that receives the information
from the primary network when operating in grid-connected mode and passing the references
value to the primary control level. The studies in [20,27,66] show examples of this approach.
They mainly concern the coordination of the control strategy that depends on the communication
network to provide a satisfactory operation and power sharing of generation and storage
devices. Worth mentioning, all the decision making, collaboration, and prioritization are achieved
more efficiently when information is collected at a single point through the central controller.
However, the significant weakness in the MGCC approach is the dependency of the regulations
on the central controller, which means that the system performance degrades during the
presence of a malfunction at a single point of communications in the central controller. Besides,
the communication link among devices offers unreliable operation in terms of maintenance and
cost considerations.

2. Decentralized controller: A distributed secondary control or MAS network is reportedly a promising
method for improving microgrid stability and performance while enhancing the reliability
and scalability of the microgrid. The permanent inherent limitations of the primary control,
especially the deviations of voltage and frequency, could be counteracted through finite-time and
event-triggered control methods, among others.

• Consensus algorithm (CA): CA is widely employed in voltage and frequency regulation
schemes, wherein the reference values are distributed among all the primary controllers.
The most popular methods are through a distributed cooperative finite-time secondary
control [22,116] by employing a neighbor-based linear consensus algorithm that allows
each controller to communicate with each other and also by employing the so-called sparse
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communication network. While the consensus of the voltage and frequency set reference
values is accomplished over an infinite time horizon with exponential convergence, as
in [104,117], the authors apply feedback linearization methods for voltage restoration
and finite-time control protocol is used to synchronize frequency to the nominal value,
simultaneously achieving accurate active power sharing among the DG units. A similar
approach is introduced in [118], which is capable of both restoring V-f and guaranteeing
reactive power sharing as well. The secondary control under switching communication
topology is designed in [119], where MAS network is used for controller stability analysis.
A distributed approach offers flexibility and reliability in terms of central control avoidance,
which means that the failure of a single unit will not degrade the entire system. Meanwhile,
in [120], the restoration of the voltage to the nominal value is realized through the dynamic
consensus-based method. The enhancement of flexibility and reliability of the microgrid
system is ensured without line impedance consideration.

• Event-triggered: ETC is another approach for data sharing when a condition is fulfilled or an
event is triggered, instead of continuously exchanging data among the DGs unit. In such a way,
a sampled data is controlled through a designed mechanism [121]. Numerous methods have
been proposed in recent years, such as the time-triggered, event-triggered, and self-triggered
sampling methods; their reports can be found in [122–124]. ETC makes a computation that
relies upon the measurement error and the last event of the variable states. The error is the
difference between the measured and the observed values of the variable states. The benefits
of ETC is that it is able to maintain superior closed-loop stability and performance while
reducing the number of information exchange among the DGs. A centralized ETC can be
found in [125], which provides with an auxiliary controller that corresponds to collect all
the variable states. It simplifies the number of controller updates. However, the secondary
compensation terms in ETC are realized via a pure integrator that compromise a poor
transient response.

The comprehensive review of coordinated controller approaches are summarized as advantages
and shortcomings in Table 3. As shown, the restoration of voltage and frequency of the microgrid is a
vital issue that needs to be confronted to provide excellent service and better power sharing. Notably,
voltage and frequency restorations are always incorporated in secondary level group, yet less studies
exposed involvement of primary control.

Table 3. Performance comparison of voltage and frequency of secondary control.

Controller Advantages Drawbacks

Centralized
[66]

All the decision making, collaboration, and
prioritization are achieved more efficiently when

information is collected at a single point through the
central controller.

Provides fast and effective process, while retaining
accurate power sharing.

Performance degrades when failure occurs at a single
point of communication.

Communication links among devices offer unreliable
operation in terms of maintenance and

cost considerations.

Distributed consensus
[116,118]

Increases flexibility and reliability of the microgrid
system without taking line impedance consideration.
More reliable and has accurate restorations process.

Sophisticated implementation.
High computational burden.

Event-triggered
[121,123]

Able to maintain superior closed-loop stability
and performance.

Effectively updates voltage and frequency to
nominal values.

High computational burden.
Requires a new switch mechanism, which increases

malfunction factor.

4. Grid Synchronization for the Secondary Control Unit

The purpose of grid synchronization is to monitor and self-regulate the phase to prevent the
deviations of voltage and frequency by minimizing the variance in voltage, frequency, and phase
angle between the RES AC generators’ output and the grid supply [126,127]. The synchronization
unit control loop is used to synchronize the microgrid’s phase with the grid. Such synchronization
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control entails a cluster of all the controllable DG units employed in the secondary control level in the
hierarchical control architecture. It provides relatively zero steady-state errors to be translated into the
grid-connected operation mode. Grid synchronization is a subjective subtopic that can be classified
into primary or secondary control families. However, in this paper, it is considered as a secondary
control. As reported in [115], an ideal synchronization must conform to desirable characteristics
such as (i) adeptly tracking the primary grid’s phase angle, (ii) effectively tracking variations in the
frequency and is immune to disturbance signals and high harmonics parameters, and (iii) fast response
to the alterations on the primary grid. Numerous grid synchronization methods have been proposed
over the years, either based on phase-locked loop (PLL) or non-PLL methods. On the other hand,
synchronization without a dedicated synchronization unit has become an alternative for conventional
PLL to provide fast and robust operation and simultaneously reduce the computational burden by
nonlinear PLL characteristics. Therefore, numerous proposals for self-synchronization techniques have
been presented over the years, as reported in [128–134].

Table 4 address the advantage and disadvantages of grid synchronization with significant methods
should be considered to present advanced control techniques that are capable of retaining power quality.

Table 4. The advantages and drawbacks of the grid synchronization techniques.

Controller Advantages Drawbacks

PLL
Provides accurate synchronization.

Better for grid harmonics and noise rejection.
Simple implementation.

Vulnerable in high grid faults.
In unsymmetrical voltage faults, the second harmonics

appear from the negative sequence that propagates
through the PLL system and affects the extracted

phase angle.

FLL

Immune to phase angle and frequency shifts, harmonics, and
uncertainty parameters.

Offers reliability under frequency variations, harmonics, and
unbalanced voltage.

High computational burden.
The overall controller design becomes complex.

DFT
Provides robust phase tracking with fast transient under

highly polluted grid.
Accurate synchronization even under noise occurrence.

Vulnerable to unbalanced conditions.
Phase shift occurs when the sampling is asynchronous

with the leading network.

WLSE
Faster and effective in updating frequency and phase angle

fault conditions.
Simple and easy to implement.

The estimator takes a longer time interval in detecting
frequency changes.

S

Reduces the computational burden.
Simplifies the overall controller by the withdrawal of the

synchronization unit.
Provides accurate synchronization process.

Vulnerable to unbalanced and distorted grid voltages.
Stability and control parameter tuning is

considerably difficult.

4.1. Phase-Locked Loop

Synchronization via PLL is the most widely adopted and is embedded as a dedicated synchronization
unit [135–137]. It offers precise tracking of voltage, phase angle, and frequency, and provides simplicity,
flexibility, accurate phase angle estimation, etc. However, PLL’s performance depreciates when the
power converter is integrated into weak grids [138–141]. This scenario is caused by the presence of
voltage imbalance and harmonic distortion, double frequency oscillation to the phase error signal,
slow dynamic performance, complicated and slow coefficient performance, etc. Numerous modified
methods have been presented over the years to mitigate these issues, as shown in [38,134,142–144].
Methods that have been proposed include synchronous reference frame-PLL (SRF-PLL), fixed reference
frame PLL (FRF-PLL), enhanced PLL (E-PLL), and second-order generalized integrator PLL (SOGI-PLL),
among others.

• SRF-PLL: Studies in [140,145–147] have shown that this technique is the basic scheme in the
three-phase system. It offers a rapid and accurate estimation of the phase angle/frequency in
ideal grid conditions and offers a straightforward implementation. The operation of SRF-PLL is
through the natural frame (abc) being transformed into the dq reference frame through Park’s
transformation. Despite fast and accurate phase estimation in ideal conditions, the performance is
highly degraded against abrupt shifting in the phase angle as well as double frequency errors in
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negative sequence [148], which are caused by frequency deviation, distorted grid voltage, and the
presence of harmonics. Several methods with different techniques and algorithms have been
proposed to address these issues: decoupled double SRF-PLL (DDSRF-PLL) [147,149], modified
SRF-PLL (MSRF-PLL) [150], and adaptive lattice SRF-PLL (ALSRF-PLL) [151].

• SOGI-PLL: SOGI is widely used in the quadrature signal generator (QSG). Also called quadrature-
PLL, it seamlessly detects the positive-sequence component to estimate the input signal in-phase
and also the quadrature-phase amplitude. Dual SOGI-PLL (DSOGI-PLL) [137,152] corresponds
to the transformation of the voltage vectors in the stationary reference frame (αβ) into QSG,
which presents the filtered voltage vector. The positive-sequence voltage vector is obtained via
the positive-sequence calculator (PFC), and the q-component is equivalent to zero. As a result,
it is able to estimate an accurate phase angle under severe fault conditions such as slow dynamics
and large frequency overshoots. On the other hand, a frequency feedback loop is adopted
for SOGI resonance frequency under a frequency shift. Some results in [153] demonstrate a
rather fast dynamic response and harmonics filter capability. A frequency-fixed SOGI-PLL
(FFSOGI-PLL) [154,155] has been introduced to enhance the conventional method by eliminating
the frequency feedback loop, thereby increasing the speed and accuracy of the frequency trade-off.

• FRF-PLL: FRF-PLL detects the angular frequency and is used for synchronization purposes instead
of for phase angle detection. Thus, the fundamental component is provided in fixed-reference-
frame coordinates, including both positive and negative sequences, and makes the assumptions
of the angular frequency as an uncertain parameter [156,157]. The operation’s performance
under unbalanced conditions is reported in [142,158] as being robust against variations in angular
frequency and the sag or swells in voltage.

• E-PLL: Using E-PLL, the authors in [159] track the three-phase input signal variables in terms of
frequency, amplitude, and phase angle. The fundamental operation is through the extraction of
the positive-sequence component of the input signal through an adaptive band-pass filter, as it
adjusts the transfer function in proportion to the error signal. It shows a higher degree level of
transient response and thus delivers smooth and accurate detection of the fundamental parameters
within zero steady-state error. As a result, it provides a robust and precise performance under
grid contingencies.

4.2. Frequency-Locked Loop

Among recent advancements in grid synchronization for single- and three-phase systems, a new
grid synchronization technique has been proposed in [160] called the frequency-locked loop (FLL)
technique. This technique is realized in the stationary reference frame and is used to measure the
input signal frequency rather than the grid voltage phase. The benefit of this technique is that it does
not experience such abrupt phase angle changes. The authors in [161,162] propose the second-order
generalized integrator FLL (SOGI-FLL) by implementing two adaptive filters to produce a stationary
reference frame that can auto-tune to the grid frequency. This method gives rise to a new structure,
called the dual SOGI (DSOGI-FLL), which can estimate the symmetrical components of the grid voltage
even under adverse grid conditions. The work in [163] introduces the enhanced FLL (EFLL) for faster
dynamic response. This method proposes a generalized design framework of FLL via the Popov
hyperstability criterion-based model reference adaptive control. Therefore, a simple structure and
convergence speed of the FLL are developed. An adaptive frequency system based on limit cycle
oscillator FLL (LCO-FLL) is proposed in [164]. This technique offers a high degree of invulnerability
against phase-frequency shifts, harmonics, and voltage sags. Besides, it performs well in a highly
polluted grid by ensuring an acceptable transient unto the synchronization process, which achieves
the synchrony with the network from any initial condition set. A new multiresonant frequency
adaptive synchronization method is proposed in [134,165] that not only can estimate both positive- and
negative-sequence components at fundamental frequency but also can detect the following sequence
components at harmonic frequencies. This technique uses both harmonious decoupling networks
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of multiple SOGI and FLL, known as MSOGI-FLL. As a result, the system frequency becomes more
adaptive in behavior. The benefit of this method is that the tuning process of different harmonics at the
fundamental grid frequency can be deduced. Under highly distorted grid conditions, MSOGI-FLL
contributes to detecting accurately with less computation time and low computational burden in
symmetrical harmonic components.

4.3. Discrete Fourier Transform (DFT)

The DFT method is considered as the first method of detecting the frequency and harmonics of the
periodic signal [166]. Grid synchronization using DFT analysis is a mathematical tool, which transforms
a given function from the time domain to the frequency domain. The authors in [133,167] use recursive
adaptive window DFT (RDFT) for power converter line synchronization by means of filtering the
received grid voltage. This technique offers a high degree of invulnerability against noise. Still, when the
DFT time window does not emulate the grid period, a phase shift arises between the filtered voltage
and the grid voltage. Hence, an improved phase-detection via sliding DFT (SDFT) has been proposed
in [168,169]. This technique displays a robust performance in phase-tracking capability with fast
transient response under grid contingencies. This method, which is based on a phase-detection system,
is adequate as it requires a lesser amount of operation to obtain a single frequency component.
As a result, computational complexity is reduced with a more straightforward implementation than
conventional DFT methods. In highly polluted grid conditions, a positive-sequence phase-angle
estimation method is presented in [170–172], known as interpolated DFT (IpDFT), which can realize an
optimum trade-off between the estimation accuracy and the response time. The proposed technique
depends on the obtained sampling rate and can be utilized in the control hierarchy to determine errors
and estimate phasors by using analytical analysis, thus generating a one-cycle transient, which is
invulnerable to voltage imbalances, harmonics, noises, and grid frequency variations.

4.4. Weighted Least Square Estimation (WLSE)

The synchronization technique of WLSE was introduced back in 2000 [173] and is gaining more
attention for its robustness against disturbances that may exist in the power grid. This method is
able to estimate separately the positive and negative sequences of frequency and phase angle without
significant delay and with covariance resetting, especially under sudden voltage sag or unbalanced
conditions. However, to estimate more accurate harmonic phasors, especially under the deviations of
power and frequency, a phasor estimator that is realized via the merger of the harmonics components
is applied in [174]. It offers a better and more efficient update for the unit reference signal matrix,
along with frequency tracking. Thus, the phasor can be maintained as a constant when the power grid
frequency deviates from the nominal value. Several works have tried to improve the performance of the
sparse algorithm when suffering from the presence of transients on the tracked phase. An extension of
the least-square-style WLS is proposed in [175], wherein it allows the measurement of the instantaneous
frequency value of real signals for single- or three-phase systems. This technique is applied to the
decoupling methods, adaptive filtering of input signals, and frequency estimation. It provides more
robustness of system frequency because the estimated frequency is computed using the provided
information. A much simpler structure that can be implemented recursively is proposed in [132].
This synchronizer technique compares the sampled grid voltages to complement a straight line to
emulate the estimation of the grid phase angle. Hence a frequency filter is added to expand the
synchronizer performance, thus making it immune when operating in a polluted grid.

4.5. Synchronverter

A new concept of synchronization by executing the operation of an inverter that is able to simulate
the behavior of a synchronous generator (SG) is developed in [129,176], named a synchronverter
(S). A synchronverter comprises the mathematical model of the synchronous machine and acts
similarly as SG to deliver the voltage supply [177]. Its controller is on the fundamental level of the
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power controller with an incorporated capacity of voltage and frequency regulation and hence is
able to achieve active and reactive power control and voltage and frequency management. An SG
is innately ready to synchronize with the power grid; similarly, a synchronverter syncs with the
power grid without a synchronization unit because the synchronization function is coordinated in the
power controller. This synchronization technique is able to compensate the slow elements present in
the closed-loop system consisting of the synchronization unit (PLL), remove the dependency on the
inverter controller and the power system, and eliminate the nonlinear factor that influences the accuracy
and speed of the synchronization [178]. It broadens the system bandwidth for better analysis and
stability, reducing time and increasing the efficiency of synchronization, and considerably enhances the
performance of the system, while simultaneously diminishing the complexity of the overall controller.
As in [179] the synchronization of the output voltages and frequency is achieved via virtual rotor inertia
computations. A modified self-synchronized synchronverter is introduced in [180] for unbalanced
conditions in the main grid. This technique can tackle power ripples and balance the grid currents.
To achieve these objectives, a resonant controller is used to restrain current harmonics and power
ripples. Through the synchronverter scheme, it offers fast response synchronization, accurate phase
angle and frequency tracking. Yet the utilization of virtual inertia and damping coefficient might
jeopardize the system stability if the selection is inadequate and provide high computational burden.

5. Possibility Implementation of Frequency Self-Restoration Based on i-Droop Function and
DER Impacts

The penetration and utilization of RES entail the environmentally friendly and economical
operation of the whole system. Current research works and technologies deliver numerous solutions
and prospects to accomplish these objectives in distinct fields. Meanwhile, project-based studies,
developments, and integrations demonstrate the suitability and practicability of different methods.
However, there are still research gaps in delivering better performance, particularly for the droop-based
approach. The functions of the primary control should be further studied to expand functionalities that
do not limit the power sharing scope, thus increasing the reliability and flexibility of the whole system.
There is still a shortage of studies and reports on the use of droop control for voltage and frequency
regulation without relying on secondary control adjustment. The management of variable energy
generation and consumption is still challenging, including actively participating at the consumer side.
Figure 5 depicts the frequency and voltage self-restoration function that is presented by the authors
for an i-droop possibility technique. As noticed, the idea is to simplify the controller’s structure so
that it can reduce the complexity of the whole system control design and perform accurate power
sharing, while retaining voltage and frequency at their nominal values. As for the authors’ hypothesis,
it should consider an integrated controller that can fulfill both operations of frequency restoration
at grid synchronization in autonomous way. Theoretically, the operation solely relies upon the local
evaluation, which can achieve self-synchronization. Figure 6 exhibits the prediction of self-frequency
restoration under load variations suggested by authors.

The requirements for a simple and reliable operation as well as the autonomous coordination
strategies of different distributed energy resources (DERs) are gaining more attention. As known,
the selection of centralized or decentralized controller techniques has trade-offs between them.
Fully decentralized management is proven to offer flexibility enhancement, but a comprehensive
analysis is necessary to provide a secure and reliable operation of the system.

Further penetration of RES is anticipated in microgrid systems as they are distinguished as being
pollution-free and thus environment-friendly. Henceforth, additional efforts are essential to solving
the challenges in PQ issues correlated with RES and grid stability.

Grid synchronization is one of the vital areas in terms of a microgrid’s technical challenges,
primarily when the microgrid relies upon a dedicated synchronization unit. According to the studies
above, there is still a shortage of reports and reviews on the application of artificial intelligence in
a microgrid grid-connected synchronization. Significantly, a hybrid method can be initiated with
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other conventional means. In such a way, self-grid synchronization can be realized at fundamental
grid frequencies.

Figure 5. The potential self-restoration function for voltage and frequency in i-droop mode.

Figure 6. A self-frequency restoration at the fundamental value.

6. Conclusions

An ample summary has been delivered in the overview of the trends in the microgrid’s
state-of-the-art hierarchical control. The presented review exhibits the variability in the coordinated
controller schemes in terms of objectives and applications, which is vital in the development of an
intelligent microgrid. This review highlights the features of decentralizing and centralize technique,
as well as non-communication against communication approach. The primary and secondary level
is described showing different operating modes as a hierarchical control strategy, in terms of the
comparative study exhibits the advantages and disadvantages of each controller, particularly the
inner-loop, power sharing, voltage and frequency restoration, and grid synchronization schemes.

As for the primary control level, the prime responsibility is to realize power sharing, power quality,
flexibility, and reliability. It has been concluded that droop-based method is primarily applied due to its
simplicity, plug-and-play feature, and no communication-based requirement while ensuring proper
power sharing both in islanded and grid-connected modes of operation. However, it suffers from voltage
and frequency deviations, which becomes the main drawback that can jeopardize the microgrid’s stability
and performance. Therefore, numerous schemes have been proposed to overcome the droop-based
method’s inherent limitations. For instance, virtual impedances, adaptive control, and robust control are
control techniques that can deliver accurate reference signals even in an undesirable state. Secondary
level techniques have been identified whether or not implements in a centralized or decentralized
approach. According to studies, it has been distinguished that a centralized approach are adequate
for single-use in low-scale microgrid configurations. In contrast, the decentralized technique are
applicable for multiple users at large-scale microgrid systems, with both voltage-frequency restoration
and grid synchronization has been presented. Significantly requires to designs the controller that
enables synchronization mechanism, which can embed into the controller loop with no dependency on
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PLL unit. Through this study it finds that, there are shortfalls on self-synchronization in decentralized
manner that enables voltage and frequency restoration functionality in a manner that resemblance the
function of PLL. Henceforth, this concept are recommended for further study.

As aforementioned, the future trends in microgrid technologies are toward advanced decentralized
control methods with incorporated an artificial intelligence. The next potential research angles that need
to be accomplished for the further evolution of smart microgrids is a straightforward implementation
with a robust algorithm in advanced decentralized and self-synchronization techniques suggested by
i-droop technique that can be a bridge gap for the solution in order to have immunes against undesired
conditions. With simple development, less computational involvement and economically wise have
becomes an alternative solution for controller designers in order to have fast dynamic response and
robustness to high disturbances. Thus, it provides more adequate voltage-frequency self-restoration,
fast grid-connection, and yet providing an accurate power sharing that can be seen in next coming
papers before the system become fully autonomous.
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Abstract: Motivated by the problem of different types and variations of load in micro-grids, this paper
presents robust proportional-resonant controllers with a harmonics compensator based on the
internal model principle. These controllers ensure robust tracking of sinusoidal reference signals in
distributed energy resource systems subject to load variation with respect to sinusoidal disturbances.
The distributed generation resource and the resonant controllers are described using the augmented
state system approach, allowing the application of the state feedback technique. In order to minimize
the tracking error and ensure robustness against perturbation, a set of linear matrix inequalities (LMIs)
are addressed for the synthesizing of controller gains. Finally, results obtained in the simulation for
resonant compensators with the distributed energy system are presented, in which the controller is
applied to the CC-CA inverter.

Keywords: proportional resonant controller; robust control; distributed generation, microgrid; LMI

1. Introduction

Distributed energy resource (DER) systems are extensively used in micro-grids for the connection
of renewable energy sources and storage [1]. However, this system must be able to maintain in its
output voltage the same characteristics of the voltage provided by the electrical network to which
they are connected, i.e., constant frequency and voltage amplitude and sine waveform, even when
the primary network presents any failure (distortion, or even cut in the blackout supply). In practice,
it is sought that, in the event of a power outage, for example, the equipment connected to the DER
output will continue to operate normally to feed the locally connected loads. A basic method to obtain
the proposed results is to compare the DER output voltage with a sinusoidal reference signal of the
same waveform than the expected signal of the primary electrical network in normal operation [2].
However, the tracking of the reference signal becomes complex due to the non-linearities induced by
the association of the different types of loads and the LCL filter connected at the output of the inverter.
For example, the wide majority of electronic devices require direct current sources, equipped with
a rectifier stage with full diodes bridge, which represents a great source of harmonic distortions due to
the current waveform, and consequently the voltage in the grid [3].

Due to the critical nature of the loads, DER performance is regulated by international (ANSI/IEEE,
1986; IEC, 2011) standards [4], imposing conditions for the system’s transient and steady state

Appl. Sci. 2020, 10, 8905; doi:10.3390/app10248905 www.mdpi.com/journal/applsci

33



Appl. Sci. 2020, 10, 8905

performance. During transient, standards require a small variation in the output voltage amplitude
and a fast recovery time when a load is added or removed from the system. In steady state,
the output voltage of a DER must be a sinusoidal signal with constant amplitude and frequency. To be
considered as a sinusoidal signal when subjected to periodic disturbances caused by non-linear loads,
the output voltage THD (Total Harmonic Distortion) and IHD (Individual Harmonic) must be within
limits defined in these standards. A fundamental performance requirement of a distributed energy
resources (DER) system with sinusoidal output is to provide a voltage with low harmonic distortion,
which operates even under uncertainties, parametric variations and non-linearities induced by
phenomena such as delay and saturation and disturbances, which are very common in practice.
This objective can be fulfilled by choosing an adequate control law.

Recently, considerable literature has been produced around the theme of DER control in
microgrids to solve the above-cited problems. A major solution consists in the use of resonant
compensators, adjusted to act on the fundamental frequency of the output and most significant
harmonics. This method is based on the addition of harmonic modes (sine or cosine functions) in the
direct control loop. The ideal resonant controller presents infinite gain at the resonance frequency,
which allows us to reject the other components. The use of a set of resonant controllers in parallel
allows the rejection of disturbances and reference tracking at selected frequencies. However, a high
number of resonant compensators makes control tuning more complicated. Furthermore, it is necessary
to take into account the ranges of the load and its variation in the problem formulation. Although there
is a large number of published results dealing with DER system control, topics that still deserve further
investigation are the proposition of controller design methodologies according to specific standards
and the use of conditions based on Lyapunov functions for a more rigorous analysis of the stability
and robust performance of the closed-loop system.

In the literature, different controllers have been applied to control the distributed energy system
based on the inverter with an LC filter. In Reference [5], PID (Proportional Integral Derivative)
controllers were proposed. However, these ones were based on the voltage RMS value to obtain the
feedback signal. Thus, their use solves the problem of voltage amplitude, but, in general, it does
not solve the problem of distortion of the output voltage waveform [6]. A cascaded voltage/current
control based on a virtual impedance concept has been developed in [7]. This topology simultaneously
improves the injected grid current and local load voltage in island and grid connected microgrids.
An optimized proportional resonant (PR) controller taking account of the computational delay from
the digital control system was proposed in [8]. A controller based on a polytopic model was proposed
in [9] for the current controller development by taking into account the grid inductance variations
and soft saturation. To minimize output current ripples and reduce the steady-state current deviation,
a quasi proportional resonant controller was proposed in [10]. Generally, the proportional resonant
controller parameters are tuned manually. However, in [8], the authors proposed an optimization
tuning of the RCs controller. An adaptive PR controller was proposed in [11] to ensure a current
tracking under grid parameter variations. The authors used a fourth order filter with the adaptive
RC to estimate online the resonance frequency, and then the grid impedance variations. In order to
reduce the steady state current error, a modified proportional resonant controller used for the inner
current control loop and indirect vector controller at the rotating reference frame was proposed in [12].
A controller to compensate the resonance phenomena without knowing the system parameters and
without affecting the controller bandwidth in island microgrids was proposed in [13]. A three degrees
of freedom cascaded voltage/current controller based on H∞ theory was proposed in [14,15]. The main
advantage of this controller is to ensure the stability of the closed-loop system and the robustness
against parameter uncertainties.

To solve the above problems, the proposed method in this paper is based on the solution of
optimization problems addressed by linear matrix inequalities (LMIs) formulation, which allows
to concatenate the parameters of different resonant compensators acting in different frequencies.
The proposed design method includes an easy solution to synthetizing the gains of the resonant
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controller, for a given capacity of the applied load range to distributed generation system units in the
microgrid. The determination of gains is formalized through a convex optimization problem under a
set of linear matrix inequalities constraints. In this paper, state feedback is used in conjunction with
multiple resonant compensators that ensure the elimination of the steady state error and guarantee the
rejection of multiple harmonics of the fundamental frequency produced by non-linear loads. In order to
ensure the desired performances, the LMIs constraints construction is performed using a performance
criterion throughout a robust regional poles placement [16,17].

Following this paper, a mathematical modeling of a DER system is proposed in Section 2.
In Section 3 the proposed controller is presented, as well as the augmented model of the DER
system and proportional resonant controllers including harmonic compensator and disturbance.
Followed by the fundamental concepts for stability by Lyapunov and D-stability based on LMIs, which
are discussed in Section 4. The simulation results are presented in Section 5, where the obtained
values of the controller gains are given as well as considered DER system parameters, the controller
discretization method, and the structure of the digital implementation of the controller. In Section 5,
the results obtained with the use of the controller designed for the simulated system are discussed,
with the description of the tests used and discussion for each of the results. Finally, in Section 6,
the conclusions reached from the developments and the simulation of this contribution are presented,
as well as the definition of possible lines of development for the future.

2. Mathematical Modeling of DER System

2.1. System Description

In the distributed energy system, the conditioning of the output voltage is performed by a DC-AC
voltage inverter together with a second-order LC Low Pass filter, as shown in Figure 1. This figure
shows the electrical diagram of the inverter used and the polarity of the currents involved. The model
to be presented to the distributed energy system disregards the influence of the use of batteries and
filter capacitors. The switching circuit (or switching) composed of the IGBT (Insulated Gate Bipolar
Transistor) switches fed by the DC link voltage and the PWM (Pulse Width Modulation) modulator
is modeled by the average value of the voltage applied to the LC low-pass filter and which will be
represented by the input voltage VDER = kPWM VCC, where kPWM is the gain of the modulator and
VCC the voltage of the DC link.

Figure 1. Distributed energy system circuit.

2.2. Linear Load Model Considerations

From Figure 1, the linear load model considers two fundamental factors that serve to understand
the equations of modeling the DER system with a connected load.
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1. Considers the Yload admittance as a time-varying parameter, where only the admittance values
are known considering the two generic DER operating regimes: empty operation (minimum
admittance) and nominal (maximum admittance).

2. Considers current disturbances such as: sags, swell, notch or peak currents among other
disturbances, and are modeled by the disturbance current id [18]. The id current is also an input
to the DER system, but it is not controllable and its value will depend on the load, unlike the
VDER signal. In this way, the id current is considered as a disturbance to the system and its
presence is seen as a source of loss of system performance.

The load admittance value is in the range of [0.0001; 0.2 S], that is:

Yload =
1

Zload
, Yload ∈ Δ := {Yload : 0.0001 S ≤ Yload ≤ 0.2 S} (1)

2.3. State Space Modelling of DER System

The representation of the system in the state space describes the dynamic behavior of all the
energy storage elements in the distributed energy system, which in this case are the inductor L f and
capacitor Cf belonging to the inverter filter. To better understand the physical relationships between
the components of the inverter, Figure 2 shows the block diagram representation of the inverter that
shows the relationship between the capacitor voltage and the inductor current. The block diagram
facilitates understanding and later description by state variables. As the load connected to the DER
system can be linear or non-linear, this paper considers a representation of the load current in terms
of two distinct components. The first current, derived from the admittance Yload, which represents
a linear load that consumes a current iload. The second added to iload is an id current, which in this
paper represents disturbances or disturbances to the value of the load applied to the distributed
energy system. This current represents in a simplified way the model of non-linear loads connected to
a DER system [19,20].

The initial methodology to compose the state matrices requires the determination of the differential
equations that govern the behavior of the voltages and currents involved in the filter, according to the
polarity defined in Figure 1. Basically, two equations are used, one referring to the mesh equation and
the other one to the node equation as shown in (2).

VDER = vload + vL f + iL f RL f
iL f = iC f + iload + id

(2)

Knowing that the relationship between voltage and current in the inductor and capacitor are
given by:

iC f = Cf
dvC f

dt

vL f = L f
diL f
dt

(3)

The voltage drop in the internal resistance of the inductor is proportional to the current flowing
through it, as well as the voltage drop in the internal resistance of the capacitor. In this way, Equation (4)
is defined.

vRL f = RL f iL f

vRC f = RC f iC f
(4)

and taking into account the voltage drop in the resistance referring to the losses in the capacitor,
we obtain:

vload = vC f + vRc f

vload = vC f + iC f RC f
(5)
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From (3), the current is obtained at the series impedance of the capacitor, reaching the equation
for voltage at the load:

vload = vC f + Cf
dvC f

dt
RC f (6)

By replacing the two equations defined in (3), we obtain the relationship defined in (7).

iL f = Cf
dvC f

dt
+ vload · Yload + id (7)

And replacing the variable Vload of Equation (7) in Equation (6) we obtain Equation (8)

iL f = Cf
dvC f

dt
+ Yload

(
vC f+Cf

dvC f

dt
RC f

)
+ id (8)

We then arrive at an equation where there are only the measured variables related to each other
as presented in (9).

dvC f

dt

(
Cf + Yload · Cf RC f

)
= iL f − Yload · vC f − id (9)

As there is the presence of the capacitor voltage and its derivative, the following manipulation
can be done to arrive at the first state Equation (10), related to the capacitor voltage.

dvC f

dt
=

1
Yload

Cf

(
1

Yload
+ RC f

) iL f − 1

Cf

(
1

Yload
+ RC f

)vC f −
1

Yload

Cf

(
1

Yload
+ RC f

) id (10)

Having obtained the first equation of state from the law of nodes applied to the system,
the process for obtaining the second equation of state will now be started based on the law of meshes,
given by Equation (11).

VDER = vL f + vRL f + vC f + vRC f (11)

Using the study already carried out, the manipulation of the equation begins by substituting (3),
and (4), leading expression (12).

VDER = L f
diL f

dt
+ RL f iL f + vC f + RC f iC f (12)

Replacing (12) in (2), it takes the following expression:

VDER = L f
diL f

dt
+ RL f iL f + vC f + Cf RC f

dvC f

dt
(13)

From the replacement of Equation (10) in Equation (13) we have the expression in (14).

VDER = L f
diL f
dt + RL f iL f + vC f + Cf RC f

[
1

Yload
iL f

Cf

(
1

Yload
+RC f

) − vC f

Cf

(
1

Yload
+RC f

) −
1

Yload
id

Cf

(
1

Yload
+RC f

)
]

(14)

Factoring and manipulating algebraically (14) we obtain (15).

VDER = L f
diL f

dt
+ iL f

⎡
⎣RL f +

1
Yload

RC f(
1

Yload
+ RC f

)
⎤
⎦+ vC f

⎡
⎣1 − RC f(

1
Yload

+ RC f

)
⎤
⎦− id

1
Yload

RC f(
1

Yload
+ RC f

) (15)
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Finally, Equation (16) comes from the state of the inductor current, which is extracted through the
algebraic manipulation made in Equation (15).

diL f
dt = VDER

L f
− iL f

1
L f

[
RL f +

RC f
Yload(

1
Yload

+RC f

)
]
− vC f

1
L f

[
1 − RC f(

1
Yload

+RC f

)
]
+ id

1
Yload

RC f(
1

Yload
+RC f

) (16)

Defining the current in the inductor as state and the voltage in the capacitor as another state,
we obtain the following representation by the state variables:

ẋ(t) = Ax(t) + Bu(t) + Bww(t)
z(t) = Cx(t)

(17)

where x(t) =
[

x1 x2

]T
=
[

iL f vC f

]T
is the state vector, w(t) = id is the external disturbance

signal, u(t) = VDER is the control signal (PWM output), z(t) = vC f is the output of the system,

C =
[

0 1
]
, and it is observed in the model, that the current id is not a variable of known

characteristic and is modeled as a disturbance external to the model.

A =

⎡
⎢⎢⎢⎣

−
(

RL f
L f

+
1

Yload
RC f

L f

(
1

Yload
+RC f

)
)

− 1
Yload

L f

(
1

Yload
+RC f

)
1

Yload

Cf

(
1

Yload
+RC f

) −1
Cf

(
1

Yload
+RC f

)

⎤
⎥⎥⎥⎦ B =

⎡
⎢⎣ 1

L f
0

⎤
⎥⎦ , Bw =

⎡
⎢⎢⎢⎣

1
Yload

RC f

L f

(
1

Yload
+RC f

)
− 1

Yload

Cf

(
1

Yload
+RC f

)

⎤
⎥⎥⎥⎦ (18)

The DER system considered in this paper uses capacitors with low resistance RCf. Thus, in order
to simplify the model obtained in (17) and (18), it is considered that RC f = 0. Thus, starting from (18),
the following state matrices are obtained for the system defined in (17):

A (Yload) =

⎡
⎣ −

( RL f
L f

)
−1
L f

1
C f

−Yload
C f

⎤
⎦ , B =

[
1

L f
0

]

Bw =

[
0
−1
Cf

]
, C =

[
0 1

] (19)

Figure 2. Inverter block diagram with filter and load.

3. Proportional Resonant Controller Model

In order to develop an effective control method to ensure the tracking of a sinusoidal reference,
as well as the rejection of disturbances related to non-linear loads and harmonic compensation,
new methodologies have been developed. In this work, proportional resonant controllers [21], based on
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the Internal Model Principle [22], are used. The proportional resonant compensators impose poles on
the imaginary axis at frequencies equal to those of the reference, and show infinite gain in the resonance
frequency. As real loads do not drain current linearly (with a waveform equal to the waveform of the
applied voltage), the use of only one compensator at the fundamental frequency is not sufficient to
keep a satisfactorily low THD. In particular, for DERs, typical non-linear loads can be seen as current
disturbances in the frequency of the output voltage and in its multiples. The rejection of this type
of disturbance will be fundamental for the good performance of a DER system. Consequently, a set
of resonant compensators is used to reject each multiple harmonic frequency of the fundamental,
by allocation of gain in multiple frequencies [23,24]. The following transfer function is usually used in
the implementation of the ideal resonant controller.

CRh(s) =
s2

s2 + ω2
h

(20)

where ωh is the frequency of the signal to be followed or rejected. In some applications a damping
factor ξ is inserted at the poles of Equation (20) to avoid discrete implementation problems regarding
the position of resonant poles at the edge of the unit circle [25]. Given a resonant controller with
transfer function:

CRh(s) =
s2

s2 + 2ξωhs + ω2
h

(21)

Note that by making ξ = 0 the controller (21) reduces to (20). Controllers like this allocate
imaginary pole pairs at the frequency of the reference to be traced and the frequencies of the
disturbances to be rejected. To represent the multiple compensators, Equation (21) that models
the resonant compensator in general is repeated in parallel in the block diagram of the control system,
as shown in Figure 3. The multiple-resonant gain controller in (21) with proportional gain can be
rewritten as

GPRh(s) = k2 +
n

∑
h=1

kh+1 + kh+2s
s2 + 2ξhωhs + ω2

h
(22)

where kh+1 and kh+2 are the gains to be determined for each mode and k2 is a direct transmission term
applied to the input signal from the controller.

Figure 3. Block diagram of closed loop system for proportional resonant controller and inverter with
LCL filter.

Controller Based on the Principle of the Internal

Model The design of controllers that guarantee follow-up of references and the rejection of
disturbances is of great practical interest, being one of the main study topics for a number of
authors over the years. The Principle of the Internal Model (IMP) [22] is an essential theoretical
result for the design of a control system aiming at the follow-up of reference signals and rejection of
disturbance signals. Its fundamental idea is to generate, within the control loop, a signal with the same
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characteristics as the signals to be followed and/or rejected. The closed-loop system must contain all
persistent modes (which do not tend to zero at steady state) of the reference and disturbance signals in
order to guarantee perfect tracking/rejection [26] . Using the principle of superposition, a controller
based on the internal model principle simultaneously includes the reference and disturbance poles
for the asymptotically stable system and without the cancellation of mentioned poles and zeros,
the reference follow-up and rejection of disturbances with multiple harmonics, which occur in DERs
with typical non-linear loads, with zero error in steady state. According to the principle of the internal
model [22], in a feedback control system like the one in Figure 3, there is zero error in a steady state
if the closed loop system is asymptotically stable and the poles of the system include the poles of
reference to be tracked. In order to present the way in which the proportional resonant control tuning
method was developed, initially it is necessary to obtain the state-space representation of the transfer
function presented in Equation (22) [25,27], as in system (23):

η̇ = ACRη(t) + BCRe(t)
yCR = CCRη(t) + DCRe(t)

(23)

The representation of (23) in the state space is given by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

η̇r(t) =

⎡
⎢⎣

ACR1 · · · 02
...

. . .
...

02 · · · ACRn

⎤
⎥⎦ ηr(t) +

⎡
⎢⎣

BCR1
...

BCRn

⎤
⎥⎦ e(t)

yCR(t) =
[
CCR1 . . . CCRn

]
ηr(t) + [DCR] e(t)

(24)

where ηCR(t) ∈ R2n is the state vector of the multi-resonant controller, e(t) is the input signal, yCR(t) is
the output signal, and ACR, BCR and CCR are matrices of appropriate size.

ACRh =

[
0 ωh

−ωh −2ξhωh

]
, BCRh =

[
0
1

]
CCRh =

[
kh+1 kh+2

]
, DCRh = [k2]

(25)

for each resonant mode, that is, evaluated for each pair (ξh, ωh), h = 1 . . . n. The controller based on
the internal model principle has internal variables as output variables, which facilitates the design of
the controller gains by full state feedback, since all state variables are available for control, as shown
in Figure 3. The augmented system is composed only of the plant and proportional compensators
based on internal model principle in the frequency of the fundamental, ω0, and the characteristic of
rejection of load disturbances in the other harmonic frequencies. Generalizing the representation of
the plant with the controller, it can be written that :{

˙̃x(t) = Ãx̃(t) + B̃uu(t) + B̃ww(t) + B̃rr(t)
ỹ(t) = C̃x̃(t)

(26)

where w(t) = id
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x̃(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

x(t)
η1(t)
η2(t)

...
ηn(t)

⎤
⎥⎥⎥⎥⎥⎥⎦ Ã =

⎡
⎢⎢⎢⎢⎢⎢⎣

A (Yload) 02×2 02×2 · · · 02×2

−BCR1C ACR1 02×2 · · · 02×2

−BCR2C 0 ACR2 · · · 02×2
...

...
...

. . .
...

−BCRnC 02×2 02×2 · · · ACRn

⎤
⎥⎥⎥⎥⎥⎥⎦ , B̃u =

⎡
⎢⎢⎢⎢⎢⎢⎣

B
02×1

02×1
...

02×1

⎤
⎥⎥⎥⎥⎥⎥⎦

C̃ =
[

C 01×2 · · · 01×2

]
, B̃w =

⎡
⎢⎢⎢⎢⎢⎢⎣

Bw

02×1

02×1
...

02×1

⎤
⎥⎥⎥⎥⎥⎥⎦ , B̃r =

⎡
⎢⎢⎢⎢⎢⎢⎣

02×1

BCR1
BCR2

...
BCRh

⎤
⎥⎥⎥⎥⎥⎥⎦

(27)

4. Robust Controller Design Based on LMIs

D-Stability

The chosen D-stability region is given by the intersection of a semi-plane sector (ρ) to guarantee a
lower limit on settling time. Disc sector (σ) is used as an upper limit on settling time. It restricts the
magnitude of the eigenvalues indirectly and imposes a limitation on the control effort. LMI regions [28]
are defined as regions of the complex plane that can be described in terms of characteristic functions
as follows:

D = {s ∈ C : fD(s) < 0} , fDσ,ρ,θ (s) = L + sM + s̄MT (28)

Lemma 1 below presents a condition that ensures the quadratic D-stability of the closed loop
system (26) in a given LMI region.

Lemma 1. Quadratic stability of D-Region [28]. Consider the LMI region with a characteristic function
(28). Additionally, consider that M = MT

1 M2, where both M1 and M2 are matrices with k lines and rank
per complete line. The system (26) presents quadratic D-stability with region (28) if there are real symmetric
matrices P > 0 and U > 0 such that:⎡

⎢⎣ L ⊗P + He
{

M ⊗ (P (
Ã + B̃uK

))}
MT

1 ⊗ (PBΔ)
(

MT
2 U

)⊗ CT
Δ

M1 ⊗
(

BT
ΔP

) −U ⊗ I 0
(UM2)⊗ CΔ 0 −U ⊗ I

⎤
⎥⎦ < 0 (29)

When the LMI region of interest is formed by the intersection of other LMI regions, quadratic
D-stability is guaranteed when the same matrix P meets (26) simultaneously with the characteristic
functions of each region [29].

In particular, the region of our work can be described as D = Dσ ∩Dρ, where

Dσ = {δi ∈ C : � (δi) < −σ, σ � 0, σ ∈ R} , Lσ = 2σ; Mσ = 1

Dρ = {δi ∈ C : |δi + q| < ρ, ρ > 0, ρ ∈ R} , Lρ =

[
−ρ q
q −ρ

]
, Mρ =

[
0 1
0 0

]
(30)

The following theorem details the conditions in the form of LMIs for the positioning of the
eigenvalues of Ã + BΔΔ(t)CΔ + B̃uK in D = Dσ ∩Dρ

Remark. One can notice that the quadratic D-stability is wider than the H∞ condition. Indeed, the quadratic
D-stability allows to guarantee the stability of the uncertain system as well as the H∞ performance. We refer the
interested reader to [28] and the references therein.
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Theorem 1. When real scalars σ and ρ are known, the closed-loop system ˙̃x(t) =
(

Ã (Yload(t)) + B̃uK
)

x̃(t)
is asymptotically stable for all (Yload)min ≤ Yload(t) ≤ (Yload)max , and the poles are located in the region
S(σ, ρ), if there exists a symmetric positive definite matrices Q ∈ R(n+2h)×(n+2h), W ∈ R1×(n+2h) such that
the following LMI are feasible:

Ã (Yload)min Q + QÃT (Yload)min + B̃uW + B̃T
u WT + 2σQ < 0

Ã (Yload)max Q + QÃT (Yload)max + B̃uW + B̃T
u WT + 2σQ < 0

(31)

[
−ρQ Ã (Yload)min Q + B̃uW

QÃT (Yload)min + WT B̃T
u −ρQ

]
< 0

[
−ρQ Ã (Yload)max Q + B̃uW

QÃT (Yload)max + WT B̃T
u −ρQ

]
< 0

(32)

With: He
{

ÃQ + B̃uW
}

and He
{

ÃQ − B̃uW
}

represent the hermitian block
(

Ã (Yload)
max
min Q+

QÃT (Yload)
max
min + B̃uW + B̃T

u WT) ,
(

Ã (Yload)
max
min Q − QÃT (Yload)

max
min + B̃uW − B̃T

u WT) , respectively.

min
Q,W

γ subject to :

Q = QT > 0, optimization problems in (29) and (30)
(33)

5. Simulation Results and Discussion

Using the robust control law presented in the previous sections for synthesizing gains of the
distributed energy system, this section groups results from simulations tests. The numerical values of
electrical components, LCL filter and resistances and capacitances parameters associated with each
load situation for design purposes of the DER controller are listed in Table 1. The reference signal to
be followed by the output voltage is sinusoidal with an RMS value of 127 V and frequency of 60 Hz.
The inverter switching frequency is 21.6 kHz, 360 times greater than the frequency of the reference
signal. The simulation environment is given by Matlab/Simulink for the DER system with linear and
non-linear test loads, including the generation of PWM signal for inverter switching in a half bridge
and DER control loop, with a controller properly discretized by zero-order hold with a sampling
frequency of 21.6 kHz as shown in Figure 4. The LMI parameters chosen in this paper to improve the
dynamic response and stability in steady-state are shown in Table 2.

Figure 4. General scheme of the distributed energy resource (DER) system with the proposed control.
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Table 1. DER system parameters.

Parameter Value

Nominal power 5.2 KVA
RMS output voltage 127 V

Frequency 60 Hz
Output power factor 0.7

Inductance L f = 1 mH
Parasitic resistance of the inductor RL f = 0.015 Ω

Capacitance Cf = 250μF
Capacitive parasitic resistance (considered) RC f = 0 Ω

Uncertain linear load impedance Ymin, Ymax = [5; 10, 000]Ω
DC bus capacitances C1, C2 = 6600 μF

DC bus voltage Vcc = 520 V

Rlin1 = 32.92 Ω, Rlin2 = 8.23 Ω
Load parameters Rsnlin1 = 0, 73 Ω, Rsnlin2 = 0.75 Ω

Rnlin1 = 37.2 Ω, Rnlin2 = 16.5 Ω
Cnlin1 = 3010μF, Cnlin2 = 9010μF

Table 2. Linear matrix inequalities (LMI) parameters used for controller design.

Parameter Value

σ (Sigma position) 100
ρ (radius of the circle) 20,000

c (center of circle) 0

Figures 5 and 6 show the voltage and current curve under load steps in the period of two
seconds considering additional load steps of 20% at t = 0.2 s and of 80% at t = 0.6 s. Following by
a subtractive step of t = 80% at t = 1.4 s and, finally, a subtractive step of 20% at t = 1.8 s. In Figure 5a,
a cycle (16.67 ms) of the voltage (127 V RMS) and output current (Figure 6a) of the DER system with
100% linear load. In this figure it is evident how the voltage curve fits almost perfectly over the
reference curve. Similarly for the current curve, which has an almost sinusoidal appearance with and
without controller with fundamental frequency and a harmonics compensator (HC). Figures 5b and 6b
show voltage and output current curves from the DER system with 100% non-linear load with HC,
differently as for linear load, in non-linear load, the deformation of the current curve is more
pronounced, which is caused by this type of load. Figures 5c and 6c show the simulation results
for voltage and current without HC in the controller; from these figures we can seen that the non-linear
load creates a voltage deviation voltage that increases proportionally to the connected step load. In the
linear and non-linear load with HC, the shape of the current is slightly deformed compared with 100%
non-linear load without HC. However, both non-linear loads present small transients and overshoots
for additive and subtractive load steps contrary to the linear load, which has voltage and current
responses that are perfectly sinusoidal.

Figure 7 shows the values of the empty RMS voltage, with 20% and 100% linear load, and with
20% and 100% non-linear load, respectively, of the DER system. In this study, we take account of
the steady state voltage without the transients of connected and disconnected loads. For the linear
load, we observe that the RMS value of the voltage remains satisfying the most stringent standard,
which is also the case for the non-linear load with the controller use HC. However, for the non-linear
load without HC, when the addition of 100% non-linear load occurs, the RMS value of the voltage
slightly exceeds (2%) the limit of the IEEE 944 standard. Figure 8 shows the THD of the DER system
output voltage for all additive and subtractive steps with different periods for linear and non-linear
loads. In the cases where the PR controllers are used with harmonic compensators, the THD with 25%
and 100% linear/non-linear loads varying meet the IEEE and IEC standards for the proposed LMI
approaches, as shown in Figure 8a,b. However, when the PR controllers are used without harmonic
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compensators, the THD with 25% non-linear load satisfied the IEC 62040-3 standard and IEEE 944
standard norms but did not satisfy the norms with 100% non-linear load. For each case, the THD
values of the DER system with empty, with 20% and 100% linear/non-linear load are shown in Table 3.

It is observed in Figure 9a–c that the system is running empty and, when the step non-linear load
increases (with and without HC in controller), the voltage deviation increases, which confirms the
results shown in Figure 5. The increasing of voltage deviation is more important when not using a
harmonics compensator in the controller. However, when the system undergoes a subtraction of the
non-linear load step, the voltage deviation decreases. It is important to note that this graph does
not take into account load insertion or removal transients. Our interest in this case in assessing this
graph is the voltage in steady state. However, it is possible to observe that transients appear in the
voltage deviation value due to the loads connection/disconnection. These transients do not impact the
proposed control system performance because of the output voltages’ small variation in the amplitude
and the fast recovery time. In fact, transients remain in compliance with IEEE 944 standard limits.

(a) (b) (c)
Figure 5. DER output voltage curve different loads. (a) 100% linear load with HC. (b) 100% non-linear
load with HC. (c) 100% non-linear load without harmonics compensator (HC).

(a) (b) (c)
Figure 6. DER system output current curve. (a) 100% linear load with HC. (b) 100% non-linear load
with HC. (c) 100% non-linear load without HC.

Table 3. THD voltage with different load steps.

Operation Mode Empty Load 20% Load 100%

Linear load 0.09% 0.088% 0.087%
Non-linear load with HC 0.062% 0.8107% 2.328%

Non-linear load without HC 0.12% 3.547% 9.71%

44



Appl. Sci. 2020, 10, 8905

(a) (b) (c)
Figure 7. RMS value of DER system output voltage. (a) 100% linear load with HC. (b) 100% non-linear
load with HC. (c) 100% non-linear load without HC.

(a) (b) (c)
Figure 8. THD value of DER system output voltage. (a) 100% linear load with HC. (b) 100% non-linear
load with HC. (c) 100% non-linear load without HC.

(a) (b) (c)
Figure 9. DER system output voltage deviation. (a) 100% linear load with HC. (b) 100% non-linear
load with HC. (c) 100% non-linear load without HC.

6. Conclusions

The distributed generation resource systems are being used in the micro-grid applications and,
therefore, the concern with their reliability grows as the currents requested from DER systems have a
non-linear character. In this paper, a multiple resonant compensator strategy through the robust control
theory is proposed for guaranteeing stability and performance for different types of loads including
the problem of harmonic cancellation and attenuation of disturbances in the output voltage of DER
systems caused by non-linear loads. The stability and performance criteria based on Lyapunov’s theory
are used and described using the formulation by linear matrix inequalities, where it was possible to
establish design criteria for determining the gains of the multiple resonant compensators by allocating
poles in order to guarantee a good dynamic performance and harmonic rejection. The simulation
results prove that the controller studied in this work presents advantages in relation to the dynamic
performance and in a steady state against load variations. In future work, an adaptive frequency system
will be added to resonant compensators to increase robustness when a variation in the frequency of the

45



Appl. Sci. 2020, 10, 8905

reference signal is allowed. Another important point is to use Anti Windup compensators in parallel
with the resonant to avoid saturation of the control signal.
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Abstract: In this study, a microgrid scheme encompassing photovoltaic panels, an energy storage
system, and a diesel generator as a backup supply source is designed, and the optimal placement for
installation is suggested. The main purpose of this microgrid is to meet the intrinsic demand without
being supplied by the upstream network. Thus, the main objective in the design of the microgrid is
to minimize the operational cost of microgrid’s sources subject to satisfy the loads by these sources.
Therefore, the considered problem in this study is to determine the optimal size and placement
for generation sources simultaneously for a microgrid with the objectives of minimization of cost
of generation resources along with mitigation of power losses. In order to deal with uncertainties
of PV generation and load forecasting, the lognormal distribution model and Gaussian process
quantile regression (GPQR) approaches are employed. In order to solve the optimization problem,
the lightning attachment procedure optimization (LAPO) and artificial bee colony (ABC) methods are
employed, and the results are compared. The results imply the more effectiveness and priority of the
LAPO approach in comparison with ABC in convergence speed and the accuracy of solution-finding.

Keywords: microgrid; optimization; lightning attachment procedure optimization (LAPO) algorithm;
photovoltaic panel; uncertainty

1. Introduction

In recent years, the increase in electrical demand, the rise of crude oil and natural
gas prices, restructuring and the growth of privatization, and the advent of modern
technologies have been led to revolutionary changes in the electricity industry and the
assumption of specific attention to distributed generation (DG) technologies [1–3]. DG
sources or small-scale electricity sources can generate power in the range of 1 kW to 10 MW
in the location of the load or in the vicinity of consumption centers. DG technologies
bring tangible benefits such as peak clipping (peak shaving), improvement of reliability
indices, reduction in power losses due to being close to consumption places, alleviation
of voltage drops and improvement of voltage profile, etc., for distribution networks. In
addition, the integration of renewable clean energy sources, such as solar, wind, and fuel
cell sources, has promoted the power system planners and experts to use these DG units as
much as possible [4,5]. The increase in the pervasiveness of DGs and the combined use of
various types of DG sources has resulted in the emergence of the microgrid concept. The
microgrids are generally defined as small-scale power systems in distribution voltage level
encompassing some DGs and some electrical and thermal loads usually accompanied by
energy storage systems (ESS) [6,7].
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In traditional power systems, the power generation was used to be centralized, and the
power flow was always unidirectional from generation and transmission systems toward
distribution systems and loads. However, in the recent decade, the structure of power
systems has evolved so that modern power systems are experiencing more interest in the
use of DG systems at the distribution level [8]. According to the rules and regulations in
different countries, various definitions are given based on the place of DG installation,
the purpose of use of DG, and their scale of generation (DG sizing). However, a common
definition that overlaps all those definitions can be expressed as a small-scale generating
unit with limited scalability, which is intended to be used in a distribution network or
demand-side [9–16].

Determination of the optimal size of DG units and the optimal place for installation
of them is distribution network subject to satisfy all constraints of the grid and minimize
the incurred cost to the grid’s operation have assumed particular attention since the last
decade. In this regard, a wide diversity of studies is conducted on this subject, and various
methods are proposed in order to solve and assess this problem. In [17], a microgrid
scheme including a photovoltaic (PV) system is proposed, in which the microgrid works in
grid-connected and isolated modes. In this work, the objective of the study is to minimize
the power losses in the distribution grid. The authors in [18] have proposed an isolated
microgrid scheme, which includes PV, wind turbine, diesel generator units, and the object
is to minimize the overall cost. A hybrid system model is presented in [19], in which
various types of DGs are used. However, as a critique, in this study, the places of DG
units are supposed to be fixed, and no optimal placement for DGs has been done. In
such a circumstance, by altering the installation location, the determined sizes are not
valid as optimized scale anymore. Another research is carried out on the design of hybrid
energy systems in [20]. The downside of this study is that the size, installation placement,
and optimal performance are not considered into account simultaneously, and they are
assessed separately. Such an evaluation cannot assure the optimal design and the optimal
performance point of the hybrid system. Thus, all the optimization variables attributable
to the design of hybrid systems and microgrids must be optimized at the same time
rather than separately. Another critical factor is the consideration of uncertainties in PV
generation and demand forecasting, which is not well addressed in the previous works.
The authors in [21] have investigated a multi-objective DG placement and sizing problem
subject to reduce loss and to enhance the voltage profile using the shuffled frog leap
algorithm. Optimal sizing of renewable energy resources with the goal of loss reduction in
distribution grids using the ant lion optimization method is presented in [22]. A battery
placement problem is also presented in [23], in which it is objected to reducing losses in
a distribution grid with high penetration of solar sources. In [24], optimal allocation and
sizing of renewable distributed generation are investigated. Reference [25] has delved
into the optimal sizing and placement of RESs in distribution systems considering load
growth. The optimal allocation of DG units for a distribution network is presented in [26].
In addition, optimal sizing renewable and dispatchable DGs in distribution networks
has been investigated in [27]. The authors in [28] have proposed a new method to deal
with the optimization problem of optimal placement and sizing of energy storage systems
subject to improve the reliability of hybrid power distribution networks encompassing
renewable energy sources. In [29], a multi-objective dynamic and static reconfiguration
model with the optimized placement of solar unit and battery storage system is proposed.
A meta-heuristic algorithm is employed to find the optimal size and installation location of
DG sources with the objective of loss reduction in [30,31]. As it is clear, none of the works
in the literature has paid attention to the uncertainties of distribution-side resources. In
other words, the uncertainties of load and demand-side generation sources can have a
great impact on the operation and planning of the distribution sector as well as microgrids
that should be taken into account. In [32,33], lightning attachment procedure optimization
is employed to solve a non-smooth and non-convex dispatch problem, including uncertain
variables pertaining to wind power sources. The authors in [34] also have presented a
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novel method to deal with the uncertainty of load forecasts as well as the uncertainty of
renewable generation sources to solve a placement problem. Similar studies are conducted
in which the uncertainty of load, price, and renewable sources are investigated [35–37].

In this paper, a hybrid energy system is designed, which is regarded as a microgrid in
a distribution network. The costs of operation, maintenance, and investment are also taken
into account. In order to deal with uncertain variables of solar generation, the lognormal
distribution model is employed to exploit the trends and patterns of solar irradiance. In
addition, the Gaussian process quantile regression is applied as the forecasting approach
to deal with uncertainties of load forecasting. A novel optimization algorithm is employed
in order to optimize the performance and to find the optimal location for the installation
of DGs. It is supposed that the microgrid is connected to the upstream network. Hence,
the cost of energy exchange with the main grid is also taken into consideration in the
objective function. The proposed scheme is implemented on the 69-bus IEEE test system
in order to evaluate the effectiveness of the model. In Section 2, the problem outlines are
described. In this section, the objective function and the constraints of the problem are
expressed. In Section 3, the employed optimization algorithm is explained, and in Section 4,
the simulation and results are discussed. Ultimately, in the last section, the conclusions
are drawn.

2. Problem Outlines

As declared, the purpose of this study is to design a microgrid scheme subject to
supply the loads in a distribution feeder or network. This microgrid consists of a PV
panel, an energy storage system, and a diesel generator as a backup source of energy. The
primary goal of this study is to determine the optimal size of the PV panel, diesel generator,
and the sufficient quantity of batteries to maintain an uninterrupted supply for the loads
with respect to the objective function of the problem. Hence, at first, the demand for the
microgrid must be specified.

2.1. Microgrid’s Demand

The contemplated microgrid is a local distribution network that has a variable load
during a day. With regard to the incremental trend of consumption of residential and
industrial loads at the early hours of the evening, the peak of the demand curve is supposed
to be in the evening. In addition, with regard to the consumption pattern of industrial loads,
another peak exists around midday hours. Thus, in order to consider the load pattern of
the microgrid, a 24 h load profile with two peaks is taken into account as figured out as
follows. Figure 1 demonstrates the normalized demand of the microgrid. It is noteworthy
to assert that the load of the distribution network is also determined in a similar way.

Figure 1. The normalized demand curve of the microgrid.

2.2. Microgrid’s Supply Strategy

The first goal of size determination of microgrid’s generation sources is to supply the
loads in this micro-scale grid. The PV panels have a vital role in power provision for the
loads. However, when PV panels cannot generate sufficient power, the energy storage unit
and diesel generator unit are responsible for meeting the loads. Thus, the optimal supply
strategy can be express as follows:
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2.2.1. Enjoying Photovoltaic Panel’s Power

A. If the PV generation is more than the grid’s demand and the batteries are not fully
charged, the excess PV generation should be stored in the batteries;

B. If the PV generation is more than the grid’s demand and the batteries are fully charged,
the excess generation of PV panels must be sold to the distribution network;

C. If the PV generation is lower than the grid’s demand, a portion of the loads will
be supplied through PV generation, and the rest of the demand must be procured
through the energy storage system;

D. If the PV generation is lower than the grid’s demand and the battery system is not
adequate to supply the loads entirely, the loads will be satisfied by PV panels and
energy storage units as much as possible, and the rest of the loads must be met by the
diesel generator;

E. If the total generation by PV panels, batteries, and the diesel generator is not suf-
ficient for satisfying the load, the load-shedding measure must be imposed for the
excessive demand.

2.2.2. Being Deprived of PV Generation

A. If the batteries’ capacity is adequate to supply the demand, the loads will be served by
the batteries solely;

B. If the batteries’ capacity is not sufficient to supply the demand, the rest of the loads
must be served by the diesel generator;

C. If the demand is more than the combined capacity of PV panels and the diesel genera-
tor, the rest of the loads must be remained unsupplied by load shedding.

It should be noted that the unsupplied load cannot be higher than 25% of the total
demand of the grid. In addition, the capacity of the diesel generator must be so determined
that it is not allowed to operate less than 20% of its maximum capable generation.

2.3. The Objective Function

When the suggested capacities for the generation sources are adequate to supply the
microgrid’s loads properly, the excess generated power can be sold to the distribution
network. However, it must be determined which bus in the distribution network must be
chosen, from which the excess generation will be injected into the distribution grid. The
injection point has a considerable impact on the performance of the distribution grid. Thus,
the location of the microgrid is an important item. Hence, the optimal placement of the
microgrid must be investigated. The objective function for the optimal placement of the
microgrid can be expressed as follows:

min f = CPV + Closs + Cbat + Cdg − Bex (1)

2.3.1. Power Losses

In order to model the power losses, the losses are supposed to be as a power, which
must be bought from the upstream network. Thus, it is modeled as a cost in the overall
objective function equation. This objective can be expressed as follows:

Closs =
365

∑
d=1

24

∑
t=1

Nb

∑
i=1

Pi,t,d
loss

× ρt,d (2)

In the above equation, ρt,d denotes the price of electricity on the day of d at hour t, and
Pi,t,d

loss stands for the number of losses on the day of d at hour t in the ith line. It is noticeable
that the price of electricity at peak, mid-peak, and off-peak hours is different.

2.3.2. The Cost Related to the Photovoltaic System

Deployment of solar energy incurs installation cost of PV panels, operation and
maintenance cost, and replacement cost. Thus, the cost pertaining to PV panels can be
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modeled as below. The subscript of PV a is a symbol for a photovoltaic unit, O&M addresses
operation and maintenance cost, inv indicates investment cost, and rep corresponds with
replacement cost.

CPV = CPV_inv + CPV_O&M + CPV_rep (3)

2.3.3. The Battery Cost

The energy storage facility in this work is a set of batteries that have similar costs,
such as the PV panel, and can be formulated as Equation (4). The subscript of bat stands
for battery energy storage system, O&M addresses operation and maintenance cost, inv
indicates investment cost, and rep corresponds with replacement cost.

Cbat = Cbat_inv + Cbat_O&M + Cbat_rep (4)

2.3.4. The Cost Pertaining to Diesel Generator

The cost of such equipment consists of investment cost, maintenance cost, and replace-
ment cost. The subscript of dg stands for the diesel generator, O&M addresses operation and
maintenance cost, inv indicates investment cost, and rep corresponds with replacement cost.

Cdg = Cdg_inv + Cdg_O&M + Cdg_rep (5)

2.3.5. The Cost Pertaining to Load Shedding

If the load-shedding measure has to be imposed, this matter incurs a cost to the model,
which must be included in the objective function of the problem.

2.3.6. The Profit Yielded by Excess Generation Selling

If the power generated by the PV panel is higher than the demand of the microgrid and
charging capability of batteries, the excess power can be sold to the distribution network
and earn a profit. The obtainable benefit (profit) can be calculated by the following equation:

Bex =
365

∑
d=1

24

∑
t=1

Pt,d
ex × ρt,d (6)

In above, Bex is the benefit (profit) gain by the sale of surplus generation, and Pt,d
ex

shows the amount of surplus power on the day of d and at hour t.

2.3.7. Constraints

The optimization problem is accompanied by a set of technical constraints that restrict
the solution space and must be considered in the model. These constraints can be defined
as follows:

The power balance equality constraint during all intervals of a day:

24

∑
t=1

Pt
PV + Pt

dg + Pt
bat − Pt

D_mic = 0 (7)

The maximum permissible load shedding in the microgrid:

24

∑
t=1

Pt
sh ≤ 0.25 ×

24

∑
t=1

Pt
D_mic (8)

Generation balance in the distribution network must be observed.

24

∑
t=1

Pt
g + Pt

ex + Pt
slack − Pt

loss − Pt
D_dis = 0 (9)
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The boundaries of the photovoltaic panel and diesel generator must be met.

0 < PPV < Pmax
PV (10)

0 < Pdg < Pmax
dg (11)

The voltage of buses must be restricted within their permissible range.

Vmin < V < Vmax (12)

The power flow passing through the lines must be restricted.

Fb < Limitb (13)

In the above equations, Pt
PV , Pt

dg, and Pt
bat represent power generation of PV panel,

diesel generator, and batteries, respectively. Moreover, Pt
D_mic indicates the consumption

of the microgrid at hour t. The shed load of the microgrid is shown by Pt
sh. In addition,

Pt
g, Pt

ex, Pt
slack, Pt

loss, and Pt
D_dis represent the power generated by the generators in the

distribution network, the exchanged power of the microgrid with the distribution network,
the power maintains from the slack bus of the distribution network, the power losses in the
distribution network, and the consumption of the distribution network at hour t. Moreover,
Pt

PV , Pt
dg, V, Vmin, Vmax, Fb, and Limitb stand for the maximum capable power generation by

PV panel, the maximum capable power generation by a diesel generator, bus voltage, the
minimum and maximum permissible voltage of buses, the flow passing through branch b,
and the thermal limit of branch b.

The prevailing constraints of the problem can be divided into two general categories
of network constraints and storage constraints that must always be observed when seek-
ing for optimal point in the solution space. Network constraints include the following
two constraints:

As the thermal limit constraints express, the feeder power flow is not allowed to
violate a specific cap.

Sk ≤ limitk (14)

The hourly constraints pertaining to the energy storage unit consist of two constraints
of the maximum storage capacity and charge/discharge rate limits. This limitation ex-
presses that the storage charge level must always be below the maximum storage capacity
and can be formulated as follows:

Pmin_ch × Ich(t) ≤ Pch(t) ≤ Pmax_ch × Ich(t) (15)

Pmin_dch × Idch(t) ≤ Pdch(t) ≤ Pmax_dch × Idch(t) (16)

SoCmin ≤ SoC(t) ≤ SoCmax (17)

SoC(t + 1) = SoC(t)− Pdch(t)× Idch(t) + Pch(t)× Ich(t) (18)

Ich(t) + Isch(t) ≤ 1 (19)

In this equation, t represents the time, Pch and Pdch denote the charge and discharge
rates, and SoC stands for the state of charge of the storage unit that has a maximum storage
capacity limit and a minimum storage capacity boundary owing to the long-run operation
and maintenance facets. Each storage unit can be charged or discharged by a limited
amount within an hour. The last equation also ensures that the storage unit cannot operate
at charge and discharging modes simultaneously. In this equation, I(t) is a binary variable.

2.3.8. The Uncertainty Modeling for PV Sources

The nature of solar power and photovoltaic irradiance can be represented by various
types of distribution functions. One of the most efficient types for this purpose is the
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lognormal probability distribution function (PDF), which effectively and precisely charac-
terizes the intensity of irradiance on a typical day. The PDF of solar irradiance (ζs) trailing
the lognormal distribution function with a mean value of μs and standard deviation of σs
that is presented in Equation (20).

f
(

ζs

∣∣∣μs, σ2
s

)
=

1
σ2

s
√

2π
exp

{
−
(
(log(ζs)− μs)

2

2σ2
s

)}
∀ζs > 0 (20)

The solar power generation (PPV) depends on the solar radiation intensity, also known
as solar irradiance, which is shown by ζs. The generation curve can be different based on
different items such as the location and type of installation, the technology of solar panels,
as well as the ambient temperature. A typical photovoltaic irradiance-power curve is given
in Equation (21).

PPV(ζs) = APVηpvζs (21)

ηpv = η0[1 − 0.0042 (
ζs

18
+ Ta − 20)] ηinv (22)

The amount of power generation by a solar panel depends on different factors, which
can be estimated by Equations (21) and (22). Above, η stands for efficiency, and Ta denotes
the ambient temperature.

In order to model the intermittencies, a dataset of historical records associated with
the solar radiation. Such irradiance datasets can effectively be matched with a lognormal or
Weibull distribution function. These distribution models usually have high mathematical
compatibility with various natural phenomena. The PDF helps to generate randomly
derived samples within the occurrence range while specifying a confidence range to
eliminate low-probable cases. For each scenario, a random value is derived from the
lognormal model. If the number of scenarios is high, various scenario reduction techniques
can be employed that merge similar cases into one class. Based on the model objectives,
the operation state can be adjusted within the confidence range with respect to the level of
risk chosen by the operator. The operator can arrange the operation point in a risk-averse
zone to ensure a reliable and secure operation, although it incurs higher costs. On the other
hand, the operation of the grid, with respect to the whole uncertainties, can be stated in
a high-risk zone by ignoring less-probable incidences to boost the profitability and the
economy of the model.

2.3.9. Load Forecast Uncertainty

Load forecasting is a critical item in many planning applications in power systems.
Load forecasting can also be performed in different intervals for various purposes. Load
forecasts are dependent on weather conditions (temperature, humidity, air brightness,
wind speed). In addition, each day of the week has its own load curve. Load consumption
curves on holidays and non-holidays are also different from each other. In different seasons
of the year, according to the factors specific to each season, such as day length, the load
consumption pattern will be different. Short-term load forecasting is a pivotal data needed
for running a day-ahead market. The results of STLF are employed by GENCOs to discover
prices with regard to the way other market participants may act. Price forecast signals are
also applied to bidding strategy techniques to maximize profitability. The system operator
will clear the market for the next-day delivery according to the forecasted values along with
the bids from GENCOs. ISO is responsible for balancing the market between generation
level and the forecasted demand at each interval. However, with regard to the inaccuracy
of forecasts, there is always a violation that must be redressed by storage units or other
controlling actions such as load shedding.

There are multiple approaches to deal with load forecasting. The most common meth-
ods are the time series method, regression methods, and intelligent methods. Intelligent
methods are also classified into several categories such as artificial neural networks, fuzzy
logic-based methods, also ANFIS models, wavelet transformation methods, as well as
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support vector machines. In order to deal with uncertainties, probabilistic models can
be integrated into the employed load forecasting paradigm. In this study, the Gaussian
process quantile regression (GPQR) is employed to deal with uncertainties [38]. Due to
the stochastic nature of load patterns as well as various external factors such as weather
conditions, calendar effects, and seasonal factors, the power demand signals exhibit in-
termittent and volatile characteristics. Hence, a prediction scheme is needed to provide
the most probable distribution of power demand patterns rather than a crisp value. A
Gaussian process model is a set of random variables, in which any member corresponds
with a probability distribution that can be represented by the following function:

f (l) ∼ GP
(
μ(l), COV

(
l, l′

))
(23)

In this equation, μ(l) and COV(l,l′) denote the mean and covariance functions that can
be calculated as follows:

μ(l) = E{ f (l)} (24)

COV
(
l, l′

)
= E

{
[ f (l)− μ(l)]× [

f
(
l′
)− μ

(
l′
)]T

}
(25)

The covariance function illustrates the similarity between data points. One of the most
widely-used functions for describing covariance is the squared exponential (SE) model that
can be represented as follows:

COVSE
(
l, l′

)
= θ2

f exp

(
‖l − l′‖
θ2

length

)
(26)

The parameters θf and θl control the scale and length. With regard to the differen-
tiability of this covariance, which implies that the Gaussian process is very smooth, a
simplified alternative, known as Matern covariance, can be replaced because, in practice,
no phenomena do not reflect such a strong smoothness.

COVMat
(
l − l′

)
= σ2 21−v

Γ(v)

(√
2v

l − l′

i

)v

Bv

(√
2v

l − l′

i

)
(27)

In the above, Bv represents the modified Bessel function, in which v and i are both
positive hyperparameters. To simplify this covariance function, the value of v is supposed
to be v = p + 1/2. In this parameter, p is a non-negative integer. The value of v is set as 5/2 or
3/2 in most previously conducted research studies, which subsequently and, respectively,
are named Mat5 and Mat3. The probabilistic prediction model also has another covariance
function named the period covariance, which is useful to model periodic phenomena and
can be described as follows:

COVMat
(
l, l′

)
= θ2

f exp

(
− 2

θ2
length

sin2
(

π
l − l′

p

))
(28)

Typically, the load forecasts are highly influenced by a variety of features that can be
defined by Equation (29). According to this equation, load at time t depends on the similar
hours (t∈{0, 24}) throughout the historical records, the day of the year (d∈{1, . . . , 365}), the
value of the load at similar intervals, the value of weather variables such as temperature,
and the price at similar intervals.

ŷ = f (t, d, vl , vw, price) (29)

GPQR method seeks for the relationships and correlation between inputs and output
based on a probabilistic framework. Quantile regression (QR) delineates a type of regression
analysis that detects and exploits the relationships between quantiles of the conditional
distribution of a response variable and input variables. The least absolute deviations
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regression integrates the median of the conditional distribution, which is called the norm
regression case of quantile regression shown by L1. Unlike least-squares regression and
norm regression, the quantile regression encompasses minimization of the summation
of asymmetrically weighted absolute residuals. Hence, QR can find more sophisticated
relationships between inputs and outputs with better precision. QR has more flexibility
and compatibility to deal with large datasets, such as market analysis or econometrics.
With regard to the accuracy of predictions, the loss function can be described as follows:

Lτ(εi) =

{
τεi i f εi ≥ 0
(τ − 1)εi i f εi ≥ 0

(30)

The required quantile is defined by τ∈[0, 1] and εi = yi − ŷi so that yi is the actual
model and ŷi denotes the predicted quantile model. So far, different linear programming
methods are employed to achieve the desired quantiles through direct loss function min-
imization, which leads to the maximization of a likelihood. To solve this drawback, the
Gaussian process is incorporated into the QR model. The density function of loss based on
this model can be represented as follows:

L(t|μ, σ, τ) =
τ(1 − τ)

σ
exp

[
− t − μ

σ
(t − I(t ≤ μ))

]
(31)

where τ∈[0, 1] is responsible for shaping and controlling the skewness of the distribution
curve, μ stands for the mean value, and σ denotes the standard deviation, which should
always be positive. The binary variable I takes the value of 1 when the condition is true;
otherwise, it takes 0.

Uτ(y, q) = Z exp

[
−

N

∑
i=1

Lτ(yi, qi)

]
(32)

In Equation (32), q denotes the predicted value of the τ quantile, Z is the normalization
constant. Afterward, a Gaussian process is placed on the QR function:

p(q) = GP(q|0, K) (33)

The GPQR model training can be conducted by integral maximization. The expectation
propagation algorithm can be employed to locally approximate this integral.

argmax
∫
q

Uτ(y, q)p(q) d(q) (34)

Suppose a dataset of historical load records as l = {x1, x2, . . . , xN}, which are inde-
pendently distributed samples. The estimated shape of this distribution function can be
obtained through a Gaussian kernel density estimator model.

K(x1, x2, σ) =
1√
2πσ

e−
(x1−x2)

2

2σ2 (35)

Mean absolute percentage errors (MAPE) and root mean squared error (RMSE) are
two employed evaluation metrics that can exhibit the performance of the forecasting model.

RMSE(yi, ŷi) =

√√√√ 1
N

N

∑
i=1

(yi, ŷi)
2 (36)

MAPE(yi, ŷi) =
1
N

N

∑
i=1

∣∣∣∣yi, ŷi
yi

∣∣∣∣ (37)
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2.4. Energy Management Paradigm by Microgrid’s Controller

The controlling framework of a microgrid is a vital element in this planning scheme.
The microgrid controller, also known as the microgrid operator, is responsible for collecting
raw data and analyzing them to find the optimum operation point with respect to all oper-
ational constraints of both sides. In other words, it has to provide an accurate estimation of
generation sources for all intervals and take a sensible range of risk for being preserved
from the detrimental zone. Then it can dedicate the level of power exchange with the
upstream grid for various hours. To implement such an intelligent autonomous mecha-
nism, a smart environment is needed that is only feasible through IoT infrastructures [39].
The following flowchart concisely describes the proposed scheme. The paradigm of the
proposed scheme is depicted in Figure 2.

Figure 2. The paradigm of the proposed scheme.

3. Lightning Attachment Procedure Optimization (LAPO) Method

This algorithm was inspired by the procedure of lightning the attachment process to
the ground or any type of earthed object. In order to simulate this optimization algorithm,
at first, some test points are considered on a cloud or the ground as the initial population.
By increasing the electric field at the points on the cloud, the streamer channels begin to
break down the air and move toward the ground, which is called a downward leader. As
these downward leaders move toward the ground, the opposite charges will be enhanced
in the ground and produce upward leaders. The striking point at the final jump step is a
point where the upward leader collides with the downward leader [40–42]. The algorithm
is composed of some sections that will be presented as follows:

3.1. Initialization

At first, the test points on the surface of a cloud as well as on the ground are defined.
These dedicated charges are called the initial population.

3.2. The Next Jumping Node

Each branch of the lightning has some probable points in front of itself, which can
move toward one of them. The choice of the next jumping point of the lightning is highly
correlated with the intensity of the electric field between the point and the probable points.
Of course, the next jump will not necessarily be toward the point with the maximum
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field, and part of the process of selecting the next point will occur randomly. For the
mathematical modeling of this section, a random node is selected for each node in the
search space. If the electric field in this point (merit value of the point or the fitness value
at the intended point) is greater than the background field (which is supposed to be the
mean field), the lightning moves toward this point; otherwise, the path of lightning will
be in another direction. It is noticeable that the term opposite direction does not imply an
upward movement exclusively rather than an angled motion toward this point. Hence, for
determining the next jump, the following equation can be employed:

P = sign(Fav − F(r)) (38)

Xnew(i, j) = X(i, j)− P × rand × (Xav(1, j)− X(r, j)) (39)

3.3. Streaming Forward and Elimination of Branches

When a new lightning branch is formed, this branch can stream downward until the
branch’s charge cuts down and becomes lower than a specific value (critical value). The
critical value is assigned to be 1 μC because the air cannot be broken down for the lower
levels of charges, and the branch will be faded.

3.4. Upward Leader Propagation

When the branches start to move downward, the upward leaders start to move up-
ward. The motion speed of the upward leader is correlated with the amount of charge
aggregated at this point as well as the total charge of the downward branch. The distribu-
tion of charge in the downward branch is so that there are fewer charges near the cloud
and more charge at the tip of the leader. This is why the tip of the leader is brighter. This
incremental charge aggregation over the branch can be considered as a linear or exponential
function. Here, the branch’s charge is considered exponentially, as pointed out by the
following two equations:

S = 1 − (t/tmax)× exp(−t/tmax) (40)

Cc = S × (Xmin(i, j)− Xmax(i, j)) (41)

Above, CC denotes the branch’s charge, Xmin is the charge of the branch in the tip of
the leader, Xmax indicates the branch’s charge at the beginning point. The upward leaders
will be propagated according to the following equation:

Xnew(i, j) = X(i, j) + rand × Cc (42)

3.5. Convergence

When an upward leader reaches a downward leader, the collision point of the lightning
will be determined. In other words, when the optimum point is specified, the algorithm
will be terminated. The abovementioned procedure will be iteratively executed until the
optimum point is found.

4. Simulation and Results

In this section, the optimal placement for the microgrid is carried out on the targeted
test system. The targeted system is a radial 69-bus IEEE test system, which is depicted in
Figure 3 in the form of a single-line diagram. In addition, in order to have a better appraisal
of the effectiveness of the proposed method, the proposed method is also tested on a radial
33-bus IEEE test system, which is depicted in Figure 4. However, the input data is the
same for both grids. In this paper, all the methods are implemented in MATLAB 2018a in a
Core i5 PC with 3 GHz processing frequency of CPU and 8 GB of RAM. The convergence
behavior is another aspect with which the methods are compared to each other.
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Figure 3. The single-line diagram of the 69-bus test system.

Figure 4. The single-line diagram of the 33-bus test system.

The characteristics corresponded with the lines and the buses of this system refer
to [43,44], respectively. The normalized demand of the microgrid is shown in Figure 5. The
demand for this microgrid at the peak is considered to be 250 kW. The peak of the load
curve of the grid is supposed to be the mid-peak demand obtained from [43,44]. Moreover,
the hourly solar insulation profile is normalized and illustrated in Figure 6.

Figure 5. The normalized demand of distribution network for both systems.

Figure 6. The normalized daily solar irradiance for both distribution systems.

The maximum generation capability of the PV panel per month is shown in Table 1.
The placement mechanism is executed in the worst condition. Thus, the calculations
are conducted for the month of August. This month indicates the lowest level of mean
solar radiation.
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Table 1. The mean solar radiation for each month for both radiation systems. [45].

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

5.45 5.73 6 6.01 5.65 5.26 4.81 4.78 5.15 5.63 5.84 5.57

The economic data for different sources were extracted from reference [44]. The
investment cost of the PV panel is considered to be 7.44 €/kW, and the O&M cost is
supposed to be 40 €/year. The cost of each battery is determined as 0.283 €/Ah, and each
battery incurs 50 €/year for O&M costs. The operation cost and maintenance cost of the
diesel generator is 0.55 €/W and 0.2 €/h, respectively.

The demand in the targeted microgrid is supposed to be composed of residential and
industrial loads. Table 2 delineates the price of electricity corresponded with the types of
loads and the demand level.

Table 2. The electricity price for different load types and various demand levels for both distribu-
tion systems.

Load Level
Price of Residential

Load (€/MW)
Price of Industrial

Load (€/MW)
Percent of
Peak Load

Low 35 2000 50 < L
Middle 49 2800 50 < L < 70

Peak 70 3050 L > 70

4.1. The IEEE Test Systems (33-Bus and 69-Bus)

The optimization for the 33-bus test network is conducted with regard to the acquired
economic data. The results are demonstrated in Table 3. In addition, the convergence
behavior of two targeted methods in reaching the optimal solution is illustrated in Figure 7.
Accordingly, the LAPO method has reached the optimal solution with fewer iteration. In
terms of accuracy, the results of LAPO are better than the ABC algorithm. As can be seen, at
the early hours of the time horizon (at midnight), when there is no solar power generation,
a battery energy storage unit can supply the demand of internal loads of the microgrid as
it is clear that the battery power is negative during these hours, which indicates that it is
discharged. The battery starts charging after 8:00 and reaches its maximum charge level
at 11:00. Therefore, no power is stored in it until it starts discharging again at 18:00. It is
recharged at 19:00 and fully discharged at 20:00 due to the high volume of consumption.
The diesel generator commits at 8:00 and stops power exchange at 9:00. These conditions
continue until 20:00, and after that, it continues to serve the loads until midnight. Due to
the significant amount of solar production, a large volume of this production is sold to
the distribution network, and the obtained profit improves the objective function. As it is
evident, the network is designed in such a way that no load is interrupted during the day
and all the loads are completely satisfied.

Table 3. The design and size determination of microgrid for the distribution test systems (33-bus and
69-bus).

Bus Method Location PV Size (Kw)
Diesel Size

(Kw)
Number of

Batteries
Cost (€)

33
LAPO 6 395 242 25 47,162
ABC 26 393 242 25 47,383

69
LAPO 59 400 256 26 50,360
ABC 61 399 238 25 52,351
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Figure 7. The comparison of the convergence behavior of different methods in seeking for the best
solution for the 33-bus distribution test system.

With regard to the economic data provided in the previous section, the optimization
problem is simulated on the 69-bus test system. The optimized results of the simulation are
presented in Table 3. In addition, the convergence behavior of both optimization techniques
employed in this study is depicted in Figure 8. As can be seen, it is evident that the LAPO
approach not only has reached the optimal solution in less iteration, but also it has found a
better solution in comparison with the ABC method.

Figure 8. The comparison of the convergence behavior of different methods in seeking for the best
solution for the 69-bus distribution test system.

The behavior of the microgrid in August is illustrated in Figure 9. As can be perceived,
in the early hours at midnight, while the sunrise has not occurred, the battery is responsible
for maintaining power for the microgrid. Thus, the power battery is negative in these
hours, which implies that the battery is discharging. The battery starts to be charged at
8:00 in the morning, and it will be fully charged at 11:00. Hence, the batteries will not be
charged anymore and remain idle until 18:00. At 18:00, the batteries are to some extent
discharged. However, they are charged again at 19:00. With regard to the high level of
consumption at 20:00, the batteries deliver all of their stored energy to the microgrid. The
diesel generator is connected to the microgrid at 8:00, and it is disconnected at 9:00. It
continues until 19:00. Again, at 19:00, the diesel generator starts to supply the load until
the end of the time horizon of this study (24:00). With respect to the high level of solar
generation, a considerable share of this production is sold to the distribution grid. The
obtained economic benefit has improved the objective function. As it is clear, the microgrid
is so designed that the loads are supplied entirely and load shedding has not occurred. The
microgrid behavior in August is depicted in Figure 9.
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Figure 9. The behavior of the microgrid in August.

The power purchased from the main grid is shown in Figure 7. As it shows, during
the day hours when there is solar energy, the demanded power from the upstream grid is
drastically reduced. It should also be noted that the network losses and the corresponding
costs were 1061 kW and 55.86 € per day, which reached the values of 956.79 kW and 51.78 €
per day, after the installation of microgrids in the network, respectively. Figure 8 shows
the amount of load shedding in the distribution network at different times of the day.
The results figure out that during the hours when there is solar energy, solar unit injects
power into the distribution network, the amount of shed load has reached zero, which
is very beneficial in terms of cost and efficiency for the distribution network as well as
reliability improvement from microgrid point of view. The model is also tested on the
69-bus test system. The results imply that the bought power from the main grid by the
69-bus distribution network is illustrated in Figure 10. As it is evident, during the hours
that the PV panel can generate power, the absorbed power from the sub-transmission grid
is considerably diminished. The power losses of the distribution grid and the subsequent
cost of them were about 1350 kW equivalent with 65.76 €/day before the implementation of
the microgrid scheme, and it is alleviated to 989.32 and 56.28 €/day after implementation
of the microgrid. In Figure 11, the hourly shed load in the distribution network is shown. It
is obvious that whenever the PV generation exists, all of the loads in the distribution grid
are satisfied, and no load-shedding measure in the distribution network is executed. This
matter significantly improves the performance of the distribution network.

Figure 10. The bought power from the main power system by the distribution network.

4.2. Incorporation of Uncertainty in the Model

The demand for a grid and the daily radiation intensity are not deterministic param-
eters, and they usually have uncertainties. Hence, these parameters must be forecasted,
and the scheduling must be conducted based on the forecasts. Therefore, the existence of
forecasting error is inevitable, and the error must be included in the optimization model in
order to mitigate the risk. A common way to model the uncertainties corresponded with
solar radiation and demand of the grid is to employ a normal probability distribution. In
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other words, the mean value and the standard deviation of these parameters are calculated,
and the design and the scheduling must be carried out based on these forecasts.

Figure 11. The amount of shed load in the distribution network in the presence and absence
of microgrid.

The most famous and the most accurate approach for dealing with uncertainties and
probabilistic problems is the Monte Carlo algorithm. In this approach, a large number of
probabilistic samples are defined within a specified range, and the scheduling is performed
for all of these samples. Then, the probability density function of targeted parameters is
extracted. In this study, an upper and a lower boundary are dedicated for the demand of
microgrid and distribution network along with the daily solar radiation. It is supposed that
the radiation and demand will be materialized within the defined range. These boundaries
are depicted in Figures 12–14.

Figure 12. The upper bound, the lower bound, and the mean value of demand of microgrid in the
probabilistic study.

Figure 13. The upper bound, the lower bound, and the mean value of demand of distribution
network in the probabilistic study.

64



Appl. Sci. 2021, 11, 4156

Figure 14. The upper bound, the lower bound, and the mean value of daily solar irradiance in the
probabilistic study.

In order to solve the stochastic problem, the Monte Carlo approach is employed. In
this respect, for each uncertain parameter, 1000 stochastic samples are generated randomly.
To solve the stochastic problem, the following step-by-step procedure is considered:

• Step 1—Generation of 1000 samples for each uncertain optimization variable.
• Step 2—The stochastic generation of a set of solutions for optimization variables.
• Step 3—The selection of a set of optimization variables.
• Step 4—Test the grid’s performance for 1000 samples using the Monte Carlo approach

and checking all constraints for 1000 plausible scenarios.
• Step 5—The calculation of the objective function (if the constraints are met).
• Step 6—Check convergence and termination conditions. If it is converged, then go to

step 9.
• Step 7—The change of optimization variables based on the optimization method.
• Step 8—Go to step 3.
• Step 9—End.

Table 4 outlines the results of the design of the microgrid with the incorporation
of uncertainties.

Table 4. The results of optimal sizing of test grids incorporating uncertainties of demand and solar
radiation and the consideration of the maximum cost of stochastic scenarios as the objective function.

Bus Location PV Size Diesel Size Number of Batteries Cost (€)

33 2 395 215 42 70,342
69 6 400 214 39 69,214

In the case of the 33-bus test system, the cost of power generation is greatly increased.
This increase is due to the conditions in which the load may be maximum and production
may be minimum. Therefore, these conditions must also be taken into account in the
problem. However, as can be seen, the cost has increased by nearly 49% compared to
the case where uncertainty is not considered. Thus, it should be considered that in the
presence of sources of intermittency, the cost of power supply from the network may
increase remarkably, which conveys the importance of stochastic solution.

The increase in the system cost pertaining to the uncertainty will be 27%, which is
nearly 20% less than the previous case. Therefore, the uncertainties are applied to the
model using the average intermittencies in the system cost in all possible scenarios as
an objective function. As can be seen, in the stochastic model, the cost of the system has
increased by 26% compared to the deterministic case.

As the results of the 69-bus test system figure out, the cost of supply in this condition
is significantly increased. This increase conveys a condition that the demand is at a high
level and the solar radiation is at a low level. Therefore, the worst conditions must be
contemplated in the design of the microgrid. However, as it is evident, the cost is drastically
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increased by 50% in comparison with the case of the deterministic model (regardless of
uncertainties). Thus, it should be noted that the overall cost of the microgrid scheme may
be enhanced extensively for uncertain problems.

It is important to pay attention to a critical question. The cost of supply has increased
by 50% in order to include uncertainties. It conveys a high level of consumption and a low
level of generation. The occurrence of such generation and consumption levels for this
system at the targeted time is not a definitive and certain event. The question is whether it
is sensible to increase the cost of the system by 50% for a forecast that has an occurrence
probability of 10%.

In the procedure of seeking the optimum solution of uncertain parameters, for each
suggested answer provided by the optimization program, all possible scenarios are taken
into account, and the highest cost incurred to the system, among all scenarios, is regarded
as the cost of the suggested answer. If the suggested answer does not satisfy even one or
more constraints, that answer should be dismissed. Such a procedure profoundly mounts
the system cost.

In order to tackle this problem, no answer should be dismissed, and the system cost
must be obtained for all answers in as scenarios, even when they were unable to meet some
constraints. Finally, the average cost of all scenarios is dedicated to the answer. Hence,
if the suggested answer does not meet the constraints in some scenarios, the answer will
not be dismissed. It is obvious that, for the problems with a few scenarios, the inclusion
of scenarios, which used to be disregarded, does not have a remarkable impact on the
solution of the problem. With consideration of the proposed condition, the optimal results
of the simulation can be expressed in Table 5. This assumption has been led to an increase
of 26% in the system cost for the incorporation of uncertainties in the model. It is just over
20% fewer than the normal approach. Thus, the uncertainties can be included in the design
by incorporation of the average cost of the system. As can be seen, the system cost has
increased by 26% in comparison with the deterministic approach.

Table 5. The results of optimal sizing of test grids incorporating uncertainties of demand and solar
radiation and the consideration of the average cost of stochastic scenarios as the objective function.

Bus Location PV Size Diesel Size
Number of

Batteries
Cost (€)

33 2 395 253 37 59,802
69 2 400 265 34 59,325

5. Conclusions

In this study, a microgrid scheme including loads, PV panels, energy storage system,
and the backup supply system of a diesel generator was designed. The object of the design
was to minimize the cost of supply. In this microgrid, it was intended to not absorb any
power from the distribution grid. However, if there is an excess of generation by intrinsic
power resources of the microgrid, the excess power would be sold to the distribution
network. The costs pertaining to PV panels, batteries, and diesel generator consists of
purchasing and installation cost, operation and maintenance cost, and replacement cost. If
the proposed scheme cannot supply the loads (generation deficiency) at some hours, the
load-shedding measure must be imposed for the surplus demand. Just the same, the excess
generation must be injected into the upstream network. In order to boost the performance
of the design, the placement of the microgrid is so determined that the network power
losses are minimized. Thus, the optimal design of the microgrid was performed at the
same time as the placement of the microgrid. The problem solution was targeted to be
stochastic. Hence, two upper and lower boundaries were dedicated to the amount of
demand and solar irradiance. In order to solve the problem, the Monte Carlo approach
with 6222 random samples is employed. The results of the 33-bus test system imply that
the incorporation of uncertainties in the model has drastically increased the supply cost by
about 49%. In order to avoid unnecessary risks, the averaging method is deployed, which
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boosts the risk-averse scheduling. In this case, the system cost has increased by 27% in
comparison with the deterministic approach. The results of the 69-bus test system imply
that the incorporation of uncertainties in the model has drastically increased the supply
cost by about 50%. In order to avoid unnecessary risks, the averaging method is deployed,
which boosts the risk-averse scheduling. In this case, the system cost has increased by
26% in comparison with the deterministic approach. The optimization is solved using
the LAPO method, and the results are compared with the ABC algorithm. The results
indicate the proper performance of the suggested algorithm in terms of convergence speed
and accuracy.
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Abstract: Recently, fast uptake of renewable energy sources (RES) in the world has introduced new
difficulties and challenges; one of the most important challenges is providing economic energy
with high efficiency and good quality. To reach this goal, many traditional and smart algorithms
have been proposed and demonstrated their feasibility in obtaining the optimal solution. Therefore,
this paper introduces an improved version of Bonobo Optimizer (BO) based on a quasi-oppositional
method to solve the problem of designing a hybrid microgrid system including RES (photovoltaic
(PV) panels, wind turbines (WT), and batteries) with diesel generators. A comparison between
traditional BO, the Quasi-Oppositional BO (QOBO), and other optimization techniques called
Harris Hawks Optimization (HHO), Artificial Electric Field Algorithm (AEFA) and Invasive Weed
Optimization (IWO) is carried out to check the efficiency of the proposed QOBO. The QOBO is
applied to a stand-alone hybrid microgrid system located in Aswan, Egypt. The results show the
effectiveness of the QOBO algorithm to solve the optimal economic design problem for hybrid
microgrid power systems.

Keywords: economic energy; Bonobo Optimizer; hybrid renewable energy system; microgrid; PV
panels; wind turbine; energy storage

1. Introduction

Despite the steady increase in electric power production, it is still below the required level,
due to the increase in load demand caused by the population increase as well as the increased use
of technology in the residential, industrial and agricultural fields. According to the International
Energy Agency (IEA), the global electricity demand will grow at an annual rate of 2.1% until 2040.
This increases electricity’s share in the total energy consumption to 24% in 2040. It is expected that
renewable energy sources (RES) will face a significant increase in global investment in the coming
years, to cover more than half of the energy consumption in the world by 2040. These energies will
make up for the shortfall in electrical energy production and contribute to a reduction in carbon dioxide
emissions in the atmosphere, thereby reducing pollution significantly [1–3].
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In order to invest in RES to optimize electrical energy production and raise the efficiency
of the systems, many studies in the world recommend combining different technologies to form
hybrid renewable energy systems (HRES) [4,5]. Consequently, these sources complement each other,
support the national grid, and reduce the use of traditional power plants depending on fossil fuels
that release greenhouse gases and pollute the environment [6]. However, the design of these hybrid
systems needs sophisticated programs and smart algorithms capable of reaching the optimal solution
taking into consideration all the conditions and constraints such as reliability aspects, economic cost,
sensitivity factors, availability of RES, etc. [1,2,7,8].

Several studies have been conducted on the technical and economic feasibility of hybrid systems
in past years to determine their viability. Many of these studies have used different modeling of HRES,
and they have applied different algorithms and various software tools to achieve their goals. According
to the literature, these challenges still exist and are the focus of a lot of research, especially on finding
the best algorithms and modern techniques in reaching the optimal solutions of the optimization
problem of finding the optimal sizing of the installed capacities of the components of HRES [9–15].

In [16], the pre-feasibility analysis of a stand-alone energy system using HRES including renewable
and conventional energy sources was applied using HOMER software in Newfoundland, Canada.
In one of the earlier studies [17], the authors conducted a feasibility study of generating electricity
using RES for a hybrid system in a stand-alone village in Chhattisgarh, India. In [18], the authors
introduce a realistic solution for energy demand from a hybrid power system consists of wind turbines
(WT), photovoltaics (PV), and battery energy storage systems (BESS). Through a real measurement of
meteorological data in 2017, concerning especially the wind speed, solar radiation and temperature,
the output power of the proposed hybrid system is calculated. Load satisfaction is considered to
evaluate the feasibility of the system. The optimum solution is found using the linear TORSCHE
optimization technique, while a comparative study between PV/WT/battery and PV/WT has been
accomplished and an economic analysis was presented. As a result, the hybrid PV/WT/battery is
proved more economical than using each system individually.

Xiao Xu et al. [19] designed and investigated a hybrid PV/WT/hydropower/pump storage as
a case of study. The optimal configuration of the HRES is found using a techno-economic index
that respects the maximum Loss of Power Supply Probability (LPSP) and minimum investment cost.
The Multi-Objective Particle Swarm Optimization (MOPSO) is used to trade off analysis between
two objectives. Besides, the curtailment rate (CR) of the WT and PV are taken into consideration
due to policy requirements. The authors in [20] proposed an optimized design of an energy system
featuring the highest penetration of renewable energy. This system is composed of WT, PV, geothermal,
diesel, and BESS; otherwise, the system is obtained respecting the technological and financial feasibility
constraints. The model developed is based on weather and electric demand data measured to reach
the optimal sizing of the hybrid system. Three objective functions are conflicting, which are the Net
Present Cost (NPC), renewable energy fraction and the energy index of reliability.

In [21], the authors implemented and compared three algorithms to find the optimal design of
a hybrid WT/PV/Biomass/BESS energy system. Based on the obtained results, the Harmony Search
Algorithm (HSA) was faster and efficient in the convergence, compared to Jaya and PSO optimization
algorithms. The techno-economic study has been implemented to have the optimal unit sizing of
the HRES, which guaranteed a cost-effective, efficient, and reliable power supply for the customers
of electric energy. The constraints are chosen to enhance the reliability and efficiency of the hybrid
system, using the LPSP and the energy fraction factors.

In this paper, a new smart algorithm named Bonobo Optimizer [22] was employed and improved
using a quasi-oppositional method, and the modified Quasi Oppositional BO (QOBO) was utilized for
optimal economic designing of a stand-alone microgrid hybrid system in Aswan, Egypt, where the
hybrid system consists of RES (PV panels, WT and BESS) with diesel generators. Then, the results were
compared between the traditional and improved BO. This proved the ability of the QOBO algorithm to
reach the optimal solution in a shorter time and with better efficiency compared to the traditional BO
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algorithm. Other algorithms, namely Harris Hawks Optimization, Artificial Electric Field Algorithm
and Invasive Weed Optimization are applied, and the results are compared where the efficiency of
the QOBO algorithm has been proved. Additionally, a sensitivity analysis of the proposed systems
scenarios was performed to obtain the optimal solution.

2. Mathematical Description of the Proposed Hybrid System Components

The schematic diagram of the suggested HRES is shown in Figure 1. Four scenarios are applied,
which include the PV power plant, WT power plant, diesel generator, Biomass, BESS and inverter.

 

Figure 1. Configuration of the proposed microgrid hybrid energy system.

Two strategies are adopted in this paper; the first is the biomass/PV as shown in Figure 2 and
the second uses the PV or WT or both as in Figure 3. The main strategy steps for the operation of the
proposed system can be explained as follows:

• The PV and WT are used first as a principal power source and served the load needs.
• The battery is used when the PV and WT cannot serve it.
• The diesel system is working when the battery storage system is empty and starts when the need

is higher than 30% of its nominal power.

2.1. PV System

The PV system is considered as a number of cells connected in series. The output power of the PV
system is presented based on many parameters as introduced in Equation (1) [23]:

Ppv = I(t) × ηpv(t) ×Apv (1)

where I represents the solar irradiation, Apv represents the area covered with PV modules and ηpv is
the efficiency of the PV system that can be calculated as follows:

ηpv(t) = ηr × ηt ×
[
1− β× (Ta(t) − Tr) − β× I(t) ×

(NOCT − 20
800

)
× (1− ηr × ηt)

]
(2)

where NOCT is the nominal operating cell temperature (◦C), ηr is the reference efficiency, ηt is the
efficiency of the maximum power point tracking (MPPT) equipment, β is the temperature coefficient,
Ta is the ambient temperature (◦C), Tr is the solar cell reference temperature (◦C).
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Figure 2. Power management of the PV/Biomass hybrid renewable energy sources (RES).
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Figure 3. Power management of the PV/WT/diesel/battery energy storage system (BESS), PV/diesel/BESS
and WT/diesel/BESS hybrid RES.

2.2. Wind Energy System

Based on the basics of aerodynamics, wind power can be presented as [24]:

Pwind =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, V(t) ≤ Vci, V(t) ≥ Vco

a×V(t)3 − b× Pr, Vci < V(t) < Vr

Pr, Vr ≤ V(t) < Vco

(3)
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where V represents wind speed, Pr is the rated power of wind, Vci, Vco and Vr are the cut-in, cut-out,
and rated wind speed, respectively. a and b are two constants, which can be expressed as:

⎧⎪⎪⎨⎪⎪⎩
a = Pr/

(
Vr

3 −Vci
3
)

b = Vci
3/
(
Vr

3 −Vci
3
) (4)

The rated power of wind is calculated as given in the following equation:

Pr =
1
2
× ρ×Awind ×Cp ×Vr

3 (5)

where ρ represents the air density, Awind is the swept area of the wind turbine, Cp is the maximum
power coefficient ranging from 0.25% to 0.45%.

2.3. Biomass System

The biomass system is a renewable energy system, which produces power as given in
Equation (6) [23].

PBM =
Totalbio × 1000×CVbio × ηbio

8760×Otime
(6)

where Totalbio is the total organic material of biomass, CVbio is the calorific value of the organic material
(20 MJ/kg), ηbio is the biomass efficiency, which is taken as 24% and Otime presents the operating hours
each day.

2.4. Diesel System

The diesel generator is used as a back-up, working just in case there is a need, is connected directly
with the load, and starts when the battery is fully discharged and the load is more than 30% of its rated
capacity. The model of the diesel generator regarding its output power is presented by the following
Equation [25]:

Pdg =
Fdg(t) − Ag × Pdg,out

Bg
(7)

where Fdg is fuel consumption, Pdg,out is the output power of diesel generator, Ag and Bg are the
constants of the linear consumption of the fuel.

2.5. BESS System

The battery energy storage system (BESS) is a mandatory element for the isolated hybrid systems.
BESS is charged in the periods of power excess and discharged when the load increases. The capacity
of the BESS is expressed as follows [25]:

Cbat =
El ×AD

DOD× ηinv × ηb
(8)

where El is the load demand, AD represents the autonomy daily of the battery, DOD is the depth of
discharge of the battery system, ηinv and ηb are the battery and inverter efficiency, respectively.

3. Formulation of the Optimization Problem

3.1. Net Present Cost

The objective function in the optimization model is the minimization for the Net Present Cost
(NPC) which is the pillar factor considered for any project design; it is counted as a sum of all
components costs including the capital (C), operation and maintenance (OM) and replacement costs
(R), considering also the fuel cost of the diesel

(
FCdg

)
, taking into account the interest rate (ir), inflation
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rate (δ), and escalation rate (μ) and the predefined project lifetime (N). The NPC modeling is expressed
as follows [23,24]:

NPC = C + OM + R + FCdg (9)

3.1.1. PV and WT Costs

The costs of PV and WT are presented in a similar concept, their capital cost is expressed based on
its initial cost (λPV,WT) and its area (APV,WT), the capital cost is as follows [26]:

CPV,WT = λPV,WT ×APV,WT (10)

The operation and maintenance costs are expressed as [26]:

OMPV,WT = θPV,WT ×APV,WT ×
∑N

i=1

(
1 + μ
1 + ir

)i
(11)

where θPV,WT is the annual operation and maintenance costs for any components. The replacement
costs are considered null because the project lifetime and the PV or WT lifetime are the same.

3.1.2. Diesel Generator Costs

The costs of the diesel generator are presented as follows [27]:

Cdg = λdg × Pdg (12)

OMdg = θdg ×Nrun ×
∑N

i=1

(
1 + μ
1 + ir

)i
(13)

Rdiesel = Rdg × Pdg ×
∑

i=7,14...

( 1 + δ
1 + ir

)i
(14)

C f (t) = p f × Fdg(t) (15)

FCdg =
∑8760

t=1
C f (t) ×

∑N

i=1

( 1 + δ
1 + ir

)i
(16)

where Cdg is the capital cost, λdg is the initial cost of the diesel generator for each KW, OMdg represent
the actual O&M cost, θdg is the annual O&M cost of diesel, Nrun is the number of operating hours of
diesel generator per year, Rdiesel is the diesel generator replacement cost, Rdg represents the annual
replacement cost of diesel generator, p f is the fuel cost, Fdg is the annual consumption of fuel and FCdg
is the total fuel cost.

3.1.3. BESS Costs

The capital and O&M (containing the replacement) costs of the BESS are expressed as follows [26]:

CBESS = λbat ×Cbat (17)

OMBESS = θbat ×Cbat ×
∑TB

i=1

(
1 + μ
1 + δ

)(i_1)Nbat

(18)

where λbat is the BESS initial cost and θbat is the annual O&M cost of BESS.

3.1.4. Biomass Costs

The biomass costs are presented as follows [28]:

Cbg = λbg × Pbg (19)
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OMbg = θ1 × Pbg ×
∑N

i=1

(
1 + μ
1 + ir

)i
+ θ2 × Pw ×

∑N

i=1

(
1 + μ
1 + ir

)i
(20)

where λbg is the biomass initial cost, θ1 is the annual fixed O&M cost and θ2 is the variable O&M cost
of the biomass system, and Pw is the annual energy generated by the Biomass system (kWh/Year).

3.1.5. Inverter Costs

The inverter capital and O&M costs are presented as follows [27]:

Cinv = λinv × Pinv (21)

OMInv = θInv ×
∑N

i=1

(
1 + μ
1 + ir

)i
(22)

where λinv is the inverter initial cost and θInv is the annual O&M cost of the inverter.

3.2. Levelized Cost of Energy

The Levelized Cost of Energy (LCOE) is a critical factor. The consumers do not care about project
cost or its lifetime, but their interest is to know how much to pay for each kilowatt-hour of consumption.
Therefore, the LCOE is a measure of the average NPC over its lifetime, its equation is expressed as
follows [25]:

LCOE =
NPC×CRF∑8760

t=1 Pload(t)
(23)

where Pload is the load demand; CRF is the capital recovery factor used to convert the initial cost to an
annual capital cost, and is expressed as follow:

CRF(ir, R) =
ir × (1 + ir)

R

(1 + ir)
R − 1

(24)

where R denotes the lifetime of the hybrid system.

3.3. Loss of Power Supply Probability

The loss of power supply probability (LPSP) is a technical factor used to express the reliability of
the system. The LPSP is expressed as follows [25]:

LPSP =

∑8760
t=1

(
Pload(t) − Ppv(t) − Pwind(t) + Pdg,out(t) + Pbmin

)
∑8760

t=1 Pload(t)
(25)

3.4. Renewable Energy Fraction

The transfer from classical electricity production to renewable energy projects was not easy.
The majority introduced RES partially, while the objective is to use all projects with 100% renewable
energy. Therefore, the renewable energy factor is dedicated to calculating the percentage of the
renewable energy used. The renewable energy fraction (RF) is expressed as follows [25]:

RF =

⎛⎜⎜⎜⎜⎜⎝1−
∑8760

t=1 Pdg,out(t)∑8760
t=1 Pre(t)

⎞⎟⎟⎟⎟⎟⎠× 100 (26)

where Pre represents the total power from RES.
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3.5. Availability Index

The availability index (A) is calculated to predict customer satisfaction. The availability index
measures the energy converted to the load while confirming the ability of the designing system of the
project. The availability index is calculated as follows [23]:

A = 1− DMN∑8760
t=1 Pload(t)

(27)

DMN = Pbmin(t) − Pb(t) −
(
Ppv(t) + Pwind(t) + Pdg,out(t) − Pload(t)

)
× u(t) (28)

while, u will be equal to 1 when the load is not satisfied, and 0 when the load is satisfied.

3.6. Constraints

The constraints are presented to achieve the desired system design. In this microgrid system,
the constraints are shown as follows:

0 ≤ Apv ≤ Amax
pv ,

0 ≤ Awind ≤ Amax
wind,

0 ≤ Pdgn ≤ Pmax
dgn ,

0 ≤ PCap_bat ≤ Pmax
Cap_bat

LPSP ≤ LPSPmax,
RFmin ≤ RF,

Amin ≤ A
ADmin ≤ AD

(29)

4. Algorithms

In this section, the conventional BO and proposed QOBO are illustrated. In addition,
both algorithms are compared with well-known optimization techniques (HHO, AEFA and IWO)
which are briefly described in Appendix A.

4.1. Bonobo Optimizer

Bonobo optimizer is a new optimization algorithm that was proposed in [22]. In BO, the social
reproductive behavior of the bonobo is modeled based on four mating strategies: promiscuous,
restrictive, consortship, and extra-group mating. These mating strategies are subjected to the living
condition of the bonobo, hence two terms named positive phase (PP) and negative phase (NP) have
been used to present the situations of this life. In this framework, PP describes the peaceful living in
which the mating can be done. On the contrary, NP expresses a hard life. In the BO, each solution is
called XB and the best solution is XαB. The mathematical modeling of the BO algorithm is presented in
the following subsections.

4.1.1. Bonobo Selection Using Fission–Fusion Strategy

The solutions update of the BO algorithm depends on the mating strategies subjected to the
current phase. However, a bonobo should be selected before each mating based on the fission–fusion
social group strategy. As noted, the bonobo community lives in small groups with different sizes
(random and unpredictable) for a few days and the communities rejoined again to the main community.
Hence, based on this behavior, a bonobo for mating can be selected. The mathematical formulation for
the maximum number of these temporary subgroups Nsub can be expressed as follows:

Nsub = max(2, (εsub ×N)) (30)
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where N is the total number of the population and εsub denotes the sub-group size factor. To find the
selected bonobo XP

B for mating with Xi
B to create a new bonobo Xnew

B , if the best bonobo in the subgroup
in terms of the fitness function is better than the Xi

B, then it is selected as XP
B, else a random one should

be selected form the subgroup.

4.1.2. Creation of New Bonobo

After achieving the selected bonobo XP
B, four mating strategies are used in the BO algorithm to

create a new bonobo Xnew
B based on the current phase (PP or NP). For the PP case, promiscuous and

restrictive mating have higher probabilities
(
ρph
)

for occurrence. On the contrary, in NP, the probabilities(
ρph
)

of consortship mating and extra-group mating are higher.
Promiscuous and Restrictive Mating
In this mating strategy, the new bonobo can be created using the following equation:

Xnew
B = Xi

B + r1 × Sαcoe f ×
(
XαB −Xi

B

)
+ (1− r1) × SP

coe f ×C f lag ×
(
Xi

B −XP
B

)
(31)

where r1 is a random number between [0, 1]. Sαcoe f and SP
coe f are the sharing coefficients for the alpha

bonobo XαB and the selected bonobo XP
B, respectively. C f lag is a flag value that equals −1 or 1 for

restrictive and promiscuous mating, respectively. A controlling parameter in terms of the phase
probability ρph is used to adopt the mating strategy. Initially, ρph is set to 0.5. Hence, if a random
number r is found to be less than or equal to ρph, a new bonobo is created based on promiscuous and
restrictive mating, otherwise, consortship mating and extra-group mating can be used.

Consortship and Extra-Group Mating
If r is greater than ρph, consortship and extra-group mating can occur. However, a new random

number r2 between [0, 1] is used with a probability of extra-group mating ρxg to represent the occurrence
of extra-group mating when r2 is less than or equal to ρxg as follows [22,29]:

Xnew
B =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Xi
B + β1 ×

(
Xi

max −Xi
B

)
, XαB ≥ Xi

B, and r4 ≤ ρd

Xi
B − β2 ×

(
Xi

B −Xi
min

)
, XαB ≥ Xi

B, and r4 > ρd

Xi
B − β1 ×

(
Xi

B −Xi
min

)
, XαB < Xi

B, and r4 ≤ ρd

Xi
B + β2 ×

(
Xi

max −Xi
B

)
, XαB < Xi

B, and r4 > ρd

(32)

β1 = e(r
2
4+r4− 2

r4
) (33)

β2 = e(−r2
4+2r4− 2

r4
)

where r3 and r4 are random numbers between [0, 1] and r4 � 0. ρd is a directional probability with
initial value which equals 0.5. β1 and β2 are intermediate parameters between [0, 1]. Xi

min and Xi
min are

the values of the upper and lower boundary.
If r2 is greater than ρxg, a new bonobo can be created using the consortship mating strategy

as follows:

Xnew
B =

⎧⎪⎪⎨⎪⎪⎩
Xi

B + C f lag × e−r5 ×
(
Xi

B −XP
B

)
, C f lag = 1 or r6 ≤ ρd

XP
B, Otherwise

(34)

where r5 and r6 are two random numbers.

4.1.3. Parameter Updating

The BO’s parameters are updated during the iterative process based on the best solution XαB at
each iteration, where if there is an improvement in the final solution compared to the previous iteration,
the BO’s parameters can be updated in the following way.

80



Appl. Sci. 2020, 10, 6604

The negative phase count is set to zero (NPcont = 0) and the positive phase count grows by
increments of one (PPcont = PPcont + 1). In addition, ρxg = ρxg_initial and ρph = 0.5 + Cp where Cp is
the amount of the change in the phase, and can be calculated as Cp = min(0.5, PPcont × rcp) where rcp
is the rate of the change in the phase. Moreover ρd = ρph and

εsub = min
(
εsub_max,

(
εsubinitial

+ PPcont × rcp2
))

(35)

where εsubinitial
= 0.5 ∗ εsub_max.

On the other hand, if there is no improvement, the BO’s parameters are updated as follows:

NPcont = NPcont + 1 and PPcont = 0,
Cp = min(0.5, NPcont × rcp),

ρxg = ρxg_initialmin
(
0.5, ρxg_initial + NPcont × rcp2

)
,

and
εsub = min

(
εsub_max,

(
εsubinitial

−NPcont × rcp2
))

.

The overall steps of the BO algorithm are presented in Algorithm 1.

Algorithm 1: BO

Initialize a set of random search bonobo Xi
B =
(
X1

B, X2
B, . . . , XN

B

)
within the limits Xi

min ≤ Xi
B ≤ Xi

max.
Initialize the BO’s parameters
Evaluate the objective function for all bonobos
Identify the alpha bonobo XαB
While (k < Kmax)
Determine the actual size of the temporary sub-group
Choose a bonobo using fission-fusion society strategy
Create a new bonobo Xnew

B as follows:
if r ≤ ρph
Create new bonobo using promiscuous or restrictive mating strategy
else r > ρph
Create new bonobo using consortship or extra-group mating strategy
end if
Calculate the objective function
Update alpha bonobo XαB and the BO’s parameters.
K = K + 1
end while
Return the final best solution XαB

4.2. Improved Quasi-Oppositional BO (QOBO) Algorithm

As with any population-based algorithm, BO has some problems such as falling in the local optima.
However, in this work, an improved BO based on three leaders’ selection and quasi-opposition-based
learning is developed.

4.2.1. Three Leaders

In this method, instead of using the best solution (alpha bonobo XαB) for updating the new bonobo
Xnew

B and ignoring the other best solutions, three leaders can be used to increase the diversity of the
solutions as follows

XαB = w1 ×Xbest1 + w2 ×Xbest2 + w3 ×Xbest3 (36)

where
w1 =

r7

r7 + r8 + r9
, w2 =

r8

r7 + r8 + r9
, and w1 =

r9

r7 + r8 + r9

r7, r8, and r9 are random values between [0, 1].
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4.2.2. Quasi-Oppositional

Opposition-based learning (OBL) [30] has been widely used to improve many optimization
techniques such as quasi-oppositional teaching-learning (QOTLBO) [31,32], Quasi-oppositional swine
influenza model-based optimization with quarantine (QOSIMBO-Q) [33] and Oppositional Jaya
Algorithm [34]. In the OBL, improvements can be achieved by using the candidate solution and its
opposite at the same time. Hence, in this work, the opposite solution of the BO algorithm Xi

B can be
expressed as presented in [35]:

Xqnew
B = C + r10

(
C−Xnew

B

)
(37)

where r10 is a random number between [0, 1], and C is a middle point between Xi
min and Xi

max which
can be calculated as follows:

C =
Xi

min + Xi
max

2
(38)

Additionally, Xnew
B is the opposite solution which can be calculated as

Xnew
B = Xi

min + Xi
max −Xnew

B (39)

The overall steps of the improved BO based on three leaders and the quasi-oppositional method
are presented in Algorithm 2.

Algorithm 2: QOBO

Initialize a set of random search bonobo Xi
B =
(
X1

B, X2
B, . . . , XN

B

)
within the limits Xi

min ≤ Xi
B ≤ Xi

max.
Initialize the BO’s parameters
Evaluate the objective function for all bonobos
Determine the alpha bonobo XαB using three-leader method
While (k < Kmax)
Determine the actual size of the temporary sub-group
Choose a bonobo using fission-fusion society strategy
Create a new bonobo Xnew

B as follows:
if r ≤ ρph
Create new bonobo using promiscuous or restrictive mating strategy
else r > ρph
Create new bonobo using consortship or extra-group mating strategy
end if
Calculate the objective function for all new bonobos Xnew

B
Find quasi-oppositional model for all new bonobos Xqnew

B
Calculate the objective function for all new bonobos Xqnew

B
if f
(
Xqnew

B

)
≤ f
(
Xinew

B

)
, Xnew

B = Xqnew
B

Else Xnew
B = Xnew

B
end if
Update alpha bonobo XαB using three leader method and the BO’s parameters.
K = K + 1
end while
Return the final best solution XαB

5. Case Study

To validate the robustness of the QOBO algorithm, it has been applied for addressing the studied
problem of optimal configuration of the proposed multiple scenarios HRES, i.e., the PV/WT/diesel
generator/BESS, PV/biomass, PV/diesel generator/BESS and WT/diesel generator/BESS. The proposed
hybrid systems have been introduced in the isolated mode for satisfying the load requirements in the
proposed site.
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The project is applied in Aswan, Egypt as shown in Figure 4. The annual load curve over a time
interval of one hour is shown in Figure 5. Figures 6–9 present solar irradiation, temperature, wind speed
and atmospheric pressure in the studied region. Four standalone scenarios of the hybrid system will be
evaluated for covering the load demand in that site. These configurations are: (1) PV/WT/diesel/BESS,
(2) PV/biomass, (3) PV/diesel/BESS and (4) WT/diesel/BESS. The proposed QOBO is validated on
optimal sizing of these four hybrid systems and the optimization results are comprehensively compared
with the corresponding ones obtained from BO, HHO, AEFA and IWO algorithms.

 

Figure 4. Location of the case study (Aswan) on the world map.

Figure 5. Annual load curve over a time interval of one hour with a peak demand of 70 kW.

83



Appl. Sci. 2020, 10, 6604

Figure 6. Solar irradiation over the studied region.

Figure 7. Temperature variation in Aswan.

Figure 8. Annual variation of wind speed over the year in Aswan.
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Figure 9. Atmospheric pressure variation in Aswan.

6. Results

The main object of this research paper is to find the optimal design of the proposed hybrid system
and to validate the accuracy of the proposed QOBO optimization method. The optimal sizing is based
on the objective functions introduced in (9) and the parameters of optimization are: (i) the area of
PV system, (ii) the area swept by the WT, (iii) the rated power of diesel generator, (iv) the nominal
capacity of the battery, (v) the consumption of the biomass fuel. To confirm the suitability of the
QOBO in addressing such optimization problem, QOBO, BO, HHO, AEFA and IWO were launched
100 times for each configuration and statistical study was conducted based on the best minimum
value of the fitness function. For a deep analysis of the obtained results and to ensure the sensitivity
analysis, four indices were chosen, namely, NPC, LCOE, LPSP and the availability index. In the next
subsections, the optimization results are provided for the standalone system with multiple scenarios.
Modelling and simulation of the optimization problem were accomplished using MATLAB 2015a
program, while the adjusting parameters for the three algorithms are the same, i.e., the number of
maximum iterations is taken as 100 iterations and the search agents’ number is 30 agents. The input
technical and economic data for the system components are presented in Table 1. The results of the
statistical measurements for the modified QOBO and the conventional BO with HHO, AEFA and
IWO algorithms are listed in Tables 2 and 3. From the previously mentioned tables, the reader can
conclude that the QOBO technique generates the best minimum value of the fitness function in all
cases. The convergence curves of the 100 iterations implemented for all the studied configurations
using QOBO, BO, HHO, AEFA and IWO are presented in Figure 10a–d.

85



Appl. Sci. 2020, 10, 6604

Table 1. Units for magnetic properties.

Symbol Quantity Conversion

N Project lifetime 20 years
ir Interest rate 13.25%
μ Escalation rate 2%
δ Inflation rate 12.27%

PV system

λpv PV initial cost 300 $/m2

θpv Annual O&M cost of PV 0.01 ∗ λpv $/m2/year
ηr Reference efficiency of the PV 25%
ηt Efficiency of MPPT 100%
Tr PV cell reference temperature 25 ◦C
β Temperature coefficient 0.005 ◦C

NOCT Nominal operating cell temperature 47 ◦C
Npv PV system lifetime 20 years

WT system

λwind Wind initial cost 125 $/m2

θwind Annual O&M cost of wind 0.01 ∗ λwind $/m2/year
Cp_wind Maximum power coefficient 48%

Vci Cut-in wind speed 2.6 m/s
Vco Cut-out wind speed 25 m/s
Vr Rated wind speed 9.5 m/s

Nwind Wind system lifetime 20 years

Diesel generator
λdg Diesel initial cost 250 $/kW
θdg Annual O&M cost of diesel 0.05 $/h
Rdg Replacement cost 210 $/kW
p f Fuel price in Egypt 0.43 $/L

Ndiesel Diesel system lifetime 7 years

BESS
λbat Battery initial cost 100 $/kWh
θbat Annual operation and maintenance cost of battery 0.03 ∗ λbat $/m2/year

DOD Depth of discharge 80%
ηb Battery efficiency 97%

SOCmin Minimum state of charge 20%
SOCmax Maximum state of charge 80%

Nbat Battery system lifetime 5 years

Inverter

λinv Inverter initial cost 400 $/m2

θinv Annual O&M cost of inverter 20 $/year
ηinv Inverter efficiency 97%

6.1. Validation of QOBO Algorithm

The results of the statistical measurements for the modified QOBO, the conventional BO, HHO,
AEFA and IWO algorithms are listed in Tables 2 and 3. From Table 2, the reader can find the results of
the optimal sizing for the multiple scenarios studied, as well as the convergence time of each simulation,
and conclude that the QOBO algorithm finds the best results with a short time compared with the
other algorithms. From Table 3, the reader can compare between algorithms and the different scenarios
of the proposed hybrid system using multiple factors. Briefly, it is noticed that the hybrid PV/biomass
system is highly competitive, mainly using the developed QOBO algorithm, the optimized system is
calculated with $110,807, which means an LCOE of 0.1053 $/kWh, the constraints are satisfied and the
project is 100% supplied by renewable energy sources. In this scenario, the performances of the QOBO
and the BO are almost equal, while in other scenarios, the difference is clearly noticed.
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Table 2. Sizing results of different scenarios obtained from different optimization methods.

Hybrid Power
System

Algorithm PV (m2) Wind (m2)
Diesel
(kW)

Battery
(kWh)

Biomass
(t/year)

Time(s)

PV/WT/Diesel/BESS

QOBO 484.765 0 1.2142 13.4390 // 51,507
BO 248.002 998.505 0.6480 14.8052 // 164,242

HHO 513.105 305.293 0.5204 14.6552 // 30,655
AEFA 329.159 176.277 5.4696 18.6552 // 10,531
IWO 830.791 136.557 10.296 5.8224 // 57,938

PV/Biomass

QOBO 293.971 // // // 1020.18 32,104
BO 293.972 // // // 1020.31 122,417

HHO 298.860 // // // 2040.47 10,453
AEFA 302.980 // // // 1185.76 3855
IWO 365.515 // // // 2739.00 36,098

PV/Diesel/BESS

QOBO 376.011 // 1.3402 58.9083 // 16,799
BO 336.253 // 2.9170 52.1928 // 33,009

HHO 482.756 // 1.7843 13.7590 // 13,983
AEFA 386.692 // 1.6713 55.7583 // 6237
IWO 748.387 // 4.0111 51.4565 // 24,630

WT/Diesel/BESS

QOBO // 2726.29 91.141 72.375 // 26,510
BO // 2823.34 42.637 72.371 // 66,514

HHO // 2808.76 74.565 73.230 // 135,097
AEFA // 3015.08 72.963 72.653 // 78,697
IWO // 4318.76 78.218 82.7987 // 26,960

Table 3. Factor results for all scenarios.

Hybrid Power
System

Algorithm NPC ($)
LCOE

($/kWh)
LPSP
(%)

Availability
(%)

Renewable
Energy (%)

Battery Daily
Autonomy (day)

PV/WT/Diesel/BESS

QOBO 175,651 0.1669 0.019 98.87 98.15 0.5826
BO 209,096 0.1986 0.050 96.99 99.75 0.6418

HHO 201,109 0.1910 0.025 99.23 99.88 0.6353
AEFA 183,284 0.1741 0.026 99.33 96.88 0.8087
IWO 347,523 0.3301 0.014 99.68 97.72 0.2524

PV/Biomass

QOBO 110,807 0.1053 0.050 96.03 100 //
BO 110,808 0.1053 0.050 96.03 100 //

HHO 114,098 0.1084 0.046 96.94 100 //
AEFA 113,410 0.1077 0.040 96.93 100 //
IWO 130,491 0.1240 0.018 98.70 100 //

PV/Diesel/BESS

QOBO 153,401 0.1457 0.049 98.63 97.25 2.5536
BO 167,981 0.1596 0.050 98.72 92.88 2.2625

HHO 183,501 0.1743 0.017 98.94 97.27 0.5964
AEFA 160,774 0.1527 0.042 98.74 96.70 2.4171
IWO 287,730 0.2733 0.026 99.16 96.12 2.2306

WT/Diesel/BESS

QOBO 1,095,270 1.0405 0.014 99.85 70.03 3.9509
BO 1,098,685 1.0437 0.003 99.97 71.3527 1.8483

HHO 1,123,579 1.0673 0.008 99.92 70.2407 3.1745
AEFA 1,119,533 1.0635 0.008 99.92 73.6967 3.1494
IWO 1,319,108 1.2531 0.008 99.92 81.8292 3.3907

6.2. Combinations of the Studied System Components

In this section, the results obtained in the convergence simulation of the NPC as a fitness function
using the QOBO are presented. The optimized parameter results (i.e., Apv, Awind, Pdgn, PCap_bat, PBM)
for all suggested combinations are listed in Table 3 with the rating of the inverter that takes the value
of the peak load demand. From Figure 10, the reader can notice that using QOBO, BO, HHO, AEFA
and IWO algorithms, the best minimum values of fitness function (NPC) is obtained for the second
configuration, i.e., hybrid PV/biomass energy system. From the table, it is obvious that QOBO generates
the minimum value of LCOE in all cases.

The reliability of the proposed scenarios of the proposed HRES are respected and the availability
of power is highly assured, the penetration RES is considered in this paper, while different results are
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obtained. The minimum penetration of 70% is obtained for the WT/Diesel/Battery scenario while the
maximum penetration of 99.75% is obtained for the PV/WT/Diesel/BESS scenario. The daily battery
autonomy is also influenced by the configuration of the HRES, the best autonomy is achieved for
the WT/Diesel/BESS scenario taking nearly 4 days, while the minimum autonomy is obtained in
PV/WT/Diesel/BESS case with only 6 h. The last system is composed of the different energy resource
which explains the independence for a specific resource. Table 4 presents a detailed overview of all
costs needed, for all scenarios presented and for all proposed algorithms.

(a) 

(b) 

Figure 10. Cont.
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(c) 

(d) 

Figure 10. Convergence of the objective function of all algorithms for different scenarios; (a)
PV/WT/Diesel/BESS, (b) PV/Biomass, (c) PV/Diesel/BESS, (d) WT/Diesel/BESS.
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6.3. Sensitivity Analysis

RES is intermittent which can be affected by any variation of sizing, meteorological or economic
data. The sensitivity analysis is a method that helps to select and/or to expect the optimal configuration
of the hybrid system. The sensitivity analysis in this paper is implemented on the best scenario of the
proposed, i.e., the PV/Biomass in the Aswan region. The selection of the sensitivity variables is based
on the sizing of components in order to analyze the effect of sizing variation on four factors which are
NPC, LCOE, LPSP and the Availability index.

Figure 11 shows the effect of variation in the sizing of PV and biomass units on the NPC. The PV
sizing is highly impacted by the total cost of the hybrid PV/Biomass system, which means that in the
case of reducing the area of PV units the NPC is reduced too. On the other hand, if the area covered by
PV modules is increased, the NPC increases too. The variation in the sizing of biomass unit is increased
throughout the interval −20 to 20 slowly and it has no noticeable impact on the NPC anyway. Figure 12
shows the effect of variation of PV and biomass sizing on the LCOE. The NPC and the LCOE are linked
with a linear equation which means that they have the same shape. The LCOE reached 0.08 $/kWh
when the area of the PV system is reduced by 20%. Figure 13 shows the impact of variation in the
sizing of PV and biomass systems on the LPSP. The impact of PV size is very important for the LPSP,
because when the size of the PV system is increased the LPSP is enhanced, mainly in the −20% to 0%
interval. When the PV size is changed in the interval of 0% to +20%, the LPSP is increased to 2% while
when the PV size is changed to −20%, the change in LPSP equals 16.4% which is a very bad sign for
system building. The Biomass system does not affect the value of the LPSP and the transition between
−4% to 0% is explained as the obtained sizing of the system is optimum. Figure 14 shows the impact
of the variation of PV and Biomass sizing on the availability index. The availability index enhanced
exponentially with the increase in the PV sizing. In the interval between −20% and 0, availability
progresses quickly, while after zero, the availability begins to be stabilized and it is clearly shown in
the interval between +12% and +20%.

Figure 11. Sensitivity analysis application for net present cost (NPC).
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Figure 12. Sensitivity analysis application for Levelized Cost of Energy (LCOE).

 

Figure 13. Sensitivity analysis application for Loss of Power Supply Probability (LPSP).

92



Appl. Sci. 2020, 10, 6604

Figure 14. Sensitivity analysis application for the Availability index.

The PV system through this analysis is demonstrated as a very important element for having a
high hybrid systems criterion. However, the Biomass system helps the PV to satisfy the constraints
and its variation does not have a serious impact on the performance of the hybrid system.

7. Conclusions

With the increased penetration level of RES into electrical energy production in the microgrid
systems, new challenges have emerged on the international scene. These challenges are represented in
finding ways to optimize the design of the hybrid system by using smart algorithms and software.
Among these dilemmas, the economic cost and feasibility of installing systems in different locations in
the world is considered the most important challenge. Therefore, this research proposes a developed
algorithm called Quasi-Oppositional Bonobo Optimizer (QOBO) for the optimal economic design of
a stand-alone hybrid microgrid system in Aswan, Egypt. Four configurations of the hybrid system
have been implemented, which consist of RES (PV panels, WT and biomass) with diesel generators
and battery storage systems. The obtained results showed that the PV/Biomass scenario is the
most cost-effective system with an NPC of $110,807 and LCOE of 0.1053 $/kWh; otherwise, the best
configuration of the microgrid system contained 293.971 m2 of PV and 1020.18 ton/year consumed
by the biomass system; the PV/Diesel/BESS scenario is also cost-effective with NPC of $153,401 and
LCOE of 0.1457 $/kWh. On the other side, the LPSP and availability index are satisfied and without the
need for traditional resources. Additionally, the results showed the ability of the QOBO algorithm
to reach the optimal solution in a shorter time and with better efficiency compared to the traditional
BO, HHO, AEFA and IWO algorithms in all cases studies. Furthermore, a sensitivity analysis of the
proposed systems scenarios was performed to obtain the impact of unit size on the performance of the
hybrid system, where it has been emphasized that PV system sizing is very important and has a great
impact on the overall performance of the system. The obtained results from this study would be useful
material for decision makers working on the development of the renewable energy sector in Egypt.
In future studies, it is suggested to apply the proposed QOBO in other engineering problems.
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Nomenclature

Symbols

A Availability index ηb Efficiency of the battery (%)
Ag Coefficient of consumption curve (a = 0.246 L/kW) ηbio Efficiency of the biomass system (%)
AD Daily autonomy of the battery (day) ηinv Efficiency of the inverter (%)
Apv Area covered by PV panels (m2) ηpv Efficiency of the PV system (%)
Att Cross-sectional area of the tidal (m2) ηr Reference efficiency of PV panels (%)
Awind Swept area by the wind turbine (m2)
C Capital Cost ($) Pwind Output power of the wind turbine (kW)
CBattery Capacity of the Battery (kWh) R Replacement Cost ($)
Cp Maximum power coefficient (%) T Temperature (◦C)
CVbio Calorific value of the organic material (MJ/kg) Ta Ambient temperature (◦C)
DOD Depth of Discharge (%) Totalav Total biomass available (t/yr)
El Load demand (kWh) Tr Reference temperature of solar cell (◦C)
Fdg Fuel consumption of the diesel generator (L/h) V Wind speed (m/s)
FCdg Fuel Cost for one year ($/Year) Vci Cut-in wind speed (m/s)
I Solar irradiation (kW/m2) Vco Cut-out wind speed (m/s)
ir Interest rate (%) Vr Rated wind speed (m/s)
N project lifetime (year) Bg Coefficient of consumption curve (b = 0.08415

L/kW)
NOCT Nominal operating cell temperature (◦C) ηt Efficiency MPPT system (%)
NPC Net Present Cost ($) β Temperature coefficient (0.004 to 0.006 ◦C)
OM Maintenance and Operation ($) ρ Air density (Kg/m3)
Pdg Rated power of the diesel generator (kW) λbat Initial cost of the battery system ($/kWh)
P f Fuel price ($/L) λbg Initial cost of biomass system ($/kW)
Pbg Generated power of the biogas plant (kW) λdg Initial cost of diesel generator ($/kW)
PBM Biomass power (kW) λPV,WT Initial cost of PV and WT ($/m2)
Ppv Output power of the PV (kW) δ Inflation rate (%)
Pr Rated power (kW) μ Escalation rate (%)
Pre Power from renewable energy systems θ1 Biomass annual fixed O&M cost ($/kW/year)
Pw Annual working of biomass (kWh/Year) θ2 Biomass variable O&M cost ($/kW h)
Acronyms

AEFA Artificial Electric Field Algorithm HSA Harmony Search Algorithm
ACS Annualized cost of the system IWO Invasive Weed optimization Algorithm
BESS Battery Energy Storage System LCOE Levelized Cost of Energy
BO Bonobo Optimizer Algorithm LPSP Loss of Power Supply Probability
BOQO Improved Quasi Oppositional BO Algorithm MOPSO Multiple Objective Particle Swarm Optimization
COE Cost of Energy NPC Net present cost
CRF Capital Recovery Factor PSO Particle Swarm Optimization
HOMER Hybrid Optimization of Multiple Energy Resources PV Photovoltaic
HRES Hybrid Renewable Energy Systems RF Renewable Fraction
HHO Harris Hawks Optimization WT Wind Turbine

Appendix A. Algorithms

Appendix A.1. Harris Hawks Optimization Algorithm

Heidari and et al. [36] proposed a new nature-inspired optimization algorithm called Harris Hawks Optimizer.
They were inspired by the cooperative behavior and chasing style of Harris hawks. The modeling of this technique
is based firstly on an exploration phase; afterwards, the transition from exploration to exploitation, then the
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exploitation phase and, finally, the soft besiege. The modeling is taken on for all strategies for exploring a prey,
surprise pounce and different attacking methods of Harris hawks. The pseudo-code of the HHO algorithm is
proposed below.

Algorithm A1: Pseudo code of HHO

Initialize the population size and max iteration (Kmax)
Initialize a set random rabbit location, within the limits Xi

min ≤ Xi
rabbit ≤ Xi

max.
Evaluate the objective function for all rabbits
While (k < Kmax)
Calculate the fitness of hawks
Set xrabbit in the best location
for each hawk do
Update the initial energy E0, energy E and jump strength J;
E0 = 2rand () − 1, E = 2E0

(
1− t

T

)
, J = 2(1 − rand ())

if (|E| ≥ 1) then
Exploration phase
if (|E| < 1) then
Exploitation phase
if (r ≥ 0.5 and |E| ≥ 0.5) then
Soft besiege
else if (r ≥ 0.5 and |E| < 0.5) then
Hard besiege
else if (r < 0.5 and |E| ≥ 0.5) then
Soft besiege with progressive rapid dives
else if (r < 0.5 and |E| < 0.5) then
Hard besiege with progressive rapid dives
Return xrabbit

Appendix A.2. Artificial Electric Field Algorithm

Anita and Yadav [37] were inspired by Coulomb’s law of electrostatic force to create a novel artificial electric
field algorithm. The concepts of electric field and charged particles provide us a strong theory for the working
force of attraction or repulsion between two charged particles. The pseudo code of the AEFA algorithm is proposed
in Algorithm A2.

Algorithm A2: Pseudo code of AEFA

Initialize a set of random population Xi
B =
(
X1

B, X2
B, . . . , XN

B

)
of N size, within the limits

Xi
min ≤ Xi

B ≤ Xi
max.

Initialize the velocity to a random value
Evaluate the fitness of whole population
Set the iteration to zero
Reproduction and Updating
While criteria not satisfied do
Calculate K (t), best (t) and worst (t)
for i = 1: N do
Evaluate the fitness values
Calculate the total force in each direction
Calculate the acceleration
Vi (t + 1) = rand () × Vi (t) + ai (t)

Xi (t + 1) = Xi (t) + Vi (t + 1)
end for
end while

Appendix A.2.1. Invasive Weed Optimization Algorithm

Invasive weed optimization is a numerical stochastic optimization algorithm inspired by colonizing weeds,
which was introduced in 2006 by Mehrabian and Lucas [38]. In IWO, a certain number of weeds make up the
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whole population, and each weed comprises a set of decision variables. Weeds are a serious threat to desirable
plants because they are plants that are invasive and hardy.

Weeds are plants which are vigorous and invasive; they pose a serious threat to desirable, cultivated plants
in agriculture. Weeds have shown to be very robust and adaptive to change in the environment. The IWO
optimization algorithm has been modeled based on four steps: initialization, reproduction, spatial dispersal and
competitive exclusion.

• Initialization and Production

Firstly, the population is spread over the research space randomly; afterwards, each plant is allowed to
produce seeds depending on its own fitness; the production of seeds is not only allowed for the better plants’
fitness as in the other evolutionary algorithms, but the reproduction step of IWO is also proposed to give a chance
to infeasible individuals to survive and reproduce similar to the mechanism which occurs in nature. The weeds
producing seeds can be formulated as follows:

Weedn =
f − fmin

fmax − fmin
(smax − smin) + smin (A1)

where in each iteration, f is the current weed’s fitness. fmax and fmin represent the max and min fitness values,
respectively. smax and smin represent the max and min values of the weeds, respectively.

• Spatial Dispersal

The generated seeds are being randomly distributed over the search space such that they abode near the
parent plant. However, the standard deviation (σ) of the random function will be reduced in every iteration,
the nonlinear alteration equation of the standard deviation at each iteration is presented as follows:

σinter =
(itermax − iter)n

(itermax)
n

(
σinitial − σ f inal

)
+ σ f inal (A2)

where itermax is the maximum iteration, n is the nonlinear modulation index, σinitial and σ f inal are the initial and
final values of standard deviation, respectively.

• Competitive Exclusion

In a colony, the maximum number allowed of plants is limited; for that, competitive exclusion is applied.
The plant that leave no offspring would go extinct; otherwise, they can survive. After some iterations, the number
of plants in a colony will reach its maximum through the reproduction step, the seeds and their parents are
ranked together, and all plants in the research space are considered as weeds; afterwards, weeds with lower fitness
are eliminated.

The overall steps of the IWO algorithm are presented in Algorithm A3.

Algorithm A3: Pseudo code of IWO

Initialize a set of random weeds, weedi
B =
(
weed1

B, weed2
B, . . . , weedN

B

)
within the limits

weedi
min ≤ weedi

B ≤ weedi
max.

Set the IWO’s parameters
Evaluate the objective function for all weeds
While (iter < itermax)
Calculate the best and worst fitness in the colony
Calculate the σ
for each weed in the colony
Calculate the number of seeds following the fitness of each weed
Add the seeds to their parents in the colony
if Sizemax ≤ Nbpopulation
Sort the new population according to their fitness
Eliminate the worst fitness in order to achieve the Sizemax allowed
end if
end for
Update iteration iter = iter + 1
end while
Return the final best solution
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Abstract: The effectiveness of energy management systems is a great concern for wind–photovoltaic-
storage electric vehicle systems, which coordinate operation optimization and flexible scheduling
with the power grid. In order to save system operation cost and reduce the energy waste caused
by wind and light abandonment, a time-sharing scheduling strategy based on the state of charge
(SOC) and flexible equipment is proposed, and a quantum mayfly algorithm (QMA) is innovatively
designed to implement the strategy. Firstly, a scheduling strategy is produced according to the SOC
of the battery and electric vehicle (EV), as well as the output power of wind–photovoltaic generation.
In addition, the minimum objective function of the comprehensive operation cost is established
by considering the cost of each unit’s operation and electricity market sale price. Secondly, QMA
is creatively developed, including its optimization rule, whose performance evaluation is further
carried out by comparisons with other typical bionics algorithms. The advantages of QMA in solving
the low-power multivariable functions established in this paper are verified in the optimization
results. Finally, using the empirical value of the power generation and loads collected in enterprise as
the initial data, the mayfly algorithm (MA) and QMA are executed in MATLAB to solve the objective
function. The scheduling results show that the time-sharing scheduling strategy can reduce the
system’s cost by 60%, and the method decreases energy waste compared with ordinary scheduling
methods, especially when using QMA to solve the function.

Keywords: microgrid; economic scheduling; clean energy; quantum mayfly algorithm (QMA)

1. Introduction

With the rapid development of the national economy, demand for fossil fuels is
increasing. However, the output of traditional energy is limited, and the utilization of
renewable energy has become the general trend. As new energy sources, wind and light
are widely distributed and can be permanently used. They are characterized by low
cost and strong environmental protection. Nevertheless, there are considerable random
fluctuations of output power due to natural conditions, which affect the security and
stability of the power system after grid connection [1–3]. Therefore, designing a stable
and low-cost scheduling strategy based on the structure of the wind–photovoltaic-storage
electric vehicle complementary power generation system has become a key issue. By
coordinating wind–photovoltaic and flexible devices, we can ensure the reliability of the
system, improve the economy, and increase environmental friendliness [4,5].

In the process of modeling, parameter uncertainty becomes a significant problem that
threatens system security with the increasing scale of the microgrid. In order to solve
this problem, robustness becomes one of the parameters worthy of study [6,7]. The im-
provement of robustness can make the system maintain its balance when it is disturbed,
thereby reducing the loss caused by disturbances [8]. Meanwhile, some other power con-
sumption units are introduced, such as electric vehicles (EVs) and fuel cells, on the basis of
wind–photovoltaic-storage microgrid architecture, which can ensure the system maintains
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a stable operation by interacting power with other components when it is impacted [9,10].
In terms of the objective function, some microgrid systems, including fossil fuels, need to
be considered regarding carbon emissions to reduce the environmental pollution caused by
them [11]. Therefore, multi-objective functions combined with economic objectives and
carbon emissions are established in recent studies. Furthermore, in order to ensure the
normal operation of the microgrid system, it is necessary to ensure power conservation is
met, and power flow constraints, including power flow calculation, should be added to the
scheduling study [12,13]. Additionally, equipment parameters are important constraints to
enable the system to operate under the superior performance of the equipment, thereby
ensuring equipment safety and power quality.

In order to realize the scheduling strategy and accurately find the optimal value
of the objective function, a variety of high-performance intelligent algorithm schemes
based on biological habits are proposed, and verified in specific cases [14–16]. Bionics
algorithms, such as the flying sparrow search algorithm, flower pollination algorithm, and
other heuristic algorithms, are proposed and applied to practical problems [17–19]. Among
them, as a new bionics algorithm, the mayfly algorithm (MA) has better optimization
performance than the traditional intelligent algorithms. The integration of the advantages
of various algorithms has significantly improved the optimization process in terms of speed
and accuracy [20]. However, when it comes to high-dimensional complex problems, it is
still difficult to jump out of local optimal regions simply by relying on its own mechanism,
and the convergence accuracy of the algorithm is not high enough because the step size of
the mayfly is too short when it moves. Based on the above shortcomings, logistic mapping
is used to improve the optimization ability of mayfly individuals [21,22], or the learning
factor is changed to improve the degree of self-adaptation [23].

In order to describe the research status of microgrid scheduling and its characteristics
more clearly, the studies conducted for our paper, and other related studies, are summarized
in Table 1, which is represented as follows:

Table 1. Comparison of relevant studies.

Number EV Robustness Algorithm Pollution Market Remark

[6]
√ √

ANN-based scheduling control approaches
[7]

√ √
Proposes a robust model predictive control approach

[9]
√ √ √

Addresses the uncertainty of PV output and EV charging
[10]

√
Solves the sub-problems with fitted Q-iteration

[11]
√ √ √

Uses improved algorithm to mine magnesium energy
[12]

√
Introduces a non-cooperative framework

[17]
√

Improvements and comparisons of algorithms
[18]

√ √ √
Uses ASAPSO algorithm in multi-objective optimization

[19]
√ √ Plans two-stage form of multi-energy

supply optimization
This

paper
√ √ √

Improves MA algorithm and designs a scheduling model

Through the above table, it can be seen that the robustness and stability of the system
are studied by some scholars. In these studies, robust model predictive control (RMPC)
and other methods are used to deal with the uncertainties of renewable energy. In the
microgrid system containing fossil energy, reducing carbon emissions is also an important
issue that needs to be solved to improve the environmental protections of the system.
More studies focus on the microgrid system containing EVs, namely the EVs charging
and discharging states, as well as the stability of the EVs themselves.However, it is also
worth studying how to interact with the microgrid while ensuring its stable operation.
Meanwhile, some studies are aimed at improved algorithms, which have been greatly
modified in optimization rate, convergence, and escape from local deadlock; however, there
is still room for further improvement. Therefore, the problems that are concentrated on in
this paper are represented as follow:
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(1) The EV is taken as one of the dispatching objects, and its interaction state with the
microgrid is judged according to its SOC. The microgrid system is able to make full use of
power in this measure.

(2) The QMA algorithm raised in this paper is compared with the moth–flame opti-
mization (MFO), grey wolf optimize (GWO), particle swarm optimization (PSO), whale
optimization algorithm (WOA), sine cosine algorithm (SCA), and MA to verify its advan-
tages, and is applied to the solution of the objective function.

The rest of the paper is organized as follows: The structure model of the microgrid
is established in Section 2. Meanwhile, the scheduling strategy of each unit, as well as
the objective functions with constraint conditions of economic dispatching regarding the
microgrid, are established. In Section 3, the operation rules of the QMA are analyzed,
and the comparison between various intelligent algorithms is realized. The algorithms
are combined with the objective function in Section 4, and the economic scheduling of
the microgrid in a specific area is carried out according to the actual situation. Section 5
summarizes the content and contributions of this paper, and puts forward prospects for
future studies.

2. Microgrid Structure and Dispatching Strategy

2.1. Microgrid Structure

The model of the wind–photovoltaic-storage electric vehicle microgrid system is
shown in Figure 1. Power output can be achieved by wind turbines and photovoltaic gen-
erations, while the load can only consume power. As flexible equipment, the consumption
and production of electric energy can be realized by EVs and batteries. Meanwhile, energy
interaction can be implemented by the accession of the microgrid to the main grid .

 

  

Figure 1. The model of wind–solar-storage electric vehicle microgrid system.

2.2. Scheduling Strategy Research

In this paper, in order to minimize the overall cost by dispatching each generation
unit, the following requirements should be met in the scheduling strategy to ensure power
supply reliability:

(1) Maximize the utilization of wind and photovoltaic power generation, and maximize
their output through reasonable scheduling;

(2) Minimize the redundant power generated by wind and photovoltaic units to avoid
energy waste;

(3) The difference between wind–photovoltaic generation and the power consumption
of the load depends on the energy interaction with batteries, EVs, and the main grid,
and whether this can meet power balance constraints.The comprehensive cost can be
further reduced to achieve economic optimization by selling electricity to the main
grid and EVs.
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In order to achieve the above requirements, the dispatching strategy aiming at the
system economy is designed as follow: The output of wind power and photovoltaic
generations are coordinated, and participate in the dispatching according to the state of the
battery and EV on charge. Finally the power balance is realized through the interaction
process with the main grid.

a. Wind and photovoltaic generation
The empirical output value of wind and photovoltaic generation is taken as the actual

output power, and the scheduling is carried out after increasing the cost of wind and solar
abandoning in order to reduce energy waste. The output power of wind and photovoltaic
generation after dispatching is compared with the empirical value. If the output power is
lower than the empirical value, the output power after dispatching can be used; otherwise,
the empirical value has to be maintained.

b. Battery generation
Since photovoltaic and wind generation is affected by daily environmental changes,

the charging and discharging process of batteries can meet the demand. According to
power load trends within 24 h, power supply states are divided into peak, normal, and
valley periods. Charging and discharging strategies are adopted based on the current
period and the battery state of charge (SOC). The specific process is shown in Figure 2.

   

  

 

 

  

  

 

 

 

  

 

  

 

 

Figure 2. The scheduling strategy of battery generation.

According to Figure 2, charging and discharging can be carried out only if the battery
SOC is within a certain range. When the charging and discharging standard is reached by
the battery, the interactive state is judged according to its SOC value and the time period.
Thereby, the charging and discharging power is calculated. The specific calculation method
is provided as follow:

Pbess(t) = SOCx(t)Cx (1)

where the charging and discharging power of battery at time T is described as Pbess(t). The
SOC of the battery at time T is shown as SOCx(t), which is the scheduling target of the
battery. The rated capacity of the battery collected from empirical data is defined as Cx.

c. Electric vehicle
The output of an EV can be judged according to its SOC. If the SOC can maintain

the normal operation of the vehicle, the power is outputted to the system; otherwise, the
system’s power is consumed. The flow is expressed in Figure 3.
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Figure 3. The scheduling strategy of EV.

Similar to battery scheduling, the output state of EVs can be judged according to their
SOC. The output of the SOC after scheduling, according to the idea shown in Figure 3, can
be used for further calculations, and the specific expression is represented as follows:

Pev(t) = SOCe(t)Ce (2)

where interactive power between EVs and the microgrid at time T is given as Pev(t). The
SOC of the EV at time T is shown as SOCe(t), and the fixed capacity of EV is expressed
as Ce.

2.3. Expression Construction
2.3.1. Objective Function

In this paper, objective functions are established for the economy of the wind–photovoltaic-
storage electric vehicle microgrid system under a grid-connected operation. Consider the
operation, maintenance, and investment cost of each unit in a system, and the cost of grid
sales and purchases. Meanwhile, taking into account the operating costs of EVs and the cost
policies issued by the government for new energy, the optimization goal can be achieved
through relevant scheduling. The expression is as follows:

Minimize F(x) = Fwv + Fx − FG − FEV + FBT (3)

where the operation and maintenance costs of wind and photovoltaic generation are repre-
sented as Fwv. The power generation and investment costs of the battery are determined as
Fx. The power grid sales and purchase costs are simplified as FG. The operating costs of
EVs and policy expenses related to new energy power generation are given as FEV and FBT .
The decision variable of the objective function is the output power of each unit, which is
the real number. Moreover, the specific coupling relationships between decision variables
and objective functions (3) are shown in subsections a–e.

a. Wind and photovoltaic generation
The equipment loss, manual repair, and operating reserve storage costs are included

in Fwv, which can be expressed as follows:

Fwv =
T

∑
t=1

CwPw f (t) +
T

∑
t=1

CvPv f (t) + FRE (4)

where the operation and maintenance cost coefficients of wind and photovoltaic generation
are defined as Cw and Cv, respectively. These coefficients are based on the ratio of the
total operation and investment costs of the equipment to the total annual generated power
within a year obtained in enterprise. The output power of wind and photovoltaic power
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generation is computed as Pw f and Pv f , respectively. The operating reserve storage cost is
simplified as FRE, which can be expressed as follows:

FRE = CRE[Pv f (t) + Pw f (t)] (5)

where the operating reserve storage cost coefficients of wind and photovoltaic generation
are given as CRE.

b. Battery generation
In Equation (6), Fx consists two parts, which are the acquisition and maintenance costs

of batteries. The acquisition cost is converted into each work process, and the specific
expression is calculated as follows:

Fx =
FcapC

PbessTn
|

T

∑
t=1

Pbess(t)|+
KoPbess,max

365
+ KM

1
Δt

Pbess(t)Δt (6)

where the acquisition cost and depreciation coefficient are defined as Fcap and C, respec-
tively. The annual operating cost coefficient and hours are represented as Ko and Tn,
respectively. Pbess and Pbess,max are battery-rated power and maximum charge and dis-
charge power, respectively. Meanwhile, the maintenance cost coefficient is described as KM,
and the duration from the beginning to the end of charging and discharging the battery is
shown as T.

c. Interaction with main grid
The microgrid system can interact with the main grid when the power is vacant or

redundant. When the interactive power is positive, the power is purchased from the main
grid; otherwise, the interaction cost FG is the sum of the two. The equation is simplified
as follows:

FG =
24

∑
t=1

Pgrid(t)Cprice,grid (7)

where Pgrid(t) refers to interactive power with the main grid, and the time-sharing sale and
purchase price of the main grid is expressed as Cprice,grid.

d. Policy of government
Subsidies are paid for wind and photovoltaic generation, which encourage companies

to adopt new sources of electricity. Meanwhile, fees are charged for energy waste to reduce
the energy loss caused by wind and solar discarding. The formula is computed as follows:

FBT =
T

∑
t=1

Cq[Pwy(t) + Pvy(t)− Pwy(t)− Pvy(t)]− Sbt (8)

where the wind and solar discarding coefficient is given as Cq and Sbt, which represents
the government subsidy. The actual utilization power of wind and photovoltaic generation
is determined as Pwy(t) and Pvy(t), respectively.

e. Electric vehicles
As a client device, the cost of selling and purchasing power to the microgrid is mainly

included in the cost of EVs. The specific expression is given as follows:

FEV =
24

∑
t=1

PEV(t)Cprice,EV (9)

where the electricity purchase price of an EV is defined as Cprice,EV .

2.3.2. Constraint Condition

In order to ensure the safe and stable operation of the grid system, the power balance
should be regarded as the basic constraint condition, and the output power and SOC of
flexible devices should be limited to ensure the normal operation of equipment.
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a. Power balance
In any period of time, all output, load, flexible device charging and discharging, and

interaction powers between the microgrid system and the main grid should be kept in
balance, and the constraint equation is given as follows:

Pwy(t) + Pvy(t) + Pgrid(t) + Px(t) + PEV(t) = Pload(t) (10)

where Px is the charging and discharging power of the battery, and the total load is
expressed as Pload.

b. Wind and photovoltaic generation
Due to the limitations of the equipment parameters, the output power of wind and

photovoltaic generation is within a certain range. Meanwhile, in order to ensure the normal
operation of the system when the power required surges, it is necessary to add operating
reserves. In detail, 30% of power generated by wind and photovoltaic power generation is
stored, and the rest is the maximum power supplied to the system. Furthermore, the change
of power in each time period should also be constrained in a certain range. Therefore, the
relevant constraints are set as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 ≤ Pwy(t) ≤ 0.7Pw f (t)

0 ≤ Pvy(t) ≤ 0.7Pv f (t)

Rw−downδt ≤ δPw ≤ Rw−upδt

Rv−downδt ≤ δPv ≤ Rv−upδt

(11)

where the adjustable power amplitude of wind and photovoltaic generation in a certain
period is represented as δPw and δPv, respectively. The downward climbing rate of wind
and photovoltaic generation during adjustment is expressed as Rw−down and Rv−down, re-
spectively. Meanwhile, Rw−up and Rv−up give the upward climbing rate for wind and
photovoltaic generation during adjustment, respectively. The adjustment time is repre-
sented by δt.

c. Flexible generation
Batteries are not only constrained by power, their safety performance and service life

are affected by their SOC , and the operation of an EV is also affected by its SOC. Specific
conditions are simplified as follows:⎧⎨

⎩
SOCemin ≤ SOCe(t) ≤ SOCemax
SOCxmin ≤ SOCx(t) ≤ SOCxmax

0 ≤ Pbess,t(t) ≤ Pbess,max

(12)

SOCemin, SOCxmin, SOCemax, and SOCxmax are the upper and lower limits of their SOC.
In addition, to ensure the safe and stable operation of batteries, the charging and

discharging rates should be controlled within a certain range. The specific constraints are
shown as follows:

δSOCx ≤ 0.2 (13)

where the adjustable range of a battery’s SOC in each period is expressed as δSOCx.

3. Improved Mayfly Algorithm

3.1. Traditional Mayfly Algorithm

The MA is a bionics algorithm derived from the social behavior of the mayfly. Inspired
by the movement mode and reproduction process of female and male populations, the op-
timal and suboptimal individuals in each population are selected. Meanwhile, the optimal
offspring generation is obtained through mating between the optimal male and female indi-
viduals, and the suboptimal offspring generation is obtained in the same way. The direction
of movement of each mayfly is influenced by the dynamics of individual and collective
optimal positions, and female mayflies target male mayflies towards their positions.
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a. The movement of male mayfly
The flight mode of male mayflies is similar to the movement mode of birds in a particle

swarm algorithm, and the direction and distance of male mayflies are adjusted according
to their own flight experiences and that of individuals around them. The specific method is
shown as follows:

xn+1
i = xn

i + vn+1
i (14)

where xn
i and vn

i are the current position and speed, respectively, of the male mayfly i on
the nth search. The values are calculated as follows:

vn+1
ij = vn

ij + α1e−βl2
p(p

bestj
i
− Xn

ij) + α2e−βl2
g(g

bestj
i
− Xn

ij) (15)

Because male mayflies perform a dance on the surface of water to attract females,
the position of the male mayflies is constantly changing, meaning they do not build a
high speed. vn

ij is the speed of the nth search of the mayfly i at j dimension, and xn
ij is

the position at that time. α1 and α2 are estimated from the positive attraction coefficients
of social interaction, and β is the visibility coefficient of the mayfly. Meanwhile, the
optimal locations of the individual and collective mayflies are expressed as p

bestj
i

and g
bestj

i
,

respectively. Additionally, the distances from current position to p
bestj

i
and g

bestj
i

are defined

as lp and lg, respectively, and are calculated as follows:

‖xi − Xi‖ = 2

√√√√ n

∑
j=1

(xij − Xij)2 (16)

For the best mayfly in the population, a fixed dance pattern is needed to be maintained.
Meanwhile, a random element is introduced to ensure that the speed is constantly changing.
The calculation is described in this case as follows:

vn+1
ij = vn

ij + d × r (17)

where the dance coefficient is simplified as d, and r is the random natural number within
[−1, 1].

b. The movement of female mayfly
The movement of the female mayfly depends on the attraction of the male mayfly, and

their position renewal depends on the increase of speed, which can be expressed as follows:

yn+1
i = yn

i + vn+1
i (18)

The speed update is a certain process, which means that in order to ensure the quality
of offspring, the best female needs to be attracted by the best male, the second-best female
by the second-best male, and so on. The speed update expression is given as follows:

vn+1
ij =

{
vn

ij + α2e−βl2
f (xn

ij − yn
ij)

vn
ij + g × r

(19)

where the position of the female mayfly is expressed as yn
ij, the random walk coefficient of

the female mayfly is represented as g, and l f is determined by the distance between the
male and female mayflies.
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c. The mating of male and female mayflies
In the process of parent mating, the optimal and suboptimal individuals in the male

and female populations should be selected for mating and reproduction based on their
fitness functions. The results of interbreeding, which produces the optimal and suboptimal
offspring, are calculated as follows:{

o f f spring1 = L × m + (1 − L)× fm
o f f spring2 = L × fm + (1 − L)× m

(20)

where the male and female in the parent generation are represented as m and fm, respec-
tively, and L is a random natural number within a specific range.

3.2. Ma with Quantum Idea

The traditional MA can find the optimal value in a single-peak function accurately by
taking advantage of the characteristics in mayfly reproduction. However, with regard to the
large population and complicated process, the search speed is slow and the convergence
is not fine. Meanwhile, it is easy to fall into local deadlock when dealing with multi-peak
functions. Therefore, the quantum idea is introduced on the basis of a traditional MA,
thereby forming the QMA. Because the position and velocity of the mayfly cannot be
determined simultaneously in quantum space, the wave function is used to represent the
position of the mayfly, and the Monte Carlo method is used to solve the problem. The
particle update expression is shown as follows:⎧⎪⎪⎨

⎪⎪⎩
mbestn = 1

N ∑a
i=1 Pbestn

i
(i = 1 . . . n)

Pt
i = γ × Pbestn

i
+ (1 − γ)× gn

best

Xn+1
i = Pn

i ± ε|mbestn − xn
i | log 1

a

(21)

where the numbers of individuals and iterations are represented as N and n, respectively.
mbestn is the average historical optimal position of the male mayfly, and Pn

i is obtained from
the updated position of the ith male mayfly in the nth iteration. r and a are uniformly
distributed values within (0,1), and c is the final random motion parameter.

The execution steps of the QMA are given as follows:
Step 1: Initialize the positions of the female and male mayflies in the space.
Step 2: Calculate the average optimal location mbest of the male mayflies according to

the first equation of (21).
Step 3: Calculate the fitness value and sorting according to Formula (3), and compare

with the previous iterative value. If the current function value is less than the previous
iteration, the current mayfly position is updated for the individual optimal position, other-
wise it keeps the previous iteration. Hence, the optimal male individual pbest and collective
locations gbest are obtained.

Step 4: Calculate the new positions of the female and male mayflies according to
Formula (18) and the second equation of (21), respectively, and mate in sequence.

Step 5: Calculate the fitness function and update pbest and gbest.
Step 6: Repeat Step 2 to 5 until the stop condition is met.
The QMA flow chart is shown in Figure 4.
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Figure 4. The flow chart of QMA.

3.3. Performance Analysis of Qma

In order to verify the superiority of the QMA, the single-peak and multi-peak functions
are tested by MFO, GWO, PSO, WOA, SCA, MA, and QMA in this section. We combine the
biological habits and existing literature on each algorithm, and the initialization parameters
and test functions are shown in Tables 2 and 3, respectively. Meanwhile, to ensure the
effectiveness of the comparison results, the number of biological populations in all bionics
algorithms is set as 10. The function expression is represented by Fun, and the expression
dimension is expressed as Dim. Lb and Ub are the upper and lower boundaries of the
variables, respectively.

Table 2. Algorithm parameters.

Type Parameters Value Parameters Value

QMA/MA

Mutation rate rm 0.01 Personal learning
coefficient ln

1

Global learning coefficient lg 1.5 Inertia weight w 0.8

Distance sight coefficient d 2 Nuptial dance
coefficient n 5

Random flight coefficient r 1 Damping ratio da 0.99

WOA Inertia weight a 20→0 Inertia weight a1 −10→−20
MFO Maximum weight amax −1 Minimum weight amin −2
GWO Inertia weight amax 20 Minimum weight amin 0
SCA Inertia weight amax 2 Minimum weight amin 0

PSO
Maximum velocity vmax 6 Minimum velocity vmin −6
Maximum weight wmax 0.9 Minimum weight wmin 0.2

Inertia weight c 2 Inertia weight c1 2
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Table 3. Test functions.

Number Function Dim Lb Ub Iteration

F1 f(x) = ∑n
i=1 x2

i 30 −100 100 1000
F2 f(x) = An + ∑n

i=1[x
2
i − Acos(2πxi)] 30 −5.2 5.2 1000

Sphere function is represented as F1, which is a typical single-peak function. The
optimization time and local search ability of the algorithm can be effectively verified in this
type of function. The Rastrigrin function is simplified as F2, and the validity of breaking
away from local deadlock in the algorithm can be proved in this multi-peak function.
The performances of different optimization algorithms in solving these two functions
are expressed in Table 4. The iteration curves of these functions run once are shown in
Figures 5 and 6.

Table 4. Comparison results in different algorithms.

Number Type MFO WOA SCA GWO PSO MA QMA

F1
Average 5693.2166 1382.2805 4.6177274 0.2631747 0.01161598 5.10 × 10−8 7.51 × 10−9

Var 44,354,655.8 1,791,398.94 309.74423 0.17328 0.00112851 1.92 × 10−15 3.33 × 10−16

STD 6659.92911 1338.43152 17.599552 0.4162691 0.03359328 4.38 × 10−8 1.83 × 10−8

F2
Average 197.08007 109.26403 31.40007 37.90619 132.70364 33.91202 20.92731

Var 2051.98830 6157.62175 772.52064 171.00581 1369.34713 114.93251 39.28933
STD 45.29888 78.47052 27.79426 13.07692 37.00469 10.72066 6.26812

Figure 5. The optimization of algorithms using Sphere function.

Figure 6. The optimization of algorithms using Rastrigrin function.
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As can be seen from the Figures and Table, the average value, variance, and standard
deviation of the different algorithms after 30 iterations in solving functions are different.
The optimal value can be found quickly in the WOA, MFO, and GWO algorithms once
they get rid of local deadlock when solving multi-variable functions. However, it is easy
for them to fall into a local optimum, which is greatly affected by the number of iterations
and randomness. Hence, it is not suitable for these algorithms to solve such functions.
Compared with the SCA, PSO, and MA algorithms, although the convergence speed is not
fast as the above algorithms, the rate is stable, and it is not easy to get into local deadlock.
They have good performance in solving multi-variable lower-power functions, and MA
has the most stable optimization rate among them. On the basis of MA, the stability of
optimization is improved further in the QMA, and the optimal solution of the objective
function can be found better in it. In the function where the optimal value is zero, the
optimal value found by the QMA in the optimization process is lower than other algorithms,
and the performance is more stable with little variance. In the scheduling problem of the
microgrid, many variables are obtained in an economic objective function, and the stability
of optimization is needed to ensure this. Hence, it is suitable for the QMA to find the
optimal value of the economic scheduling function based on the microgrid established in
this paper.

4. Simulation Analysis of Microgrid

Entering into cooperation with an enterprise, a typical winter day in the region where
the enterprise is located is taken as an example to make economic scheduling. The actual
data, such as wind–photovoltaic power and residential electricity consumption obtained
from enterprise, are input as empirical values. Based on the economic scheduling objective
function of the wind–photovoltaic-storage electric vehicle microgrid established in Section 2,
the QMA and MA algorithms are used to solve it. The algorithms are invoked, combining
with the microgrid economic objective function, and the number of the population in
the algorithms is set as 100 after several simulations. In this condition, the objective
function the algoriths can commendably solve the problems regarding optimization speed
and convergence. Hence, the output power of each unit within 24 h is obtained. The
output empirical values of wind and photovoltaic generation collected from enterprise are
expressed in Figure 7, and the empirical values of residential electricity consumption are
shown in Figure 8.

Figure 7. Empirical values of wind and photovoltaic generation.
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Figure 8. Empirical values of fixed load.

Under the load conditions, the optimization algorithms are used in this paper to find
the minimum output cost under the condition of maintaining the security and stability
of the system. Combined with empirical data obtained from the enterprise, the status
of various components in the microgrid and the equivalence coefficient are shown in
Tables 5 and 6. The related parameters of the time-of-use price are shown in Table 7.

Table 5. Status of various components in the microgrid.

Type Maximum Output Power/kW Maximum Ramp/kW (Min, Max) SOC

Wind generation 810 50 \
Photovoltaic generation 100 50 \

Battery 1000 200 0.3,0.7
Charging power of EV 120 \ 0.3,0.7
Main grid transmission 1000 \ \

Table 6. Equivalence coefficient.

Parameters Value

Photovoltaic generation operation and maintenance coefficient (RMB/kW) 0.0096
Wind generation operation and maintenance coefficient (RMB/kW) 0.0296

Battery annual operating cost factor (RMB/kW) 50
Battery maintenance cost factor (RMB/kW) 0.813

Battery depreciation factor (RMB/kW) 0.005
Battery annual operating hours (hours) 50

Battery investment cost (RMB/kW) 5000
Wind and light abandoning coefficient (RMB/kW) 0.025

Government subsidy (RMB/kW) 50
Operating reserve storage cost coefficient (RMB/kW) 0.002

Table 7. Market parameters.

Selling Object Time Price (RMB)

EV 0:00–24:00 0.5

Load

0:00–7:00 0.49
7:00–10:00 0.83
10:00–14:00 1.1
14:00–19:00 0.83
19:00–22:00 1.1
22:00–24:00 0.49
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When MA and QMA are used to solve the objective function, the SOC of the bat-
tery and EV are shown in Figures 9 and 10, respectively . The recharging of the battery
is represented as an increase in SOC; otherwise, the battery delivers power to the grid.
When the SOC of the battery is between 0.3 and 0.7, it can maintain its operation in the
best condition. Taking Figure 10 as an example, when QMA is used to solve the system
objective function, the battery is charged in three time periods: 1:00–2:00, 15:00–16:00, and
23:00–24:00. Meanwhile, discharge is performed in four time periods: 10:00–12:00,
14:00–15:00, 18:00–19:00, and 20:00–21:00. The rest of time, the battery remains neither
charged nor discharged. Furthermore, if there is more than one EV in the area, their SOC is
not continuous with great fluctuations, and they can operate normally when the SOC is
within the range of 0.3 to 0.7.

Figure 9. The battery and EV SOC under the objective function solving by MA.

Figure 10. The battery and EV SOC under the objective function solving by QMA.

The output of each unit when MA and QMA solve the objective function is repre-
sented in Figures 11 and 12, respectively. The load power curve is the absolute value of
consumed power.

Abundant power is generated by wind turbines within 0:00 to 4:00, and the microgrid
consumes redundant power by interacting with the main grid. From 4:00 to 11:00, the
output power of wind–photovoltaic generation and EVs supplies power to load; meanwhile,
the redundant power is consumed by the main grid. From 11:00 to 16:00 is the peak period
of electricity consumption. During this time, almost all power generation is used to
maintain the power required by load. The load demand gradually decreases from 16:00 to
18:00 and reaches the peak again from 18:00 to 21:00. In this period, wind generation and
EVs are in a power output state, while photovoltaic generation occasionally outputs power,
and the interaction with the main grid absorbs or transfers power to the main grid as the
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load requires. Finally, load demand drops from 21:00 to 24:00, and wind generation and
EVs mainly send out power and feedback to the main grid.

Figure 11. The output of each unit under the objective function solving by MA.

Figure 12. The output of each unit under the objective function solving by QMA.

When the output power is at 10% of its maximum capacity it is stored by the battery,
and the wind–photovoltaic generation produces power according to the empirical value.
The operation cost of the microgrid is shown in Figure 13; furthermore, the operation cost
of the microgrid obtained by solving the objective function using the scheduling strategy
in Section 2 is shown in Figure 14.

The results of the value and standard deviation of MA and QMA after 100 and
500 iterations are shown in Table 8. In terms of these results, the operating costs under
the empirical value are higher than the costs after participating in scheduling according to
the strategy. Moreover, the optimization rate of QMA is higher than that of MA, and the
optimal solution found by the improved algorithm after 500 iterations is obviously better
than the solution obtained before the improvement.

Figure 13. Microgrid operation cost utilizing regular scheduling mode.
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Figure 14. Microgrid operation cost after time-sharing scheduling.

Table 8. The cost of microgrid.

Type Iterations

Time-Sharing Scheduling Normal Scheduling

QMA MA QMA MA
100 500 100 500 100 500 100 500

Mean(RMB) 1460.53 1310.10 1498.17 1328.32 3078.50 3073.22 3098.10 3093.96
Var 833.71 718.22 3080.84 761.05 23.83 9.13 6.14 5.76
STD 28.87 26.79 55.50 27.58 4.88 3.02 2.47 2.40

In summary, the scheduling strategy provided in this paper can effectively improve the
economy of the microgrid system, and the improved QMA has a high level of superiority
when solving the objective function.

5. Conclusions

According to the operation state of a wind–photovoltaic-storage electric vehicle micro-
grid connected to the grid in a certain area, a time-sharing scheduling strategy is designed
in this paper; furthermore we established the minimum cost objective function according to
economic requirements and constraints, such as wind and light abandonment. Meanwhile,
a QMA algorithm is innovatively proposed and applied to the solution of the objective
function. In summary, the main conclusions of this paper are expressed as follows:

(1) The SOC of the EV and battery is taken as a scheduling object, and it is scheduled in
combination with the current period, thereby obtaining the interaction power between
the flexible equipment and microgrid. Furthermore, the output power of wind and
photovoltaic generation is limited within the empirical value and, accordingly, the
energy waste caused by wind and light abandonment is reduced. This scheduling
method not only reduces energy waste but also decreases the system cost by about
60%;

(2) On the basis of the MA, the quantum idea is introduced, and the QMA is proposed.
Comparing the performance of the QMA with six other intelligent algorithms in
typical functions optimization, the superiority of the QMA is clearly seen. Meanwhile,
the QMA is applied to the objective function established in this paper. The cost of the
system can be reduced by about 2%, which is considerable for the microgrid system.

In future research, new energy devices need to be taken into account, and the robust-
ness of the system should also be paid attention to because of the increasing complexity of
the system. Meanwhile, in order to make managers more intuitive, namely to understand
the operation state of the system, the connection between information management and
the physical layer should be strengthened. It is necessary to study the use of hierarchi-
cal scheduling, source and charge interactions, and other methods to meet the needs of
different managers.
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Acronyms

The following acronyms are used in this paper:

MA Mayfly algorithm
QMA Quantum mayfly algorithm
MFO Moth–flame optimization
GWO Grey wolf optimizer
WOA Whale optimization algorithm
SCA Sine cosine algorithm
PSO Particle swarm optimization
EV Electric vehicle
SOC State of charge
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Abstract: In reliability studies of isolated energy supply systems for residential buildings, supply
failures due to insufficient generation are generally analysed. Recent studies conclude that this kind
of analysis makes it possible to optimally design the sizes of the elements of the generation system.
However, in isolated communities or rural areas, it is common to find groups of dwellings in which
micro-renewable sources, such as photovoltaic (PV) systems, can be installed. In this situation, the
generation and storage of several houses can be considered as an interconnected system forming
a cooperative microgrid (CoMG). This work analyses the benefits that sharing two autonomous
installations can bring to each one, from the point of view of reliability. The method consists of the
application of a random sequential Monte Carlo (SMC) simulation to the CoMG to evaluate the
impact of a simple cooperative strategy on the reliability of the set. The study considers random
failures in the generation systems. The results show that the reliability of the system increases when
cooperation is allowed. Additionally, at the design stage, this allows more cost-effective solutions
than single sizing with a similar level of reliability.

Keywords: microgrid; cooperation; energy; reliability; Monte Carlo; smart energy control

1. Introduction

The increase in energy demand and dependence on fossil fuels [1] has boosted the
integration of renewable energies [2]. This has favoured the development of distributed
energy resources (DERs) [3], especially in rural or isolated areas [4].

Small size DERs in Spain are usually implemented through the so-called stand-alone
photovoltaic (SAPV) energy systems [5–7], which generally include batteries to store energy
and supply night demand. These types of systems are currently very attractive in rural
areas thanks to the new regulations that have regulated self-consumption since 2019 [8]. In
a general case, the energy storage system (ESS) could also be based on renewable energies,
as in the case of micro hydroelectric plants or green hydrogen generators [9,10]. The great
disadvantage of this type of system is the reliability of supply, since a profitable design
usually implies a large number of hours per year of energy not supplied (ENS), increasing
indices such as the loss of load probability (LOLP) to inappropriate levels [11]. Due to the
high price of ESSs, especially those based on renewable energies, an optimized design of
the generation system is of vital importance. In this sense, there are studies that focus on
improving the performance of these systems [12–14]. On the other hand, other works are
focused on improving the management of generation, demand and storage resources to
obtain maximum reliability with the lowest possible cost [15,16].

Appl. Sci. 2021, 11, 11723. https://doi.org/10.3390/app112411723 https://www.mdpi.com/journal/applsci117
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The reliability of these systems can be improved with support systems such as a
diesel generator, but it is necessary to manage the use of each resource with the best
possible strategy to minimize diesel consumption, due to its price and environmental
impact [17,18]. Thus, many studies have focused on the technical feasibility of these
systems and their reliability [19]. A group of the developed studies have focused on the
assessment of residential SAPV generation plants connected to the electricity distribution
network. These allow the users to sell their energy surpluses or demand extra energy as
needed. Another type of study has focused in isolated systems [20,21], which is the only
available option in most rural areas. As stated before, the optimal design of these systems
is very important [22]. To achieve a good design of these systems there have been a large
number of methods developed, as can be seen in some review works [23,24].

One of the greatest measurable benefits of using systems based on renewable energy
is the increase in the sustainability of the energy supply [25] and its positive impact against
climate change [26]. Furthermore, various studies point to a clear correlation between
the integration of these energy systems and economic growth [27–29]. Among the key
elements of this type of system, the importance of the ESSs stands out [30]. On the other
hand, one of the challenges that is arousing growing interest is the problem of optimizing
these systems considering various realistic scenarios. There are multiple objectives that can
be set to study this problem, such as energy supply in rural or isolated areas [31,32], losses
minimization [33] or reliability improvement [34]. Among these objectives, reliability is one
of the least studied and most important aspects in systems based on renewable energies,
especially in rural areas, since in many cases the resources are intermittent [30] and difficult
to predict [35]. One of the strategies that should be studied to improve the reliability of
supply in systems based on renewable energies is the use of configurations following the
architecture of a microgrid (MG) with cooperative behaviour [36], also called CoMG. This
configuration can benefit the entire system in the different objectives discussed [37].

In summary, there are numerous papers that address the optimization of energy
management based on renewable sources. However, they generally do not analyse the
problem from the point of view of reliability and the guarantee of achieving a certain
value in continuity of supply [6,9,17,18,20,23,24,32]. One of the few papers that includes
reliability as a goal to design the size of an autonomous system with renewable energy
is [34]. It optimizes the size of a system with three sources (solar, wind and tide) and an
ESS. Reliability is studied from an annual curve for each resource (solar radiation, wind
speed, water speed and demand) that reflects the mean values of 16 years. The results
depend on the costs assigned to each system, but the advantage of a cooperative operation
is not studied, which is the main objective of this paper. This is the main gap identified in
the literature, since the published studies do not include, at the same time, a cooperative
management strategy including random failures in the system, reliability optimization and
optimal design of the facilities.

In a previous study [38], the authors developed a method to evaluate the reliability of
an SAPV energy system in an isolated case using an SMC simulation methodology, which
provides very useful information to improve the design of these systems. The methodology
developed in this study is applicable with various objectives. On the one hand, the method
allows us to propose an optimal design of the system to achieve the desired reliability. On
the other hand, it allows us to study the reliability with different designs, which facilitates
the analysis of the necessary support system (generally, a diesel generator). Finally, the
parameterized result obtained with the developed method allows for a complete analysis
of the system to be designed, controlling not only aspects related to the reliability of the
supply but also the use of the energy generated and the sensitivity analysis of the system
to various disturbances. It is important to note that this study aims at optimizing the size
of the components of a single facility.

As indicated in the conclusions of this study, the authors consider that it is necessary
to study the reliability of this type of system when several installations are connected
in an MG. Going one step further, it is very interesting to analyse the impact on the
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reliability and optimal design of these systems of CoMGs. This will further improve facility
designs and assess the reliability of the system as a whole, optimizing energy use and
minimizing the use and size of support systems. Thus, in this work, two neighbouring
houses whose demand throughout 2019 is known have been selected and a cooperative
management strategy has been developed. The main objective of the presented study is to
evaluate the reliability of the system and obtain an optimal design that improves the results
of the individual design for each participant. The 2020 data have not been considered
adequate after some analysis due to the pandemic situation, especially considering that
an SMC method will be used to simulate multiple scenarios and draw reliable global
conclusions. This study is the basis for evaluating the design and reliability of MGs in
which each installation has its own SAPV energy system and its ESS and a connection to
the MG. One type of these CoMGs is called a virtual power plant (VPP) in the literature.
There are numerous works on VPPs. For an exhaustive review, works such as [39] can
be consulted. However, these works focus in optimizing the management strategy of the
different resources, which should only be conducted after an optimal design.

In this work, starting from a design based on the method described in [38], a simple
cooperative management strategy has been developed and the reliability of the system has
been evaluated using an SMC simulation approach. The method used allows the inclusion
of random faults in the generation systems, which is one of the most overlooked aspects
in reliability studies. The parameterized analysis of the results shows the potential to
improve the design considering the cooperative management of the MG, which allows the
minimization of costs, the minimization of the size and usage of support systems and a
significant improvement in the reliability of the system as a whole. Thus, the main novelty
of this work is the possibility of achieving an optimized design of a set of interconnected
facilities, studying their reliability through a parameterized analysis. With the results of
the analysis, it is possible to select the most appropriate design alternative according to the
selected objectives.

The specific objectives that have been addressed in this work and that represent the
novelty of the study are detailed below.

1. Study the reliability of a set of two dwellings with their respective SAPV energy
systems when operating with a cooperative strategy.

2. Improve the design of all the systems considering global reliability.
3. Analyse the impact of the cooperative strategy on the reliability and design of the systems.

In addition, as another novel aspect in the procedure used in this study, random
failures in the generation system are considered to analyse supply reliability, in addition to
the use of demand and generation curves with a random combination so that the result is
consistent and robust. These random failures are generated following typical distributions
extracted from scientific works.

With the presented method the authors try to address the gap identified in the litera-
ture of the optimal design and management in microgrids considering costs and reliability
as the main targets. The novelty of the presented work relies on the practical application of
a simple strategy to a rural area considering real data and random failures of the system to
optimise the design of the components and the management with a cooperative strategy.
This problem including cooperation between both systems represents a challenge that
takes place in many isolated areas in the developed countries. The results of the method
provide an economic benefit from the planning stage of the microgrid and an increase in
the reliability of the participants’ energy supply, which is one of the main gaps in scientific
publications.

The rest of the article has been structured as follows. Section 2 shows the materials and
methods, summarizing the individual design of the dwellings using the method developed
in [38] and proposing the cooperative management strategy to be used for the SMC in the
selected scenarios. Section 3 shows the results of the SMC simulation comparing the system
without interconnection with the system as an MG. Next, Section 4 shows the discussion of
the results. Finally, Section 5 shows the conclusions of the study.
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2. Materials and Methods

For this work, two neighbouring dwellings (D1 and D2) have been selected whose
hourly demand has been registered for a whole year. In each of them, an SAPV energy
system with an ESS made of batteries has been proposed, using an energy analysis, as
described in [38]. Subsequently, using the SMC simulation method described in [38] the
initial design has been optimized to achieve an LOLP around 2.6% (approximately between
200 and 240 h per year with energy supply from a diesel generator) in each dwelling.

The SMC consists of a simulation of 100 iterations of the behaviour of the system, each
of them consisting of one year (8760 h). For each iteration of the study, an hourly sequence
of the demand in each house during one year is used, randomly obtained from the real
values measured during 2019.

The solar radiation (and therefore the power production per unit in the PV panels)
is assumed to be the same for both dwellings, since they are close to each other. At each
iteration, the daily radiation curve is randomized from the real values recorded during 2019.

Additionally, in each iteration, the failures of the generation system are also random-
ized, using a failure rate per year (λc). As explained in [40], the time to failure (TTF) of
the PV plant and the mean time to repair (TTR) are modelled using an exponential and a
Rayleigh distribution, respectively. Then, TTF and TTR are randomly generated with the
inverse transform method [41].

From this simulation the mean values of the indices to be estimated are obtained:
energy not used (ENU), hours with energy not used (HNU), ENS and LOLP. These indices
are obtained every time for each dwelling individually and for the complete system.

The results obtained with the SMC simulation of each dwelling constitute the S1
scenario described in Section 2.1, which corresponds to the reliability of the system working
as isolated dwellings. In this initial scenario, there is no interconnection between both
houses. This scenario has been compared with a set of scenarios called S2x (for different
values of x), which consist of cooperative scenarios in which both dwellings are considered
interconnected in an MG and can share their resources, as explained in Section 2.2.

The main objective of defining this set of scenarios is to optimize the cooperation
strategy so that both houses can benefit in a similar way. Figure 1 shows a diagram of the
scenarios considered.

Figure 1. Description of the scenarios considered.
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2.1. Scenario S1

In scenario S1, the energy flows of each house are simple. In batteries, the state of
charge (SOC) must be continuously monitored. All batteries have an SOCL up to which
discharge is allowed. An SOCM can also be defined as the maximum SOC that should not be
exceeded, which for this study is set at SOCM = 100%. If generation is greater than demand,
the surplus energy is available to charge the ESS with an efficiency ηc corresponding to the
charging efficiency. If the ESS cannot be charged because it has reached SOCM, the available
energy that could have been generated becomes a new amount of ENU. On the other hand,
if generation is lower than demand, the deficit of energy being actually demanded can be
supplied from the ESS with the efficiency ηd corresponding to the discharging efficiency.
Under these conditions, if the ESS cannot be discharged because it reaches SOCL, then
there is a certain amount of ENS that will affect the studied indices. The operation of this
scenario and the different situations that can take place are described in sufficient detail
in [38]. Figure 2 shows the different energy lows and efficiencies in this scenario.

Figure 2. Possible energy flows in S1 when generation is greater than demand (a) and when genera-
tion is lower than demand (b).

2.2. Scenarios S2x

S2x scenarios represent an actual CoMG situation. Each dwelling tries to be self-
sufficient with its generation and its ESS, but, under certain conditions, each house can
provide energy to the other when needed if it has enough energy surplus. To prevent
one dwelling from incurring significant reliability losses when helping the other, a simple
strategy has been established: dwellings can share energy if the stored energy is above
a threshold, but they stop cooperating if it falls below that limit. Thus, this threshold
is the key parameter of the proposed strategy. If the ESS is made up of batteries, the
strategy entails allowing power sharing if SOC > SOCC, with SOCC being the SOC value
set as the threshold for power sharing. Each scenario will be indicated as an S2x, where
x = SOCC (%), using x as the key parameter of the study. If x = SOCC = SOCL (which is
the lower limit) is chosen, the scenario is equivalent to two houses with shared resources,
without a cooperative strategy. This case will be called a shared scenario. In this work,
SOCL = 20% has been set, so the S220 scenario corresponds to the case of the shared
scenario but without an intelligent cooperative control, as depicted in Figure 1. In this case,
there would be no cooperative strategy and the system would behave as if the resources
of both houses were joined together and shared freely by both. For all S2x scenarios, the
aforementioned indices have been parameterized as a function of x = SOCC between
20% ≤ SOCC ≤ 40%.

It is easy to verify that the situation in S220 produces unequal results: the home
with the worst LOLP and the highest ENS has great benefits, but the one with the best
starting indices worsens. This situation would not be admissible for the dwelling with a
better initial situation in terms of LOLP and ENS. Therefore, it is necessary to differentiate
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between this particular case and two dwellings with a cooperative strategy to try to benefit
both (S2x scenarios). Therefore, the S2x scenarios are parameterized as a function of x,
studying various cases depending on the cooperation capacity of the two dwellings, as
described below.

In S2x, the energy flows are slightly more complex, since under certain conditions
an energy flow may appear from one dwelling (either from the generation system or
ESS) to the other. In these crossed energy flows, the transmission efficiency ηt has to be
applied. For the explanation of the method, a superscript j will be used to indicate the
dwelling to which each magnitude refers. For the calculation of the energy flows in these
scenarios, if generation in a dwelling (Dj) is greater than demand, the surplus is available
to charge its own ESS with the charging efficiency ηc. If SOCj > SOCj

C, the excess between
generation and demand would be available to supply energy to the other dwelling with
the transmission efficiency ηt. Additionally, the energy stored in the battery of Dj between
SOCj and SOCj

C could be offered to the other house, with an efficiency η = ηd·ηt, where
ηd is the discharging efficiency.

The energy stored in the battery of Dj at each moment is Bj = SOCj·Bj
r, where Bj

r is
the nominal capacity of housing battery j.

Therefore, the following values are obtained:

• Bj
M = SOCj

M·Bj
r, maximum energy that can be available in battery of Dj.

• Bj
C = SOCj

C·B
j
r, value of energy stored in battery of Dj, below which it is not allowed

to export energy to help the other dwelling.
• Bj

L = SOCj
L·Bj

r, minimum value of stored energy that must be maintained at all times
to avoid damage to the battery.

The energy that will finally be put into circulation will be the minimum value between
the energy available to help the other home and the maximum value required by the
other home.

If the generation capacity exceeds the sum of demanded energy, storage capacity and
energy transmitted to the other home, there will be an excess of generation capacity that
will not be used, resulting in a certain amount of ENU.

Figure 3 shows the energy flows in S2x.
If the generated energy is lower than demand, some demanded energy should be

supplied with the energy stored in the ESS, with the efficiency ηd. If the energy available
in the ESS (B1 − B1

L) is not enough to cover the demand, a situation with a need for energy
from the transmission system is reached. To improve the reliability of the supply, it is
also considered the energy needed in the ESS if it does not reach the SOCC, which is
B1

C − B1 ≥ 0.
When SOC > SOCC energy is not demanded from the transmission system, since

this energy is subjected to various actions with yields lower than 1 and, therefore, these
transfers must be limited.

If the sum of the own generation, the energy available in the battery and the energy
received from the cooperative system is not enough to cover the demand, there will be an
ENS, which will be counted and will affect the studied indices.
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Figure 3. Possible energy flows in S2x when generation is greater than demand (a) and when
generation is smaller than demand (b).

From the demand and generation curves of each house, with the random failures
generated and using a step of 1 h, the following set of equations describes the cooperative
strategy to apply. The initial data needed for each dwelling are Bj

M, Bj
C, Bj

L, ηc, ηd, ηt.

Then, for each step i, the values of Gj
i , Dj

i , Bj
i must be obtained. Next, the surplus generation

Uj
i is calculated for each dwelling using Equation (1)

Uj
i = Gj

i − Dj
i (1)

where Uj
i is the usable energy that represents the surplus energy generation. If Uj

i > 0,
there is a net surplus generation, so the next equations must be used

B′ j
i = Bj

i + Uj
i ·ηc (2)

Ej
i = B′ j

i − Bj
M ≥ 0 (3)

B′′ j
i = min

{
Bj

i , Bj
M

}
(4)

Otherwise, when Uj
i < 0, Equations (2)–(4) must be substituted by the following

expressions, since there is a net generation deficit

B′ j
i = Bj

i +
Uj

i
ηd

(5)
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Ej
i = B′ j

i − Bj
L ≤ 0 (6)

B′′ j
i = max

{
B′ j

i , Bj
L

}
(7)

After these intermediate calculations have been computed, Equation (8) is used to
calculate Nj

i , which represents the energy needed to supply the demand and to increase

the energy stored up to Bj
C.

Nj
i = Bj

C − B′ j
i ≥ 0 (8)

The available energy to be sent to another participant, Pj
i , also called pool energy, can

be derived from Equation (9) as

Pj
i = Ej

i +
(

B′′ j
i − Bj

C

)
·ηd ≥ 0 (9)

With these values, the following equations must be used.

T′ j→k
i = min

{
Nk

i
ηt

, Pj
i

}
(10)

Tk→j
i = T′k→j

i ·ηt (11)

where T′ j→k
i is the energy that will be sent from Dj to Dk, and Tk→j

i is the energy received
by Dj from Dk.

At the end of step i, the energy stored in the battery, B+j

i , in Dj is calculated using
Equation (12)

B+j

i = B′′ j
i −

T′ j→k
i
ηd

+ Tk→j
i ·ηc + Ej

i ·ηc, limited to : Bj
L ≤ B+j

i ≤ Bj
M (12)

For the next step i + 1, the battery level will be updated as Bj
i+1 := B+j

i . Finally,
the following two parameters are computed for each dwelling to evaluate the results of
the simulation

ENUj
i = Ej

i − T′ j→k
i ≥ 0 (13)

ENSj
i = Tk→j

i − Ej
i ≥ 0 (14)

2.3. Summary of the Proposed Method

Using the definitions and equations presented in this section, the steps used in the
presented work are explained below.

The first stage was to collect the data of the facilities for a whole year. Then, with these
data, the method described in [38] was used to obtain the optimal design for both facilities.
As a result of this initial design, scenario S1 was simulated. As aforementioned, this
scenario consists of two isolated facilities, so there is no possibility to interact or cooperate.

The simulation of a scenario is developed by performing 100 iterations of the yearly
operation of both facilities to obtain the average reliability indices once the dispersion has
been stabilized. These results are stored to compare all scenarios at the end of the study.
This process is based on an SMC simulation to obtain the average reliability indices.

After analysing this scenario, the set of scenarios S2x for x ∈ [20%, 40%] are studied.
The first scenario in this set is S220, in which the resources are shared between both facilities.
After completing the 100 iterations (the SMC simulation) and calculating the reliability
indices, the value of x is increased in 5% and a new scenario is proposed.

Once all scenarios have been studied, the analysis of the reliability indices provides
useful information about the systems. This information is discussed and some conclusions
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are drawn about the optimal design and management of the resources for this set of
facilities. The proposed method is summarized in Figure 4.

Figure 4. Stages of the proposed method.

3. Results

The proposed method was applied to two real dwellings located in Valencia (Spain).
The hourly demand curves were recorded during 2019 (avoiding the pandemic situation
of 2020, as mentioned above). Likewise, a solar photovoltaic generation curve was reg-
istered in the GEDERLAB, a real facility next to the dwellings in which the generation
and management of various renewable energy sources is studied. The recorded data was
randomized swapping nearby days to develop the SMC simulation, so that the demand
and generation curves maintained their seasonal patterns, but irregular situations such as
a special event in a dwelling or a cloudy day did not match in each simulation. Figure 5
shows the typical patterns of demand for both dwellings and generation in each season of
the year in per unit values.

Using the rules explained from Equation (1) to Equation (14), the SMC simulation was
carried out. In each simulation, the results of all scenarios were evaluated. The simulation
was repeated 100 times, checking that the average indices stabilized in order to analyse the
results and draw conclusions.
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Figure 5. Demand profile of each dwelling and generation profile for every season in per unit values.

To simulate the different scenarios, we started from the optimal design of both
dwellings shown in Table 1, obtained after analysing the demand and generation of each
dwelling using the method described in [38].

Table 1. Generation, demand and design data for both dwellings.

Variable Value (D1) Value (D2) Description

Pj
d(peak) 3 kW 3.3 kW Maximum demanded power

Ey 3.36 MWh 3.4 MWh Annual energy consumption
ηc, ηd 0.9 0.9 Efficiency of Li-ion battery (charge and discharge)
SOCL 20% 20% Minimum allowed SOC
SOCC 20% ÷ 40% 20% ÷ 40% Minimum SOC considered to allow cooperation in scenario 2x

Failure rate λc 2 f/yr 2 f/yr Exponential distribution
Repair time 24 h 24 h Rayleigh distribution

PVj
peak

6.5 kW 5.5 kW Calculated rated power in PV panels in dwelling j, optimized with
MCS method in S1

Bj
r 23 kWh 18 kWh Rated battery capacity in dwelling j obtained in S1

3.1. Scenario S1

Scenario S1 consists of optimizing the PVpeak and Br values of each dwelling, operating
independently, to achieve an approximate LOLP of 2.6% in each case. The resulting values
are shown in Table 1.

The simulation of 100 years in this situation allows obtaining the stationary values of
the parameters shown in Figure 6, which represent the indices expectation. As shown in
Figure 6, the design has been adjusted so that both dwellings have a similar LOLP value,
although the ENS is not the same due to the differences in the registered demand curves.

Although the radiation curves are identical for both dwellings, since they are neigh-
bouring houses, the registered demand curves are different. For this reason, it is expected
that the cooperative strategy can benefit both participants, thus improving the reliability
indices. Figure 7 shows the generation and demand profiles obtained for a complete week
in both dwellings with the proposed design.
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Figure 6. SMC results in Scenario S1 for the most representative indicators (ENS and LOLP).

Figure 7. Generation and demand profiles during a week with the proposed design.

3.2. Scenario S2x

A cooperative strategy is studied in each S2x scenario. Each dwelling supports the
other as long as its battery is above SOCC. Between this value and SOCL = 20% (minimum
value considered as a limit), the dwelling reserves its energy for its own use. This strategy
avoids some interruptions in one of the dwellings, while it allows them to help the other in
some periods of time.

With this strategy, it is also possible to take advantage of the energy surplus of one
installation to charge the other’s ESS, which would reduce the overall ENU.

The key parameter for the study of this cooperative strategy is the value of SOCC.
If SOCC = SOCL, then all of the energy available in each dwelling can be shared with
the other. This situation can be beneficial in global terms, but if the reliability of each
dwelling or the consumption pattern is different, this shared strategy produces unequal
benefits. The dwelling with the worst performance is greatly benefited, while the other
may have a much lower improvement. This situation seems clearly unfair and it would be
rejected by the dwelling with the best starting situation, since it would encourage dwellings
to try to design their facilities with fewer resources and then take advantage of others’
resources. Therefore, starting from this shared scenario called S220, the value of SOCC will
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be gradually increased to analyse the improvements obtained in each dwelling and find
the best situation for both.

Table 2 shows the global results of both dwellings and the individual results of S220. It
is observed that this scenario produces better overall results than S1.

Table 2. Scenario S1 vs. scenario S220.

ENU (Wh) HNU (h) ENS (Wh) LOLP (%)

D1 alone (S1) 4,552,022.19 1825 133,083 2.70%
D2 alone (S1) 3,290,158.96 1584 80,284 2.38%

D1 shared (S220) 4,283,190.49 1611 100,543 2.18%
D2 shared (S220) 3,252,527.15 1514 67,712 2.13%

S1 (global) 7,842,181.15 1705 213,368 2.54%
S220 (global) 7,535,717.64 1563 168,255 2.15%

S220 improvement compared to S1 (%)

D1 5.91 11.75 24.45 19.09
D2 1.14 4.42 15.66 10.58

Average 3.91 8.34 21.14 15.10

As the table shows, there are significant improvements in reliability indices. However,
dwelling D2, which was the one with the best initial results, is less benefited than D1. D2 is
being more helpful to D1 than the other way around, which means that the situation is not
fair, since the ideal scenario would be that both contributed in a similar way to improve
the system.

That is why the S230 scenario is simulated, in which every dwelling reserves an energy
reserve to supply its own demand, so that it stops relying on the other dwelling when
SOCC = 30%. The results of this scenario compared to scenario S1 are shown in Table 3.

Table 3. Scenario S1 vs. scenario S230.

ENU (Wh) HNU (h) ENS (Wh) LOLP (%)

D1 alone (S1) 4,560,010.28 1828 131,561 2.65%
D2 alone (S1) 3,292,706.47 1585 82,274 2.46%

D1 cooperative (S230) 4,292,284.49 1617 106,547 2.24%
D2 cooperative (S230) 3,260,417.70 1519 66,109 2.09%

S1 (global) 7,852,716.75 1706 213,835 2.55%
S230 (global) 7,552,702.19 1568 172,656 2.16%

S230 improvement compared to S1 (%)

D1 5.87 11.52 19.01 15.59
D2 0.98 4.18 19.65 15.22

Average 3.82 8.11 19.26 15.41

In this scenario, the results obtained by both dwellings are very similar. It would
not be a good idea to arbitrarily raise the SOC threshold that has been set as a limit to
stop sharing resources, that is SOCC, since then the support between the dwellings would
decrease. For example, setting SOCC = 35%, scenario S235 is simulated, the results of
which are shown in Table 4, compared again with those of scenario S1.

As it can be seen, although the total results are very similar to the previous case,
dwelling D2 is now the most favoured. Finally, if SOCC is further increased to a value of
SOCC = 40%, the results worsen, as seen in Table 5, where scenario S240 is compared with
scenario S1.
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Table 4. Scenario S1 vs. scenario S235.

ENU (Wh) HNU (h) ENS (Wh) LOLP (%)

D1 alone (S1) 4,556,147.37 1827 131,088 2.64%
D2 alone (S1) 3,289,774.14 1586 79,574 2.33%

D1 cooperative (S235) 4,288,604.12 1615 107,872 2.26%
D2 cooperative (S235) 3,255,462.81 1515 61,143 1.89%

S1 (global) 7,845,921.51 1706 210,662 2.49%
S235 (global) 7,544,066.93 1565 169,015 2.08%

S235 improvement compared to S1 (%)

D1 5.87 11.60 17.71 14.46
D2 1.04 4.47 23.16 18.82

Average 3.85 8.29 19.77 16.50

Table 5. Scenario S1 vs. scenario S240.

ENU (Wh) HNU (h) ENS (Wh) LOLP (%)

D1 alone (S1) 4,558,096.21 1828 136,035 2.76%
D2 alone (S1) 3,292,984.25 1587 83,180 2.47%

D1 cooperative (S240) 4,296,492.29 1618 116,710 2.42%
D2 cooperative (S240) 3,261,013.86 1519 66,528 2.08%

S1 (global) 7,851,080.46 1707 219,215 2.61%
S240 (global) 7,557,506.15 1568 183,239 2.25%

S240 improvement compared to S1 (%)

D1 5.74 11.47 14.21 12.47
D2 0.97 4.29 20.02 15.64

Average 3.74 8.13 16.41 13.97

Therefore, the S230 scenario offers the most balanced results in terms of the improve-
ments obtained by both dwellings. After applying the proposed method, the study was
completed with a sensitivity analysis shown in Section 4.

4. Discussion

To see the evolution of the reliability of the dwellings for different values of SOCC, a
sensitivity analysis was carried out with SOCC values between SOCL = 20% ≤ SOCC < 60%,
simulating each of the resulting scenarios. By increasing the value of SOCC, the dwellings
become more independent and the advantage of cooperation is lost, which is why it has
been simulated in the aforementioned interval.

Figure 8 shows the improvement of LOLP in percentage compared to S1 of both
dwellings in the simulated scenarios of this sensitivity analysis.

As depicted in Figure 8, with small values of SOCC, D1 improves much more than D2.
This difference decreases when SOCC increases, and for values close to SOCC = 30%, both
houses achieve a similar benefit.

The curves represented in Figure 9 show the LOLP of each dwelling in this case
(scenario S230), which is shown to be the best of the studied cases, compared to the results
of scenario S1.
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Figure 8. Improvement in terms of LOLP for each dwelling in scenarios S2x compared to S1.

Figure 9. LOLP of each dwelling in scenarios S1 and S230.

In addition, it should be noted that not only does the cooperative strategy represent
an improvement compared to the S1, but it also improves the results of the shared scenario
S220, as shown in Figure 10. This analysis solves one of the research gaps identified in the
literature, as it proposes a simple cooperative strategy based on the key parameter SOCC.
With this strategy, the system obtains better results than in other scenarios (shared and
isolated), which correspond to other microgrid configurations in the literature (since most
studies, such as [34], are exclusively focused on stand-alone). In addition, these results
have a substantial impact to be taken into account, since they have been obtained using
real data and proposing random failures in the system.
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Figure 10. LOLP of each dwelling in scenarios S1, S220 and S230.

The results obtained in this case study show that for a set of demand and generation
curves, the most equitable strategy can be proposed by setting the parameter of SOCC at
a certain value that can be determined with the proposed method. For this case study,
this value was 30%, which made it possible to achieve better reliability values in both
dwellings than those obtained without using cooperative strategies, while providing
balanced improvements. Compared to most of the literature works (such as [22]), this is
one of the key contributions of this study, since the cooperative strategy allows performance
optimization and reliability improvements.

In addition to the presented case study, the described method would allow us to obtain
an optimal design in different situations. One of the situations that could be addressed
with the proposed method would be that of consumers who had generation curves with
different patterns. This can take place when the geographical location of the considered
consumers receives different radiation levels or when there is a different generation mix
in the facilities (for example, including a wind turbine in one of them). The fact of having
different generation patterns, in addition to having different load curves, further justifies
the use of this cooperative strategy, since there is a greater probability to have one of the
dwellings with an energy surplus when the other is in need of additional generation.

A case of special interest to study of this type of strategies is that of Virtual Power
Plants (VPPs), since in the set of generation and demand curves aggregated in a VPP there
can be a great variety of scenarios that can provide great benefits derived from the use of
cooperative strategies.

In the developed case study, one of the implicit benefits obtained when planning the
facilities to use cooperative strategies is the net reduction in installation costs due to the
optimized use of resources. This has been carefully addressed in this work compared
to the literature by adding random faults in the system to simulate the repair times and
include their impact on the reliability indices (as opposed to most studies, such as [11]).
Since both facilities share resources and they use them cooperatively, it is possible to obtain
results similar to those obtained in S1 with a lower amount of installed resources. S1
corresponds to a scenario in which there is no interconnection between the two dwellings,
so the cooperative strategy is not needed. For this reason, this scenario has been completed
using the method described in [38]. The new proposal allows for the generalization of that
method for a set of multiple prosumers in a single microgrid. From the improvement in
this method it can be derived that to obtain the same results as in scenario S230 without
sharing resources, it would be necessary to install a greater ESS in each facility. In scenario
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S230, the reliability parameters obtained are an ENS of 106,547 kWh and 66,109 kWh and a
LOLP of 2.24% and 2.09% for D1 and D2, respectively. In order to reach these values for
both dwellings in S1, the value of Bj

r would have to be as shown in Table 6. This allows
quantifying of the benefits of the proposed method compared to previous studies for the
selected case study.

Table 6. Initial design of batteries for scenario S1 to obtain the same results as in scenario S230.

Bj
r (kWh) LOLP (%) Extra Capacity Needed (%)

D1 26,000 2.21 13.04
D2 20,000 2.02 11.11

Finally, together with the economic benefit obtained thanks to the described method,
it is worth highlighting the environmental benefit of using fewer resources and needing
less support from conventional systems, since in this type of dwellings diesel generators
are commonly used to supply energy in the hours in which the SAPV system and the ESS
are not able to cover the demand.

5. Conclusions

In this study, a method to analyse and improve the reliability of energy supply in two
dwellings with their SAPV system and their ESS when they use a cooperative strategy has
been proposed and validated. The method is based on the use of surplus generation and
storage of one facility to supply energy to the other facility when needed, fixing a minimum
amount of energy to stop cooperating in order to avoid losing energy needed to supply its
own demand, defined by means of the key parameter SOCC. To test the method, it has been
applied to two real neighbouring dwellings, using real generation and demand curves.
The algorithm is based on the use of a random SMC simulation to find the stable values
of the selected reliability indices. As the simulations show, the results of the cooperative
strategy are better than the individual results in terms of reliability, but the improvement
in both dwellings can be unequal. The method has proven to be useful to find the most
even strategy adjusting the level of the minimum SOC needed to start cooperating.

It is important to note that the data were restricted to 2019 due to the anomalous
demand pattern shown during the pandemic situation, but the study can be repeated
with any other data. In fact, the method shown in this work could be applied to a larger
scale case study, i.e., to two neighbouring communities, with larger demand needs and a
greater generation mix. As a future work, the authors propose to explore the application
of a strategy such as the one proposed here for virtual power plants (VPP), since this
would allow the use of more demand curves and different generation curves for each
consumer, leading to higher differences between the analysed scenarios and probably
to higher chances to improve the global reliability. Additionally, studying the economic
impact of the proposed method is a research line that the authors propose to include in
future studies.
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Abbreviations

B Energy stored in battery at the beginning of the step
B+ Energy stored at the end of the step
B′, B′′ Intermediate results related to stored energy
BC Minimum level of energy in the battery to allow cooperating
BL Minimum accepted level of battery
BM Maximum battery capacity in kWh
Br Rated battery capacity
D Demanded energy
Dj Dwelling j, j ∈ {1,2}
E Energy surplus. If E ≥ 0, there is an energy surplus. If E < 0, there is an energy deficit.
ENS Energy not supplied
ENU Energy not used
ESS Energy storage system
Ey Annual energy consumption
G Generated energy
HNU Hours with energy not used
i Subscript, referring to each step
j Superscript, referring to each participant
LOLP Loss of load probability index
N Energy needed to supply the demand and to increase the energy stored to BC
P Available energy to be sent to other participant
Pd(peak) Maximum demanded power in dwelling j
PVpeak Rated power installed in the photovoltaic panels
SAPV Stand-alone photovoltaic system
SMC Sequential Monte Carlo
SOC State of charge
SOCC Minimum level of state of charge to allow cooperation
SOCL Minimum allowed level of state of charge
SOCM Maximum allowed level of state of charge
S1 Scenario 1 (base scenario without sharing resources)
S2x Scenario 2x (cooperative scenario)
TTF Time to failure
TTR Time to repair
T′ j→k Intermediate result related to energy to be transferred from user j to user k
Tk→j Energy received in user j from user k
U Usable surplus. If U ≥ 0, the demand is covered. If U < 0, the demand is not covered
VPP Virtual power plant
ηc Efficiency of battery charging
ηd Efficiency of battery discharging
ηt Efficiency of energy transmission
λc Photovoltaic panel array and battery controller failure rate per year
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Abstract: For micro-grid cost-benefit analyses, both energy production and demand must be estimated
on the long-term of one year. However, there remains a scarcity of studies predicting energy production
and demand simultaneously and in the long-term. By means of programming in R and applying linear,
non-linear, and support vector regression, we show the in depth analysis of the data of a micro-grid on
solar power generation and building energy demand and its potential to be modeled simultaneously
on the term of one year, in relation to electricity costs. We found solar power generation is linearly
related to solar irradiance, but the effect of temperature on total output was less pronounced than
anticipated. Building energy demand was found to be related to multiple parameters of both time and
weather, and could be estimated through a quadratic function in relation to temperature. Models for
both solar power generation and building energy demand could predict electricity costs within 8% of
actual costs, which is not yet the ideal accuracy, but shows potential for future studies. These results
provide important statistics for future studies where building energy consumption of any building
type is correlated in detail to various time and weather parameters.

Keywords: energy demand; long-term forecasting; machine learning; R programming; solar power
generation; support vector regression

1. Introduction

Increasing the share of renewable energy is crucial to overcome climate change, and to target 7.2
of the sustainable development goals to be reached by 2030. Micro-grids are increasingly becoming
more popular as solutions for helping to reach renewable energy goals [1]. Micro-grids allow for local
energy production, often combined with local energy storage, and often combined with an awareness
or ambition to reduce overall energy demand. As micro-grids involve the management of both energy
production and demand, both of these sides need to be predicted simultaneously in order to generate
future cost benefit analyses. What we have found is that there is still a wide gap between predicting
energy production and demand, in terms of scale, time, methodology, and software.

In this study we aim to determine the potential of long-term forecasting (at least one year) of
energy production and demand on the scale of a research building by means of programming with
the software R and applying linear, non-linear, and support vector regression. The research building
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in question is the National Institute of Materials Science (NIMS) NanoGREEN/WPI-MANA building
in Tsukuba, Japan, which has a micro-grid consisting of four arrays of solar panels and has been in
operation since 2013. The raw data per second of this micro-grid contained gaps and erroneous data,
which have been cleansed in a previous study as described [2]. Using the improved data records from
2015 to 2017, we evaluated the potential of predicting future energy demand and energy generation.

Published studies on optimizing building energy consumption have increased 10 fold in the
past 10 years [3]. This has included numerous variations of machine learning studies, which have
explored either the forecasting of building energy demand [4], or renewable energy generation and
weather patterns (for solar irradiance) [5], separate from each other. However, for micro-grid costs
estimations it is necessary to consider these two factors simultaneously. A second shortcoming of
previous studies is that they tend to focus on short term predictions and neglect long-term predictions.
For micro-grid cost and benefit analyses we require long-term future predictions of the amount of solar
power generated and the energy demand of the building. What is considered long- and short-term is
defined differently for energy demand and weather prediction, as seen in Appendix A. According to
the sources in Appendix A, the long-term for solar irradiance, our main weather parameter of interest,
ranges from one day to two months, whereas for energy demand this is 1-10 years. Ideally it would
be useful to predict the costs and benefits of the micro-grid one year ahead, with monthly averages
and hourly estimates, as the electricity price varies per hour. We expect to see reduced solar power
generation over time as the efficiency of the solar panels decreases, and an increase in building energy
demand due to higher occupancy and laboratory use over the years. So far no study has considered
how to incorporate both energy demand and solar power generation by means of machine learning for
the long-term of one year. To reach this, it is important to consider not just the optimum results from
higher-level regression analysis, but also the underlying physical and chemical mechanisms causing
the found results in the actual data and suggest practical solutions based on these principles.

The hypotheses for solar power generation are the following. Larson et al. [6] showed a linear
relationship between solar power generation and solar irradiance. However, it is also shown by
Dupré et al. [7] that temperatures higher than 25 degrees Celsius negatively affect the capability
of crystalline silicon to generate electricity. Similarly, it should perform between 1 and 1.1 times
the normalized efficiency between 25 and 0 degrees Celsius, and presumably even high at colder
temperatures. It is therefore expected to see an influence of temperature as well. Degradation is
expected to lead to reduced efficiency in 2017 as compared to 2015.

The hypotheses for building energy demand are the following: the total building energy demand
consists of purchased electricity, solar power generation, and battery discharging. The amount of
generated solar power is at most around 10% of the total building energy demand and is immediately
consumed by the building [8]. To accurately link back to electricity prices, only purchased electricity
is considered as it is the main contributor. It is expected that building energy demand depends on
building occupancy as well as weather circumstances, with colder and warmer temperatures leading
to higher use of air-conditioning.

2. Materials and Methods

2.1. Data Description

An overview of the parameter names and units is given in Table 1.

• Micro-grid data, two parameters. An initial cost analysis was performed on the hourly data from
the micro-grid by [8] from April 2013 to March 2018. These data were recorded and obtained
from a different data storage point in the Energy Management System and not yet cleansed.
The data used in this study concerns per second data, from January 2015 to December 2017,
which was obtained from the micro-grid data storage point and was cleansed as described in [9].
It was converted into hourly data to enable analysis with hourly weather data by means of
averaging. Parameters of interest are purchased electricity and total solar power generation.
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For the purpose of this study, battery charging and discharging is ignored as it is of negligible
proportions. The electricity amount and cost reduction function of the battery is active only during
July, August, and September. Previous studies showed this amount is maximally 4.86% of the
total building energy demand [10].

• Japan Meteorology Agency (JMA) data, six parameters. The hourly weather parameters for the
corresponding time period of January 2015 to December 2017 were downloaded in csv files from
the JMA website (freely accessible) [11] in batches of one month due to size restrictions. Parameters
of interest are temperature, precipitation, sunlight, wind speed, solar irradiation, and humidity.

• Time parameters (6): year (note that due to the total data volume each year is calculated separately),
month, day of month, day of week, hour, holiday.

• Electricity cost data, one parameter (see Figure 1). These data were obtained from the Facility
Management Office of NIMS, based on the yearly renewed contract with the Tokyo Electric Power
Company. The Feed in Tariff surcharge for renewable energy is included. Other factors such as
fuel regulatory costs, basic connection to the electricity grid and spare line fees are not included
since these are shared by the entire site and independent of building electricity use.

Table 1. Parameter names and units.

Data Source Parameter Name Parameter Unit

NanoGREEN/WPI-MANA micro-grid total_pv_ac kWh (alternating current)
purchased_electricity_kwh kWh

Japan Meteorological Agency (JMA)

temperature °C
precipitation mm

sunlight numeral (between 0–1 h)
wind_speed m/s

solar_irradiation W/m2

humidity %

Time parameters

month month (1–12)
day_of_month day (1–31)

hour_end hour (1–24)
day_of_week day (1–7, starting on Monday)

holiday numeral (0 for no holiday, 1 for holiday)

National Institute of Materials Science
(NIMS) Facility Management Office electricity price JPY (Japanese Yen)

 

Figure 1. Electricity costs per time period (Japanese Yen/kWh).

2.2. Approach

Machine learning is the ability of a computer to learn from data without explicit programming.
The machine learns from the existing data and predicts future data. In supervised learning, algorithms
build a mathematical model of a set of data that contains both the inputs and the desired outputs,
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so their classification is known [12]. Supervised machine learning can be applied to the data in
two forms:

• Predictive modeling to determine what would be the output if a new (future) input is applied
(to estimate future demand and solar power generation)

• Prescriptive modeling to optimization what actions should be taken given the data (to estimate
the impact of additional storage devices)

In this study we want to examine the potential of predicting two parameters: solar power
generation and building energy use. We endeavor to evaluate the prediction potential of both
parameters with one model using the same input parameters for weather and time, to see to which
extent accurate electricity cost forecasts can be achieved.

2.3. Motivation for Software Choice

Various software is available for performing machine learning. Given the overview of advantages
and disadvantages shown in Appendix B, we chose the software R (R version 4.0.1) mainly as it deals
efficiently with large datasets, is freely available, and has high data analysis and visualization potential.

2.4. Data Cleansing

After the initial cleansing and averaging of the per second micro-grid data as per [9], additional
cleansing steps were required. The JMA weather data similarly required cleansing. The cleansing of
both datasets are described below. In all cases of missing data, the entire row of data was removed so
as not to lead to invalid correlations.

1. Removing missing values from the micro-grid data and replacing negative values with 0. For the
micro-grid, this concerned the maintenance days in November (2015: November 14, 8:00–20:00,
2016: November 19, 8:00–19:00, 2017: November 18, 8:00–18:00). Two additional instances were
found to have missing values (2015/11/13 12:00, 2017/09/25 21:00). For solar power generation,
269 negative values were recorded during nighttime in 2017, which were replaced with 0.

2. Removing JMA data with poor data quality. The JMA has excellent record keeping concerning
data quality. Most values have the data quality value of “8: There are no missing data on the
statistical basis (normal value)”. The number of instances when the data quality was less than
this are described in Table 2. Values with data quality values of 4 (10 instances) or 5 (2 instances)
were kept. There were several instances where data was missing for multiple parameters at the
same time.

3. Removing outliers (see SM1: R code for outlier removal). Note that the parameter (relative)
humidity is in % unit, and sunlight is relative to one full hour (1), and therefore these parameters
should not have outliers removed. The hourly electricity price is given based on predetermined
conditions and cannot have outliers. Precipitation occurs intermittently and in irregular amounts,
meaning it is prone to outliers. This leaves three weather parameters and the two micro-grid
parameters to remove outliers for. For the parameters “solar irradiation” and “total pv ac” outliers
were calculated without taking the values of 0 into account. Extreme outliers were removed by
calculating three times the interquartile range (iqr) using the following code:

extreme_threshold_upper = (iqr * 3)+ upperq (1)

extreme_threshold_lower = lowerq − (iqr * 3) (2)

Boxplot results were used to show the difference before and after outlier removal. As an example,
Figure 2 shows the data before and after removing outliers for the parameter wind speed,
using data from 2015. Outliers were checked for overlap between parameters and consequently
removed. Before outlier removal the standard deviation, mean, minimum and maximum values
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were calculated for the five parameters: wind speed, temperature, solar irradiation, total pv ac,
and purchased electricity, for each year. Table 3 gives an overview of the found outliers.

4. Removing additional outliers occurring around maintenance days. After removal of the values
in steps 1–3, we observed several remaining uncharacteristic data values occurring around the
maintenance days. As example, from November 13 to 16 in 2015 the values for purchased
electricity from the micro-grid were uncharacteristically low. The cause of these low values is
most likely the shutdown of electricity dependent equipment in anticipation of and in reaction to
the maintenance procedures, during which all electricity through the main power line is stopped.
This led to the removal of 47 rows of data in 2015; 47 in 2016 and 49 in 2017. After this final
removal step the standard deviation, mean, minimum and maximum values were calculated
for the five parameters wind speed, temperature, solar irradiation, total pv ac, and purchased
electricity, for each year.

Table 2. Overview of data quality values of JMA parameters.

Year 2015 2016 2017 2015 2016 2017 2015 2016 2017

# JMA weather
parameter data quality

5: There is a deficit of 20% or less
of the data that is the basis of
statistics (quasi-normal value)

4: There is a deficit exceeding
20% in the data underlying the

statistics (lack of data)

1: There is no statistical
value (missing)

1 Temperature - - - - - - - - 2
2 Precipitation - - - - - - - - -
3 Sunlight - - 1 - 1 3 - - 22
4 Wind speed - - - - - - - 1 2
5 Solar irradiance 1 - - 2 2 2 1 - 2
6 Humidity - - - - - - - - 2

Figure 2. Data points before and after removing outliers of the parameter “Wind speed” in data
from 2015.

Table 3. Outliers removed per parameter and per year.

Parameter Name 2015 2016 2017

wind_speed 88 68 100
temperature 0 0 0

solar_irradiation 0 0 0
total_pv_ac 0 0 0

purchased_electricity_kwh 2 0 0

2.5. Data Exploration (See SM2: R Code for Data Exploration Graphs)

The main exploration of the relationships between the different parameters was performed
through means of plotting different combinations of parameters:

• Generated solar power/building energy demand in relation to various individual parameters per
month and hour of the day, with values color coded by e.g., temperature, based on Boeye [13].

• All parameters correlated to each other through the ggpairs package, based on [14].
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2.6. Solar Power Generation–Linear Regression and Support Vector Regression (See SM3: R Code for Linear
Regression and SVR (Support Vector Regression))

To test the relationship of solar power generation (parameter name: total_pv_ac) and solar
irradiation, the SVM package e1701 for R was applied as described in [15]. This procedure first
calculated the root square mean error by means of a linear regression model, after which improvement
was attempted through support vector regression, leading to a non-linear model. As is standard,
the parameter epsilon (margin band width) should be higher than 0 to prevent overfitting, but not too
high as then too few support vectors are selected. Similarly, the parameter c (cost) should be higher
than 0 in order to penalize some points, but not too high which would have all points within the margin
penalized. The calculated ideal epsilon and cost values were plotted in a graph. The initial models
took just over 1 h to generate per year. Tuning the models took around 3 h for each year. The total
calculation time was over 12 h. For those readers interested in designing similar methods in greater
detail, we refer to Karatzoglou [16].

2.7. Building Energy Demand–Non-Linear Regression (See SM4: R Code for Plotting Nonlinear Regression)

Data exploration showed that purchased electricity was not directly linearly related to any one
parameter. It was linked to temperature through a quadratic equation obtained through non-linear
regression as described by Sagar [17].

The temperature/month was seen to have a U shaped relationship to building energy demand.
Closer inspection revealed two concentrated superimposed curves. Therefore, the influence of
combinations each of the different time parameters was checked by splitting the data into a series of
8 test cases as described in Table 4. Day time was defined as 5–19 h and night time was defined as 1–4,
and 20–24 h. This was based on the parameter sunlight over the course of a year, as values higher than
0 were recorded from hours 5–19. Similar graphs were prepared as during data exploration using the
ggpairs package.

Table 4. Details of eight cases of data splitting to examine the effects on purchased electricity.

Case # Day of Week Time of Day Holiday

1 Weekday Day time No holiday
2 Weekday Day time Holiday
3 Weekday Night time No holiday
4 Weekday Night time Holiday
5 Weekend Day time No holiday
6 Weekend Day time Holiday
7 Weekend Night time No holiday
8 Weekend Night time Holiday

2.8. Electricity Prices

To calculate the price per hour to correspond to specific time periods, a formula in Excel was used
(Appendix C). This formula initially checks if it is either a holiday or Sunday, subsequently if it is not
summer and which time of day it is (two corresponding price categories), and finally if it is summer
and which time of day it is (three corresponding price categories). The monthly electricity prices per
time category (summer daytime, summer peak time, day time, and holiday/night time, all including
the Feed in Tariff surcharges) were stored in a separate sheet, as were the known holidays.

Note that special care should be taken when applying the known electricity prices per hour
during the days surrounding maintenance in November for two reasons: the total electricity use is
uncharacteristically low, and the micro-grid is also disconnected during at least one day, which means
that solar power generation is missing during that day. This leads to abnormal total prices for both
parameters if these values are not excluded from the datasets.
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To check the validity of the found relationships for the two micro-grid parameters, the average of
the two equations found in previous steps were entered into the actual data to calculate hypothetical
values for both solar power generation and purchased electricity, which were consequently linked to
electricity price. Given the uncertainty of the improvement of SVR, the linear regression equation was
applied to solar power generation. Due to the negative intercept (a) negative values for solar power
generation were changed to 0. The results were compared with the actual data from 2015 to 2017,
and their differences described.

3. Results

3.1. Data Cleansing (See SM5: R Code for Data Rows Graph)

Both 2015 and 2017 had 365 (days)*24 (hours)= 8,760 rows of parameters for hourly data. However,
2016 was a leap year and therefore included February 29, which led to 366 (days)*24 (hours) = 8,784
rows of parameters. After data cleansing the amount of data remaining from 2015, 2016, and 2017 was
98.54%, 98.36%, and 97.93% respectively. (See Figure 3, based on code from [18]).

 

Figure 3. Amount of data before and after cleansing.

The differences in the standard deviation (SD), mean, minimum and maximum values of five
parameters before outlier removal and after the final removal of uncharacteristic values are shown
in Table 5.

Table 5. Standard deviation, mean, minimum and maximum values of five parameters before outlier
removal and after the final data cleansing step.

Parameter 2015 2016 2017

Pre-Cleansing Post-Cleansing Pre-Cleansing Post-Cleansing Pre-Cleansing Post-Cleansing

Wind speed SD 1.304764 1.188131 1.266143 1.167836 1.267896 1.131123
Mean 2.285958 2.233074 2.265922 2.226386 2.235808 2.174749
Min 0 0 0 0 0 0
Max 10 6.9 10.5 6.9 11.1 6.6

Temperature SD 8.567907 8.599083 8.737433 8.760915 9.043145 9.069151
Mean 14.9803 14.98214 14.95232 14.96025 14.28081 14.32673
Min −6.3 −6.3 −6.0 −6.0 −6.5 −6.5
Max 35.6 35.6 35.5 35.5 34.4 34.4

Solar irradiation SD 0.9289794 0.9274603 0.9168617 0.9157871 0.9353226 0.9356301
Mean 1.058775 1.049586 1.058818 1.056141 1.103574 1.094547
Min 0.01 0.01 0.01 0.01 0.01 0.01
Max 3.54 3.54 3.64 3.64 3.63 3.63

Total pv ac SD 18.35157 18.27055 17.2445 17.20114 17.07312 17.04483
Mean 23.1429 22.89964 22.08021 22.02548 22.62292 22.40334
Min 0.000466667 0.000466667 0.000466667 0.000466667 0.000466667 0.000466667
Max 66.8908 66.8908 66.43907 66.43907 63.05009 63.05009

Purchased electricity SD 111.1321 109.3086 122.9744 120.7636 115.5117 113.9781
Mean 597.4223 598.4304 648.3106 649.815 692.5064 693.0694
Min 212.8308 377.3867 218.2507 409.1167 276.9287 459.414
Max 1138.182 1045.367 1105.39 1105.39 1133.443 1133.443
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These results show that removing outliers of wind speed, total pv ac and purchased electricity
does not greatly affect the standard deviation of all five parameters. It is interesting to note that whereas
the maximum of solar irradiation has increased from 2015 to 2016 and stayed nearly the same between
2016 and 2017, the maximum solar power generated (total pv ac) is decreasing every year.

3.2. Data Exploration

The top of Figure 4 shows the amount of generated solar power per month and hour of the day,
with values color coded by temperature; the bottom shows the amount of building energy demand for
the same criteria; both for the year 2015. The top shows the expected relation of more solar power
being generated during hours of sunlight. The bottom shows a clear baseline of energy demand related
to storage and other research related equipment in the building, with peaks in energy demand in
winter and summer months for the heating, ventilation, and air-conditioning system.

 

Figure 4. Generated solar power/building energy demand per month and hour of the day, with values
color coded by temperature; 2015 data.

Figure 5 shows a cross comparison between 13 tested factors for correlation, with the data from 2015.
For all years, solar power generation and solar irradiance were found to be highly correlated to each
other (0.988–0.991), and both were found to be highly correlated to sunlight, and inversely correlated
to humidity. They were both weakly correlated to temperature and wind speed. Other weather
factors were also correlated in various degrees to each other and to the time parameters month
and hour. Purchased electricity (building energy demand without micro-grid contributions) was
found to be highly correlated to the day of the week, hour of the day, and temperature extremes
(high from July to September, and especially in the morning hours of December to February). It is
weakly correlated to holidays and other weather parameters sunlight, wind speed, solar irradiation,
and humidity (inversed).
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3.3. Solar Power Generation

The linear model had the format of (y = a + b * x). Smoothing the curve through means of support
vector regression (red line, formed by x symbols, in Figure 6) shows a better fit than through the linear
model (LM) (blue line, formed by x symbols, in Figure 6). Table 6 shows the difference in Root Square
Mean Errors (RSME) for each year, proving the worth of applying support vector regression for 2015
and 2016, though it takes some computing time. For 2017, surprisingly the linear regression model
showed less error than the SVR. This means that SVR cannot be applied haphazardly but must be
tested against linear regression models. The values for epsilon and cost in Table 6 and Figure 7 show
the epsilon parameters were all low, leaning towards overfitting of the models. The cost parameter
found in 2016 was rather high, which also creates allows for few errors during classification. As SVR
generates new models randomly, it may be necessary to compare the results of several runs repetitively
even though one execution already creates dozens of models, in order to examine the differences.

Figure 6. Linear (blue line) and Support Vector (red line) Regression of two parameters for 2015 data.

Table 6. Coefficients and Root Square Mean Errors (RSME) and parameters of Linear Models (LM)
(y = a + b * x), Support Vector Regression (SVR), and tuned SVR models.

Year Intercept (a) Slope (b) LM RSME SVR RSME Tuned SVR RSME Epsilon Cost

2015 −0.5101 19.2985 2.527038 2.37958 2.263242 0.08 8
2016 −0.5088 18.4918 2.204646 1.974913 1.888035 0.06 128
2017 −0.4922 18.0549 2.181584 2.37958 2.263037 0.08 4

Average −0.5037 18.61506667

Figure 7. Epsilon and costs factors by SVR; 2015 data.

3.4. Building Energy Demand

Figure 8 shows the equation found through non-linear regression to best describe the
relationship between purchased energy and temperature for 2015. This equation has the format
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of y = a − b * x + c * x2, where y is purchased electricity, x is temperature, a is the intercept, b is
the slope, and c the exponential curve. Results from all years are shown in Table 7, including the
error difference between linear and non-linear models. The non-linear model error is lower than
the linear model error for all cases. However, the data seem to show two superimposed u-shaped
curves, suggesting a third parameter is affecting the results and it may be possible to generate two
equations to better model the data. To enable this, the data were separated into 8 cases as described
in Table 4. The subsequent results showed no clear effect of any combination of parameters on the
purchased electricity. Figure 9 shows the effect of temperature, month, and hour on the purchased
electricity from 2015. This illustrates there is no distinguishable repetitive difference in effects between
temperature and hours of the day during which the building is occupied on the purchased electricity,
which was expected.

Figure 8. Quadratic equation relating purchased electricity to temperature; 2015 data.

Table 7. Parameters for the quadratic equation (6) describing the relationship between temperature
and purchased electricity. All had 1 iteration to convergence.

Year LM Error NLM Error Intercept (a) Slope (b) Curve (c) Residual Sum of Squares Tolerance

2015 107.3204 99.04455 633.1747 12.7784 0.5251 84,442,961 1.83 × 10−9

2016 113.8353 103.4177 660.1028 13.3542 0.6305 92,577,853 4.283 × 10−9

2017 109.8714 102.973 698.3077 9.8411 0.4722 90,956,240 8.543 × 10−9

Average 663.8617333 11.99123333 0.5426

 

Figure 9. Purchased electricity per month, temperature, and hour of the day; 2015 data.
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3.5. Electricity Prices

Table 8 shows the results of applying the predicted equations for solar power generation and
purchased electricity to the electricity price totals in comparison to the actual electricity price totals.
The equations’ accuracy varied from +6 to −8% of actual prices, with purchased energy showing the
greatest variation.

Table 8. Electricity prices in 1000 JPY and % correctly modeled per micro-grid parameter (costs saved
vs. remaining costs) for both actual data and estimated data based on modeled equations.

Parameter 2015 2015 % 2016 2016 % 2017 2017 %

total_pv_ac (costs saved) 1579 1557 −1.36% 1594 1643 +3.08% 1651 1740 +5.41%
purchased_electricity_kwh (costs made) 86,669 92,049 +6.21% 99,253 97,304 −1.96% 107,646 99,142 −7.90%

4. Discussion

Two different types of models were used to estimate the relationships between the micro-grid
parameters on the one hand, and weather and time parameters on the other. This is due to the
dependencies found in the exploratory data analysis phase.

This analysis showed a linear relationship between solar power generation and solar irradiance,
which was not always improved by applying support vector regression. The effects of temperature
on solar power generation were different than anticipated. Figure 4 shows that whereas higher
temperatures of 30–35 degrees Celsius indeed lead to less produced solar power (a maximum of around
60 kWh whereas colder temperatures showed higher production); lower temperatures of −5-0 degrees
Celsius lead to far less produced solar power of 40 kWh. Although the efficiency may be higher,
the lack of solar irradiation has a far greater effect than temperature. The electricity costs saved by
generated solar power were overestimated by 3% in 2016 and 5% in 2017, suggesting that degradation
has a considerable effect on the total generated solar power and, although hidden, should be taken into
account in future models.

To examine the hypothesis that temperature could have a large influence on purchased energy,
a quadratic equation was found to describe this relationship. At times when the building was occupied,
temperature extremes did show a higher effect on purchased electricity (Figure 4). Applying the
equation to hourly electricity costs led to over- and underestimations of the actual costs of 6% and 8%
respectively. With annual costs running up to around 100,000,000 JPY, it is desirable to have an accuracy
within 1% or less, which this simplified equation has not yet achieved. Purchased energy was found to
be dependent on numerous other variables, namely, month, hour of day, day of week, holiday or not,
and other weather parameters. Splitting the data into groups as per table IV did not lead to a clear
distinction, as the month of the year still had a substantial influence as shown in Figure 9. A more
inclusive approach incorporating all of these parameters might produce better results, especially if
the hidden factor of building occupancy, or of purchased electricity base demand, is estimated for
each hour.

To enable predictions of up to one year into the future by means of machine learning, the first
step in improving these equations are to incorporate solar power generation efficiency degradation
on the one hand, and the complex interactions of time parameters leading to building occupancy on
the other hand. If these improvements can lead to more accurate cost predictions within 1% error
margin, the second step is to predict associated weather parameters for up to one year, mainly solar
irradiance and temperature. As these two parameters influence each other, and this study showed that
purchased electricity had a higher correlation to solar irradiance than to temperature (Figure 5), it may
even be possible to have a single weather parameter predict both micro-grid parameters. This would
simplify the number of unknowns that have to be predicted. Alternatively, if many weather factors
can be predicted with great accuracy, the reverse approach may be taken. Sharma et al. [5] found
that solar irradiance can be inferred from the parameters day of the year, temperature, dew point,
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wind speed, sky cover (alternatively sun hours), precipitation, and humidity. If the input weather
parameters can be predicted with sufficient accuracy, it is worthwhile to compare the results to using
only solar irradiance as input.

Although linear, non-linear, and support vector regression were adequate in uncovering the
relationships and the strength of relationship between the various parameters, it was not yet successful
in defining the complex interplay that leads to purchased electricity. A future study applying principal
component regression, such as done by Davo et al. [19], may resolve how to best model purchased
electricity with the greatest accuracy combined with the least number of parameters.

5. Conclusions

The equations resulting from linear, non-linear, and support vector regression allowed for
long-term (one year) predictions of related electricity costs that were within 7.9% accuracy of actual
costs. This study further found evidence supporting the potential to model both solar power generation
and building energy consumption simultaneously, based on the parameter of solar irradiance and in
combination with known time parameters affecting building occupancy.

This study is the first to attempt to predict both energy demand and production on a long-term scale
using R software in combination with actual micro-grid data records. The cross correlations generated
between all input parameters and generated equations provide important indications as to how to
integrate energy demand and production into one model with potentially one weather parameter,
solar irradiance, as input. For future studies on building energy consumption and solar power
generation, this study provides an important basis for evaluating which weather and time parameters
to consider during data exploration, as well as correlation methods. It furthermore shows how applying
actual data records can assist directly in improving model accuracy. Finally, all the documentation
on R codes used during the data exploration and analysis phases is provided as appendices and
Supplementary Materials, which facilitates replicating the steps taken with other datasets.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/10/13/4462/s1,
SM1: R code for outlier removal, SM2: R code for data exploration graphs, SM3: R code for linear regression
and SVR, SM4: R code for plotting nonlinear regression; SM5: R code for data rows graph. Datasets related
to this article can be found at https://doi.org/10.6084/m9.figshare.c.4176698, hosted at figshare (2018), or https:
//doi.org/10.11503/nims.1003, hosted at NIMS IMEJI (2018).
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Appendix A

Table A1. Differing forecasting horizons from previous prediction studies.

Parameter Long Term Medium Term Short Term Reference

Solar irradiance 1–3 days 1–6 h 15 min–2 h [20]
Solar irradiance 28–45 h (1 day) 1–6 h - [21]
Solar irradiance 1 month 1 day 1 min [22]

Building energy demand 1–10 years 1 month–1 year 1 h–1 week [23]
Building energy demand > 1 year 1 week–1 year 1 h–1 week [24]
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Appendix B

Table A2. Advantages and disadvantages of different software for supervised machine learning [25,26].

Software R Python Java SAS SPSS

Description

Developed by
statisticians, aimed at
handling numerical
values; procedural
language (step by
step subroutines)

General purpose
programming

language, simple to
read, used for

websites; object
oriented (bundles

procedures and data
together as parts

of objects)

Programming
language and

computer platform;
object oriented

(bundles procedures
and data together as

parts of objects)

Statistical Analysis
System, developed
for analyzing large

quantities of
agriculture data

Statistical Package
for the Social

Sciences, the first
statistical

programming
language for the PC

Advantages

Free, easy to learn,
many options for
data visualization,

suited for statistical
analysis and

explanatory and
predictive modeling

Free, easy to learn,
built-in debugging High speed Easy to handle large

datasets

Good user interface,
official support, easy

to learn and write
code, similar to Excel

Disadvantages No official support
or user interface

Slow with large
datasets

Not strong in
statistical modeling
and visualization

High learning curve Slow with large
datasets

Appendix C

Excel formula for electricity prices:
IF(OR(K3 = 1,I3 = “Sunday”),VLOOKUP(C3,electricityprice!C$2:H$74,5,FALSE),
IF(AND(J3<>“Summer”,P3 > = 8,P3 < = 21),VLOOKUP(C3,electricityprice!C$2:H$74,4,FALSE),
IF(AND(J3<>“Summer”,P3<=7),VLOOKUP(C3,electricityprice!C$2:H$74,5,FALSE),
IF(AND(J3<>“Summer”,P3>=22),VLOOKUP(C3,electricityprice!C$2:H$74,5,FALSE),
IF(AND(J3 = “Summer”,P3 > = 13,P3 < = 15),VLOOKUP(C3,electricityprice!C$2:H$74,3,FALSE),
IF(AND(J3 = “Summer”,P3 > = 16,P3 < = 21),VLOOKUP(C3,electricityprice!C$2:H$74,2,FALSE),
IF(AND(J3 = “Summer”,P3 > = 8,P3 < = 12),VLOOKUP(C3,electricityprice!C$2:H$74,2,FALSE),
IF(AND(J3 = “Summer”,P3 < = 7),VLOOKUP(C3,electricityprice!C$2:H$744,5,FALSE),
IF(AND(J3 = “Summer”,P3 > = 22),VLOOKUP(C3,electricityprice!C$2:H$74,5,FALSE),
-999999)))))))))
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Abstract: This paper considers the reference signal generation problem for the multi-functional
operation of single-phase dynamic voltage restorers. For this purpose, a single-phase quasi type-1
phase-locked loop (QT1-PLL) is proposed. The pre-loop filter part of this PLL is composed of a
frequency-fixed delayed signal cancellation method and a two-stage all-pass filter. Thanks to the
frequency-fixed nature, the pre-loop filter is easy to implement and can provide rejection of any
measurement offset. Moreover, this PLL benefits from the excellent harmonic robustness property
of the conventional QT1-PLL. Small-signal modeling and gain tuning procedures are detailed in
this paper. In order to track the reference voltage signals generated by the proposed PLL, a super-
twisting sliding mode controller is also presented, which helps to achieve fast dynamic responses.
Laboratory-scale prototype-based experimental studies were conducted to validate the developed
reference generator and the controller. Experimental results show that the proposed method is fast in
detecting and compensating any grid voltage anomalies to maintain constant load voltage despite
voltage sag, swell, and harmonic distortions.

Keywords: grid-synchronization; dynamic voltage restorer; converter control system; sliding mode
control

1. Introduction

Power quality problems such as voltage sag, swell, and harmonics can significantly
affect the performance of critical loads that are used in hospital, water treatment plant,
data center, etc. In addition to harmonics, voltage sag and swells are quite common in
power grid and can be caused by many reasons such as lightning strike, accident, short
circuit, over loading, switching on or off large electrical loads, etc. In the case of water
treatment plant, voltage sag/swell can interrupt the treatment process including dissolved
air flotation, filtration, and disinfection. Any interruption in the process can take up to 8 h
to resolve, causing one-third production loss for the day. This highlights the importance of
mitigating voltage-related power quality problems.

In order to address power quality issues such as voltage sag, swell, and harmonics,
the dynamic voltage restorer (DVR) became very popular in recent times [1–4]. DVR can
compensate voltage sag, swell, and harmonics to maintain desired constant voltage at the
critical load side. In the literature, various topologies of DVR are proposed. However, the
most basic DVR topology is made of any dc voltage source such as battery, photovoltaic
panel, etc., together with a voltage source inverter with LC filter and a transformer. The
transformer provides galvanic isolation between the inverter and its secondary is connected
between the grid voltage and the load in series. The control system of DVR constantly
monitors grid voltage and injects compensation voltage when it detects any deviation from
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the desired voltage. This results in maintaining desired load voltage despite various power
quality disturbances at the grid.

The detection of voltage sag, swell, and harmonics plays a vital role in ensuring the
effective operation of DVR. Voltage sag and swells are typically short-lived incidents with
a time range of few milliseconds to a minute [5]. As such, fast and accurate detection of
sag and swell is essential for fast responsive DVR operation. In the ideal case, voltage
sag/swell can be detected very quickly by comparing the voltage magnitude with respect
to the ideal magnitude. However, calculating the magnitude can be tricky in the presence
of nonlinearities such as harmonics.

The first step in compensation voltage calculation is to generate the reference voltage,
which should be in-phase with the measured grid voltage. If the grid voltage is ideal,
i.e., has a frequency of 50 Hz (or 60 Hz) and contains no harmonics, then generating the
reference voltage is straightforward. However, this is not the case in practice. According to
the European standard EN 50160 [6], grid voltage can vary between −3 Hz and +2 Hz of
the nominal frequency. However, the grid frequency has to be within 1% of the nominal
value, i.e., ±0.5 Hz for 99.5% of the time. Moreover, harmonics are almost always present in
the grid due to the ever increasing penetration of nonlinear loads and converter-interfaced
distributed energy sources. All these factors complicate the reference voltage calculation.

In order to address the non-ideal characteristics of the measured grid voltage, re-
searchers often rely on phase-locked loop (PLL) [7–15] or similar techniques to generate the
reference voltage for DVR. Using PLL, first, the instantaneous phase of the grid voltage
fundamental component is estimated. This can then be used as the unit template for the
reference voltage. By multiplying the unit template with the desired amplitude, the actual
reference grid voltage can be calculated. In this study, we are considering a single-phase
DVR. However, traditional PLLs in the form of synchronous reference frame (SRF) PLLs
work only for three-phase systems. For single-phase systems, an additional orthogonal
signal generator (OSG) is required to implement SRF-PLL. In the single-phase DVR litera-
ture, various OSGs have already been used. In [16], a second-order generalized integrator
(SOGI) is used as the OSG. The effect of DC offset is not considered in [16]. Moreover,
despite having band-pass filtering property, traditional SOGI-PLL cannot completely reject
the dominant harmonics. Thus, multiple SOGIs need to be placed in parallel in order to
reduce the effect of dominant harmonic components. This can make the overall system
computationally complex. It is to be noted here that the conventional SRF-PLL can be
made robust to harmonics and DC offset by considering a slow loop-filter, i.e., by reducing
the bandwidth. This has been considered in [17]. Although this is an interesting practical
solution, this strategy is suitable for voltage compensation but not harmonics.

Self-tuning filter (STF) is similar to SOGI; however, in the case of STF, the error
feedback is independent of the grid frequency. In [18,19], the authors have applied STF as
the reference generator without considering frequency adaptation. As such, the reference
generator in [18,19] can be limiting when the grid frequency varies significantly. Quarter-
delay is another popular method for generating orthogonal signal. This approach is
considered in [20]. However, in off-nominal frequency condition, the required delay would
be fractional which increases computational complexity. In [21], an adaptive notch filter
(ANF) is used as the reference generator. However, the considered ANF did not use gain
normalization. This can make the convergence time slow in the presence of voltage sag.

Based on the literature review, it is clear that there is demand for a reference generator
that is robust to harmonics and DC offset while at the same time is computationally simple
to implement. For this purpose, in this study, a quasi type-1 PLL [22–24] is considered. This
PLL has been selected for several reasons. Firstly, it can provide amplitude normalization
without using any low-pass filter unlike conventional SRF-PLL, cf. [25]. Use of additional
low-pass filter in the amplitude normalization block will introduce tuning complexity as
there is one more gain to tune. Secondly, this PLL provides good harmonic robustness
thanks to the use of a moving-average filter. Finally, it has only one gain to tune unlike
SRF-PLL where the loop-filter has two tuning parameters. However, this PLL can work only
for three-phase system. Thus, a single-phase version of this PLL is proposed in this study.
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For this purpose, first, a half-cycle delayed signal cancellation method is applied to reject
the DC offset. Then, a frequency-fixed all-pass filter (APF) [26] is applied to generate the
orthogonal signal. However, single-stage APFs will generate double frequency oscillations
in off-nominal frequency conditions. As such, a two-stage APF is considered that can
eliminate the double frequency error. The APF is selected in this study as it can generate
orthogonal signals without using any tuning gain unlike other choices available in the
literature such as SOGI [16,27], ANF [21], etc. This is beneficial from the tuning simplicity
point of view. Finally, the filtered grid voltage signal and its orthogonal component are
used as the inputs to the quasi type-1 PLL. A small-signal model of the proposed PLL is
developed and validated. Finally, tuning of the PLL gain is also presented. Compared
to conventional PLL techniques summarized in [28], our approach is very simple to tune
as it has only one tuning gain. All the techniques summarized in [28] have at least three
parameters to tune if amplitude normalization is considered. Unlike most of the techniques
in [28], our quadrature signal generator is frequency non-adaptive. As such, there is no
frequency feedback which may be beneficial from the stability point of view.

Once the reference signal is generated, the role of control system is to follow/track the
reference. In the literature, synchronous frame approach in the form of proportional-integral
(PI) controllers [29] are widely used. Although this controller can be easily designed and
implemented, the dynamic response can be slow. In order to enhance dynamic performance,
advanced controllers such as model predictive control (MPC) [7,8], H∞ [30], and sliding
mode control (SMC) [31–33] are proposed in the literature. MPC can be sensitive to model
parameters mismatch. Computational complexity can be an issue for H∞ controllers. SMC
is often a suitable choice for controlling nonlinear systems in the presence of parameter
mismatch and/or external perturbations. As such, this technique has been selected in
this study.

The rest of this article is organized as follows: Section 2 explains the operation of the
proposed DVR together with the error model for controller development. Development of
the proposed reference signal generator is provided in detail in Section 3. Development of
the sliding-mode controller is provided in Section 4. Experimental results on a laboratory-
scale prototype together with simulation results are provided in Section 5. Finally, Section 6
concludes this paper.

2. DVR Modeling and Problem Formulation

In this study, we consider a single-phase DVR. A connection diagram of the DVR is
given in Figure 1. In this configuration, the DVR, which is a full-bridge voltage source
inverter, is connected in series through a transformer to the protected load. Isolation
between the load the DVR is provided by the transformer. Grid voltage sensor is used
to continuously monitor the deviation from the reference voltage, and the appropriate
compensation voltage is injected by the DVR to maintain the ideal voltage at the protected
load terminal. Filter current and compensation voltage dynamics of the DVR are given by
the following:

di f

dt
=

1
L f

(vi − vc), (1)

dvc

dt
=

1
Cf

(
i f − ig

)
, (2)

where vi, vg, vc, i f , ig, L f , and Cf denote the input voltage by the DVR, grid voltage,
compensation voltage, filter current, filter inductance, and filter capacitance, respectively.
The DVR voltage can be expressed as vi = uVdc where the DC-link voltage is denoted by
Vdc, and the control signal is given by u. Moreover, in the ideal case, one can also write
the following.

vc = vg − vL. (3)
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Figure 1. Topology of the considered DVR.

In normal operating condition, the compensation voltage given by (3) will be zero.
However, in practice, the grid voltage is never ideal. Various grid anomalies such as voltage
sag/swell, harmonics, noise, etc., are present. In this case, (3) can no longer be used for
the compensation voltage calculation. In order to ensure that the sensitive load voltage
remains as close as possible to the desired voltage, reference voltage needs to be calculated
and this voltage should be in-phase with the grid voltage fundamental for the efficient
operation by the DVR. Let us consider that the reference voltage is denoted by vref

c . Then,
the tracking error and its derivative are given by the following.

ξ1 = vref
c − vc, (4)

ξ2 = ξ̇1 = v̇ref
c − v̇c. (5)

Then, by substituting the DVR dynamical Equations (1) and (2) into (4) and (5), the
DVR tracking error dynamics can be obtained as follows:

dξ1

dt
= ξ2, (6)

dξ2

dt
= −δξ1 + δuVdc + w, (7)

where the coefficient δ = 1/
(

L f Cf

)
and the perturbation term w(t) is given by the following.

w(t) = − 1
Cf

dig

dt
− δvref

c − v̇ref
c .

It is assumed that the perturbation term w(t) has a bounded derivative and is upper
bounded by | dw

dt |≤ W,W > 0. Thus, the control of DVR is essentially divided into two
parts. In part 1, the problem is to generate the reference voltage vref

c from the measured
grid voltage vg. In part 2, the problem is to find the control signal u that will ensure that
the tracking errors converge asymptotically to zero. These two issues are addressed in the
following two sections.

3. Reference Signal Generator

In this Section, reference voltage vref
c will be generated from the measured grid voltage

vg. For this purpose, let us consider the singe-phase grid voltage signal model in time-
domain as provided below:

vg(t) = v0 + Vp sin
(
θg
)︸ ︷︷ ︸

v∅
g

, (8)
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where |v0| ≥ 0, Vp, and θg =
∫

ωgdt, θg(0) = φ are the DC offset, amplitude, and instan-
taneous phase with ωg being the grid frequency, and φ is the initial phase angle. The
frequency is ωg = ωn + δω, where ωn = 100π is the nominal frequency and δω is the
deviation from the nominal frequency. For efficient operation of the DVR, the reference
voltage should be in phase with the instantaneous phase of the grid voltage θg. Thus,
the process of extracting θg from the measured voltage vg is considered in this section.
For this purpose, a PLL-based approach has been considered in this study. Details are
provided below.

3.1. DC Offset Rejection

Measurement offset v0 causes estimation error in the estimated phase. Thus, rejection
of this offset is essential in order to eliminate the steady-state error. For this purpose, the half-
cycle delayed signal cancellation (DSC) method is a popular choice in the literature [34,35].
The same approach is considered here. For this purpose, let us consider half-cycle delayed
version of the signal vg as follows:

vtd
g (t) = v0 + Vp sin

(
ωg(t − td) + φ

)
,

= v0 − Vp sin
(
θg
)
, (9)

where td = T
2 with T = 2π

ωg
being the period of the grid voltage signal. Then, the DC offset

can be eliminated by the following operation.

v̂∅
g =

1
2

(
vg − vtd

g

)
. (10)

In implementing Equation (10), the actual period of the grid voltage is required. In the
off-nominal frequency condition, the amount of required dely could be a fraction, thereby
increasing computational complexity. A potential solution is to use the nominal period;
however, this will introduce amplitude and phase attenuation in the off-nominal condition.
In this study, only extracting the phase is required. thus, appropriate compensation of the
phase delay is necessary to eliminate the error. For this purpose, let us consider the transfer
function of the DSC operation (10) as provided by the following:

v̂∅
g

vg
(s) = Gdc(s) =

1 − e−tds

2
, (11)

where the estimated value is indicated by .̂ The discrete-time version of the transfer
function (11) is given by the following:

Gdc(z) =
1 − z−Nd

2
, (12)

where the required delay is given by as Nd = td fs with fs being the sampling frequency. By
substituting s = jωg, the phase angle of the transfer function (11) is given by the following.

∠Gdc(s) = tan−1
{

tan
(

π

2
− Tωg

4

)}
,

=
π

2
− Tωg

4
,

=
π

2
− T

4
(ωn + δω),

=
π

2
− T

4
2π

T
− T

4
δω,

= − T
4︸︷︷︸

kdc

δω. (13)
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In calculating (13), it is assumed that ωn = 2π/T. Equation (13) shows that the use of
nominal period in (10) causes a phase delay of −kdcδω in the off-nominal frequency case.
This phase needs to be compensated in the loop-filter to eliminate the phase error in the
off-nominal frequency condition.

3.2. Tuning-Free Fixed-Frequency Orthogonal Signal Generator

Once the DC offset is eliminated, the signal v∅
g can be used to generate an orthogonal

signal component. In this study, we are considering an all-pass filter (APF) [26,36]. APF is
a first-order filter, and it can be used to generate orthogonal signals without any tuning
gain. This filter can be used either as frequency-adaptive or non-adaptive configurations.
In this study, a frequency-fixed operation is considered same as the DC offset rejection
method, as highlighted in Section 3.1. The frequency-fixed APF transfer function is given
by the following:

v∅⊥
g

v∅
g

(s) = APF(s) =
ωn − s
ωn + s

, (14)

where superscript ⊥ indicates orthogonal signals. A time-domain block diagram of APF is
provided in Figure 2. Similarly to Section 3.1, the frequency-fixed operation of the APF will
introduce amplitude and phase attenuation in the estimated orthogonal signal. As such,
characterization of the APF is needed to determine the necessary compensation mechanism.
Phase-angle of the transfer function (14) is given by the following.

∠APF(s) = tan−1

(
2ωgωn(

ωg − ωn
)(

ωg + ωn
)). (15)

For small frequency drift, i.e., δω ≈ 0, it can be assumed that ωg + ωn ≈ 2ωg. Then,
the phase angle (15) can be approximated as follows.

∠APF(s) ≈ tan−1

(
1

ωg
ωn

− 1

)
.

≈ −π

2
− tan−1

(
ωg

ωn
− 1

)
,

≈ −π

2
−

⎛
⎜⎝−π

4
+

ωg
ωn

2
+

(
ωg
ωn

)2

2!
+ · · ·

⎞
⎟⎠. (16)

Figure 2. Time-domain implementation of frequency-fixed APF.
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By ignoring the high-order (2nd and above) terms from the Taylor series expansion
in (16), this equation can be simplified as follows.

∠APF(s) ≈ −π

2
−
(
−π

4
+

ωg

2ωn

)
,

≈ −π

4
− ωg

2ωn
,

≈ −π

4
− (ωn + δω)

2ωn
,

≈ −π

4
− 1

2
− δω

2ωn
. (17)

As shown in (17), the first two terms are frequency independent while the third term
depends on frequency variation. This term, i.e., k′φ = 1/2ωn, needs to compensated.

It is well known that single-phase grid voltage can be represented by an unbalanced
two phase-system. It was shown in [36] that single-stage frequency-fixed APF cannot
effectively remove the unbalanced component as the bandwidth of the unbalanced com-
ponent rejection part is very narrow. As such, the unbalanced component will appear as
double the fundamental frequency component after Park transformation. Thus, in order to
eliminate this error, the double frequency component needs to be rejected. This issue can be
solved by increasing the bandwidth of the notch component. In the literature, a two-stage
APF has been suggested for this purpose. The two-stage APF effectively increases notch
bandwidth and enables frequency-fixed APFs to reject off-nominal frequency unbalanced
components. However, the two-stage APF will double the phase delay in the off-nominal
frequency condition. As such, the required phase compensation value is computed by
kφ = 2k′φ = 1/ωn.

3.3. Implementation in PLL

The previous two subsections detailed the procedure for obtaining DC offset elimi-
nated signal v∅

g and its orthogonal component v∅⊥
g . These signals can be used as the input

to PLL. The overall block diagram of the proposed PLL is provided in Figure 3. This section
details the operating principle of this PLL. Before describing the phase detector operation
of this PLL in our case, let us consider APF-filtered signals in the steady-state:

vβ(t) = −Vp cos
(
θg + δφ

)
, (18)

v′∅g (t) = −Vp sin
(
θg + 2δφ

)
, (19)

where δφ is the off-nominal frequency phase attenuation by each stage of the APF. As per
Figure 3, using the signal v∅

g (t) and v′g(t), vα(t) is obtained as follows.

vα(t) =
v∅

g (t)− v′∅g (t)
2

,

≈ Vp sin
(
θg
)
+ δφ cos

(
θg
)
. (20)

Figure 3. Overall block diagram of the proposed PLL.
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The phase detector of the considered PLL is provided by the following.[
vd
vq

]
=

[
cos(ω̂t) sin(ω̂t)
− sin(ω̂t) cos(ω̂t)

][
vα

vβ

]
. (21)

Then, direct-axis and quadrature-axis voltages can be obtained directly from (21). By
applying a quasi-locked condition, i.e., ω − ω̂ ≈ 0, the direct-axis and quadrature-axis
voltages can be rewritten as follows.

vd = vα cos(ω̂t) + vβ sin(ω̂t),

=
Vp

2
(sin((ω + ω̂)t + φ) + sin((ω − ω̂)t + φ)) +

δφ

2
(cos((ω − ω̂)t + φ))

−Vp

2
(
sin
(
(ω + ω̂)t + φ + 2δφ

)− sin
(
(ω − ω̂)t + φ + 2δφ

))
+

Vp

2
δφ

2
(cos((ω + ω̂)t + φ)),

≈ Vp

2
(
sin(φ) + sin

(
φ + δφ

))
+

Vp

2
(
sin(2ω̂t + φ)− sin

(
2ω̂t + φ + δφ

))
+

δφ

2
cos(φ) +

δφ

2
(cos(2ω̂t + φ)). (22)

vq = −vα sin(ω̂t) + vβ cos(ω̂t),

=
Vp

2
(cos((ω + ω̂)t + φ) + cos((ω − ω̂)t + φ))− δφ

2
(sin((ω + ω̂)t + φ))

−Vp

2
(
cos

(
(ω + ω̂)t + φ + δφ

)− cos
(
(ω − ω̂)t + φ + δφ

))
+

Vp

2
δφ

2
(sin((ω − ω̂)t + φ)),

≈ Vp

2
(
cos(φ) + cos

(
φ + δφ

))
+

Vp

2
(
cos(2ω̂t + φ)− cos

(
2ω̂t + φ + δφ

))
+

δφ

2
sin(φ) +

δφ

2
sin(2ω̂t + φ). (23)

Double frequency components in (22) and (23) can easily be filtered by applying
moving average filter (MAF) with half-cycle window length. The transfer functions of MAF
in continuous and discrete domain are provided by the following.

MAF(s) =
1 − e−tds

tds
, (24)

MAF(z) =
1
N

1 − z−Nd

1 − z−1 . (25)

By applying MAF to (22) and (23) and also assuming negligible off-nominal frequency
phase shift, filtered vd and vq can be approximated as follows.

v′d = Vp sin(φ), (26)

v′q = Vp cos(φ). (27)

Filtered voltages are then fed to the loop-filter of QT1-PLL, as shown in Figure 3.

3.4. Small-Signal Modeling and Tuning

A small-signal model of the proposed PLL can be obtained by considering the signal
flow in Figure 3. For this purpose, first, the small-signal model of the pre-loop filters needs
to be developed. The first pre-loop filter is the delayed signal cancellation block, which is
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given by transfer function (11). This transfer function can be converted into synchronous
reference frame by substituting s = s + jωn.

DSCdq(s) =
1 + e−tds

2
. (28)

The transfer function of the APF in synchronous reference frame can be obtained by
applying the Park transformation to single-stage APF and is given by the following Gautam
et al. [26].

APFdq(s) =
s + 2ωn

2(s + ωn)
. (29)

In our study, a two-stage APF is considered. As such, the effective transfer function is
given by the following.

APF2
dq(s) =

(
s + 2ωn

2(s + ωn)

)2
. (30)

Considering the pre-loop filters, the small-signal model is shown in Figure 4, where
γ = kdc + kφ is the overall phase compensation gain.

Figure 4. Small-signal model of the proposed PLL.

The proposed PLL has only one parameter to tune, which is the frequency estimation
gain k f . This gain can be tuned in several ways. Two of the popular approaches are based
on open-loop phase margin and settling time. The later is considered in this study. In order
to tune gain k f using this method, a +2 Hz frequency step is considered. Considering a 2%
settling time, settling time versus the gain k f is given in Figure 5. From this figure, k f = 89
has been found to provide the fastest settling time. This value has been considered as the
optimal gain for k f . Considering this value of k f ,validation of the small-signal model is
provided in Figure 6.

Figure 5. Settling time versus k f for a +2 Hz frequency step change.
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Figure 6. Small-signal model verification of the proposed PLL with k f = 89.

Once the phase of the grid voltage fundamental component is estimated, the reference
compensation voltage can be calculated as follows:

vref
c = Vref

p sin
(
θ̂g
)
, (31)

where reference magnitude is provided by Vref
p . The design of the control signal u based on

the reference grid voltage (31) is detailed in the next section.

4. Super Twisting Sliding Mode Controller Design

In this Section, tracking error dynamics (6) and (7) will be used for the control design.
For this purpose, let us consider that the control signal is composed of u = u0 + un,
where u0 is the nominal control signal and un is the nonlinear part of the control signal.
If we consider u0 = (1/Vdc)ξ1 and un = uST/(δVdc), then the total control signal can be
written as follows.

u =
1

Vdc

(
ξ1 +

uST
δ

)
. (32)

Then, the tracking error dynamics (6) and (7) can be rewritten as follows.

dξ1

dt
= ξ2, (33)

dξ2

dt
= uST + w. (34)

Tracking error dynamics (33) and (34) can be viewed as a perturbed second-order
integrator. Numerous control techniques can be employed to stabilize the error under the
presence of perturbation w(t). In this study, we consider a second-order SMC [31,37] in
the form of super-twisting SMC [38]. In order to design the super-twisting SMC, let us
consider the following sliding surface.

σe = ξ2 + λ1ξ1, λ1 > 0. (35)

Then, the controller uST in (34) can be designed as follows:

uST = −λ1ξ2 − λ2|σe| 1
2 sgn(σe)− λ3

∫ t

0
sgn(σe(τ))dτ, (36)

where sgn(.) is the conventional signum function and the gains λ2 and λ3 are selected as
follows.

λ3 > W, λ2
2 > 4λ3. (37)

In order to analyze the stability of the controller (36), let us consider the derivative of
the sliding surface (35) together with (33), (34), and (36) as provided below.

σ̇e = −λ2|σe| 1
2 sgn(σe)− λ3

∫ t

0
sgn(σe(τ))dt + w(t). (38)
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Let us consider the following variables.

ζ1 = σe, (39)

ζ2 = −λ3

∫ t

0
sgn(σe(τ))dτ + w(t), (40)

dw
dt

= η(t). (41)

Then, the dynamics of the sliding surface (38) can be rewritten as follows.

dζ1

dt
= −λ2|σe| 1

2 sgn(σe) + ζ2, (42)

dζ2

dt
= −λ3

∫ t

0
sgn(σe(τ))dτ + η(t). (43)

Then, for the selected control gain (37), finite-time convergence of the variables ζ1 and
ζ2 can easily be established by using the results presented in Levant [37]. In order to im-
plement the super-twisting controller, (32), (35), and (36) are required. An implementation
block diagram of the super-twisting sliding-mode controller is provided in Figure 7.

Figure 7. Block diagram of super-twisting sliding-mode controller with λa = 1/Vdc and
λb = 1/(δVdc).

5. Simulation and Experimental Results

In this Section, simulation and experimental results are reported. The experimental
setup used in this study is demonstrated in Figure 8. Here, a Texas Instrument C2000
series micro-controller is used to implement the proposed control and estimation algorithm.
Parameters of the setup and control gains are provided in Table 1.

Figure 8. Experimental setup used in this study.
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Table 1. Experimental study parameters.

System and Control Parameters Values

Controller gains
PLL gain k f = 89

Grid: voltage and frequency 120 V (rms) 50 Hz
Grid: impedance Rg = 1 mΩ, Lg = 0.1 μH

Transformer turns ratio 1:1
DC link voltage, Vdc 120 V

LC filter L f = 0.8 mH, Cf = 50 μF
Sensitive series load R = 100 Ω

Numerical simulation using Matlab/Simulink is conducted by considering the same values.
In the first test, the grid voltage suddenly experiences a ≈30% sag. From approximately

170 V (peak), the grid voltage dropped to roughly 120 V (peak). Experimental results are
provided in Figure 9. The results show that in order to mitigate the effect of grid voltage
sag at the sensitive load side, the DVR was very quick to react and supplied the necessary
50 V in-phase compensation voltage. As a result, constant voltage was maintained at the
load side. In the second test, voltage swell was considered, and the results are provided
in Figure 10. Here, grid voltage increased to 210 V, which is roughly a 25% change from
the nominal value. Unlike the first test, here, out-of-phase compensation voltage needs
to be generated in order to reduce the voltage at the sensitive load end. As shown in
Figure 10, the proposed enhanced QT1-PLL was very successful in generating the required
roughly 40 V out-of-phase compensation voltage, and the sliding mode controller ensured
the tracking of the reference compensation voltage by the DVR. These results show that
the proposed approach can handle both sag and swell conditions. In the real grid, in
addition to voltage sag/swell, harmonics are also a problem. The presence of harmonics
will render the sensitive load voltage distorted. As a result, power quality degrades. In
order to mitigate this issue, harmonic compensation is also required. In the final test, the
grid voltage suddenly became distorted, and the results are provided in Figure 11. The
proposed PLL can extract the fundamental component with high harmonic robustness. As
a result, quick estimation of the grid harmonics was performed by PLL, and DVR injected
the necessary harmonic compensation voltage to ensure very low distortion at the load
side. The results in Figure 11 validate the suitability of the proposed PLL in a distorted
grid condition.

Figure 9. Experimental responses of vg, vc, and vL subject to voltage sag in the grid.
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Figure 10. Experimental responses of vg, vc, and vL subject to voltage swell in the grid.

Figure 11. Experimental responses of vg, vc, and vL subject to voltage harmonics in the grid.

In order to check the robustness of the used controller, we have used numerical
simulations. In the simulation test, voltage sag and harmonics are considered. The nominal
value of the filter inductor is 0.8 mH. This value is used to synthesize the control law.
Simulation results with ±25% variation in the filter inductor are provided in Figure 12.
The results in Figure 12 show that the response of DVR is very similar when the system
parameter experienced a ±25% change from the nominal value. This shows that the sliding
mode controller is robust to parameter variations.

Experimental results as shown in Figures 9–11 independently considered voltage
sag, swell, and harmonics. In practice, in addition to these characteristics, phase and/or
frequency of the grid voltage may also change simultaneously in the worst case scenario. In
order to asses the performance of the proposed method, two additional simulation studies
were considered. In the first test, grid voltage experienced −0.5 p.u. sag and −25◦ phase
change simultaneously. In the second test, in addition to the sag, the grid voltage also
experienced +25◦ phase change and +1 Hz frequency change. In both cases, the fault cleared
after 100 ms and the grid became distorted after fault clearance. Numerical simulation
results for the first and second test are provided in Figures 13 and 14. Results show that
the proposed control method is very fast (roughly 1 cycle convergence time) despite very
abrupt changes in grid voltage parameters. However, it is to be noted here that the load
voltage transients are not that smooth compared to the case when only one parameter
changed, such as in Figure 12. Smooth transient load voltage scan be obtained by either
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freezing the PLL or by using a very slow one [17]. However, this type of solution will not be
able to provide efficient harmonic compensation. As such, a trade-off between the dynamic
response and smooth transient behavior has to be made in PLL parameter selection.

Grid Voltage

(a)
Capacitor Voltage

(b)
Load Voltage

(c)

Figure 12. Simulation results for controller robustness check. (a) Grid voltage; (b) capacitor voltage;
(c) load voltage.
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(a)

(b)

(c)

Figure 13. Simulation results for combined voltage sag and phase change at the grid. (a) Grid voltage;
(b) capacitor voltage; (c) load voltage.
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Figure 14. Simulation results for combined voltage sag, frequency, and phase change at the grid.
(a) Grid voltage; (b) capacitor voltage; (c) load voltage.
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6. Conclusions

In this paper, an enhanced single-phase quasi type-1 PLL was proposed to generate
the reference compensation voltage for the multi-functional operation of a single-phase
dynamic voltage restorer. A super-twisting sliding-mode controller was also proposed to
track the reference voltage. The developed PLL is highly robust to grid voltage harmonics,
which resulted in very low total harmonic distortion at the sensitive load-side. Moreover,
thanks to a super-twisting controller, fast tracking of the compensation voltage was also
achieved. Stability analysis and tuning of the PLL are presented by using small-signal
modeling. The developed control method has been validated in a laboratory-scale pro-
totype. The experimental results show that the proposed controller is very effective in
compensating any grid voltage abnormalities, which in turn contributes to keeping the
voltage at the sensitive load-side to remain very close to the ideal reference voltage.

Author Contributions: Conceptualization, H.A., S.B., H.K. and M.B.; methodology, H.A.; software,
H.A. and S.B.; validation, S.B.; writing—original draft preparation, H.A.; writing—review and editing,
H.A., S.B., H.K. and M.B. All authors have read and agreed to the published version of the manuscript.

Funding: H. Ahmed is funded through the Sêr Cymru programme by Welsh European Funding
Office (WEFO) under the European Regional Development Fund (ERDF).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Moghassemi, A.; Padmanaban, S. Dynamic voltage restorer (DVR): A comprehensive review of topologies, power converters,
control methods, and modified configurations. Energies 2020, 13, 4152. [CrossRef]

2. Yáñez-Campos, S.C.; Cerda-Villafaña, G.; Lozano-García, J.M. A Two-Grid Interline Dynamic Voltage Restorer Based on Two
Three-Phase Input Matrix Converters. Appl. Sci. 2021, 11, 561. [CrossRef]

3. Abas, N.; Dilshad, S.; Khalid, A.; Saleem, M.S.; Khan, N. Power quality improvement using dynamic voltage restorer. IEEE
Access 2020, 8, 164325–164339. [CrossRef]

4. Toumi, T.; Allali, A.; Abdelkhalek, O.; Abdelkader, A.B.; Meftouhi, A.; Soumeur, M.A. PV Integrated single-phase dynamic
voltage restorer for sag voltage, voltage fluctuations and harmonics compensation. Int. J. Power Electron. Drive Syst. 2020, 11, 547.
[CrossRef]

5. IEEE Standard 1346-1998; IEEE Recommended Practice for Evaluating Electric Power System Compatibility with Electronic
Process Equipment. IEEE: Piscataway Township, NJ, USA, 1998. [CrossRef]

6. Lucas, A. Single-phase PV power injection limit due to voltage unbalances applied to an urban reference network using real-time
simulation. Appl. Sci. 2018, 8, 1333. [CrossRef]

7. Trabelsi, M.; Komurcugil, H.; Refaat, S.S.; Abu-Rub, H. Model predictive control of packed U cells based transformerless
single-phase dynamic voltage restorer. In Proceedings of the 2018 IEEE International Conference on Industrial Technology (ICIT),
Lyon, France, 20–22 February 2018; pp. 1926–1931.

8. Kumar, C.; Mishra, M.K. Predictive voltage control of transformerless dynamic voltage restorer. IEEE Trans. Ind. Electron. 2015,
62, 2693–2697. [CrossRef]

9. Ahmed, H.; Salgado, I.; Chairez, I.; Benbouzid, M. Robust gradient estimator for unknown frequency estimation in noisy
environment: Application to grid-synchronization. IEEE Access 2020, 8, 70693–70702. [CrossRef]

10. Ahmed, H.; Biricik, S.; Benbouzid, M. Enhanced Frequency Adaptive Demodulation Technique For Grid-Connected Converters.
IEEE Trans. Ind. Electron. 2021, 68, 11053–11062. [CrossRef]

11. Remya, V.; Parthiban, P.; Ansal, V.; Nandakumar, A. Single-phase DVR with semi-Z-source inverter for power distribution
network. Arab. J. Sci. Eng. 2018, 43, 3135–3149. [CrossRef]

12. Satputaley, R.J.; Borghate, V.B. Performance analysis of DVR using “new reduced component” multilevel inverter. Int. Trans.
Electr. Energy Syst. 2017, 27, e2288. [CrossRef]

13. Ahmed, H.; Biricik, S.; Benbouzid, M. Linear Kalman Filter-Based Grid Synchronization Technique: An Alternative Implementa-
tion. IEEE Trans. Ind. Inform. 2021, 17, 3847–3856. [CrossRef]

14. Ahmed, H.; Benbouzid, M. Simplified Second-Order Generalized Integrator - Frequency-Locked Loop. Adv. Electr. Electron. Eng.
2019, 17, 405–412. [CrossRef]

15. Ahmed, H.; Pay, M.L.; Benbouzid, M.; Amirat, Y.; Elbouchikhi, E. Hybrid estimator-based harmonic robust grid synchronization
technique. Electr. Power Syst. Res. 2019, 177, 106013. [CrossRef]

168



Appl. Sci. 2022, 12, 146

16. Meena, A.; Islam, S.; Anand, S.; Sonawane, Y.; Tungare, S. Design and control of single-phase dynamic voltage restorer. Sādhanā
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