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1. Introduction

Vegetation, as one of the crucial underlying land surfaces, plays an important role in
terrestrial ecosystems and the Earth’s climate system through the alternation of its phenol-
ogy, type, structure, and function. Vegetation responds to climate warming quite differently,
such as greening and browning across different regions, which have been reported by
many remote sensing studies [1–3]. Vegetation is an important and sensitive indicator of
climate and environment evolutions, underscoring the need to better understand vege-
tation physiological and phenological responses, detect mechanisms of how changes in
land surface properties (e.g., surface albedo and roughness length) are associated with
vegetation dynamics, and reveal climate and ecological feedbacks of vegetation changes.
The recent advances of satellite remote sensing techniques and their derived products
provide unique opportunities to study vegetation dynamics and its feedback to regional
and global climate systems. Moreover, some of the new generation of climate models, such
as CMIP6 Earth system models, which include dynamic vegetation, are state-of-the-art
tools for investigating the interactions between vegetation and climate change.

After an open call to the community, we received some interesting works based on
remote sensing data from which we summarize 10 papers that are already published, which
focus on vegetation changes and the associated drivers, the effect of extreme climate events on
vegetation, land surface albedo related to vegetation change, plant fingerprint, and vegetation
dynamics in climate models. These articles well represent the focus of the Special Issue, which
aims to investigate vegetation dynamics and its response to climate change.

2. Overview of Contribution and Future Perspectives

Identifying the influencing factors, so-called detection and attribution, for vegetation
changes is an important subject of current research. Dong et al. [4] analyzed the spatial-
temporal changes of vegetation NDVI in the Loess Plateau between 2000–2015 and used
the geographical detector model (GDM) to quantify its dominant factors from climate,
environment, and anthropogenic factors. They revealed that NDVI increases more rapidly
in the semi-humid area than in the semi-arid area. For the former, anthropogenic factors,
such as the GDP density, land-use type, and population density, have a great effect on
the NDVI increase, while for the latter, the climate and environment factors, such as
precipitation, soil type, and vegetation type, have a great effect. Meanwhile, the interactions
between factors enhance the effects on vegetation change. A similar piece of work was
done by Li et al. [5] in temperate drylands, specifically the Inner Mongolia grasslands.
With an upward trend in NDVI in the growing season over the period 2000–2018, GDM
suggests that both nature and human activities exert significant effects on the NDVI changes,

Remote Sens. 2022, 14, 5275. https://doi.org/10.3390/rs14205275 https://www.mdpi.com/journal/remotesensing1
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accounting for more than 15% of the variability. Interactions between precipitation and air
temperature dominate the NDVI change, accounting for 39%. Taken together, these articles
include an attribution model to resolve the dominant contributors to vegetation change.

One of the most noticeable vegetation responses to the rapid warming in northern
high latitudes is changes in the timing of thermal growing seasons and phenological cycles
of plants [2]. These changes may induce direct and legacy effects on ecosystem gross
primary production. Based on three widely-used remote sensing products of GPP (gross
primary productivity) at a spatial resolution of 0.05◦ over 2001–2018, Marsh and Zhang [6]
found that legacy effects from spring temperature are most pronounced in summer, where
the Arctic ecosystem productivity has been stimulated. Spring warming likely lessens
the harsh climatic constraints that govern the Arctic tundra and extends the growing
season length. Further south, legacy effects are mainly negative. This strengthens the
hypothesis that enhanced vegetation growth in spring will increase plant water demand
and stress in summer and autumn. Soil moisture is the dominant control of summer GPP in
temperate regions. However, the dominant meteorological variables controlling vegetation
growth are different among the three GPP products. Different biomes show disparate
(positive or negative, even lagged) impacts for the three GPP products. Overall, this work
quantitatively assesses the direct and legacy effects of spring warming on seasonal GPP,
and it also highlights the need to address uncertainties among different methods that are
used to estimate GPP.

Net primary productivity (NPP) is a variable that reflects the efficiency of vegetation
fixation and conversion of light energy, and thus it is often used to monitor vegetation
dynamics, such as plant growth, development, reproduction, and senescence. Based on
the MODIS NPP product and environmental factors (air temperature, solar radiation,
and soil moisture) derived from the atmospheric reanalysis data (ERA5, MERRA2, and
NCEP2), Wang et al. [7] found that nearly 60% of the global areas showed a higher NPP
that is associated with an increased elevation. Soil moisture has the largest uncertainty to
explain either the spatial pattern or inter-annual variation of NPP, while air temperature
has the smallest uncertainty among the three environmental factors. NPP shows an obvious
elevation differentiation with an elevation of 3060 m as the demarcation point, which
divides the elevation into low and high. Mean annual air temperature is the main driving
that affects the elevation distribution of NPP. Their work implies that elevation is a crucial
factor when quantifying the carbon sequestration capability of vegetation globally.

When it comes to the world’s Third Pole (Tibetan Plateau, TP), changes in vegetation
dynamics also play a critical role in terrestrial ecosystems and environments. Similar
to the Arctic, the TP has also experienced rapid and amplified warming during recent
decades [8]. Therefore, vegetation dynamics in the TP have been attached increasing at-
tention as it profoundly influences the terrestrial carbon cycle and climate change. Land
surface albedo directly affects the energy balance on the land surface. Li et al. [9] examined
the spatial-temporal changes of land surface albedo dynamics and its influencing factors
(snow cover and vegetation) in the Qilian Mountains, Northeastern TP, using multi-source
remote sensing data. Annual average albedo showed a weak increasing trend from 2001
to 2020. Surface albedo is closely associated with land surface cover, and vegetation is
significantly negatively correlated with albedo. The improvement of vegetation condition
reduces the surface albedo in the edge areas. Therefore, surface albedo can also be used for
monitoring land surface conditions. Deng et al. [10] used remote sensing products and a
dynamic global vegetation model to study the TP vegetation dynamics and the associated
climatic drivers. They customized the Community Land Surface Biogeochemical Dynamic
Vegetation Model to simulate the TP vegetation distribution and carbon flux and improved
the model’s phenology representation using seasonal–deciduous phenology parameteriza-
tion. The newly developed processes substantially improve the model to reproduce in situ
observations on the TP. In addition to better simulations of spatial-temporal patterns of
GPP in the TP, their work also showed different indications of dominant drivers between
the remote sensing product and the terrestrial ecosystem model.
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Remote sensing is also used to monitor land and forest change footprint, facilitating
the protection of the fragile environment. In combination with 8203 scenes of multi-
source remote sensing data, Yan and Wang [11] use the LandTrendr spectral-temporal
segmentation algorithm to explore forest change footprint in the upper Indus Valley. This
work suggests that the area of forest recovery is 1% more than that of disturbance between
1990–2020, in which 70% of disturbance appears between 1990 and 2001 and 60% of recovery
appears between 1999 and 2012. Although little difference exists in the overall trend of forest
disturbance and recovery, the significant differences remain in forest management status
across different regions because of grazing, fire, commercial tree planting, and afforestation
policies. Li et al. [12] investigated the effects of time interpolation on phenology trend
estimation in the mid-high latitudes of the northern hemisphere between 2001–2019, using
a daily NDVI generated based on the moderate resolution imaging spectroradiometer
(MODIS) MCD43A4 daily surface reflectance data over 120 selected sites. They found that
there are nonignorable effects of the time interpolation on trend estimation, even though
the effects are not significant. The effects of the time interpolation on trend estimation have
shown significant differences among different vegetation types, with significant effects
on vegetation types with apparent seasonal changes, such as deciduous broadleaf forests,
and no significant effects among vegetation types with weak seasonal changes, such as
evergreen needleleaf forests. In addition, the selection of extraction methods also affected
trend estimation.

In recent years, climate extremes have been frequently reported by literature and media
across the globe. Vegetation in response to climate extremes has been arousing general
concern. For the response of vegetation to the heatwave, Dong et al. [13] examined the
impact of heatwaves on vegetation growth rate on the TP from 2000 to 2020 using MODIS
Nadir Bidirectional Reflectance Distribution Function Adjusted Reflectance (NBAR) based
NDVI and EVI, microwave-based surface soil moisture, and long-term meteorological data.
They found that the significant increase in the frequency of heatwaves only occurs in August
during the last two decades. During heatwave periods, the soil moisture and precipitation
are significantly lower than the corresponding multi-year average value. The temperature
stress and water limitation caused by heatwave slow the vegetation growth on the TP but
the sensitivity of alpine vegetation on heatwave is higher in June than in July and August.
Wang et al. [14] investigated the effects of climate extremes on vegetation at multi-time scales
using NDVI during 1982–2015 in Guangxi, China. They found that there are clear seasonal
differences in the trend of NDVI in Guangxi, with the strongest greening in spring and
February. On an annual scale, the NDVI is generally significantly correlated with extreme
temperature indices, while there is no significant correlation between NDVI and most of the
extreme precipitation indices used. On seasonal and monthly scales, the correlations between
NDVI and extreme temperature and precipitation indices vary in months. Overall, these
works are of great significance for the understanding of vegetation response to increasing
extreme weather events under the background of rapid climate change.

The above studies advance the understanding of vegetation changes and their driving
factors to a large extent. However, there is still some gap between our expectations and the
currently collected papers. In addition to the response of vegetation to climate change, we
also expect to look at some progress in the feedback of vegetation dynamics to ecosystems
(e.g., carbon stocks, water, and soil conservation) and the climate systems. Therefore, we
plan to reopen the Special Issue (named Specific Issue II: https://www.mdpi.com/journal/
remotesensing/special_issues/6201BU8J59) to the community to collect recent progress
involving this.

Author Contributions: Conceptualization, X.W. and W.Z.; writing—original draft preparation, X.W.,
T.O., W.Z. and Y.R.; writing—review and editing, X.W., T.O., W.Z. and Y.R. All authors have read and
agreed to the published version of the manuscript.
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Abstract: In the Loess Plateau (LP) of China, the vegetation degradation and soil erosion problems
have been shown to be curbed after the implementation of the Grain for Green program. In this
study, the LP is divided into the northwestern semi-arid area and the southeastern semi-humid area
using the 400 mm isohyet. The spatial–temporal evolution of the vegetation NDVI during 2000–2015
are analyzed, and the driving forces (including factors of climate, environment, and human activities)
of the evolution are quantitatively identified using the geographical detector model (GDM). The
results showed that the annual mean NDVI in the entire LP was 0.529, and it decreased from the
semi-humid area (0.619) to the semi-arid area (0.346). The mean value of the coefficient of variation
of the NDVI was 0.1406, and it increased from the semi-humid area (0.1165) to the semi-arid area
(0.1926). The annual NDVI growth rate in the entire LP was 0.0079, with the NDVI growing faster
in the semi-humid area (0.0093) than in the semi-arid area (0.0049). The largest increments of the
NDVI were from grassland, farmland, and woodland. The GDM results revealed that changes in
the spatial distribution of the NDVI could be primarily explained by the climatic and environmental
factors in the semi-arid area, such as precipitation, soil type, and vegetation type, while the changes
were mainly explained by the anthropogenic factors in the semi-humid area, such as the GDP density,
land-use type, and population density. The interactive analysis showed that interactions between
factors strengthened the impacts on the vegetation change compared with an individual factor.
Furthermore, the ranges/types of factors suitable for vegetation growth were determined. The
conclusions of this study have important implications for the formulation and implementation of
ecological conservation and restoration strategies in different regions of the LP.

Keywords: Loess Plateau; China; normalized difference vegetation index (NDVI); spatial–temporal
evolution; geographical detector model; driving forces

1. Introduction

Vegetation plays an indispensable role in regional terrestrial ecosystems, and consti-
tutes an essential link between soil, water, and atmosphere. Moreover, vegetation is the
material basis for the survival of surface organisms [1,2]. Vegetation coverage effectively

Remote Sens. 2021, 13, 4380. https://doi.org/10.3390/rs13214380 https://www.mdpi.com/journal/remotesensing5
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reduces the surface soil erosion caused by exogenous forces such as wind, diminishes the
splash erosion caused by raindrops, alleviates the hydrodynamic erosion of rivers, and
improves the soil environment. Therefore, it is of crucial importance to explore the vegeta-
tion coverage changes and dynamics for the soil erosion prevention and control, ecological
environmental protection, and sustainable social and economic development [3,4]

At present, the main monitoring method used in large-scale vegetation coverage
change research is based on satellite remote sensing because of its wide spatial range
and gradually improving resolution, which effectively makes up for the shortcomings of
traditional monitoring methods [5]. The normalized difference vegetation index (NDVI) is
strongly associated with the vegetation coverage, leaf area index, biomass, and land use,
which can comprehensively reflect the vegetation’s greenness, photosynthesis intensity, and
vegetation metabolism intensity [6,7]. The NDVI can be used to quantitatively evaluate the
regional vegetation coverage and growth, which is considered to be an effective indicator
for monitoring terrestrial vegetation changes, and thus, has been widely used in research
and management in various fields, such as agriculture and ecology [8].

The growth process of vegetation is affected by multiple factors. Temperature and
precipitation are directly related to global climate change and are generally regarded as
the most important natural factors affecting vegetation growth and changes in the long-
term [9,10]. Since the 20th century, intense human activities, which are characterized by
industrialization and urbanization, have brought about rapid population and economic
growth, rapid changes in land use, and ecological and environmental problems such as
vegetation degradation and soil erosion, resulting in significant impacts on vegetation
growth and changes in the short-term [11–13].

The Loess Plateau (LP) of China is located in the semi-arid/humid zones, the local
ecological environment of which is extremely fragile. Vegetation degradation and soil
erosion have been particularly prominent in this region throughout history, making the LP
main sediment source (nearly 90%) of the Yellow River (middle and lower reaches), once
the most sand-laden river in the world [14]. Exploring the evolution of vegetation and its
driving forces on the LP cannot only help formulate strategies on ecological restoration
for this area, but also help predict the sediment and tackle the sediment related problems
(such as reservoir sedimentation and flood control) in the Yellow River. Since the 1980s,
particularly after 2000 when the Grain for Green program (GGP) was implemented in this
area, the restoration of vegetation has been witnessed, and accordingly, the expansion trend
of the soil erosion has been curbed [15]. In addition, a new stage of the GGP was launched
in 2014 to consolidate the achievements [16].

Many scholars have studied the causes of the vegetation coverage changes on the
LP. There are limitations in the existing research, which mainly include the following.
(1) Many studies used NDVI data from original Global Inventory Modeling and Mapping
Studies (GIMMS) or GIMMS NDVI data expanded from Moderate Resolution Imaging
Spectroradiometer (MODIS) and Satellite Pour l’Observation de la Terre (SPOT) Vegetation
(VGT) NDVI [6,17–19]. The spatial resolution of 8 km leads to serious mixed pixels and
insufficient detail capture, making it difficult for the results to show the actual spatial–
temporal changes in the vegetation coverage. (2) Several studies used statistical methods,
such as correlation or regression, by assuming that the vegetation growth is linearly related
to the potential factors with time, but they ignored the spatial heterogeneity [20,21]. Some
evidence has suggested that there is no strict linear correlation between the factors and
the vegetation growth under the climate change. A statistical linear correlation model
may not be able to accurately describe the internal relationship [22,23]. (3) Several studies
only considered the influences of climatic factors on vegetation coverage changes, and
they neglected other environmental factors. Actually, certain environmental factors (e.g.,
altitude, slope, and slope aspect) also have key impacts on vegetation growth and changes.
For instance, the altitude affects the temperature, precipitation, and soil, thus affecting the
vertical distribution of the vegetation. The slope aspect affects the degree to which the
slope receives various hydrothermal conditions, which has a certain impact on the type
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and distribution of the vegetation. Moreover, the steep slopes mean that there may be
serious soil erosion, which inhibits the vegetation growth. However, many environmental
factors cannot be quantified using statistical methods, which limits the exploration of the
effects of environmental factors on vegetation changes [24,25]. (4) Most previous studies
merely evaluated the individual effects of the factors without quantitatively evaluating
the interactive effects between multiple factors on vegetation changes. (5) The majority of
previous studies focused on the entire area and local area of the LP (e.g., relevant research
was carried out on Shannxi Province in the LP [26]), little comparative research has been
conducted for different climatic regions, and the research conclusions are not conducive to
guiding policymaking for different regions.

In this study, attempts were made to address the above research gaps. SPOT NDVI
products were used to evaluate the vegetation coverage and growth. The spatial–temporal
evolution of the NDVI on the LP during 2000–2015 was explained by the Geographical
Detector Model (GDM) [27]. Based on the spatial analysis of variance, the GDM was shown
to avoid linear assumption between variables and has a clear physical meaning, which
reflects the explanatory power of an individual independent variable acting alone or of
multiple independent variables interacting on a dependent variable. Moreover, the GDM
can utilize a variety of type variables such as geomorphic type, soil type, vegetation type,
and land-use type, and thus, is superior to the traditional statistical methods. The GDM is
widely adopted in the exploration of the spatial differentiation characteristics of issues in
natural and social sciences. For instance, the GDM was applied to study the explanatory
powers of different factors on vegetation changes in Shannxi, Mongolia, Sichuan, and the
Heihe River Basin [26,28–30].

The study begins by introducing the study area, method and data in Section 2. Then,
the linear regression, coefficient of variation and transfer matrix models are used to iden-
tify the spatial–temporal evolution of the NDVI on the semi-arid/humid areas of the LP
during 2000–2015 in Section 3. The influences of climatic (precipitation and temperature),
environmental (altitude, slope, slope aspect, geomorphic type, soil type, and vegetation
type), and anthropogenic factors (GDP density, population density, land-use type) on the
spatial–temporal evolution of the vegetation NDVI on the semi-arid/humid areas of the
LP are identified with the factor, interaction, risk and ecological detectors of the GDM.
Section 4 further compares the results in the semi-arid and sub-humid areas, proposes
suggestions for formulating and implementing ecological protection and restoration strate-
gies in different areas, and discusses the connections and distinctions with other studies
as well as the possible future work. Section 5 summarizes the main findings of the paper.
The achievements gained from this study will benefit policy makers and administrative
managers in their strategy development and implementation.

2. Data and Methods

2.1. Study Area

The LP is located north of central China, with a total area of 6.49 × 105 km2 (107◦54′–
114◦33′ E, 33◦41′–41◦16′ N), as shown in Figure 1. It is the transitional zone from the coastal
humid region to the inland arid region, and from forest to grassland. The terrain is generally
low in the southeast and high in the northwest, including the mountain area, the loess hilly
area, the loess tableland area, and the valley plain area. The LP has a temperate monsoon
climate, with an annual mean temperature of 3.6–14.3 ◦C and precipitation of 200–800 mm.
Both the temperature and precipitation increase from the northwest to the southeast. The
annual and daily temperature ranges are large. Furthermore, the seasonal variation of
precipitation is large. Heavy rains occur frequently during summer, resulting in the soil
erosion, floods, landslides, debris flows and other disasters. The total annual radiation is
50.2 × 104 J/cm2 to 67.0 × 104 J/cm2, with a long illumination time and high radiation.
About 200 rivers have their headwaters on the LP, including the Tao River, Zuli River,
Qingshui River, Huangfuchuan River, Kuye River, Wuding River, Beiluo River Wei River,
Qin River, Fen River, etc. The study area includes the provinces (or autonomous regions)
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of Qinghai, Gansu, Ningxia, Inner Mongolia, Shaanxi, Shanxi, and Henan. Throughout
history, the overall vegetation coverage has been low and soil erosion has been very serious
on the LP due to the special natural and geographical environment, complex vegetation
types, and severe impacts of human activities. Since the 1980s, a series of measures for
soil and water conservation have been taken to control the soil erosion. Particularly,
after 2000, when the GGP was implemented, the regional ecological environment has
significantly improved.

Figure 1. Study area.

The study area was divided into semi-arid and semi-humid areas using the 400 mm
isohyet (calculated using the annual mean precipitation data for the LP during 2000–2015)
to carry out the comparative analysis. It should be noted that the 400 mm isohyet is of
great significance to the physical geography and socio-economic regionalization in China,
and it coincides with the Huhuanyong Line. In addition to dividing the climatic zones, this
line divides the forest vegetation from the grassland vegetation and the densely populated
area from the sparsely populated area [31,32].

2.2. Geographical Detector Model (GDM)

The GDM is proposed based on spatial differentiation theory and geographic informa-
tion system (GIS) spatial analysis technique [27]. It is usually employed to study the factors
affecting spatial hierarchical heterogeneities and the underlying mechanisms. The model
assumes similar spatial pattern between the independent and dependent variables if these
variables are spatially correlated [33]. The GDM consists of four detectors, including the
factor, interaction, risk and ecological detectors.

(1) The factor detector can be utilized to analyze the spatial heterogeneity and to
quantify the explanatory power (measured by the q value) of different impact factors X to
dependent variable Y.

q = 1 − ∑L
h=1 Nhσ2

h
Nσ2 (1)

where q ∈ [0, 1], and with the increase in the q value, the explanatory power is expected to
be stronger; h represents the stratum of variable Y (or factor X), h ∈ [1, L]; Nh is the unit
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number of stratum h; N is the unit number in all the strata; σ2
h represents the variance of

variable Y of stratum h; σ2 is the variance of variable Y of all the strata.
(2) The interaction detector can be used to determine the explanatory power of inter-

action between two factors (say X1 and X2) on the spatial heterogeneity of variable Y, and
to judge whether the interactive effect on variable Y would be enhanced or weakened. The
steps are as follows. (1) Compute the respective q value of factors X1 and X2 to variable Y
(qX1 and qX2). (2) Compute the q value of the interaction between X1 and X2 to Y (qX1&X2).
(3) Compare qX1, qX2, and qX1&X2. If max(qX1,qX2) < qX1&X2 < qX1 + qX2 is true, the factors
X1 and X2 enhance each other (bi-enhance). If qX1&X2 > qX1 + qX2 is true, the nonlinearity
of two factors is enhanced (nonlinear enhancement). The interaction criteria are presented
in Table 1.

Table 1. Definition of interaction detector.

Description Interaction

min(qX1,qX2) < qX1&X2 < max(qX1,qX2) Weaken, uni-
qX1&X2 < min(qX1,qX2) Weaken, nonlinear
qX1&X2 > max(qX1,qX2) Enhance, bi-

qX1&X2 > qX 1 + qX2 Enhance, nonlinear
qX1&X2 = qX1 + qX2 Independent

(3) The risk detector is utilized to judge the difference of significance between the
attribute mean values of two strata with the t statistic:

tyh=1−yh=2
=

Yh=1 − Yh=2[
Var(Yh=1)

nh=1
+

Var(Yh=2)
nh=2

]0.5 (2)

where Yh is the attribute mean value within stratum h; nh is the number of samples within
stratum h; Var is the variance.

(4) The ecological detector is developed to compare the explanatory powers of two
factors, X1 and X2, on variable Y with the F statistic:

F =
NX1(Nx2 − 1)SIVX1

NX2(Nx1 − 1)SIVX2
(3)

SIVX1 = ∑L1
h=1 Nhσ2

h , SIVX2 = ∑L2
h=1 Nhσ2

h (4)

where NX1 and NX2 are the sample numbers of factors X1 and X2, respectively; SIVX1 and
SIVX2 are the sum of the internal variances of the strata from factors X1 and X2, respectively;
and L1 and L2 are the strata numbers of factors X1 and X2, respectively.

2.3. Data Description

In this study, multi-source data (Table 2) were collected, mainly including the following.
(1) Vector data: The shape file data for the LP were downloaded from the Resource and

Environment Science and Data Center (RESDC), Chinese Academy of Sciences (available
from http://www.resdc.cn, accessed on 27 October 2021).

(2) Vegetation NDVI data: The SPOT NDVI data were used in this study (Figure 2),
which were obtained from the RESDC. The time span is 2000–2015, the time step is 1 year,
and the spatial resolution is 1 km × 1 km. It should be noted that the annual maximum
synthesis method was used to obtain the annual value of NDVI, and therefore, there was
no area with NDVI < 0.
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Table 2. Climatic, environmental and anthropogenic factors.

Category Factor Unit Code Range/Type

Climatic
Precipitation mm X1 <250, 250 to 350, 350 to 450, 450 to 550, 550 to 650, >650
Temperature ◦C X2 <0, 0 to 3, 3 to 6, 6 to 9, 9 to 12, >12

Environmental

Altitude m X3
90 to 790, 790 to 1228, 1228 to 1611, 1611 to 2136, 2136 to 2963,

2963 to 4914
Slop degree X4 0 to 5, 5 to 10, 10 to 15, 15 to 20, 20 to 25, >25

Slope aspect type X5

no slope aspect (−1), east slope (67.5◦ to 112.5◦), west slope
(247.5◦ to 292.5◦), south slope (157.5◦ to 202.5◦), north slope (0◦
to 22.5◦ and 337.5◦ to 360◦), southeast slope (112.5◦ to 157.5◦),

northeast slope (22.5◦ to 67.5◦), southwest slope (202.5◦ to
247.5◦), and northwest slope (292.5◦ to 337.5◦)

Geomorphic type type X6
plain, platform, hill, small undulating mountain, medium

undulating mountain, large undulating mountain

Soil type type X7

alpine soil, anthropogenic soil, saline alkali soil, hydrogenetic
soil, semi-hydrogenetic soil, primary soil, desert soil, arid soil,

calcareous soil, semi-eluvial soil, and eluvial soil

Vegetation type type X8
cultivated vegetation, meadow, grass, grassland, desert, shrub,

broad-leaved forest, and coniferous forest

Anthropogenic

GDP density CNY/km2 X9 <200, 200 to 500, 500 to 1000, 1000 to 3000, 3000 to 5000, >5000
Population density population/km2 X10 <100, 100 to 200, 200 to 500, 500 to 1000, 1000 to 2000, >2000

Land-use type type X11
farmland, woodland, grassland, water bodies, construction land,

unused land

Figure 2. Spatial distribution of NDVI on Loess Plateau during 2000–2015.

According to [34], the NDVI of the LP was divided into 5 intervals using the equal
interval method, i.e., 0 to 0.2, 0.2 to 0.4, 0.4 to 0.6, 0.6 to 0.8, and 0.8 to 1.0, which represent
5 types of vegetation, i.e., low, relatively low, medium, relatively high, and high vegetation
coverages, respectively.

(3) Meteorological data: The monthly mean precipitation and temperature from
101 meteorological stations on the LP and in its surrounding areas during 2000–2015 were
collected for use, which were downloaded from the China Meteorological Data Service
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Center (available from http://data.cma.cn/site/index.html, accessed on 27 October 2021).
The annual value of the data from each meteorological station was calculated. Moreover,
ANUSPLIN v4.3 was used to perform spatial interpolation of the meteorological station
data, which were divided into 6 intervals using the equal interval method. Therefore,
annual precipitation and temperature grid data (Figures 3 and 4) with the same projection
mode, spatial resolution, and time series as the NDVI data were obtained. It should be
noted that ANUSPLIN is a widely used software application for spatial interpolation, which
was developed on the basis of the thin plate smoothing splines theory. The main feature of
ANUSPLIN is that the topographic information can be used in the spatial interpolation of
the meteorological data [35].

(4) DEM data: The DEM data were downloaded from the Shuttle Radar Topography
Mission (available from http://srtm.csi.cgiar.org/, accessed on 27 October 2021). Accord-
ing to [28], the natural breakpoint method was used to divide the elevation data into
6 categories, including 90 to 790 m, 790 to 1228 m, 1228 to 1611 m, 1611 to 2136 m, 2136 to
2963 m, and 2963 to 4914 m (Figure 5a).

Based on the DEM data, the slope and slope aspect data for the study area were ex-
tracted using GIS spatial analysis tools. According to the policy of the Grain for Green [36],
the slope was divided into 6 categories, including 0◦ to 5◦, 5◦ to 10◦, 10◦ to 15◦, 15◦ to 20◦,
20◦ to 25◦, >25◦ (Figure 5b).

The slope aspect was divided into 9 categories, which are denoted as no slope aspect
(−1), east slope (67.5◦ to 112.5◦), west slope (247.5◦ to 292.5◦), south slope (157.5◦ to 202.5◦),
north slope (0◦ to 22.5◦ and 337.5◦ to 360◦), southeast slope (112.5◦ to 157.5◦), northeast
slope (22.5◦ to 67.5◦), southwest slope (202.5◦ to 247.5◦), and northwest slope (292.5◦ to
337.5◦) (Figure 5c).

Figure 3. Spatial distribution of precipitation on Loess Plateau during 2000–2015.
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Figure 4. Spatial distribution of temperature on Loess Plateau during 2000–2015.

(5) Geomorphic type data: These data were obtained from the RESDC. Referring to
the Geomorphological Atlas of the People’s Republic of China (1:1 million) (2009), the
geomorphology was divided into 6 types, including plain, platform, hill, small undulating
mountain, medium undulating mountain, and large undulating mountain (Figure 5d).

(6) Soil type data: These data were downloaded from the RESDC. Referring to the
1:1 Million Soil Map of the People’s Republic of China (1995), the soil was divided into
11 types, including alpine soil, anthropogenic soil, saline alkali soil, hydrogenetic soil,
semi-hydrogenetic soil, primary soil, desert soil, arid soil, calcareous soil, semi-eluvial soil,
and eluvial soil (Figure 5e).

(7) Vegetation type data: These data were obtained from the RESDC. Referring to
the 1:1 Million Vegetation Atlas of China (2001), the vegetation was divided into 8 types,
including cultivated vegetation, meadow, grass, grassland, desert, shrub, broad-leaved
forest, and coniferous forest (Figure 5f).

(8) Socio-economic data: These data were obtained from the RESDC. The GDP den-
sity and population density data for China in 2000, 2005, 2010, and 2015 were obtained.
The GDP density and population density were divided into 6 categories, respectively
(Figures 6 and 7).

(9) Land-use type data: These data were downloaded from the RESDC. The spatial
resolution is 1 km × 1 km. There are 6 land-use types, including unused land, construc-
tion land, water bodies, grassland, woodland, and farmland (Figure 8), with a total of
36 transfer combinations.

The influences of the various factors on the spatial–temporal evolution of the NDVI on
the LP were calculated and analyzed with the GDM. The various factors were classified into
climatic, environmental, and anthropogenic aspects. For the climatic factors, precipitation,
and temperature were selected as proxy variables. For the environmental factors, altitude,
slope, slope aspect, geomorphic type, soil type, and vegetation type were selected as
proxy variables. For the anthropogenic factors, the proxy variables were the GDP density,
population density, and land-use type.
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Figure 5. Ranges/types of environmental factors on Loess Plateau. (a) Altitude. (b) Slope. (c) Slope aspect. (d) Geomorphic
type. (e) Soil type. (f) Vegetation type.

13



Remote Sens. 2021, 13, 4380

Figure 6. Spatial distribution of GDP density on Loess Plateau during 2000–2015.

Figure 7. Spatial distribution of population density on Loess Plateau during 2000–2015.
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Figure 8. Spatial distribution of land-use type on Loess Plateau during 2000–2015.

The following points should be noted: (1) Although environmental factors do not
change in the short-term, these factors play a key role in vegetation growth and changes.
Thus, they were also considered in this study according to [37]. (2) The data for each factor
were discretized since the input of the GDM needs to be discrete data. (3) The data for the
factors were converted into grid data with the 1 km × 1 km spatial resolution (same with
the NDVI data) in order to facilitate calculation and analysis. (4) Due to the large area of
the LP, the GDM’s calculation capacity would be exceeded if all of the grid data were used.
Therefore, the sampling method was used and 32,000 sampling points were evenly selected
in space to carry out the calculations and analysis (Figure 1), and the consistency of the
results of each calculation could be ensured. (5) Two types of inputs were considered in the
analysis of the explanatory power of different factors for the spatial–temporal evolution of
the NDVI on the LP using the GDM. First, the typical annual values of 2000, 2005, 2010,
and 2015 were used to drive the GDM to analyze the influence of various factors on the
spatial distribution state of the NDVI. Second, the differences between the annual mean
values from 2000 to 2005 and those from 2010 to 2015 were calculated, which were used
to drive the GDM to analyze the influence of various factors on the spatial distribution
change of the NDVI.

3. Results

3.1. Spatial–Temporal Evolution in NDVI

(1) Grid scale area and area transfer of the NDVI and the driving forces:
The vegetation types on the LP are shown in Figure 5f. In the semi-arid area, the

vegetation types were mainly grassland, cultivated vegetation, and desert, accounting for
15.9, 7.2 and 5.0% of the total area, respectively. While in the semi-humid area, cultivated
vegetation, grassland, shrub, and broad-leaved forest were widely distributed, accounting
for 37.8, 9.2, 6.7 and 5.4% of the total area, respectively.

The grid scale area transfer matrix of the NDVI on the LP during 2000–2015 is shown
in Table 3. In 2000, over the entire LP, the coverage areas of the low, relatively low, medium,

15



Remote Sens. 2021, 13, 4380

relatively high, and high vegetation accounted for, respectively, 10.0, 31.5, 29.3, 28.1 and
1.3% of the total area; in the semi-arid area, these types of vegetation accounted for 9.4,
16.0, 5.1, 1.2 and 0.01%, respectively; and in the semi-humid area, they accounted for
0.5, 15.5, 24.2, 26.9 and 1.3%, respectively. In 2015, over the entire LP, the coverage areas
of the low, relatively low, medium, relatively high, and high vegetation accounted for
8.7, 20.3, 22.9, 31.5 and 16.7%, respectively; in the semi-arid area, they accounted for
8.5, 14.5, 5.0, 3.3 and 0.4%, respectively; and in the semi-humid area, they accounted for
0.3, 5.8, 17.9, 28.1 and 16.3%, respectively. The proportion of the coverage areas with an
NDVI of greater than 0.6 increased significantly, and the proportions of the relatively low
vegetation converted to medium vegetation, medium vegetation converted to relatively
high vegetation, and relatively high vegetation converted to high vegetation accounted for
the largest proportions. The areas of these transitions accounted for, respectively, 10.8, 15.8
and 14.1% of the total area.

Table 3. Grid scale area transfer matrix of NDVI on Loess Plateau during 2000–2015 (km2).

2000
2015

[0, 0.2] [0.2, 0.4] [0.4, 0.6] [0.6, 0.8] [0.8, 1] Total

[0, 0.2] 40,824
(6.31%)

22,376
(3.46%)

988
(0.15%)

135
(0.02%)

10
(~0.00%)

64,333
(9.95%)

[0.2, 0.4] 15,375
(2.38%)

99,000
(15.31%)

69,499
(10.75%)

19,363
(3.00%)

144
(0.02%)

203,381
(31.46%)

[0.4, 0.6] 235
(0.04%)

8792
(1.36%)

69,526
(10.75%)

102,374
(15.84%)

8322
(1.29%)

189,249
(29.27%)

[0.6, 0.8] 12
(~0.00%)

792
(0.12%)

7717
(1.19%)

81,535
(12.61%)

91,338
(14.13%)

181,394
(28.06%)

[0.8, 1] 0
(0.00%)

6
(~0.00%)

9
(~0.00%)

110
(0.02%)

8015
(1.24%)

8140
(1.26%)

Total 56,446
(8.73%)

130,966
(20.26%)

147,739
(22.85%)

203,517
(31.48%)

107,829
(16.68%)

646,497
(100%)

The land-use type on the LP during 2000–2015 is shown in Figure 8, and the grid scale
area transfer matrix is shown in Table 4. In 2000, over the entire LP, the proportions of the
farmland, woodland, grassland, water bodies, construction land, and unused land were
33.3, 14.7, 41.5, 1.4, 2.5 and 6.7%, respectively; in the semi-arid area, they were 7.1, 1.2,
16.6, 0.7, 0.8 and 5.3%, respectively; and in the semi-humid area, they were 26.2, 13.5, 24.9,
0.8%, 1.7 and 1.4%, respectively. In 2015, over the entire LP, the proportions of farmland,
woodland, grassland, water bodies, construction land, and unused land were 32.4, 15.1,
41.2, 1.5, 3.3 and 6.6%, respectively; in the semi-arid area, they were 6.9, 1.3, 16.4, 0.7, 1.1
and 5.2%, respectively; and in the semi-humid area, they were 25.4, 13.8, 24.8, 0.8, 2.1 and
1.4%, respectively. Overall, the area of the change in land-use types on the LP was not
significant, and it was mainly in the 0.94% decrease in farmland, the 0.44% increase in
woodland, and the 0.82% increase in construction land. To a certain extent, these changes
reflect the impacts of human activities in the study area, such as the implementation of the
GGP and urbanization-related development.

The difference in the NDVI of the different land-use type transfers on the LP during
2000–2015 is shown in Figure 9. It should be noted that Figure 9 was obtained by subtracting
the NDVI data for 2000 from that for 2015 on the grid scale, and the differences in the
NDVI of the different land-use type transfers were then counted. Figure 9a shows the
mean difference in the NDVI of all grids of different land-use type transfers. Most of the
transfers had a positive impact on the NDVI, except for the transfers of farmland and
water bodies to construction land, which decreased the NDVI slightly (reduction rates of
−0.0173 and −0.0016, respectively). Moreover, the largest increment of the NDVI was due
to farmland transferred into woodland (increment of 0.1411), woodland transferred into
farmland (increment of 0.1359), and unused land transferred into farmland (increment of
0.1338). Figure 9b shows the total difference in the NDVI of all grids of different land-use
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type transfers. It can be seen that the largest increments of the NDVI were due to grassland,
farmland, and woodland, and these land-use types did not change. The increments were
28,539.55, 25,545.42, and 12,450.86, respectively. The probable reasons are as follows. On the
LP, the precipitation is limited and there exists a gap between agricultural water demand
and supply. In the past, there used to be large areas of farmland that could not be irrigated
adequately and were greatly affected by the precipitation. With the implementation of the
GGP, some infertile areas of farmland that could not be irrigated adequately were returned
to the woodland or grassland, and what remained was adequately irrigated or fertile areas
of farmland that were less affected by the precipitation. Moreover, with the development
of agricultural technologies and the optimization and adjustment of planting structures,
the crop yields on the LP were continuously increased.

Table 4. Grid scale area transfer matrix of land-use type on Loess Plateau during 2000–2015 (km2).

2000
2015

Farmland Woodland Grassland Water Bodies Construction Land Unused Land Total

Farmland 207,681
(31.99%)

1667
(0.26%)

2739
(0.42%)

647
(0.10%)

3042
(0.47%)

414
(0.06%)

216,190
(33.30%)

Woodland 139
(0.02%)

94,495
(14.56%)

328
(0.05%)

66
(0.01%)

263
(0.04%)

82
(0.01%)

95,373
(14.69%)

Grassland 1455
(0.22%)

1696
(0.26%)

262,300
(40.40%)

330
(0.05%)

1676
(0.26%)

1607
(0.25%)

269,064
(41.45%)

Water bodies 317
(0.05%)

36
(0.01%)

222
(0.03%)

8312
(1.28%)

84
(0.01%)

258
(0.04%)

9229
(1.42%)

Construction land 17
(~0.00%)

15
(~0.00%)

41
(0.01%)

19
(~0.00%)

15,777
(2.43%)

10
(~0.00%)

15,879
(2.45%)

Unused land 448
(0.07%)

337
(0.05%)

1631
(0.25%)

211
(0.03%)

4189
(0.06%)

40,413
(6.23%)

43,458
(6.69%)

Total 210,057
(32.36%)

98,246
(15.13%)

267,261
(41.17%)

9585
(1.48%)

21,260
(3.27%)

42,784
(6.59%)

649,193
(100%)

(2) Spatial changes in the NDVI on the grid scale:
The spatial changes in the NDVI on the grid scale on the LP during 2000–2015 are

shown in Figure 10. Figure 10a indicates that the annual mean value of the NDVI on the LP
was 0.529, with an uneven spatial distribution, i.e., decreasing from the southeastern to the
northwestern areas. The high and low values were mainly distributed in the semi-humid
and semi-arid areas, with annual mean values of 0.619 and 0.346, respectively.

Figure 10b shows that the mean value of the coefficient of variation of the NDVI was
0.1406 on the LP, with an uneven spatial distribution, i.e., increasing from the southeastern
semi-humid area (mean value of 0.1165) to the northwestern semi-arid area (mean value
of 0.1926). There was 7.0% of the total area with 0 < CV < 0.05, mainly distributed in the
eastern and southern regions. The area with 0.05 ≤ CV < 0.1 accounted for 25.9% of the
total area. The area with 0.1 ≤ CV < 0.15 accounted for 25.7% of the total area. Moreover,
there was 41.4% of the total area with 0.15 ≤ CV < 0.2 and CV ≥ 0.2, mainly distributed in
the semi-arid area as well as the junction of the semi-arid/humid areas.
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(a) 

 
(b) 

Figure 9. Difference in NDVI of different land-use type transfers during 2000–2015. (a) Mean
difference in NDVI of all grids of different land-use type transfers. (b) Total difference in NDVI of all
grids of different land-use type transfers.

Figure 10c,d show that of the total area, the positive area accounted for 91.5% while
the negative area accounted for 8.5%, which was obtained by subtracting the NDVI in 2000
from that in 2015. The NDVI in most areas of the LP (92.8% of the total area) increased
from 2000 to 2015, indicating that the ecological environment in the region significantly
improved. In addition, 70.0% of the area passed the significance test (p < 0.05); and 68.6% of
the area increased significantly, while 1.4% of the area decreased significantly. The decrease
in the NDVI was mainly concentrated in the semi-arid area as well as the urban area with
rapid economic development and a large population concentration.
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Figure 10. Spatial change in NDVI on grid scale on Loess Plateau during 2000–2015.

(3) Temporal changes in the NDVI on the regional scale:
The temporal changes in the NDVI on the regional scale on the LP during 2000–2015

are shown in Figure 11. The NDVI on the LP exhibited a fluctuating upward trend. The
annual NDVI growth rates of the entire LP, the semi-arid area, and the semi-humid area
were 0.0079, 0.0049, and 0.0093, respectively, indicating that the growth rate of the NDVI in
the semi-humid area was higher than in the semi-arid area after the GGP was implemented.

Figure 11. Temporal change in NDVI on regional scale on Loess Plateau during 2000–2015.
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3.2. Individual Effects of Factors on NDVI

(1) Results of typical years:
Using the typical annual values of 2000, 2005, 2010, and 2015 to drive the factor

detector, the individual effects of the factors (represented by the q value) could be obtained,
as shown in Figure 12.

For the entire LP, the order of the annual mean q values was precipitation (q = 0.5985) >
vegetation type (q = 0.4790) > soil type (q = 0.3346) > land-use type (q = 0.2697) > geomorphic
type (q = 0.2341) > temperature (q = 0.1469) > altitude (q = 0.1203) > population density
(q = 0.1132) > slope (q = 0.0649) > GDP density (q = 0.0411) > slope aspect (q = 0.0012).

For the semi-arid area, the order of the annual mean q values was precipitation
(q = 0.4796) > vegetation type (q = 0.3906) > soil type (q = 0.3409) > land-use type (q = 0.2368)
> geomorphic type (q = 0.2013) > temperature (q = 0.1851) > altitude (q = 0.1695) > popu-
lation density (q = 0.0954) > slope (q = 0.0774) > GDP density (q = 0.0110) > slope aspect
(q = 0.0019).

For the semi-humid area, the order of the annual mean q values was geomorphic
type (q = 0.2597) > vegetation type (q = 0.2466) > precipitation (q = 0.2250) > land-use
type (q = 0.2053) > soil type (q = 0.1637) > temperature (q = 0.0965) > population density
(q = 0.0783) > slope (q = 0.0541) > altitude (q = 0.0512) > GDP density (q = 0.0397) > slope
aspect (q = 0.0086).

(2) Results of annual mean differences:
Using the differences between the annual mean values from 2000 to 2005 and those

from 2010 to 2015 to drive the factor detector, the individual effects of the factors (repre-
sented by the q value) could be obtained, as shown in Figure 13.

For the entire LP, the order of the q values was soil type (q = 0.1287) > vegetation type
(q = 0.1142) > land-use type (q = 0.0729) > temperature (q = 0.0680) > geomorphic type
(q = 0.0532) > precipitation (q = 0.0508) > GDP density (q = 0.0463) > altitude (q = 0.0357) >
population density (q = 0.0224) > slope (q = 0.0020) > slope aspect (q = 0.0010).

(a) 

Figure 12. Cont.
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(b) 

(c) 

Figure 12. Effects of individual factors derived from the factor detector with inputs of typical annual
values. (a) Entire area. (b) Semi-arid area. (c) Semi-humid area.

Figure 13. Effects of individual factors derived from the factor detector with inputs of differences between annual
mean values.
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For the semi-arid area, the order of the q values was precipitation (q = 0.1476) > soil
type (q = 0.1373) > vegetation type (q = 0.1353) > land-use type (q = 0.0864) > temperature
(q = 0.0500) > geomorphic type (q = 0.0417) > altitude (q = 0.0358) > GDP density (q = 0.0202)
> population density (q = 0.0195) > slope aspect (q = 0.0030) > slope (q = 0.0010).

For the semi-humid area, the order of the q values was GDP density (q = 0.1583) >
geomorphic type (q = 0.1101) > soil type (q = 0.0999) > altitude (q = 0.0955) > land-use type
(q = 0.0761) > temperature (q = 0.0705) > population density (q = 0.0520) > precipitation
(q = 0.0452) > vegetation type (q = 0.0227) > slope aspect (q = 0.0049) > slope (q = 0.0040).

In summary, the explanatory powers of the factors on the spatial distribution state
of the NDVI in typical years and the spatial distribution change of the NDVI during
2000–2015 were different. In addition, the explanatory powers were different for the entire
LP, and for the semi-arid/humid areas. With respect to the spatial distribution state of
the NDVI in typical years, the decisive climatic factor was precipitation, the decisive
environmental factors were geomorphic type, soil type, and vegetation type, and the
decisive anthropogenic factor was land-use type. With respect to the spatial distribution
change of the NDVI during 2000–2015, in the semi-arid area, the climatic and environmental
factors were the decisive factors, including precipitation, soil type, and vegetation type; the
impacts of anthropogenic factors, such as the GDP density, land-use type, and population
density, were more significant in the semi-humid area.
3.3. Interactive Effects between Factors on NDVI

(1) Results of typical years:
Using the typical annual values of 2000, 2005, 2010, and 2015 to drive the interaction

detector, the interactive effects of the factors (represented by the q value) could be obtained,
as shown in Figure 14. For the entire LP and the semi-arid/humid areas, the interactive
effects between factors were greater than their individual effects, indicating that none of the
factors acted independently, but they had a certain enhancement effect, including nonlinear
enhancement and bi-enhancement.

For the entire LP, 26.4% of the interactive factor combinations exhibited nonlinear
enhancement and 73.6% exhibited bi-enhancement. The interactive effect between pre-
cipitation and vegetation type was the strongest (mean annual?q = 0.7034), followed by
precipitation and soil type (mean annual?q = 0.6987).

For the semi-arid area, 32.3% of the interactive factor combinations exhibited nonlinear
enhancement and 67.7% exhibited bi-enhancement. The interactive effect between precipi-
tation and soil type was the strongest (mean annual?q = 0.6375), followed by precipitation
and vegetation type (mean annual?q = 0.6235).

For the semi-humid area, 44.1% of the interactive factor combinations exhibited non-
linear enhancement and 55.9% exhibited bi-enhancement. The interactive effect between
precipitation and geomorphic type was the strongest (mean annual?q = 0.3961), followed
by precipitation and vegetation type (mean annual?q = 0.3701).

(2) Results of annual mean differences:
Using the differences between the annual mean values from 2000 to 2005 and those

from 2010 to 2015 to drive the interaction detector, the interactive effects of the factors
(represented by the q value) could be obtained, as shown in Figure 15.
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(a) 

 
(b) 

Figure 14. Cont.
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(c) 

Figure 14. Effects of interactive factors derived from the interaction detector with inputs of typical
annual values. (Note: * indicates bi-enhance; ** indicates nonlinear enhance). (a) Entire area. (b) Semi-
arid area. (c) Semi-humid area.

For the entire LP, 90.9% of the interactive factor combinations exhibited nonlinear
enhancement and 9.1% exhibited bi-enhancement. The interactive effect between soil type
and temperature was the strongest (q = 0.2194), followed by soil type and vegetation type
(q = 0.2164).

For the semi-arid area, 83.6% of the interactive factor combinations exhibited non-
linear enhancement and 16.4% exhibited bi-enhancement. The interactive effect between
precipitation and soil type was the strongest (q = 0.2438), followed by soil type and land-use
type (q = 0.2379).

For the semi-humid area, 61.8% of the interactive factor combinations exhibited non-
linear enhancement and 38.2% exhibited bi-enhancement. The interactive effect between
GDP density and geomorphic type was the strongest (q = 0.2470), followed by GDP density
and soil type (q = 0.2300).
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(a) 

(b) 

Figure 15. Cont.

25



Remote Sens. 2021, 13, 4380

(c) 

Figure 15. Effects of interactive factors derived from the interaction detector with inputs of differences
between annual mean values. (a) Entire area. (b) Semi-arid area. (c) Semi-humid area.

3.4. Ranges or Types of Factors for NDVI

Using the typical annual values for 2000, 2005, 2010, and 2015 to drive the risk detector,
the ranges or the types of factors for the NDVI could be obtained, as shown in Figure 16.
The ranges or the types of factors for the NDVI were different in different years in the
entire LP, and in the semi-arid/humid areas.

For the entire LP, the suitable precipitation range for the NDVI was greater than
650 mm (as the precipitation increased, the NDVI increased), the temperature range was
smaller than 0 ◦C (as the temperature increased, the NDVI decreased first and then in-
creased), the altitude ranged from 90 to 790 m or from 2963 to 4914 m (as the altitude
increased, the NDVI decreased first and then increased), the slope ranged from 15◦ to
20◦, the slope aspect was no slope aspect, the geomorphic type was large undulating
mountain, the soil type was eluvial soil, the vegetation type was broad-leaved forest, the
GDP density ranged from 500 to 1000 CNY/km2, the population density ranged from 200
to 500 people/km2, and the land-use type was woodland.

For the semi-arid area, the suitable precipitation for the NDVI ranged from 450 to 550 mm,
the temperature range was smaller than 0 ◦C, the altitude ranged from 2963 to 4914 m, the
slope ranged from 20◦ to 25◦, the slope aspect was no slope aspect, the geomorphic type was
large undulating mountain, the soil type was anthropogenic soil, the vegetation type was
cultivated vegetation, the GDP density ranged from 500 to 1000 CNY/km2, the population
density ranged from 200 to 500 people/km2, and the land-use type was farmland.

For the semi-humid area, the suitable precipitation range for the NDVI was greater
than 650 mm, the temperature range was smaller than 0 ◦C, the altitude ranged from 2963
to 4914 m, the slope ranged from 15◦ to 20◦, the slope aspect was no slope aspect, the
geomorphic type was large undulating mountain, the soil type was eluvial soil, the vegetation
type was broad-leaved forest, the GDP density ranged from 3000 to 5000 CNY/km2, the
population density ranged from 200 to 500 people/km2, and the land-use type was woodland.
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(a) 

(b) 

Figure 16. Cont.
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(c) 

Figure 16. Ranges or types of factors for NDVI derived from the risk detector with inputs of typical
annual values. (a) Entire area. (b) Semi-arid area. (c) Semi-humid area.

3.5. Differences of Significance between Factors on NDVI

Using the typical annual values for 2000, 2005, 2010, and 2015 to drive the ecological
detector, the differences of significance between factors for the NDVI could be obtained,
as shown in Table 5. For the entire LP, the differences were not significant between the
precipitation and other factors in the different years (i.e., relatively certain). The significant
differences between the soil type and the other factors did not vary in the different years
(i.e., relatively certain). The soil type showed no significant differences with precipitation,
GDP density, population density, and land-use type, but it exhibited significant differences
with other factors. The differences of significance varied between the other pairs of factors
in the different years (i.e., relatively uncertain).

Table 5. Statistical significance of factors derived from the ecological detector with inputs of typical annual values.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

X1
X2 N
X3 N N
X4 N N N
X5 N N N/Y N
X6 N Y Y Y Y
X7 N Y Y Y Y Y
X8 N Y N/Y Y Y Y Y
X9 N N N/Y N/Y N/Y N/Y N N
X10 N N/Y N/Y N/Y N/Y N/Y N N N/Y
X11 N Y Y Y Y Y N N Y Y

Note: Y indicates that there is a significant difference in the effect of two factors on NDVI (confidence is 95%); N indicates no significant
difference; N/Y indicates that there is (or is no) significant difference across different years.
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4. Discussion

4.1. Comparison between Semi-Arid and Semi-Humid Areas

Climatic factors influence the environmental conditions of the LP; while environmental
factors determine the range and intensity of the human activities. The three types of factors
are not independent of each other, and they interact with each other to influence the spatial
distribution of the NDVI and its evolution over time on the LP. Based on the above results,
there were significant spatial differences in the NDVI and its driving forces on both sides
of the 400 mm isohyet on the LP.

For the semi-arid area to the northwest of the 400 mm isohyet, a number of obser-
vations were made. (1) The analysis of the spatial–temporal evolution revealed that the
precipitation is relatively small and the temperature is relatively low, with annual mean
values of 294 mm and 7.6 ◦C, respectively. The geomorphic types are mainly hills and
plains (accounting for 12.3 and 11.0%, respectively). The soil types are mainly primary soil
and arid soil (accounting for 11.1 and 8.0%, respectively). The main vegetation types are
grassland, cultivated vegetation, and desert (accounting for 15.9, 7.2 and 5.0%, respectively).
The grassland and farmland are the main land-use types (accounting for 16.4% and 6.9%
in 2015, respectively). Moreover, the GDP density is relatively small (772 CNY/km2 in
2015). The population density is relatively small (96 people/km2 in 2015). The vegetation
coverage is relatively low (annual mean NDVI of 0.346), and the coefficient of variation is
relatively large (mean value of 0.1926). The growth rate of the NDVI was 0.0049/a after
2000 when the GGP was implemented. (2) The analysis based on the GDM revealed the
following: The individual factors that determine the changes in the spatial distribution of
the NDVI are the climatic and environmental factors, such as precipitation (q = 0.1476), soil
type (q = 0.1373), vegetation type (q = 0.1353), temperature (q = 0.0500), and geomorphic
type (q = 0.0417). The main interactive factors are precipitation and soil type (q = 0.2438),
and soil type and land-use type (q = 0.2379). The suitable precipitation for the NDVI ranged
from 450 to 550 mm, the temperature range was smaller than 0 ◦C, the altitude ranged
from 2963 to 4914 m, the slope ranged from 20◦ to 25◦, the slope aspect was no slope aspect,
the geomorphic type was large undulating mountain, the soil type was anthropogenic
soil, the vegetation type was cultivated vegetation, the GDP density ranged from 500
to 1000 CNY/km2, the population density ranged from 200 to 500 people/km2, and the
land-use type was farmland.

Observations were also made regarding the semi-humid area to the southeast of the
400 mm isohyet. (1) The analysis of the spatial–temporal evolution revealed that both the
precipitation and the temperature are relatively high, with annual mean values of 531 mm
and 8.3 ◦C, respectively. The geomorphic types are mainly hills and medium undulating
mountains (accounting for 19.4 and 13.3%, respectively). The soil types are mainly primary
soil and semi-eluvial soil (accounting for 30.9 and 14.9%, respectively). The main vegetation
types are cultivated vegetation and grassland (accounting for 37.8 and 9.2%, respectively).
The farmland and grassland are the main land-use types (accounting for 25.4 and 24.8%
in 2015, respectively). Moreover, the GDP density is relatively large (834 CNY/km2 in
2015). The population density is relatively large (212 people/km2 in 2015). The vegetation
coverage is relatively high (annual mean NDVI of 0.619), and the coefficient of variation is
relatively small (mean value of 0.1165). The growth rate of the NDVI was 0.0093/a after
the implementation of the GGP in 2000. (2) The analysis based on the GDM revealed the
following. The individual factors that determine the changes in the spatial distribution of
the NDVI are the anthropogenic factors, such as GDP density (q = 0.1583), land-use type
(q = 0.0761), and population density (q = 0.0520). The main interactive factors are GDP
density and geomorphic type (q = 0.2470), and GDP density and soil type (q = 0.2300). The
suitable precipitation range for the NDVI was greater than 650 mm, the temperature range
was smaller than 0 ◦C, the altitude ranged from 2963 to 4914 m, the slope ranged from 15◦
to 20◦, the slope aspect was no slope aspect, the geomorphic type was large undulating
mountain, the soil type was eluvial soil, the vegetation type was broad-leaved forest, the
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GDP density ranged from 3000 to 5000 CNY/km2, the population density ranged from 200
to 500 people/km2, and the land-use type was woodland.

The conclusions above have important implications for ecological conservation and
restoration in the different regions. The impacts of the climatic, environmental, and
anthropogenic factors need to be comprehensively considered when formulating and
implementing policies. The NDVI is sensitive to the climatic and environmental factors
related to water changes in the semi-arid area where there is relatively little water. Therefore,
appropriate vegetation types should be selected, regional vegetation structures should
be optimized, and high water consumption vegetation should be gradually replaced by
low water consumption vegetation such as grass and drought-tolerant plants. In the semi-
humid area, the regional water conditions basically meet the needs of vegetation growth
because of the suitable climatic and natural conditions. Moreover, human activities have
a relatively large disturbance effect on the NDVI. Thus, more positive human activities
should be encouraged, including Grain for Green, afforestation, urban greening, and
agricultural modernization projects. Furthermore, negative human activities should be
controlled, including disordered urban expansion, population expansion, and overgrazing.

4.2. Connections and Distinctions with Other Studies

(1) Vegetation NDVI: In this study, it was found that the NDVI on the entire LP has
increased significantly after 2000 when the GGP was implemented, consistent with the
findings of [26,37,38].

(2) Climatic factors: In this study, it was found that among all factors, precipitation
has the greatest influence on vegetation growth in the semi-arid area of the LP, consistent
with the findings of [39–41]. In the semi-humid area, precipitation is not the decisive factor
controlling vegetation growth because of the relatively good water conditions. Several
studies have suggested that temperature is also a key factor affecting the vegetation growth.
In general, when the temperature is low, the physiological activity of the vegetation is
low. An increase in temperature promotes photosynthesis and vegetation growth, but as
the temperature increases further, the growth of vegetation is inhibited by the accelerated
evaporation and soil drying [42,43]. It was found in this study that conditions are suitable
for vegetation growth when the temperature smaller than 0 ◦C on the LP. This is the case
because the vegetation growth is influenced by many factors other than temperature. It
can be seen from Figures 2–5 and 8 that the NDVI value is large in the southwest corner
of semi-arid area of the LP, where the precipitation is large, the land-use types are mainly
woodland and grassland, and the altitude ranges from 2963 m to 4914 m (the high altitude
causes the low temperature). The finding is consistent with the results of [29]. It was
also found that compared with other factors, temperature has relatively small explanatory
power in terms of the spatial distribution and its change in the NDVI on the LP, which
agrees with the findings and results of [39].

(3) Environmental factors: In this study, it was found that the environmental factors
such as topographic types have an impact on the vegetation growth and restoration,
consistent with the findings and results of [44]. The study revealed that the explanatory
power of interactions between the factors would be increased for the spatial distribution
and its change in the NDVI, which is consistent with the practical situation. For instance,
the soil moisture is lower for steeper slopes, inhibiting vegetation growth. In this study, it
was found that the NDVI value is large when the slope is between 15◦ and 20◦, while it
decreases when the slope becomes greater.

(4) Human factors: Certain studies have suggested that the regional land-use types
have changed since the implementation of the GGP [45,46], which is not consistent with the
results of this study. The reason for this may be that the spatial resolutions of the remote
sensing data used in these studies are different. In this study, it was found that the con-
servation and restoration of the original woodland and grassland have been strengthened
since the implementation of the GGP on the LP, resulting in a significant increase in the
NDVI throughout the entire region. Additionally, many studies have used the NDVI to
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predict the grain yield because of the significant correlation between the grain yield and
the NDVI [47,48]. The LP is a dry farming area, which has been affected by the scarcity
of precipitation for a long time, resulting in a low grain yield [49]. With the agricultural
technology developing recently, the optimization and adjustment of the crop planting
structure has resulted in a continuous improvement in the grain yield on the LP. Therefore,
the NDVI has increased significantly [19].

4.3. Possible Future Work

There is further research that can be carried out, including the following. (1) The factors
affecting the spatial–temporal evolution of the NDVI are extremely complex. Due to data
limitations, certain factors are not currently considered, such as agricultural fertilization,
irrigation area, and CO2 concentration [50,51], but can be further improved with the
acquisition of new data in the future. (2) The interaction detector of the GDM only considers
the interactions between two factors. There are interactive effects involving more than two
factors. The combined impacts of multiple factors would provide insights on the evolution
of vegetation, which can be considered in the future by introducing other methods, such as
the analytical hierarchy process (AHP) and principal component analysis (PCA) [52]. (3) It
is necessary to perform further collection of data with a relatively higher resolution through
field investigations and monitoring to determine the practical situation of the surface
undulations in the study area. (4) The cumulative and time-lag effects of various factors
and indicators (e.g., standardized precipitation and evapotranspiration index, SPEI) should
also be evaluated in the future [53]. (5) It is possible for the GDM to identify the impacts
of driving forces on the evolution of vegetation from the perspective of spatial analysis
and mathematical statistics. In order to further explore the evolutionary mechanism of
vegetation, some methods from the field of landscape studies can be introduced in the
future [54].

5. Conclusions

The main conclusions of this paper include the following.
(1) The spatial–temporal evolution characteristics of the NDVI on the entire LP, and

in the semi-arid/humid areas during 2000–2015 were analyzed via the linear regression,
coefficient of variation, and transfer matrix models.

• The proportion of the total area with an NDVI of greater than 0.6 increased significantly,
and the proportions of relatively low vegetation (NDVI of 0.2 to 0.4) converted to
medium vegetation (NDVI of 0.4 to 0.6), medium vegetation converted to relatively
high vegetation (NDVI of 0.6 to 0.8), and relatively high vegetation converted to high
vegetation (NDVI of 0.8 to 1.0) accounted for the largest proportions.

• The annual mean value of the NDVI on the LP was 0.529, decreasing from the south-
eastern semi-humid area (0.619) to the northwestern semi-arid area (0.346). The mean
value of the NDVI coefficient of variation was 0.1406 on the LP, increasing from the
southeastern semi-humid area (0.1165) to the northwestern semi-arid area (0.1926).

• The NDVI on the LP exhibited an upward trend. The annual growth rate of the NDVI
in the entire LP was 0.0079, and the growth rate in the semi-humid area (0.0093) was
higher than in the semi-arid (0.0049) area after the GGP was implemented.

• The area of the change in land-use types on the LP was not significant. Overall, a
positive impact on the NDVI was found by the changes in the land-use type. The
largest increments of the NDVI were due to grassland, farmland, and woodland, and
these land-use types did not change.

(2) The GDM was adopted to quantitatively identify the impact of multiple factors on the
spatial–temporal evolution of the NDVI on the entire LP, and in the semi-arid/humid areas.

• Using the factor detector, it was found that in the semi-arid area, the climatic and
environmental factors were the decisive factors influencing the spatial distribution
changes of the NDVI during 2000–2015, including precipitation, soil type, and vegeta-
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tion type. The impacts of anthropogenic factors, such as the GDP density, land-use
type, and population density, were more significant in the semi-humid area.

• Using the interaction detector, it was found that the explanatory power of interactions
between factors were greater than their individual effects, exhibiting two types of
nonlinear enhancement and bi-enhancement. For the semi-arid area, 83.6% of the
interactive factor combinations exhibited nonlinear enhancement and 16.4% exhibited
bi-enhancement. The interactive effect between precipitation and soil type was the
strongest. For the semi-humid area, 61.8% of the interactive factor combinations ex-
hibited nonlinear enhancement and 38.2% exhibited bi-enhancement. The interactive
effect between GDP density and geomorphic type was the strongest.

• Using the risk and ecological detectors, the ranges or types of various factors that are
suitable for vegetation growth and the differences of significance between factors for
the NDVI on the LP were determined.

The conclusions of this study have important implications for policy makers and
administrative managers in terms of the formulation and implementation of ecological
conservation and restoration strategies in the different regions. In the semi-arid area,
appropriate vegetation types should be selected, regional vegetation structures should
be optimized, and high water consumption vegetation should be gradually replaced by
low water consumption vegetation such as grass and drought-tolerant plants. In the semi-
humid area, more positive human activities should be encouraged, including Grain for
Green, afforestation, urban greening, and agricultural modernization projects. Furthermore,
negative human activities should be controlled, including disordered urban expansion,
population expansion, and overgrazing.
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Abstract: The accurate evaluation of shifts in vegetation phenology is essential for understanding
of vegetation responses to climate change. Remote-sensing vegetation index (VI) products with
multi-day scales have been widely used for phenology trend estimation. VI composites should be
interpolated into a daily scale for extracting phenological metrics, which may not fully capture daily
vegetation growth, and how this process affects phenology trend estimation remains unclear. In
this study, we chose 120 sites over four vegetation types in the mid-high latitudes of the northern
hemisphere, and then a Moderate Resolution Imaging Spectroradiometer (MODIS) MCD43A4 daily
surface reflectance data was used to generate a daily normalized difference vegetation index (NDVI)
dataset in addition to an 8-day and a 16-day NDVI composite datasets from 2001 to 2019. Five
different time interpolation methods (piecewise logistic function, asymmetric Gaussian function,
polynomial curve function, linear interpolation, and spline interpolation) and three phenology
extraction methods were applied to extract data from the start of the growing season and the end
of the growing season. We compared the trends estimated from daily NDVI data with those from
NDVI composites among (1) different interpolation methods; (2) different vegetation types; and
(3) different combinations of time interpolation methods and phenology extraction methods. We
also analyzed the differences between the trends estimated from the 8-day and 16-day composite
datasets. Our results indicated that none of the interpolation methods had significant effects on trend
estimation over all sites, but the discrepancies caused by time interpolation could not be ignored.
Among vegetation types with apparent seasonal changes such as deciduous broadleaf forest, time
interpolation had significant effects on phenology trend estimation but almost had no significant
effects among vegetation types with weak seasonal changes such as evergreen needleleaf forests. In
addition, trends that were estimated based on the same interpolation method but different extraction
methods were not consistent in showing significant (insignificant) differences, implying that the
selection of extraction methods also affected trend estimation. Compared with other vegetation
types, there were generally fewer discrepancies between trends estimated from the 8-day and 16-day
dataset in evergreen needleleaf forest and open shrubland, which indicated that the dataset with a
lower temporal resolution (16-day) can be applied. These findings could be conducive for analyzing
the uncertainties of monitoring vegetation phenology changes.

Keywords: vegetation phenology; phenology trend; NDVI composites; time interpolation
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1. Introduction

The vegetation phenology refers to the physiological and reproductive phenomenon
of vegetation in an annual cycle, which is a robust and sensitive indicator of climate
change [1–4]. Shifts in vegetation phenology can regulate interactions between vegetation
and climate change by influencing the structure and functions of the terrestrial ecosys-
tem [5–7]. The availability of accurate vegetation phenology shifts has significant impli-
cations for promoting the understanding of vegetation responses to climate change [8]
and improving terrestrial ecosystem process models [9] and prediction skills in crop yield
production [10].

Shifts in vegetation phenology across regional and global scales were frequently
derived by using vegetation indices (VIs) from satellite remote sensing data at various
spatial and temporal resolutions [11–19]. The accuracy of phenology trend estimation
can be influenced by multiple variables such as geographical regions [20–22], vegetation
types [23–25], and vegetation indexes [26–28] but mostly depends on the selection of
remote sensing products, denoising methods, phenology extraction methods, and the
different combinations of these factors [20,29]. Previous studies indicated discrepancies
between phenology trends estimated by different remote sensing products [30–35]. For
example, Peng et al. [36] investigated the shifts of spring green-up onset dates in six
regularly updated land surface phenology products from Moderate Resolution Imaging
Spectroradiometer (MODIS) and Advanced Very High Resolution Radiometer (AVHRR).
Similar interannual shifts of green-up onset dates among all products only occurred in
local regions while discrepancies were distributed across the contiguous United States. In
Western Arctic Russia, the start of growing season (SOS) and the end of growing season
(EOS) during 2000–2010 based on MODIS and SPOT-Vegetation datasets showed similar
trends, but all were significantly different from the trend based on AVHRR data [37]. In
addition, Zeng et al. [38] estimated the SOS trend over the northern high-latitude region
and noticed that SOS continuously advanced from 2000 to 2010 by using MODIS data, but
no advancing trends were shown in the AVHRR Global Inventory Modeling and Mapping
Studies (GIMMS) time series. Such patterns have also been documented in Tibetan alpine
grassland, where MODIS Normalized Difference Vegetation Index (NDVI) data captured
the advancement of SOS throughout 2000–2014, but a delaying trend of the GIMMS
NDVI estimated SOS was observed [39]. Discrepancies between phenology trends based
on different denoising methods or extraction methods varied in research areas, research
periods, and vegetation types [40–43]. For example, Zhu et al. [8] applied several commonly
utilized vegetation phenology extraction methods on MOD09A1 (8-day) and MOD13A2
(16-day) datasets and found no significant differences between SOS or EOS trends derived
from asymmetric Gaussian function, double logistic function, and the piecewise logistic
function method. White et al. [20] compared 10 extraction methods for estimating the
shifts in the start-of-spring dates based on the GIMMS NDVI dataset in North America; the
results strongly suggested either no or very geographically limited trends towards earlier
spring arrival. Wu et al. [19] applied six phenology extraction methods including the first-
order, second-order, and third-order derivative; amplitude threshold; relative changing
rate; and curvature change rate for deriving SOS and EOS from AVHRR. In the northern
hemisphere, the SOS trends retrieved vary across methods from 1982 to 2018, while only
the EOS trend estimated by the relative changing rate method was significantly advanced.
In the southern hemisphere, EOS based on all methods demonstrated insignificant trends.
Compared with denoising methods or extraction methods, the selection of datasets might
be of a higher priority in vegetation dynamics monitoring [8,33].

Atmosphere conditions, such as cloud, dust, and other aerosols, can adversely affect
the quality of satellite remote sensing VI data. To this regard, the maximum value compos-
ite method [44] was mostly used [45–49] and composited VI time-series data by retaining
the maximum NDVI within a specific interval of days. Current VI composite products
such as 15-day GIMMS NDVI 3 g data; MODIS 8-day (MOD09A1), 16-day (MOD13Q1),
and 30-day (MOD13A3) data; and 10-day SPOT VGT S10 data were widely applied among
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regional [32,50,51] and global scales [12,52]. VI composite products should be interpolated
into daily scales for extracting phenological metrics (i.e., SOS and EOS). However, the
process of time interpolation may not fully capture real daily vegetation growth, especially
during greening and senescence stages (where the curve is changing fast) [53], which may
further affect the estimation of phenology trends. Current time interpolation methods
include linear interpolation [54], cubic spline interpolation [55], and curve-fitting methods.
Curve fitting methods smooth the noise while fitting the curve into a continuous daily scale
line, including asymmetric Gaussian function fitting [56], fast Fourier transform [20], and
double logistic function fitting [57], but these methods were mostly applied as denoising
measures in previous studies [20,56,58,59]. For investigating the effects of data temporal
resolution on phenology extraction and trend estimation, some studies compared phenol-
ogy metrics or trends derived from daily NDVI data to those derived from multi-day NDVI
composites [25,27,60]. However, the different performances of multi-day NDVI composites
compared with daily NDVI data are directly caused by the process of time interpolation,
and how this process affects phenology trend estimation remains unclear.

In this study, we used MCD43A4 daily surface reflectance data to construct a single-
year daily (reference) NDVI dataset denoised by the Savitzky–Golay filter, and then single-
year 8-day and single-year 16-day NDVI composite datasets were further generated. Four
typical vegetation types, five time-interpolation methods, and three phenology extraction
methods were chosen for estimating phenology trends. The main goals are to compre-
hensively investigate the effects of time interpolation on phenology trend estimation in
the mid-high latitudes of the northern hemisphere from 2001 to 2019 among (1) different
interpolation methods; (2) different vegetation types; and (3) different combinations of
time interpolation methods and phenology extraction methods. In addition, we also ana-
lyzed the differences between the trends estimated from the 8-day and 16-day composite
data, which would provide instructions on selecting relatively coarse temporal resolution
(i.e., 16 day) data for phenology dynamics monitoring, as they are easier for collecting
and storing.

2. Data and Methods

2.1. Study Area and Sites

We selected the mid-latitude and high-latitude area as our study region because the
vegetation seasonal changes here are evident (noticeable amplitudes in NDVI curves), ren-
dering extracting accurate phenological metrics possible [18]. In addition, NDVI datasets
here are least contaminated by solar zenith angle effects [50,61]. Four typical widely dis-
tributed vegetation types (deciduous broadleaf forest (DBF), evergreen needleleaf forest
(ENF), grassland (GRA), and open shrubland (OSH)) in the mid-high latitudes of the
northern hemisphere (23.5◦–70◦N) were chosen as the study area (Figure 1). Vegetations
around long-running experiment sites are usually well protected; thus, we selected sites
with long-term (at least 10 years) observations from Fluxnet (https://fluxnet.fluxdata.
org/sites/site-list-and-pages/, accessed on 20 March 2020; https://ameriflux.lbl.gov/,
accessed on 23 March 2020; http://www.europe-fluxdata.eu/, accessed on 23 March 2020)
and Phenocam (https://phenocam.sr.unh.edu/, accessed on 5 April 2020).

First, we filtered sites with the MCD12Q1 Land Cover Type product. If the vegetation
type marked at each site was the same as the type in all 3 × 3 pixels (1500 m × 1500 m at
500 m resolution) centered on the site location, then the site was retained; otherwise, it was
removed [62]. Second, in order to eliminate the influence of bare soil, sparse vegetation,
and artificial vegetation (such as crops) on VI curves, sites meeting the following criteria
in all years (2001–2019) were selected for further analysis [33,50,63–65]: (1) the mean
NDVI during June–September should be higher than 0.10; (2) the annual maximum NDVI
should occur during July–September; (3) the mean NDVI during July–September should be
1.2 times higher than the mean NDVI during November–March; and (4) the NDVI curve
has a single growth cycle annually. Finally, according to the central limit theorem [66], data
statistics will be close to normally distributed if the sample size is greater than or equal
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to 30. For each vegetation type, 30 sites meeting all criteria above were selected from higher
to lower latitudes, which were 72 Fluxnet sites and 48 Phenocam sites in total (Figure 1).

 

Figure 1. Sites and the distribution of vegetation types. DBF, ENF, GRA, and OSH are deciduous broadleaf forest, evergreen
needleleaf forest, grassland, and open shrubland, respectively.

Figure 2 showed the typical NDVI curve of each vegetation type from the represen-
tative Fluxnet sites. The curve of DBF has the most apparent seasonal change (seasonal
change is defined by the amplitude of the NDVI curve in Bradley et al. [67]). The curves
of GRA and OSH have relatively weaker seasonal changes, and the curve of ENF has the
weakest seasonal change.

 
Figure 2. Typical NDVI curves of four vegetation types in the study area. DBF, ENF, GRA, and OSH are deciduous broadleaf
forest, evergreen needleleaf forest, grassland, and open shrubland, respectively; data of (a–d) are from Fluxnet sites CA-TP3,
CZ-BK1, US-Wkg, and US-IB2, respectively; all curves are denoised by the Savitzky–Golay filtering method.

2.2. Data and Pre-Processing

MODIS provided an 8-day surface reflectance data (MOD09A1) and a 16-day NDVI
composite (MOD13A1) data with the same georeference and spatial resolution (500 m)
as the MCD43A4 product. However, there exist discrepancies in data generation. In
MOD09A1, the selection of pixels within the 8-day composite period is based on the mini-
mum channel 3 (blue) value, while MOD13A1 chooses the highest NDVI value within two
8-day composite periods. In addition, the deviations appear in data gap filling. MOD13A1
uses the climate modeling grid (CMG) average vegetation index product database for gap
filling, which cannot be applied to the MOD09A1 NBAR dataset. All these discrepancies
may increase bias during data pre-processing. Therefore, we chose to construct the daily
NDVI data and NDVI composites based on the daily surface reflectance data MCD43A4.

Firstly, we chose daily surface reflectance data for red and near-infrared ranges from
MCD43A4 product with 500 m spatial resolution during 2001–2019 (https://modis.ornl.
gov/globalsubset/, accessed on 20 March 2020). Surface reflectance data was then pre-
processed in the following four steps to obtain single-year daily NDVI data and finally
generated single-year 8-day and single-year 16-day composite data.
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(1) Calculating daily NDVI during 2001–2019

Daily NDVI from 2001 to 2019 was calculated by the mean nadir BRDF (bidirec-
tional reflectance distribution function) adjusted reflectance (NBAR) values taken over
3 × 3 pixels in each site (Equation (1)). The days with unqualified data (labeled in “F”)
were skipped from the calculation:

NDVI =
RNIR − RRed
RNIR + RRed

(1)

where RNIR is the mean of 3 × 3 pixels of near-infrared band surface reflectance; and RRed
is the mean of 3 × 3 pixels of red band surface reflectance.

(2) Constructing single-year daily NDVI data

For the missing daily NDVI values caused by NBAR data loss among a few sites (data
labeled in “F”), a linear interpolation method was applied by using NDVI values of the
same day in the nearest years (before and after) to fill up. If there were no qualified NDVI
values among the nearest years, the multi-year (2001–2019) mean NDVI value of this day
was then used for filling up the missing value.

(3) Denoising single-year daily NDVI data

Savitzky–Golay filter [68] is a simplified least squares fit convolution that can be
applied for smoothing VI curves of a set of consecutive values [58]. The filter was
proved to perform well by minimizing noises (e.g., cloud-contaminated NDVI values)
effectively [69,70]. It was chosen to smooth the daily NDVI data in our study (equation
and parameters are shown in Table 1).

Table 1. Data preprocessing methods and parameter settings.

Method Equation Parameter

Savitzky-Golay filter Y∗
j = ∑i=m

i=−m CiYj+i/N

Y * is the resultant NDVI value; Y is the original
NDVI value; j is the running index of the original

ordinate data; m is the half-width of the smoothing
window (filter); Ci is the coefficient for the ith NDVI

value of the filter; N is the amount of convoluting
integers; the half-width of the smoothing window is
set to 1/4 of the year length (90 days); the smoothing

polynomial degree is set to 4 [58].

Maximum value composite ynew = MAX(y1 + y2 + . . . + yn)
ynew is the resultant NDVI value; yn is the original

NDVI value; n is the days for compositing.

(4) Constructing single-year composite NDVI data

The maximum value composite method [44] was chosen to generate single-year 8-day
and single-year 16-day composite data (Equation and parameters are shown in Table 1).

2.3. Methods
2.3.1. Time Interpolation

Five commonly used functions were chosen for interpolating the 8-day and 16-day
composite data (equations and parameters were shown in Table 2): (1) piecewise logistic
function fitting (PL). PL fits NDVI curve to a logistic function of time with no requirements
of data pre-smoothing or threshold defining [71]. The function for NDVI data with a single
growth cycle is shown in Table 2. (2) asymmetric Gaussian function fitting (AG). AG based
on nonlinear least squares fits to the NDVI curves [56]. It is especially suited for describing
the shape of the scaled VI curves in overlapping intervals around maxima and minima.
(3) polynomial curve function fitting (PCF). PCF uses the least-square regression to analyze
the relationship between NDVI data and the corresponding Julian day [50]. It effectively
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smooths the curve noises, and the degree of polynomial function is flexible according to
the shape of the NDVI curve. (4) linear interpolation (Linear). Linear interpolation starts at
the beginning of the NDVI (start point) curve and linearly constructs the missing value
with the current start point and the next nearest point [54]. The function (Table 2) can
also be understood as a weighted average. (5) cubic spline interpolation (Spline). Spline
interpolates the data with piecewise cubic polynomials, and it allows the NDVI curve
to pass through two specified endpoints with specified derivatives at each endpoint [55].
Spline is popularly used as it reduces both computational requirements and numerical
instabilities arising with higher degree curves.

Table 2. Time interpolation methods and parameter settings.

Method Equation Parameter

Piecewise logistic function fitting (PL) y(t) = c
1+ea+bt + d

y(t) is the resultant NDVI value at time t; t is the Julian
days; a and b are fitting parameters; c is the amplitude of

the NDVI curve; d is the minimum NDVI value [71].

Asymmetric Gaussian function fitting (AG)
y(t) = wNDVI + (mNDVI − wNDVI)× g(t)

(t; a1, a2 · · · a5) =

⎧⎨
⎩

exp
[
−
(

t−a1
a2

)a3
]
, if t > a1

exp
[
−
(

a1−t
a4

)a5
]
, if t < a1

y(t) is the resultant NDVI value at time t; g(t) is the
original NDVI value; wNDVI and mNDVI are the

minimum and maximum NDVI value of the fitting part;
a1 is the position of the maximum or minimum value

with respect to time t; a2 (a4) and a3 (a5) are the width and
flatness of the right (left) half of the function [56].

Polynomial curve fitting (PCF) y(t) = α0 + α1 × t1 + α2 × t2 + α3 × t3 + · · ·
+αn × tn

y(t) is the resultant NDVI value at time t; t is the Julian
days; α0-αn are fitting parameters; n is the degree of
smoothing polynomial; the smoothing polynomial

degree is set to 6 [50].

Linear interpolation (Linear) y(t) = t−t1
t0−t1

y0 +
t−t0

t1−t0
y1

y(t) is the resultant NDVI value at time t; t0 and t1 are the
nearest day of year (DOY) of the missing value; y0 and y1
are the nearest NDVI of the missing value; t is the DOY

of the interpolating point between t0 and t1.

Cubic spline interpolation (Spline) yi(t) = ai + bi(t − ti) + ci(t − ti)
2 + di(t − ti)

3

yi(t) is the resultant NDVI value at time t in the ith
period; t is the interpolating point between ti and ti+1; a-d
are function parameters decided by the DOY and NDVI

matrix calculation results in the ith period and the
(I + 1) th period.

2.3.2. Phenology Extraction

For extracting phenological metrics, we chose three commonly used extraction meth-
ods (equations and parameters are shown in Table 3): (1) dynamic threshold (DT) method.
In DT method, SOS and EOS are defined as the point in time at which the NDVI value
increases and decreases to a specific level of seasonal amplitude [56]. Here, we defined the
level percentage as 10%, 20%, and 30%, respectively [1,72,73]. (2) maximum rate of change
(MRC) method. MRC defines the timing of the greatest NDVI change as the maximum
(the left part of the curve, from the starting point to the peak) and minimum (the right part
of the curve, from the peak to the ending point) values of NDVI ratio to determine the
onset dates of the start and end of a growing season [50]. (3) change rate of the curvature
(RCC) method. RCC defines the onset of senescence and dormancy dates as the point in
time at which the rate of change in curvature in the NDVI curve exhibits local minimum or
maximum values [71].
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Table 3. Phenology extraction methods and parameter settings.

Method Equation Parameter

Dynamic threshold (DT) thd =
NDVI(t)−NDVImin
NDVImax−NDVImin

NDVI(t) is the original NDVI value at time t;
NDVImax is the maximum value of the entire curve;

NDVImin is the minimum value of the left/right
curve (divided by the maximum NDVI); thd is the

output ratio, ranging from 0–1 [56].

Maximum rate of change (MRC) NDVIratio(t) =
NDVI(t+1)−NDVI(t)

NDVI(t)

NDVI(t) is the original NDVI value at time t;
NDVI (t+1) is the original NDVI value at time

t+1; NDVIratio(t) is the NDVI ratio at time t [50].

Change rate of curvature (RCC) NDVI(t) = y(t)′′

(1+y(t)′2)
3/2

NDVI(t) is the rate of change of curve at time t;
y(t)′ and y(t)” are the first and the second

derivative of curve at time t [71].

2.3.3. Phenology Trend Estimation

Extreme values caused by weather and human interference could affect phenology
trend estimation; thus, outliers of extracted phenological metrics were removed in each
site based on the 30-day rule proposed by Schaber and Badeck [74]. The NDVI values were
considered as outliers if the estimated residuals of the linear regression model were larger
than or equal to 30 days (Equation (2)), i.e., where |eij| ≥ 30:

xij = m + ai + bj + eij (2)

where xij is the NDVI data of year i on site j; m is a general mean (usually set to zero for
finding a well-defined solution); ai is the effect of year i (2001–2019); and bj is the effect of
site j (j = 1, . . . , 120).

Then, the trend was calculated by linear regression (Equation (3)):

y = ax + b (3)

where y is SOS or EOS for 2001–2019; x is the year for 2001–2019; b is the intercept; and a is
the SOS or EOS trend for 2001–2019.

2.3.4. Statistical Analysis

The paired sample t-test was used to test if there existed statistically significant
differences between each of the two experimental results (Table 4). A Kolmogorov–Smirnov
(K-S) test was performed in advance to verify that all results obeyed normal distribution
(p values are shown in Table S1). Pairs of experimental results being tested for statistically
significant differences included the following: (1) phenology trends from the daily NDVI
data and NDVI composites (8-day and 16-day) among five different interpolation methods;
(2) phenology trends from the daily NDVI data and NDVI composites (8-day and 16-day)
among different combinations of five interpolation methods and three extraction methods
(the amount of the combinations is 50 in total for each vegetation type in SOS (EOS) trend
estimation); and (3) phenology trends from the 8-day NDVI composite data and 16-day
NDVI composite data. The level of p < 0.05 indicated significant difference.

Table 4. Statistically significant differences between different experiment results.

Number Temporal Resolution Time Interpolation Methods Phenology Extraction Methods

(1) 1 d vs. 8 d, 1 d vs. 16 d PL, AG, PCF, Linear, Spline Mean of DT, MRC, and RCC

(2) 1 d vs. 8 d, 1 d vs. 16 d PL, AG, PCF, Linear, Spline DT, MRC, RCC

(3) 8 d vs. 16 d PL, AG, PCF, Linear, Spline Mean of DT, MRC, and RCC

PL, AG, PCF, Linear, and Spline are piecewise logistic function fitting, asymmetric Gaussian function fitting, polynomial curve fitting,
linear interpolation, and cubic spline interpolation, respectively; DT, MRC, and RCC are dynamic threshold, maximum rate of change, and
change rate of curvature, respectively; the experiment results of bold variables are tested by the paired sample t-test.
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3. Results

3.1. Comparisons between Trends from Daily NDVI Data and NDVI Composites Based on
Different Time Interpolation Methods

Trends estimated from NDVI composites were slightly different from the reference
(daily) trend, but none of the interpolation methods had significant effects on trend esti-
mation (Figure 3). The mean SOS trend of daily NDVI data was 0.07 d/year, for which
its delaying rate was lower than all mean SOS trends from 8-day NDVI composite data
(Figure 3a), and the SOS trends were 0.09 d/year (PL), 0.12 d/year (AG), 0.09 d/year (PCF
and Linear), and 0.08 d/year (Spline), respectively. For 16-day NDVI composite data, the
delaying rate of mean SOS trends based on AG (0.09 d/year) was higher than the daily
SOS trend, but the SOS trends based on PL (0.04 d/year) and PCF (0.02 d/year) were lower.
Linear (−0.06 d/year) and Spline (−0.08 d/year) yielded advanced mean SOS trends. For
EOS trend estimation, minor differences existed between trends from NDVI composites
and the daily NDVI data. The mean EOS trend of daily NDVI data was 0.03 d/year, and
the advanced EOS trends were estimated based on Linear from 8-day NDVI composite
data (−0.01 d/year), 16-day composite data (−0.05 d/year), and Spline from 16-day NDVI
composite data (−0.01 d/year). (Figure 3b). Other trends all showed slightly delayed
trends, which were 0.05 d/year (PL and AG), 0.10 d/year (PCF), and 0.01 d/year (Spline)
from 8-day NDVI composite data, respectively. For 16-day NDVI composite data, the
delaying rate of mean EOS trends were 0.02 d/year (PL), 0.08 d/year (AG), and 0.05 d/year
(PCF), respectively.

 
Figure 3. Comparisons between phenology trends from daily NDVI data and NDVI composites based on different time
interpolation methods over all sites. (a) SOS trends comparisons, and (b) EOS trends comparisons. Phenology trends of
daily NDVI data are unfilled, and phenology trends of NDVI composites are filled in colors; the bottom and top areas of
boxes are the 25th and 75th percentiles; the lines through the boxes are the medians; the boxes designate the mean value;
the diamonds beyond the ends of the whiskers are outliers; SOS and EOS are the start of growing season and the end of
growing season; DBF, ENF, GRA, and OSH are deciduous broadleaf forest, evergreen needleleaf forest, grassland, and
open shrubland, respectively; PL, AG, PCF, Linear, and Spline are piecewise logistic function fitting, asymmetric Gaussian
function fitting, polynomial curve fitting, linear interpolation, and cubic spline interpolation, respectively.

3.2. Comparisons between Trends from Daily NDVI Data and NDVI Composites among Different
Vegetation Types

For vegetations with apparent seasonal changes such as DBF, almost all time interpola-
tion methods had significant effects on trend estimation (Figure 4a,e). For vegetations with
weak seasonal changes such as ENF, almost no time interpolation methods had significant
effects on trend estimation (Figure 4b,f). In DBF, there were significant differences between
mean SOS trends estimated based on all interpolation methods and the mean SOS trend
based on daily NDVI data (0.51 d/year) (Figure 4a). With the exception of the mean
EOS trend (0.11 d/year) based on Spline from 8-day NDVI composite data, there were
significant differences between the rest of mean EOS trends from NDVI composites and
the mean EOS trend from daily NDVI data (0.40 d/year) (Figure 4e). In ENF, there was
significant difference only between the mean SOS trend based on AG from 8-day NDVI
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composite data (0.30 d/year) and the mean SOS trend from daily NDVI data (0.04 d/year)
(Figure 4b). In GRA, the mean EOS trends based on AG from 8-day NDVI composite data
(0.29 d/year) and 16-day NDVI composite data (0.25 d/year) were all significantly different
from the mean EOS trend from daily NDVI data (−0.07 d/year) (Figure 4g). In OSH, the
mean SOS trends based on AG, PCF, and Linear from 8-day NDVI composite data were
0.05 d/year, −0.03 d/year, and −0.04 d/year, respectively; the SOS trends based on AG
from 16-day NDVI composite data were 0.18 d/year, which were all significantly different
from the mean trend from daily NDVI data (−0.17 d/year) (Figure 4d). The EOS trend
based on PL from 8-day NDVI composite data (0.22 d/year) was significantly different
from the mean EOS trend from daily NDVI data (−0.05 d/year) (Figure 4h).

Figure 4. Comparisons between phenology trends from daily NDVI data and NDVI composites based on different time
interpolation methods among different vegetation types. (a) SOS trends comparisons in DBF, (b) SOS trends comparisons in
ENF, (c) SOS trends comparisons in GRA, (d) SOS trends comparisons in OSH, (e) EOS trends comparisons in DBF, (f) EOS
trends comparisons in ENF, (g) EOS trends comparisons in GRA, and (h) EOS trends comparisons in OSH. Phenology
trends of daily NDVI data are unfilled, and phenology trends of NDVI composites are filled in colors; the bottom and top
areas of boxes are the 25th and 75th percentiles; the lines through the boxes are the medians; the boxes designate the mean
value; the diamonds beyond the ends of the whiskers are outliers; SOS and EOS are the start of growing season and the end
of growing season; DBF, ENF, GRA, and OSH are deciduous broadleaf forest, evergreen needleleaf forest, grassland, and
open shrubland, respectively; PL, AG, PCF, Linear, and Spline are piecewise logistic function fitting, asymmetric Gaussian
function fitting, polynomial curve fitting, linear interpolation, and cubic spline interpolation, respectively; * below the box
indicates that there is significant difference (p < 0.05) between the phenology trend of the daily NDVI data and the trend
estimated based on this time interpolation method.

3.3. Comparisons between Trends from Daily NDVI Data and NDVI Composites Based on
Different Combinations of Time Interpolation Methods and Phenology Extraction Methods

There were 50 combinations of interpolation methods and extraction methods for
each vegetation type in SOS (EOS) trend estimation, and the number of combinations for
which its trends had significant differences from the trend of daily NDVI data is the largest
in DBF among all vegetation types (Figure 5). In DBF, there were significant differences
between SOS trends from 35 combinations and the daily SOS trend, among 30 of which
included extraction methods of DT 10%, DT 20%, and DT 30% (Figure 5a). Significant
differences were found between the EOS trends from 28 combinations and the daily EOS
trend (Figure 5e). For 16-day NDVI composite data, significant differences were shown
between the daily EOS trend and EOS trends from the combinations of PCF, Linear, Spline,
and all extraction methods but only from the combinations of PCF, Linear, Spline and
DT 10%, DT 20%, and DT 30% for 8-day NDVI composite data. In ENF, SOS trends from
three combinations showed significant differences compared with the daily SOS trend,
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which shared DT 10% as the only extraction method. (Figure 5b). EOS trends from two
combinations of Spline and MRC, AG, and RCC based on 8-day NDVI composite data were
significantly different from the daily EOS trend (Figure 5f). In GRA, the SOS trend from
only one combination was found to have significant difference from the daily SOS trend
(Figure 5c), which was PCF and DT 10% based on 8-day NDVI composite data. Moreover,
there were three EOS trends from only three combinations that were significantly different
from the daily EOS trend, which were all based on 16-day NDVI composite data (Spline
and DT 20%, PL and DT 10%, and AG and MRC, respectively) (Figure 5g). In OSH, SOS
trends from 10 combinations showed significant differences compared with the daily SOS
trend (Figure 5d), while EOS trends from seven combinations were significantly different
from the daily EOS trend (Figure 5h), and no combinations included DT 10%.

Figure 5. Comparisons between phenology trends from daily NDVI data and NDVI composites based
on combinations of different time interpolation methods and extraction methods. (a) SOS trends
comparisons in DBF, (b) SOS trends comparisons in ENF, (c) SOS trends comparisons in GRA, (d)
SOS trends comparisons in OSH, (e) EOS trends comparisons in DBF, (f) EOS trends comparisons in
ENF, (g) EOS trends comparisons in GRA, and (h) EOS trends comparisons in OSH. SOS and EOS are
the start of growing season and the end of growing season; DBF, ENF, GRA, and OSH are deciduous
broadleaf forest, evergreen needleleaf forest, grassland, and open shrubland, respectively; PL, AG,
PCF, Linear, and Spline are piecewise logistic function fitting, asymmetric Gaussian function fitting,
polynomial curve fitting, linear interpolation, and cubic spline interpolation, respectively; DT, MRC,
and RCC are dynamic threshold, maximum rate of change, and change rate of curvature, respectively;
grey boxes indicate that there are no significant differences (p > 0.05) between phenology trends
from NDVI composites and daily NDVI data; green boxes indicate there are significant differences
(p < 0.05) between phenology trends from NDVI composites and daily NDVI data.
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3.4. Comparisons between Trends from the 8-Day and the 16-Day NDVI Composite Data

There were significant differences between phenology trends from the 8-day and
the 16-day NDVI composite data (Figure 6) only in DBF and GRA. In DBF, significant
differences occurred for all interpolation methods except PCF (Figure 6a). For PL, AG,
Linear, and Spline, the mean SOS trends from the 8-day and 16-day NDVI composite
data were 0.12 d/year and 0.00 d/year; 0.13 d/year and 0.01 d/year; 0.17 d/year and
−0.24 d/year; and 0.22d /year and −0.23 d/year, respectively. There were also significant
differences between the mean EOS trends from the 8-day and 16-day NDVI composite data
among Linear and Spline, which were 0.07 d/year and −0.13 d/year (Linear), 0.11 d/year,
and −0.14 d/year (Spline), respectively (Figure 6e). In GRA, the differences between the
mean SOS trend from the 8-day and the 16-day NDVI composite data were significant
among Linear and Spline, which were 0.14 d/year and −0.18 d/year (Linear), 0.11 d/year,
and −0.20 d/year (Spline), respectively (Figure 6c). In addition, for Spline, the mean
EOS trend from 8-day NDVI composite data was −0.09 d/year, which was significantly
different from the 16-day mean EOS trend (0.19 d/year) (Figure 6g).

 

Figure 6. Comparisons between mean phenology trends from the 8-day and 16-day NDVI composite data among different
interpolation methods. (a) SOS trends comparisons in DBF, (b) SOS trends comparisons in ENF, (c) SOS trends comparisons
in GRA, (d) SOS trends comparisons in OSH, (e) EOS trends comparisons in DBF, (f) EOS trends comparisons in ENF, (g) EOS
trends comparisons in GRA, and (h) EOS trends comparisons in OSH. SOS and EOS are the start of growing season and the
end of growing season; DBF, ENF, GRA, and OSH are deciduous broadleaf forest, evergreen needleleaf forest, grassland, and
open shrubland, respectively; PL, AG, PCF, Linear, and Spline are piecewise logistic function fitting, asymmetric Gaussian
function fitting, polynomial curve fitting, linear interpolation, and cubic spline interpolation, respectively; * below the
16-day NDVI composite data indicates there is significant difference (p < 0.05) between the mean phenology trends from the
8-day and from the 16-day NDVI composite data.

4. Discussion

4.1. Effects of Time Interpolation on Trend Estimation among Different Interpolation Methods

Even though differences between the mean trends estimated from NDVI composites
and from the reference (daily) data were insignificant, the discrepancies caused by time
interpolation could not be ignored. The mean SOS trends based on Linear and Spline
from 16-day NDVI composite data were slightly advanced while the mean trend based
on daily data was delayed. The mean EOS trends based on Linear from the 8-day NDVI
composite data, along with the Linear and Spline from 16-day NDVI composite data, all
showed the advancing rates, which were inconsistent with the mean EOS trend based
on daily data (showing the delaying rate). Therefore, it might be incomprehensive to
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evaluate the effects of multiple interpolation methods only by analyzing the mean trends
of all sites. We further calculated the root-mean-square error (RMSE) between the trend
estimated from the reference (daily) data and the trend from each interpolation method
(Figures S1 and S2). The RMSE values of SOS and EOS trends based on all interpolation
methods ranged from 0.35–0.52 d/year and 0.39–0.47 d/year (Figures S1 and S2), which
were overall similar between each method, and the piecewise logistic function fitting (8 d)
performed slightly better with the lowest RMSE values. For each interpolation method,
the ratio of sites for which its absolute values of trends were lower than the corresponding
RMSE value ranged from 56 to 77% for SOS trends and 58–71% for EOS trends (Table S2),
which implied that the process of time interpolation on NDVI composites might even
change the trend direction over half of all sites. RMSE is sensitive to outliers; thus, our
calculation results might overestimate the effects of time interpolation on trend estimation,
but the uncertainties caused by time interpolation should be considered.

4.2. Effects of Time Interpolation on Trend Estimation among Different Vegetation Types

For vegetation types with apparent seasonal changes such as DBF, almost all the time
interpolation methods had significant effects on phenology trend estimation. However, for
vegetation types with weaker seasonal changes such as ENF, time interpolation methods
had almost no significant effects on trend estimation. Figures 7 and 8 showed an example
of phenology extraction results and trends from the daily and 8-day NDVI composite
data in DBF and ENF, respectively. During 90–150 in Julian day, changes of daily NDVI
values and 8-day NDVI composite values in DBF ranged from 0.33 to 0.28 (Figure 7c),
while it only ranged from 0.11 to 0.13 in ENF (Figure 7f). Meanwhile, during 270–330
in Julian day, changes of daily NDVI values and 8-day NDVI composite values in DBF
ranged from 0.23 to 0.29 (Figure 8c), but it ranged from 0.03 to 0.07 in ENF (Figure 8f).
The 8-day NDVI composite data values changed fast in DBF especially during greening
and senescence stages (Figure 7b), making it hard for time interpolation to capture the
detailed NDVI changes of each Julian day, which increased errors in the extraction of SOS
(EOS) annually and in trend estimation (Figure 7a). Compared with DBF, values of NDVI
composites changed slightly in ENF (Figure 8b), which resulted in a higher fidelity after
time interpolation compared with daily NDVI data. Therefore, the annual extraction results
of SOS (EOS) and their trends had higher accuracies (Figure 8a). The same pattern of results
was found in our analysis of the 16-day NDVI composite data. We suggest that remote
sensing data of daily temporal resolution should be used for estimating phenology trends
in vegetation types especially with apparent seasonal changes. For vegetation with weaker
seasonal changes, using NDVI composites (i.e., 8-day or 16-day) would have weaker effects
on trend estimation.

4.3. Effects of Time Interpolation on Trend Estimation among Different Combinations of Time
Interpolation Methods and Phenology Extraction Methods

The selection of phenology extraction methods should be fully considered based on
study areas, vegetation types, satellite products, and interpolation methods. For vegetation
types with apparent seasonal changes such as DBF, even though most time interpolation
methods had significant effects on phenology trend estimation, the phenology trends from
few specific combinations (i.e., polynomial curve function fitting and maximum rate of
change based on the 16-day NDVI composite data in SOS (Figure 5a), asymmetric Gaussian
function fitting, and dynamic threshold 30% based on the 8-day NDVI composite data in
EOS (Figure 5e)) still showed no significant differences compared with the trends from
daily NDVI data. In addition, for vegetation types with weaker seasonal changes such as
ENF, there still existed phenology trends from specific combinations that had significant
differences with trends from the daily NDVI data. Previous studies also indicated that
different combinations could result in different accuracies of trend estimation [33,75,76].
According to our results, the maximum rate of change and the change rate of curvature
method could be used for estimating phenology trends of DBF based on 8-day composite
NDVI data, while a dynamic threshold of 20% and 30% had a better performance on
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phenology trend estimation for ENF. The dynamic threshold of 30% and the change rate of
curvature method were suitable for GRA, and a dynamic threshold of 10% had a better
result in OSH trend estimation.

 
Figure 7. Extraction results and trends of the start of growing season (SOS) from the daily and the 8-day NDVI composite
data in deciduous broadleaf forest (DBF) and evergreen needleleaf forest (ENF). (a) SOS trends of DBF from 2001 to
2019, (b) SOS trends of DBF in 2004, (c) SOS estimation results of DBF in 2004, (d) SOS trends of ENF from 2001 to 2019,
(e) SOS trends of ENF in 2008, and (f) SOS estimation results of ENF in 2008. Piecewise logistic function fitting and linear
interpolation are chosen as interpolation method examples; the dynamic threshold 30% is chosen as the extraction method.

 
Figure 8. Extraction results and trends of the end of growing season (EOS) from the daily and 8-day NDVI composite data
in deciduous broadleaf forest (DBF) and evergreen needleleaf forest (ENF). (a) EOS trends of DBF from 2001 to 2019, (b) EOS
trends of DBF in 2005, (c) EOS estimation results of DBF in 2005, (d) EOS trends of ENF from 2001 to 2019, (e) EOS trends of
ENF in 2016, and (f) EOS estimation results of ENF in 2016. Piecewise logistic function fitting and linear interpolation are
chosen as interpolation method examples; a dynamic threshold of 30% is chosen as the extraction method.
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4.4. Effects of Time Interpolation on Trend Estimation among Data with Different
Temporal Resolutions

There were no significant differences between trends derived from the 8-day and
16-day NDVI composite data in ENF and OSH, and significant differences existed in DBF
and GRA only among a few interpolation methods. Zhu et al. [8] used asymmetric Gaussian
function fitting and piecewise logistic function fitting for estimating SOS trends of Tibetan
Plateau alpine meadow from 2000 to 2015, and they found that the trends estimated from
the fine temporal resolution (8-day) NDVI data and the coarse temporal resolution (16-day)
NDVI data (MOD13A2) had no significant differences, which were in agreement with our
research results (Figure 6c,g). Kross et al. [60] also observed that shifts in SOS were not
sensitive to temporal resolution (4–28 days) among Canadian deciduous broadleaf sites.
According to Figures S1 and S2, the RMSE values of trend estimated from the reference
(daily) data and from 8-day NDVI composites were overall lower than those from 16-day
NDVI composites. For DBF and GRA, especially among interpolation methods that caused
significant differences between trends from the 8-day and 16-day NDVI composite data,
we suggest NDVI composites of lower temporal resolution (8-day) for trend estimation
when daily-scale datasets were not available. For ENF and OSH, there were no significant
differences between trends estimated from the 8-day and 16-day NDVI composite data,
which implied fewer discrepancies when applying coarse temporal resolution (16-day) data
especially based on the AG and PCF method (Figure 6b,f,d,h) in which the discrepancies
were relatively low. However, we only compared the mean trends between the 8-day and
16-day NDVI composite data among all sites; thus, our general conclusions may not apply
for every site accurately. The selection of NDVI composites should still be fully considered
based on the specific research area, vegetation type, and the data preprocessing method.

4.5. Limitations

We observed the delaying SOS mean trends and advancing EOS mean trends among
daily-scale NDVI data and NDVI composites, which indicated opposite phenology trends (ad-
vancing SOS trends and delaying EOS trends) compared with former research [6,50,52,77,78].
We provide three explanations. First, the results demonstrated above (Figures 3 and 4) were
the mean values of SOS and EOS trends, which cannot fully represent the trend of each
site with different geographical locations and heterogeneous landscapes. Second, the oppo-
site trends of phenology were also reported by various authors at continental scales over
the northern high latitudes due to differences in data sources and scales [8,38], winter or
spring warming [73,79], and the mixed impacts of increased spring–fall temperature and
fall precipitation [80]. Finally, satellite-based phenological metrics may mainly reflect the
spring phenology of early-unfolding (flowering) plant species, indicating that satellite-based
phenology trends may follow the trends of ground-measured early plants. Fu et al. [3] found
that most of these species showed a delayed trend in spring through the species-specific
trend analysis, which confirmed that the delay of the SOS trends monitored by the satellite
datasets truly exists. The uncertainties of the opposite phenology trends and their environ-
mental/ecological consequences among different biome zones, study period, and remote
sensing sensors still require deeper investigations.

In order to eliminate noise in NDVI time-series curves, we reconstructed the daily
NDVI data by using the Savitzky–Golay filter as reference data. However, it still cannot
completely simulate NDVI curves in a real natural state, which may cause uncertainties
in trend estimation. In addition, similar studies replicated at additional locations, among
various satellite products and vegetation types, are also needed for more comprehensive
and reliable evaluation on the effects of time interpolation on phenology trend estimation.
Due to the mismatch in observation scale (plant scale and pixel scale) and content (the
definition of phenological events), we did not use the ground observations as reference
data, but comparative studies between using remote-sensing tools and using high-accuracy
ground-based measurements still constitute a common and direct method for assessing
remote sensing approaches in predicting phenological events. In order to validate vegeta-
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tion phenology products properly, ground observations from individual species, canopy
cameras, or flux towers should be upscaled temporally and spatially for matching satellite
pixels over various ecosystems and geographical regions.

5. Conclusions

In this study, we used MODIS MCD43A4 daily surface reflectance data to construct a
daily NDVI time-series dataset as the reference data and then generated an 8-day and a
16-day NDVI composite dataset among 120 sites in the mid-high latitudes of the northern
hemisphere during 2001–2019. The NDVI composites were used to comprehensively inves-
tigate the effects of time interpolation on trend estimation among (1) five time-interpolation
methods; (2) four vegetation types; and (3) the combinations of five time-interpolation
methods and three extraction methods. We also analyzed the differences of trends estimated
between the 8-day and 16-day dataset.

Four main conclusions were drawn from our study. First, none of the interpolation
methods had significant effects on trend estimation over all sites, but the discrepancies
between trends estimated from NDVI daily data and from NDVI composites could not be
ignored. For each interpolation method, the RMSE value of multi-day scale trends was
higher than the absolute values of these trends among most of the sites (56–77% of all sites
for SOS trends and 58–71% of all sites for EOS trends). Even the effects were insignificant,
the process of time interpolation might still change trend direction compared with the
trend from the NDVI daily data. Second, time interpolation had significant effects on
phenology trend estimation among vegetation types with apparent seasonal changes, but
had almost no significant effects among vegetation types with weak seasonal changes. In
order to minimize estimation bias, we strongly suggest remote sensing datasets with a daily
or high temporal resolution to be applied for estimating phenology trends in vegetation
types especially sensitive to season changes. Third, the selection of extraction methods
should be fully considered. Trends estimated based on the same interpolation method
but different extraction methods were not consistent in showing significant (insignificant)
differences with the trend estimated from the daily data, implying that the selection of
extraction methods also affected trend estimation. The maximum rate of change and the
change rate of curvature method could be used in deciduous broadleaf forest based on
8-day composite NDVI data, while the dynamic threshold of 20% and 30% had better
performances for evergreen needleleaf forest. The dynamic threshold of 30% and the
change rate of curvature were suitable for grassland, and the dynamic threshold of 10%
had a better result in open shrubland. Lastly, for deciduous broadleaf forest and grassland,
especially among interpolation methods that caused significant differences between trends
from the 8-day and 16-day NDVI composite data, we suggest NDVI composites with a
lower temporal resolution (8-day) for trend estimation when daily-scale datasets were
not available. For evergreen needleleaf forest and open shrubland, there were fewer
discrepancies between trends from 8-day and 16-day NDVI composite data, which implied
the availability of using a coarse temporal resolution (16-day), especially based on the
asymmetric Gaussian function and the polynomial curve function. In order to further
enhance the comprehensive evaluation about the effects of time interpolation on phenology
trend estimation, future studies should be carried out at additional locations and among
various satellite products and vegetation types.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13245018/s1, Table S1: p values of experimental results in Kolmogorov–Smirnov (K-S)
test, Figure S1: Comparisons of the start of growing season (SOS) trends estimated from daily data
and from each interpolation method, Figure S2: Comparisons of the end of growing season (EOS)
trends estimated from the daily data and from each interpolation method, Table S2: The ratio of sites
for which its absolute values of trends were lower than the corresponding root-mean-square error
(RMSE) value among each interpolation method.
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Abstract: Global warming has exerted widespread impacts on the terrestrial ecosystem in the past
three decades. Vegetation is an important part of the terrestrial ecosystem, and its net primary
productivity (NPP) is an important variable in the exchange of materials and energy in the terrestrial
ecosystem. However, the effect of climate variation on the spatial pattern of zonal distribution of NPP
has remained unclear over the past two decades. Therefore, we analyzed the spatiotemporal patterns
and trends of MODIS NPP and environmental factors (temperature, radiation, and soil moisture)
derived from three sets of reanalysis data. The moving window method and digital elevation
model (DEM) were used to explore their changes along elevation gradients. Finally, we explored
the effect of environmental factors on the changes in NPP and its elevation distribution patterns.
Results showed that nearly 60% of the global area exhibited an increase in NPP with increasing
elevation. Soil moisture has the largest uncertainty either in the spatial pattern or inter-annual
variation, while temperature has the smallest uncertainty among the three environmental factors.
The uncertainty of environmental factors is also reflected in its impact on the elevation distribution
of NPP, and temperature is still the main dominating environmental factor. Our research results
imply that the carbon sequestration capability of vegetation is becoming increasingly prominent in
high-elevation regions. However, the quantitative evaluation of its carbon sink (source) functions
needs further research under global warming.

Keywords: net primary productivity (NPP); global warming; digital elevation model (DEM); uncertainty

1. Introduction

Since the nineteenth century, the global near-surface temperature has continued to
increase according to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change (IPCC). The temperature in the last 10 years after 2000 resulted in the
hottest 10 years in history, and 1983–2012 was the hottest 30 years in the past 800 years.
The widespread impact of global warming has caused a series of negative ecological
consequences, such as drought [1,2], melting [3], rising sea levels [4], and frequent extreme
climates [5,6]. The accelerating global warming has become a major challenge that is
restricting the sustainable development of human society [7–9].

Vegetation is an important part of the terrestrial ecosystem and plays a crucial role
in sequestering carbon and mitigating climate change [10]. The vegetation ecosystem is
found to be more vulnerable and sensitive to climate change than the other ecosystems.
As a variable that reflects the efficiency of vegetation fixation and conversion of light
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energy, net primary productivity (NPP) is widely used in the monitoring of vegetation
dynamics [11,12]. It is related to life activities such as vegetation growth, development,
and reproduction, and it also provides an indispensable material basis for the life activities
of other biological members in the entire ecosystem. Most of the studies focus on the
spatiotemporal changes in NPP [13,14] and the impact of climate and human activities
on NPP [15,16], modeling organic carbon storage with NPP as input data, and changes in
carbon sources and sinks of the terrestrial ecosystem [12,17–19]. Studies on the changes
in NPP with increasing elevation gradients (EG) are mainly conducted in local regions,
and all come from instantaneous surveys [20–24]. Therefore, we still lack the knowledge
and a full picture of the changes in NPP along EG at the global scale.

Typically, NPP declines with increasing elevation, which can largely be explained
by the decreasing temperature as elevation increases [20,22]. However, the impact of
temperature on the NPP of vegetation may be more significant in high-elevation areas with
the intensification of global warming [25,26], because the warming rate in high-elevation
areas is often greater than that in low-elevation areas [25,27]. Thus far, the warming rate
has been intensifying at the global scale for decades [26,28–30], which is likely to cause
a completely different spatial pattern of NPP on EG [31]. A few studies have focused on
determining the spatial pattern of changes in vegetation greenness along EG in recent
years [29,32,33], and their results indicated that the signal of the vegetation greenness
increases with increasing elevation is found at the global scale and regional scale. However,
vegetation greenness is not completely equal to vegetation productivity, and it does not
directly participate in the process of the carbon cycle. This situation raises a scientific
question as to whether the elevation pattern of NPP has changed under the influence of
global warming.

Considering the importance of the effect of environmental variation on vegetation
NPP, and the defects and gaps in current scientific research, we analyzed the inter-annual
variation of MODIS NPP product (MOD17A2HGF, version 6.1) and environmental factors
(air temperature, solar radiation, and soil moisture that derived from the reanalysis data of
ERA5, MERRA2, and NCEP2). We calculated the changes in NPP, temperature, radiation,
and soil moisture along EG by using the digital elevation model (DEM), which was also
used to verify whether the elevation pattern of NPP has been altered under environmental
variation. Furthermore, we analyzed the effect of environmental factors on the spatiotem-
poral changes and elevation distribution of the NPP from 2001 to 2020. We hope that
the results of this study can provide references for the evaluation of terrestrial ecosystem
carbon source and sink functions and the improvement and development of carbon cycle
models. This study will contribute to our understanding of the impact of environmental
factors on the elevational distribution of NPP in recent decades and will help us formulate
strategies for mitigating climate change. We also expect that the outcomes of this study can
provide references for the evaluation of terrestrial ecosystem carbon sink (source) functions
and the improvement of current carbon cycle models.

2. Materials and Methods

2.1. Datasets
2.1.1. NPP Data

The NPP data used in this study come from the MODIS (Moderate Resolution Imaging
Spectroradiometer) remote sensing product of MOD17A3HGF Version 6.1 [34], which will
be generated at the end of each year when the entire yearly 8-day MOD15A2H is available.
MOD17A3HGF has two data fields named Npp_500m and Npp_QC_500m, which represent
NPP data and their quality control (QC). The poor-quality inputs were cleaned from the
8-day leaf area index and the fraction of photosynthetically active radiation based on the
QC label for every pixel. The data type of Npp_QC_500m is an unsigned 1-byte integer
(uint8) with a valid range from 0 to 100 (Units = 100%). Finally, we use the QC file to select
pixels with good quality to participate in the analysis. The annual NPP, with a spatial
resolution of 500 m, is derived from the sum of all 8 days of NPP in a certain year from 2001
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to 2020. We further converted the coordinate system to World Geodetic System 1984 and
resampled the spatial resolution to 0.008◦ (≈1 km) by using the bicubic method to match
the resolution of the DEM data.

2.1.2. DEM Data

The Shuttle Radar Topography Mission (SRTM) is a joint project between the National
Geospatial-Intelligence Agency and the National Aeronautics and Space Administration.
The SRTM30_PLUS DEM dataset with a spatial resolution of 30-arc second (≈1 km) was
developed by the Scripps Institute of Oceanography, University of California San Diego [35].
The coordinate system is the World Geodetic System 1984. The land data are based on the
1 km averages of topography derived from the United States Geological Survey (USGS)
SRTM30 (30 arc-sec) grided DEM data product created with data from the NASA SRTM [36].
Global 30 Arc-Second Elevation (GTOPO30) data are used for high latitudes where SRTM
data are not available. GTOPO30 is a global DEM with a horizontal grid spacing of
30 arc seconds (approximately 1 km) [37]. SRTM has been extensively used and provides
a good representation of the topography [38], which performs better than Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation
Model (GDEM) (the spatial resolution is 500 m) in terms of micro-topography, hydrologic-
network and structural information characterization [39,40]. Considering the high quality
of the SRTM data and the computational efficiency of the data, we chose SRTM30_PLUS as
the DEM data in this study.

2.1.3. Reanalysis Data

We selected three sets of reanalysis data (Table 1) to study the spatiotemporal changes
of environmental factors (temperature, radiation, and soil moisture), their distribution
along EG, and the uncertainties of the correlation between environmental factors and NPP.
The three sets of reanalysis data are the fifth generation of European ReAnalysis (ERA5),
the recent Modern-Era Retrospective Analysis for Research and Applications version 2
(MERRA2), and National Centers for Environmental Prediction Reanalysis 2 (NCEP2).
These reanalysis data can completely cover the data period of MODIS NPP and contain
three kinds of environmental factor data at the same time. In data processing, we convert
the unit of temperature from K to ◦C by subtracting 273.15, and the unit of radiation
was converted from W/m2 to MJ/m2 because the unit of absorbed photosynthetically
active radiation is MJ/m2 in the NPP simulation. Therefore, we can intuitively observe the
magnitude of the spatial distribution of radiation. The soil moisture has different names in
each reanalysis dataset, and we selected the variables with similar meanings and consistent
units. Furthermore, we supplemented the monthly data with mean annual temperature
(MAT), radiation (MAR), and soil moisture (MASM) raster data. Then, we extracted these
environmental data from 2001 to 2020 for analysis. To keep the coordinate system of the
reanalysis datasets consistent with the DEM, we set the resolution of the MERRA2 and
NCEP2 data to 0.5◦ and 1.875◦, respectively. After that, we upscaled the DEM data to match
them, and then performed the moving window operation. We explain the reason for this
in Section 2.2. However, trend and correlation analysis were performed at the resolution
of 0.008◦ to keep the data resolution consistent throughout the main text, and also to be
consistent with the NPP data.

2.2. Calculation of the Changes in NPP and Environmental Factors along EG

The changes in NPP along EG (NPPEG) were calculated in three steps that are the same
as those for the change of environmental factors along EG [29,32,33]. Step 1: We selected
a 9 × 9 moving window to traverse the DEM and NPP (or environmental factors) raster
data (Figure 1). The size of the moving window determines the amount of data used for
analysis for each moving step. A previous study indicated that the difference caused by the
window size is extremely small and recommended choosing a window size of 9 × 9 for
calculation [29,33]. We also tested the window sizes of 5, 7, 9, and 11, and then expanded
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the size of the moving window to 19, 29, 39, and 49. We found that the changes in the
areas of positive NPPEG were 0.0039% from the window size of 5 to 11, while the changes
in the areas were reached 1% from the window size of 19 to 49. Therefore, we followed
the recommendation of previous studies and chose a window size of 9 × 9 for the study.
Step 2: The data extracted by the moving window have two dimensions. Thus, we need to
reduce the dimensions and arrange them in pairs for linear regression analysis. A 9 × 9
moving window contains 81 data after dimensionality reduction. Step 3: We assign the
regression coefficient obtained by linear regression analysis to the center pixel of the moving
window and traverse the entire raster data accordingly to obtain the distribution map of
the change of the variable along EG. The statistical significance of the slope is tested by a
t-test. It should be noted that we set the NPP value of the ocean to no data. Therefore, when
the moving window contains pixels of the ocean, the center pixel of the moving window
will be filled with no data. In addition, we upscaled the DEM data to match the original
resolution of environmental factors derived from three reanalysis datasets, such that we
can avoid the regression analysis was established between the same environmental factors
(coarser grid) and different DEM data (fine grid) in a moving window.

Table 1. Summary of reanalysis data products used in this study.

Name Category Timespan
Spatial

Resolution
Temporal

Resolution
References Data Acquisition

ERA5

Temperature (K)

1981–present 0.1◦ × 0.1◦ Monthly [41]
https://cds.climate.

copernicus.eu (accessed
on 10 December 2021)

Radiation (W/m2)

Volumetric soil
water (m3 m−3)

MERRA2

Temperature (K)

1980–present 0.5◦ × 0.625◦ Monthly [42]

https:
//disc.gsfc.nasa.gov/

(accessed on
10 December 2021)

Radiation (W/m2)

Water root zone
(m3 m−3)

NCEP2

Temperature (K)

1979–present 1.875◦ × 1.904◦ Monthly [43]
https://psl.noaa.gov/

(accessed on
10 December 2021)

Radiation (W/m2)

Volumetric Soil
Moisture (m3 m−3)

Figure 1. Schematic diagram of the calculation of the NPP or environmental factors changes along
EG. We take a 3 × 3 window as an example.
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2.3. Trend Analysis

We use the ordinary least squares regression method [15,44–46] to determine the
variation of NPP and environmental factors in time series:

Slope =
n×∑n

i=1 i × (VAR)i − (∑n
i=1 i)(∑n

i=1(VAR)i)

n×∑n
i=1 i2 − (∑n

i=1 i)2 , (1)

where VAR can be NPP, MAT, MAR, MASM, and their changes along EG; i is the se-
quence number of the year (from 2001 to 2020); n represents the total number of years.
The significance of the trend was determined by the T-test.

2.4. Correlation Analysis

We use Pearson correlation analysis to calculate the correlation between NPP and
environmental factors (MAT, MAR, and MASM). The correlation coefficient (r) of the two
variables can be calculated by Equation (2).

rxy =
∑n

i=1(xi− x)(yi− y)√
∑n

i=1(xi− x)2 ∑n
i=1(yi− y)2

, (2)

The correlation coefficient between NPP and MAT was taken as an example. Variables
xi and yi denote the NPP and MAT in year i, respectively; x and y are the mean values of
NPP and MAT from 2001 to 2020, respectively.

3. Results

3.1. Trends of NPP and Environmental Factors

NPP exhibited an increasing trend (1.75 gC/m2/yr) from 2001 to 2020 (Figure 2a),
which was almost below the mean value for the first 10 years, and above the mean value
for the next 10 years. The trends of the three kinds of reanalysis data showed that MAT was
significantly increased. However, ERA5 was significantly decreased, while both MERRA2
and NCEP2 showed significant increasing trends. By contrast, the trends of MAR exhibited
a decreasing trend, but only MERRA2 was statistically significant (Figure 2b–d). The spatial
pattern of mean annual NPP is consistent with our perception that tropical forests have the
highest NPP, while NPP is relatively low in alpine and arid regions (Figure 3a). The spatial
pattern of the NPP trend showed that 70.63% of the global areas (16.21% were statistically
significant) presented an increasing trend from 2001 to 2020, which were mainly found
in central and western Canada, parts of central and northern China, central and southern
South America, and central Africa (Figure 3b). By contrast, the regions with a decreasing
trend of NPP occupied 29.37% of the global areas, and 3.02% of them were statistically
significant, which were mainly distributed in northern South America.

The uncertainties of the trend of environmental factors were reflected in the spatial
distribution (Figure 3.2). MAT showed a significant increasing trend in high−latitude re-
gions of Asia and Europe, but opposite trends were found in central Africa (Figure 3.2a,d,g).
The consistency of the positive trend of MAT accounted for 56.80% of the global area,
whereas the areas with a negative trend accounted for 7.28%, mainly in northeastern North
America, the Iranian plateau, and parts of the region across central India (Figure 3.2 j).
Strong spatial heterogeneities are observed in the spatial pattern of MAR trends of the three
sets of reanalysis data (Figure 3.2b,e,h). The inconsistent trends of MAR accounted for 61%
of the global area. By contrast, the consistency of negative trends (27.55%) was greater
than that of positive trends (11.65%). It is difficult to find areas where the MASM trend is
consistent (Figure 3.2c,f,i), and MASM trends are inconsistent across most regions of the
globe (73.84%) (Figure 3.2l). We found similar spatial patterns of MAT, MAR, and MASM
(Figure 5). MAT is lower in high−elevation areas (Figure 5a,d,g). However, the cold climate
of the Qinghai–Tibet Plateau is not reflected in NCEP2 MAT data (Figure 5g). Therefore,
we speculated that the NCEP2 MAT probably fail to capture the temperature distribution.
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The higher uncertainty of MAT includes western North America, the Andes in South Amer-
ica, Greenland, the Mongolian Plateau, and the Qinghai–Tibetan Plateau (Figure 5j). MAR
in high latitudes is lower than that in other regions (Figure 5b,e,h), which is highly uncertain
in Greenland and the Sahara Desert (Figure 5k). MASM has relatively high values in the
high latitudes of the northern hemisphere, the eastern United States, southeastern China,
and tropical forests (Figure 5c,f,i). By contrast, it is lower in the western United States,
the Mongolian plateau, the Sahara Desert, southern Africa, and Australia. The higher
uncertainty of MASM is mainly found in the high latitudes of the northern hemisphere,
eastern China, and tropical forests (Figure 5l).

Figure 2. Trend of the NPP (a), MAT, MAR, and MASM (b–d) anomaly from 2001 to 2020. The dashed
straight lines denote the trendlines in subfigure (a). Asterisks (**) denote that the slope is statistically
significant at the 0.01 level.

Figure 3. Spatial pattern of global NPP (a) and its trend (b) from 2001 to 2020. The frequency of the
uncertainty value is in the left of each subfigure. The regions with black dots in (b) indicate that the
trend is statistically significant at the 0.05 level.
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Figure 4. Spatial patterns of the trends of MAT (a,d,g), MAR (b,e,h), MASM (c, f,i) (derived from
ERA5, MERRA2, and NCEP2), and their spatial consistencies (j,k,l) from 2001 to 2020. The frequency
of the uncertainty value is in the left of subfigures (j,k,l). The regions with black dots indicate that
the trend is statistically significant at the 0.05 level. “Pos” and “Neg” denote the regions with the
positive and negative agreement, respectively. “Non” denotes that the regions have not reached an
agreement (the same meaning thereafter).

3.2. Elevational Distribution of NPP and Environmental Factors

Changes in NPP and its slope along EG (NPPEG and NPPslope
EG ) are shown in Figure 6.

The positive NPPEG accounted for 59.98% of the global area, and 31.32% of them reached
a significance level of 0.05. The positive NPPEG was scattered around the Great Lakes,
the eastern foothills of the Andes, the eastern Brazilian plateau, the sub−Saharan African
continent, the Indochina Peninsula, and eastern Australia. By contrast, the region with
negative NPPEG accounted for 40.02%, and the significantly negative region occupied
11.18%. These regions are mainly found in northeastern North America, southern South
America, and Central Asia (Figure 6a). The NPPslope

EG showed strong spatial heterogeneity
during the study period (Figure 6b), and there is no obvious spatial distribution feature
exists. The region with positive NPPslope

EG accounted for 53.88%. By contrast, 46.12% of the

global area had negative NPPslope
EG .
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Figure 5. Spatial patterns of the MAT (a,d,g), MAR (b,e,h), MASM (c,f,i) (derived from ERA5,
MERRA2, and NCEP2), and their spatial consistencies (j,k,l) from 2001 to 2020.

Figure 6. Spatial pattern of the changes in NPP (a) and its slope (b) along EG from 2001 to 2020.
The value frequency is in the left of each subfigure. The regions with black dots indicate that the
trend is statistically significant at the 0.05 level.

The spatial pattern of MAT, MAR, and MASM along EG (MATEG, MAREG, MASMEG)
is shown in Figure 7. MATERA5

EG and MATERA2
EG follow the natural law that temperature

decreases with the increase in elevation, and the area of the two reached 84.36% and
83.67% (Figure 7a,d), with the statistically significant area even reaching up to 78.57% and
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74.35%, respectively. By contrast, only 32.90% of the area of MATNCEP2
EG conforms to the

natural law, which indicates that the temperature data of NECP2 are likely to be wrong in
elevational distribution (Figure 7g). Therefore, we excluded NCEP2 when calculating the
spatial uncertainty of MAT. The results showed that the spatial consistency of MATERA5

EG
and MATMERRA2 reached 78.84%. MAREG does not show obvious spatial distribution
characteristics (Figure 7b,e,h), and the areas with positive MAREG (59.73%) were larger
than those with negative MAREG (40.27%). The spatial consistency of the MAREG is
39.06%, which is mainly distributed in central and eastern North America, most of Europe,
and central and western Russia. However, the inconsistent regions still accounted for
most of the global area (Figure 7k). The areas with positive MASMEG have strong spatial
heterogeneity, although it occupied (64.09 ± 7.02)% of the global area (Figure 7c,f,i), and the
spatial inconsistency of MASMEG is up to 62.73% (Figure 7l).

Figure 7. Spatial patterns of MAT (a,d,g), MAR (b,e,h), MASM (c,f,i) (derived from ERA5, MERRA2,
and NCEP2) along EG and their spatial consistencies (j,k,l) from 2001 to 2020. The frequency of the
uncertainty value is in the left of subfigures (j,k,l).

We further investigated the spatial pattern of changes in the slope of MAT, MAR,
and MASM along EG (MATslope

EG , MARslope
EG and MASMslope

EG ) (Figure 8). The positive

and negative MATslope
EG accounted for 52.03% and 47.97% of the global area, respectively

(Figure 8a,d,g). The area with consistent changes of MATslope
EG accounts for 56.28% of the

global area, and the remaining regions are highly uncertain (Figure 8j). The areas with
positive MARslope

EG occupied (45.50 ± 3.00)% of the global area, which is less than that of
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negative MARslope
EG (54.50 ± 3.00)% (Figure 8b,e,h). Anyway, MARslope

EG is highly uncertain

in most of the global area (68.11%) (Figure 8k). The areas of positive MASMslope
EG (51.49%)

are slightly more than that of negative MASMslope
EG (48.51%) (Figure 8c,f,i). The inconsistent

region covered up to 72.09% of the global area (Figure 8l).

Figure 8. Spatial patterns of the slope of MAT (a,d,g), MAR (b,e,h), and MASM (c,f,i) (derived from
ERA5, MERRA2, and NCEP2) along EG and their spatial consistencies (j,k,l) from 2001 to 2020.
The frequency of the uncertainty value is in the left of subfigures (j,k,l).

3.3. Effect of Environmental Factors on the Elevational Distribution of NPP

Figure 9 illustrates spatial patterns of the dominating environmental factor on the
changes in NPP from 2001 to 2020. ERA5 data showed that MAT and MAR seem to be the
dominating factors on the changes in NPP in the north of 30◦N, central and northern parts
of South America, central Africa, and Southeast Asia, whereas MASM mainly affects the
changes in NPP in the central and eastern United States, the eastern part of the Brazilian
plateau, southern Africa, and Australia (Figure 9a). By contrast, the effects of environmental
factors of MERRA2 on the changes in NPP have a clear spatial distribution pattern. MAT
mainly affects the changes in NPP in the Qinghai–Tibet Plateau and parts of central South
America. MAR is the dominant factor in the high latitudes of the northern hemisphere,
southern South America, and Southeast Asia. MASM has a wider range of influence,
including southern North America, Eurasia from 30◦N to 60◦N, the Indian peninsula, most
of Africa, and Australia (Figure 9b). The MAT and MAR of NCEP2 are the dominant factors
in the changes in NPP in the north of 30◦N. MAR is also the main environmental factor that
affects NPP changes in northwestern South America, central Africa, and Southeast Asia.
The areas where MASM presented a dominant environmental factor include most of the
United States, northern South America and most of Brazil, the southern edge of the Sahara
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Desert and southern Africa, most of Eurasia from 30◦N to 60◦N, the Indian Peninsula,
and Australia (Figure 9c). MASM has the highest spatial consistency (25.15%). These
regions are mainly distributed in the United States, eastern and southern South America,
southern Africa, Eastern Europe, Central Asia, parts of East Asia, India, and Australia,
followed by MAR (9.74%) and MAT (7.70%), which can be found in high latitudes in the
northern hemisphere (Figure 9d).

Figure 9. Spatial patterns of the effect of MAT, MAR, and MASM derived from ERA5 (a), MERRA2
(b), and NCEP2 (c) on the changes in NPP and their spatial consistencies (d) from 2001 to 2020.

We found that NPP has an obvious turning point at the elevation of 3050 m and
divided the elevation into high and low gradients based on the turning point (Figure A1
in Appendix A). Then, we explored the impact of environmental factors on NPP in high−
and low−elevation areas (Figure 10a). The three kinds of reanalysis datasets showed that
MAT still maintained the highest R2 in the three environmental factors. We further fitted
the regression equation curve and uncertainty range of NPP and environmental factors
(Figure 10). The effect of MAT on NPP is linear and non−linear at low and high elevations,
respectively (Figure 10a). The R2 between MAT and NPP exceeds 0.9 and is statistically
significant at the 0.01 level. In general, the uncertainty of the effect of MAT on NPP
gradually decreases as the temperature increases, and it decreases more at low elevations.
The effect of MAR on NPP is nonlinear at both low and high elevations (Figure 10b). NPP
increases as MAR increases at low elevations, whereas opposite trends were observed at
high elevations. The uncertainty of the impact of MAR on NPP gradually decreases with
the increase in MAR at low elevations. By contrast, the uncertainty does not decrease
significantly as the MAR decreases at high elevations (Figure 10c). We found a linear and
nonlinear effect of MASM on NPP at low and high elevations, respectively. NPP increases
as MASM increases at low elevations. However, the upper and lower limits of uncertainty
trend toward the opposite direction. The same situation occurs at high elevations that larger
uncertainty of the effect of MASM on NPP, and MASM remains stable with the increase in
NPP (Figure 10d). The R2 of all fitted equations is statistically significant at both high and
low elevations.
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Figure 10. Regression curves, functions, and their R2 between NPP and environmental factors.
(a) represent R2 between NPP and environmental factors. The regression curves and functions can be
found in (b–d). Subscript L of R2 means low elevations, and H means high elevations, and ** denotes
the R2 is significant at the 0.01 level.

4. Discussion

4.1. Elevational Patterns of Environmental Factors and NPP

In this article, we use the moving window method to explore the changes in NPP and
environmental factors along EG at the global scale. Unlike field surveys, this method is
based on remote sensing and DEM data, which can quickly and economically monitor the
changes of variables along EG. In addition, the moving window method used in this article
is intended to investigate the change of NPP and environmental factors at the relative
EG within the moving window, which is different from the studies on the absolute EG
conducted through a field survey. The accuracy of this method can be indirectly proved by
the natural law that the temperature decreases with the increase in elevation. Nearly 80%
of the regions showed a decrease in temperature with increasing elevation, and more than
70% of the regions are statistically significant. This result means that the moving window
method can effectively monitor the change of the variable in the EG and has high accuracy.
Undeniably some regions (although very few) have a local micro-climate, the temperature
of which will not decrease with the increase in elevation. We can also evaluate the data
quality of temperature based on the natural law of temperature–elevation and the moving
window method. For example, NCEP2 fails to capture the elevation distribution of MAT
because it is contrary to the natural law that the temperature decreases with the increase in
elevation. Unfortunately, we are still unable to assess the data quality of radiation and soil
moisture because the spatial distributions of the reanalysis data and their trends are highly
uncertain, and there is no corresponding natural law to follow. Typically, NPP decreased
with increasing elevation (negative NPPEG) because of the limitation of low temperature.
However, we found that the areas with positive NPPEG accounted for 59.98% of the global
area, which means the elevation pattern of NPP in our perception has changed. The spatial
pattern of NPP slope demonstrated that, compared with NPP in low-elevation areas, NPP
in high-elevation areas has a higher increase rate, and this phenomenon has become more
common worldwide.

4.2. Uncertainty of Environmental Factors and Their Effect on NPP

We found that MAR and MASM had larger uncertainties than MAT in the inter-
annual variations and the spatial distribution along EG. Such a large uncertainty makes
it difficult to assess their effect on the changes in NPP and further forms a lower spatial
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correlation consistency. Factors affecting MAR mainly include cloud height, thickness,
shape, and aerosols. [47]. The factors that affect soil moisture include soil texture [48],
the data assimilation process [49], the sample size of observation data [50], and land use
type [51].

We found that the effect of radiation on NPP is nonlinear regardless of whether it is
in high- or low-elevation regions. The positive correlation between NPP and radiation
in low-elevation is likely to be that, as the elevation increases, temperature and water
inhibit the photosynthesis of plants, thereby reducing the use of photosynthetically active
radiation. Moreover, the radiation available for plants decreases, thereby forming a non-
linear positive correlation between NPP and radiation. However, the non-linear negative
correlation between radiation and NPP in high-elevation regions suggests that radiation is
not the main driving force for changes in NPP. We suppose that radiation cannot be fully
utilized by plants in high-elevation areas, and temperature is still the main environmental
factor that determines changes in NPP along EG. The effect of soil moisture on NPP shows
a non-linear positive correlation in low elevation areas, but it is highly uncertain because
of the large differences in the trend of soil moisture among ERA5, NCEP2, and MERRA2.
Anyway, the positive correlation between NPP and soil moisture has also been confirmed
in the arid region [52], whereas soil moisture in high-elevation areas is higher than that in
low-elevation areas, it has not caused an increase in NPP. Therefore, we hold the view that
soil moisture determines the lower limit of NPP, and the upper limit of NPP is determined
by both soil moisture and temperature.

Overall, the temperature is still the dominating climate factor that determines the
spatial patterns of NPP along EG, and it is generally positively correlated with NPP
whether in high- or low-elevation areas. However, NPP is more sensitive to temperature in
low-elevation areas, which indicates that temperatures are more conducive to vegetation
photosynthesis in this region. By contrast, the temperature gradually decreases with
the increase in high-elevation, and the photosynthesis of vegetation is also limited by
low temperature. Thus, NPP appears to rise first and gradually stabilizes. The effect of
temperature on NPP along EG has been confirmed in regional-scale studies [53,54].

4.3. Implications for Carbon Cycle

NPP is the source of energy in the carbon cycle of the terrestrial ecosystem. Our re-
search shows that nearly 60% of the global area exhibits an increase in NPP with increasing
elevation, which means that vegetation in high-elevation areas plays an increasingly promi-
nent role in absorbing atmospheric CO2 and mitigating climate change. However, this
increase in NPP is caused by global climate change, especially the increase in tempera-
ture in high mountain areas [33], which improves the photosynthesis capacity of plants.
However, when the temperature exceeds the optimal temperature of the plants, it will
inhibit the photosynthesis of plants, and even cause the death of local species because
they cannot adapt to the rapid warming. This kind of research on vegetation degradation
caused by warming has been widely reported [12]. What we want to emphasize is that
this phenomenon of increasing NPP with elevation may be beneficial to CO2 fixation in the
short term, and an uncontrolled increase in temperature will inevitably lead to vegetation
degradation and even ecosystem collapse. The increase in temperature will also cause
the increase in plant autotrophic respiration and soil heterotrophic respiration, and the
CO2 produced by the respiration process is directly discharged out of the vegetation–soil
system. With the high degree of uncertainty in soil respiration, much uncertainty exists in
the quantitative evaluation of the carbon source and sink functions of the ecosystem.

Environmental factors have a strong influence on the terrestrial carbon cycle. Tem-
perature is the basic input data to establish its impact on the soil carbon cycle. In this
study, the difference in the spatial distribution of ERA5 and MERRA2 temperature is very
small. However, the algorithm for the effect of temperature on the decomposition of soil
organic carbon (shown as a nonlinear positive correlation effect) has slight differences.
The differences in the algorithms are reflected in space, mainly located in high latitude
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areas and the Qinghai–Tibet Plateau with great uncertainty. This condition means that
the uncertainty of the temperature algorithm in the alpine region will greatly affect the
decomposition of soil organic carbon in the carbon cycle, which in turn affects the spatial
distribution of soil organic carbon storage in the alpine region, leading to distortions in the
evaluation of the carbon source and sink functions of these regions.

Numerous studies have shown that soil moisture is crucial to the carbon cycle process
of terrestrial ecosystems [55–57]. However, the three sets of reanalysis data show that
the spatial distribution of soil moisture has great uncertainty. Similarly, there are large
discrepancies in the algorithm for the effect of soil moisture on the decomposition of soil
organic carbon. The spatial uncertainty of soil moisture involved tropical rain forests and
the Sahara Desert [17]. The fundamental reason is that the understanding of the effect of soil
moisture on the decomposition of soil organic carbon varies, especially as to whether high-
humidity environments will inhibit the decomposition of soil organic matter. An anaerobic
environment created by high humidity will inhibit the decomposition of soil organic matter
in the carbon cycle model, which will lead to the accumulation of soil organic carbon (high
soil organic carbon), and vice versa, leading to the decomposition of soil organic carbon
(low soil organic carbon). The uncertainty of the original input data of soil moisture and
the algorithm makes it difficult for us to evaluate its effect on the carbon cycle. Considering
the importance of soil moisture in the carbon cycle of terrestrial ecosystems, we propose
that future studies need to further strengthen the observation of soil moisture and improve
its simulation accuracy to more accurately assess the carbon source and sink functions of
terrestrial ecosystems.

5. Conclusions

This study analyzed the spatiotemporal changes of the MODIS NPP product and
environmental factors (temperature, radiation, and soil moisture data derived from the
reanalysis data ERA5, MERRA2, and NCEP2) and their distribution along EG. We also
identified the spatial uncertainty of environmental factors and their effects on the elevation
distribution of NPP. We found that nearly 60% of the global area presented an increase
in NPP with increasing elevation, which implied that the elevation pattern of NPP has
changed, and the carbon sequestration capacity of vegetation is increasing elevation. How-
ever, soil respiration is likely to increase as well. Quantitatively evaluating the carbon sink
(source) function of vegetation remains to be further studied in high-elevation regions.
The temperature of NCEP2 failed to capture the alpine environment of the Qinghai–Tibet
Plateau, and it does not clearly show the natural law that the temperature decreases with
the increase in elevation. Soil moisture has the largest areas of spatial consistency in affect-
ing the spatiotemporal changes in NPP among the three environmental factors. However,
its spatial pattern and variation are the most uncertain among the three environmental
factors, even though it is essential to the carbon cycle of terrestrial ecosystems. NPP has
obvious elevation differentiation with an elevation of 3060 m as the demarcation point,
which divides the elevation into low and high. MAT is the main driving force that affects
the elevation distribution of NPP, with its effect on NPP exhibiting a significant linear and
nonlinear positive correlation at low and high elevations, respectively. The results of this
study are expected to contribute to our understanding of the changes in NPP along EG and
provide references for the development of terrestrial ecosystem carbon cycle models.
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Appendix A

Figure A1. Changes in NPP and environmental factors along EG from 2001 to 2020. The elevation
of 3060 m is used to distinguish high and low elevation (the vertical black solid line in Figure (a–j)).
The dashed line represents the average value of the variables at high and low elevations. The shaded
areas with different colors in each figure represent ±1 SD.

References

1. Xu, C.; McDowell, N.G.; Fisher, R.A.; Wei, L.; Sevanto, S.; Christoffersen, B.O.; Weng, E.; Middleton, R.S. Increasing impacts of
extreme droughts on vegetation productivity under climate Change. Nat. Clim. Chang. 2019, 9, 948–953. [CrossRef]

2. Vicente-Serrano, S.M.; Quiring, S.M.; Peña-Gallardo, M.; Yuan, S.; Domínguez-Castro, F. A review of environmental droughts:
Increased risk under global warming? Earth Sci. Rev. 2019, 201, 102953. [CrossRef]

3. Kraaijenbrink, P.D.A.; Bierkens, M.F.P.; Lutz, A.F.; Immerzeel, W.W. Impact of a global temperature rise of 1.5 degrees Celsius on
Asia’s glaciers. Nature 2017, 549, 257–260. [CrossRef] [PubMed]

4. Mengel, M.; Levermann, A.; Frieler, K.; Robinson, A.; Marzeion, B.; Winkelmann, R. Future sea level rise constrained by
observations and long-term commitment. Proc. Natl. Acad. Sci. USA 2016, 113, 2597–2602. [CrossRef]

5. Cai, W.; Wang, G.; Dewitte, B.; Wu, L.; Santoso, A.; Takahashi, K.; Yang, Y.; Carréric, A.; McPhaden, M.J. Increased variability of
eastern Pacific El Niño under greenhouse warming. Nature 2018, 564, 201–206. [CrossRef]

6. Wang, G.; Cai, W.; Gan, B.; Wu, L.; Santoso, A.; Lin, X.; Chen, Z.; McPhaden, M.J. Continued increase of extreme El Niño frequency
long after 1.5 ◦C warming stabilization. Nat. Clim. Chang. 2017, 7, 568–572. [CrossRef]

7. Zhu, Z.; Piao, S.; Yan, T.; Ciais, P.; Bastos, A.; Zhang, X.; Wang, Z. The accelerating land carbon sink of the 2000s may not be
driven predominantly by the warming hiatus. Geophys. Res. Lett. 2018, 45, 1402–1409. [CrossRef]

8. Liu, Y.; Piao, S.; Gasser, T.; Ciais, P.; Yang, H.; Wang, H.; Keenan, T.F.; Huang, M.; Wan, S.; Song, J.; et al. Field-experiment
constraints on the enhancement of the terrestrial carbon sink by CO2 fertilization. Nat. Geosci. 2019, 12, 809–814. [CrossRef]

9. IPCC. Climate Change 2013—The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovern-
mental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014.

69



Remote Sens. 2022, 14, 713

10. Alward, R.D.; Detling, J.K.; Milchunas, D.G. Grassland vegetation changes and nocturnal global warming. Science 1999, 283, 229.
[CrossRef]

11. Cramer, W.; Kicklighter, D.W.; Bondeau, A.; Iii, B.M.; Churkina, G.; Nemry, B.; Ruimy, A.; Schloss, A.L. Comparing global models
of terrestrial net primary productivity (NPP): Overview and key results. Glob. Chang. Biol. 1999, 5, 1–15. [CrossRef]

12. Wang, Z.; Zhang, Y.; Yang, Y.; Zhou, W.; Gang, C.; Zhang, Y.; Li, J.; An, R.; Wang, K.; Odeh, I.; et al. Quantitative assess the driving
forces on the grassland degradation in the Qinghai–Tibet Plateau, in China. Ecol. Inf. 2016, 33, 32–44. [CrossRef]

13. Cuo, L.; Zhang, Y.; Xu, R.; Zhou, B. Decadal change and inter-annual variability of net primary productivity on the Tibetan
Plateau. Clim. Dyn. 2021, 56, 1837–1857. [CrossRef]

14. Mao, F.; Du, H.; Li, X.; Ge, H.; Cui, L.; Zhou, G. Spatiotemporal dynamics of bamboo forest net primary productivity with climate
variations in Southeast China. Ecol. Indic. 2020, 116, 106505. [CrossRef]

15. Zhang, Y.; Wang, Q.; Wang, Z.; Yang, Y.; Li, J. Impact of human activities and climate change on the grassland dynamics under
different regime policies in the Mongolian Plateau. Sci. Total Environ. 2020, 698, 134304. [CrossRef] [PubMed]

16. Wang, Y.; Yue, H.; Peng, Q.; He, C.; Hong, S.; Bryan, B.A. Recent responses of grassland net primary productivity to climatic and
anthropogenic factors in Kyrgyzstan. Land Degrad. Dev. 2020, 31, 2490–2506. [CrossRef]

17. Wang, Z.; Yang, Y.; Li, J.; Zhang, C.; Chen, Y.; Wang, K.; Odeh, I.; Qi, J. Simulation of terrestrial carbon equilibrium state by using
a detachable carbon cycle scheme. Ecol. Indic. 2017, 75, 82–94. [CrossRef]

18. Wang, Z. Estimating of terrestrial carbon storage and its internal carbon exchange under equilibrium state. Ecol. Model. 2019, 401,
94–110. [CrossRef]

19. Wang, Z.; Chang, J.; Peng, S.; Piao, S.; Ciais, P.; Betts, R. Changes in productivity and carbon storage of grasslands in China under
future global warming scenarios of 1.5 ◦C and 2 ◦C. J. Plant Ecol. 2019, 12, 804–814. [CrossRef]

20. Raich, J.W.; Russell, A.E.; Vitousek, P.M. Primary productivity and ecosystem development along an elevational gradient on
Mauna Loa, Hawaii. Ecology 1997, 78, 707–721. [CrossRef]

21. Sierra Cornejo, N.; Leuschner, C.; Becker, J.N.; Hemp, A.; Schellenberger Costa, D.; Hertel, D. Climate implications on forest
above- and belowground carbon allocation patterns along a tropical elevation gradient on Mt. Kilimanjaro (Tanzania). Oecologia
2021, 195, 797–812. [CrossRef]

22. Luo, T.; Pan, Y.; Ouyang, H.; Shi, P.; Luo, J.; Yu, Z.; Lu, Q. Leaf area index and net primary productivity along subtropical to
alpine gradients in the Tibetan Plateau. Glob. Ecol. Biogeogr. 2004, 13, 345–358. [CrossRef]

23. Girardin, C.A.J.; Malhi, Y.; Aragão, L.E.O.C.; Mamani, M.; Huaraca Huasco, W.; Durand, L.; Feeley, K.J.; Rapp, J.; Silva-Espejo, J.E.;
Silman, M.; et al. Net primary productivity allocation and cycling of carbon along a tropical forest elevational transect in the
Peruvian Andes. Glob. Chang. Biol. 2010, 16, 3176–3192. [CrossRef]

24. Lin, H.; Zhang, Y. Evaluation of six methods to predict grassland net primary productivity along an altitudinal gradient in the
Alxa Rangeland, Western Inner Mongolia, China. Grassl. Sci. 2013, 59, 100–110. [CrossRef]

25. Rangwala, I.; Miller, J.R. Climate change in mountains: A review of elevation-dependent warming and its possible causes. Clim.
Chang. 2012, 114, 527–547. [CrossRef]

26. Bertrand, R.; Lenoir, J.; Piedallu, C.; Riofrío-Dillon, G.; de Ruffray, P.; Vidal, C.; Pierrat, J.-C.; Gégout, J.-C. Changes in plant
community composition lag behind climate warming in lowland forests. Nature 2011, 479, 517–520. [CrossRef] [PubMed]

27. Qin, J.; Yang, K.; Liang, S.; Guo, X. The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Clim. Chang.
2009, 97, 321–327. [CrossRef]

28. Pepin, N.; Bradley, R.; Diaz, H.; Baraër, M.; Caceres, E.; Forsythe, N.; Fowler, H.; Greenwood, G.; Hashmi, M.; Liu, X. Elevation-
dependent warming in mountain regions of the world. Nat. Clim. Chang. 2015, 5, 424–430. [CrossRef]

29. Gao, M.; Piao, S.; Chen, A.; Yang, H.; Liu, Q.; Fu, Y.H.; Janssens, I.A. Divergent changes in the elevational gradient of vegetation
activities over the last 30 years. Nat. Commun. 2019, 10, 2970. [CrossRef]

30. Pearson, R.G.; Phillips, S.J.; Loranty, M.M.; Beck, P.S.; Damoulas, T.; Knight, S.J.; Goetz, S.J. Shifts in Arctic vegetation and
associated feedbacks under climate change. Nat. Clim. Chang. 2013, 3, 673–677. [CrossRef]

31. Shen, M.; Zhang, G.; Cong, N.; Wang, S.; Kong, W.; Piao, S. Increasing altitudinal gradient of spring vegetation phenology during
the last decade on the Qinghai–Tibetan Plateau. Agric. For. Meteorol. 2014, 189, 71–80. [CrossRef]

32. Wang, Z.; Liu, X.; Wang, H.; Zheng, K.; Li, H.; Wang, G.; An, Z. Monitoring vegetation greenness in response to climate variation
along the elevation gradient in the three-river source region of China. ISPRS Int. J. Geo. Inf. 2021, 10, 193. [CrossRef]

33. Wang, Z.; Cui, G.; Liu, X.; Zheng, K.; Lu, Z.; Li, H.; Wang, G.; An, Z. Greening of the Qinghai–Tibet plateau and its response to
climate variations along elevation gradients. Remote Sens. 2021, 13, 3712. [CrossRef]

34. Running, S.W.; Zhao, M. MODIS/Terra Net Primary Production Gap-Filled Yearly L4 Global 500 m Sin Grid V061. 2021. Available
online: https://lpdaac.usgs.gov/products/mod17a3hgfv006/ (accessed on 14 December 2021). [CrossRef]

35. Becker, J.J.; Sandwell, D.T.; Smith, W.H.F.; Braud, J.; Binder, B.; Depner, J.; Fabre, D.; Factor, J.; Ingalls, S.; Kim, S.H.; et al. Global
bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Mar. Geod. 2009, 32, 355–371. [CrossRef]

36. Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The
Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, RG2004. [CrossRef]

37. Miliaresis, G.C.; Argialas, D.P. Segmentation of physiographic features from the global digital elevation model/GTOPO30.
Comput. Geosci. 1999, 25, 715–728. [CrossRef]

70



Remote Sens. 2022, 14, 713

38. Grohmann, C.H. Evaluation of TanDEM-X DEMs on selected Brazilian sites: Comparison with SRTM, ASTER GDEM and ALOS
AW3D30. Remote Sens. Environ. 2018, 212, 121–133. [CrossRef]

39. Bannari, A.; Kadhem, G.; El-Battay, A.; Hameid, N. Comparison of SRTM-V4. 1 and ASTER-V2. 1 for accurate topographic
attributes and hydrologic indices extraction in flooded areas. J. Earth Sci. Eng. 2018, 8, 8–30. [CrossRef]

40. Han, H.; Zeng, Q.; Jiao, J. Quality assessment of TanDEM-X DEMs, SRTM and ASTER GDEM on selected Chinese sites. Remote
Sens. 2021, 13, 1304. [CrossRef]

41. Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.;
Hersbach, H.; et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 2021, 13,
4349–4383. [CrossRef]

42. Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.;
Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30,
5419–5454. [CrossRef]

43. Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Yang, S.-K.; Hnilo, J.; Fiorino, M.; Potter, G. NCEP-DOE AMIP-II reanalysis (R-2). Bull.
Am. Meteorol. Soc. 2002, 83, 1631–1644. [CrossRef]

44. Gang, C.; Wang, Z.; Chen, Y.; Yang, Y.; Li, J.; Cheng, J.; Qi, J.; Odeh, I. Drought-induced dynamics of carbon and water use
efficiency of global grasslands from 2000 to 2011. Ecol. Indic. 2016, 67, 788–797. [CrossRef]

45. Zhang, Y.; Zhang, C.; Wang, Z.; Chen, Y.; Gang, C.; An, R.; Li, J. Vegetation dynamics and its driving forces from climate change
and human activities in the Three-River Source Region, China from 1982 to 2012. Sci. Total Environ. 2016, 563, 210–220. [CrossRef]
[PubMed]

46. Chen, J.; Yan, F.; Lu, Q. Spatiotemporal variation of vegetation on the Qinghai–Tibet plateau and the influence of climatic factors
and human activities on vegetation trend (2000–2019). Remote Sens. 2020, 12, 3150. [CrossRef]

47. Wang, K.; Dickinson, R.E. Global atmospheric downward longwave radiation at the surface from ground-based observations,
satellite retrievals, and reanalyses. Rev. Geophys. 2013, 51, 150–185. [CrossRef]

48. Yang, S.; Li, R.; Wu, T.; Hu, G.; Xiao, Y.; Du, Y.; Zhu, X.; Ni, J.; Ma, J.; Zhang, Y.; et al. Evaluation of reanalysis soil temperature
and soil moisture products in permafrost regions on the Qinghai-Tibetan Plateau. Geoderma 2020, 377, 114583. [CrossRef]

49. Shangguan, W.; Dai, Y.; Liu, B.; Zhu, A.; Duan, Q.; Wu, L.; Ji, D.; Ye, A.; Yuan, H.; Zhang, Q.; et al. A China data set of soil
properties for land surface modeling. J. Adv. Modeling Earth Syst. 2013, 5, 212–224. [CrossRef]

50. Du, Y.; Li, R.; Zhao, L.; Yang, C.; Wu, T.; Hu, G.; Xiao, Y.; Zhu, X.; Yang, S.; Ni, J.; et al. Evaluation of 11 soil thermal conductivity
schemes for the permafrost region of the central Qinghai-Tibet Plateau. Catena 2020, 193, 104608. [CrossRef]

51. Zucco, G.; Brocca, L.; Moramarco, T.; Morbidelli, R. Influence of land use on soil moisture spatial–temporal variability and
monitoring. J. Hyd. 2014, 516, 193–199. [CrossRef]

52. Yue, D.; Zhou, Y.; Guo, J.; Chao, Z.; Guo, X. Relationship between net primary productivity and soil water content in the Shule
River Basin. Catena 2022, 208, 105770. [CrossRef]

53. Guan, X.; Shen, H.; Li, X.; Gan, W.; Zhang, L. Climate control on net primary productivity in the complicated mountainous area:
A case study of Yunnan, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 4637–4648. [CrossRef]

54. Xu, H.-J.; Zhao, C.-Y.; Wang, X.-P. Elevational differences in the net primary productivity response to climate constraints in a
dryland mountain ecosystem of northwestern China. Land Degrad. Dev. 2020, 31, 2087–2103. [CrossRef]

55. Humphrey, V.; Berg, A.; Ciais, P.; Gentine, P.; Jung, M.; Reichstein, M.; Seneviratne, S.I.; Frankenberg, C. Soil moisture–atmosphere
feedback dominates land carbon uptake variability. Nature 2021, 592, 65–69. [CrossRef] [PubMed]

56. Green, J.K.; Seneviratne, S.I.; Berg, A.M.; Findell, K.L.; Hagemann, S.; Lawrence, D.M.; Gentine, P. Large influence of soil moisture
on long-term terrestrial carbon uptake. Nature 2019, 565, 476–479. [CrossRef] [PubMed]

57. Stocker, B.D.; Zscheischler, J.; Keenan, T.F.; Prentice, I.C.; Peñuelas, J.; Seneviratne, S.I. Quantifying soil moisture impacts on light
use efficiency across biomes. N. Phytol. 2018, 218, 1430–1449. [CrossRef] [PubMed]

71





Citation: Yan, X.; Wang, J. The Forest

Change Footprint of the Upper Indus

Valley, from 1990 to 2020. Remote Sens.

2022, 14, 744. https://doi.org/

10.3390/rs14030744

Academic Editor: Wenxin Zhang

Received: 20 December 2021

Accepted: 3 February 2022

Published: 5 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing 

Article

The Forest Change Footprint of the Upper Indus Valley, from
1990 to 2020

Xinrong Yan 1,2 and Juanle Wang 1,2,3,4,*

1 State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences
and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; yanxr@lreis.ac.cn

2 University of Chinese Academy of Sciences, Beijing 100049, China
3 China-Pakistan Earth Science Research Center, Islamabad 45320, Pakistan
4 Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and

Application, Nanjing 210023, China
* Correspondence: wangjl@igsnrr.ac.cn; Tel.: +86-010-6488-8016

Abstract: The upper Indus Valley is the most important and vulnerable water tower in the South
Asian subcontinent, which provides a vital water supply for 230 million people in the basin. Forests
play an important role in water conservation in this region, and the security of upstream forests
forms the foundation downstream water and food security. However, a big challenge is to effectively
monitor the dynamics of the forest in this region. Thus, we used the LandTrendr spectral-temporal
segmentation algorithm combined with 8203 scenes of multi-source remote sensing data to study
the forest change footprint in the upper Indus Valley. The overall accuracy of LandTrendr extraction
for forest disturbance and recovery was 86.01%, and the Kappa coefficient was 0.73. The results
showed the following: (1) From 1990 to 2020, the area of forest recovery was 1.01% more than that
of disturbance, 70% of disturbance occurred between 1990 and 2001, and 60% of recovery occurred
between 1999 and 2012. (2) Although the overall trend of forest disturbance and recovery was
balanced, there were significant differences in forest management status among the different regions.
Nepal has the highest forest stability, India has the largest area of forest disturbance, and Pakistan
and China have the largest areas of forest recovery. (3) India’s Himachal Pradesh and Jammu and
Kashmir are the two provinces with the largest disturbed areas, primarily due to grazing, fires, and
commercial tree planting. Pakistan’s North-West Frontier, Azad Kashmir, and China’s Tibet Ali
region were major contributors to the recovery, which was driven by afforestation policies in both
countries. This study provides an important data base and monitoring method for planning land and
forest use in Indus Valley countries, protecting fragile environments, and promoting policies for the
Sustainable Development Goals.

Keywords: forest disturbance; forest recovery; footprint information; LandTrendr spectral-temporal
segmentation algorithm; upper Indus Valley

1. Introduction

Forests are the main component of terrestrial ecosystem and the largest “carbon
pool” on land, which plays an important role in regulating climate and mitigating global
warming [1]. Monitoring forest disturbance and recovery has received abundant attention
over the past few decades, especially to identify the important role of forests in curbing
climate warming and achieving “carbon neutrality” [2]. The United Nations Sustainable
Development Goal (SDG) 15 calls for the protection, restoration, and promotion of the
sustainable use of terrestrial ecosystems and sustainable management of forests as well as
a series of assessment indicators [3]. Forest disturbance is the main factor that affects forest
growth, structure, and function. This disturbance is largely due to the degradation and
disappearance of forests caused by environmental changes such as drought, hurricanes,
geological disasters, and various human activities [4,5]. Forest recovery involves a series

Remote Sens. 2022, 14, 744. https://doi.org/10.3390/rs14030744 https://www.mdpi.com/journal/remotesensing73



Remote Sens. 2022, 14, 744

of favorable conditions that can promote the growth of forests, including internal and
external factors. In areas with more favorable climatic conditions, forest disturbances
can be recovered through succession of forest communities or internal self-regulation of
ecosystems [6]. In high latitude and ecologically fragile areas, the implementation of forest
protection policies plays a positive role in forest recovery [7,8]. Using the Landsat pixel
scale, forest disturbance was defined as partial or complete disappearance of the forest
canopy. Forest recovery is defined as the inverse ratio of forest loss, which represents an
increase in forest cover of the tree canopy [9].

The upper Indus Valley is one of the most critical water towers in the world [10], and
ecosystem security in this region is directly linked to the welfare of 230 million individuals
downstream. The Karakoram, Hindu Kush, Ladakh, and Himalayas in the upper reaches
form diverse forest ecosystems, which are important carbon sinks and water conservation
areas. The security of forest ecosystems is related to the security of water and agricultural
resources in the Indus Valley basin. However, forest disturbances in this region have been a
concern in recent decades. Studies have shown that the annual deforestation rate in this area
reaches 2.2% [11]. A previous study by Rashid et al. (2017) showed that the evergreen broad-
leaved forest in Kashmir was degraded, and aboveground biomass and carbon storage were
lost, thereby adversely affecting carbon fixation in this region [12]. There is evidence that
forests in the upper Indus Valley were destroyed, and severe forest disturbances devastated
the stability of the original forest ecosystem, leading to catastrophic floods in 1992 and
2010. In response to these problems, the governments of relevant countries have issued
several commercial logging bans, but this has not prevented the loss of upstream forest
areas. The rate of deforestation and loss of total forest area in this region are still higher
than the global average [11,13]. Thus, it is urgent to obtain information on the disturbance
and recovery of forests in recent decades through various monitoring methods to provide a
reference for the formulation of forest policies in this region.

Forest disturbance and recovery information can be obtained through many technical
means such as regular field surveys of forest resources. China, Canada, and Finland have
developed relatively complete forest resource survey techniques, but these require higher
human and economic costs. The upper Indus Valley includes five countries, and it is difficult
to organize forest surveys and obtain forest disturbance and recovery data for all countries.
Remote sensing technology is currently considered the most effective and lowest cost
method, providing spatiotemporal awareness of forest change on multiple scales [14,15].
The principle of remote sensing technology for monitoring disturbance and recovery is to
track the change information of the vegetation canopy spectrum in a time-series image.
When the band or index representing the vegetation canopy suddenly or gradually exceeds
a certain threshold, the forest is considered disturbed or recovered [16]. Time-series images
provide important, consistent, and continuous data sources for the acquisition of forest
footprint information in forest-covered areas. Early forest change monitoring based on
remote sensing mainly came from the comparative analysis of the interpretation results of
two or more temporal remote sensing images. However, because of the limitation of the
timeliness of interpretation of samples and other reasons, such methods generally span
many years, such as 5 or 10 years, ignoring the short-interval footprint information in
the process of forest change, and it is difficult to achieve continuous monitoring of forest
change information from a large area.

In the upper Indus Valley, Joshi et al. (2014) interpreted images of the central Himalaya
in 1979, 1999, and 2009 by means of artificial visual interpretation, in which forest stands
are reduced and forest areas are affected by degradation and isolation [17]. To obtain
information on forest loss in the Himalayas, Qamer et al. (2016) used remote sensing
images during two time periods from 1990 to 2000 and 2000 to 2010 [18]. Owing to the
limitation of computing power or samples, these methods did not describe the forest loss
footprint information in detail, and the images of the three periods could not dynamically
restore the process of forest change over 21 years. However, most of these were short-term
and partial studies, making it difficult to create an overall assessment of the forest status
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of the entire upper Indus Valley. With the accumulation of remote sensing images and
the enhancement of data computing capability, forest change monitoring has gradually
developed into a time-series image combined with a change detection algorithm. Since
the release of Earth big data computing platforms, such as Google Earth Engine (GEE),
increased data computing power has enabled forest change monitoring to use higher spatial
resolution data. [19]. In recent years, the big data cloud computing platform for Earth
observation has increasingly integrated interference and recovery monitoring algorithms.
This includes the vegetation change tracker [20], breaks for additive seasonal and trend [21],
vegetation regeneration and disturbance estimates over time [22], continuous change
detection and classification [23], and continuous monitoring of land disturbance [24]. These
algorithms are widely used in forest event monitoring, such as forest fires, deforestation,
and degradation, and are important for recognizing long-term changes in forests.

Based on this background, this research intends to combine Landsat time-series im-
agery and Earth observation big data cloud computing platform GEE to carry out forest
disturbance and recovery monitoring research in the upper Indus Valley. The main ob-
jectives include the following: (1) combining the time-spectral segmentation algorithm
LandTrendr to obtain the forest change footprint in the upper Indus Valley from 1990
to 2020; and (2) analysis of the results of forest disturbance and recovery to obtain the
spatiotemporal cognition of the forest change footprint in the upper Indus Valley.

2. Materials and Methods

2.1. Study Area

The Indus River is a major river in Central Asia and an important source of agricultural
irrigation that feeds more than 230 million people. The Indus Valley, ranging from 24◦
N to 37◦ N and from 66◦ E to 82◦ E (Figure 1), has a diverse geographical environment,
covering an area of 618,580.35 km2. It borders the Karakoram Mountains and Himalayas
to the northeast, the Thar Desert in India to the southeast, the Hindu Kush Mountains in
Afghanistan to the northwest, the Baluchistan Plateau to the southwest, and the Arabian
Gulf to the south. The Indus Valley has a subtropical climate, characterized by a distinct
monsoon climate. However, owing to the influence of the high mountains in the northeast,
the climate is usually between dry and semi-dry, tropical, and subtropical. The year is
divided into four seasons.

The upper Indus Valley is the intersection of many mountain ranges, and the complex
geographical environment has led to the development of a variety of forest ecosystems.
The natural vegetation mainly includes coniferous forests (subalpine forests, arid temperate
forests, humid temperate forests, and subtropical pine forests), shrub forests (arid sub-
tropical broad-leaved forests and arid tropical thorn forests), economic forests, and shelter
forests. The forests are widely distributed between 500 and 5500 m elevation, and 90% of
the forests are located above 1500 m.

According to a report from the Worldwide Fund for Nature, the population boom
coupled with poverty and a lack of awareness have led to illegal and unsustainable logging,
excessive logging for fuel and charcoal, and increased small-scale agriculture, which
continue to reduce the amount of forest cover in the upper Indus Valley. In addition,
forest fires, natural disasters, climate change, pests, and diseases further contribute to the
degradation and disappearance of forests [25].
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Figure 1. The study area is in the upper Valley of the Indus River. To highlight the forests, we used a
Sentinel-2 image synthesized with false colors (the darker red represents the lusher vegetation).

2.2. Data Preprocessing

Table 1 shows the sources and descriptions of multi-source remote sensing data used
in this study. Landsat time-series data were used from the United States Geological Survey
(USGS), including thematic mapper (TM), enhanced thematic mapper (ETM), and opera-
tional land imager (OLI) sensors. The data have the advantages of having high resolution,
a short revisit cycle, and easy access and processing. GEE was used as the main data pro-
cessing platform, which provided access to the atmospheric correction surface reflectance
data of all Landsat sensors. We connected all available remote sensing images of vegetation
growth season on the GEE platform from July 15 to October 1, which can effectively avoid
images caused by seasonal snow in high-altitude mountainous areas. Landsat 7 ETM+ scan
line corrector failure (SLC-off) images with data gaps were removed. A total of 8203 remote
sensing images were used in this study. In order to reduce the influence of the difference in
reflection wavelength between ETM+ and OLI sensors on the results, the harmonic function
from OLI to ETM+ was used to process the data consistently [26]. In the high mountains
of South Asia, clouds, snow, ice, and mountain shadows have a serious impact on the
results of forest change monitoring. We used the image quality assessment band (QA)
and the CFMask algorithm to generate masks to remove these four types of elements, and
the annual image was generated by the median synthesis method [27]. According to the
statistics obtained from annual synthetic images, cloud-free observation has been achieved
in 90% of the forest for more than 20 years, and the average cloud-free observation time
for each pixel was 25.5 years from 1990 to 2010. The annual synthetic images meet the
requirements for LandTrendr algorithm fitting.
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Table 1. Datasets used in this study.

Name Data Source Data Description

Landsat time-series remote
sensing image

USGS, filter and
synthesize on GEE

A total of 8203 remote sensing
images were used, path and row

as shown in Figure 1.

Google Earth image Google Earth Pro Software

Assist in determining thresholds
for different levels of disturbance
and recovery; collect samples for

accuracy assessment.

Hansen Global Forest Change
datasets v1.8 (2000–2020)

(HGFC) [9]
University of Maryland

Results from time-series analysis
of Landsat images in

characterizing global forest extent
and change from 2000 through
2020. The data are used for an

accuracy assessment.

2.3. Forest Change Footprint Information Extraction

Figure 2 shows the workflow for obtaining forest change footprint information. This
process mainly includes data collection and processing, mask construction, algorithm
segmentation, different levels of disturbance and recovery classification, and accuracy
assessment.

Figure 2. Flowchart of forest change footprint monitoring in the upper Indus Valley.

2.3.1. Built Mask for Forest/Non-Forest Areas

The forest mask can effectively avoid the influence of cultivated land and dense
grassland on LandTrendr segmentation results. In this study, the forest area needed to be a
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maximum union of the forest distribution from 1990 to 2020, which cannot be achieved by
using remote sensing images or datasets of a single time phase.

We obtained all available remote sensing images for July 1 to October 1 from 1990
to 2020, and based on the forest extract rule, a normalized difference vegetation index
(NDVI) > 0.6 and short-waved infrared radiation (SWIR) < 0.1 generated the annual forest
distribution area. Zhu et al. (2012) showed that the NDVI of the forest growth season is
always above 0.6, but sometimes other vegetation types, such as crops, grass, and shrubs,
could also have an overall forest NDVI value above 0.6. Since forests are generally dark in
the SWIR band compared to other vegetation types, a surface reflectance threshold of 0.1 in
the overall band 7 excludes other vegetation types that may have high NDVI values [14,28].
The maximum forest union from 1990 to 2020 showed that there was a total forest area of
46,192.25 km2 in the study area, with a forest coverage fraction of 7.47%.

2.3.2. Detection Methods for Forest Disturbance and Recovery

LandTrendr is a set of spectral-temporal segmentation algorithms based on remote
sensing image pixels that are useful for change detection in a time series of moderate-
resolution satellite imagery. The time segmentation algorithm is considered an effective
method for detecting forest disturbance and recovery. The trajectory of the generated
spectral time-series data had almost no interannual signal noise [29]. The algorithm uses a
time segmentation strategy based on regression and a point-to-point fitting spectral index
as a time function, allowing for the capture of slow-evolving processes such as recovery and
unexpected events [30]. Interactive Data Language (IDL) initially implemented LandTrendr,
and later Google engineers ported LandTrendr to the GEE platform [19,31].

The GEE framework nearly eliminates the onerous data management and image
preprocessing aspects of the IDL implementation. LandTrendr combined with GEE also
simplifies tedious data management and image preprocessing by directly accessing geospa-
tial datasets. Figure 3 shows the process of the LandTrendr algorithm for extracting forest
disturbances. The discrete original value of the spectral index or band was divided into a
series of straight lines and breakpoints. From the segmentation results, the start year, end
year, duration, and magnitude of the spectral index or band of forest disturbance can be
easily obtained.

 
Figure 3. LandTrendr pixel time-series segmentation. Image data were reduced to a single band or
spectral index and then divided into a series of straight-line segments by breakpoint (red points)
identification. For example, this figure shows the segmentation process of the NDVI, AB, and CD,
which represent the steady state of the forest, where BC is fitted as a disturbance event, and CD is an
inverse process of BC and is identified as a recovery process.
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The LandTrendr algorithm requires a series of surface reflectance bands and spectral
indices as inputs when performing spectral-time segmentation. The first band or index was
used for the main segmentation, and the other bands were used for fitting to supplement
the best results. Cohen et al. (2018) showed that using the 13 bands and indices in Table 2
can effectively reduce the error rate of the LandTrendr segmentation [32]. Table 2 shows
the bands and indices used in this study. After obtaining the segmentation results from
LandTrendr, we filtered the segmentation results using a forest mask to remove the effects
of dense grassland and cropland.

Table 2. Bands/indices used in this study.

Band/Index Name Description Calculate Method Reference

Blue, Green, Red, NIR, SWIR1,
SWIR2

Original bands from the TM, ETM+,
and OLI.

The SLC-off data were removed, and
the harmonization function [26] was

used for consistency processing along
with ETM+ and OLI data to obtain the
annual sequence images of six bands.

/

Normalized burn ratio (NBR)
Normalized difference indices
generated by TM, ETM+, and

OLI sensors.
NBR = (NIR-SWIR2)/(NIR+SWIR2) [33]

Normalized difference moisture
index (NDMI)

Normalized difference indices
generated by TM, ETM+, and

OLI sensors.
NDMI = (NIR-SWIR1)/(NIR+SWIR1) [34]

Normalized difference
vegetation index (NDVI)

Normalized difference indices
generated by TM, ETM+, and

OLI sensors.
NDVI = (NIR-Red)/(NIR+Red) [35]

Normalized difference snow
index (NDSI)

Normalized difference indices
generated by TM, ETM+, and

OLI sensors.

NDSI =
(Green-SWIR1)/(Green+SWIR1) [36]

Enhanced vegetation
index (EVI)

A vegetation index calculated from
three bands of TM, ETM+, and

OLI sensors.

EVI = 2.5 * ((NIR - Red)/(NIR + 6 * Red
- 7.5 * Blue + 1)) [37]

Tasseled cap brightness (TCB) It is derived from spectral data and
the tasselled-cap transformation

algorithm. The algorithm can
compress spectral data into several

bands of physical scene features with
minimal information loss.

TCB = 0.2043(Blue) + 0.4158(Green) +
0.5524(Red) + 0.5741(NIR) +

0.3124(SWIR1) + 0.2303(SWIR2)
[38–40]

Tasseled cap greenness (TCG)
TCG = −0.1603(Blue) − 0.2819(Green)

− 0.4934(Red)) + 0.7940(NIR) −
0.0002(SWIR1) − 0.1446(SWIR2)

Tasseled cap wetness (TCW)
TCW = 0.0315(Blue) + 0.2021(Green) +

0.3102(Red)) + 0.1594(NIR) −
0.6806(SWIR1) − 0.6109(SWIR2)

Tasseled cap wetness (TCA) TCA = arctan (TCB/TCG)

2.3.3. Classification of Forest Disturbance and Recovery Levels

Three levels of disturbance and recovery were classified to further study the extent of
forest disturbance and recovery (Table 3). In the segmentation results of the LandTrendr
algorithm, the “magnitude” band records the variation amplitude of disturbance and
recovery in different years. Different levels of disturbance and recovery were obtained by
reclassifying this band. Referring to previous study [41], we obtained the thresholds of
disturbance and recovery using the visual interaction method between classification results
and high-resolution remote sensing images from Google Earth.
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Table 3. Different levels of disturbance and recovery [41].

Type Level Description Thresholds

Disturbance
Serious

Land use type changes, deforestation, and forest
fires caused complete changes in the surface; for

example, the transition from forests to agricultural
land and buildings.

500 < magnitude

Moderate
Due to different reasons such as selective logging,
drought, or pests and diseases, the forest has been

severely disturbed.
350 < magnitude ≤ 500

Light
Local changes in the forest, forest disturbances can

be reflected in high-resolution images, such as
plenter-thinning in the management process.

200 < magnitude ≤ 350

Recovery
Strong

The transition from non-forest land use types to
forest types is mainly through afforestation, and
areas with better climate conditions can also be

self-regulated or community succession through
forest ecosystems.

<−500

Moderate
The opposite process of moderate disturbance

indicates the change of forest structure, such as the
change from sparse forest to dense forest.

−500 ≤magnitude < −350

Light
Due to afforestation or self-recovery of forests, the

density of forest structure gradually becomes higher,
which can be observed in high-resolution images.

−350 ≤magnitude < −200

Serious disturbance and strong recovery categories indicate distinct processes of forest
change, such as clear-cutting or barren afforestation. Moderate disturbance, moderate
recovery, light disturbance, and light recovery may be changes in forest growth trends,
such as varying levels of forest degradation or the growth process from young forests to
mature forests [41].

2.3.4. Accuracy Assessment

In this study, we validated the forest disturbance and recovery results using two data
sources: HGFC datasets and Google Earth images. The validation data were classified into
four categories: disturbance, recovery, and both disturbance and recovery (disturbance +
recovery).

• HGFC was produced by the Global Land Analysis and Discovery Laboratory at the
University of Maryland, in partnership with the Global Forest Watch, and provides
annually updated global-scale forest loss data derived using Landsat time-series im-
agery (https://storage.googleapis.com/earthenginepartners-hansen/GFC-2020-v1.8
/download.html, accessed on 10 December 2021)[9]. This dataset was generated based
on multi-source remote sensing data, such as Landsat and MODIS from 2000 to 2020,
combined with bagged decision tree classification methods. In contrast to the Hansen
product, we extended the time to 1990 and used a change detection algorithm based
on spectral-temporal segmentation, a near-automated change detection algorithm that
has the advantage of requiring less input data and having a high-detection efficiency
compared to the classification method. We downloaded and synthesized HGFC data
from 2000 to 2020 for validation, including the disturbance and recovery bands.

• Validation samples were obtained through visual interpretation of high-resolution
Google Earth historical images.

3. Results

3.1. Spatial and Temporal Patterns of Forest Disturbance and Recovery

Figure 4 shows the spatial distribution of forest disturbances (including serious, mod-
erate, and light disturbances) in the upper Indus Valley from 1990 to 2020 using transitional
colors. Forest disturbances are widely distributed in the middle of the study area, mainly
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in the southwestern Himalayas and the southern Hindu Kush. Large areas of forest dis-
turbance occurred in the upper reaches of the three rivers of Jhelum, Chenab, and Ravi
and on both sides of the Kashmir Valley, largely distributed around cities and farmlands,
between 1995 and 2015. In the past 31 years, a total of 13,233.55 km2 of forest was disturbed,
accounting for 28.64% of the total forest area. The average disturbed area was 426.88
km2 per year, indicating that 0.92% of forests were disturbed at different levels per year
on average. The annual disturbed area showed a fluctuating downward trend. In 1990,
the disturbed forest area was 1080.17 km2, and reached a peak of 1410.23 km2 in 1997.
After 2009, the disturbed forest area was less than 300 km2. The disturbance area from
1990 to 2001 accounted for 70% of the total disturbed area in 31 years, indicating that the
disturbance mostly occurred in the first 10 years of the study period.

 

Figure 4. Spatial and temporal footprint distribution map of forest disturbance. Four selected sub-
areas in the figure represent disturbance result examples in different areas, including (a) plain area,
(b) plain and alpine transition area, (c) alpine area, and (d) river valley area.

Figure 5 shows the spatiotemporal information of forest recovery (including strong,
moderate, and light recovery) in the upper Indus Valley from 1990 to 2020, and the recovery
area is widely distributed in the middle region as well as the disturbed area. Similar to the
distribution of disturbances, the restored areas were also concentrated in the southwestern
Himalayas and the southern Hindu Kush. In the past 31 years, a total of 13,702.55 km2

of forest was restored, accounting for 29.66% of the total forest area. The average annual
recovery area was 442.01 km2, and 0.96% of the forests were restored on average. The
annual recovery area showed a hump distribution trend. At the beginning, the recovery
forest area was 924 km2 in 1990, and reached the peak of 1464.34 km2 in 2000. The area
recovered from 1999 to 2010 accounted for 54.78% of the total area of 31 years, indicating
that the forest recovery was mainly concentrated in the middle part of the study period.
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Figure 5. Spatial and temporal footprint distribution map of forest recovery. Four selected sub-areas
in the figure represent recovery result examples in different areas, including (a) plain area, (b) plain
and alpine transition area, (c) alpine area, and (d) river valley area.

From the results of the long-term analysis, it can be concluded that forest recovery and
disturbance areas tend to be balanced in the upper Indus Valley. The recovery area was
only 469 km2 larger than the disturbance area, accounting for 1.01% of the forest area in the
upper Indus Valley. Figure 6 shows the interannual variation characteristics of disturbance
and recovery. In 1990–2000, 70% of forest disturbance occurred, followed by 60% forest
recovery in 1999–2012. In terms of spatial distribution, 70% of disturbances in 1990–2000
and 60% of recovery in 1999–2012 were mostly spatially coincident. This indicates that the
disturbed forests from 1990 to 2000 were restored in the following 10 to 13 years, whether
natural or man-made restorations. For the entire upper Indus Valley, 2012 is an important
time node. The cumulative disturbance area since 1990 is equal to the cumulative recovery
area this year, reaching a point of equilibrium. After 2012, the cumulative recovery area
was slightly greater than the cumulative disturbance area.

3.2. Temporal and Spatial Characteristics of Different Levels of Disturbance and Recovery

Figure 7 shows the spatiotemporal information distribution of 16 types of disturbance
and recovery processes, including three different levels of combinations of disturbance and
recovery. The results showed that 17.93% of the forests in the study area underwent two
processes of disturbance and recovery from 1990 to 2020, especially in the areas bordering
forests and farmland in the southern Himalayas and the sides of the Kashmir Valley.
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Figure 6. Interannual variation characteristics of disturbance and recovery. The red cross represents
the cumulative area of the disturbed region equal to the cumulative area of the recovery region in the
upper Indus Valley.

 

Figure 7. Spatial distribution of forest disturbance and recovery combinations with different levels.
Four selected sub-areas in the figure represent different levels of disturbance and recovery examples
in different areas, including (a) plain area, (b) plain and alpine transition area, (c) alpine area, and (d)
river valley area.
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Figure 8 shows the proportion of different combinations in the total forest area. A total
of 59.71% of the forests remained stable in 31 years without disturbance or recovery. In the
period from 1990 to 2020, forests that only underwent disturbances accounted for 10.72%, of
which 86.51% were light, 11.62% were moderate, and only 1.86% were serious disturbances.
The forests that only underwent recovery accounted for 11.64% of the total forest area,
which was 0.92% more than the disturbance area. The results of different recovery level
were as follows: light recovery (91.74%) > moderate recovery (7.63%) > strong recovery
(0.61%).

 

Figure 8. Proportion of disturbance and recovery of different levels in forest area.

The area where both disturbance and recovery occurred accounted for 17.93% of the
total forest area, indicating that this part of the forest underwent a process of disturbance
and recovery conversion. The areas of light disturbance and light recovery were the
largest, accounting for 56.26%, followed by moderate disturbance + light recovery (14.42%),
light disturbance + moderate recovery (10.38%), and moderate disturbance + moderate
recovery (9.4%). The proportions of the other five combinations were all less than 3%. The
results showed that forest disturbance and recovery in the study area were mainly light
disturbances, and serious disturbances and strong recovery accounted for very few (<2%).

LandTrendr not only obtained spatiotemporal information of severely disturbed and
obviously restored forest areas, but also captured the natural growth trend of forests or
forest degradation caused by climate change and drought. Although there is no effective
way to classify these areas in detail, obtaining varying degrees of disturbance and recovery
is crucial for understanding the processes of forest change.

3.3. Accuracy Assessment of LandTrendr Results

The accuracy evaluation of the HGFC data and Google Earth images on LandTrendr
segmentation results shows that the algorithm can effectively monitor forest disturbance
and recover the footprint (Table 4). The different classes demonstrated high producer and
user accuracies.
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Table 4. The accuracy assessment result was based on LandTrendr segmentation results and HGFC
datasets.

Reference Data: HGFC Datasets (Pixels)

Disturbance Recovery
Disturbance
+ Recovery

User
Accuracy

LandTrendr
results
(pixels)

Disturbance 7265 593 65 91.69%
Recovery 1014 4617 29 81.57%

Disturbance +
Recovery 250 83 623 65.16%

Producer accuracy 85.18% 87.22% 86.88%
Overall accuracy 86.01%

Kappa 0.73

Analysis of the HGFC data showed that the highest user accuracy disturbance class
was 91.69%, whereas the user accuracy for identifying both disturbance and recovery was
65.16%. There was a 26.15% confusion between the disturbance + recovery and disturbance
classes, indicating that only one disturbance process was identified in the disturbance +
recovery class. There was little difference among the three classes of producer accuracy:
the highest accuracy of the recovery category was 87.22%, and the lowest accuracy of the
disturbance category was 85.18%. In Google image-based evaluation, the highest user
accuracy of 90.05% was achieved in the disturbance class (Table 5). In producer accuracy
assessment, the highest accuracy was 91.84% for the disturbance class and the lowest was
61.86% for the recovery class.

Table 5. The accuracy assessment result was based on LandTrendr segmentation results and samples
from Google Earth images.

Reference Data: Google Earth Images (Pixels)

Disturbance Recovery
Disturbance
+ Recovery

User
Accuracy

LandTrendr
results
(pixels)

Disturbance 1520 107 61 90.05%
Recovery 35 633 36 89.91%

Disturbance +
Recovery 100 102 837 80.56%

Producer accuracy 91.84% 61.86% 89.61%
Overall accuracy 87.17%

Kappa 0.79

The high producer and user accuracies of the disturbance and recovery categories
indicate that the LandTrendr method is robust in obtaining disturbance and recovery
footprint information.

4. Discussion

4.1. Forest Disturbance and Recovery in Different Regions

The results showed that, although the overall trend of forest disturbance and recovery
was balanced, there were significant differences in forest disturbance and recovery in
different regions due to the geographical environment and management policies. The
forests in the upper Indus Valley are managed by five countries. To explore the changes in
forests in different countries, we created statistics and analyzed results from the perspective
of forest management.

Table 6 shows the area of stability, disturbance, recovery, and both disturbance and
recovery have occurred in India, Pakistan, Afghanistan, China, and Nepal. The disturbed
and recovered forests of the five countries showed significantly different characteristics.
From 1990 to 2020, the forest stability in Nepal was the highest (71.03%), Pakistan and China
had little difference (66.97% and 64.59%, respectively), and India had the least stability

85



Remote Sens. 2022, 14, 744

(52.98%). Figure 9 shows the proportion of disturbance and recovery areas in the forest area
of the upper Indus Valley in different countries. The highest proportion of disturbance was
13.18% in India, and the least were 5.95% and 5.33% in China and Nepal, respectively. The
area of forest recovery was highest in China (17.49%), followed by Pakistan (11.81%), Nepal
(11.74%), India (11.41%), and Afghanistan (8.81%). In the region, where both disturbance
and recovery have occurred, India accounted for the highest proportion at 22.42%, and
Nepal for the lowest proportion at 11.89%.

Table 6. Forest disturbance and recovery statistics in the upper Indus Valley (unit: km2).

Region Forest Area Stable Disturbance Recovery
Disturbance
+ Recovery

India 23,345.81 12,368.8
(52.98%)

3078.08
(13.18%)

2664.1
(11.41%)

5234.9
(22.42%)

Pakistan 20,366.96 13,640.44
(66.97%)

1646.3
(8.08%)

2405.44
(11.81%)

2678.15
(13.15%)

Afghanistan 1463.67 945.44
(64.59%)

167.42
(11.44%)

128.88
(8.81%)

221.41
(15.13%)

China 1009.24 626.36
(62.06%) 60.09 (5.95%) 176.51

(17.49%)
146.25

(14.49%)
Nepal 6.57 4.67 (71.03%) 0.35 (5.33%) 0.77 (11.74%) 0.78 (11.89%)

Disturbance + Recovery means both disturbance and recovery have occurred

Figure 9. The proportion of forest disturbance and recovery area in the upper Indus Valley.

Figure 10 shows the interannual variation characteristics of forest disturbance and
recovery in the upper Indus Valley in different forest management regions. In India, the
disturbance forest area has been larger than the recovery forest area for 31 years since 1990.
By 2020, the disturbance and recovery forest area showed a trend towards balance, but
there was still a 387.86 km2 gap. From 1990 to 1994, the accumulative recovery area of
Afghanistan was larger than the accumulative recovery area. After 1994, the accumulative
disturbance area continued to be larger than the accumulative recovery area. Although
Afghanistan’s forest area in the upper Indus Valley is relatively small, the disturbance and
recovery of forests did not reach equilibrium until 2020. There were two inflection points
in the forest change trend in Pakistan. In 1993, the cumulative disturbance area in Pakistan
exceeded the cumulative recovery area and lasted for 16 years. After reaching equilibrium
in 2009, the forest change trend in Pakistan tended to recover. The interannual variation
of forest in China and Nepal was similar, and the cumulative recovery area was always
larger than the cumulative disturbance area after 1993. Many studies have pointed to forest
disturbances in Nepal, but this study only focused on a very small portion of Nepal’s
forests located in the upper Indus Valley, and the results represent only that portion of
forests.
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Figure 10. Interannual variation characteristics of disturbance and recovery in in the upper Indus
Valley. (a) India (b) Pakistan (c) Afghanistan (d) China (e) Nepal.

4.2. Analysis of the Causes of Disturbance and Recovery

There is a close relationship between the climate and vegetation in the Indus Valley. In
the upper Sindh and Punjab, overgrazing and deforestation have led to the destruction of
many natural vegetation types. In addition, humans have long interfered with natural water
systems, and in Shivalik, deforestation has led to a marked deterioration of groundwater
and vegetation cover. From 1990 to 2020, 59.71% of the forests in the upper Indus Valley
remained stable, and the restored area was 0.92% greater than the disturbed area. Although
the overall trend of forest change was balanced, there was still an imbalance among the
five countries, especially in different provinces.

Table 7 shows the data of forest change in different administrative regions. Himachal
Pradesh and Jammu and Kashmir are the two regions with the most disturbance area
exceeding the recovery area, covering 362.77 km2 and 40.89 km2, respectively. Pathania
et al. (2012) noted that the forest area in this region decreased with the passage of time,
and grazing caused an obvious loss of plantation forest [42]. Other studies have shown
that the large-scale introduction of horticultural cash crops in the region between 1998 and
2010 led to some significant changes in forest composition, with commercial cultivation
leading to the decline of some important plant species [43]. We also observed that some
reports indicate that the forest coverage in this area increased from 1991 to 2015, which can
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be explained by commercial tree planting [44]. Forest fires, landslides, and other natural
disasters are also significant causes of forest disturbance in this region [45], but it is difficult
to quantify the specific area of disturbance currently caused by these reasons. These regions
should be aware that changes in the composition of forest species and ecological imbalances
caused by deforestation and forest degradation may cause irreversible damage to unstable
and fragile mountainous areas.

Table 7. Forest disturbance and recovery area of 28 administrative regions in the upper Indus Valley
(km2).

Forest
Management

Country
Province

Forest
Area

Stable Disturbance Recovery
Recovery −

Distur-
bance

Afghanistan

Bamian 0.32 0.21 0.10 0.07 −0.02
Badakhshan 10.10 7.43 1.53 2.21 0.68

Baghlan 17.48 11.75 4.91 3.53 −1.38
Ghazni 0.17 0.06 0.10 0.07 −0.02
Kabol 4.89 2.31 1.19 2.21 1.02
Kapisa 59.49 41.02 12.22 13.12 0.90

Konarha 920.04 627.05 212.51 209.93 −2.58
Laghman 132.28 100.70 21.86 20.38 −1.47
Lowgar 8.22 4.53 1.76 3.20 1.44

Nangarhar 102.24 56.92 34.70 27.47 −7.23
Paktia 124.15 50.63 64.76 43.06 −21.70

Paktika 22.67 6.49 15.08 7.61 −7.47
Parvan 42.82 26.51 11.63 11.29 −0.34
Takhar 0.01 0.01 0.00 0.00 0.00
Vardak 18.79 10.08 6.69 6.32 −0.37

China
Xinjiang 9.18 6.10 2.60 1.76 −0.84
Xizang 1000.05 620.26 203.74 321.00 117.26

India

Himachal Pradesh 8259.54 3997.95 3423.46 3060.69 −362.77
Haryana 0.10 0.03 0.06 0.06 0.00

Jammu and Kashmir 14,960.13 8318.08 4831.74 4784.82 −46.92
Punjab 11.70 4.83 4.24 5.87 1.63

Uttar Pradesh 114.34 47.71 53.43 47.49 −5.93

Nepal Karnali 6.57 4.67 1.13 1.55 0.42

Pakistan

Azad Kashmir 4517.45 3036.43 948.27 1117.16 168.89
Federally Administered Tribal

Areas 1017.79 734.91 160.99 234.34 73.35

Gilgit Baltistan 4248.70 2689.32 1126.95 1086.06 −40.89
Khyber Pakhtunkhwa 10,073.75 6802.69 2002.93 2539.98 537.05

Punjab 509.27 374.69 84.74 105.21 20.47

Total 46,192.26 27,583.36 4952.12 5375.30 423.18

In the Gilgit Baltistan of Pakistan, the forest disturbance area was 40.89 km2 more
than the recovery area, and the disturbance was mainly distributed in the Western border
area with Afghanistan. Qamer et al. (2016) showed that the area was felled or severely
degraded from 1990 to 2010 [18]. The results of this study and those of Qamer et al.
(2016) show consistent temporal and spatial characteristics in the Gilgit Baltistan. The
forests of Afghanistan are mainly distributed in the Eastern region, and the disturbance
and recovery of the provinces are balanced, except in the Paktia, Paktika, and Nangarhar
districts. A previous study on forest change in Northern Pakistan from 1990 to 2010
similarly showed that some assessment reports have grossly overstated deforestation rates,
which is consistent with the findings of our study [18].

The main contribution of forest recovery came from the Khyber Pakhtunkhwa, Azad
Kashmir, and Tibet, and the recovery areas were 537.05 km2, 168.89 km2, and 117.26 km2

more than the disturbance area, respectively. Forest recovery in the Khyber Pakhtunkhwa
Province was primarily driven by the Khyber Pakhtunkhwa Billion Tree Forestation Project,
which aims to plan, design, initiate, and implement the Green Growth Initiative in the
forestry sector [46]. Khan et al. (2020) studied the temporal changes in forest cover, carbon
storage, and corresponding CO2 emission/retention trends (1989–2018) in Azad Kashmir
and showed that both forest cover and carbon storage increased significantly, and the
research results were consistent with this study [47]. The Tibet Ali region, carried out
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from 2002 biological sand prevention engineering, implemented a five-phase afforestation
project, which is consistent with the results of this study.

4.3. Method Limitations and Its Application

The LandTrendr spectral-temporal segmentation algorithm results may vary greatly
according to different parameters and spectral indices [48]. The fixed parameters cannot ob-
tain the optimal result, which needs to be further determined by combining the UI program
provided by LandTrendr with real ground samples. For forest disturbance and recovery,
the information extraction method used in this study can obtain spatiotemporal cognition
of the forest change footprint in the upper Indus Valley. However, this approach does
not distinguish between the possible causes of disturbance, such as deforestation, climate
change, and geological hazards. The rate band in the results provided by LandTrendr
provides a possible way to distinguish between these possible causes, which require further
analysis.

5. Conclusions

To describe the disturbance and recovery of forests quantitatively and objectively in
the upper Indus Valley, we used multi-source remote sensing data, the LandTrendr spectral-
temporal segmentation algorithm, and a remote sensing big data computing platform to
complete the monitoring of forest change footprint in the upper Indus Valley. The main
conclusions are as follows:

(1) The LandTrendr algorithm combined with multi-source remote sensing data and
the GEE big data platform completed forest change footprint tracking of forests in the upper
Indus Valley for 31 years, and the algorithm showed stable robustness and portability.

(2) Forest disturbance and recovery were widespread in 1990–2020, most of the distur-
bance occurred in 1990–2000, the recovery was in 2000–2010, and equilibrium was widely
attained in 2012.

(3) Forest disturbance and recovery in different forest management regions showed
significant differences, and forest disturbance in India and Afghanistan did not reach
equilibrium by 2020. Pakistan reached equilibrium in 2009, while Nepal and China showed
relatively stable and continuous trends in forest recovery.

This study can further contribute to more effective forest management policy devel-
opment by identifying the spatial and temporal patterns of disturbance and recovery for
quantitative assessment.
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Abstract: Land surface albedo directly determines the distribution of radiant energy between the
surface and the atmosphere, and it is a key parameter affecting the energy balance on the land surface.
However, the spatiotemporal dynamics of land surface albedo and associated influencing factors in
the Qilian Mountains (QM) have been rarely reported. By using the long-time series data products of
MODIS shortwave albedo, normalized difference vegetation index (NDVI), and snow cover with a
spatial resolution of 0.05◦ from 2001 to 2020, this paper analyzes the temporal and spatial variations
of land surface albedo in the QM over the past 20 years and its influencing factors. The analysis
results show that the multi-year average surface albedo in the QM has obvious differences in spatial
distribution: it increases with the altitude, and it is high in the west (at the west of 98◦ E) and low in
the east. Meanwhile, the surface albedo has different distribution characteristics in different seasons:
the spatial distribution of surface albedo is similar in spring and autumn; the areas with a high surface
albedo in summer are significantly fewer than those in other seasons. Besides, in the past 20 years,
the annual average surface albedo has shown a weak growth trend in the QM, with a change rate of
5 × 10−3/10a, and the minimum and maximum values were reached in 2001 and 2019, respectively.
In addition, the annual variation of the surface albedo in the QM showed a “U” shape, with the
largest variation in January and the smallest variation in August. The annual variation of surface
albedo is significantly positively correlated with snow cover (r = 0.96) and significantly negatively
correlated with NDVI (r = −0.91). Moreover, the interannual variation of the surface albedo in the
QM is closely related to land surface cover and is greatly affected by snow cover. Spatially, the annual
variation of surface albedo in most areas of the QM is dominated by the change of snow cover, and
the increase of surface albedo in the middle area is consistent with the increase of snow cover, while
the decrease of albedo in the edge area is related to the improvement of vegetation cover. The results
of this study provide a scientific basis for studying the climate and environmental changes caused by
changes in the surface of the QM and making ecological environment restoration strategies.

Keywords: land surface albedo; MODIS; Qilian Mountains; spatiotemporal variation; snow cover;
NDVI

1. Introduction

Since the Industrial Revolution, global warming has become increasingly serious, and
multiple indicators of the Earth’s climate system such as the atmosphere, ocean, land, and
cryosphere have shown the impact of human activities (IPCC). The surface albedo is the
ratio of the reflected solar radiation on the surface to the incident solar radiation, which
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regulates the radiation energy balance between the ground and the atmosphere [1,2]. It is a
key parameter that affects the surface energy budget and the interaction between the ground
and the atmosphere [3,4]. Therefore, surface albedo plays an extremely important role in
the climate system, and it is influenced by solar elevation angle, topography, vegetation
changes, ice/snow cover changes, soil moisture, soil properties, and human activities [5,6].
Meanwhile, the change of surface albedo will also react to the surface radiation balance
and affect other climate variables, thus forming a complex loop feedback mechanism [7,8].
In particular, the feedback effect of surface albedo changes will further amplify its impact
on climate, even though subtle changes are fed back into the climate system, thereby
affecting local, regional, and even global climate change [9]. Generally, the improvement
of vegetation coverage and the melting of ice/snow will lead to a decrease in the surface
albedo, and the corresponding sensible heat flux and latent heat flux will also increase; the
surface absorbs more solar radiation and increases the surface temperature, thus promoting
the growth of vegetation and the melting of ice and snow [10,11]. Conversely, the increase
of surface albedo will weaken atmospheric convergence, reduce cloud, precipitation, and
soil moisture, thus exacerbating drought in arid regions [12]. From 1700 to 2005, the global
albedo increased by about 0.00106 because of land cover change, leading to a radiative
cooling at the top of the atmosphere of −0.15 Wm−2 [13].

The strong reflection characteristic of snow has a remarkable impact on the surface
albedo. The snow location (above or below the canopy), extent, and state (i.e., snow age,
depth, water content and purity, etc.) can greatly change the spectral characteristics to
modulate the surface albedo [8,14,15]. Changes in snow cover significantly affect the
surface albedo, and there is a positive correlation between the two [5,6,16]. In addition,
studies in the complex terrain area of the Tibetan Plateau (TP) found that the surface albedo
under the coexistence of snow cover and vegetation is more sensitive to the response of
snow cover [6]. Bond et al. (2013) found that incomplete combustion of fossil fuels and
biofuels can reduce snow albedo, thereby accelerating Arctic snow melting [17,18]. Due to
climate warming, the reduction of surface albedo caused by snow retreat and snow albedo
feedback is considered to be an important reason for the amplification of Arctic climate
warming [19,20]. Therefore, a deep understanding of the positive feedback of snow albedo
becomes crucial.

Vegetation change is another important factor affecting surface albedo. Large parts
of the Earth are experiencing a greening trend because of the changes in carbon dioxide
fertilization, nitrogen deposition, climate change, and land cover [21]. Numerous studies
have found a negative correlation between surface albedo and vegetation cover [5,6,16,22].
Under increased vegetation, surface albedo decreases, and net surface radiation increases,
thereby heating the atmosphere and providing positive feedback for climate warming [11].
In the TP, the increase of vegetation cover has a negative effect on the surface albedo, and
the surface albedo is more sensitive to the change of NDVI in the vegetation coverage area
than in the coexistence area of snow cover and vegetation [6]. In high latitudes, climate
warming increases the vegetation area, causing a significant reduction in surface albedo [5],
but the radiative forcing warming effect caused by the decrease in surface albedo can
compensate for the cooling effect of the carbon sink [23]. In temperate and boreal zones of
the Northern Hemisphere the albedo effect is stronger and deforestation induces a cooling,
which is related to the difference in albedo between trees and grasslands being amplified
by the presence of snow; in tropical regions, deforestation has a significant effect on local
warming effects by increasing surface albedo and reducing evaporation [24–26].

The QM are the ecological barrier of the TP and the throat of the Silk Road Economic
Belt [27]. In the past 50 years, the temperature in the QM has increased significantly, with a
rate of about 0.5 ◦C decade−1, and the precipitation has also increased significantly, with a
rate of about 6.95 mm decade−1 [28,29]. The climate of the whole region shows a warming
and wetting trend, which promotes the climbing of the tree line and enhances the stability
of the grassland [30]. On the whole, vegetation in the QM is greening. However, solid
reservoirs (glaciers and permafrost) are in the process of aggravating degradation, and
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glaciers in mountainous areas below 4000 m have completely disappeared. Compared with
the 1960s, the area of glaciers in the QM has decreased by 20.5% ± 6.04%, and the loss rate
between 2007 and 2015 is as high as 5.82%/10a [29]. In addition, with the intensification of
human activities, the areas of industrial and mining, housing, transportation, and other land
uses have increased [27]. Furthermore, the extensive development of mineral resources,
overgrazing of local grasslands, irregular operation of tourism facilities, and overloaded
groundwater use has seriously damaged the ecological environment of the QM and posed
serious challenges to the sustainable development of the society and economy [31].

Affected by various driving factors, surface albedo exhibits obvious temporal vari-
ability and spatial heterogeneity. To obtain credible and accurate albedo data, satellite
remote sensing is indispensable. Compared with measured and simulated data, satellite
remote sensing has a wider coverage, and fewer natural limitations and uncertainties.
Thus, it has become an efficient method to acquire continuous albedo [32]. There is good
consistency between the satellite-retrieved annual mean and field measurements, when
the surface albedo varies seasonally, forest-covered areas are better matched than non-
forested areas [33]. In satellite datasets, all latitude assessments show good agreement in
summer, while albedo assessments have significant uncertainty in winter, especially at
high latitudes [34]. The MODIS V006 albedo product has an improved temporal resolution
and accuracy, and the daily MODIS V006 product can reproduce the dynamics of albedo
well [32,35,36]. In recent years, some scholars have studied the albedo of glaciers in the QM.
It was found that the dust on the surface of the glacier significantly reduced the albedo [18],
and there was a significant negative correlation between the diurnal variation of glacial
albedo and air temperature [37]. Another study found a significant positive correlation
between glacier area change and annual mean albedo [38]. However, the spatiotemporal
variation characteristics of surface albedo and its influencing factors in the QM are less
studied. Therefore, this paper uses the MODIS MCD43C3 V006 product provided by
NASA (National Aeronautics and Space Administration, NASA, Washington, DC, USA),
combined with NDVI and snow cover data, to analyze the spatiotemporal distribution of
surface albedo and its influencing factors in the QM. The results of the study will help to
understand the feedback mechanism of surface albedo and reveal the relation between
climate change and human activities, thus providing an important basis for ecological
barrier construction and sustainable development in the QM.

2. Overview of the Study Area

The QM are located on the border between the northeastern Qinghai Province and
the western Gansu Province in China, and it is also located at the intersection of three
major plateaus, i.e., Qinghai-Tibet, Mengxin, and Loess. It consists of a number of parallel
mountains and wide valleys from northwest to southeast (Figure 1a). Because of the high
altitude of the overall mountain range, the peaks over 4000 m are covered with snow all
year round. Meanwhile, there are 3306 modern glaciers [39], which are the source of the
Shiyang River, Heihe River, Shule River, and other rivers [40]. As the altitude decreases
from northwest to southeast, the land cover types are bare land, grassland, and cultivated
land in sequence [41]. Bare land is mainly in the west of 98◦ E, and grassland is mainly in the
east of 98◦ E (Figure 1b). The annual average temperature in the QM is below 4 ◦C, higher
in barren/rocky areas, lower in snow/glacier areas [42], and the temperature gradually
decreases with the increase of elevation. Different from air temperature, precipitation is not
only affected by altitude, aspect, and slope but also by latitude, longitude, and atmospheric
circulation; it shows a decreasing trend from east to west [28].
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Figure 1. (a) Topography of the QM and (b) the types of vegetation cover.

3. Materials and Methods

3.1. Dataset and Preprocessing

This study used three sets of remote sensing products and reanalysis datasets (Table 1),
including MODIS surface albedo, snow cover, normalized difference vegetation index
(NDVI) products, and National Centers for Environmental Prediction (NCEP) downward
solar radiation reanalysis data.

Table 1. The data sets used in this study.

Parameter Dataset Spatial Resolution Temporal Resolution References

Albedo MCD43C3 0.05◦ Daily [43]
Snow cover MOD10CM 0.05◦ Monthly [44]

NDVI MOD13C2 0.05◦ Monthly [45]
Downward solar radiation NCEP T62 Gaussian grid 192 × 94 Daily [46]

3.1.1. Remote Sensing Products

The albedo data and NDVI data used in this paper are obtained from the 2001–2020
MODIS MCD43C3 and MOD13C2 data provided by NASA (https://ladsweb.modaps.
eosdis.nasa.gov (accessed on 1 November 2020)). The HEG tool was adopted to extract the
black sky albedo (BSA) and the white sky albedo (WSA) in the albedo data. BSA represents
the albedo under complete direct solar radiation, and WSA represents the albedo under
complete diffusion of solar radiation. Then, MATLAB software was used to calculate the
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daily surface albedo, and the daily data were spatially aggregated into monthly, seasonal,
and annual data. For NDVI data, considering that the areas with NDVI < 0.1 are bare soil
and sparse vegetation areas, the values of NDVI > 0.1 were screened [47]. However, since
this study took the MODIS MOD10CM product provided by the EOS/MODIS data center
(http://nsidc.org/NASA/MODIS (accessed on 29 November 2020)) in the United States as
snow cover data, a value between 0 and 100 was used to represent the snow cover rate of
each pixel.

3.1.2. NCEP Reanalysis Products

To obtain the true surface albedo, the diffuse skylight ratio needs to be calculated
from the downward solar flux reanalysis data provided by NCEP [46,48]. Meanwhile,
the calculation of the regional average albedo requires surface downward radiation [34].
The data can be downloaded from the NCEP data website (https://psl.noaa.gov/data/
gridded/data.ncep.reanalysis.html (accessed on 5 December 2020)). Because the spatial
resolution of the NCEP reanalysis data is inconsistent with that of the albedo data, this
paper used the nearest-neighbor interpolation to interpolate all NCEP reanalysis data to
the same resolution of 0.05◦ as MODIS data.

3.1.3. Vegetation Coverage Data

The vegetation cover uses the global land cover data GlobeLand30 developed by
China in 2020 with a spatial resolution of 30 m (http://www.webmap.cn/mapDataAction.
do?method=globalLandCover (accessed on 3 November 2020)). The data covers the land
range of 80 degrees north-south latitude, including 10 surface coverage types: cultivated
land, forest, grassland, shrub land, wetland, water body, tundra, artificial surface, bare land
and, glacier and snow.

3.2. Research Methods
3.2.1. Calculation of Surface Albedo

The true albedo (blue sky albedo) is approximately equal to the weighted combination
of the black sky albedo and the white sky albedo [48], and the surface albedo can be used
the following formula calculates:

α = (1 − fdi f )BSA + fdi f WSA (1)

fdi f =
DDv + DDn

DDv + DDn + BDv + BDn
(2)

where BSA and WSA are the black sky albedo and white sky albedo, fdi f is the diffuse
skylight ratio, and DDv, DDn, BDv, and BDn are the visible diffuse downward solar flux,
near IR diffuse downward solar flux, visible beam downward solar flux and near IR beam
downward solar flux, respectively.

3.2.2. Calculation of Regional Average Albedo

The monthly average surface albedo of an area is calculated according to Equation (3) [34].
For Equation (3), we need to consider the downward radiation.

α =
∑ AiFi

d

[
(1 − f i

di f )BSAi + f i
di f WSAi

]
∑ AiFi

d
(3)

where α is the spatially aggregated shortwave albedo. For pixel i, Ai is the area of the pixel,
Fi

d is the surface downward radiation under all-sky condition, BSAi and WSAi are the BSA
and WSA, respectively.
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3.2.3. Trend Analysis

In this paper, the univariate linear regression method is used to estimate the interan-
nual change rates of surface albedo, NDVI and snow cover in the QM in the past 20 years.
The calculation formula of the change rate θslope is as follows:

θslope =

n
n
∑

i=1
(iαi)−

(
n
∑

i=1
i
)

n
∑

i=1
αi

n
n
∑

i=1
i2 −

(
n
∑

i=1
i
)2 (4)

where n is the total number of years in the study period, and αi is the mean value of the
variable in year i. θslope > 0 means that the change of the variable in n years is an increasing
trend; on the contrary, θslope < 0 means that the variable is in a decreasing trend. Then, at
the confidence level of 0.05, the F-test method is used to test the significance of the change
trend of each pixel.

4. Results

4.1. Multi-Year Average Characteristics of Surface Albedo

First, the albedo data of the QM from 2001 to 2020 was used to calculate the monthly
average data, and then the multi-year average and spring (March–May), summer (June–
August), autumn (September–November), and winter (December–February of the follow-
ing year) surface albedo was synthesized. The multi-year average surface albedo represents
the overall albedo situation of the QM. According to the results shown in Figure 2a, the
multi-year average surface albedo of the QM is about 0.25, showing obvious differences in
the spatial distribution. The whole surface albedo increases with altitude, and the surface
albedo at northwest is high and the southeast is low. The areas with a high-value of surface
albedo are mainly distributed in the Daxue Mountain, Shulenan Mountain, Danghenan
Mountain, Tergun Daban Mountain, Hark Mountain, and Lenglongling Mountain, etc.,
showing a northwest-southeast trend similar to the trend of the mountains. Meanwhile, the
land cover is mainly desert, bare rock, glacier, and snow, and the surface albedo value is
between 0.4 and 0.6. The areas with a low value of surface albedo are mainly distributed at
Qinghai Lake, Har Lake, Laji Mountain, and Heihe River Basin, with values between 0.05
and 0.1. The land cover is dominated by lakes, rivers, and high vegetation coverage. Since
the lake is similar to a black body and has a strong ability to absorb short waves, Qinghai
Lake is the area with a minimum surface albedo.

 
Figure 2. Spatial distributions of (a) multi-year averaged land surface albedo and (b) standard
deviation of annual averaged land surface albedo in the QM.

Then, the standard deviation of the surface albedo was used to represent the degree
of abnormality and deviation of the surface albedo from the average value. It can be seen
from Figure 2b that the surface albedo sensitive areas in the QM are mainly distributed in
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the alpine belts of the Tergun Daban Mountain, Hark Mountain, Qaidam Mountain, and
Zhongwunong Mountain. Also, the surface albedo has been relatively stable over the past
20 years in the Heihe River Basin, Shiyang River Basin, Laji Mountain, the vicinity of the
Qinghai Lake, and the west of Qaidam Mountain with low elevations.

The spatial distribution of the multi-year average surface albedo in the QM in different
seasons was further analyzed. As shown in Figure 3, the surface albedo in the QM is high in
the west and low in the east in all four seasons, but there are differences in different seasons.
The average values of surface albedo in spring, summer, autumn, and winter in the QM are
0.25, 0.18, 0.24, and 0.30, respectively, and the variation curve is in a single-valley “V” shape.
It is the smallest in summer and the largest in winter. The spatial distribution of surface
albedo in spring and autumn is similar, but the surface albedo is slightly higher in spring.
As shown in Figure 3b, the spatial distribution of surface albedo in summer is different
from other seasons. The number of areas with a high surface albedo is obviously smaller
than that in other seasons. In the Shulenan Mountain and Tergun Daban Mountain, the
overall spatial distribution of surface albedo is high in the west and low in the east, which
is consistent with the spatial distribution in other seasons. The areas with a high surface
albedo in winter are similar to those in spring and autumn. They are concentrated in Daxue
Mountain, Shulenan Mountain, Danghenan Mountain, and Tergun Daban Mountain in
the west and Lenglongling Mountain in the east. However, the areas with a high surface
albedo in winter cover a wider range.

Figure 3. Spatial distributions of multi-year averaged land surface albedo in the QM for (a) spring
(March–May), (b) summer (June–August), (c) autumn (September–November), and (d) winter
(December–February of the following year).

4.2. Annual Variation Characteristics of Surface Albedo in the QM

As shown in Figure 4, the annual variation of the average surface albedo for many
years exhibits a “U” shaped, with the “left valley slope” indicating the variation from
January to July, the “valley bottom” indicating the variation from July and August, and
the “right valley slope” indicating the variation from September to December. The surface
albedo was the largest in January and the smallest in August, with a value of 0.31 and
0.17, respectively. It can be seen from the variation trend line that the change slopes from
January to August and August to December are respectively −0.02 and 0.03. The surface
albedo shows a slow downward trend from January to August and reaches the minimum
value in August, and the albedo in July and August is not much different; then, it shows
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a strong upward trend from September to November and then slowly rises, reaching the
maximum in January of the following year.

 
Figure 4. Annual variation characteristics of the land surface albedo in the QM.

The influence of the factors (i.e., NDVI and snow cover) on the annual change of
surface albedo in the QM were further analyzed. Figure 5a shows that the annual change
trend of snow cover and surface albedo is consistent, and there is a significant positive
correlation between the two at the 0.01 level (both sides), with a correlation coefficient of
0.96. When the snow cover gradually decreases from January to August, the surface albedo
also decreases slowly; when the snow cover increases rapidly from August to December,
the surface albedo also increases rapidly. The annual change of NDVI shows a trend of
increasing first and then decreasing, which is opposite to the variation trend of surface
albedo (Figure 5b). Through Pearson correlation analysis, it was found that the annual
change of surface albedo is significantly correlated with that of NDVI at the 0.01 level (both
sides), with a correlation coefficient of −0.91. In autumn, the vegetation begins to turn
yellow and new snowfall occurs, and the surface albedo gradually increases and peaks in
January of the following year. The above analysis results show that the annual change of
surface albedo is positively related to surface cover and negatively related to NDVI.

Figure 5. Annual variations of land surface albedo and snow cover (a) and NDVI (b) in the QM.

4.3. Characteristics of Interannual Variation of Surface Albedo in QM

The annual average value of surface albedo, snow cover, and NDVI in the QM from
2001 to 2020 was calculated to obtain the interannual variation trend (Figure 6). It can
be seen that the annual average surface albedo in the QM shows a slight upward trend,
with a change rate of 5.0 × 10−3/10a. Since the surface albedo reached the minimum
and maximum respectively in 2001 and 2019, the annual average surface albedo of the
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QM from 2001 to 2020 showed a significant upward trend. However, the growth rate
differs in different time periods. The change rate of from 2001 to 2010 and from 2010 to
2020 is 1.5 × 10−2/10a and 2.7 × 10−2/10a, respectively. From 2001 to 2010, the surface
albedo showed an “up-down-up-down” fluctuation; from 2010 to 2013, the surface albedo
decreased substantially; from 2016 to 2019, the surface albedo showed a strong upward
trend. Overall, the surface albedo fluctuated significantly in the last 10 years (Figure 6a).

Figure 6. The inter-annual variations of regional averaged land surface albedo (a), snow cover (b),
and NDVI (c) in the QM.

The snow cover rate in the QM showed a slight upward trend in general from 2001 to
2020, with a change rate of 0.75/10a. It reached the minimum and maximum in 2001 and
2019, respectively. The snow cover rate increased from 2001 to 2010 with a change rate of
3.6/10a, which is slightly smaller than that from 2010 to 2020 (i.e., 4.8/10a). From 2001 to
2004 and from 2013 to 2015, there were two rising periods of snow cover rate. From 2010 to
2013, the snow cover showed a significant downward trend (Figure 6b), which is consistent
with the research results of Liang et al. (2019) on the temporal and spatial variation of snow
cover in the QM [49]. The comparison of the interannual changes of surface albedo and
snow cover indicates that the two change trends are highly consistent. Through Pearson
correlation analysis, it was found that there is a significant positive correlation between the
surface albedo and snow cover rate, with a correlation coefficient of 0.95. The indicates that
the interannual variation of the surface albedo in the QM is largely affected by the snow
cover changes.
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The NDVI in the QM changed significantly from 2001 to 2020. It continued to increase
and reached the maximum in 2018, with a 20-year change rate of 0.02/10a. There was a
strong upward trend in NDVI from 2001 to 2005 and 2008 to 2010, and a slight downward
trend from 2005 to 2008 and 2012 to 2016 (Figure 6c). This result is consistent with the
observation of Zhang et al. (2021) in analyzing the variation trend of NDVI in the QM
during the growing season. Through Pearson correlation analysis, it was found that there
is a weak positive correlation between the surface albedo and NDVI, with a correlation
coefficient of 0.12. When the linear trend of the two is eliminated, the surface albedo and
NDVI are negatively correlated (r = −0.02). In addition, the spatial resolution of the surface
albedo and NDVI data is still low, which may not accurately describe the interannual
fluctuations of the surface conditions in the QM, resulting in a weak positive correlation
between the two in this region [5]. Since the interannual variation cannot fully reflect the
relationship between the surface albedo and NDVI, it is necessary to further explore their
relationship by using high-precision remote sensing data.

4.4. Spatial Variation Trend of Surface Albedo in QM

The univariate linear regression method was used to calculate the interannual variation
trends of the annual average surface albedo, NDVI, and snow cover in the QM. Meanwhile,
the F-test method was employed to test the significance of the variation trend of each
pixel at a confidence level of 0.05. As shown in Figure 7, the interannual variation of
the average annual surface albedo in the QM shows obvious spatial heterogeneity, and
the areas with a decreasing annual surface albedo are mainly distributed in the edge of
the QM, such as the Qinghai Nanshan, the Shule River Basin, and the Heihe River Basin,
accounting for about 39.6% of the total area. Most regions show an increasing trend, and
the areas with increased annual surface albedo are mainly distributed in Hark Mountain,
Shulenan Mountain, Tulainan Mountain, Tulai Mountain, Datong Mountain and Daban
Mountain, accounting for about 60.4% of the total area. Besides, the insignificant areas
account for 85.7% of the total area, while the significant areas only account for 14.3% of
the total area. The areas with significantly increased annual surface albedo are located in
the Tulai Mountain, Datong Mountain and Daban Mountain, accounting for 8.2% of the
total area, and areas with significantly decreased annual surface albedo are located in the
Qinghainan Mountain, Shule River Basin, and Heihe River Basin, accounting for 6.1% of
the total area (Figure 7b).

Figure 7. Spatial distributions of (a) interannual trend of land surface albedo and (b) the areas with
the trend that passed the significance test at the 0.05 level in the QM.

4.5. Analysis of Influencing Factors of Surface Albedo at a Spatial Scale

Section 4.3 discusses the influencing factors for the regional average interannual
variation of the surface albedo. This part focuses on the analysis of the spatially influencing
factors of the surface albedo variation. The surface albedo of the QM is not only sensitive
to changes in vegetation and snow cover, but also has a differentiation law with changes in
terrain such as altitude. To analyze the distribution characteristics of surface albedo and
the influencing factors in QM with different altitude gradients, the surface albedo and the
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influencing factors were divided according to the altitude of QM at an interval of 500 m
(Figure 8). With the increase of altitude, the vertical distribution of surface albedo, snow
cover, and vegetation cover in the QM changes significantly. A total of 81.8% of the QM
are located at the altitude of 3000–4500 m. Overall, the surface albedo and snow cover
increase with the increase of altitude; the NDVI shows a trend of first increase and then
decrease with the increase of altitude; the snow cover dominates the spatial variation of
surface albedo. Further research found that the vertical changes of the surface albedo and
its influencing factors in different seasons are consistent with the average vertical changes
in many years. There are significant positive correlations between albedo and snow cover
and elevation. Therefore, altitude is another important influencing factor of the surface
albedo variation in the QM. It is worth noting that when the altitude exceeds 4500 m,
the increment rate of surface albedo in winter is not as obvious as that in other seasons.
Compared with Figure 9b, it is found that the snow cover rate in winter also decreases in
high altitude areas, and it is even smaller than that in other seasons. This may be the reason
why the surface albedo in winter is lower than that in spring in the area above 5000 m
above sea level.

Figure 8. The vertical distributions of regionally annual average land surface albedo snow cover, and
NDVI in the QM.

The spatial distribution of the interannual variation trend of snow cover has a good
correspondence with the surface albedo. Specifically, the significant increase in snow cover
is distributed in the south of Har Lake, the south of Qinghai Lake, Tulai Mountain, Datong
Mountain, and Daban Mountain (as shown in Figure 10a), and the surface albedo also
shows an increasing trend in these regions. This indicates that snow cover is an influencing
factor of the significant increase in surface albedo in the central QM. Comparing the
interannual variation trend of surface albedo and NDVI (Figure 10b), it is found that the
spatial distribution of surface albedo and the interannual variation trend of NDVI also has
a good correspondence: the areas with improved vegetation coverage is almost the same as
those with reduced surface albedo. This suggests that the changes in the vegetation cover
in these regions is also an important factor of surface albedo changes.
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Figure 9. The vertical distributions of (a) land surface albedo and its influencing factors ((b) snow
cover and (c) NDVI) in four seasons in the QM.

 
Figure 10. Spatial distributions of interannual trends of annual average (a) snow cover and (b) NDVI
showing the interannual change rates that passed significance test at the 0.05 level in the QM.

The distribution of spatial correlation coefficients between surface albedo and influ-
encing factors (Figure 11) shows that snow cover and vegetation have significant feedback
on the changes of surface albedo. Surface albedo is significantly positively correlated with
snow cover in most parts of the QM but negatively correlated with NDVI (Figure 11).
Specifically, the surface albedo and snow cover rate are significantly positively correlated
(with a correlation coefficient higher than 0.8) in the areas including Datong Mountain,
Tulai Mountain, Hark Mountain, Zhongwunong Mountain, and the west of Tergun Daban
Mountain (Figure 11a), accounting for about 72% of the total area. The areas showing a
negative correlation between surface albedo and NDVI are distributed in the Shule Lake
Basin, Heihe River Basin, Qinghainan Mountain, etc. (Figure 11b), which correspond to
the areas with significantly improved vegetation coverage. Besides, there are sporadic
positive correlations near the Qaidam Basin and Qinghai Lake, and these areas may have a
combined effect of vegetation and snow cover on surface albedo changes [6]. Combining
Figures 7b and 10b, it is found that an increase in NDVI in the low vegetation coverage
area in the northern QM contributes to a decrease in albedo.

104



Remote Sens. 2022, 14, 1922

 
Figure 11. Spatial distributions of correlation coefficients between annual average land surface albedo
and influencing factors ((a) snow cover and (b) NDVI) in the QM. The blank area in the study area
indicates the area where the correlation coefficient fails the 0.05 significance level test.

5. Conclusions and Discussion

In this paper, the temporal and spatial dynamic distribution of surface albedo and
its influencing factors in the QM from 2001 to 2020 are analyzed by using the MODIS
MCD43C3 V006 product, combined with snow cover and NDVI data. The following
conclusions are drawn.

(1) The multi-year average surface albedo in the QM is about 0.25, and there are obvious
differences in the spatial distribution. Overall, the surface albedo increases with the
altitude, and it is high in the west and low in the east. The areas with significant
interannual changes include Daxue Mountain, Tulainan Mountain, Tergun Daban
Mountain, Shulenan Mountain, and other high-value areas.

(2) The spatial distribution of surface albedo in the QM differs in different seasons. The
order of surface albedo in the four seasons is winter > spring > autumn > summer,
where the spatial distribution of surface albedo in spring and autumn is similar.

(3) From 2001 to 2020, the interannual variation of the annual average surface albedo in
the QM showed a slight upward trend, with a change rate of 5.0 × 10−3/10a. The
fluctuation of the surface albedo in the study period was obviously more significant
than that in the previous 10 years. Snow cover showed a slight increase during this
period, and there was a significant positive correlation between surface albedo and
snow cover rate. NDVI showed a significant upward trend, indicating that the overall
vegetation was improving. Before removing the linear trend of the surface albedo and
NDVI, there was a weak positive correlation between the two; when the linear trend
was removed, a negative correlation was found between the two.

(4) The annual and interannual variations of the surface albedo in the QM are closely
related to the surface cover. The annual variation of surface albedo is “U” shaped,
with the largest variation in January and the smallest variation in August, which
is positively correlated with snow cover and negatively correlated with NDVI. As
for interannual variation, the increase of the regional average surface albedo is sig-
nificantly related to the increase of snow cover. In terms of spatial distribution, the
interannual variation of the surface albedo in most areas of the QM is mainly affected
by the change of snow cover. The improvement of vegetation cover in marginal areas
is the main factor of the significant decrease of surface albedo in these areas.

The MODIS surface albedo maintains a good consistency with the ground observations
in most time periods, and the inversion accuracy is high [33,50]. Zhang et al. (2021) found
that MODIS remote sensing data has good applicability in the QM, and it can be used to
study the temporal and spatial changes of snow albedo. In the plateau area, the accuracy of
MODIS surface albedo inversion results is not high enough, but after manual analysis and
elimination of errors, the root mean square error of the surface observation results can be
reduced to 0.00329, which can fully meet the accuracy requirements of climate and land
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surface process models [51]. In addition, long-time-series surface albedo datasets remove
the uncertainty of trend analysis greatly, which is crucial for evaluating surface albedo
trends [8].

The Earth’s surface comprehensively manifests various ground features and is com-
plex and changeable, which makes the surface albedo vary greatly in space and time.
NDVI is one of the most commonly used vegetation indices, which can accurately reflect
characteristics such as vegetation cover density and growth [41,47]. When NDVI gradually
increases from a small value, the surface albedo decreases rapidly. Then, as the NDVI
continues to increase, the surface albedo decreases slowly. When NDVI > 0.5, the surface
albedo almost does not change with the change of NDVI [52]. In addition, ice and snow are
highly positively correlated with surface albedo. Usually, the albedo of old snow is 0.7–0.8,
and that of new snow is 0.8–0.9 [19]. As time passes, the new snow will be granulated, the
grains will be deformed and continuously densified, the particle size will increase, and the
pollution will deteriorate. The relationship between the albedo with ice and snow states
is as follows: fresh snow > old snow > grain snow > glacier ice > contaminated glacier
ice [5,52]. In recent years, under the warming and humidification in the plateau region, the
significant changes in the surface cover have caused corresponding changes in the surface
albedo, and the surface albedo will react to climate change, thus affecting the regional
climate system substantially [2,5,8].

The change of surface albedo in different regions is closely related to the terrain
and surface coverage [53]. This study mainly focuses on the relationship between surface
albedo and its influencing factors (snow cover, vegetation, and altitude). However, different
vegetation cover types make different contributions to surface albedo [54], and further
investigation is needed to more accurately monitor vegetation dynamics and understand
the impact of surface albedo on ecosystems. In recent years, the local ecological environment
damage in the QM has attracted much attention. In response to the ecological problems in
the QM, the state has successively adopted a number of remediation measures to strengthen
ecological environment protection and ecological restoration in the QM. The rectification
and supervision of human activities such as mineral resources development, tourism
activities, grazing, and water and soil resources in the QM have achieved initial results.
From 2001 to 2020, the vegetation in the QM showed significant improvement, mainly
distributed in the Shule River Basin, the Heihe River Basin, and the relatively low-altitude
mountains in the Qinghai Lake Basin. Meanwhile, the snow cover increased significantly
in the relatively high-altitude Qinghainan Mountain, Datong Mountain, Daban Mountain,
and other areas. The improvement of vegetation coverage will cause the surface albedo to
decrease, and through the negative feedback of the surface albedo, it will further promote
the vegetation, so that the albedo will continue to decrease. The increase of ice and snow
coverage will cause the surface albedo to increase, and positive feedback will be formed
between ice and snow, albedo and temperature. Based on this, the area of ice and snow
will be further expanded, and the albedo will continue to increase. Besides, other factors,
such as soil moisture and slope aspect, also affect the surface albedo, and future studies
will investigate these factors with high-resolution data. Through the understanding of the
surface albedo feedback mechanism, the relationship between climate change and human
activities can be deeply understood, thereby providing a scientific basis for the win-win
green development of ecological livelihoods in the QM.
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Abstract: Warmer or cooler spring in northern high latitudes will, for the most part, directly impact
gross primary productivity (GPP) of ecosystems, but also carry consequences for the upcoming
seasonal GPP. Spatiotemporal patterns of these legacy effects are still largely unknown but important
for improving our understanding of how plant phenology is associated with vegetation dynamics.
In this study, impacts of spring temperature anomalies on spring, summer and autumn GPP were
investigated, and the dominant drivers of summer and autumn GPP including air temperature, vapor
pressure deficit and soil moisture have been explored for northern ecosystems (>30°N). Three remote
sensing products of seasonal GPP (GOSIF-GPP, NIRv-GPP and FluxSat-GPP) over 2001–2018, all
based on a spatial resolution of 0.05°, were employed. Our results indicate that legacy effects from
spring temperature are most pronounced in summer, where they have stimulating effects on the
Arctic ecosystem productivity. Spring warming likely lessens the harsh climatic constraints that
govern the Arctic tundra and extends the growing season length. Further south, legacy effects are
mainly negative. This strengthens the hypothesis that enhanced vegetation growth in spring will
increase plant water demand and stress in summer and autumn. Soil moisture is the dominant control
of summer GPP in temperate regions. However, the dominant meteorological variables controlling
vegetation growth may differ depending on the GPP products, highlighting the need to address
uncertainties among different methods of estimating GPP.

Keywords: carry-over effects; gross primary productivity; phenology; GOSIF; NIRv; FluxSat

1. Introduction

The last decades have seen a rapid increase in global temperatures, particularly more
pronounced in the northern high latitudes [1]. The rapid warming may lead to changes in
the timing of thermal growing seasons and phenological cycles of plants [2]. Earlier onsets
of spring, increased frequency of droughts as well as changing precipitation patterns have
been observed [1]. These changes may induce direct and legacy effects on ecosystem gross
primary production (GPP—the gross uptake of carbon dioxide (CO2) by plant photosyn-
thesis) as well as various types of climate feedback associated with ecosystem responses to
climatic warming [3,4].

Direct impacts on growing-season vegetation productivity due to seasonal warming
or drought have been studied previously [5,6]. Spring warming directly affects the onset
of leaf growth by advancing bud-burst, leading to increases in spring GPP (GPPspring)
and a generally earlier greening of vegetation [7,8]. Summer warming may have positive
effects on Arctic and alpine biomes. Based on annual shrub ring-width measurements
and long-term meteorological records, growth of both evergreen and deciduous dwarf
shrubs were found to be stimulated due to summer warmth [9]. However, severe and
long-lasting warming events, i.e., heat waves, may dampen vegetation productivity due to
soil moisture deficits, or reach the thermal tolerance threshold of photosynthetic decline in
forest growth [10,11]. Similarly, autumn warming can enhance photosynthesis rates via the
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delayed senescence of plants, however, soil decomposition can also increase, leading to net
carbon losses of the ecosystems during this season [12].

Nevertheless, the legacy effects of spring temperature (Tspring) anomalies on seasonal
GPP is known to a lesser degree. Currently, even the state-of-the-art terrestrial biosphere
models struggle to implement them [3]. As noted by [5], most carbon-cycle models seem to
overestimate the positive legacy effects on GPP caused by spring warming and underesti-
mate the potential influence of built-up water stress. Accurately assessing direct and legacy
effects of seasonal warming on vegetation productivity is important, as vegetation is a key
component of the global carbon, water and energy cycles, and its responses may trigger
biogeochemical and biophysical climate feedback [13]. A proper understanding of these
highly dynamic systems is crucial, particularly for our general ability to accurately predict
and mitigate climate impacts, as well as adapting our society to a changing climate [14].

Recent works [5,6,15] indicate that annual GPP can be suppressed or stimulated by
both cooler and warmer springs. For example, boreal forests have seen a dampening effect
on peak summer productivity related to early springs [16,17]. The suppressed vegetation
productivity in summer can be caused by soil moisture deficits resulting from winter
precipitation and early onset of vegetation. Other northern ecosystems, mainly dominated
by graminoids, lichens and deciduous shrubs, have been shown to benefit from a fairly
early date of snowmelt, as many such species are unable to accelerate or adapt their rate
of phenological development [18,19]. The delayed outcome, or carry-over effect, thus
depends on a combination of several factors, including meteorological and environmental
conditions, vegetation composition and phenological responses of vegetation, but as of now,
a comprehensive understanding of how these factors interplay remains lacking. Earlier
research in this area has attempted to address these questions utilizing data sets with
relatively coarse resolution (50 × 50 km2) based on the Normalized Difference Vegetation
Index (NDVI) (e.g., [10,16]). As vegetation response to warming is spatially non-uniform,
such a coarse resolution may fail to represent explicit details of greening and browning
trends of different ecosystems. Moreover, NDVI is often claimed to misrepresent the non-
linear nature of vegetation responses, and is thus regarded as less efficient to be a proxy of
GPP [20,21].

Recently, a few novel products have been tested and regarded as more robust prox-
ies for canopy structure, leaf pigment content, and, subsequently, plant photosynthetic
potential. Among these products, GOSIF (Global Orbiting Carbon Observatory-2 Solar-
Induced Chlorophyll Fluorescence data set)-GPP, NIRv (Near-Infrared Reflectance of ter-
restrial vegetation)-GPP and FluxSat (Fluxnet data fused with satellite images)-GPP, based
on Solar-Induced chlorophyll Fluorescence (SIF), canopy near-infrared reflectance, eddy
flux and satellite data fusion, respectively, are shown to better reflect photosynthetic
activities [22–25]. In this study, we have utilized these three products, and the approach of
each product is distinctly different from the others. Based on a higher spatial resolution
(0.05°), we aim to explore the direct and legacy effects of spring temperature anomalies on
seasonal GPP with greater detail and accuracy.

We have hypothesized that direct and legacy effects of spring warming or cooling, will
either stimulate or suppress GPP in summer, autumn or across both seasons. This, in turn,
depends on amplified or dampened water stress, the sensitivity of plant species to summer
warmth and biological conditions of spring. The summer response of GPP can further affect
the autumn phenology by advancing or delaying the senescence of plants. Therefore, the
main aims are to answer the following questions: (1) What are the geographical distribution
and patterns of direct and lagged responses of GPP to spring temperature anomalies?
(2) How does each biome respond to these direct and lagged effects? (3) How do the
dominant drivers (environmental variables, current and pre-seasonal GPP) explain summer
and autumnal GPP? For environmental variables, this study only considers warming
and drought-related variables, that is, temperature, soil moisture and vapor pressure
deficit (VPD).
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2. Materials and Methods

2.1. Study Area and Biome Classification

The study area covers land areas (∼41 million km2) located north of 30◦N, encom-
passing several land cover types from the Arctic/subarctic tundra in the high latitudes
to temperate forests and grasslands in the south. Regions located north of 30◦N have
manifested a strong seasonality for climatic thermal conditions and vegetation productivity
in the growing season. To make our results comparable to many other studies, the seasons
were defined as: spring (March, April, and May), summer (June, July, and August) and
autumn (September, October, and November). The biome classification used in this study
was based on the global 0.05◦ land cover data set from the Terra and Aqua Combined
Moderate Resolution Imaging Spectroradiometer (MODIS) Land Cover Climate Modeling
Grid (MCD12C1) Version 6 Yearly L3 Product [26] and the Köppen–Geiger climate map
(1 × 1 km2) of the world [27,28] for the year 2011. The MODIS land cover data set uses the
biome classification scheme of the International Geosphere-Biosphere Programme (IGBP),
which was to generate 17 land classes to meet the needs of the IGBP core science projects
relevant to climate, carbon cycle, and others [29]. To separate alpine and high arctic tundra
from low-laying temperate grasslands or shrublands, the MODIS grasslands were divided
into temperate and arctic grasslands and the MODIS shrublands were divided into tem-
perate and arctic and boreal shrublands. Overall, there are 12 terrestrial biomes that were
included in the study area: evergreen needleleaf forests (ENF), evergreen broadleaf forests
(EBF), deciduous needleleaf forests (DNF), deciduous broadleaf forests (DBF), mixed forests
(MF), arctic and boreal shrublands (ABS), temperate shrublands (TS), savanna (SV), arctic
grasslands (AG), temperate grasslands (TG), permanent wetlands (PW), and croplands
(CRO) (Figure A1). A more thorough description of each biome type is given in Table 1.

Table 1. Definitions of the 12 terrestrial biomes were developed by [26]. Grass- and shrublands were
further divided in Arctic/boreal and temperate groups according to [27,28].

Name Short Name Description

Evergreen needleleaf forests ENF
Dominated by Evergreen conifer
trees, (canopy > 2 m).
Tree cover > 60%

Evergreen broadleaf forests EBF
Dominated by evergreen
broadleaf and palmate trees
(canopy > 2 m). Tree cover > 60%

Deciduous needleleaf forests DNF
Dominated by deciduous needleleaf
(larch) trees (canopy > 2 m).
Tree cover > 60%

Deciduous broadleaf forests DBF
Dominated by deciduous broadleaf
trees (canopy > 2 m).
Tree cover > 60%

Mixed forests MF

Mixed between deciduous and
evergreen (40–60% of each
tree type) (canopy > 2 m).
Tree cover > 60%

Arctic and boreal shrublands ABS
Dominated by woody perennials
(1–2 m height) including
both closed and open shrublands

Temperate shrublands TS
Dominated by woody perennials
(1–2 m height) including
both closed and open shrublands

Savanna SA Tree cover 10–30% (canopy > 2 m).
Arctic grasslands AG Dominated by herbaceous annuals (<2 m).

Temperate grasslands TG Dominated by herbaceous annuals (<2 m).

Permanent Wetlands PW
Permanently inundated lands with 30–60%
water cover and >10% vegetated cover.

Croplands CRO At least 60% of area is cultivated cropland.
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2.2. Data Sets of Gross Primary Productivity

All three GPP data sets used in this study can be retrieved freely from the links listed
in the Data Availability Statement, and also viewed in Table 2. The time-span of the analysis
(2001–2018) was confined by the availability of the NIRv-GPP product, which has only
been processed to the year 2018.

2.2.1. GOSIF-GPP

The monthly 0.05◦ GOSIF-GPP product (2001–2018) used in this study is generated
based on a global SIF data set from the Orbiting Carbon Observatory-2 (OCO-2) (i.e., GOSIF)
and its biome-specific linear relationship with the measured GPP [30]. The GOSIF-GPP
data set was estimated using a data-driven model, in which variables reflecting vegetation
conditions, meteorological conditions, and land cover information were used as model
input [31]. It is based on SIF observations made by NASA’s sun-synchronous and polar
Orbiting Carbon Observatory-2 (OCO-2) (launched 2014). SIF retrieved by OCO-2 has a
higher resolution (1.3 × 2.25 km2) and data acquisition rate compared to, e.g., GOSAT or
Global Ozone Monitoring Experiment (GOME). These measurements are still too spatially
sparse to provide a data set with 0.05◦ (spatial) resolution over a long-term period. The
authors of [30] used eight biome-specific linear relationships between SIF and GPP, in
combination with machine-learning techniques to create a global coverage (0.05◦) of SIF-
based GPP from the year 2001 to 2018. Climate data, such as air temperature, photosynthetic
active radiation (PAR), and VPD, was used in combination with the Enhanced Vegetation
Index (EVI) retrieved from MODIS MCD43C4v006 to help with calibration of SIF. Compared
to GPP retrieved from Eddy Covariance (EC) measurements of 91 sites (https://fluxnet
.org/data/fluxnet2015-dataset/, accessed on 6 March 2022, FLUXNET tier1) an overall
correlation coefficient (R2) between EC measurements and GOSIF-GPP is 0.71 (p < 0.001).

2.2.2. NIRv-GPP

The monthly global NIRv-GPP data set was derived based on the Advanced Very High
Resolution Radiometer (AVHRR) reflectance from LTDR (Land Long Term Data Record
v4) product [24]. NIRv is the product of total scene near-infrared reflectance (NIR) and
NDVI, commonly used as a proxy to represent vegetation productivity [23]. Based on
the established linear relationship between NIRv and EC flux-derived GPP from 104 flux
towers, the global monthly 0.05◦ of GPP data set was estimated. This approach yielded a
mean R2, around 0.70, for the validation sites. The NIRv-GPP data set uses no climate data
as input.

2.2.3. FluxSat-GPP

The third data set of monthly global GPP (0.05°) was derived based on the MODIS
MCD43C4v006 Nadir Bidirectional Reflectance Distribution Function-Adjusted Reflectance
(NBAR) product, SIF, PAR, plant and soil classification data, FLUXNET GPP, meteorological
and hydrological fields. These data sets were used as input to a neural-network model to
estimate GPP on a global scale [25].

Table 2. Main data sets used in the study. Bilinear interpolation was used to convert the ERA5land
climate data from 0.1◦ to 0.05◦. The time-span of the analysis (2001–2018) was confined by the
availability of the GPP-data products.

Name Spatial Temporal Time Span Data Source

GOSIF-GPP 0.05◦ monthly 2001–2018 [30]
NIRv-GPP 0.05◦ monthly 2001–2018 [24]

FluxSat-GPP 0.05◦ monthly 2001–2018 [25]
MODIS land cover (MCD12C1 v006) 0.05◦ yearly 2011 [26]

the Köppen–Geiger climate map 1 km static 2007 [27,28,32]
ERA5-land (air temperature, soil moisture and VPD) 0.1◦ monthly 2001–2018 [33]
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2.3. ERA5-Land Air Temperature, Soil Moisture and Vapor Pressure Deficit

ERA5-Land is the high-resolution land component product based on the fifth gener-
ation of the European ReAnalysis (ERA5) data set, which is used as forcing to drive the
European Centre for Medium-Range Weather Forecasts (ECMWF) land surface model [33].
It provides a consistent view of the evolution of land variables over several decades at an
enhanced resolution (9 km) compared to the reanalysis products such as ERA5 (31 km) and
ERA-Interim (80 km). The added values of ERA5-land consist of improved representation
of hydrological cycle, including soil moisture, river discharge and lake description [33]. We
used 2 m air temperature, 2 m dew-point temperature, soil moisture (0–7 cm), and surface
pressure from the ERA5-land product. VPD was calculated based on 2 m air and dew-point
temperature and surface pressure [34].

2.4. Pre-Treatment of the Data

The spatial resolution of all the data sets in this study needs to be aligned and com-
patible to be able to produce viable correlations. The spatial scale chosen for this study is
0.05◦, and data with a lower resolution thus needs to be converted. This conversion was
performed using bilinear interpolation. The spatial resolution (0.05◦), that each pixel covers
varies across the study-area, and mainly depends on the latitude. Hence, the pixels in the
further north cover a smaller area than in the south. However, this is believed to have a
marginal effect on the results, since the GPP products are measured as densities (meaning
they are area-independent), rather than quantities.

The correlations between climate variables were calculated between anomalies (z-
scores) relative to the mean of the period 2001–2018. z-scores were calculated according to
Equation (1).

z =
x − μ

σ
(1)

where μ is the seasonal mean of the whole time period per grid-cell and σ is the standard
deviation. The raw number x can thus be more easily interpreted in terms of standard
deviations and whether the anomaly is positive or negative compared to the seasonal mean.

2.5. Pearson’s Correlations between Tspring Anomalies to GPPsummer and GPPautumn Anomalies

The main approach for assessing legacy affects of spring temperature on plant produc-
tivity and their associated drivers was to use Pearson’s correlation and partial correlation.
This method has often been adopted by previous studies (e.g., [35,36]) which attempt
to identify the dominant drivers for GPP or plant phenology. GPPsummer and GPPautumn
anomalies were the predicted variables, and temperature, soil moisture, VPD, and pre-
season GPP anomalies were predictive variables (Table 3). Direct correlations between
Tspring anomalies and Tsummer anomalies were calculated to gain an overview of the tran-
sition patterns for the legacy effects. Possible co-varying effects between environmental
variables were accounted for when performing partial correlations. This yields a clear
picture of the degree of correlation between any individual environmental variable and
summer/autumn GPP. The correlations were based on 18 years of data (2001–2018) per
individual grid-cell. The statistical significance was tested based on p-values, and only
correlations with (p < 0.05) were kept. The set of variables was chosen to see how lagged
effects from pre-season GPP anomalies correlate to summer/autumn GPP anomalies and
how they compare to direct climate effects from soil moisture, air temperature, and VPD
anomalies. The dominating variable per grid-cell was determined by selecting the maxi-
mum partial correlation value (absolute value) to create a spatial representation of which
out of pre-season GPP, soil moisture, air temperature, and VPD that dominates in regulating
seasonal plant productivity.
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Table 3. Direct correlations between spring temperature and GPP anomalies, as well as two sets of
variables (pertaining to summer and autumn GPP anomalies) were used in correlation analysis. All
variables were converted into anomalies based on Equation (1) before Pearson’s correlations were
performed.

X: Predictive Y Type

Spring: T Spring: GPP Pearson, Direct
Spring: T Summer: GPP Pearson, Direct
Spring: T Autumn: GPP Pearson, Direct
Spring: T, GPP, Summer: T, SM, VPD Summer: GPP Pearson, Partial
Spring: T, GPP, Summer + Autumn: T, SM, VPD Autumn: GPP Pearson, Partial

The Tspring anomalies correlation to GPPsummer and GPPautumn was further investigated
by looking at the transition patterns between summer and autumn. Eight transition
patterns were identified: +−, −+, ++, −−, +/, −/, /+ and /−. The plus, minus,
and slash signs denote positive, negative, or non-significant impact, respectively, and the
position reveals whether it affects GPPsummer or GPPautumn. Further, the statistical spread
of Tspring anomalies correlations was also determined for each biome to assess whether the
aggregated overall impact could be considered neutral, positive or negative. The mean
value of the correlation coefficients grouped per biome-type was determined as the defining
factor of this.

2.6. General Overview of Methodology

An overview of the workflow in this study is given in Figure 1, which illustrates the
order of the main procedures. The methodology follows a similar scheme of comparable
studies [5,6]. The data analysis was performed using Mathworks MATLAB, version 2020a.

Figure 1. The diagram of the study workflow. The input data (depicted in orange color) underwent
pre-processing and statistics calculations (depicted in blue color), eventually leading to the main
results (depicted in green color).

3. Results

3.1. Effects of Tspring Anomalies on Current and Post-season GPP

Pearson’s correlations between Tspring and GPPspring showed similar spatial patterns
in all three GPP products (Figure 2a–c). A high positive correlation dominated the mid-
and high latitudes. Only the southwestern part of North America and South Asia showed a
negative correlation. The same pattern was seen in all three products, however, NIRv-GPP
had fewer significant correlations, resulting in a sparser pattern.
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Figure 2. Pearson’s correlations (p < 0.05) between Tspring anomalies and GPPspring (a–c)/GPPsummer

(d–f)/GPPautumn (g–i).

Lagged effects of Tspring anomalies on GPPsummer showed fairly similar effects on
certain land areas, and a larger difference among different GPP products was noticeable
in the Arctic tundra and North Eurasia (Figure 2d–f). All three GPP products showed
negative correlations in North America as well as Southeast Eurasia. The Arctic displayed
clear positive effects in GOSIF-GPP and FluxSat-GPP, whereas negative effects dominated
the response in NIRv-GPP.

Legacy effects from Tspring anomalies on GPPautumn were consistent to legacy effects
from summer in the large southern areas (Figure 2g–i). However, GOSIF-GPP showed
positive effects in North America, where negative effects were found in NIRv-GPP and
FluxSat-GPP. Particularly, PW (Hudson Bay and West Siberia) showed strong negative
effects in FluxSat-GPP. Some sporadic patches of positive correlations in Eurasia were also
found in NIRv-GPP and FluxSat-GPP.

3.2. Latitudinal Distributions for Legacy Effects of Tspring Anomalies on GPPsummer
and GPPautumn

Latitudinal distributions for legacy effects of Tspring anomalies on GPPsummer and
GPPautumn were quantified based on their Pearson’s correlation coefficients (mean and
one standard deviation) calculated across all the longitudes at each latitude interval of
0.05◦ (Figure 3). As the legacy effects largely oscillated in the high latitudes, the results
were shown based on a moving average of every five pixels along the latitude. In general,
all three GPP products showed positive legacy effects in most areas at north of 70◦ and
negative legacy effects in lower latitudes. GOSIF-GPP and NIRv-GPP had a fairly similar
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distribution of the legacy effects on GPPsummer, however, NIRv-GPP and FluxSat-GPP had a
similar distribution of the legacy effects on GPPautumn. FluxSat-GPP differed from the other
two in regards to GPPsummer, where positive legacy effects began to dominate further south,
at ∼43◦N compared to >60◦N for GOSIF-GPP and NIRv-GPP. FluxSat-GPP also displayed
a strong negative peak at 55◦N–60◦N for GPPautumn, which almost has an inverse pattern
of the legacy effects seen in summer.

Figure 3. Latitudinal distribution of Pearson’s correlations (p < 0.05) between Tspring anomaly
to summer (green) and autumn (orange) GPP anomaly, for: (a) GOSIF-GPP, (b) NIRv-GPP, and
(c) FluxSat-GPP. The shaded area represents one standard deviation for the pixels with each latitude
intervals (0.05◦). The solid line represents the mean values for the pixels with each latitude intervals.
All the values have been processed using the moving average of every five consecutive latitudes.

3.3. Effects of Tspring Anomalies on GPPspring, GPPsummer, and GPPautumn for Each Biome

Effects of Tspring anomalies on GPPspring, GPPsummer and GPPautumn were aggregated
for each biome based on all three GPP products (Figure 4). Results between GOSIF-GPP,
NIRv-GPP and FluxSat-GPP were similar, but differed on certain biomes. In general, the
forest biomes had a smaller statistical spread around negative correlations, meaning that
these negative effects were specific to trees rather than herbaceous vegetation. The other
biomes had a wider statistical spread, stretching across both positive and negative impacts,
meaning that the overall impact is more neutral. FluxSat-GPP, on average, showed more
positive correlations, particularly in summer. ABS and AG stood out from the rest with
overall positive impacts, implying that drought propagation from increased Tspring is not
promoted to the same extent here, as seen in biomes located further south.
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Figure 4. Boxplot of Tspring correlation coefficients to GPPspring, GPPsummer, and GPPautumn (spring:
light green, summer: green and autumn: orange), for: (a) GOSIF-GPP, (b) NIRv-GPP, and (c) FluxSat-
GPP. The mean value is represented by a small circle, and the median by a line.
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3.4. Transition Patterns for Legacy Effects of Tspring on GPPsummer and GPPautumn

How legacy effects of Tspring propagated through summer and autumn was investi-
gated based on spatial distribution of transition patterns and their aggregation for different
biomes (Figure 5). Insignificant correlations are denoted by /, positive by +, and negative
by −. The majority of legacy effects was found either in summer or autumn, meaning that
the legacy effects only propagated one season. GOSIF-GPP and NIRv-GPP were dominated
by a negative impact in summer (−/), whereas FluxSat-GPP revealed more pixels of a
positive impact in summer (+/) and a negative impact in autumn (/−). This means that
the timing of water-stress induced by the pre-season stimulated vegetation growth may
vary between the GPP data sets.

Figure 5. Transition patterns of legacy effects from Tspring anomalies on GPPsummer and GPPautumn for
each biome, for: (a) GOSIF-GPP, (b) NIRv-GPP, and (c) FluxSat-GPP. The labels should be interpreted
as follows: +− means there was a positive significant impact seen in summer and a negative in
autumn, /− means there was an insignificant correlation seen in summer and a significant negative
correlation in autumn). There were a total of eight different transition patterns excluding //, which
means no significant legacy for both summer and autumn.

Separating the transition patterns based on biomes further reveals the similarity
between GOSIF-GPP and NIRv-GPP, that is, the northern biomes (ABS and AG) showed a
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clear positive impact during summer. However, FluxSat-GPP showed positive impact in
wetlands (PW), savannas (SV) and DNF during summer.

3.5. Dominant Drivers for GPPsummer and GPPautumn

The dominant drivers for GPPsummer showed similar spatial patterns in all three GPP
products (Figure 6a–c). In summer, the arctic plant productivity was strongly correlated
with temperature, whereas temperate regions showed soil moisture (SM) as the dominant
driver. These temperature-dominant patterns also agreed with the patterns for positive
legacy effects of Tspring on GPPsummer (Figure 3d–f). Legacy effects from GPPspring were the
dominant driver in many regions, but legacy effects from Tspring were not strong enough to
surpass the importance of other drivers.

Figure 6. Dominant variables that explain variance of GPPsummer (a–c) and GPPautumn (d–f) for
the three GPP products (i.e., GOSIF-GPP, NIRv-GPP, and FluxSat-GPP). The dominant driver was
identified based on the highest correlation coefficient (absolute value).

In contrast to summer, the dominant drivers of GPPautumn were more diverse among
the three GPP products (Figure 6d–f). GOSIF-GPP showed strong dependence on current
seasonal drivers (e.g., Tautumn, VPDautumn, and SMautumn). For NIRv-GPP, the legacy effects
were mostly dominated by GPPspring. For FluxSat-GPP, GPPsummer, Tsummer, and SMsummer
were found to be the most important drivers.

3.6. The Importance of Drivers on GPPsummer and GPPautumn Aggregated on the Biome Level

The important drivers for GPPsummer and GPPautumn were analyzed based on the biome
level (Figure 7). Both environmental variables and biological variables (i.e., pre-season
GPP) have been accounted for. Generally, the largest number of pixels that showed the
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significant correlation was found in FluxSat-GPP, followed by GOSIF-GPP and NIRv-GPP
(Table 4). For the spatial patterns of the dominant driver, only the pixels with significant
correlations were considered.

Figure 7. Relative importance (%) of environmental and biological drivers on GPPsummer (a–c) and
GPPautumn (d–f) based on different biomes.

Table 4. Percentage of pixels with significant correlations, as seen in Figure 7 divided by biome-type
and season. The first three columns correspond to summer, and the following to autumn.

Summer Autumn
GOSIF-GPP NIRv-GPP FluxSat-GPP GOSIF-GPP NIRv-GPP FluxSat-GPP

ENF 46.18% 36.48% 56.66% 48.55% 47.24% 69.47%
EBF 59.94% 45.12% 68.81% 78.18% 63.39% 79.33%
DNF 39.11% 32.87% 53.77% 57.42% 36.52% 49.64%
DBF 58.45% 47.54% 44.92% 70.68% 47.96% 73.17%
MF 42.02% 41.90% 53.44% 52.64% 38.39% 63.91%
ABS 57.10% 25.67% 73.06% 48.50% 33.46% 46.82%
TS 85.36% 40.04% 81.64% 89.61% 54.85% 81.69%
SA 51.80% 34.46% 64.13% 51.20% 43.88% 60.05%
AG 62.32% 18.18% 59.88% 36.20% 19.67% 40.11%
TG 81.17% 56.69% 76.83% 62.53% 40.58% 63.32%
PW 51.81% 18.57% 57.05% 48.99% 24.44% 62.68%
CRO 76.06% 55.04% 57.67% 78.99% 50.22% 73.97%

The dominant driver varied depending on biome types, but overall, all three GPP
data sets showed that among all the biomes, the smallest legacy effects from pre-season
GPP were found in ABS and AG. These effects persisted in both summer and autumn. For
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these two biomes, temperature was the dominant driver for GPPsummer. However, for the
GPPautumn, VPD was the dominant driver in GOSIF-GPP and GPPsummer was the dominant
driver in NIRv-GPP and FluxSat-GPP. Generally, the forest biomes showed larger legacy
effects from pre-season GPP than other biomes in summer and autumn. For the current
season drivers (i.e., soil moisture, temperature, and VPD), the contributions to GPPautumn
were larger than GPPsummer. The contributions of these drivers were larger in GOSIF-GPP
than in NIRv-GPP and FluxSat-GPP. Croplands showed the least amount of effects from
the pre-season drivers.

4. Discussion

Tspring is reported to cause both negative and positive direct impacts on ecosystem
productivity [6,16], but our results make a case for the latter being the dominant influence,
at least in the mid- to high latitudes. Damage from, e.g., late spring frost events or acute
frost desiccation does not seem to override the growth caused by warming, at least on a
global scale. The only biome-type deviation from this trend is temperate shrublands, mainly
located in north Africa and Turkey, in other words, close to the southernmost borders of
our study area. These regions are known for their warm and dry climate. Warm springs
in these regions likely bring adverse effects on water-stressed plants, causing a negative
correlation.

The cohesive correlation trend between spring temperatures and spring productivity
does not persist in the same vein for the legacy effects. A warm spring will not necessarily
lead to the same legacy effects to summer and autumn productivity, as an unusually lush
and productive spring would. The fact that these two usually go hand in hand makes this
result somewhat surprising, but also highlights the importance of keeping these qualities
separate. The legacy effects from warmer springs with high ecosystem productivity also
differ strongly between GPP products. There are several uncertainties in the data sets that
could contribute to this. One possible explanation, pointed out in [37], is the difficulty to
separate snow cover decrease from leaf area increase. The spring months, particularly in
the northernmost regions, are often characterized by partially covered snow. Increasing
temperatures might lower the fraction of snow cover in spring, leading to a false signal
of greening.

Our results also indicate that forests overall had the most prevalent negative responses
from the legacy effects, whereas grasslands and shrublands showed an ambiguous response
(Figure 4). The patterns (i.e., narrow spread of correlation coefficients in forests and wide
spread of correlation coefficients in other types) are seen in all three GPP products. This
result is much in line with previous studies (e.g., [16–19]). The authors of [16] used the
Global Inventory Modeling and Mapping Studies (GIMMS) NDVI data set [38] and actual
evapotranspiration derived from the FLUXNET latent heat flux measurements [39] to
investigate the legacy effects of earlier springs on boreal forests in North America. They
found that earlier spring and associated drying in summer can cause a decline of vegetation
productivity due to increased tree mortality and fire activity. Possibly, the long seasonal
time frames that the legacy effects operate on better match the slow growth seen in forests.
In general, grasslands and shrublands are rapidly growing and changing across the seasons,
and respond more directly to current-season precipitation and soil moisture conditions.
The importance from previous seasons was then less evident. The legacy effects that were
visible for grasslands and shrublands mostly occurred during summer. Moreover, the soil
moisture data sets used in this study only reflected water contents of the topsoil horizon
(0–7 cm), which may explain that grasslands or shrublands with the low rooting depth are
more sensitive to the topsoil moisture condition than forests. This agrees with a study [40]
which is based on eddy covariance measurements of carbon flux for Swiss forests and
grasslands. They found that grasslands are more sensitive to spring drought because forests
can reduce their evapotranspiration to increase the water use efficiency reflecting a better
adaptive strategy.
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Significant difference between GOSIF-GPP, NIRv-GPP, and FluxSat-GPP is a recurring
theme for our results. Most likely, this is explained by fundamental differences in the models
used to up-scale the data sets, as well as the measurement gaps that occur between different
sensors. Satellite data sets of even higher spatial resolutions and quality might be necessary
to bridge this gap and create a cohesive signal. On average, the least amount of significant
correlations was seen using the NIRv-GPP product. Possibly, it has a weaker connection
to surrounding climate variables than the other two products, as this data set relies more
heavily on spectral radiation measurements. Further, outward disturbances on GPP, such
as forest fires, anthropogenic land-cover change, or insect attacks, are not accounted for.
Ideally, these factors should give rise to low significant correlations and thus be excluded
from the analysis. However, the extent to which this has occurred is unclear. The modeling
used to fill in the gaps for GOSIF-GPP and FluxSat-GPP could also, to some degree, explain
the differences seen in dominating drivers between the three products. Climate variables
such as soil moisture and temperature were generally considered more important for
GOSIF-GPP and FluxSat-GPP, possibly an echo from utilizing climate variables as input to
fill the gaps. Still, for the northern high latitudes, temperature increase has been shown to
be the main factor facilitating increased plant productivity in summer [37,41]. However, our
results also indicate a relatively cohesive north-south gradient trend of climate vegetation
controls during summer, meaning ambiguity between different data-sets and types of
vegetation indices can be bridged.

Further, the changes in the dominant climate drivers, particularly during the autumn
season, could be the result of a relatively marginal difference between a cluster of controls,
where the legacy effects from previous seasons also play an important part [42]. This
ambiguity between controls of the late season is to some degree also reflected in previous
research, e.g., work by [43] indicates that light limitation is also an important factor for
autumn productivity in northern ecosystems. To include this driver in our analysis might
therefore lead to a more cohesive result between products. In addition, [35,44] find that
there is a complex coupling between soil moisture and temperature, both of which seem
to be important controls towards the end of the growing season (a proxy for autumn
productivity in this context). In an increasingly warmer world, the limitations imposed by
temperature during autumn may shift to an expansion of mainly water-limited ecosystems,
where the legacy effects from previous seasons may be amplified even further.

5. Conclusions

Propagating impacts from spring growth and temperature anomalies have been shown
to affect summer and autumn ecosystem productivity in the Northern Hemisphere. These
legacy effects are mostly negative and set in either in summer or autumn. The forest
biomes (ENF, DBF, MF) show conclusive signals of negative impacts for all three GPP
products in summer and autumn, whereas shrublands, croplands, and wetlands have a
wider statistical spread between positive and negative impacts, leading to a more neutral
overall impact. Only the northernmost biomes, AG and ABS, seem to conclusively show
lagged positive impacts from spring temperature anomalies, which is important to account
for in carbon-cycle models.

Results also seem to depend on the type of method used to quantify GPP, which
somewhat may diminish the credibility of our findings. This mainly applies to the main
drivers that affect browning and greening trends seen in the seasonal GPP. The effect on
GPP from temperature change is most likely not linear and many factors are involved.
Continuous development of higher-resolution GPP data sets is needed to further assess
vegetation response to a warming climate.
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Abbreviations

The following abbreviations are used in this manuscript:

ABS Arctic and Boreal Shrublands
AG Arctic Grasslands
AVHRR Advanced Very High Resolution Radiometer
BRDF Bidirectional Reflectance Distribution Function
CRO Croplands
DBF Deciduous Broadleaf Forests
DNF Deciduous Needleleaf Forests
EBF Evergreen Broadleaf Forests
EC Eddy Co-variance
ECMWF European Centre for Medium-Range Weather Forecasts
ENF Evergreen Needleleaf Forests
EVI Enhanced Vegetation Index
FluxSat Fluxnet Data Fused with Satellite Images
GOME Global Ozone Monitoring Experiment
GOSIF the Global, OCO-2-based SIF Product
GPP Gross Primary Productivity
IGBP International Geosphere-Biosphere Programme
LTDR Land Long-Term Data Record
MF Mixed Forests
MODIS Moderate Resolution Imaging Spectrometer
NDVI Normalized Difference Vegetation Index
NIRv Near-infrared Reflectance of Vegetation
OCO-2 Orbiting Carbon Observatory-2
PAR Photosynthetic Active Radiation
PW Permanent Wetlands
SIF Solar Induced Fluorescence
SM Soil Moisture
SV Savannas
T Temperature
TG Temperate Grasslands
TS Temperate Shrublands
VPD Vapor Pressure Deficit
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Appendix A

Figure A1. In total, 12 biomes comprise the study area—Evergreen Needleleaf Forests (ENF), Ev-
ergreen Broadleaf Forests (EBF), Deciduous Needleleaf Forests (DNF), Decidous Broadleaf Forests
(DBF), Mixed forests (MF), Arctic and Boreal Shrublands (ABS), Temperate Shrublands (TS), Sa-
vannas (SV), Arctic Grasslands (AG), Temperate Grasslands (TG), Permanent Wetlands (PW), and
Croplands (CRO).
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Abstract: Understanding the responses of vegetation to climate extremes is important for revealing
vegetation growth and guiding environmental management. Guangxi was selected as a case region
in this study. This study investigated the spatial-temporal variations of the Normalized Difference
Vegetation Index (NDVI), and quantitatively explored effects of climate extremes on vegetation on
multiple time scales during 1982–2015 by applying the Pearson correlation and time-lag analyses.
The annual NDVI significantly increased in most areas with a regional average rate of 0.00144 year−1,
and the highest greening rate appeared in spring. On an annual scale, the strengthened vegetation
activity was positively correlated with the increased temperature indices, whereas on a seasonal
or monthly scale, this was the case only in spring and summer. The influence of precipitation
extremes mainly occurred on a monthly scale. The vegetation was negatively correlated with both
the decreased precipitation in February and the increased precipitation in summer months. Generally,
the vegetation significantly responded to temperature extremes with a time lag of at least one month,
whereas it responded to precipitation extremes with a time lag of two months. This study highlights
the importance of accounting for vegetation-climate interactions.

Keywords: vegetation dynamics; multiple time scales; extreme climate; NDVI; correlation; Guangxi

1. Introduction

As an irreplaceable component of terrestrial ecosystems, vegetation is a pivotal link
between the atmosphere and the land’s surface [1]. Vegetation shows a significant influ-
ence on the carbon cycle and the water balance, and changes in vegetation can alter the
ecology balance and the water cycle [2,3]. Climate change, especially increased climate
extremes [4–6], can have profound impacts on vegetation and ecosystems [7–14]. Therefore,
analyzing the vegetation variation and the influence of climate extremes on vegetation
dynamics can help evaluate ecological responses and guide environmental management.

The Normalized Difference Vegetation Index (NDVI) has been widely used to de-
tect vegetation dynamics and the response of vegetation to climate extremes [13–19]. In
the past decades, the regional average NDVI has showed an increasing trend in China
on the national scale [20,21], but there was a significant spatial heterogeneity of NDVI
trends [13,20–22]. Meanwhile, due to the uneven variation in the NDVI in each different
growing period, the analyses focusing on the annual or longer scales were not sufficient
to represent the variation details. Therefore, it is necessary to investigate the variation
characteristics of vegetation dynamics by considering different temporal scales in each
sensitive area.

The vegetation was greatly influenced by climate extremes, which varies by region,
season and scale [7,15,18,23]. The degree of vegetation responses to climate extremes
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showed great spatial heterogeneity [13,14,18,24–27], and the impact of extreme climate in-
dices varied among local, regional and national scales [18]. Extreme precipitation generally
promotes vegetation growth in most dry areas but has a negative influence on vegetation
in humid areas [18,20]. Nevertheless, extreme temperature is recognized to have a more
extensive and complex effect on vegetation in China [12,18]. In addition, the influences of
climate factors on vegetation often exhibit a time lag [28–30], and the time lag of vegetation
responses is generally shorter than a quarter of a year on a monthly scale [30].

Regarding the vegetation responses to climate variables, many studies have respec-
tively identified the temporal differences in the correlations between vegetation and extreme
climate indices, and the different time-lag effects of climate extremes on vegetation growth
in different spaces [12,20,21,28,31,32]. Exploring this relationship on a monthly scale can
help better understand the main limiting factors for vegetation growth compared with
those on a longer time scale [28]. An analysis of this correlation concentrating on only a
single time scale may underestimate the effect of climate change and cannot accurately
reflect the response mechanism of vegetation to climate variables [7,14,33]. Hence, it is
of great significance to study the relationship between vegetation dynamics and climate
extremes on different temporal scales. However, relatively little attention has been paid to
the implications of climate extremes for vegetation under multiple temporal scales.

Guangxi, located in the subtropical humid monsoon climate zone, has complex and
diverse landforms and mountains. It has widely distributed Karst landforms. Karst areas
usually feature a thin soil layer, low soil fertility, and serious soil erosion with many
exposed bedrocks highly vulnerable to climate extremes. Moreover, karst vegetation can
provide a great carbon sink function [34]. Rocky desertification was identified as the most
severe ecological problem threatening the productivity of agriculture, forestry, grassland
and livestock husbandry in the karst areas of southwest China [35]. Karst ecosystems are
characterized by low environmental capacity, high sensitivity, weak anti-interference ability
and ecological vulnerability. Thus, the fragile ecological environment makes it extremely
important to understand the responses of vegetation dynamics to extreme climate in
this region. Multiple time-scale analysis is necessary for the vegetation variation and
the assessment of climate extremes on vegetation over Guangxi. This kind of study can
provide knowledge for vegetation conservation and restoration of fragile ecosystems in
both Guangxi and other similar regions.

By taking Guangxi as a representative example of fragile regions, this study compre-
hensively investigated the spatial-temporal trends of NDVI and relations with climatic
extremes on multiple time scales (annual, seasonal and monthly). With a focus on the
differences in the effects of climate extremes on vegetation at different time scales, this study
tried to explore whether the effects of extreme climate on vegetation can be disentangled
from the baseline effect of climate on a time series. The layout of this paper is presented as
follows: Section 2 introduces the materials and methods. Section 3 elaborates the spatial-
temporal variations of NDVI and the correlations between NDVI and extreme climate
indices on different time scales. Section 4 discusses the results and Section 5 summarizes
the presented work.

2. Materials and Methods

2.1. Study Area and Data

Guangxi is located in the contiguous karst area of southwest China, with a Peak
Cluster Depression, a Peak Forest Plain and non-karst landforms. The variety of vegetation
is very comprehensive, such as coniferous forest, broadleaf forest, thicket, grass, and
cultivated vegetation. Guangxi is a national key forest region and one of the world’s top
sugar-producing areas. Crops mainly include double cropping rice, sugar cane, and corn.
The vegetation ecosystem in Guangxi is highly fragile because of the widely distributed
karst landform. Guangxi has a warm climate and abundant rainfall with annual total
precipitation above 1500 mm. Figure 1 shows the geographic location of the study area.
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Figure 1. Geographic location of the study area, and spatial distribution of meteorological stations and
land use land cover classes (LULC) (for the year 1980 and 2015, respectively). Note: The LULC data and
the digital elevation data were provided by the Resource and Environment Science and Data Center,
Chinese Academy of Sciences (https://www.resdc.cn/, accessed on 10 October 2021); the karst boundary
data were obtained from the World Map of Carbonate Rock Outcrops (http://web.env.auckland.ac.nz/
our-research/karst/, accessed on 14 June 2017).
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All data used in this study are described in Table 1. The daily data obtained from the
China Meteorological Administration include daily mean temperature, daily maximum
temperature, daily minimum temperature, and daily precipitation (http://data.cma.cn/,
accessed on 15 October 2019). This study selected 88 meteorological stations, each with a
58-year good and qualified data record (from 1961 to 2018). The karst boundary data were
obtained from the World Map of Carbonate Rock Outcrops (http://web.env.auckland.ac.
nz/our-research/karst/, accessed on 14 June 2017). The land use and land cover (LULC)
data with 1 km spatial resolution were provided by the Resource and Environment Science
and Data Center, Chinese Academy of Sciences (https://www.resdc.cn/, accessed on
10 October 2021). The sub-regions of the three vegetation types (farmlands, forests and
grasslands) were extracted from the LULC data. According to LULC maps of 1980 and
2015 (Figure 1d,e), the spatial patterns of farmlands, forests and grasslands did not change
very much in the past decades. In addition, urban, water and barren areas show little
vegetation cover, and therefore these areas were generally excluded from the spatial analysis
to diminish some effects of anthropological activities.

Table 1. Datasets used in this study.

Name Data Source Spatial Scale

Daily weather data China Meteorological Administration
(http://data.cma.cn/, accessed on 15 October 2019) -

Karst boundary data
World Map of Carbonate Rock Outcrops

(http://web.env.auckland.ac.nz/our-research/karst/,
accessed on 14 June 2017)

-

LULC data
Resource and Environment Science and Data Center,

Chinese Academy of Sciences
(https://www.resdc.cn/, accessed on 10 October 2021)

1 km

Digital Elevation data
Resource and Environment Science and Data Center,

Chinese Academy of Sciences
(https://www.resdc.cn/, accessed on 10 October 2021)

250 m

GIMMS NDVI3g data National Oceanic and Atmospheric Administration
(https://www.nasa.gov/nex, accessed on 7 December 2020)

1/12◦
(about 8 km)

At present, although a series of vegetation indices, such as the NDVI, the Soil adjusted
Vegetation Index (SAVI), and the Enhanced Vegetation Index (EVI), have been developed
to reflect changes in vegetation activities [36,37], the NDVI is still a good indicator when
dealing with large-scale vegetation coverage and greenness [9,14,18,27,38,39]. Thus, the
NDVI was employed as an indicator to monitor changes in vegetation activities in this
study. A higher NDVI value implies a higher density of green vegetation, and vice versa.

This study used NDVI data from the Global Inventory Monitoring and Modeling
Studies (GIMMS) NDVI3g dataset [40], which originated from the Advanced Very High
Resolution Radiometer (AVHRR) sensors of the National Oceanic and Atmospheric Ad-
ministration (NOAA) (https://www.nasa.gov/nex, accessed on 7 December 2020). The
GIMMS NDVI3g dataset has been corrected for radiometric calibration, atmospheric atten-
uation, cloud cover, sensor degradation, inter-sensor differences, view and illumination
geometry, orbital drift, volcanic aerosols, and other non-vegetation effects [41]. It has a
spatial resolution of 1/12◦ (about 8 km) and a temporal interval of 15 days. Although the
coarse spatial resolution of the dataset cannot be helpful to detect small scale changes, the
GIMMS NDVI dataset has a sufficient quality and the longest time series in the period from
1982 to 2015.

The GIMMS NDVI dataset has been evaluated through comparisons with other NDVI
products or ground-based validations [42–44]. For instance, Fensholt and Proud (2012) [43]
compared the performances of a time series of GIMMS NDVI with MODIS NDVI data
and found that the trends of the two datasets are basically consistent; the GIMMS NDVI
dataset has a significant correlation with ground-based observations in Eastern China [42].
Thus, the dataset performs well in exploring the long-term trend in vegetation greenness
and its relationship with climate factors, and its accuracy is relatively reliable [17,40,45,46].
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This study could use the GIMMS NDVI data directly. The monthly NDVI values were
obtained through the maximum-value composites (MVCs) method, which is the same as
that employed in Cui et al. (2019) [17]. The seasonal or yearly NDVI data were calculated
by averaging the monthly NDVI over the corresponding periods.

2.2. Methods

Figure 2 provides the flowchart of the approach of this study. The Expert Team on
Climate Change Detection and Indices (ETCCDI) has developed a suite of extreme climate
indices, including 16 temperature indices and 11 precipitation indices [47]. Guangxi has a
typical subtropical and Asian monsoon climate with generally sufficient rainfall (Figure 1a),
and the average temperature in the coldest mouth is above 10 ◦C. Based on these climate
characteristics of Guangxi, this study selected the 16 most relevant indices to reflect the
intensity and duration in climate extremes (Table 2). This study also analyzed the mean
value of the daily mean temperature (Tm) to supplement the extremes. All climate indices
were divided into three categories: annual indices, seasonal indices and monthly indices.
All these indices can be calculated on an annual basis and used as annual indices. In
addition, the 12 indices (Tm, TXm, TNm, DTR, TXx, TNx, TXn, TNn, Rx1day, Rx5day, SDII
and PRCPTOT) can be calculated not only on an annual basis, but also on a seasonal or
monthly basis. Thus, the 12 indices can also be used as seasonal and monthly indices by
being calculated for corresponding time scales. The kriging method was used to resample
the climate data of the meteorological stations to a spatial resolution of 8 km to spatially
match the NDVI dataset.

 
Figure 2. Flowchart of monitoring changes in vegetation dynamics and relations with extreme climate.
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Table 2. Definitions of extreme temperature indices in this study.

Indices Indicator Name Definition Unit

Tm Mean temperature Mean value of daily mean temperature ◦C
TXm Maximum temperature Mean value of daily maximum temperature (TX) ◦C
TNm Minimum temperature Mean value of daily minimum temperature (TN) ◦C
DTR Diurnal temperature range Mean difference between TX and TN ◦C
TXx Max TX Maximum value of daily maximum temperature ◦C
TNx Max TN Maximum value of daily minimum temperature ◦C
TXn Min TX Minimum value of daily maximum temperature ◦C
TNn Min TN Minimum value of daily minimum temperature ◦C

GSL Growing season length
Annually count between first span of at least
6 consecutive days with Tm > 10 ◦C and first
span after July 1 of 6 days with Tm < 10 ◦C

days

SU25 Summer days Number of days with daily maximum
temperature > 25 ◦C days

TR25 Tropical nights Number of days with daily minimum
temperature > 25 ◦C days

Rx1day Max 1-day precipitation amount Maximum 1-day precipitation mm
Rx5day Max 5-day precipitation amount Maximum consecutive 5-day precipitation mm

SDII Simple daily intensity index Total precipitation divided by the number of wet
days (defined as PRCP ≥ 1.0 mm) in the year mm/day

PRCPTOT Total wet-day precipitation Total precipitation in wet days (PRCP ≥ 1 mm) mm
R20 Number of very heavy precipitation days Annual count of days when PRCP ≥ 20 mm days
R50 Rainstorm Annual count of days when PRCP ≥ 50 mm days

Note: PRCP represents the daily precipitation.

The Theil–Sen (TS) median trend analysis method is less sensitive to observations of
missing time series and outliers in the time series [48]. Thus, this work used the TS slope
estimator β to analyze the variation trends in NDVI and climate indices over large temporal
scales. The calculation formula is as follows:

β = Median
[ xi − xj

i − j

]
for all j < i (1)

where 1 < j < i < n. β, the median of the slope of data combinations, indicates the variation
rate within the time series; i and j are the ordinal numbers of years (one is held constant
while the other is varied); xi and xj are the mean values within a certain time in the ith and
jth year; and n is the number of monitoring years (equal to 34 in this study). A positive
β-value indicates an increasing trend; a negative β-value indicates a decreasing trend; and
β + 0 indicates no change. The unit of the NDVI values is 1, and the unit of the NDVI rate β
is year−1 in this study.

The Mann–Kendall (MK) test [49] does not require the data to be distributed normally
or linearly. Thus, this study used the MK trend test to determine whether the trends were
significant. In addition, this study utilized the MK abrupt test to detect abrupt changes and
potential turning points. The MK abrupt test calculates two statistical measures, which are
the sequential values of a reduced or standardized variable. A forward sequential statistic
is estimated using the original time series, and a backward sequential statistic is estimated
using the reversed time series. If the progressive series and the retrograde series intersect
at a certain point, the intersection point is within the significance level, and if the sequence
curve of the progressive or retrograde series exceeds the 0.05 significance level after the
intersection point, then the intersection points of the two curves represent the potential
turning points in the times series.

Pearson correlation analysis was applied to measure the strength of the correlations
between vegetation dynamics and extreme indices at both regional average and pixel
scales. As the whole time series covered 34 years, the sample size was 34 for the correlation
analysis for each time scale. Significance levels of p = 0.05 and 0.01 were taken as the
thresholds to distinguish significance. As for the analysis of time-lag effects, the time lag
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for a climate index was defined as the number of months after which the NDVI showed the
highest significant correlation coefficient with this climate index [30,32,50,51]. The time lag
is generally shorter than a quarter, and 6 months at most [10,30,51]. Therefore, this study
only considered the time lags of 0–6 months. Spring includes the months from March to
May, summer from June to August, autumn from September to November, and winter
from December to February of the following year.

3. Results

3.1. Spatiotemporal Variability of Vegetation Dynamics
3.1.1. Trends of NDVI on an Annual Scale

Based on the GIMMS NDVI data during 1982–2015, this study summarized the tem-
poral variations and spatial distributions of the annual NDVI in Guangxi (Figure 3). The
multiyear mean of the annual NDVI was 0.6775 during the past 34 years. The maximum
was found in 2015 with a value of 0.7193, whereas the minimum was found in 1984 with
a value of 0.6418. The annual NDVI showed a significant increasing trend with a rate of
0.00144 year−1, and the trend exhibited several fluctuations (Figure 3a). According to the
result of the MK abrupt test (Figure 3b), the annual NDVI had two significant transition
points in 2004 and 2005. The annual NDVI was very low with a value of 0.659 in 2005.
In order to explore the decadal difference of the NDVI, this study divided the time series
(1982–2015) into two periods (1982–2004; 2005–2015) based on the turning point 2004. The
multiyear average NDVI was 0.6688 for the years before 2004 and 0.6955 for the years after
2004. However, the regional averaged annual NDVI did not show any significant trend
during each separate period.

The spatial distributions of the NDVI were extremely heterogeneous (Figure 3c).
Inevitably, they were partly affected by the remote sensing data sources and the calibration.
The NDVI increased with altitude in some studied regions. The NDVI mostly ranged from
0.40 to 0.80, and the NDVI at around 0.60 occurred in most regions. The higher NDVI at
0.60 and above was basically distributed on the areas covered by forests and grasses. To
further illustrate the change in spatial distributions, the spatial distributions of the NDVI
were analyzed during each separate period. The spatial distributions of the NDVI during
1982–2004 (Figure 3d) and 2005–2015 (Figure 3e) were similar to those during the whole
period. However, during the period 2005–2015, the NDVI in most regions was higher than
that during the former period. The highest NDVI can reach 0.80 or above in some forest
and grassland areas.

The regional averaged annual NDVI for the three vegetation types (farmlands, forests
and grasslands) was demonstrated to further explore differences in the greenness in dif-
ferent vegetation areas (Figure 3f). Generally, the forest had the highest NDVI, whereas
the farmland had the lowest in each year. The NDVI trends in the three vegetation areas
showed several fluctuations, and they were similar to those of the whole Guangxi region.
The annual NDVI of farmlands showed the highest increasing rate, whereas that of forests
was the lowest. The MK abrupt test indicated that the annual NDVI also had two weak
turning points (in 2004 and 2005) in forests and grasslands (Figure not shown). In addition,
the annual NDVI in forests and grasslands also did not show any significant trend during
each separate period.

Furthermore, the variation trend in NDVI values was extracted respectively in karst and
non-karst areas (figure not shown). It was 0.00153 year−1 in karst areas, and 0.00150 year−1

in non-karst areas. It seems that there was a weak greening difference between karst and
non-karst areas. However, the altitudes (including topographic configuration and atmospheric
environment) can affect the NDVI values, which may weaken the influences on the NDVI
trends originating from the karst landscape itself. The variation rate of the NDVI exhibited
significant spatial differences (Figure 4). Overall, all vegetation mainly had greening trends
during 1982–2015, and vegetation afforestation occurred in most areas of Guangxi (Figure 4a).
In forests and grasslands, the greening rates were mostly around 0.0005–0.0015 year−1. The
farmland showed higher greening rates, which were above 0.002 year−1 in some areas. About
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83% of the experimental areas with vegetation afforestation passed the 0.05 significance test
during 1982–2015 (Figure 4b).

However, only about 40% of the total pixels passed the significance test during the
first period of 1982–2004 (Figure 4d), and only about 50% passed the significance test
during the second period of 2005–2015 (Figure 4f). In these two separate periods, the
significant increasing rate of the NDVI only occurred in the central and southeast of
Guangxi (Figure 4c,e). During the second period, the annual NDVI experienced a great
increase in rate, as high as 0.003 year−1 in many of the central and eastern regions. The
greening rate of the second period was higher than that in the first period, which indicated
increased green vegetation in Guangxi after 2004. Since the NDVI variation rarely passed
the significance test during each separate period, hereafter, this study focused on the
analysis of the whole period of 1982–2015.

Figure 3. Annual mean NDVI in Guangxi during 1982–2015 (a); the Mann–Kendall (MK) abrupt
change detection for the annual NDVI during 1982–2015 (b); spatial distributions of the annual NDVI
during 1982–2015, 1982–2004, and 2005–2015 (c–e); and annual mean NDVI for different vegetation
types during 1982–2015 (f). Note: in (a,f), the solid line represents the observed NDVI, and the dotted
line represents the fitted NDVI.
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Figure 4. Spatial distributions of the trend rates of the annual NDVI (unit: 10 × year−1) (a,c,e) and
their significant tests (b,d,f) during 1982–2015, 1982–2004, and 2005–2015.

3.1.2. Trends of NDVI on a Seasonal Scale

The spatial distributions of the NDVI in each season were similar to those of the annual
NDVI, with the NDVI mostly varying from 0.40 to 0.80 (Figure not shown). The winter
NDVI was lower than that in other seasons over the whole study area. For the regional
average, the highest NDVI appeared in autumn with a value of 0.738, whereas the lowest
NDVI appeared in winter with a value of 0.618. The seasonal NDVI significantly increased
in most regions during the past decades (Figure 5), and about 77% of the whole research
area showed significant greening trends in spring, in contrast with around 50% of the area in
other seasons. In spring, the trend rate of the NDVI showed the highest value and strongest
spatial heterogeneity. It was as high as 0.0015 year−1 in most regions, especially farmland
areas. In summer and winter, the trends showed relatively less inhomogeneity, with a
greening rate of around 0.0005 year−1 in most areas. However, a remarkable greening rate
occurred in some regions of central or eastern Guangxi, which was partly similar to that in
spring. In contrast, the NDVI trends in autumn were uniformly distributed with a rate of
mostly around 0.0005 year−1.
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Figure 5. Spatial distributions of the trend rates of the seasonal NDVI (unit: 10 × year−1) (a,c,e,g) and
their significant test (b,d,f,h) during 1982–2015.

However, it is hard to distinguish the difference in the greening rate among the different
vegetation types based on the above spatial distributions. Table 3 provides climate inclination
rates of the regional averaged NDVI for the three vegetation types. The regional mean NDVI
significantly increased in each season during the past decades. As for the whole Guangxi,
the highest rate was 0.0021 year−1 in spring, followed by winter (0.0015 year−1), autumn
(0.0011 year−1), and summer (0.0010 year−1). The farmland, forest and grassland generally
showed similar trends to that of the whole Guangxi. The greening rate of farmlands was the
highest in each season, whereas that of forests was the lowest.
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Table 3. Trend rates (unit: year−1) for the seasonal and monthly NDVI during 1982–2015.

Guangxi Farmlands Forests Grasslands

Spring 0.0021 ** 0.0025 ** 0.0020 ** 0.0024 **
Summer 0.0010 ** 0.0014 ** 0.0010 ** 0.0010 **
Autumn 0.0011 * 0.0015 ** 0.0010 * 0.0011 *
Winter 0.0015 * 0.0019 ** 0.0013 0.0013 *
January 0.0006 0.0011 0.0005 0.0003
February 0.0030 ** 0.0032 ** 0.0029 * 0.0032 **
March 0.0013 0.0018 0.0011 0.0014
April 0.0021 * 0.0027 ** 0.0021 ** 0.0030 **
May 0.0023 ** 0.0028 ** 0.0022 ** 0.0026 **
June 0.0004 0.0008 0.0004 0.0001
July 0.0015 ** 0.0021 ** 0.0014 ** 0.0016 **
August 0.0014 ** 0.0020 ** 0.0013 ** 0.0017 **
September 0.0014 ** 0.0017 ** 0.0012 * 0.0014 *
October 0.0005 0.0007 0.0003 0.0004
November 0.0014 * 0.0020 * 0.0010 0.0013 **
December 0.0009 0.0016 0.0007 0.0010

Note: * significant at p < 0.05; ** significant at p < 0.01.

3.1.3. Trends of NDVI in Each Month

The previous analysis provided an overall picture of the NDVI variations over Guangxi.
This study further analyzed the NDVI on a monthly scale to represent the variation details.
The monthly mean NDVI ranged from 0.57 to 0.75, with the highest value appearing
in October and the lowest appearing in March. Generally, the mean NDVI showed an
increasing trend from March to October and a decreasing trend after October, which clearly
represents the general changes in vegetation dynamics. During the past few decades, the
monthly NDVI also exhibited significant increasing trends in many months (Table 3). As
for the whole Guangxi, the highest greening rate was 0.0030 year−1 in February, followed
by 0.0023 year−1 in May, 0.0021 year−1 in April, and 0.0015 year−1 in July. In August,
September, and November, the NDVI showed the same increasing rate of 0.0014 year−1,
whereas it was relatively stable in other months. For the three vegetation types, the greening
rates were also high in February, April, July, August and September. The greening rate
of the farmland was relatively higher than that of the other two vegetation types in each
month and, furthermore, peaked at a value of 0.0032 year−1 in February.

3.2. Correlations between NDVI and Climate Extremes
3.2.1. Correlations between Annual NDVI and Climate Extremes

In order to identify the main extreme indicators affecting vegetation in Guangxi,
this study investigated potential connections between the annual NDVI and the extreme
climatic indices by calculating the Pearson correlation coefficient (Table 4). On an annual
scale, the NDVI was significantly and positively correlated with the extreme temperature
indices, with the exclusion of TXn, DTR and GSL. Specifically, the correlation coefficient
can be as high as 0.683, 0.641 and 0.705 for Tm, TXm and TNm, respectively. The coefficient
was 0.630 for TNx, 0.605 for SU25 and 0.562 for TR25, whereas it was under 0.50 for TXx and
TNn. The relationship between the annual NDVI and temperature extremes did not show
much difference in farmlands, forests and grasslands. The correlation magnitudes were
strong and comparable for the three vegetation types. However, the extreme precipitation
indices, except SDII, did not show any significant connections with the NDVI in Guangxi.
The correlation coefficient between SDII and NDVI was 0.472 in the whole Guangxi, and
was a little higher in farmlands than in forests and grasslands. This finding indicates that
the vegetation dynamics in Guangxi was not very sensitive to extreme precipitation on an
annual scale.
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By choosing the six indices (Tm, TXm, TNm, SU25, TR25 and SDII) that possessed
strong significant correlations with the regional average NDVI, this study further inves-
tigated the spatial patterns of the potential connections between the annual NDVI and
climate extremes (Figure 6). For Tm, TXm, TNm and SU25, significant positive correlations
with the annual NDVI were observed in more than 70% of the meteorological stations. As
for Tm, TXm and TNm, the significant coefficient was 0.60 and above in many regions,
whereas for SU25, high coefficients of 0.40 and above occurred in central Guangxi. However,
for TR25 and SDII, only 50% of the meteorological stations showed the significant corre-
lations with the NDVI. In regard to TR25, the significant coefficient was mostly scattered
in some parts of western, eastern and southern Guangxi. With respect to SDII, only a few
regions, mostly located in central-southern Guangxi, showed significant coefficients with a
value around 0.40.

Figure 6. Spatial distributions of the correlation coefficients between the annual NDVI and each
temperature extreme index during 1982–2015: (a) Tm; (b) TXm; (c) TNm; (d) SU25; (e) TR25 and
(f) SDII. Note: ‘+’ significant at p < 0.05.

3.2.2. Correlations between Seasonal/Monthly NDVI and Climate Extremes

The relationships between the regional mean NDVI and the extreme climatic indices
were further calculated for different seasons and months (Table 5). The correlations for the
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three types of vegetation did not show much difference, and they were similar to those
for the whole of Guangxi. Thus, the coefficients for the three vegetation types are not
presented in Table 5. The relationships indicated strong temporal-scale differences. In both
spring and summer, the NDVI was significantly and positively correlated with most of the
extreme temperature indices, which was also similar to that on an annual scale. In winter,
the NDVI was only significantly correlated with Tm, TXm and TNx. Some coefficients were
above 0.50 in spring, whereas they were mostly around 0.35–0.45 in summer and winter.
Nevertheless, the NDVI did not significantly correlate with any extreme index in autumn,
and it did not have any significant connections with TXn and TNn in all seasons.

Table 5. Correlation coefficients between the regional mean NDVI and the extreme temperature
(precipitation) indices on a seasonal/ monthly scale during 1982–2015.

Tm TXm TNm DTR TXx TNx TXn TNn Rx1day Rx5day SDII PRCPTOT

Spring 0.526 ** 0.577 ** 0.477 ** 0.432 * 0.226 0.547 ** 0.239 0.143 0.121 0.143 0.347 * 0.145
Summer 0.425 * 0.450 ** 0.363 * 0.271 0.543 ** 0.341 * 0.097 0.069 −0.215 −0.240 −0.172 −0.241
Autumn 0.239 0.169 0.264 −0.096 0.119 0.245 0.021 0.195 0.105 0.094 0.094 0.083
Winter 0.387 * 0.429 * 0.327 0.301 0.238 0.405 * 0.287 0.118 −0.015 0.054 0.129 0.027
January 0.335 0.486 ** 0.129 0.587 ** 0.448 ** 0.386 * 0.155 −0.051 −0.058 −0.001 0.052 −0.097
February 0.483 ** 0.465 ** 0.497 ** 0.298 0.378 * 0.597 ** 0.278 0.082 −0.335 −0.384 * −0.305 −0.398 *
March 0.513 ** 0.560 ** 0.438 ** 0.489 ** 0.291 0.368 * 0.244 0.184 0.246 0.227 0.407 * 0.250
April 0.263 0.402 * 0.109 0.554 ** 0.207 0.217 −0.115 −0.180 −0.089 −0.083 0.140 −0.083
May 0.129 0.273 0.063 0.315 0.174 0.332 0.211 0.035 0.006 −0.086 0.126 −0.086
June 0.651 ** 0.732 ** 0.255 0.585 ** 0.584 ** 0.163 0.304 −0.177 −0.441 ** −0.384 * −0.399 * −0.480 **
July 0.350 * 0.408 * 0.237 0.348 * 0.389 * 0.273 0.174 0.144 −0.185 −0.286 −0.197 −0.348 *
August 0.368 * 0.388 * 0.307 0.305 0.477 ** 0.447 ** 0.051 0.019 −0.236 −0.316 −0.107 −0.347 *
September −0.056 0.032 −0.105 0.140 −0.063 0.237 −0.061 −0.246 −0.045 −0.062 0.006 −0.120
October −0.033 0.220 −0.204 0.514 ** −0.072 −0.057 0.214 −0.144 −0.168 −0.234 −0.184 −0.243
November −0.160 −0.106 −0.132 0.033 0.047 0.058 0.003 −0.133 −0.006 0.059 −0.009 0.068
December −0.037 0.170 −0.155 0.278 0.025 −0.056 0.117 −0.176 −0.099 0.006 −0.015 0.048

Note: *, ** significant at p < 0.05, and p < 0.01, respectively.

On a monthly scale, the NDVI was significantly correlated with some extreme tem-
perature indices in some months, mainly including Tm, DTR and three extreme high-
temperature indices (TXm, TXx and TNx). The significant and positive correlations were
mainly distributed in January, February, March, June, July and August, whereas no signifi-
cant relationship was observed in May, September, November or December. Additionally,
among all the indices, the NDVI was only significantly correlated with TXm and DTR in
April, and with DTR in October. The NDVI did not have any significant connections with
TXn and TNn in each month, which was similar to that on a seasonal scale.

As for the extreme precipitation indices, the seasonal NDVI only displayed a signifi-
cant and positive correlation with SDII in spring. The NDVI also rarely had a significant
relationship with the precipitation indices in each month, with the exception of a few
months. In June, the NDVI was negatively correlated with all the precipitation indices,
and the correlation coefficients were around −0.40. It is worth noting that the NDVI was
negatively correlated with PRCPTOT in all summer months (June, July and August). Addi-
tionally, the NDVI had a significant and negative correlation with precipitation extremes
in February.

3.3. Time Lags of NDVI Responses to Climate Extremes

The climatic factors may have delayed effects on vegetation. This study further
investigated the time lags of the NDVI responses to extreme climatic indices based on the
lag correlation analysis (Table 6). The numbers 0, 1, 2 and 3 represent the number of lag
months. The correlation coefficients were much weaker if the time lags were more than
three months. Thus, the coefficients with time lags more than three months are not shown
in Table 6. The time lags for the three vegetation types are not presented as they were also
similar to those for the whole of Guangxi.
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Table 6. Correlation coefficients between the regional mean NDVI and the extreme temperature
(precipitation) indices for different time lags during 1982–2015.

Tm TXm TNm DTR TXx TNx TXn TNn Rx1day Rx5day SDII PRECPTOT

0 0.614 ** 0.664 ** 0.576 ** 0.584 ** 0.539 ** 0.546 ** 0.646 ** 0.551 ** 0.311 ** 0.262 ** 0.384 ** 0.233 **
1 0.802 ** 0.805 ** 0.796 ** 0.267 ** 0.759 ** 0.786 ** 0.764 ** 0.760 ** 0.536 ** 0.487 ** 0.573 ** 0.482 **
2 0.765 ** 0.735 ** 0.780 ** 0.004 0.770 ** 0.787 ** 0.694 ** 0.752 ** 0.615 ** 0.579 ** 0.610 ** 0.588 **
3 0.504 ** 0.450 ** 0.538 ** −0.271 ** 0.527 ** 0.549 ** 0.434 ** 0.540 ** 0.568 ** 0.561 ** 0.524 ** 0.587 **

Note: ** significant at p < 0.01, respectively. ‘0’ NDVI and extreme climate indices were collected over the same
period; ‘1–3’ NDVI lagged the extreme indices by 1–3 months. The sample size of the correlations was 408, 407,
406 and 405 for 0-month lag, 1-month lag, 2-month lag and 3-month lag, respectively.

The coefficients were as high as 0.80 when the NDVI lagged the extreme temperature
indices by 1–2 months, and they were mostly around 0.60 when the NDVI lagged the
extreme precipitation indices by 2–3 months. For the extreme temperature indices, with
the exclusion of DTR, TXx and TNx, the time lag of the NDVI responses was one month.
However, the NDVI response to DTR did not have any time lags, and the NDVI response
to TXx and TNx displayed a two-month time lag. These results partly suggest that there
was an unequal time lag in the NDVI responses to the extreme high-temperature indices
versus those to the low-temperature indices. For the precipitation extremes, the time lags
of the NDVI responses were mostly two months. Therefore, the influence of the extreme
temperature indices on vegetation lasted for a shorter period than that of the precipitation
indices for one month.

Figures 7 and 8 illustrate the spatial distributions of the time lag to further explore
the spatial heterogeneity of the vegetation responses. For Tm, TXm, TNm, TXn and TNn
(Figure 7), the vegetation responses showed a lag of one month in the most regions of
Guangxi (50.0–73.0% of the total area), and sometimes showed a lag of two months in parts
of the western and eastern regions (23.0–47.0% of the global grids). The delayed responses
of the NDVI to DTR only occurred in a small area. With regard to the vegetation responses to
the two high-temperature indices (TXx and TNx), the areas covered by a two-month delay
(60.6% and 51.0%, respectively) accounted for a larger proportion than those covered by a
one-month delay (37.3% and 47.3%, respectively). As for the time-lag effects of TXx and TNx,
their spatial distributions were different from those of other indices, which was similar to the
corresponding result on a regional mean. The unequal lagged effects of high-temperature
and low-temperature extremes on terrestrial vegetation growth particularity occurred in some
western and eastern regions. Nevertheless, the asymmetric responses of vegetation to the
high and low temperatures were not very distinguished in Guangxi.

The delayed responses of vegetation to the precipitation indices were also spatially
heterogeneous in Guangxi (Figure 8). The time lag of the NDVI responses to precipitation
extremes was mostly one month in some parts of western Guangxi, whereas the lags
were two or three months in the central-eastern region. For Rx1day, the grids with a lag
of two months accounted for 41.9% of the global grid, those with a lag of three months
accounted for 34.0%, and those with a lag of one month constituted 23.5%. For SDII, the
grids with a lag of one month accounted for 40.4% of the global grid and those with a
lag of two months accounted for 38.8%. For Rx5day and PRCPTOT, the grids covered by
a three-month lag accounted for about 50.0% of the global grid, and those covered by a
two-month lag accounted for around 35.0%. Generally speaking, most terrestrial vegetation
growth was inclined to respond to Rx1day, Rx5day and PRCPTOT with time-lag effects up to
2–3 months, but to SDII with 1–2 month time-lag effects. By comparing the distributions of
land use and land cover classes (Figure 1) with those of the above lag results (Figures 7 and 8),
this study did not find a very obvious dependence of the time lag on land types.
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Figure 7. Spatial distributions of the time-lagged response of the NDVI to the temperature extremes:
(a) Tm; (b) TXm; (c) TNm; (d) DTR; (e) TXx; (f) TNx; (g) TXn and (h) TNn. Note: ‘0’ NDVI and
extreme climate indices were collected over the same period; ‘1–3’ NDVI lagged the extreme indices
by 1–3 months. This study conducted four correlation analyses (namely, no lag, 1 month, 2 months,
and 3 months), and the results of the four times were then superimposed to take the maximum value.
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Figure 8. Spatial distributions of the time-lagged response of the NDVI to the precipitation extremes:
(a) Rx1day; (b) Rx5day; (c) SDII; and (d) PRCPTOT. Note: ‘0’ NDVI and extreme climate indices were
collected over the same period; ‘1–3’ NDVI lagged the extreme indices by 1–3 months. This study
conducted four correlation analyses (namely, no lag, 1 month, 2 months, and 3 months), and then
superimposed the results of the four times to take the maximum value.

4. Discussion

4.1. Variations in Vegetation Dynamics

During 1982–2015, a significant increasing trend in vegetation greenness was detected
in Guangxi not only on an annual scale, but also on seasonal and monthly scales. The
trends in the variation of terrestrial vegetation indicated obvious spatial heterogeneity, but
all types of vegetation mainly had greening trends in Guangxi, with farmland showing the
highest rate and forest showing the lowest. By comparing the spatial distributions of land
types (Figure 1) with these of the annual NDVI (Figure 9a,b) for the two key moments, it
is also clear that most vegetation areas witnessed a greening trend, especially in farming
areas. As for the annual NDVI in Guangxi, our results revealed that the increasing rate was
0.00144 year−1 from 1982 to 2015. The greening rate in Guangxi was much higher than that
in all of China (0.0006 year−1) [20,21]. It also exceeded the increases in the Yangtze River
Basin (0.001 year−1) [14,17] and Xinjiang (0.0003 year−1) [22]. Conversely, the greening
rate in Guangxi was much lower than that on the Loess Plateau (0.0025 year−1) [13]. The
diverse greening rate of vegetation over different regions further suggested the spatial
heterogeneity of the vegetation variation.

In Guangxi, the regional temperature indices generally had the similar increasing
trend as that of the regional averaged NDVI on an annual scale (Figure 9c,d). The MK
abrupt test for the climate indices found that many temperature indices also had turning
points around the year 2005 (Figure 9e,f: taking the minimum temperature and tropical
nights as the two examples), which was similar to the case of annual NDVI. Thus, the
extremely low NDVI in 2005 may be attributed to the negative effects of the great warming.
The regional mean NDVI showed increasing trends in each season over Guangxi. However,
according to Cui et al. (2018) [46], the NDVI showed different trends in different seasons
over some other parts of China during previous decades. This may indicate the dependence
of the NDVI variation on geographical location and spatial-scale effects. In Guangxi, the
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vegetation in spring had a greater greening rate than in the other seasons, which is similar
to the result on the national scale [21]. However, the spring NDVI in Guangxi showed
a much higher increasing rate, compared with that in all of China [21]. The long-term
variation in the monthly NDVI was also highly uneven. Therefore, our work focusing on a
multiple time scale analysis is extremely helpful for understanding the time inhomogeneity
of the vegetation variations.

Figure 9. Spatial distributions of the annual NDVI in 1982 (a); spatial distributions of the annual
NDVI in 2015 (b); inter-annual variations of TXm and TNm (c); inter-annual variations of SU25 and
TR25 (e); the Mann–Kendall (MK) abrupt change detection for TNn (e); and the Mann–Kendall (MK)
abrupt change detection for TR25 (f). Note: in (c,d), the solid line represents the observed data, and
the dotted line represents the fitted data.

4.2. Correlations between Vegetation and Climate Extremes

The vegetation–climate interactions are highly heterogeneous [7,26]. Knowledge of
the relationship between vegetation and climate extremes would be useful for evaluating
the vulnerability and resilience of vegetation to climate extremes [31,52]. From 1982 to

146



Remote Sens. 2022, 14, 2013

2015, the annual NDVI in Guangxi generally showed strong and positive correlations
with most of the extreme temperature indices, which was consistent with many previous
results [12,28,30,31]. Figure 10 illustrates the trend rates of some of the representative
annual indices during 1982–2015. In most areas of Guangxi, the maximum and minimum
temperatures increased with a rate above 0.02 ◦C year−1, and summer days increased with
a rate around 0.50 days year−1 (Figure 10). Wang et al. (2021) [6] found that the most
recent 20-year period (after 2000) experienced greater warming than previous periods, and
low-temperature extreme warming was usually greater than high-temperature extreme
warming during the past 58 years. Furthermore, by comparing Figure 6 with Figure 10, it is
obvious that the strong correlations between the temperature indices and vegetation mostly
occurred in the areas where the warming rate was high. These indicate that the increasing
extreme temperature mostly exerted a positive effect on plant growth in Guangxi.

Figure 10. Spatial distributions of the trend rates of the annual climate indices during 1982–2015: (a) TXm,
(b) TNm, (c) TXx (unit: 10 × ◦C year−1); (d) SU25, (e) TR25 (unit: 10 × days year−1) and (f) SDII (unit:
10 × (mm/day) year−1). Note: ‘+’ significant at p < 0.05.

Having a large area and vegetation diversity, China presented large northwest–
southeast differences in its vegetation greenness (Figure 11). The multiyear mean of
the annual NDVI was mostly around or above 0.5 in southeastern regions in China, such
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as Guangxi, whereas it was mostly under 0.3 in northwestern China, which has a low
vegetation cover rate. As vegetation is a pivotal link between the atmosphere and the land’s
surface, the inhomogeneity of vegetation activity can enhance the spatial heterogeneity
of the vegetation responses to different climate extremes. Extreme temperature mostly has
a very extensive and complex effect on vegetation in China [12,18,25]. High temperature
can enhance the evaporation [53] and reduce soil moisture [25,31], which increases the soil
drought conditions. Thus, the increasing high temperature may tend to preclude vegetation
growth in the north of China [12,18]. Nevertheless, there are relatively flourishing vegetation
and abundant precipitation resources in Guangxi, and the abundant precipitation would
mitigate the negative effects of increasing high-temperature indices to a certain degree.

Figure 11. The mean of the annual NDVI in China during 1982–2015.

Vegetation has different mechanisms in responding to the low-temperature and high-
temperature indices [25,31]. Low temperatures elongate the plant growing season [54] and
enrich the soil nutrients [55]. These mechanisms might partly explain the positive correla-
tions between the annual NDVI and the low-temperature indices over Guangxi. In addition,
with obvious differences from the high-temperature indices, some low-temperature indices
did not have any significant relations with the NDVI in each season and month, which
further indicated the non-uniform responses of terrestrial vegetation growth to the high-
temperature and low-temperature indices at the local scale. Furthermore, the correlations
between the NDVI and the extreme temperature indices varied seasonally and monthly in
Guangxi. The positive correlations between the NDVI and the high-temperature indices
were strongest in spring, followed by summer and winter, but they were not significant
at all in autumn. This seasonal distinction of the correlations in Guangxi is highly differ-
ent from that at the northern hemisphere scale, where the strongest negative correlations
between the mean maximum temperature and NDVI were observed in the summer of
temperate dry regions [23].
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At the seasonal and monthly scales, the temperature indices showed increasing trends
in many months, with remarkable seasonal and monthly differences (Figure 12: taking
February and June as the two representative months). This study found that February wit-
nessed the greatest warming rate. In February, the increasing rates of the mean temperature,
maximum temperature and minimum temperature were 0.0935, 0.120 and 0.0765 ◦C year−1,
respectively, whereas they were generally under 0.050 ◦C year−1 in other months. High
temperatures in spring provide suitable temperatures for vegetation growth. Conversely,
extreme high temperatures in summer may exceed ideal growing conditions of vegetation,
and lead to increased evaporation and decreased soil moisture [25,31]. All of these factors
may sometimes restrain the vegetation photosynthesis to a certain degree [55], and there-
fore weaken the positive effects of high temperatures on the NDVI in summer. In winter,
the coverage of vegetation may decrease partly due to its phenological characteristics
rather than climate change. Therefore, the correlations were relatively weaker in winter.
By comparing the correlation coefficients between temperature extremes and vegetation at
different temporal scales, we can find that the correlations were relatively strongest on an
annual scale, and were weakest on a monthly scale.

Located in southern China and close to the South Sea, Guangxi has an annual precipi-
tation of above 1500 mm based on the multiyear mean. The extreme precipitation indices
rarely changed significantly over previous decades, with the exception of the simple daily
intensity index. The simple daily intensity only significantly increased in some southeastern
regions accounting for 32% of Guangxi (Figure 10f). Among all the precipitation indices, the
NDVI only displayed a significantly and positively weak correlation with the simple daily
intensity on an annual scale, and in spring on a seasonal scale. By comparing Figure 6f with
Figures 10f and 1, it can be found that the weak positive correlations mainly occurred in the
area with low elevation and significant increases in precipitation. This is probably because
low elevation is less prone to cause water loss and soil erosion, further promoting vegeta-
tion growth. Generally speaking, the greening vegetation was relatively non-sensitive to
the extreme precipitation indices. This finding of the precipitation effects on vegetation
in Guangxi differs significantly from those in northern arid and semi-arid regions where
precipitation is limited and drought is a great threat to vegetation [18,21,27,56].

Analyzing the vegetation responses on a monthly scale helps to better understand
the main limiting factors for vegetation growth in different growth periods [28]. The
NDVI was negatively correlated with all the precipitation indices in June and with the
two indices in February. Additionally, the NDVI was negatively correlated with the total
wet-day precipitation in all summer months (June, July and August). This phenomenon
on a monthly scale indicates that extreme precipitation will restrain vegetation growth in
February and summer months, which cannot be reflected at annual and seasonal scales.
Based on the analysis at a monthly scale, this study further found that the total wet-day
precipitation significantly decreased at a rate of 1.325 mm year−1 in February, whereas it
significantly increased at a rate of 2.644 mm year−1 in June from 1982 to 2015 (Figure 12e,f).
Thus, the plant’s growth in February was prevented by lack of water in addition to low soil
moisture. Karst areas have low water-soil retaining ability, so the short-term precipitation
increase in summer months can cause soil and water losses, further stunting plant growth.
The influences of extreme indices on vegetation in different growing periods are better
reflected at a monthly scale, which further suggests time-scale effects on the relationship
between precipitation extremes and vegetation dynamics.
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Figure 12. The interannual variation in the monthly climate indices during1982–2015: (a) Tm in
February, (b) TXm in February, (c) TNm in February, (d) TNx in February, (e) PRCPTOT in February
and (f) PRCPTOT in June. Note: the solid line represents the observed data, and the dotted line
represents the fitted data.

The above results indicate that the variations in vegetation dynamics were mostly de-
termined by temperature extremes rather than precipitation extremes, and the strengthened
vegetation activities can be associated with enhanced extreme temperatures in Guangxi.
Regarding the intensity and range of the extreme climate effects on vegetation dynamics
in China, Li et al. (2021) [18] categorized these impacts into five types: the humidity-
promoting type, the cold-promoting and drought-inhibiting compound type, the drought-
inhibiting type, the heat-promoting and humidity-promoting compound type, and the
heat-promoting and drought-inhibiting compound type. However, most of Guangxi be-
longs only to the heat-promoting type. Overall, although the vegetation responses to
climate extremes showed great temporal heterogeneity at the different time scales, the
effects of extreme climate on vegetation cannot be totally disentangled from the baseline
effect of climate on a time series.
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4.3. Lagged Responses of Vegetation to Extreme Climates

The influences of climate factors on vegetation often show a time lag because of lags in
the adjustment of the soil moisture content and biological processes [29,30]. Many studies
have shown that the antecedent ambient temperature has remarkable impacts on vegetation
growth [20,30,52], which was confirmed in the present study. The lagged responses of
vegetation to the extreme climatic indices differed in different regions and at different scales
over Guangxi.

Generally speaking, the responses of vegetation to most temperature extremes lagged
for at least one month, whereas the responses to precipitation extremes lagged for at least
two months. The lagged responses of vegetation to the extreme temperature indices were
generally around one month earlier than those to the precipitation indices. This result is
similar to that in the Poyang Lake Basin [31], but different those in some other areas or large
regions [12,28]. For example, on the Inner Mongolian Plateau, the vegetation dynamics
are connected with extreme temperature indices by a time lag of at least three months,
and with extreme precipitation indices by a two-month lag [12]. The impact of extreme
temperatures on vegetation showed a time lag of at least one month, but the responses of
maximum NDVI to extreme precipitation parameters indicated no lags in Central Asia [28].
There is a lag of approximately one month in the vegetation dynamic response to soil
moisture [57], which explains the particular lag in the vegetation responses to most extreme
temperature variations in Guangxi and Central Asia. The vegetation responses to some
high-temperature indices displayed a two-month time lag, and had a longer time lag of
one month compared to the responses to the extreme low-temperature indices. Thus, the
same vegetation type sometimes showed asymmetric lag responses to the high-temperature
indices versus the low-temperature indices in Guangxi, which is partly similar to the result
from Wen et al. (2019) [32].

In addition, Guangxi witnessed the spatial heterogeneities in the vegetation responses to
different extreme climate indices. The impacts of most of the extreme temperature indices on
vegetation indicated a lag of one month in most of Guangxi, and sometimes exhibited a lag of
two months. The time lag from the extreme precipitation indices were spatially more uneven,
varying between one month and three months. Many studies have indicated that the effects
of climate change on vegetation dynamics are spatially heterogeneous [7,13,14,17,58], and the
driving factors are the geographical location, vegetation types, topography, etc. [26]. Vegetation
type is an important factor in determining the time-lag effects and the strength of the correlations
between vegetation dynamics and extreme climate indices in many regions [12,18,28,30,31,42,58].
However, by comparing the spatial patterns of the correlations and time lags under the
different land cover types, this study found that there were no obvious differences in the
correlations and time lags among farmlands, forests and grasslands, suggesting that the
vegetation type itself may not have made a big difference in the vegetation responses to
climate extremes in Guangxi. This is partly consistent with the results in China at a national
scale [21].

Past studies were frequently performed only on one time scale. Instead, multi-time
scale analysis is an effective approach to understanding how vegetation will respond to
global climate change. This study can help find effective preventive measures to preserve
the ecosystem in Guangxi. Local authorities should pay attention to taking adaptive mitiga-
tion measures in advance to prevent the potential negative effects of temperature extremes,
as the future temperature may often exceed ideal growth conditions for vegetation if ex-
treme temperatures continue to rise significantly. Local authorities also should formulate
appropriate measures to reduce the negative effects caused by drought in February and
by flood in summer months (especially in June). Drought-resistant and water-resistant
vegetation should be introduced in a timely manner. With regard to agriculture, adequate
irrigation and film-mulching treatments are necessary for drought control and resistance,
and timely water drainage is necessary for flood resistance.
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4.4. Limitations and Uncertainties

Many previous studies have validated the GIMMS NDVI data [42–44], and have
pointed out that the GIMMS NDVI data are reliable for sensing the green vegetation and
monitoring its long-term trends and activities [17,40,45,46]. Thus, the GIMMS NDVI data
were directly used in this study without being calibrated with other independent NDVI
datasets. Although the results obtained from this study were thought to be reliable, there
were limitations to and uncertainties in the approach. Firstly, the GIMMS NDVI data are
indirect remote sensing data simulated by the model. Their accuracy is limited to the
satellite sensor sensitivity [59]. The remote sensing NDVI is susceptible to clouds, water
vapor and dust aerosol pollution, and is easily saturated in areas of high-density vegetation
when the vegetation cover reaches a certain high level [36,60]. This over-saturated problem
leads to underestimating the greenness of vegetation in some study regions. Furthermore,
despite the GIMMS NDVI data being corrected to minimize non-vegetation effects, the NDVI
index itself cannot provide enough information on the vegetation and species composition [35].
There may be some errors in the modeled NDVI in karst areas dominated by hills, especially
the highly fragmentized terrain with bare soil and rock outcrops. These will result in further
uncertainties in the relationship between the NDVI and climatic variables.

Secondly, some uncertainties in the correlations existed because of the coarse spatial
resolution of the NDVI and climate data. There were uncertainties when the climatic
parameters of the meteorological stations were resampled based on the spatial resolution
of the GIMMS NDVI data. The uncertainties can be minimized by field studies combined
with the temporal remote sensing data of higher resolution imagery in follow-up work. In
addition, the aim of this study was to systematically evaluate the influence characteristics
of extreme climate on vegetation, and therefore a discussion of human influence was not
included. However, in order to reduce soil erosion and improve ecological conditions,
China has implemented several vegetation restoration and reforestation projects (e.g., the
Natural Forest Protection Project, the Grain for Green project, and Karst Rocky Desertifi-
cation Comprehensive Control and Restoration Project) initiated around 2000 [34]. These
afforestation plans that have been carried out can result in a vegetation increase in some
karst areas.

Long periods of time exposure to climate extremes may lead to vegetation vulnerability.
Admittedly, the present study did not take into account the interaction between different
climate extremes and other factors or the occurrence of different effects. Furthermore, some
vegetation will become weaker or even die, whereas other vegetation may adapt to extreme
climate by changing its own physiological and biochemical reactions or by modifying
its own living conditions [61], and it can have feedback to the climate system [17]. This
study did not strictly consider the environmental effect of the vegetation dynamics, which
should be enhanced in the future for better understanding of this influence on our results.
Therefore, examination of the vegetation–climate interactions still faces many challenges,
and will require continued in-depth research in the future.

5. Conclusions

By means of the Normalized Difference Vegetation Index (NDVI) to capture vegetation
activities, the study tried to use a multi-time scale (annual, seasonal and monthly) analysis
to investigate the effects of climate extremes on vegetation from 1982 to 2015 in Guangxi.
The main findings are listed as follows:

(1) The variation rates of NDVI highly differed at different time scales. The annual NDVI
significantly increased at a rate of 0.00144 year−1. The greening trend was strongest in
spring, followed by winter, autumn and summer. On a monthly scale, the remarkable
greening trends occurred in February, May and April.

(2) The effects of extreme climate on vegetation cannot be disentangled from the baseline
effect of climate on a time series. The enhanced temperature extremes had positive and
strong correlations with green vegetation on an annual scale. With a great seasonal
and monthly heterogeneity, the significant positive correlations mostly occurred only
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in January, February, March, and summer months. Precipitation extremes only had
significant and negative relations with vegetation in February and summer months.

(3) The responses of vegetation to climate extremes showed a great spatial heterogeneity,
but they showed no significant differences among farmlands, forests and grasslands.
The vegetation generally responded to temperature extremes with a time lag of at least
one month, and there was mostly a two-month lag relative to precipitation extremes.

Nevertheless, it is essential to realize the limitations of the satellite NDVI data and the
resolution gap between the NDVI and climate data. This study highlights the necessity
to use a multi-time scale analysis. The detailed analysis can help better understand the
response mechanism of vegetation dynamics to extreme climate and improve the investiga-
tion of vegetation–climate interactions. This study can help decision makers identify the
practical issues facing regional management systems in Guangxi. Local authorities should
take adaptive mitigation measures in advance to prevent the negative effects caused by
enhanced temperature extremes in the future. Local authorities and farmers also should
be alert to both the adverse effects of drought in February and those of flood in summer
months. For example, it would be helpful to introduce drought-resistant and water-resistant
vegetation in a timely manner.
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Abstract: In recent years, heatwaves have been reported frequently by literature and the media on
the Tibetan Plateau. However, it is unclear how alpine vegetation responds to the heatwaves on the
Tibetan Plateau. This study aimed to identify the heatwaves using long-term meteorological data and
examine the impact of heatwaves on vegetation growth rate with remote sensing data. The results
indicated that heatwaves frequently occur in June, July, and August on the Tibetan Plateau. The
average frequency of heatwaves had no statistically significant trends from 2000 to 2020 for the entire
Tibetan Plateau. On a monthly scale, the average frequency of heatwaves increased significantly
(p < 0.1) in August, while no significant trends were in June and July. The intensity of heatwaves
indicated a negative correlation with the vegetation growth rate anomaly (ΔVGR) calculated from
the normalized difference vegetation index (NDVI) (r = −0.74, p < 0.05) and the enhanced vegetation
index (EVI) (r = −0.61, p < 0.1) on the Tibetan Plateau, respectively. Both NDVI and EVI consistently
demonstrate that the heatwaves slow the vegetation growth rate. This study outlines the importance
of heatwaves to vegetation growth to enrich our understanding of alpine vegetation response to
increasing extreme weather events under the background of climate change.

Keywords: heatwave; alpine vegetation; Tibetan Plateau; remote sensing; extreme climate events

1. Introduction

A heatwave is defined as a period with sustained high-temperature anomalies result-
ing in strong impacts on human health, the ecological environment, and socioeconomic
development [1]. A recent study has indicated that heatwaves have increased in prevalence
significantly since the 1950s [2]. The heatwave has received growing attention in global
change ecology study because of its remarkable effects on carbon, water, and energy ex-
change between the land surface and atmosphere [3]. Much evidence from crop yield, tree
ring, and manipulative experiments has demonstrated that the occurrence of extreme high-
temperature events can trigger significant impacts on terrestrial ecosystems and human
society [4–11]. The heatwave also significantly impacts vegetation from regional to global
scales, which has been witnessed by the satellite-derived normalized difference vegetation
index (NDVI)-based studies [12,13]. These studies have mainly focused on tropical and
temperate regions but have ignored cold regions.

With global warming, cold regions have been experiencing increased intensity, fre-
quency, and duration of heatwaves in the past several decades [14–16]. As the “Third
Pole”, the Tibetan Plateau is warming twice as fast as the global average warming rate [17].
In situ meteorological observations and model projections indicated that extreme high-
temperature events have happened frequently on the Tibetan Plateau. Due to the low
intensity of anthropogenic activities [18], the Tibetan Plateau is an ideal region for studying
the responses of alpine vegetation to extreme temperature events. The alpine vegetation on
the Tibetan Plateau is very sensitive to high-temperature events due to the heat-limiting
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environment [19]. Many recent studies have begun to examine the impacts of extreme
temperature on vegetation (e.g., productivity, phenology) on the Tibetan Plateau [20,21]. As
a specific type of extreme high–temperature event, the heatwave has been reported recently
by literature [22] on the Tibetan Plateau. However, very few studies have been conducted
on the ecological effects of the heatwave on the Tibetan Plateau. We only found one site
scale study, which reported that the heatwave can substantially increase alpine ecosystem
respiration on the Tibetan Plateau [20]. Therefore, the response of alpine vegetation on the
Tibetan Plateau to heatwaves is poorly understood. It is necessary to evaluate the heatwave
effect on vegetation more widely and provide valuable information to address the climate
change in this region.

Meanwhile, the MODIS bidirectional reflectance distribution function (BRDF)-adjusted
daily reflectance product has made it possible to detect vegetation change in a very short
period. On the Tibetan Plateau, heatwaves are usually of short duration and take place
at a small part of the plateau. Some small heatwaves may be ignored if using the 16-day
or monthly composite vegetation index. The BRDR-corrected daily snow–free MODIS
reflectance product and long-term daily meteorological observations make it possible to
examine the alpine vegetation response to heatwaves at a regional scale on the Tibetan
Plateau.

We aim to fill the knowledge gap about the response mechanism of the alpine vegeta-
tion to heatwave on the Tibetan Plateau. The objectives of this study include: (1) identify
the heatwaves from 2000 to 2020 on the Tibetan Plateau and analyze their temporal trends;
(2) examine the response of vegetation growth to heatwaves intensity and duration.

2. Materials and Methods

2.1. Study Area

The Tibetan Plateau, with an area of 2.5 million km2 and an average altitude over
4000 m above sea level [23], is the largest and highest plateau in the world [4]. The
geographical range of the Tibetan Plateau is 26–40◦N, 73–105◦E. It spans six provinces,
namely the Tibet and Xinjiang Uygur Autonomous Regions and Qinghai, Yunnan, Sichuan,
and Gansu Provinces [15]. The characteristics of the climate on the Tibetan Plateau are strong
solar radiation, low air temperature, and large day–night temperature difference [18,24]. This
climatic pattern determines the general distribution of the vegetation [25]. The dominant
vegetation type is alpine grasslands, which accounts for about 60% of the entire plateau
area [26]. Figure 1 depicts the spatial distribution of the meteorological stations on the
Tibetan Plateau.

Figure 1. The distribution of the meteorological stations on the Tibetan Plateau.

2.2. Datasets

The daily maximum temperature (Tmax) and precipitation data used in this study were
provided by the Climatic Data Center, National Meteorological Information Center, China
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Meteorological Administration (http://data.cma.cn/, accessed on 21 August 2021). In the
dataset, there are 86 meteorological stations across the Tibetan Plateau. Because heatwave
detection requires long-term temperature data, we excluded the sites with data gaps from
1980 to 2020. Finally, 64 stations were selected in this study and are depicted in Figure 1.
Table A1 in Appendix A depicts information about each meteorological station (WMO
code, name, latitude, longitude, and elevation.

Digital elevation model data for the Tibetan Plateau was obtained from Shuttle Radar
Topography Mission (https://earthexplorer.usgs.gov/, accessed on 21 August 2021) and
its spatial resolution is 30 m.

The MODIS Nadir Bidirectional Reflectance Distribution Function Adjusted Reflectance
(NBAR) product (MCD43A4) was used to monitor the vegetation growth in this work.
MCD43A4 provides daily surface reflectance by combining Terra and Aqua MODIS data at
a 500–m spatial resolution. The surface reflectance was normalized to nadir using the bidi-
rectional reflectance distribution function for the solar angle at local noontime. This product
has removed view angle effects, and masks cloud cover and snow contamination [27]. Col-
lection 6 of MCD43A4 from 2000 to 2020 on the Tibetan Plateau was obtained from the
Google Earth Engine (https://earthengine.google.com/, accessed on 21 August 2021). The
two vegetation indices (Vis) have been widely used in ecological studies, whereas the NDVI
is chlorophyll-sensitive, the EVI is more responsive to canopy structural variations [28,29].
A combination of the NDVI and EVI to complement each other examined the robustness
and comparability of the vegetation growth rate changes [30]. In this study, we used the
surface reflectance from the MCD43A4 product to calculate daily Vis, including the NDVI
and EVI.

The Land Surface Soil Moisture Dataset over the Tibetan Plateau was downloaded
from National Tibetan Plateau Data Center [31]. This dataset is daily surface soil moisture
with a spatial resolution of 0.25◦, retrieved from passive microwave brightness temperature
data. The dataset synthesized microwave brightness temperature measurements from
SMMR, SSM/I, SSMIS, AMSR-E, AMSR2, SMAP, and FY3B to produce a long-term soil
moisture product [32]. We used Land Surface Soil Moisture Dataset data from 2002 to 2020
to examine the soil moisture difference before and during the heatwave.

2.3. Methods

In this study, we used a percentile-based thresholds method to identify the heatwaves
in June, July, and August at each station on the Tibetan Plateau. [33]. The heatwaves
were identified following the definition of a heatwave in the literature [34] with a few
modifications in this study. The 90th percentile values of daily maximum temperature
during the climatological baseline period (1980–2020) are used as the threshold to identify
hot days. A period with at least five consecutive hot days (the maximum temperature
is greater than the threshold) was identified as a heatwave event at a single station. The
frequency, duration, and intensity are characteristics of a heatwave event. The frequency
of heatwaves is the sum of the heatwaves at 64 sites on the Tibetan Plateau in a year.
The number of stations experiencing heatwaves is also counted each year. Each site is
counted only once per year. The duration and temperature anomaly above the threshold
are introduced as two dimensions to quantify the severity of the heatwaves. The duration
is the length of a heatwave event, and the temperature anomaly is the average temperature
difference between the daily maximum temperature and the 90th percentile threshold.
The accumulative intensity of a heatwave is the sum of temperature differences above
the threshold during the heatwave. The average intensity of heatwaves is the average
temperature difference during the heatwave. To explore the impact of heatwaves on
vegetation, we only focused on the heatwaves occurring in June, July, and August.

VIs were used to calculate the vegetation growth rate, which is the change of the
value of VIs before and after a heatwave. The NDVI and EVI [30] are calculated with
the Equations (1) and (2), respectively. In addition to correct inferior values in VIs, a
time series reconstruction algorithm, the Savitzky–Golay filter (Equation (3)), is applied
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to long-term daily VIs in this study [35]. We excluded these heatwaves in the analysis
when MCD43A4 data was missing to make our result reliable. Vegetation growth rate
(VGR) was calculated as the difference between the vegetation index before and during the
heatwave (Equation (4)). Then, the vegetation growth rate anomaly (ΔVGR) (Equation (5))
was calculated from the VGR during the heatwave and the multi–year average VGR in the
corresponding period. The vegetation index and vegetation growth rate anomaly were
used as vegetation proxies to examine the heatwave impacts on vegetation. The formulas
are expressed as follows:

NDVI =
ρnir − ρred
ρnir + ρred

(1)

EVI =
G × (ρnir − ρred)

ρnir + (C1 × ρnir − C2 × ρblue) + L
(2)

where G = 2.5, C1 = 6, C2 = 7.5, and L = 1; ρblue, ρred, and ρnir are the reflectance of the blue,
red, and near-infrared bands, respectively.

Y∗
j = (2m + 1)−1

i=m

∑
i=−m

CiYj+i (3)

where Y represents the original time–series data, Y* is the reconstructed time-series data, Ci
is the weight of the filter window, and 2m + 1 is the size of the filter window. The window
size and polynomial order in the Savitzky–Golay filter were set to 31 and 4, respectively [36].

VGR = VIsdur − VIsb f (4)

ΔVGR = VGR − VGRbaseline (5)

where VIsbf and VIsdur are the average of VIs before the heatwave and during the heatwave,
respectively. VGRbaseline represents the multi-year average VGR during the reference period
(2000–2020). ΔVGR is the difference between VGR and VGRbaseline.

The linear trend of the number of sites with heatwaves was analyzed using the Mann–
Kendall methods [37,38]. The Mann–Kendall method is a nonparametric test for monotonic
trends. This method does not assume a specific distribution for the data and is not sensitive
to outliers. The Theil–Sen method was used to calculate the slope of the linear trend [39].
The slope of the trend measures the number of the heatwaves’ change rate over time.
To explore the impact of heatwaves on vegetation growth, we calculated the correlation
coefficients between the heatwaves (the intensity of the heatwaves) and vegetation growth
rate (change rate anomaly of NDVI and EVI) using the Pearson correlation method.

3. Results

3.1. Trends of Heatwaves Frequency

Based on the 64 meteorological stations on the Tibetan Plateau, we first identified the
heatwaves and calculated the duration and intensity of the heatwaves for each station.
The interannual variation of heatwaves frequency at these stations is depicted in Figure 2.
From 2000 to 2020, the heatwaves frequently occurred in June, July, and August. Overall,
from 2000 to 2020, the frequency of heatwaves in the growing season had no statistically
significant trends for the entire Tibetan Plateau in Figure 2. The occurring frequencies of
the heatwaves are different among June, July, and August. The heatwaves happened more
frequently in August than in June and July. The heatwave frequency increased significantly
(p < 0.1) in August, while no significant trends occurred in June and July.
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Figure 2. The average frequency of heatwaves at 64 stations in June (a), July (b), and August (c), and
June−August (d) on the Tibetan Plateau from 2000 to 2020.

Figure 3 depicts the interannual dynamic of the duration and intensity of heatwaves
from 2000 to 2020. The color changes from yellow to red indicate that the heatwave severity
varies from weak to strong. Overall, the duration and intensity of heatwaves ranged from
5.00 to 11.57 days and from 0.67 to 2.55 ◦C/d, respectively. Most of the heatwaves are short
with a duration of about 6 days. The longest duration appeared in August. Among June,
July, and August, heatwaves in August lasted longer than in other months. The intensity of
the heatwaves has neither obvious monthly patterns nor evident temporal changing trends.
Through analyzing the intensity and duration of heatwaves, we found that heatwaves
with long durations may have low intensity (average high–temperature anomaly). The
heatwaves occurred most frequently in recent years, such as 2006, 2013, 2016, etc.

To explore the extent of the heatwaves, a matrix heatmap is used to depict the num-
ber of stations where heatwaves happened in June, July, and August from 2000 to 2020
(Figure 4). Generally, as expected, there are no widespread heatwave occurrences in most
years on the Tibetan Plateau due to the cold environment. From 2000 to 2020, heatwaves oc-
curred at more than half of the total stations on the Tibetan Plateau in 2000, 2001, 2006, 2010,
2013, and 2016. The most two severe heatwave events detected from the daily maximum
temperature happened in August 2016 with 47 sites and in June 2013 with 38 sites.
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Figure 3. Matrix heatmap for heatwave duration and intensity in June, July, and August on the
Tibetan Plateau from 2000 to 2020. The matrix heatmap (a) refers to the temporal change of the
heatwave duration; the matrix heatmap (b) refers to the temporal change of the heatwave intensity.
Each grid cell represents the average duration and intensity of a heatwave at all sites in a given month
of a year. The blank grid cell represents no heatwave, and the value is NaN. The color of the matrix
heatmap represents the size of the value.

Figure 4. Matrix heatmap of the number of sites with heatwaves from June to August on the Tibetan
Plateau from 2000 to 2020. Each grid cell represents the number of sites with heatwaves in a given
month of a year. The blank grid represents no heatwave, and the value is NaN. The color of the
matrix heatmap represents the size of the value.

3.2. Effects of Heatwaves on Vegetation

The deviation analysis was used to calculate the ΔVGR, which can reflect the VGR
change caused by the heatwave. A positive anomaly indicates an increase in the VGR,
and a negative anomaly indicates a decrease in VGR. Figure 5 depicts the average ΔVGR
calculated from NDVI (a) and EVI (b) in June, July, and August from 2000 to 2020. The
ΔVGR ranging from positive to negative was expressed as the color changing from green to
yellow. The range of the ΔVGR calculated by NDVI and EVI is from −0.0088 to 0.057 and
from −0.0095 to 0.023, respectively. Overall, the ΔVGR calculated from NDVI is consistent
with the ΔVGR calculated from EVI.
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Figure 5. Matrix heatmap of the ΔVGR from June to August on the Tibetan Plateau from 2000 to 2020.
The matrix heatmap (a) refers to the ΔVGR calculated from NDVI; the matrix heatmap (b) refers to
the ΔVGR calculated from EVI. Each grid cell represents the average vegetation growth rate anomaly
at all sites in a given month of a year. The blank grid cell represents no heatwave happened, and the
value is NaN. The color of the matrix heatmap represents the size of the value.

The monthly variation of ΔVGR corresponding to heatwaves on the Tibetan Plateau
in June, July, and August is displayed in Figure 6. The ΔVGR was negative when the
heatwave happened in June, July, and August. That means the VGR during the heatwaves
is lower than the multi-year mean on the Tibetan Plateau. Compared to other months,
the minimum value of the ΔVGR was found in June, indicating that vegetation growth in
June was more sensitive to the heatwave than in July and August. The value of the ΔVGR
calculated by NDVI and EVI corresponding to the heatwaves is more consistent in June and
July than in August. Overall, heatwaves in the growing season significantly slow the VGR
on the Tibetan Plateau. The analysis indicates that the ΔVGR can capture the vegetation
growth response to heatwaves on the Tibetan Plateau.

Figure 6. The ΔVGR in each month in June, July, and August on the Tibetan Plateau from 2000 to
2020. The ΔVGR is calculated from NDVI (a) and EVI (b) on the Tibetan Plateau from June to August.
The black lines represent the monthly multiyear mean of each variable between 2000 and 2020; the
red lines indicate the seasonal evolution during extremely high temperatures.
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The correlation relationships were analyzed between the ΔVGR and the intensity of
the heatwaves. The intensity of the heatwaves was calculated as temperature anomaly
during heatwaves multiplied by heatwave duration. The intensity was grouped with a
step of 2.5 ◦C×d to make the analysis clearer. As depicted in Figure 7a,c, the accumulative
intensity (◦C×d) of heatwaves indicates a negative correlation with the ΔVGR calculated
from NDVI (r = −0.74, p < 0.05) and EVI (r = −0.61, p < 0.1) on the Tibetan Plateau,
respectively. The average intensity (◦C/d) of heatwaves indicates a negative correlation
with the ΔVGR calculated by NDVI (r = −0.77, p < 0.05) and EVI (r = −0.66, p < 0.1) on the
Tibetan Plateau (Figure 7b,d), respectively. Vegetation growth is strongly affected by the
heatwaves in June, July, and August on the Tibetan Plateau. With the intensity increase of
heatwaves, the VGR decreases linearly.

Figure 7. Pearson’s correlation coefficient between the intensity of the heatwave and the ΔVGR
from June to August during the growing season for all 64 sites on the Tibetan Plateau. (a,c) the
accumulative intensity of heatwaves versus the ΔVGR. (b,d) the average intensity of heatwaves
versus the ΔVGR. The ΔVGR in (a,b) is calculated from NDVI, and in (c,d) is calculated from EVI.

To corroborate our findings, we select the year 2013 and 2016, when widespread
heatwaves occurred, to specially study the anomaly of VGR and the anomaly of climate
factors before and after the occurrence of the heatwaves. The spatial distribution of the
ΔVGR on the Tibetan Plateau is displayed in Figure 8a for June 2013 and Figure 8c for
August 2016. The average VGRs in June 2013 and August 2016 were significantly lower
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than the multi-year average VGR. In June 2013, the ΔVGRs were negative at 33 of the
38 sites where the heatwave occurred. In August 2016, the ΔVGRs were negative at 30
of the 47 sites where the heatwave occurred. An obvious decrease in vegetation growth
rate can be found in most sites where the heatwave occurred. It is suggested that the
heatwaves in 2013 and 2016 significantly slowed down the VGR. During the selected two
heatwave events, the temperature was significantly higher than the multi−year average
in the corresponding period, including 5.8 ◦C above the multi−year average in 2016 and
4.9 ◦C above the multi−year average in 2013 (Figure 9).

Figure 8. ΔVGR response to heatwaves in June 2013 (a) and August 2016 (c). The blank circle
represents the site without a heatwave, while the filled circle represents the site with a heatwave;
(b,d) represent the site number in June 2013 and August 2016, respectively; the red-filled circle
represents the negative ΔVGR; the green−filled circle represents the positive ΔVGR. Positive ΔVGR
stands for an increase in the VGR; negative ΔVGR stands for a decrease in the VGR. The right plots
illustrate the number of sites with negative and positive VGR.
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Figure 9. The ΔVGR and daily maximum temperatures during the heatwaves in June 2013 and
August 2016. (a,c) represent the ΔVGR in June 2013 and August 2016, respectively; (b,d) represent the
average daily maximum temperature (Tmax) versus the multi-year average Tmax during the heatwave
occurrence in June 2013 (b) and August 2016 (d). The red line indicates the Tmax (15 June 2013–
20 June 2013 DOY: 166–171 and 16 August 2016–24 August 2016 DOY: 228–236) during a heatwave in
one severe year. The black line indicates the multi-year average Tmax during heatwaves occurrence in
June 2013 and August 2016.

4. Discussion

To our knowledge, very few studies have focused on heatwaves on the Tibetan Plateau.
Previous studies mainly used the traditional extreme high-temperature indices to explore
their effects on alpine vegetation, such as TX90p (percentage of days when TX > 90th per-
centile), WSDI (warm spell duration index), etc. The traditional extreme high-temperature
indices are usually calculated at a monthly or annual scale, which is too coarse to capture
the short climate disturbance on vegetation. A recent study examined the trends of extreme
temperature events using 71 meteorological stations from 1961 to 2005 and found that there
were statistically significant increasing trends for extreme high-temperature indices [15].
He et al. [21] analyzed the spatial pattern and long-term trend in extreme high-temperature
indices in the Kobresia meadow region from 1961 to 2008, and found a significant increase
in the warmest daytime temperature. However, in this study, we found that heatwaves
have no significant increasing trend from 2000 to 2020, and the trends vary greatly among
June, July, and August. This is inconsistent with the extreme high−temperature indices
trend reported previously on the Tibetan Plateau [40]. This is caused by the different
definitions between heatwave and extreme high-temperature events. The inconsistency in
trends between heatwave and extreme high-temperature indices could also be attributed
to the different periods and datasets. Liu et al. [40] reported the characteristic of extreme
high-temperature events from 2001 to 2015 based on the monthly gridded datasets, but this
study explored the heatwaves based on the meteorological station data. The heatwaves
on the Tibetan Plateau mainly occurred locally, only a few widespread heatwaves were
detected, and no heatwaves occurred for the entire Plateau or all sites simultaneously. Due
to the sparse and non-uniformly distributed weather stations, it is difficult to accurately
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extract the heatwave spatial extent [41]. However, the evolution of spatial extent is essential
to better understand the varying mechanism of heatwaves on the Tibetan Plateau. Thus,
future studies on better understanding the dynamic of heatwaves will be benefited from
the high-resolution and reliable grid meteorological dataset.

Heatwaves can limit vegetation photosynthesis by pushing the ambient temperature
to exceed the optimal photosynthetic temperature, increasing the vapor pressure deficit
(VPD), and reducing the soil moisture. High temperatures over the optimal photosynthetic
temperature could constrain the activity of Rubisco, increase photorespiration, and lead
to a decline in net photosynthesis [42]. An ambient temperature lower or higher than the
optimal photosynthetic temperature will inhibit vegetation growth [43]. The slowdown of
vegetation growth rate during heatwave occurrence indicates that the extreme temperatures
of heatwaves overpassed the optimum photosynthesis temperature for alpine vegetation on
the Tibetan Plateau. Additionally, summer heatwaves affect photosynthesis primarily due
to the physiological response to water deficit and high temperatures, including reductions
in enzymatic activity and stomatal conductance to prevent water loss [44]. The stress effects
are increased by water deficits [45]. In general, the occurrence of heatwaves was frequently
accompanied by a decline in precipitation and a decrease in air relative humidity [5]. To
validate this phenomenon, we examined the soil moisture and precipitation for the two
selected heatwaves in June 2013 and August 2016. The soil moisture and precipitation
during heatwave periods are obviously lower than the multi−year average in the corre-
sponding periods (Figure 10). This demonstrates that heatwaves affect alpine vegetation
by combining temperature stress and water limitation on the Tibetan Plateau. However,
comparing the soil moisture and precipitation before and during the heatwave in August
2016, soil moisture and precipitation showed different change patterns. Maybe, this re-
sulted from data noises in soil moisture product. The microwave–based soil moisture used
in this work is retrieved using in–situ at five pixel-scale fields and 25km microwave remote
sensing [32]. But, it is not widely validated on the Tibetan Plateau due to no widespread
in-situ measurements. Moreover, the alpine vegetation responds differently to heatwaves
in different phenology stages. The ΔVGR in July is more significant than that of July and
August. It is indicated that the alpine vegetation is more sensitive to heatwaves in the early
growing season than in the later growing season. Vegetation is fragile and sensitive to the
environment in the early growing season [26,45,46], for example, spring phenology is more
sensitive to environmental factors than autumn phenology [47]. Meanwhile, vegetation
usually grows faster in the early growing season than in the later growing season; there-
fore, the growth rate may be more sensitive to environmental factors in the early growing
season [46]. In this study, it is indicated that ΔVGR decreased linearly with heatwave
intensity. This is partly because most heatwaves are weak on the Tibetan Plateau, and
alpine vegetation can recover from these disturbances. Different grasslands on the Tibetan
Plateau exhibited different response patterns to climate changes [26]. Interestingly, the
alpine meadow is more sensitive to heatwaves than the alpine steppe in June (Figure 11),
but the opposite is true in July and August. This may result from the different coverage
between the two types. Moreover, the growth rate changing mechanism is complex; more
factors should be considered [48–51]. Further research is needed to clarify the detailed
mechanism of these changes. On the Tibetan Plateau, the vegetation that has adapted to
the cold, alpine environment might differ from other ecosystems concerning vegetation
responses to temperature extremes [26,40]. Given that the Tibetan Plateau will continue
warming in the future [52,53], heatwaves will happen more widely and intensely and will
lead to abrupt changes by approaching the temperature threshold of alpine vegetation.
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Figure 10. Precipitation and soil moisture comparison before and during the heatwave occurrence
in June 2013 and August 2016. (a,c) represent the average soil moisture before/during two selected
heatwave periods versus multi-year average soil moisture in the corresponding periods. (b,d) repre-
sent the average daily precipitation before/during two selected heatwave periods versus multi-year
average soil moisture in the corresponding periods. The red bars indicate the heatwave years. The
black bars indicate the baseline period (soil moisture: 2002–2019, pre: 2000–2020). The “bf” represents
the period before the heatwaves (9 June 2013–14 June 2013 DOY: 160–165 and 9 August 2016–15 August
2016 DOY: 221–227). The “dur” indicates the heatwave periods (15 June 2013–20 June 2013 DOY:
166–170 and 16 August 2016–24 August 2016DOY: 228–236).

There are some uncertainties involved in this study. Firstly, meteorological observa-
tions have a relatively sparse and uneven distribution, resulting in the low representative-
ness of the identification of heatwaves [41]. Secondly, the quality of the remote sensing
dataset is low on the Tibetan Plateau due to the contamination of snow, clouds, and complex
terrain. Thirdly, the reconstructed vegetation index value can result in uncertainties in the
analysis. The different spatial representativeness among station data, MODIS data, and
coarse resolution soil moisture data can also lead to uncertainties in the study. Fourthly,
the definition of a heatwave is uncertain due to the unique natural conditions on the
Tibetan Plateau. In some heatwave definitions in the tropic or temperate region, a fixed
high-temperature threshold is usually used by combining the temperature 90% percentiles.
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In this work, only the 90% percentile was used and may result in uncertainties when
comparing heatwaves on the Tibetan Plateau with other regions.

Figure 11. ΔVGR in each month in June, July, and August on the Tibetan Plateau from 2000 to 2020.
The dark green column represents the ΔVGR of the alpine meadow; the light green column indicates
the ΔVGR of the alpine steppe.

5. Conclusions

In this study, heatwaves were detected on the Tibetan Plateau by using long-term
meteorological station data. The characteristics of heatwaves were explored at these
meteorological stations. By combining the remotely sensed vegetation indices, the alpine
vegetation response mechanism to heatwaves was examined on the Tibetan Plateau. The
results indicate that: (1) With rapid warming, heatwaves frequently occur in June, July,
and August on the Tibetan Plateau. The heatwaves have no significant increasing trend
from 2000 to 2020; (2) The correlation between heatwave intensity and vegetation growth
rate anomalies was significantly negative on the Tibetan Plateau. The vegetation growth
rate estimated from NDVI and EVI consistently indicates that heatwaves slow vegetation
growth. The alpine vegetation growth rate is more sensitive to the heatwave in June than
in July and August. This study outlines the importance of heatwaves to vegetation growth
to enrich our understanding of alpine vegetation response to increasing extreme weather
events under the background of climate change.
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Appendix A

Table A1. Information for meteorological stations used in this study.

WMO Code Station Name Latitude Longitude Elevation (m)

52602 Lenghu 38.75 93.33 2770

52707 Xiaozaohuo 36.80 93.68 2767

52787 Wushaoling 37.20 102.87 3045.1

52818 Golmud 36.42 94.90 2807.6

52825 Nuomuhong 36.43 96.42 2790.4

52836 Doulan 36.30 98.10 3191.1

52856 Gonghe 36.27 100.62 2835

52866 Xining 36.72 101.75 2295.2

52868 Guide 36.03 101.43 2237.1

52908 Wudaoliang 35.22 93.08 4612.2

52943 Xinghai 35.58 99.98 3323.2

52955 Guihan 35.58 100.75 3202.9

52974 Tongren 35.52 102.02 2491.4

55228 Shiquanhe 32.50 80.08 4278

55248 Gaize 32.15 84.42 4414.9

55299 Naqu 31.48 92.07 4507

55437 Pulan 30.28 81.25 3900

55493 Dangxiong 30.48 91.10 4200

55569 Lazi 29.08 87.60 4000

55598 Shannan 29.25 91.77 3551.7

55655 Nielaer 28.18 85.97 3810

55664 Dingri 28.63 87.08 4300

55680 Jiangzi 28.92 89.60 4040

56004 Tuotuohe 34.22 92.43 4533.1

56018 Zaduo 32.90 95.30 4066.4

56021 Qumalai 34.13 95.78 4175

56029 Yushu 33.02 97.02 3681.2

56033 Maduo 34.92 98.22 4272.3

56034 Qingshuihe 33.80 97.13 4415.4

56038 Shiqu 32.98 98.10 4200

56043 Guoluo 34.47 100.25 3719

56046 Dari 33.75 99.65 3967.5

56065 Henan 34.73 101.60 3500

56067 Jiuzhi 33.43 101.48 3628.5

56074 Maqu 34.00 102.08 3471.4

56079 Ruoergai 33.58 102.97 3439.6
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Table A1. Cont.

WMO Code Station Name Latitude Longitude Elevation (m)

56080 Hezuo 35.00 102.90 2910

56116 Qingqing 31.42 95.60 3873.1

56125 Nangqian 32.20 96.48 3643.7

56137 Changdu 31.15 97.17 3306

56144 Dege 31.80 98.58 3184

56146 Ganzi 31.62 100.00 3393.5

56151 Banma 32.93 100.75 3530

56152 Seda 32.28 100.33 3893.9

56167 Daodu 30.98 101.12 2957.2

56172 Maerkang 31.90 102.23 2664.4

56173 Hongyuan 32.80 102.55 3491.6

56178 Xiaojing 31.00 102.35 2369.2

56182 Songpan 32.65 103.57 2850.7

56223 Luolong 30.75 95.83 3640

56227 Bomi 29.87 95.77 2736

56247 Batang 30.00 99.10 2589.2

56251 Xinlong 30.93 100.32 3000

56257 Litang 30.00 100.27 3948.9

56312 Linzhi 29.67 94.33 2991.8

56331 Zuogong 29.67 97.83 3780

56357 Daocheng 29.05 100.30 3727.7

56374 Kangding 30.05 101.97 2615.7

56434 Chayu 28.65 97.47 2327.6

56444 Deqin 28.48 98.92 3319

56459 Muli 27.93 101.27 2426.5

56462 Jiulong 29.00 101.50 2987.3

56533 Gongshan 27.75 98.67 1583.3

56543 Zhongdian 27.83 99.70 3276.1
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Abstract: The detection and attribution of vegetation dynamics in drylands is an important step for
the development of effective adaptation and mitigation strategies to combat the challenges posed
by human activities and climate change. However, due to the spatial heterogeneity and interactive
influences of various factors, quantifying the contributions of driving forces on vegetation change
remains challenging. In this study, using the normalized difference vegetation index (NDVI) as a
proxy of vegetation growth status and coverage, we analyzed the temporal and spatial characteristics
of the NDVI in China’s Inner Mongolian grasslands using Theil–Sen slope statistics and Mann–
Kendall trend test methods. In addition, using the GeoDetector method, a spatially-based statistical
technique, we assessed the individual and interactive influences of natural factors and human
activities on vegetation-NDVI change. The results show that the growing season average NDVI
exhibited a fluctuating upward trend of 0.003 per year from 2000 to 2018. The areas with significant
increases in NDVI (p < 0.05) accounted for 45.63% of the entire region, and they were mainly
distributed in the eastern part of the Mu Us sandy land and the eastern areas of the Greater Khingan
Range. The regions with a decline in the NDVI were mainly distributed in the central and western
regions of the study area. The GeoDetector results revealed that both natural and human factors
had significant impacts on changes in the NDVI (p < 0.001). Precipitation, livestock density, wind
speed, and population density were the dominant factors affecting NDVI changes in the Inner
Mongolian grasslands, explaining more than 15% of the variability, while the contributions of the two
topography factors (terrain slope and slope aspect) were relatively low (less than 2%). Furthermore,
NDVI changes responded to the changes in the level of specific influencing factors in a nonlinear
way, and the interaction of two factors enhanced the effect of each singular factor. The interaction
between precipitation and temperature was the highest among all factors, accounting for 39.3% of
NDVI variations. Findings from our study may aid policymakers in better understanding the relative
importance of various factors and the impacts of the interactions between factors on vegetation
change, which has important implications for preventing and mitigating land degradation and
achieving sustainable pasture use in dryland ecosystems.

Keywords: NDVI; vegetation dynamics; influencing factors; spatial stratified heterogeneity;
geographical detector method

1. Introduction

Drylands, covering about 41.30% of the Earth’s terrestrial surface and supporting
more than 38% of the global population [1], are characterized by a lack of water, infertile
soil, and high climate variability. They are highly susceptible to climate fluctuations and
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human activities [2,3]. Because of the limitations imposed by water resource availability
and challenging climate change effects, drylands fall victim to persistent land degradation
problems that have led to the desertification of 3.6 billion hectares worldwide and have
threatened the lives and livelihoods of the local people [3,4]. Monitoring land degradation
and identifying its potential causes are of great significance to sustainable land use. As
the primary producer in the ecosystem, the ground vegetation links the carbon–water
cycle and the energy flow within the hydrosphere, pedosphere, and atmosphere [5,6],
and it plays a fundamental role in providing ecosystem goods and maintaining terrestrial
ecosystem functions [7]. The vegetation conditions of degraded land have always been
used as a proxy to quantitatively detect ecosystem processes at both local and regional
scales [8–11]. With the help of satellite remote sensing images, the detection and attribution
of vegetation greening and browning trends have emerged as a popular subject in the
scientific community over the past several decades [12], and the relation between the
normalized difference vegetation index (NDVI) and vegetation growth status and coverage
has been well established. Due to the spatial heterogeneity and the combined effects of
the driving factors [13,14], quantifying the contributions of the main drivers of vegetation
change remains challenging. It is urgent that techniques be developed to help disentangle
the contributions of factors to variations in vegetation for the development of strategies for
vegetation restoration and desertification prevention in drylands.

In general, vegetation change was influenced by intertwined natural and human-
induced factors. The impact of global climate change on vegetation growth is a major
research priority. Numerous studies have been carried out related to the response of the
NDVI to variations in climatic factors (e.g., air temperature, solar radiation, and precipi-
tation) at different spatiotemporal scales [5,6,15], aimed at improving our knowledge of
the mechanistic link between the effects of climate change on vegetation activity. Over the
last decades, human activities became diverse and intensive, exerting greater pressure on
terrestrial ecosystems [3,16]. Anthropogenic factors manifest primarily in land-use change
(LUCC) or changes in management measures [17,18]. Urbanization, characterized by the
occupation of vegetation-covered surfaces by impervious ground, may lead to vegetation
degradation [19]. Overgrazing, cultivation of arable land, and deforestation have resulted
in bare ground and soil erosion, which may result in vegetation degradation [20], while the
enclosure management of degraded rangeland may promote vegetation restoration [21].

The residual trend method (RESTREND), ecosystem modeling methods, and various
mathematical models are widely used for quantifying the influences of driving factors on
changes in vegetation growth. The RESTREND method distinguishes between human-
induced and climate-driven vegetation changes based on the trend of NDVI residues
(defined as the differences between the actual and predicted NDVI values) [22], and it is
predominantly useful in studies of regions where water is limiting [9,23,24]. However,
the RESTREND method is associated with some uncertainties [25]. The results of the
RESTREND method may vary considerably with the time employed to compute the NDVI-
precipitation regression and the trends of its residuals [23,26]. Moreover, this method
attributes the residuals to the total effects of all human disturbances, making it difficult
to disentangle and compare the contributions of different human activities on vegetation
variations [18]. The mathematical models mainly include regression, correlation analy-
sis, and the structural equation modeling method [6,18,19,27]. Most of the mathematical
models detect the impacts of the environmental variables on the vegetation dynamics
using a linear hypothesis [28]. However, theory and empirical evidence suggest that
the trajectory of the responses of the vegetation index to the influencing factors is often
nonlinear [2,29,30], so the linearity assumptions may result in erroneous conclusions and
misleading interpretations. Many process-based ecosystem models have been developed to
quantify the responses of environmental variables to key ecological processes in a nonlinear
way [28,31,32], overcoming the deficiencies of the mathematical models. However, ecosys-
tem modes usually require a large number of inputs and parameter settings, and there
are uncertainties in the models’ structures and parameter choices [33], which may lead to
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inconsistent model results [15]. The GeoDetector method, which was developed by Wang
in 2010 [34], quantifies the impacts of factors on geographical phenomena or attributes
from a spatially stratified heterogeneity perspective [34,35]. The GeoDetector method does
not involve complex parameter settings, nor does it follow the restrictive assumptions of
traditional statistical methods. This technique has been used to evaluate the influences
of factors in the eco-environmental and social science fields [15,36–40]. The GeoDetector
method can be a promising tool for exploring the associations between various impact
factors and vegetation changes in drylands.

With climate change and increasing anthropogenic activities, the vulnerable ecosys-
tems of the drylands in northern China have been degraded to varying degrees, posing
severe ecological and environmental problems [41–43]. In order to reverse the environmen-
tal degradation trend, particularly in the ecologically fragile regions, several ecological
conservation programs were carried out in the late 1990s [44,45]. Since then, land-use
patterns have changed substantially [45]. An in-depth understanding of the spatial fea-
tures and the changes in and underlying the driving mechanisms of vegetation activity is
important to improve policymakers’ understanding of the sustainable use of vegetation
resources and for the development of reasonable strategies for ongoing ecological restora-
tion. At present, scholars have mainly focused on the relationships between vegetation
variations and climatic factors at different time and spatial scales in the drylands of north-
ern China [15,24,26,46–49], but they have paid little attention to different human activities
(e.g., grazing pressure, land use conversions). In addition, few studies have considered
the potential of interactive effects between the factors impacting vegetation changes. If the
interactions between factors are not taken into consideration, the results may be biased [19].

In this study, the Inner Mongolian grasslands were selected as the study area. The Inner
Mongolian grasslands act as an ecological protective belt for eastern China and provide
plenty of ecosystem services (e.g., food supply, grass production, climate regulation, carbon
sequestration, soil erosion control, and cultural heritage) [50]. The objectives of this work
were twofold: (1) to investigate the temporal and spatial characteristics of the NDVI
in the Inner Mongolian grasslands from 2000–2018; and (2) to examine the individual
contributions and interactive effects of natural factors and human activities on vegetation
changes using the GeoDetector method. This work aims to provide a scientific foundation
for detecting the underlying mechanism of vegetation changes in temperate grasslands.

2. Materials and Methods

2.1. Study Area

The Inner Mongolian grasslands, located in the drylands of northern China
(105◦18′–125◦15′E, 37◦38′–50◦50′N; Figure 1a), cover an area of approximately 78.2 × 104 km2.
This region is mainly arid and semi-arid [48]. It is ecologically fragile and is vulnerable
to climate variations and human activities, but it plays a critical role in safeguarding the
ecological security of northern China’s agricultural plain and metropolitan regions [44].
Dominated by a temperate continental climate, the Inner Mongolian grasslands have an-
nual precipitation of 120–520 mm and an annual mean temperature of −2 to 10 ◦C. More
than 80% of the annual total precipitation is concentrated between July and September,
which coincides with the period of high temperatures [44]. The climate has distinct seasonal
characteristics: (1) windy and dry in spring, with strong evaporation; (2) warm and hot
in summer, with an uneven precipitation distribution; (3) a short autumn, with early frost
and snow and large day–night temperature differences; and (4) a cold and long winter. The
vegetation across the Inner Mongolian grasslands has obvious east–west zonal distribution
characteristics. From west to east, the precipitation and soil fertility gradually increase, and
the solar radiation gradually decreases, forming three different types of temperate grass-
lands (Figure 1d). There are also nonzonal vegetation types, including saline meadows and
marshes along riverbanks and large tracts of sandy lands, which are closely associated with
site-specific geographical characteristics (e.g., water bodies, topography, and salinization).
The study area is dominated by high plains and low mountains, which are characterized
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by high elevations in the central and western areas and low elevations in the southeastern
and northern areas, with altitudes ranging from 90 m to 2300 m (Figure 1b).

Figure 1. (a) Location of the study area, (b) topographical conditions, (c) weather station distribution,
(d) ecoregions of the study area, and (e) city boundaries. The numbers in (e) represent the prefecture-
level cities (1—Hulunbuir; 2—Hinggan; 3—Xilingol; 4—Tongliao; 5—Chifeng; 6—Ulanqab; 7—Alxa;
8—Baotou; 9—Bayannur; 10—Hohhot; 11—Erdos; 12—Wuhai).

2.2. Data Acquisition and Processing

The NDVI values were extracted from the MOD13A2 product (Version 6, 1000 m
resolution, 16-days composite). The MOD13A2 product was geographically projected using
the MODIS Reprojection Tool (MRT) software; then, the maximum value composite method
(MVC) was used to obtain monthly NDVI data to reduce the effects of clouds and image
noise. The MVC method still cannot guarantee that all pixels of an image are cloud-free. In
this study, we used the variable weight filtering method proposed by Zhu to reconstruct a
set of high-quality NDVI time-series data; the reconstructed vegetation index time-series
data can enhance the application capability of vegetation index time-series data in the
study of vegetation–climate factor interactions [51]. Given that most of the plants withered
and stopped growing during the winter, we used the growing season (defined as April to
October) NDVI to detect the inter-annual variations in the vegetation activity [48,49].

The meteorological datasets covering the period of 2000–2018 were compiled from
ninety-six weather stations (Figure 1c). The datasets included daily values of the mean
temperature, precipitation, sunshine duration, relative air humidity, and mean wind speed,
which were obtained from the National Meteorological Information Center of China. The
Solar Energy Resource Evaluation method (QX/T 89-2008), which was developed by the
China Meteorological Administration, was used to estimate solar radiation. The spatial
distribution results for meteorological station data at a spatial resolution of 1000 m were
obtained via spatial interpolation using ArcGIS 10.2.

The 2000 and 2015 land cover type data (1000 m resolution) were retrieved from the
Resource and Environment Science and Data Center. The dataset was interpreted visually
based on Landsat thematic mapper images and unmanned aerial vehicles, which are char-
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acterized as being highly accurate via random sampling checks and field surveys. The data
contain 26 secondary categories with a comprehensive evaluation accuracy of >90% [52].

The soil type data were extracted from the soil map of China (1:1,000,000), which was
provided by the Chinese Soil Census Office. The data were compiled by soil generation
classification standards.

The topographic data consisted of altitude, slope, and aspect data. Through image
mosaicking, we obtained a DEM of the study area with a spatial resolution of 90 m from
the Geospatial Data Cloud site (http://www.gscloud.cn, accessed on 25 March 2022).

The administrative boundaries, roads, and settlements (1:250,000) vector data were
obtained from the National Catalogue Service for Geographic Information, Ministry of
Natural Resources of China.

The statistical data, including the total population, gross regional product, agricultural
mechanical power, fertilizer applied for agriculture, grain production, oil production, and
quantity of livestock (including goats, sheep, horses, cattle, and camels), at the county
level, were obtained from the Inner Mongolia Statistical Yearbook (https://data.cnki.net/,
accessed on 20 March 2022). According to prior research, we used an equivalent unit of
grazing (i.e., “sheep unit”) to normalize the grazing intensity among different species [53].
Using the empirical formula [10,53], we set the transition factor for large livestock (e.g.,
cattle, donkeys, camels, and horses) to 6, whereas the transition factor was set to 1 for goats
and sheep.

2.3. Mann-Kendall Trend Test and Sen’s Slope Estimator

In this work, the Sen trend analysis and the Mann–Kendall test [54–56] were used to
detect the trend slopes and significance of trends in the NDVI time series, respectively. The
procedure for the nonparametric Mann–Kendall trend test [55,56] is as follows:

S = ∑n−1
i=1 ∑n

j=i+1 sgn
(
xj − xi

)
(1)

In Equation (1), S denotes the standardized test statistic value, xi and xj are data values
at time i and j, respectively; n is the length of time series; and sgn(xj − xi) is the sign
function, which is calculated as follows:

sgn
(
xj − xi

)
=

⎧⎪⎨
⎪⎩
−1, i f xj − xi < 0

0, i f xj − xi = 0

+1, i f xj − xi > 0

(2)

In this study, the length of time series n = 19, and the trend test were conducted using
the ZS value, which is defined as follows:

ZS =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

S + 1√
Var(S)

, i f S < 0

0, i f S = 0
S − 1√
Var(S)

, i f S > 0

(3)

In Equation (3), the variance Var(S) is computed as:

Var(S) =
n(n − 1)(2n + 5)− ∑m

i=1 ti(ti − 1)(2ti + 5)
18

(4)

In Equation (4), m is the number of tied groups in the time series and ti is the width of
the tied groups. In this study, a significance level of α = 0.05 was used. It is assumed that,
for null hypothesis, the data are arranged with no significant trend. When |Z| > Z1−α/2,
the null hypothesis is rejected and the trend of the change in the series data is considered
to be significant.
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The Sen slope calculation is carried out as:

β = Median
(

xj − xi

j − i

)
(5)

where Median() denotes the median function of the requested series; β is the slope of the
time series x; and a negative β value indicates a decreasing trend in the series.

2.4. GeoDetector Method

Spatial stratified heterogeneity (SSH), referring to a within sub-region variance of
less than that between the sub-regions [35], is ubiquitous in ecological phenomena, such
as soil types, land use types, and climate zones. The GeoDetector comprises a series of
spatial statistical methods, and it is frequently used to detect the SSH of the dependent
variables without linear assumptions and reveal the driving forces behind a phenomenon
by quantifying the impact of associated factors. The GeoDetector assumes that if an
independent variable (e.g., precipitation) has a certain degree of influence on a dependent
variable (i.e., NDVI changes), then the spatial patterns of the two variables have high
similarity. Figure 2 illustrates the principle of the GeoDetector; spatial variances within each
sub-region and among the different sub-regions are compared to identify the explanatory
powers of the potential explanatory variables [34,39,57].

 

Figure 2. Illustration of the principle of the GeoDetector model. The study area A, the grid system
H = {hi, i = 1, 2, . . . , n}, and the sub-region of the potential factor D = {Di, i = 1, 2, 3}.

2.4.1. Single Factor Influence Detection

The impact of an individual factor on changes in NDVI can be measured using the
q-statistic [34,35]:

q = 1 − ∑L
h=1 Nhσ

2
h

Nσ2
(6)

where q is the measurement index of the factor. The range of q-statistic is [0, 1]. Based on the
model principle, the larger the q-statistic is, the stronger the independent variable represents
the heterogeneity of the dependent variable. L refers to the number of stratifications of
factor X; Nh and N are the numbers of units in sub-region h and over the whole study
region, respectively; and σ2 and σ2

h represent the variances of variable Y over the entire
study region and in sub-region h, respectively.

2.4.2. Interaction Detection of Pairwise Factors

The interactive impact of two explanatory factors (X1 and X2) on NDVI change also can
be quantified by q-statistic. The module of interaction detection quantifies the interaction
between two factors by comparing q(X1∩X2) with q(X1) and q(X2) to assess whether the
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factors weaken or enhance one another or are independent of each other, in which q(X1∩X2)
indicates the explanatory power of a new factor created by overlaying the layer of the two
variables in GIS tools (Supplementary Figure S1). Generally, the results of the interaction
detector encompass five categories (Figure 3).

 

Figure 3. Judgment for interaction types between explanatory variables. Note: max() and min()
denote the maximum and minimum functions, respectively. q(X1∩X2) represents the interaction
between factors X1 and X2. Modified from prior research [38,57,58].

2.4.3. Selection of Factors

In this work, we chose the slope of the change in the NDVI from 2000–2018 as the
dependent variable and selected 15 potential natural and human factors (Table 1, Figure 4).
Specifically, in addition to the climatic factors, we included soil and topography as funda-
mental environmental factors, which have been demonstrated to be critical to inter-annual
variations of vegetation [9,59–61]. Additionally, six factors (road impact, geographical
location, population pressure, grazing pressure, land use/cover change, and economic
development) were selected to reflect the magnitude of anthropogenic influences [19,59]. In
this study, we reclassified land cover types into six types, and the land cover maps (water
bodies were excluded) for 2000 and 2015 were superimposed to generate a land use/cover
change (LUCC) map. The spatial distribution of the grades for all driving factors can be
found in Figure 4.

Table 1. Potential driving factors of vegetation variation in the study area.

Category Index Abbreviation Unit

Climate Annual precipitation Pre mm
Annual mean temperature Tem ◦C
Annual solar radiation SR MJ·m−2

Annual mean wind speed WS m·s−1

Annual mean relative air
humidity RH %

Topography Altitude Alt m
Terrain slope Slopd ◦
Slope aspect Slopa ◦

Soil Soil type Soilt categorical
Human activity Distance to the nearest road DNR km

Distance to the nearest county
centers DNC km

Population density Popd person·km−2

Per capita gross regional product GRP 10,000 yuan person−1

Livestock density Livstd sheep·km−2

Land use/cover change LUCC categorical
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Figure 4. The spatial distributions of all factors. The numbers in the legend of (h) represent (1) Flat
ground, (2) North slope, (3) Northeast slope, (4) East slope, (5) Southeast slope, (6) South slope,
(7) Southwest slope, (8) West slope, and (9) Northwest slope. The numbers in the legend of (i) rep-
resent (1) Luvisols, (2) Semi-luvisols, (3) Caliche soils, (4) Arid soils, (5) Desert soils, (6) Skeletol
primitive soils, (7) Semi-hydromorphic soils, (8) Hydromorphic soils, (9) Saline soils, (10) Anthrosols,
and (11) Others. The numbers in the legend of (o) represent (1) Cropland, (2) Forest, (3) Grassland,
(4) Construction land, and (5) Unused land. Pre: precipitation; Tem: air temperature; SR: solar
radiation; WS: wind speed; RH: relative air humidity; Alt: altitude; Slopd: terrain slope; Slopa: slope
aspect; Soilt: soil type; DNR: distance to the nearest road; DNC: distance to the nearest county centers;
Popd: population density; GRP: Per capita gross regional product; Livstd: livestock density; LUCC:
land use/cover change.

2.4.4. Factor Grading Optimization in the GeoDetector Method

Since the GeoDetector method is only suitable for dealing with discrete or categorical
variables, all the continuous predictor variables should be discretized using appropriate
discretization methods before modeling [38,62]. In this study, the twelve factors, namely,
five post-interpolation meteorological factors, two topography factors (altitude and terrain
slope), and five anthropogenic factors (distance to the nearest road, distance to the nearest
county centers, population density, per capita gross regional product, and livestock density),
are continuous variables. We converted the twelve continuous variables into discrete ones.

To reduce the subjectivity of user-defined discretization and ensure the best-quality
modelling results, the optimal discretization methods were determined from five types of
unsupervised discretization methods, including geometrical interval (GI), natural breaks
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(NB), equal interval (EI), quantile (QU), and standard deviation (SD) methods [38,62,63].
The procedures used for the factor grading optimization are as follows (Figure 5). First, we
classified each continuous variable based on the five discretization methods and fourteen
levels (stratification numbers of 2 to 15). Then, we extracted the values of the NDVI
tendency layer and all of the classification layers. Finally, we calculated the q-statistics of
each continuous predictor variable in all of the classification cases and plotted them to
show their changes (Figure 6).

 
Figure 5. Flowchart illustrating the process of determining the optimal discretization method and
stratification number.

A combination of classification algorithms with prior knowledge was needed to
classify the continuous variable when using the GeoDetector method [34,57]. As shown
in Figure 6, the maximum q-statistics of the factors generally increased as the number of
stratifications increased. When the number of stratifications reached a certain value, the
maximum q-statistic stabilized. This certain value was defined as the stable value. When
the stratification number was bigger than the stable value, the characterization identified
by GeoDetector remained unchanged, implying that more discretization intervals do not
mine the information of the continuous variables. Considering the maximum stratification
numbers (7, 8, 7, and 9, respectively) used in relevant studies [38,64–66] and the stable value
observed in this study (approximately 10 in Figure 6), we limited the maximum number of
stratifications to 10. The largest q-statistic value indicates the optimal discretization method
and stratification number [38,62,63]. Based on this principle, we determined the optimal
discretization methods and stratification numbers of each predictor variable. The impact
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factors with the optimal discretization methods and stratification numbers can be found in
Table 2.

 

Figure 6. Comparison of the q-statistics under the different discretization methods and stratification
number combinations. The five types of discretization methods include equal interval (EI), geometri-
cal interval (GI), natural break (NB), quantile (QU), and standard deviation (SD). Pre: precipitation;
Tem: air temperature; SR: solar radiation; WS: wind speed; RH: relative air humidity; Alt: altitude;
Slopd: slope; DNR: distance to the nearest road; DNC: distance to the nearest county centers; Popd:
population density; GRP: Per capita gross regional product; and Livstd: livestock density.
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Table 2. The classification of potential driving factors. The units of Pre, Tem, SR, WS, RH, Alt, Slopd,
DNR, DNC, Popd, GRP, and Livstd are mm, ◦C, MJ·m−2, m·s−1, %, m, ◦, km, km, person·km−2,
10,000 yuan person−1, and sheep·km−2, respectively. In the parentheses of the table header, QU, EI,
and GI correspond to three discretization methods of the quantile, equal interval, and geometrical
interval, respectively, and the numbers represent the number of stratifications.

Category/Factor
Pre
(QU-9)

Tem
(QU-10)

SR
(GI-9)

WS
(EI-9)

RH
(GI-10)

Alt
(EI-10)

Slopd
(GI-9)

1 123.8–194.9 −2.28 to 0.74 4815–5130 1.72–1.85 40.0–43.7 90–311 0–0.17
2 194.9–233.5 0.74–2.11 5130–5371 1.85–1.97 43.7–46.5 311–532 0.17–0.24
3 233.5–269.0 2.11–3.18 5371–5555 1.97–2.09 46.5–48.5 532–753 0.24–0.40
4 269.0–306.1 3.18–3.97 5555–5695 2.09–2.21 48.5–50.0 753–974 0.40–0.79
5 306.1–332.3 3.97–4.94 5695–5802 2.21–2.33 50.0–51.1 974–1195 0.79–1.71
6 332.3–352.4 4.94–5.72 5802–5884 2.33–2.45 51.1–52.7 1195–1416 1.71–3.88
7 352.4–378.7 5.72–6.89 5884–5991 2.45–2.58 52.7–54.7 1416–1638 3.88–8.97
8 378.7–418.8 6.89–7.48 5991–6131 2.58–2.70 54.7–57.5 1638–1859 8.97–20.92
9 418.8–517.7 7.48–8.07 6131–6316 2.70–2.82 57.5–61.2 1859–2080 20.92–49.21
10 8.07–10.17 61.2–66.2 2080–2301

Category\Factor Slopa Soilt
DNR
(GI-9)

DNC
(GI-9)

Popd
(GI-10)

GRP
(EI-9)

Livstd
(QU-10)

1 Flat ground Luvisols 0–1.44 0–19.5 0.98–1.95 1.04–3.63 20.05–29.85
2 North Semi-luvisols 1.44–2.35 19.5–31.9 1.95–3.79 3.63–6.22 29.85–52.72
3 Northeast Caliche soils 2.35–3.79 31.9–39.8 3.79–7.28 6.22–8.81 52.72–55.99
4 East Arid soils 3.79–6.11 39.8–44.8 7.28–13.89 8.81–11.39 55.99–69.06
5 Southeast Desert soils 6.11–9.83 44.8–52.8 13.89–26.42 11.39–13.99 69.06–78.86
6 South Skeletol primitive soils 9.83–15.79 52.8–65.2 26.42–50.17 13.99–16.57 78.86–111.53

7 Southwest Semi-hydromorphic
soils 15.79–25.35 65.2–84.6 50.17–95.20 16.57–19.16 111.53–157.27

8 West Hydromorphic soils 25.35–40.68 84.6–115.1 95.20–180.56 19.16–21.75 157.27–186.67
9 Northwest Saline soils 40.68–65.26 115.1–163.0 180.56–342.39 21.75–24.34 186.67–261.82
10 Anthrosols 342.39–649.17 261.82–853.17
11 Others

3. Results

3.1. Spatio-Temporal Variability of NDVI

The areas with mean growing season NDVI values of greater than 0.6 accounted
for 5.34% of the entire area from 2000–2018 (Figure 7a), indicating the generally inferior
nature of the vegetation cover in the Inner Mongolian grasslands. The spatial pattern
of the multi-year mean NDVI during the growing season exhibited an increasing trend
from south to north and from west to east (Figure 7a), which was highly consistent with
the distribution pattern of water and heat resources. The northeastern part of the Inner
Mongolian grasslands is located in the transitional zone between the Greater Khingan
Range forest region and the Inner Mongolia temperate grasslands, and high NDVI values
(>0.6) are concentrated in this area (Figure 7a). The topography of the central part of the
region is dominated by high plains and low mountains, with good forage quality and
NDVI values from 0.3–0.5. The western part of the region is subject to low rainfall and
is home to xerophytic vegetation, which is mainly composed of xerophytic bunch grass
mixed with semi-shrubs and allium plants. This area also has widely distributed low NDVI
values (<0.2), indicating poor vegetation coverage (Figure 7a).

The growing season average NDVI of the entire study area ranged from 0.289 to
0.365 during the period of 2000 to 2018 (Supplementary Figure S2) and exhibited a sig-
nificant increase at a rate of 0.003 a−1 (p < 0.05). Figure 7b shows the NDVI changing
trends at the pixel scale in the Inner Mongolian grasslands, which indicates that the NDVI
mainly increased, with the areas of increase and the areas of decrease being 71.90 × 104

and 6.30 × 104 km2, accounting for 91.94% and 8.06% of the entire region, respectively. The
areas with significant increases in NDVI (p < 0.05) accounted for 45.63% of the entire region,
and they were mainly distributed in the eastern part of the Mu Us sandy land (i.e., Erdos
and Hohhot) and in the eastern areas of the Greater Khingan Range (i.e., Hinggan City,
Tongliao City, and Chifeng City). Although the vegetation conditions improved in general,
different degrees of degradation were also observed across the study area. The regions with
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a decline in NDVI were mainly distributed in the central and western regions of the study
area (Figure 7b), especially in four prefecture-level cities (i.e., Bayannur, Baotou, northern
Ulanqab, and western Xilingol). The areas with significant decreases in NDVI were small,
accounting for 0.44% of the study region, and they were relatively scattered.

 

Figure 7. The (a) spatial distribution of the growing season average NDVI and (b) the slope of the
change in the NDVI from 2000–2018. The inset graph in (a) is a statistical histogram; the inset map in
(b) shows the significant decreases (red) and increases (green) in the NDVI at the 95% confidence level.

3.2. Impacts of Natural and Human Factors on NDVI Changes
3.2.1. Impacts of the 15 Factors on NDVI Changes

The q-statistics of all of the influencing factors passed the significance test (p < 0.001)
(Supplementary Figure S3). The q-statistic values of the factors exhibited a marked dif-
ference that can be ranked as follows: Pre (0.217) > Livstd (0.182) > WS (0.173) > Popd
(0.167) > GRP (0.126) > Alt (0.100) > Tem (0.096) > RH (0.088) > Soilt (0.067) > DNC (0.062)
> SR (0.051) > LUCC (0.049) > DNR (0.035) > Slopd (0.015) > Slopa (0.001) (Supplementary
Figure S3). These results indicate that the precipitation, which had the highest q-statistic
value, predominantly explains the spatial heterogeneity of NDVI changes. The next most
important factors were the livestock density, wind speed, and population density, with
contributions of greater than 15%, while the impacts of the two topography factors (terrain
slope and slope aspect) were relatively low, with q-statistic values of less than 0.02. There-
fore, both the natural and human factors were identified as important factors influencing
the vegetation NDVI changes in the Inner Mongolian grasslands.

3.2.2. Interactions between the 15 Factors

Two types of interaction relationships (i.e., nonlinear enhancement and bivariate
enhancement) were identified among the 105 cases. For 55 cases, the q-statistics of the
pairwise factor interactions were larger than the sum of the q-statistics of the two involved
factors (Figure 8), which implies a nonlinear enhancement effect. The top five interac-
tive q-statistics decreased in the following order: Pre∩Tem (0.393) > Tem∩Popd (0.336)
> Pre∩Livstd (0.334) > Tem∩SR (0.332) > Tem∩RH (0.331). This indicates that the inter-
actions between the climatic factors, population density, and livestock density had the
greatest impacts on vegetation changes. These results show that the q-statistic of any pair of
interacting factors was greater than the q-statistics of the single factors in the pair, implying
that no factor influenced the vegetation changes in an independent manner but rather
through interactions with the other factors.
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Figure 8. Influences of the interactions between two factors. Pre: precipitation; Tem: air temperature;
SR: solar radiation; WS: wind speed; RH: relative air humidity; Alt: altitude; Slopd: slope; Slopa:
slope aspect; Soilt: soil type; DNR: distance to the nearest road; DNC: distance to the nearest county
centers; Popd: population density; GRP: Per capita gross regional product; Livstd: livestock density;
and LUCC: land use/cover change type.

3.2.3. Effects of the Different Grades of the Factors

The rate at which the NDVI increased varied substantially with the different levels
of the factors (Figure 9). Specifically, as the precipitation, population density, per capita
gross regional product, and livestock density increased, the magnitude of the increase in
the NDVI generally increased. As the wind speed increased, the rate of the increase in
the NDVI generally decreased. The altitude, distance to the nearest road, and distance to
the nearest county centers showed characteristics similar to those of the wind speed. As
the relative air humidity increased, the rate of increase of the NDVI continued to increase
and reached a maximum, and then it fluctuated slightly. The rate of increase of the NDVI
fluctuated for different ranges or types of temperature, solar radiation, slope, aspect, and
soil type (Figure 9). As shown in Table 3, most of the types of land use conversion led to
an increase in the NDVI. The land use conversion from grasslands to croplands caused
the largest increasing rate of NDVI. There were two types of land use conversions (from
cropland to construction land and from unused land to construction land) that lead to a
decrease in the NDVI.
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Figure 9. Influences of the factors’ different grades on the magnitude of the increase in the NDVI.
The units of Pre (precipitation), Tem (air temperature), SR (solar radiation), WS (wind speed), RH
(relative air humidity), Alt (altitude), Slopd (slope), Slopa (slope aspect), DNR (distance to the nearest
road), DNC (distance to the nearest county center), Popd (population density), GRP (per capita gross
regional product), and Livstd (livestock density) are mm, ◦C, MJ·m−2, m·s−1, %, m, ◦, ◦, km, km,
person·km−2, 10,000 yuan person−1, and sheep·km−2, respectively. Soilt represents the soil type.

188



Remote Sens. 2022, 14, 3320

Table 3. Impacts of land use/cover change types on NDVI variations. The numbers in parentheses
are the percentage of specific land use/cover change to the total area (%).

2000/
2015

Cropland Forest Grassland
Construction
Land

Unused Land

Cropland 0.0039
(13.649)

0.0033
(0.080)

0.0038
(0.229)

−0.0009
(0.106)

0.0039
(0.020)

Forest 0.0047
(0.036)

0.0031
(9.461)

0.0039
(0.059)

0.0039
(0.013)

0.0030
(0.014)

Grassland 0.0057
(0.364)

0.0037
(0.151)

0.0025
(60.929)

0.0010
(0.238)

0.0026
(0.423)

Construction
land

0.0045
(0.006)

0.0032
(1.381)

Unused land 0.0039
(0.048)

0.0049
(0.038)

0.0025
(0.474)

−0.0007
(0.047)

0.0025
(12.227)

4. Discussion

4.1. Applicability and Limitation of the GeoDetector Method

In relation to vegetation variations, numerous studies have explored the separation
of natural and human factors. It should be noted that the commonly used methods (e.g.,
RESTREND, statistical correlation, or regression analysis) suffer from potential limitations.
Specifically, RESTREND analysis cannot differentiate anthropogenic impacts from different
aspects of human activities [14,18]. Statistical methods of evaluating the factors influencing
vegetation changes mainly include correlation analysis [48], regression analysis [27], factor
analysis [66], and geographically weighted regression [18]. However, these statistical
methods involve assumptions regarding the data, fail to reveal the interactions between
factors, or are hindered by the multicollinearities among the influencing factors [67]. The
GeoDetector method was employed in this work, and it has three distinct advantages.
(1) The GeoDetector method is not based on linear hypotheses, thus, it provides easier data
preparation and wider applicability. (2) Working with both categorical and continuous
variables, the GeoDetector method is not limited by data type. (3) The GeoDetector method
can be used to determine how the interaction of explanatory variables affects the dependent
variables without the restriction of multicollinearities [37,39,68,69]. Our study demonstrates
that the GeoDetector method is an efficient technique for quantifying the impacts of driving
factors and their interactions on vegetation changes.

Different grading standards (involving the discretization method and the stratification
number) have certain impacts on the GeoDetector results [38,62,68]. However, the selection
of the discretization methods and stratification numbers in prior model applications were
subject to weaknesses such as randomness and subjectivity [39,59,64,70,71], which may
introduce uncertainties and lead to misleading interpretations. In this study, an optimal
discretization method was obtained based on the five types of unsupervised discretization
methods (Figure 5). In addition, on the basis of a changing curve of the degree of influence
(of influencing factors) with different numbers of stratifications, an optimal stratification
number was also determined for each predictor variable (Figure 7). The optimization of
factor-grading improves the accuracy and effectiveness of the modeling [38,63,72].

In this study, the socio-economic data are obtained from the statistical yearbooks at the
county scale. It should be noted that the lack of spatial information of these socio-economic
indicators forces them to be uniformly distributed within administrative divisions. This
involves the spatial scale effect, which may have critical influences on the spatially stratified
heterogeneity analysis. However, it has not been fully investigated and integrated in the
GeoDetector method [38].
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4.2. Effects of Factors on Vegetation Changes
4.2.1. Effects of the Main Natural Drivers

Our results indicate that precipitation was the dominant factor influencing the changes
in the NDVI. This finding is consistent with the results of prior studies, which have
indicated that vegetation growth in dryland ecosystems is very sensitive to precipitation
changes [15,23,41,48]. As shown in Figure 9a, as the precipitation increased, the increase
in the NDVI initially kept rising and reached a peak, and then it decelerated. A possible
explanation for this is that the long-term cloud cover due to the excess precipitation may
have resulted in reductions in temperature and solar radiation [48], which are not conducive
to the improvement of the productivity of the grassland vegetation. In a similar vein, prior
research reported that as precipitation increases, there is a threshold for the response of
vegetation NDVI to precipitation, beyond which the magnitude of increase in NDVI driven
by precipitation will decrease [73].

The rate of increase of the NDVI decreased substantially as the wind speed increased
(Figure 9d) for two main reasons. First, the high wind speed increased evaporation and
decreased the surface moisture, resulting in adverse effects on vegetation growth. Second,
the Inner Mongolian grasslands are located in the sandstorm source region of northern
China [46], with frequent strong winds in spring. In aeolian desertification areas, vegetation
growth has been found to be constrained by burial and abrasion, the loss of surface soil
resources, and the interruption of nutrient accumulation [74]. Zou and Zhai reported that
vegetation coverage, as indicated by NDVI, was significantly negatively correlated with
the occurrence frequency of spring dust storms in Inner Mongolia [75].

Overall, the magnitude of the increase in the NDVI values on the east-facing slopes
was larger than that on the west-facing slopes (Figure 9h). One possible reason was that the
study area is located in a marginal zone of the East Asian summer monsoon. Compared
with the east-facing slopes, the west-facing slopes receive less precipitation and more solar
radiation and thus are characterized by drier and hotter microclimates, which are harsher
environments for vegetation growth.

The areas with semi-luvisols showed significant increases in the NDVI, while the
desert soil had little effect on the increase in the NDVI (Figure 9i). Luvisol soils form under
temperate forest and grassland vegetation. Due to the high accumulation of dead forest
leaves and herbaceous debris and the cool climate, microbial decomposition is limited to a
certain extent, leading to the formation of a humus layer with high fertility that can serve
as important agricultural and forest soil resources. Desert soils, which develop under the
temperate desert grassland vegetation in the northwestern marginal areas of the study
region (Figure 4i), have little humus accumulation, a low organic matter content, and harsh
environments (e.g., low precipitation, strong winds, and solar radiation), all of which are
unfavorable for vegetation growth.

4.2.2. Effects of Human Activities

Livestock grazing is the main form of grassland utilization in Inner Mongolia [23,43].
Our results show that livestock density was the most influential anthropogenic factor
affecting NDVI changes. Prior studies in arid Inner Mongolia were predicated on the belief
that overgrazing substantially decreases vegetation cover and biomass production [76–78].
However, in this study, with an increase in livestock density, the magnitude of NDVI
increase generally rose (Figure 9n), apparently suggesting, paradoxically, that grazing
intensity, as indicated by livestock density, improved grassland vegetation. One possible
reason for this is that the Inner Mongolia government has actively promoted the policy
of herdsmen settlements and livestock pen-raising in recent decades [44]. According to
the statistical yearbook of Inner Mongolia, in the past 19 years, the total area of livestock
sheds has significantly increased at a rate of 9.31 million square meters per year (p < 0.05)
(Figure 10), and the number of livestock in captivity has significantly increased at a rate
of 5.37 million sheep units per year (p < 0.05) (Figure 10). During the same period, the
total number of livestock in Inner Mongolia has increased at a rate of 2.07 million sheep
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units per year, and the growth rate of livestock in captivity is much higher than that of
the total amount of livestock. The intensive mode of livestock production accounts for the
increasing proportion of animal husbandry production in pastoral areas. Due to the strong
implementation of an ecological restoration policy and this intensive livestock production
mode, forage sources are more dependent on external imports, and less damage is caused to
the local vegetation. In addition, the livestock density is inherently high in areas with high
vegetation coverage. Hence, with the increase in livestock density, grassland vegetation
conditions still improved.

 
Figure 10. Inter-annual variations in (a) livestock shed area, (b) livestock numbers in sheds, (c) the
total agricultural mechanical power, (d) the amount of fertilizer applied for agriculture, (e) the
grain yield, and (f) the oil production in Inner Mongolia from 2000–2018. Note: The data were
obtained from the Inner Mongolia Statistical Yearbook [79]. In (a,b), the data for livestock shed area
and livestock numbers in sheds for 2006, 2007, and 2009 are not recorded in the Inner Mongolia
Statistical Yearbook.

Although the GeoDetector method excludes the influence of multcollinearity among
independent variables [37,39], the results show that the q-statistics and the ranking order of
the livestock density, population density, and per capita gross regional product are very
close (Supplementary Figure S3). This implied that the relationships between the human
factors are closer than those between the natural factors. Actually, the interference of the
anthropogenic factors in Inner Mongolia is not as complicated as those in developed areas.
Grazing is the primary human activity affecting the ecological environment in the study
area, and animal husbandry is the main source of income for local herders [41,44]. Where
there are large numbers of livestock, there is often a high population density and social
productivity (Figure 4j–n).

Land use/cover change is a manifestation of human activity [52]. Most of the types of
land use conversion had positive influences on vegetation change in this study (Table 3).
With the technological improvement and update of the industrial structures in agricultural
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sectors, a 0.0039 a−1 increase in the NDVI was observed in the unchanged cropland, which
is corroborated by the fact that from 2000 to 2018, the agricultural mechanical power
and fertilizer used for agriculture in Inner Mongolia increased by 2.71 and 2.98 times,
respectively; the grain production increased from 12.42 × 106 t to 35.53 × 106 t, and the oil
production increased from 1.16 × 106 t to 2.02 × 106 t [79] (Figure 10). The conversions of
grassland and unused land into cropland increased the NDVI, indicating that reasonable
reclamation has a positive effect on vegetation recovery. Through a series of ecological
restoration measures, such as grazing prohibitions with grassland closures, restoration
of cropland to grassland, and reforestation with hillside closures, the NDVI values of
the unchanged grassland and forest land increased at rates of 0.0025 a−1 and 0.0031 a−1,
respectively. For the unused land that was converted into grassland and forest, the NDVI
values increased at rates of 0.0025 a−1 and 0.0049 a−1, respectively. For the cropland that
was converted into grassland and forest, the NDVI values increased at rates of 0.0038 a−1

and 0.0033 a−1, respectively. Prior research also reported that the implementation of
ecological restoration programs was beneficial to the improvement of vegetation coverage
in Inner Mongolia [44,80]. However, urban expansion has caused decreases in the NDVI of
0.0009 a−1 due to the conversion of cropland into construction land and 0.0007 a−1 due to
the conversion of unused land into construction land (Table 3). Therefore, more attention
should be paid to ensuring the development of green infrastructures, such as parks and
green spaces, during urban expansion.

The interactions among factors can greatly enhance the effect of a single factor
(Figure 8). Although the distance to the nearest road, slope, and aspect did not contribute
ideally to NDVI changes, their explanatory powers were enhanced when they interacted
with other factors, especially precipitation and livestock density. Natural factors such as
soil type (q(Soilt∩Livstd)) > q(Livstd)), slope (q(Slopd∩Livstd)) > q(Livstd)), and aspect
(q(Slopa∩Livstd)) > q(Livstd)) tended to enhance the influence of human activities on
vegetation changes.

4.3. Limitations and Future Research Directions

This study had certain limitations which can be improved in future research. First,
the spatial differentiation of the relationships between NDVI variations and the driving
factors was not taken into consideration. For example, most of the degraded vegetation
from 2000 to 2018 was in the central and western regions of the Inner Mongolian grasslands
(Figure 7b), and the interactions between the precipitation and temperature had the greatest
impact on vegetation changes. Thus, with the high surface evaporation potential and
low soil moisture due to a relatively small increase in precipitation and large increases
in temperature in the central and western regions (Figure 11), the increase in the water
stress level was probably the main reason for vegetation degradation. In further studies,
the introduction of spatial statistical methods (e.g., a geographically weighted regression
model), which can reflect the spatial nonstationarity of the parameters in different spaces,
may improve our understanding of the spatial heterogeneity of the relationship between
vegetation change and its driving forces [18,66]. Secondly, the drylands in northern China
are regions with diverse land uses (mainly deserts and grasslands) and substantial sea-
sonal climatic differences [81]. More evidence showed that soil moisture, which exhibits
significant spatial and temporal variability [82], is crucial in regulating vegetation produc-
tivity. In future studies, a multiple time and spatial scale analysis can contribute to a better
understanding of the drivers of vegetation growth change in order to develop suitable
management schemes that are regionally and temporally specific. Thirdly, prior research
observed the NDVI asymptotically saturating in high biomass regions [83]. Regarding
this issue, the EVI (enhanced vegetation index) and SAVI (soil-adjusted vegetation index)
were developed to make up for some of the shortcomings of the NDVI (e.g., atmospheric
noise, soil background, saturation). Due to the limited spatial resolution of MODIS NDVI,
it is difficult to meet the requirements of fine mapping. Combining the process with the
Sentinel dataset or other vegetation indexes (e.g., EVI, SAVI) may help to obtain more
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precise estimates of vegetation dynamics. Last but not least, if breakpoints, which indicate
a shift in the mechanism of influence on the time series under certain circumstances, are
neglected, the results of the trend analysis may lead to a misjudging of the factors that in-
fluence vegetation changes [40]. In future studies, the times at which breakpoints occurred
should be first identified, noting points at which the time series was split into sub-series.
Then, the trends and significance levels of the sub-series would be quantified separately to
obtain more accurate conclusions regarding the driving forces of vegetation changes.

 

Figure 11. The slopes of changes in (a) precipitation and (b) temperature from 2000–2018.

5. Conclusions

In this research, we investigated the spatial and temporal variability in the mean
growing season NDVI from 2000–2018 and quantified the individual and interactive in-
fluences of natural and human factors on NDVI change using the GeoDetector method
in the Inner Mongolian grasslands. The results reveal that the NDVI increased at a rate
of 0.003 a−1. Both the natural and human factors had significant impacts on vegetation
NDVI variations (p < 0.05), and the precipitation, livestock density, and wind speed had
the greatest influences, while terrain slope and slope aspect had the lowest influences. The
interactive impacts among factors often strengthened the impact of single factors.

Our study demonstrates that the GeoDetector method is an effective technique for
disentangling the complicated driving factors of vegetation change. To effectively use the
GeoDetector method, however, researchers need to carefully deal with the problem of
spatial data discretization, which may introduce uncertainties and lead to misleading inter-
pretations. The methodology used in this study can be applied to address the knowledge
gap in the selection of the optimal discretization methods and the number of stratifications
for further GeoDetector-based studies.
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Abstract: Changes in vegetation dynamics play a critical role in terrestrial ecosystems and environ-
ments. Remote sensing products and dynamic global vegetation models (DGVMs) are useful for
studying vegetation dynamics. In this study, we revised the Community Land Surface Biogeochem-
ical Dynamic Vegetation Model (referred to as the BGCDV_CTL experiment) and validated it for
the Tibetan Plateau (TP) by comparing vegetation distribution and carbon flux simulations against
observations. Then, seasonal–deciduous phenology parameterization was adopted according to
the observed parameters (referred to as the BGCDV_NEW experiment). Compared to the observed
parameters, monthly variations in gross primary productivity (GPP) showed that the BGCDV_NEW
experiment had the best performance against the in situ observations on the TP. The climatology from
the remote sensing and simulated GPPs showed similar patterns, with GPP increasing from northwest
to southeast, although the BGCDV_NEW experiment overestimated GPP in the semi-arid and arid
regions of the TP. The results show that temperature warming was the dominant factor resulting in
the increase in GPP based on the remote sensing products, while precipitation enhancement was the
reason for the GPP increase in the model simulation.

Keywords: dynamic vegetation; gross primary productivity; regional climate change; remote sensing
products; Tibetan Plateau

1. Introduction

Terrestrial ecosystems have absorbed 25–30% of anthropogenic carbon dioxide emis-
sions in the past five decades [1]. Vegetation is an essential part of terrestrial ecosystems
and plays a crucial role in regulating regional climates and maintaining the surface energy
balance [2,3]. Gross primary productivity (GPP) refers to the total amount of organic
carbon fixed by plants in the ecosystem by absorbing solar energy and assimilating carbon
dioxide through photosynthesis per unit time. GPP determines the total amount of initial
energy and material entering terrestrial ecosystems. It reflects the vegetation productiv-
ity of terrestrial ecosystems, which profoundly influences the carbon cycle and global
climate change.

The Tibetan Plateau (TP), with an average elevation of more than 4000 m, is often
called the “third pole” [4]. Previous studies showed that 49% of streamflow in the Yellow
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River, 15% of streamflow in the Lancang–Mekong River, and a considerable amount of
streamflow in the Yangtze River originate from the TP [5], and the TP is often regarded
as the “Asian water tower”. With a large vertical height difference, rich landform types,
diverse climatic environments, and complex ecosystem environments, the TP is a vital
ecological barrier for China. Due to its unique geographical location, the TP is also a
sensitive area of East Asia [6–8]. In particular, the TP shows a significant warming trend
and increased precipitation [9,10]. The climate conditions on the TP are extremely variable,
and its ecosystem pattern can easily be altered by external disturbances [11].

Land surface observation systems, mainly based on field observation and satellite
remote sensing products, are critical for studying changes in land surface variables. With
the development of global satellite remote sensing technology, vegetation index products
retrieved by satellite remote sensing, such as the leaf area index (LAI), the normalized
difference vegetation index (NDVI), and gross primary productivity (GPP), have provided
effective support for studying global large-scale vegetation changes. However, due to
the high elevation and harsh natural environment, there are few observation sites at high
elevation on the TP, especially soil moisture and carbon flux observation sites [12,13].
Affected by high elevation, cloud cover, and auxiliary data, it is doubtful whether remote
sensing products can provide a long-term stable vegetation index. Previous studies that
included observations, remote sensing products, and simulations have been carried out for
carbon flux and its responses to climate change on the TP and China [4,11,14–18]. Empirical
models, remote sensing products, and numerical simulations are effective ways to estimate
regional and global vegetation distributions. The next generation of land surface models
includes the traditional hydrothermal transfer process, biogeochemical processes, and
dynamic vegetation [19].

Dynamic global vegetation models (DGVMs) have been coupled with climate mod-
els to study the response of vegetation to climate change. In contrast to models of the
fixed-satellite vegetation type, some vegetation characteristic parameters in DGVMs are
calculated based on temperature, precipitation, and radiation; thus, the vegetation cov-
erage simulated by DGVMs varies with climate change. DGVMs include: (1) simple
biogeography rules to delineate the vegetation types based on climate; (2) carbon and
nitrogen cycle modules; (3) vegetation dynamics modules. Current DGVMs include the
Lund–Potsdam–Jena Dynamic Global Vegetation Model (LPJ DGVM), the Integrated Bio-
sphere Simulator Model (IBIS), the BIOME4 model, the CLM-DGVM, and the Institute
of Atmospheric Physics Dynamic Global Vegetation Model (IAP-DGVM). The LPJ model
generally describes the temporal and spatial characteristics of regional vegetation, and
it has effectively simulated the responses of vegetation patterns and functions to climate
change [20]. IAP-DGVM simulations showed that the model could effectively reproduce
the global distribution of shrubs, trees, grass, and bare soil, but it overestimated the fraction
of temperate forests [21]. Ni et al. [4] used a modified BIOME DGVM to simulate the biome
distribution on the TP; vegetation maps confirmed that the modified model did a better
job of simulating biome patterns on the TP (grid cell agreement 52%) than the original
BIOME4 model (35%). Song et al. [22] evaluated the CLM3.0-DGVM model, showing that
the CLM3.0-DGVM predicted a relatively high population density with small individual
trees in boreal forests. DGVMs perform differently in simulating vegetation distribution,
and the models still have certain defects that cause deviations in simulations.

Vegetation phenology considers the influence of climate and other environmental
factors and shows the time pattern of vegetation seasonal growth and decadency. Murray-
Tortarolo et al. [23] validated leaf area index (LAI) estimates from multiple land surface
models (LSMs) and found that all the LSMs overestimated the mean LAI and the length
of the vegetation growing season, primarily due to late dormancy as a result of late
summer phenology. A more complete vegetation phenology parameterization in DGVMs
is significant for simulating the vegetation distribution and carbon fluxes accurately.

With their development and improvement, vegetation models have been added to
Earth system models to study future changes in the global climate and terrestrial ecosys-
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tems. Dynamic vegetation models play a major role in simulating carbon, nitrogen, and
water cycle processes in the ecosystem. Improving their accuracy is one of the focuses of
vegetation model developers. Due to the high altitude and unique natural environment,
DGVMs still encounter great uncertainty in simulating the vegetation distribution on the
TP. In this study, we validated the performance of vegetation distribution and ecosystem
productivity simulations on the TP by using the CLM5.0-DGVM. The CLM5.0-DGVM runs
the CLM biogeochemistry model in combination with the LPJ-derived DGVM introduced
in CLM3.0. The accuracy of soil moisture and temperature simulations in the model is
significant for improving the ability to simulate ecosystem productivity. Following the
work of Deng et al. [24], in which the soil moisture and temperature simulations in CLM5.0
were improved for the TP, the revised soil water and heat transfer schemes were used in all
the simulations in this paper. Firstly, we modified the original code in the establishment and
survival module, replaced the default vegetation parameters with observations (referred
to as the BGCDV_CTL experiment), and evaluated the performance of the BGCDV_CTL
experiment. In addition, we modified the vegetation phenology parameterization in the
BGCDV_CTL experiment to conduct a comprehensive sensitivity analysis for the modi-
fied dynamic vegetation model. Secondly, we evaluated the vegetation productivity and
vegetation distribution results from both remote sensing and simulations. Lastly, based on
the improved model and the remote sensing GPP products, we investigated vegetation,
climate change, and the response of the vegetation to regional climate change on the TP.
Following this introduction Section 1, the data and model are briefly described in Section 2.
An evaluation of the CLM5.0-DGVM and the GPP remote sensing products is conducted in
Section 3. Section 4 analyzes the response of the vegetation to regional climate change on
the TP. The conclusions are included in Section 5.

2. Materials and Methods

2.1. Study Area

In this study, we mainly focused on an area 25–40◦N and 75–105◦E (Figure 1) that
covers the whole TP. The TP covers an area of approximately 2.5 × 106 km2; with more
than half of its area over 4000 m above sea level, it is the highest and largest highland in
the world. There are five main plant types on the TP, from southeast to northwest: forests,
shrubs, crops, alpine meadows, and sparse alpine grasslands. The alpine meadows and
sparse alpine grasslands are the dominant land surface types on the TP.

Figure 1. Distribution of vegetation and locations of the flux observational sites over the TP (the
pentagrams represent the sites with flux observations).
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2.2. Data
2.2.1. Observation Data

The Maqu site is one of the sites set up by the Zoige Plateau Wetlands Ecosystem
Research Station, which is located in the eastern region of the TP [14]. The vegetation type
at the Maqu site is typically alpine meadow, with an average height of about 0.2 m. The
climate at the Maqu site is a sub-humid climate, with an average annual temperature of
1.9 ◦C, and the multi-year average precipitation is 593 mm [25]. The soil type at Maqu is silt
loam, which is rich in organic matter. The observation data from Dangx and Haibei that are
used in this study were derived from the China flux network (http://www.cnern.org.cn/)
(accessed on 16 December 2020) [26,27]. The vegetation type at the Haibei and Dangx sites
is alpine meadow, and the altitudes are 3148 m and 4250 m above sea level, respectively.
The Haibei site has a sub-humid climate, the average annual temperature is −1.2 ◦C, and
the average annual precipitation is 535.2 mm; precipitation in the growing season (May to
September) accounts for 82% of the annual precipitation. The vegetation coverage at the
end of the growing season can reach more than 98%, and the soil organic matter content
is 5.85% in the top 40 cm. The climate at the Dangx site is a semi-arid climate, with an
average annual temperature of 1.3 ◦C; the average annual precipitation is 450 mm, of which
85% is distributed from June to August. The vegetation coverage is 50–80%, and the soil
organic matter content is 0.9–2.79%. The Maqu, Dangx, and Haibei sites provide long-term
conventional meteorological data and flux data. The carbon flux data include gross primary
productivity (GPP), net ecosystem exchange productivity (NEE), and ecosystem respiration
(Re) (detailed information of the sites see Table 1).

Table 1. Detailed information on the observation sites on the TP used in this study.

Site Lat (◦N) Lon (◦E) Elevation (m) Vegetation Type Years

Maqu 33.9 102.17 3471 Alpine meadow 2010–2016
Dangx 30.85 91.08 4250 Alpine meadow 2007–2010
Haibei 37.62 101.3 3148 Alpine meadow 2003–2007

2.2.2. Remote Sensing Product

The GLASS (Global Land Surface Satellite) GPP product was provided by the Bei-
jing Normal University Center for Global Change Data Processing and Analysis (http:
//www.bnu-datacenter.com/) (accessed on 5 April 2021). Its time resolution is 8 days,
and the spatial resolution is 0.05◦. This product has been quality-controlled and had its
accuracy verified, and it has the advantages of high accuracy, long time series, and spatial
integrity [28,29].

The FLUXCOM GPP product (www.fluxcom.org) (accessed on 12 April 2021) provides
carbon fluxes at a high spatial resolution of 0.05◦, with a temporal resolution of 8 days, and
it is available for the Moderate Resolution Image Spectroradiometer (MODIS, 2000-present).
FLUXCOM combines carbon and energy fluxes and meteorological measurements from
224 global FLUXNET sites, using machine learning techniques to scale up these fluxes to a
global extent [30,31]. Tramontana et al. [32] evaluated FLUXCOM GPP products against
observations and found that the FLUXCOM dataset adequately estimated global carbon
fluxes. Long-term time-series GLASS GPP products were used to evaluate the climatology
and trend of the GPP simulated using CLM5.0-BGCDV.

The improvements in GPP products, including near-infrared reflectance (NIRv) and
solar-induced chlorophyll fluorescence (SIF), provide a method to estimate global GPP [33].
Limited by its short duration, satellite SIF can hardly be used to monitor long-term GPP [34].
In this study, the global long-term (1982–2018) GPP dataset [35] generated by the proxy of
GPP used satellite-based near-infrared reflectance to study the response of vegetation to
regional climate change. Previous studies showed that the long-term datasets derived from
NIRv better capture the seasonal and inter-annual variations in terrestrial GPP at the global
scale [35].
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In this study, a GPP dataset derived from the Moderate Resolution Imaging Spectro-
radiometer (MODIS) instruments on the National Aeronautics and Space Administration
(NASA) Terra and Aqua satellites was used (https://search.earthdata.nasa.gov/) (accessed
on 15 March 2022). The MODIS GPP product provides global daily estimates of GPP
at a 0.05◦ resolution for the period 2000–2003 [36]. MCD43C4v006 Nadir Bidirectional
Reflectance Distribution Function (BRDF)-Adjusted Reflectance (NBAR) products were
used as inputs to neural networks that were used to upscale the GPP estimated from the
FLUXNET 2015 eddy covariance tower sites.

The fractions of land cover types used in this study were sourced from the Global
Vegetation Continuous Fields product (MOD44B, hereafter called MEaSURES), based on
observations from the MODIS [37]. This product comprises three different land cover
types: (1) bare soil, (2) trees, and (3) non-trees. It can be downloaded from NASA’s
Earth data portal (https://search.earthdata.nasa.gov/) (accessed on 10 May 2020). Specific
descriptions of the remote sensing products used in this study are presented in Table 2.

Table 2. Detailed information on the remote sensing products used in this study.

Product Time Period Temporal Resolution Spatial Resolution

NIRv 1982–2016 8 d 0.05◦ × 0.05◦
GLASS 1982–2016 8 d 0.05◦ × 0.05◦

FLUXCOM 2001–2016 8 d 0.05◦ × 0.05◦
FLUXCOM1 1982–2013 daily 0.5◦ × 0.5◦

MODIS 2000–2016 daily 0.05◦ × 0.05◦
MEaSURES 1982–2013 yearly 0.05◦ × 0.05◦

2.2.3. Meteorological Data

The observational meteorological datasets used in this study include daily precip-
itation and temperature with a spatial resolution of 0.5◦ from 1979 to 2016. The grid
precipitation and temperature datasets originated from daily and monthly precipitation
and temperature data at 2472 meteorological sites. The data were processed by quality
control and then interpolated from station data to grid data, with only stations with data
available from 1961 used. A digital elevation model (Global 30 Arc-Second Elevation,
GTOPO30) was introduced in order to weaken the effects of elevation on the interpolation
precision of temperature and precipitation [38].

2.3. Description of CLM

The land surface model used in this study is provided by the National Center for
Atmospheric Research (NCAR) and is the land component of the Community Earth System
Model (CESM). The CLM5.0-DGVM is one of the models that simulate the structure and
distribution of natural vegetation dynamically, primarily using mechanistic parameteri-
zations of large-scale vegetation processes [39,40]. The dynamic vegetation model of the
Lund–Potsdam–Jena model (LPJ) was coupled with the NCAR’s Land Surface Model prior
to the first release of the CLM [41]. In addition, the CLM-DGVM has a set of routines that
allow vegetation structure and cover to be simulated instead of prescribed from data.

2.3.1. Establishment and Survival

Plant functional type (PFT) survival in a grid cell requires the 20-year running mean
of the minimum monthly temperature, Tc, to exceed the PFT-dependent 20-year running
mean of the coldest minimum monthly temperature, Tc,min (Table 3). Existing PFTs that
can survive in the current climate continue to exist without change. PFTs do not present
in a grid cell unless they can establish. Establishment criteria are stricter than those for
survival, additionally requiring that Tc be less than the PFT-dependent 20-year running
mean of the warmest minimum monthly temperature, Tc,max (Table 3), that growing degree
days (GDD5◦C) be greater than the PFT-dependent GDDmin (Table 3), and that GDD23◦C be
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equal to 0. Establishment also requires the 365-day running mean of precipitation to be
greater than 100 mm/year.

Table 3. Rules that delineate PFT biogeography according to climate.

PFT
Survival Establishment

Tc,min(◦C) Tc,max(◦C) GDDmin

Tropical broadleaf evergreen tree (BET) 15.5 No limit 0
Tropical broadleaf deciduous tree (BDT) 15.5 No limit 0

Temperate needleleaf evergreen tree (NET) −2.0 22.0 900
Temperate broadleaf evergreen tree (BET) 3.0 18.8 1200
Temperate broadleaf deciduous tree (BDT) −17.0 15.5 1200

Boreal needleleaf evergreen tree (NET) −32.5 −2.0 600
Boreal deciduous No limit −2.0 350

C4 15.5 No limit 0
C3 −17.0 15.5 0

C3 arctic No limit −17.0 0

2.3.2. Seasonal–Deciduous Phenology

The onset trigger for the seasonal–deciduous phenology algorithm is based on an
accumulated growing-degree-day (GDD) approach [42]. The GDD summation is initiated
(GDDsum = 0) when the phenological state is dormant and the model timestep crosses the
winter solstice. Once these conditions are met, GDDsum is updated at each timestep as

{
GDDn−1

sum + (Ts,3 − TKFRZ)fday
GDDn−1

sum

Ts,3 > TKFRZ
Ts,3 < TKFRZ

(1)

where Ts,3(K) is the temperature of the third soil layer, and fday = Δt/86400 (unit : day).
The onset period is initiated if GDDsum > GDDsum_crit (unit : day), where

GDDsum_crit = exp(4.8 + 0.13(T2m,ann_avg−TKFRZ)) (2)

where T2m,ann_avg(K) is the annual average of the 2 m air temperature, and TKFRZ is the
freezing point of water (273.15 K).

The offset period is triggered when the day length is <39,300 s.
Previous studies found that current DGVMs overestimated the length of the active

vegetation-growing season, mostly due to a late dormancy resulting from late summer
phenology [23]. The beginning of the growing season in observation is judged when the
5 cm soil temperature is greater than 5 ◦C. In this study, we modified GDDsum as follows:

{
GDDn−1

sum + (Ts,2 − TKFRZ)fday
GDDn−1

sum

Ts,2 > TKFRZ
Ts,2 ≤ TKFRZ

(3)

Additionally, the offset period is triggered when the day length of <39,300 s changes
to a day length of <42,000 s.

2.4. Experimental Design

In this study, the CLM model we used in simulating ecosystem productivity and
vegetation distribution was CLM5.0-BGCDV. To achieve a steady state for the CLM-BGCDV
model, we first ran it from a cold state using the “accelerated decomposition spin-up (AD
spin-up)” mode for 400 years. Afterward, we saved the last restart file from the AD spin-up
simulation and took it as a “finidat” file to use in the normal mode simulations.

To investigate the performance of CLM5.0-DGVM in simulating ecosystem produc-
tivity and vegetation distribution over the TP, we conducted the following set of regional
simulations on the TP using CLM5.0-DGVM. (1) Following Deng et al. [24], we replaced
the soil property data with the Beijing Normal University soil property data, the Balland
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and Arp, and the virtual temperature schemes were used to replace the original code in the
CLM5.0-DGVM. In addition, we modified the establishment and survival code so that PFTs
could establish on the TP, and we replaced the vegetation parameters with observations.
(2) The seasonal–deciduous phenology parameterization was used to replace the original
code (see Table 4 for details). (3) We compared the difference in soil water and heat transfer
modeling using CLM5.0-SP and CLM5.0-BGCDV.

Table 4. Designs of the regional experiments by CLM.

Experiment Soil Property Data Parameterization Model

BGCDV_CTL BNU soil property data
Balland and Arp;

virtual temperature;
establishment and survival

CLM5.0-BGCDV

BGCDV_NEW BNU soil property data

Balland and Arp;
virtual temperature;

establishment and survival;
seasonal–deciduous phenology

CLM5.0-BGCDV

2.5. Analytical Method

In this study, four statistical features were calculated in order to quantify the differences
between the simulated and observed parameters, which were calculated at each station: bias
(Bias), root mean square error (RMSE), correlation coefficient (Corr), and ratio of standard
deviation (RSD). PBIAS was used to assess the performance of simulations regarding the
tendency of the simulated carbon fluxes to be overestimated or underestimated [43]. It is
considered unacceptable if PBIAS is greater than 20% [44,45]. When the Corr is high and
the RMSE is low, the simulation is considered robust and more desirable [46].

PBIAS =
1
N

N

∑
i=1

(Mi − Oi)/
N

∑
i=1

(Oi) (4)

RMSE = (
1

N − 1

N

∑
i=1

(Mi − Oi)
2)

1
2

(5)

Corr =

1
N

N
∑

i=1
(Mi − M)(Oi − O)√

1
N

N
∑

i=1
(Mi − M)

2

√
1
N

N
∑

i=1
(Oi − O)

2
(6)

RSD =

√
1

N−1

N
∑

i=1
(Mi − M)

2

√
1

N−1

N
∑

i=1
(Oi − O)

2
(7)

3. Evaluation of Remote Sensing Products and GPP Simulations

Figure 2 shows the time series of the observed and the simulated GPP, NEE, and
Re at the Dangx, Haibei, and Maqu sites. After revising the establishment and survival
parameterizations, the simulated vegetation coverage was about 50–80% from 2007 to
2010 at the Dangx site, 70–90% from 2003 to 2010 at the Haibei site, and 90–100% from
2010 to 2016 at the Maqu site, which corresponds to the actual observations at each site.
Compared to the seasonal variation in the daily GPP, NEE, and Re at Dangx, the observed
GPP, NEE, and Re showed different characteristics. Both the absolute GPP and NEE
increased steadily from the beginning of the growing season until July, then increased
rapidly from July and reached a peak value at the end of August and the beginning
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of September. The simulated GPP generally coincided with the observations, and the
simulated GPP of the BGCDV_CTL experiment started earlier and ended later than that of
the observed GPP. At the Haibei site, GPP, NEE, and Re showed similar variations during
the growing season, increasing beginning in May and reaching a peak value in August
(Figure 2). Before modifying the establishment and survival parameterizations, the PFTs in
dynamic vegetation simulations could not establish at the Haibei site. After modifying the
establishment and survival scheme (BGCDV_CTL experiment), the simulated Re generally
coincided with the observations, while the dynamic vegetation model underestimated GPP
and NEE from July to September. In addition, the simulated start time of the growing
season was advanced, and the end time of the growing season was delayed. The increasing
trend of the simulated GPP and NEE was faster than that of the observed GPP and NEE.
Seasonal variations in GPP, NEE, and Re at the Maqu site showed a similar pattern to those
at the Haibei site. The CLM5.0-DGVM model overestimated Re during the growing season
and underestimated NEE. In addition, the model underestimated GPP, NEE, and Re in
a vigorous-growth period. In the BGCDV_CTL experiment, variations in the ecosystem
productivity simulations were consistent with those in the observations, while the end time
of the growing season was delayed.

Figure 2. Model simulations from CLM5.0-DGVM versus observations of daily GPP (unit: gC·m−2·d−1),
NEE (unit: gC·m−2·d−1), and Re (unit: gC·m−2·d−1) at Dangx from 2007 to 2010, Hiabei from 2003
to 2007, and Maqu from 2010 to 2019; the black, blue, and red lines are the means from observation,
the BGCDV_CTL experiment, and the BGCDV_NEW experiment, respectively.

After replacing the original seasonal–deciduous phenology scheme (the BGCDV_NEW
experiment), the model effectively shortened the growing season length at the Dangx site.
The average Bias and RMSE decreased from 0.116 gC·m−2·d−1 and 0.321 gC·m−2·d−1 to
0.092 gC·m−2·d−1 and 0.261 gC·m−2·d−1, respectively, and Corr increased from 0.922 to
0.995 (Table 5). At the Dangx site, the simulated NEE tended to underestimate the observed
NEE from August to October, mainly caused by overestimating the simulated Re. Com-
pared to the BGCDV_CTL experiment, the simulated NEE in the BGCDV_NEW experiment
was smaller. The RMSE decreased from 0.316 gC·m−2·d−1 to 0.299 gC·m−2·d−1, and Corr
increased from 0.572 gC·m−2·d−1 to 0.640 gC·m−2·d−1. Re began to increase gradually
when the growing season started and reached a peak value in August. With the leaves
beginning dormancy, Re decreased beginning in September. During the growing season,
the simulated Re overestimated the observed Re, and there was a dramatic decline in mid-
August in the simulated Re. The average Bias values for the BGCDV_CTL experiment and
the BGCDV_NEW experiment were 0.003 gC·m−2·d−1 and −0.017 gC·m−2·d−1, respec-
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tively. After modifying the seasonal–deciduous phenology parameterization, the simulated
Re tended to reduce at the Dangx site. The RMSE reduced from 0.323 gC·m−2·d−1 to
0.300 gC·m−2·d−1, and Corr increased from 0.899 to 0.915. Compared to the BGCDV_CTL
experiment, the average Bias and RMSE of the simulated GPP in the BGCDV_NEW ex-
periment reduced from −0.136 gC·m−2·d−1 and 1.227 gC·m−2·d−1 to −0.109 gC·m−2·d−1

and 1.127 gC·m−2·d−1, respectively, and Corr increased from 0.863 to 0.882. The dramatic
increase in the simulated GPP from May to June was mainly caused by the increase in
the simulated NEE. The simulated NEE from the BGCDV_NEW experiment had a better
performance than that from the BGCDV_CTL experiment. At the Haibei site, the simulated
Re underestimated the observed Re during the non-growing seasons and overestimated
Re in autumn (September to November). The average Bias of the simulated Re by the
BGCDV_NEW experiment decreased by 21%, and seasonal variations in the BGCDV_NEW
experiment coincided better with observations. The simulated NEE from the BGCDV_NEW
experiment tended to overestimate NEE during the non-growing season and reduced the
biases of NEE during the growing season at the Maqu site. The average Bias and RMSE
of the simulated NEE in the BGCDV_NEW experiment reduced from 0.366 gC·m−2·d−1

and 1.114 gC·m−2·d−1 to 0.355 gC·m−2·d−1 and 0.877 gC·m−2·d−1, respectively, and Corr
increased from 0.634 to 0.814. The BGCDV_CTL experiment tended to overestimate Re, and
the average Bias between the BGCDV_CTL experiment simulations and observations was
0.606 gC·m−2·d−1. In addition, obvious systematic errors existed at the Dangx and Haibei
sites from July to September, which may have been caused by the imperfections of the water
use efficiency parameterization scheme. The simulated carbon flux of CLM5.0-DGVM
is sensitive to water content and less sensitive to temperature. According to PBIAS, the
simulated GPP at the Dangx, Haibei, and Maqu sites are considered acceptable. The Re
simulations are satisfactory at the Dangx and Haibei sites, and the simulated NEE at the
Dangx, Haibei, and Maqu sites are considered unacceptable.

Table 5. Statistical results of the simulated GPP, NEE, and Re.

Sites PBIAS (%)
RMSE

(gC·m−2·d−1)
Corr RSD

CTL NEW CTL NEW CTL NEW CTL NEW

Dangx GPP 20.9 16.6 0.321 0.261 0.922 0.952 1.100 1.121
NEE −71.1 −87.8 0.316 0.299 0.572 0.640 0.676 0.745
Re 0.5 2.7 0.323 0.300 0.899 0.915 1.676 1.636

Haibei GPP −6.9 −5.5 1.227 1.127 0.863 0.882 0.780 0.892
NEE −45.8 −40.7 0.917 0.882 0.571 0.615 0.480 0.716
Re −10.9 −8.6 0.580 0.516 0.927 0.945 1.054 1.085

Maqu GPP 18.2 11.3 1.401 1.028 0.903 0.956 0.946 1.087
NEE −82.0 −79.7 1.114 0.877 0.634 0.814 0.691 0.924
Re 28.0 26.2 1.008 0.963 0.936 0.954 1.238 1.288

The Maqu and Haibei sites are located in the eastern and northern regions of the TP,
respectively, and both sites are obvious carbon sinks, while the Dangx site is a weaker
carbon source that is located in the central region of the TP and at a high elevation. At the
Maqu and Haibei sites, with rich soil organic matter, the photosynthetic carbon absorption
during the growing season is higher than that of the Dangx site. Compared to the Maqu
and Haibei sites, the observed GPP and Re are smaller at the Dangx site.

Figure 3 shows the monthly variations in the simulated GPP from CLM5.0-DGVM
and the NIRv, GLASS, FLUXCOM, and MODIS products versus observations at the Dangx,
Haibei, and Maqu sites. The GPP provided by NIRv underestimated the growing season
length at the Dangx site, mostly due to a delayed start of the growing season. At the
Haibei and Maqu sites, the NIRv GPP product overestimated GPP in the growing season.
FLUXCOM assimilated observations at the Dangx site into the product, but deviations still
existed in the descriptions of the GPP characteristics at the Dangx site. The FLUXCOM
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product overestimated the length of the vegetation growing season, mostly due to an early
start of the growing season. Compared to the FLUXCOM product, the start of the growing
season of the GLASS product was closer to the observation, while the product seriously
overestimated the observed GPP, especially in 2007, 2009, and 2010. The GPP provided
by MODIS overestimated the GPP at Dangx and Haibei at the start of the growing season
and the growing season at the Haibei site. At the Maqu site, the MODIS GPP generally
coincided with the observed GPP. The simulated GPP from CLM5.0-DGVM displayed
better performance and simulated the variation characteristics of GPP. As seen in Table 6,
at the Dangx site, the average Bias values of the BGCDV_NEW experiment and the NIRv,
GLASS, FLUXCOM, and MODIS products were 0.091 gC·m−2·d−1, −0.174 gC·m−2·d−1,
0.840 gC·m−2·d−1, 0.242 gC·m−2·d−1, and 0.370 gC·m−2·d−1, respectively. At the Haibei
site, the GLASS product overestimated the observed GPP, while the seasonal variations
generally coincided with observations. The FLUXCOM product underestimated GPP
during the growing season and overestimated the observed GPP during the non-growing
season. The bias between simulations from CLM5.0-DGVM and observations was smaller
than that between the GLASS and FLUXCOM products. However, there was a valley value
in the simulated GPP during the growing season, which did not exist in the observations.
Compared to the NIRv, GLASS, FLUXCOM, and MODIS products, the RMSE of the
simulated GPP from the BGCDV_NEW experiment decreased by 74%, 36%, 30%, and
39%, respectively. The GLASS product at Maqu generally coincided with observations,
while the product overestimated GPP in 2011, 2014, and 2015. The years 2011, 2014, and
2015 were years with less precipitation, which led to lower GPP values. The MODIS GPP
product had the best performance in simulating GPP at the Maqu site. Compared to the
NIRv, GLASS, FLUXCOM, and MODIS products, the average Bias of the simulated GPP
from the BGCDV_NEW experiment decreased by 2.02 gC·m−2·d−1, 1.265 gC·m−2·d−1,
0.143 gC·m−2·d−1, and −0.159 gC·m−2·d−1, respectively. Overall, the PBIAS values of
the GPP simulations from the BGCDV_NEW experiment at Dangx, Haibei, and Maqu are
within 20%, which is considered to be acceptable. In addition, the FLUXCOM and MODIS
data are satisfactory at Maqu.

Table 6. Statistical results of the simulated GPP, GLASS GPP, and FLUXCOM GPP against observa-
tions at a monthly scale.

PBIAS (%) RMSE (gC·m−2·d−1) Corr

Experiment Dangx Haibei Maqu Dangx Haibei Maqu Dangx Haibei Maqu

NEW 16.4 −11.0 11.3 0.322 1.107 1.084 0.940 0.890 0.947
GLASS 151.4 45.9 23.1 1.587 1.723 1.239 0.740 0.948 0.968

FLUXCOM 43.6 44.1 16.8 0.520 1.582 1.472 0.779 0.881 0.923
NIRv −31.4 118.7 89.6 0.659 4.184 3.554 0.637 0.931 0.959

MODIS 66.7 45.7 5.2 0.569 1.727 0.905 0.812 0.947 0.957

Figure 4 shows the spatial distribution of the bare soil proportion from the BGCDV_NEW
experiment simulations and the MEaSURES vegetation continuous field in 1982, 1992,
2002, and 2012. Compared to MEaSURES, the simulated percentage of vegetation from the
BGCDV_NEW experiment was greater in the semi-arid region of the TP in 1980. Compared
to 1982, the simulated proportion of bare soil from the BGCDV_NEW experiment tended
to decrease in the semi-arid and arid regions of the TP. As shown in Figure 4, the simulated
proportion of bare soil from MEaSURES tended to increase in the southeast region of the TP
from 1982 to 2012. Overall, the simulated percentage of vegetation from the BGCDV_NEW
experiment was greater than that from MEaSURES.
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Figure 3. Model simulations from CLM5.0-DGVM and remote sensing GPP products versus observa-
tions of monthly GPP (unit: gC·m−2·d−1), NEE (unit: gC·m−2·d−1), and Re (unit: gC·m−2·d−1) at
the Dangx, Haibei, and Maqu sites.

Figure 5 shows the climatology of the GLASS, NIRv, FLUXCOM, FLUXCOM1, and
MODIS GPPs and the simulated GPP from the BGCDV_NEW experiment. As shown
in Figure 5, a large area of the arid region of the TP has missing values for the NIRv,
FLUXCOM, FLUXCOM, and MODIS GPP products. All remote sensing GPP products and
the GPP simulated using CLM5.0-DGVM show a similar pattern, with GPP increasing from
northwest to southeast and with the maximum at the southeast edge of the TP. Compared
to the MODIS GPP product, the NIRv GPP product overestimated GPP in the east of the
TP, and the FLUXCOM1 GPP product underestimated GPP in sub-humid regions. The
simulated GPP from the BGCDV_NEW experiment was underestimated in the sub-humid
regions and overestimated in the semi-arid and arid regions compared to the remote sensing
GPP products.
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Figure 4. Proportion of bare soil (unit: %) on the TP. Left: CLM-BGCDV; right: MEaSURES.

Figure 5. Climatology and trend of GPP (gC·m−2·d−1) from May to October.
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4. Response of Vegetation to Regional Climate Change on the TP

4.1. Climatology and Trend of Temperature, Precipitation, and GPP

Figure 6 shows the climatology and trend of precipitation and temperature from May
to October for the period from 1980 to 2016. As is shown in Figure 6, precipitation increased
from the northwest to the southeast of the TP, with the maximum in the southeast of the TP.
Temperature decreased from the low latitude/altitude region to the high latitude/altitude
region, with the maximum in the south of the TP and the Tarim Basin. Both precipitation
and temperature showed increasing trends in most regions of the TP. However, precipitation
increased in the central region of the TP and decreased on the eastern edge of the TP, while
temperature increased in the whole TP.

Figure 6. Climatology and trend (unit: mm/day, ◦C) of precipitation (unit: mm/day) and temperature
(unit: ◦C), May to October from 1982 to 2016 on the TP.

Figure 7 shows the trend of the GLASS, NIRv, FLUXCOM, FLUXCOM1, and MODIS
GPPs and the simulated GPP from the BGCDV_NEW experiment. From 1982 to 2016, the
GPP products provided by GLASS and NIRv showed an increasing trend in most regions
of the TP, with the maximum in the sub-humid regions. In addition, the increasing trend
of the GLASS product was larger than that of the NIRv product. From 1982 to 2013, the
GPP provided by the FLUXCOM1 product displayed no significant change trend on the
TP. From 2001 to 2016, the FLUXCOM GPP product showed a decreasing trend in the
sub-humid and semi-arid regions, while the MODIS GPP product showed an increasing
trend in the northeast of the TP. The simulated GPP in the BGCDV_NEW experiment
showed an increasing trend in the semi-arid and arid regions of the TP and decreased in
the sub-humid regions. In the semi-arid and sub-humid regions of the TP, both the GLASS
and NIRv GPP products, as well as temperature, showed consistent trends. However, the
GPP simulated using CLM5.0-DGVM, as well as temperature, showed inconsistent trends,
with temperature increasing in the whole TP while the simulated GPP decreased in the

211



Remote Sens. 2022, 14, 3337

sub-humid regions of the TP. The simulated GPP in the BGCDV_NEW experiment showed
a similar trend to precipitation, with the maximum in the central region of the TP.

Figure 7. Trend of GPP from May to October on the TP.

4.2. Response of GPP to Climate Change

Figure 8 shows partial correlations between different GPP products and precipitation.
The results indicated that the GLASS, NIRv, FLUXCOM, FLUXCOM1, and MODIS GPP
products did not significantly correlate with precipitation changes in most regions of the TP.
Compared to the sub-humid regions of the TP, the remote sensing GPP products showed a
relatively high correlation in the semi-arid regions of the TP, especially the FLUXCOM1
GPP product. The GPP simulated using CLM5.0-DGVM significantly correlated with
precipitation changes in most regions of the TP. Among all the remote sensing products,
the GLASS and FLUXCOM1 GPP products were most sensitive to precipitation in the
semi-arid regions.

Figure 8. Partial correlations between GPP and precipitation.

Figure 9 shows partial correlations between different GPP products and temperature.
Limited by the period covered by the FLUXCOM and MODIS GPP products, there was
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no significant correlation between GPP and temperature for these products. As shown in
Figure 9, the GLASS GPP product significantly correlated with temperature changes in most
regions of the TP. Partial correlations between the GLASS GPP product and temperature
show that the increase in GPP was mainly caused by climate warming on the TP. The NIRv
and FLUXCOM1 GPP data show positive correlations with temperature in the sub-humid
and semi-arid regions of the TP, while the CLM5.0-DGVM GPP simulation shows a positive
correlation in the arid regions of the TP. The overall results indicate that the increase in
the remote sensing GPP was mainly caused by temperature, while the increase in the GPP
simulated in CLM5.0-DGVM was mainly caused by precipitation in most regions of the TP.

Figure 9. Partial correlations between GPP and temperature.

Figure 10 shows the annual change in the GPP anomalies based on the GLASS, NIRv,
and FLUXCOM1 products, as well as the BGCDV_NEW experiment, with precipitation
and temperature anomalies averaged over the TP. The correlations between the GLASS,
NIRv, FLUXCOM, and BGCDV_NEW GPP anomalies and the temperature anomaly were
0.83, 0.80, 0.53, and 0.57, respectively, showing significant positive correlations between
the GPP calculated by these products and temperature. The variances in precipitation
and temperature were weaker for the GLASS and NIRv GPP products than in the GPP
simulation. The correlations between the remote sensing product GPP anomalies and the
temperature anomalies were greater than the correlations between the remote sensing
GPP products and precipitation. Compared to precipitation, the remote sensing GPP
products were more sensitive to temperature. The correlations between the GPP simulation
from the BGCDV_NEW experiment and precipitation and temperature were 0.52 and 0.57,
respectively. As shown in Figure 10, the correlation between the BGCDV_NEW experiment
GPP simulation and precipitation was smaller than that of the GLASS GPP. In addition,
the variances in the remote sensing GPPs were weaker than in the simulated GPP from the
BGCDV_NEW experiment. The correlation between the BGCDV_NEW experiment GPP
and temperature was smaller than those of the GLASS and NIRv GPPs, which indicates that
the GLASS and NIRv GPPs were more sensitive to temperature than the simulated GPP
from the BGCDV_NEW experiment. A negative precipitation anomaly was recovered from
1998, while the simulated GPP from the BGCDV_NEW experiment dramatically increased
from 1996, which mainly caused the significantly positive precipitation anomaly in 1996.
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Figure 10. Annual changes in the GLASS GPP anomaly, simulated GPP anomaly in CLM5.0-BGCDV,
temperature anomaly, and precipitation anomaly.

5. Conclusions

According to the CLM5.0 technical note, the DGVM was not tested in the development
of the CLM5.0 and is no longer scientifically supported. The Functionally Assembled
Terrestrial Ecosystem Simulator (FATES) is an actively developed DGVM for the CLM5.0.
FATES was derived from the CLM Ecosystem Demography Model and is a cohort model of
vegetation competition and co-existence that is mainly used to study trees of various PFTs,
while the study region in this paper is mainly covered by grass. In this paper, after modi-
fying the establishment and survival parameterizations (BGCDV_CTL parameterization),
PFTs were able to establish over the whole TP. We evaluated simulations for ecosystem
productivity by using CLM5.0-DGVM on the TP. The results showed that the simulated
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ecosystem productivity generally coincided with the observations, while overestimating
the length of the growing season. Then, we modified the seasonal–deciduous phenology
parameterization (BGCDV_NEW experiment) and compared it to the BGCDV_CTL experi-
ment; the BGCDV_NEW experiment simulations reduced the biases in the simulated length
of the growing season. Monthly variations in GPP showed that the BGCDV_CTL experi-
ment displayed the best performance at the three sites considered. Compared to the GLASS,
NIRv, FLUXCOM, and MODIS GPP products, the average bias of the simulated GPP in
the BGCDV_NEW experiments for these three sites was reduced by 0.502 gC·m−2·d−1,
1.409 gC·m−2·d−1, 0.424 gC·m−2·d−1, and 0.376 gC·m−2·d−1, respectively. Compared
to MEaSURES, the percentage of vegetation from the BGCDV_NEW experiment was
greater in the semi-arid regions of the TP. The simulated proportion of bare soil from the
BGCDV_NEW experiment tended to decrease in the semi-arid and arid regions of the
TP. The climatology of the remote sensing GPP products and the simulated GPP showed
similar patterns, with GPP increasing from northwest to southeast, while the simulations
overestimated GPP in the semi-arid and arid regions of the TP.

From 1982 to 2018, the climate on the TP showed an overall warming and wetting
trend, and GPP showed an increasing trend in most regions of the TP. Partial correlations
between the remote sensing products and temperature indicated that the increase in GPP on
the TP was mainly affected by climate warming. Partial correlations between the simulated
GPPs and precipitation indicated that precipitation increased in the central region of the TP,
leading to the increase in the simulated GPPs in the central region of the TP. The annual
changes in the remote sensing GPP anomalies and the BGCDV_NEW experiment GPP
anomaly indicated that the variance in the remote sensing GPPs was weaker than that
in the simulated GPP from the BGCDV_NEW experiment. The correlation between the
BGCDV_NEW experiment GPP and temperature was smaller than that of the GLASS
and NIRv GPPs, which indicates that the GLASS and NIRv GPPs were more sensitive to
temperature than the simulated GPP from the BGCDV_NEW experiment.

The simulated ecosystem productivity from the revised CLM5.0-DGVM model gener-
ally coincided with the observations, although the evaluation of ecosystem productivity
was only conducted at three sites on the TP. There is a lack of validation of the carbon flux
caused by using the revised CLM5.0-DGVM model in the northwest of the TP. In addition,
the pattern of the simulated GPP from the revised CLM5.0-DGVM model was similar to
that of the remote sensing products, while the BGCDV_NEW experiment overestimated
GPP in the semi-arid and arid regions of the TP and underestimated GPP on the southeast
edge of the TP. Great uncertainty still exists regarding the performance of remote sensing in
the high-altitude regions of the TP. We need more carbon flux data to further validate the
performance of carbon flux simulations by using DGVMs and by studying the responses
of carbon flux to climate change. Otherwise, the BGCDV_NEW experiment was more
sensitive to water content than the GLASS or NIRv GPP products. The parameterization of
water use efficiency is imperfect in the current CLM5.0-DGVM, and the development of
vegetation parameterization is still the main challenge to be faced in further work.
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