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Preface to ”Deep Learning Methods for Remote

Sensing”

The areas of machine learning and deep learning have seen impressive progress in recent years.

This progress has been mainly driven by the availability of high processing performance at an

affordable cost and a large quantity of data. Most state-of-the-art techniques today are based on deep

neural networks. This progress has sparked innovations in technologies, algorithms, and approaches

and led to results that were unachievable until recently. Among the various research areas that have

been significantly impacted by this progress is remote sensing.

This book gathers cutting-edge contributions from researchers using deep learning for remote

sensing. Contributions include recent work in various remote sensing areas of applications such as

environmental studies, natural risks, urban analysis, and change detection. The aim of this book is to

serve as a starting point for researchers, scientists, and engineers interested in learning about the use

of deep learning for remote sensing.

Moulay A. Akhloufi and Mozhdeh Shahbazi

Editors
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Abstract: Wildfires are a worldwide natural disaster causing important economic damages and
loss of lives. Experts predict that wildfires will increase in the coming years mainly due to climate
change. Early detection and prediction of fire spread can help reduce affected areas and improve
firefighting. Numerous systems were developed to detect fire. Recently, Unmanned Aerial Vehi-
cles were employed to tackle this problem due to their high flexibility, their low-cost, and their
ability to cover wide areas during the day or night. However, they are still limited by challenging
problems such as small fire size, background complexity, and image degradation. To deal with the
aforementioned limitations, we adapted and optimized Deep Learning methods to detect wildfire
at an early stage. A novel deep ensemble learning method, which combines EfficientNet-B5 and
DenseNet-201 models, is proposed to identify and classify wildfire using aerial images. In addition,
two vision transformers (TransUNet and TransFire) and a deep convolutional model (EfficientSeg)
were employed to segment wildfire regions and determine the precise fire regions. The obtained
results are promising and show the efficiency of using Deep Learning and vision transformers for
wildfire classification and segmentation. The proposed model for wildfire classification obtained an
accuracy of 85.12% and outperformed many state-of-the-art works. It proved its ability in classifying
wildfire even small fire areas. The best semantic segmentation models achieved an F1-score of 99.9%
for TransUNet architecture and 99.82% for TransFire architecture superior to recent published models.
More specifically, we demonstrated the ability of these models to extract the finer details of wildfire
using aerial images. They can further overcome current model limitations, such as background
complexity and small wildfire areas.

Keywords: wildfire detection; fire classification; fire segmentation; vision transformers; UAV; aerial
images

1. Introduction

Forest fire accidents are one of the most dangerous risks due to their frightening loss
statistics. The fires cause human, financial, and environmental losses, including the death
of animals and the destruction of wood, houses, and million acres of land worldwide. In
2021, forest fires have occurred in several countries such as the European Union countries,
the US (United States), central and southern Africa, the Arabian Gulf, and South and North
America [1]. They affect 350 million to 450 million hectares every year [2]. In the western
US alone, the frequency of wildfires and the total area burned increased by 400% and
600%, respectively, in the last decade [3]. In addition, approximately 8000 wildfires affected
2.5 million hectares each year in Canada [4].

Generally, wildfires are detected using various sensors such as gas, smoke, temper-
ature, and flame detectors. Nevertheless, these detectors have a variety of limitations
such as delayed response and small coverage areas [5]. Fortunately, the advancement
of computer vision techniques has made it possible to detect fire using visual features

Sensors 2022, 22, 1977. https://doi.org/10.3390/s22051977 https://www.mdpi.com/journal/sensors1
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collected with cameras. However, traditional fire detection tools are being replaced by
vision-based models that have many advantages such as accuracy, large coverage areas,
small probability of errors, and most importantly the ability to work with existing camera
surveillance systems. Through the years, researchers have proposed many innovative
techniques based on computer vision in order to build accurate fire detection systems [6–9].

In recent years, Unmanned Aerial Vehicles (UAV) or drone systems were deployed in
various tasks such as traffic monitoring [10], precision agriculture [11], disaster monitor-
ing [12], smart cities [13], cover mapping [14], and object detection [15]. They are also very
practical and well developed for wildfire fighting and detection. UAV-based systems help
with precise fire management and provide real-time information to limit damage from fires
thanks to their low cost and ability to cover large areas whether during the day or night
for a long duration [16,17]. The integration of UAVs with visual and/or infrared sensors
help in finding potential fires at daytime and nighttime [18]. Furthermore, fire detection
and segmentation showed impressive progress thanks to the use of deep learning (DL)
techniques. DL-based fire detection methods are used to detect the color of wildfire and its
geometrical features such as angle, shape, height, and width. Their results are used as inputs
to the fire propagation models. Thanks to the promising performances of DL approaches
in wildfire classification and segmentation [19], researchers are increasingly investigating
this family of methods. The existing methods use input images captured by traditional
visual sensors to localize wildfire and to detect the precise shape of fire; they achieved
high results [20–22]. However, it is not yet clear that these methods will perform well in
detecting and segmenting forest fire using UAV images, especially in the presence of various
challenges such as small object size, background complexity, and image degradation.

To address these problems, we present in this paper a novel deep ensemble learn-
ing method to detect and classify wildfire using aerial images. This method employs
EfficientNet-B5 [23] and DenseNet-201 [24] models as a backbone for extracting forest
fire features. In addition, we employed a deep model (EfficientSeg [25]) and two vision
transformers (TransUNet [26] and TransFire) in segmenting wildfire pixels and detecting
the precise shape of fire on aerial images. Then, the proposed wildfire classification method
was compared to deep convolutional models (MobileNetV3-Large -Small [27], DenseNet-
169 [24], EfficientNet-B1-5 [23], Xception [28,29], and InceptionV3 [29]), which showed
excellent results for object classification. TransUNet, TransFire, and EfficientSeg are also
evaluated with U-Net [28].

More specifically, three main contributions were reported in this paper. First, a novel
DL method was proposed to detect and classify wildfire using aerial images in order to
improve detection and segmentation of wildland fires. Second, vision transformers were
adopted for UAV wildfire segmentation to segment fire pixels and identify the precise
shape of the fire. Third, the efficiencies of CNN methods and vision transformers are
demonstrated in extracting the finer details of fire using aerial images and overcoming the
problems of background complexity and small fire areas.

The remainder of the paper is organized as follows: Section 2 presents recent DL
approaches for UAV-based fire detection and segmentation. Section 3 describes the methods
and materials used in this paper. In Section 4, experimental results and discussion are
presented. Finally, Section 5 concludes the paper.

2. Related Works

DL approaches are employed for fire detection and segmentation using aerial images.
They proved their ability to detect and segment wildfires [6,20]. They can be grouped
into three categories: DL approaches for UAV-based fire classification, DL approaches for
UAV-based fire detection, and DL approaches for UAV-based fire segmentation.

2.1. Fire Classification Using Deep Learning Approaches for UAV Images

Convolutional Neural Networks (CNNs) are the most popular AI models for images
classification tasks. They extract feature maps from input images and then predict their
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correct classes (two classes in our case: Fire and Non-Fire). Three main types of layers,
which are convolutional layers, pooling layers, and fully connected layers, are employed to
build a classical CNN architecture:

• Convolution layers are a set of filters designed to extract basic and complex features
such as edges, corners, texture, colors, shapes, and objects from the input images.
Then, activation functions are used to add the non-linearity transformation. It helps
CNN to learn complex features in the input data. Various activation functions were
employed, such as Rectified Linear Unit (ReLU) function [30], Leaky ReLU (LReLU)
function [31], parametric ReLU (PReLU) function [32], etc.

• Pooling layers reduce the size of each feature map resulting from the convolutional
layers. The most used pooling methods are average pooling and max pooling.

• The fully connected layer is fed by the final flattened pooling or convolutional layers’
output, and the class scores for the objects present in the input image are computed.

CNNs showed good results for object classification and recognition [33]. Motivated
by their great success, researchers presented numerous CNN-based contributions for fire
detection and classification using aerial images in the literature, and these are summarized
in Table 1.

Table 1. Deep learning methods for UAV-based fire classification.

Ref. Methodology Smoke/Flame Dataset Accuracy (%)

[34] CNN-17 Flame/Smoke Private dataset: 2100 images 86.00
[35] AlexNet

GoogLeNet
Modified GoogLeNet
VGG13
Modified VGG13

Flame Private dataset: 23,053 images 94.80
99.00
96.90
86.20
96.20

[28] Xception Flame FLAME dataset: 48,010 images 76.23
[36] Fire_Net

AlexNet
Flame UAV_Fire dataset: 1540 images 98.00

97.10
[29] VGG16

VGG19
ResNet50
InceptionV3
Xception

Flame FLAME dataset: 8617 images 80.76
83.43
88.01
87.21
81.30

[37] Fog computing and simple
CNN

Flame Private dataset: 2964 images 95.07

[38] Fire_Net
AlexNet
MobileNetv2

Flame/Smoke Private dataset: 2096 images 97.50
95.00
99.30

Chen et al. [34,39] proposed two CNNs to detect wildfire in aerial images. The first
CNN contains nine layers [39]. It consists of a convolutional layer with Sigmoid function,
max-pooling layer, ReLU activations, Fully connected layer, and Softmax classifier. Using
950 images collected with a six-rotor drone (DJI S900) equipped with a SONYA7 camera,
the experimental results showed improvements in accuracy compared to other detection
methods [39]. The second includes two CNNs for detecting fire and smoke in aerial
images [34]. Each CNN contains 17 layers. The first CNN classifies Fire and Non-Fire, and
the second detects the presence of smoke in the input images. Using 2100 aerial images,
great performance (accuracy of 86%) was achieved, outperforming the first method and the
classical method, which combines LBP (Local Binary Patterns) and SVM [34]. Lee et al. [35]
employed five deep CNNs, which included AlexNet [40], GoogLeNet [41], VGG13 [42], a
modified GoogLeNet, and a modified VGG13 to detect forest fires in aerial images:

• AlexNet includes eleven layers: five convolutional layers with ReLU activation func-
tion, three max-pooling layers, and three fully connected layers;

• VGG13 is a CNN with 13 convolutional layers;

3
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• GoogLeNet contains 22 inception layers, which employ, simultaneously and in parallel,
multiple convolutions with various filters and pooling layers;

• Modified VGG13 is a VGG13 model with a number of channels of each convolutional
layer and fully connected layers equal to half of that of the original VGG13;

• Modified GoogLeNet is a GoogLeNet model with a number of channels of each convolu-
tional layer and fully connected layer equal to half of that of the original GoogLeNet.

GoogLeNet and the modified GoogLeNet achieved high accuracies thanks to data
augmentation techniques (cropping, vertical, and horizontal flip). They showed their
ability in detecting wildfires in aerial images [35]. Shamsoshoara et al. [28] proposed
a novel method based on the Xception model [43] for wildfire classification. Xception
architecture is an extension of the Inceptionv3 model [44] with the modified depth-wise
separable convolution, which contains 1 × 1 convolution followed by a n × n convolution
and no intermediate ReLU activations. Using 48,010 images of the FLAME dataset [45]
and data augmentation techniques (horizontal flip and rotation), this method achieved an
accuracy of 76.23%. Treneska et al. [29] also adopted four deep CNNs, namely InceptionV3,
VGG16, VGG19, and ResNet50 [46], to detect wildfire in aerial images. ResNet50 achieved
the best accuracy with 88.01%. It outperformed InceptionV3, VGG16, and VGG19 and
the recent state-of-the-art model, Xception, using transfer learning techniques and the
FLAME dataset as learning data. Srinivas et al. [37] also proposed a novel method, which
integrates CNN and Fog computing to detect forest fire using aerial images at an early stage.
The proposed CNN consists of six convolutional layers followed by the ReLU activation
function and max-pooling layers, three fully connected layers, and a sigmoid classifier
that determines the output as Fire or Non-Fire. This method showed a great performance
(accuracy of 95.07% and faster response time) and proved its efficiency to detect forest
fires. Zhao et al. [36] presented a novel model called “Fire_Net” to extract fire features and
classified them as Fire and Non-Fire. Fire_Net is a deep CNN with 15 layers. It consists
of eight convolutional layers with ReLU activation functions, four max-pooling layers,
three fully connected layers, and a softmax classifier. Using the UAV_Fire dataset [36],
Fire_Net achieved an accuracy of 98% and outperformed previous methods. Wu et al. [38]
used a pretrained MobileNetv2 [47] model to detect both smoke and fire. MobileNetv2 is
an extended version of MobileNetv1 [48], which is a lightweight CNN with depth-wise
separable convolutions. It requires small data and reduces the number of parameters of
the model and its computational complexity. It employs inverted residuals and linear
bottlenecks to improve the performance of MobileNetv1. Using transfer learning and data
augmentation strategies, this method achieved an accuracy of 99.3%. It outperformed
published state-of-the-art methods such as Fire_Net and AlexNet and proved its suitability
in detecting forest fire on aerial monitoring systems [38].

2.2. Fire Detection Using Deep Learning Approaches for UAV

Region-based CNNs are used to detect, identify, and localize objects in an image. They
determine the detected objects’ locations in the input image using bounding boxes. These
techniques are divided into two categories: one-stage detectors and two-stage detectors [49].
One-stage detectors detect and localize objects as a simple regression task in an input
image. Two-stage detectors generate the ROI (Region of Interest) in the first step using the
region proposal network. Then, the generated region is classified and its bounding box is
determined. Region-based CNNs showed excellent accuracy for object detection problems.
They are also employed to reveal the best performance in detecting fires on aerial images.

Table 2 presents deep learning methods for UAV-based fire detection. Jiao et al. [50]
exploited the one-stage detector, YOLOv3 [51], to detect forest fires. YOLOv3 is the
third version of YOLO deep object detectors. It was proposed to improve the detection
performance of older versions by making detections at three different scales and using
the Darknet-53 model, which contains 53 convolutional layers as a backbone [51]. Testing
results revealed great performances and high speed [50]. Jiao et al. [52] also proposed the
UAV-FFD (UAV forest fire detection) platform, which employs YOLOv3 to detect smoke
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and fire by using UAV-acquired images. YOLOv3 showed high performance with reduced
computational time (F1-score of 81% at a frame rate of 30 frames per second). It proved its
potential in detecting smoke/fire with high precision in real-time UAV applications [52].
Alexandrov et al. [53] adopted two one-stage detectors (SSD [54] and YOLOv2 [55]) and a
two-stage detector (Faster R-CNN [56]) to detect wildfires. Using large data of real and
simulated images, YOLOv2 showed the best performance compared to Faster R-CNN,
SSD, and hand-crafted classical methods. It proved its reliability in detecting smoke at
an early stage [53]. Tang et al. [57] also presented a novel application to detect wildfire
using 4K images, which have a high resolution of 3840 × 2160 pixels collected by UAS
(Unmanned Aerial Systems). A coarse-to-fine strategy was proposed to detect fires that are
sparse, small, and irregularly shaped. At first, an ARSB (Adaptive sub-Region Select Block)
was employed to select subregions, which contain the objects of interest in 4K input images.
Next, these subregions were zoomed to maintain the area bounding box’s size. Then,
YOLOv3 was used to detect the objects. Finally, the bounding boxes in the subregions were
combined. Using 1400 4K aerial images, this method obtained a mean average precision
(mAP) of 67% at an average speed of 7.44 frames per second.

Table 2. Fire detection using Deep learning methods for UAVs.

Ref. Methodology Smoke/Flame Dataset Results (%)

[50] YOLOv3 Flame Private dataset: 3,840,000 images F1-score = 81.0
[53] YOLOv2

Faster R-CNN
SSD

Smoke Private dataset: 12,000 images Accuracy = 98.3
Accuracy = 95.9
Accuracy = 81.1

[52] YOLOv3 Flame/Smoke Private dataset: 3,684,000 images F1-score = 81.0
[57] YOLOv3 and ARSB method Flame Private dataset: 1400 K images mAP = 67.0

2.3. Fire Segmentation Using Deep Learning Approaches for UAV

Image segmentation is very important in computer vision. It determines the exact
shape of the objects in the images. With the progress of deep learning models, numerous
problems were tackled and a variety of solutions was proposed with good results.

Deep learning models are also used to segment fire pixels and detect the precise shape
of smoke and/or flame using aerial images. Table 3 shows deep learning methods for
UAV-based fire segmentation. For example, Barmpoutis et al. [58] proposed a 360-degree
remote sensing system to segment both fire and smoke using RGB 360-degree images, which
were collected from UAV. Two DeepLab V3+ [59] models that are encoder–decoder detectors
with ASPP (Atrous Spatial Pyramid Pooling) were applied to identify smoke and flame
regions. Then, an adaptive post-validation scheme was employed to reject smoke/flame
false-positive regions, especially regions with similar characteristics with smoke and flame.
Using 150 360-degree images of urban and forest areas, experiments achieved an F1-score of
94.6% and outperformed recent state-of-the-art methods such as DeepLabV3+. These results
showed the robustness of the proposed method in segmenting smoke/fire and reducing the
false-positive rate [58]. Similarly to wildfire classification, Shamsoshoara et al. [28] proposed
a method based on the encoder–decoder U-Net [60] for wildfire segmentation. Using a
dropout strategy and the FLAME dataset, U-Net obtained an F1-score of 87.75% and proved
its ability to segment wildfire and identify the precise shapes of flames [28]. Frizzi et al. [61]
also proposed a method based on VGG16 to segment both smoke and fire. This method
showed good results (accuracy of 93.4% and segmentation time per image of 21.1 s) using
data augmentation techniques such as rotation, flip, changing brightness/contrast, crop,
and adding noises. It outperformed previous published models and proved its efficiency in
detecting and classifying fire/smoke pixels [61].
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Table 3. Fire segmentation using deep learning methods for UAVs.

Ref. Methodology Smoke/Flame Dataset Results (%)

[58] DeepLabV3+
DeepLabV3+
+ validation approach

Flame/Smoke Fire detection 360-degree dataset:
150 360-degree images

F1-score = 81.4
F1-score = 94.6

[60] U-Net Flame FLAME dataset: 5137 images F1-score = 87.7
[61] U-Net

CNN based on VGG16
Flame/Smoke Private dataset: 366 images Accuracy = 90.2

Accuracy = 93.4

3. Materials and Methods

In this section, we first introduced our proposed methods for wildfire classification
and segmentation. Then, we describe the dataset used in training and testing. Finally, we
present the evaluation metrics employed in this work.

3.1. Proposed Method for Wildfire Classification

To detect and classify fire, we propose a novel method based on deep ensemble
learning using EfficientNet-B5 [23] and DenseNet-201 [24] models. EfficientNet models
proved their efficiency to reduce the parameters and Floating-Point Operations Per Second
using an effective scaling method that employs a compound coefficient to uniformly scale
model depth, resolution, and width. EfficientNet-B5 showed excellent accuracy and outper-
formed state-of-the-art models such as Xception [43], AmoebaNet-A [62], PNASNet [63],
ResNeXt-101 [64], InceptionV3 [44], and InceptionV4 [65]. DenseNet (Dense Convolutional
Network) connects each layer to all preceding layers to create very diversified feature maps.
It has several advantages, including feature reuse, elimination of the vanishing-gradient
problem, improved feature propagation, and a reduction in the number of parameters.
Using extracted features of all complexity levels, DenseNet shows interesting results in
various competitive object recognition benchmark tasks such as ImageNet, SVHN (Street
View House Numbers), CIFAR-10, and CIFAR-100 [24].

Figure 1 presents the architecture of the proposed method. First, this method is fed
with RGB aerial images. EfficientNet-B5 and DenseNet-201 models were employed as
a backbone to extract two feature maps. Next, the feature maps of the two models are
concatenated. The concatenated map was then fed an average pooling layer. Then, a
dropout of 0.2 was employed to avoid overfitting. Finally, a Sigmoid function was applied
to classify the input image into Fire or Non-Fire classes.

Figure 1. The proposed architecture for wildfire classification.

3.2. Proposed Methods for Wildfire Segmentation

To segment wildfires, we used a CNN model, EfficientSeg [25], and two vision trans-
formers, which are TransUNet [26] and TransFire.

3.2.1. TransUNet

TransUNet [26] is a vision transformer based on U-Net architecture. It employs global
dependencies between inputs and outputs using self-attention methods. It is an encoder–
decoder. The encoder uses a hybrid CNN-transformer architecture consisting of ResNet-50
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and pretrained ViT (Vision Transformer) to extract feature maps. It contains MLP (Multi-
Layer Perceptron) and MSA (Multihead Self-Attention) blocks. The decoder employs CUP
(cascaded up-sampler) blocks to decode the extracted features and outputs the binary
segmentation mask. Each CUP includes a 3 × 3 convolutional layer, ReLU activation
function, and two upsampling operators. Figure 2 depicts the architecture of TransUNet.

Figure 2. The proposed TransUNet architecture.

3.2.2. TransFire

TransFire is based on MedT (Medical Transformer) architecture. MedT [66] was
proposed in order to segment medical images with no requirement of a large dataset for
training. Two concepts, gated position-sensitive axial attention and LoGo (Local-Global)
training methodology, were employed to improve segmentation performance. Gated
position-sensitive axial attention was used to determine long-range interactions between
the input features with high computational efficiency. LoGo training methodology used
two branches, which are global branch and local branch, to extract feature maps. The first
branch works on the image’s original resolution. It consists of 2 encoders and 2 decoders.
The second operates on image patches. It contains 5 encoders and 5 decoders. The input to
both of these branches is the feature extracted using a convolutional block, which includes
3 convolutional layers with ReLU activation function and batch normalization.

TransFire is a modified MedT architecture. It includes one encoder and one decoder
in the global branch. It also employs a dropout strategy in the local branch (after the fourth
first encoders and the last decoder), in the global branch (after the decoder), and in each
input of both of these branches. TransFire was developed to overcome the memory problem
of MedT and to prevent overfitting. Figure 3 illustrates the architecture of TransFire.

3.2.3. EfficientSeg

EfficientSeg [25] is a semantic segmentation method, which is based on a U-Net struc-
ture and uses MobileNetV3 [27] blocks. It showed impressive results and outperformed
U-Net in some medical image segmentation tasks [25].

Figure 4 depicts the architecture of EfficientSeg. It is an encoder–decoder with 4 con-
catenation shortcuts. It includes five types of blocks, which are MobileNetV3 blocks
(Inverted Residual blocks), Downsampling operator, Upsampling operator, and 1 × 1 and
3 × 3 convolutional blocks with ReLU activation function and batch normalization layer.
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Figure 3. The proposed TransFire architecture.

Figure 4. The proposed EfficientSeg architecture.

3.3. Dataset

In the area of deep learning, many large datasets are available for researchers to train
their models and perform benchmarking by making comparisons with other methods.
However, until recently, there was a lack of a UAV dataset for fire detection and segmen-
tation. In this work, we use a public database called FLAME dataset (Fire Luminosity
Airborne-based Machine learning Evaluation) [45] to train and evaluate our proposed
methods. The FLAME dataset contains aerial images and raw heat-map footage captured
by visible spectrum and thermal cameras onboard a drone. It consists of four types of
videos, which are a normal spectrum, white-hot, fusion, and green-hot palettes.

In this paper, we focus on RGB aerial images. We used 48,010 RGB images, which are split
into 30,155 Fire images and 17,855 Non-Fire images for wildfire classification task. Figure 5
presents some samples of the FLAME dataset for fire classification. On the other hand, we
used 2003 RGB images and their corresponding masks for fire segmentation task. Figure 6
illustrates some examples of RGB aerial images and their corresponding binary masks.
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Figure 5. Examples from the FLAME dataset. Top line: Fire images and bottom line: Non-Fire images.

Figure 6. Examples from the FLAME dataset. Top line: RGB images; bottom line: their corresponding
binary masks.

3.4. Evaluation Metrics

We used F1-score, accuracy, and inference time to evaluate our proposed approaches
for fire classification and segmentation:

• F1-score combines precision and recall metrics to determine the ability of the model in
detecting wildfire pixels (as shown by Equation (1)):

F1-score =
2 × Precision × Recall

Precision + Recall
(1)

Precision =
TP

TP + FP
(2)

9



Sensors 2022, 22, 1977

Recall =
TP

TP + FN
(3)

where TP is the true positive rate, FP is the false positive rate, and FN is the false
negative rate.

• Accuracy is the proportion of correct predictions over the number of total ones,
achieved per the proposed model (as given by Equation (4)):

Accuracy =
TP + TN

TP + FP + TN + FN
(4)

where TN is the true negative rate, FN is the false negative rate, TP is the true positive
rate, and FP is the false positive rate.

• Inference time is the average time of segmentation or classification using our test-
ing images.

4. Results and Discussion

For wildfire classification, we used TensorFlow [67] and trained the proposed models
on a machine with NVIDIA Geforce RTX 2080Ti GPU. The learning data were split as
follows: 31,515 images for training, 7878 images for validation, and 8617 images for testing
as presented in Table 4.

Table 4. Dataset subsets for classification.

Dataset Fire Images Non-Fire Images

Training set 20,015 11,500
Validation set 5003 2875

Testing set 5137 3480

We employed categorical cross-entropy loss (CE) [68], which measures the probability
of the presence of a wildfire in the input image (as shown in Equation (5)):

CE = −
M

∑
c=1

zb,c log (pb,c) (5)

where M is the number of classes (in our case two classes (Fire and Non-Fire)), p is the
predicted probability, and z is the binary indicator.

For our experiments, we used input RGB images with 254 × 254 resolution, a batch
size of 16, and Adam as an optimizer. We also employed the following data augmentation
techniques: rotation, shear, zoom, and shift with random values.

For wildfire segmentation, we developed the proposed methods using Pytorch [69]
on an Nvidia V100l GPU. Learning data were divided into three sets: 1401 images for
training, 201 images for validation, and 401 images for testing. We employed dice loss [70]
to measure the difference between the predicted binary mask and the corresponding input
mask (as given by Equation (6)). We also used two data augmentation methods, which are
a horizontal flip and a rotation of 15 degrees:

DC = 1 − 2|Z ⋂
W|

|Z|+ |W| (6)

where Z is the input aerial image, W is the predicted image, and
⋂

is the intersection of the
input and the predicted images.

The input data are RGB aerial images with a 512 × 512 resolution and their correspond-
ing binary mask. The TransFire Transformer was trained from scratch (no pretraining)
using a hybrid CNN-Transformer as a backbone, patch sizes of 16, and a learning rate
of 10−3. TransUNet is evaluated using a learning rate of 10−3, patch size of 16, and two
backbones that include a pretrained ViT and a hybrid backbone, which includes ResNet50
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(R-50) and pretrained ViT. EfficientSeg also was tested from scratch using a learning rate
of 10−1.

We analyzed the proposed methods’ performance (accuracy and F1-score) as well as
their speed (inference time). In addition, we compared our novel wildfire classification
method to state-of-the-art models (Xception [28,29] and InceptionV3 [29]) and deep CNNs
(MobileNetV3-Large [27], MobileNetV3-Small [27], DenseNet-169 [24], and EfficientNet-B1-
5 [23]), which already showed excellent results for object classification. We also compared
the proposed wildfire segmentation methods, including TransUNet, TransFire, and Effi-
cientSeg, to U-Net [28].

4.1. Wildfire Classification Results

We trained wildfire classification methods on aerial images collected using the Matrice
200 drone with a Zenmuse X4S camera. Testing data are collected using the Phantom drone
with a Phantom camera.

Table 5 reports a comparative analysis of our proposed method and deep CNN
methods using the test data. We can observe that our proposed method achieved the best
performance (accuracy of 85.12% and F1-score of 84.77%) thanks to scaled and diversified
feature maps extracted by EfficientNet-B5 and DenseNet-201 models. It outperformed
recent models for object classification (MobileNetV3-Large, MobileNetV3-Small, DensNet-
169, and EfficientNet models (EfficientNet-B2, -B3, -B4, and -B5)) and inception models
(Xception and InceptionV3). It proved its good ability to detect and classify forest fires on
aerial images. However, it needed a high inference time with 0.018 s.

Figure 7 presents the confusion matrix on test data. We can see that the rate of true
positives (classifying Fire as Fire) and the rate of true negatives (classifying No-Fire as
No-Fire) are higher than the rate of the false positives (classifying Fire as No-Fire) and the
rate of false negatives (classifying No-Fire as Fire), respectively. Our proposed method
showed interesting results in detecting and classifying fires, even for very small fire areas.
It proved its efficiency to overcome challenging problems such as uneven object intensity
and background complexity.

To conclude, our proposed method revealed the best result based on the trade-off
between performance and inference time. It showed an excellent capacity to classify forest
fires in aerial images and managed to overcome the problems of small fire areas and
background complexity.

Figure 7. Confusion matrix for fire classification.
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Table 5. Performance evaluation of wildfire classification models.

Models Accuracy (%) F1-Score (%) Inference Time (s)

Xception 78.41 78.12 0.002
Xception [28] 76.23 — —
EfficientNet-B5 75.82 73.90 0.010
EfficientNet-B4 69.93 65.51 0.008
EfficientNet-B3 65.81 64.02 0.004
EfficientNet-B2 66.04 60.71 0.002
InceptionV3 80.88 79.53 0.002
DenseNet169 80.62 79.40 0.003
MobileNetV3-Small 51.64 44.97 0.001
MobileNetV3-Large 65.10 60.91 0.001
Proposed ensemble model 85.12 84.77 0.018

4.2. Wildfire Segmentation Results

Table 6 illustrates the quantitative results of fire segmentation using the FLAME
dataset. We can see that TransUNet, TransFire, and EfficientSeg obtained excellent results
and outperformed U-Net used as a baseline model.

Vision Transformers (TransUNet and TransFire) obtained higher performances com-
pared to deep CNN models (EfficientSeg and U-Net) due to their ability to determine
long-range interactions within input features and extract the finer details of the input
images. TransUNet-R50-ViT achieved the best performance with an accuracy of 99.9% and
an F1-score of 99.9% thanks to local and global features extracted using a hybrid backbone,
which includes a CNN, R-50, and pretrained ViT Transformer.

Figure 8 depicts examples of the segmentation of TransUNet-R50-ViT. We can see that
this model accurately detected the finer details of fire and distinguished between wildfire and
background. In addition, TransUNet-R50-ViT showed its efficiency in localizing and detecting
the precise shape of wildfire, especially with respect to small fire areas on aerial images.

TransUNet-ViT also showed excellent performances (accuracy of 99.86% and F1-score
of 99.86%) and high speeds (inference time of 0.4 s) compared to TransFire and EfficientSeg.
We can see in Figure 8 that TransUNet with ViT transformer accurately segmented wildfire
pixels and detected wildfire regions even for small fire areas.

TransUNet models proved their ability in segmenting wildfire, in detecting the exact
shape of fire areas, and in overcoming challenging problems such as small fire areas and
background complexity. However, they still depend on a pretrained vision transformer
(ViT) on a large dataset.

TransFire also showed a higher accuracy with 99.83% and an F1-score of 99.82% due
to high-level information and finer features extracted in the global branch and local branch,
respectively. It outperformed EfficientSeg and U-Net. It proved its excellent capacity in
segmenting wildfire pixels and detecting the exact fire areas, especially small fire areas as
shown in Figure 8. It also segmented forest fire pixels under the presence of smoke.

EfficientSeg also obtained a high accuracy with 99.63% and an F1-score of 99.66%
thanks to its extracted finer details. It outperformed U-Net. It showed its efficiency in
segmenting fire pixels and in detecting the precise shape of fire areas as depicted in Figure 8.
However, It had a higher inference time with 1.38 s compared to vision transformers.

To conclude, TransUNet, TransFire, and EfficientSeg showed excellent performances.
They proved an impressive potential in segmenting wildfire pixels and determining the
precise shape of fire. Based on the F1-score, TransFire showed great performance and out-
performed deep convolutional models (EfficientSeg and U-Net) and was very close to the
performance of vision transformer (TransUNet). In addition, it demonstrated its reliability
in detecting and segmenting wildland fires; in particular, it was the best performing in
detecting small fire areas under the presence of smoke, as observed in Figure 9.
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Figure 8. Segmentation results of the proposed models. From top to bottom: RGB aerial images and
the results of TransUNet-R50-ViT, TransUNet-ViT, TransFire, and EfficientSeg. Orange represents TP
(true positives), yellow depicts FP (false positives), and red shows FN (false negatives).
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Figure 9. Results of TransFire, TransUNet-R50-ViT, and EfficientSeg. From top to bottom: RGB aerial
images and the results of TransFire, TransUNet-R50-ViT, and EfficientSeg. Orange represents TP,
yellow depicts FP, and red shows FN. We can see the interesting results of TransFire in determining
the precise size of small wildfire areas under the presence of smoke compared to TransUNet and
EfficientSeg models.

Table 6. Performance evaluation of wildfire segmentation models.

Models Accuracy (%) F1-Score (%) Inference Time (s)

TransUNet-R50-ViT 99.90 99.90 0.51
TransUNet-ViT 99.86 99.86 0.40
TransFire 99.83 99.82 1.00
EfficientSeg 99.63 99.66 1.38
U-Net 99.00 99.00 0.29
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5. Conclusions

In this paper, we address the problem of wildfire classification and segmentation on
aerial images using deep learning models. A novel ensemble learning method, which com-
bines EfficientNet-B5 and DenseNet-201 models, was developed to detect and classify wild-
fires. Using the FLAME dataset, experimental results showed that our proposed method
was the most reliable in wildfire classification tasks, presenting a higher performance
than recent state-of-the-art models. Furthermore, two vision transformers (TransUNet and
TransFire) and a deep CNN (EfficientSeg) are developed to segment wildfires and detect
the region of fire areas on aerial images. This is the first proposed approach (in our knowl-
edge) using Transformers for UAV wildfire image segmentation. These models showed
impressive results and outperformed recent published methods. They proved their ability
in segmenting wildfire pixels, detecting the precise shape of fire. Based on the F1-score,
TransFire obtained great performance, outperforming deep models such as EfficientSeg and
U-Net. It also showed its excellent potential in detecting and segmenting forest fires and in
overcoming challenging problems such as small fire areas and background complexity.
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Abstract: Accurate and efficient extraction of cultivated land data is of great significance for
agricultural resource monitoring and national food security. Deep-learning-based classification of
remote-sensing images overcomes the two difficulties of traditional learning methods (e.g., support
vector machine (SVM), K-nearest neighbors (KNN), and random forest (RF)) when extracting the
cultivated land: (1) the limited performance when extracting the same land-cover type with the high
intra-class spectral variation, such as cultivated land with both vegetation and non-vegetation cover,
and (2) the limited generalization ability for handling a large dataset to apply the model to different
locations. However, the “pooling” process in most deep convolutional networks, which attempts to
enlarge the sensing field of the kernel by involving the upscale process, leads to significant detail loss
in the output, including the edges, gradients, and image texture details. To solve this problem, in this
study we proposed a new end-to-end extraction algorithm, a high-resolution U-Net (HRU-Net),
to preserve the image details by improving the skip connection structure and the loss function of
the original U-Net. The proposed HRU-Net was tested in Xinjiang Province, China to extract the
cultivated land from Landsat Thematic Mapper (TM) images. The result showed that the HRU-Net
achieved better performance (Acc: 92.81%; kappa: 0.81; F1-score: 0.90) than the U-Net++ (Acc: 91.74%;
kappa: 0.79; F1-score: 0.89), the original U-Net (Acc: 89.83%; kappa: 0.74; F1-score: 0.86), and the
Random Forest model (Acc: 76.13%; kappa: 0.48; F1-score: 0.69). The robustness of the proposed
model for the intra-class spectral variation and the accuracy of the edge details were also compared,
and this showed that the HRU-Net obtained more accurate edge details and had less influence from
the intra-class spectral variation. The model proposed in this study can be further applied to other
land cover types that have more spectral diversity and require more details of extraction.

Keywords: full convolutional network; U-Net; cultivated land extraction; deep learning;
remote sensing

1. Introduction

Accurate area and change of cultivated land is one of the fundamental types of data for precision
agriculture, food security analysis, yields forecasting, and land-use/land-cover research [1]. In the
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arid and semi-arid regions, this information is particularly important as it is related to the regional
water balance and the local ecosystem health [2]. Currently, the increasing free remote sensing
data (such as U.S. Geological Survey (USGS) Landsat and European Space Agency (ESA) Sentinel)
provides sufficient data sources and the opportunity to extract and monitor the dynamic change of the
cultivated land [3–5].

However, the cultivated land, as a man-made concept, usually shows different spectral
characteristics due to the varying types of crops, different irrigation methods, and different soil
types, as well as fallow land plots. As a result, for classification, the intra-class variation increases and
the inter-class separability decreases [6,7]. The frequently used traditional pixel-based classifiers, such as
support vector machine (SVM), K-nearest neighbors (KNN), and random forest (RF) [8,9], and the
object-based farmland extraction models, such as the stratified object-based farmland extraction [6],
the superpixels and supervised machine-learning model [10], and the time-series-based methods [11],
usually require the prior knowledge to model the high intra-class variation of the spatial or spectral
features. Due to this, the features learned by these methods are often limited to the specific datasets,
time, and locations, which is known as limited model generalization ability. The re-training process is
usually required when applying these models to different datasets, time, and locations.

With the rapid development of deep learning [12], convolutional neural networks (CNNs) have
gained state-of-the-art performance in land cover classification, which overcomes the abovementioned
difficulties [13]. Possible reasons for its success include: (1) the capacity of learning from a large dataset;
(2) the tolerance for larger intra-class variation of the object features; and (3) the high generalization
ability. Benefitting from the large training dataset, the feature variation of the target object across
different locations or time can be modeled. CNNs have shown great advantage in urban land use and
land cover mapping [14–18], scene classification [19–21], and object extraction [22–25]. Among the
popular CNNs, the U-Net is reported to achieve state-of-the-art performance on several benchmark
datasets even with limited training data [26,27]. It was widely used in many fields as a result.

However, the “pooling” process in most deep convolutional networks, which (1) provides the
invariance (translation, rotation, and scale-invariance) capacity for the model to capture the major
feature of the target; (2) reduces the number of parameters for multi-scale training; and (3) increases
the receptive field by involving the down-sampling process (converting images from the high to low
spatial resolution) with certain calculation (maximum, average, etc.), leads to significant detail loss
from the image, including edges, gradients, and image texture details [28,29]. This problem could
decrease the accuracy of extraction of land cover type even more when dealing with remote sensing
images considering the high intra-class spectral variation [30]. Ideas to solve this problem can currently
be organized in two categories: (1) learning and recovering high-resolution details from low-resolution
feature maps or (2) maintaining high-resolution details throughout the network [31].

In the first category, the detailed texture is recovered from the low-resolution feature maps
after the pooling process by applying certain up-sampling methods (such as bilinear interpolation or
deconvolution) [32–34] of the representative model in this category, such as the fully convolutional
network (FCN) [35], In SegNet [36], DeconvNet [37], RefineNet [38] et al.

For remotely sensed images, this idea was widely used. For instance, the FCN-based network
achieved an overall accuracy of 89.1% on the International Society for Photogrammetry and Remote
Sensing (ISPRS) Vaihingen Dataset without a down-sampling layer to obviate deconvolution in the
latter part of the structure [39]. Marmanis, et al. (2016) designed a segmentation network at the
pixel-level that synthesized the FCN and deconvolution layers and refined the results using fully
connected conditional random fields (CRF) [40]. ASPP-Unet and ResASPP-Unet recovered the spatial
texture by adding the Atrous Spatial Pyramid Pooling (ASPP) technique in network to increase the
effective field-of-view in convolution and capture the features in multiple scales [41]. MultiResoLCC
provides a two-branch CNN architecture to improve the image details by jointly using panchromatic
(PAN) and multi spectral (MS) imagery [42]. For hyperspectral image classification tasks, the CNN
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structure can also improve the accuracy by extracting the hierarchical features [43] and creating the
low-dimensional feature space to increase the separability [44].

This type of method recovers the high-resolution details by learning from low-resolution
feature maps. Although various skip connection methods have been used to optimize the obtained
high-resolution details, the effect is limited since the lost details are usually recovered only from
low-spatial resolution features. This often causes the recovering procedural to be ill-posed as the
number of pixels of the output is always bigger than that of the input.

In the second category, high-resolution details are first extracted and maintained through the
whole process, typically by a network that is formed by connecting multi-level convolutions with
repeated information exchange across parallel convolutions. Under this idea, the skip connection is
usually redesigned between the pooling nodes and the up-sampling nodes. For instance, (1) adding
more skip connections to link different convolution nodes at the same scale, and (2) adding more
skip connections to link the convolution nodes at the different scales. Representative models include
convolutional neural fabrics [45], interlinked CNNs [46], and high-resolution networks (HRNet) [47].
This kind of method avoids the ill-posed problem; however, the time consumed in the training process
can dramatically increase. More free parameters in the model require more data to train.

In this paper, we propose a new end-to-end cultivated land extraction algorithm, high-resolution
U-Net (HRU-Net), to extract cultivated land from Landsat TM images. The new network is based
on the U-Net structure, in which the skip connections are redesigned following the ideas of the
second category mentioned above to obtain more details. Inspired by HRNet, the loss function of the
original U-Net is also improved to take into account features extracted at both shallow and deep levels.
The proposed HRU-Net was tested in Xinjiang Province, China for the cultivated land extraction based
on three years’ worth of Landsat TM images, and was compared with the original U-Net, U-Net++,
and the RF method. The major contributions of this study can be summarized as: (1) we redesigned
the skip connection structure of the U-Net to keep the high-resolution details for remote sensing image
classification; (2) we modified the original U-Net loss function to achieve a higher extraction accuracy
for the target with a high intra-class variation; (3) we proposed a new end-to-end cultivated land
extraction algorithm, the high-resolution U-Net (HRU-Net), which demonstrated good performance in
extracting the target with high edge details and high intra-class spectral variation.

2. Related Work

2.1. Learning and Recovering High-Resolution Details from Low-Resolution Feature Maps

The representative model in this category is the fully convolutional network (FCN) [35]. In each
stage of an FCN, an up-sampling subnetwork, like a decoder, was used as the up-sampling procedure,
which attempts to recover the fine-spatial resolution details from the coarse-spatial resolution feature
maps [33,34,48]. In SegNet [36], the up-sampling strategy is a mirrored symmetric version from the
pooling subnetwork by grabbing the indices directly for the pooling subnetwork. The up-sampling
strategy can be combined with the deconvolution process, such as in DeconvNet [37], where the
locations and values of the highest gradience are kept by the up-sampling strategy, and the sparseness
of the up-sampling output is repaired by the deconvolution layers. In RefineNet [38], instead of using
only one feature map from one pooling layer, the long-range residual connections were used to combine
all information along with all pooling layers to refine the high-resolution details. Other asymmetric
structures, such as the light up-sampling process [49], light pooling, heavy up-sample processes [50],
and re-combinator networks [51], were all reported have good performance for object detection.

2.2. Maintaining High-Resolution Details throughout the Network

Representative models include convolutional neural fabrics [45], interlinked CNNs [46], and high-
resolution networks (HRNet) [47]. In an HRNet, a high-resolution subnetwork was first established as
the first stage, then the high-to-low resolution subnetworks were added consecutively to form more

21



Sensors 2020, 20, 4064

low-level stages. This structure maintains the high-resolution details through the whole process and
has achieved state-of-the-art performance in the field of human pose estimation [47]. Fu et al. (2019) and
Wu et al. (2018) also improved skip connections by stacking multiple DeconvNets/UNets/Hourglasses
with dense connections [52,53].

3. Study Area and Datasets

In this paper, the intra-class spectral variation of cultivated land can be reflected in three
perspectives: (1) intra-class spectral variation over different time, (2) intra-class spectral variation over
different geo-locations, (3) intra-class spectral variation over different crop types. These three variation
factors can be represented with multiple times (both winter and summer) and different locations within
a large area. The study area is located in the Urumqi and Bosten farmlands in Xinjiang, China (Figure 1),
which mainly grow cash crops, such as cotton and pears. The crops are planted in large areas with
high yield and require a huge amount of water supply every year. Extracting cultivated land of these
two regions is of great significance to the agricultural and water resource monitoring to ensure the
national food security of Xinjiang and China.

 

Figure 1. The study area.

Landsat5 thematic mapper (TM) top of atmosphere (TOA) reflectance (the USGS Earth Explorer:
https://earthexplorer.usgs.gov/) from 2009 to 2011 was collected as the dataset in this study. The TM
sensor has seven spectral bands (Table 1), but we only selected six bands with a resolution of 30 m:
B1 (blue), B2 (green), B3 (red), B4 (near-infrared, NIR), B5 (short-wave-infrared, SWIR 1), and B7
(short-wave-infrared, SWIR 2). The thermal band was not used in this study as it could vary during
the different observation dates, which was caused by the different local environmental factors, such as
the radiative energy the land received or the wind speed. Only cloud free images were chosen in this
study. The image details are shown in Table 2.
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Table 1. Parameters of Landsat4—5 thematic mapper (TM).

Sensor Bands Wavelength/μm Resolution/m

Landsat4—5 TM

B1-Blue 0.45–0.52 30
B2-Green 0.52–0.60 30
B3-Red 0.63–0.69 30
B4-NIR 0.76–0.90 30

B5-SWIR1 1.55–1.75 30
B6-TIR 10.40–12.5 120

B7-SWIR2 2.08–2.35 30

Table 2. Data list of Landsat 5 top of atmosphere (TOA) products used in this study.

Date Area Image File Names Path/Row

10 Jun 2010

Bosten farmland

LT51420312010161IKR00.tar 142/3113 Aug 2010 LT51420312010225IKR00.tar
2 Sep 2010 LT51430312010248IKR00.tar 143/31
26 Aug 2009 LT51420322009238IKR00.tar

142/32

27 Sep 2009 LT51420322009270KHC00.tar
15 Jul 2011 LT51420322011196IKR00.tar
3 Oct 2011 LT51420322011276KHC01.tar
29 Aug 2010 LT51420322010241IKR00.tar
30 Sep 2010 LT51420322010273IKR00.tar
20 Aug 2010 LT51430322010232IKR00.tar

143/324 Aug 2010 LT51430322010216IKR00.tar
21 Sep 2010 LT51430322010264IKR00.tar
11 Aug 2010 LT51440312010223IKR01.tar 144/3115 Nov 2010 LT51440312010319KHC00.tar

11 Aug 2010

Urumqi farmland

LT51440292010223IKR01.tar 144/2915 Nov 2010 LT51440292010319KHC00.tar
11 Aug 2010 LT51430292010232IKR00.tar

143/29
21 Sep 2010 LT51430292010264IKR00.tar
4 Jun 2011 LT51430292011155IKR00.tar
7 Aug 2011 LT51430292011219KHC01.tar
23 Aug 2011 LT51430292011235KHC01.tar

We used the historical landcover map in the 2010 version from the local government to extract
the ground truth manually based on the Landsat 5 image at 30 m scale. The changes in the land
cover types were considered to be consistent from 2009 to 2011 and were neglected in this study.
The original historical landcover map contained five land cover types (the urban area, cultivated land,
forest, water, and desert). We classified the historical landcover map by only two types (cultivated
land and other). The historical landcover map was then transformed from the original polygon to the
raster format with the same spatial resolution of the Landsat data. For convenience, we added the
ground truth data (the historical landcover map) to the Landsat dataset as the seventh band. After that,
the TM images and corresponding ground truth were split into 256 × 256-pixel tiles to keep the memory
consumption low during the training and validation. These tiles were adjacent and non-overlapping.

To evaluate different combinations of spectral bands on the performance of cultivated land
extraction, we defined three datasets, namely, TM-NRG, TM-RGB, TM-All, with a varying number
of spectral bands. An overview of each dataset is provided in Table 3. To avoid overfitting during
training, we selected 4050 tiles (approximately 70%) randomly for training, 867 tiles (approximately
15%) as validation data for adjusting the model hyperparameters during training, and the remaining
868 tiles (approximately 15%) for independent testing. The methods we used for comparation
(RF, U-Net, and U-Net++) were all based and tested on the same datasets.
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Table 3. Three different TM datasets used in this study.

Dataset Bands Resolution/m
Training
Sample

Validating Sample
in Training

Testing
Sample

TM-NRG NIR, Red, Green 30
4050 (70%) 868 (15%)TM-RGB Red, Green, Blue 30 867 (15%)

TM-All Blue, Green, Red, NIR,
SWIR1, SWIR2 30

4. Methodology

In this paper, a new end-to-end cultivated land extraction algorithm, high-resolution U-Net
(HRU-Net), was proposed, with the aim to extract the same land-cover type with different spectra
accurately and preserve the image details by improving the skip connection structure and loss function
of the original U-Net. Figure 2 shows an overview of the workflow of this study.

 
Figure 2. Overview of the performance evaluation framework. High-resolution U-Net (HRU-Net).

4.1. The Original U-Net and U-Net++

Initially, the U-Net was developed for biomedical image segmentation. We chose it as the base
network to extract cultivated land as it achieves state-of-the-art performance on benchmark datasets
even with limited training data [27,28]. Figure 3a shows the structure of the original U-Net network.
It contains two main pathways: the contracting pathway on the left side and the expansive pathway
on the right side.

In the contracting path, the input image was first sent to the feature detection by operating a
2-dimensional convolution by the typical architecture of a convolutional network, which repeated the
block of two 3× 3 convolutions, a rectified linear unit, and a 2× 2 max-pooling operation, iteratively.
To enlarge the “sense field” of the convolution kernel and give the network more ability for a global
view of the features of the object, the “pooling operation” was added to contract the feature map into
the lower level. Meanwhile, a skip connection structure attempted to reduce the loss of image details
in the “pooling operation” in the contraction path by adding a feature vector to the expansive path at
the same level, as indicated by the gray arrow in Figure 3a.

In the expansive path, the central idea was to combine the low-level feature maps to expand
the image size. First, the low-level feature map was up-sampled by a 2 × 2 transpose convolution.
Secondly, the output was combined with the corresponding feature map from the skip connection at
the same level. Thirdly, two 3× 3 convolutions and the rectified linear unit (ReLU) activation function
were applied for further feature detection.

At the final layer, to match the number of channels to the number of classes in the final output,
a 1× 1 convolution with the Softmax activation function was used. The output of this network was the
predicted probabilities of each class p(x). The final class labels were calculated by selecting the highest
probability class in the vector p(x). In this structure, the skip connection was the only path to restore
the high-resolution details in every convolution level.

24



Sensors 2020, 20, 4064

(a) 

(b) 

Figure 3. (a) U-Net architecture [28] and (b) Simplified U-Net topology diagram from (a).

As shown in Figure 3b, in order to emphasize the skip connections between the feature maps at
the different levels, the structure of the U-Net (Figure 3a) was simplified by replacing the convolution
process in Figure 3a with the symbol Xij, where i is the level index and j is the convolution node index
at the same level. For example, the X10 represented the first convolution module at the second level.

The other benefit of the U-Net is that the number of the trainable parameters is relatively small.
Other networks, such as FCN and DeconvNet, are more complicated with more trainable parameters,
and require a bigger training set and a longer time to train [35,37]. Usually, to reduce the training time
of networks, a pre-trained network can be used to retrain the top layer on a new dataset. However,
the pre-trained network is usually trained on natural pictures with RGB bands. As we hope to take full
advantage of the multi-band data of remote-sensing images instead of only RGB channels, this strategy
cannot work well when the channel difference happens between the pre-trained and the new datasets.
For this reason, the U-Net network in this study was trained from scratch.
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Under the hypothesis that the feature maps from contracting path (encoder networks) can
enrich the prior for the expansive path (decoder networks), UNet++ was proposed to increase the
segmentation accuracy for medical images [54]. In UNet++, a small down-triangle structure was
designed as the basic unit. With this unit, UNet++ can be easily extended to different levels depending
on the accuracy and performance required for the different tasks. The intuitive purpose of the UNet++
is to reach the high overall accuracy of segmentation in medical images for improving disease diagnosis.
In this paper, we focused on the application of a deep learning model for satellite images, specifically
to recover the edge details of the land cover types which were lost during the “pooling” process.
More details of the HRU-Net will be described in the next section.

4.2. The High-Resolution U-Net

Giving the network the ability to learn the high-resolution details of the image is the key to
solving the problems of insufficient accuracy of cultivated land extraction due to a loss of image
details. The idea of the U-Net network is to learn and recover high-resolution details directly from a
low-resolution feature map by simply combining the feature maps from the skip connection at the
same level. In the first step, learning and recovering high-resolution information from the lower level
feature map is extremely difficult as it requires the recovery of non-existent details. In the second step,
simply adding the feature map from the skip connection to a low-level feature map could disturb the
concise features learned from the low level. The image details from the skip connection are limited as
it has already suffered the “pooling process” in the previous feature detection.

Considering the multi-level structure of the U-Net and the higher level that the convolutional
nodes locate, a smaller number of the “pooling process” were applied to these nodes. As a result,
more texture details remained in these feature maps. The key to solving this problem was to find a
proper strategy to enrich the feature map details by involving information from the higher level and
reducing the noise amplifying effect at the same time. The new structure we proposed in this study,
the HRU-Net, used the idea of maintaining high-resolution details during the whole process to ensure
that the multi-resolution descriptions of the image were always present (Figure 4).

In this structure, the image details not only came from the same level but were also enriched from
the higher level. To reduce the noise from the higher level and produce more deep sematic features,
several convolutional nodes were added in the skip connection path. The new convolutional nodes
increased the number of overall parameters, so in this study, to learn the network parameters more
efficiently, the idea of deep supervision was adopted to re-design the loss function. The network
architecture is illustrated in Figure 4a. Compared to the original U-Net architecture, the HRU-Net kept
the same structure in the contracting and expansive path. More skip connections were added between
the contracting and expansive path. The simplified topology diagram of the HRU-Net is shown in
Figure 4b, simplified from Figure 4a by replacing the convolution process with the symbol Xij to make
clearer the structure of the skip connection in the HRU-Net.

In the following part, we will further discuss from the two perspectives: (1) how to improve the
skip connection structure and (2) how to use the idea of deep supervision to design the loss function.
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(a)

 
(b) 

Figure 4. (a) The HRU-Net architecture and (b) the simplified topology diagram of the HRU-Net.

4.2.1. Improving the Skip Connection Structure

The skip connections were first introduced in the FCN [37]. Starting from the FCN, this structure
has been widely introduced in many models to retain the high-resolution details across the different
levels. In the U-Net, the feature maps in the contracting path are directly sent to the expansive path
by skip connections. To simply copy the feature map from the contracting path and merge to the
expansive path with the feature map from the lower level does not always work as the details have
already been lost before the skip connections. The basic idea to solve this problem is to borrow the
image details from a higher level to minimize the effect of the “pooling” (the green-sampling arrow in
Figure 4b). Followed by this idea, in the HRU-Net the skip connection was improved in the following
two aspects:
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(1) Maintained resolution details at the same level
First, the HRU-Net maintained feature maps at the same layer by applying a repeated convolution

module (shown in blue arrows in Figure 4b). Each module consisted of two 3× 3 convolutions and a
rectified linear unit. Then, it incorporated shallow features into deep features at each layer by a skip
connection at the same level to retain details (shown in blue curved arrows in Figure 4).

(2) Fused multi-scale details cross different levels
The HRU-Net converted the high-resolution feature map into the same size and the same number

of channels as the lower-level required by applying a 3 × 3 convolution with a stride of 2 (shown
in green arrows in Figure 4b); then, the HRU-Net combined this high-level feature map with the
feature map from the previous node by a convolution operation and a concatenation operation; at last,
two 3× 3 convolutions and a rectified linear unit were applied for further feature detection (shown in
blue arrows in Figure 4a,b).

The HRU-Net can be formulated as follows:

Xij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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(1)

where Xij is the output feature map of the node (i, j), where i is the level index and j is the convolution
node index at the same level. Function c(·) represents the convolution operation, u(·) denotes an
up-sampling operation, d(·) is a pooling or down-sampling operation, and [·] is the concatenation
operation. The overall structure can be described as follows:

• The nodes at level j = 0, Xi0 can be gained by only one input X(i−1)0, which is from the
previous layer in the contracting path. The max pooling and convolution operation are applied in
nodes X(i−1)0.

• The nodes at level i = 0 and j < 4 receive the j feature maps of the previous nodes at the same
level. For example, X03 can be gained by X00, X01, and X02. The inputs are concatenated by
concatenation operation, then the convolution operation is performed.

• The nodes at level i = 0 and j = 4 receive the j feature maps from the previous nodes at the same
level and the up-sampled feature maps from the lower level. In particular, X04 can be gained by
X00, X01, X02, X03 and X13. The up-sampled X13 is concatenated with X00, X01, X02, X03 nodes.

• The nodes at the middle of the network, where j > 0, i > 0 and i + j < 4, receive j + 1 inputs
( j inputs from are the j feature maps form previous nodes at the same level, one input is the
down-sampled output from the higher level).

• The nodes at the end of each layer, where j > 0, i > 0 and i + j = 4, receive j + 2 inputs, ( j inputs
are from the j feature maps form previous nodes at the same level, one input is the down-sampled
output from the higher-level, and one input is up-sampled output from the lower-level).

4.2.2. Using the Idea of Deep Supervision to Modify the Loss Function

When designing the input of the loss function, the U-Net only obtains the classification probabilities
from X04. Compared to the U-Net, the HRU-Net generated full-resolution feature maps from
multiple levels,

{
X0 j, j ∈ (1, 2, 3, 4)

}
, which can be used to apply deep supervision. We first obtained

the classification probabilities at different semantic levels, from
{
X0 j, j ∈ (1, 2, 3, 4)

}
, through 1 × 1

convolutions with the Softmax activation function (as marked by red arrows in Figure 4), and then
obtained the predicted class probabilities P(x) by averaging all probabilities,

P(x) = [P0(x), P1(x)]
T (2)
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where Pi(x) is the predicted probability of x belonging to class i (i = 0 for cultivated land, and i = 1 for
non-cultivated land). The class label y of a given image can be calculated by obtaining the label from
the maximized probability in P(x):

y = argmax(P(x)). (3)

The loss function of HRU-net is defined as

H
(
Y, Y
)
= − 1

N

∑
i

Yilog
(
Yi
)

(4)

with Yi and Yi denoting the predicted and the actual probability of class i, respectively, and N being
the batch size.

4.2.3. Assessment

The accuracy evaluation metrics in this paper include (1) the overall accuracy, (2) Cohen’s kappa
coefficient, and (3) the F1-score. The overall accuracy is defined as the number of correctly classified
pixels over the total number of pixels. It is simple and intuitive but may fail to assess the performance
thoroughly when the number of samples for different classes varies significantly. Cohen’s kappa
coefficient is more robust, as it takes into consideration the possibility of agreements occurring randomly.
Let p0 be the percentage of pixels correctly classified, and pe be the expected probability of agreement
when the classifier assigns class labels by chance, Cohen’s kappa coefficient is defined as:

K =
p0 − pe

1− pe
. (5)

Usually, we characterize K < 0 as no agreement, [0, 0.20] as poor agreement, [0.20, 0.40] as fair
agreement, [0.40, 0.60] as moderate agreement, [0.60, 0.80] as good agreement, and [0.80, 1] as almost
perfect agreement. The F1-score is defined as the harmonic mean of the precision rate and recall rate:

F1 =
2× P×R

P + R
(6)

where P is the number of positive classes predicted correctly (TP) divided by the number of all positive
results (including both true positive TP and false positive FP), and R is the number of true positive
results (TP) divided by the number of all relevant samples (true positive plus false negative FN):

P =
TP

TP + FP
(7)

R =
TP

TP + FN
(8)

An F1 score reaches its best value at 1 (perfect precision and recall) and its worst at 0.

5. Results and Discussion

5.1. The Learning Process of the HRU-Net

In this study, we hoped to make full use of the advantage of the multi-band data of remote-sensing
images instead of only RGB images. Thus, we decided to train the all network (HRU-Net, U-Net++,
the original U-Net, and RF) from scratch. To compare the performance of the different numbers of
bands, three datasets were prepared (Table 2). The performance of the near-infrared (NIR) band can be
analyzed when comparing the results of the TM-NRG with those of the TM-RGB. Similarly, comparing
the results from the TM-All to the TM-NRG datasets, the improvement of the shortwave-infrared
(SWIR) can be investigated.
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The HRU-Net, U-Net++, U-Net, and RF were trained and tested on the three datasets (Table 2)
separately. In each dataset, all samples were randomly split into three: the training set, the validation
set, and the testing set. The training set was used for model training. The validation set was used to
calibrate the hyperparameters of the deep learning model, and the testing set was used to apply the
independent assessment for the different models.

All experiments of the HRU-Net, the U-Net++, and U-Net were carried out on four TITAN X GPUs.
We used PyTorch backend as the deep-learning framework (https://pytorch.org/). To maximize the GPU
memory usage, we set a different batch size for each network (HRU-Net and U-Net++:24, U-Net:48),
and each network model was trained by starting with a different initial learning rate (HRU-Net:0.0015,
U-Net++:0.002, U-Net:0.0002). For three networks, the gradient descent optimization (SGD) optimizer
with a momentum of 0.95 and a weight decay of 10−4 was adopted, and the learning rate was decreased
every iteration by a factor of 0.5× (1 + cos

(
π iter

max iters

)
). The batch-norm parameters were learned with a

decay rate of 0.9, and the input crop size for each training image was set to 256× 256. Figure 5 shows
the training history of the HRU-Net, U-Net++, and U-Net. Considering the popularity and the success
of the RF in the classification of remote-sensing images, we also trained the traditional RF classifier
on the same datasets as a comparison. The Scikit-learn (http://scikit-learn.org, 2018) implementation
was adopted for RF in our experiments, which employed several optimized C4.5 decision trees to
improve the prediction accuracy while controlling the over-fitting at the same time [55]. The detailed
parameters of the random forest are shown in Table 4.

 

Figure 5. Visualizations of the training history for the HRU-Net, U-Net, and U-Net++models.
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Table 4. The parameters used in the random forest algorithm.

Parameter Description Value

n_estimators Max number of the decision trees 160
criterion The principle function used to separate a branch Gini

max_features Max number of the features considering when separating a branch All
max_depth Max depth of the tree No limit

min_samples split The minimum number of samples at least remains in one node that can be split. 10
min_samples leaf The minimum number of samples at least remains in leaf nodes. 1

The visualizations of the training history for the HRU-Net, U-Net, and U-Net++ models are
shown in Figure 5. The blue line represents the loss calculated by the training set at each epoch.
The orange line represents the loss calculated by the validation set at each epoch. Both values of the
loss are high at the beginning of the training process. As the model developed by each epoch, both loss
values decrease. The main purpose of Figure 5 is to avoid overfitting during the training. As shown
in Figure 5, all orange lines converge to a certain value, indicating that there is no overfitting that
happens during the training process. In other words, all three models were sufficiently trained and can
be compared fairly with each other.

5.2. Comparation of the HRU-Net with U-Net, U-Net++, and RF

We tested the results of the HRU-Net, U-Net, U-Net++, and RF from three aspects: (1) the overall
accuracy, (2) the accuracy of the edge details, and (3) the robustness for the intra-class variation.

5.2.1. The Overall Extraction Accuracy

Table 5 and Figure 6 show the assessment of each method on the independent testing datasets.
Over the three datasets, the HRU-Net outperformed the other three models concerning the overall
accuracy (Acc), Cohen’s kappa coefficient (K), and F1 score (F1).

Table 5. Extraction accuracy of HRU-Net, U-Net++, U-Net, and RF.

TM-All Dataset TM-NRG Dataset TM-RGB Dataset

Acc. K F1 Acc. K F1 Acc. K F1

HRU-Net 92.81 0.81 0.90 92.01 0.79 0.89 91.05 0.75 0.88
U-Net++ 91.74 0.79 0.89 91.31 0.78 0.88 90.31 0.74 0.86

U-Net 89.83 0.74 0.86 88.47 0.72 0.85 86.33 0.66 0.82
RF 76.13 0.48 0.69 75.22 0.36 0.66 71.87 0.25 0.61

First, the results in Table 5 indicate that the NIR and SWIR bands could significantly improve the
overall accuracy by 1–4%. The TM-All dataset achieved the highest accuracy compared to the results
from the TM-NRG and TM-RGB datasets. The highest improvement appeared when adding NIR to
the RF model (3.35%). This may be related to the model capacity to capture the higher-scale features
(such as the possible nonlinear band combinations). As the deep learning model can do better at this
perspective, less improvement appears when adding the new bands for training.

Secondly, the HRU-Net achieved the highest extraction accuracy in all three datasets. Especially
on the TM-All dataset, the HRU-Net achieved an overall accuracy of 92.81%, improved by 1.07%
compared with U-Net++, 2.98% to U-Net, and more than 16% compared with RF. The HRU-Net had
the best kappa coefficient of 0.75–0.81, increased by 0.01–0.02 compared with U-Net++, 0.07–0.09
compared with U-Net and 0.33–0.50 compared with RF. A similar result can be found in the F1 score.
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Thirdly, as we can see from the Table 5, the NIR band and the SWIR band can provide some useful
features to help to distinguish the cultivated land and others, but the improvement was bigger in the
RF model (1–4% improvement in Acc) rather than in deep learning models (0.4–1% improvement in
Acc). One possible reason could be that the deep learning models have more learning capacity which
can extract deeper level features such as the shape and gradients. The other reason could be that under
the high intra-class spectral variation, the benefit of the NIR and SWIR band to separate the vegetation
and non-vegetation pixels is less effective to distinguish the cultivated land and non-cultivated land
since cultivated land can be covered by vegetation or not during the different times.

Figure 6 shows the confusion matrix for the three models over the TM-All dataset. The results
indicated the HRU-Net achieved the highest recall and precision. The type 1 and type 2 error in the
HRU-Net also remained the lowest compared to the U-Net++, U-Net, and RF.

 

Figure 6. Confusion matrix for the HRU-Net, U-Net++, U-Net, and RF models over the independent
test dataset for the Landsat TM-All dataset.

Table 6 shows the overall accuracy of the HRU-Net under 50%, 60%, and 70% training sets. As we
expected, the smaller training set, the lower the accuracy will be, but as we can see, even with the 50%
training samples, the accuracy decreases slowly in HRU-Net.

Table 7 shows the time consumption during the training of the HRU-Net, U-Net++, and U-Net.
The RF is excluded as it was trained by CPU rather than the GPU; thus, it is not comparable to the other
three GPU-based algorithms. Compare to the original U-Net, the training time increased approximately
2.6 times as more model parameters were involved by adding more complex skip connections. The time
consumption of the HRU-Net was similar to the U-Net++ as these two networks had a similar number
of parameters when the level was the same.
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Table 6. The overall accuracy of the HRU-Net under 50%, 60% and 70% training sets.

Percentage of the Training Data
TM-All Dataset TM-NRG Dataset TM-RGB Dataset

Acc. K F1 Acc. K F1 Acc. K F1

HRU-Net
50% 89.16 0.75 0.88 88.65 0.74 0.87 86.62 0.70 0.85
60% 89.70 0.76 0.88 88.99 0.73 0.87 86.68 0.67 0.84
70% 92.81 0.81 0.90 92.01 0.79 0.89 91.05 0.75 0.88

Table 7. The time consumption and network complexity of the training of the HRU-Net, U-Net++,
and U-Net.

Network Complexity TM-All Dataset TM-NRG Dataset TM-RGB Dataset

Number of Free Parameters s/epoch epoch s/epoch epoch s/epoch epoch

HRU-Net 3.85 × 107 102.08 600 98.84 600 98.47 600
U-Net++ 3.62 × 107 107.44 600 103.09 600 103.47 600

U-Net 1.34 × 107 39.23 200 36.79 200 36.92 200

5.2.2. The Accuracy of the Edge Details

As shown in Figure 7, the accuracy of the edge details was evaluated by visual interpretation.
The results of the HRU-Net had clearer edges and richer details than those of the U-Net++ and U-Net.
Specifically, comparing with the U-Net++, the more detailed edge remained in the output. The edge of
the output from the HRU-Net was much more accurate than the edge of the original U-Net, as the loss
of details could not be recovered from the lower nodes in the U-Net. In the output of the RF, the edge
was sharp. However, the farmland without the crop covering was not detected correctly as it suffered
from intra-class variation.

The robustness for the intra-class variation for the different models can be seen in Figure 8.
In Figure 8, the overall accuracy of each tile in the testing dataset was plotted. The different tiles were
randomly located and captured the main spectral variation of the cultivated land. The variation of
the overall accuracy can be seen as the performance of the model handling the intra-class variation.
As shown in Figure 8a, the RF model had the highest variation as indicated by its limited generalization
ability to cross different spectra. Figure 8b shows a clearer comparison among the HRU-Net, U-Net++,
and U-Net by removing RF from Figure 8a. In Figure 8b the variation of HRU-Net is similar to the
U-Net++, however, it achieves higher accuracy in all three datasets. This indicates the effectiveness of
the HRU-Net for solving the intra-class variation problem for accurate classification.
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Figure 7. Selected results for the best RFU-Net, U-Net, and random forest models on all three datasets.
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(a) 

(b) 

Figure 8. Boxplot of the overall accuracy distribution over the test dataset (868 tiles). (a) The comparison
between RF and deep learning algorithms. (b) The comparison among HRU-Net, U-Net++, and U-Net.

5.2.3. The Effectiveness of the Modified Loss Function in the HRU-Net

To clarify the effectiveness of the modified loss function, we compared the HRU-Net with the
modified loss function and the HRU-Net with the original loss function designed by U-Net. Figure 9
shows the difference in the training history of these two models. The HRU-Net with the modified loss
function can be trained with more epochs; the slight overfitting happened after 500 epochs compared
to after 125 epochs with the original U-Net loss function. In all three datasets, the HRU-Net with the
original U-Net loss function (right column) appeared to have quicker overfitting, which was expected
when training with a smaller number of bands (such as the TM-NRG and TM-RGB datasets).
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Figure 9. Visualization of the training history for the HRU-Net. HRU-Net (none) represents the
HRU-Net without the modification of the loss function.

Table 8 shows the overall accuracy compared with or without the modified loss function. The results
indicated that the modified loss function contributed nearly 4–5%, 5–16%, and 2–8% improvement
of the overall accuracy, kappa, and F1 score over the three datasets. This indicates the modified
loss function in the HRU-Net can help the model learn the spectral features of cultivated land more
effectively from any perspective.

Table 8. Comparison of the HRU-Net with or without the modified loss function.

TM-All Dataset TM-NRG Dataset TM-RGB Dataset

Acc. K F1 Acc. K F1 Acc. K F1

HRU-Net with the
new loss function 92.81 0.81 0.90 92.01 0.79 0.89 91.05 0.75 0.88

HRU-Net with original
U-Net loss function 90.63 0.76 0.88 87.80 0.63 0.81 87.30 0.68 0.84

5.3. Discussion

How to fix the smooth effectiveness of the pooling process to maintain or recover the image details
for the deep learning model has become a topic of concern in recent years. The model we presented in
this study followed the idea of maintaining and enhancing the image details during all convolution
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processes. The structure of the HRU-Net was similar to the 5-level U-Net++; however, the initial
purposes were different. As mentioned before, the HRU-Net aimed to maintain and transfer the image
details from shallow to deep levels. However, the purpose of the U-Net++was to balance the speed and
accuracy by redefining the original U-Net structure with the combination of the basic down-triangle
units to achieve a more flexible structure for the different sizes of the network. The difference is that in
U-Net++more feature maps from lower levels were merged rather than higher-levels feature maps
being combined in HRU-Net.

At a 30 m scale, the spectral mixing pixel is one of the sources of the classification uncertainty.
The model, such as endmember extraction or mixed pixel decomposition, could help this situation.
Fortunately, for the study area of this study, Xinjiang China, cultivated land is located in the huge flat
area near the river or lake. The farmland is adjacent rather than separated, so the influence of the
mixing pixels relatively low. This problem could be more serious when applying this model in more
broken farmland, such as the southeast province of China.

The experiment in this study basically is a binary decision which mainly classify the cultivated
land versus other (everything else). One of the questions is whether all the other vegetated areas
(but non-cultivated) like grass fields or forest plots are well separated and classified as non-cultivated.
To answer this question, we further evaluate the classification accuracy of the HRU-Net under the
vegetated area. As we can see from Figure 10, all vegetated areas (grassland and forest) are correctly
classed to the “others” category. This indicated the deep features from the spectral, texture, and time
series may help the deep learning model like HRU-Net to better distinguish the cultivated land with
other vegetated land cover.

Figure 10. Visual investigation the classification accuracy of the HRU-Net under the vegetated area.

In this study, we used three years of data to capture the spectral variation of the cultivated land
under different conditions. The labels of the training and testing data were obtained from historical
landcover maps and manual interpretation of the corresponding satellite images. They may contain
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errors as the accuracy depended on the performance of a human analyst. In particular, regarding
the accuracy of the edge and cultivated land extraction with different spectra, interpretation and
delineation of cultivated land could be partially subjective.

More accurate extraction could be achieved by involving more prior knowledge, such as the
time-series features of the cultivated land or by enhancing the spectral features of the soil or crops by
adding the vegetation index as auxiliary channels.

6. Conclusions

In this study, we proposed a new end-to-end cultivated land extraction algorithm, the high-
resolution U-Net (HRU-Net). Compared with the original U-Net, the HRU-Net had two improvements:
(1) it improved the skip connection structure, and (2) it used the idea of deep supervision to modify
the loss function. We tested the proposed method and compared it with the U-Net++, U-Net,
and the RF on three Landsat TM datasets with different spectral band combinations and drew the
following conclusions:

(1) The NIR and SWIR band improved the extraction accuracy of the cultivated land extraction.
This follows the commonsense idea that more independent features can better help with
class separation.

(2) Due to the high intra-class variation of the cultivated land, the traditional machine learning RF
model had a high variation in the classification accuracy. This may be related to the Hughes
phenomenon when more divergent features are involved in the model.

(3) The edge details were improved by the new structure of the HRU-Net. The HRU-Net model
achieved the best results in all three Landsat TM images datasets with the lowest accuracy
variation for the difference spectra of the cultivated land.

The HRU-Net model presented in this study demonstrated good performance in extracting the
target with high edge details and high intra-class spectral variation. This model can be further used to
extract the target within these characteristics. The model introduced in this study can be extended or
combined to more other high spatial resolution satellite data, such as Sentinel-2, GF1, and GF2.
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Abstract: Vegetation generally appears scattered in drylands. Its structure, composition and spatial
patterns are key controls of biotic interactions, water, and nutrient cycles. Applying segmentation
methods to very high-resolution images for monitoring changes in vegetation cover can provide
relevant information for dryland conservation ecology. For this reason, improving segmentation
methods and understanding the effect of spatial resolution on segmentation results is key to improve
dryland vegetation monitoring. We explored and analyzed the accuracy of Object-Based Image
Analysis (OBIA) and Mask Region-based Convolutional Neural Networks (Mask R-CNN) and the
fusion of both methods in the segmentation of scattered vegetation in a dryland ecosystem. As a
case study, we mapped Ziziphus lotus, the dominant shrub of a habitat of conservation priority in
one of the driest areas of Europe. Our results show for the first time that the fusion of the results
from OBIA and Mask R-CNN increases the accuracy of the segmentation of scattered shrubs up
to 25% compared to both methods separately. Hence, by fusing OBIA and Mask R-CNNs on very
high-resolution images, the improved segmentation accuracy of vegetation mapping would lead to
more precise and sensitive monitoring of changes in biodiversity and ecosystem services in drylands.

Keywords: deep-learning; fusion; mask R-CNN; object-based; optical sensors; scattered vegetation;
very high-resolution

1. Introduction

Dryland biomes cover ~47% of the Earth’s surface [1]. In these environments, veg-
etation appears scattered [2] and its structure, composition and spatial patterns are key
indicators of biotic interactions [3], regulation of water, and nutrient cycles at landscape
level [4]. Changes in the cover and spatial patterns of dryland vegetation occur in response
to land degradation processes [5]. Hence, methods to identify and characterize vegetation
patches and their structural characteristics can improve our ability to understand dryland
functioning and to assess desertification risk [5–8]. Progress has been made using remote
sensing tools in this regard (e.g., quantification of dryland vegetation structure at land-
scape scale [9], monitoring vegetation trends [10], spatial patterns identifying ecosystem
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multifunctionality [11], characterizing flood dynamics [12], among many others). However,
the improvement in the accuracy of vegetation cover measurement is still being studied
to obtain maximum performance from data and technology. Estimating and monitoring
changes in vegetation cover through remote sensing is key for dryland ecology and conser-
vation [6]. Both historical temporal and spatial data are the base for remote sensing studies
to identify the functioning and structure of vegetation [13,14].

The analysis of very high-resolution images to detect and measure vegetation cover
and its spatial arrangement across the landscape starts typically by segmenting the objects
to be identified in the images [7]. Object-Based Image Analysis (OBIA) [15] and Mask
Region-based Convolutional Neural Networks (Mask R-CNN) [16] are among the most
used and state-of-the-art segmentation methods. Though they provide a similar product,
both methods rely on very different approaches. OBIA combines spectral information from
each pixel with its spatial context [17,18]. Similar pixels are then grouped in homogenous
objects that are used as the basis for further classification. Mask R-CNN, on the other hand,
a type of artificial intelligence whose functioning is inspired by the human brain provides
transferable models between zones and semantic segmentation with unprecedented ac-
curacy [19,20]. Besides, fusion has recently been used to improve spectral, spatial, and
temporal resolution from remote sensing images [21–23]. However, the fusion of methods
for vegetation mapping has not been evaluated.

Remote sensing studies based on very high-resolution images have increased in
the last years (e.g., [24–27]), partly because of the availability of Google Earth images
worldwide [28–30] and the popularization of unmanned aerial vehicles (UAV). Although
these images have shown a high potential for vegetation mapping and monitoring [31–33],
two main problems arise when they are used. First, higher spatial resolution increases the
spectral heterogeneity among and within vegetation types, resulting in a salt and pepper
effect in their identification that does not correctly characterize the actual surface [34].
Second, the processing time of very high-resolution images and the computational power
required is larger than in the case of low-resolution images [35]. Under these conditions,
traditional pixel-based analysis has proved to be less accurate than OBIA or Mask R-CNN
for scattered vegetation mapping [15,36]. There are many applications for OBIA [37–39]
and deep learning segmentation methods [40,41]. For example, mapping greenhouses [42],
monitoring disturbances affecting vegetation cover [5], or counting scattered trees in
Sahel and Sahara [43]. These methods have been compared with excellent results in
both segmenting and detecting tree cover and scattered vegetation [7,44,45]. However,
greater precision is always advisable in problems of very high sensitivity [46]. Despite
methodological advances, selecting the appropriate image source is key to produce accurate
segmentations of objects, like in vegetation maps [47,48], and there is no answer to the
question of which image or method to choose for segmenting objects. Understanding how
the spatial resolution of the imagery used affects these segmentation methods or the fusing
of both is key for their correct application to obtain better accuracy in object segmentation
in vegetation mapping in drylands.

To evaluate which is the most accurate method between OBIA and Mask R-CNN
to segment scattered vegetation in drylands and to understand the effect of the spatial
resolution of the images used in this process, we assessed the accuracy of these two methods
in the segmentation of scattered dryland shrubs and compared how final accuracy varies
as does spatial resolution. We also check the accuracy of the fusion of both methods.

This work is organized as follows. Section 2 describes the study area, the dataset used,
and the methodologies tested. Section 3 describes the experiments addressed to assess the
accuracies of the methods used. The experimental results and discussion are presented in
Section 4, and conclusions are given in Section 5.
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2. Materials and Methods

2.1. Study Area

We focused on the community of Ziziphus lotus shrubs, an ecosystem of priority
conservation interest at European level (habitat 5220* of Directive 92/43/EEC), located in
Cabo de Gata-Níjar Natural Park (36◦49′43′ ′ N, 2◦17′30′ ′ W, SE Spain), one of the driest
areas of continental Europe. This type of vegetation is scarce and patchy, which appears
surrounded by a matrix of bare soil and small shrubs (e.g., Launea arborescens, Lygeum
spartum and Thymus hyemalis). Z. lotus is a facultative phreatophyte [49] and forms large
hemispherical canopies (1–3 m tall) that constitute fertility islands where many other
species of plants and animals live [50]. These shrubs are long-lived species contributing to
the formation of geomorphological structures, called nebkhas [51], that protect from the
intense wind erosion activity that characterizes the area, thereby retaining soil, nutrients,
and moisture.

2.2. Dataset

The data set consisted of two plots (Plot 1 and Plot 2) with 3 images of different spatial
resolution in each one. The plots had an area of 250 × 250 m with scattered Z. lotus shrubs.
The images were obtained from optical remote sensors in the visible spectral range, Red,
Green and Blue bands (RGB) and spatial resolutions of < 1 m/pixel:

• A 0.5 × 0.5 m spatial resolution RGB image obtained from Google Earth [52].
• A 0.1 × 0.1 m spatial resolution image acquired using an RGB camera sensor of

50 megapixels (Hasselblad H4D) equipped with a 50 mm lens and charge-coupled
device (CCD) sensor of 8176 pixels × 6132 pixels mounted on a helicopter with a flight
height of 550 m.

• A 0.03 × 0.03 m spatial resolution image acquired using a 4K pixels resolution RGB
camera sensor on a professional UAV Phantom 4 UAV (DJI, Shenzhen, China) and
with a flight height of 40 m.

2.3. OBIA

OBIA-based segmentation is a method of image analysis that divides the image into
homogeneous objects of interest (i.e., groups of pixels also called segments) based on
similarities of shape, spectral information, and contextual information [17]. It identifies
homogeneous and discrete image objects by setting an optimal combination of values
for three parameters (i.e., Scale, Shape, and Compactness) related to their spectral and
spatial variability. There are no unique values for any of these parameters, and their final
combination always depends on the object of interest, so finding this optimal combination
represents a challenge due to the vast number of possible combinations. First, it is necessary
to establish an appropriate Scale level depending on the size of the object studied in
the image [43]; for example, low Scale values for small shrubs and high Scale values
for large shrubs [44,45]. Recent advances have been oriented in developing techniques
(e.g., [53–59]) and algorithms (e.g., [60–63]) to automatically find the optimal value of the
Scale parameter [64], which is the most important for determining the size of the segmented
objects [65,66]. The Shape and the Compactness parameters must be configured too. While
high values of the Shape parameter prioritize the shape over the colour, high values of the
Compactness parameter prioritize compactness of the objects over the smoothness of their
edges [67].

2.4. Mask R-CNN

In this problem of locating and delimiting the edges of dispersed shrubs, we used a
computer vision technique named instance segmentation [68]. Such technique infers a label
for each pixel considering other nearby objects, thus including the boundaries of the object.
We used Mask R-CNN segmentation model [16], which extends Faster R-CNN detection
model [16] and provides three outputs for each object: (i) a class label, (ii) a bounding box
that delimits the object and (iii) a mask which delimits the pixels that constitute each object.
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In the binary problem addressed in this work, Mask R-CNN generates for each predicted
object instance a binary mask (values of 0 and 1), where values of 1 indicate a Z. lotus pixel
and 0 indicates a bare soil pixel.

Mask R-CNN relies on a classification model for the task of feature extraction. In this
work, we used ResNet 101 [69] to extract increasingly higher-level characteristics from the
lowest to the deepest layer levels.

The learning process of Mask R-CNN is influenced by the number of epochs, which is
the number of times the network goes through the training phase, and by other optimiza-
tions such as transfer-learning or data-augmentation (see Section 3.2). Finally, the 1024 ×
1024 × 3 band image input is converted to 32 × 32 × 2048 to represent objects at different
scales via the characteristic network pyramid.

2.5. Segmentation Accuracy Assessment

The accuracy of the segmentation task in this work was assessed with respect to
ground truth by using the Euclidean Distance v.2 (ED2; [70]), which evaluates the geometric
and arithmetic discrepancy between reference polygons and the segments obtained during
the segmentation process. Both types of discrepancy need to be assessed. As reference
polygons, we used the perimeter of 60 Z. lotus shrubs measured with photo-interpretation in
all images by a technical expert. We estimated the geometric discrepancy by the “Potential
Segmentation Error” (PSE; Equation (1)), defined as the ratio of the total area of each
segment obtained in the segmentation that falls outside the reference segment and the total
area of reference polygons as:

PSE =
Σ|si − rk|

Σ|rk| (1)

where PSE is the “Potential Segmentation Error”, rk is the area of the reference polygon
and si is the overestimated area of the segment obtained during the segmentation. A value
of 0 indicates that segments obtained from the segmentation fit well into the reference
polygons. Conversely, larger values indicate a discrepancy between reference polygons
and the segments.

Although the geometric relation is necessary, it is not enough to describe the discrepan-
cies between the segments obtained during the segmentation process and the corresponding
reference polygons. To solve such problem the ED2 index includes an additional factor, the
“Number-of-Segmentation Ratio” (NSR), that evaluates the arithmetic discrepancy between
the reference polygons and the generated segments (Equation (2)):

NSR =
abs(m − v)

m
(2)

where NSR is the arithmetic discrepancy between the polygons of the resulting segmen-
tation and the reference polygons and abs is the absolute value of the difference of the
number of reference polygons, m, and the number of segments obtained, v.

Thus, the ED2 can be defined as the joint effect of geometric and arithmetic differences
(Equation (3)), estimated from PSE and NSR, respectively, as:

ED2 =

√
(PSE)2 + (NSR)2 (3)

where ED2 is Euclidean Distance v.2, PSE is Potential Segmentation Error, and NSR is
Number-of-Segmentation Ratio. According to Liu et al. [70], values of ED2 close to 0 indi-
cate good arithmetic and geometric coincidence, while high values indicate a mismatch
between them.

3. Experiments

We set several experiments to assess the accuracy of the two different OBIA and Mask
R-CNN segmenting scattered vegetation in drylands. We used the images of Plot 1 to
test the OBIA and Mask R-CNN segmentation methods. The images of Plot 2 were used
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for the training phase in Mask R-CNN experiments exclusively (Figure 1). In Section 3.1,
we describe OBIA experiments, focused on detecting the best parameters (i.e., Scale, Shape
and Compactness) of a popularly used “multi-resolution” segmentation algorithm [71].
In Section 3.2. we described the Mask R-CNN experiments, in which we first evaluated the
precision in the detection of shrubs (capture or notice the presence of shrubs) and second
how accurate is the segmentation of those shrubs. Finally, in Section 3.3. we described the
fusion of both methods and compared all the accuracies between them in Section 4.3.

Figure 1. Workflow with the main processes carried out in this work. Asterisk shows an example
of the result of the fusion of the segmentation results from OBIA and Mask R-CNN. OBIA: Object-
Based Image Analysis; Mask R-CNN: Mask Region-based Convolutional Neural Networks; ESP v.2:
Estimation of Scale Parameter v.2; SPR: Segmentation Parameters Range.
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3.1. OBIA Experiments

To obtain the optimal value of each parameter of the OBIA segmentation, we use
two approaches:

(i) A ruleset called Segmentation Parameters Range (SPR) in eCognition v8.9 (Definiens,
Munich, Germany) with the “multi-resolution” algorithm that segmented the images
of Plot 1 by systematically increasing the Scale parameter in steps of 5 and the Shape
and Compactness parameters in steps of 0.1. The Scale parameter ranged from 80
to 430, and the Shape and the Compactness from 0.1 to 0.9. We generated a total
of 9234 results with possible segmentations of Z. lotus shrubs. The Scale parameter
ranges were evaluated considering the minimum cover size (12 m2) and maximum
cover size (311 m2) of the shrubs measured in the plot and the pixel size.

(ii) We also performed the semi-automatic method Estimation of Scale Parameter v.2
(ESP2; [70]) to select the best scale parameter. This tool performs semi-automatic
segmentation of multiband images within a range of increasing Scale values (Levels),
while the user previously defines the values of the Compactness and Shape parame-
ters. Three options available in the ESP2 tool were tested: a) the hierarchical analysis
Top-down (HT), starting from the highest level and segmenting these objects for lower
levels; b) the hierarchical analysis Bottom-up (HB), which starts from the lower level
and combines objects to get larger levels; and c) analysis without hierarchy (NH),
where each scale parameter is generated independently, based only on the level of the
pixel [64].

3.2. Mask R-CNN Experiments

Mask R-CNN segmentation is divided in two phases: i) Training and ii) Testing phases.
In the training phase, we selected 100 training polygons representing 100 shrub individuals
with different sizes. The sampling was done using VGG Image Annotator [72] to generate
a JSON file, which includes the coordinates of all the vertices of each segment, equivalent
to the perimeter of each shrub. To increase the number of samples and reduce overfitting
of the model, we applied data-augmentation and transfer-learning:

• Data augmentation aims to artificially increase the size of the dataset by slightly
modifying the original images. We applied the filters of vertical and horizontal flip;
Scale decrease and increase in the horizontal and vertical axis between 0.8 to 1.2;
Rotation of 0 to 365 degrees; Shearing factor between −8 to 8; Contrast normalization
with values of 0.75 and 1.5 per channel; Emboss with alpha 0, 0.1; Strength with 0 to
2.0; Multiply 0.5 and 1.5, per channel to change the brightness of the image (50–150%
of the original value).

• Transfer-learning consists in using knowledge learnt from one problem to another
related one [73], and we used it to improve the neural network. Since the first layers
of a neural network extract low-level characteristics, such as colour and edges, they
do not change significantly and can be used for other visual recognition works. As
our new dataset was small, we applied fine adjustment to the last part of the network
by updating the penultimate weights, so that the model was not overfitting, as mainly
occurs between the first layers of the network. We specifically used transfer-learning
on ResNet 101 [69] and used Region-based CNN with the pre-trained weights of the
same architectures on COCO dataset (around 1.28 million images over 1000 generic
object classes) [74].

We tested three different learning periods (100 steps per epoch) per model:

(A) 40 epochs with transfer-learning in heads,
(B) 80 epochs with 4 fist layers transfer-learning,
(C) 160 epochs with all layers transfer-learning.

We trained the algorithm based on the ResNet architecture with a depth of 101 lay-
ers with each of the three proposed spatial resolutions. We then evaluated the trained
models in all possible combinations between the resolutions. We evaluated the use of data-
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augmentation and transfer-learning from more superficial layers to the whole architecture
with different stages in the training process. Particularly:

(1.1) Trained with UAV images.
(1.2) Trained with UAV images and data-augmentation.
(2.1) Trained with airborne images.
(2.2) Trained with airborne images and with data-augmentation.
(3.1) Trained with Google Earth images.
(3.2) Trained with Google Earth images and data-augmentation.

We did the test phase using Plot 1. To identify the most accurate experiments, we
evaluated the detection of the CNN-based models, and determined their Precision, Recall,
and F1-measure [75] as:

Precision =
True Positives

True Positives + False Positives
, (4)

Recall =
True Positives

True positives + False Negatives
, (5)

F1 − measure = 2 × Precision × Recall
Precision + Recall

(6)

3.3. Fusion of OBIA and Mask R-CNN

We combined the most accurate segmentations obtained using OBIA and Mask R-
CNN, according to ED2 values (Figure 1). We let oi denote the i-th OBIA polygon within
the OBIA segmentation, O, and mj denote the j-th Mask R-CNN polygon within the Mask
R-CNN segmentation, C. Then we have O = {oi: i = 1, 2, ..., m} and C = {cj: j = 1, 2, ..., n}.
Here, the subscripts i and j are sequential numbers for the polygons of the OBIA and Mask
R-CNN segmentations, respectively. m and n indicate the total numbers of the objects
segmented with OBIA and Mask R-CNN, respectively. m and n must be equal. Finally, the
corresponding segment data sets extracted (Equation (7)) by the fusion are considered a
consensus among the initially segmented objects as:

OCij = areaOi ∩ areaCj (7)

where OCij is the intersected area between the segments of the OBIA segmentation (Oi)
and the area of the segments of the Mask R-CNN segmentation (Cj).

Finally, we estimate ED2 values of the final segmentation using validation shrubs from
Plot 1, and we compared it with segmentation accuracy obtained by the different methods.

4. Results and Discussion

4.1. OBIA Segmentation

In total, 9234 segmentations were performed by SPR, 3078 for each image type (e.g.,
Google Earth, airborne and UAV). OBIA segmentation accuracy using the SPR presented
large variability (Table 1), with values of ED2 ranging between 0.05 and 0.28. Segmentation
accuracy increased with image spatial resolution. Thus, the higher the spatial resolution,
the higher the Scale values and more accurate the segmentation was. This result was
represented by a decrease in ED2 values of 0.14, 0.10 and 0.05 for Google Earth, airborne
and UAV images, respectively. The best combinations of segmentation parameters along
the different images were (Figure 2): (i) for the Google Earth image, Scale values ranging
from 105 to 110, low Shape values of 0.3 and high Compactness values from 0.8 to 0.9; (ii)
for the orthoimage from the airborne sensor, Scale values between 125 and 155, Shape of
0.6 and Compactness of 0.9; and (iii) for the UAV image, the optimal segmentation showed
the highest Scale values, ranging from 360 to 420, whereas Shape and Compactness values
were similar to the values of the Google Earth image.
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Table 1. Segmentation accuracies of Object-Based Image Analysis (OBIA) among the three spatial resolutions evaluated.
For each segmentation type, only the most accurate combination of Scale, Shape, and Compactness is shown. ESP2/HB:
Estimate Scale Parameter v.2 (ESP2) with Bottom-up Hierarchy; ESP2/HT: ESP2 with Top-down Hierarchy; ESP2/NH: ESP2
Non-Hierarchical; SPR: Segmentation with Parameters Range. Closer values to 0 indicate accurate segmentations. In bold
the most accurate results.

Segmentation Parameters
Segmentation

Quality

Image Source
Resolution
(m/Pixel)

Segmentation
Method

Scale Shape Compactness ED2
Average Time

(s)

Google Earth 0.5 ESP2/HB 100 0.6 0.9 0.25 365
ESP2/HT 105 0.7 0.5 0.26 414
ESP2/NH 105 0.5 0.1 0.28 2057

SPR 90 0.3 0.8 0.2 18
Airborne 0.1 ESP2/HB 170 0.5 0.9 0.14 416

ESP2/HT 160 0.5 0.9 0.15 650
ESP2/NH 160 0.5 0.5 0.14 3125

SPR 155 0.6 0.9 0.1 24
UAV 0.03 ESP2/HB 355 0.3 0.7 0.12 5537

ESP2/HT 370 0.5 0.7 0.11 8365
ESP2/NH 350 0.5 0.7 0.1 40,735

SPR 420 0.1 0.8 0.05 298

When we applied the semi-automatic method ESP2 to estimate the optimum value
of the Scale parameter, we observed a similar pattern to that described for the SPR, with
an increase in accuracy when increasing spatial resolution. The highest value of ED2
was for the Google Earth image segmentation results (ED2 = 0.25), decreasing for the
orthoimage from the airborne sensor (ED2 = 0.15) and reaching the minimum value (best)
in the UAV image (ED2 = 0.12). However, the results obtained by ESP2 were worse than
the results obtained by the SPR method in all the images analysed (Table 1) with the largest
differences in the image with the lowest spatial resolution (Google Earth). In the Google
Earth images, the best method of analysis of the three options presented by the ESP2 tool
was the hierarchical bottom level, with acceptable ED2 values, lower than 0.14 (Table 1).
For the airborne images, the results were equal to Google Earth images (hierarchical bottom
level). Conversely, the segmentation of the UAV image produced the best ED2 values when
applying the ESP2 without hierarchical level. The computational time for the segmentation
of the images was higher in ESP2 than SPR approach. In addition, the computation time
of the analysis was also influenced by the number of pixels to analyse, it increased in
higher spatial resolution images in computer with a Core i7-4790K, 4 GHz and 32G of RAM
memory (Intel, Santa Clara, CA, USA) (Table 1).
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Figure 2. Relationship between Scale, Shape and Compactness parameters (X axis) evaluated using
Euclidean distance v.2 (ED2; Y axis) in 9234 Object-based image analysis (OBIA) segmentations from
Google Earth, Airborne and unmanned aerial vehicle (UAV) images. The rainbow palette shows the
density of validation results. In red high density and in blue low density.

4.2. Mask R-CNN Segmentation
4.2.1. Detection of Scattered Shrubs

We obtained the best detection results for the models trained and evaluated with UAV
images (F1-measure = 0.91) and the models trained with the highest number of epochs
and data-augmentation activated (Table 2). The best transfer from a UAV trained model
to a test with another resolution was to the image from the airborne sensor. Nevertheless,
the Google Earth test image produced a similar result of F1-measure = 0.90. We consider
that a model trained with data-augmentation and very high spatial resolution images
(0.03 m/pixel) can generalize well to less accurate images such as those from Google Earth
(0.5 m/pixel). Furthermore, when we trained the models with Google Earth images, we
observed that it also generalised well to more precise resolutions (F1-measure = 0.90). For
this reason, the detection of Z. lotus shrubs might be generalizable from any resolution less
than 1 m/pixel.
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Table 2. Test results of Mask Region-based Convolutional Neural Networks (Mask R-CNN) ex-
periments in three different spatial resolutions images. TP: True Positive; FP: False Negative; FN:
False Negative. Precision, Recall, and F1-measure were used for detection results. In bold the most
accurate results.

Experiments/Image TP FP FN Precision Recall F1

1.1.A
UAV 55 5 10 0.92 0.85 0.88

Airborne 56 4 9 0.93 0.86 0.90
GE 50 1 15 0.98 0.77 0.86

1.1.B
UAV 59 6 6 0.91 0.91 0.91

Airborne 60 7 5 0.90 0.92 0.91
GE 55 2 10 0.96 0.85 0.90

1.1.C
UAV 55 1 10 0.98 0.85 0.91

Airborne 52 3 13 0.94 0.80 0.87
GE 53 0 12 1 0.81 0.89

1.2.A
UAV 53 1 12 0.98 0.82 0.89

Airborne 54 1 11 0.98 0.83 0.90
GE 42 3 23 0.93 0.65 0.76

1.2.B
UAV 55 1 10 0.98 0.85 0.91

Airborne 50 2 15 0.96 0.77 0.85
GE 50 2 15 0.96 0.77 0.85

1.2.C
UAV 56 3 8 0.95 0.87 0.91

Airborne 52 3 13 0.94 0.80 0.87
GE 54 1 12 0.98 0.81 0.89

2.1.A
UAV 41 0 24 1 0.63 0.77

Airborne 38 0 27 1 0.58 0.74
GE 34 1 31 0.97 0.52 0.68

2.1.B
UAV 47 0 18 1 0.72 0.84

Airborne 55 3 10 0.95 0.85 0.89
GE 50 1 16 0.98 0.76 0.85

2.1.C
UAV 52 1 13 0.98 0.80 0.88

Airborne 58 3 7 0.95 0.88 0.91
GE 54 1 12 0.98 0.82 0.89

2.2.A
UAV 31 0 34 1 0.48 0.65

Airborne 48 1 17 0.98 0.74 0.84
GE 38 1 27 0.97 0.58 0.73

2.2.B
UAV 38 1 27 0.97 0.58 0.73

Airborne 46 1 19 0.98 0.71 0.82
GE 47 3 18 0.94 0.72 0.82

2.2.C
UAV 46 1 19 0.98 0.70 0.82

Airborne 51 2 14 0.96 0.78 0.86
GE 50 2 15 0.96 0.77 0.85

3.1.A
UAV 37 0 28 1 0.57 0.73

Airborne 43 0 22 1 0.66 0.80
GE 41 1 24 0.98 0.63 0.77

3.1.B
UAV 48 1 17 0.98 0.74 0.84

Airborne 51 1 14 0.98 0.78 0.87
GE 54 1 11 0.98 0.83 0.90

3.1.C
UAV 52 1 13 0.98 0.80 0.88

Airborne 52 1 13 0.98 0.80 0.88
GE 54 2 11 0.96 0.83 0.89

3.2.A
UAV 54 1 11 0.98 0.83 0.90

Airborne 56 4 9 0.93 0.86 0.90
GE 53 2 12 0.96 0.82 0.88

3.2.B
UAV 56 3 9 0.95 0.86 0.90

Airborne 54 5 11 0.92 0.83 0.87
GE 53 3 12 0.95 0.82 0.88

3.2.C
UAV 54 3 11 0.95 0.83 0.89

Airborne 52 3 13 0.95 0.80 0.87
GE 52 3 13 0.95 0.80 0.87
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4.2.2. Segmentation Accuracy for Detected Shrubs

The best segmentation accuracy was obtained with the models trained and tested with
the same source of images, reaching values of ED2 = 0.07 in Google Earth ones. However,
when the model trained with Google Earth images was tested in a UAV image, the ED2
resulted in 0.08. Moreover, the effect of data-augmentation was counterproductive in
models trained with airborne images and only lowered ED2 (best results) in models trained
with the UAV image. In general, data-augmentation helped to generalise between images
but did not obtain a considerable increase in precision in models trained and tested with
the same image resolution (Table 3 and Figure 3).

Table 3. Segmentation accuracies of Mask Region-based Convolutional Neural Networks (Mask
R-CNN). PSE: Potential Segmentation Error; NSR: Number Segmentation Ratio; ED2: Euclidean
Distance v.2. In bold the most accurate results.

Best Experiment Image Train Image Test PSE NSR ED2

1.1.C UAV UAV 0.0532 0.1290 0.1396
1.2.C UAV UAV 0.0512 0.0967 0.1095
2.1.C Airborne Airborne 0.0408 0.0645 0.0763
2.2.C Airborne Airborne 0.0589 0.0645 0.0873
3.1.B GE GE 0.0414 0.0645 0.0767
3.2.B GE UAV 0.0501 0.0645 0.0816

Figure 3. Examples of segmentation of images from Plot 1 using Object-based Image Analysis (OBIA;
Top) and Mask Region-based Convolutional Neural Networks (Mask R-CNN; Down) on Google
Earth, Airborne and Unmanned Aerial Vehicle (UAV) images. The different colours in the Mask
R-CNN approach are to differentiate the shrubs individually.

4.3. Fusion of OBIA and Mask R-CNN

Our results showed that the fusion between OBIA and Mask R-CNN methods in very
high-resolution RGB images is a powerful tool for mapping scattered shrubs in drylands.
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We found that the individual segmentations by using OBIA and Mask R-CNN indepen-
dently were worse than the fusion of both. The accuracy of the fusion of OBIA and Mask
R-CNN was higher than the accuracies of the separate segmentations (Table 4), being the
most accurate segmentation of all the experiments tested in this work, with an ED2 = 0.038.
However, the fusion between results on Google Earth images only improved the ED2 by
0.02. Therefore, the fusion of both segmentation methods provided the best segmentation
over the previous methods (OBIA (ED2 = 0.05) and Mask R-CNN (ED2 = 0.07)), in very
high-resolution images to segment scattered vegetation in drylands. Moreover, by merging
the results of both methodologies (OBIA ∩ Mask R-CNN), the accuracy increases with an
ED2 = 0.03.

Table 4. Segmentation accuracies of the fusion of Object-Based Image Analysis (OBIA) and Mask Region-based Convo-
lutional Neural Networks (Mask R-CNN). PSE: Potential Segmentation Error; NSR: Number Segmentation Ratio; ED2:
Euclidean Distance v.2. In bold the most accurate results.

Best Experiment Best OBIA (ED2) Best Mask R-CNN (ED2) PSE NSR ED2

1.1.C 0.05 0.13 0.02 0.03 0.0386
1.2.C 0.05 0.10 0.02 0.03 0.0417
2.1.C 0.10 0.07 0.02 0.03 0.0388
2.2.C 0.10 0.08 0.05 0.06 0.0395
3.1.B 0.20 0.07 0.00 0.06 0.0645
3.2.B 0.20 0.08 0.00 0.06 0.0645

To our knowledge, the effect of mixing these two methodologies has not been studied
until the date, and it might be vital to improving future segmentation methods. As can be
seen in the conceptual framework (Figure 1), it is reasonable to think that the higher the
resolution and, therefore, the higher the detail at the edges of vegetation represented in the
images, the fusion will improve the final precision of the segmentation. Nevertheless, in
images with lower resolution, the fusion improved but to a minor degree.

The spatial resolution of the images affected the accuracy of the segmentation, pro-
viding outstanding results in all segmentation methods and spatial resolutions. However,
according to [57], we observed that the spatial resolution and Scale parameter played a key
role during the segmentation process and controlled the accuracy of the final segmentations.
In non-fusion segmentation methods (OBIA or Mask R-CNN) the segmentation accuracy
was higher in the spatial resolution image from UAV and OBIA up to ED2 = 0.05. However,
when the object to be segmented is larger than the pixel size of the image, the spatial resolu-
tion of the image is of secondary importance [37,57,76,77]. For this reason, as the scattered
vegetation in this area presents a mean size of 100 m2 [5], corresponding to 400 pixels
of Google Earth image, only slight increases in segmentation accuracy were observed as
the spatial resolution increased. Moreover, the overestimation of the area of each shrub
was not significant as the images spatial resolution increased. Therefore, Google Earth
images could be used to map scattered vegetation in drylands, if the plants to be mapped
are larger than the pixel size. This result opens a wide range of new opportunities for
vegetation mapping in remote areas where UAV or airborne image acquisition is difficult
or acquiring commercial imagery of very high-resolution is very expensive. These results
are promising and highlight the usefulness of free available Google Earth images for big
shrubs mapping with only a negligible decrease in segmentation accuracy when compared
with commercial UAV or airborne images. However, the segmentation of vegetation could
be better if we use the near infrared NIR band since vegetation highlights in this range of
the spectrum (e.g., 750 to 2500 nm) or used in vegetation indices such as the normalized
difference vegetation index (NDVI) or Enhanced vegetation index (EVI). Finally, very high
spatial resolution UAV images need much more computational time and are expensive and
not always possible to obtain at larger scales in remote areas, hampering their use.
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5. Conclusions

Our results showed that both OBIA and Mask R-CNN methods are powerful tools
for mapping scattered vegetation in drylands. However, both methods were affected by
the spatial resolution of the orthoimages utilized. We have shown for the first time that
the fusion of the results from these methods increases, even more, the precision of the
segmentation. This methodology should be tested on other types of vegetation or objects
in order to prove to be fully effective. We propose an approach that offers a new way of
fusing these methodologies to increase accuracy in the segmentation of scattered shrubs
and should be evaluated on other objects in very high-resolution and hyperspectral images.

Using images with very high spatial resolution could provide the required precision to
further develop methodologies to evaluate the spatial distribution of shrubs and dynamics
of plant populations in global drylands, especially when utilizing free-to-use images, like
the ones obtained from Google Earth. Such evaluation is of particular importance in
drylands of developing countries, which are particularly sensitive to anthropogenic and
climatic disturbances and may not have enough resources to acquire airborne or UAV
imagery. For these reasons, future methodologies as the one presented in this work should
focus on using freely available datasets.

In this context, the fusion of OBIA and Mask R-CNN could be extended to a larger
number of classes of shrub and tree species or improved with the inclusion of more spectral
and temporal information. Furthermore, this approach could improve the segmentation
and monitoring of the crown of trees and arborescent shrubs in general, which are of par-
ticular importance for biodiversity conservation and for reducing uncertainties in carbon
storages worldwide [78]. Recently, scattered trees have been identified as key structures for
maintaining ecosystem services provision and high levels of biodiversity [43]. Global ini-
tiatives could benefit largely from CNNs, including those recently developed by FAO [79]
to provide the forest extent in drylands. The uncertainties in this initiative [80,81] might
be reduced implementing our approach CNN-based to segment trees. Tree and shrub seg-
mentation methods could provide a global characterization of forest ecosystem structures
and population abundances as part of the critical biodiversity variables initiative [82,83].
In long-lived shrubs where the precision of the segmentation is key for monitoring the
detection of disturbances (e.g., pests, soil loss or seawater intrusion) [5]. Finally, the mon-
itoring of persistent vegetation with minimal cover changes over decades could benefit
from fusion approaches in the segmentation methods proposed.
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Abbreviations

The following abbreviations are used in this manuscript:
Abbreviation Description

CCD Charge-Coupled Device
ED2 Euclidean Distance v.2
ESP2 Estimation Scale Parameter v.2
ETRS European Terrestrial Reference System
HB Bottom-up Hierarchy
HT Top-down Hierarchy
JSON JavaScript Object Notation
NH Non-Hierarchical
NSR Number-of-Segmentation Ratio
OBIA Object-based Image Analysis
R-CNN Region—Convolutional Neural Networks
RGB Red Green Blue
SPR Segmentation Parameters Range
UAV Unmanned aerial vehicle
UTM Universal Transverse Mercator
VGG Visual Geometry Group
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Abstract: One of the most important tasks in remote sensing image analysis is remote sensing image
Change Detection (CD), and CD is the key to helping people obtain more accurate information
about changes on the Earth’s surface. A Multi-Attention Guided Feature Fusion Network (MAFF-
Net) for CD tasks has been designed. The network enhances feature extraction and feature fusion
by building different blocks. First, a Feature Enhancement Module (FEM) is proposed. The FEM
introduces Coordinate Attention (CA). The CA block embeds the position information into the
channel attention to obtain the accurate position information and channel relationships of the remote
sensing images. An updated feature map is obtained by using an element-wise summation of the
input of the FEM and the output of the CA. The FEM enhances the feature representation in the
network. Then, an attention-based Feature Fusion Module (FFM) is designed. It changes the previous
idea of layer-by-layer fusion and chooses cross-layer aggregation. The FFM is to compensate for
some semantic information missing as the number of layers increases. FFM plays an important role
in the communication of feature maps at different scales. To further refine the feature representation,
a Refinement Residual Block (RRB) is proposed. The RRB changes the number of channels of
the aggregated features and uses convolutional blocks to further refine the feature representation.
Compared with all compared methods, MAFF-Net improves the F1-Score scores by 4.9%, 3.2%, and
1.7% on three publicly available benchmark datasets, the CDD, LEVIR-CD, and WHU-CD datasets,
respectively. The experimental results show that MAFF-Net achieves state-of-the-art (SOTA) CD
performance on these three challenging datasets.

Keywords: remote sensing images; change detection; attention mechanism; cross-layer feature fusion

1. Introduction

Remote sensing image change detection (CD) uses two or more remote sensing images
of the same area at different times to compare and analyze the atmospheric, spectral, and
sensor information through artificial intelligence or mathematical statistics to obtain the
change information of the area [1,2]. CD is an important research direction in the field
of remote sensing and plays a great role in many fields such as land planning, urban
expansion [3,4], environmental monitoring [5–7], and disaster assessment [8] as a key
technology for monitoring surface conditions.

Recently, with the gradual maturity of remote sensing imaging technology, remote
sensing image data with high resolution (HR) have been emerging. Compared with
medium-resolution and low-resolution remote sensing images, HR remote sensing images
have richer geometric and spatial information, which provide favorable conditions for
humans to monitor surface changes more accurately. Therefore, the authors have paid more
attention to the processing of HR remote sensing images. Effectively extracting the rich
feature information of HR remote sensing images, better focusing on the change regions,
avoiding the interference of other factors, and reducing the interference of pseudo-changes
are the key issues of remote sensing image CD research [9].
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There are many CD methods proposed, and different authors have made a more com-
prehensive summary classification from different aspects. In this paper, we will summarize
and compare two perspectives from traditional methods and deep learning-based methods.

The traditional methods are divided into pixel-based remote sensing image CD meth-
ods and object-oriented remote sensing image CD methods according to the size of the basic
unit [10]. The pixel-based remote sensing image CD method usually directly processes
the input image according to the pixel-level spectral features, texture features, and other
specific meaningful features (water bodies, vegetation indices). It obtains the difference
image by difference or ratio. The change information is then extracted using a threshold
segmentation method [11]. In the early days, methods such as image difference [12], image
ratio [13], and regression analysis [14] were commonly used. However, these methods
usually failed to obtain complete change information. To better utilize the spectral informa-
tion of images, methods based on image transformation such as independent component
analysis (ICA) [15] and multivariate alteration detection (MAD) [16,17] have emerged one
after another and have achieved good results in land CD. For multispectral remote sens-
ing images, the change vector analysis (CVA) [18] method is proposed to detect different
changes in the ground. The CVA methods calculate the amplitude and phase angle and
use the phase angle information to subdivide the changes. However, the performance of
this type of method depends heavily on the quality of the spectral bands involved in the
calculation, and the stability of the algorithm cannot be guaranteed. Therefore, improved
versions of the CVA technique have been proposed during 2012–2016 to further improve the
performance of CD [19–22]. With the development of HR optical remote sensing satellite
technology, more and more HR remote sensing images are used for CD.

The characteristic of “different objects in the same spectrum” in HR remote sensing
images easily leads to the phenomenon of “salt and pepper” in the detection results. This
problem further limits the practical application of pixel-level CD methods in HR remote
sensing images [23]. Object-based CD methods are commonly used in HR remote sensing
image CDs. This is because it allows for a richer representation of information. Ma et al. [24]
investigated the effects of semantic strategy, scale, and feature space on an unsupervised,
object-based CD method in urban areas. Subsequently, Zhang et al. [25] proposed an
object-based CD method for unsupervised CD by incorporating a multi-scale uncertainty
analysis. Zhang et al. [26] proposed a method based on the box-whisker plot with cosine
law, which outperformed the traditional CD method. For CD tasks where “from–to” change
information has to be determined, Gil-Yepes et al. [27] and Qin et al. [28] utilized a post-
classification comparison strategy. Although the object-based CD method can better utilize
the spatial feature information of HR remote sensing images compared with the pixel-based
CD method, it also relies on the traditional manual feature extraction method, which is
not only complicated and low-efficiency, but also has less stable CD performance [9]. In
recent years, deep learning methods have been widely used in natural language processing,
speech recognition [29,30], and image processing [31–33]. Deep learning methods have
excellent learning ability and do not require the manual design of feature factors to extract
features. With the success of deep learning in the field of image processing, deep learning-
based CD for remote sensing images has quickly attracted the interest of scholars. With the
continuous development of technology, the field of remote sensing CD has also started to
make some excellent research based on convolutional neural networks (CNNs) [34]. CNNs
do not require feature extraction by manually designed features. In the field of remote
sensing CD, ResNet [35], full convolutional networks (FCN) [36], and UNet [37] structures
have been widely used for feature map extraction with certain results. With continuous
research, the model of remote sensing CD has been continuously optimized and improved.

For example, the FC-EF [38] network performs a concatenation operation before
feeding two images into the backbone network of the UNet structure, then processes the
images separately through two branches of the network. These two branches have the same
network structure and shared parameters, and, finally, the outputs of the two branches
are combined using convolutional layers. The FC-Siam-conc [38] and FC-Siam-diff [38]
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improve the network by jump-connecting the three feature maps from the two encoder
branches and the corresponding decoder layer. FC-Siam-diff improves the network by first
differencing the feature maps of the two decoder branches, then finding the absolute value
of the difference, finally using a skip connection strategy to connect with the corresponding
decoder layer. Subsequently, the FCN-based UNet network was successfully applied
to the CD task [39,40], which was trained in an end-to-end manner from scratch using
only available CD datasets. Coarse-to-fine [41] proposes a detection framework based
on coarse-to-fine detection to detect remote sensing change regions. It firstly uses an
encoder and decoder to obtain coarse change maps of bi-temporal images, then applies
the idea of residuals to obtain refined change maps. The method can effectively detect the
change regions with good results. After considering the feature maps between different
layers with the idea of residuals, many scholars also use the attention mechanism in the
direction of remote sensing CD to extract richer and finer feature maps. ResNet is used
as a backbone by STANet [42], and then a self-attention module for CD is added in the
process of feature extraction, which can calculate any two pixels. The authors of this model
introduced Transformer on top of ResNet, which makes the network performance further
improved [43]. DASNet [44] proposes a dual-attention mechanism to generate better
feature representations to enhance the performance of the network. Zhang et al. [45] first
use the two Siamese network architectures as the raw images feature extraction network.
To enhance the integrity of change map boundaries and internal densities, multi-level
depth features are fused with image difference map features by an attention mechanism.
In 2021, Hou et al. [46] proposed a novel attention mechanism for mobile networks by
embedding location information into channel attention, calling it Coordinate Attention
(CA). CA enhances feature representation. In addition, in 2021, HDFNet [47] uses the idea
of a hierarchical fusion and dynamic convolution model to obtain a fine feature map. The
network makes innovations in the fusion of features at different levels, which makes the
network recognition performance superior. The above methods have achieved certain
results in the field of remote sensing CD. However, the accurate extraction of effective
feature representations and the adequate fusion of feature information at different scales
are still research challenges in the field of remote sensing CD. For the benefit of retrieval, a
summary of the above-mentioned methods is presented in Table 1.

Table 1. Summary of contemporary CD methods.

Method Category Example Studies

Traditional CD methods

Pixel-based CD

Wang et al. [11], Quarmby et al. [12],
Howarth et al. [13], Ludeke et al. [14],
Zhang et al. [15], Nielsen et al. [16],
Nielsen et al. [17], Bovolo et al. [18],
Bovolo et al. [19], Liu et al. [20],
Liu et al. [21], Frank et al. [22]

Object-based CD
Ma et al. [24], Zhang et al. [25],
Zhang et al. [26], Gil-Yepes et al. [27],
Qin et al. [28]

Deep learning CD methods

FC-EF [38], FC-Siam-conc [38],
FC-Siam-diff [38], Daudt et al. [39],
FCN-PP [40], BA2Net [41], STANet
[42], BIT-CD [43], DASNet [44], IFN
[45], HDFNet [47]

In this paper, we propose a Multi-Attention Guided Feature Fusion Network (MAFF-
Net) for remote sensing images to address the above problems effectively. The main
contributions of this article are as follows:

1. We propose the Feature Enhancement Module (FEM), which solves the problem that
the features extracted from the backbone network have much interference information
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and the feature representation is not clear enough. The FEM captures not only cross-
channel information but also direction-aware and location-sensitive information,
which helps the model to locate the region of interest more accurately and enhance
the representation of changing region features.

2. To solve the problem of inadequate feature fusion and insufficient feature communi-
cation in different layers or scales, we designed the attention-based Feature Fusion
Module (FFM), which is divided into FFM_ S1 and FFM_S2 according to the input
feature maps. FFM_S1 fuses the high-level feature maps with the low-level feature
maps by a cross-layer approach. This cross-layer feature fusion approach is of great
benefit to highlight the spatial consistency of objects. FFM_S2 fuses two feature maps
of the same scale, and it should be noted that one is the feature map of T1 and one
is the feature map of T2. The role of FFM_S2 is to fully fuse the feature maps of the
bi-temporal image pairs to obtain a better change map.

3. We propose a Refinement Residual Block (RRB) using a residual structure, which can
compensate for the shortcomings of using a single 3 × 3 convolutional kernel to refine
the feature representation method.

We tested the model on three publicly available remote sensing image datasets. The
experimental results validate the effectiveness of our proposed algorithm. The remainder
of this article is organized as follows: Section 2 describes the proposed method in detail. In
Section 3, corresponding experiments are designed to verify the effectiveness of the method
in this article, and the experimental results are analyzed and discussed. Section 4 draws
some conclusions about our method.

2. Methodology

In this section, a detailed description of the network proposed for the remote sensing
image CD task is presented. First, the backbone of the architecture is described. Second, a
detailed description of the proposed FEM is presented. Next, the attention-guided feature
fusion mechanism is the focus of this section description, and these modules are described
separately in this section. Then, the RRB proposed in this paper is introduced. Finally, the
final prediction results are generated by applying convolutional operations [48,49] on the
final fused feature maps.

2.1. Network Architecture

The overall structure of the proposed network in this paper is shown in Figure 1.
The proposed network uses ResNet18 as its backbone network. Based on some pre-
vious work [42,50,51], the proposed network modifies Res-Net18 by removing the last
max-pooling layer and the fully connected layer and retaining the layers in the first five
convolutional blocks (Conv1 to Conv5).

First, the bi-temporal image pairs (T1, T2) are input to the feature extraction network
to obtain sets of feature maps,
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2, FT2

3
2, FT2

4
2
)
.

For each set of feature maps, the proposed method uses only the last four feature maps.
These feature maps are then fed into the Feature Enhancement Module (FEM) according
to their respective scales to obtain two sets of updated feature maps,

(
F1

1 , F2
1 , F3

1 , F4
1
)

and(
F1

2 , F2
2 , F3

2 , F4
2
)
. Next, the cross-layer feature fusion strategy is employed for each of the

two updated feature maps. It should be noted here that our cross-layer feature fusion
strategy targets different scale features of the same image. Specifically, take image T1 as an
example. First, bilinear up-sampling [52–54] and convolution operations are performed
on high-level features F3

1 ∈ R
4C×H/4×W/4 to obtain F3

1 ∈ R
C×H×W , where H × W is the

size of the feature map F1
1 ∈ R

C×H×W and C is the channel dimension of F1
1 . Then, the

feature maps F1
1 and F3

1 of the T1 image are concatenated to obtain feature F13
1 ∈ R

2C×H×W .
F13

1 is input to the convolutional block attention module (CBAM) [55] and then output
to F13

1 ∈ R
C×H×W after using 3 × 3 convolution on it. The same method is used to fuse

F2
1 ∈ R

2C×H/2×W/2 and F4
1 ∈ R

8C×H/8×W/8 of T1 to obtain F24
1 ∈ R

2C×H/2×W/2. With the
FFM module, four feature maps F13

1 , F13
2 , F24

1 , and F24
2 were obtained. Depending on the
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corresponding scales, the fused feature map pairs,
(

F13
1 , F13

2
)

and
(

F24
1 , F24

2
)
, are fed into

our proposed RRB to further refine the feature representation to obtain F13
12 ∈ R

C×H×W and
F24

12 ∈ R
2C×H/2×W/2, respectively. Finally, the two feature maps, F13

12 and F24
12 , are sent to

the FFM for final fusion. The prediction map is obtained after applying a pixel classifier
(equipped with the sequence 3 × 3 Conv, batch normalization (BN) [56], and ReLU [57]).

Figure 1. Architecture of the proposed MAFF-Net network. The green dotted box shows the cross-
layer fusion strategy.

(
F1

1 , F2
1 , F3

1 , F4
1
)

and
(

F1
2 , F2

2 , F3
2 , F4

2
)

denote the two sets of features updated by
the FEM.

2.2. Feature Enhancement Module

The existing CD methods for HR remote sensing images have received less attention
to the position information and channel relationships. HR remote sensing images have
rich location-spatial information. To obtain accurate position information, a Feature En-
hancement Module (FEM) based on coordinate attention (CA) is proposed in this paper to
obtain the accurate location information and channel relationships of HR remote sensing
images. The module can consider both position information and channel information. The
structure of the FEM is shown in Figure 2.

In Figure 2, first, a 3 × 3 convolution operation is performed on the input F1. Then
it is fed into the CA block to obtain the weighted feature map, F2 ∈ R

C×H×W . Feature
maps F1 and F2 are merged into one feature map by element-wise summation, and a 3 × 3
convolution operation is used to obtain F3.

In Figure 2, the coordinate attention module encodes H and W respectively. In the HR
remote sensing image, for a given position (i, j), its pixel value on channel c is xc(i, j). The
H average pooling output of the c-th channel at height h is as Equation (1) [46]:

zh
c (h) =

1
W ∑

0≤i<W
xc(h, i) (1)
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Figure 2. Feature Enhancement Module (FEM). “W average pooling” and “H average pooling” refer
to 1D horizontal global average pooling and 1D vertical global average pooling, respectively. The r
indicates the reduction ratio, where r is set to 16. The Reshape operation permutes the Dimension of
the tensor. The Resize operation extends the tensor to the same size as the input I1.

Similarly, the W average pooling output of the c-th channel at width w is as Equation (2) [46]:

zw
c (w) =

1
H ∑

0≤j<H
xc(j, w) (2)

Then, the Reshape operation is used to permute the dimensionality of the zh
c tensor to be

the same as that of the zw
c tensor. Next, the coordinate attention module uses concatenation,

convolution, and activation function operations. The related definition is as Equation (3) [46]:

f = δ
(

FC

([
zh

c , zw
c

]))
(3)
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where [,] indicates a concatenation operation, FC indicates a 1 × 1 convolution operation,
and δ indicates the ReLU activation function. f is the output feature map of the ReLU layer.

After the split operation, f can be decomposed into f h ∈ R
C/r×1×H and f w ∈ R

C/r×1×W .
The reshape operation is used again to permute the dimension of the tensor f h to obtain
f h ∈ R

C/r×H×1. Next, two 1 × 1 convolutional transforms Fh and Fw are used to transform
f h and f w into tensor with the same number of channels as the input I1, respectively.
Then, applying the sigmoid activation function [58] to the tensors updated by Fh and Fw,
respectively, two outputs are obtained as shown in Equation (4) and Equation (5) [46]:

gh = σ
(

Fh

(
f h
))

(4)

gw = σ(Fw( f w)) (5)

where σ indicates sigmoid activation function. The Resize operation expands the size of
gh ∈ R

C×H×1 and gw ∈ R
C×1×W to the same size as the input I1 ∈ R

C×H×W , respectively,
and the gh and gw, after being Resized, are used as attention weights. Finally, the output
feature map I2 of the CA block is defined as Equation (6) [46]:

yc(i, j) =
(

xc(i, j)× gh
c (i)

)
× gw

c (j) (6)

where c is the c-th channel, gh
c (i) is the weight of the i-th position in the H direction, gw

c (j)
is the weight of the j-th position in the W direction, and yc(i, j) is the value of the output
feature map I2.

2.3. Feature Fusion Module

With the study of deep learning-based CD, it has been found that the CD task is
unsatisfactory if it relies only on simple feature extraction networks. On the one hand,
this is because simple feature extraction networks cannot eliminate semantic interference
such as seasonal appearance differences and cannot accurately label change regions in the
presence of diverse object shapes and complex boundaries. On the other hand, it is not
fully exploited to multi-scale information, and the fusion of multi-scale features to make
them communicate can help our network improve its performance.

Therefore, as shown in Figure 1, an attention-based Feature Fusion Module (FFM) is
introduced into the CD network. The detail of the FFM is shown in Figure 3.

The proposed FFM is slightly different at different stages. The FFM whose input
features are from FEM is named FFM_S1, and the FFM whose input features are from RRB
is named FFM_S2. Specifically, the difference between FFM_S1 and FFM_S2 lies in the
input part. The inputs of FFM_S1 are two feature maps of different scales of one image,
while the input of FFM_S2 is two feature maps of the same scale of two images.

After FEM processing, two sets of updated feature maps,
(

F1
1 , F2

1 , F3
1 , F4

1
) ∈ T1 and(

F1
2 , F2

2 , F3
2 , F4

2
) ∈ T2, were obtained. For FFM_S1, the inputs are the feature map pairs(

F1
1 , F3

1
)

and
(

F2
1 , F4

1
)

and
(

F1
2 , F3

2
)

and
(

F2
2 , F4

2
)
, respectively. Figure 3 shows FFM_S1, and

the structure of FFM_S2 is not drawn separately because the two only have different inputs.
However, it should be emphasized here that FFM_S2, which has two input feature maps of
the same scale, does not distinguish between high-level features and low-level features,
and also does not need to up-sample high-level features such as FFM_S1.
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Figure 3. Feature Fusion Module (FFM). F1–F5 represent the feature maps that are output by
different blocks.

The next step is to describe FFM_S1. After experiments, it is found that the fusion
of features by cross-layer is more effective. This may be because the high-level features
will lose some semantic information carried by the original image or low-level features,
such as some edge features, as the number of convolution layers increases, and the fusion
with low-level features can compensate for this deficiency. At the same time, the semantic
information carried by the feature maps between neighboring layers is not so obviously
different, so the fusion method by cross-layer plays a role. For an original image T1, feature
map pairs

(
F1

1 , F3
1
)

and
(

F2
1 , F4

1
)

are fed into FFM_S1, respectively. For original image T2,
feature map pairs

(
F1

2 , F3
2
)

and
(

F2
2 , F4

2
)

are fed into FFM_S1, respectively. As shown in
Figure 3, the high-level feature needs an up-sampling operation to make the feature map
shape consistent with the low-level feature. Next, one 1 × 1 convolution is used to obtain
the feature map F2 ∈ R

C×H×W . The two inputs F1 ∈ R
C×H×W and F2 are concatenated

to obtain the feature map F3 ∈ R
2C×H×W . The resulting feature map can be viewed as a

feature map with different channels. The calculation process of F3 is shown in Equation (7):

F3 = [Conv(Up(F1)), F2] (7)

where Conv denotes the 1 × 1 convolution, and [.,.] denotes the concatenation operation.
Considering that this direct aggregation of features in cross-layer does not yet communicate
well in the channel and spatial dimensions, feed F3 to the CBAM. CBAM is an attention
module consisting of the channel and spatial attention. It considers both the importance of
pixels in different channels and the importance of pixels in different positions in the same
channel. The CBAM outputs the feature map F4 ∈ R

2C×H×W . Then, the 3 × 3 convolution
block is used, the main purpose of which is to recover the channels of the aggregated
feature map to the number of channels of the input feature map. The above calculation
process is shown in Equation (8):

F4 = Conv(CBAM(F3)) (8)
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where Conv denotes the 3 × 3 convolution block. Next, in two subsubsections, two parts
of CBAM, namely the channel attention module and the spatial attention module, are
described in detail.

2.3.1. Channel Attention Module

In the Channel Attention Module (CAM), the vectors described as AFca
avg ∈ R

B×C×1

and Fca
max ∈ R

B×C×1 are obtained by the average-pooling and max-pooling operations,
respectively. Then, each of them is input to the shared multi-layer perceptron (MLP) with
one hidden layer, respectively, to get two vectors, and the two vectors are merged to one
feature vector by element-wise summation. After sigmoid activation, the feature map of
the CAM is finally obtained. This is shown in Equation (9) [55]:

Mca(D) = δ
(

FC1

(
FC0

(
Fca

avg

))
+ FC1(FC0(Fca

max))
)

(9)

where FC0 and FC1 denote the convolution operation in MLP and δ denotes the sigmoid
function. The CAM compresses the feature map spatial dimensions to obtain a one-
dimensional vector before manipulating it. Channel attention is concerned with what is
significant on this feature map. The average-pooling has feedback for every pixel point on
the feature map, while max-pooling has feedback for gradients only where the response is
greatest in the feature map when performing gradient backpropagation calculations.

2.3.2. Spatial Attention Module

In the Spatial Attention Module (SAM), it is the feature map output from the CAM that
is used as input. First, do a max-pooling and average-pooling based on the channel to get the
element-wise summation, and then a concatenation operation is performed on the two layers.
Then, convolution is performed and reduced to 1 channel, and then the feature map output
from the SAM is obtained by sigmoid activation. This is given by Equation (10) [55]:

Msa(Dca) = δ
(

f 7×7
(

Cat
(

Fsa
avg, Fsa

max

)))
(10)

where Cat is the concatenation operation, f 7×7 represents a convolutional layer with a
filter size of 7 × 7, and δ denotes the sigmoid function. The SAM is a channel compression
mechanism that performs average-pooling and max-pooling in the channel dimension
respectively. The max-pooling operation is to extract the maximum value on the channel,
and the number of extractions is H × W. The average-pooling operation is to extract
the average value on the channel, and the number of extractions is also H × W. Thus, a
2-channel feature map can be obtained.

2.4. Refinement Residual Block

The use of a single 3 × 3 convolutional kernel has some shortcomings in refining the
feature representation. Inspired by Yu et al. [59], a Refinement Residual Block (RRB) is
introduced to modify the channels of the aggregated feature map to be consistent with
the input feature map and further refine the feature representation before the final feature
fusion using FFM_S2. Its structure is shown in Figure 4.

As can be seen in Figure 4, the RRB has three inputs, one of which is the difference
map of two feature maps. The three feature maps are first subjected to a concatenation
operation, followed by two consecutive convolution blocks, each consisting of Conv 3 × 3,
BN, and ReLU. The two convolution blocks output the feature maps F1 ∈ R

C×H×W and
F2 ∈ R

C×H×W , respectively. Here, it should be noted that the number of channels of each
convolutional block output is different. In addition, the module adds additional residual
connections with the 1 × 1 convolutional layers for obtaining some additional spatial
information of the remote sensing images. Finally, the four feature maps are subjected to
element-wise summation and the final output feature map F4 ∈ R

C×H×W is obtained.
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Figure 4. Refinement Residual Block (RRB). F1–F4 represent the feature maps that are output by
different blocks.

2.5. Loss Function

In the training stage, a cross-entropy loss function optimized by Chen et al. [43] is used,
which minimizes the cross-entropy loss to optimize the network parameters. Formally, the
loss function is defined as Equation (11) [43]:

L =
1

H0×W0

H,W

∑
h=1,w=1

l(Phw, Yhw) (11)

where l(Phw, y) = −log
(

Phwy

)
is the cross-entropy loss and Yhw is the label for the pixel at

location (h, w) [43].

3. Experiments and Results

In this section, the proposed network MAFF-Net is evaluated on three publicly avail-
able benchmark datasets to demonstrate its effectiveness. First, the details of the three
datasets, the CDD dataset [60], the LEVIR-CD dataset [42], and the WHU-CD dataset [61],
are introduced. Next, the implementation details are presented, including the experimental
environment and evaluation metrics. Then, seven state-of-the-art (SOTA) comparison
methods are introduced. In this section, quantitative and qualitative analyses of these
methods are presented on three datasets.

3.1. Datasets and Settings

The CDD dataset has three types of images, synthetic images with no relative move-
ment of objects, synthetic images with less relative movement of objects, and real remote
sensing images with seasonal changes (obtained from Google Earth). In this paper, a
subset of remote sensing image data with seasonal changes is selected. This subset has
16,000 images with an image size of 256 × 256 pixels, of which 10,000 images are used as
the training set, 3000 images as the validation set, and 3000 images as the test set. As shown
in Figure 5, the change scenarios of this dataset include building changes, road changes,
and vehicle changes. The data set was considered for different sizes of objects.
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Figure 5. Illustration of samples from CDD. (Image-T1) and (Image-T2) indicate the bi-temporal
image pairs. (GT) indicates the ground truth.

LEVIR-CD contains 637 very high resolution (VHR, 0.5 m/pixel) Google Earth image
patch pairs, 1024 × 1024 pixels in size. These bitmap images spanning 5 to 14 years have
significant land-use changes, especially building growth. LEVIR-CD covers various types
of buildings such as villas, high-rise apartments, small garages, and large warehouses.
The fully annotated LEVIR-CD contains a total of 31,333 individual instances of change
construction. As shown in Figure 6, each sample is cropped into 16 small patches of size
256 × 256, generating 7120 image patch pairs for training, 1024 for validation, and 2048
for testing.

Figure 6. Illustration of samples from LEVIR-CD. (Image-T1) and (Image-T2) indicate the bi-temporal
image pairs. (GT) indicates the ground truth.

The third dataset is named the WHU-CD dataset, which is a CD dataset of public
buildings. The dataset covers the area where the 6.3 magnitude earthquake occurred in
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February 2011 and has been reconstructed in the following years. It consists of a pair of HR
(0.075 m) aerial images of size 32, 507 × 15, 354. Considering that the authors of the original
paper did not provide a solution for data segmentation, as shown in Figure 7, the solution
of cropping the image into small pieces of size 224 × 224 was finally chosen, and dividing
them into three random parts: 7918/987/955 for training/validation/testing, respectively.

Figure 7. Illustration of samples from WHU-CD. (Image-T1) and (Image-T2) indicate the bi-temporal
image pairs. (GT) indicates the ground truth.

3.2. Evaluation Metrics and Settings

For quantitative assessment, three indices, namely the F1-score (F1), Kappa coefficient
(Kappa), and overall accuracy (OA) are used as the evaluation metrics. These three indices
can be calculated as follows:

P =
TP

TP + FP
(12)

R =
TP

TP + FN
(13)

F1 =
2

P−1+R−1 (14)

OA =
TP + TN

TP + FP + TN + FN
(15)

PRE =
(TP + FN)× (TP + FP) + (TN + FP)× (TN + FN)

(TP + TN + FP + FN)2 (16)

Kappa =
OA − PRE

1 − PRE
(17)

where OA and PRE denote the overall accuracy and expected accuracy, respectively. The
TP, FP, TN, and FN are the number of true positives, false positives, true negatives, and
false negatives, respectively.

We implemented our proposed method with PyTorch, supported by NVIDIA CUDA
with a GeForce GTX 2080Ti GPU. In the training stage, the feature extraction backbone
of the proposed MAFF-Net is initialized from ResNet18. We used the Adam (β1 = 0.5,
β2 = 0.9) optimizer and the entire training period was set to 200 epochs. The initial learning
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rate is 0.001 in the first 100 epochs, in the next 100 epochs, the value of the learning rate
decays linearly to 0. Considering the GPU size, we set the batch size to 8 to facilitate
GPU training.

3.3. Comparison of Experimental Results

In this section, the performance of the different methods is compared on the three
datasets CDD, LEVIR-CD, and WHU-CD, respectively. The advantages and disadvantages
of each method are further described based on the results of the quantitative and qualitative
analyses. In addition, an ablation study is performed on the proposed method to compare
and analyze the effectiveness of each of its modules.

3.3.1. Comparison Methods

To verify the effectiveness and superiority of our methods, we selected seven methods
that are represented in the CD task and compared the performance of these methods
in CDD, LEVIR-CD, and WHU-CD, respectively, and a brief description of the selected
methods is as follows:

1. CD-Net [62] combines the multi-sensor fusion SLAM and fast density 3D reconstruc-
tion for coarse alignment of image pairs followed by deep learning methods for
pixel-level CD.

2. FC-EF [38] refers to early fusion with full convolution. It concatenates the two input
images before feeding them into the network, treating them as different channels of
one image. It is then fed into a standard U-Net.

3. FC-Siam-conc [38] connects three feature maps from the two encoder branches and
the corresponding layer of the decoder.

4. FC-Siam-diff [38] first finds the absolute value of the difference between the fea-
ture maps of the two decoder branches and then makes a skip-connection to the
corresponding layer of the decoder.

5. DASNet [44] is a CD model based on a dual-attentive fully convolutional twin neural
network and proposes a weighted double-margin contrastive loss (WDMC) to be able
to solve the sample imbalance problem.

6. IFN [45] first uses the two Siamese network architectures as the raw images feature
extraction network. To enhance the integrity of change map boundaries and internal
densities, multi-level depth features are fused with image difference map features by
an attention mechanism.

7. STANet [42] proposes a new spatial-temporal attention neural network based on
twin networks. The network exploits spatial-temporal dependence and designs a
CD self-attentive mechanism to model spatial-temporal relations. A new HR remote
sensing image dataset, LEVIR-CD, is also proposed.

3.3.2. CDD Dataset

For quantitative comparison, we calculated and summarized the evaluation metrics
for CDD, LEVIR-CD, and WHU-CD, as shown in Tables 1–3, respectively. To compare the
performance of each method more visually, we visualized the test results of each method
on the three data sets, as shown in Figures 8–10, respectively. The white color indicates the
changes that were correctly detected. Black indicates that no changes have been correctly
detected. Red indicates false alarms. Blue indicates unpredicted changes.
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Table 2. Comparison of CDD dataset results. The best scores are highlighted in bold.

Method F1 (%) Kappa (%) OA (%)

CDNet 81.9 79.6 95.9
FC-EF 83.0 80.8 96.0

FC-Siam-conc 84.0 81.9 96.3
FC-Siam-diff 84.8 82.8 96.4

DASNet 90.1 88.7 97.5
IFN 90.6 89.2 97.6

STANet 91.6 90.4 97.9
MAFF-Net 96.5 96.0 99.2

Table 3. Comparison of LEVIR-CD dataset results. The best scores are highlighted in bold.

Method F1 (%) Kappa (%) OA (%)

CDNet 78.0 76.9 97.8
FC-EF 80.7 79.7 98.0

FC-Siam-conc 82.2 81.2 98.0
FC-Siam-diff 83.7 82.8 98.3

DASNet 84.6 83.7 98.4
IFN 86.2 85.4 98.6

STANet 86.5 85.9 98.9
MAFF-Net 89.7 89.1 98.9

Figure 8. Illustration of a qualitative comparison on dataset CDD. (a–h) indicate samples from CDD
and the change maps obtained with different methods. The white color indicates the changes that
were correctly detected. Black indicates that no changes have been correctly detected. Red indicates
false alarms. Blue indicates unpredicted changes.
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Figure 9. Illustration of a qualitative comparison on dataset LEVIR-CD. (a–h) indicate samples from
LEV-IR-CD and the change maps obtained with different methods. The white color indicates the
changes that were correctly detected. Black indicates that no changes have been correctly detected.
Red indicates false alarms. Blue indicates unpredicted changes.

As can be seen from Table 2, the proposed MAFF-Net reached the first on F1, Kappa,
and OA on the CDD dataset. This also indicates that the proposed network performs
optimally on this dataset. It is also evident from Figure 8 that the proposed network can
better mark the change region, while there are few cases of wrong and missing detections.
Specifically, as can be seen from the data in Table 2, CD-Net, which does not pay attention
to the connections and interactions between multi-scale features, performs relatively poorly
in the three evaluation metrics, 14.6% lower than the proposed MAFF-Net in terms of F1
score. This is somewhat related to its fewer network levels and relatively simple structure.
Considering early fusion and late fusion strategies separately and using skip-connected
encoding-decoding, the baselines of FC-EF, FC-Siam-conc, and FC-Siam-diff achieve better
performance with their compact and efficient structures. Among these three baselines, the
late fusion baseline shows a clear advantage over the early fusion baseline. The fusion
of feature maps using bi-temporal image pairs with their difference maps achieves better
results than the fusion of feature maps using only bi-temporal image pairs. FC-Siam-Diff
scores 0.8%, 0.9%, and 0.1% higher than FC-Siam-conc on F1, Kappa, and OA, respectively.
This is because the original image coding features are preserved as much as possible while
obtaining the difference maps. This helps the network to achieve better performance.
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Figure 10. Illustration of a qualitative comparison on dataset WHU-CD. (a–h) indicate samples from
WHU-CD and the change maps obtained with different methods. The white color indicates the
changes that were correctly detected. Black indicates that no changes have been correctly detected.
Red indicates false alarms. Blue indicates unpredicted changes.

Based on the attention mechanism, which can further focus on the information ex-
change between feature maps, DASNet works better than FC-EF. IFN pays more attention
to the connection and interaction of multi-scale information. It introduces channel attention
and spatial attention and uses a post-fusion strategy for deep supervision. Its F1 and
Kappa scores reached 90.1% and 89.2%, respectively. STANet proposes a spatial-temporal
attention module based on a feature pyramid to better adapt the network to the detection
task of complex scenes, ranking second in all evaluation metrics. The proposed MAFF-Net
achieves the highest level in all metrics, respectively. It is able to detect and label the
change regions better than other methods because the network employs an attention-based
cross-layer feature fusion strategy and also designs a refinement residual block to further
improve the network detection performance.

Also, the qualitative analysis in Figure 8 allows for further analysis of the performance
of each network. For visual analysis, eight challenging sets of bi-temporal images were
selected and visualized. Each set of images contains different ranges of change regions or
change scenes. Among the three FCN-based baselines, FC-Siam-conc and FC-Siam-diff
can give better results than FC-EF. As can be seen in Figure 8, only a small number of
change regions (Figure 8a) can be marked by FC-EF, but it performs poorly for smaller
change regions and more complex scenes (Figure 8b–h). This is because it does not preserve
the features of each original image, especially the shallow features, which makes the
detected change regions significantly inaccurate. In general, the other two baselines perform
better than FC-EF, as evidenced by the completeness of the information in the regions of
change detected in the illustrations. However, they still suffer from many missed and
false detections, such as Figure 8b–g. In particular, in Figure 8e, they do not detect the
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change region at all. Therefore, there is still potential for improvement. By introducing dual
attention in the decoding stage, DASNet can detect most of the change regions. However,
its detection performance for small change regions needs to be improved. For example,
in Figure 8e, there are many missed regions in its detection results, and there are also
false detection regions. This demonstrates that it is not yet quite accurate in terms of the
boundaries and details of the change regions. In addition, it also does not perform well in
Figure 8b,f,h with false detections and missed detections.

IFN and STANet are relatively more complete in terms of local detail because of the
introduction of channels and spatial attention. However, they still have false positives
and false negatives in detecting some very small target regions or edges, as shown in the
red and blue regions in Figure 8c,e,g,h. The processing of some regions is too smoothed,
and some edge information is ignored to some extent. The proposed MAFF-Net can better
label the change regions and accurately detect the edges of the change regions. It can be
seen from the exhibited samples that there are very few red and blue regions representing
false and missed detections. In particular, the detection performance is well for small and
complex change regions, as shown in Figure 8e–h, for example. This also demonstrates that
the proposed network can detect the change regions accurately in general.

3.3.3. LEVIR-CD Dataset

As can be seen from Table 3, the difference in performance between the three baselines
of FCN is not significant, where the higher score among the three indicators is FC-Siam-Diff,
with F1 and Kappa scores of 83.7% and 82.8%, respectively. DASNet, by introducing dual
attention, improved the F1-score by about 0.9% compared to the three baselines of FCN.
The F1 score of IFN reached third place with 86.2%, while the scores of Kappa and OA also
performed well. However, the scores of all metrics are lower than those of STANet, which
may be because STANet pays more attention to multi-scale information while introducing
attention. By introducing an attention mechanism involving multiple scales, the proposed
MAFF-Net improves the F1 score to 89.7%, which is better than other comparative methods.
Moreover, Kappa and OA reached the highest values among the compared methods with
89.1% and 98.7%, respectively.

Figure 9 also illustrates the change maps on eight selected sets of bi-temporal images.
The change regions in these images cover multiple scenes, areas, shapes, and distribution
ranges. For multiple regularly shaped building changes in Figure 9a,b, the overall contours
of the buildings are correctly detected. However, the detection results of the CD-Net and
FC-EF methods still have obvious false detection and missed detection areas. Although
STANet can locate the change region, the detection of more complex and small change
regions is not entirely correct. For example, as shown in Figure 9f,h, the proposed MAFF-
Net is more accurate than the other methods, as seen from the fewer regions marked in
red and blue. For Figure 9a,b,d, the attention-based methods DASNet and STANet and
the proposed attention-based guided cross-layer feature fusion network MAFF-Net are
visually closer to the GT. For the more densely distributed change regions in Figure 9c,
DASNet, STANet, and MAFF-Net maintain visual correctness, while MAFF-Net has fewer
errors and can accurately detect and distinguish multiple dense change regions. However,
for Figure 9f–h with more complex edges and smaller change regions, IFN, DASNet, and
STANet do not perform well. On the contrary, MAFF-Net shows better adaptability, and it
can accurately detect changing regions with complex shapes and small objects.

3.3.4. WHU-CD Dataset

According to the data in Table 4, the performance of the methods with FCN as the
baseline does not differ much. The double attention-based DASNet performs slightly
better than IFN and STANet, with scores of 90.7%, 90.1%, and 99.0% for F1, Kappa, and
OA, respectively. We attribute this to the fact that the weighted double-margin contrastive
loss (WDMC) used by DASNet can solve the problem of sample imbalance. The proposed
MAFF-Net achieved the best scores in all evaluation metrics compared to the other compar-
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ison methods. Compared with the method using FCN as the baseline, the proposed method
obtained a 9.1%, 9.6%, and 1.0% increase in F1, Kappa, and OA, respectively. This also
demonstrates the effectiveness of the proposed multi-attention-guided feature fusion-based
method. Compared to DASNet, IFN, and STANet, the proposed method improves the
gains for F1, Kappa, and OA by 1.7%, 2.0%, and 0.4%, respectively. Such gains are generated
thanks to our fusion strategy that fully considers multi-scale features, while effectively
exploiting the advantage of the attention to greatly improve the network performance.

Table 4. Comparison of WHU-CD dataset results. The best scores are highlighted in bold.

Method F1 (%) Kappa (%) OA (%)

CDNet 80.4 79.4 98.0
FC-EF 82.3 81.4 98.2

FC-Siam-conc 82.9 82.0 98.2
FC-Siam-diff 83.3 82.5 98.4

DASNet 90.7 90.1 99.0
IFN 88.1 87.5 98.9

STANet 89.8 89.3 99.0
MAFF-Net 92.4 92.1 99.4

For visual comparison, Figure 10 shows some typical CD results for the test samples in
the WHU-CD dataset. As shown in Figure 10a,c–e,h, there are many missed detections and
false detections in the compared methods. As shown in Figure 10c,e,h, CD-Net not only
has false detections but also has many missed detection regions. The performance of the
FCN-based FC-EF, FC-Siam-conc, and FC-Siam-diff have been improved and the missed
detection regions are significantly reduced. However, they still have the same problems
as CD-Net as shown in Figure 10d,e,h. In Figure 10e,h, the attention-based DASNet, IFN,
and STANet do not perform well, with significant missed detection regions and some false
detection regions. In terms of consistency with the GT, the proposed MAFF-Net achieves
the best visual performance. Specifically, as shown in the samples in Figure 10, MAFF-Net
significantly reduces the missed detections and has a very low false detection rate compared
with other methods. In addition, the change maps generated by MAFF-Net have clearer
and more accurate boundaries compared with other methods.

3.4. Ablation Study

In the CD task, our proposed model achieves superior performance. To validate
the effectiveness and feasibility of our proposed method, we conducted a series of abla-
tion experiments on three datasets, CDD, LEVIR-CD, and WHU-CD, to verify that our
model has advanced performance. We conducted five ablation experiments on three HR
datasets, and in our experiments, the Baseline represents the ResNet18 network struc-
ture. In total, five ablation experiments were conducted in this paper: Baseline, Base-
line+FEM, Baseline+FEM+FFM_S1, Baseline+FEM+FFM_S1+RRB, and the MAFF-Net
(Baseline+FEM+FFM_S1+RRB+FFM_S2). As shown in Figure 11, the Baseline does not
achieve good performance in detecting change regions, especially when the change region
scene is more complex or the change region area is small (Figure 11d). Compared with
the Baseline, the Baseline + FEM method obtains richer features after adding the FEM,
which can help the network detect most of the change regions. It can be seen that the Base-
line+FEM+FFM_S1 can effectively remove some irrelevant information (Figure 11f), while
further capturing the change features and refining the feature representation. The FFM_S1
module adopts a cross-layer fusion strategy, which helps the model to fully fuse the features
of high and low layers to achieve better feature representation. Compared with the Base-
line+FEM method, the Baseline+FEM+FFM_S1 method detects more accurate and complete
change regions. However, it can also be found that the method is slightly lacking when
faced with small change regions or poorly characterized features (Figure 11f–1). Therefore,
the Baseline+FEM+FFM_S1+RRB method aims to further refine the feature representation,
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which helps to detect smaller change features and improve the network performance. As
can be seen by Figure 11g, the change map obtained by this method is already very close to
the change region of the GT. Finally, the method proposed in this paper performs feature
fusion feature maps to obtain a prediction map that is closest to the real change regions.
As can be seen from Figure 11h, the change map obtained by the proposed method is very
close to the GT, which also surfaces the effectiveness of the proposed method. Meanwhile,
the proposed method shows good accuracy on three different datasets. By comparing
the visualization results of each module, the effectiveness and accuracy of the MAFF-Net
method proposed in this paper are effectively demonstrated.

Figure 11. Visualization comparison plots of each network on different datasets in the ablation
experiment. (1–3) indicate samples from the CDD dataset, (4–6) indicate samples from the LEVIR-CD
dataset, and (7–9) indicate samples from the WHU-CD dataset. (a) Image T1. (b) Image T2. (c) Ground
truth. (d) Baseline. (e) Baseline+FEM. (f) Baseline+FEM+FFM_S1. (g) Baseline+FEM+FFM_S1+RRB.
(h) MAFF-Net (Baseline+FEM+FFM_S1+RRB+FFM_S2).
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In addition, we also performed statistics and comparisons on the F1, Kappa, and OA
values of different methods. As shown in Table 5, the model achieves optimal performance
when all innovation modules are added, which also proves the effectiveness of our proposed
innovation modules.

Table 5. Ablation study of different modules on different datasets. All the scores are described in
percentage (%). The best scores are highlighted in bold.

Model CDD LEVIR-CD WHU-CD

Baseline FEM FFM_S1 RRB FFM_S2 F1 Kappa OA F1 Kappa OA F1 Kappa OA
√ × × × × 88.0 86.3 96.9 83.3 82.4 98.2 86.0 85.3 98.8√ √ × × × 93.6 92.7 98.4 87.0 86.3 98.6 89.9 89.3 99.0√ √ √ × × 94.6 93.8 98.7 88.2 87.6 98.7 91.4 90.9 99.1√ √ √ √ × 95.9 95.4 99.0 88.8 88.2 98.8 91.9 91.5 99.2√ √ √ √ √

96.5 96.0 99.2 89.7 89.1 98.7 92.4 92.1 99.4

In the Baseline+FEM method, as can be seen, there is a significant improvement in
three indicators compared with the Baseline method. In the CDD dataset, Kappa, F1, and
OA increased by 6.4%, 5.6%, and 1.5% compared with the Baseline, respectively. In the
LEVIR-CD dataset, Kappa, F1, and OA were increased by 3.9%, 3.7%, and 0.4%, respectively,
compared with the Baseline. In the WHU-CD dataset, Kappa, F1, and OA were increased by
4%, 3.9%, and 0.2%, respectively, compared with the Baseline.

In the Baseline+FEM+FFM_S1 method, it can be seen that all metrics are improved
compared to the baseline+FEM method. In the CDD dataset, Kappa, F1, and OA improve by
1.1%, 1%, and 0.3%, respectively, compared to the Baseline. In the LEVIR-CD dataset, Kappa,
F1, and OA improved by 1.3%, 1.2%, and 0.1%, respectively, compared to the Baseline. In
the WHU-CD dataset, Kappa, F1, and OA improved by 1.6%, 1.5%, and 0.1%, respectively,
compared to the Baseline. We can see the improvement of all metrics on all datasets,
indicating the innovation and validity of our proposed FFM_S1, while the joint use of
FFM_S1 and FEM achieves better performance and makes the model more accurate.

In the Baseline+FEM+FFM_S1+RRB method, it can be seen that there are improve-
ments in all metrics compared with the Baseline+FEM+FFM_S1 method. In the CDD
dataset, Kappa, F1, and OA improve by 1.6%, 1.3%, and 0.3%, respectively, compared to
the Baseline. In the LEVIR-CD dataset, Kappa, F1, and OA improved by 0.6%, 0.6%, and
0.1%, respectively, compared to the Baseline. In the WHU-CD dataset, Kappa, F1, and OA
improved by 0.6%, 0.5%, and 0.1%, respectively, compared to the Baseline+FEM+FFM_S1.
We can see the improvement in all metrics on all datasets, indicating that our proposed
RRB enhances the feature representation of the feature map, while the combined use of
FFM_S1, FEM, and RRB leads to better performance of the model.

In the Baseline+FEM+FFM_S1+RRB+FFM_S2 method, it can be seen that all metrics
are improved compared to the baseline+FEM+FFM_S1+RRB approach. In the CDD dataset,
Kappa, F1, and OA improved by 0.6%, 0.6%, and 0.2%, respectively, compared to the
Baseline. In the LEVIR-CD dataset, Kappa and F1 improved by 0.9% and 0.9%, respectively,
compared to the Baseline. In the WHU-CD dataset, Kappa, F1, and OA improved by
0.6%, 0.5%, and 0.1%, respectively, compared to the Baseline+FEM+ FFM_S1+RRB. We
can see the improvement of all the metrics on all datasets, indicating our proposal that
FFM_S2 has a facilitating effect in fusing multi-scale feature information exchanges, while
FFM_S1 and FFM_S2 have a mutual facilitating effect in feature extraction, and also, it
is known experimentally that MAFF-Net helps the network fuse multi-scale features to
achieve multi-scale information communication, which can improve the performance of
the network.
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3.5. Efficiency Analysis of the Proposed Network

Although the proposed network MAFF-Net achieves encouraging performance, it has
some potential limitations. The computational complexity of MAFF-Net is relatively high
and the number of parameters is large. This is not friendly to devices and applications
with limited resources. In this section, the parameter amount (take M as the unit) and the
training time of an epoch (take min/epoch as the unit) are used as quantitative indicators
for evaluation. As shown in Figure 12, the number of trainable parameters of MAFF-Net is
49.08 million, which is the largest among the compared methods. However, from another
perspective, the training efficiency of the proposed MAFF-Net is also relatively impressive.
Compared with STANet and DASNet, the training time of the proposed method is reduced
by 56.22% and 40.86%, respectively, which makes the proposed method more valuable in
practical applications under the same equipment conditions.

Figure 12. Illustration of an efficiency analysis of the comparison methods.

Though the number of training parameters and training time is comprehensive, the
proposed method has space for improvement and enhancement in the future. For example,
model compression can be performed in the proposed network, employing pruning and
knowledge distillation [63,64] to reduce the size of the model.

4. Conclusions

In this paper, we propose a novel feature fusion network for remote sensing image
CD tasks. To enhance the feature representation, we propose a Feature Enhancement
Module (FEM), which introduces coordination attention (CA) that can capture long-range
dependencies with precise location information while modeling inter-channel relationships.
The FEM helps the network to further refine the features extracted by the backbone network
ResNet18. The quantitative and qualitative analysis of the ablation study shows that the
performance of the FEM on the Baseline is improved, which demonstrates the reasonability
and effectiveness of the FEM. Considering that layer-by-layer feature fusion may lose
part of the semantic information, we propose an FFM employing a cross-layer feature
fusion strategy. The FFM uses semantic cues in the high-level feature map to guide
feature selection in the low-level feature map. In addition, to highlight changing regions
and suppress useless features, we introduce a CBAM in the FFM, which combines the
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advantages of channel attention and spatial attention, allowing the model to learn which
region to focus on and pay more attention to critical information. Depending on the input
features, we classified FFM into FFM_S1 and FFM_S2, both of which further enhance the
feature fusion effect. Based on the ablation study in Section 3, we can see that the FFM
significantly improves the performance of the network. To compensate for the shortcomings
of using a single convolutional kernel for feature refinement, we propose a Refinement
Residual Block (RRB) that employs a residual structure. The RRB changes the number of
channels of the aggregated features and uses convolutional blocks to further refine the
feature representation. Based on the comparison results between the proposed MAFF-Net
and other methods in quantitative and qualitative analysis, the proposed method is able
to efficiently detect changing regions and has a strong ability to select features through a
feature fusion strategy guided by multiple attention mechanisms. On the three publicly
available benchmark datasets CDD, LEVIR-CD, and WHU-CD, the F1 scores of MAFF-Net
are improved by at least 1%, 2%, and 3%, respectively, compared to other methods. This
demonstrates the better performance of our method than other SOTA methods.

However, it should be noted that, as shown in Figure 12, although the proposed
model has an advantage in terms of training speed, it cannot be ignored that the number of
parameters of the proposed model is relatively large, reaching 49.08 M. This has potential
limitations for its practical application in the future. Therefore, in future work, we hope
that the network can be made lightweight by using some model compression techniques.
In addition, the proposed method solves the CD task of bi-temporal remote sensing images,
and in future work, it will focus on the CD task of multi-temporal remote sensing images.
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Abbreviations

The following abbreviations are used in this manuscript:
CD change detection
HR high resolution
SOTA state of the art
VHR very high resolution
CNN convolutional neural network
FCN fully convolutional network
CA coordinate attention
RRB refinement residual block
FEM feature enhancement module
FFM feature fusion module
GT ground truth
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OA overall accuracy
CD-Net change detection network
FC-EF fully convolutional early fusion
FC-Siam-conc fully convolutional Siamese concatenation
FC-Siam-diff fully convolutional Siamese difference
DASNet dual attentive fully convolutional siamese networks
IFN image fusion network
STANet a spatial-temporal attention-based method
MAFF-Net multi-attention guided feature fusion network
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Abstract: New ongoing rural construction has resulted in an extensive mixture of new settlements
with old ones in the rural areas of China. Understanding the spatial characteristic of these rural
settlements is of crucial importance as it provides essential information for land management and
decision-making. Despite a great advance in High Spatial Resolution (HSR) satellite images and deep
learning techniques, it remains a challenging task for mapping rural settlements accurately because of
their irregular morphology and distribution pattern. In this study, we proposed a novel framework to
map rural settlements by leveraging the merits of Gaofen-2 HSR images and representation learning
of deep learning. We combined a dilated residual convolutional network (Dilated-ResNet) and a
multi-scale context subnetwork into an end-to-end architecture in order to learn high resolution feature
representations from HSR images and to aggregate and refine the multi-scale features extracted
by the aforementioned network. Our experiment in Tongxiang city showed that the proposed
framework effectively mapped and discriminated rural settlements with an overall accuracy of 98%
and Kappa coefficient of 85%, achieving comparable and improved performance compared to other
existing methods. Our results bring tangible benefits to support other convolutional neural network
(CNN)-based methods in accurate and timely rural settlement mapping, particularly when up-to-date
ground truth is absent. The proposed method does not only offer an effective way to extract rural
settlement from HSR images but open a new opportunity to obtain spatial-explicit understanding of
rural settlements.

Keywords: rural settlements; fully convolutional network; multi-scale context; high spatial
resolution images

1. Introduction

Since the reform and opening-up, drastic urbanization has been taking place in China. In a stark
contrast, the development of rural areas, however, is not in concert with that of urban areas, but is
greatly lagging behind and restricted. Mass population migration, from rural to urban areas, has given
rise to a succession of impacts on rural areas, including population decline, industry recession and
land abandonment [1,2]. In 2018, China stepped up its efforts to revitalize rural regions. Building the
new style of rural community with better infrastructure is one of the important measures to improve
the wellbeing of rural people. Thus, a spatial-explicit understanding of rural settlements regarding
their distributions is of critical essence to effective land management and policy making.
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Satellite-based earth observation is a key enabler for capturing spatial information of buildings
in rural areas. High spatial resolution (HSR) images open new opportunities for slums and informal
settlement detection and rural land cover mapping [3,4]. Compared with medium resolution image
which mainly offers spectral information (in terms of a single image) [5], using HSR images can leverage
both spectral and spatial information. HSR image analysis basically relies on image classification
(e.g., pixel-based) and segmentation (e.g., Object-Based Image Analysis (OBIA)) techniques [6,7],
with the help of handcrafted features extracted from spectral (e.g., reflectance and spectral indices, like
Normalized Difference Vegetation Index (NDVI)) and spatial (texture statistics, morphological profiles,
and oriented gradients) [8,9]. With an ever-increasing focus on rural areas, satellite images have been
extensively used for rural settlement mapping [10,11]. Nevertheless, applying HSR images to rural
settlement detection remains a challenging task due to the following issues. First, the size and spatial
distribution of rural settlements varies significantly, e.g., clustered or scattered, because rural planning
is changing over time. Second, the intra-class variation makes it difficult to distinguish rural settlements
from construction materials when using spectral information alone. Third, when considering large
spatial areas, the spectral and spatial responses from ground objects present an extremely complex
pattern [8]. In order to discriminate rural settlements, more context information is required in the
classification. In previous studies, such as [12,13], landscape metrics were used as the spatial contextual
information to identify rural settlements from HSR satellite imagery. These methods exploit tailored
segment-based features and have achieved acceptable performance. However, parameters optimization
and handcrafted features selection are laborious tasks and are highly hinged upon expert experience,
and trial-and-error tests.

Deep learning methods, such as convolutional neural networks (CNNs), have shown great potential
for automatically features learning without human intervention. CNNs are able to generate robust
feature representations hierarchically and have become increasingly popular in image classification
and semantic segmentation [14]. Semantic segmentation for remote sensing data usually refers to
extracting terrestrial objects from earth observation images using CNNs model, that is, each pixel is
assigned a semantic label in pixel-based classification [15]. The fully convolutional network (FCN) [16]
extends CNNs to segmentation, emerging as the preferred scheme for semantic labeling tasks. FCN
inputs images of arbitrary sizes into a standard CNN, extract feature maps using layer-wise activation
and abstraction, and then output high resolution predictions in an end-to-end fashion. The essential
advantages of FCNs are the intrinsic ability to enhance feature representation and the flexibility
to accept input images of any size. Previous studies have applied FCN and its variants to detect
buildings and settlements [17–19]. It is further found that incorporating contextual relations in CNNs
can improve classification accuracy [20,21]. Nevertheless, most of the above-mentioned approaches
are designed to extract target objects in urban areas from the standard datasets [22]. In rural areas,
built-up areas tend to be sparse and can be easily omitted [23]. Due to the significant differences in the
appearance of urban and rural buildings, directly employing existing deep approaches to map rural
settlements does not guarantee good performance. In addition, the difficulty in image interpretation
increases sharply as the spatial resolution increases. Therefore, we wish to make use of the advantages
of deep learning technique to contribute to the area of rural settlements identification in HSR images.
By far, only a few studies applied FCNs to extract rural residential areas [24,25], and most of them
were limited by the spatial resolution of images or the extent of application. The effectiveness of FCNs
in rural settlement mapping using HSR images requires further in-depth examination. In short, it is
imperative to develop an effective method to buttress automatic extraction of rural settlements using
HSR images.

The overall objective of this paper is to develop a framework for automatically identifying rural
settlements in HSR satellite images based on deep learning technique. Our main contributions are:
(1) This application introduces a deep FCN method to recognize rural settlements. Specifically, dilated
convolutions are used to extract deep features at high spatial resolution. (2) A multiple scale context
subnetwork, which adopts a popular squeeze and excitation (SE) module [26] to aggregate multi-scale
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context, is exploited to generate discriminative representations. The proposed deep learning-based
rural settlement extraction scheme can flexibly take multi-spectral HSR images as input to distinguish
different types of rural settlements.

2. Study Area and Data

In this research, eleven towns of Tongxiang County were selected as study area, a typical rural
region undergoing rapid rural development and transformation in the Yangtze River delta of China
(120◦30′13”E, 30◦41′10”W). Tongxiang, located in the Hangjiahu plain, has a temperate climate with
distinct seasonality. Since 2000, several land consolidation projects have been carried out to promote
the construction of new countryside. Currently, the construction and renovation of countryside are
still ongoing in Tongxiang, so the old scattered low-rise houses are mixed with uniformly planned
residential buildings. Therefore, this area is an ideal study area to examine our proposed method.
We preliminarily divide these settlements into two categories. Figure 1 shows examples of two types
of rural settlements in the study area—low-density settlements and high-density settlements.

Figure 1. GaoFen-2 image of Tongxiang study area on July 2016. Example of (a) low-density rural
settlement and (b) high-density rural settlement.

1. Low-density settlements (LDS): most of LDS are old-style rural settlements which are scattered
and disorderly distributed and have different orientations. These low-density rural settlements are
mainly located close to rivers and streams in support of farming and transportation of smallholders.
The boundaries of low-density settlements are obscured by the surrounding vegetation.

2. High-density settlements (HDS): newly built residential areas where multi-story buildings
accommodate several families. Such settlements have a higher building density than low-density
settlements, and buildings inside these settlements have an identical spacing and the same surface.
High-density settlements mainly distribute adjacent to the newly built transportation roads,
providing easy access to nearby towns.
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China’s GaoFen-2 (GF-2) HSR images were used, comprising four multispectral bands (MSS)
with a spatial resolution of 4 m and a panchromatic band (PAN) with a spatial resolution of 1 m.
The acquisition time of two images was on July 2016. And we collected the land use data of the study
area in 2015 (provided by the Bureau of Land and Resources, Tongxiang, China) to generate ground
truth data.

3. Methods

Figure 2 demonstrates the flowchart of our proposed method. First, the GF-2 image was
pre-processed and split into training set and test set. Second, the trained model was used to classify the
rural settlements. Finally, accuracy assessment was conduct on the test set. The details of the proposed
method are described in the following subsections.

 

Figure 2. Flowchart of the proposed research framework: (A) generate data sets, (B) model training,
and (C) accuracy assessment.

3.1. Data Preprocessing

For the cloud-free and haze-free atmospheric condition in the acquired image, there was no need
for atmospheric correction in the preprocessing. After orthorectification, the MSS image and PAN
images were then fused using the Gram–Schmidt pan-sharpening method [27]. The fusion image
(1 m) had a dimension of 29,970 × 34,897 pixels, equivalent to about 700 km2. The reference map
was generated based on (1) the land-use change surveying map and (2) visual interpretation by local
experts. Note that the ground truth data in our study was spatially sparse, which thereby was more in
line with real-world scenarios, where densely annotated data is rarely available.

3.2. Rural Settlement Detection Using FCN

3.2.1. Dilated Residual Convolutional Network

The task of automatically extracting settlement information in a large rural region can be
formulated as a semantic labeling problem to distinguish pixels of categories. In this section, we wish
to put forward an end-to-end method based on semantic segmentation scheme to identify rural
settlements. Our approach used ResNet50 architecture as the feature extractor of FCN-based method.
The ResNet consists of five stages of convolutional layers. In the first stage, a convolution layer
performs 7 × 7 convolution and is followed by a maxpooling operation, which outputs the features
that are a quarter of the size of the original image. In the remaining four stages, each stage contains
several blocks, which is a stack of two 3 × 3 convolutional layers. Moreover, two types of shortcut
connection are introduced in the blocks to fuse input feature maps with output feature maps according
to the size of input and output features. More details about ResNet50 can be found in [28].

As the network goes deeper, the resolution of feature maps becomes smaller while the channels
increase. For example, the output feature maps of the last stage are reduced to 1/32 of the size of the

90



Sensors 2020, 20, 6062

original input. Compared with the complex background in HSR images, the objects of our interest (i.e.,
rural settlements) are smaller and sparser. Besides, the loss of spatial information due to the progressive
down-sampling in the network is harmful for identifying small objects. To retain the large receptive
field and increase spatial resolution in higher layers of network simultaneously, we adopt convolutions
with dilated kernels into the ResNet. In the last two stages of original ResNet50, the strided convolution
layer, which is used to reduce the output resolution at the beginning of each stage, is substituted by a
convolution layer with the stride of 1 (meaning no downsampling). Recent studies [29,30] indicate this
conversion does not affect the receptive field of the first layer of the stage, but it reduces the receptive
field of subsequent layers by half. In order to increase the receptive field of those layers, convolutions
with different dilation factors were adopted. Specifically, the dilation ratio of convolutional kernel was
set as 2 and 5 in the fourth and the fifth stage, respectively. Dilated convolutions were thus expected to
enlarge the receptive field of layers and to generate features with high spatial resolution. As a result,
the output size would increase from 1/32 to 1/8 of the input image.

3.2.2. Multi-Scale Context Subnetwork

Some upgraded low-density houses and high-density buildings may have used similar roofing
materials. In order to distinguish between the two categories of rural settlements, their spatial
distribution and context need to be fully considered. Due to a great variety of the size of rural
settlements, it is necessary to capture multiple scales information to identify objects in rural residential
areas. Instead of using multiple rescaled versions of an image as input to obtain multi-scale context
information, we introduced a multi-scale spatial context structure to handle the scale variation of
rural residential objects. Commonly, the deep layers in CNNs respond to global context information
and the shallow layers are more likely to be activated by local texture and patterns. Benefit from the
dilation convolution maintaining spatial resolution, the three scale-levels features extracted by the
backbone ResNet50 can be utilized at the same time. Our structure further enhanced the information
propagation across layers. As shown in Figure 3, the output features of last three stages were filtered by
1 × 1 convolution layers to shrink the channel to 256 and then concatenated together. It is notable that
we appended 3 × 3 convolution on the merged map to generate the subsequent feature map, which was
to reduce the misalignment when fusing features of different levels. Secondly, a residual correction
was introduced to alleviate the lack of information during feature fusion. Finally, feature selection was
conducted by employing an advanced channel encoding module named “squeeze and excitation” block
(SE block) [26], which adaptively recalibrated channel-wise feature responses. Once features were input
into the module, global average pooling was used to generate a vector as channel-wise descriptors of the
input features. Subsequently, two fully connected layers were applied to the vector to learn nonlinear
interaction among channels. The sigmoid activation function would then generate a weight vector as a
scale factor for the class-dependent features. The features refined by the above reweighting process
had discriminative representations, which were helpful for object identification. Based on abundant
positioning and identification information, the successive 3 × 3 convolution layer was expected to
produce more accurate features. Finally, the refined deep features were then concatenated with the
corresponding low-level features (e.g., Res-layer1 in ResNet50) in order to restore spatial details.
After the fusion, we applied another 3 × 3 convolution layer and a simple bilinear upsampling to get
the final segmentation. Table S1 shows the specific design of our segmentation network.
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Figure 3. Overview of the proposed detection architecture. (A) the Dilated-ResNet extracted multi-level
features with high spatial resolution; (B) the context subnetwork exploited the multi-scale context and
mapped features to desired outputs.

3.2.3. Multi-Spectral Images-Based Transfer Learning

CNNs are generally data-driven approach and are usually trained on large datasets. In practice,
a sufficiently large data set is rare. Instead, it is more practical to use a deep network previously
trained on a big dataset (e.g., ImageNet) as an initial model or a feature extractor for the target task.
This scheme is known as transfer learning [31]. In brief, the idea of transfer learning is to leverage
knowledge from the source domain to boost learning in the target domain, as features of CNNs
are more generic in early layers. Compared with training from scratch, the cost of fine-tuning the
pre-trained network is much lower. Several attempts have been made to improve the learning task in
remote sensing datasets by using transfer learning [32–34].

The ResNet50 is initially designed for RGB images [28]. To better adapt to multispectral remote
sensing data which have the red (R), green (G), blue (B) and near-infrared (NIR) bands, the network
was expanded to take advantage of more input bands than RGB. Different from the idea of using an
additional convolution layer at the beginning of network [35] or adding a branch to accept multiband
inputs [34], we directly modified the original 7 × 7 convolution layer in the first stage of ResNet to
make it flexible to receive multispectral images and output 64 features.

3.3. Method Implementation and Accuracy Assessment

A total of 7605 tiles of a size of 256 × 256 pixels were cropped from the training area of the
preprocessed GF-2 imagery, and we randomly selected about 20% of image patches as the validation
set. Data augmentations consisting of flipping and rotation of 90 degrees were applied to enlarge the
training set. The proposed network was trained on a 24 GB Nvidia P6000 GPU. The weights of network
were initialized using the pre-trained ResNet50 model. We copied the weights of the first channel to
initialize the newly added channel in the first convolution layer. An adaptive algorithm Adam [36]
was employed as the optimizer, and the learning rate was set to 0.001. A batch size of 8 was used,
running the optimizer for 30 epochs with an early stopping strategy which stopped training process
when the monitored quantity (i.e., validation loss) had stopped improving for 5 epochs. The proposed
method was implemented on the Pytorch framework.

Figure 4 shows the training area and the test area in the experiment. The point test samples were
all over the entire study area except the training area. In order to further evaluate the area accuracy,
we selected a small area in the test area as the polygon test subset, and rural settlements in the polygon
test subset were densely labeled. The random point generating algorithm in ArcGIS [37] was applied
to generate a total of 11,628 sample points. After that, we manually annotated these sample points
based on higher resolution images of Google Earth and visual interpretation. In addition to the two
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types of settlements about which we were concerned, all other objects in the image were included in
the background category. Table 1 lists the number of test set samples.

Figure 4. The (a) Tongxiang data set used in the experiments. (b) Example of test samples.

Table 1. The number of testing samples.

LDS HDS Backgrounds Sum

Point-based testing samples 6125 2616 2887 11,628
Polygon-based testing samples 1831 438 / 2269

Following the previous studies, the overall accuracy (OA), producer’s accuracy (PA), user’s
accuracy (UA) and Kappa coefficient (Kappa) [38] were used to assess the performances of methods.
The producer’s accuracy represents the probability that pixels of a category are correctly classified,
whereas the user’s accuracy indicates the probability that the classified pixels belong to this category.
Overall accuracy is the percentage of correctly classified pixels. The Kappa analysis is a discrete
multivariate technique used in accuracy assessment to test whether one error matrix is significantly
different from another [39], and Kappa coefficient calculated based on the individual error matrices
can be regarded as another measure of accuracy.

4. Results and Discussions

4.1. Rural Settlements Identification

Figure 5 shows the resulting rural settlements of our study area. Tables 2 and 3 present confusion
matrices on test sets. The proposed method achieved the OA of 98.31% with a Kappa coefficient of 0.9724
on the point test set, and the UA and PA of two settlements classes reached about 98%. The classification
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accuracy on polygon-based testing samples was different, the accuracies of low-density class (UA of
88.00% and PA of 84.97%) were higher than those of high-density class (UA of 85.22% and PA of 84.68%).
In terms of overall classification, the Kappa coefficient of 0.8591 in the polygon-based testing method
were lower than that of the point-based test set. This was because the polygon-based test method had
strict requirements on the object boundary. Visual interpretation indicates that the proposed method
can effectively distinguish rural residential areas from other man-made structures (white circle in
Figure 5). It was observed that the footprints of HDS were more smoothed than the LDS, where the
latter ones were inclined to be obscured by the surroundings, e.g., tress and shadows. The introduction
of multi-scale context made it easier for HDS with relatively uniform scales to be detected, which was
reflected by the PA. In addition, a few LDS houses on the edge of HDS were misclassified into isolated
houses within HDS. This was caused by a similar roofs and ambient vegetation (red circle in Figure 5).
It further suggests that the polygon-based testing method is necessary. Previous studies considered
recognition accuracy, but sometimes did not include area accuracy of rural settlements.

 
Figure 5. Classification result of the polygon test area.

Table 2. Confusion matrix of point test set.

Predicted Class

LDS HDS Backgrounds Sum

Ground truth LDS 5997 3 125 6125
HDS 4 2551 61 2616

Backgrounds 4 0 2883 2887
Sum 6005 2554 3069 11,628

UA 99.87% 99.88% 93.94%
PA 97.91% 97.52% 99.86%
OA 98.31%

Kappa 0.9724
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Table 3. Confusion matrix of polygon test set (m2).

Predicted Class

LDS HDS Backgrounds Sum

Ground truth LDS 720,551 9228 118,198 847,977
HDS 2673 349,060 60,476 412,209

Backgrounds 95,539 51,323 24,231,862 24,378,724
Sum 818,763 409,611 24,410,536 25,638,910

UA 88.00% 85.22% 99.27%
PA 84.97% 84.68% 99.40%
OA 98.68%

Kappa 0.8591

4.2. Ablation Experiments of Model

This study proposed a deep learning-based approach to extract rural settlements using HSR
images. Experiments were carried out to explore the contribution of each part of the proposed deep
method. Table 3 compares the performance of models with different settings based on the polygon
test set. As showed in Table 4, when applying the original ResNet50 for segmentation, the accuracies
of low-density class (UA of 82.50% and PA of 83.30%) were higher than those of high-density class
(UA of 80.45% and PA of 67.75%). The low classification of PA indicates extracting HDS is rather
challenging than LDS. When the last two stages of the baseline network were replaced by dilated
convolutions, the PA index of high-density class was increased significantly by about 9%, while the UA
of high-density class and the PA of low-density class had a moderate decrease. These indicated that
the sub-module (+Dilation) was still insufficient. The possible reasons for the inconsistent changes
in accuracies are the contradiction between the improvements brought by dilated convolutions and
the defects of using single-scale feature. When comparing with the sub-module (+Dilation), another
sub-module (+Dilation+Multiscale) yielded better accuracy on high-density class (UA of 84.88% and
PA of 83.19%), with a slight increase in PA of low-density class, indicating that multi-scale context
information enhanced the recognition power of the model. From Table 4, it can be seen that the
proposed model achieved the largest OA of 98.68% with a Kappa coefficient of 0.8591. At the top of
the aggregation layer, SE block captured feature dependencies in the channel dimension, and such
feature selection process further improved the model performance. Figure 6 shows the visualization
results of test set samples before and after recalibration with the SE block, implemented by t-SNE [40]
technique. After the SE block, some samples of rural settlements classes gathered and were away from
the background group, implying that the output of the channel relation module is more helpful for this
classification task.

Table 4. Model comparisons with baseline, where values in bold are the best.

OA UA PA Kappa

LDS HDS LDS HDS

Res50Seg (Baseline) 98.36% 82.50% 80.45% 83.30% 67.75% 0.8329
+Dilation 98.39% 84.25% 78.76% 80.53% 76.90% 0.8363

+Dilation+Multiscale 98.53% 87.24% 84.88% 81.90% 83.19% 0.8513
+Dilation+Multiscale+SE (Ours) 98.68% 88.00% 85.22% 84.97% 84.68% 0.8591
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(A) (B) 

Figure 6. Visualization of test set samples before (A) and after recalibration (B) with SE block. Different
colors represent different categories.

4.3. Data Input Strategies

Further experiments on two data input strategies, i.e., four channels and three channels,
were conducted on the polygon test set. It was found that the classification accuracy of NIR-R-G-B
composite images was slightly better than that of the R-G-B, but no significant difference was observed
(Figure 7). It indicates that additional information of NIR band has positive effects on rural settlement
extraction, while the powerful ability of CNNs to extract texture information from R-G-B images
offset the gap between the two input strategies. Although the NIR band did not provide as great an
improvement in accuracy as the DSM information [34], the strategy of using pre-trained weights of
RGB data to initialize multispectral remote sensing images could be extended in the future.

Figure 7. Accuracy assessment of different data input strategies.

4.4. Comparative Studies with Different Methods

Five state-of-the-art methods were compared, including an object-based image analysis (OBIA)
method and four FCN based deep models. These methods have been proven effective in delineation of
settlements and/or object detection for satellite images. The detailed information of each method can
be found in the publication and we just briefly summarized their key technologies.

1. OBIA [12]: a novel object-based image classification method which integrates hierarchical
multi-scale segmentation and landscape analysis. This method makes use of spatial contextual
information and subdivides different types of rural settlements with high accuracy.
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2. FCN [25]: a proposed fully convolutional network which comprises an encoder based on the
VGG-16 network and a decoder consists of three stacked deconvolution layers. As far as we
know, this is the first time that a deep learning FCN model has been used for rural residential
areas extraction.

3. UNet [41]: a robust CNN architecture which consists of two symmetric contracting and expansive
paths, which are made up of successive convolution layers. UNet is one of the deep learning
methods often applied in the remote sensing field due to its efficiency and simplicity [42].

4. SegNet [43]: an encoder-decoder architecture uses the pooling indices to perform upsampling.
It is a classic and efficient model that is often used as a baseline for semantic segmentation.
Persello et al. [44] successfully delineated agricultural fields in smallholder farms from satellite
images using SegNet.

5. DeeplabV3+ [20]: a state-of-the-art semantic segmentation model combining spatial pyramid
pooling module and encode-decoder structure. It has achieve a performance of 89% on the
PASCAL VOC 2012 semantic segmentation dataset.

Figure 8 demonstrates samples selected from classification results of all six methods based on
the polygon test set. Quantitative results are presented in Table 5. In terms of overall performance,
all six methods exhibited a high accuracy (OA > 0.97), and the results of the Kappa coefficient were
consistent with OA. However, there were obvious differences about class-specific measures among the
methods. With regards to UA, PA, the proposed method achieved the best accuracies, slightly better
than the accuracies of DeeplabV3+. The UA and PA of SegNet and UNet were relatively close, but not
as good as the proposed method. Unfortunately, the PA of FCN was lowered than other methods,
indicating FCN is not the best choice to distinguish settlements pixels. Finally, the results of OBIA
indicate that, for high-density class, the object-based method performs better than SegNet and UNet in
PA significantly and slightly worse in UA, but lags far behind in Kappa values.

 
Figure 8. Example of results on Tongxiang polygon test set. (a) Original images, (b) OBIA, (c) FCN,
(d) UNet, (e) SegNet, (f) DeeplabV3+, (g) The proposed method.
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Table 5. Accuracy assessment of different methods, where values in bold are the best.

Method OA UA PA Kappa

LDS HDS LDS HDS

OBIA 97.54% 75.24% 71.44% 72.24% 79.95% 0.7397
FCN 97.46% 73.11% 75.44% 70.28% 55.46% 0.7205
UNet 98.39% 84.58% 77.08% 80.32% 66.45% 0.8245

SegNet 98.37% 84.06% 78.51% 80.20% 68.79% 0.8232
DeeplabV3+ 98.69% 87.92% 83.43% 85.51% 82.93% 0.8520

Ours 98.68% 88.00% 85.22% 84.97% 84.68% 0.8591

For the low-density class, all deep techniques, except FCN, achieved satisfying performance
because the number of low-density pixels was relatively large in the training data, which was an
advantage for data-driven deep learning methods. The FCN model only used deep features for
classification, and the loss of spatial information led to blurred building boundaries. In contrast,
the object-based method performed better for HDS identification. Unlike the end-to-end deep methods,
the performance of object-based method was heavily depended on the scale parameter of segmentation.
The new-style HDS’ scale was relatively uniform and could be effectively extracted using OBIA
method, even with a small sample size. Comparatively, LDS had a large size variation and were more
sensitive to the choice of segmentation scale. Although the multi-context OBIA method exploited
multiple segmentation scales to obtain the objects to be classified, it was still insufficient to separate
the LDS of different sizes from the surrounding vegetation. Figure 8b shows that the OBIA method
tends to intermingle the adjacent houses with vegetation or ground due to an improper segmentation
scale selection. Moreover, manually designed features reduced the generalizability of methods in a
large region. SegNet and UNet struggled in scenes where LDS and HDS are co-existed and mixed
(Figure 8d,e). Compared with SegNet and UNet, using multi-scale context information helped the
proposed method and DeeplabV3+ to reduce the misclassification of HDS. However, it inevitably
induces some ambiguities on the boundaries of polygons (Figure 8f,g).

Table 6 lists the computing time of the proposed method and other methods. For the OBIA method,
the segmentation and classification were conducted separately, and thereby showed the least time
consumption. Instead, deep learning methods were end-to-end approaches. Among deep learning
methods, FCN consumed fewer computing resources and had the shortest inference time because
FCN had abandoned the full connection layers with lots of parameters. Therefore, the lack of feature
representation capability limited the performance of FCN in this task. The proposed model showed
similar model size and inference time with SegNet, but it took less training time to reach convergence.
UNet and DeeplabV3+ have more parameters and they take longer to converge. Overall, the proposed
method is more efficient.

Table 6. The efficiency of different methods.

Method Parameters Training Time Inference Time

OBIA ~0.5 h ~10 m
FCN 12.38 million ~3.1 h 0 m 17 s
UNet 33.40 million ~11.8 h 0 m 39 s

SegNet 29.44 million ~ 8.2 h 0 m 31 s
DeeplabV3+ 39.76 million ~12.9 h 0 m 32 s

Ours 28.04 million ~5.8 h 0 m 25 s

4.5. Analysis and Potential Improvements

In our analysis, we found that all selected deep methods, except the proposed method and
DeeplabV3+, were not as effective in the high-density category as in the low-density category.
One possible reason was that the downsampling operation of the comparative methods was aggressive.
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Instead, using dilated residual convolutional network retained the spatial resolution of features. Given
the input image patch (256 × 256), the deepest feature map of the proposed network maintains an
appropriate size (32 × 32), which helps to restore the geometry of settlements. In this way, the accuracy
of HDS increased greatly. However, the problem of scale selection remained. Unsynchronized scales of
different types of settlements made it difficult to determine the optimal scale. The proposed multi-scale
context subnetwork involved multiple scales, thereby reducing the dependence on a single optimal
scale to a certain extent. However, the minimum scale (32 × 32) of representations applicable in the
Tongxiang dataset may not match other HSR data. Thus, if the proposed method is applied to other
data, determining an appropriate scale range would depend on the size of settlements objects and
input images.

In some areas, HDS and LDS could not be easily recognized as they were in similar shapes,
structures. Deep features at multiple scale could handle such complex patterns of settlements
objects of different sizes, and the SE block modeled the global contextual relation of fused features,
enabling feature selection in the channel dimension. The multi-scale context subnetwork gave more
confident predictions at pixel level. The way that DeeplabV3+ uses the spatial pyramid module
to encode multi-scale context information has achieved similar effects as our context subnetwork.
The experimental results demonstrated that the proposed multi-scale network distinguish two types
of settlements objects effectively. Nevertheless, contours of rural settlements needed to be further
refined. Blurred object boundaries were an inherent and common defect of CNN-based semantic
segmentation models. The downsampling process in the CNN model inevitably lost spatial details,
which was detrimental to the preservation of edge information. However, this was a trade-off between
spatial resolution and semantic feature representation of segmentation models. Our results showed
that in this application, the use of dilated convolution instead of downsampling alleviated the loss of
boundary details.

Segmentation and classification are conducted separately in OBIA method, which makes the
classification result greatly affected by the performance of segmentation algorithm. Besides, handcrafted
features used in OBIA are difficult to achieve an optimal balance between discriminability and
robustness, since these features cannot easily consider the details of real data, especially in the case of
HSR images that images can change a lot in large extent [45]. Instead, deep learning methods conduct
segmentation and classification at the same time, and the classification results in Table 5 prove the
superiority of the proposed method. Though deep learning methods take longer to train, it takes
only a few seconds for a trained network to classify images. From the perspective of application,
this is more applicable to the situation of big data of HSR images. Moreover, observation from the
OBIA results, image segments could preserve the precise edges if under the appropriate segmentation
scale. According to this observation, it is promising to combine the segmentation of OBIA and the
feature representation of deep learning to classify rural settlements. Furthermore, this leaves open
the question of whether a non-differentiable segmentation algorithm can be integrated into CNNs.
In future, we hope to find a way to integrate the advantage of OBIA segmentation into the proposed
framework of a deep network for rural settlement mapping.

5. Conclusions

Rural settlements classification using HSR remotely sensed image remains a challenging task,
due to the intra-class spectral variation and spatial scale variation. This paper presents an effective
rural settlements extraction method based on a deep fully convolutional network (FCN) from HSR
satellite images. In the proposed multi-scale FCN model, dilated convolution was utilized to extract
feature representations with high spatial resolution. A subnetwork improved the discrimination power
of the network by aggregating and re-weighting multi-scale context information across layers. High
spatial resolution representations and multi-scale context information helped to locate and further
subdivide rural settlements. Experimental results on GF-2 images acquired over a typical rural area
located in Tongxiang, China, showed the proposed method produced the most accurate classification
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results of rural settlements, comparing with other state-of-the-art methods and the sub-modules. In
summary, our proposed method was promising in terms of its potential for rural settlements extraction
from HSR images. From a rural management perspective, this work describes a scheme for rapid
identification of rural settlements in a large region by using HSR images. The classification method
presented here could be extended to the identification of rural settlements in a larger area, and the
results can be used as a guide for on-site verification or enforcement in cadastral inventory.

In future works, further improvements could be made by integrating multi-temporal HSR images
and multi-modal data, so that the dynamics of rural settlements can be characterized.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/21/6062/s1,
Table S1: Specification of our network architecture.
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Abstract: Detecting changes between the existing building basemaps and newly acquired high spatial
resolution remotely sensed (HRS) images is a time-consuming task. This is mainly because of the data
labeling and poor performance of hand-crafted features. In this paper, for efficient feature extraction,
we propose a fully convolutional feature extractor that is reconstructed from the deep convolutional
neural network (DCNN) and pre-trained on the Pascal VOC dataset. Our proposed method extract
pixel-wise features, and choose salient features based on a random forest (RF) algorithm using the
existing basemaps. A data cleaning method through cross-validation and label-uncertainty estimation
is also proposed to select potential correct labels and use them for training an RF classifier to extract
the building from new HRS images. The pixel-wise initial classification results are refined based on a
superpixel-based graph cuts algorithm and compared to the existing building basemaps to obtain the
change map. Experiments with two simulated and three real datasets confirm the effectiveness of our
proposed method and indicate high accuracy and low false alarm rate.

Keywords: changes detection; fully convolutional feature maps; outdated building map; VHR images

1. Introduction

Developing countries have witnessed a rapid expansion of urban areas during the last decades.
With the fast urbanization, updating buildings geo-database plays an important role in urban planning,
as it provides valuable information regarding, e.g., land use/cover monitoring [1], evaluation of
agricultural lands decline [2], disaster assessment [3], civil BIM updating [4]. Such information also
enables the government to adopt suitable and sustainable development strategies. Automatic building
geo-database updating relies on identifying the areas, where changes occurred. Currently, change
identification is mainly a labor-intensive work, especially in urban environments, due to its complexity.
Therefore, automatic geo-database updating based on remote sensing images remains an open and
unsolved issue.

During the past decades, several methods have been proposed to increase the level of automation
in change detection. According to their comparison basis, the change detection methods can be
categorized into two classes: (1) Image-image comparison; and (2) image-map comparison [5].
The former approach aims at direct recognition of differences between multi-temporal remotely sensed
images [6,7]. The image-map comparison-based method, however, detects changes between existing
data and newly acquired images, where the semantic classification of the newly acquired images is
also required. For image-map comparison, supervised machine learning methods are employed, see,
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e.g., Reference [8]. However, for an accurate classifier to be trained, a large enough set of labeled
samples is required. Labeling samples, however, need expensive manual work and a high level of
expertise and knowledge on image interpretation.

To address this issue, existing GIS data or online maps, such as Open Street Map (OSM) data,
and Google maps, are employed to provide prior information. For example, Bouziani et al. obtain prior
class knowledge from the existing geo-database to identify the change of buildings based on transitional
probability between classes, and to change map segmentation [5]. Kaiser et al. exploit the online
map to guide aerial image segmentation, although they simply ignore the temporal inconsistencies
between the used map and aerial images, and simply count on human interaction to remove the
mis-registrations between the map and the roof images of buildings [9]. Wan et al. employ OSM
data to obtain initial samples for training SVM to classify HRS images [10]. To alleviate the effect
of intrinsic errors caused by incorrect labeling by volunteers, they further use a cluster analysis to
filter out the possible errors. Gevaert et al. provide a model for outdated base-maps as noisy labels
of newly acquired UAV images, and then utilize data cleansing methods to filter out the potentially
mislabeled samples, and further re-predict their labels by supervised classification [11]. Chen et al.
treat historical digital line graph (DLG) data as the source of initial noisy labels, and then the pure
part is selected by an iterative training method [12]. For highly accurate classification, they also use
several hand-crafted image-based and point-cloud based features for the supervised classification task.
The elevation feature is also very useful to distinguish buildings; however, it is not always available.

In addition to the availability of a large enough set of labeled samples, selecting proper
discriminable features is another key point for classification. Some carefully hand-crafted features
are heuristically proposed and combined to classify VHR images. Most of the existing methods
employ spectral and textural features, or DEM data, as feature descriptors, see References [11,13,14].
Although the hand-crafted features are designed to describe a specific image pattern, their performance
depends on the available training data. Different from hand-crafted features, the recently developed
deep learning techniques directly learn features from the original data. Deep learning is widely used
in various research areas, e.g., natural image classification [15], object detection [16], and semantic
segmentation [17]. Deep learning methods are also used to learn features from remote sensing (RS)
images for classification [18]. For instance, autoencoder-based techniques are used in RS for extracting
features from images [19–21]. Such methods learn to extract feature encodings in an unsupervised
setting, which can then be reconstructed back to the input with minimum error [21]. Different variations
of autoencoders are applied to various tasks in the RS field. By increasing the spatial resolution
of the RS images, the training of such autoencoders becomes time-consuming and further requires
large memory.

In practice, a large set of accurately labeled data is often unavailable. In recent works, this issue is
addressed in the RS domain by training deep convolutional neural networks (DCNNs) from scratch.
Feature extraction DCNNs is also widely used in computer vision research, where the training is
based on large open-source datasets, see References [22,23]. The intuition behind DCNNs is that
with strong learning abilities, DCNNs can learn to respond to various kinds of feature patterns in
different abstract-levels from large and complex datasets. The learned features can then be generalized
to be used for smaller datasets, even if those datasets are remarkably different from the training
datasets [24]. Much research has been done to generate a single feature descriptor for the whole image
with high-level activations of pre-trained DCNNs [25]. In these methods, the size of the input is
strictly fixed, so interpolations are needed to resize the images to a specified scale. To extract dense
feature maps in a pixel-wise fashion, such methods need to crop window, resize, and do forward
propagation at the center of each pixel [20,26]. Since most of the computation in the neighboring
windows are shared through the convolution, they are computationally redundant and limited to
small/moderate-size images. Many existing methods focus on extracting features from the back part of
DCNNs (i.e., the last convolutional layer and fc layers) and generate one single feature description for
the whole image.

104



Sensors 2020, 20, 5538

To improve classification performance, the spatial context of the images has to be fully used [23,27].
Single-pixel based methods are unable to take a large enough image field to distinguish the building
objects from the background information and ensure a consistent classification result in the global
context. Several pixel-based methods are proved to be successful for change detection of low- and
moderate-resolution remotely sensed images [7]. Nevertheless, with the emergence of high-resolution
remote sensing (HRS) data, such methods are not effective, since the results can easily keep salt-and-pepper
noise, due to increasing (decreasing) intra-(inter-)class variance [28]. To address this issue, object-based
methods are adopted in References [29–32]. Such object-based change detection methods significantly
reduce the required amount of data to be processed, and further generate change recognition result with
shape and boundary information that can be directly used to update geo-databases, see Reference [33].
This however may lead to new problems as object segmentation is intrinsically challenging for remote
sensing images [34].

In this paper, we propose to cast the image-map change detection problem into the identification
and correction of noisy labels. For extracting discriminable features, a fully convolutional network
(FCN) pre-trained on the PASCAL VOC dataset [17] is treated as a fully convolutional feature extractor
(FCFE). Since the long-range relationship comparatively is trivial in the HRS images, and spatial
information is severely lost by down-sampling in the last convolutional layers, only first two groups
of convolutional layers (4 layers) are preserved. The tensors from all convolutional layers are then
up-sampled to the same size of the input and fused together by concatenation as pixel-wise features.
Through FCFE, the feature computation of all pixels is achieved by a single forward propagation.
Therefore, it is more efficient than that of the most window-based feature extractors. However, directly
concatenated and up-sampled pixel-wise features are redundant and have a high dimension for
subsequent processing. Therefore, a noise label guided feature selection is proposed to select the
most informative features for building extraction. As pixel-wise re-predicted labels of newly acquired
HRS images are usually fragmented, especially in areas with a similar spectral, textural characteristic,
such as buildings, roads, and bare soil. To alleviate this problem, new HRS images are segmented into
superpixels, and then superpixel-based graph cuts are used to refine the initial classification result.
For further performance improvement, we also propose a new label uncertainty calculation technique
for each superpixel.

The contribution of our work are the following: (1) We present a novel framework with the
combination of pixel-wise and object-based analysis for image-map change detection based on data
cleaning method; (2) FCN pre-trained on the PASCAL VOC dataset for semantic segmentation is then
used to reconstruct the proposed fully convolutional feature extractors to extract dense features of
HRS images; and (3) outdated noise label is then used to guide the feature selection for eliminating the
redundancy of the features.

The remainder of this paper is organized as the following. Section 2 provides the details of the
proposed image-map change detection framework. Section 3 analyses the performance of experiments
conducted on two simulated, and three real datasets. Finally, conclusions are presented in Section 4.

2. Methods

2.1. Overview of the Method

The workflow of the proposed approach is illustrated in Figure 1, where the three main
components are:

(1) Feature calculation, which is a fully convolutional feature extractor reconstructed from FCN-8s [17]
and pre-trained on the PASCAL VOC dataset. Feature calculation extracts multi-scale pixel-wise
features from newly acquired HRS images. An RF classifier is then trained to rank the importance
of the extracted features based on the outdated basemap. After that, representative features are
selected as feature descriptors for each pixel.
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(2) Initial classification, where the label uncertainty for each pixel is estimated through cross-validation
based on selected features. The reliable (unchanged) pixels are then separated as training samples
to train the new RF classifier, and potentially changed pixels are re-predicted.

(3) Post optimization and change map computing, where the SLIC (Simple Linear Iterative Cluster)
algorithm [35] is used to segment HRS images into superpixels, and the probability of superpixels
for each label is estimated. The negative logarithm of probability is then used to construct the
data term. A Gaussian kernel of normalized RGB feature is then used to construct a smooth
term of the energy function. After that, the graph cuts algorithm is used to minimize the energy
function and obtain the optimized, updated label. The updated labels are finally compared with
the outdated basemap to compute the change map.

 
Figure 1. Flowchart of the proposed change detection framework. HRS, resolution remotely sensed.

2.2. Feature Extraction through Fully Convolutional Feature Extractor

Although the last layers of CNNs are more effective in capturing semantics, they are ineffective in
capturing fine-grained spatial details, which are needed for spatial feature extraction [36]. Two obstacles
that hinder the direct transformation of DCNNs into dense feature extractors are: (1) Pooling layers
shrink features maps exponentially, and this depresses valuable spatial information; (2) fc layers map
fix-size feature tensors into activation vectors, this constrains the input size. In computer vision, images
are relatively small and contain only a few salient objects and/or one main scene. This makes cascaded
down-sampling important to extract relationships within the main objects. However, HRS images
contain objects this belong to different categories, and there exists no single subject being able to
globally determine the theme of HRS images. Therefore, long-range relationships captured by stacked
pooling layers seem trivial, but the local response captured by the early convolutional layers (convlayer)
is much more important.

Convolutional kernels in DCNNs pre-trained on a very-large dataset are considerably rich filter
banks capturing various kinds of features. Zeiler and Fergus demonstrate that the early convlayer
encodes low-level features, such as edges, corners, shapes, or textures, while the deeper layers extract
high-level information, such as objects, or categories [37]. Kemker et al. assert that the features
extracted by the convlayer of the pre-trained DCNNs can produce Gabor-like results [38]. Generally,
feature maps extracted by the deeper convlayer are coarse and abstract, suffer from a severe size
reduction, and contain more information of the source datasets, which is irrelevant when transferring
to a new target dataset. Nevertheless, feature maps extracted from the earlier layers are fine-grained
and adhere better to the boundaries. Therefore, one can assume that the features from early convlayers
of pre-trained DCNNs have stronger generalization abilities [39]. Since convlayers also accepts
arbitrary input size and intrinsically preserves spatial information, fully convolutional networks (FCN)
reconstructed by the early part of pre-trained DCNNs are more efficient to extract dense features.

FCN-8s [17] is an FCN pre-trained on the PASCAL VOC dataset for 20-class semantic segmentation,
is used to reconstruct the proposed fully convolutional feature extractors (FCFE). The used FCN-8s is
trained on the PASCAL VOC 2011 segmentation challenge training set, which includes 11,530 images
and 5034 segmentations. It is reconstructed and fine-tuned from VGGNet [40] that is pre-trained
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on ImageNet. FCN-8s consists of five groups of convlayers with pooling layers that encode the
input image into high-dimensional dense feature maps. It also has three deconvolutional layers
that up-sample and fuse activations from the last three pooling layers to the size of the input as the
predictions. The structure of the original FCN-8s is illustrated in Figure 2.

 
Figure 2. Structure of the original fully convolutional network (FCN)-8s [17].

2.2.1. Structure of the Proposed Fully Convolutional Feature Extractor

The structure of the proposed fully convolutional feature extractor is illustrated in Figure 3.
To reconstruct pre-trained FCN-8s for dense feature extraction tasks, we make the following three
modifications: (1) The feature maps extracted by convlayers after the pool2 layer are coarse
(i.e., one-sixteenth the size of original image), and assumed to contain more information about
source dataset. Therefore, only the first two groups of convlayers with the first pooling layers are
preserved. This modification is aimed to exploit multi-level well-generalized features, while preserving
valuable spatial information. (2) In the original FCN-8s, the first convlayer zero-pads the input image
with 100 pixels to prevent severe size-reduction imposed by cascaded pooling layers. Other convlayers
also pad the input feature map with 1 pixel. Note that all convolution kernels in FCN-8s are 3 × 3 in
size, and their output has exactly the same spatial dimension as the input. In our fully-convolutional
feature extractor (FCFE), all convlayers are set to pad input the feature map with 1 pixel. Therefore,
feature maps from the first group of convlayers have the same size as the input image, while feature
maps from the last convlayers are two-times downsampled. (3) The feature map extracted from the
last group of convlayers is upsampled to the input size using bilinear interpolation. All feature maps
are then concatenated to multi-scale deep features.

In Figure 3, the multi-scale features extracted by FCFE are up-sampled and fused feature maps
from conv1_1, conv1_2, conv2_1, and conv2_2 layers of PASCAL VOC dataset-pretrained FCN-8s
model, with 64, 64, 128, and 128 channels, respectively. Layer deconv2 uses bilinear interpolation
to upsample feature maps from conv2_1 and conv2_2 to the size of the input image and fuse them
together. The fusing1 layer concatenates the feature maps from conv1_1, conv1_2, and deconv2 to
obtain the final 384-dimensional multi-scale features.
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Figure 3. Structure of the proposed FCFE.

2.2.2. Feature Selection Guided by the Existing Basemaps Using Random Forest

Only part of the features directly extracted by the FCFE is highly discriminative for buildings,
and the rest are redundant and high-dimensional. Therefore, direct feeding of the features into the
subsequent data cleaning pipeline demands excessive computation, and also harms the data cleaning
effects. According to the study in Reference [41], each feature layer generated by DCNN responds
to a major class. Thus, the feature selection processing is performed to select the most informative
features and ensure the classification result. Feature selection is the process of removing redundant
and irrelevant features, often accomplished by determining the usefulness of all feature variables [42].
Feature selection methods can be generally classified into three categories, including supervised,
semi-supervised, and unsupervised methods. The existing building basemaps may contain erroneously
labeled areas, due to time-lapse with the newly acquired HRS image, however, the majority of the
labels remain correct and can be used in the feature selection schemes.

Here we employ RF classifiers to select features in our proposed method. RF classifier trains
multiple decision trees with a random subset of samples based on a random subset of features [43,44].
RF algorithm can be trained efficiently to process the multiple label classification problems, and it is
widely used in RS image classification tasks [43]. RF also provides the importance of the used features.
Therefore, the feature importance estimated by RF is the average importance of each decision tree.

In order to select the salient feature that discriminates well from the building to background
pixels, 384-dimensional FCFE extracted features and existing building basemaps, as pixel-wise labels,
are considered as the training set to fit an RF classifier. The features’ importance is then evaluated,
and nch (experimentally set to be 20) most important features are selected chosen to form the feature
descriptor of the newly acquired HRS image.

To visually analyze the features extracted by the proposed method, an image, as shown in Figure 4,
is used to perform the FCFE and feature selection processing. To display and compare features
inner-layer- and cross-layer-wise, eight features are randomly chosen from each layer, and a total
number of 32 feature maps are illustrated in Figure 5.

By carefully examining Figure 5, three characteristics of the feature extracted by FCFE can be
concluded: (1) A small part of the features is highly discriminative between buildings and background,
with the corresponding feature maps showing salient contrast between the two classes; (2) a large
number of features are less useful; with feature maps being ambiguous and showing inconspicuous
differences; (3) features from early convlayers are fine-grained and adhere better to the boundaries,
whereas features from latter convlayers are comparatively coarse and more abstract.
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(a) (b) 

Figure 4. Example data for illustration of the proposed feature extraction and selection techniques.
(a) Example image, and (b) outdated map.

 

Figure 5. Eight randomly selected feature maps from each layer of the FCFE; (a) conv1_1; (b) conv1_2;
(c) conv2_1; (d) conv2_2.

Sixteen most important features chosen after feature selection are shown in Figure 6. Three properties
of selected features can be seen in Figure 6: (1) By filtering the ineffective features out, the remaining
features are more representative and visually separable; (2) selected feature maps are functionally versatile.
It is also seen that (a,d,e,h,o) positively respond to the buildings, whereas (b,c,f,j,k) negatively respond to the
buildings; and (I,m,p) strongly respond to shadows and are actually shadow detectors. Since the buildings
are supposed to be near, where the shadows appear, the detection of shadows can positively support
the recognition of buildings. (3) Features from four convlayers are all selected to form the multi-scale
features. As stated before, features from early layers contain low-level knowledge, such as positions
and boundaries, while features from latter layers encode high-level intuitions, such as neighboring and
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contextual information. Based on that, the selected features are complementary and representative,
and they are combined into a feature descriptor for HRS images.

 
Figure 6. Sixteen most important features were selected by RF with the support of existing
building basemaps.

2.3. Initial Classification by Automatic Sample Selection Using RF

As noise label is used to guide the feature selection. This however may harm the classification
result compared to the pure label. Therefore, the existing basemaps are viewed as noisy labels of newly
acquired HRS image; then, the selected deep features are utilized to purify the initial labels through a
data cleaning procedure.

In the field of machine learning, data cleaning is often introduced in the classification task
with noisy labels, and intends to identify and correct mislabeled samples [45]. The core of the data
cleaning idea lies in estimating the label uncertainty of each sample. Note that in the label uncertainty
estimation step, the training data is also noisy. Therefore, classifiers that are robust to label noise are
preferable. Most classifiers are highly sensitive to the label noise, such as SVM and AdaBoost. However,
some algorithms can avoid the effect of label noise to an extent. As mentioned before, the random
forest is an ensemble decision tree classifier that introduces randomness in both samples and features
selection, which makes it more robust, thus suitable for data cleaning tasks.

Inspired by the work in Reference [46], we use a cross-validation algorithm to estimate the
uncertainty of the samples’ labels. The pseudocode for estimating the uncertainty of the initial labels is
given in Algorithm 1.
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Algorithm 1. Label uncertainty estimation

Input: S (sample set, i.e., pixel index from HRS image) with F (features from Section 2.2), L (noisy label
acquired from the existing basemaps); kmax (pre-defined times of dataset partition); Nest (number of RF
meta-estimators); Dmax (max depth of the decision trees in RF)
Procedure:

(1) Divide S into Spos, and Sneg according to L.
(2) Initialize Mu as N-dimensional zero vectors as the label uncertainty estimator, N is sample capacity.

For k in range(kmax):

(3) Randomly divide Spos into equally-sized Sk
pos1 and Sk

pos2. Almost equally-sized Sk
neg are randomly

chosen from Sneg.
(4) Train RF classifier, RFk

pos1neg, with Sk
pos1 and Sk

neg. Predict the label of Sk
pos2, Ck

pos2. Update Mu for
negative Ck

pos

(5) Estimate the label uncertainty of Sk
pos1 that is similar to step (4).

(6) Estimate the label uncertainty of Sneg as (4), (5).

End for

Output: Accumulator Mu indicating the label uncertainty of S.

For supervised machine learning, equally-sized training samples for each class are preferable.
However, in satellite images, the background usually occupies more space than that of the buildings.
In order to adjust the bias introduced by unbalancing distribution of samples, a larger penalty is
imposed on inconsistent label prediction results of the background samples, i.e.,

Mu[L(S) � Lp(S)] =

⎧⎪⎪⎨⎪⎪⎩
1 if L(S)= pos√

Nneg/Npos otherwise
, (1)

where Mu is an accumulative matrix describing label uncertainty of each sample, L(S) is the noisy
label of S, Lp(S) is the label predicted by the classifier, Nneg, and Npos are the number of background,
and building pixels, respectively.

After obtaining Mu, r = Mu/k is calculated for each pixel, then a pixel with r > 0.5 is a possible
mislabeled sample. Otherwise, it is considered as a clean sample. Finally, these cleaned samples are
used to train an RF classifier, rFfinal, to predict the label of potentially changed samples to building or
other class. The label probability of each sample is also obtained by Rffinal, which is then used for
subsequent post-processing.

2.4. Post-Optimization Using Graph Cuts and Change Map Computing

Since the data cleaning processing is conducted pixel-wise, and little contextual information is
taken into account, the initial classification result is fragmented. To ensure neighborhood consistency,
post-optimization processing is formulated as an energy minimization problem, and graph cuts [47]
algorithm that are performed on superpixels instead of entire pixels are used to find the solution and
ensure the efficiency.

Here we use the SLIC algorithm to segment the HRS image into superpixels. It is shown that
SLIC generates compact superpixels adhering tightly to the boundary [35]. The probability of the
superpixel belonging to each class (building or other) is then calculated using Equation (2). It includes
two aspects: (1) The averaged label probability of pixels in the superpixel; and (2) the proportion of
pixels belongs to the current class.

p(L(Spix) = c) = 0.5× (
∑

pix∈Spix
p(L(pix) = c) +

∣∣∣pix ∈ Spix, L(pix) = c
∣∣∣∣∣∣pix ∈ Spix

∣∣∣ ) (2)
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where Spix is the superpixel, pix are the pixels belonging to Spix, c is the label of two defined classes,
L(x) returns the label of x, and |s| is the number of elements in set s.

The basic idea of graph cuts is to incorporate prior knowledge of label assignment, and the penalty
imposed on adjacent superpixels with different labels, into a weighted graph. We then construct an
energy function on the graph, and the optimal label assignment is obtained by optimizing the energy
function defined as:

E =
∑

i

D(ci) + λ
∑
i< j

S(ci, cj). (3)

The first term, D(ci), is the data term which is determined by the negative logarithm of the
probability obtained from Equation (3) and defined as

D(ci) = − log(p(L(Spixi) = ci)) (4)

The second term in Equation (3), S(ci, cj), is the smooth term, imposing a penalty on adjacent
superpixels with different labels according to their similarity. Metric of spectral difference, i.e., Gaussian
kernel of the averaged RGB feature, is utilized as the similarity measurement. Since the longer boundary
is shared between the two superpixels, the higher their influence will be on each other, the penalty is
weighted on the mutual border length. The smooth term employed in this paper is defined as:

S(ci, cj) = w(i, j) × exp
(‖ fi − f j‖)
σ2 × δ(i, j), (5)

where

w(i, j) =
bon(i, j) ×

∣∣∣N(i)
∣∣∣∑

j∈N(i)
bon(i, j)

, (6)

δ(i, j) =
{

1 if ci � cj
0 otherwise

, (7)

σ is the standard deviation of Gaussian Kernel; fi, f j are the averaged RGB feature of ith and jth
superpixels, respectively; bon(i, j) is the shared border length of the ith and jth superpixels;

∣∣∣N(i)
∣∣∣ is

the number of neighbors of superpixel i; and ci is the label of superpixel i.
The parameter, λ, in Equation (3) controls the proportion of smooth term in the energy function.

The larger the value of λ, the heavier will be the penalty imposed on the adjacent superpixels with
different labels. This leads to more smoothing effects. The value of λ is related to the size of buildings
in HRS image. If most buildings are small, consisting of only a few superpixels, λ needs to be reduced
to avoid over-smoothing of the building superpixels by the surrounding background superpixels.
Otherwise, λ, is set to a larger value to introduce a better smoothing effect.

After building the energy function, the maximum flow of the graph [48] is obtained to get the
minimum cuts and obtain the optimal label for each superpixel. After obtaining the final classification
result of the new HRS images, the labels of the images are compared to the existing map to obtain the
change map.

3. Experimental Results and Discussion

The proposed framework is implemented using python language. Pre-trained model weights of
FCN-8s are obtained from (https://github.com/shelhamer/fcn.berkeleyvision.org) under caffe [49]
framework and then transformed into tensorflow (https://www.tensorflow.org/) readable form,
and reconstructed into fully convolutional feature extractor (FCFE). Graph cuts are implemented using
PyMaxflow (https://github.com/pmneila/PyMaxflow).
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3.1. Experiment Setup

3.1.1. Datasets Description

To evaluate the proposed method, we use five datasets as shown in Figure 7, they include two
sets, including ISPRS simulated dataset, and Boston real dataset—for details, see Table 1:

 

Figure 7. Experimental data sets: (a,b) ISPRS simulated dataset, (c–e) Boston real dataset (the first row
is the newly acquired HRS image, the middle row is the outdated building map, and the third row is
the ground truth building map for new HRS images).

Table 1. Details of newly acquired HRS images in five datasets.

Dataset Source Size (pixels) Spatial Resolution (m)

ISPRS simulated dataset
a Aerial 1996 × 1995 0.09
b Aerial 2818 × 2558 0.09

Boston real dataset
c Google Earth 1031 × 1097 1
d Google Earth 1132 × 1139 1
e Google Earth 1159 × 1179 1

ISPRS simulated dataset: Two airborne images from ISPRS 2D semantic segmentation benchmarks
(downloaded from http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-vaihingen.html)
are employed to simulate two synthetic datasets as newly acquired HRS images. Approximately 10%
of new building labels are randomly added. To simulate the outdated basemaps, 15% of the existing
labels are deleted from the ground truth.

Boston real dataset: Three real datasets are selected from the urban areas of Boston, USA.
The outdated basemaps are obtained from an existing classification dataset [50] (downloaded from
http://www.cs.utoronto.ca/~vmnih/data/), and regions that contain obvious changes are cropped.
Then the corresponding newly acquired HRS images are downloaded from Google Earth. The main
challenges with this dataset are: (1) Backgrounds are heterogeneous and share spectral similarity
with the buildings; therefore, pure pixel-based change detection may result in a high false-positive
rate. (2) Buildings are relatively small; therefore, object-based strategies may suffer from instability
of random classifiers. This may lead to false-negative outcomes. (3) Labels of the existing buildings
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suffer from severe mis-registration error, which makes information about building samples inaccurate.
In order to evaluate the effectiveness of the proposed framework, an expert person is also invited to
delineate the buildings’ boundaries from the HRS images. The results are then reviewed by another
expert, both independent of the experiment.

3.1.2. Assessment Criteria

In image-image change detection, the recognition result is a change map indicating the location
of pixels that are notably different between multiple images. The result of image-map comparison is
the updated label map. Similar criteria can be used to assess the accuracy assessment in both change
detection techniques. In this paper, three evaluating indexes are obtained in pixel-wise fashion to
evaluate the accuracy of the change detection result, including, completeness (Comp), false detection
rate (FDR), and overall accuracy (OA):

Completeness =
Cd
Ct

, (8)

FDR = 1− Cd
Ca

, (9)

OA =
Cd + Cn

C
, (10)

where Cd is the number of changed pixels (both background to building and building to background)
that are correctly detected, Ct is the number of really changed pixels between newly acquired HRS
image and the outdated basemap, Ca is the number of all the pixels that are labeled differently in the
new labeled map, and the outdated basemap, Cn is the number of unchanged pixels that are correctly
detected, and C is the number of pixels in the HRS image. Completeness measures the percentage of
successfully corrected changed pixels among all changed pixels, whereas FDR reflects the proportion
of false change pixels that are labeled as changed by the proposed algorithm. The OA also determines
the comprehensive detection capability by taking both changed and unchanged pixels into account.

3.1.3. Parameters Setting

There are three parameters having a high impact on the results. All these parameters are set based
on trial and error. Unless otherwise stated, these parameters are used in our experiments.

The first one is a max depth of the RF classifier, Dmax, which determines the degree to which RF
fits the training set. For a small Dmax, RF is under-fit to the training set resulting in a high variance.
If Dmax is set to a large value, RF tends to over-fit to the mislabeled data in the training sets, resulting in
a high bias. To balance the completeness and FDR, we set Dmax = 11.

Compared to Dmax, a number of decision tree estimators, Nest, in RF has trivial effects on the data
cleansing accuracy. For Nest < 5, OA and FDR slightly fluctuate, due to the intrinsic randomness of the
meta-classifiers, whereas for Nest > 5, OA and FDR converge to a fixed level. Since the computational
demands are linearly proportional to Nest, we set its value to the minimum stable value of 5.

The main parameters of the post-optimization are the proportion of smooth term, λ, and the
standard deviation of Gaussian kernel, σ.

Parameter λ controls the smoothness of the classification result. For a small λ, graph cuts tend to
undersmooth the label results, and thus, holes and gaps of building labels and spurious fragmentations
are under smoothened, causing a low completeness and OA, and a high FDR. For a very large λ,
the label results are over smoothened and lots of existing buildings are obliterated, causing the bounce
of FDR and re-sink of completeness and OA. Here, we set λ equal to 1.0 for ISPRS datasets, and 0.3 for
Boston datasets. The value of σ is also set to 10.
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3.2. Results of ISPRS Simulated Data

3.2.1. Change Detection Results

The detection results of the ISPRS datasets are presented in Figure. 8. The middle row of Figure 8
presents the initial classification results. The bottom row of Figure 8 shows the results after optimization
by using a graph cuts algorithm. Initial results show that most of the new buildings are detected.
However, these building labels have holes and gaps that undermine OA. Moreover, in areas that share
similar spectral textual characteristics with the buildings, such as bare soil and roads, spurious and
fragmented building labels occur. This results in a high FDR. After optimization, more pure building
extraction results are obtained.

 
Figure 8. Experiment results: (a) results of the ISPRS simulated dataset a, (b) results of the ISPRS
simulated dataset b (the first row is the HRS images, the second row is the initial classification results,
and the third row is the final classification results).

3.2.2. Results with Different Label Noise Levels

Here we analyze the performance of the proposed method on data sets with different levels of
label noise and the overall accuracy w.r.t. different settings are explored. The HRS images, as shown in
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Figure 7a,b, are segmented into superpixels with the approximate size of the buildings. The labels of
specified proportions of superpixels (ranging from 5% to 50%) are then selected randomly and flipped
to introduce different levels of noise. The whole procedure of the proposed method is then performed
on these modified data sets, and the results are presented in Figure 9.

 

(a) 

 
(b) 

Figure 9. Overall accuracy w.r.t different simulated noise levels: (a) results of ISPRS dataset a, (b) results
of ISPRS dataset b.

The results indicate that for noise rates up to 40%, the overall accuracy of the proposed method
is above 90%. Even in cases where the original noise rate reaches as high as 50% (which means the
information provided by outdated basemaps are mixed), the proposed framework is able to obtain an
accuracy of 75%. This indicates the effectiveness of the proposed method.
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3.3. Results of Boston Real Dataset

3.3.1. Detection Results

Figure 10 shows the outcomes of the initial classification results of Boston real datasets. Comparing the
results obtained by the proposed method (the middle row of Figure 10) and the ground truth map
(the bottom row of Figure 10), it is seen that most of the new buildings are correctly detected,
and mis-registration errors are corrected. However, these building labels have holes and gaps that
undermine OA.

Figure 10. Initial classification result: (a) results of Boston real dataset c, (b) results of Boston real
dataset d, (c) results of Boston real dataset e (first row—outdated basemap; middle row—groundtruth;
third row—data cleansing result).

After optimization using graph cuts, the results are presented in the third row of Figure 11.
Compared with the first row in Figure 11, it is seen that the phenomenon of small segments is removed,
and the building extraction results are more accurate. Based on the optimized classification results,
we obtain the change maps and compare them with the ground truth of the change map. The results
are shown in the fourth row of Figure 11, where the red color means the changes are correctly detected,
and the green means the changes are not detected.
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(a)                       (b)                         (c) 

Figure 11. Results after post-optimization: (a) results of Boston real dataset c, (b) results of Boston real
dataset d, (c) results of Boston real dataset e (first row—building label maps before optimization by
object-based analysis and graph cuts; middle row—building label maps optimized by object-based
analysis and graph cuts; third row—building map ground truth; fourth row—change map, where red
means the changes are correctly detected, green means they are not).

3.3.2. Performance Comparison

In order to demonstrate the effectiveness of the proposed method, comparisons are made to
three benchmarking methods, namely, A, B, and C. Method A employs the same framework as the
proposed method, but uses conventional spatial-spectral features by combing GLCM textural features
and normalized RGB, to replace the feature detector in our method. Method B employs a deep feature
extractor as in Reference [24], and then follows the following steps: (1) Segmentation of the HRS images
into superpixels; (2) cropping the bounding box of each superpixel, feeding it into ImageNet pre-trained
VGGNet, extracting 4096-dimensional features from fc7, and reducing them to 100-dimensional using
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principal component analysis; (3) cleansing the data using graph cuts optimization. Method C is a fully
pixel-based method that directly uses pixel-wise re-predicted label map for graph cuts optimization.

For the four methods to be comparable, the receptive field of features is set to 15, which is the
same as the proposed method. Meanwhile, all the hyperparameters are determined through a grid
search to obtain the highest performance. The accuracy results are shown in Table 2. The results
confirm that the proposed method overperforms methods A, B, and C.

Table 2. Comparison Results.

Method
Dataset (c) Dataset (d) Dataset (e)

Comp FDR OA Comp FDR OA Comp FDR OA

Proposed 0.861 0.269 0.942 0.878 0.268 0.966 0.890 0.223 0.963
A 0.736 0.645 0.798 0.784 0.732 0.822 0.762 0.733 0.761
B 0.419 0.495 0.874 0.246 0.594 0.919 0.304 0.600 0.887
C 0.746 0.431 0.896 0.759 0.372 0.948 0.755 0.468 0.907

Compared with the proposed method, Method A shows a lower AR and a higher FDR. This shows
that the deep features perform better than the hand-crafted features. Method B employs an earlier deep
feature extraction strategy, however its performance on the experiment data is very low. The reason
is that the buildings in the used datasets are generally small; this leads to two problems in direct
segmentation of the HRS images into objects and in data cleansing: (1) The number of building samples
is severely decreased, therefore, enough information is unavailable to distinguish background from
the building; (2) a single building only consists of few superpixels, this makes the building objects
vulnerable to the instability of random classifiers and/or over-smoothing by surrounding background
objects. Nevertheless, with additional pixel-wise graph cuts post-processing in Method C, the accuracy
remains low compared to the initial classification result. This is because the graph cuts algorithm
punishes adjacent pixels with different labels and the correction of spurious clique needs lots of energies.
Therefore, they cannot be corrected through max-flow optimization of the energy function. On the
contrary, holes in building labels and fragmentations in non-building areas may dilate, leading to
decreasing AR and OA.

All the experiments were performed on a laptop computer with Intel Core i7-7700HQ at a 2.8 GHz
CPU with 32 GB memory, and an NVIDIA GTX1060MAXQ GPU (with 6.0 GB memory). The processing
time is about five minutes for the three real data sets.

4. Conclusions and Future Works

In this paper, we proposed a novel framework for image-map building change detection. First,
we demonstrated the representative ability of the features extracted from the early convlayer of
pre-trained DCNNs and proved the feasibility of selecting important features using outdated building
basemaps. Then, a random forest-based data cleansing method was implemented to preliminarily
detect and correct changed pixels. The pixel-level re-predicted label maps were, however, fragmented,
therefore, we adopted object-based analysis to introduce contextual information and ameliorate
spurious predictions. We then used a graph cuts algorithm to optimize the label assignment results.

There are some limitations in the proposed method; for instance, a sparse distribution of the
buildings may result in omission errors. Since FCFE demonstrates high efficiency in dense feature
descriptors, it can be used in other tasks, such as classification and image registration [51].
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Abstract: Spatially location and working status of pollution sources are very important pieces of
information for environment protection. Waste gas produced by fossil fuel consumption in the industry
is mainly discharged to the atmosphere through a chimney. Therefore, detecting the distribution of
chimneys and their working status is of great significance to urban environment monitoring and
environmental governance. In this paper, we use an open access dataset BUAA-FFPP60 and the
faster regions with convolutional neural network (Faster R-CNN) algorithm to train the preliminarily
detection model. Then, the trained model is used to detect the chimneys in three high-resolution
remote sensing images of Google Maps, which is located in Tangshan city. The results show that a
large number of false positive targets are detected. For working chimney detection, the recall rate is
77.27%, but the precision is only 40.47%. Therefore, two spatial analysis methods, the digital terrain
model (DTM) filtering, and main direction test are introduced to remove the false chimneys. The DTM
is generated by ZiYuan-3 satellite images and then registered to the high-resolution image. We set an
elevation threshold to filter the false positive targets. After DTM filtering, we use principle component
analysis (PCA) to calculate the main direction of each target image slice, and then use the main
direction to remove false positive targets further. The results show that by using the combination of
DTM filtering and main direction test, more than 95% false chimneys can be removed and, therefore,
the detection precision is significantly increased.

Keywords: target detection; high resolution remote sensing image; chimney; faster R-CNN;
spatial analysis

1. Introduction

In recent decades, rapid economic development has led to a significant increase in energy
consumption. In China’s primary energy share in 2019, the proportion of fossil energy consumption
was still more than 85%, according to the BP Statistical Review of World Energy. The burning of
fossil fuels will release a large amount of pollutants into the atmosphere, which will cause serious
environmental problems and endanger the health of nearby residents. Among different pollutant
discharge sources, the industry discharge contributes the most. The waste gas produced by fossil fuel
consumption in industry is mainly discharged to the atmosphere through the chimney. Therefore,
the distribution of working chimneys serve as a very important indicator of local air pollution situation.
Detecting the number of chimneys and their working status is of great significance to urban environment
monitoring and environmental governance.

Sensors 2020, 20, 4353; doi:10.3390/s20164353 www.mdpi.com/journal/sensors
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Target detection on high-resolution remote sensing image provides an efficient and accurate way
to detect the position and status of the chimney. There are two types of target detection algorithms:
traditional algorithms and algorithms based on deep learning. The traditional algorithms, such as
the Local Binary Pattern (LBP) [1] algorithm, scale-invariant feature transform (SIFT) [2] algorithm,
and the Support Vector Machine (SVM) [3] algorithm, do not perform well in accuracy and robustness
when used for dealing with complex recognition problems [4]. To increase the detection accuracy,
a deep learning algorithm, convolutional neural network (CNN) [5], has been proposed to imitate
the human brain neuron connection and transfer message mechanism. This kind of deep learning
algorithm can be divided into two categories, the one-step algorithm and the two-step algorithm.
The one-step algorithm, such as Single Shot MultiBox Detector (SSD) [6], and You Only Look Once
(YOLO) [7], has less accuracy as well as lower computational cost. The two-step algorithm, such as
region-based convolutional neural networks (R-CNNs) [8], Fast R-CNN [9], and Faster R-CNN [10],
is characterized by its high accuracy and high time cost.

At present, deep learning has been successfully applied in remote sensing images in aircraft
detection [11–13], ship detection [14–16], oil tank [17–19] detection with good performance. Several
experiments on chimney detection have also been reported. Yao et al. [20] used the Faster R-CNN to
detect the chimney and condensing tower. Zhang et al. [21] established the BUAA-FFPP60 dataset,
which can be used not only to detect the targets, but also to confirm their working status. Comparison
among different deep learning algorithms [6,10,22–27] is also made based on performance indicators,
such as accuracy, model memory size, and running time, and results show that no single algorithm
performs well in all aspects. Deng et al. [28] increased the number and scale of feature pyramids,
based on the original Feature Pyramid Network (FPN), to improve the detection accuracy.

In practical application, the image always contains various artificial targets. Some targets are very
close to the chimney in textures and geometric features, such as roads, building edges, and oil tanks.
The Faster R-CNN for chimney detection in the aforementioned references is based on specific datasets
that only contain manually selected chimneys. When the Faster R-CNN is used in a large-scale scene,
there will be a large number of chimney-like targets that are misclassified into chimneys, leading to
a significant decrease in precision. In order to improve the precision, we use two spatial analysis
methods. The digital terrain model (DTM) is first introduced. DTM reflects the height fluctuation
of ground objects. The chimney is a vertical object and appears elongated in the image. Therefore,
where there is a chimney, the DTM will change dramatically. It can be used as a condition to determine
whether there is a chimney by detecting the severity of the changes. In addition, in a high-resolution
image, the field of view is relatively small, so the changes in observing angle in one image is small.
Consequently, the chimneys in one image show the same pointing direction. In this paper, we call this
direction the main direction of this image. Therefore, the detected objects that are not in accordance
with main direction can be considered as false detections.

In this paper, we use BUAA-FFPP60 dataset [21] and Faster R-CNN algorithm to train the
preliminarily detection model. Then, two spatial analysis methods, the DTM filtering and main
direction test, are introduced to remove the false chimneys. The detailed description of the method is in
Section 2, and the result discussion in Section 3. The results show that the elevation filtering and main
direction test are both very effective in reducing false detection rate. Furthermore, the combination of
these two methods show extremely good performance in increasing detecting precision.

2. Methodology

The method proposed in this paper consists of three parts: (1) the preliminary detection on
enhanced images by Faster R-CNN, (2) the elevation filtering using local DTM, (3) the main direction
test. The overall process diagram is given in Figure 1. Considering that the condensing tower is detected
in former studies, its experimental results are preserved as comparative references. Furthermore,
although the thermal infrared data are helpful for detecting the working chimneys, the resolutions of
commonly accessible data are too low. Therefore, they are not used in this paper.
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Figure 1. Process diagram.

2.1. Faster R-CNN for Target Detection

The Faster R-CNN is chosen for preliminary detection for its high accuracy in chimney detection
compared with other methods [21]. As mentioned before, the Faster R-CNN contains two steps [10].
The first step is Region Proposal Network (RPN). RPN takes an image as input and outputs a set of
rectangular object proposal regions, each with an objectness score. The second step is Fast R-CNN
detection in the proposed regions. Both RPN and Fast R-CNN share the same convolutional layers,
rather than learning two separate networks. Figure 2 shows the process structure of Faster R-CNN.
It first performs the deep fully convolution on the input image to obtain feature maps. Then, the feature
maps are used by RPN to generate proposal regions. Fast R-CNN uses feature map and proposal
regions to generate region of interest (ROI) pooling. After that, the fully connected layer is used for
classification and regression operations.

 

Figure 2. Faster region-based convolutional neural networks (R-CNN) structure diagram.

Different types of targets correspond to different anchors, which are a serious reference boxes in
each sliding-window when region proposals are generated. Anchor size can be obtained from previous
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experience. In order to fit chimney and condensing tower detection, we set four types anchors of scales:
322, 642, 1282, and 2562, and five aspect types of ratios: 1:1, 1:2, 1:3, 2:1, and 3:1. The resnet101 [29]
trained on coco [30] is selected as the pre-training model. This model is one of widely used model in
the field of target detection because of high accuracy and speed.

2.2. The Elevation Filtering Using Local DTM

DTM is a digital description of the shape, size, and elevation of terrain. The chimney and
condensing tower are usually higher than the surrounding features. In the place where there is a
chimney or a condensing tower, the value of DTM shows obvious fluctuations, and the height difference
can achieve as large as 20 m. In place where false detection appears, the value of DTM changes
more gradually.

To get the DTM slice images, which are pieces of DTM image cut from whole DTM image
correspondent to the target bonding box, the detection results of Faster R-CNN are registered to DTM
first. Then, the bounding boxes are used to cut several slices from the DTM. Then statistical operations
are performed in slices. The max and mean height of each DTM slice are calculated as follows:

Vmean =
1

m× n

m∑
i=1

n∑
j=1

f
(
xi, yj

)
(1)

Vmax = Max( f (x1, y1), f (x2, y2) . . . . . . f (xm, yn)) (2)

Where Vmean is average value of slice, Vmax is the maximum value of slice, f (xi, yj) is the pixel
value of the slice, m and n are the number of rows and columns of the slice, respectively. The filter
condition is given by: {

Vmax −Vmean > T
Vmax −Vmean < T

(3)

T is threshold value. The difference between the max height and mean height in the slice should
be larger than the threshold, or else the detected object will be considered as false positive and removed
from the set of detected chimneys. The value of threshold is set to be 20 m according to the National
Standard of China, the Emission Standard of air pollutants for boiler [31], in which states that the coal
combustion chimney should not be less than 20 m. Moreover, we also experimentally test 5 threshold
values. The experiment results are shown in Table 1. When the threshold is 16 m or 18 m, the number
of false positive targets is still too large. When the threshold increases to 20 m, although 3 chimneys
are mis-removed, the number of false positive targets is greatly reduced. When the threshold is 22 m
or 24 m, there will be too many mis-removed chimneys. Thus, a 20 m-threshold seems reach a good
compromise between low mis-removal and effective deletion of false positive targets.

Table 1. Threshold experiments.

Threshold Chimneys Condensing Tower False Positive Targets

0 79 9 178
16 79 9 81
18 77 9 63
20 76 9 25
22 70 9 21
24 62 8 18

2.3. Main Direction Test

The chimney is a long and vertical object. In the bounding box, the image slice, which contains a
chimney, will show obvious directional texture features. Moreover, the chimney and the condensing
tower in one high-resolution remote sensing image are all approximately pointed to the same direction,
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which is called main direction in this paper. We found that a lot of the mis-detected targets do not have
the same feature. Therefore, the false chimneys can be further removed by testing its consistency with
the main direction. The principle component analysis (PCA) is used to calculate the main direction of
each image slice. The processing flow is:

(1) Gaussian filtering the image slice to remove noise interference;
(2) converting the image slice into a grayscale image;
(3) binarizing and extracting the position coordinates of non-zero pixels to construct a position

matrix, and then calculating its covariance matrix;
(4) calculating the eigenvector corresponding to the max eigenvalue of covariance matrix;
(5) calculating the main direction angle of each slice according to the eigenvector.

Figure 3 shows two examples of using this method to find the main direction of each detected
target. After calculating the main directions of all slices, the distribution histogram will be mapped at
intervals of 5 degrees. The maximum value in the histogram is considered as the main direction d of the
entire image. Then, the detected target whose main direction is close to the main direction of the image
will be considered as true detection. The decision criteria is set to be d ± 5◦ for chimney, and d ± 8◦ for
condensing tower since the condensing tower is much wider than the chimney in the image.

 

Figure 3. Main direction rotation image. The green arrow represents the main direction, while the
yellow arrow represents the direction perpendicular to the main direction.

3. Results

3.1. Dataset, Experimental Area, and Data

The dataset used in this experiment is BUAA-FFPP60, which is collected and produced by Beihang
University. The dataset is composed of chimneys and condensation towers distributed in the 123-km2

power plant in the Beijing–Tianjin–Hebei area. There are 318 original pictures, of which 31 are test
pictures. The remaining 287 pictures are mirrored or rotated by 90◦ to generate 861 training pictures.
The pictures come from Google map with a resolution of 1 m, ranging in size from 500 × 500 to
700 × 1250 pixels. The working state of the chimney and condensation tower is determined by whether
there is smoke. The four labels in the dataset are working chimney, non-working chimney, working
condensation tower, and non-working condensation tower. Figure 4 shows some examples of dataset.
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Figure 4. BUAA-FFPP60 dataset samples. Four subfigures indicate the working chimneys, non-working
chimneys, working condensing towers, non-working condensing towers, respectively.

The area selected for this experiment is Tangshan City, Hebei Province, located 180 km southeast
of Beijing. It is a regional core city of Beijing-Tianjin-Tangshan city group, and burdens the task of
releasing the industrial pressure of Beijing, the capital of China. Tangshan City is a typical industrial
city in North China, and the total crude steel production in 2018 is 133 million tons, about 7.35%
of world’s total production. Meanwhile, it is also one of the cities with the worst air quality in the
country. According to the “Tangshan City Environmental Status Report”, in 2011, the emissions of
sulfur dioxide and nitrogen oxides in Tangshan City were 336.54 thousand tons and 40.59 thousand
tons, respectively [32]. Numerous steel factories and power plants with a large number of chimneys
and condensation towers in Tangshan have contributed the most to the hazardous air pollutants.
Therefore, investigating the position and working status of chimneys and condensation towers is very
important to region environmental governance.

Three Google Maps images with 1-m resolution covering about 600 km2 are used for final detection.
Sizes of images are 16,000 × 25,000 pixels, 10,000 × 10,000 pixels and 10,000 × 10,000 pixels, respectively.
The images cover Lubei District, Guye District, Kaiping District, and Fengrui District. The images
from ZiYuan-3 satellite with size of 24,500 × 20,000 is used to generate DTM.

3.2. Experimental Results and Analysis

3.2.1. Accuracy of Faster R-CNN Trained Model

We performed the experiments on a computer with a 2.5 GHz Central Processing Unit (CPU) and
a NVIDIA GeForce GTX 2080Ti Graphics Processing Unit (GPU). The memory sizes of CPU and GPU
are 8 GB and 11 GB, respectively. The TensorFlow [33] deep learning framework was selected to train
861 Google map images of the BUAA-FFPP60 dataset. The pre-training model is the resnet101 [29]
model trained on coco [30]. The number of training iterations is 170,000 and the learning rate is 0.001.

To evaluate the detection accuracy of the Faster R-CNN models, we test the trained model on
test image of BUAA-FFPP60 dataset. When the detect target is true, the test result is a true positive
(TP), and when the detect targets is false, the test result is false positive (FP). The false negative (FN)
indicates the number of undetected true target in the image. Then, we can combine these into three
metrics, precision (P), recall (R), and quality (Q):

P =
TP

TP + FP
(4)

R =
TP

TP + FN
(5)

Q =
TP

TP + FP + FN
(6)
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For test samples, the precisions of working chimney, non-working chimneys, condensing tower,
and non-condensing tower are 0.7210, 0.7326, 0.9482, and 0.9551, respectively. The recall rates are 0.8674,
0.8642, 0.9707and 0.9659 respectively. The qualities are 0.6451, 0.6629, 0.9423, and 0.9473, respectively.

3.2.2. The Results from Faster R-CNN

After, we get the trained model. The Google images were input to the trained Faster R-CNN
network. Due to the large area, the entire image is detected by window. The window size is
700 × 700 pixels and the step length is 500 pixels. The overlapped area in each step is as wide as
200 pixels, which is wide enough to prevent missing detection of chimneys at the edge of image.
In order to detect more targets, we add an image enhancement method by adjusting the brightness
and contrast ratio before Faster R-CNN detection. We also set a low network detection probability
threshold, which is 0.3, to reduce the false negative and increase the recall rate.

In order to analyze the detection accuracy, we divide the detection results into nine types: working
chimneys, non-working chimneys, working condensing towers, non-working condensing towers, road,
architecture, tank, lake, topography. Figure 5 shows some examples of false detection.

 

Figure 5. The false detection objects are divided into five categories: lake, road, architecture, tank,
and other objects. The pink boxes represent working condensing tower, the green boxes represent
non-working condensing tower, and the yellow boxes represent non-working chimney.

It can be found from Table 2 that the road and architecture are most likely to be mis-detected
as chimneys, the number of which are 45 and 59 respectively. Condensing towers are most likely
to be mixed up by tanks and lakes. The false detection rate of working chimneys, non-working
chimneys, working condensing towers and non-working condensing towers are 0.5952, 0.5810, 0.8214,
and 0.9166, respectively.

Table 2. Faster R-CNN detection result.

Working Chimneys Non-Working Chimneys
Working Condensing

Towers
Non-Working

Condensing Towers

working chimneys 17 1 0 0
non-working chimneys 0 62 0 0

working condensing towers 0 0 5 0
non-working condensing

towers 0 0 0 4

roads 4 41 0 0
architectures 19 40 5 0

tanks 0 0 8 7
lakes 0 0 3 31

other objects 2 5 7 6
false detection rate 0.5952 0.5810 0.8214 0.9166

3.2.3. The Results from Faster R-CNN, Elevation Filtering, and Main Direction Test

It can be found from Table 3 that by using the detection and test method—most of the false
chimneys are removed. The false detection rate of working chimneys, non-working chimneys,
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working condensing towers and non-working condensing towers are significantly reduced to 0.0555,
0.0634, 0.1667, and 0.2, respectively. Meanwhile, only three non-working chimneys are mis-removed.
That means after processing the true chimneys have been well retained.

Table 3. Faster R-CNN+ elevation filtering +main direction detection result.

Working Chimneys Non-Working Chimneys Working Condensing Towers
Non-Working

Condensing Towers

Working chimneys 17 1 0 0
non-working chimneys 0 59 0 0

working condensing towers 0 0 5 0
non-working condensing

towers 0 0 0 4

road 0 0 0 0
architecture 1 3 0 0

tank 0 0 1 1
lake 0 0 0 0

other objects 0 1 0 0
false detection rate 0.0555 0.0634 0.1667 0.2

3.2.4. Discussion

Five false targets are shown in Table 4. The first line shows that cable tower is detected as
non-working chimney. The cable tower is highly similar to chimney in both texture feature and
three-dimensional structure. The main direction of the image slice is 30.19◦, while the main direction
of the whole image is 42.23◦. This difference may be caused by some decorative or structural curves on
the cable tower, which makes it not so straight in the image. However, similar loaded or decorative
component is seldom attached on a chimney, so the true chimney is unlikely to be mis-removed. In the
second line, a big tank is mistakenly detected as a working condensing tower. They are similar in
height, so cannot be distinguished by only introducing the DTM. However, its aspect ratio, which is
much smaller than true condensing tower, make the calculation of main direction after binarization
unstable, leading to a large different with the image main direction. For the chimney like objects
(including condensing tower), which has large aspect ratio, the main direction is determined by the
pixel value distribution of wall. For those with low aspect ratio, such as the oil tank, the main direction
is highly affected by the pixel distribution of its top cover. Therefore, the main direction test is also
useful to distinguish some objects with different aspect ratio. In line 3, a complex scene with working
and non-working chimneys, oil tanks, and steam vents is shown. There are only two chimneys in this
image, one undetected working chimney in the red circle. The reason why the working chimney in
the red circle remains undetected is that the two spatial analysis methods introduced in this paper
are ineffective to reduce the false negatives. We think that the improvement in detection ability of
neural network and completeness of the training dataset might be helpful. The detected non-working
chimney is in the upper left corner. The rest of the detected objects are all false. The objects with lower
height, including a steam vent, can be removed by DTM filtering. The main direction test can remove
all false target in line 3 because the main directions of most interfering targets are randomly distributed
except some high vertical objects. However, it is possible that the main direction of interfering target
is coincidently consistent with the main direction of the image. Two examples show in line 4 and 5.
The false targets cannot be removed by main direction test are mainly ground texture, shadows or
structure that caused by overlapping.
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Table 4. Examples of four-class detection method results. The pink boxes represent working condensing
tower, the green boxes represent non-working condensing tower, the blue boxes represent working
chimney, and the yellow boxes represent non-working chimney.

NO.
Faster R-CNN

Detection

Combination of Faster
R-CNN and Elevation

Filtering Detection

Combination of Faster
R-CNN and Main

Direction Detection

Combination of Faster
R-CNN and Elevation

Filtering and Main
Direction Detection

1

    

2

    

3

    

4

    

5

    

The final evaluation indexes are shown in Table 5. The total target number (N) indicates the total
chimneys in 3 images. The recall rates of four kinds of targets are 0.7727, 0.7662, 1, and 1, respectively.
These values are much closed to the testing accuracies on BUAA-FFPP60 dataset. However, in practice,
there is a large number of FPs, causing a very low precision. The original precisions are only 0.047,
0.4048, 0.2173, and 0.0833 for four kinds of target, respectively. After using two spatial analysis method,
the FPs are largely removed. The precisions are increased to 0.9444, 0.9365, 0.833, and 0.8, respectively.
The final qualities are 0.7391, 0.7108, 0.8333, and 0.8, respectively. The final qualities of working and
nonworking chimneys are both significantly higher than the qualities calculated on testing samples.
It can be concluded that the spatial analysis methods are very effective to increase the final precision
and final quality.
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Table 5. The accuracy of the experiment.

Target Type Working Chimneys Non-Working Chimneys Working Condensing Towers
Non-Working

Condensing Towers

N 22 77 5 4
TP 17 62/59 * 5 4
FP 25 86 23 44
FN 5 18 0 0

Recall 0.7727 0.7662 1 1
Precision 0.4047 0.4048 0.2173 0.0833

Final Precision 0.9444 0.9365 0.833 0.8
Final Quality 0.7391 0.7108 0.8333 0.8

* Three non-working chimneys are mis-removed.

In terms of category, chimneys have relatively low recall rate but high final precision. That is
because the chimney is narrow in the image, and easily be interfered by noise, such as shadow, road,
and build. Meanwhile, its unique contour makes it easy to distinguish with false chimney by spatial
analysis method. In contrary, the condensing tower is easy to be detected by image-processing-based
method, the Faster R-CNN, for its integrality appearance in image. Its relatively low final precision
may partly result from the small number of samples.

4. Conclusions

In this paper, we use the Faster R-CNN to train the detection model on an open access dataset,
BUAA-FFPP60. After the model is trained and tested, we used the model to detect the chimneys in three
high-resolution remote sensing images of Google Maps, which is located in Tangshan city. The recall
rates for working chimneys, non-working chimneys, working condensing towers, and non-working
condensing towers are 77.27%, 76.62%, 100%, and 100%, respectively. However, the precisions for
these targets are only 40.47%, 40.48%, 21.73%, and 8.3%, respectively. To increase the precision of
detection, two spatial analysis methods, the DTM filtering and main direction test, are introduced to
remove the false positive targets. The results show that more than 95% false chimneys can be removed,
and the final precision of detection are 94.44%, 93.65%, 83.3%, and 80% respectively. There also exists a
possibility that truly detected chimneys might be removed by these spatial analysis methods. However,
in our experiment, only three non-working chimneys have been mistakenly removed. Therefore, DTM
filtering and main direction tests are very effective methods to remove the false chimneys in detection
results from Faster R-CNN. Although the two spatial analysis methods are very effective and robust to
remove false positives, they are not useful to reduce the false negative. To reduce the false negative or
increase the recall rate, we use an image enhancement method and a low Faster R-CNN threshold.
We also suggest that further studies focus on more methods to reduce the false negatives, such as
introducing more pre-processing, constructing new architecture of neural networks, and improving
the completeness of the training dataset.
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Abstract: Vibration dampers can greatly eliminate the galloping phenomenon of overhead trans-
mission wires caused by wind. The detection of vibration dampers based on visual technology is
an important issue. The current vibration damper detection work is mainly carried out manually.
In view of the above situation, this article proposes a vibration damper detection model named
DamperYOLO based on the one-stage framework in object detection. DamperYOLO first uses a
Canny operator to smooth the overexposed points of the input image and extract edge features, then
selectees ResNet101 as the backbone of the framework to improve the detection speed, and finally
injects edge features into backbone through an attention mechanism. At the same time, an FPN-based
feature fusion network is used to provide feature maps of multiple resolutions. In addition, we built
a vibration damper detection dataset named DamperDetSet based on UAV cruise images. Multiple
sets of experiments on self-built DamperDetSet dataset prove that our model reaches state-of-the-art
level in terms of accuracy and test speed and meets the standard of real-time output of high-accuracy
test results.

Keywords: power transmission lines; vibration dampers detection; unmanned aerial vehicle (UAV);
deep neural networks; attention mechanism

1. Introduction

The main function of a power line vibration damper is to reduce the vibration of the
wire caused by wind galloping. High-voltage transmission towers have large spacing,
which makes it easy for the wires to vibrate when subjected to wind. The periodic bending
of the suspension caused by the vibration of the wire leads to fatigue damage to the metal
wire. In severe cases, accidents such as wire breakage and power tower collapse will be
induced. The use of a vibration damper on high voltage transmission lines can reduce the
vibration of the wires caused by the wind, thereby reducing the probability of accidents.
Therefore, vibration damper detection is an important topic in the inspection of overhead
transmission lines [1]. Vibration damper detection refers to obtaining the specific position
of the vibration damper in the inspection image. This task is an important prerequisite for
the work of vibration damper displacement detection, damage detection, and corrosion
detection. At present, vibration damper detection has attracted the attention of researchers
in the fields of smart grid and machine vision, with certain progress made [2].

UAV technology has developed rapidly in recent years. UAV has the advantages of
convenient operation, easy portability, and low cost [3]. Multi-UAV systems based on
wireless sensor networks [4] are used in crop yield estimation [5], object detection [6], and
other fields. UAVs have rapidly developed into important auxiliary equipment.

At present, the inspection of overhead transmission lines still mainly relies on visual
inspection by staff, which can produce omissions and incorrect judgments for the vibration
damper located at a high place; therefore, the use of UAVs for transmission line inspection
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is an issue of great research value. Researchers have used UAVs for equipment detection
and other tasks [7,8]. This article focuses on the issue of vibration damper detection using
UAV aerial images.

In early research work, traditional image processing techniques were most widely
used in power line inspection scenarios [2,9]. Researchers would select appropriate feature
extraction operators according to the actual situation and complete the task of object
detection through a threshold setting. Machine learning algorithms were also selected
to achieve better detection results [10]. However, such methods are very susceptible to
interference from background information, especially when using UAV aerial photography
data, as the similar color properties of vibration dampers and power towers can easily
cause missed detection.

In recent years, with the exponential growth of machine computing power and data
volume, it has become a research hotspot again. Deep learning technologies, especially con-
volutional neural networks, have opened new research directions in the field of computer
vision. There is much research on power components using the state-of-the-art method
in the field of object detection [11,12]. However, at present, these works are mainly based
on the simple application of the framework, there is no targeted improvement for the
characteristics of the vibration damper, and high accuracy of the model requires a large
amount of computing resources.

In addition, some studies have used special equipment for imaging or for the physical
properties of the device [13,14]. The results of these works are usually excellent, but the
extra equipment overhead and high usage cost make such methods unsuitable for power
line patrol scenarios.

Aiming at the research status of image-based vibration damper detection, this article
proposes a vibration damper detection model based on the one-stage algorithm in target
detection. The main contributions of this paper are as follows:

• A proposed vibration damper detection model called DamperYOLO based on the
YOLOv4 framework, which is more robust than traditional methods and can achieve
a good balance between speed and accuracy, and a vibration damper detection dataset
called DamperDetSet based on UAVs aerial images.

• To enhance images, Gaussian filtering is used to smooth the overexposed points in the
aerial image and the Canny algorithm is used to extract the contour information in
the image.

• Introduction of an attention-based structure in the backbone of DamperYOLO. This
module can introduce the edge information extracted by Canny into the forward
propagation process of the model and provide semantic guidance for the feature
extraction of the network.

• Addressing the problem that the vibration damper is small and difficult to detect in the
UAVs aerial image, we used a feature fusion network based on FPN after the backbone.
While outputting feature maps of different resolutions, the semantics and underlying
feature information of each layer are maintained, which provides a high-quality data
basis for the identification of vibration dampers.

The remainder of this article is organized as follows. Section 2 briefly introduces the
related work of vibration damper detection. Section 3 introduces the basic framework used
in the method proposed in this article. In Section 4, this article introduces the details of
DamperYOLO. In Section 5, this article introduces the damper dataset, the experimental
details, and a series of comparative experiments. Section 6 provides a brief summary of
the work.

2. Related Work

This section focuses on the image-based vibration damper detection research. The
existing work is mainly divided into traditional image processing methods, deep learning-
based research, and detection methods based on auxiliary equipment.
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2.1. Traditional Method

Traditional image processing algorithms use edge detection, color space conversion,
and clustering algorithms to extract damper information in images, usually combined with
machine learning algorithms for iterative classification tasks.

Wu et al. [2] used the snake model to extract the edge of the vibration damper, but due
to the helicopter airborne imaging equipment required, the cruise cost was high. Huang
et al. [9] performed corrosion and displacement detection on the vibration damper based
on rusty area ratio and color shade index, involving grayscale processing, edge detection,
threshold segmentation, morphological processing, and other technologies. Similarly, Song
et al. [15] detected the rust problem of the vibration damper based on the histogram. Jin
et al. [10] used Harr-like features and a cascade adaboost classifier to classify and detect
vibration dampers on overhead lines. Yang et al. [16] performed exponential transformation
on the S and V components in the HSV color space to improve the contrast between the
front and background. Liu et al. [17] used the canny operator and Hough transform method
to detect the displacement of the vibration damper on the high-voltage line. Similarly, Chen
et al. [18] used random Hough transformation for the vibration damper detection task.
Miao et al. [19] used the wavelet modules maximum method to locate the shock hammer on
the transmission line. Pan et al. [20] used a simple extraction operator to monitor the state
of the vibration damper. Jin et al. [21] used the Adaboost algorithm to conduct real-time
monitoring of the line vibration damper through drones.

Traditional methods use operators and classifiers to identify the vibration damper
on the line; the detection accuracy is limited by the complexity of the environmental
background, but its advantage lies in its fast detection speed, which is suitable for real-
time detection.

2.2. Deep Neural Networks

With the rapid development of deep learning technology, the detection of power line
components based on neural networks such as CNNs has gradually become a popular
research direction.

Based on YOLOv4, Bao et al. [1] used k-means to analyze the aspect ratio of the anchor
to detect damage, corrosion, and displacement faults of the vibration damper. Zhang
et al. [11] also used Faster R-CNN to detect damage and corrosion defects of the vibration
damper twice, in which the first detection result was used as the second proposal, thereby
improving the detection effect. Bao et al. [12] used the Cascade R-CNN framework to locate
and detect the damage of the vibration damper. Yang et al. [16] performed the detection
task of vibration dampers using Faster R-CNN based on HSV color space transformed
images. Guo et al. [22] used YOLOv4 to improve the detection effect of damaged vibration
damper. Wang et al. [23] investigated insulator defects in overhead transmission lines,
damage to vibration dampers, and foreign objects in bird’s nests. Zhang et al. [24] switched
to VGG16 as the basic backbone network and performed detection tasks for shockproof
hammers and other foreign objects on power towers.

The detection of power line components and foreign objects using deep neural net-
works has also attracted the attention of researchers. For example, the YOLO framework
is used to detect insulators on transmission lines [25] and icing detection [26], change the
anchor setting of Faster R-CNN according to the shape characteristics of the insulator [27],
using Mask R-CNN to detect line foreign objects [28], defect detection for high-speed rail
catenary insulators [29], and detection of wet insulators using infrared images [30]. Usually,
these studies are only simple applications of power components datasets, and most of the
studies lack targeted transformation for specific environments and scenarios; the solutions
provided are mostly trick stacking.

2.3. Auxiliary Equipment

In addition to using common optical images, there is also research that uses other
imaging equipment and auxiliary devices to perform detection tasks. For example, a robot
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is used to reset the vibration damper [14,17,31], and the damage of the vibration damper
is detected based on LiDAR data [13]. The damping of the vibration damper is detected
based on sensors such as optical ground wire (OPGW) and an all-dielectric self-supporting
(ADSS) optical cable [32]. In addition, some researchers [33] designed a rotation-free spacer
damper to improve the anti-galloping ability of power lines.

2.4. Researches Summary

There is still room for improvement in the detection of vibration dampers for overhead
transmission lines. A summary of these research is as follows:

• Traditional methods based on image processing technology. The detection accuracy
is mostly dependent on the quality of the image. If the background in the image
is too complex, this leads to the problem that the used feature operator does not
cover all situations, which inevitably leads to a decrease in the detection accuracy.
The advantage of the traditional method is that it consumes less resources and the
calculation speed is fast. Therefore, at present, this type of method is still the most
important when the scene is relatively simple, background interference is low, and the
real-time requirement is high.

• The method based on deep neural network is the hottest research direction in the field
of vibration damper detection. By relying on powerful computing equipment and a
large amount of training data, an end-to-end network model can be obtained; on this
basis, it is very easy to carry out detection tasks. However, there is currently no public
dataset for the vibration damper of overhead transmission lines, and the detection
effect of the model is often limited by the lack of computing power of edge devices.

• There is some research work based on auxiliary equipment. Such research uses the
characteristics of ultrasonic or infrared imaging equipment to perform the task of
vibration damper breakage detection. However, these devices are often inconvenient
for use along complex overhead lines, and the maintenance and use costs of the devices
are much higher than those of drones.

Combining the characteristics of the abovementioned research work, we not only hope
to obtain excellent detection results, but also hope that the model can run in real time on
devices lacking computing resources, such as drones. A one-stage method using deep
neural network is the most suitable choice. One-stage object detection utilizes the powerful
feature extraction capabilities of CNNs to cope with complex application scenarios. At
the same time, the detection result does not depend on the proposal, and its calculation
speed is fast enough. Therefore, in the following work, based on the one-stage model, we
propose a detection method based on the visual characteristics of the vibration damper in
the real scene.

3. Basic Knowledge of YOLO

YOLO [34] proposed by Redmon et al. in 2016 is a classic one-stage object detection
method. YOLOs [34–37] solves the target detection problem as a regression problem. After
an inference of the input image, the positions of all objects in the image, their categories,
and corresponding confidence probabilities can be obtained. YOLO divides the input image
into SxS grids, and each grid is responsible for detecting objects that fall into the grid. If the
coordinates of the center position of an object fall into a grid, then the grid is responsible
for detecting the object.

The difference between the backbone in YOLOv4 [37] is that it is based on the Darknet
structure in YOLOv3 [36] and borrows the structure of the CSPNet network [38] to propose
a network structure called CSPDarknet. The loss function used in training is CIOU [39].

Since the objects to be detected in this paper are only vibration dampers, an overly
complex network structure will have a negative impact on feature extraction; therefore,
this paper selects the classic ResNet101 [40] as feature extraction network. The objective
function of YOLOv4 is as follows:
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Ldet = Lbox + Lobj + Lcls (1)

where Lbox, Lobj, and Lcls represent the regression loss, confidence loss, and category loss of
the box, respectively. The expression of the box regression loss is as follows:

Lbox = λcoord

S2

∑
i=0

B

∑
j=0

1obj
i,j

(
1 −

(
IoU − Distance_22

Distance_C2 − v2

(1 − IoU) + v

))
(2)

where λcoord is the weight of box regression loss, S2
i represents the ith grid of S×S size, Bj

represents the jth predicted box of S2
i , and 1obj

i,j indicates that there is a target center of the
prediction category in the box. IoU is the Intersection-of-Union of the predicted box and
ground truth, the calculation formula of IoU is Equation (3), Distance_2 is the Euclidean
distance between the center coordinates of Boxp and Boxgt, Distance_C is the diagonal
length of the smallest bounding rectangle of Boxp and Boxgt, v is a parameter to measure
the consistency of the aspect ratio of Boxp and Boxgt, and the calculation formula of v is
Equation (4).

IoU =

∣∣Boxp ∩ Boxgt
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|Boxp ∪ Boxgt| (3)

where Boxp and Boxgt represent the predicted box and ground truth, respectively.

v =
4

π2

(
arctan

wgt

hgt − arctan
wp

hp

)2

(4)

where wgt and wp represent the width of the ground truth and predicted box, respectively,
while hgt and hp represent their respective heights.

Similar to the regression loss, the loss function for the target prediction confidence is
as follows:

Lobj = λnoobj

S2

∑
i=0

B

∑
j=0

1noobj
i,j (ci − ĉi)

2 + λobj

S2

∑
i=0

B

∑
j=0

1obj
i,j (ci − ĉi)

2 (5)

where λnoobj and λobj, respectively, represent the weight of the confidence loss when the
object is not included and when it is included. ci and ĉi, respectively, represent the true
value and predicted value of whether there is an object of category i in the current box. The
other parameters have the same meaning as in the regression loss.

The category prediction loss uses the classic cross-entropy loss, and its calculation
formula is as follows:

Lobj = λnoobj

S2

∑
i=0

B

∑
j=0

1noobj
i,j (ci − ĉi)

2 + λobj

S2

∑
i=0

B

∑
j=0

1obj
i,j (ci − ĉi)

2 (6)

where λclass represents the weight of the category loss; p̂i(c) represents the predicted value
of the confidence of the current category; and pi(c) is a conditional probability, which is
obtained by obtaining a value of 0 or 1, depending on whether S2

i contains the target center,
and then multiplying it with IoU.

YOLOv4 uses CSPDarknet53 [38] as its feature extraction network, but CSPDarknet53
has lots of parameters. In addition, the only object to be detected in this paper is the
damper. As shown in Table 1, ResNet101 is composed of multiple groups of residual
blocks. ResNet has excellent feature extraction ability, which overcomes the problem of low
learning efficiency caused by excessive network depth. Therefore, the classic ResNet101 is
used as the backbone in this article.
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Table 1. Applied kernels of ResNet101 in DamperYOLO.

Layer Output Size Kernel Size

conv1 304 × 304 7 × 7, 64

conv2_x 152 × 152
⎡
⎣ 1 × 1, 64

3 × 3, 64
1 × 1, 256

⎤
⎦× 3

conv3_x 76 × 76
⎡
⎣ 1 × 1, 128

3 × 3, 128
1 × 1, 512

⎤
⎦× 4

conv4_x 38 × 38
⎡
⎣ 1 × 1, 256

3 × 3, 256
1 × 1, 1024

⎤
⎦× 23

conv5_x 19 × 19
⎡
⎣ 1 × 1, 512

3 × 3, 512
1 × 1, 2048

⎤
⎦× 3

4. DamperYOLO

In this section, a new framework named DamperYOLO is proposed for the vibration
damper detection task of overhead transmission lines based on YOLOv4 [37], Canny
algorithm [41], attention mechanism [42] and FPN [43] structure.

4.1. Edge Extraction

The quality of the input image is very important as it is the first step of the whole
network detection, which directly affects the subsequent detection process. Although,
strong noise immunity is one of the advantages of deep neural networks, no network
would want to receive a high-quality input, so that the trained model parameters have more
powerful attention to our target. Therefore, we decided to use edge detection techniques
to improve the semantic information in images for the purpose of image enhancement,
detailed in this subsection.

The canny algorithm is used to extract edge information from UAV aerial images. The
canny algorithm is mainly divided into four parts: Gaussian smooth image, gradient mag-
nitude and direction calculation, gradient magnitude nonmaximum suppression, double
threshold algorithm detection and edge connection.

Our images are obtained by unmanned aerial photography and are highly susceptible
to light reflections to generate exposure points. To reduce the influence of these bright
white points, a Gaussian kernel is used to smooth the image.

Compared with the median filter [44] and the mean filter [45], the Gaussian filter
assigns different calculation weights to different fields of the current element, which can
achieve the purpose of denoising while preserving the gray distribution characteristics of
the image. Gaussian filtering is usually implemented by iterative operations on the image
with (2k + 1) × (2k + 1) convolution kernels. The kernel generation equation is shown in
Equation (7).

Hij =
1

2πσ2 exp

(
− (i − (k + 1))2 + (j − (k + 1))2

2σ2

)
; 1 ≤ i, j ≤ (2k + 1) (7)

where k represents an integer, (2k + 1) represents the size of the convolution kernel, and
(i, j) represents the coordinates of one of the points.

The size of the convolution kernel is usually set to an odd number for the convenience
of calculation. The larger the kernel, the stronger the processing ability for local noise. In
our experiments, kernels with sizes of 3 × 3, 5 × 5, and 9 × 9 were selected for comparison.
The experimental results show that the kernel of 5 × 5 has the smallest effect.

After Gaussian smoothing, the background part still contains overexposed points.
There is no need to worry about the negative impact this brings to the model, as the network
focuses on the ground truth part during training. What must pay attention to is if the
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feature of the vibration damper is improved, and edge detection is one of the important
means of image enhancement. The parts of the image with high gradient variation in the
canny algorithm task image represent a higher probability of edges. Therefore, our next
step is to extract the gradient information of the image.

Gradients reflect the intensity of local pixel transformations. The greater the gradient
change, the greater the change in the corresponding region. The gradient needs to calculate
the direction and size of two parts, usually by calculating the gradient of the horizontal
and vertical directions to represent a complete gradient. Its calculation formula is shown in
Equations (8) and (9).

∂ f
∂x

≈ f (x + 1, y)− f (x − 1, y)
2

(8)

∂ f
∂y

≈ f (x, y + 1)− f (x, y − 1)
2

(9)

The direction a and increment b of the gradient can be obtained based on the gradients
in the horizontal and vertical directions, as shown in Equations (10) and (11).

θ = tan−1(
∂ f
∂y

/
∂ f
∂x

) (10)

‖∇ f ‖ =

√(
∂ f
∂x

)2
+

(
∂ f
∂y

)2
(11)

Gradient images contain all grayscale variations. Therefore, the canny algorithm uses
the nonmaximum suppression method [41] to propose the lower gradient variation in
the region.

The nonmaximum suppression algorithm calculates in eight areas around the pixel,
retaining the parts with the largest grayscale changes in the horizontal, vertical, and
diagonal directions while eliminating other parts with smaller changes by changing the
broad-side gradient map to a single pixel width of the side.

The method of the nonmaximum suppression algorithm can only enhance the edge
information and cannot guarantee that the remaining part is foreground information.
Therefore, the last step of the canny algorithm is to use the double threshold algorithm to
separate the foreground and background based on our prior knowledge.

In the double-threshold algorithm, the pixels above the strong edge threshold represent
edge information, and the pixels below the weak edge threshold represent background
information. The threshold between the two is the pending element, and if there is a strong
edge in the eight-neighborhood of these pixels, the pixel is also classified as an edge pixel.
Through comparison experiments of 200, 300, and 400 strong edge thresholds, it was found
that the threshold of strong edge is best when the threshold is 300, and the weak edge
threshold is set to 0.5 times of the strong edge. The formula for classifying gradient map
pixels is shown in Equation (12).

f (i) =

⎧⎨
⎩

strong edge ; i > 300
weak edge ; 150 ≤ i ≤ 300
non − edge ; i < 150

(12)

To verify the effect of edge detection, we compared the performance of several classical
edge detection operators on vibration dampers. As shown in Figure 1, the edge extracted
by the Canny operator is the clearest.
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Figure 1. Test examples of edge detection algorithm.

4.2. Attention Mechanism

After obtaining the edge information in the image using the canny algorithm, it can be
used to produce positive effects. The attention mechanism [42] originated in the field of
NLP and has been introduced into computer vision in recent years. As shown in Figure 2,
by introducing additional convolution operations, the attention mechanism can focus on
the additional information being added.

Figure 2. Schematic diagram of the attention mechanism.

The attention mechanism is based on the edge information obtained by the canny
algorithm, and performs a convolution operation to obtain the attention weight matrix a.
The expression of the convolution operation is shown in Equation (13).

Ii
A = Softmax(IiWi

A + bi
A), for i = 1, 2 (13)

where Ii represents the input image,
{

Wi
A, bi

A
}2

i=1 represents the parameter of the convolu-
tion operation, and Softmax(·) represents the SoftMax function used for normalization.

We multiplied the resulting attention weight matrix with the corresponding input
image to obtain the final output:

IA = (I1
A ⊗ I1)⊕ (I2

A ⊗ I2) (14)

where IA represents the final output result of the attention mechanism, I1 and I2 represent
the input images, and the symbols ⊗ and ⊕ represent the multiplication and addition
elements of the matrix.

Attention mechanism is used in ResNet101 to send the edge image output by the
canny algorithm to the network to enhance the network’s ability to focus on the ground
truth region during feature extraction. We used an attention mechanism in layers 1, 2,
and 3 of ResNet because the network focuses on the low-level features of the input image
in the early stage of feature extraction. At the fourth and fifth layers, the output is a
feature map with highly abstract semantics. At this time, the introduction of the attention
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mechanism containing the edge map interferes with the effect of the feature map. A follow-
up sensitivity analysis on where the attention mechanism is introduced proves our point.

4.3. Feature Fusion Network

After introducing edge detection and attention mechanisms, our framework improved
to a certain extent. However, in the inspection data of overhead transmission lines captured
by UAVs, the vibration damper is a small target object. When ResNet101 performs feature
extraction, the deep network responds easily to semantic features and the shallow network
responds easily to image features. This feature leads to a problem: although the high-level
network can respond to semantic features, due to the small size of the Feature Map it does
not contain much geometric information, which is not conducive to object detection. This
problem is more pronounced for small-sized object detection. The vibration damper easily
disappears in the feature map output by the fifth layer of ResNet because the target is small.

The disappearance of the vibration damper feature leads to a decrease in detection accuracy.
It is natural to think that a feature map that combines deep and shallow features can

be used to meet the needs of small target detection. FPN [43] is a network structure that
adopts this idea. FPN uses the idea of image pyramid to solve the problem of difficulty
in detecting small-sized objects in object detection scenes. The traditional image pyramid
method uses a multiscale image input to construct multiscale features. The biggest problem
with this approach is that the recognition time is k times the recognition time of a single
image, where k is the number of scaled dimensions.

To improve the detection speed, methods such as Faster R-CNN [46] use a single-scale
Feature Map, but the single-scale feature map limits the detection capability of the model,
especially for samples with extremely low coverage in the training set (such as larger
and smaller samples). Unlike Faster R-CNN, which only uses the top-level Feature Map,
SSD [47] uses the hierarchical structure of convolutional networks, starting from conv4_3 of
VGG [48], and obtains multiscale Feature Maps through different network layers. Although
this method can improve accuracy and does not increase the test time, while it does not
use the low-level Feature Map, these low-level features are very helpful for detecting small
objects. In response to the above problems, FPN adopts the form of a Feature Map in the
pyramid of SSD.

Different from SSD, FPN not only uses deep Feature Map in VGG, but also applies
shallow Feature Map. These Feature Maps are efficiently integrated through bottom-up,
top-down, and lateral connections, which improve the accuracy without greatly increasing
the detection time. Therefore, as shown in Figure 3, this article refers to these practices and
introduce a structure composed of FPN and bottom-up after the third, fourth, and fifth
layers of ResNet101 so that the semantics and lines of the final output feature maps of the
three scales’ layer features are more abundant.

Figure 3. The Feature Fusion Network used for feature transfer containing two parts: the FPN and
the Bottom-up module.

DamperYOLO was trained after all framework components were introduced. The
training process is as described in Algorithm 1. As shown in Figure 4, the Edge Detec-
tion module, the ResnNet101 backbone, Attention Mechanism, the FPN and Bottom-up
framework are used to construct the entire vibration damper detection process.
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Figure 4. The realization of detection of vibration dampers is divided into three parts: Edge Detection,
Feature Extraction, Feature Fusion. First, Edge Detection is used to provide edge information. then
Feature Extraction and Feature Fusion are used to obtain feature maps for vibration dampers. Finally,
the detection results can be obtained from classifier of YOLOv4.

Algorithm 1: The Training Process of DamperYOLO.

Input: Original damper image set I = {I1, · · ·, IN} that each image contains dampers.
Output: DamperYOLO after training.
1: Initialize DamperYOLO with random weights;
2: repeat
3: for i in 1~epochs do
4: for j in 1~N do
5: Image augment for Ij;
6: Extract feature map using ResNet101;
7: Output detection results using YOLO;
8: Calculate the penalty value via Formula (2), (5) and (6);
9: Minimize Formula (1) to update the parameters of DamperYOLO;
10: end for
11: end for
12: until DamperYOLO completes convergence
13: return

5. Experiments and Analysis

5.1. Experiment Description
5.1.1. Dataset

A dataset of vibration dampers for overhead transmission lines is required for the
proposed theoretical validation and experimental analysis. At present, although there is
a lot of research work on vibration dampers, but there is no completely public vibration
damper detection dataset. Moreover, most of the vibration damper data in the article were
obtained by geometric transformation methods such as flipping, cutting, and scaling. An
insufficient number of vibration dampers would make it difficult to verify the correctness of
the proposed theory. Therefore, a dataset was made for vibration damper detection based
on the real UAV cruise video of overhead transmission lines, and named DamperDetSet. In
the process of making the DamperDetSet dataset, LabelMe was used as a data labeling tool
to label the positions of all existing line vibration dampers in the original image. The callout
box was kept as close as possible to the smallest enclosing rectangle of the target area.

DamperDetSet contains a total of 3000 images, each of which contains vibration
dampers, and the types of vibration dampers are not unique, such as hippocampus antislip
vibration dampers, hook wire vibration dampers, etc. We randomly divided all 3000 images
into a training set and a test set. The training set contains 2500 images and the test set
contains 500 images. The ratio of training set and test set is 5:1. In addition, as the dataset
is obtained by shooting with UAVs, the presentation angle of the vibration damper in the
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image is not unique, which also puts forward higher requirements for the robustness of
the model.

5.1.2. Experiment Configuration

In terms of hyperparameter settings in the experiment, we trained DamperYOLO for
a total of 200 epochs. The learning rate of the first 100 epochs remained unchanged, and
the learning rate of the last 100 epochs gradually decreased to 0. In terms of experimental
software settings, all our programs were written in Python language and integrated based
on the Pytorch 1.4 platform. In the system environment of the experimental platform,
Ubuntu18.04 was used as the operating system. In terms of the hardware environment of
the experimental platform, an NVIDIA RTX 2080 GPU was used as the main equipment for
training calculation, matched with an AMD R5-3600X CPU and 32 GB RAM.

5.2. The Baselines

In the following experiments, we chose one-stage, two-stage, and anchor-free methods
as comparison methods.

YOLOv4 [37]: This method is the latest achievement of the YOLO series. After
continuing the advantages of the previous work, it introduces the structure of FPN + PAN,
which improves the transferability of features in the network; it is also the basis of our
proposed model.

Cascade R-CNN [49]: This framework is the latest achievement of the R-CNN series.
It creatively introduces a cascade structure. The detection accuracy is state-of-the-art, but
its excellent performance consumes a lot of computational resources.

CenterNet [50]: This method is a heatmap-based detection method rather than anchor-
based, which has the advantage of fast testing and low space occupancy.

SSD [47]: SSD is another classic one-stage object detection method. It initially utilizes
multiple detectors.

RetinaNet [51]: RetinaNet is based on FPN [43], and its contribution is to propose focal
loss to solve the problem of category imbalance.

5.3. Qualitative Evaluation

To visually compare the difference between the detection effect of DamperYOLO and
other baselines, we conducted qualitative analysis and comparison experiments based
on the DamperDetSet dataset. The experimental results are shown in Figure 5. As can
be seen from Figure 5, under the same test image, the detection effect of CenterNet is
not stable enough. This proves that calculation of the heat map will be greatly disturbed
by the current anchor-free algorithm in the face of complex scenes such as transmission
lines. The performance of the two-stage Cascade R-CNN is very superior. As the latest
framework of the R-CNNs series, the results obtained by the second iteration based on the
proposal are more accurate. There is also room for improvement in the performance of a
single-level SSD. And using VGG16 as a backbone may be weaker than the ResNet-like
feature extraction network in feature extraction. RetinaNet and YOLOv4 perform better.
Both of them benefit from the latest research results in one-stage. They can obtain high
performance with only one calculation, but the edge detection effect of vibration damper
still needs to be improved. Finally, DamperYOLO outperforms other one-stages. The
detection result image of DamperYOLO proves that our proposed improvement strategy is
effective, and its performance is no less than that of Cascade R-CNN.
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Figure 5. Test examples of each model on the DamperDetSet dataset. Experimental results show
that the performance of DamperYOLO is similar to Cascade R-CNN, better than SSD, RetinaNet and
YOLOv4 in one-stage class, and CenterNet.

5.4. Quantitative Evaluation

We compared other baselines and performed the quantitative analysis shown in Table 2
with AP in the COCO [52] dataset as the evaluation standard. The calculation of AP is
based on the ground truth and the IOU of the prediction result. The calculation formula
is shown in Equation (3). The AP calculation results were selected when the IOU was 0.5,
0.7, and 0.9 as the evaluation basis, so that the performance difference of the model under
different pressure levels could be more comprehensively evaluated.
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Table 2. APs of the different models.

Model
DamperDetSet

FPS
AP50 AP70 AP90

YOLOv4 88.23 80.67 73.26 71
SSD 85.71 78.34 71.38 70

RetinaNet 87.18 79.62 72.70 73
CenterNet 84.38 77.25 69.42 118

Cascade R-CNN 92.26 89.52 81.43 31
DamperYOLO 92.62 89.67 81.24 74

As can be seen from Table 2, under the same test picture, thanks to the two-stage
detection strategy, the performance of Cascade R-CNN was still stable, and its performance
under various AP standards was at the forefront; however, its good score came at the cost
of great computation time.

The one-stage RetinaNet and YOLOv4 performed similarly, and YOLOv4 slightly
outperformed RetinaNet. Compared with SSD, both of them had a certain degree of
lead in terms of indicators, and the latest training tricks available from analysis confers
an advantage in accuracy. In addition, the calculation speed of these three methods is
faster than Cascade R-CNN, without the intermediate step of proposal, which shortens the
calculation time considerably.

The anchor-free based CenterNet had the lowest score; so, it can be concluded that the
calculation of the heatmap is very susceptible to interference from similar objects in the
background. However, the advantage of the anchor-free class method is that the calculation
speed is much faster than other baselines, which is a huge advantage for scenarios with
extremely high real-time requirements.

Our proposed DamperYOLO takes the lead on AP, but the score of YOLOv4 is lower
than Cascade R-CNN; therefore, the edge extraction, attention mechanism, and feature fu-
sion structure proposed in this paper are better than Cascade R-CNN. The calculation speed
of DamperYOLO was similar to other one-stage class methods. Therefore, DamperYOLO
is a model with a balance between speed and accuracy.

5.5. Sensitivity Analysis

In this section, multiple sets of sensitivity analysis are performed on each component
of DamperYOLO, which includes the choice of backbone, edge extraction, the attention
mechanism, the number of training iterations, and the minimum amount of training data.

5.5.1. Backbone

We conducted a sensitivity analysis on the backbone used by DamperYOLO while
retaining other improvements. As shown in Table 3, the CSPDarknet53 used by YOLOv4
was improved based on ResNet50, so it performed better. In addition, the only objects need
to be detected were dampers. Therefore, we believe that it may be more effective to expand
the number of network layers and improve the feature abstraction ability of the backbone.
The performance of ResNet101 also supports our idea, but if network layers such as using
ResNet152 are added, the improvement is limited, so ResNet101 is used as the backbone.

Table 3. APs of different backbones.

Backbone
DamperDetSet

FPS
AP50 AP70 AP90

CSPDarknet53 88.20 80.58 73.28 72
VGG16 82.18 76.54 67.91 71

ResNet50 84.12 77.62 70.42 78
ResNet101(ours) 92.62 89.67 81.24 74

ResNet152 93.25 89.97 82.16 68
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5.5.2. Edge Extraction

To verify the effectiveness of preprocessing, a sensitivity analysis was performed on
the image denoising, and edge detection used while retaining other improvements constant.
Table 4 shows that, compared with not using any preprocessing strategy, using image
denoising and edge extraction alone leads to a certain improvement in detection effect. If
both are used, the AP50 increase by about five percentage points, which shows that the
image augmentation method in this paper is effective.

Table 4. APs of different preprocessing methods.

Preprocessing Method
DamperDetSet

FPS
AP50 AP70 AP90

No preprocessing 87.18 79.52 71.83 79
Image denoising 88.92 81.93 73.65 78
Edge extraction 91.25 86.74 79.17 77

Image denoising + Edge extraction 92.62 89.67 81.24 74

5.5.3. Attention Mechanism

The attention mechanism is an important mechanism pioneered in the field of NLP,
and was developed in object detection in recent years. In order to verify the effect of
adding an attention mechanism in different layers of ResNet101, we conducted a sensitivity
analysis for the number of times an attention mechanism is introduced while retaining
the other conditions. As shown in Table 5, when the attention mechanism was added
to the first three layers of ResNet101, the detection effect improved to a certain extent.
However, continuing to introduce attention-blocks containing edge information to the 4th
and 5th layers caused a drop in detection accuracy. This is because there is more abstract
information in the feature maps extracted by the fourth and fifth layers in ResNet101,
and the edge information is the basic feature information. This is counterproductive and
reduces the detection performance.

Table 5. APs of different introduction times of the attention mechanism.

Introduced Layer
DamperDetSet

FPS
AP50 AP70 AP90

None 86.28 77.36 70.03 81
C1 87.83 80.23 71.37 80

C1, C2 91.38 84.61 77.42 77
C1, C2, C3 92.62 89.67 81.24 74

C1, C2, C3, C4 93.14 90.15 81.92 74
C1, C2, C3, C4, C5 89.27 83.32 73.52 73

5.5.4. Number of Epochs

The number of epochs for experimental training affects the performance of the model.
Because the number of training epochs is not enough, the model is under-fitted, and the
model has not yet fully learned to identify all the objects to be detected. Excessive training
epochs reduce the robustness of the model, the parameters are limited by the existing
training data, and the realization of unfamiliar data in the test set is reduced. Therefore, we
conducted an evaluation test of the number of training times for the performance of the
model, and the test results are shown in Table 6. It can be seen from the table that when the
training epoch is 200, the model is the most balanced.

148



Sensors 2022, 22, 1892

Table 6. APs of different epoch numbers.

Number of Epochs
DamperDetSet

FPS
AP50 AP70 AP90

50 71.63 60.62 41.37 79
100 80.51 72.27 65.23 77
150 84.15 80.16 74.38 75
200 92.62 89.67 81.24 74
250 93.31 88.65 80.47 74

5.5.5. Minimum Training Data Experiment

Changes in the amount of training data also affect the final performance of the model.
At the same time, by comparing the detection accuracy of the model with different amounts
of data, the feature extraction ability of the model can be judged. As shown in Table 7,
we conducted experiments with the minimum amount of data. From the results, it can
be seen that when the amount of data decreases, the performance of the model has weak
performance, which indicates that our data is sufficient. The model performance did
not drop significantly until the test set dropped to 1750. Moreover, DamperYOLO had
strong robustness and could still learn key feature information on small-scale datasets,
which overcame the shortcomings of the previous model’s poor generalization ability to a
certain extent.

Table 7. Results of minimum training data experimental.

The Amount of Training Set
DamperDetSet

FPS
AP50 AP70 AP90

2500 (100%) 92.62 89.67 81.24 74
2250 (90%) 89.51 86.28 78.83 75
2000 (80%) 85.39 81.75 75.41 74
1750 (70%) 82.41 77.40 71.68 74
1500 (60%) 73.97 69.62 64.01 72

5.6. Ablation Analysis

To analyze the functions of the different components of DamperYOLO, an ablative
analysis was performed on DamperDetSet. As shown in Table 8, Model B had better indica-
tors than Model A, which indicates that using ResNet101 as the backbone can better extract
image features. Model C uses image augmentation for preprocessing, which improves the
quality of the input image and provides the model with better training data. Compared
with other stages, the performance of Model D has the highest improvement in detection
effect. This indicates that the attention mechanism plays a sufficient role, because the
attention mechanism allows the model to focus on the edge information of the damper
when converging, with the help of the image enhancement model. In addition, it can be
seen from other comparative experiments that the additional overhead brought by it is
very low, so it is necessary for our task to add an attention mechanism to the backbone.

Table 8. The results of the ablation analysis.

Model Architecture AP50 AP70 AP90

A YOLOv4 86.21 78.45 70.96
B A + ResNet101 88.57 82.36 73.72
C B + Edge Extraction 90.82 84.24 76.50
D C + Attention Mechanism 92.62 89.67 81.24
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5.7. Computational Complexity

The network parameters and training time were recorded to evaluate the space and
time complexity of the networks. As shown in Table 9, compared with Cascade R-CNN,
DamperYOLO has a similar detection effect, but its parameters and training time are greatly
reduced. Compared with YOLOv4, the space complexity and the training time are basically
unchanged, because we only changed the backbone and added the attention mechanism on
its basis, but a higher detection effect was achieved. In addition, CenterNet still consumes
the least resources. The computational complexity of SSD is slightly higher than that of
RetinaNet, but the detection effect is slightly worse.

Table 9. Network parameters (Param.) and training time of the different models.

Model Param. Training Time (h)

YOLOv4 28 M 6.38
SSD 34 M 7.46

RetinaNet 32 M 7.03
CenterNet 14 M 4.05

Cascade R-CNN 184 M 49.84
DamperYOLO 30 M 6.92

6. Conclusions

We propose a power line vibration damper detection model named DamperYOLO
based on a deep neural network that can detect the position of the vibration damper in
drone inspection aerial images. DamperYOLO first uses the Canny algorithm to obtain the
edge information of the original image, then uses the attention mechanism to introduce
edge information into ResNet101 to guide feature extraction. Finally, it outputs a feature
map that is more conducive to small target detection with the FPN structure. The following
conclusions can be drawn through qualitative and quantitative experiments on the power
line vibration damper detection dataset built in this paper. Compared with the current
baselines in the object detection field, the DamperYOLO proposed in this paper can output
state-of-the-art detection accuracy. The results of sensitivity analysis experiments show
that edge detection, attention mechanism, and feature pyramid network all significantly
improve the detection accuracy. The ablation analysis shows that the attention mechanism
and the feature pyramid network improve the accuracy of the output detection results.
In addition, DamperYOLO consumes space similar to the computational resources and
baselines of other one-stage classes, but the detection accuracy can reach the level of
Cascade R-CNN, which shows the superiority of our model. In the future, we will continue
to introduce appropriate training tricks for the detection accuracy of DamperYOLO and
explore the application of the model to other power line components.
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Abstract: Although the combination of Airborne Laser Scanning (ALS) data and optical imagery
and machine learning algorithms were proved to improve the estimation of aboveground biomass
(AGB), the synergistic approaches of different data and ensemble learning algorithms have not been
fully investigated, especially for natural secondary forests (NSFs) with complex structures. This
study aimed to explore the effects of the two factors on AGB estimation of NSFs based on ALS data
and Landsat 8 imagery. The synergistic method of extracting novel features (i.e., COLI1 and COLI2)
using optimal Landsat 8 features and the best-performing ALS feature (i.e., elevation mean) yielded
higher accuracy of AGB estimation than either optical-only or ALS-only features. However, both
of them failed to improve the accuracy compared to the simple combination of the untransformed
features that generated them. The convolutional neural networks (CNN) model was much superior
to other classic machine learning algorithms no matter of features. The stacked generalization (SG)
algorithms, a kind of ensemble learning algorithms, greatly improved the accuracies compared to
the corresponding base model, and the SG with the CNN meta-model performed best. This study
provides technical support for a wall-to-wall AGB mapping of NSFs of northeastern China using
efficient features and algorithms.

Keywords: ensemble learning; machine learning; feature extraction; AGB; NSFs

1. Introduction

The Asian temperate mixed forest in northeastern China is one of the three major
temperate mixed forests in the world (i.e., northeastern North America, Europe, and
East Asia) [1], which is of great strategic importance to the carbon trading of China. The
forests of Northeast China have experienced three periods of excessive timber harvesting
in the last century, including the period of Russian and Japanese aggression (1896–1945),
the period of encouraging excessive harvesting for timber production (1950–1977), and
the period of national economic reforms and the broadening of international relations
(1978–1998) [2]. The excessive logging and neglected cultivation of forests nearly exhausted
exploitable forest reserves in the region [3]. Since the Natural Forest Conservation Program
(NFCP) was put into practice in 1998, there was a profound shift in focus from timber
production to environmental protection by rehabilitating damaged forest ecosystems,
afforesting desertified and degraded areas, and banning logging in natural forests [2].
In this context, natural secondary forests (NSFs) are gradually expanding and gaining
importance. NSFs, which account for as much as 70% of the forests of northeastern China,
refer to as the natural-regeneration forests after stand-replacing disturbances of primary
forests by anthropogenic activities or by extreme natural events [4,5]. Nowadays, the NSFs
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of northeastern China are gradually recovering from the excessive logging of the 20th
century, which led to an extraordinary reduction in the quality of the forest ecosystem.
NSFs are of significance to China not only for timber supply, but also for a vital reservoir
of biodiversity, potential carbon sequestration, a destination of ecological tourism, and a
broad ecological shelter for northeastern China [2].

The accurate estimation of forest aboveground biomass (AGB) has a critical effect on
the understanding of forest quality and recovery in the NSFs of northeastern China. AGB
is defined as the dry mass of live or dead matter from tree or shrub life forms, typically
expressed as a mass per area density (e.g., Mg/ha) [6]. In general, AGB could be obtained
by (1) direct harvest method; (2) allometric equation-based method; (3) biomass expansion
factor (BEF)-based method; (4) process-based biogeochemical modeling; (5) remote sensing-
based estimation method. Although the direct harvest method is the most exact among
these methods, it is time-consuming, destructive, and labor-intensive. It is only suitable
for AGB estimation of a small area or of individual trees with a small sample size [7] and
is usually applied as reference data to establish allometric equations of AGB (e.g., [8,9]).
An allometric equation-based method is more flexible and feasible than the direct harvest
method to estimate AGB on both individual tree and plot levels. A variety of allometric
equations are developed for diverse tree species by modeling the relationship between
AGB and various physical parameters of trees, such as diameter at breast height (DBH),
tree height, crown diameter, etc. (e.g., [8,10–13]). Similar to an allometric equation-based
method, the BEF-based method applied BEF defining as the ratio of all stand biomass to
growing stock volume to convert timber volume to biomass [14]. However, the allometric
equation-based and BEF-based methods are still time-consuming and expensive because
both of them are based on the acquisition of field measurements (such as DBH, tree height),
and still limited to plot-level or individual tree-level AGB estimations. Process-based
biogeochemical models consider the processes including photosynthesis, absorption, and
carbon allocation, and generally couple biology, soil, climate, hydrology, and anthropogenic
effects [15]. To some degree, these models could improve the conventional, point-based
estimation of biomass over large areas [16]. However, the high uncertainties in biomass
estimation due to constraints in data source, spatial resolution, homogeneous assumption,
and inaccuracy of models greatly limit the usage of process-based biogeochemical mod-
els [15]. The remote sensing-based method is exceedingly appealing for estimating forest
biomass on a large scale (e.g., local, regional or global) because of its unique characteristics
such as repetitive data acquisition, large coverage, digital format, and so on [15], and of the
capability of providing spatially explicit AGB estimates for every pixel location, instead
of only the mean or total biomass within a given inventory unit [17,18]. Nowadays, it
becomes the most commonly used method for large-scale AGB estimation [19–21].

In the last three decades, researchers have attempted a variety of remotely sensed
data sources to estimate AGB. With a relatively long history of data availability, optical
satellite imagery (such as Landsat, MODIS, etc.) has become a primary data source for
biomass estimation (e.g., [22–25]). In particular, Landsat series satellite imagery is the
most commonly used data source for AGB estimation (e.g., [26–30]), mainly because of
the continuous, long-term, medium spatial resolution, and cross-calibrated data for global
surface observations, and free access policy [31]. However, it is of significance to notice
the data saturation in Landsat imagery, which refers to the phenomenon that spectral
reflectance values are not sensitive to the change in biomass of mature forest or advanced
successional forests even if AGB varies significantly [32,33]. For example, Steininger [34]
found that the canopy reflectance in Landsat imagery saturates when the AGB approaches
15 kg/m2 or over 15 years of age in Brazilian tropical secondary forests. Zhao et al. [33]
examined the saturation values in Landsat imagery for different vegetation types in a
subtropical region, and found the AGB saturation values for pine forest, mixed forest,
Chinese fir forest, broadleaf forest, bamboo forest, and shrub were 159, 152, 143, 123, 75,
and 55 Mg/ha, respectively. Data saturation in optical imagery like Landsat significantly
lowers the accuracy and increases the uncertainties of AGB estimation [15]. Data saturation
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still exists in RADAR (Radio Detection and Ranging) data like SAR (Synthetic Aperture
Radar) [35]. Generally speaking, saturation values could be higher obtained by longer
wavelengths (such as L and P bands) and lower by shorter wavelengths (such as C bands),
and also vary for different forest structures [36]. Until now, the data saturation problem
caused by remote sensing signals is still one of the biggest obstacles to applying optical
imagery and RADAR data for AGB estimation [15,37,38].

Since the 1990s, it has been found that LiDAR (Light Detection and Ranging) is more
advantageous than optical imagery for AGB estimation because it is more relative to tree
height and produces less estimation error [39]. Meanwhile, LiDAR is unaffected by the
data saturation problem, even for high AGB values (>1000 Mg/ha) [40]. Thus, LiDAR
data is widely used in AGB estimation in the last two decades. According to the format of
return signals, LiDAR can be classified into discrete and continuous LiDAR; according to
platforms, LiDAR can be classified into spaceborne, airborne, UAV(Unmanned Aerial Vehi-
cle), terrestrial, backpack/handheld LiDAR; according to the size of the footprint, LiDAR
can be classified into small footprint (footprint size <1 m), mid footprint (footprint size:
10–30 m), and large footprint LiDAR (footprint >50 m) [41]. In recent years, Airborne Laser
Scanning (ALS) data, a kind of discrete, multiple returns, and small footprint LiDAR data
captured from an aerial platform, has received much scientific and operational attention
for AGB estimation than any of the other remote sensing data [42]. ALS emits laser pulses
towards the ground and receives the pulses reflected from the tree canopy, branches, leaves,
trunk, shrub, and then ground to form a three-dimensional profile of forest structure. ALS
is far more capable than optical and RADAR sensors in estimating forest parameters and is
considered the premier tool for large-scale AGB estimation (e.g., [43–47]). It is beneficial to
estimate AGB by capturing both two-dimensional spectral information of the upper canopy
and three-dimensional structural information of the canopy. However, the spectral charac-
teristics of vegetation provided by ALS are very limited since most LiDAR systems only
work at a single wavelength [48]. Thus, the integration of optical imagery and ALS data
has become the most promising approach for large-scale AGB estimation (e.g., [48–53]).

Features are the most direct representation or manifestation of data sources. Feature
extraction and selection could greatly influence the accuracy of AGB estimation [54]. A va-
riety of spectral-related features including band combinations, textures, diverse vegetation
indices, leaf area index, fraction of vegetation cover, and so on were derived from optical
imagery for AGB estimation (e.g., [29,55–58]). Similar, diverse point-based features includ-
ing height statistics (e.g., mean, maximum, variance, skewness, etc.), canopy-based quantile
estimators, canopy relief ratio, laser penetration rates, canopy closure, and so on were
extracted from LiDAR data for AGB estimation (e.g., [25,46,52,59,60]). Some researchers
directly combined optical imagery and LiDAR features (e.g., [21,61,62]) while a few of
them designed novel features derived from optical imagery and LiDAR data to improve
AGB estimation. For example, Zhang et al. [48] developed two novel groups of features
(i.e., COLI1 and COLI2) using seven vegetation indices derived from Landsat 8 and the
best-performing LiDAR variable (i.e., mean of height). The COLI1 and COLI2 were gener-
ated by the multiplication and ratio combinations of the best-performing LiDAR variable
and each vegetation index, respectively. They found that the stacked sparse autoencoder
network model with the combination of all COLI1, optical, and LiDAR features yielded
the highest accuracy of AGB estimation for the coniferous and broadleaf mixed forest of
southeast China. However, whether it is more efficient to use novel features extracted from
both data than directly combine all features is still needed to be further investigated.

In addition to data sources and features, it is vital to establish a reliable and suitable
model to estimate AGB. Currently, most remote sensing-based AGB estimation meth-
ods use data-driven empirical models, which can be divided into parametric and non-
parametric models [63]. Parametric models explicitly determine parameterized expressions
of independent variables (e.g., spectral bands) and the dependent variable of interest
(e.g., AGB) assuming the probability distributions of the variables being assessed [63].
Multiple linear regression, a classic parametric model with normality assumption, was
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the most widely used method in previous AGB studies due to their simplicity and inter-
pretability (e.g., [53,64,65]). Other parametric models, like non-linear regression (e.g., an
exponential, power, or polynomial fitting function), were also applied for AGB estimations
(e.g., [59,66,67]). Unlike parametric models, nonparametric models are distribution-free
methods in which the predictor does not take a predetermined form but is constructed
according to information derived from the data. Most machine learning models belongs
to non-parametric, such as artificial neural network (ANN), random forest (RF), k-nearest
neighbor (KNN), support vector machine (SVM), cubist (CB), classification and regression
tree (CART), convolutional neural networks (CNN) and so on. Without the assumption
of distribution, the non-parametric machine learning models are extremely flexible and
capable of capturing the complex relationships between remote sensing variables and AGB,
and widely applied in AGB estimation (e.g., [43,68–73]).

Ensemble learning, a branch of machine learning, is designed to learn tasks by con-
structing and then integrating multiple learners to produce a strong learner for improving
accuracy [74,75]. There are three basic categories of ensemble learning: bagging, boosting,
and stacking. RF and adaptive boosting (AdaBoost) algorithms are classic representatives
of bagging and boosting algorithms, respectively. RF builds trees using subsamples and
a random subset of predictors and can be very effective for estimating AGB due to its
robustness to overfitting and noise in the training dataset [43,76,77]. Adaptive boosting
is an iterative boosting algorithm that adaptively changes the distribution of the training
set based on the performance of previous learners. Another boosting algorithm, called
extreme gradient boosting (XGBoost), has been demonstrated to show great advantages in
decreasing overestimation of low AGB values and underestimation of high AGB values for
a forest type-based biomass estimation using continuous forest inventory data and Landsat
8 imagery [54]. Stacking, first proposed by Wolpert [78], is another method for combining
multiple models but is less used than bagging and boosting. Unlike the RF algorithm that
the base learner is homogeneous (e.g., regression tree), stacking are heterogeneous ensem-
ble algorithms that could integrate diverse base learners to generate a stronger learner. The
stacking algorithm was used to estimate canopy height in forestry (e.g., [79]), however, its
potential has not been fully explored in AGB estimation.

Although the synergistic utilization of ALS and optical passive imagery was proved
to improve AGB estimation [48], the synergistic approach (i.e., features) has not been fully
investigated, especially for NSFs with complex structures. For example, is it more efficient
to apply a novel feature extracted from passive imagery and LiDAR data (e.g., COLI1 and
COLI2 in [48]) or directly combine all the features from the two data sources (like [61])? In
addition, will ensemble learning algorithms improve the accuracy of AGB estimation for
NSFs? Inspired by these questions, this study aimed at exploring the effects of different
synergistic approaches of features and ensemble learning algorithms on AGB estimation of
NSFs of northeastern China based on ALS and Landsat 8 OLI (Operational Land Imager)
imagery. Specifically, the objectives of this study were (1) to investigate the effects of
different data sources and classic machine learning algorithms on AGB estimation of a
natural secondary forest; (2) to grope for a highly effective approach to combine ALS and
Landsat 8 OLI imagery on AGB estimation of a natural secondary forest; (3) to explore the
performances of ensemble learning algorithms in estimating AGB of a natural secondary
forest; (4) to generate an accurate wall-to-wall AGB map of a natural secondary forest for
future forest resources management.

2. Materials and Methods

2.1. Study Area

The study area is located in Maoershan Experimental Forest Farm of Northeast
Forestry University (NEFU), Shangzhi, Heilongjiang Province, China, ranging from 127◦29′
to 127◦44′ E and 45◦14′ to 45◦29′ (Figure 1). The landform of the forest farm belongs to
a low mountain and hilly area. The terrain gradually rises from south to north, with an

158



Sensors 2021, 21, 5974

average elevation of 300 m. The highest mountain is Maoer Mountain, with an elevation
of 805 m.

Figure 1. The location of study area: (a) The location of Maoershan Experimental Forest Farm within Heilongjiang Province;
(b) the locations of 195 plots (20 m × 30 m) within Maoershan (Background: Landsat 8 OLI image).

The total area of the forest farm is 26,496 ha, which belongs to a typical natural
secondary forest in northeastern China. The vegetation in the Maoershan area is a part
of Changbai plant flora, with the original zonal top-level community of Korean pine
broad-leaved forest. Due to the destruction in the last century, the original vegetation
has undergone reverse succession. It has formed a forest landscape in which natural
secondary forests are dominated by precious broad-leaved forests, poplar and birch forests,
oak forests, and so on, and plantations such as red pine and larch are inlaid. The main
species include Betula platyphylla, Quercus mongolica, Populus davidiana, Larix olgensis, Pinus
sylvestris, and Pinus koraiensis, etc. The average forest coverage rate is 95%, and the total
stock is approximately 3.5 million m3.

2.2. Data Collection
2.2.1. Remotely Sensed Data

The remotely sensed data utilized in this study include ALS data and Landsat 8 OLI
imagery. ALS data were obtained in September 2015. It is a secondary product scanned by
the LiDAR sensor (Riegl LMS-Q680i) carried by the LiCHY system of the Chinese Academy
of Forestry. The maximum frequency of the laser pulse of the LiDAR sensor is 400 kHz,
with a wavelength of 1550 nm, a scanning angle of ±30◦, a sampling interval of 1 ns, and
vertical accuracy of 0.15 m. The sidelap of this flight strip was designed to be greater than
60%, with an average point cloud density of 3.6 points·m−2.
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To be consistent with ALS data in time, the Landsat 8 OLI imagery acquired on
13 September 2015 was applied in this study (downloaded from https://earthexplorer.usgs.
gov/ (accessed on 1 September 2021)). The scene ID is LC81170282015256LGN01 (L1T-level
product), with cloudiness of 1.35%, sun elevation angle of 45.28◦, and sun azimuth angle of
154.91◦. Seven multispectral bands (band1–band7) of 30 m nominal spatial resolution were
utilized in this study. The radiometric resolution of the imagery is 12 bits and the swath
width is 185 km × 185 km.

2.2.2. Reference Data

The 195 fixed plots data of continuous forest resources inventory obtained in 2016
was applied as reference data in this study (see Figure 1b). The plot size was 20 m × 30 m
and the center of each plot was correctly determined using a GPS (accuracy ±5 m). The
diameter at breast height (DBH) of the trees larger than 5 cm and the tree species of each
plot were recorded.

The AGB of individual trees was calculated using the species-specific allometric
growth equations with DBH. In this study, the allometric growth models developed
by [80,81] for the major species of trees and understory in northeastern China were em-
ployed to calculate the AGB of individual trees. The allometric growth equation was
showed as Equation (1) and the parameters of major species of trees and understory were
listed in Table 1.

W = a·Db (1)

where W represents aboveground biomass (kg), D represents DBH (cm), a and b are
estimated parameters of different species in [80,81]. The AGB of the plot was the cumulative
summation of the AGB of individual trees of each plot.

Table 1. Estimated parameters (a and b) of the allometric growth models of different species applied
in this study.

Vegetation Types Latin Names of Species a b

Deciduous trees

Acer mono Maxim. 0.318 2.081
Ulmus pumila L. 0.350 1.995

Populus davidiana Dode 0.078 2.512
Betula platyphylla 0.313 2.114

Quercus mongolica Fisch. ex Ledeb. 0.097 2.501
Tilia mongolica Maxim 0.083 2.422

Fraxinus mandshurica Rupr./Juglans mandshurica
Maxim/Phellodendron amurense Rupr. 0.268 2.118

Coniferous trees

Larix olgensis Henry 0.168 2.248
Pinus koraiensis Sieb.et Zucc. 0.082 2.426

Picea asperata Mast. 0.067 2.517
Larix olgensis Henry 1 0.222 2.174

Pinus koraiensis Sieb.et Zucc.1 0.206 2.117
Pinus sylvestris var. mongolica Litv. 1 0.080 2.440

Understory

Acer ginnala 0.527 2.217
Syringa reticulata var. amurensis 0.395 2.300

Padus asiatica 0.090 2.696
Rhamnus yoshinoi 0.169 2.555

Arbor-like mixed species 2 0.182 2.487
1 Represents plantations; otherwise are natural forests. 2 represent arbor-like mixed species of understory that do
not have a specific Latin name.

2.3. Methods

To investigate the effects of different synergistic approaches of features and ensemble
learning algorithms on AGB estimation of NSFs, a five-step methodology with three ex-
periments of features (Feature experiments I-III) was implemented in this study, including
(1) data preprocessing, (2) feature extraction and selection, (3) establishment and evaluation
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of classic machine learning models, (4) establishment and evaluation of ensemble learning
models, (5) wall-to-wall AGB prediction using the most effective algorithm and features.
Feature experiment I was designed to explore the effects of features from different data
sources (ALS, optical imagery, and combined data) on AGB estimation based on a variety
of machine learning algorithms; Feature experiment II was designed to investigate how to
efficiently combine the best-performing ALS feature (a unique feature) with several spectral
features for AGB estimation, is it better to use novel extracted features or directly combine
all the features?; Feature experiment III aims to compare the performance of combining all
features for AGB estimation. The feature experiment design and logic of this study were
shown in Table 2 and Figure 2, respectively.

Table 2. Feature experiments designed in this study.

Experiment Data Source Number of Features 1 Details

I

ALS 9 Feature 1: Optimal ALS features

Landsat 8 9 Feature 2: Optimal Landsat
8 features

ALS + Landsat 8 18 Feature 1 + 2: Optimal ALS and
Landsat 8 features

II ALS + Landsat 8

9 Feature 4: All COLI1 2

9 Feature 5: All COLI2 2

10
Feature 2 + 3 3: Optimal Landsat
8 features (9) + The best performing
ALS feature (1)

III ALS + Landsat 8

27
Feature 1 + 2 + 4: Optimal ALS
features (9) + Optimal Landsat
8 features (9) + All COLI1 (9)

27
Feature 1 + 2 + 5: Optimal ALS
features (9) + Optimal Landsat
8 features (9) + All COLI2 (9)

1 Number of features was determined by the procedure described in Section 2.3.2. 2 COLI1 and COLI2 were
calculated using Equations (3) and (4) described in Section 2.3.2. 3 Feature 3 is the best performing ALS feature.
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Figure 2. The flowchart of this study. Note: the number in parentheses represents feature number. Feature 1: optimal ALS
features; Feature 2: optimal Landsat 8 features; Feature 3: the best performing ALS feature; Feature 4: all COLI1s; Feature 5:
all COLI2s.

2.3.1. Preprocessing of Remotely Sensed Data

The preprocessing of the ALS data includes (1) noise elimination (such as air points,
low points, and isolated points). The radius of a fitting plane and the multiples of standard
deviation were set to 0.5 m and 1, respectively. The algorithm will automatically calculate
the standard deviation of the surrounding fitting plane of a point. If the distance from
this point to that plane is less than multiples of standard deviation, this point will be kept.
(2) classification of ground and non-ground points. The ground points were classified
by improved progressive triangulated irregular network densification (IPTD) filtering
algorithm developed in [82]. The maximum building size and maximum terrain angle
were set to 20 m and 88◦, respectively. (3) normalization of point clouds. A digital terrain
model (DTM) with a resolution of 0.5m was generated based on ground points using the
inverse distance weighted (IDW) interpolation method. The power of the distance between
sampling points and an unknown point was set to 2, and the smallest number of points
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used for interpolation was 12. Then, the point clouds were normalized by subtracting
the DTM value from the elevation of all points. The preprocessing of the ALS data was
implemented using LiDAR 360 V3.2 of GreenValley International.

Preprocessing of the Landsat 8 OLI imagery including radiometric calibration, atmo-
spheric correction, and topographic correction was implemented using ENVI 5.3 software.
The Fast Line-of-sight Atmospheric Analysis of Spectral Hypercube (FLAASH) radiative
transfer model was implemented for atmospheric correction and conversion to surface
reflectance in the EVNI environment. The topographic correction was conducted with the
well-known Sun Canopy Sensor + C correction (SCS + C) approach using the extension
tool of “Topographic Correction_V5.3_4_S1”. The SCS + C correction approach reduces
overcorrection and is an effective topographic correction method in forested and moun-
tainous terrain [83,84]. The SCS + C topographic correction model can be expressed by
Equation (2).

Lt = L·
(

cosθ·cosα + C
cosi + C

)
(2)

where Lt is the corrected pixel radiance value of the image; L is the uncorrected pixel
radiance value of the image; i is the incidence angles on a horizontal surface; θ is the solar
zenith angle; α is the slope angle; C is the semi-empirical parameter. DTM generated from
ALS data was applied for topographic correction in this study.

2.3.2. Feature Extraction and Selection

• Feature Extraction

Four categories of 101 features related to forest, height, density, and intensity features
were derived from normalized ALS point cloud data. Forest features include canopy cover,
leaf area index (LAI), and gap fraction. Canopy cover refers to the proportion of the forest
floor covered by the vertical projection of the tree crowns [85]. LAI is one of the most
significant variables for representing canopy structure, with the definition of half the total
foliage area per unit ground surface area [86]. The gap fraction can be calculated by the
ratio of the number of ground points whose elevation is lower than the height threshold
(i.e., 2 m in this study) and the total return number. All 101 ALS features, including three
forest metrics, 46 elevation metrics, 10 density metrics, and 42 intensity metrics were
extracted using LiDAR 360 V3.2 of GreenValley International. The feature details were
listed in Table A1 of Appendix A.

A variety of features could be derived from optical imagery. According to previous
studies (e.g., [48,54,73,87]), band combinations, vegetation indices, textures (e.g., gray-level
co-occurrence matrix (GLCM)) of each band, and image transformations (e.g., principal
component analysis, tasseled cap, minimum noise fraction) were extracted as potential
predictors for AGB modeling. Therefore, 98 features were selected or extracted from
Landsat 8 imagery in this study, including seven original bands (band 1–7), ten band
combinations, ten image enhancement features (i.e., three principal components, three
tasseled-cap features, and four minimum noise fractions), 56 GLCM features, and 15 vege-
tation indices. The details of the 98 features derived from Landsat 8 were listed in Table A2
of Appendix A.

• Feature Selection

To avoid the “curse of dimensionality”, it is a prerequisite to select the most effective
feature for AGB estimation. In this study, the two-step feature selection procedure is
implemented, including (1) preliminary selection using Pearson correlation coefficient; and
(2) further selection based on variable importance measure using random forest. For the
first step, Pearson correlation coefficients of each feature and AGB were calculated and the
features with p-value less than 0.05 that significantly correlated with AGB were selected.
Then, the selected features were ranked according to variable important measures calcu-
lated with random forest. Due to the randomness, the ranking procedure was implemented
10 times to find out the most stable set of features with high ranking.
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The two-step feature selection was implemented for ALS and Landsat 8 data, respec-
tively, to select two sets of best-performing features. Among the selected ALS features, the
best-performing ALS variable was determined by establishing and evaluating the univari-
ate models of each ALS feature and AGB. The feature selection procedure was implemented
using R version 4.0.4 (https://www.r-project.org/ (accessed on 1 September 2021)).

According to [48], two types of indices (COLI1 and COLI2) incorporating optical
imagery and ALS information were established using the best-performing LiDAR variable
with each optical spectral vegetation index. The best-performing LiDAR variable was
determined by the univariate model of AGB and the LiDAR variable with the highest
R2. The best-performing spectral features of Landsat 8 were selected by the two-step
feature selection procedure described above. Then, the generation of COLI1 and COLI2
based on the best-performing LiDAR variable (only one feature) and the best-performing
Landsat 8 features (could be several features) included both feature selection and extraction
procedures. For convenience, we still used the notation of [48] but adjusted the equations
as follows.

COLI1 = SFi × BLV (3)

COLI2 = SFi_BLV =
(BLV − SFi)

(BLV + SFi)
(4)

where BLV is the best-performing LiDAR variable (only one feature), SFi is a set of best-
performing features derived from Landsat 8 imagery (several features). Thus, the number
of COLI1 or COLI2 is identical to the number of best-performing spectral features (SFi).

2.3.3. Classic Machine Learning Algorithms

In this study, seven classic machine learning algorithms were conducted to estimate
the AGB of NSFs, including extreme learning machine (ELM), backpropagation (BP) neural
network, regression tree (RegT), RF, support vector regression (SVR), KNN, and CNN. Tra-
ditional multiple linear regression (MLR) was applied as a baseline for model comparison.

• ELM

ELM is a class of machine learning methods built on the feedforward neuron network
(FNN) for supervised and unsupervised learning problems [88]. ELM is an improvement
of FNN and its backpropagation algorithm, which is characterized by random or artificially
given weights of the nodes in the hidden layer and does not need to be updated. Compared
to single-layer perceptron and SVM, ELM is considered to have possible advantages in
terms of learning rate and generalization ability [88].

• BP

BP neural network, proposed by Rumelhart et al. in 1986 [89], is a multilayer feedfor-
ward network trained by error backpropagation algorithm and is one of the most widely
used neural network models [90]. Its learning rule is to use the fastest descent method
to continuously adjust the weights and thresholds of the network by backpropagation to
minimize the sum of squared errors of the network. According to error and trials, the BP
algorithm was implemented with epochs of 1000 in this study.

• RegT and RF

A regression tree is a basic method built on the principle of minimizing the loss
function for a regression problem. The major advantage of the regression tree is the
readability of the model and fast computational speed, which make it particularly suitable
for integrated learning, such as random forests. RF, proposed by Leo Breiman [76], is based
on multiple regression trees, which is capable of capturing the complicated relationship
between a response and a set of explanatory variables with the following advantages:
robustness to reduce over-fitting, ability to determine variable importance, higher accuracy,
fewer parameters that need to be tuned, lower sensitivity to the tuning of the parameters,
fast training speed, and anti-noise property. The number of regression trees and the random
state of the RF algorithm were set to 1000 and 10, respectively, in this study.
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• SVR

SVM is a class of generalized linear algorithms that performs the classification of
data in a supervised learning manner, where the decision boundary is the hyperplane
of maximum margins solved for the learned samples. SVR is a transformation of SVM
designed for regression problems and can perform nonlinear problems by kernel method.
Linear kernel and penalty factor of 1 were applied for SVR in this study.

• KNN

The KNN method is a multivariate nonparametric algorithm that uses a set of pre-
dictors (Xs) to match each target pixel to a number (K) of most similar (nearest neighbors)
reference pixels for which values of response variables (Y) are known. The number of
nearest neighbors was set to 5 and uniform weights were utilized in this study.

• CNN

CNN, firstly developed in 1995 for the classification of handwritten images [91],
is one of the most representative algorithms of deep learning. CNN interprets spatial
data by scanning it using a series of trainable moving windows and has the capability
of representation learning in a translation-invariant manner according to its hierarchical
structure. In this study, the CNN model had a simple structure with an input layer, a
hidden layer, and an output layer, and was implemented using an epoch of 1000 and a
batch size of 30.

2.3.4. Ensemble Learning Algorithms

Stacked generalization (SG) which is a layered ensemble learning algorithm [92] was
applied in this study. There are two layers designed in the SG algorithm here, including
basic models and meta models. The input of the base model is the original training set and
the output of the base model is applied as the training set for meta model [93]. The meta
model could be a single model or an ensemble model [93,94], like RF. To obtain a better
performance of SG, the base models should be accurate and different as much as possible.
Thus, the four best-performing machine learning algorithms described in Section 2.3.3
were selected for the base models according to leave-one-out cross-validation and meta
models for establishing SG algorithms in this study, which resulted in four SG algorithms.
The flowchart of the SG algorithm in this study was presented in Figure 3.
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Figure 3. Flowchart of stacked generalization (SG) algorithm in this study. Note: The number of the base model (N) was set
to four in this study and 195 iterations were running within each model because of the leave-one-out cross-validation of
195 sample plots.

2.3.5. Model Evaluation

This study adopted a leave-one-out cross-validation method to evaluate the model
accuracy. Since 195 sample plots were used in this study, the training and testing data were
194 plots and 1 plot, respectively; and 195 iterations were run for each model. Due to the
problems of coefficient of linear determination (R2) for nonlinear models [95], we avoid
applying R2 of machine learning models established by selected features and AGB. How-
ever, R2 of actual and predicted AGB could be used as an indicator since the relationship
of actual and predicted AGB can be described by a simple linear model. Therefore, six
indices were applied for model evaluation, including R2 of actual and predicted AGB, root
mean squared error (RMSE), relative root mean squared error (rRMSE), mean absolute
error (MAE), mean absolute percentage error (MAPE), and precision measure (PM). The
equations were shown as follows:

R2 =
∑n

i = 1(ŷi − y)2

∑n
i = 1(yi − y)2 (5)

RMSE =

√
1
n

n

∑
i = 1

(yi − ŷ)2 (6)

rRMSE =

√
1
n ∑n

i = 1(yi − ŷ)2

y
(7)

MAE =
1
n

n

∑
i = 1

|yi − ŷi| (8)

MAPE =
1
n

n

∑
i = 1

|yi − ŷi|
yi

× 100% (9)

PM =
∑n

i = 1(yi − ŷi)
2

∑n
i = 1(yi − y)2 (10)

166



Sensors 2021, 21, 5974

where n represents the number of observation samples, yi represents the actual AGB of
the ith plot, ŷi represents the predicted AGB of the ith plot, and y represents the mean of
the actual AGB. All the model fitting and evaluation procedures in this study were imple-
mented by python 3.7 (https://www.python.org/downloads/ (accessed on 1 September
2021)), TensorFlow 2.2 (https://tensorflow.google.cn/ (accessed on 1 September 2021)) and
sklearn (https://scikit-learn.org/stable/ (accessed on 1 September 2021)).

3. Results

3.1. Feature Selection

Due to a large number of extracted features (199 features in total), two-step feature
selection was implemented in this study, including preliminary selection using Pearson
correlation coefficient; and further selection based on variable importance measure using
random forest. Finally, nine ALS features were selected and sorted from highest to lowest
variable importance as follows: elev_mean, int_AII_5th, elev_cv, density_7th, int_max,
int_AII_40th, int_per_60th, int_per_80th, and int_AII_50th; nine features extracted from
Landsat 8 were selected and ranked in descending order of variable importance: MVI5, B1,
B76, B65, B53, Entr_B5, B2, ND563, and MVI7. The selected features and their descriptions
were listed in Table 3.

Table 3. Feature Selection of ALS and Landsat 8 imagery.

ALS Feature Descriptions Landsat 8 Feature Descriptions

elev_mean Mean value of height MVI5 (B5 + B4 − B2)/(B5 + B4 + B2)

int_AII_5th The cumulative intensity of
5% points in each pixel B1 Band 1

elev_cv Coefficient of variation of
height B76 B7/B6

density_7th The proportion of returns
in 7th height interval B65 B6/B5

int_max Max of intensity B53 B5/B3

int_AII_40th The cumulative intensity of
40% points in each pixel Entr_B5 Entropy of band 5

int_per_60th 60% intensity percentile B2 Band 2

int_per_80th 80% intensity percentile ND563 (B5 + B6 − B3)·(B5 + B6 + B3)

int_AII_50th The cumulative intensity of
50% points in each pixel MVI7 (B5 − B7)/(B5 + B7)

To grope for the best-performing ALS feature, simple linear regressions were es-
tablished to model the relationship between AGB and each ALS feature. The result of
univariate models showed that the elevation mean outperformed other ALS features due
to higher R2 and lower RMSE, rRMSE, MAE, MAPE, and PM (Table 4). Thus, elevation
mean was selected as the best-performing ALS feature to generate COLI1 and COLI2 using
Equations (3) and (4).
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Table 4. Accuracy assessment of the univariate models with AGB and each ALS feature.

ALS Features R2 RMSE rRMSE MAE MAPE PM

elev_mean 0.34 60.03 0.40 43.74 0.39 0.67
int_AII_5th 0.13 68.75 0.46 51.70 0.65 0.87

elev_cv 0.08 70.64 0.48 53.99 0.66 0.92
density_7th 0.05 71.89 0.48 53.27 0.87 0.95

int_max 0.19 66.41 0.45 49.03 0.64 0.81
int_AII_40th 0.20 65.97 0.44 49.85 0.63 0.80
int_per_60th 0.17 66.89 0.45 50.68 0.64 0.83
int_per_80th 0.17 66.94 0.45 50.51 0.66 0.83

3.2. Performance of Classic Machine Learning Algorithms
3.2.1. Experiment I

The goal of feature experiment I was to explore the effects of features from different
data sources (optical imagery, ALS, and combined data) on AGB estimation based on seven
classic machine learning algorithms, including ELM, BP, RegT, RF, SVR, KNN, and CNN.
MLR was implemented as a baseline for model comparison. Table 5 shows the performance
of the eight models using the three sets of features designed in Experiment I.

Table 5. Accuracy assessment of classic machine learning algorithms with three sets of features
designed in experiment I.

Features Algorithm 1 R2 RMSE rRMSE MAE MAPE PM

Optimal ALS features
(Feature 1)

MLR 0.31 52.76 0.37 41.09 38.37 0.67
ELM 0.31 56.79 0.40 42.61 35.49 0.69
BP 0.28 61.01 0.42 44.37 36.01 0.71

RegT 0.21 71.95 0.47 58.55 42.66 1.11
RF 0.29 61.84 0.41 45.80 37.08 0.72

SVR 0.40 57.84 0.38 39.32 32.35 0.66
KNN 0.31 60.95 0.4 45.21 35.36 0.81
CNN 0.49 51.54 0.34 37.31 30.82 0.41

Optimal Landsat
8 features
(Feature 2)

MLR 0.17 66.36 0.47 58.08 44.31 1.05
ELM 0.12 71.64 0.48 59.73 41.40 1.21
BP 0.13 68.58 0.49 57.19 42.76 1.04

RegT 0.14 66.24 0.48 58.59 42.53 0.89
RF 0.15 67.33 0.44 50.69 43.39 0.92

SVR 0.07 70.31 0.46 51.65 47.28 1.14
KNN 0.11 68.95 0.45 52.91 43.31 0.84
CNN 0.27 62.54 0.41 47.16 43.08 0.72

Optimal ALS and Landsat
8 features (Feature 1 + 2)

MLR 0.25 63.48 0.40 47.21 42.34 0.94
ELM 0.30 57.49 0.38 42.91 36.42 0.78
BP 0.29 55.65 0.39 43.4 37.87 0.72

RegT 0.24 60.86 0.45 55.07 39.18 0.87
RF 0.28 61.91 0.41 45.36 39.28 0.91

SVR 0.39 57.8 0.38 39.19 31.3 0.77
KNN 0.22 65.37 0.43 48.6 34.69 1.07
CNN 0.97 12.6 0.08 6.43 4.02 0.13

1 MLR- multiple linear regression; ELM—extreme learning machine; BP—back propagation; RegT—regression
tree; RF—random forest; SVR—support vector regression; KNN—k-nearest neighbor regression; CNN—
convolutional neural networks

In general, the optimal ALS features (Feature 1) performed significantly better than
the optimal Landsat 8 features (Feature 2) for AGB estimation, no matter of algorithms; the
combination of the optimal ALS and Landsat 8 features (Feature 1 + 2) performed differently
for various algorithms. For each data source, the accuracy of CNN was greatly higher
than that of other algorithms, especially for applying both ALS and Landsat 8 features
(R2 = 0.97, RMSE = 12.6, rRMSE = 0.08, MAE = 6.43, MAPE = 4.02, PM = 0.13). However, it
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is worth mentioning that the accuracies of other algorithms (except CNN) based on two
data sources (Feature 1 + 2) were not significantly improved compared with those based on
optimal ALS features (Feature 1), which suggested that the accuracy of AGB estimation not
only depends on data sources but also different algorithms. Some algorithms (like RF and
SVR) could provide very similar accuracy using both optimal ALS and Landsat 8 features
to that using only optimal ALS features, making it meaningless to involve optical imagery.
Thus, ALS data are of significance to AGB estimation.

3.2.2. Experiment II

After determining the best-performing ALS feature (i.e., elevation mean), we designed
feature experiment II to investigate how to efficiently combine the unique feature with
the optimal Landsat 8 features for AGB estimation. Is it better to utilize a novel feature
extracted from elevation mean and optimal Landsat 8 features (i.e., COLI1 and COLI2)
or directly combine all the features? A similar feature size in experiment II (i.e., 9 or 10)
could avoid the unfair comparison due to the big difference in feature number. Table 6
presented the accuracy assessment of classic machine learning algorithms with three sets
of features designed in experiment II. The results showed that the addition of elevation
mean significantly improves the accuracies of AGB estimation compared to those using
optical features only (Feature 2), no matter how to add it. The models except CNN had very
similar performances in AGB estimation for the three feature combinations in experiment
II. CNN still showed great advantages like Experiment I, especially for the case of simply
combining the optimal Landsat 8 features and elevation mean together (Feature 2 + 3) with
the accuracy of R2 = 0.88, RMSE = 24.48, rRMSE = 0.16, MAE = 10.19, MAPE = 7.23, and
PM = 0.24, followed by the case of all COLI2 (Feature 5), and then the case of all COLI1
(Feature 4). Thus, it seemed unnecessary to generate the new features (i.e., COLI1 or COLI2)
when CNN was applied for AGB estimation based on the optimal Landsat 8 features and
the best-performing ALS feature for NSFs.

Table 6. Accuracy assessment of classic machine learning algorithms with three sets of features
designed in experiment II.

Features Algorithm R2 RMSE rRMSE MAE MAPE PM

All COLI1
(Feature 4)

MLR 0.34 59.50 0.39 45.08 34.07 0.61
ELM 0.31 59.25 0.41 44.27 37.7 0.66
BP 0.30 57.34 0.38 45.68 39.39 0.68

RegT 0.28 62.62 0.43 50.22 45.45 0.72
RF 0.32 60.14 0.40 43.27 35.55 0.62

SVR 0.24 69.91 0.46 51.13 43.78 0.85
KNN 0.26 62.58 0.41 46.3 38.39 0.69
CNN 0.5 51.06 0.34 38.27 30.48 0.54

All COLI2
(Feature 5)

MLR 0.22 61.49 0.48 50.12 39.34 0.72
ELM 0.25 64.35 0.47 51.07 40.81 0.75
BP 0.30 62.14 0.47 50.39 38.24 0.78

RegT 0.24 67.07 0.49 52.41 43.93 0.79
RF 0.24 63.98 0.42 46.28 39.73 0.74

SVR 0.26 67.69 0.45 49.05 38.71 0.78
KNN 0.25 63.51 0.42 47.3 40.05 0.71
CNN 0.66 42.42 0.28 29.71 22.16 0.45

Optimal Landsat
8 features + The

best-performing ASL
feature (Feature 2 + 3)

MLR 0.33 60.14 0.40 44.45 40.76 0.70
ELM 0.29 64.26 0.43 48.39 42.59 0.69
BP 0.30 63.8 0.41 50.11 44.01 0.70

RegT 0.25 64.14 0.45 52.34 45.53 0.74
RF 0.28 62.29 0.41 45.62 41.69 0.71

SVR 0.29 62.25 0.41 42.00 40.21 0.82
KNN 0.24 63.38 0.42 46.95 39.24 0.69
CNN 0.88 24.48 0.16 10.19 7.23 0.24
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3.2.3. Experiment III

To investigate the effect of combing optimal ALS and Landsat 8 features and two types
of novel features (COLI1 or COLI2) using classic machine learning algorithms, experiment
III was implemented (Table 7). Comparing to the result of applying optimal ALS and
Landsat 8 features (Feature 1 + 2) in Table 5, the additions of the novel features, no matter
COLI1 or COLI2, slightly improved the accuracies of most models, like MLR, BP, RegT,
RF, and KNN. In addition, the accuracies of all models except RF using optimal ALS and
Landsat 8 features and all COLI2 (Feature 1 + 2 + 5) were slightly improved compared to
those using optimal ALS and Landsat 8 features and all COLI1 (Feature 1 + 2 + 4), indicating
COLI2 were more efficient than COLI1 for AGB estimation of NSFs. CNN was still much
superior to other algorithms and reached the highest accuracies (R2 = 0.99, RMSE = 6.85,
rRMSE = 0.04, MAE = 2.95, MAPE = 1.02, PM = 0.03) when optimal ALS and Landsat
8 features and all COLI2 (Feature 1 + 2 + 5) was applied.

Table 7. Accuracy assessment of classic machine learning algorithms with two sets of features
designed in experiment III.

Features Algorithm R2 RMSE rRMSE MAE MAPE PM

Optimal ALS + Landsat
8 features + All COLI1

(Feature 1 + 2 + 4)

MLR 0.32 60.50 0.40 45.08 36.07 0.68
ELM 0.28 63.26 0.42 44.15 37.84 0.81
BP 0.31 58.71 0.37 40.30 36.98 0.65

RegT 0.28 62.07 0.42 42.29 38.51 0.79
RF 0.31 60.32 0.41 43.41 39.26 0.73

SVR 0.39 57.74 0.39 38.05 35.31 0.66
KNN 0.29 61.11 0.44 42.87 36.47 0.69
CNN 0.92 12.02 0.09 11.37 8.3 0.11

Optimal ALS + Landsat
8 features + All COLI2

(Feature 1 + 2 + 5)

MLR 0.33 59.38 0.42 44.27 39.50 0.70
ELM 0.29 61.67 0.43 47.09 40.34 0.81
BP 0.32 57.74 0.42 48.29 41.60 0.72

RegT 0.33 65.59 0.42 49.26 42.17 0.83
RF 0.31 60.61 0.40 44.69 31.08 0.69

SVR 0.42 56.82 0.37 38.76 29.39 0.68
KNN 0.32 59.83 0.39 44.34 37.3 0.64
CNN 0.99 6.85 0.04 2.95 1.02 0.03

3.3. Performance of Ensemble Learning Algorithms
3.3.1. Experiment I

To explore the performances of ensemble learning algorithms in estimating AGB based
on different feature combinations, Experiment I, II, and III were also implemented using the
designed SG algorithms. According to the results of classic machine learning algorithms
(Tables 5–7), four best-performing models, that is, RF, SVR, KNN, and CNN, were selected
as base models for the SG algorithm. The predictions of base models were applied as
the input of the meta model of the SG algorithms, which were also RF, SVR, KNN, and
CNN. Thus, there were four SG algorithms due to four meta models, including SG(RF),
SG(SVR), SG(KNN), and SG(CNN). Table 8 presented the accuracy assessment of ensemble
learning algorithms with three sets of features designed in experiment I. Comparing to
the results of base models (Table 5), the SG algorithms greatly improved the accuracy
of AGB estimation using the optimal Landsat 8 features (Feature 2) and the combined
optimal features (Feature 1 + 2). However, for the case of optimal ALS features (Feature 1),
the SG algorithms had slightly lower accuracies than those of base models, except CNN.
In general, CNN still performed best as a meta model of SG algorithm, followed by SG
algorithm with SVR meta model, and finally with RF meta model as well as KNN model.
Although CNN was still an outstanding meta model for all the cases, it was worth noting
that the drastic improvements of accuracies brought by SG(SVR), SG(RF), and SG(KNN)
compared with their corresponding base model, especially for the Feature 2 and Feature 1
+ 2. For example, R2 of SG(SVR), SG(RF), and SG(KNN) increased approximately 30%–40%
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and 60%–70% for Feature 2 and Feature 1 + 2, respectively; alternatively, R2 of SG(CNN)
only increased 49% and 0% for Feature 2 and Feature 1 + 2, respectively. Other indices
(RMSE, rRMSE, MAE, MAPE, and PM) had similar trends, but in the opposite direction.
Thus, it had more room for improvement to apply the SG algorithms for relatively weaker
learners (like SVR, RF, and KNN) than strong deep learning learners (like CNN).

Table 8. Accuracy assessment of ensemble learning algorithms with three sets of features designed
in experiment I.

Features Algorithm R2 RMSE rRMSE MAE MAPE PM

Optimal ALS features
(Feature 1)

SG(RF) 0.20 65.38 0.43 50.66 42.35 1.03
SG(SVR) 0.24 63.98 0.42 45.75 41.03 0.92
SG(KNN) 0.19 66.07 0.44 50.70 42.22 1.24
SG(CNN) 0.61 45.42 0.30 31.59 24.28 0.37

Optimal Landsat
8 features
(Feature 2)

SG(RF) 0.44 54.24 0.36 40.20 32.47 0.57
SG(SVR) 0.45 54.36 0.36 38.85 34.59 0.65
SG(KNN) 0.44 54.34 0.36 40.37 32.08 0.53
SG(CNN) 0.76 35.28 0.23 24.29 18.17 0.26

Optimal ALS and Landsat
8 features (Feature 1 + 2)

SG(RF) 0.93 18.04 0.12 8.78 6.30 0.17
SG(SVR) 0.97 12.13 0.08 5.70 4.70 0.14
SG(KNN) 0.9 24.27 0.16 16.76 15.09 0.15
SG(CNN) 0.97 10.95 0.07 6.58 5.06 0.03

3.3.2. Experiment II

Feature experiment II was also implemented to investigate how to integrate elevation
mean and the optimal Landsat 8 features for AGB estimation based on ensemble learning
algorithms (Table 9). It showed that the SG algorithms greatly improved the accuracies
for all the cases except the SG(CNN) for Feature 5 and Feature 2 + 3, comparing to the
accuracies using the corresponding base model (Table 6). When SG algorithms were
utilized, the trend that the simple combination of optimal Landsat 8 features and elevation
mean (Feature 2 + 3) performed best, followed by all COLI2 (Feature 5), and finally all COLI1
(Feature 4) was much more obvious than that using classic machine learning algorithms
(Table 6 vs. Table 9). The advantage of applying deep learning algorithm CNN as meta
model decreased with the dramatic increase in the accuracies of the other three algorithms
(i.e., RF, SVR, and KNN), especially for Feature 5 and Feature 2 + 3. In other words, when
the feature set of all COLI2 or the feature set of optimal Landsat 8 features and elevation
mean was applied for AGB estimation, SG(RF), SG(SVR), and SG(KNN) had comparable
accuracies to SG(CNN).

Table 9. Accuracy assessment of ensemble learning algorithms with three sets of features designed
in experiment II.

Features Algorithm R2 RMSE rRMSE MAE MAPE PM

All COLI1
(Feature 4)

SG(RF) 0.38 57.84 0.38 41.72 33.69 0.68
SG(SVR) 0.48 52.83 0.35 38.69 32.08 0.62
SG(KNN) 0.36 58.5 0.39 43.04 34.36 0.71
SG(CNN) 0.63 43.78 0.29 31.86 25.13 0.49

All COLI2
(Feature 5)

SG(RF) 0.64 43.13 0.28 30.66 23.11 0.48
SG(SVR) 0.64 43.28 0.28 31.09 28.28 0.47
SG(KNN) 0.60 45.85 0.30 32.74 27.00 0.51
SG(CNN) 0.50 51.31 0.34 36.80 27.66 0.50

Optimal Landsat
8 features + The

best-performing ALS
feature (Feature 2 + 3)

SG(RF) 0.86 26.94 0.18 14.22 10.66 0.24
SG(SVR) 0.88 24.61 0.16 10.13 10.25 0.29
SG(KNN) 0.79 34.06 0.23 22.46 17.88 0.31
SG(CNN) 0.86 26.45 0.17 14.76 10.35 0.2
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3.3.3. Experiment III

The effect of combing optimal ALS and Landsat 8 features and two types of novel
features (COLI1 or COLI2) on AGB estimation using ensemble algorithms was investigated
with experiment III (Table 10). Unlike classic machine learning algorithms, the addition of
COLI1 in ensemble algorithms did not improve the accuracies of AGB estimation, compared
to the result of applying optimal ALS and Landsat 8 features (Feature 1 + 2) in Table 8. The
SG(SVR) or SG(KNN) with the addition of COLI1 even lower R2 by about 10%–20% than
SG(SVR) or SG(KNN) with only Feature 1 + 2 (Table 8). However, the addition of COLI2 in
ensemble algorithms slightly increased the accuracies of most models except SG(KNN),
even though SG algorithms with Feature 1 + 2 had already performed well (Table 8). In
general, the SG algorithms with optimal ALS and Landsat 8 features and all COLI2 (Feature
1 + 2 + 5) had more stable accuracies than that with optimal ALS and Landsat 8 features
and all COLI1 (Feature 1 + 2 + 4), no matter which meta model was used, indicating COLI2
were more efficient than COLI1 for AGB estimation of NSFs. It is still the SG model with
CNN meta model that has the highest accuracy (R2 = 0.99, RMSE = 2.02, rRMSE = 0.01,
MAE = 0.87, MAPE = 0.73, PM = 0.02) when optimal ALS and Landsat 8 features and all
COLI2 (Feature 1 + 2 + 5) was applied.

Table 10. Accuracy assessment of ensemble learning algorithms with two sets of features designed in
experiment III.

Features Algorithm R2 RMSE rRMSE MAE MAPE PM

Optimal ALS + Landsat
8 features + All COLI1

(Feature 1 + 2 + 4)

SG(RF) 0.95 15.35 0.11 12.44 9.34 0.14
SG(SVR) 0.71 58.84 0.38 24.02 15.76 0.49
SG(KNN) 0.86 57.00 0.38 21.38 15.49 0.38
SG(CNN) 0.97 12.35 0.08 2.02 1.07 0.03

Optimal ALS + Landsat
8 features + All COLI2

(Feature 1 + 2 + 5)

SG(RF) 0.98 10.13 0.06 2.48 1.98 0.10
SG(SVR) 0.95 4.10 0.18 3.20 2.34 0.08
SG(KNN) 0.96 15.76 0.10 9.04 8.28 0.17
SG(CNN) 0.99 2.02 0.01 0.87 0.73 0.02

In addition, the ensemble algorithms greatly improved the accuracies of the corre-
sponding features and base model (Table 10 vs. Table 7). For example, if the combination
of optimal ALS and Landsat 8 features and all COLI1 (Feature 1 + 2 + 4) was utilized,
the R2 of SG(RF) increased more than 60% compared with that of the RF model; RMSE,
rRMSE, MAE, MAPE and PM of SG(RF) decreased by 75%, 73%, 71%, 76%, and 81%,
respectively, compared with those of the RF model. Although the CNN base model had
already achieved high accuracy, especially when applying the combination of optimal ALS
and Landsat 8 features and all COLI2 (Feature 1 + 2 + 5 in Table 7), the SG(CNN) still
decreased the group of RMSE, rRMSE, and MAE and the group of MAPE and PM by about
70% and 30%, respectively.

3.4. Wall-to-Wall AGB Predictions

Based on the above results and algorithm efficiency, CNN and the feature set of
optimal ALS and Landsat 8 and all COLI2 (Feature 1 + 2 + 5) were selected for a wall-to-
wall AGB prediction of the entire Maorshan Experimental Forest Farm of NEFU (Figure 4).
The predicted AGB varied from 0 to 491.04 Mg/ha, with a mean value of 59.9 Mg/ha and
a standard deviation of 48.69 Mg/ha. The area with AGB of 0 or low values was located
along rivers, roads, or residential regions, whereas the area with high AGB values was
located in the center part (e.g., Zhonglin, Yuejin, Beiling, Donglin, and Xinken working
districts) of Maorshan (Figure 4a). However, the embedded pattern of high and low AGB
values was obvious for most of the study area, as the enlarged area in Zhonglin working
district (Figure 4b).
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Figure 4. (a) The wall-to-wall AGB prediction of the entire study area estimated by the CNN model with optimal ALS
features, optimal Landsat 8 features, and all COLI2 (Feature 1 + 2 + 5); (b) Spatial distribution of AGB for a partial area in
Zhonglin working district.

Figure 5 showed the relationship of actual and estimated AGB (Mg/ha) of 195 plots
using the CNN algorithm based on different feature sets. For experiment I, it was better to
apply ALS than Landsat 8 to predict AGB if only one data source had to be used, which
indicated the vertical forest structure was more vital than spectral information for AGB
estimation of NSFs. The synergism of optical imagery and ALS markedly increased the
accuracy of a single data source (Figure 5c vs. Figure 5a or Figure 5b) since it could
effectively alleviate the underestimation of high AGB values. Even only one ALS feature
(i.e., elevation mean) was added to the Landsat 8 features (Experiment II), the improvement
was obvious and significant. However, it was unnecessary to generate novel features like
COLI1 or COLI2 using the optimal Landsat 8 and elevation mean. It was in evidence that
the performance of directly combining them was much better than that of new features
(Figure 5f vs. Figure 5d) or Figure 5e), but worse than that of all optimal ALS and Landsat
8 features (Figure 5f vs. Figure 5c) due to the smaller number of features (i.e., 10 vs. 18).
The effectiveness of COLI1 was very limited because Feature 1 + 2 provided a comparable
result to Feature 1 + 2 + 4 (Figure 5c vs. Figure 5g). It is the most efficient to combine all
optimal ALS, Landsat 8, and COLI2 features, especially for estimating high AGB values
(Figure 5h).
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Figure 5. The relationship of actual and estimated AGB (Mg/ha) of 195 plots using CNN algorithm based on (a) Feature 1:
optimal ALS features; (b) Feature 2: Optimal Landsat 8 features; (c) Feature 1 + 2: Optimal ALS and Landsat 8 features;
(d) Feature 4: All COLI1; (e) Feature 5: All COLI2; (f) Feature 2 + 3: Optimal Landsat 8 features and the best performing ALS
feature; (g) Feature 1 + 2 + 4: Optimal ALS features, optimal Landsat 8 features, and all COLI1; (h) Feature 1 + 2 + 5: Optimal
ALS features, optimal Landsat 8 features, and all COLI2. Note: The red and black lines represent the fitted regression lines
and the line of 45◦, respectively.

4. Discussion

4.1. AGB Estimation Using Different Features

The differences in features are responses to the characteristics of different data sources.
In this study, we extracted a variety of features and investigated the effects of different
synergistic approaches of features derived from ALS and Landsat 8 OLI imagery on AGB
estimation of NSFs of northeastern China. For ALS data, besides elevation features, density-
(e.g., density_metrics7) and intensity-related (e.g., int_AII_5th, int_max, int_AII_40th,
int_per_60th, int_per_80th, and int_AII_50th) metrics also had great potentials in AGB
estimation; for Landsat 8 imagery, band combinations and texture are more efficient
than vegetation indices, especially MVI5 (i.e., the band combination of band 5, 4 and 2).
Unfortunately, some traditional vegetation indices that commonly applied in previous
studies [48], for example, the normalized difference vegetation index (NDVI), enhanced
vegetation index (EVI), atmospherically resistant vegetation index (ARVI), soil adjusted
vegetation index (SAVI), etc., were excluded due to the low correlations with AGB. Only
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one vegetation index (i.e., ND563) was selected. It might be because that study area
is a natural secondary forest with high canopy density which could easily result in the
saturation (insensitivity to AGB) of the traditional vegetation indices, which was also
confirmed in [96,97]. The low accuracies (e.g., R2 < 0.3) of AGB estimations using the
optimal Landsat 8 features (Feature 2), no matter of algorithms, indicating the difficulties
of AGB estimation of NSFs as well. Due to the vegetation characteristics, near-infrared and
shortwave infrared bands (i.e., band 5, 6, and 7) were more related to AGB estimation than
other bands.

Similar to previous studies [48,52,98], it was beneficial to combine ALS data and optical
imagery, even only combining one significant feature derived from ALS (like elevation
mean). The synergistic method of extracting novel features (i.e., COLI1 and COLI2) using
optimal Landsat 8 features and the best-performing ALS feature (i.e., elevation mean)
yielded higher accuracy of AGB estimation than either optical-only or ALS-only features
when the same model was implemented. From experiment II and III, it showed that COLI2
had more advantages than COLI1 in AGB estimations of NSFs, which is different from [48]
due to different forest types (NSFs of northeastern China vs. mixed forests of southern
China). However, it is surprised to find out that the novel extracted features (COLI1 and
COLI2) were not efficient in improving the accuracy compared to the simple combination of
the untransformed features (optimal Landsat 8 features + BLV), which indicated the great
convenience and effectiveness brought by just adding the best-performing ALS feature (i.e.,
elevation mean) to the original set of Landsat 8 features for AGB estimation of NSFs. The
number of features was also a vital factor to influence the AGB accuracy. To make sure
a fair comparison of synergistic approaches of features, we keep the number of features
consistent as much as possible within each experiment. It is a trend that the accuracy of
AGB estimation raises with the increase in the number of involved features under the
same conditions (e.g., algorithms). Thus, it was not surprising that the combination with
27 features (i.e., Feature 1 + 2 + 4 or Feature 1 + 2 + 5) in experiment III provided the best
performances in this study, from a feature size perspective.

4.2. AGB Estimation Using Machine Learning Algorithms

The effect of classic machine learning and ensemble learning algorithms on AGB
estimation using different features was explored in this study. The RF algorithm that is one
of the most commonly used algorithms in forestry only provided very modest accuracy in
this study since it constantly overfits the data, often with poorer predictions [33]. CNN, a
deep learning algorithm firstly developed in 1995 for the classification of handwritten im-
ages [91], showed absolute advantages compared with other classic algorithms (e.g., ELM,
BP, RF, KNN, SVR, etc.). As a representative of deep learning algorithms that is a branch
of machine learning, a large and deep CNN (consisting of many-layered convolutions)
was further developed in 2012 and achieved a winning top-5 test error rate of 15.3% in the
ImageNet ILSVRC-2012 competition [99]. In recent years, the CNN model has been increas-
ingly applied in forestry, for example, for the prediction of forest inventory parameters and
identification of different tree species [100,101]. CNN interprets spatial data by scanning
it using a series of trainable moving windows and sufficiently complex artificial neural
networks and does not require human-derived feature selection in essence [100]. However,
to make sure a fair comparison of different models, we keep the feature selection procedure
consistent for all models. It means that the CNN model was applied for two-dimensional
data of AGB and a set of human-derived features instead of a three-dimensional image.
Although the CNN model lost the advantage of automatically extracting and selecting
features, it is still sensitive to changes in features and significantly superior to other models
(e.g., ELM, BP, RF, KNN, SVR, etc.).

The SG algorithms, a kind of ensemble learning algorithms, applied heterogeneous
ensemble methods with different base models and greatly improved the AGB estimation
accuracy in this study. RF, KNN, SVR, and CNN were selected as base models since SG
algorithms could take advantage of the good and stable predictions from base models.
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The good prediction of the CNN base model successfully made the accuracy of the SG
algorithms improved and stable no matter of meta-models, which indicated that SG has a
stronger generalization ability than base models. In other words, it is more beneficial for
weaker learners (e.g., RF, KNN, and SVR) to become stronger learners using SG algorithms
than strong learners (e.g., CNN).

However, although the SG algorithm is superior to its corresponding base model,
we still recommend employing the CNN model for AGB estimation in practice due to its
comparable accuracy and good efficiency. Table 11 summarized the efficiency (i.e., runtime)
of all the algorithms with the combination of the optimal ALS and Landsat 8 features,
and all COLI2 (Feature 1 + 2 + 5) for AGB estimation of 195 plots on a computer with
AMD RX3700x + 16GB + GTX960 4GB. It showed that the runtime of ensemble algorithms
(i.e., SG(RF), SG(KNN), SG(SVR), SG(CNN)) was dramatically augmented compared with
their corresponding base model (i.e., RF, KNN, SVR, CNN). For example, the efficiency
of SG(CNN) is only half of that of the CNN model. Other SG algorithms (i.e., SG(RF),
SG(KNN), SG(SVR)) raised the runtime of the corresponding algorithm (i.e., RF, KNN, SVR)
even more. The CNN model had the longest runtime but yield the highest accuracy (see
Tables 5–7) among classic machine learning algorithms due to the most complex structure.
Thus, to balance the workload and accuracy, the wall-to-wall AGB prediction map was
generated using the CNN model with the combination of the optimal ALS and Landsat
8 features, and all COLI2 (Feature 1 + 2 + 5) in this study.

Table 11. The runtime of all algorithms with the combination of the optimal ALS and Landsat
8 features, and all COLI2 (Feature 1 + 2 + 5).

Classic Algorithms Runtime (s) SG Algorithms Runtime (s)

MLR 1.2 SG(RF) 8168
ELM 45 SG(SVR) 7798
BP 38 SG(KNN) 7794

RegT 24 SG(CNN) 15170
RF 382

SVR 12
KNN 8
CNN 7384

4.3. Comparison of Estimated Forest AGB and Current Publications

From the AGB accuracy perspective, the highest accuracy (R2 = 0.99, RMSE = 2.02,
rRMSE = 0.01, MAE = 0.87, MAPE = 0.73, PM = 0.02) was yielded by SG(CNN) algorithm
with the combination of the optimal ALS and Landsat 8 features and all COLI2 (Feature 1
+ 2 + 5) in this study, which was better than other similar AGB studies that applied both
LiDAR and optical imagery (e.g., [48,61,69,98,102]). Besides features and algorithms, the
high accuracy of this study also benefited from the case of a local study with a relatively
small area. It tends to decrease the accuracy for national and global scales. For example, Su
et al. [69] provided the R2 of 0.75 and the RMSE of 42.39 Mg/ha for the AGB estimation
of China based on ICESat GLAS laser altimetry data, MODIS, and forest inventory data.
Yang et al. [103] produced a global forest AGB map with the R2 of 0.90 and the RMSE of
35.87 Mg/ha using gradient augmented regression trees algorithm based on multiple data
sources (e.g., LiDAR-derived forest AGB datasets, field measurements, high-level products
from optical satellite imagery, etc.).

Further, we dig into the predicted AGB values of the wall-to-wall map of the entire
Maorshan and compared the distributions of AGB values of the wall-to-wall prediction
map and 195 sample plots (Figure 6). Although the spatial distribution of AGB values
of the wall-to-wall prediction map seemed to be reasonable (Figure 4), it showed that
there was still a big difference between the two distributions, especially for the ranges
of 0–50 Mg/ha and >200 Mg/ha (Figure 6), indicating the underestimation of high AGB
values and overestimation of low AGB values. It suggested that the data saturation in
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Landsat imagery was not fully eliminated in this study of natural secondary forests. For
Heilongjiang province, the average forest AGB density estimated by [69,104] was 81 Mg/ha
and 85 Mg/ha, respectively (using a ratio of 50% for the conversion from forest AGB to
AGB carbon stock); for the entire northeastern China, the average forest AGB density
estimated by [57,105] was 83.50 Mg/ha and 89.30 Mg/ha, respectively. All these values
were significantly higher than the average AGB of 59.9 Mg/ha in this study. The first
reason for that could be the different study area: the area of either Heilongjiang province or
northeastern China is much larger than Maorshan Experimental Forest Farm and includes
the areas with high AGB values, such as Daxing’an Mountains, Xiaoxing’an Mountain, or
Changbai Mountains, which results in a higher average AGB value. The second reason
could be that the data saturation in this study greatly causes the relatively low average
AGB, although the range of predicted AGB (0–491.04 Mg/ha) is reasonable. Thus, how
to eliminate data saturation and quantitatively determine saturation for NSFs still need
further investigation.

Figure 6. The distributions of AGB values of wall-to-wall prediction map (blue bars with one slash)
and 195 sample plots (orange bars with double slashes).

4.4. Limitations and Recommendations

The AGB retrievals with high accuracy from remotely sensed data is not an easy task.
Every procedure or factor could greatly influence the accuracy, including data sources,
feature extraction and selection, estimation models, and model evaluation, and so on.
Although high accuracies of AGB estimation were yielded by the CNN and SG(CNN)
models based on the combination of the optimal ALS and Landsat 8 features and all COLI2
(Feature 1 + 2 + 5), there were still limitations in this study. First, in this study, we only
tested the features (COLI1, COLI2) proposed by [48] and compared them with the direct
combination of these original features that generated them for the AGB estimation of NSFs.
It is possible to find a more effective approach to combine ALS and Landsat 8 imagery
than COLIs for NSFs. Thus, it is still valuable to propose novel features or explore other
synergistic approaches based on multiple data sources for various forest types.

The second limitation is that the underestimation of high AGB values and the over-
estimation of low AGB values were not eliminated from the wall-to-wall prediction map,
although the CNN model had good efficiency and high accuracy according to model
evaluation results. Data saturation might be responsible for this phenomenon and lead
to a much lower average of AGB estimates of the entire study area than those values in
similar studies [57,69,104,105]. The high risks of overfitting resulted from the data-driven
models could be another possible reason for the big discrepancy between model evaluation
results and final wall-to-wall prediction. Thus, the development of models with good
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generalizability in the estimation of biomass and the interpretation of the physical meaning
of models are strongly recommended in further research [17].

In addition, the model evaluation procedure based on leave-one-out cross-validation
may be another incentive for the high accuracy of the CNN model using reference data.
Leave-one-out cross-validation is a special case of K-fold cross-validation where the number
of folds equals the number of records in the data set [106]. Since the evaluated model
is applied once for each record, using all other records as a training set and the selected
record as a single-item test set, it could tend to yield higher accuracy due to overfitting
compared to ten-fold cross-validation, for example, which only uses 90% records to train
the model. However, the quantitative effects of different cross-validation procedures on
AGB estimations still need to be further investigated. Sometimes, it could be a big difference
between the accuracy of the model evaluation procedure using reference data and wall-
to-wall prediction values. Thus, besides the traditional model evaluation procedure, we
strongly suggest assessing the spatial distribution of AGB estimates based on a wall-to-
wall prediction map and distribution of AGB estimates based on histogram compared to
existed data.

The AGB estimation in this study was based on an area-based approach (ABA) that
develops models to relate AGB with features derived from remotely sensed data at a plot
level and apply the models over the whole study area [17]. The fixed plots of continuous
forest resources inventory obtained in 2016 had an area of 20 m ×30 m with the geolocation
error of 5 m, while the pixel size of Landsat 8 was 30 m × 30 m. Thus, geolocation
mismatch between remotely sensed data (i.e., Landsat 8 imagery) and field measurements
is another source of uncertainty of AGB estimation [107]. Fortunately, the large plot size
(i.e., 195) in this study could greatly decrease the geolocation errors according to [107]:
the geolocation errors will be stabilized below 5 m with 20 measurement points and
below 3 m with 50 measurement points. Another drawback of this study is the lack of
assessing biomass uncertainty based on ABA. It is difficult for AGB estimation using ABA
to understand biomass uncertainties at different spatial scales [108]. In recent years, with
the development of automatic individual tree crown delineation algorithms in precise
forestry (e.g., [109,110]), the AGB estimation based on individual-tree-based approach (ITA)
has received more and more attention because field data are needed only for a sample of
trees instead of a sample of plots or stands [17]. In addition, ITA allows AGB estimation of
tree-level, plot-level, and propagation of errors in an up-scaling framework [108]. Thus, it is
appealing and worth estimating AGB based on ITA for a large-scale forest and quantifying
its uncertainty from tree-level to plot-level then to stand-level in an up-scaling framework
in subsequent research.

5. Conclusions

Accurate quantification of AGB plays a vital role in forest carbon sequestration in the
context of climate change. In this study, we investigated the effects of different synergistic
approaches of features and ensemble learning algorithms on AGB estimation of natural
secondary forests of northeastern China based on ALS and Landsat 8 OLI imagery. It is
conducive to combine active and passive data to improve the accuracy of AGB estimation.
Unlike the previous study implemented in southeastern China [48], we found that COLI2
features are more effective in AGB estimation than COLI1 features for the NSFs. Some-
times, it might be more convenient and efficient to adopt the simple combination of the
untransformed features (e.g., the optimal Landsat 8 features + BLV) than the novel features
(i.e., COLI1 or COLI2), especially for NSFs of northeastern China. The CNN model was
much superior to multiple linear regression and other classic machine learning algorithms
(i.e., ELM, BP, RegT, RF, SVR, KNN) no matter of feature sets, and reached the highest
accuracies (R2 = 0.99, RMSE = 6.85, rRMSE = 0.04, MAE = 2.95, MAPE = 1.02, PM = 0.03)
when optimal ALS and Landsat 8 features and all COLI2 (Feature 1 + 2 + 5) was applied.
Ensemble learning algorithms (SG(RF), SG(SVR), SG(KNN), SG(CNN)) that took advantage
of the good and stable predictions from the base models (i.e., RF, SVR, KNN, CNN) greatly
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improved the accuracy of AGB and had stronger generalization ability compared to its
corresponding base model. The ensemble learning algorithm is exceedingly adept to train
weaker learners to strong learners, especially when applying heterogeneous ensemble
strategy. The SG model with CNN meta-model performed best (R2 = 0.99, RMSE = 2.02,
rRMSE = 0.01, MAE = 0.87, MAPE = 0.73, PM = 0.02) with the feature combination of
the optimal ALS and Landsat 8 features and all COLI2 (Feature 1 + 2 + 5) in this study.
However, considering both the efficiency (i.e., runtime) and accuracy, a wall-to-wall AGB
prediction map of Maoershan was generated using the CNN model and Feature 1 + 2 + 5,
instead of the SG(CNN) model. The average and standard deviation of the estimated
AGB of Maoershan Experimental Forest Farm in 2015 was 59.9 Mg/ha and 48.69 Mg/ha,
respectively, ranging from 0 to 491.04 Mg/ha. The lower average value than that of similar
studies for northeastern China maybe because of the different study areas, data saturation,
overfitting of the algorithm, and leave-one-out cross-validation. Estimating data saturation,
developing advanced algorithms, understanding the effects of the different cross-validation
procedures, and quantifying the sources of error are still fundamental and significant to
AGB estimation at all levels.

Author Contributions: Conceptualization, W.F. and Z.Z.; methodology, C.D.; software, Y.M.; valida-
tion, C.D., Y.M., and Z.Z.; formal analysis, C.D. and H.-I.J.; data curation and preprocessing, W.F. and
H.-I.J.; writing—original draft preparation, C.D.; writing—review and editing, Z.Z.; visualization,
Y.M.; supervision, Z.Z.; project administration, Z.Z.; funding acquisition, Z.Z. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China “Multi-scale
forest aboveground biomass estimation and its spatial uncertainty analysis based on individual tree
detection techniques”, 32071677; “The Fundamental Research Funds for the Central Universities”,
2572019CP15,2572020BA05.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. The 101 features extracted from ALS data in this study.

Feature Group Feature Name Feature Descriptions [111]

Forest features 1

(3 features)

CC Canopy cover: CC = Nveg/N

G Gap fraction: G = N’/N

LAI Leaf area index: LAI = − cos(A)· ln(G)/k

Elevation features
(46 features) 2

elev_AAD Average absolute deviation of elevation:
∑n

i = 1
(∣∣Zi − Z

∣∣ )/n

elev_CRR Canopy relief ratio of elevation:
(Z − Zmin)/(Zmax + Zmin)

elev_AIH_ith
The cumulative height of i% points in each pixel is

the AIH of the pixel, i = 1%, 5%, 10%, 20%, 25%, 30%,
40%, 50%, 60%, 70%, 75%, 80%, 90%, 95%, 99%

elev_AIH_IQ AIH interquartile distance: AIH75%–AIH25%

elev_GM_2
Generalized means for the 2nd power:

2
√

∑n
i = 1 Z3

i /n
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Table A1. Cont.

Feature group Feature Name Feature Descriptions [111]

elev_GM_3
Generalized means for the 3rd power:

3
√

∑n
i = 1 Z3

i /n

elev_cv Coefficient of variation of elevation: Zstd/Z×100%

elev_IQ Elevation percentile interquartile distance:
Elev75%–Elev25%

elev_kurt Kurtosis of elevation

elev_MMAD Median of median absolute deviation of elevation

elev_max Maximum of elevation

elev_min Minimum of elevation

elev_mean Mean of elevation

elev_med Median of elevation

elev_per_ith ith elevation percentiles, i = 1%, 5%, 10%, 20%, 25%,
30%, 40%, 50%, 60%, 70%, 75%, 80%, 90%, 95%, 99%

elev_skew Skewness of elevation

elev_std Standard deviation of elevation

elev_var Variance of elevation

Density features
(10 features) density_ith The proportion of returns in ith height interval,

i = 1–10

Intensity
features

(42 features) 3

int_AAD
Average absolute deviation of intensity:

n
∑

i = 1

(∣∣ Ii − I
∣∣ )/n

int_cv Coefficient of variation of intensity: Istd/I×100%

int_AII_ith
The cumulative intensity of X% points in each pixel

is the AII of the pixel, i = 1%, 5%, 10%, 20%, 25%,
30%, 40%, 50%, 60%, 70%, 75%, 80%, 90%, 95%, 99%

int_kurt Kurtosis of intensity

int_MMAD Median of median absolute deviation of intensity

int_max Maximum of intensity

int_min Minimum of intensity

int_mean Mean of intensity

int_med Median of intensity

int_per_ith ith intensity percentiles, i = 1%, 5%, 10%, 20%, 25%,
30%, 40%, 50%, 60%, 70%, 75%, 80%, 90%, 95%, 99%

int_skew Skewness of intensity

int_std Standard deviation of intensity

int_var Variance of intensity

Int_IQ Intensity percentile interquartile distance:
Int75%–Int25%

1 Nveg: point number of vegetation; N: the total return number; N’: the number of ground points whose elevation
is lower than the height threshold of 2m for separating ground and tree points; A: average scanning angle; k:
extinction coefficient, which is closely related to the leaf inclination angle distribution of the canopy. 2 n is
the number of points in a pixel; Zi: the elevation of i point within a pixel, Z, Zmin, Zmax, Zstd are the average,
minimum, maximum, and standard deviation of elevation of all points within a pixel, respectively; AIH75% and
AIH25% represents the 75% and 25% AIH statistical layer, respectively. 3 Ii: the elevation of i point within a pixel,
I, Imin, Imax, Istd are the average, minimum, maximum, and standard deviation of intensity of all points within a
pixel, respectively; Int75% and Int25% are 75% and 25% intensity statistical layer, respectively.
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Table A2. The 98 spectral features extracted from Landsat 8 OLI imagery in this study.

Feature Group Feature Name Feature Descriptions

Original bands
(7 features) Bi 1 Band1–7 of Landsat 8 OLI image

Band
combination
(10 features)

Albedo 0.246 B2 + 0.146 B3 + 0.191·B4 + 0.304·B5 + 0.105·B6 +
0.008·B7 [112]

B4/Albedo B4/(0.246·B2 + 0.146·B3 + 0.191·B4 + 0.304·B5 + 0.105·B6 +
0.008·B7) [112,113]

B24 B2/B4 [113]
B74 B7/B4 [113]
B76 B7/ B6 [113]
B547 B5·B4/B7 [113]
B65 B6/B5 [113]

B345 B3·B4/B5 [113]
B53 B5/B3 [113]

VIS234 B2 + B3 + B4 [113]

GLCM
features 2

(56 features)

Mean_Bi Mean of each band
Var_Bi Variance of each band

Hom_Bi Homogeneity of each band
Cont_Bi Contrast of each band
Diss_Bi Dissimilarity of each band
Entr_Bi Entropy of each band
Sec_Bi Second moment of each band

Corr_Bi Correlation of each band

Image
enhancement

features
(10 features)

Bright Brightness from tasseled cap transformation: 0.3521·B2 +
0.3899·B3 + 0.3825·B4 + 0.6985·B5 + 0.2343·B6 + 0.1867·B7 [114]

Green
Greenness from tasseled cap transformation:

−0.3301·B2−0.3455·B3−0.4508·B4 +
0.6970·B5−0.0448·B6−0.2840·B7 [114]

Wet Wetness from tasseled cap transformation: 0.2651·B2 +
0.2367·B3 + 0.1296·B4 + 0.059·B5−0.7506·B6−0.5386·B7 [114]

PC1 The first principal component from principal component
analysis (PCA): 0.111·B3 + 0.870·B5 + 0.423·B6 + 0.192·B7

PC2 The second principal component from PCA: 0.198·B1 +
0.217·B2 + 0.267·B3 + 0.376·B4−0.436·B5 + 0.430·B6 + 0.571·B7

PC3 The third principal component from PCA: 0.295·B1 + 0.324·B2
+ 0.398·B3 + 0.473·B4 + 0.183·B5−0.615·B6−0.12·B7

MNF1
The first band of minimum noise fraction rotation (MNF):
−0.2632·B1−0.3528·B2−0.0737·B3−0.0618·B4−0.7457·B5

−0.4898·B6 + 0.031·B7

MNF2 The second band of MNF: −0.0441·B1−0.0781·B2 − 0.1869·B3
− 0.0389·B4 − 0.7523·B5 − 0.4280·B6 − 0.4542·B7

MNF3 The third band of MNF: −0.2387·B1 − 0.2230·B2 + 0.0947·B3
− 0.0195·B4 + 0.5277·B5 + 0.7731·B6 − 0.0885·B7

MNF4 The fourth band of MNF: 0.0199·B1 − 0.00013·B2 −
0.01021·B3 − 0.1027·B4 − 0.4377·B5 − 0.69145·B6 − 0.565·B7

Vegetation
indices

(15 features)

NDVI Normalized vegetation index 1: (B5 − B4)/(B5 + B4) [113]
RVI Ratio vegetation index: B5/B4 [113]
DVI Difference vegetation index: B5 − B4 [113]

EVI Enhanced vegetation index:
2.5·(B5 − B4)/(B5 + 6·B4 − 7.5·B2 + 1) [113]

MSAVI Modified soil-adjusted vegetation index:
[(B5 − B4)/(B5 + B4 + L)]·(1 + L) 3 [115]

ARVI Atmospherically resistant vegetation index:
(B5 − 2·B4 + B2)/(B5 + 2·B4 − B2) [113]

TVI Triangular vegetation index:√
(B5 − B4)/(B5 + B4) + 0.5 [113]
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Table A2. Cont.

Feature Group Feature Name Feature Descriptions

PVI
Perpendicular vegetation index:√

(0.355·B5 − 0.149·B4)
2 + (0.355·B4 − 0.852·B5)

2 [113]

MSR Modified simple ratio vegetation index :
(B5/B4 − 1)/

√
B5/B4 + 1 [113]

SLAVI Specific leaf area vegetation index: B5/(B4 + B7) [113]

MVI5 Moisture vegetation index 1: (B5 + B4 − B2)/(B5 + B4 + B2)
[116]

MVI7 Moisture vegetation index 2: (B5 − B7)/(B5 + B7) [116]
NLI Nonlinear index :

(
B2

5 − B4

)
/
(

B2
5 + B4

)
[113]

RDVI Renormalized difference vegetation index : (B5 − B4)/
√

B5 + B4
[113]

ND563 Normalized difference vegetation index 2:
(B5 + B6 − B3)/(B5 + B6 + B3) [113]

1 The index i represents the band index (1–7). 2 GLCM: gray-level co-occurrence matrix. 3 L = 2·s·(B5 − B4)·(B5 −
s·B4)/(B5 + B4) where s is the slope of the soil line from a plot of red versus near infrared brightness values.

References

1. Wang, C. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. For. Ecol. Manag. 2006, 222,
9–16. [CrossRef]

2. Yu, D.; Zhou, L.; Zhou, W.; Ding, H.; Wang, Q.; Wang, Y.; Wu, X.; Dai, L. Forest management in northeast China: History,
problems, and challenges. Environ. Manag. 2011, 48, 1122–1135. [CrossRef] [PubMed]

3. Zhang, P.; Shao, G.; Zhao, G.; Le Master, D.C.; Parker, G.R.; Dunning, J.B., Jr.; Li, Q. China’s forest policy for the 21st century.
Science 2000, 288, 2135–2136. [CrossRef]

4. Zhu, J.; Liu, S. Conception of secondary forest and its relation to ecological disturbance degree. Chin. J. Ecol. 2007, 26, 1085–1093.
(In Chinese)

5. Yang, K.; Zhu, J.; Zhang, M.; Yan, Q.; Sun, O. Soil microbial biomass carbon and nitrogen in forest ecosystems of northeast China:
A comparison between natural secondary forest and larch plantation. J. Plant. Ecol. 2010, 3, 175–182. [CrossRef]

6. CEOS Land Product Validation Subgroup. Available online: https://lpvs.gsfc.nasa.gov/AGB/AGB_home.html (accessed on
29 July 2021).

7. Vashum, K.T.; Jayakumar, S. Methods to estimate above-ground biomass and carbon stock in natural forests—A review. J. Ecosyst.
Ecography 2012, 2, 116. [CrossRef]

8. Dong, L.; Zhang, L.; Li, F. Developing two additive biomass equations for three coniferous plantation species in northeast China.
Forests 2016, 7, 136. [CrossRef]

9. Bond-Lamberty, B.; Wang, C.; Gower, S.T. Aboveground and belowground biomass and sapwood area allometric equations for
six boreal tree species of northern Manitoba. Can. J. For. Res. 2002, 32, 1441–1450. [CrossRef]

10. Brown, S.; Gillespie, A.R.; Lugo, A.E. Biomass estimation methods for tropical forests with applications to forest inventory data.
For. Sci. 1989, 35, 881–902.

11. Nelson, B.W.; Mesquita, R.; Pereira, J.L.; de Souza, S.G.A.; Batista, G.T.; Couto, L.B. Allometric regressions for improved estimate
of secondary forest biomass in the central Amazon. For. Ecol. Manag. 1999, 117, 149–167. [CrossRef]

12. Chung-Wang, X.; Ceulemans, R. Allometric relationships for below- and above-ground biomass of young Scots pines. For. Ecol.
Manag. 2004, 203, 177–186.

13. Chave, J.; Riéra, B.; Dubois, M. Estimation of biomass in a neotropical forest of French Guiana: Spatial and temporal variability.
J. Trop. Ecol. 2001, 17, 79–96. [CrossRef]

14. Fang, J.; Chen, A.; Peng, C.; Zhao, S.; Ci, L. Changes in forest biomass carbon storage in china between 1949 and 1998. Science
2001, 292, 2320–2322. [CrossRef]

15. Lu, D.; Chen, Q.; Wang, G.; Liu, L.; Li, G.; Moran, E. A survey of remote sensing-based aboveground biomass estimation methods
in forest ecosystems. Int. J. Digit. Earth 2014, 9, 63–105. [CrossRef]

16. White, J.; Coops, N.; Scott, N. Estimates of New Zealand forest and scrub biomass from the 3-PG model. Ecol. Model. 2000, 131,
175–190. [CrossRef]

17. Chen, Q. LiDAR remote sensing of vegetation biomass. In Remote Sensing of Natural Resources; CRC PRESS: Boca Raton, FL,
USA, 2014.

18. Jenkins, J.C.; Birdsey, R.A.; Pan, Y. Biomass and NPP estimation for the mid-Atlantic region (USA) using plot-level forest
in-ventory data. Ecol. Appl. 2001, 11, 1174–1193. [CrossRef]

19. Cao, L.; Pan, J.; Li, R.; Li, J.; Li, Z. Integrating airborne LiDAR and optical data to estimate forest aboveground biomass in arid
and semi-arid regions of China. Remote Sens. 2018, 10, 532. [CrossRef]

182



Sensors 2021, 21, 5974

20. Endres, A.; Mountrakis, G.; Jin, H.; Zhuang, W.; Manakos, I.; Wiley, J.J.; Beier, C.M. Relative importance analysis of Landsat,
waveform LIDAR and PALSAR inputs for deciduous biomass estimation. Eur. J. Remote Sens. 2016, 49, 795–807. [CrossRef]

21. Laurin, G.V.; Chen, Q.; Lindsell, J.; Coomes, D.A.; Del Frate, F.; Guerriero, L.; Pirotti, F.; Valentini, R. Above ground biomass
estimation in an African tropical forest with lidar and hyperspectral data. ISPRS J. Photogramm. Remote Sens. 2014, 89, 49–58.
[CrossRef]

22. Foody, G.M.; Boyd, D.; Cutler, M. Predictive relations of tropical forest biomass from Landsat TM data and their transferability
between regions. Remote Sens. Environ. 2003, 85, 463–474. [CrossRef]

23. Myneni, R.B.; Dong, J.; Tucker, C.J.; Kaufmann, R.K.; Kauppi, P.E.; Liski, J.; Zhou, L.; Alexeyev, V.; Hughes, M.K. A large carbon
sink in the woody biomass of Northern forests. Proc. Natl. Acad. Sci. USA 2001, 98, 14784–14789. [CrossRef]

24. Thenkabail, P.S.; Enclona, E.A.; Ashton, M.S.; Legg, C.; De Dieu, M.J. Hyperion, IKONOS, ALI and ETM plus sensors in the study
of African rainforests. Remote Sens. Environ. 2004, 90, 23–43. [CrossRef]

25. Clark, D.B.; Read, J.M.; Clark, M.L.; Cruz, A.M.; Dotti, M.F.; Clark, D.A. Application of 1-m and 4-m resolution satellite data to
ecological studies of tropical rain forests. Ecol. Appl. 2004, 14, 61–74. [CrossRef]

26. Gasparri, N.I.; Parmuchi, M.G.; Bono, J.; Karszenbaum, H.; Montenegro, C.L. Assessing multi-temporal Landsat 7 ETM + images
for estimating above-ground biomass in subtropical dry forests of Argentina. J. Arid. Environ. 2010, 74, 1262–1270. [CrossRef]

27. Gömez, C.; White, J.C.; Wulder, M.A.; Alejandro, P. Historical forest biomass dynamics modelled with Landsat spectral tra-
jectories. ISPRS J. Photogramm. Remote Sens. 2014, 93, 14–28. [CrossRef]

28. Dube, T.; Mutanga, O. Investigating the robustness of the new Landsat-8 Operational Land Imager derived texture metrics in
estimating plantation forest aboveground biomass in resource constrained areas. ISPRS J. Photogramm. Remote Sens. 2015, 108,
12–32. [CrossRef]

29. Kelsey, K.C.; Neff, J.C. Estimates of aboveground biomass from texture analysis of landsat imagery. Remote Sens. 2014, 6,
6407–6422. [CrossRef]

30. Dube, T.; Mutanga, O. Evaluating the utility of the medium-spatial resolution Landsat 8 multispectral sensorin quantifying
aboveground biomass in uMgeni catchment, South Africa. ISPRS J. Photogramm. Remote Sens. 2015, 101, 36–46. [CrossRef]

31. Loveland, T.R.; Irons, J.R. Landsat 8: The plans, the reality, and the legacy. Remote Sens Environ. 2016, 185, 1–6. [CrossRef]
32. Lu, D. Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon. Int. J. Remote Sens. 2005, 26, 2509–2525.

[CrossRef]
33. Zhao, P.; Lu, D.; Wang, G.; Wu, C.; Huang, Y.; Yu, S. Examining spectral reflectance saturation in Landsat imagery and

cor-responding solutions to improve forest aboveground biomass estimation. Remote Sens. 2016, 8, 469. [CrossRef]
34. Steininger, M.K. Satellite estimation of tropical secondary forest above-ground biomass: Data from Brazil and Bolivia. Int. J.

Remote Sens. 2000, 21, 1139–1157. [CrossRef]
35. Lucas, R.M.; Held, A.A.; Phinn, S.R.; Saatchi, S. Tropical forests. In Remote Sensing for Natural Resource Management and En-

vironmental Monitoring, 3rd ed.; Ustin, S.D., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004; Volume 3, pp. 239–315.
36. Le Toan, T.; Quegan, S.; Woodward, I.; Lomas, M.; Delbart, N.; Picard, G. Relating radar remote sensing of biomass to mod-elling

of forest carbon budgets. Clim. Chang. 2004, 67, 379–402. [CrossRef]
37. Waring, R.H.; Way, J.; Hunt, E.R.; Morrissey, L.; Ranson, K.J.; Weishampel, J.F.; Oren, R.; Franklin, S.E. Imaging radar for ecosystem

studies. BioScience 1995, 45, 715–723. [CrossRef]
38. Zolkos, S.; Goetz, S.; Dubayah, R. A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing.

Remote Sens. Environ. 2012, 128, 289–298. [CrossRef]
39. Gonzalez, P.; Asner, G.P.; Battles, J.J.; Lefsky, M.A.; Waring, K.M.; Palace, M. Forest carbon densities and uncertainties from Lidar,

QuickBird, and field measurements in California. Remote Sens. Environ. 2010, 114, 1561–1575. [CrossRef]
40. Means, J.E.; Acker, S.A.; Harding, D.J.; Blair, J.B.; Lefsky, M.A.; Cohen, W.B.; Harmon, M.E.; McKee, W.A. Use of large-footprint

scanning airborne lidar to estimate forest stand characteristics in the western cascades of Oregon. Remote Sens. Environ. 1999, 67,
298–308. [CrossRef]

41. Lu, D.; Chen, Q.; Wang, G.; Moran, E.; Batistella, M.; Zhang, M.; Laurin, G.V.; Saah, D. Aboveground forest biomass estima-tion
with Landsat and Lidar data and uncertainty analysis of the estimates. Int. J. For. Res. 2012, 2012, 250–265.

42. Mauya, E.W.; Ene, L.T.; Bollandsås, O.M.; Gobakken, T.; Naesset, E.; Malimbwi, R.E.; Zahabu, E. Modelling aboveground forest
biomass using airborne laser scanner data in the miombo woodlands of Tanzania. Carbon Balance Manag. 2015, 10, 28. [CrossRef]

43. Gleason, C.J.; Im, J. Forest biomass estimation from airborne LiDAR data using machine learning approaches. Remote Sens.
Environ. 2012, 125, 80–91. [CrossRef]

44. Ioki, K.; Tsuyuki, S.; Hirata, Y.; Phua, M.H.; Wong, W.V.C.; Ling, Z.Y.; Saito, H.; Takao, G. Estimating above-ground bio-mass of
tropical rainforest of different degradation levels in Northern Borneo using airborne LiDAR. For. Ecol. Manag. 2014, 328, 335–341.
[CrossRef]

45. Hansen, E.H.; Gobakken, T.; Bollandsås, O.M.; Zahabu, E.; Næsset, E. Modeling aboveground biomass in dense tropical
submontane rainforest using airborne laser scanner data. Remote Sens. 2015, 7, 788–807. [CrossRef]

46. Magdon, P.; González-Ferreiro, E.; Pérez-Cruzado, C.; Purnama, E.S.; Sarodja, D.; Kleinn, C. Evaluating the potential of ALS
data to increase the efficiency of aboveground biomass estimates in tropical peat–swamp forests. Remote Sens. 2018, 10, 1344.
[CrossRef]

183



Sensors 2021, 21, 5974

47. Adhikari, H.; Heiskanen, J.; Siljander, M.; Maeda, E.; Heikinheimo, V.; Pellikka, P.K.E. Determinants of aboveground bio-mass
across an Afromontane landscape mosaic in Kenya. Remote Sens. 2017, 9, 827. [CrossRef]

48. Zhang, L.; Shao, Z.; Liu, J.; Cheng, Q. Deep learning based retrieval of forest aboveground biomass from combined LiDAR and
landsat 8 data. Remote Sens. 2019, 11, 1459. [CrossRef]

49. Clark, M.L.; Roberts, D.A.; Ewel, J.J.; Clark, D.B. Estimation of tropical rain forest aboveground biomass with small-footprint
lidar and hyperspectral sensors. Remote Sens. Environ. 2011, 115, 2931–2942. [CrossRef]

50. Egberth, M.; Nyberg, G.; Næsset, E.; Gobakken, T.; Mauya, E.; Malimbwi, R.; Katani, J.; Chamuya, N.; Bulenga, G.; Olsson,
H. Combining airborne laser scanning and Landsat data for statistical modeling of soil carbon and tree biomass in Tanzanian
Miombo woodlands. Carbon Balance Manag. 2017, 12, 8. [CrossRef] [PubMed]

51. Heiskanen, J.; Adhikari, H.; Piiroinen, R.; Packalen, P.; Pellikka, P.K. Do airborne laser scanning biomass prediction models
benefit from Landsat time series, hyperspectral data or forest classification in tropical mosaic landscapes? Int. J. Appl. Earth Obs.
Geoinf. 2019, 81, 176–185. [CrossRef]

52. Phua, M.H.; Johari, S.A.; Wong, O.C.; Ioki, K.; Mahali, M.; Nilus, R.; Coomes, D.A.; Maycock, C.R.; Hashim, M. Synergistic use of
Landsat 8 OLI image and airborne LiDAR data for above-ground biomass estimation in tropical lowland rainforests. For. Ecol.
Manag. 2017, 406, 163–171. [CrossRef]

53. Li, S.; Quackenbush, L.J.; Im, J. Airborne lidar sampling strategies to enhance forest aboveground biomass estimation from
landsat imagery. Remote Sens. 2019, 11, 1906. [CrossRef]

54. Li, Y.; Li, C.; Li, M.; Liu, Z. Influence of variable selection and forest type on forest aboveground biomass estimation using
machine learning algorithms. Forests 2019, 10, 1073. [CrossRef]

55. Blackard, J.A.; Finco, M.V.; Helmer, E.H.; Holden, G.R.; Hoppous, M.L.; Jacobs, D.M.; Lister, A.J.; Moisen, G.G.; Nelson, M.D.;
Riemann, R.; et al. Mapping US forest biomass using nationwide forest inventory data and moderate resolution information.
Remote Sens. Environ. 2008, 112, 1658–1677. [CrossRef]

56. Houghton, R.A.; Lawrence, K.T.; Hackler, J.L.; Brown, S. The spatial distribution of forest biomass in the Brazilian amazon:
A comparison of estimates. Glob. Chang. Biol. 2001, 7, 731–746. [CrossRef]

57. Tan, K.; Piao, S.; Peng, C.; Fang, J. Satellite-based estimation of biomass carbon stocks for northeast China’s forests between 1982
and 1999. For. Ecol. Manag. 2007, 240, 114–121. [CrossRef]

58. Chen, L.; Ren, C.; Zhang, B.; Wang, Z.; Xi, Y. Estimation of forest above-ground biomass by geographically weighted regres-sion
and machine learning with sentinel imagery. Forests 2018, 9, 582. [CrossRef]

59. Lim, K.S.; Treitz, P.M. Estimation of above ground forest biomass from airborne discrete return laser scanner data using
canopy-based quantile estimators. Scand. J. For. Res. 2004, 19, 558–570. [CrossRef]

60. Zhao, K.; Popescu, S.; Nelson, R. Lidar remote sensing of forest biomass: A scale-invariant estimation approach using air-borne
lasers. Remote Sens. Environ. 2009, 113, 182–196. [CrossRef]

61. Kulawardhana, R.W.; Popescu, S.; Feagin, R. Fusion of lidar and multispectral data to quantify salt marsh carbon stocks. Remote
Sens. Environ. 2014, 154, 345–357. [CrossRef]

62. Li, W.; Niu, Z.; Wang, C.; Huang, W.; Chen, H.; Gao, S.; Li, D.; Muhammad, S. Combined use of airborne LiDAR and satellite
GF-1 data to estimate leaf area index, height, and aboveground biomass of maize during peak growing season. IEEE J. Sel. Top.
Appl. Earth Obs. Remote Sens. 2015, 8, 4489–4501. [CrossRef]

63. Verrelst, J.; Camps-Valls, G.; Muñoz-Marí, J.; Rivera, J.P.; Veroustraete, F.; Clevers, J.G.P.W.; Moreno, J. Optical remote sensing and
the retrieval of terrestrial vegetation bio-geophysical properties—A review. ISPRS J. Photogramm. 2015, 108, 273–290. [CrossRef]

64. Asner, G.P.; Hughes, R.F.; Varga, T.A.; Knapp, D.E.; Kennedy-Bowdoin, T. Environmental and biotic controls over above-ground
biomass throughout a tropical rain forest. Ecosystems 2009, 12, 261–278. [CrossRef]

65. Lucas, R.M.; Cronin, N.; Lee, A.; Moghaddam, M.; Witte, C.; Tickle, P. Empirical relationships between AIRSAR backscatter and
LiDAR-derived forest biomass, Queensland, Australia. Remote Sens. Environ. 2006, 100, 407–425. [CrossRef]

66. Patenaude, G.; Hill, R.; Milne, R.; Gaveau, D.; Briggs, B.; Dawson, T. Quantifying forest above ground carbon content using
LiDAR remote sensing. Remote Sens. Environ. 2004, 93, 368–380. [CrossRef]

67. St-Onge, B.; Hu, Y.; Vega, C. Mapping the height and above-ground biomass of a mixed forest using lidar and stereo Ikonos
images. Int. J. Remote Sens. 2008, 29, 1277–1294. [CrossRef]

68. Xie, Y.; Sha, Z.; Yu, M.; Bai, Y.; Zhang, L. A comparison of two models with Landsat data for estimating above ground grassland
biomass in Inner Mongolia, China. Ecol. Model. 2009, 220, 1810–1818. [CrossRef]

69. Su, Y.; Guo, Q.; Xue, B.; Hu, T.; Alvarez, O.; Tao, S.; Fang, J. Spatial distribution of forest aboveground biomass in China:
Estimation through combination of spaceborne lidar, optical imagery, and forest inventory data. Remote Sens. Environ. 2016, 173,
187–199. [CrossRef]

70. Li, M.; Im, J.; Quackenbush, L.J.; Liu, T. Forest biomass and carbon stock quantification using airborne LiDAR data: A case
study over huntington wildlife forest in the adirondack park. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3143–3156.
[CrossRef]

71. Ou, G.; Li, C.; Lv, Y.; Wei, A.; Xiong, H.; Xu, H.; Wang, G. Improving aboveground biomass estimation of pinus densata forests
in yunnan using landsat 8 imagery by incorporating age dummy variable and method comparison. Remote Sens. 2019, 11, 738.
[CrossRef]

184



Sensors 2021, 21, 5974

72. Serrano, P.M.L.; López-Sánchez, C.A.; Álvarez-González, J.G.; García-Gutiérrez, J. A Comparison of machine learning techniques
applied to landsat-5 tm spectral data for biomass estimation. Can. J. Remote Sens. 2016, 42, 690–705. [CrossRef]

73. Dong, L.; Du, H.; Han, N.; Li, X.; Zhu, D.; Mao, F.; Zhang, M.; Zheng, J.; Liu, H.; Huang, Z.; et al. Application of convolutional
neural network on lei bamboo Above-Ground-Biomass (AGB) estimation using worldview-2. Remote Sens. 2020, 12, 958.
[CrossRef]

74. Luo, M.; Wang, Y.; Xie, Y.; Zhou, L.; Qiao, J.; Qiu, S.; Sun, Y. Combination of feature selection and catboost for prediction: The first
application to the estimation of aboveground biomass. Forests 2021, 12, 216. [CrossRef]

75. Sonobe, R.; Yamaya, Y.; Tani, H.; Wang, X.; Kobayashi, N.; Mochizuki, K. Crop classification from Sentinel-2-derived vege-tation
indices using ensemble learning. J. Appl. Remote Sens. 2018, 12, 26019. [CrossRef]

76. Breiman, L. Random Forests. Mach Learn. 2001, 45, 5–23. [CrossRef]
77. Zeng, N.; Ren, X.; He, H.; Zhang, L.; Zhao, D.; Ge, R.; Li, P.; Niu, Z. Estimating grassland aboveground biomass on the Ti-betan

Plateau using a random forest algorithm. Ecol. Indic. 2019, 102, 479–487. [CrossRef]
78. Wolpert, D.H. Stacked generalization. Neural Netw. 1992, 5, 241–259. [CrossRef]
79. Jiang, F.; Zhao, F.; Ma, K.; Li, D.; Sun, H. Mapping the forest canopy height in northern china by synergizing ICESat-2 with

sentinel-2 using a stacking algorithm. Remote Sens. 2021, 13, 1535. [CrossRef]
80. Dong, L. Study on the Compatible Modles of Tree Biomass for Main Species in Heilongjiang Province. Master’s Thesis, Northeast

Forestry University, Harbin, Heilongjiang, China, 2012. (In Chinese).
81. Li, X.; Guo, Q.; Wang, X.; Zheng, H. Allometry of understory tree species in a natural secondary forest in northeast China. Sci.

Silvae Sin. 2010, 46, 22–32. (In Chinese)
82. Zhao, X.; Guo, Q.; Su, Y.; Xue, B. Improved progressive TIN densification filtering algorithm for airborne LiDAR data in for-ested

areas. ISPRS J. Photogramm. 2016, 117, 79–91. [CrossRef]
83. Soenen, S.A.; Peddle, D.R.; Coburn, C.A. SCS + C: A modified Sun-canopy-sensor topographic correction in forested terrain.

IEEE T. Geosci. Remote 2005, 43, 2148–2159. [CrossRef]
84. Soenen, S.A.; Peddle, D.R.; Hall, R.J.; Coburn, C.A.; Hall, F.G. Estimating aboveground forest biomass from canopy reflectance

model inversion in mountainous terrain. Remote Sens Environ. 2010, 114, 1325–1337. [CrossRef]
85. Jennings, S.; Brown, N.; Sheil, D. Assessing forest canopies and understorey illumination: Canopy closure, canopy cover and

other measures. Forestry 1999, 72, 59–74. [CrossRef]
86. Chen, J.; Black, T. Measuring leaf area index of plant canopies with branch architecture. Agric. For. Meteorol. 1991, 57, 1–12.

[CrossRef]
87. Ou, G.; Lv, Y.; Xu, H.; Wang, G. Improving forest aboveground biomass estimation of pinus densata forest in yunnan of southwest

china by spatial regression using Landsat 8 images. Remote Sens. 2019, 11, 2750. [CrossRef]
88. Huang, G.-B.; Zhu, Q.-Y.; Siew, C.-K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501.

[CrossRef]
89. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536.

[CrossRef]
90. Zhu, Y.; Liu, K.; Liu, L.; Wang, S.; Liu, H. Retrieval of mangrove aboveground biomass at the individual species level with

worldview-2 images. Remote Sens. 2015, 7, 12192–12214. [CrossRef]
91. LeCun, Y.; Bengio, Y. Convolutional networks for images, speech, and time series. In The Handbook of Brain Theory and Neural

Network; MIT Press: Cambridge, MA, USA, 1995; Volume 3361, pp. 1–14.
92. Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Association for Computing
Machinery: New York, NY, USA, 2016; pp. 785–794.

93. Feng, L.; Li, Y.; Wang, Y.; Du, Q. Estimating hourly and continuous ground-level PM2.5 concentrations using an ensemble
learning algorithm: The ST-stacking model. Atmos. Environ. 2019, 223, 117242. [CrossRef]

94. Wen, L.; Hughes, M. Coastal wetland mapping using ensemble learning algorithms: A comparative study of bagging, boosting
and stacking techniques. Remote Sens. 2020, 12, 1683. [CrossRef]

95. Book, S.A.; Yong, P.H. The trouble with R2. J. Parametr. 2006, 25, 87–114. [CrossRef]
96. Van Der Meer, F.; Bakker, W.; Scholte, K.; Skidmore, A.; De Jong, S.; Clevers, E.A.; Epema, G. Spatial scale variations in veg-etation

indices and above-ground biomass estimates: Implications for MERIS. Int. J. Remote Sens. 2001, 22, 3381–3396. [CrossRef]
97. Huang, S.; Tang, L.; Hupy, J.P.; Wang, Y.; Shao, G. A commentary review on the use of normalized difference vegetation index

(NDVI) in the era of popular remote sensing. J. For. Res. 2020, 32, 1–6. [CrossRef]
98. Wu, Z.; Dye, D.; Vogel, J.; Middleton, B. Estimating forest and woodland aboveground biomass using active and passive re-mote

sensing. Photogramm. Eng. Rem. S. 2016, 82, 271–281. [CrossRef]
99. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017,

60, 84–90. [CrossRef]
100. Ayrey, E.; Hayes, D.J. The use of three-dimensional convolutional neural networks to interpret LiDAR for forest inventory. Remote

Sens. 2018, 10, 649. [CrossRef]
101. Fricker, G.A.; Ventura, J.D.; Wolf, J.A.; North, M.P.; Davis, F.W.; Franklin, J. A convolutional neural network classifier iden-tifies

tree species in mixed-conifer forest from hyperspectral imagery. Remote Sens. 2019, 11, 2326. [CrossRef]

185



Sensors 2021, 21, 5974

102. Fassnacht, F.; Hartig, F.; Latifi, H.; Berger, C.; Hernández, J.; Corvalán, P.; Koch, B. Importance of sample size, data type and
prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sens. Environ. 2014, 154, 102–114.
[CrossRef]

103. Yang, L.; Liang, S.; Zhang, Y. A new method for generating a global forest aboveground biomass map from multiple high-level
satellite products and ancillary information. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2587–2597. [CrossRef]

104. Guo, Z.; Hu, H.; Li, P.; Li, N.; Fang, J. Spatio-temporal changes in biomass carbon sinks in China’s forests from 1977 to 2008. Sci.
China Life Sci. 2013, 56, 661–671. [CrossRef]

105. Zhang, Y.; Liang, S.; Sun, G. Forest biomass mapping of northeastern china using GLAS and MODIS Data. IEEE J. Sel. Top. Appl.
Earth Obs. Remote Sens. 2013, 7, 140–152. [CrossRef]

106. Sammut, C.; Webb, G.I. (Eds.) Leave-one-out cross-validation. In Encyclopedia of Machine Learning, 2020 ed.; Springer: Boston, MA,
USA, 2011.

107. Réjou-Méchain, M.; Barbier, N.; Couteron, P.; Ploton, P.; Vincent, G.; Herold, M.; Mermoz, S.; Saatchi, S.; Chave, J.; de Bois-sieu, F.;
et al. Upscaling forest biomass from field to satellite measurements: Sources of errors and ways to reduce them. Surv. Geophys.
2019, 40, 881–911. [CrossRef]

108. Xu, Q.; Man, A.; Fredrickson, M.; Hou, Z.; Pitkänen, J.; Wing, B. Quantification of uncertainty in aboveground biomass esti-mates
derived from small-footprint airborne LiDAR. Remote Sens. Environ. 2018, 216, 514–528. [CrossRef]

109. Zhen, Z.; Quackenbush, L.J.; Stehman, S.V.; Zhang, L. Agent-based region growing for individual tree crown delineation from
airborne laser scanning (ALS) data. Int. J. Remote Sens. 2015, 36, 1965–1993. [CrossRef]

110. Zhao, Y.; Hao, Y.; Zhen, Z.; Quan, Y. A region-based hierarchical cross-section analysis for individual tree crown delineation
using ALS Data. Remote Sens. 2017, 9, 1084. [CrossRef]

111. GreenValley International. LiDAR360 V3.2 User Guide; GreenValley International, Ltd.: Beijing, China, 2019.
112. Olmedo, G.F.; Ortega-Farías, S.; de la Fuente-Sáiz, D.; Fonseca-Luego, D.; Fuentes-Peñailillo, F. water: Tools and functions to

es-timate actual evapotranspiration using land surface energy balance models in R. R J. 2016, 8, 352–369. [CrossRef]
113. Xu, T.; Cao, L.; Shen, X.; She, G. Estimates of subtropical forest biomass based on airborne LiDAR and Landsat 8 OLI data. Chin. J.

Plant Ecol. 2015, 39, 309–321. (In Chinese)
114. Li, B.; Di, C.; Yan, X. Study of derivation of tasseled cap transformation for Landsat 8 OLI images. Sci. Surv. Mapp. 2016, 41,

102–107. (In Chinese)
115. Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ.

1994, 48, 119–126. [CrossRef]
116. Zhou, L.; Ou, G.; Wang, J.; Xu, H. Light saturation point determination and biomass remote sensing estimation of Pinus kesiya var.

langbianensis forest based on spatial regression models. Sci. Silvae Sin. 2020, 56, 38–46. (In Chinese)

186



sensors

Article

Crop Disease Classification on Inadequate
Low-Resolution Target Images

Juan Wen, Yangjing Shi, Xiaoshi Zhou and Yiming Xue *

College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China;
wenjuan@cau.edu.cn (J.W.); sy20183081433@cau.edu.cn (Y.S.); zhouxiaoshi0713@163.com (X.Z.)
* Correspondence: xueym@cau.edu.cn

Received: 1 July 2020; Accepted: 13 August 2020; Published: 16 August 2020

Abstract: Currently, various agricultural image classification tasks are carried out on high-resolution
images. However, in some cases, we cannot get enough high-resolution images for classification,
which significantly affects classification performance. In this paper, we design a crop disease
classification network based on Enhanced Super-Resolution Generative adversarial networks
(ESRGAN) when only an insufficient number of low-resolution target images are available.
First, ESRGAN is used to recover super-resolution crop images from low-resolution images.
Transfer learning is applied in model training to compensate for the lack of training samples. Then,
we test the performance of the generated super-resolution images in crop disease classification task.
Extensive experiments show that using the fine-tuned ESRGAN model can recover realistic crop
information and improve the accuracy of crop disease classification, compared with the other four
image super-resolution methods.

Keywords: super-resolution; Generative Adversarial Networks; Convolutional Neural Networks;
disease classification

1. Introduction

Crop diseases are generally caused by the environment, soil, pests and pathogens. They pose a
severe threat to the quality and security of agricultural production [1,2]. At the same time, crop diseases
also cause losses to farmers. Taking prompt action could reduce losses. However, it is hard to detect
the diseases in time through manual work.

With the development of computer science, it has become a hot topic to identify crop diseases
based on computer vision and machine learning techniques. Earlier studies were based on feature
extraction techniques. Alsuwaidi et al. [3] applied adaptive feature selection and ensemble learning
for crop disease classification. Pantazi et al. [4] employed Local Binary Patterns (LBPs) for feature
extraction and a one-class classifier to classify leaf diseases in various crop species. In recent years,
image analysis methods based on deep learning have been used for crop disease identification and other
purposes in agriculture, such as plant phenotypic analysis. Jia et al. [5] used transfer learning to classify
tomato pests and diseases on leaf images based on VGG16 network. Zhang et al. [6] proposed global
pooling dilated convolutional neural network (GPDCNN), which integrated the advantages of global
pooling and dilated convolution to identify cucumber leaf diseases. Meanwhile, in order to construct a
cost-effective system to diagnose diseases and symptoms of mango leaves, a multi-layer convolutional
neural network (MCNN) [7] was proposed to classify mango leaves infected by anthracnose disease.
It surpassed other approaches on a real-time dataset that includes 1070 images of the Mango tree
leaves. Furthermore, based on the open dataset Plant Village [8], Too et al. [9] conducted a comparative
study on the fine-tuned convolutional neural network (CNN) models for crop disease identification,
including VGG16 [10], Inception V4 [11], ResNet with 50, 101 and 152 layers [12], and DenseNets [13]
with 121 layers.
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Since unmanned aerial vehicles (UAVs) have become increasingly popular in the agriculture
industry in the past few years, some attempts have been made to identify crop diseases based on
UAV images. Su et al. [14] collected UAV multispectral images by low-altitude UAVs and low-cost
multispectral cameras. They then applied machine learning algorithms to monitor wheat yellow rust,
making a significant contribution to yellow rust monitoring at farmland scales. Similar to their work,
Cao et al. applied low-altitude remote sensing UAV images to detect Sclerotinia sclerotiorum on
oilseed rape leaves [15]. Additionally, Kerkech et al. [16] utilized color information of UAV images to
detect vine diseases based on a CNN model.

No matter what device was used to obtain the experimental images, one thing in common among
these previous work was that high-resolution (HR) images were required for model training to ensure
classification accuracy. In order to obtain HR images, high-quality cameras or sensors are required [17],
which are costly and inefficient. In particular, if a UAV is used to capture HR images, it has to fly
at a low altitude [14]. However, the drone propellers’ spinning motion will create turbulence and
shake the leaves, which makes pictures blurry and unclear. According to Torres-Sánchez et al. [18],
the ideal application scenario for UAVs is to fly at a high altitude to capture as many plants as
possible. However, in such a case, the resolution of images will not be high enough for disease
recognition. To solve this problem, Yamamoto et al. [19] first utilized the super-resolution (SR) method
to transform low-resolution (LR) images to HR images for crop disease recognition. They applied a
super-resolution convolution neural network (SRCNN) [20] to recover tomato leaf details and achieved
better performance comparing with the results obtained from the original LR images. Cap et al. [21]
used SRCNN and a Generative Adversarial Network (GAN) [22] to generate high-resolution images
for detecting cucumber diseases, largely boosting the classification performance.

Because GAN has shown excellent ability in image SR tasks, in this article, we train a crop image
super-resolution model based on GAN. Then we conduct crop disease classification on the generated
SR images. Specifically, an enhanced super-resolution GAN (ESRGAN) [23] is trained to generate
SR images on the Plant Village dataset [8], which is an open-source dataset with multiple plants
and diseases. One major problem in our work is that it can be challenging to train a stable GAN
model with insufficient labeled datasets. To address this issue, we use data augmentation to increase
training samples. Furthermore, a base model pre-trained on ImageNet [24] is adopted to set the initial
parameters of ESRGAN, and then transfer learning is applied to fine-tune the model twice in different
learning rates to achieve a better quality of the SR images. Since tomato samples have more disease
categories than other plants in the Plant Village dataset, tomato is chosen as the target crop in this paper.
A VGG16 network is trained by transfer-learning and utilized to identify different types of tomato
diseases, in order to verify the classification performance on the generated SR images. Extensive
experiments are conducted to show the superiority of the proposed method compared with SRCNN
and three conventional image scaling methods: bilinear, cubic, and lanczos4.

Our main contributions are mainly—(1) to handle low-resolution crop images, an ESRGAN model
is built and trained to generate the HR images which are comparable to the original images. (2) To
make the model work appropriately in case of inadequate crop data, we apply the transfer learning
strategy to fine-tune the parameters of the ESRGAN in two separate steps. (3) Using the fine-tuned
ESRGAN, which is one of the most potential SR algorithms, we can recover more realistic crop images
and further improve the accuracy of crop disease classification.

The remainder of this article is as follows. Section 2 introduces the effective architecture of
ESRGAN. Section 3 describes proposed method in details. Experimental details and results are covered
in Section 4. Finally, the conclusion is provided in Section 5.
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2. Related Work

2.1. Image Super-Resolution Methods

Image SR methods aim to recover detailed and spatial HR images from the corresponding
LR images [25]. Recently, deep learning-based SR methods have become a persistent hot topic.
SRCNN proposed by Dong et al. [20] established a mapping between low- and high-resolution
images, which became a pioneer work of deep learning-based methods. After that, different network
architectures and other strategies were put forward to improve the SR performance, mainly evaluated
by Peak Signal-to-Noise Ratio (PSNR) [26–32]. In recent years, Shamsolmoali et al. introduced a
progressive dilated convolution network which used progressive dilated densely connections and
nonlinear learnable activation function to obtain complex features. Consequently, the network achieved
satisfying performance in image SR tasks with few layers [33]. Yamamoto et al. [19] applied SRCNN to
recover SR tomato leaf images and showed that the accuracy obtained on SR images was better by a
large margin than those on LR images. However, images reconstructed via PSNR-oriented approaches
can only capture limited perceptually relevant differences, that is, higher PSNR does not necessarily
reflect a better perceptual result [34].

To improve the visual quality of SR images, some researchers proposed perceptual-driven
methods. Perceptual loss [35] was applied to optimize SR model in feature space rather than pixel
space. Furthermore, some researchers introduced GAN to generate SR images resembling realistic
images. One of the milestones of GAN-based methods was SRGAN [34], which was constructed
by residual blocks [12] and optimized with perceptual loss. Experiments showed that SRGAN
significantly enhanced the visual quality of reconstruction over the PSNR-oriented methods. Based
on SRGAN, Wang et al. proposed ESRGAN [23]. They improved the generator by designing the
Residual-in-Residual Dense Block (RRDB), which had high capacity and low training complexity.
Moreover, they improved the discriminator by utilizing Relativistic average GAN (RaGAN) [36].
Benefit from the adversarial structure and perceptual-driven SR strategies, ESRGAN can generate SR
images with excellent visual effect.

GAN-based SR models are used in various image SR tasks. In scene recognition tasks,
Wang et al. [37] proposed a text-attentional Conditional Generative Adversarial Network (CGAN)
for text image SR in natural scene. The proposed model introduced effective channel and spatial
attention mechanisms to enhance the original CGAN. It performed well on the public text image
dataset. In handwriting recognition tasks, an end-to-end trainable framework was proposed by jointing
GAN, deep back projection network (DBPN), and bidirectional long short term memory (BLSTM) [38].
The framework achieved state-of-the-art performances on both printed and handwritten document
enhancement and recognition. In object recognition tasks, Xi et al. [39] proposed a Representation
Learning Generative Adversarial Network (RLGAN) to generate SR image representation for tiny
object recognition. RLGAN significantly improved the classification results on the challenging task of
LR object recognition.

2.2. Transfer Learning

At present, more and more machine learning application scenarios have appeared. The existing
supervised methods with better performance require a large amount of labeled data. Labeling data
is a tedious and costly task. As one of the solutions, transfer learning has attracted more and more
attention. Recently, many transfer learning approaches have emerged. Chen et al. [40] proposed
a novel subspace alignment method for domain adaptation (DA). The method generated source
subspace close to the target subspace by re-weighting the source samples. To match the source domain
and target domain, data transformation and mapping are often used. In Reference [41], Xiao et al.
proposed a projection-based feature transformation method for feature adaption between source and
target domain.
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In classification tasks, transfer learning allows us to learn a general classifier using a large
amount of labeled data from the source domain and a small amount of labeled data from the target
domain. A robust information-theoretic transfer learning framework was proposed in Reference [42]
for classifier adaptation. The framework compensated for the loss of generalization performance
caused by insufficient data through prior knowledge modeling. Furthermore, a novel deep transfer
learning (DTL) model was proposed by applying sparse auto-encoder (SAE) and the maximum
mean discrepancy term (MMDT) [43]. SAE extracted raw data features, and MMDT minimized
the discrepancy penalty between training and testing data. The prediction accuracy of DTL on the
famous motor bearing dataset was as high as 99.82%. Based on transfer learning, it is easier to achieve
domain-invariant representation and domain transformation for GANs. A novel transfer learning
framework with GAN architecture was proposed in Reference [44]. The model contains three parts: an
encoder, a generator, and a duplex adversarial discriminators. It achieved state-of-the-art performance
on unsupervised domain adaptation of digital classification and target recognition.

3. Materials and Methods

3.1. Proposed Method

In this paper, our task is to conduct crop disease classification based on inadequate low-resolution
target images. To ensure the classification performance, we apply image super-resolution methods
to transform the low-resolution crop images into HR images, trying to see how the performance
can be improved by using these HR images instead. ESRGAN is chosen in our experiments due to
its powerful ability in image SR tasks. Like most GAN-based models, ESRGAN can easily lead to
non-convergence or over-fitting under insufficient data. One of the biggest challenges of our work is
that there are not enough crop images to train our ESRGAN. In this paper, data augmentation and
transfer learning are used to train ESRGAN under insufficient target images. First, we apply a basic
model pre-trained on a public dataset ImageNet [24], which contains 1000 different classes. Then, the
model parameters are fine-tuned with small-scale target images from the Plant Village dataset [8] to
improve SR performance. Figure 1 shows the three-step process of our work.

(1) Data processing: as shown in Figure 1a, to build the classification model, it is necessary to
prepare the LR and HR image pairs for model training. Images from the Plant Village dataset can
be considered as HR images because these images themselves are of high quality. So we denote
the cropped images with size of 128 × 128 pixels from Plant Village dataset as IHR. Then IHR are
flipped and rotated to enlarge the number of training samples. We obtain the HR images by bicubic
interpolation with downsampling factor r = 4. In this way, IHR can be converted to LR image ILR and
the pair (ILR, IHR) can be used as the training sample of our GAN model.

(2) Model training: the process is shown in Figure 1b. Firstly we get a pre-trained generator G
of ESRGAN, which is trained on ImageNet and saved as RRDB_ESRGAN_x4.pth, available on the
website: https://github.com/xinntao/ESRGAN. Then we fine-tune this ESRGAN model using the
crop dataset. We iteratively train the generator and the discriminator with adversarial training strategy.
We end up with a well-trained G, which can be used to transfer the LR target images into HR ones.
Details can be seen in Section 4.2.

(3) Evaluation: the evaluation is depicted in Figure 1c. Four other SR methods will be used for
comparison. We first evaluate the quality of generated images ISR by PSNR, structural similarity index
(SSIM) [45], and perceptual index (PI) [46]. Then the classification results based on VGG16 [10] through
different SR methods are compared and analyzed.
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(a)

(b)

(c)

Figure 1. The three steps of our work. (a–c) represent the process of data processing, Generative
Adversarial Network (GAN) model training and model evaluation, respectively.

3.2. Network Architecture

Our model adopts the training strategy of the original GAN, which optimizes the generator and
discriminator in an alternating manner. The task of the generator G is to fool the discriminator by
generating SR images similar to HR images. Conversely, the discriminator (denoted as DRa) is trained
to distinguish the generated images from the real ones. In contrast to PSNR-oriented SR methods,
ESRGAN applies perceptual loss in G to get natural and high-quality images.

(1) The Generator: The generator is depicted in Figure 2. The input LR image ILR is fed to
a convolutional layer with 3 × 3 filter kernels followed by LeaklyReLU as the activation function.
23 RRDBs, each of which is composed of dense blocks [13] and a multi-level residual network with five
convolutional layers, are connected to the first convolutional layer [12] (See in Figure 3). In general,
the RRDBs can magnify network capacity. Another convolutional layer with 3 × 3 kernels and
64 feature maps is added after the RRDB group to integrate features and match the data dimension.
The scale factors of two upsampling layers are set to 2 to achieve image SR for 4× upscaling factors.
Other convolutional layers are the same as the first one except that the final convolutional layer has
three feature maps.

Figure 2. Architecture of generator network G. In each convolutional layer, k, n, and s represent kernel
size, number of feature maps, and stride.

(2) The Discriminator: The discriminator is based on RaGAN [36]. It learns to determine which of
the two input images is more realistic. The architecture of DRa is depicted in Figure 4. It contains ten
convolutional layers with 3 × 3 and 4 × 4 filter kernels appearing in an alternating way. Specifically,
the kernel size k, the number of feature maps n, and stride s in each convolutional layer are showed in
Figure 4. Batch-normalization (BN) layers [47] are connected behind convolutional layers to counteract
the internal co-variate shift. IHR denotes the real HR crop image, and ISR is the fake HR image
generated by the generator from the LR image ILR. IHR has the same size as ISR. Two dense layers
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and a final sigmoid activation function are used to predict the probability that an original real image
IHR is relatively more realistic than a generated fake image ISR.

Figure 3. Residual-in-Residual Dense Block (RRDB) with residual scaling parameter β. In each
convolutional layer, k, n, and s represent kernel size, number of feature maps, and stride.

Figure 4. Architecture of discriminator network DRa. In each convolutional layer, k, n, and s represent
kernel size, number of feature maps, and stride.

(3) Loss Functions: DRa has two outputs, denoted by Dreal and Df ake, respectively. Dreal is the
average probability that the predicted result of the discriminator is an original HR image, and Df ake
is the average probability that the predicted result of the discriminator is the generated SR image.
They can be expressed as Equations (1) and (2).

Dreal = C(IHR)− E(C(ISR)) (1)

Df ake = C(ISR)− E(C(IHR)), (2)

where C(I) means discriminator output. E(·) means taking the average in the mini-batch data.
The loss of the discriminator DRa is denoted by LRa

D . It can be divided into two parts: LDRa
real

and

LDRa
f ake

. Formulas of LRa
D , LDRa

real
and LDRa

f ake
can be expressed as Equations (3)–(5), respectively.

LRa
D = LDRa

real
+ LDRa

f ake
(3)

LDRa
real

= −EIHR [log(DRa(IHR, ISR))] (4)

LDRa
f ake

= −EISR [log(1 − DRa(ISR, IHR))], (5)

where DRa(IHR, ISR) = σ(C(IHR)− EISR [C(ISR)]), σ means sigmoid function.
The adversarial loss for generator G can be expressed as a symmetrical form as Equation (6).

LRa
G =− EIHR [log(1 − DRa(IHR, ISR))]

− EISR [log(DRa(ISR, IHR))]
(6)
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Furthermore, the total loss of G is shown in Equation (7):

LG = Lperceptual + αLRa
G + βL1, (7)

where L1 = EISR ||ISR − IHR||1 is the content loss which is used to evaluate the 1-norm distance
between the recovered image ISR and the ground-truth IHR. LRa

G is an adversarial loss for generator,
and we choose SR-MINC loss [46] as an appropriate perceptual loss Lperceptual , which is based on a
fine-tuned VGG model for objection recognition and focuses on textures instead of object [48]. α, β are
the coefficients to balance different loss terms.

3.3. Datasets and Metrics

The crop disease images used in our experiments are obtained from Plant Village dataset [8],
which includes 54,309 images of 14 kinds of crops, such as tomato, corn, grape, apple, and
soybean (available at: https://github.com/spMohanty/PlantVillage-Dataset/tree/master/raw/color).
Since tomato is one of the most produced crops and has the largest number of diseases in the Plant
Village dataset, it is chosen as the target crop in this paper. The size of each image in Plant Village is
256 × 256 pixels (denoted as original HR images). The number of tomato images is up to 18,160 in this
dataset. There are 9 kinds of tomato disease classes, as well as the healthy class, shown in Table 1.

Table 1. The number of each category tomato leaf images in Plant Village dataset.

No. Name of Category Number of Pictures

0 bacterial spot 2027
1 early blight 1000
2 late blight 1909
3 mold leaf 952
4 septoria leaf spot 1771
5 spider mites 1676
6 target spot 1404
7 tomato yellow curl virus 5357
8 tomato mosaic virus 373
9 healthy 1591

PSNR and SSIM [45] are two common metrics for evaluating the quality of images. They are
frequently used to evaluate SR algorithms. PSNR between two images f and g with m × n pixels is
defined as below Equation (8). A higher PSNR indicates better quality of generated images.

PSNR = 10 · log10(
2552

MSE
) (8)

where

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[ f (i, j)− g(i, j)]2. (9)

And SSIM is calculated in Equation (10). Higher value of SSIM indicates better image quality.

SSIM =
(2μxμy + C1)(2σxy + C2)

(μ2
xμ2

y + C1)(σ2
x + σ2

y + C2)
, (10)

where x and y represent the 7× 7 windows in image f and g, μx and μy represent the average value of x
and y, σ2

x and σ2
y represent the variance of x and y, and σxy represents the covariance of x and y. C1 and

C2 are variables to stabilize the division with weak denominators. Since we use RGB multi-channel
images, these indices are calculated for each channel and then the average values of the channels
are calculated.
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However, several studies indicate that PSNR and SSIM cannot thoroughly evaluate
perceptual-driven SR methods, such as SRGAN [34] and ESRGAN [23]. For this reason, Ledig et al. [34]
proposed the mean opinion score (MOS) testing. In addition, Wang et al. [23] suggested applying
PI in PIRM-SR Challenge [46] as an evaluation metric (more details in https://www.pirm2018.org/
PIRM-SR.html). To better measure model performance, we also use PI for quantitative evaluation.
Calculation of PI value depends on Ma’s score [49] and NIQE [50]. The expression is shown below in
Equation (11). A lower PI value represents better perceptual quality. In other words, the image is more
real and natural. We use the MATLAB program provided by sponsors of the competition to calculate
PI values.

PI =
1
2
((10 − Ma) + NIQE). (11)

3.4. Crop Disease Classification

Since VGG16 [10] is a standard and straightforward image classification model, which performs
well in the balance between training time and classification accuracy, it is chosen as the classifier in
our experiments. We apply the classic VGG16 model, which consists of 13 convolution layers and
3 dense layers. The size of input and output layers of VGG16 is variable and adaptable. When the
size of the input images changes, we need to change the setting of the width and height of the input
layer of VGG16. In other words, the width and height of the input layer should be equal to the width
and height of the input images. Similarly, the number of output classes should be equal to the number
of neurons of the output layer. Specifically, if we perform a 6-class classification experiment with
image size 64 × 64 pixels, the width and height of the input layer should be set to 64, and the number
of neurons of the output layer should be set to 6. If we perform a 10-class classification experiment
with image size 128 × 128 pixels, the width and height of the input layer are modified to 128, and the
number of neurons in the output layer is modified to 10. Each layer is followed by ReLU activation
function, which increases the non-linearity. Moreover, the MaxPooling layers are added to the second,
fourth, seventh, tenth, and twelfth convolutional layers to reduce the dimension. Small filters with
size 3 × 3 are applied to reduce the numbers of parameters and improve computational efficiency.
Meanwhile, we fine-tune the VGG16 classification models trained on ImageNet with the Plant Village
dataset, to achieve better classification performance and save computing resources.

4. Experiments

4.1. Experiment Setup

Most computations are conducted using python 3.5 on Ubuntu 16.04 system in our experiments.
We implement the models with the PyTorch framework (version 1.1.0) and train them using a NVIDIA
GeForce GTX 1070 GPU. A small part of image processing and PI calculation are carried out by
MATLAB 2018a. We divide 18160 tomato leaf images from Plant Village database as training, validation,
and testing sets, accounting for 80%, 10%, and 10%, respectively. All experiments apply a scaling factor
of ×4 between LR and HR images. The size of the original HR images is 256× 256 pixels. Since a larger
patch size requires more computing resources and training time, the cropped HR patch size is 128× 128
pixels. Furthermore, cropped HR images are flipped and rotated for data augmentation. Since GPU
memory is an issue, the batch size is set to 16. In future work, we will consider accumulating gradients
across batches to optimize the training process and improve efficiency. SRCNN [20] consists of three
convolutional layers, and the size of the kernel is 9 × 9, 1 × 1, and 5 × 5. Mean-square error (MSE) is
used as the loss function of the model. We trained SRCNN on the Plant Village dataset for comparison.

4.2. Train with Transfer Learning

We use a pre-trained ESRGAN model provided by Wang et al. [23] to initialize the parameters
for better quality and faster convergence (available on: https://github.com/xinntao/ESRGAN).
This model is trained on ImageNet and does not work well in crop images. However, Wang only
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released the pre-trained generator G (denoted as Gpre) and did not release the pre-trained discriminator
D. We fine-tune our model twice to compare the training performance in different training conditions.
In the first fine-tuning, we use the pre-trained generator model Gpre as the initialization of our G and
initialize DRa randomly. This causes an imbalance between the abilities of DRa and G. In other words,
G’s generation ability is strong, and DRa’s discriminative ability is poor. When the first fine-tuning
finished, we got the trained G (denoted as G1) and the trained DRa (denoted as DRa1).The turbulent
orange training curves in Figure 5 indicates insufficient training of the first fine-tuning step. So we
consider carrying out the second fine-tune training with different hyperparameters settings. In the
second fine-tuning, we utilize G1 model and DRa1 as initialization of G and DRa. Because G1 and DRa1

have learned certain feature distribution, the discriminator becomes more powerful, and the abilities
of G and DRa become relatively balanced. Thus, we get the G2 and DRa2 at the end of the second
fine-tuning.

To be specific, in the first fine-tuning step, we train the generator G using the loss function in
Equation (7) with α = 5 × 10−3 and β = 1 × 10−2, where learning rate is set to 1 × 10−4 and halved
at [50k, 100k, 200k, 300k, 400k] iterations (learning rate decay factor γ = 0.5). The learning rate setting
for discriminator is the same as the generator. We use Adam [51] with β1 = 0.9 and β2 = 0.99 as
the optimizer of generator and discriminator. The maximum number of iterations is set to 500k,
and checkpoint is saved every 5k steps (Settings are referred to Reference [23]). It took about six
days for the first fine-tuning. In the second fine-tuning process, we used the trained model G1 as
initialization for G and the corresponding DRa1 as initialization for DRa. The learning rate of G and
DRa is set to 5 × 10−5, which is smaller than previous settings. Moreover, the learning rate is adjusted
dynamically to help the model converge. The learning rate is halved at [50k, 125k, 200k, 300k] iterations.
Loss function coefficients are also modified: α = 1 × 10−4 and β = 5 × 10−3. These settings emphasize
the perceptual loss term. The maximum number of iterations is set to 400k. Other settings remain
unchanged. It took around five days for second fine-tuning.

Furthermore, since BN layers are removed to make training stable, training such a deep network
becomes a problem. When the weights are updated, the distribution of the inputs in deep layers may
change after each mini-batch, making the algorithm difficult to converge. To solve this problem, we use
residual scaling strategy [11], which scales down the residuals by multiplying a constant between 0 and
1 before adding them to the main path to prevent instability. Using smaller initialization parameters in
the residual structure can make training easier to converge.

The comparison of two fine-tuning steps is shown in Figure 5. The orange curves show the first
fine-tuning process, and the blue ones show the second fine-tuning process. We can see that the blue
curves are smoother than the orange curves, revealing that the second fine-tuning is more stable and
reliable. Figure 5a,b represent the two average relativistic output of DRa: Dreal and Df ake. In the second
fine-tuning process, the value of Dreal and Df ake finally stabilized at 30 and −30, respectively. And this
indicates good training of DRa. l_g_per, l_g_gan, and l_g_con in Figure 5c–e, represent perceptual
loss, adversarial loss, and content loss of G, respectively. It can be seen that the loss of the second
training has decreased. PSNR is one of the metrics for evaluating SR methods. As shown in Figure 5f,
compared to the first fine-tuning, the PSNR of the second fine-tuning is higher, which also reflects
the good performance of the second fine-tuning. However, we can see that in the second training
step, the average PSNR gradually decreases as the number of iterations increases. That is because
the optimization goal of perceptual-driven SR methods is to minimize perceptual loss instead of
mean squared reconstruction error (MSRE). This type of method sacrifices the PSNR performance in
exchange for better image visual perception.
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Comparison results of the first and second fine-tune training. In (a,b), The blue curves are
smoother and have a larger mean absolute value of the difference between Dreal and Df ake than orange
ones, which indicates better training of DRa in second fine-tuning process. The sudden change of the
discriminator output at 50k and 125k should be caused by the changes in the learning rate. In (c–e),
blue curves are smoother with smaller absolute losses. In (f), compared to the first fine-tuning, the PSNR
of the second fine-tuning is higher, which also reflects the good performance of the second fine-tuning.

An example of SR images generated by the pre-trained Gpre, first fine-tuned G1, and the second
fine-tuned G2 can be seen in Figure 6. It can be observed that the image in Figure 6a only contains
basic leaf shape and color information but lacks detailed information on lesions. After the first
fine-tuning process, the image in Figure 6b is clearer and has sharper edges. However, it still lacks
detailed information due to the different initialization strategies for the generator and the discriminator.
The generated SR image from G2 is realistic and natural, as shown in Figure 6c.
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(a) (b) (c) (d)

Figure 6. Visual comparison of super-resolution (SR) images generated from three training stages. (a) is
from the pre-trained Gpre based on ImageNet, (b) is from G1 after the first fine-tuning and (c) is from
G2 after the second fine-tuning. (d) is the original high-resolution (HR) image.

4.3. Evaluation of the Generated SR Images

To evaluate the quality of the generated SR images, we display some test image results in
Figure 7, in which PSNR (evaluated on all RGB channels), SSIM, and PI (evaluation index for PRIM-SR
Challenge) are compared. Among them, “ESRGAN without ft” in the sixth column means the results
for ESRGAN without fine-tuning. It can be seen in Figure 7 that the PI values of three generated SR
images by our second fine-tuned ESRGAN (denoted as ft_ESRGAN) are the lowest. However, their
PNSR and SSIM values are not the highest. That is because, unlike these PSNR-oriented approaches,
ESRGAN is mainly minimizing perceptual loss to enhance visual quality instead of minimizing MSRE.
Besides, our ft_ESRGAN achieves better visual performance with more natural and authentic textures
than the other four approaches.

Figure 7. Examples of generated SR images. Our ft_ESRGAN produces sharper and more natural
texture with richer visual information. “ESRGAN without ft” in the sixth column means ESRGAN
without fine-tuning. And “ft_ESRGAN” in the seventh column means ESRGAN with second
fine-tuning. [×4 upscaling].

We also calculate the average PSNR and SSIM of SR images generated by different SR methods
from the test set (including 1812 images). The PI calculation is time-consuming, it takes about a minute
to calculate PI value for one image. So we randomly choose 100 images from the test set (10 images
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are randomly chosen per category). The results are shown in Table 2. The average PNSR and SSIM
of PSNR-oriented SRCNN are the highest, and the average PI of our perceptual-driven ft_ESRGAN
is the lowest, which indicates that ft_ESRGAN could generate more realistic SR images with more
comprehensive crop lesion details.

Table 2. The average Peak Signal-to-Noise Ratio (PSNR), structural similarity index (SSIM) and
perceptual index (PI) of SR images generated by different SR methods.

Evaluation Index Bilinear Cubic Lanczos4 SRCNN ESRGAN without ft ft_ESRGAN

PSNR(dB) 24.45 24.49 24.50 25.42 21.72 23.70
SSIM 0.4776 0.4710 0.4734 0.5126 0.3886 0.4678

PI 7.23 7.07 7.00 7.16 7.12 6.10

4.4. Classification Results

To verify whether the generated SR images by ft_ESRGAN contain rich information for
classification, we conduct crop disease classification experiments on tomato leaves. Then we compare
our model with the bilinear, cubic, lanczos4, and SRCNN. Considering the problem of data balance,
we first choose 6 categories of tomato leaf images, each of which has a similar amount of samples.
These 6 categories are bacterial spot (2027 images), late blight (1909), septoria leaf spot (1771), spider
mites (1676), target spot (1404), and healthy (1591), respectively. The total number is 10,478 (see Table 1).
Based on these original images, we conduct comparative experiments with different image sizes.
By down-sampling HR images through bicubic kernel, we get two groups of LR images with 16 × 16
and 32 × 32 pixels. Then we reconstruct SR images using bilinear, cubic, lanczos4, SRCNN, and our
ft_ESRGAN with a magnification scaling factor of ×4. After reconstruction, we generate two groups
of SR images with 64 × 64 and 128 × 128 pixels for each SR method. We also show the classification
results on HR and LR images as the upper and lower bounds of the experiment.

In these classification experiments, the image samples are randomly divided to form the training,
validation, and testing sets with a ratio of 0.8, 0.1, and 0.1. We use a VGG16 model trained on ImageNet
as the initialization for our classifier. We modify the setting of the width and height of the input layer
and the number of output classes of the output layer to fit our image sizes of this 6-class classification
task. Stochastic Gradient Descent (SGD) is used for optimization, and the learning rate is set to be
1 × 10−4. The maximum number of iterations is set to be 1 × 104. The 6-class classification results on
the test set are shown in Table 3.

From Table 3, we can see that the classification accuracies through SR images are much higher
than the ones through LR images. The proposed ft_ESRGAN achieves the highest accuracies, reaching
93.59% and 95.60% for SR images with the sizes 64 × 64 and 128 × 128 pixels, respectively. Moreover,
classification performance based on deep learning methods (SRCNN and ft_ESRGAN) is better than
the conventional image scaling methods (Bilinear, Cubic, and Lanczos4).

To further evaluate the classification performance of the proposed model on an unbalanced
dataset, we also conduct a comparative experiment in all 10 categories (see Table 1) using a similar
process. The learning rate is set to 5 × 10−5, and the maximum of iterations is 1.5 × 104. The number
of neurons in the output layer is modified to 10. Other settings are the same as the 6-class classification
experiments. The 10-class classification results are shown in Table 4.

From Table 4, it can be observed that the classification accuracies on SR images are much higher
compared with those on LR images under both image sizes. Moreover, the classification performance
on the generated SR images obtained by our ft_ESRGAN model is better than other methods. The above
experiments show that the proposed ft_ESRGAN model can generate images with useful and specific
information for classification tasks.
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Table 3. Comparison of classification results for low-resolution (LR) and SR images based on
6 categories.

Sample Size Total Numbers Accuracy

LR 16 × 16 1045 56.94%
bilinear 64 × 64 1045 88.42%

cubic 64 × 64 1045 88.61%
lanczos4 64 × 64 1045 89.36%
SRCNN 64 × 64 1045 92.54%

ft_ESRGAN 64 × 64 1045 93.59%
HR 64 × 64 1045 95.41%

LR 32 × 32 1045 80.48%
bilinear 128 × 128 1045 93.30%

cubic 128 × 128 1045 92.82%
lanczos4 128 × 128 1045 93.78%
SRCNN 128 × 128 1045 94.26%

ft_ESRGAN 128 × 128 1045 95.60%
HR 128 × 128 1045 97.80%

Table 4. Comparison of classification results for LR and SR images based on 10 categories.

Sample Size Total Numbers Accuracy

LR 16 × 16 1812 52.65%
bilinear 64 × 64 1812 71.14%

cubic 64 × 64 1812 73.01%
lanczos4 64 × 64 1812 72.79%
SRCNN 64 × 64 1812 80.13%

ft_ESRGAN 64 × 64 1812 85.38%
HR 64 × 64 1812 89.96%

LR 32 × 32 1812 72.74%
bilinear 128 × 128 1812 82.40%

cubic 128 × 128 1812 81.02%
lanczos4 128 × 128 1812 83.44%
SRCNN 128 × 128 1812 86.09%

ft_ESRGAN 128 × 128 1812 90.78%
HR 128 × 128 1812 95.14%

From Tables 3 and 4, we can see that classification accuracy on LR images is the lowest. It reveals
that LR images contain less useful information that can be captured by VGG16 for classification than
SR or HR ones. Besides, because the size of the LR images is smaller than the size of SR and HR images,
VGG16 may not be well trained for LR images due to its large amount of parameters, resulting in low
classification accuracy. That is to say, VGG16 may not be a good tool for classifying the LR images.
In this paper, the LR image accuracy is considered as a lower bound for classification, helping us to
study the impact of SR methods for the classification tasks.

To study the classification accuracy on each category, we show the confusion matrix for the
second group of 10-class classification experiment (LR images: 32 × 32 pixels, SR and HR images:
128 × 128 pixels) in Figure 8. The results are normalized to 0–1 by the number of elements in each
category. From Figure 8, We can see the classification accuracy gradually increases from LR to SR to
HR. Among the chosen SR methods, our ft_ESRGAN performance is closest to the upper bound—the
classification performance on HR images. Healthy class is the easiest category to identify. Furthermore,
class 1 (early blight) and class 2 (late blight) are quite confounding. Similarly, class 0 (bacterial spot),
class 4 (septoria leaf spot), and class 6 (target spot) are hard to distinguish from each other, too.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 8. Confusion matrix of disease classification using using LR (32 × 32 pixels), SR (128 × 128 pixels)
and HR images (128 × 128 pixels). Numbers on x and y axes indicate the ID of diseases in Table 1. (a) LR;
(b) Bilinear; (c) Cubic; (d) Lanczos4; (e) SRCNN; (f) ft_ESRGAN; (g) HR.

5. Conclusions

In this paper, we have proposed a method for crop disease identification on LR images by
transferring LR images to SR images based on GAN. First, we employ ESRGAN on LR images to
generate the corresponding SR images. Due to insufficient crop data, we apply transfer learning
to fine-tune the model trained on ImageNet. After two fine-tuning steps, our SR model reaches a
stable state, and the generated images achieve an excellent visual effect. Then we conduct disease
classification experiments using the generated SR images. Experimental results show that the
classification accuracy can be significantly improved by applying the proposed SR model, indicating
that our SR model can reconstruct the useful information for identifying crop diseases. Due to the
powerful reconstruction ability of ESRGAN, the performance achieved by the proposed model is better
than those achieved by the other four methods. In our research, we utilized disease images taken by
ground cameras rather than UAV cameras. Although our approach should be effective on UAV images,
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it is still necessary to verify our approach to images from UAV cameras for practical application in
future works. Besides, The training efficiency and generalization ability of the model can be further
improved. Furthermore, we can apply the SR model in object detection tasks. In this way, we can
detect multiple diseases on one crop images.
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Abstract: There is an evident increase in the importance that remote sensing sensors play in the
monitoring and evaluation of natural hazards susceptibility and risk. The present study aims to assess
the flash-flood potential values, in a small catchment from Romania, using information provided
remote sensing sensors and Geographic Informational Systems (GIS) databases which were involved
as input data into a number of four ensemble models. In a first phase, with the help of high-resolution
satellite images from the Google Earth application, 481 points affected by torrential processes were
acquired, another 481 points being randomly positioned in areas without torrential processes. Seventy
percent of the dataset was kept as training data, while the other 30% was assigned to validating
sample. Further, in order to train the machine learning models, information regarding the 10 flash-
flood predictors was extracted in the training sample locations. Finally, the following four ensembles
were used to calculate the Flash-Flood Potential Index across the Bâsca Chiojdului river basin: Deep
Learning Neural Network–Frequency Ratio (DLNN-FR), Deep Learning Neural Network–Weights
of Evidence (DLNN-WOE), Alternating Decision Trees–Frequency Ratio (ADT-FR) and Alternating
Decision Trees–Weights of Evidence (ADT-WOE). The model’s performances were assessed using
several statistical metrics. Thus, in terms of Sensitivity, the highest value of 0.985 was achieved
by the DLNN-FR model, meanwhile the lowest one (0.866) was assigned to ADT-FR ensemble.
Moreover, the specificity analysis shows that the highest value (0.991) was attributed to DLNN-WOE
algorithm, while the lowest value (0.892) was achieved by ADT-FR. During the training procedure,
the models achieved overall accuracies between 0.878 (ADT-FR) and 0.985 (DLNN-WOE). K-index
shows again that the most performant model was DLNN-WOE (0.97). The Flash-Flood Potential
Index (FFPI) values revealed that the surfaces with high and very high flash-flood susceptibility
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cover between 46.57% (DLNN-FR) and 59.38% (ADT-FR) of the study zone. The use of the Receiver
Operating Characteristic (ROC) curve for results validation highlights the fact that FFPIDLNN-WOE is
characterized by the most precise results with an Area Under Curve of 0.96.

Keywords: flash-flood potential index; remote sensing sensors; bivariate statistics; deep learning
neural network; alternating decision trees; ensemble models

1. Introduction

In recent decades, climate change and its related phenomena, e.g., flash floods, have
had significant negative effects worldwide for both human society and environment [1].
The extreme rainfalls, extreme river discharge values, and therefore the flash-flood risk
are characterized by a continuous increasing trend [2]. This trend is also validated by the
huge amount of damages that flash floods generate worldwide. Therefore, an increasing
number of studies in the literature approaching the subject of flash-flood susceptibility
can be also observed [3–6]. Moreover, the estimation of flood risk and vulnerability
became an essential and mandatory procedure which should be included in the Flood
Risk Management strategy [7]. In this regard, the Geographic Informational Systems (GIS)
and Remote Sensing (RS) techniques represent the necessary tools, which facilitate the
spatial modelling and mapping of flash-flood susceptible areas. It is worth emphasizing
the crucial role of Remote Sensing sensors in the observation’s campaigns conducted for
the identification of areas already affected by flash-flood processes [8]. Thus, without
the RS sensors, the correct inventory of the torrential areas, which favor the occurrence
of flash flood, will be impossible. Consideration of the previously affected areas and
their involvement as input data in more advanced techniques such as machine learning
or bivariate statistics, is of a real help to estimate as accurate as possible the flash-flood
susceptibility within a specific catchment [9].

In recent years, new techniques and models have been developed by researchers
worldwide [10–35]. During the last 6 years, several studies have been individualized
regarding the flash-flood susceptibility investigations, which were carried out through
the integration of GIS techniques with bivariate statistical models such as: frequency
ratio [36], weights of evidence [37], statistical index [38], evidential belief function [39],
certainty factor [40], or index of entropy [41]. Another category of methods successfully
used in this type of study are those included in Multicriteria Decision Making such as:
Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) [42], Analytical
Hierarchy Process (AHP) [43], Analytical Network Process (ANP) [44] or Vlse Kriterijuska
Optamizacija I Komoromisno Resenje (VIKOR) [45]. Promising results in terms of flash-
flood susceptibility were also provided by machine learning models such as: logistic
regression [46], naïve bayes [47], artificial neural network [48], random forest [49,50],
support vector machine [51], neuro-fuzzy inference system [52], k-nearest neighbor [53] or
deep learning neural network [54]. The attempts of researchers to combine models from
the same category or from different categories to generate ensemble algorithms that are
considered much more accurate than the stand-alone ones should also be noted [55]. In
this regard, the following examples can be provided: Fuzzy Unordered Rules Induction
Algorithm (FURIA) [3], Bayesian-based machine learning models [9], machine learning
and multicriteria decision making ensembles [7], machine learning and bivariate statistics
ensembles [56].

Taking into account the previously presented aspects, the main purpose of the pro-
posed research work is to estimate the susceptibility to flash floods in the basin of the
Bâsca Chiojdului river from Romania. Estimation of flash-flood exposure will be based
on the data collected using Remote Sensing sensors and the GIS database and their use
in a number of four ensemble models generated by combining bivariate statistics with
deep learning neural networks and alternating decision trees. Thus, on the one hand,
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the Frequency Ratio and Weights of Evidence bivariate statistical models will be used;
these being combined with deep learning neural network and alternating decision trees.
The construction of Receiver Operating Characteristic (ROC) curve and the calculation of
several statistical metrics will ensure the validation of the results and the evaluation of the
models’ performances. It is worthwhile to note that the present study is intended to enrich
the scientific literature regarding the flash-flood susceptibility assessment by proposing, for
the first time in the literature, the combination above mentioned of four machine learning
ensemble models with the GIS and remote sensing techniques.

2. Study Area

The Bâsca Chiojdului river basin from Romania, on which the present research is
focused, has a total area of 340 km2. The basin has an elevation which varies from 242 m
to 1463 m, and a slope angle with an average value of 12.3◦. It should be noted that a
percentage of 79% of the total area is characterized by slope angles higher than 7◦ [57].
The circularity ratio, that is another important feature with a high influence on flash-flood
susceptibility, has a value of 0.46, while the river basin concentration time is 7.27 h [36].
The low concentration time highlights a high predisposition of the study area to the flash-
flood events. The forest vegetation covers a total percentage of 50%, while in terms of
the soil component, the hydrological group B accounts for approximately 41% of the total
research area.

The lithology consists mainly of the sedimentary rocks included in the Paleogene
and Cretaceous flysch. The climate is characterized by a high continentalism degree,
and especially in the warm season, the heavy rainfalls often lead to severe flash-flood
phenomena. Due to the geographical characteristics of the Bâsca Chiojdului river basin, the
socio-economic elements located across its territory suffered material losses following the
flash-flood propagation. The most important flash-flood event occurred in 1975, when the
maximum discharge value (300 m3/s) of the Bâsca Chiojdului river reached the historical
maximum [57]. More information regarding the main flash floods occurred across the
study area, as well as the damages caused by these phenomena, can be found in the
research works carried out by: Costache and Zaharia [10], Prăvălie and Costache [57],
Costache et al. [38], Zarea and Gheorghe [58], Prăvălie and Costache [59].

3. Data

In order to carry out the present study, data consisting of torrential areas polygons
and flash-flood predictors were gathered.

3.1. Torrential Area Inventory and Sampling

The inventory of surfaces previously affected by a specific process is essential for an
accurate prediction of the areas where that phenomenon can occur in the future [60]. In the
present research work, we consider the torrential surfaces as the spatial indicator for the
areas with a high susceptibility for flash-flood genesis. In order to identify, as accurate as
possible, the areas affected by torrential phenomena, analysis of the images provided by
the Remote Sensing sensors was mandatory. This fact highlights the crucial role that this
type of sensor has in the analysis of natural hazard susceptibility. Thus, using the Google
Earth imagery a total area of 34 km2 was delimited. These surfaces were created by the
accelerated surface runoff occurring on the slopes. The manner in which these surfaces are
delineated is described in the study carried out by Costache [61]. According to Costache
and Zaharia [8], the torrential areas are defined as the areas characterized by the unified
presence of torrential microform of relief such as ravines and gullies, which are generated
by surface runoff. They are located in the upper part of the river basin, where the absence
of vegetation and the high slopes favor the production of such phenomena. In order to be
taken into account in the present study, a sample of 481 points representing locations where
the torrential runoff took place was extracted from the entire delimited area. Moreover,
another sample of 481 points was placed within the study area, representing points without
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torrential processes (Figure 1). Both torrential pixels and non-torrential pixels were divided
into training (70%) and validating (30%) samples. This division was necessary in order to
train the models and then to validate the results regarding the susceptibility to flash floods.

Figure 1. Study area location.

3.2. Flash-Flood Predictors

For the realization of this study, a number of 10 flash-flood conditioning factors were
taken into account. Their main properties are described in the following lines. Slope

angle was calculated using the Digital Elevation Model (DEM) taken from Shuttle Radar
Topographic Mission (SRTM) 30 m database and processed in ArcGIS 10 software. A high
value of slope angle will influence in a positive water runoff velocity, while the low values
of the same parameter will be restrictive for the surface runoff occurrence [56]. For the study
area, the map of slope angle was designed by splitting its range of values into five classes
as following [12]: <3◦; 3◦–7◦; 7.1◦–15◦; 15.1◦–25◦; >25◦ (Figure 2a). Another water surface
runoff predictor is represented by the Topographic Wetness Index (TWI) calculated by the
DEM processing in SAGA GIS 2.1.0. The algorithm used to calculate this index requires the
use of the area upslope to each pixel and the tangent value of the slope value recorded in
the same pixel [53]. The generation of TWI map was possible following the partition of its
values into the next five classes using Natural Breaks method: 3.15–6.1, 6.11–7.78, 7.79–10.21,
10.22–14.5, 14.51–24.59 (Figure 2b). Topographic Position Index (TPI) is a mandatory
flash-flood predictor which should be involved in the susceptibility related studies because
its values emphasize the altitude difference between the location of a specific point and its
neighboring area [62]. This important morphometric indicator was achieved at a spatial
resolution of 30 m and its values ranging from −20 to 20 were divided into the next
five classes using Natural Breaks method: (−20)–(−3.8), (−3.7)–(−1.1), (−1.1)–1.3, 1.4–4.5,
4.6–20 (Figure 2c). Profile curvature is mainly used to delineate the surfaces on which an
accelerated surface runoff is manifested from those on which a decelerated surface runoff
occurs [63]. According to the literature [38], positive profile curvature is characteristic
for areas with a decelerated water runoff, while the negative values show the surfaces
that increase the water runoff velocity. Across the study area, the profile curvature was
classified into the following three intervals: (−3)–0, 0.1–0.9, 1–2 (Figure 2d). The ability
of convergence index morphometric factor consists of the differentiation of the areas
belonging the river valleys from those which are situated along the interfluvial lines. This
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index, achieved by DEM processing in SAGA GIS 2.1.0, was classified according to the
literature: (−99)–(−3), (−2.9)–(−2), (−1.9)–(−1), (−0.9)–0, 0–99 (Figure 2e). Stream Power

Index (SPI) is another morphometric factor that is generated in SAGA GIS 2.1.0 based on
the values of upslope region that drains into a pixel and the tangent applied to the slope
angle [64]. This predictor, which shows the capacity of the river for sediment transport,
was mapped using the following classes values: <50, 50–500, 501–2000, 2001–5000, >5000
(Figure 2f). Slope aspect (Figure 3a) is the seventh morphometric index taken into account
for the present research. The slope orientation has a big influence in the surface runoff
process because the humidity condition will vary due to the different quantity of solar
radiation [65]. The slope aspect predictor was derived from the DEM.

 

Figure 2. Flash-flood predictors: (a) Slope; (b) Topographic Wetness Index (TWI); (c) Topographic
Position Index (TPI); (d) Profile curvature; (e) Convergence index; (f) Stream Power Index (SPI).
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Figure 3. Flash-flood predictors: (a) Aspect; (b) Land use; (c) Hydrological soil groups; (d) Lithology.

Land use, which is the main interface between the torrential rainfalls and the ground
surface, has an important influence on the runoff velocity [66]. For the present study,
the land use layer was taken from the Corine Land Cover 2018 database. According to
Figure 3b, a number of eight land use categories were delineated within the study area
perimeter. Hydrological soil group was considered as a flash-flood predictor in the present
research due to its incontestable influence on vertical infiltration of water in the ground [67].
Within the Bâsca Chiojdului cathcment, all of the four hydrological soil groups are present
(Figure 3c). A similar contribution, as soil groups, in flash-flood genesis is held by the
lithological groups. In the area of the Bâsca Chiojdului catchment, a total of 10 lithological
groups can be found (Figure 3d).

4. Methods

The main steps of the methodological workflow are synthetically described in Figure 4.

 

Figure 4. Flowchart of the methodological steps applied in this research.
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4.1. Linear Support Vector Machine (LSVM) for Feature Selection

In a study that aims to estimate the qualitative flash-flood susceptibility, it is imperative
to analyze the predictive ability of flash-flood conditioning factors in order to see if they all
manage to contribute to some extent to the genesis of flash floods. In the present research
paper, the evaluation of the prediction ability of flash-flood predictors was determined
using Linear Support Vector Machine (LSVM). This method is widely used because it is
able to remove redundant and irrelevant information from input data [68]. The following
equation is used to compute the predictive ability through LSVM algorithm [69]:

f (x) = sign
(

CT ∗ i + j
)

(1)

where CT is equal to the inverse of weight matrix attributed to each flash-flood predictor,
i = (i1, i2, . . . , i11) is the vector containing the ten flash-flood predictors, j is equal to the
offset value calculated from the hyper-plane origin [5].

This algorithm was applied with the help of Weka 9.3 software.

4.2. Weights of Evidence (WOE)

The bivariate statistics model represented by Weights of Evidence (WOE) is a very
frequently used algorithm involved in the studies focused on natural hazards predispo-
sition evaluation [40]. In this study, the WOE model is used to calculate the weight that
each factor class/category has in relation to the genesis of the flash-flood process. In
order to derive the WOE coefficients, first, computing the positive (W+) and negative
(W−) weights is required. The positive weight highlights the association between a factor
class/category and the torrential points, while the negative weight indicates the absence of
this spatial association [36]. The following relations should be employed in the weights
computation [70]:

W+ = ln
P{B|S}
P
{

B
∣∣S} (2)

W− = ln
P
{

B
∣∣S}

P
{

B
∣∣S} (3)

where: W+—positive weight, W−—negative weight, P—the probability, B—the presence of
flash-flood predictor, B—the absence of flash-flood predictor, S—the presence of torrential
pixels, S—the absence of torrential pixels.

The final WOE coefficients can be derived using the next equation [71]:

Wf = Wplus + Wmintotal - Wmin (4)

where: Wplus—positive weight of a class factor, Wmin—negative weight of a class factor,
Wmintotal—the total of all negative weights in a multiclass map.

The final WOE values will be used as input data into the Deep Learning and Alternat-
ing Decision Tree models through which the flash-flood susceptibility will be determined.

4.3. Frequency Ratio (FR)

Frequency Ratio (FR) is the second bivariate statistical model which will be employed
in order to prepare the input data in the Deep Learning and Alternating Decision Tree
algorithms. The FR model consists of the calculation of the ratio between the sum of
torrential pixels within a specific category of predictor, and the sum of torrential pixels
within the entire study zone. The following relation can be used to estimate the FR
coefficients [72]:

FR =

Np(LXi)
∑m

i=1 Np(LXi)
Np(Xj)

∑n
j=1 Np(Xj)

(5)
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where: FR—the frequency ratio of class i of factor j; Np(LXi)—the number of pixels with
torrentiality within class i of factor variable X; Np(Xj)—the number of pixels within factor
variable Xj; m—the number of classes in the factor variable Xi; n—the number of factors in
the study area.

4.4. Deep Learning Neural Network (DLNN)

Besides one hidden layer neural networks, the Deep Learning Neural Network
(DLNN) is characterized by a feed-forward architecture which contains more than one
hidden layer [73]. Due to this fact, DLNN model is considered better than the simple
neural network in terms of complex classification problems [74]. In the DLNN structure,
the information from the input layer will be transmitted to the hidden layers where it is
processed and then forwarded to the output layer. Further, the backpropagation algorithm
will be employed to send back the error from the output layer to the input layer [75]. The
training procedure of DLNN, which is a type of fee-forward neural network, is ensured
by the application of Rectified Linear Unit (ReLU) activation function [76]. This function,
which is able to reduce the vanishing gradient, is expressed as follows:

r(x) =
{ |x i f x > 0

|0 i f x ≤ 0
= max(0, x) (6)

where x is the input signal transmitted to neuron, while r is the ReLU function.
The derivate associated to the ReLU function, which are required by the back-propagation

algorithm, can be calculated using the following relation:

r′(x) =
{ |1, x > 0

|0, x ≤ 0
(7)

It should be remarked that the cross-entropy function is also involved in the training
procedure because it helps the DLNN to achieve a higher degree of accuracy [77]. The
cross-entropy is mathematically described using the next equation:

E = − 1
N

N

∑
n=1

M ln(P) + (1 − M) ln(1 − P) (8)

where N is the total number of records in training sample; M is the predictor values, while
P is the predicted values.

The adaptive momentum (Adam) prediction model, implied in the stochastic opti-
mization process, is used to complete the training process of DLNN. Through the Adam
model, the first and second moments could be computed via the exponential moving
averages highlighted through the next relations [78]:

mt = β1mt−1 + (1 − β1)gt (9)

vt = β2vt−1 + (1 − β2)g2
t (10)

where m and v are the values of the moving averages, g represents current mini-batch
gradient, β is new hyper-parameters computed via the algorithm.

In order to apply the DLNN-FR and DLNN-WOE ensembles, the specific lines of code
were written in R programming language. More specifically, the Keras and Lime package
from R Studio were used in this regard.

4.5. Alternating Decision Tree

Alternating Decision Tree (ADT) model is an ensemble of the decision tree and boost-
ing method [79]. ADT structure has a lower complexity than decision tree models such
as Rotation Forest, Classification and Regression Tree or Random Forest [80]. ADT model
uses a natural extension of decision tree and voted stumps and is formed by prediction
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alternate layers and nodes of decision [81]. Within the ADT algorithm, the decision nodes
will specify the predicate condition; meanwhile the prediction nodes will be characterized
by a single number [80].

Let c1 be the value of a precondition, c2 the value of a base condition, and a and b the
values of two real numbers; then a and b will be computed using the relations [82]:

a = 0.5∗ ln
W+(c1 ∩ c2)

W−(c1 ∩ c2)
, b = 0.5∗ ln

W+(c1 ∩ c2)

W−(c1 ∩ c2)
(11)

where W denotes the sum of the values from any prediction node, and the best c1 and c2
are estimated by minimizing the Zt (c1, c2), determined as follows:

zt(c1c2) = 2
√

W+(c1 ∩ c2) ∗ W−(c1 ∩ c2) +
√

W+(c1 ∩ c2) ∗ W−(c1 ∩ c2) + W(c2) (12)

The ADT-FR and ADT-WOE ensembles were run and implemented in Weka software.

4.6. Model Performance and Results Validation
4.6.1. Statistical Measures

At the first stage, the models’ performance assessment will consist of the compu-
tation of the next statistical metrics: specificity, sensitivity, accuracy, kappa index. The
aforementioned indices will be computed using the next mathematical relations:

k =
po − pe

1 − pe
(13)

Sensitivity =
TP

TP + FN
(14)

Speci f icity =
TN

FP + TN
(15)

Accuracy =
TP + TN

TP + FP + TN + FN
(16)

where TP (True Positive) and TN (True Negative) are the sum of points that will be correctly
classified, FP (False Positive) and FN (False Negative) are the sum of points erroneously
classified; k is kappa coefficient, po is the sum of initially established torrential pixels, and
pe is the sum of predicted torrential pixels.

4.6.2. ROC Curve

The second stage of results validation implied the application of the ROC curve and
Area Under Curve (AUC) to measure the model performance. An AUC closer to 1 will
highlight a performant model, while the values near to 0 will indicate a weak prediction
ability of the models [83,84]. The Success Rate will represent a first form of ROC curve
which will be constructed with the training samples, while the Prediction Rate is the second
variant of ROC curve which will be designed with the help of validation sample. The AUC
values will be determined using the next formula:

AUC =
(∑ TP + ∑ TN)

(P + N)
(17)

where P is the sum of points having torrential phenomena and N is the sum of non-
torrential points.

5. Results

5.1. Feature Selection Using LSVM

According to the results achieved through Weka software, the application of LSVM
provided the next scores: slope (0.659), profile curvature (0.476), land use (0.429), tpi (0.394),
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twi (0.362), convergence index (0.338), hydrological soil group (0.283), spi (0.253), lithol-
ogy (0.231) and aspect (0.162) (Figure 5).

Figure 5. Linear Support Vector Machine (LSVM) scores assigned to flash-flood predictors.

5.2. FR and WOE Coefficients

The values of FR and WOE coefficients are inserted in Table 1. The largest value of FR
coefficients (7.295) was achieved by TWI class between 14.6 and 24.6, followed by slope
class between 15 and 25◦ (3.925), SPI values lower than 50 (3.205), built-up areas land use
category (2.715) and TPI class between −1 and 1.3 (1.695) (Figure 6). In terms of WOE
weights, the highest score was assigned to built-up areas land use category (3.96), followed
by TWI class between 14.6 and 24.6 (2.67), slope class between 15 and 25◦ (2.48), SPI values
lower than 50 (1.88) and TPI class between −1 and 1.3 (1.39).

 

Figure 6. Distribution of FR and WOE coefficients within the classes of flash-flood predictors.

In order to be used as input in ADT and DLNN models, the FR and WOE values were
normalized between 0 and 1.
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Table 1. FR and WOE coefficients.

Factor Class FR
FR

Standardized
Coefficients

WoE
Coefficients

WoE
Standardized
Coefficients

Slope <3◦ 0.000 0.000 0.000 0.307
3.1–7◦ 0.152 0.039 −1.100 0.000
7.1–15◦ 0.245 0.062 −1.100 0.000

15.1–25◦ 3.925 1.000 2.480 1.000
>25◦ 1.125 0.287 1.720 0.788

TPI (−20)–(−3.8) 0.435 0.257 −1.740 0.116
(−3.7)–(−1.1) 1.415 0.835 0.160 0.727

(−1)–1.3 1.695 1.000 1.010 1.000
1.4–4.5 0.000 0.000 −2.100 0.000
4.6–20 0.245 0.145 −2.100 0.000

TWI 3.2–6.1 1.055 0.030 0.160 0.116
6.2–7.8 0.975 0.017 0.010 0.063
7.9–10.2 1.025 0.025 0.080 0.088

10.3–14.5 0.865 0.000 −0.170 0.000
14.6–24.6 7.295 1.000 2.670 1.000

Land use Built-up areas 2.035 0.750 3.960 1.000
Agriculture zone 2.715 1.000 1.610 0.642

Vineyards 0.365 0.134 −2.190 0.063
Fruit trees 0.245 0.090 1.390 0.608
Pastures 0.675 0.249 −0.300 0.351
Forests 0.000 0.000 −2.600 0.000

Transitional
woodland-shrub 0.965 0.355 0.270 0.438

Water bodies 1.485 0.547 0.840 0.524

Lithology 1 0.895 0.768 0.000 0.745
2 0.000 0.000 −2.100 0.000
3 0.000 0.000 −2.100 0.000
4 1.165 1.000 0.450 0.904
5 0.665 0.571 −0.350 0.621
6 0.245 0.210 −2.100 0.000
7 0.435 0.373 −1.230 0.309
8 0.355 0.305 −1.770 0.117
9 0.635 0.545 −0.490 0.571

10 0.815 0.700 −0.070 0.720

Profile
curvature

−3–0 0.705 0.237 −1.370 0.299
0.1–0.9 1.605 1.000 0.980 1.000

1–2 0.425 0.000 −2.370 0.000

SPI <50 3.205 1.000 1.880 1.000
50.1–500 1.615 0.329 0.870 0.498

500.1–2000 1.025 0.080 0.270 0.199
2000.1–5000 0.835 0.000 −0.060 0.035

>5000 0.975 0.059 −0.130 0.000

Aspect Flat surfaces 3.645 1.000 1.560 1.000
North 1.535 0.262 0.610 0.503

North-East 1.095 0.108 0.130 0.251
East 1.205 0.147 0.280 0.330

South-East 1.605 0.287 0.690 0.545
South 1.115 0.115 0.170 0.272

South-West 0.785 0.000 −0.350 0.000
West 1.015 0.080 0.040 0.204

North-East 1.405 0.217 0.490 0.440

Convergence
index

0.1–99 2.515 1.000 1.650 1.000
−0.9–0 1.285 0.317 0.360 0.469
−1.9–−1 0.915 0.111 −0.110 0.276
−2.9–−2 0.715 0.000 −0.780 0.000
−99–−3 0.985 0.150 −0.040 0.305

HSG A 1.325 0.697 0.360 0.669
B 1.595 1.000 0.890 1.000
C 0.705 0.000 −0.710 0.000
D 1.105 0.449 0.090 0.500
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5.3. Models Performance Assessment

The configuration, in terms of the hardware and software environments, that was
required for the computational modelling, is presented in Table 2.

Table 2. Hardware and software environmental configuration used for modelling.

Configuration Parameter

CPU Intel(R) Core(TM) i7–7500@2.70 GHz
RAM 16.0 GB DDR4
GPU NVIDIA GeForce MX330

Hard disk SSD 512 GB M.2 PCIe
Operating system Windows 10 Pro

It is mandatory that before the final mapping of flash-flood potential, the model’s
performance must be evaluated in order to verify its reliability in the methodological
process. Thus, in terms of the training dataset, the DLNN-WOE ensemble achieved
the highest accuracy (0.985), followed by DLNN-FR (0.982), ADT-FR (0.923) and ADT-
WOE (0.92). In terms of the validating sample, the highest accuracy was achieved by
DLNN-WOE (0.92), followed by DLNN-FR (0.903), ADT-WOE (0.896) and ADT-FR (0.878)
(Table 3).

Table 3. Statistical metrics used to evaluate model’s performance.

Models TP TN FP FN Sensitivity Specificity Accuracy k-Index

Training

DLNN-FR 330 332 7 5 0.985 0.979 0.982 0.964
DLNN-WOE 334 330 3 7 0.979 0.991 0.985 0.970

ADT-FR 312 310 25 27 0.920 0.925 0.923 0.846
ADT-WOE 309 311 28 26 0.922 0.917 0.920 0.840

Validating

DLNN-FR 132 128 12 16 0.892 0.914 0.903 0.806
DLNN-WOE 137 128 7 16 0.895 0.948 0.920 0.840

ADT-FR 129 124 15 20 0.866 0.892 0.878 0.757
ADT-WOE 132 126 12 18 0.880 0.913 0.896 0.792

5.4. Results of Machine Learning Ensembles
5.4.1. DLNN-FR and DLNN-WOE Results

The DLNN based ensembles were trained by establishing the maximum number of
epochs to 100 (Figure 7).

Figure 7. DLNN based ensemble running outputs (a) Training and Validating loss of DLNN-FR;
(b) Training and Validating accuracy of DLNN-FR; (c) Training and Validating loss of DLNN-WOE;
(d) Training and Validating accuracy of DLNN-WOE).
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Figure 7 highlights the variability of loss and model accuracy according to the epochs
number and also for both training and validating samples. Particularly, in the case of
the DLNN-FR model, the best performances were achieved with the following model
parameters: a number of two hidden layers; a maximum number of 100 hidden neurons in
each hidden layer; a dropout rate of 0.3; a batch size value of 5 and a validation split of 0.3.
The same number of hidden layers and neurons was used also in the case of DLNN-WOE,
while the other parameters have the following value: a dropout rate of 0.4; a batch size of 4
and a validation rate of 0.2. The architecture of the DLNN-based ensembles are represented
in Figure 8.

 
Figure 8. Deep Learning Neural Network architecture.

The next step in the flash-flood susceptibility computation process is the derivation of
the flash-flood predictor’s importance. In terms of DLNN-FR, the highest importance was
assigned to slope factor (0.2). On the second-place rank, land use (0.143), followed by profile
curvature (0.12), TWI (0.109), hydrological soil group (0.097), lithology (0.094), TPI (0.08),
SPI (0.067), convergence index (0.061) and aspect (0.029) (Figure 9). The application of
DLNN-WOE revealed that the most important factor was slope (0.235), and is followed
by land use (0.149), SPI (0.089), hydrological soil group (0.086), TPI (0.086), TWI (0.082),
lithology (0.074), convergence index (0.072), profile curvature (0.064) and aspect (0.063).

 
Figure 9. Flash-flood predictors importance.
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The weights of flash-flood predictors were used in ArcGIS map algebra in order to
derive the flash-flood potential index values. All the Flash-Flood Potential Index (FFPI)
results, with values between 0 and 1, were reclassified in five classes using Natural Breaks
method. In terms FFPIDLNN-FR, the very low flash-flood potential values cover around 7.5%
of the study area and range between 0 and 0.42 (Figure 10a). The low flash-flood potential
appears on around 15.6% of Bâsca Chiojdului river catchment and has values ranging from
0.43 and 0.55. It should be remarked that these values are mainly spread on the southern
half of the area. The medium flash-flood potential has a span of 30.28% of the entire
territory (Figure 11) and is characterized by FFPIDLNN-FR between 0.56 and 0.66. These
values are uniformly distributed across the study zone. The high and very high flash-flood
potential appears on areas with FFPIDLNN-FR higher than 0.67 and covers approximately
46.57% of the research area. This potential degree is mainly present in the northern half of
Bâsca Chiojdului river basin.

 

Figure 10. Flash Flood Potential Index (a) DLNN-FR; (b) DLNN-WOE; (c) ADT-FR; (d) ADT-WOE.

 

Figure 11. Flash-Flood Potential Index (FFPI) classes weights.

In terms of FFPIDLNN-WOE, the very low flash-flood potential is characteristic for a
percentage of 7% from the entire study perimeter, while the low values of the same indicator
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cover an area of 13.41% of the total territory. Ranging from 0.59 to 0.68 (Figure 10b), the
medium flash-flood potential spans accross approximately 28.76% of the Bâsca Chiojdului
river catchment. High and very high flash-flood susceptibility has values of FFPIDLNN-WOE
higher than 0.69 and is spread over more than 50% of the research zone. It should be noted
that the areas delineated through DLNN-WOE have a lower degree of fragmentation than
the areas delineated by DLNN-FR.

5.4.2. ADT-FR and ADT-WOE Results

A trial procedure was applied in order to determine the best parameter associated with
the highest accuracy of ADT-FR and ADT-WOE for both training and validating samples.
Thus, in terms of ADT-FR, the highest accuracies (0.923 for training and 0.878 for validating)
were achieved after 23 iterations, while in terms of ADT-WOE the best accuracies (0.92 for
training and 0.896 for validating) were determined after a number of 28 iterations (Table 4).
Once the best parameters were determined, the optimally pruned decision trees were
constructed (Figure 12a,b) and the flash-flood predictors importance were calculated.

Table 4. The optimal parameters of the ADT based ensembles.

Models
No. of

Iterations
Seed

Training
Accuracy

Validating
Accuracy

ADT-FR 23 6 0.923 0.878

ADT-WOE 28 8 0.920 0.896

 

Figure 12. Optimally pruned Decision Tree Structure for ADT based ensembles ((a) ADT-FR and
(b) ADT-WOE ensembles).

Therefore, in terms of ADT-FR, the highest importance was assigned to slope factor
(0.191). On the second-place rank land use (0.134), followed by hydrological soil group
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(0.131), lithology (0.125), profile curvature (0.108), convergence index (0.102), TWI (0.091),
SPI (0.07), TPI (0.034) and aspect (0.013) (Figure 9). The application of ADT-WOE revealed
that the most important factor was slope (0.198), and is followed by land use (0.156),
hydrological soil group (0.123), lithology (0.117), profile curvature (0.096), TWI (0.086),
convergence index (0.075), SPI (0.066), aspect (0.051) and TWI (0.032).

As in the case of the previous two ensembles, the FFPIADT-FR and FFPIADT-WOE were
calculated. In terms FFPIADT-FR, the very low flash-flood potential spans around 3.26%
of the study area and has values between 0 and 0.39 (Figure 10c). The low flash-flood
potential is distributed on around 11.74% of the Bâsca Chiojdului river catchment and
has values ranging from 0.4 to 0.58. The medium flash-flood potential spans 25.63% of
the entire territory and has values between 0.59 and 0.7 (Figure 10c). The high and very
high flash-flood potentials appear on areas with FFPIADT-FR higher than 0.71 and cover
approximately 59.38% of the research area. In terms of FFPIADT-WOE, the very high flash-
flood potential covers 6.64% of the entire study perimeter, while the low values are spread
over 13.87% of the total territory. With values from 0.59 to 0.69 (Figure 10d), the medium
flash-flood potential occurs over 30.34% of the Bâsca Chiojdului river catchment. The high
and very high flash-flood potential indices have values higher than 0.7 and account for
almost 50% of the study zone.

5.5. Results Validation Using ROC Curve

The validation of the FFPI results provided by each ensemble model was carried
out using the ROC curve method. Thus, in the case of the Success Rate, the highest
performance was achieved by FFPIDLNN-WOE with an AUC of 0.96, being followed by
FFPIDLNN-FR (AUC = 0.942), FFPIADT-WOE (AUC = 0.94) and FFPIADT-FR (AUC = 0.919)
(Figure 13a). If we analyze the Prediction Rate outcomes, it can be seen that the same
FFPIDLNN-WOE indicator achieved the highest performance (AUC = 0.921), followed by
FFPIDLNN-FR (0.92), FFPIADT-WOE (0.909) and FFPIADT-FR (AUC = 0.879).

 

Figure 13. Receiver Operating Characteristic (ROC) curve (a) Success Rate; (b) Prediction Rate.
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6. Discussions

With the undeniable advancement of technology, there are more and more possibilities
to monitor the dangerous phenomena that occur on the Earth’s surface. In this regard,
it is worth remembering the rapid advance of observation techniques of the terrestrial
surface by means of remote sensing sensors—with the help of which, the surfaces affected
by natural hazards can be observed.

Thus, the present paper used images taken with the help of these sensors to identify
the areas already affected by the torrential runoff from the Earth’s surface. It should be
mentioned that the most accurate identification of these areas is essential in obtaining
results with high accuracy and which can be further used by the competent authorities in
risk assessment and in adopting the most appropriate measures to reduce future damage
caused by these hazards. Thus, by analyzing the images provided by remote sensing
sensors, on the river basin of the river Bâsca Chiojdului, areas affected by torrential runoff
totaling a total area of 34 km2, representing about 10% of the entire study area, were
identified. Furthermore, in order to capitalize on the delimited surfaces, a sample of about
481 was generated, taking a sample of points affected by torrential phenomena transposed
into relief microforms such as ravines. In order to ensure the correctness of the modelling
results, another sample of 481 points was generated from the areas where the torrential
phenomena did not take place; the entire data set being then divided into training and
validating data. The values of 10 flash-flood predictors were also used as input data. It
should be noted that Remote Sensing sensors also played a crucial role in generating 8 of
the 10 flash-flood predictors. Thus, all morphometric parameters were derived from the
digital terrain model taken from the SRTM database, 30 m which was acquired using radar
techniques. In addition, the land use, taken from the Corine Land Cover 2018 database,
was generated by the supervised classification of the images provided by the Remote
Sensing sensors.

Data on the presence of phenomena and the values of the main predictors of flash-flood
genesis were included in two of the state-of-the-art machine learning models represented
by Deep Learning Neural Networks and Alternating Decision Trees. These two models are
recommended due to the very good results they provided following their application in
previous studies on the estimation of susceptibility to natural hazards [79,80]. For a higher
degree of results objectivity, it was decided to process the training sample by assigning
some coefficients using the bivariate methods statistics, Frequency Ratio and Weights of
Evidence. This method has proven to be very useful in previous studies [46,56] where the
initial data were processed with bivariate statistics algorithms.

The combination of DLNN with WOE proved to be the most efficient because the
accuracy achieved during the training process exceeded 98%, while ROC curve applied
to the final product FFPIDLNN-WOE showed a maximum AUC of 0.96. This value of AUC
exceeds the value obtained by Costache et al. [38], when, by applying the hybrid combina-
tion between Multilayer Perceptron (MLP) and Statistical Index, for the same study area
and for the FFPI calculation, a maximum AUC value of 0.94 was obtained. These results
confirm the findings from the literature according to which DLNN, whose architecture
includes several hidden layers, is able to surpass the MLP performances whose architecture
includes a single hidden layer [57]. Moreover, the MLP performance from the previous
study was exceeded by the DLNN-FR ensemble model, characterized by an AUC of 0.942.
Overall, in the Bâsca Chiojdului basin, the models showed a percentage of the high and
very high flash-flood potential between 46.57% (DLNN-FR) and 59.38% (ADT-FR).

7. Conclusions

In light of the continuous increase in the flash-flood events’ frequency, the present
research work proposed a workflow through which the areas susceptible to flash floods are
identified based on remote sensing and GIS data included in Deep Learning and Alternating
Decision Trees ensembles. Thus, using 418 torrential and 481 non-torrential locations along
with 10 flash-flood predictors, the Flash-Flood Potential Index was determined across the
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Bâsca Chiojdului river basin. Using as input data the FR and WOE coefficients, the FFPI was
computed using the following four ensembles: DLNN-FR, DLNN-WOE, ADT-FR and ADT-
WOE. As was expected, the slope angle and land use resulted in being the most important
flash-flood predictors. The highest results accuracy was achieved by the DLNN-WOE
model which is characterized by an AUC–ROC curve of 0.985. The percentage (59.38%) of
high and very high FFPI classes was revealed by the application of ADT-FR ensemble.

The main novelty of this study is represented by the application for the first time in the
literature of the four ensemble models for determining flash-flood potential index values.

This work is of real importance for the governmental authorities which can use the
results in order to improve the measures taken to mitigate the negative effects of flash-flood
hazards within the study area.
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Abstract: Taiwan is located at the edge of the northwestern Pacific Ocean and within a typhoon
zone. After typhoons are generated, strong winds and heavy rains come to Taiwan and cause major
natural disasters. This study employed fully convolutional networks (FCNs) to establish a forecast
model for predicting the hourly rainfall data during the arrival of a typhoon. An FCN is an advanced
technology that can be used to perform the deep learning of image recognition through semantic
segmentation. FCNs deepen the neural net layers and perform upsampling on the feature map
of the final convolution layer. This process enables FCN models to restore the size of the output
results to that of the raw input image. In this manner, the classification of each raw pixel becomes
feasible. The study data were radar echo images and ground station rainfall information for typhoon
periods during 2013–2019 in southern Taiwan. Two model cases were designed. The ground rainfall
image-based FCN (GRI_FCN) involved the use of the ground rain images to directly forecast the
ground rainfall. The GRI combined with rain retrieval image-based modular convolutional neural
network (GRI-RRI_MCNN) involved the use of radar echo images to determine the ground rainfall
before the prediction of future ground rainfall. Moreover, the RMMLP, a conventional multilayer
perceptron neural network, was used to a benchmark model. Forecast horizons varying from 1
to 6 h were evaluated. The results revealed that the GRI-RRI_MCNN model enabled a complete
understanding of the future rainfall variation in southern Taiwan during typhoons and effectively
improved the accuracy of rainfall forecasting during typhoons.

Keywords: typhoon; rainfall; convolutional networks; image segmentation; prediction

1. Introduction

Taiwan is located in the northwestern Pacific Ocean within an area frequently hit by
typhoons. After their formation, typhoons often move along the west Pacific Ocean and
strike Taiwan with strong winds and torrential rain. On average, three to four typhoons
land in Taiwan each year [1]. Southern Taiwan lies in a subtropical zone. The main rainy
season in southern Taiwan is the typhoon season between May and October. Nearly no
rainfall occurs in the other months. Therefore, the main water source in southern Taiwan is
the rainfall caused by typhoons. However, the short-duration heavy rainfall of typhoons
not only provides abundant water but also causes disasters, such as debris flows, river
water surges, and downstream flooding [2,3]. Typhoons commonly strike southern Taiwan,
for example Typhoon Fung-Wong in 2014 and Typhoons Nepartak, Meranti, and Typhoon
Megi in 2016, which caused severe disasters and property losses [4,5]. Therefore, an
accurate rainfall forecasting model is urgently required for southern Taiwan to accurately
predict the real-time rainfall during typhoon periods and prevent the disasters resulting
from heavy rainfall in local areas.

In recent years, considerable developments have occurred in machine learning (ML).
Scholars have used various ML-based algorithms along with ground observation data,
namely one-dimensional (1-D) data, for precipitation estimation and prediction; for ex-
ample, artificial neural networks [6–10] and support vector machines [11,12] have been
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employed to predict rainfall using 1-D ground rainfall data. Although rain gauges provide
relatively accurate point rainfall estimates near the ground surface, they cannot effectively
capture the spatial variability of rainfall [13,14].

Remote sensing has attracted increasing attention in weather analysis and forecasting.
Various types of image data have been collected for remote sensing applications. The devel-
opment of weather surveillance radars has enabled quantitative precipitation estimation
with extremely high spatial resolutions. Weather radars, which have the advantages of
wide coverage and round-the-clock observation, are critical devices for meteorological
observation [15]. Accordingly, the application of two-dimensional (2-D) radar images com-
pensates for the insufficient 1-D spatial rainfall data collected from land-based observation
stations. Many studies have used the statistical relationships between the radar reflectivity
and the rain rate or nonlinear regression to establish rainfall estimation models. These
studies have achieved favorable outcomes [16–25]. However, the interpretation of these
image data is a crucial emerging topic.

Deep learning (DL) is a prominent branch of ML. DL mainly involves using neural-
network-based ML algorithms to develop advanced computational technology that can be
applied in image recognition. A DL neural network structure is a multilayer neural network
architecture that uses two-dimensional matrices to calculate images. Therefore, advanced
computer processing units (i.e., graphics cards) are required to execute DL tasks success-
fully [26]. The convolutional neural networks (CNNs) developed by LeCun et al. [27]
is a basic DL image recognition technology. The structure of the CNN model comprises
a convolutional layer and pooling layer. A complete CNN model is established using
a fully connected layer, which converts two-dimensional images into one-dimensional
arrays, and multilayer perceptron network model structures [28]. Such a network structure
enables the CNN model to achieve favorable image recognition accuracy [29–32]. CNN
algorithms have also been successfully applied to rainfall estimation and hydrological
problems. For example, Pan et al. [33] used CNN model stacks with several convolution
and pooling operators to extract intricate and valuable circulation features for precipitation
estimation. Sadeghi et al. [34] estimated the precipitation rate by processing images in
the infrared (IR) and water vapor bands (obtained from geostationary satellites) by using
CNNs. Wang et al. [35] proposed the dilated causal CNN model to predict the water level
changes during typhoons. Wei [36] proposed a regional extreme precipitation and construc-
tion suspension estimation system and used a deep CNN model to enhance the extreme
rainfall forecasting capability of this system. The aforementioned studies developed CNNs
for precipitation susceptibility mapping by using various 2-D remote images.

Newly emerging DL skills were employed in the study case. First, a fully convolutional
network (FCN) developed by Long et al. [37] was employed to conduct image recognition.
The FCN was developed as an extension of the CNN for semantic segmentation to address
the shortcomings of CNN and increase the prediction accuracy for the rapid recognition of
various object representations. To facilitate the pixel classification of images, upsampling
was conducted in the FCN model for classifying every pixel on the feature map of the
final convolutional layer. The FCN model used deconvolution to match the class of every
pixel in a feature map with the corresponding class in the original image and thus solved
the problem of semantic segmentation. To the best of our knowledge, few studies have
used FCNs for rainfall estimation and prediction. Moreover, Eppel [38] proposed modular
convolutional neural networks (MCNNs) that apply FCNs to segment an image into vessel
and background area; in that study, the vessel region was used as an input for a second net
that recognized the contents of a glass vessel.

The current study developed a DL-based rainfall prediction model, for which the
source data are both 1-D ground observation data and 2-D remote sensing imageries, to
predict precipitation during typhoons. Southern Taiwan was selected as the research area.
This study used the hourly rainfall data of ground stations and radar echo images in
southern Taiwan to establish an hourly rainfall forecast model. Toward the aforementioned
goal, this study has the following features:
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(1) This study employed an FCN, which employs the convolutional and pooling layers
for extracting image features, to predict the precipitation during typhoons.

(2) To address the input–output patterns in the FCN modeling process using 2-D array
data, this study converted the rainfall data of ground stations into 2-D images.

(3) This study employed the net architecture of MCNN with FCNs, which enabled the
integration of the radar echo image and ground observation data as model inputs for
enhancing the accuracy of rainfall intensity prediction.

2. Experimental Area and Data

2.1. Region and Gauges

The longitude and latitude ranges of southern Taiwan are 120.11–121.59◦ E and
22.00–23.34◦ N, respectively (Figure 1). The area of southern Taiwan is 11,434 km2, which
accounts for 31.59% of the total area of Taiwan. As displayed in the right part of Figure 1,
southern Taiwan has 51 weather stations, comprising six Central Weather Bureau (CWB)
weather stations (red dots) and 45 automatic detection stations (blue dots). The CWB
weather stations are located at Tainan, Kaohsiung, Hengchun, Taitung, Dawu, and Lanyu
(coordinates are provided in Table 1). This study used the six CWB weather stations as the
experimental sites.

Figure 1. Map of the research area.

Table 1. Weather station information.

Station Elevation (m) Longitude (◦ E) Latitude (◦ N)

Tainan 40.8 120.2047 22.9932
Kaohsiung 2.3 120.3157 22.5660
Hengchun 22.1 120.7463 22.0038

Dawu 8.1 120.9038 22.3557
Taitung 9.0 121.1546 22.7522
Lanyu 324.0 121.5583 22.0370

The left part of Figure 1 indicates that the Central Mountain Range (CMR) runs south–
north and divides Taiwan into the eastern and western regions. The total length of the
CMR is approximately 340 km, and its width from east to west is approximately 80 km.

229



Sensors 2021, 21, 4200

The average altitude of the range is approximately 2500 m [39]. The Tainan and Kaohsiung
stations are located to the west of the CMR, the Hengchun station is located to the south of
the CMR, the Taitung and Dawu stations are located to the east of the CMR, and the Lanyu
station is located in an outlying island (bottom right of Figure 1).

2.2. Typhoons and Radar Mosaics

In Taiwan, the CWB creates radar echo images (REIs) by using different colors to
represent the spatial echo intensity of the reflected signals received by radars from rain
particles [40]. REIs are used to reflect the variations of water vapor during typhoon cir-
culation. Wu and Kuo [41] indicated that useful typhoon-related data can be obtained
when a typhoon affects Taiwan by setting up an around-the-island Doppler radar network,
enhanced surface rain gauge network, and integrated sounding system. This study col-
lected radar images starting from 2013 because the resolution and color appearance of these
images were different from those of the radar images captured before 2013. According to
the CWB’s Typhoon Database [42], 22 typhoon events occurred in Taiwan from 2013 to
2019 (Table 2).

Table 2. Typhoon events in Taiwan from 2013 to 2019.

Typhoon Periods Intensity Pressure at Typhoon Center (hPa)
Maximum Wind Speed of Typhoon

Center (m/s)

Soulik 2013/07/11–13 Severe 925 51
Cimaron 2013/07/17–18 Mild 998 18

Trami 2013/08/20–22 Mild 970 30
Kong-Rey 2013/08/27–29 Mild 980 25

Usagi 2013/09/19–22 Severe 910 55
Habigis 2014/06/14–15 Mild 992 20
Matmo 2014/07/21–23 Moderate 960 38

Fung-Wong 2014/09/19–22 Mild 985 25
Noul 2015/05/10–11 Severe 925 51
Linfa 2015/07/06–09 Mild 975 30

Chanhom 2015/07/09–11 Moderate 935 48
Soudelor 2015/08/06–09 Moderate 930 48

Goni 2015/08/20–23 Severe 925 51
Dujuan 2015/09/27–29 Severe 925 51

Nepartak 2016/07/06–09 Severe 905 58
Meranti 2016/09/12–15 Severe 900 60

Megi 2016/09/25–28 Moderate 940 45
Nesat 2017/07/28–30 Moderate 955 40

Hatitang 2017/07/29–31 Mild 990 20
Hato 2017/08/20–22 Moderate 965 33

Guchol 2017/09/06–07 Mild 998 18
Bailu 2019/08/24–25 Mild 975 30

According to the CWB, the maximum wind speeds of mild, moderate, and severe
typhoons are 17.2–32.6, 32.7–50.9, and >51 m/s, respectively. Seven severe, six moderate,
and nine mild typhoons occurred in southern Taiwan during the study period.

Figure 2 displays the accumulated precipitation of each typhoon in descending order.
The top nine typhoons in terms of precipitation, namely Typhoons Trami, Kong-Rey, Usagi,
Habigis, Fung-Wong, Nepartak, Meranti, Megi, and Hato, had relatively high precipitation
(accumulated precipitation > 100 mm), whereas the others had relatively low precipitation.

This study collected 1412 radar mosaic images with a resolution of 1024 × 1024 pixels.
Here, one pixel corresponded to an actual distance of 0.7 × 0.7 km. Figure 3 displays
the REIs of nine typhoons approaching the study region. These typhoons all resulted in
accumulated precipitation >100 mm.
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Figure 2. Total precipitation of typhoons between 2013 and 2019.

Figure 3. Collected original radar echo images: (a) Typhoons Trami, (b) Kong-Rey, (c) Usagi, (d) Habigis, (e) Fung-Wong,
(f) Nepartak, (g) Meranti, (h) Megi, and (i) Hato (the size of each map is 1024 × 1024 pixels) (The radar mosaic images were
produced by the Central Weather Bureau [42]).
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3. Model Development

This study used the Python programming language to establish models. The Ten-
sorflow (version 2.1) and Keras libraries of Python were used for ML computation. The
model computation environment was an ASUS-TS300E9 computer (ASUSTek Computer
Inc., Taipei City, Taiwan). The computer clock rate was 3.5 GHz. The computer included
16 GB RAM (DDR4-2400) and a GeForce GTX 1080 Ti X 11G graphics card (Micro-Star
International Co., Ltd., New Taipei City, Taiwan).

3.1. Data Division

This study divided the data of typhoon events into training, validation, and testing
sets. The training sets were used to tune the model parameters, and the validation sets
were used to verify the trained model. To avoid the data leakage and bias problem in the
rainfall prediction model, this study randomly split the typhoons ranked 1 to 9 in terms
of precipitation into training, validation, and testing sets; that is, rank = 2, 6 and 9 for
training set (Nepartak, Habigis, and Hato), rank = 3, 5 and 8 for validation set (Fung-Wong,
Usagi, and Trami), and rank = 1, 4 and 7 for testing set (Meranti, Megi, and Kong-Rey).
In addition, the remaining typhoons (relative low precipitation) were added for training
set. In total, the training, validation, and testing sets comprised 926, 240 and 246 hourly
records, respectively.

3.2. Image Preprocessing

In the study, all the inputs and outputs in the modeling process in this study were two-
dimensional images. First, when labeling the REI images, the latitudinal and longitudinal
range of the original radar images was 117.32–124.79◦ E and 21.70–27.17◦ N (Figure 3).
Because the original images had a wide geographical range, cropping was required to
obtain the image size of study area (120.11–121.59◦ E and 22.00–23.34◦ N). Therefore,
the raw REIs were cut to a size of 192 × 192 pixels to completely cover the study area.
According to the legend of dBZ (Figure 3), there are 17 colors (where dBZ ranging from
−10 to 75 dBZ, divided by 5 dBZ). Therefore, the number of categories was 17. These REI
images were then encoded into RGB channels (i.e., red, green, and blue) and pixel values at
each channel are integer values between 0 and 255. Here, a one-hot encoding was applied
to the RGB representation of an REI image when pixel-based images were used as the
model inputs.

Second, the rainfall data of ground stations had to be converted into two-dimensional
ground rainfall images (namely GRIs). The inverse distance weighting method proposed
by Shepard [43] was employed. In this method, an interpolating function is used to identify
an interpolated value at a given point based on samples by using the inverse distance
weighting method as follows:

u(x) =

⎧⎨
⎩

∑N
i=1 wi(x)ui

∑N
i=1 wi(x)

, if d(x, xi) �= 0 for all i

ui, if d(x, xi) = 0 for some i
(1)

where wi(x) =
1

d(x,xi)
p is a weighting function; x denotes an interpolated (unknown) point;

xi is an interpolating (known) point; d is a given distance from xi to x; N is the total
number of known points used in interpolation; and p is a positive real number, called the
power parameter.

This study employed the commonly used p = 2 and subsequently identified the
suitable N value. This study found that when N ≤ 4, the GRIs were varied; however, when
N ≥ 5, the GRIs were more stable and invariant. Figure 4 depicts the GRIs of Typhoons
Trami, Kong-Rey, Usagi, Habigis, Fung-Wong, Nepartak, Meranti, Megi, and Hato using
the inverse distance weighting method when p = 2 and N = 5. Here, the size of GRI maps
is the same as the cropped REI maps (i.e., 192 × 192 pixels). Subsequently, when labeling
the GRI images, this study partitioned the precipitation scale into several intervals to label
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the categorical values. According to the collected typhoons, the range of rain rate from 0
to 76 mm/h. This study divides the rain rate by 5 mm/h. Here, we let the no rain as a
special case, as class “0”. Thus, the total number of rain intensity categories was 17. For
example, if the rain rate was 13 mm/h, it was labeled as class “3”. Then, each pixel of the
GRI images can be labeled by classes 0 to 16. Finally, these GRI images were encoded into
RGB channels when the GRI images were used as the model targets.

Figure 4. Generated GRIs of Typhoons (a) Trami, (b) Kong-Rey, (c) Usagi, (d) Habigis, (e) Fung-Wong,
(f) Nepartak, (g) Meranti, (h) Megi, and (i) Hato. (the size of each map is 192 × 192 pixels).

3.3. Designed Model Cases

In this study, two rainfall prediction models were developed on the basis of two
types of neural networks: The GRI-based FCNs (GRI_FCNs) and GRI combined with
rain retrieval image (RRI)-based MCNNs (GRI-RRI_MCNNs). The developed GRI_FCN
(Figure 5) adopted segmentation steps using a standard FCN, which segmented the image
into objects by classifying every pixel in the image into one of a given set of categories.
The framework of the GRI_FCN included input, downsampling, upsampling, and output
layers. Before FCN modeling was conducted, the 1-D rainfall data of ground stations were
converted into 2-D GRIs. In the GRI_FCN model, the GRIs were adopted to predict the
ground rainfall directly, and the output results were the predicted GRIs.

Figure 5. Architecture of the GRI-based fully convolutional networks. (an image of GRI contains a three-dimensional array
of size h × w × d, where h = 192 and w = 192 are spatial dimensions, and d = 3 is the color channel dimension).
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The GRI-RRI_MCNN model employed a modular semantic segmentation approach
using serially connected FCN networks. The first FCN net identified current ground
precipitation, and the output of this net (i.e., rain retrievals) was used by a second FCN net
to identify and segment the future ground precipitation (i.e., rain predictions; Figure 6).
The GRI-RRI_MCNN involved two steps: in step 1, REIs were used to retrieve the ground
rainfall (the GRIs are the model learning targets). The outputs were RRIs. Step 2 involved
the fusion (using a summation method) of the RRIs and GRIs obtained in step 1 to create
new images. These new images were subsequently used as the input to predict the ground
rainfall, and the output results were the predicted GRI images.

Figure 6. Architecture of blending GRI-RRI-based modular convolutional neural networks. (the images of GRI, REI and
RRI contain a three-dimensional array of size 192 × 192 × 3).

The convolution and pooling processes of the FCN in GRI_FCNs and GRI-RRI_MCNNs
were identical to those of the CNN. The net architecture of the CNN has been described
by [27,44]. In general, CNNs are constructed by stacking two types of interweaved layers:
convolutional and pooling (subsampling) layers [45]. The convolutional layer is the core
component of a CNN. This layer outputs feature maps by computing the dot product
between the local region in the input feature maps and a filter. The pooling layer performs
downsampling on feature maps by computing the maximum or average value of a sub-
region [46]. An FCN has more neural net layers than a CNN does. An FCN conducts
upsampling on the feature map of the final convolution layer. This design enables FCN
models to restore the size of the output results to that of the raw input images. Therefore,
the classification is performed for every raw image pixel [37]. An FCN can theoretically ac-
cept an input image of any size and produce output images of the same size because an FCN
is trained end-to-end for pixel-to-pixel semantic segmentation (or pixel-wise prediction).

When running the GRI_FCN and GRI-RRI_MCNN models, the parameter settings
of the convolutional and pooling layers were as follows: kernel size = (2, 2), padding
method = same, maxpooling with filter size = (2, 2), strides = (2, 2), and the activation
function = rectified linear unit function. Moreover, the settings of output layers were as
follows: kernel size = (8, 8), strides = (8, 8), and the activation function = softmax function.
The loss function was categorical cross entropy. The number of intermediate layers in the
FCNs can be seen in the following section.
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3.4. Modeling

Two types of neural network models (i.e., GRI_FCN and GRI-RRI_MCNN models)
were established to examine the suitable network structures and image size. First, this
study evaluated the accuracies of the FCN-32s, FCN-16s, and FCN-8s architectures by using
the GRI_FCN model. Figure 7 reveals the intermediate layers (involving convolution layers
and pooling layers) in these FCNs. These FCN-type architectures contained the processes
of conv1–conv7 and pool1–pool5. In the figure, FCN-32s upsampled stride 32 predictions
back to pixels in a single step. Subsequently, FCN-16s combined stride 16 predictions from
both the final layer and the pool4 layer, at stride 16, while retaining high-level semantic
information. Finally, FCN-8s used additional predictions from pool3, at stride 8, to enhance
precision. The FCN employed the upsampling method to increase the pixel accuracy of
the output results. Table 3 lists the total numbers of trainable variables in the FCN-32s,
FCN-16s, and FCN-8s for GRI_FCN and GRI-RRI_MCNN models.

Figure 7. Architecture of GRI_FCN-based FCN-32s, FCN-16s, and FCN-8s and the size information of input images and
feature maps in each conv-pool stage. (these FCN-type architectures contain the processes of conv1–conv7 and pool1–pool5;
the architecture was referred to [37] and modified for modeling the model cases in the work).

Table 3. Total numbers of trainable variables in the GRI_FCN and GRI-RRI_MCNN models.

Model FCN-32s FCN-16s FCN-8s

GRI_FCN 1.175 × 108 1.343 × 108 1.351 × 108

GRI-RRI_MCNN 2.350 × 108 2.685 × 108 2.701 × 108

Figure 8 depicts the learning curves of GRI_FCNs and GRI-RRI_MCNNs for a FCN-8s
network architecture using training set and validation set for a forecast horizon of 1 h. For
the training set, the accuracy increased as the epoch number increased for both models
(Figure 8a,c). In contrast, the accuracy for the validation set stops increasing after about
80 and 60 epochs for GRI_FCNs and GRI-RRI_MCNNs, respectively. Nonetheless, the
categorical cross entropy loss decreased when the epoch number increased for both models
(Figure 8b,d). In contrast, the loss values for the validation set began increasing after about
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80 and 60 epochs for both models. In order to prevent overfitting, this study stopped
training the models at around 80 and 60 epochs respectively for both models.

Figure 8. Learning curves for FCN-8s network architecture using training set (black line) and
validation set (red line): (a) accuracy of GRI_FCNs; (b) loss of GRI_FCNs; (c) accuracy of GRI-
RRI_MCNNs; (d) loss of GRI-RRI_MCNNs.

According to [47], the probability of detection (POD) is equal to the number of hits
divided by the total number of rain observations; thus it gives a measure of the proportion
of rain events successfully forecast. Here, the POD measure was employed to the evaluate
the accuracy of per-rain-intensity-category. Figure 9 plots the diagram for POD scores
for GRI_FCNs and GRI-RRI_MCNNs as FCN-based architectures were applied. In the
figure, the POD scores decreased when the rain-intensity category number increased using
GRI_FCNs and GRI-RRI_MCNNs. This trend implies that these cases might correctly
predict light rain but misclassify for heavier rain.

Figure 9. POD scores for FCN-based network architectures using validation set: (a) GRI_FCNs; (b) GRI-RRI_MCNNs.

Moreover, to evaluate overall accuracy, this study adopted two commonly used cate-
gorical metrics in semantic segmentation: pixel accuracy (PA) and mean intersection over
union (MIoU). The PA represents the percentage of image pixels classified correctly. The
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MIoU first computes the intersection over union for each semantic class and then computes
the average over classes. Using the same processing, this study performed the weights
training for a forecast horizon of 2–6 h. Table 4 lists the PA and MIoU performance metrics
of FCN-32s, FCN-16s, and FCN-8s for forecasted horizons of 1–6 h. The results revealed
that FCN-8s exhibited optimal performance in terms of the PA and MIoU. Therefore, this
study used FCN-8s as the model structure.

Table 4. Accuracy performance of various network structures using the validation set.

Model Network Structures
Forecasted Horizons (h)

t + 1 t + 2 t + 3 t + 6

GRI_FCN

FCN-32s
PA 77.8% 73.2% 68.9% 51.2%

MIoU 55.2% 50.3% 42.9% 30.2%

FCN-16s
PA 78.5% 74.6% 70.8% 52.7%

MIoU 55.1% 52.4% 47.5% 32.2%

FCN-8s
PA 79.4% 76.9% 72.7% 56.9%

MIoU 56.7% 53.8% 48.8% 33.5%

GRI-RRI_MCNN

FCN-32s
PA 81.9% 76.7% 71.6% 55.6%

MIoU 57.0% 53.7% 45.6% 31.9%

FCN-16s
PA 82.8% 77.8% 74.3% 58.5%

MIoU 57.5% 55.2% 48.6% 34.2%

FCN-8s
PA 83.6% 79.2% 75.3% 60.9%

MIoU 58.7% 56.8% 50.3% 36.5%

4. Simulation of Typhoons

4.1. Accuracy Results of the Testing Set

Rainfall prediction was performed for three typhoons (i.e., Kong-Rey, Meranti, and
Megi) to evaluate the effectiveness of the designed GRI_FCN and GRI-RRI_MCNN models.
Figure 10 displays the predicted GRI images when using the testing set. To examine
the accuracy of model performance, this study also calculated the PA and MIoU metrics.
Figure 11 reveals that the GRI-RRI_MCNN model outperformed the GRI_FCN model for
all lead times.

Figure 10. Predicted GRIs using the testing set: (a) Typhoons Kong-Rey, (b) Meranti, and (c) Megi.
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Figure 11. Accuracy performance of the GRI_FCN and GRI-RRI_MCNN in the testing set.

4.2. Evaluation of Rainfall Amounts at Weather Stations

The classified outputs of every pixel in the predicted GRIs in GRI_FCN and GRI-
RRI_MCNN were subsequently transformed into original rain amounts (i.e., mm/h). The
research region contained 51 weather stations, comprising six CWB weather stations and
45 automatic detection stations. This study selected six CWB weather stations (i.e., Tainan,
Kaohsiung, Hengchun, Dawu, Taitung, and Lanyu), which are located in various parts of
southern Taiwan, to evaluate the predicted rainfall amounts.

Wei and Hsieh [44] presented a radar mosaic-based multilayer perceptron (RMMLP)
model, which is a conventional type of artificial neural networks that includes input,
hidden, and output layers. The additional fully connected layer directly receives the
cropped radar mosaic images to be flattened to a 1-D array. Here, the RMMLP model
was used to a benchmark model and compared with those results made by GRI_FCN and
GRI-RRI_MCNN in the six weather stations. Figures 12–14 depict the rainfall prediction
results of the six weather stations during Typhoons Kong-Rey, Meranti, and Megi.

Figure 12. Station prediction results for Typhoon Kong-Rey at lead times of (a) 1 h, (b) 3 h, and (c) 6 h.
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Figure 13. Station prediction results for Typhoon Meranti at lead times of (a) 1 h, (b) 3 h, and (c) 6 h.

Figure 14. Station prediction results for Typhoon Megi at lead times of (a) 1 h, (b) 3 h, and (c) 6 h.
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The tracks of Typhoons Kong-Rey, Meranti, and Megi are illustrated in Figure 13. First,
the center of Typhoon Kong-Rey (Figure 15a) moved northward along the eastern coast of
Taiwan. Although Typhoon Kong-Rey did not land in Taiwan, its circulation caused heavy
rainfall in Taiwan. The highest maximum hourly rainfall data for Typhoon Kong-Rey were
observed at the Kaohsiung station (55 mm/h), followed by the Hengchun (42.5 mm/h)
station. The results of the prediction models indicated that when the lead time was 1 h
(Figure 12a), the trends in the predicted and observed rainfall values for the stations were
consistent; however, the peak rainfall was underestimated in the prediction models. When
the lead times were 3 and 6 h (Figure 12b,c), more accurate prediction results were obtained
in GRI-RRI_MCNN than in GRI_FCN and RMMLP.

Figure 15. Paths of (a) Typhoon Kong-Rey, (b) Typhoon Meranti, and (c) Typhoon Megi (the maps were obtained from the
website of the Joint Typhoon Warning Center [48].

The center of Typhoon Meranti (Figure 15b) passed through the Bashi Channel (near
the Hengchun station) and moved northwestward toward Mainland China through the
Taiwan Strait. Although Typhoon Meranti did not land in Taiwan, its circulation caused
heavy rainfall in Taiwan. The highest maximum hourly rainfall in the western part of the
study area was observed at the Kaohsiung station (76.0 mm/h) and that in the eastern
part of the study area was observed at the Dawu station (67.0 mm/h). The prediction
results in Figure 13 indicate that the rainfall tendencies of each station were accurately
predicted by the models. The peak rainfall and volume of underestimation increased with
the prediction time.

The center of Typhoon Megi (Figure 15c) moved eastward, landed in Taiwan, and
subsequently passed through central Taiwan. After landing, the typhoon circulation
covered almost all of Taiwan. When the typhoon center passed through the CMR, the
circulation formed a windward slope in the western side of Taiwan, which resulted in heavy
rainfall in this region. The highest maximum hourly rainfall was observed at the Tainan
station (67.0 mm/h), followed by the Kaohsiung station (55.0 mm/h). The prediction
results in Figure 14 indicate that the models accurately predicted the rainfall trends of
each station.
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4.3. Performance Levels for Predicted Rainfall Amounts

This study employed the mean absolute error (MAE), root mean square error (RMSE),
relative MAE (rMAE), relative RMSE (rRMSE), and coefficient efficiency (CE) to calculate
model performance for the predicted rainfall amounts. These criteria are defined as follows:

MAE =
1
N

N

∑
t=1

∣∣Rt,pre − Rt,obs
∣∣ (2)

RMSE =

√
∑N

t=1
(

Rt,pre − Rt,obs
)2

N
(3)

CE = 1 − ∑N
t=1

(
Rt,obs − Rt,pre

)2

∑N
t=1

(
Robs − Robs

)2 (4)

where N is the total number of observations, Rt,pre is the predicted rain rate at time t, Rt,obs
is the observed rain rate at time t, R̄pre is the average of predicted rain rates, and R̄obs is the
average of observed rain rates.

Figure 16 depicts the MAE, rMAE, RMSE, rRMSE, and CE of the results obtained at the
six CWB stations. First, the absolute errors (i.e., the MAE and RMSE) were used to evaluate
the obtained results (Figure 16a,c). The evaluation indicated that the absolute errors of
GRI-RRI_MCNN were smaller than those of GRI_FCN and RMMLP. The values of the
aforementioned parameters for the six stations in GRI-RRI_MCNN were compared. The
results revealed that the Lanyu station had the lowest absolute errors among the six stations
because this station was located at the sea and experienced limited rainfall and terrain
effects. Among the remaining land stations, the largest absolute errors were observed at
the Dawu station, followed by the Hengchun, Taitung, Kaohsiung, and Tainan stations.

Because the precipitation data of the typhoons differed among the stations, we
used relative errors (i.e., the rMAE and rRMSE) to evaluate the quality of prediction.
Figure 16b indicates that rMAE values of the different stations were not considerably dif-
ferent. Figure 16d indicates that the rRMSE exhibited greater differences among stations
than the rMAE did. A comparison of the stations in mainland Taiwan revealed that the
rRMSE variations at the Kaohsiung and Tainan stations were higher than those at the
Dawu, Hengchun, and Taitung stations.

The overall CE was evaluated using the metric values for GRI-RRI_MCNN. As dis-
played in Figure 16e, the greatest CE was obtained for the Hengchun station, followed by
the Tainan, Kaohsiung stations, Dawu, Taitung, and Lanyu stations. A higher prediction
efficiency was obtained for the stations to the west of the CMR (i.e., the Hengchun, Tainan,
and Kaohsiung stations) than for the stations to the east of the CMR (i.e., the Dawu, Taitung,
and Lanyu stations).

To determine the model performance for each station for different lead times, the
RMSE and CE curves of each station were plotted (Figure 17). Figure 17a displays the
RMSE–CE–lead time curves for the Tainan station. The RMSE–CE–lead time curves for the
other stations are displayed in Figure 17b–f. The curves in Figure 17 indicate that the case
model errors increased, and the CE gradually decreased as the prediction time increased.

To understand the improved percentage of the predictions using GRI-RRI_MCNN and
GRI_FCN models compared to the benchmark (i.e., RMMLP), we defined the improvement
metric IMPCE, as

IMPCE (%) = (CEi − CERMMLP)× 100 (5)

where CEi is the CE value at a specific model, and CERMMLP is the CE value at the benchmark.
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Figure 16. Performance levels of six stations in future (1–6 h) predictions: (a) MAE, (b) rMAE, (c) RMSE, (d) rRMSE, and
(e) CE.

Figure 17. Performance levels in terms of RMSE and CE at (a) Tainan station, (b) Kaohsiung station, (c) Hengchun station,
(d) Dawu station, (e) Taitung station, and (f) Lanyu station.

We calculated the average IMPCE measures of six stations for 1–6 h predictions using
GRI-RRI_MCNN and GRI_FCN. After calculation, the average IMPCE of GRI-RRI_MCNN
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and GRI_FCN were respective values of 18.9% and 6.5% for 1 h predictions, 14.9% and
5.5% for 2 h, 13.6% and 4.7% for 3 h, and 9.7% and 3.7% for 6 h. Therefore, we determined
that the improvement metric resulting from GRI-RRI_MCNN was higher than that from
GRI_FCN.

4.4. Discussion

The hyetograph error indicator performance in GRI-RRI_MCNN was superior to
that in GRI_FCN and RMMLP. Better prediction of the peak rainfall time was achieved in
GRI-RRI_MCNN than in GRI_FCN and RMMLP. These indicated the GRI-RRI_MCNN
effectively predicted the typhoon rainfalls. However, the peak values were underestimated
in these models probably because the typhoon circulation structures changed rapidly,
especially under the effect of the CMR, which increased the uncertainty and difficulty in
predicting transient changes in the typhoon rainfall in real time.

The movement of the typhoons affected the rainfall at each ground station. Under
the effect of the CMR, if a station was windward of typhoon circulations, the rainfall was
heavy; otherwise, the rainfall was relatively low. The prediction efficiency was higher for
the stations to the west of the CMR (i.e., the Hengchun, Tainan, and Kaohsiung stations)
than for the stations to the east of the CMR (i.e., the Dawu, Taitung, and Lanyu stations).

5. Conclusions

Typhoons cause severe disasters and damage in southern Taiwan. Accurate prediction
of the hourly rainfall caused by typhoons can reduce life and property losses and damages.
This study used the FCN model for DL image recognition to analyze the REIs and ground
rain data. The collected data were analyzed for predicting the future (1–6-h) rainfall caused
by typhoons in the study area. FCNs, which are extensions of CNNs, improve the defects
of CNN and solve semantic segmentation problems. An FCN comprises neural net layers
and performs upsampling on the feature map of the final convolution layer; thus, the FCN
model can restore the size of the output results to that of the raw input images. Therefore,
classification is performed for every pixel to address semantic segmentation problems.

This study collected data related to 22 typhoons that affected southern Taiwan from
2013 to 2019. Two model cases were designed. The GRI_FCN involved the use of GRIs to
directly predict ground rainfall. The GRI-RRI_MCNN involved the use of REIs to retrieve
the ground rainfall before the prediction of the future ground rainfall. Moreover, the
RMMLP, a conventional multilayer perceptron neural networks, was used to a benchmark
model. The performance of the GRI_FCN, GRI-RRI_MCNN, and RMMLP models was
compared for three typhoons, namely Typhoons Kong-Rey in 2013, Meranti in 2016, and
Megi in 2016. The rainfall prediction results were obtained for six ground stations in
southern Taiwan (i.e., the Tainan, Kaohsiung, Hengchun, Taitung, Dawu, and Lanyu
stations). This study used the GRI_FCN and GRI-RRI_MCNN models to establish a
rainfall prediction model for generating the predicted GRIs of southern Taiwan. These
predicted GRIs were used to assess the predicted rainfall of each station. Overall, the
GRI-RRI_MCNN model enabled the typhoon rainfall in southern Taiwan to be predicted
with high accuracy.

This study used the inverse distance weighting method to convert the rainfall data
of ground stations into two-dimensional rainfall maps. However, the inverse distance
interpolation may introduce significant artifacts such as color discrepancy and blurriness
in regions where ground measurements are sparse, such as mountain area. Therefore, in
the future this study suggests that remote regions could be masked in the interpolated
rainfall maps where no sites are nearby and performed partial convolution [49], instead of
standard convolution in the presented work.
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Abstract: This study aims to evaluate a new approach in modeling gully erosion susceptibility
(GES) based on a deep learning neural network (DLNN) model and an ensemble particle swarm
optimization (PSO) algorithm with DLNN (PSO-DLNN), comparing these approaches with common
artificial neural network (ANN) and support vector machine (SVM) models in Shirahan watershed,
Iran. For this purpose, 13 independent variables affecting GES in the study area, namely, altitude,
slope, aspect, plan curvature, profile curvature, drainage density, distance from a river, land use, soil,
lithology, rainfall, stream power index (SPI), and topographic wetness index (TWI), were prepared.
A total of 132 gully erosion locations were identified during field visits. To implement the proposed
model, the dataset was divided into the two categories of training (70%) and testing (30%). The results
indicate that the area under the curve (AUC) value from receiver operating characteristic (ROC)
considering the testing datasets of PSO-DLNN is 0.89, which indicates superb accuracy. The rest of
the models are associated with optimal accuracy and have similar results to the PSO-DLNN model;
the AUC values from ROC of DLNN, SVM, and ANN for the testing datasets are 0.87, 0.85, and
0.84, respectively. The efficiency of the proposed model in terms of prediction of GES was increased.
Therefore, it can be concluded that the DLNN model and its ensemble with the PSO algorithm can be
used as a novel and practical method to predict gully erosion susceptibility, which can help planners
and managers to manage and reduce the risk of this phenomenon.

Keywords: gully erosion susceptibility; deep learning neural network; DLNN; particle swarm
optimization; PSO; geohazard; geoinformatics; ensemble model; erosion; hazard map; spatial model;
deep learning; natural hazard; extreme events
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1. Introduction

Biodiversity in a given area depends on, to a large extent, and supports the most vital natural
resources in the soil, which also contribute to the provision of basic human needs such as food, fresh
air, and clean water [1]. Therefore, human survival largely depends on the soil component. Soil erosion
in the form of gully erosion is a serious global problem, and it continues to pose a threat to soil and
water resources, particularly in arid and semi-arid regions of Iran [2,3]. Among the several types of
water-induced erosion, gully erosion is a more intense form of soil erosion [4] and is one of the most
complex geomorphic phenomena on the Earth’s surface [5]. Such erosional activities also change the
shape of the Earth’s landform and produce a rugged topography, which is not suitable for production
activities, construction of communication networks, etc. Thus, water-induced soil erosion is the main
cause of the destruction of agricultural land, vegetation, and ecosystems, and is ultimately responsible
for a devastating land degradation phenomenon. It has been estimated that the annual rate of global
soil erosion is approximately 75 billion tons [6]. From an international perspective, Iran ranks second
in terms of land losses, and the annual rate of soil erosion is close to 2 to 2.5 billion tons [7]. It has
also been predicted that Iran’s average soil erosion rate is 30–32 tons/ha/year, which is 4.3 times the
world average (Food and Agriculture Organization of the United Nations (FAO), 1984). In Iran, soil
erosion has been estimated to have caused more than USD 1 billion in economic losses (FAO, 2015)
and is a national threat [8]. Thus, it is necessary to protect the soil from erosion and to avoid the
phenomenon of land degradation worldwide. The main cause of intensive water-related gully erosion
and its development is a long hot/dry season followed by an extremely wet period. Therefore, extreme
rainfall causes a large amount of surface runoff over the infiltration capacity and easily transports loose
soil particles onto the downward slope. Thus, soil erosion related to water in Iran is a major barrier
to sustainable development in the areas of agriculture, watershed management, and other activities
related to resource development [9]. Hence, the preparation of a gully erosion susceptibility (GES)
map is essential for sustainable management, development, and protection of the most vital natural
resource on the Earth’s surface, i.e., soil, from intense gully formation and development.

Before preparing a GES map, it is necessary to understand the definition of a gully, its morphological
characteristics, causes of occurrences, conditioning factors, and its ultimate impact on the land surface.
A gully can be defined as a deep, narrow channel with a depth of more than 30 cm, usually produced
by surface and subsurface runoff after a heavy downpour with a temporary flow of water within that
channel [8]. Gullies generally transport a large amount of sediment from the high slope or plateau of the
unprotected soil surface, i.e., areas with less vegetation, to the down-slope areas of a watershed. It is also
a fact that within 5% of the area of a watershed, between 10% and 94% of sediment moves downwards
due to gully erosion [10]. According to Poesen [11], different factors affect gully erosion, and these
factors are classified into two categories: (a) anthropogenic activities such as excessive use of farm land,
overgrazing, unplanned manner of road construction, deforestation, etc., and (b) physical conditions
such as topography, climate, vegetation cover, mineral composition in the soil, etc. Depending upon
the depth, gullies are classified into three types, i.e., if the depth is <0.3 m then it is called a grove, if
the depth is between 0.3 and 2 m it is called a shallow gully, and if the depth is >2 m it is known as a
deep gully [12]. Intensive gully erosion causes many environmental problems, such as accumulation
of sediment in rivers and devastating floods, as it removes fertile soils, which has a serious impact
on agricultural fields, minimizes soil water storage capacity, destroys roads, and ultimately produces
badlands [13–15]. It is also a well-known fact that similar factors are not responsible for the occurrence
of gullies in several places in the world. Gullies are generally formed and developed based on the
local topographical, climatological, and hydrological characteristics. Therefore, different gully-prone
areas and associated factors need to be identified by mapping the gully erosion susceptibility. Not only
this, but a suitable prediction model along with the identification of respective favorable gully erosion
conditioning factors (GECFs) are also essential for an unbiased prediction result. Several methods such
as statistical, machine learning (ML), and ensemble algorithms have been used for mapping GES, with
the combination of remote sensing and geographic information systems. Thus, GES mapping, using
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the aforementioned newly developed methods, can help land use planners to maintain soil and water
resources sustainably and accurately. Furthermore, the potential of the respective region will ultimately
increase when suitable measures are taken.

In recent times, ML algorithms have been widely used for the spatial prediction of several natural
hazards such as flooding, landslides [16], wildfires [17], etc. Several researchers throughout the world
have carried out GES mapping by using statistical as well as ML algorithms. Some of the widely used
statistical methods to predict GES mapping are frequency ratio [7], logistic regression [18], weight of
evidence (WoE) [19], index of entropy (IoE) [5], etc. Besides statistical methods, different ML algorithms
have also been widely used to predict GES mapping such as artificial neural network (ANN) [20], support
vector machine (SVM) [20], random forest (RF) (Hosseinalizadeh et al. 2019), multi-layer perception
(MLPC) approaches [21], classification and regression tree (CART) [22], boosted regression tree (BRT) [7],
particle swarm optimization (PSO) [23], multi-variate adaptive regression spline (MARS) [5], and
maximum entropy [24]. Ensemble models have also been widely used for their novelties and capabilities
in the comprehensive analysis of GES mapping [25]. Ensemble models are applied for high precision and
predictive analysis of any kind of natural hazard susceptibility mapping. In other words, the presentation
of an ML model is significantly enhanced by using an ensemble model. Along with machine learning
models, different ensemble models have also been used for gully erosion modeling [20].

In very recent times, the deep neural learning network (DLNN) is a striking ML algorithm
and has been widely used by several research groups. This method was proposed for the first time
in 2006 and includes different key features of ML as well as artificial intelligence (AI). The DLNN
algorithm consists of fully convolutional neural networks (CNNs), deep belief networks (DBNs),
stacked auto-encoder (SAE) networks, etc. [26]. In addition to this, the Adaptive moment estimation
(Adam) and Rectified Linear Unit (ReLU) algorithms were used for training and activation purposes in
every learning unit of a DLNN model [27]. Generally, the DLNN algorithm has been used in different
fields such as feature extraction and transformation through supervised and unsupervised processes,
recognition of patterns, and classification [28]. On the other hand, the particle swarm optimization (PSO)
algorithm is an extended part of AI and an amalgamation of the conventional ML techniques. The PSO
algorithm is based on swarm intelligence, and it is straightforward with efficient universal optimization
techniques [26]. PSO is used for the feature selection of a dataset through optimization techniques.

Deep learning (DL) and traditional ML algorithms have some basic differences, namely that the DL
algorithm needs a big data size to perform and analyze successfully, and in the case of ML algorithms,
they are performed in a certain way according to established rules. The DL algorithm requires a lot
more matrix operation functions than the ML algorithm does to perform well [29]. In the case of the
problem-solving method, the DL algorithm is done through end-to-end problem solving, whereas in
the case of ML, it breaks down into multiple sub-problems. Therefore, the DL algorithm is much better
than the traditional ML algorithm for mapping the GES zone. Thus, the greatest advantage of using
the DLNN algorithm is that this model is capable of building a high-level feature from a raw dataset
scientifically, and is also capable of delivering forecasting results using time series data. In addition to
this, DLNN consists of a different topology than the general neural network of a single hidden layer;
thus, more than one hidden layer is present in this algorithm. For this reason, in various research
areas, the DL algorithm has better performance than the conventional ML algorithm [30]. In the case
of PSO, it is also used to conquer the problems of local optima through feature selection methods.
PSO determines the quality of a dataset’s features through a multi-objective fitness function [31]. As a
result, the output layer of different hidden layers is optimized by the PSO algorithm to obtain more
accurate predictions [32].

Therefore, the present research work has been carried out to predict GES mapping in Shirahan
watershed, which is tremendously affected by water-induced gully erosion. To fulfill our research
objective, we used thirteen suitable GECFs with a total of 132 gully head-cut points (each for gully and
non-gully), splitting them into a 70/30 ratio for training and testing datasets. Furthermore, to creatively
model the GES mapping, we used a DL as well as a conventional ML algorithm. In this study, we
used DLNN, PSO, artificial neural network (ANN), and support vector machine (SVM) algorithms.
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According to several literature surveys on GES mapping and the best of our knowledge, it was noticed
that the DLNN model has not been used in GES assessment so far; thus, this study was carried out to
investigate the potential application of the DLNN model for GES mapping. In this study, an attempt
was also made to use the PSO algorithm to optimize the parameters of the deep learning model (DLNN)
in the training phase and to introduce a new approach of an ensemble of PSO and DLNN in GES
modeling. Not only this, but a comparison was also made between the ensemble of PSO-DLNN and
conventional ANN and SVM algorithms. Thus, the application of DL and the PSO-DLNN ensemble
approach for GES mapping is the novelty in this research study, as the result of this approach improved
the prediction accuracy compared with any single ML algorithm. Thereafter, all of the output results
were validated through sensitivity (SST), specificity (SPF), positive predictive values (PPV), negative
predictive values (NPV), receiver operating characteristic-area under the curve (ROC-AUC), likelihood
ratio, F-measures, and maximum probability of correct decision (MPCD) statistical analyses. Thus, the
DL and PSO-DLNN ensemble methods can help to forecast and control the creation and development
of gullies in Shirahan watershed, Iran.

2. Materials and Methods

2.1. Description of the Study Area

Shirahan watershed is located at a longtitude of 20◦ 57′ to 28◦ 57′ and a latitude of 51◦ 25′ to 51◦
26′, in the central part of Hormozgan Province and to the south of Bandar-e Jask city (Figure 1). The
area of the watershed is 138 km2, the minimum height of the area is 2 m, and the maximum height
is 214 m above sea level. According to statistics recorded at Jask Synoptic Station over a period of
28 years (1989–2017), precipitation in this region is very heavy, and more than 50% of it occurs in
winter. According to the information of the above station, the average annual rainfall is 116.75 mm, the
maximum annual rainfall is 320 mm, and the minimum is 27 mm. The climate of the region is hot
and dry according to the Ambregeh method and hot/dry based on the Domarten method. Soil texture
is generally silt/loam and loam. In this area, the percentage of clay increases with increasing depth.
However, changes in the percentage of sand and silt do not follow a specific trend and have high
fluctuations. In this area, the horizon of 75–75 cm has the highest degree of salinity (Table 1). Pictures
of ditch erosion are shown in Figure 2. To study the geometric features and physical and chemical
properties of the soil, 20 ditches were sampled in the study area. Studies showed further expansion
of ditch erosion in salt marshes, which are located in the plain type. The general plan of ditches is
compound, and their cross-sectional shape is trapezoidal. The average depth of ditches is 2.7 m; the
average width is 10.3 m. Laboratory studies were used to evaluate the soil characteristics of the gullies
of Shirahan watershed. Meanwhile, soil samples were taken from the soil surface to a depth of 290 cm
and sent to the laboratory of Bandar Abbas Agricultural and Natural Resources Research Center for
soil testing. Laboratory results showed that the soil texture in the area up to the depth under study
is loose. The physical and chemical properties of the soil at 6 different soil depths are shown for the
ditches studied in Table 1. Some field photographs of a gully in the present study area of Shirahan
watershed are shown in Figure 2.

Table 1. Physical and chemical properties of soil in the gullies of Shirahan watershed.

Features
Soil Depth (cm)

0–30 30–75 75–130 130–180 18–250 250–290

PH 8.06 7.59 8.19 7.69 8.32 7.38
EC (mmhos/cm) 2.26 34.6 2.23 33.9 2.4 33.2

Na (Meq/lit) 8.82 285 8.87 285 8.8 248
Ca +Mg (Meq/lit) 13.6 64.4 13.7 62.4 13.4 63.2

SAR 3.4 50.2 3.4 50.2 3.4 50.2
Clay (%) 24 26 26 27 29 28
Silt (%) 58 30 60 32 56 30

Sand (%) 18 44 14 41 15 42
Soil texture Silt-Loam Loam Silt-Loam Loam/clay-loam Silty-Clay-Loam Clay-Loam
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Figure 1. Location of the study area in Iran.

Figure 2. Images of gully erosion in Shirahan watershed: (a) head-cut gully; (b) gully erosion in salt
land area; (c) measurement of gully morphometric properties.

2.2. Methodology

The methodological approach used in this research work is discussed in the following section,
and the respective flowchart is presented in Figure 3.
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Figure 3. Methodological flowchart of particle swarm optimization (PSO)-deep learning neural network
(DLNN) in gully erosion susceptibility.

Firstly, a gully erosion inventory map was prepared based on the 132 gully head-cut points (with
gully and non-gully for each). These gully head-cut points were identified based on field visits and
information from the Administration of Natural Resources of Hormozgan Province. Along with
this, the non-gully points were randomly selected throughout the basin area with the help of the
geographic information system (GIS) environment. Besides this, a total of thirteen (13) of gully erosion
conditioning factors (GECFs), i.e., target variables, were considered for modeling GES based on the
local topographical and climatological factors in association with several literature studies. These
GECFs are altitude, aspect, slope, plan curvature, profile curvature, drainage density (DD), distance
from a river, land use, lithology, soil, rainfall, stream power index (SPI), and topographic wetness
index (TWI). Thereafter, multi-collinearity analysis of variance inflation factor (VIF) and tolerance
(TOL) techniques were used among different GECFs to determine the linear relationship among the
variables. Afterwards, modeling of GES was done by using SVM, ANN, and DLNN machine learning
(ML) algorithms, and a novel ensemble of PSO-DLNN. Lastly, the results of the several GES models
were validated through a ROC curve analysis to assess their accuracy.

The methodology of the present research work was carried out to solve classification problems
using the aforementioned ML and DL algorithms for prediction GES mapping. Besides this, the several
target variables used in this study are a combination of logical, discrete, and continuous variables.
During the processing of all of these variables’ data, it was recognized among the variables whether
each one was a logical, discrete, or continuous one, in the SPSS 25 statistical software designed by
International Business Machines (IBM), New York, USA. In this study, we also analyze affected areas of
gully erosion susceptible zone, by using the presence of gully head-cut points, and we also compute
the GES zones based on the gully/non-gully head-cut points along with several conditioning factors
for sustainable management of the gully-affected areas.

2.3. Dataset Preparation for Spatial Modeling

In this study, a gully erosion inventory map (Figure 1) was prepared based on field visits and
information from the Administration of Natural Resources of Hormozgan Province, which resulted in a
total of 132 gully points. To determine the non-gully points, GIS software was used and 132 points were
randomly selected. The digital elevation model (DEM) map was obtained with a pixel size of 12.5 m
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from the Advance Land Observatin Satellite/Phased Array type L-band Synthetic Aperture Radar
(ALOSPALSAR) sensor. The topographical factors such as slope map, direction curve, plan curvature,
and profile curvature were prepared based on DEM in the GIS environment. The map of the distance
from a river based on the Euclidean extension was obtained in GIS software. A drainage density map
was prepared using a line density extension. SAGAGIS software was used to map TWI and SPI. The
soil type map of the region was obtained based on the map prepared by the Administration of Natural
Resources of Hormozgan Province. The lithological map was prepared based on the geological map of
1:100,000 of the country’s mapping organization. Land use maps were prepared based on Landsat
satellite images and Operational Land Imager (OLI) measurement, using the maximum probability
algorithm in the ENVI software environment. The precipitation map of the constituency was prepared
from the statistics of 4 climatological factors in the constituency over a period of 28 years (1989–2017)
and based on the inverse distance weighting (IDW) interpolation method. Details about the data
sources used in this research work are presented in Table 2.

Table 2. Details about the data sources of several factors used in this study.

Parameters Data Source
Time
(Year)

Spatial
Resolution/Scale

Altitude, slope, aspect, profile
curvature, plan curvature, drainage

density (DD), distance from river,
stream power index (SPI),

topographic wetness index (TWI)

ALOS PALSAR DEM
(Alaska Satellite Facility) 2012 12.5 m

Rainfall Iran Meteorological Organization (IMO)
(http://www.weather.ir/)

1989 to
2017

Lithology Geological Survey of Iran (GSI)
(http://www.gsi.ir/) 2019 1:1,000,000

Land use Landsat OLI 8 satellite image (USGS) 2019 30 m

Soil texture Soil and Water Research Institute
(http://www.iran.swri.com) 2019 1:1,000,000

A total of 13 GECFs were selected for GES mapping in this research work, namely, altitude,
aspect, slope, plan curvature, profile curvature, drainage density (DD), distance from a river, land use,
lithology, soil, rainfall, stream power index (SPI), and topographic wetness index (TWI) (Figure 4a–m).

The altitude of the present study area ranges from 2 to 241 m (Figure 4a). Altitude is an important
factor for the occurrence of gullies due to influences on rainfall-runoff processes, and it is largely
employed in GES mapping [3]. Slope aspect indirectly affects the occurrence of gully erosion as it
affects the reception of sunlight, vegetation cover, and humidity [33]. Here, the slope aspect map has
nine classes, i.e., flat, N, NE, E, SE, S, SW, W, and NW (Figure 4b). Slope angle influences the pattern
of runoff and infiltration rate. Therefore, depending on the slope, the erosional rate also varies from
place to place, i.e., high slope areas have high erosion rates and vice versa. The slope map is shown in
Figure 4c, and the value ranges from 0% to 362.74%. In a particular direction, the rate of gradient change
is known as curvature, within which, plan and profile curvature generally represent the topographic
characteristics of an area. The value of plan curvature ranges from −30.27 to 24.08 (Figure 4d) and
profile curvature from −29.63 to 30.93 (Figure 4e). DD directly impacts occurrences of gully erosion.
Horton’s (1932) following equation was used to calculate DD. In this study, the DD value ranges from 0
to 2.27 km/km2 (Figure 4f).

DD =

∑n
i=1 Si

a
(1)

where
n∑

i=1
Si is the length of drainage in km, and ‘a’ indicates the total area of the drainage basin in km2.

Distance from a river also influences occurrences of gully erosion as it greatly impacts the wetting
capacity of surface area and associated erosional activities. The value of the distance from a river
ranges from 0 to 4680.17 m (Figure 4g). The land use type of the area is very much responsible for the
occurrence of gully erosion. Bare or less vegetated areas of the land surface are highly prone to gully
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erosion. In this study, four types of land use were recognized, i.e., agricultural land, rangeland, rock
surface, and salt land (Figure 4h). The lithological factor of an area is highly responsible for erosional
activities such as the development of a gully [34]. The present study area of Shirahan watershed consists
of five types of lithological unit (Figure 4i). The soil map of the study area is shown in Figure 4j, and it is
classified into two categories, i.e., entisols/aridisols and badlands. Rainfall is the most important factor
for the formation of a gully and its development, mainly in the arid and semi-arid areas. High-intensity
rainfall with short duration is the most devastating for gullies. Here, 28 years of rainfall data have been
used to prepare a rainfall map (Figure 4k), and it ranges from 125 to 175 mm. SPI indicates the stream’s
erosional capacity [25]. SPI value was calculated by using the following equations, and the value ranges
from 0 to 2.625 in this research work (Figure 4l).

SPI = As× tanβ (2)

where AS represents the upslope contributing area, and β represents the slope angle.

Figure 4. Cont.
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Figure 4. Gully erosion conditioning factors: (a) altitude, (b) slope, (c) aspect, (d) plan curvature, (e)
profile curvature, (f) drainage density, (g) distance from a river, (h) land use, (i) soil, (j) lithology, (k)
rainfall, (l) stream power index (SPI), and (m) topographic wetness index (TWI).
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TWI determines transport capacity along with flow velocity [7], and it is an essential factor for
identifying gully erosion-prone areas [35]. The following equation was used to calculate TWI value,
and it ranges from 0.14 to 18.86 (Figure 4m).

TWI = In
(

As

tanβ

)
(3)

where As represents the area of a catchment in m2, and β represents the gradient of the slope in radians.

2.4. Multi-Collinearity Analysis

Multi-collinearity analysis always gives the perfect outcome to evaluate the linear dependency of
different geo-environmental factors in an ML model [15,36]. It is a statistical analysis and is able to find
two variables of high correlation in a multiple regression study. Thus, it is very much essential to analyze
the multi-collinearity of a model to obtain better results through removing the high multi-collinearity
factors and minimizing the bias of the model [37]. Several researchers throughout the world have
used multi-collinearity analysis in different fields such as GES mapping [21], floods [38], and landslide
susceptibility mapping [39]. Multi-collinearity can be analyzed through variance inflation factor (VIF)
and tolerance (TOL) [40]. As a general rule, if the TOL value is <0.10 or 0.20 and the VIF value is >5 or
10, then the result indicates high multi-collinearity among the variables [41]. The following equations
were used to calculate TOL and VIF in a dataset:

TOL = 1−R2
j (4)

VIF =
1

TOL
(5)

where R2
j indicates the regression value of j on other different variables in a dataset.

2.5. Machine Learning Method Used in Modeling the Gully Erosion

2.5.1. Support Vector Machine (SVM)

SVM is a very popular machine learning algorithm and was introduced by Vapnik and
Chervonenkis in 1963. Several researchers throughout the world have used this machine learning
classifier in the field of predicting different natural hazards such as in GES mapping [42], landslide
prediction [43], flood susceptibility mapping [44], etc. SVM is implemented to solve regression analysis
and multi-faceted classifier problems [45]. Vapnik [46] stated that SVM is based on the principle of
structural risk minimization and statistical learning, and it is a supervised machine learning model.
SVM is very much effective to reduce the error of the complexity of a linear computation and model
overfitting [47]. Two types of statistically induced problems are engaged in SVM modeling. The first
one is linear separating of the hyperplane by using statistical data, and the second one is converting
non-linear data into linearly separable data [48]. Generally, the data processing in SVM of a non-linear
relationship is done through the kernel function [49]. In addition to this, two classes can be discretely
generated in SVM modeling by an optimal hyperplane, in which one class indicated above the
hyperplane is assigned as 1 and the other one, located below the hyperplane, is assigned as 0, i.e., in
this case gully erosion and non-gully erosion, respectively [50]. SVM has been developed for regression
estimation, particularly paying attention to the solution of inverse problems. The novelty of the SVM
model is that it has attempted to relocate the idea through kernel techniques for working out the inner
products of unsupervised learning. Besides this, it can also be applied for singular components where
the distribution of data is not well-defined. Therefore, a large class of functions can be applied for
non-linearity mapping with high feature space by using this kernel trick. The hyperplane in an SVM
can be calculated by using following equations:
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Min
n∑

i=1

ϕi − 1
2

n∑
i=1

n∑
j=1

ϕiϕ jyiyj
(
xi, xj

)
(6)

subject to

Min
n∑

i=1

ϕiyj = 0and0 ≤ αi ≤ D (7)

where x = xi, i = 1, 2, . . . n are input variables of the vector; y = yi, j = 1, 2, . . . n are output variables of
the vector, and ϕi represents Lagrange multipliers.

Finally, the decision function of SVM can be classified as

f (x) = sgn

⎛⎜⎜⎜⎜⎜⎜⎝
n∑

i= j

yiϕiK
(
xi, xj

)
+ a

⎞⎟⎟⎟⎟⎟⎟⎠ (8)

where a represents a bias, which indicates the linear distance of the hyperplane from the origin,
K
(
xi, xj

)
represent kernel functions, i.e., polynomial (POL) and radial basis function (RBF), and these

can be expressed as follows [51]:

KPOL
(
xi, xj

)
= ((x ∗ y) + 1)d (9)

KRBF
(
xi, xj

)
= e−y||x−xi ||2 (10)

2.5.2. Artificial Neural Network (ANN)

ANN is a popular machine learning algorithm that simulates the neural networks of a human
brain and can work in a specific way [52,53]. It is used to analyze and predict non-linear statistical
datasets by using different algorithms [54]. ANN has been widely used in pattern recognition and
classification studies [55]. Therefore, classifications of the landscape in different ordinal areas of the
GES zone are treated as a classification problem. Different types of algorithms have been used in ANN
modeling; among them, multi-layer perceptron (MLP) is the most popular, based on its outcome results
and frequency of use by researchers [56]. To run and analyze ANN algorithms, some basic knowledge
is needed to understand the structure of input data and the relationship between the variables [57].
The ANN model with the MLP algorithm consists of three layers, namely, the input layer, hidden
layer, and output layer. A schematic diagram of the feed-forward artificial neural network model is
shown in Figure 5. In this research work, the input layers are training points for the erosion of the
gully and the various GECFs, which have finally been connected to the output layer. Input nodes
help to predict and analyze the model structure through input and hidden layers and, ultimately, to
evaluate the output layer result [58,59]. This output layer gives us the GES map. The output layer
consists of Boolean values of 0 and 1, in which 0 represents non-gully erosion and 1 represents gully
erosion. Feed-forward of the ANN algorithm model deals with three stages, namely, feed-forward of
input data, calculation, and backpropagation of related errors and their adjustments [57].

The novelty of the ANN model is that it can learn the model through a non-linear and complex
relationship. Thus, the model’s uniqueness is evaluated based on observation of the coherence of the
network dynamics compared with the other models. It also has the ability of model generalization and
can predict unseen data within the model through understanding the hidden relationship.

The ANN algorithms were elaborated using the following equations by Hagan et al. (1996):

netl
j(t) =

p∑
i=o

(yi−1
i (t)wl

ji(t)) (11)
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The net input of the jth neuron of layer l and iiteration

yl
j(t) = f (net(l)j (t) (12)

f (net) =
1

1 + e(−net)
(13)

ej(t) = cj(t) − aj(t) (14)

δl
j(t) = el

j(t)aj(t)
[
1− ajx(t)

]
(15)

δ factor for the jth neuron in the ith output layer

δl
j(t) = yl

j(t)
[
1− yj(t)

]∑
δl

j(t)w
(l+1)
kj (t) (16)

δ factor for the jth neuron in the ith hidden layer

wl
ji(t + 1) = wl

ji(t) + α
[
wl

ji(t) −wl
ji(t− 1)

]
+ nδ(l)j (t)y(l−1)

j (t) (17)

where α is the momentum rate and n is the learning rate.

Figure 5. Schematic of feed-forward artificial neural network.

2.5.3. Deep Learning Neural Network (DLNN)

DLNN is a well-accepted machine learning model among research groups throughout the world.
This ML model has a prominent advantage in appropriately constructing a high-level feature by using
the raw dataset [27]. DLNN consists of three layers, i.e., an input layer, several hidden layers, and
resulting in an output layer [60]. The speculative configuration of the DLNN model used for GES
mapping in this research work is shown in Figure 6. The general structure of the DLNN model is to
run in such a way that the input layer receives signals that are different GECFs, this information is
processed and analyzed in several hidden layers, and finally, the output model’s result is presented
in the last layer, i.e., the output layer. The output layer has two possible labels, i.e., the first one
is a negative label (non-gully erosion) and the second one is a positive label (gully erosion). These
classification results are obtained from the last hidden layer and shown in the output layer [61].
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Figure 6. Schematic of deep learning neural network.

DLNN has some specific compensations over the traditional ML algorithm, and thus, in the field
of prediction analysis, the use of the DLNN model has been given much more emphasis. Therefore,
DLNN has showed some novel performances over the other ML models, namely, maximum utilization
of unstructured data through relevant insights to understand the training dataset, being robust enough
to recognize the novel data, and being able to develop additional learning models through adding
more layers into the neural network system.

According to Kim (2017), the following mathematical equation is used in a DLNN machine
learning model:

h(x) =
{

x i f x > 0
0 i f x ≤ 0

= max(0, x) (18)

where x represents the input signal, and h indicates the activation function.
Based on the ReLU activation function, this can be as expressed as follows:

h,(x) =
{

1 i f x > 0
0 i f x ≤ 0

(19)

The cost function is the difference between experiential and predicted class outputs. The loss
function (L) of a cross-entropy used for pattern recognition and expressed as follows:

L = − 1
ND

ND∑
n=1

T1n(Y) + (1− T)1n(1−Y) (20)

where ND represents the number of the training datasets, T indicates observed class outputs, and Y
indicates predicted class outputs.

2.5.4. Particle Swarm Optimization (PSO)

The algorithm of PSO is a meta-heuristic and was originally developed by an American social
psychologist named Kennedy [62]. In our research work, we are faced with some non-linear problems,
and to find the correct solution, the PSO method was developed and widely used. The PSO algorithm
was used to locate the best possible food route for bird and fish intelligence. Here, birds are the particles
and try to find a solution to the problem. Particles always try to find the best possible solution to a
problem through n-dimensional space, in which n represents each problem’s different parameters [63].
Optimization of position and velocity is the basic principle of each particle.
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Therefore, let us suppose that xt
i =
(
xt

i1, xt
i2, . . . , xt

in

)
and vt

i =
(
vt

i1, vt
i2, . . . , vt

in

)
are the position and

velocity of changing position designed for the ith particle in the tth iteration accordingly. The following
equations are used for the ith particle’s position and velocity in the (t+1)th iteration:

vt+1
i = ω.vt

i + c1.r1.
(
pt

i − xt
i

)
+ c2.r2.

(
gt

i − xt
i

)
with− vmax ≤ vt+1

i ≤ vmax (21)

xt+1
i =

(
xt

i + vt+1
i

)
(22)

where xt
i represents the previous ith position; pt

i represents the optimal found position; gt
i represents the

particle’s best position; r1 and r2 represent random numbers of either 0 or 1; ω is weights of inertia; c1

is a coefficient; and c2 represents the social coefficient. There are numerous methods for particle weight
assignment [64,65]; among them, standard 2011 PSO has been widely used and can be calculated by
the following equation:

ω =
1

2 In 2
and c1 = c2 = 0.5 + In 2 (23)

Therefore, it is believed that when the concentration of all particle swarms in a certain point and
space has been achieved, the problem has been solved. The intelligence-based PSO algorithm has been
widely used in high-efficiency swarm paralleling and optimization property. Using a multi-objective
fitness function, PSO determines the quality of several features in a dataset. Finally, the ensemble
structure of particle swarm optimization (PSO) and deep learning neural network (DLNN) is shown
in Figure 7. Therefore, this ensemble method is the novel approach in this research study for GES
mapping with high accuracy.

Figure 7. Schematic of ensemble particle swarm optimization and deep learning neural network.

2.6. Methods of Validation and Accuracy Assessment

GES maps were prepared based on the prediction performance of the training and validation
datasets by using different machine learning models. Therefore, it is necessary to evaluate the model
performance to ascertain the validity of the results. In the present research work, statistical indices
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along with the area under the receiver operating characteristic (AUROC) curve were used to predict
the accuracy of ML and ensemble models.

2.6.1. Statistical Indices

In this study, sensitivity (SST), specificity (SPF), positive predictive values (PPV), and negative
predictive values (NPV) were used to evaluate the predictive results. Four types of possible consequences
were used to analyze these statistical indices, namely, true positive (TP), true negative (TN), false
positive (FP), and false negative (FN). TP is when gully pixels are correctly classified as a gully, and FP is
when gully pixels are incorrectly classified as a gully. On the other hand, if gully pixels are correctly or
incorrectly classified as non-gully, then they are TN and FN, respectively [36]. If higher values are found
among these statistical indices then the model gives better results and vice versa [22]. The following
equations were used to calculate the value of these four statistical indices:

PPV =
TP

FP + TP
(24)

NPV =
TP

TP + FN
(25)

SST =
TP

TP + FN
(26)

SPF =
TN

FP + TN
(27)

2.6.2. ROC Curve

ROC curve is one of the most widely used tools for analyzing the performance validation of the
ML model. ROC curve has two dimensions, i.e., events and non-events phenomena [66]. This curve is
plotted on ‘X’ and ‘Y’ co-ordinates, known as sensitivity and 1-specificity, respectively, and represents
true positive and false positive. The optimum value in both cases, i.e., in sensitivity (detected gullies)
and specificity (detected non-gullies), is 1 [3]. The value of ROC-AUC ranges from 0.5 to 1, in which
0.5 indicates poor performance and 1 indicates very good performance. Beside this, in a proper way
it can be classified into five classes, i.e., poor (0.5–0.6), moderate (0.6–0.7), good (0.7–0.8), very good
(0.8–0.9), and excellent (0.9–1) [67]. The following equation was used to compute the ROC-AUC:

SAUC =
n∑

k=1

(Xk+1 −Xk)
(
Sk + 1− Sk+1 − Sk

2

)
(28)

where SAUC indicates area under the curve, Xk indicates 1-specificity, and Sk indicates the sensitivity of
the receiver operating characteristic (ROC) curve.

Besides the above validation methods, here we also used Likelihood Ratio (LR), F-measure,
and Maximum Probability of Correct Decision (MPCD) analyses to better understand the accuracy
assessment of the result. In this study, the LR model is the relationship between the distribution of gully
head-cut points and related GECFs. Therefore, the LR model emphasized the ratio of the probability of
events and non-events phenomena of the gully occurrences. In this method, if the ratio is higher than
1, there is a high relationship among the gully erosion and associated factors. On the other hand, if the
ratio is less than 1, a low relationship is found between the gully erosion and associated factors. Thus,
the linear relationship of LR can be expressed as follows:

GESI =
∑

Fr (29)

where GESI represents the gully erosion susceptibility index, and Fr represents the rating of several
factors’ range.
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F-measure is a popular validation method in the field of classification and information retrieval
communities. F-measure balances between precision and recall. The following equation was used to
calculate the F-measure in this study:

F−measure = 2× TP/2× TP + FP + FN (30)

In a classification performance, MPCD is a probabilistic-based measure. It is a sensitive method
for recognition of class rather than just to estimate the proportion of guesses. The following equation
was used to calculate the MPCD:

MPCD = (1− α)(1− β) (31)

where α is FP
FP+TN and β is FN

FN+TP .

3. Results

3.1. Multi-Collinearity Analysis

Maintaining the given VIF and TOL limits, 13 gully erosion conditioning parameters were selected
for gully erosion modeling. The co-linear factors (i.e., distance from a road, geomorphology, and bulk
density) were excluded from this analysis. The three factors of distance from a road (TOL 0.028 and
VIF 35.65), geomorphology (TOL 0.032 and VIF 31.63), and bulk density (TOL 0.022 and VIF 45.23) are
associated with co-linearity problems. The range of VIF for the selected parameters is 1.06 to 3.04. In
the case of TOL, the range of variation among the selected conditioning factors is 0.33 to 0.94 (Table 3).
Among the 13 GECFs, altitude has the highest VIF value of 3.04 and the lowest TOL value of 0.33. On
the other hand, the aspect factor has the highest TOL value of 0.94 and the lowest VIF value of 1.06.
Therefore, this indicates that no multi-collinearity has been found between the thirteen conditioning
factors of gully erosion used in this study.

Table 3. Multi-collinearity analysis to determine the linearity of the independent variables.

Variables VIF Tolerance

Altitude 3.04 0.33
Slope 1.34 0.75

Aspect 1.06 0.94
Plan curvature 1.83 0.55

Profile curvature 1.82 0.55
Distance from river 2.93 0.34
Drainage density 2.07 0.48

Rainfall 1.41 0.71
Land use 1.81 0.55
Lithology 2.07 0.48

Soil 1.11 0.90
SPI 1.58 0.63
TWI 1.94 0.52

3.2. Gully Erosion Susceptibility Modeling

In the SVM model, the very low GES areas are mainly concentrated in the eastern and northern
portions of the region. The low GES areas are mainly found in the middle and western parts of the
region. The moderate susceptibility areas are mainly concentrated in the middle and southern parts of
the region (Figure 8a). The very high and high GES areas are mainly found in the southern portion
of the watershed. The areal coverages of very low, low, moderate, high, and very high gully erosion
susceptibility areas in the SVM model are 65.86 (52.08%), 28.92 (22.87%), 10.7 (8.46%), 8.0 (6.33%), and
12.97 km2 (10.26%), respectively (Table 4).
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Figure 8. Cont.
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Figure 8. Head-cut gully erosion map using the four models: (a) SVM; (b) ANN; (c) DLNN; (d) PSO-DLNN.
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Table 4. Areas of gully erosion susceptibility classes.

Models Area
Susceptibility Class

Very Low Low Moderate High Very High

SVM
km2 65.86 28.92 10.7 8 12.97

% 52.08 22.87 8.46 6.33 10.26

ANN
km2 55.76 26.85 16.85 13.48 13.51

% 44.10 21.23 13.33 10.66 10.68

DLNN
km2 96.34 5.85 2.73 3.17 18.36

% 76.19 4.63 2.16 2.51 14.52

PSO-DLNN
km2 94.58 8.15 4.03 6.31 13.38

% 74.80 6.45 3.19 4.99 10.58

In ANN, the areal coverages for very low, low, moderate, high, and very high gully erosion
susceptibility areas are 55.76 (44.10%), 26.85 (21.23%), 16.85 (13.33%), 13.48 (10.66%), and 13.51 km2

(10.68%), respectively. According to the GES map of the ANN model, the largest portion of the area is
occupied by very low (44.10%) to low (21.23%) susceptibility classes, while very high (10.68%), high
(10.66%), and moderate (13.33%) susceptibility classes cover the rest of the studied region. In this
model, the very high, high, and moderate susceptibility areas are mainly concentrated in the southern,
middle, and eastern portions of the watershed (Figure 8b). The rest of the portion of this watershed is
associated with very low to low GES zones.

In the case of DLNN, the areal coverages for very low, low, moderate, high, and very high gully
erosion susceptibility zones are 96.34 (76.19%), 5.85 (4.63%), 2.73 (2.16%), 3.17 (2.51%), and 18.36 km2

(14.52%), respectively. According to the GES map of the DLNN model, the largest portion of the area is
occupied by very low (76.19%) to low (28.73%) susceptibility classes, while very high (14.52%), high
(2.51%), and moderate (2.16%) susceptibility classes occupy the rest of the studied region. In this
model, the very high to moderate susceptibility areas are mainly concentrated in the southern and
middle portions of the watershed, and the rest of the portions are associated with very low to low
susceptibility zones (Figure 8c).

In the PSO-DLNN model, the areal coverages of low, low, moderate, high, and very high gully
erosion susceptibility zones are 94.58 (74.80%), 8.15 (6.45%), 4.03 (3.19%), 6.31 (4.99%), and 13.38
(10.58%) km2, respectively. According to the GES map of the PSO-DLNN model, the major portion
of the area is occupied by very low (74.80%) to low (6.45%) susceptibility classes, while very high
(10.58%), high (4.99%), and moderate (3.19%) susceptibility classes cover the rest of the studied region
respectively. Very high, high, and moderate gully erosion susceptibility zones mainly occupy the
southern portion of the watershed, and the rest of the portions are associated with very low to low
susceptibility zones (Figure 8d).

3.3. Validation of the Models

PSO-DLNN is the most optimal model in this analysis and is associated with maximum accuracy.
The AUC value from ROC considering the testing datasets of PSO-DLNN is 0.89, which is associated
with superb accuracy. The rest of the models are also associated with optimal accuracy and have
similar values to the PSO-DLNN model; the AUC values from ROC of DLNN, SVM, and ANN for
testing datasets are 0.87, 0.85, and 0.84, respectively (Figure 9). Apart from this, various statistical
indices were considered for estimating the optimal capacity of all the models for GES modeling. The
values of sensitivity in PSO-DLNN, DLNN, SVM, and ANN for training datasets are 0.98, 0.95, 0.99,
and 0.99, respectively. The same values for the validation datasets in PSO-DLNN, DLNN, SVM, and
ANN are 0.95, 0.90, 0.82, and 0.95, respectively. The values of specificity for the training datasets in
PSO-DLNN, DLNN, SVM, and ANN are 0.85, 0.82, 0.86, and 0.87, respectively. In the case of validation
datasets, the values of specificity in PSO-DLNN, DLNN, SVM, and ANN are 0.74, 0.74, 0.69, and 0.67,
respectively. The values of PPV in the case of training datasets in PSO-DLNN, DLNN, SVM, and ANN
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are 0.87, 0.85, 0.88, and 0.89, respectively. When we consider the validation datasets, the values of
PPV in PSO-DLNN, DLNN, SVM, and ANN are 0.77, 0.77, 0.71, and 0.73 (Table 5). In PSO-DLNN,
DLNN, SVM, and ANN models, the values of NPV for the training datasets are 0.97, 0.94, 0.99, and
0.99, respectively. In the case of validation datasets, the values of NPV in PSO-DLNN, DLNN, SVM,
and ANN are 0.94, 0.89, 0.81, and 0.93, respectively. The F-measure values in validation datasets for
PSO-DLNN, DLNN, SVM, and ANN models are 0.66, 0.635, 0.63, and 0.64, respectively.

Figure 9. Receiver operating characteristic (ROC) curve analysis for four head-cut gully erosion models
using the testing dataset.

Table 5. Predictive capability of guully erosion susceptibility (GES) models using training and testing datasets.

Models Stage
Parameters

Sensitivity Specificity PPV NPV AUC F-Measure

SVM
Training 0.99 0.87 0.89 0.99 0.94 0.84

Validation 0.95 0.67 0.73 0.93 0.85 0.63

ANN
Training 0.99 0.86 0.88 0.99 0.94 0.83

Validation 0.82 0.69 0.71 0.81 0.84 0.64

DLNN
Training 0.95 0.82 0.85 0.94 0.91 0.82

Validation 0.90 0.74 0.77 0.89 0.87 0.65

PSO-DLNN
Training 0.98 0.85 0.87 0.97 0.93 0.84

Validation 0.95 0.74 0.77 0.94 0.89 0.66

Details about DLNN and its associated parameters are shown in Table 6. Details about the
combination of PSO and DLNN and its associated parameters are shown in Table 7. The values of
population, iteration, phi, phi1, phi2, W, C1, C2, and best cost are 50, 500, 4.1, 2.05, 2.05, 0.73, 1.49, 1.49,
and 0.26. The objective cost function of the PSO-DLNN model is shown in Figure 10.
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Table 6. Results of optimal parameters in the DLNN model.

Parameters Optimum

Input number of units 13
Output 2

Activation Function ReLU
Activation ‘softmax’
Function Sigmoid
reluLeak 0.01

eta 0.8
Hidden layer unit 3-3

Iteration 200

Table 7. Parameters used in PSO algorithms in combined DLNN.

Parameters Number

Population 50
Iteration 500

phi 4.1
phi1 2.05
Phi2 2.05
W 0.73
C1 1.49
C2 1.49

Best Cost 0.26

Figure 10. Convergence graph of the objective cost function (MSE) in the PSO-DLNN model.

3.4. Variable Importance

The conditioning factor for GES modeling for this region was selected considering the different
kinds found in the literature. The most important parameters for the creation and development of
gullies in this region are land use, altitude, lithology, rainfall, and distance from a road, etc. The relative
importance of land use, altitude, lithology, rainfall, and distance from a road for the GES models are
100, 97.94, 59.51, 46.94, and 29.48, respectively. The rest of the factors (i.e., profile curvature, TWI,
plan curvature, slope, soil, drainage density, SPI, and aspect) are associated with moderate to very
low relative importance for GES. The relative importance of profile curvature, TWI, plan curvature,
slope, soil, drainage density, SPI, and aspect for gullies are 16.22, 14.37, 11.31, 7.89, 7.1, 6.91, 5.12, and
0 (Table 8). Here, apart from the topographical and geohydrological characteristics, the impact of
anthropogenic activities accelerates the rate of land degradation in the form of gullies.
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Table 8. Variable importance analysis based on the PSO-DLNN model.

Variables Importance

Altitude 97.94
Aspect 0
Slope 7.89

Plane curvature 11.31
Profile curvature 16.22
Drainage density 6.91

Distance from river 29.48
Land use 100
Lithology 59.51

Soil 7.1
Rainfall 46.94

SPI 5.12
TWI 14.37

4. Discussion

Land degradation through various forms of soil erosion can cause extensive damage, and it has an
adverse impact on society and people’s livelihoods throughout the world [68]. There are various forms
of erosion, i.e., sheet erosion, formation of rills, formation and development of gullies and ravines,
etc. [69]. Of these, the formation and development of gullies and their associated erosion is the most
destructive element of land degradation worldwide [2]. Although it is a natural process of erosion,
this process can be greatly accelerated by anthropogenic activities and have a serious impact on the
ecosystem [70]. With this type of erosion, agricultural activities have not only affected it but have also
been associated with damage to manmade infrastructure. On the one hand, this erosion is responsible
for removing the top soil, but on the other hand, it is responsible for the creation and accumulation of
sediment in the lower catchment area [71]. The life span of the reservoir will cause serious damage to
the sediment deposition resulting from this type of erosion [72,73].

Shirahan watershed in Iran has recently faced severe gully erosion, which is responsible for
large-scale erosion and is the main barrier to sustainable land management practices. Therefore,
identifying vulnerable regions with the most optimal model is very useful so that appropriate soil and
water conservation measures can be put in place. For this purpose, we considered SVM, ANN, DLNN,
and PSO-DLNN in order to estimate the GES of this region with the maximum possible accuracy and
to suggest the most suitable model. The erosion of a gully is controlled by various causal factors, and
we attempted to determine the importance of these factors for gulling. Apart from the topographic and
hydrogeomorphic attributes, land use is the most important variable for gully erosion, which indicates
the large anthropogenic impact on the development of gullies. Other factors, such as altitude, lithology,
rainfall, and the distance from a river, are very influential too on gully erosion and promote gulling.
The transformation of land use is a crucial element and is responsible for large-scale erosion [74].
Alterations in land use influence landscape ecology functions, with far-reaching implications for natural
ecosystems and land reclamation [75]. The character and volume of the surface runoffmay change
directly with the changing pattern of land use in the region. From this perspective, the nature of erosion
in the form of gullies can have a significant effect on the impact of rainfall and its associated runoff
characteristics in a changing environment. This type of outcome is similar to some of the findings from
the studies of a number of researchers in this diversified discipline. This finding has been highlighted
by many other contributions in which morphological and geological properties are assigned as the
determinants of the highest possible location of GES [24,76]. Other research outcomes suggest that
environmental and hydrological parameters are very significant and responsible for gulling.

All the predicted models are associated with high accuracy, but PSO-DLNN is the most optimal,
with the AUC of this model being 0.89. The efficiency of all predicted models is excellent, with the
AUC values for DLNN, SVM, and ANN being 0.87, 0.85, and 0.84, respectively. Apart from this,
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considering various statistical indices, PSO-DLNN is the best model among the models used in this
study. According to the PSO-DLNN model, 18.76% of the total area is associated with a moderate to
very high susceptible area of gully erosion. The southern portion of this watershed is mainly associated
with higher gully occurrences. The complex geohydrological characteristics of this region are favorable
for large-scale erosion in the form of gullies.

A deep learning framework is associated with higher accuracy compared with conventional ANN
and SVM ML methods. This model can handle a larger number of samples and even a large amount
of big data, and can estimate the results with optimum accuracy. The traditional ML algorithm is
not capable of handling this large a number of samples, and the outcome from this perspective is
less optimal compared to the deep learning framework. Significant progress in DLNN-dependent
deep learning (DL) systems has significantly increased the consistency of machine learning for various
purposes. While the standardized features of multi-layer NNs are well-established, the main advantage
of DL is its structured method of self-governing the training of DLNN layer organizations. The benefits
of structured data and expertise descriptions were recognized before the recent increase in interest in
DLNNs. This definition is widespread in the physical sciences where the proposed method is popular
for both specific theoretical structures and complicated system implementations in practice.

First, PSO produces an arbitrary solution and then discovers accurate solutions with an
incremental optimum fitness attribute. This type of methodology has already been used primarily for
backpropagation (BP) genetic algorithms, due to the efficiency of simple installation, fast response, and
accuracy of predictions. It also demonstrated dominance in the resolution of complex applications
and was initially implemented in the context of DL. The best function of the PSO algorithm is to
combine various particles that are interlinked to each other to achieve an optimum position. The same
technique indicates the position, velocity, and highest accuracy of each particle, which are dictated
by the basic concepts used to enhance the problem. Particularly in comparison to other optimization
algorithms, the advantage of the PSO algorithm is that the PSO technique usually involves a quick and
important search procedure, is easy to perform, and can find the globally optimal path that is closest to
the concrete ideas.

5. Conclusions

It is necessary to choose the most efficient machine learning algorithm in order to decrease the
inconsistencies associated with predicting gully erosion susceptibility. The main objectives in most cases
of susceptibility modeling are to identify the optimal model according to its predictive capabilities. The
identification of key parameters for the formation and development of gullies is necessary to estimate
the susceptibility mapping of the spatial distribution of gully erosion. Therefore, to control damage in
the future, it is important to make an appropriate selection of a model to manage areas that are prone
to gully degradation. The primary objective of this research was to estimate the optimal model with
maximum predictive capability. For this reason, various ML algorithms, i.e., ANN, SVM, DLNN, and
PSO, were considered for estimating the GES zone with optimal capacity. PSO-DLNN is the best-fitted
model and is associated with the highest AUC value (0.89). Here, all the datasets were randomly
partitioned with a 70/30 ratio as training and validation datasets. Topographical, hydrological, and
environmental factors were most dominant and were influential factors in susceptibility modeling.
The role of land use in susceptibility modeling is more significant than that of any other component.
Most of the region of this watershed is associated with very low to low susceptibility zones, while
15.57% of the area is associated with a very high susceptibility zone. This study region must take
appropriate planning initiatives to reduce the level of vulnerability and to protect this precious resource.
In future research, it would be desirable to develop the PSO-DLNN algorithm by incorporating
some new components or to develop the same algorithm with slight modifications. This would be a
great contribution to the research community as well as to society. Apart from this, the selection of
inappropriate parameters can reduce the efficiency of the predicted models. Thus, the selection of the
most appropriate variables for susceptibility modeling is one of the important tasks for researchers.
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Abstract: Temperature field calculation is an important step in infrared image simulation. However,
the existing solutions, such as heat conduction modelling and pre-generated lookup tables based on
temperature calculation tools, are difficult to meet the requirements of high-performance simulation
of infrared images based on three-dimensional scenes under multi-environmental conditions in
terms of accuracy, timeliness, and flexibility. In recent years, machine learning-based temperature
field prediction methods have been proposed, but these methods only consider the influence of
meteorological parameters on the temperature value, while not considering the geometric structure
and the thermophysical parameters of the object, which results in the low accuracy. In this paper,
a multivariate temperature field prediction network based on heterogeneous data (MTPHNet) is
proposed. The network fuses geometry structure, meteorological, and thermophysical parameters
to predict temperature. First, a Point Cloud Feature Extraction Module and Environmental Data
Mapping Module are used to extract geometric information, thermophysical, and meteorological
features. The extracted features are fused by the Data Fusion Module for temperature field prediction.
Experiment results show that MTPHNet significantly improves the prediction accuracy of the tem-
perature field. Compared with the v-Support Vector Regression and the combined back-propagation
neural network, the mean absolute error and root mean square error of MTPHNet are reduced by at
least 23.4% and 27.7%, respectively, while the R-square is increased by at least 5.85%. MTPHNet also
achieves good results in multi-target and complex target temperature field prediction tasks. These
results validate the effectiveness of the proposed method.

Keywords: three-dimensional scene; temperature field; intelligent prediction; network; geometry
structure; meteorological parameters; thermophysical parameters

1. Introduction

Infrared imaging technology has the characteristics of high penetration, strong anti-
interference, good concealment, and high precision, which can significantly compensate for
visible-light imaging technology’s lack of night vision capability. With the rapid develop-
ment of infrared imaging technologies, infrared imaging systems have been widely applied
to military, industrial, and civilian applications [1]. To develop such systems, it is essential
to obtain the appropriate system parameters in advance. This requires a large number of
sample images under different lighting conditions for testing and evaluation. However, ow-
ing to the complex influences of region, scenery, time-of-day and meteorological conditions,
obtaining a sufficient number of samples often requires extensive re-sources and labor.
Under extreme conditions, it is impossible to obtain a sufficient number of test samples. To
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overcome this limitation, infrared simulation has been proposed. It obtains infrared images
by simulating actual infrared imaging processes by traversing three-dimensional (3D) scene
construction, temperature field and radiation calculations, atmospheric radiation transmis-
sion calculation, and imaging instrument simulation. Among these, the temperature field
calculation is the most important.

Research on temperature field calculations has undergone a remarkable evolution.
Initially, researchers used empirical or semi-empirical models to calculate a temperature
field. For instance, Jacobs [2] used a one-dimensional thermal model to calculate the
temperatures of simple geometries. Biesel and Rohlfing [3] obtained an object’s surface
temperature by setting a series of assumptions for the heat balance equation. Curtis and
Rive-ra [4] established an empirical surface temperature model that comprehensively
considers the influences of time, material type, meteorological conditions, and object
orientation. Balfour and Bushlin [5] established a general expression of surface temperature
with respect to the sun, sky, air temperature and wind speed. However, these models are
labor- and resource-intensive. Moreover, they cannot adapt to changes in details, and their
accuracy is low.

To meet the requirements of accuracy, first-principle models were used for temperature
field calculations. This model is based on the principle of heat transfer. The heat balance
equation is established by considering various factors that affect the temperature change
of the object; the temperature value is calculated by numerical calculations. For instance,
Gonda et al. [6] introduced the temperature prediction model, which uses a hot node
network method to calculate the temperature field distribution on the surface of an object.
Sheffer and Cathcart [7] developed a thermal calculation model using a first-principle
model, which considers factors, such as solar and sky radiation, mass transfer process,
fluid transmission, occlusion, and multiple reflections, and can more accurately obtain
the temperature change of the object. Currently, several commercial temperature field
calculation software programs, such as TAITherm (https://thermoanalytics.com/taitherm,
accessed on 27 February 2022) [8], Fluent (https://www.ansys.com/zh-cn/products/
fluids/ansys-fluent, accessed on 27 February 2022), and Vega, which are based on first-
principle models, have been developed. They realize high-precision target temperature
field calculations by setting thermophysical and meteorological parameters. However,
for calculating a temperature field to deter-mine a target, it is usually necessary to input
several parameters, such as material, thickness, shape, atmospheric temperature, and wind
speed and direction. This impedes calculations at different periods and under varying
meteorological conditions, and over-whelms the current GPUs. Hence, it cannot support
real-time infrared simulations.

Considering the first-principle models’ calculation speed bottleneck, Hu et al. [9]
proposed a scheme that uses the temperature field calculation method to generate the
temperature data of a typical target scene under typical environmental conditions in
advance and save it in a database lookup table. The temperature value is then obtained
using database interpolation. A look-up table significantly increases the simulation speed,
but it is limited in its ability to accommodate sampling resolution design and interpolation
methods with numerous input meteorological parameters. Moreover, accuracy cannot be
guaranteed if only the main input parameters are considered.

The temperature field calculation method proposed in this study is based on machine
learning and is designed to meet real-time, high-precision and flexible infrared simulation
requirements. It uses a data-driven approach to establish a mapping of parameters affecting
the model’s temperature field distribution to the model temperature, which essentially fits
the heat-balance equation established by the first-principle model. Huang and Wu [10]
proposed a similar method based on a combined back-propagation (BP) neural network
to establish a relationship between model temperature and meteorological parameters.
Huang et al. [11] screened meteorological parameters using the heat balance equation and
used the ν-support vector regression (v-SVR) model [12] to fit the model temperature.
This meets the real-time requirements of simulations. However, contemporary machine
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learning models only consider the influence of meteorological parameters on temperature
and ignore the influence of other factors, which affects accuracy.

This study provides a novel temperature field calculation method based on machine
learning for high-precision real-time prediction of temperature field under the influence
of multiple environmental variables in the real-time simulation of a 3D scene’s infrared
im-aging. It addresses the limitations of the contemporary models by comprehensively
considering geometry structure, meteorological, and thermophysical parameters, which
meets the requirements of real-time and accurate temperature field prediction. The main
contributions of this study are as follows:

(1) A multivariate temperature field prediction network based on heterogeneous data
(MTPHNet), which combines the characteristics of heterogeneous thermo-physical
and meteorological data as 3D model parameters to predict temperature using fusion
features and to improve model generalizability;

(2) To solve the problem of memory explosion when the Transformer (http://nlp.seas.
harvard.edu/2018/04/03/attention.html, accessed on 27 February 2022) structure
deals with 3D model thermophysical parameters, we propose the PointNet (https:
//github.com/charlesq34/pointnet, accessed on 27 February 2022) structure as the 3D
model thermophysical feature extraction module and imitate the parameter sharing
idea of a convolutional neural network to extract local and global features separately.
The final fitting effect proves the effectiveness of the method;

(3) We used a multilayer perceptron (MLP) module to map the meteorological parameters
to fuse the meteorological and thermophysical parameters so that the mapped features
and thermophysical parameters have the same size, which is convenient for the
subsequent fusion process.

The experimental results validate the effectiveness of our proposed algorithm. The
remainder of this article is organized as follows: Section 2 describes our analysis process
and the proposed method in detail. In Section 3, the data formats, evaluation metrics, and
training methods used for training are introduced. In Section 4, corresponding experiments
are designed to verify the effectiveness of this method, and the experimental results are
analyzed and discussed. Section 5 draws some conclusions about our method.

2. Materials and Methods

2.1. Analysis of the Parameters That Affect the Temperature Field Distribution of the 3D Model in
the Natural Environment
2.1.1. Calculation Principle

A series of heat transfer processes with different mechanisms occur between the
surface of a 3D model in a natural environment and the atmospheric boundary layer. A 3D
model comprises different materials; the methods and speeds of heat exchange between
different materials and the external environment are different.

Figure 1 illustrates the energy interactions between an object and the external en-
vironment, which ultimately results in thermal equilibrium. For example, temperature
differences between objects cause heat transfer (Figure 1A). Energy can also be transmitted
directly to objects by solar radiation (Figure 1B). Atmospheric particles can also transfer
energy to objects after absorbing external radiation (Figure 1C). Heat energy can be trans-
ferred from surrounding objects to the target object (Figure 1D). Fluid flow also contributes
to energy transfer (Figure 1E). Lastly, energy transfer can be caused by the evaporation of
water, water vapor condensation, and migration (Figure 1F).

Based on the law of the conservation of energy and the processes illustrated, the heat
balance equation of an object’s surface is as follows:

ki
∂T
∂n

∣∣∣∣
i
= asEsun + alEsky +

M

∑
j=1

Qrj − εσT4 ± Qc ± Qec (1)
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where ki
∂T
∂n

∣∣∣ is the heat conduction of the object, asEsun denotes the ability of an object to
absorb solar radiation, alEsky denotes the ability of an object to absorb radiation from the sky,
M
∑

j=1
Qrj denotes the radiative heat transfer from other objects around, εσT4 denotes the self-

radiation of the object, Qc denotes convective heat transfer, and Qec denotes hidden heat.

 

Figure 1. A 3D model of processes of energy interactions to reach thermal equilibrium under natural
conditions: (A) heat transferred by temperature differences between objects; (B) energy directly
transmitted to objects by solar radiation; (C) energy transferred by particles to objects after absorbing
external radiation; (D) heat radiation energy transferred from surrounding objects to the target object;
(E) energy transferred by fluid flow; and (F) energy transferred by water evaporation, water vapor
condensation and migration.

With Equation (1), when the boundary conditions at each moment are known, the
temperature field distribution at each moment can be calculated. The calculation result at
the current moment is also the boundary condition at the next moment. By analyzing the
above-mentioned energy transfer process, we can filter the variables that play a key role in
the calculation of the temperature field distribution.

By analyzing the above-mentioned energy transfer process, we can filter out the
variables that play a key role in the calculation of the temperature field distribution:

(A) Heat conduction: Owing to the collision of numerous molecules and subatomic
particles, energy flows from a high-temperature object to a low-temperature object. For
a temperature change caused by heat conduction, the main influencing factors are the
properties of the object itself, including thermal conductivity, thickness, shape, etc.

(B) Sun radiation: Objects absorb radiant energy from the sun, which is a form of
radiant heat transfer. When the object is on a clear and cloudless level surface, the formula
is as follows:

Es0 = [1 − A(U∗, β)](0.349E0)sinβ +

(
1 − ρ0

1 − ρ0ρg

)
(0.651E0)sinβ (2)

where E0 denotes the solar radiation of the entire waveband, A(U∗, β) denotes the ab-
sorbable coefficient, which is a function of relative humidity, air temperature, and solar
altitude, β denotes the solar elevation angle, ρg denotes the reflectivity of the ground,
and ρ0 is the Rayleigh reflectivity of the atmosphere, which is a function of the solar
elevation angle.
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Considering the cloudy sky, Equation (2) is modified to obtain the following formula:

Ef sun = Es0·CF (3)

where CF is a function related to cloud coverage.
Therefore, the main factors influencing the temperature changes caused by solar

radiation are relative humidity, air temperature, solar altitude angle, and cloud coverage.
The solar altitude angle is related to the longitude, latitude, time zone, and date. In this
study, it is assumed that the temperature field is calculated in a fixed scene; hence, the
longitude, latitude, and time zone are invariant. Therefore, the main influencing factors of
temperature changes caused by solar radiation are relative humidity, air temperature, date,
and cloud coverage.

(C) Sky radiation: Atmospheric particles, such as carbon dioxide and water vapor,
are present in the atmosphere. These particles absorb external radiation; thus, they have
a certain temperature. Therefore, sky radiation is essentially generated by the thermal
radiation of atmospheric particles, and it affects objects on the ground. The formula for sky
radiation is as follows:

Esky =
(
a + b

√
e
)
σT4

a (4)

where Ta is the sky temperature, which can be calculated from cloud coverage, atmospheric
temperature, humidity, and altitude; a and b are related to the location and time of the
measurement, and e is a function of relative humidity and atmospheric temperature.

Because altitude and location are constant in this study, the temperature changes
caused by sky radiation are related to cloud coverage, atmospheric temperature, humidity,
and time.

(D) Radiation from other objects: When the temperature of an object is higher than
absolute zero, it spontaneously radiates energy. Therefore, when there are other objects
around it, it is affected by their radiation. Hence, it is necessary to obtain the surrounding
objects’ temperature data.

(E) Convection heat transfer: Fluid flow further affects temperature changes. For
ground objects, the main influencing factors of temperature changes caused by convective
heat transfer are wind speed and direction, and air temperature.

(F) Latent heat is the energy transfer caused by the evaporation of water; and conden-
sation and migration of water vapor. The object studied in this study does not involve heat
exchange in this area.

2.1.2. Determination of the Parameters That Affect the Surface Temperature Field of
the Object

Because this study focuses on the calculation of a 3D target’s temperature field at a
fixed altitude and location, the main meteorological parameters are date, atmospheric tem-
perature, solar radiation, wind speed, relative humidity, cloud cover, and wind direction.
The main thermophysical parameters are space coordinates, density, specific heat, conduc-
tivity, thickness, convection method, emissivity, absorptivity, and initial temperature.

2.2. Design of 3D Target Temperature Field Prediction Model Based on Heterogeneous Data Fusion

Predictive modelling of temperature fields based on machine learning is essentially a
fitting of first-principle models of thermodynamics. According to the analysis in Section 2.1,
this mainly includes three heat transfer processes: heat conduction, heat radiation, and
heat convection.

In the first-principles model, the factors affecting the temperature of the model can
be divided into two categories: the first category is meteorological parameters, which are
time series data that record meteorological indicators at each moment, such as atmospheric
temperature, wind speed, and direction, which characterizes the energy exchange between
the object and the atmosphere, mainly reflects the heat radiation process and the heat
convection process in the heat transfer process; the other is thermophysical parameters.
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If the object is regarded as composed of countless particles, then the thermophysical
parameters can be regarded as a kind of point cloud data, which record the emissivity,
thickness, and specific heat of each particle, which characterizes the energy exchange
between points in the object and mainly reflects the heat conduction process in the heat
transfer process. In addition, the spatial location distribution will cause occlusion and
other phenomena and will also affect the exchange of energy. Therefore, the geometric
structure information will also affect the distribution of the temperature field. Although
it is not a thermophysical parameter, it corresponds to each point, so we classify it as a
thermophysical parameter. These two types of data are heterogeneous and determine the
temperature field distribution of the 3D model.

The existing temperature field prediction model based on machine learning only
considers the influence of meteorological parameters on the temperature of the target
model, while ignoring the influence of thermophysical parameters, which is equivalent to
considering only the thermal convection and thermal radiation models in the first principle,
while ignoring heat transfer. This results in poor prediction accuracy. We introduced a
Transformer [13] to solve this problem.

The Transformer is a classic work by Google. It completely abandons the traditional
neural network structure and uses an attention module [14] to process data. The use of
self-attention to process data, which can effectively integrate is effective for integrating
heterogeneous data.

This study comprehensively considers the thermophysical and external meteorological
parameters that affect the temperature of a 3D target model. The proposed MTPHNet
method improves the structure of the Transformer model using meteorological parameters
as the input of the encoder, and thermophysical parameters as the input of the decoder. It
uses the self-attention module to fuse the two parts of data to improve the generalization
ability of the model. The structure of MTPHNet is shown in Figure 2.

 

Figure 2. Structure of the multivariate temperature field prediction network based on heterogeneous
data (MTPHNet). MLP: Multilayer perceptron.

The use of MTPHNet to predict the model temperature field can be expressed by
Equation (5):

Ytemp = ψt

(
φ(Enc(xobj), Dec(xenv) )

)
(5)

where xobj denotes the thermophysical parameters of the 3D model, such as space coordi-
nates, thermal conductivity, and reflectivity; xenv denotes meteorological parameters, such
as atmospheric temperature, wind speed, and direction; φ denotes the fusion process of
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thermophysical parameters and meteorological parameters to obtain fusion features; and
ψt represents the regression prediction process, which calculates the temperature value to
be predicted.

In this study, the 3D target model is represented as point cloud data. Each data point
is considered an object in space and has its corresponding attribute information, such as
material, thickness, and thermal conductivity. Therefore, xobj ∈ R

P×A, where P denotes
the number of points in the 3D target model, and A denotes the number of attributes
corresponding to each data point. Meteorological parameters are time-related, and each
moment corresponds to a set of meteorological data. Therefore, xenv ∈ R

T×E, where T
denotes the duration, which is obtained by sampling at a fixed step in a period, and E
denotes the number of attributes used to describe the external environment.

It is evident that thermophysical and meteorological parameters are two sets of hetero-
geneous data with different dimensions. However, in the natural environment, meteorolog-
ical parameters act on the thermophysical parameters of the 3D model. Simultaneously,
the temperature of each data point is affected by the temperature of other points around it.
Therefore, the thermophysical parameters of the 3D target model affect each other. These
highly coupled heterogeneous data determine the temperature of the 3D target model;
therefore, this complexity cannot be handled by general data fusion methods. Thus, we use
the thermophysical parameters of each point as input to the Transformer encoder. A point
corresponds to a token, and the interaction between the points of the 3D target model is
simulated using the encoder’s calculation. Subsequently, the meteorological parameters
are used as input to the Transformer’s decoder for feature mapping. Finally, the two parts
of the features are fused, and the fused features are regressed to calculate the predicted
value of the 3D target temperature field.

2.2.1. Point-Cloud Feature Extraction Module (PCEM)

In the real environment, objects can be envisioned as a composition of countless
particles, and different points have different materials and spatial positions. Different
materials will often have very distinct emissivity, absorption, and scattering [15] properties,
which can result in a variety of particle energy absorptions and releases. Different spatial
positions will lead to phenomena, such as occlusion and shadows, resulting in uneven
energy distributions. Therefore, the thermophysical parameters of the 3D object are crucial
to the establishment of a temperature field. To improve the accuracy of temperature field
prediction, we must extract the object’s thermophysical parameters.

The thermophysical parameters include spatial coordinates, emissivity, and specific
heat, which can be regarded as point cloud data with additional attributes. Temperature
field prediction requires the calculation of the entire 3D target model, and each point
interacts with all other points, implying that the thermophysical parameters of each are
dot-produced with the thermophysical parameters of other points. The computational
complexity of the original Transformer is proportional to the square of the length of the
input sequence [16]; however, the number of 3D point cloud points is large, which is
unsuitable for most hardware.

To solve this problem, we apply PointNet [17], a feature extraction layer for point-
cloud data of the 3D target model. PointNet, proposed by Qi et al. (2017), can be directly
used to process point cloud data. The model extracts features via feature mapping and
maximum pooling of point cloud data and satisfactorily completes the classification task.
However, because the model extracts features from single points and does not consider the
relationship between points, its local feature extraction ability is weak [18]. Therefore, it is
impossible to analyze complex scenes.

In this study, the 3D target model is assembled from different parts. First, we group
the point clouds of the 3D target model according to the types of parts. The point cloud
attributes of the same part are similar; however, the point cloud attributes of different
parts are different. Subsequently, the point cloud data are organized according to the part
category and each group of point cloud data are first sent to a self-attention module for
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calculation to obtain the relationship between points. The calculation results are sent to
the PointNet for local feature extraction. The feature extraction process for the point cloud
data of the 3D target model is shown in Figure 3.

Figure 3. Flow chart of feature extraction of 3D target model.

Figure 3 indicates that we do not configure a self-attention module and PointNet,
respectively, for the point cloud data of each group of parts to extract features. We rather
refer to the convolution kernel of weight sharing in convolutional neural network [19] and
use a unique self-attention module and PointNet which perform feature extraction on the
point cloud data of different parts. Each group of parts is extracted as a local feature vector;
the feature items extracted from all the parts are formed into a new sequence; and are then
sent to a new self-attention module and PointNet to extract global features. This way, all
features for the 3D target model are extracted.

2.2.2. Environmental Data Feature Mapping Module (EMM)

Meteorological parameters directly affect the temperature of objects. Rain reduces the
surface temperature of objects, the shielding effect of clouds weakens solar radiation, and
wind accelerates the heat transfer between the air and the surface of the object [20].

The thermophysical parameters of the 3D target model are mapped into a fixed-size
feature block after passing through the PCEM. The thermophysical and meteorological
parameters of the 3D model are heterogeneous data from different sources. To achieve the
integration of heterogeneous data, we introduced a multi-layer perceptron (MLP) module
to map meteorological parameters to a high-dimensional space through feature mapping
and map them to a fixed size to match the feature block of the thermophysical parameters.
The EMM is illustrated in Figure 4.

 
Figure 4. Schematic of environmental data features mapping module.
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2.2.3. Data Fusion Module (DFM)

In the natural environment, meteorological and thermophysical parameters undergo
complex physical interactions to determine the temperature field distribution of objects. In
this study, we use a self-attention module to fuse the thermophysical and meteorological pa-
rameters. We use the feature block output by the encoder as the K and V of the self-attention
module, and the feature block output by the decoder as the Q of the self-attention module.
This process simulates the interaction between meteorological parameters and the 3D target
model in the natural environment. A schematic of the integration of thermophysical and
meteorological parameters is shown in Figure 5.

 

Figure 5. Schematic of the integration of internal parameter variables and external environmental
parameter variables.

2.2.4. Pseudocode

Based on the above analysis, the pseudocode of MTPHNet shown in Figure 2 is
summarized, and the algorithm is given in Algorithm 1.

Algorithm 1 program pseudo code of MTPHNet.

Input

xt
env: meteorological parameter at the current moment.

xt
obj: thermophysical parameter at the current moment.

Yt−1
temp: the target temperature value at the last moment.

Output Yt
temp: the target temperature value at the current moment.

1 For t = 1 to tmax

2 Replace: xt
encin = dimension_replace

(
xt

obj, Yt−1
temp

)
3 For i = 1 to P
4 xt

encin[i] = attn_ f eature
(

xt
encin[i], xt

encin[i], xt
encin[i]

)
5 xt

encin[i] = pointnet_ f eature
(

xt
encin[i]

)
6 End for

7 xt
encout = pointnet_ f eature

(
attn_ f eature

(
xt

encin, xt
encin, xt

encin

))
8 xt

dec in = MLP
(
xt

env
)

9 Yt
temp = Linear

(
attn_ f eature

(
xt

decin, xt
encout, xt

encout

))
10 End for

Algorithm 1 shows that tmax is the maximum duration of temperature field prediction,
and P is the number of parts in the 3D model.

In line 2, the algorithm replaces the dimension representing temperature in xt
obj with

Yt−1
temp. From lines 3 to 6, the algorithm extracts the local features of the 3D model using

attn_ f eature and pointnet_ f eature for each part. In line 7, the algorithm uses attn_ f eature
and pointnet_ f eature to extract the global features of the 3D model. In line 8, the algorithm
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uses MLP to make a feature map of xt
env. Finally, the algorithm uses attn_ f eature to fuse

xt
dec_in and xt

enc_out, and Linear to obtain the temperature value.

3. Experimental Details and Data Exploitation

3.1. Experimental Environment and Index Design

The experiment was conducted on an AMD Ryzen 7 CPU 5800H with 16 GB of RAM,
NVIDIA GeForce RTX 3090 with 24 GB of memory, Python 3.7.2, and PyTorch 1.9.0 for
network model training and testing.

To evaluate the effect of temperature field prediction, mean absolute error (MAE) [21],
root mean square error (RMSE) [22], and R2 [23] were selected as the evaluation criteria
for the model quality. The calculation formulas are as follows:

MAE(y, ŷ) =
1
n

n

∑
i=1

|yi − ŷi| (6)

RMSE(y, ŷ) =
1
n

n

∑
i=1

‖yi − ŷi‖2
2 (7)

R2(y, ŷ) = 1 − RSS
TSS

=
ESS + 2 ∑n

i=0(yi − ŷi)(ŷi − y)
TSS

(8)

TSS =
n

∑
i=1

(yi − y)2 (9)

RSS =
n

∑
i=1

(yi − ŷi)
2 (10)

ESS =
n

∑
i=1

(ŷi − y)2 (11)

where y denotes the true value; ŷ denotes the predicted value; y denotes the average value
of the true value; TSS is the Total sum of squares, which defines the difference between y
and y; RSS is the Residual sum of squares, which defines the difference between y and ŷ;
and ESS is the Explained sum of squares, which defines the difference between ŷ and y.

Among the selected evaluation indicators, MAE and RMSE are used to measure the
size of error between the predicted and real data; R-squared measures the quality of the fit.

3.2. Dataset

The training data used by existing temperature field prediction models based on
machine learning methods were collected by instruments. These type of data are closer to
reality. However, owing to the variability of natural environmental parameters and the
in-stability of instruments, the data acquired by the instrument are noisy and costly.

We use our own temperature dataset constructed by ourselves, which includes the
thermophysical parameters, meteorological parameters, and temperature field data of
3D objects.

3.2.1. Dataset Format

We use the thermophysical and meteorological parameters of the dataset as input to
MTPHNet and the corresponding temperature data as its output to train and optimize the
model parameters.

The shape of the 3D target model has an impact on the temperature field formation.
Under the same environmental conditions, different shapes will cause uneven heat distri-
bution in the 3D target model, for instance, objects in shadow will be cooler than objects in
direct sunlight. Therefore, the thermophysical parameters in the dataset first need to obtain
the spatial position information of the 3D target model. We built several 3D models using
3D modeling software and exported them to OBJ file format. Because OBJ file uses the face
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element data structure to build the 3D model and the proposed model uses the point cloud
data structure, we processed the exported OBJ file and calculated the center coordinates of
each face element to replace the face element. Figure 6 shows the constructed 3D model.

Figure 6. A 3D model and its corresponding point cloud data.

Figure 6 shows that each 3D object has several data points. In addition to spatial
coordinates, each data point contains additional attribute information, such as material,
thickness, and initial temperature. Table 1 shows the point cloud data format of the 3D
target model during training.

Table 1. Point cloud data format for 3D targets.

Physical
Parameters

Space
Coordinates

Density
Specific

Heat
Conductivity Thickness Convection Emissivity Absorptivity

Initial
Temperature

Unit (mm) (kg/m3) (J/kg·K) (W/m·K) (mm) Bool / / ◦C

In addition to the 3D point cloud data, meteorological parameter data are required.
For this study, we collect meteorological parameter data for four seasons. Combined with
the parameters that must be collected in the analysis above, we selected date, atmospheric
temperature, solar radiation, wind speed and direction, relative humidity, and cloud cover-
age as environmental parameter variables. Figure 7 shows the meteorological parameters
related to time, and the changing trends.

Figure 7. External meteorological parameters for temperature field prediction. Parameters from the
left to right and top to bottom are atmospheric temperature, cloud cover, relative humidity, rainfall
rate, solar radiation, wind speed, and direction.
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According to the collected thermophysical and meteorological parameters, we use
an internal temperature field calculation software to calculate the temperature field dis-
tribution of the 3D model data and add the calculation results to the dataset for training
the model.

From Equation (5), Ytemp ∈ R
P×T , which means P points, and each point has T

temperature values.

3.2.2. Teacher Forcing

As discussed before, the temperature of the 3D target is affected by the sun, atmo-
sphere, and surrounding objects. It is evident that the temperature of the 3D target model
at each moment is determined by the meteorological and thermophysical parameters at the
current moment.

Among the features of the thermophysical parameters, one dimension of the feature
represents the temperature of the point cloud data. Because the 3D model is represented by
a point cloud, each point represents a distinct object. Therefore, this dimension represents
the distribution of the temperature field at the current moment.

The temperature field distribution is obtained at the next moment by entering the data
into MTPHNet to measure the difference between the two one time step.

Because unknown information cannot be used in the test, the calculated value is
assigned to this dimension of the input data to calculate the temperature value at the next
moment, after calculating the temperature value at the current moment. Figure 8 illustrates
the process.

Figure 8. Temperature substitution process. The temperature value calculated by the model replaces
a certain dimension of the input to simulate the temperature change of all objects in the temperature
field at each moment.

During the training, the temperature value at any time is known. Therefore, there is
no need to use the temperature value calculated by the model to replace the value of the
dimension, which allows parallel calculations during the training.

4. Results and Discussion

4.1. Performance of the MTPHNet

To demonstrate that the MTPHNet successfully integrates an object’s thermophysical
and meteorological parameters can further improve the prediction of the temperature
field, we used temperature field data, thermophysical parameters, and meteorological
parameters as training data and compared the performance of MTPHNet with those of
v-SVR and a combined BP neural network (CBPNN) model.

When training MPTHNet, the hyperparameters needed by the model included batch
size, epoch, number of multi-heads, and initial learning rate. The batch size affects the
degree of optimization and model speed. The size of the epoch affects the fitting effect of
the model. Tuning the number of multi-heads helps the network capture richer features.
The initial learning rate determines if and when the objective function converges to a
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local minimum. To obtain better hyperparameter values, we used Microsoft’s automatic
parameter tuning tool, NNI, for hyperparameter selection, which runs the code in a loop
to obtain the optimal hyperparameter values. The results of the operation are shown in
Figure 9:

Figure 9. Results of NNI.

As can be seen in Figure 9, the batch size was set to 16; the number of epochs was 100,
the number of multi-heads was 6 and the initial learning rate was 0.0003. As it is based on
the Transformer structure, the MTPHNet model is large and needs a significant amount of
memory. Considering computational efficiency and fitting accuracy, we selected the Huber
loss function and the Adam optimizer for optimization. Dropout was used for overfitting
mitigation, and the deletion ratio, p, was 0.05.

Because the thermophysical parameters of the 3D target were considered, the MTPH-
Net trained different 3D models with the same number of point clouds. However, v-SVR
and CBPNN only consider the impact of meteorological parameters on the temperature of
the 3D target and cannot simultaneously predict the temperature field of different 3D target
models. For referential significance, all three models were trained with the same training
set, which includes the temperature field distribution data of a single 3D model. MTPHNet
was better than the other prediction models after testing on the test set. Table 2 presents the
generalization performance of the models.

Table 2. Comparison of generalization performance of MTPHNet, v-SVR, and CBPNN.

Algorithm Model MAE RMSE R-Squared

v-SVR 17.329 21.17 −388.6

CBPNN 2.249 3.474 0.889

MTPHNet 1.722 2.512 0.941

As shown in Table 2, the MTPHNet prediction error, was significantly lower than that
of the existing temperature field prediction models. Compared with the CBPNN model,
its MAE and RMSE decreased by 23.4% and 27.7%, respectively, whereas the R-squared
increased by 5.85%. Figure 10 shows the prediction effects of the models.

Because the 3D model was composed of patches, in the experiment, we extracted
several patches by generating random numbers to show the effect of temperature field
prediction. We selected patches 96,231 and 423 for presentation. The experiments demon-
strated that, although the existing temperature field prediction methods fit the temperature
field on the change trend, their accuracies were insufficient. Therefore, it is necessary to
combine the energy interaction mode of the 3D object in the natural environment and its
meteorological and thermophysical parameters to further improve prediction accuracy.
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(a) 

(b) 

(c) 

Figure 10. Generalization performance renderings. Prediction effect diagrams of (a) v-SVR;
(b) CBPNN; and (c) MTPHNet.

4.2. Advantages of MTPHNet
4.2.1. Multi-Object Temperature Field Prediction

The results indicate that MTPHNet has a better fitting ability than the existing temper-
ature field prediction models. Because MTPHNet comprehensively considers the various
energy exchanges between the object and the environment and combines the thermo-
physical parameters of the object for training, it simultaneously trains and predicts the
temperature field for different 3D targets. Existing temperature field prediction models
cannot achieve this.

In this study, we summarized the 3D target temperature field data shown in Figure 5
and imported them into MTPHNet for training and verification. Table 3 presents the
fitting performances.

As shown in Table 3, when the MTPHNet model was used to predict the temperature
field of multiple objects, the values of its various indicators were satisfactory. The exper-
imental results demonstrate that the thermophysical parameters of the 3D target model
are significant for temperature field prediction. Figure 11 shows the effects of the multi-
object temperature field prediction. Here, three materials were used for the temperature
field calculation. For a convenient comparison, we selected patch 1 for presentation. The
same patch shows the effect of different materials on temperature and the adaptability of
MTPHNet to different temperature changes.
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Table 3. MTPHNet’s generalization performance for multi-object temperature field prediction.

Model Material MAE RMSE R-Square

Box

1 2.077 2.568 0.938

2 3.953 5.664 0.877

3 1.785 2.153 0.929

Cylinder

1 4.419 6.224 0.855

2 2.497 3.320 0.901

3 5.572 7.976 0.821

Sphere

1 1.910 2.329 0.918

2 2.556 3.245 0.897

3 4.843 6.927 0.831

(a) 

(b) 

(c) 

Figure 11. Multi-object temperature field prediction effects. Fitting of different materials of (a) box;
(b) cylinder; and (c) sphere.

4.2.2. Prediction of Temperature Field of Complex Objects

When predicting multiple objects, this study assumed that each object had only one
part; thus, the attribute data of different points are the same. In reality, however, a complex
3D object is composed of different materials, and the energy exchange between them is
more complicated than that of a single material. Therefore, we chose a complex model for
training and prediction. Figure 12 shows the geometry of the model.
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Figure 12. Complex house model with 5660 patches and 30 parts: (a) geometric structure; (b) tem-
perature field distribution at a given moment.

Table 4 demonstrate that the model has a good generalization performance for the
temperature field prediction of complex models, which further reflects the superiority of
MTPHNet. Figure 13 shows the prediction effect of the temperature field of complex objects.
We randomly selected patches 1032 and 4000 for presentation.

Table 4. MTPHNet’s generalization performance for temperature field prediction of complex objects.

Model MAE RMSE R-Square

House 2.645 3.522 0.964

Figure 13. Prediction of the temperature field of complex objects.

4.3. Ablation Analysis

To verify the effectiveness of our proposed network, we conducted three ablation
experiments to verify the performance of the main design components: environmental data
feature mapping module (EMM), point cloud feature extraction module (PCEM), and data
fusion module (DFM). The proposed MTPHNet is given as MTPHNet-A, and its variants
for ablation are MTPHNet-B, MTPHNet-C, and MTPHNet-D. All variants were trained
and validated using the same procedure described in Section 4.1. Each ablation experiment
was performed three times and the results were averaged, and shown in the Table 5 and
Figure 14.

Table 5. Quantitative evaluation metrics of MTPHNet and its variants. All models follow the same
procedure and training environment as described in Section 4.1 and are evaluated on the same test
set. The best results are shown in bold.

Model MAE RMSE R-Square

MTPHNet-A (Original) 1.722 2.512 0.941

MTPHNet-B (no EMM) 8.734 10.362 −0.011

MTPHNet-C (no PCEM) 2.277 3.516 0.885

MTPHNet-D (no DFM) 2.303 3.431 0.89
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(a) 

 
(b) 

 

(c) 

Figure 14. Multivariate temperature field prediction network based on heterogeneous data (MTPH-
Net) variants for ablation experiments: (a) MTPHNet-B removes the environmental data feature
mapping module (EMM) to study the effect of meteorological parameters on temperature field
prediction; (b) MTPHNet-C removes the point cloud feature extraction module (PCEM) to study the
effect of thermophysical parameters on temperature field prediction; and (c) MTPHNet-D re-places
the data fusion module (DFM) with an additive fusion method to study the effect of data fusion on
temperature field prediction.

4.3.1. Effectiveness Analysis of EMM

To measure the EMM’s contribution, we designed a variant model without EMM, as
described in Table 5: MTPHNet-B. It can be seen that the prediction effect of MPTHNet-A
without EMM is extremely poor; it cannot even predict the temperature. The quantitative
results show that the EMM is the core of temperature prediction.

4.3.2. Effectiveness Analysis of PCEM

We believe the use of PCEM would further improve the accuracy of temperature
prediction. To substantiate it, we designed a variant without the PCEM: MTPHNet-C. In
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Table 5, MTPHNet-A outperforms MTPHNet-C in all metrics. The quantitative results
clearly show that PCEM improved the prediction performance.

4.3.3. Effectiveness Analysis of DFM

DFM fuses the features extracted from meteorological and thermophysical parameters,
which is a crucial step. To confirm this, we designed a variant model, MTPHNet-D, which
replaces the DFM with an additive fusion module. In Table 5, MTPHNet-A outperforms
MTPHNet-D in all metrics, and MTPHNet-D is closer to MTPHNet-C in terms of metrics.
The quantitative results show that DFM and PCEM contribute similarly to improve the
prediction performance.

5. Conclusions

This study comprehensively considered the thermophysical and meteorological param-
eters affecting the temperature field distribution of a 3D target. Combined with temperature
field distribution data, an intelligent temperature field prediction model, MTPHNet, was
proposed. To fuse meteorological and thermophysical parameters, MTPHNet used PCEM
to calculate the interaction between 3D target attributes and extract thermophysical fea-
tures. Simultaneously, it used EMM to map meteorological parameters to meteorological
features so that the mapped data and thermophysical data would be of the same size,
which facilitated the subsequent data fusion. Finally, DFM fused the parts and used the
results to predict the temperature. Considering PCEM’s tendency of memory explosion
when processing point cloud attribute data, we introduced PointNet as a feature extraction
network to reduce the memory burden and divide the feature extraction process into local
feature and global feature extraction activities to further streamline memory use. Com-
pared with v-SVR and CBPNN, the MAE and RMSE of MTPHNet were reduced by at
least 23.4% and 27.7%, respectively, whereas the R2 value increased by at least 5.85%. The
results show that MTPHNet effectively improves model generalizability to more efficiently
and accurately predict temperature fields while meeting real-time infrared simulation
processing requirements. In complex object temperature field prediction tasks that simulate
real environments, MTPHNet is advantageous in that it considers realistic energy interac-
tion processes. Its MAE, RMSE, and R2 values were 2.645, 3.522, and 0.964, respectively,
demonstrating the model’s high adaptability to real scenes.

It should be noted that when MTPHNet performs multi-model prediction tasks, the
number of point clouds of different 3D models are required to be the same, which signifi-
cantly increases the difficulty of data collection. Therefore, in a future work, we plan to
change the model structure so that it can be further adapted to 3D models varying numbers
of point clouds.
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Abstract: Low-frequency multi-source direction-of-arrival (DOA) estimation has been challenging
for micro-aperture arrays. Deep learning (DL)-based models have been introduced to this problem.
Generally, existing DL-based methods formulate DOA estimation as a multi-label multi-classification
problem. However, the accuracy of these methods is limited by the number of grids, and the
performance is overly dependent on the training data set. In this paper, we propose an off-grid DL-
based DOA estimation. The backbone is based on circularly fully convolutional networks (CFCN),
trained by the data set labeled by space-frequency pseudo-spectra, and provides on-grid DOA
proposals. Then, the regressor is developed to estimate the precise DOAs according to corresponding
proposals and features. In this framework, spatial phase features are extracted by the circular
convolution calculation. The improvement in spatial resolution is converted to increasing the
dimensionality of features by rotating convolutional networks. This model ensures that the DOA
estimations at different sub-bands have the same interpretation ability and effectively reduce network
model parameters. The simulation and semi-anechoic chamber experiment results show that CFCN-
based DOA is superior to existing methods in terms of generalization ability, resolution, and accuracy.

Keywords: off-grid; DOA estimation; circularly fully convolutional networks; space-frequency
pseudo-spectrum; high resolution

1. Introduction

Direction of arrival (DOA) estimation is an important research direction in array
signal processing, and it has been widely used in many military and civilian fields such
as radar, communications, sonar, seismic, exploration and radio astronomy [1,2]. In many
application scenarios, such as the Internet of Things and unattended ground sensor (UGS)
systems [3], which focus on the remote targets, e.g., vehicles or helicopters, detection in the
field, the array aperture is strictly limited so that it far exceeds the Rayleigh limit, which
has made low-frequency multi-source DOA estimation complex problem for a long time.

Among traditional DOA estimation algorithms, subspace-based methods are consid-
ered to be high-resolution, such as MUSIC (multiple signal classification) [4] and ESPRIT
(estimation of signal parameters via rotational invariance techniques) [5]. MUSIC-based
methods employ the orthogonality of the signal subspace (steering vectors) and the noise
subspace to search the spatial spectrum to achieve high-resolution. ESPRIT-based methods
avoid spectrum search by the signal subspace rotation invariance properties and reduce
computational complexity. When the uncertainty of the system or background noise leads
to model errors, e.g., the wrong number of sources, subspace-based methods need to solve
high-dimensional non-linear parameter estimation problems. Although many improved
algorithms [6–9] based on MUSIC and ESPRIT have been developed to estimate the number
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of sources jointly, sometimes in order to solve the singular matrix of the spatial covariance,
they may sacrifice the array aperture [10] and deteriorate the resolution. Later, compressed
sensing (CS)-based methods [11–13] have been widely studied due to the consideration
of both the super-resolution capability and the ability to detect the number of sources by
exploiting spatial spectrum sparsity. Nevertheless, they suffer from a large amount of
computational load caused by on-grid or off-grid search, especially in the case of wideband,
which is challenging to apply to engineering implementation.

Alternatively, machine learning-based approaches, e.g., an artificial neural network
(ANN), can provide a means of mapping from input features to DOA [14–18]. Moreover,
ANNs consist of elementary mathematical calculations and have an advantage in comput-
ing speed compared with conventional DOA estimation algorithms. At the earliest, the
radial basis function (RBF) neural network [19] is introduced to DOA estimation, which
successfully learns the single source direction finding function from data sets despite the
lack of resolution. Then, ref. [20] employs support vector regression (SVR) to improve the
DOA resolution, while SVR is a small sample set learning method with a solid theoretical
foundation and limits its application in practice. To this end, ref. [14] utilizes a multilayer
perceptron (MLP) neural network to enhance the non-linear interpretation ability to the
DOA mapping model. However, as the number of MLP network layers increases, the gen-
eralization performance may not necessarily be improved, which means that the accuracy
of DOA estimation is insufficient.

In terms of generalization performance, deep learning has made significant progress,
and the generalization performance is further improved as the training set increases.
Various methods for DOA estimation based on deep learning have been proposed [21–27].
In [21], a deep neural network (DNN) was devised to perform logistic regression for
each DOA to achieve high accuracy, while this method requires the known number of
sources. To overcome this drawback, refs. [24,26] formulate multi-source DOA estimation
as a multi-label multi-classification problem by convolutional neural networks (CNNs)
and convolutional-recurrent neural networks (CRNNs), respectively, while the accuracy
depends on the number of grids. Ref. [27] employs DNN to achieve rough candidate DOAs,
and then takes the method of amplitude interpolation to estimate the signal directions
of non-integer impinging angles. Similarly, ref. [25] first adopted CRNNs as spatial
filters to obtain rough candidate sectors and then used classifiers to extract the precise
directions. In [23], MLP neural networks are adopted to estimate possible sub-areas, and
RBF neural networks are utilized for fine position estimation. Ref. [22] uses the multitask
autoencoder for spatial filtering and then realizes spatial spectrum estimation by a fully
connected multilayer neural network. From DP-based object detection models such as
Faster R-CNN [28], and RefineDet++ [29] in the image field, we can learn that high-accuracy
object position can be obtained from region proposal networks and regression refinement
networks. Based on this inspiration, ref. [30] developes a two-stage cascaded neural
network for DOA estimation, which includes a CNN and a DNN-based regressor for the
discrete angular grid and the mismatch between true DOAs and discrete grids. However,
the CNN-based on-grid method mainly focuses on the narrowband signal case. The input
of the regressor, including the input and output of the first-stage CNN, may increase
the complexity of the training data set. As can be seen from the above, high-resolution
multi-source DOA estimation usually has two-stage networks for coarse search and fine
search. Note that the DOA classifiers used by these algorithms map the features of all
frequency sub-bands to the spatial spectrum. This means that the generalization ability
of the model is sensitive to the frequency characteristics of the training data. In this way,
the training data set samples are usually required to be large enough, making it difficult to
exhaust all types of sources in practical applications.

This paper proposes a new off-grid DOA estimation method, which has two net-
works: (i) An on-grid multi-label classifier based on circularly fully convolutional networks
(CFCNs) which was devised for rough grid proposals. The classifier provides the mapping
from the phase map to the space-frequency pseudo-spectrum. Moreover, by performing
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circular convolution calculation on the sensing axis, the phase features at each sub-band
can be extracted to a greater extent than linear convolution. To achieve high-resolution
DOA grid proposals, the CFCN increases the feature dimension in exchange for an increase
in space dimension by rotating convolutional networks; (ii) Based on these grid proposals,
an off-grid regression network which was developed for precise DOA adjustment. The
regressor obtains the actual deviation in the grid-gap from the features produced by the
CFCN. The proposed models are trained by synthetic single-source white noise signals,
which avoids the tedious and exhaustive data set. The main contributions of the proposed
method are as follows:

• The circular convolution calculation enhances the phase feature acquisition ability.
• The CFCN ensures that the DOA estimations at different sub-bands have the same

interpretation ability and effectively reduces network model parameters.
• The proposal DOA grids and the corresponding features provide a more feasible

traversal within the grid-gap for the regression training data set and reduce the
complexity of the data set.

The simulation and semi-anechoic chamber experiment results show that under the
conditions of single/dual-source targets with different band-limited/signal-to-noise ratios
(SNR)s, the CFCN-DOA is superior to existing methods in terms of generalization ability,
resolution, and accuracy.

The rest of this paper is organized as follows: Section 2 introduces the problems of deep
learning models on DOA estimation; Section 3 describes details of the off-grid DOA estimation
model based on CFCNs, data set generation methods, and trained model performance
comparison results with different parameters; Section 4 carries out simulation results and
performance evaluation; Section 5 shows experimental verification; Section 6 discusses the
experiments; and Section 7 summarized the whole work.

2. Problem Formulation

For the off-grid multi-source DOA estimation problem, we first need to determine
the inputs and outputs of the model. The problem is split into two sub-problems, i.e., on-
grid and off-grid problems, which are formulated as a multi-label and multi-classification
problem and a regression problem, respectively. The multi-label classifier provides the
DOA proposals, and the regressor produces precise DOA in the corresponding grid-gap,
which fully meets the requirement of precise multi-source orientation.

In a model based on deep learning, the input is required to have sufficient information
representation. For micro-aperture arrays detecting far-field sources, the signal strength
features received by different sensors are not significant. Thus, DOA mainly depends on
the phase difference between different sensors at different frequencies. In this paper, the
phase map is chosen as the input of the model, and it is a M × F matrix Φk at time k, where
M is the number of sensors and F is the number of all sub-band signals. Φk is denoted as

Φk =

⎡
⎢⎣

φk,1,1 · · · φk,1,F
...

. . .
...

φk,M,1 · · · φk,M,F

⎤
⎥⎦, (1)

where φk,m, f is the phase of the received signal of the m-th sensor at the f -th sub-band,
which is obtained by a N point discrete Fourier transform (DFT).

The outputs of the model should be accurate DOAs of multiple sources, while it is
challenging to obtain DOAs directly when the number of sources is unknown. Therefore,
we formulate the model as a two-stage network, which is shown in Figure 1. At stage 1,
this is an on-grid problem. Firstly, all the raw signals are transformed into the phase map
by DFT. Then, all the features are extracted by the feature extraction network. Finally,
the multi-label classifier provides DOA grid proposals. At stage 2, based on the features
and DOA grid proposals given by the stage 1, the regressor produces precise DOAs. The
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network at stage 1 is first trained with the data set labeled by DOA grids, and then the
regressor is trained with the data set labeled by precise DOAs in the grid-gap.

Figure 1. Block diagram of the proposed off-grid direction of arrival (DOA) estimation.

In this paper, we assume that there is only one source in a grid. The problem of the
multi-label classifier at stage 1 is to obtain reliable DOA grid proposals based on the phase
features of all sub-bands by using the space-frequency pseudo-spectrum. In addition, the
problem of the regressor at stage 2 is to choose sufficient features as its inputs.

3. Off-Grid DOA Estimation

This section focuses on the proposed architecture, the generation of the data set, and
the design of structural parameters in the network.

3.1. The Off-Grid DOA Estimation Based on Circularly Fully Convolutional Networks (CFCNs)

In the CNN convolution calculation, the linear convolution calculation used may
ignore some sensor phase difference features, which are probably important information,
caused by the most spaced sensors. If this phase difference is ignored, it may affect the
target resolution performance. To learn the phase features of each sub-band to the greatest
extent, the model needs to have the same interpretation capability for each sub-band. We
develop a circularly fully convolutional network (CFCN)-based architecture consisting of
two networks: the on-grid multi-label classifier and the off-grid regressor. This architecture
is shown as Figure 2.

For the multi-label classifier, to ensure the independence between the spectral features
of the source and space, the size of the convolution kernel is designed to be M/2 × 1.
When performing circular convolution calculation, the input phase matrix needs to be
extended by M/2 − 1 length in the spatial dimension, i.e., the sensing axis. The feature
extraction network has L layers, and each layer has Cl neurons/channels, where Cl can
be called the feature dimension. The neurons are activated by rectified linear unit (ReLU).
Since the output dimension of the fully convolutional network (FCN) is consistent with the
input dimension, up-sampling is usually used to achieve dimension upgrades in a certain
dimension. Up-sampling does not increase the total amount of features/information but
increases data storage. In this paper, we can increase the feature dimension in exchange for
increasing the space dimension by rotating the convolutional network, i.e., transposing the
feature dimension and the space dimension. In the last layer of the convolution feature
extraction layers, the number of neurons is consistent with DOA grids. Finally, the 1 × 1
convolution layer fuses the phase features of all sensors at each sub-band. To obtain the
posterior probability p(θi, f |Φk) of DOA at the i-th space grid and the f -th sub-band at time
k, the last layer is activated by the Sigmoid function, where θi, f represents the direction
corresponding to the i-th DOA class at the f -th sub-band. The I × F posterior probability
matrix is the space-frequency pseudo-spectrum, where I is the number of space grids and
F is the number of sub-bands. For the multi-source DOA estimation, the pseudo-posterior
probability of each DOA class is obtained by averaging the probabilities of all sub-bands:

p(θi|Φk) =
1
F

F

∑
f=1

p(θi, f |Φk). (2)
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From the pseudo-posterior probabilities, H DOA classes corresponding to the H peaks
with the highest probability are selected as candidate DOAs γh, h = 1, · · · , H, which are
treated as DOA proposals for the regressor. In this work, we use a simple peak detection
method as the DOA proposal search to verify the effectiveness of the proposed algorithm.

Figure 2. Proposed architecture.

Before the last 1 × 1 convolution layer fusing features of all sensors, the M × I × F
feature tensor R has the sufficiency of the DOA information in the grid-gap. On-grid
methods cannot provide precise DOA estimation. Thus, the regression-based off-grid
method is proposed. For this regressor, the accurate DOA deviation Δh of the DOA
proposal γh is mapped from the h-th proposal feature M × F matrix. Therefore, the final
off-grid DOA ϕh is:

ϕh = γh + Δh, h = 1, · · · , H. (3)

In the training process, the on-grid multi-label classifier is trained first, and then the
on-grid regressor is trained.

3.2. The Generation of the Data Set

For the case of long-distance, low-frequency, and low-SNRs, this article does not
temporarily consider the influence of complex reverberation/multi-path. Under different
targets, different source operating states, and single-source/multi-source, the signals
received by the array are different. If the signals with different features at different locations
are exhaustively enumerated under different SNR conditions, the data set will be extensive,
and it cannot cover all combinations. In addition, when the signal frequency ranges of
different targets overlap, the non-linear superposition of different sources will make the
entire network challenging to train.

For the data set of the multi-label classifier, signals received by the array are generated
by a single white noise source traversing different orientations and different SNRs. In this
way, the features of all sub-bands vs. space orientations can be represented. The generation
process is shown in Figure 3. First, the single-source white noise is transformed to the
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frequency domain by DFT, and the phase compensation is performed for each sub-band
signal to obtain the true signal received by each sensor, where the compensation factor is
the steering vector A f (θi), f = 1, · · · , F. The corresponding label is a I × F space-frequency
pseudo-spectrum matrix, whose i-th row is equal to 1, and the other items are 0. Then,
the true signals are converted into the time domain by inverse discrete Fourier transform
(IDFT), mixing the sensor noise. Considering the worse noise conditions, the SNR is subject
to [−6 dB, 60 dB] uniform random distribution. The training data set referred to in this
article has I × 4000 samples, and the testing set has I × 400 samples.

Figure 3. The generation process of data set signals.

For the data set of the regressor, the inputs are the features extracted by the multi-
label classifier from the phase map, and the labels are the accurate DOA deviations in the
grid-gap. If this array is symmetrical, the mapping between the DOA deviation and the
feature is consistent for each grid-gap uniformly divided in space. Therefore, we can train
the regressor in one grid-gap to generalize to other grid-gaps. The signals of the training
set can still be traced to the original phase map input, which is generated by the process in
Figure 3 according to the new DOA parameter ϕi

ϕi = θi + Δi, (4)

where Δi is the DOA deviation at the i-th grid-gap, and it is also the label of the i-th
proposal feature M × F matrix. Δi is subject to [−g/2, g/2] uniform random distribution,
where g is the DOA width of a grid-gap. Other parameter settings refer to parameters of
the data set in the multi-label classifier. The numbers of samples in training and testing
sets are 4000 and 400, respectively.

3.3. Training Methods and Results

The proposed deep networks are realized and trained in Pytorch on a PC with a
single graphic processing unit (GPU) RTX2080Ti and an Intel i7-8700 processor. We use the
stochastic gradient descent algorithm with a momentum of 0.9 to train the CFCN-based
multi-label classifier and the regressor. The number of samples in each batch is set as I,
binary cross-entropy is used as the loss function for the multi-label classifier, and mean-
squared error (MSE) is used for the regressor. The cyclic learning rate scheduler [31] is
used for training, and the learning rate range is from 10−6 to 10−1. Xavier [32] is used
for initialization. Note that this model only uses a single-source white noise data set as
training, and no other multi-source band-limited signal data sets are used for training here.

In this work, we take a uniform circular array with parameters of M = 8.70 mm
aperture as an example to compare the performance of different network structures. The
number of DOA grids is I = 72, i.e., the width of the grid-gap is 5◦. The sampling frequency
is Fs = 3 kHz, the length of each snapshot is N = 512, and then the number of sub-bands is
F = N/2 = 256, up to the Nyquist frequency. The influence of different convolution kernel
sizes, different convolution layer widths, and different convolution layer numbers on the
parameter quantity and performance of the model is discussed. The evaluation results are
shown in Table 1. The structure of the model in Figure 2 is encoded for convenience. “L∗”
means the number of convolutional network layers is “∗”. “FC” means a fully connected
network. “K∗” means the size of the convolution kernel ∗ × 1. “[·]× ∗” means “·” repeated
“∗” times. For example, CNN + FC: L7-K2- [64] × 7 + FC[[512] × 2, 72] means: the model
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consists of seven convolutional layers, the convolution kernel size is 2 × 1, each layer has
64 channels, and the fully connected network structure is [512 × 512 × 72].

Table 1 shows the comparison of different model parameters, accuracy, and total
floating point operations (FLOPs), which are obtained using an open source neural network
analyzer (https://github.com/Swall0w/torchstat (accessed on 31 March 2021)). We can
see that although CFCN-based methods slightly increase computational complexity, they
have fewer parameters and higher accuracy than CNN + FC [24]. The main reason is that a
fully connected network occupies a lot of parameters, and the phase difference features
between sensors will decrease significantly as the frequency decreases. All sub-band
features extracted by the CNN are input to the fully connected network, and then the fully
connected network may sacrifice low phase difference features in the low-frequency range
to highlight the important feature contributions in the high-frequency range in order to
improve the score in training. This leads to a weak generalization ability on low-frequency
signals. This inference can be verified in the simulation experiment in the next section.

Table 1. Comparison of different model parameters, accuracy, and total floating point operations (FLOPs).

The Structure of the Model Number of Parameters (in Millions) Accuracy (%) Total FLOPs (Million)

CNN + FC [24]: K2-[64] ×
7-FC[[512] × 2, 72] 8.48 89.4 53.67

CFCN: L4-K4-[[128] × 3, 72] 0.1689 92.74 345.66
CFCN: L4-K4-[72] × 4 0.0628 91.2 128.83

CFCN: L4-K2-[[128] × 3, 72] 0.0847 90.93 173.84
CFCN: L5-K4-[[128 × 4], 72] 0.2346 95.1 479.88

CFCN: L5-K2-[72] × 5 0.0420 94.5 86.53
CFCN: L5-K4-[72] × 5 0.0836 92.1 171.43

CFCN: L6-K4-[[128] × 5, 72] 0.3569 1.2 614.09
CFCN: L6-K4-[72] × 6 0.1044 98.5 214.02
CFCN: L6-K2-[72] × 6 0.0524 89.2 107.98
CFCN: L7-K4-[72] × 7 0.1252 1.3 256.62
CFCN: L7-K2-[72] × 7 0.0629 92.8 129.42
CFCN: L8-K2-[72] × 8 0.0733 95.5 150.86
CFCN: L9-K2-[72] × 9 0.0837 96.7 172.31

CFCN: L10-K2-[72] × 10 0.0942 97.1 193.75
CFCN: L11-K2-[72] × 11 0.1046 97.8 215.2
CFCN: L12-K2-[72] × 12 0.1151 1.4 236.64

The CFCN does not use a fully connected network to classify all features but uses a
separate phase feature classification for each sub-band. In this way, it effectively reduces
the parameters and ensures that each sub-band feature has an equal contribution to the
DOA estimation.

When the CFCN has a 4 × 1 convolution kernel, the DOA estimation accuracy rate
increases rapidly as the number of convolutional network layers increases. When the
convolutional layer width is 72 channels, and the number of convolutional layers is in-
creased to six layers, the accuracy rate reaches the highest 98.5%. When the width of
the convolutional layer is 128, the number of convolutional layers can be up to five, and
the accuracy rate is 95.1%. If the size of the convolution kernel is reduced to 2 × 1, the
convolution width is set to 72, the number of convolution layers can be up to 11, and the
accuracy rate can reach 97.8%. Therefore, a fully convolutional network with an I width of
M/2 + 2 layers is used in the following text.

For the regressor, we utilized a four-layer fully connected network to approximate the
mapping between the deviation of DOA in the grid-gap and the corresponding features.
After training, the final mean absolute error (MAE) of the off-grid DOA reaches 0.782◦.
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3.4. Computational Complexity

In the implementation of computational processing, deep learning-based methods
have been more optimized for parallel computing than traditional subspace-based algo-
rithms such as MUSIC. Table 2 shows the average computing time of different methods
on the platform of central processing unit (CPU) and GPU used by this paper. Deep
learning-based DOA algorithms have better real-time performance. For the wide-band
MUSIC, the total computational complexity is O(FM3 + FM2 I) [33], where O(FM3) and
O(FM2 I) are the complexity of eigen-decomposition and the spatial pseudo-spectrum
search for F sub-bands, respectively. According to [34] and network structures involved
in the article, the computational complexity of the CFCN and CNN-DOA are O(M3

4 I2F)
and O(M × MF × M/2 × 64 × 64 + 2 × 64 × F × 512 + 2 × 512 × I), respectively. As the
numbers of sensors and DOA grids increase, the proposed method has more computa-
tional complexity than CNN-DOA. If the input signals overlap 50%, i.e., the report refresh
period is 256/3000 = 0.085 s, the CFCN based on the structure L6-K4-[72] × 6 requires a
processing speed of more than 2.52 GigaFLOPs (GFLOPs) per second (FLOPs/S). For the
current embedded processors such as the RK3399Pro IoT device with the neural process
engine reaching 2.4 TeraFLOPs/S (TFLOPs/S) [35] and NVIDIA TX2 with compute unified
device architecture (CUDA) cores reaching 1.5 TFLOPs/S [36], the calculation requirements
of CFCN-based methods are quite acceptable. The CFCN can even be implemented in a
full-hardware system [37] for better real-time performance.

Table 2. Comparison of different model average computing time.

CNN + FC [24]: K2-[64] × 7-FC[[512] × 2, 72] MUSIC CFCN: L6-K4-[72] × 6 + Regressor

CPU 6.6 ms 486 ms 9.7 ms
GPU 1.2 ms - 2.2 ms

4. Simulation Experimental Evaluation

In this section, simulation experiments are implemented to evaluate the generalization
ability and DOA estimation performance of the trained network under different conditions.

4.1. Baselines and Objective Measures

The performance of the proposed method is compared to two common algorithms:
MUSIC [4] and CNN-based DOA [24]. To ensure a fair comparison, we set similar param-
eter settings for other methods, e.g., the DOA grid is 5◦. The wideband MUSIC method
averages the spatial pseudo-spectrum of all sub-bands to obtain the wideband spatial
pseudo-spectrum. The H highest peak values are selected as the final DOA estimates. Two
hundred Monte Carlo experiments were performed for the statistics.

For the objective evaluation, OSPA [38] (optimal sub-pattern assignment) was used as
the multi-source DOA error metric:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩
Dp,c(X, Y) =

[
1
|X|

(
min

π∈Π|X|
∑
|X|
i=1 dp

c (xi, yi) + (|X| − |Y|) · cp
)] 1

p

, |X| ≤ |Y|

Dp,c(X, Y) =

[
1
|X| min

π∈Π|X|
∑
|X|
i=1 dp

c (xi, yi)

] 1
p

, |X| > |Y|
, (5)

where X is the measured DOA set, Y is the true DOA set, xi ∈ X, yi ∈ Y, | · | is the
cardinality of the set ·, p is the order of OSPA, Π|X| is the set of |X| elements extracted and
permuted and combined from Y, and dc(x, y) is the cut-off distance:

dc(x, y) = min{c, d(x, y)}. (6)
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In (6), d(x, y) is the difference between two angles:

d(x, y) = min{|x − y|, |360◦ − |x − y||}. (7)

In this article, we set that c = 45◦, and p = 2. For the J Monte Carlo tests, the mean
OSPA Dp,c is:

Dp,c =
1
J

J

∑
j=1

Dp,c(xi, yi). (8)

For the single-source case, the mean OSPA is the MAE. If the mean OSPA is more than
20◦, the algorithm is evaluated as a failure.

4.2. Simulation Experiments
4.2.1. Simulation Settings

The sampling frequency of the input signal is Fs = 3 kHz, and the data length of each
time frame is N = 512. To evaluate the performance of the model, we design challenging
simulation conditions including different bandwidth-limited signal sources, single and
dual sources, and different SNRs, where the dual sources are angularly separated by 135◦,
and the SNR range is [−6 dB, 0 dB, 6 dB, 12 dB, 20 dB]. The specific simulation conditions
are as follows:

(1) Single-source situation:

• Low frequency: 0–200 Hz;
• Full frequency: 0–1500 Hz;

(2) Dual-source situation:

• Overlapping low frequency: 0–200 Hz;
• Non-overlapping frequency: 0–200 Hz, 200–500 Hz;
• Overlapping full frequency: 0–1500 Hz;

4.2.2. Simulation Results

According to the above simulation test conditions, the simulation results of CFCN-
DOA, MUSIC and CNN-DOA for the 200 Monte Carlo tests are as follows:

(i) Single-source situation:
(a) Low-frequency band-limited source cases: The true DOA is set to 182.5◦ in the

middle of grids. Then, the on-grid-based methods cannot provide the precise DOA.
Simulation evaluation results for the low-frequency case are shown in Figure 4. Figure 4a
shows the mean OSPAs (MAEs) of three methods over different SNRs, and then we can
see that the MAEs of CNN-DOA are all more than 20◦, which means that the CNN-DOA
fails. However, the CFCN-DOA has lower errors under the lower SNR conditions. Even
when the SNR is 0 dB, the accuracy can still reach 17.5°, but the MUSIC cannot work at
this time. As the SNR increases, the MAE of CFCN-DOA continues to decline, all lower
than that of MUSIC, reaching 1.45° at 20 dB SNR. We can also see the details in space-
frequency pseudo-spectra of CFCN-DOA and MUSIC at 0 dB SNR, which are plotted
in Figure 4c,d, respectively. In the area of 360◦ × 0–200 Hz, the space-frequency pseudo-
spectrum of MUSIC is almost flat, while the bright spots of CFCN can be identified. These
characteristics can be seen more clearly from the average spatial pseudo-spectra in the area,
displayed in Figure 4b. The CFCN-DOA has a higher resolution than MUSIC at a lower
frequency. Note that CNN-DOA fails for low-frequency band-limited sources, and the
estimated DOAs always tend towards some other unrelated points.
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(a) The mean OSPAs (b) Normalized spatial pseudo-spectrum at
SNR = 0 dB

(c) Space-frequency pseudo-spectrum of
CFCN at SNR = 0 dB

(d) Space-frequency pseudo-spectrum of
MUSIC at SNR = 0 dB

Figure 4. The results of the simulation under the low-frequency single-source condition.

(b) Full-frequency source cases: The true DOA is also set to 182.5◦. Simulation
evaluation results are exhibited in Figure 5. Compared with the low-frequency band-
limited case, the mean OSPAs of these methods are remarkably improved, which can
be seen from Figure 5a. At this condition, CNN-DOA can work and reaches the same
accuracy, i.e., 2.5◦, with the MUSIC beyond 6 dB SNR, while the off-grid CFCN-DOA
can further obtain higher accuracy. We can also see the superiority of CFCN-DOA from
normalized space-frequency pseudo-spectra shown in Figure 5b,c. The spatial directivity
of CFCN-DOA at each sub-band is more consistent than MUSIC. The spatial directivities
of average spatial pseudo-spectra of MUSIC, CFCN-DOA, and CNN-DOA are enhanced
in turn, which is displayed in Figure 5d. Normalizing the spatial spectrum for each sub-
band, we can obtain a three-dimensional pseudo-beam pattern of CFCN, which is shown
in Figure 5e. Then, the −3 dB pseudo-beam width in the frequency range 50–1500 Hz
can be calculated by statistics at 20 dB SNR (See Figure 5f). The pseudo-beam width of
CFCN-DOA is lower than the MUSIC at each sub-band, especially at 50 Hz CFCN-DOA
reaching a pseudo-beam of less than 90◦ MUSIC has nearly 160◦ width. Since testing
signals are similar to the training data set, the CNN-DOA performs very well, and the
accuracy reaches the limit, i.e., the grid-gap, until the SNR is 20 dB. At this moment, the
off-grid CFCN-DOA can achieve 1.45◦.
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(a) The mean OSPAs (b) Space-frequency
pseudo-spectrum of CFCN

at SNR = 20 dB

(c) Space-frequency
pseudo-spectrum of

MUSIC at SNR = 20 dB

(d) Normalized spatial
pseudo-spectrum at SNR =

20 dB

(e) 3D display of
pseudo-beam pattern at

SNR = 20 dB

(f) Pseudo-beam width at
SNR = 20 dB

Figure 5. The results of the simulation under the full-frequency single-source condition.

(ii) Dual-source situation: The true DOAs of two sources are set to 92.5◦ and 227.5◦,
respectively. Simulation results are counted in Figure 6. From Figure 6a–c, we can con-
clude that CNN-DOA cannot estimate multiple sources whether the frequency ranges
are overlapping or non-overlapping, or the band is limited or non-limited. Although the
other two methods can work in these three situations, MUSIC fails when the SNR is less
than 20 dB under overlapping low-frequency, 6 dB under non-overlapping frequency, and
10 dB under overlapping full-frequency. On the contrary, CFCN-DOA is more capable of
fighting low-SNR situations. The accuracy under the three conditions mentioned is 9.18◦,
7.39◦, and 10.48◦, respectively. The space-frequency pseudo-spectra of CFCN under the
three conditions mentioned are shown in Figure 6d–f respectively, and those of MUSIC are
plotted in Figure 6g–i, respectively. From the space-frequency pseudo-spectra in the critical
conditions of these MUSIC failures, CFCN-DOA can highlight the more spatial features of
different frequencies. This also further verifies the generalization ability of the CFCN-DOA
method based on learning space-frequency pseudo-spectrum.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6. The results of the simulation under the dual-source condition. (a) The mean OSPAs under the overlapping
low-frequency condition. (b) The mean OSPAs under the non-overlapping frequency condition. (c) The mean OSPAs under
the overlapping full-frequency condition. (d) Space-frequency pseudo-spectrum of CFCN under the conditions: overlapping
low-frequency and SNR = 12 dB. (e) Space-frequency pseudo-spectrum of CFCN under the conditions: non-overlapping
frequency and SNR = 6 dB. (f) Space-frequency pseudo-spectrum of CFCN under the conditions: overlapping full-frequency
and SNR = 0 dB. (g) Space-frequency pseudo-spectrum of MUSIC under the conditions: overlapping low-frequency and SNR
= 12 dB. (h) Space-frequency pseudo-spectrum of MUSIC under the conditions: non-overlapping frequency and SNR = 6 dB.
(i) Space-frequency pseudo-spectrum of MUSIC under the conditions: overlapping full-frequency and SNR = 0 dB.

5. Experimental Verification in Semi-Anechoic Chamber

To verify the actual generalization performance of the proposed algorithm, we imple-
ment the semi-anechoic room test. The indoor noise is less than 30 dB. The experimental
scene layout is shown in Figure 7. We adopt Hivi speakers as acoustic sources and use
the recorder Zoom-F8n as the acquisition equipment. The distance between the speaker
and the acoustic array is 1.4 m. The angular interval of the dual sources is set to 135°.
Single/dual-source tests in different frequency ranges are carried out. Then, the simulation
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data are replayed. The experiment time of each test is more than 40 s, and the data are
reprocessed with a 512-point Hanning window and 50% overlapping. Then, the first
200 frames of data are selected for statistics. Considering the limitation of the front-end
MEMS microphone frequency response parameters, the processing frequency range is set
to 50–1500 Hz.

Figure 7. The settings of the semi-anechoic chamber experiment.

The results of the experiment in a semi-anechoic chamber are summarized as follows.
Table 3 describes the mean OSPAs under all the conditions. Due to the limitation of the
speaker frequency response, the speakers can not play pure low-frequency signals, and
their harmonic components usually pollute the high-frequency parts. For instance, Figure 8
shows the frequency spectrum of a sensor receiving signal from harmonic interference
under the dual-source 0–200 Hz condition.

Figure 8. The frequency spectrum of a sensor receiving a signal from harmonic interference under
the dual-source 0–200 Hz condition.
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Table 3. Mean OSPAs for the experiment in semi-anechoic chamber (Unit: ◦).

Methods

Single-Source,
Low-Frequency,
(SNR = 81.5 dB)

Single-Source,
Full-Frequency,
(SNR = 89.9 dB)

Dual-Source,
Overlapping
Low-Frequency,
(SNR = 120 dB)

Dual-Source,
Non-Overlapping
Low-Frequency,
(SNR = 120 dB)

Dual-Source,
Overlapping
Full-Frequency,
(SNR = 116 dB)

CFCN-DOA 2.15 0.15 1.52 1.14 3.45
MUSIC 4.64 2.76 6.84 2.56 3.75

CNN-DOA 3.42 1.23 28.89 33.04 26.75

Coupled with the quiet environment in the semi-cancellation room, CNN-DOA can
give full play to its performance. For the single-source low-frequency case, CNN-DOA
can reach 3.42◦ in such a quiet environment. However, CNN-DOA cannot deal with multi-
source cases. The proposed off-grid methods have higher accuracy than MUSIC. If the
frequency ranges of sources are non-overlapping, the accuracy of CFCN-DOA is up to
1.14◦. Note that the error of CFCN-DOA under the dual-source overlapping full-frequency
condition is larger than that under the dual-source overlapping low-frequency condition
because the improved estimation performance caused by contaminated high-frequency
signals for the low-frequency case is greater than the effect of frequency overlap for the
full-frequency case. From Figure 9, the generalization performance is further verified by
the high directivity at the space-frequency area. Note that the space-frequency pseudo-
spectrum of the CFCN in Figure 9a spreads to the high-frequency range due to the weakly
leaking high-frequency harmonic signals from speakers.

(a) (b) (c)

(d) (e) (f)

Figure 9. Space-frequency pseudo-spectra obtained by CFCN-DOA and CNN-DOA in the experiment in the semi-anechoic
chamber. (a) CFCN under the overlapping low-frequency dual-source condition. (b) CFCN under the non-overlapping
frequency dual-source condition. (c) CFCN under the overlapping full-frequency dual-source condition. (d) MUSIC
under the overlapping low-frequency dual-source condition. (e) MUSIC under the non-overlapping frequency dual-source
condition. (f) MUSIC under the overlapping full-frequency dual-source condition.
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6. Discussion

From the simulation and semi-anechoic chamber experiments, the traditional CNN-
based models have weak generalization ability for band-limited signals or multi-source,
while the CFCN-based off-grid method can overcome these difficulties and its resolution
and accuracy are better than MUSIC. There are two critical differences between these two
deep learning-based methods.

(i) On the one hand, the input data of the two methods are the same, but their labels
are different, i.e., the spatial pseudo-spectra as the labels of CNN-based methods and
space-frequency pseudo-spectra as the labels of CFCN-based methods. The spatial features
of each sub-band can be learned individually by the backbone of CFCN. In this way, other
sources with limited frequency bands that do not match the features in the training data
set can still be located.

(ii) On the other hand, the backbones of these two methods are different. The architec-
ture of FCN can be split into an independent network for each sub-band, and the structure
of each network is consistent. Then, CFCN can have the same interpretation capability on
each sub-band. On the contrary, the features of all sub-bands are fused and mapped to the
spatial pseudo-spectrum by the fully connected network in CNN-based methods. In this
way, the model is more sensitive to frequency features.

Compared with traditional MUSIC-based methods, CFCN-based approaches richer
nonlinear interpretation capabilities. The higher resolution and accuracy can be achieved
by adjusting the network structures and related regressors. Although the CFCN has slightly
high computational requirements, it is quite feasible to achieve online real-time processing
for the current computing power.

7. Conclusions

In this paper, we propose an off-grid deep learning-based DOA estimation algorithm,
which is based on the circularly fully convolutional network (CFCN). The backbone of
this network is trained by the data set labeled by space-frequency pseudo-spectra and
provides on-grid DOA proposals. Then, the regressor is developed to estimate the precise
DOAs in the corresponding grid proposals. The simulation and semi-anechoic chamber
experiment results show that under the conditions of single/dual sources with different
band-limited/SNRs, the proposed algorithm is superior to existing methods in terms of
generalization ability, resolution, and accuracy. Especially for the case of dual-source low-
frequency and 12 dB SNR, CFCN can still distinguish multiple sources with an accuracy of
8.26◦, while MUSIC and CNN-DOA fail at this time. Also, the −3 dB pseudo-beam width of
CFCN reaches 90◦ at 50 Hz, which is much lower than the 160◦ width of MUSIC. In future
work, we hope that this proposed method can be extended to the case of coherent signals.
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Zwick, T. Application of Artificial Neural Networks for Efficient High-Resolution 2D DOA Estimation. Radio Eng. 2012,
21, 1178–1186.

15. Agatonovic, M.; Stankovic, Z.; Milovanovic, B. High resolution two-dimensional DOA estimation using artificial neural
networks. In Proceedings of the 2012 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic,
26–30 March 2012; pp. 1–5.

16. Matsumoto, T.; Kuwahara, Y. 2D DOA estimation using beam steering antenna by the switched parasitic elements and RBF
neural network. Electron. Commun. Jpn. (Part I Commun.) 2006, 89, 22–31. [CrossRef]

17. Agatonovic, M.; Stankovic, Z.; Milovanovic, I.; Doncov, N.S.; Sit, L.; Zwick, T.; Milovanovic, B. Efficient neural network approach
for 2D doa estimation based on antenna array measurements. Prog. Electromagn. Res. 2013, 137, 741–758. [CrossRef]

18. Fonseca, N.; Coudyser, M.; Laurin, J.J.; Brault, J.J. On the Design of a Compact Neural Network-Based DOA Estimation System.
IEEE Trans. Antennas Propag. 2010, 58, 357–366. [CrossRef]

19. Southall, H.; Simmers, J.; O’Donnell, T. Direction finding in phased arrays with a neural network beamformer. IEEE Trans.
Antennas Propag. 1995, 43, 1369–1374. [CrossRef]

20. Pastorino, M.; Randazzo, A. A smart antenna system for direction of arrival estimation based on a support vector regression.
IEEE Trans. Antennas Propag. 2005, 53, 2161–2168. [CrossRef]

21. Huang, H.; Gui, G.; Sari, H.; Adachi, F. Deep Learning for Super-Resolution DOA Estimation in Massive MIMO Systems. In
Proceedings of the 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), Chicago, IL, USA, 27–30 August 2018; pp. 1–5.

22. Liu, Z.M.; Zhang, C.; Yu, P.S. Direction-of-Arrival Estimation Based on Deep Neural Networks with Robustness to Array
Imperfections. IEEE Trans. Antennas Propag. 2018, 66, 7315–7327. [CrossRef]

23. Chen, X.; Wang, D.; Yin, J.; Wu, Y. A Direct Position-Determination Approach for Multiple Sources Based on Neural Network
Computation. Sensors 2018, 18, 1925. [CrossRef]

24. Chakrabarty, S.; Habets, E.A.P. Multi-Speaker DOA Estimation Using Deep Convolutional Networks Trained with Noise Signals.
IEEE J. Sel. Top. Signal Process. 2019, 13, 8–21. [CrossRef]

25. Yao, Y.; Lei, H.; He, W. A-CRNN-Based Method for Coherent DOA Estimation with Unknown Source Number. Sensors 2020,
20, 2296. [CrossRef]

26. Perotin, L.; Serizel, R.; Vincent, E.; Guerin, A. CRNN-Based Multiple DoA Estimation Using Acoustic Intensity Features for
Ambisonics Recordings. IEEE J. Sel. Top. Signal Process. 2019, 13, 22–33. [CrossRef]

27. Liu, W. Super resolution DOA estimation based on deep neural network. Sci. Rep. 2020, 10, 19859. [CrossRef]
28. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE

Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef]
29. Zhang, S.; Wen, L.; Lei, Z.; Li, S.Z. RefineDet++: Single-Shot Refinement Neural Network for Object Detection. IEEE Trans.

Circuits Syst. Video Technol. 2021, 31, 674–687. [CrossRef]

310



Sensors 2021, 21, 2767

30. Chung, H.; Seo, H.; Joo, J.; Lee, D.; Kim, S. Off-Grid DoA Estimation via Two-Stage Cascaded Neural Network. Energies 2021,
14, 228. [CrossRef]

31. Smith, L.N. Cyclical Learning Rates for Training Neural Networks. In Proceedings of the 2017 IEEE Winter Conference on
Applications of Computer Vision (WACV), Santa Rosa, CA, USA, 27–29 March 2017; pp. 464–472.

32. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010; pp. 249–256.

33. Stoeckle, C.; Munir, J.; Mezghani, A.; Nossek, J.A. DoA Estimation Performance and Computational Complexity of Subspace-
and Compressed Sensing-based Methods. In Proceedings of the 19th International ITG Workshop on Smart Antennas (WSA
2015), Ilmenau, Germany, 3–5 March 2015; pp. 1–6.

34. He, K.; Sun, J. Convolutional neural networks at constrained time cost. In Proceedings of the Conference on Computer Vision
and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 5353–5360.

35. Zhen, P.; Liu, B.; Cheng, Y.; Chen, H.B.; Yu, H. Fast video facial expression recognition by deeply tensor-compressed LSTM
neural network on mobile device. In Proceedings of the 4th ACM/IEEE Symposium on Edge Computing, Washington, DC, USA,
7–9 November 2019; pp. 298–300.

36. Amert, T.; Otterness, N.; Yang, M.; Anderson, J.H.; Smith, F.D. GPU Scheduling on the NVIDIA TX2: Hidden Details Revealed.
In Proceedings of IEEE Real-Time Systems Symposium (RTSS), Paris, France, 5–8 December 2017; pp. 104–115.

37. Avitabile, G.; Florio, A.; Coviello, G. Angle of Arrival Estimation Through a Full-Hardware Approach for Adaptive Beamforming.
IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 3033–3037. [CrossRef]

38. Schuhmacher, D.; Vo, B.T.; Vo, B.N. A Consistent Metric for Performance Evaluation of Multi-Object Filters. IEEE Trans. Signal
Process. 2008, 56, 3447–3457. [CrossRef]

311





sensors

Article

Radar Signal Modulation Recognition Based on Sep-ResNet

Yongjiang Mao 1,2,3, Wenjuan Ren 1,2,* and Zhanpeng Yang 1,2

Citation: Mao, Y.; Ren, W.; Yang, Z.

Radar Signal Modulation Recognition

Based on Sep-ResNet. Sensors 2021,

21, 7474. https://doi.org/10.3390/

s21227474

Academic Editors: Moulay A.

Akhloufi and Mozhdeh Shahbazi

Received: 28 September 2021

Accepted: 7 November 2021

Published: 10 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Key Laboratory of Network Information System Technology, Institute of Electronics, Chinese Academy
of Sciences, Beijing 100190, China; myj@whu.edu.cn (Y.M.); zhanpengyang@mail.ie.ac.cn (Z.Y.)

2 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
3 University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: renwj@aircas.ac.cn; Tel.: +86-134-6672-1075

Abstract: With the development of signal processing technology and the use of new radar systems,
signal aliasing and electronic interference have occurred in space. The electromagnetic signals have
become extremely complicated in their current applications in space, causing difficult problems in
terms of accurately identifying radar-modulated signals in low signal-to-noise ratio (SNR) environ-
ments. To address this problem, in this paper, we propose an intelligent recognition method that
combines time–frequency (T–F) analysis and a deep neural network to identify radar modulation
signals. The T–F analysis of the complex Morlet wavelet transform (CMWT) method is used to
extract the characteristics of signals and obtain the T–F images. Adaptive filtering and morphological
processing are used in T–F image enhancement to reduce the interference of noise on signal charac-
teristics. A deep neural network with the channel-separable ResNet (Sep-ResNet) is used to classify
enhanced T–F images. The proposed method completes high-accuracy intelligent recognition of
radar-modulated signals in a low-SNR environment. When the SNR is −10 dB, the probability of
successful recognition (PSR) is 93.44%.

Keywords: radar modulation signal; time–frequency analysis; complex Morlet wavelet; image
enhancement; channel-separable ResNet

1. Introduction

Radar modulation signal (RMS) recognition is the basis of radar electronic countermea-
sures and electronic jamming, and is a necessary problem in electronic warfare [1]. With
the use of various multi-band and full-coverage communication equipment, electronic
interference and signal aliasing have appeared in space. This makes the electromag-
netic environment more complicated [2,3], which brings difficulties to the recognition
of RMS in low-SNR environments. Because RMS has good performance in complex
spaces, it is important to improve the probability of the successful recognition of RMS in
low-SNR environments.

For the traditional recognition methods of RMS, those methods based on signal char-
acteristic parameter matching proposed by [4] and the judgment method based on the
expert system proposed by [5] are used to identify RMS. Both of them are disturbed by
human factors and are not stable. In [6], the principal component analysis (PCA) was
used to extract radar signal features. In [7], the support vector machine (SVM) and T–F
distribution images of signals were used to identify RMS. These methods, based on tradi-
tional machine learning, tend to select the characteristics of RMS manually. The methods
require much a priori knowledge and struggle to meet the recognition requirements for
the new radar systems and the variety of modulated signals [8]. With the development
of artificial intelligence, deep learning has also been applied to the recognition of radar
signals. Classification and recognition based on deep learning have many advantages.
Without human assumptions and intervention about the features to be extracted, the deep
neural network can effectively learn the features of the signals [9]. Deep learning can better
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resist the interference of noise in the extraction of signal features, thereby improving the
generalization ability and accuracy in the identification of RMS [10]. In [11], the input of
the classification network is a one-dimensional RMS sequence based on the time domain,
frequency domain, and autocorrelation domain. By combining a convolutional neural
network (CNN), a long short-term memory network (LSTM), and a deep neural network
(DNN), the recognition of RMS was completed. However, this method completed the
signal recognition on a one-dimensional basis. The method had no denoising processing
in the case of one-dimensional signal sequences. The result was not ideal in a low-SNR
environment of ≤−10 dB. In [12], the improved AlexNet and Choi–Williams T–F distribu-
tion is used to complete the recognition of RMS based on two-dimensional images. This
method did not denoise the T–F images, and the classification network was designed
simply, resulting in weak anti-noise ability. This method cannot extract the features of T–F
images well, and the PSR is low. In [13], the Cohen T–F transform method was used to
convert the RMS to obtain T–F images, and the surface features of the image were extracted
by CNN, and then the recurrent neural network was used to classify the T–F images of
RMS. Because the images obtained by the Cohen transform had strong cross-terms, the
characteristics of the signal experienced interference by the cross-terms, and the network
could not extract the T–F image features well in low-SNR environments, resulting the PSR
of the radar signal not being ideal when the SNR was −8 dB.

In this paper, in response to the difficulty in recognizing the RMS in low-SNR envi-
ronments, we propose a novel method that combines the CMWT and the Sep-ResNet to
accurately identify the RMS in a low-SNR environment of −13 dB. Through the enhance-
ment T–F images by CMWT and the classification network of Sep-ResNet, the method in
this paper has a strong anti-noise interference ability. This method can identify seven types
of RMS, including normal signal (NS), linear frequency modulation (LFM), non-linear
frequency modulation (NLFM), two-frequency shift keying (2FSK), two-phase shift keying
(2PSK), four-frequency shift keying (4FSK) and four-phase shift keying (4PSK). The overall
PSR of our method for seven types of RMS could reach 96.57% from 8 dB to −13 dB. In the
case of SNR ≥ 2 dB, the PSR was 100%. In the case of low-SNR environments of −10 dB
and −13 dB, the PSR was 93.44% and 88.24%, respectively.

Our major contributions are summarized as follows:

• The CMWT was introduced into the T–F analysis, which made it possible to avoid the
interference of the T–F distribution cross-terms in the signal characteristics, and the
T–F images had high T–F resolutions;

• The T–F images were denoised and enhanced through adaptive filtering and morpho-
logical methods. Effective morphological structural elements were designed to filter
out noise on the T–F images and reduce the interference of noise in signal characteristics;

• By improving the residual unit structure, named Sep-ResNet, and multiple receptive
fields for extracting features, as well as fusing multi-channel feature maps, the PSR
was improved 2.51% in a low-SNR environment of −13 dB.

The remainder of this paper is organized as follows. Section 2 introduces the related
work in the field of radar-modulation signal recognition. Section 3 introduces the recogni-
tion system framework and the proposed method, including the T–F analysis of CMWT, the
T–F image-enhancing algorithm, and the improved classification network of Sep-ResNet.
Section 4 shows the experimental data and results, and discusses the effectiveness of our
method. Finally, Section 5 includes the conclusion of the whole work.

2. Related Work

In the past, many scholars have devoted themselves to exploring the automatic recog-
nition system of RMS in applications. They have proposed several practicable approaches,
making the system more intelligent, more robust, and less artificial. These achievements
have pushed forward the development of the field of RMS recognition.

The recognition of RMS includes the extraction and classification of characteristics.
In [7], the T–F analysis was used to extract signal characteristics. The SVM and auto encoder
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were used to classify the signal. This method introduced a slack variable to consider
a non-linearly separable problem to find the best hyperplane so that the classification
result had widths of the maximum margin. The method solved the problem of high-
dimensional classification by selecting a suitable kernel function. The method identified
RMS successfully, and the PSR was 82% in an SNR environment of −6 dB. The authors
of [11] proposed a network combining CNN, LSTM, and DNN. They successfully identified
six types of RMS when the SNR was from −14 to 20 dB. This method extracted the
characteristics of the signal as the original one-dimensional sequence in the time domain,
the fast Fourier transform sequence in the frequency domain, and the result of signal
autocorrelation in the autocorrelation domain. A CNN was used to extract the surface
features of the signal in different domains, and the features extracted by the CNN were
used as the input of the LSTM, and the DNN was used to classify the characteristics of
the signal. The length of the signal sequence extracted by this method needed to be set in
advance, and the sequence length was different in the time domain, frequency domain,
and autocorrelation domain. Under the preset optimal sequence length, the PSR was about
90% when the SNR was −6 dB. This method required preprocessing to obtain the optimal
sequence length of a signal for a specific domain, which had limitations. Moreover, the
features of one-dimensional sequence were not as rich as that of two-dimensional T–F
images, and the recognition accuracy was not as high as that obtained in [14]. When
signal features were extracted by the one-dimensional sequence, some feature parameters
needed to be manually selected for the data. The T–F analysis method can overcome the
shortcomings of the Fourier transform and reflect the signal characteristics in the two-
dimensional space of T–F. By obtaining the T–F images, the order of appearance of each
frequency component can be well distinguished. The T–F analysis method can adequately
extract the characteristics of non-stationary signals, such as RMS. In [12], the Choi–Williams
distribution (CWD) was a method of T–F analysis that was used to extract the features of a
modulated signal x(t). The expression is as follows:

Cx(t, ω) =
1

4π2

�
∞

φ(τ, v)e−j(vt+ωτ)x
(

u +
τ

2

)
x∗
(

u − τ

2

)
ejvudvdτdu (1)

where t and ω are the time and frequency coordinates, respectively. x∗(t) is the conjugate
expression of x(t). φ(τ, v) and σ are the kernel function and filter bandwidth, respectively.

In [12], the kernel function was a Gaussian kernel φ(τ, v) = exp
[
− (τv)2

σ

]
and σ = 1. The

larger σ, the better aggregation of signal on the T–F images. However, a large σ will bring
more serious cross-terms by x(t) times x∗(t). Cross-terms will reduce the quality of T–F
images. In the improved AlexNet, the dropout is added to reduce overfitting, the size of
the convolution kernel is modified, the receptive field of convolution is increased, and
the fully connected layer is reduced to decrease the weight parameters. When the SNR is
−2 dB, the recognition rate can reach 80%. In [15], the signal characteristics were extracted
through the improved phase difference short-time Fourier transform (STFT). The STFT of
the signal is expressed as follows:

STFT(t, f ) =
∫ +∞

−∞
x(τ)w(τ − t)exp(−j2π f τ)dτ (2)

where w(t) and x(t) are fixed-width window functions and signals to be analyzed, respec-
tively. Through the continuous sliding of the w(t) window, the Fourier transform was
performed in the window to extract the signal characteristics. It reduced the influence of
noise by increasing the order of the phase difference. However, an increase in the phase
difference order would increase the complexity of the algorithm. In addition, the STFT
used a fixed-width window function to extract signal characteristics, resulting in low T–F
resolution. When the SNR was −6 dB, the PSR of recognition result was 93%. In [14], by
improving the kernel function of CWD, the original Gaussian kernel function was changed
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to φ(τ, v) = exp
(
− ατ2+βv2

σ

)
, which solved the problem of φ(τ, v) = 0 when τ = 0 or

v = 0. To a certain extent, it was able to reduce the interference of the cross-terms in
the T–F distribution images. Furthermore, the T–F images were denoised by 2D-Wiener
filtering. This method improved the PSR to 96% when the SNR was −6 dB, and the PSR
was found to be 78% when the SNR was −8 dB. Due to the existence of cross-terms, this
method does not perform well in low-SNR environments. In [16], the wavelet transform
T–F analysis method was used to extract the characteristics of the signal. The wavelet
transform represents an improvement upon STFT; the signal to be analyzed is decomposed
into a series of superpositions of wavelet functions. The wavelet functions are obtained
from the mother wavelet through translation and scaling transformation. The mother
wavelet is stretched at low frequencies and compressed at high frequencies, and has the
characteristics of multi-scale refinement. In order to restore the characteristics of the signal
on the time and frequency scale, the wavelet transform method continually approximates
the signal that is to be analyzed.

A large number of RMS recognition systems have been designed, but the identification
of a variety of RMS with high accuracy in low-SNR environments of ≤−10 dB remains a
challenging problem.

3. System Framework and Method

This paper designs an intelligent method to identify RMS with high accuracy in low-
SNR environments. The first step is to transform the RMS into two-dimensional T–F images
using CMWT. In the second step, the T–F images are grayed out, and the T–F images are
denoised and enhanced through adaptive filtering and morphological processing to reduce
the interference of noise on signal characteristics. In the last step, the enhanced T–F images
are fed into the Sep-ResNet to train the model, and the trained model is used to accurately
predict the type of RMS. The system framework is shown in Figure 1.

Figure 1. RMS recognition system framework.

The received RMS model is as follows:

x(t) = s(t) + n(t) (3)

where x(t) represents the received RMS, and t is the time variable; s(t) and n(t) repre-
sent the transmitted RMS and the received noise, respectively. The transmitted RMS is
as follows:

s(t) = Arect
(

t
T

)
e−j(2π fct+φ(t)+φ0) (4)

rect
(

t
T

)
=

{
1, |t/T| ≤ 1/2
0, |t/T| ≥ 1/2

(5)

where A represents the signal amplitude, and A = 1 during simulation. The rect(•) is the
rectangular threshold function as shown in Equation (5), T is the pulse width of the signal,
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fc is the signal carrier frequency, φ0 is the initial phase of the signal, and φ(t) is the different
phase function, which determines the different signal modulation modes.

To simulate the received noise in the real channel of signals, Gaussian noise, white
noise, narrow-band Gaussian noise, and carrier frequency random disturbance are added [17].
Gaussian noise and white noise are some of the most common noises in actual channels.
The probability density function of Gaussian noise obeys a normal distribution, with a
mean value of 0 and a variance of 1. The power spectral density of white noise is a constant
over the entire bandwidth and obeys a uniform distribution, S(�) = N0/2, � ∈ (−∞,+∞).
When adding white noise, it only needs to be added within the actual signal bandwidth. Of-
ten, in a real radar communication system, a band-pass filter of the target signal bandwidth
is added at the receiving end. Because the communication frequency of the radar signal is
high, much larger than the bandwidth of the band-pass filter, the generation of Gaussian
narrow-band noise occurs. Narrow-band Gaussian noise obeys the Rayleigh distribution
on the random envelope and obeys the uniform distribution on the phase. It is generally
a stationary random process. Its mathematical model is n(t) = nc(t)cos�ct − ns(t)sin�ct,
where n(t) represents the average power of narrow-band Gaussian noise, nc(t) is the
co-directional component of n(t), and ns(t) is the orthogonal component of n(t). The mean
value of each component is E

[
n(t)]= E[nc(t)]= E[ns(t)

]
= 0, and the variance is σ2

n=1.
The jitter component of the carrier frequency is set to a random number in the range of 0 to
0.05 multiplied by the carrier frequency to simulate the error of the actual transmission
carrier frequency and the interference received during transmission.

The T–F analysis method can transform one-dimensional signal sequences into two-
dimensional T–F images to obtain RMS characteristics. Through the image enhancement
method, the enhanced images are fed to the Sep-ResNet to complete the RMS recognition.

3.1. Complex Morlet Wavelet Transform

Wavelet transform (WT) is a T–F analysis method. WT decomposes the original signal
into a series of superpositions of wavelet functions through mother wavelet translation and
scaling transformation, which solves the problem that the fixed-width window function
does not change with frequency in the STFT [15]. WT does not involve the conjugate
multiplication of the signal itself, which avoids the occurrence of cross-terms in [12,15].
WT can obtain high T–F resolution. The mathematical model is as follows:

CWTx(a, b) = 〈x(t), φa,b(t)〉 =
∫ +∞

−∞
x(t)φ∗

a,b(t)dt =
1√
a

∫ +∞

−∞
x(t)φ∗

(
t − b

a

)
dt (6)

where x(t) is the signal to be analyzed, and φ∗
a,b(t) is a series of wavelet functions after

the mother wavelet is translated and stretched. The transformation of the mother wavelet
is as follows:

φ∗
a,b(t) =

1√
a

φ

(
t − b

a

)
(7)

where a is the scale expansion factor and a �= 0. When a increases, φa,b(t) will widen and
the amplitude will decrease, showing that the wavelet is caused by the compression of the
amplitude and the stretching of the width, corresponding to the analysis of low-frequency
signals. When a decreases, the wavelet becomes narrower and the amplitude increases,
corresponding to the analysis of high-frequency signals. b is the time shift factor, which
changes the center position of the wavelet. WT has adaptive capabilities. By selecting
the appropriate mother wavelet (symmetry, orthogonality, and similarity), more detailed
features can be obtained in the T–F resolution.

In the WT of our method, the complex Morlet function was chosen as the mother
wavelet. CMWT is a complex exponential sinusoidal Gaussian wavelet, which has sym-
metry and non-orthogonality. CMWT has a good ability to extract the local characteristics
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of signals in the T–F domains and improves the resolution of T–F images. The complex
Morlet mother wavelet model is given in Equation (8):

φ(t) = exp
(−t2

2

)
exp(jω0t) (8)

Φ(ω) =
√

2πexp

(
−(ω − ω0)

2

2

)
(9)

Equation (9) is the Fourier transform of complex Morlet wavelet, where ω0 repre-
sents the center frequency. The complex Morlet mother wavelet φ(t) is divided into two
parts: the real part and the imaginary part. A series of wavelet functions φ∗

a,b(t) can
be obtained after the translation and scaling transformation using Equation (7). Incor-
porating Equation (8) into Equation (6), CWTx(a, b) = CWTR + jCWTi. By undertaking
T–F analysis, the added imaginary part of the complex Morlet wavelet can express more
changeable phase information on the original signal [18]. The complex Morlet wavelet
has non-orthogonality and Gaussian adjustment, which make it possible to obtain T–F
images of high time and frequency resolution through a series of variable scale wavelet
functions. The CMWT avoids the interference of cross-terms in signal characteristics in
low-SNR environments and improves the quality of T–F images. CMWT is suitable for the
T–F analysis of RMS and can obtain clear T–F images. Figure 2 shows the T–F images of
seven types of radar modulation signals of CMWT without adding noise.

Figure 2. The T–F images of seven types of radar modulation signals. The images from (a)–(g) are the T–F images of NS,
LFM, NLFM, 2PSK, 2FSK, 4PSK, and 4FSK without noise. The abscissa of the image is the number of sampling points. The
ordinate is the normalized frequency, which is the signal frequency divide by the sampling frequency. According to the
Nyquist sampling theorem, the sampling frequency must be greater than twice the signal frequency to avoid signal aliasing.
The normalization frequency is between 0 and 0.5.

In the absence of noise, the T–F images obtained by CMWT can clearly obtain the
characteristics of different RMSs. The T–F images have no cross-terms interference, the
signal characteristics will not be distorted, and the T–F resolution is high. Generally, the
actual received radar signal will contain a lot of noise. The SNR will seriously affect the
performance of the signal characteristics on the T–F images. The SNR is defined as follows:

SNRdB = 10log10(Ps/Pn)

Ps =
1
N

N−1

∑
t=0

|s(t)|2 (10)
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Pn =
1
N

N−1

∑
t=0

|n(t)|2

where s(t) is the modulated radar signal, n(t) is the noise signal, Ps is the power of the
signal, Pn is the noise power, and N is the signal length. The lower SNR, the greater the
noise power, and the characteristics of signal are submerged by noise on the T–F images.
Figure 3 shows T–F images of the noise with different SNR added to LFM signal by CMWT.

Figure 3. The T–F images of LFM signal in different SNR. The images from (a)–(f) are LFM T–F
images under 10 dB, 5 dB, 0 dB, −5 dB, −10 dB and −15 dB noise, respectively.

In Figure 3, the SNR values are 10, 5, 0, −5, −10 and −15 dB, respectively. As the
SNR decreases, although the characteristics of the LFM signal are still preserved, the
quality of the T–F images deteriorates, and the signal characteristics are overwhelmed by
noise. The difficulty of identifying the RMS will increase. Therefore, in this paper, the T–F
images of the signal are properly denoised and enhanced before feeding into the CNN.
T–F image enhancement can reduce the interference of noise, while better retaining the
original characteristics of the signal. In addition, the enhancement algorithm improves the
recognition rate of the RMS.

3.2. T–F Image Enhancement

The T–F analysis method is usually used to extract RMS characteristics and obtain T–F
images. Before recognition, it is necessary to denoise and enhance the T–F images, which
includes the following steps: image cropping and gray-scale, adaptive filtering [19], mor-
phology processing [20], and normalization. Normalization involves the down-sampling
of T–F images to reshape the images into a 64 × 64-pixel form. The enhancement of the T–F
images will affect the Sep-ResNet extraction features and make possible the identification
of the RMS. Algorithm 1 shows the enhancement algorithm for the adaptive filtering and
morphological processing of T–F images.

The eroding operation is A � S1 = {z|(S1)z ⊆ A}, and S1 is the structural element
for eroding. The shape of S1 is designed to be round-like, which can better eliminate
round-like noise points generated on the T–F images. The dilating operation is A ⊕ S2 =
{z|(S2)z ∩ A �= ∅}, and S2 is used as the structural element of dilating, which can enhance
the characteristics of the RMS on the T–F images. The Opening Operation is first eroding
and then dilating, as in formula: (A � S1)⊕ S2. The enhancement algorithm for T–F images
is shown in Algorithm 1.
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Algorithm 1 Enhancement of T–F images

Input: Grayscale images before enhancement
Adaptive Filter:

Step A:

1: for origin_pixel in images:
2: Initialize A1, A2, window_size = 5
3: A1 = median_pixel–min_pixel, A2 = median_pixel–max_pixel
4: if A1 > 0 and A2 < 0: to Step B
5: else: Increase the window size
6: if window_size > (max_window = 13): return median_pixel

Step B:

7: Initialize B1, B2
8: B1 = origin_pixel-min_pixel, B2 = origin_pixel-max_pixel
9: if B1>0 and B2<0: return origin_pixel
10: else: return median_pixel
11: end for

Morphology Processing:

1: Initialize the structure_element: S1, S2
2: for pixel in images:
3: the S1 Erode pixel
4: the S1 and S2 Opening Operation pixel for twice
5: the S1 Erode pixel
6: end for

Output: Grayscale images after enhancement

where S1 and S2 are structural elements, as shown in Figure 4:

Figure 4. The morphological structural elements.

3.3. Classification Network of the Sep-ResNet

After the RMS is transformed by CMWT and enhanced, these T–F images were fed into
the Sep-ResNet for the extraction of features and the classification of images to complete
the recognition of RMS. At this point, the traditional neural networks will encounter some
problems such as feature information loss, gradient vanishing, and gradient exploding
as the network depth increases. It is hard to design a deeper network to extract the deep
features of the images [21]. However, this paper uses the idea of residual learning, and
introduces residual blocks and shortcut channels [22,23]. The classification network Sep-
ResNet was designed, which solves problems of the loss of feature information, gradient
vanishing, and gradient exploding. The Sep-ResNet can be designed to extract richer image
features with greater depth. The Sep-ResNet structure was designed as shown in Figure 5.

In Figure 5, the Pre Conv uses three 3 × 3 convolution kernels to convolve the
input image. The first one uses the convolution kernel step size s = 2 to conduct down
sampling. The remaining two convolutions have the same receptive field as the original
7 × 7 convolution kernel, but the number of parameters is reduced by 45%. Furthermore,
the features extracted by the smaller convolution kernel are more refined. Stage 1 includes
two parts: the Down Sampling and the Residual Block. The Down Sampling part first
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adjusts the number of channels in Path A by using a 1 × 1 convolution kernel and then
uses a kernel of s = 2 at the 3 × 3 convolution. Reference [22] uses s = 2 for convolution
at the 1 × 1 convolution kernel, which will completely lose 50% of the information of the
feature map. At Path B, the convolution operation with a size of 1 × 1 and s = 2 is also
replaced with an average pooling with a size of 2 × 2 and s = 2. The above adjustment can
ensure that the information of the feature map will not be lost when conducting the Down
Sampling. The output of Down Sampling involves the width and height of the feature map
being reduced by half, and the number of output channels is increased. Another part of the
improved Residual Block is shown in Figure 6.

Figure 5. The Sep-ResNet structure developed in this paper.

In Figure 6, the three parameters for convolution in the rectangle represent the input
channel, kernel size, and output channel. The input channel of the residual block is M
feature maps. The first layer of convolutional kernel size is 1 × 1 for convolution, and all
of the four out channels are obtained M/16 feature maps. The obtained feature maps use
the activation function of Leaky ReLu and conduct convolution with the kernel size of 3, 5,
7 and 9, respectively. The different sizes of convolutional kernels make it possible to obtain
different receptive fields and extractions of the multi-scale features. The M/16 feature
maps of four channels are stacked in a concatenated manner on the channel to obtain
M/4 feature maps. This allows the obtaining of fused feature maps. The obtained feature
maps use kernels size is 1 × 1 for convolution and mapping to obtain M feature maps.
Finally, the obtained M feature maps and the original M feature maps before convolution
are correspondingly added to each channel to obtain a residual block. This method has
a larger receptive field than the original residual structure, and the extracted features are
more abundant. Although the increase in residual block parameters is caused by increasing
the receptive field of the kernels, there is no increase in the number of convolutions. The
residual block only separates the channels instead of increasing the number of channels.
The residual block output of Sep-ResNet is Xn+1, as follows:

Xn+1 = Xn +
4

∑
i=1

Fi(Xn, Wn) (11)

where Fi(Xn, Wn) is the output of Xn after convolution in the i-th channel. The improved
residual block can extract the features of T–F images with multiple scales and multiple
receptive fields. The Sep-ResNet extracted features are more abundant in low-SNR environ-
ments, which increases the recognition accuracy of the RMS. Stage 1 repeats the residual
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block 3 times, and the output of Stage 1 is the input of Stage 2. Stage 2 repeats the above
residual block 4 times, and the output of Stage 2 is the input of Stage 3, and so on. The
structure of Sep-ResNet has a total of 53 layers of the network, including 51 convolutional
layers, one auto average-pool layer, and one fully connected layer. In the Batch Normaliza-
tion (BN) layer, the data of a mini batch are normalized to uniformly distributed data with
a mean of 0 and a variance of 1, which can better prevent the problems of overfitting and
vanishing of gradients [24]. The activation function is Leaky ReLu: x = max{0.01x, x}.The
initial learning rate (LR) of the training model is LR = 0.001, and the learning rate is adjusted
to LR = LR * 0.5 every 20 epochs. As the number of iterations increases, the learning rate
decreases, for a total of 100 epochs. The auto average pool makes the feature maps of any
width and height become size = 1 × 1 feature maps and then maps them to seven types
of radar modulation signals through a full connection. The final Softmax layer maps the
output probabilities of each type to between 0 and 1.

(a) (b) 

Figure 6. Comparison of the residual block. (a) is the original residual block of ResNet50 in [22];
(b) is the improved residual block in this paper. The residual block of (b) has multi-channel feature
fusion and the multiple receptive fields.

The loss function in this experiment is cross-entropy, and label smoothing [25] is
introduced to reduce the over-fitting of the model, as shown in Equation (12).

y′ = (1 − ε)× y +
ε

K
(12)

loss = −
n

∑
i=0

[
y′ × logp +

(
1 − y′

)× log(1 − p)
]

(13)

where y is the original label (named the hard label) and y′ is the smoothing label (named
the soft label), the allowable error rate ε is 0.1, the number of categories K is 7, p is the
prediction result, and loss is the error between the prediction result and the given truth
label. The hard label only has values of 0 and 1. If there is a label error, the model will learn
the features of the image in the wrong direction, resulting in poor model generalization
and easy overfitting. The soft label allows a certain error tolerance rate, which can alleviate
the overfitting of the model. Considering that the signal characteristics are not obvious and
are severely polluted by noise when the SNR is low, the signals can easily be misclassified
in low-SNR environments. The addition of label smoothing also causes the model have a
certain anti-noise ability, which alleviates the problem of the loss function of cross-entropy
being easily overfitted. Finally, back propagation is used to update the weight parameters
of each layer to complete the training of the RMS recognition model.
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4. Experimental Results and Discussion

In this part, the experimental dataset and the results are given. According to the
framework of Figure 1, the method processes radar signals to obtain T–F images, and the
separable Sep-ResNet channels classify the enhanced T–F images. Our method accurately
identified seven radar modulation signals in low-SNR environments of ≤−10 dB.

4.1. Experimental Dataset

The experimental environment used for the generation of the simulation signals and
T–F images was MATLAB2018a. The deep learning framework for training and predicting
model was Pytorch1.5.

The experimental data comprised the radar signal of seven modulation modes gener-
ated by simulation, namely NS, LFM, NLFM, 2FSK, 2PSK, 4FSK, and 4PSK. The frequency
of the modulation signal was the normalized frequency, which was the signal frequency
divided by the sampling frequency. Table 1 shows the specific modulation method, carrier
frequency, bandwidth and Baker codes of RMS.

Table 1. The specific simulation parameters of RMS.

Signal Type Parameter Range

NS
LFM

Carrier frequency fc
fc
Bandwidth � f

(180~230) MHz
(180~230) MHz
(40~60) MHz

NLFM fc
� f

(180~230) MHz
(20~40) MHz

2PSK fcBarker codes
Symbol width

(180~230) MHz
Length = {7, 11, 13}
0.04 μs

2FSK
fc1, fc2
Barker codes
Symbol width

(180~200), (280~300) MHz
{7, 11, 13}
0.04 μs

4PSK
fc
Baker codes
Symbol width

(180~230) MHz
{5, 7, 11, 13}
0.03 μs

4FSK

fc1, fc2
fc3, fc4
Baker codes
Symbol width

(180~190), (210~220) MHz
(240~250), (270~280) MHz
{5, 7, 11, 13}
0.03 μs

Note: The pulse width for each type signal is 0.5 μs and sampling frequency is 2 GHZ.

In Table 1, the simulated RMS parameters are the dynamic range [9]. To simulate the
actual received signal, the modulated signal had the range of a certain parameter, and the
noise was added. The SNR of radar modulation signals was −13, −10, −7, −4, −1, 2, 5
and 8 dB, respectively. An SNR point was taken every 3 dB, for a total of eight SNR points.
A total of 400 T–F images were taken for each SNR point, and each radar modulation signal
contained 3200 T–F images. There were a total of 22,400 T–F images in this dataset. Overall,
60% of the dataset was used as the training set—a total of 13,440 T–F images; 40% was used
as the test set—a total of 8960 T–F images.

The T–F images shown in Figure 7 could obtain the characteristics of the NLFM signal
well, but the characteristics of the T–F images were gradually overwhelmed by noise as the
SNR decreased. When the SNR was ≥−1 dB, the signal characteristics were clear in the
T–F images. When the SNR was ≤−4 dB, the characteristics became vague. When the SNR
was −10 dB, the noise seriously interfered with the signal characteristics. Furthermore,
when the SRN was −13 dB, the characteristics were completely overwhelmed by noise.
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Figure 7. T–F images of the NLFM signal in different SNR from −13 dB to 8 dB in the training set. The images from (a)–(h)
are NLFM grayscale T–F images under 8 dB, 5 dB, 2 dB, −1 dB, −4 dB, −7 dB, −10 dB and −13 dB noise, respectively.

4.2. Experimental Results

The T–F images of the RMS in the training set were fed into the CNN after denoising
and enhancement to the train models for the recognition of the RMS.

4.2.1. Verification of the Effectiveness of CMWT

In this paper, the RMS used three T–F analysis methods, including STFT [15], CWD
with an improved kernel function [14], and CMWT, to obtain the T–F images. The T–F
images were fed into AlexNet, the improved AlexNet [12], and ResNet50 [22], and our
Sep-ResNet for the classification of T–F images, which used an enhancement algorithm, is
shown in Algorithm 1. The probability of the successful recognition (PSR) of different T–F
analysis methods were compared, as shown in Figure 8:

Figure 8. The PSR of three T–F analysis methods in different classification networks.
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In Figure 8, the red line is the CMWT in this paper, the blue line is the improved CWD,
and the black line is the STFT. The T–F analysis method of CMWT had the highest PSR
of the four networks, while the CWD method with an improved kernel function had the
middle PSR, and the STFT method had the lowest PSR. Because CMWT had the advantage
of containing wavelets with transformable scales, there were no cross-terms and phase
information in the imaginary part. It showed anti-noise ability and effectively extracted
the RMS characteristics. It was found that the improved T–F analysis method can improve
the PSR of the RMS. For the four CNNs, the overall PSR values of the three T–F analysis
methods of the CMWT, CWD, and STFT are shown in Table 2.

Table 2. The overall PSR of RMS.

STFT, % CWD, % Our CMWT, %

Our Sep-ResNet 94.59 96.05 96.57
ResNet50 94.53 95.43 95.89
Improved Alexnet 86.25 88.12 89.31
Alexnet 84.02 84.93 85.52

In Table 2, it can be seen that the T–F analysis method of the CMWT and the Sep-
ResNet classification network had the highest PSR of the seven radar signals. The overall
PSR of this method was 96.57%.

4.2.2. Verification of the Effectiveness of Sep-ResNet

To verify the effectiveness of the classification network of the proposed Sep-ResNet,
the enhanced T–F images obtained via the CMWT were fed into the Sep-ResNet for training
of the recognition model. The validation dataset was composed of 20% of the test dataset.
Because the CMWT was able to better extract the RMS characteristics to obtain clear and
distinguishable T–F images, the loss function successfully converged as the number of
epochs increased, as shown Figure 9.

 
(a) (b) 

Figure 9. (a,b) are the curves of the validation accuracy and loss function value, respectively, obtained
during the training of Sep-ResNet. The abscissa is the number of epochs. An epoch represents all
samples in the training set being trained once. The ordinate of (b) is the specific loss function value
under the current epoch.

In the experiment, we conducted a classification comparison of AlexNet, ResNet50,
VGGNet16, Inception-v3, and the backbone of U-Net models. The AlexNet structure was
consistent with that reported in [12]. The residual structure of ResNet50 [22] is shown
in Figure 6. VGGNet16 [26] increases the number of the output channels and uses max
pooling to reduce the size of the feature map. VGGNet16 has a total of 16 convolutional
layers, which is deeper than AlexNet. By decomposing large convolution filters such as
5 × 5 into two 3 × 3 filters, Inception-v3 [25] has improved performance on VGGNet. The
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parameters are reduced by 28%. Furthermore, Inception-v3 uses an asymmetric method to
decompose the spatial convolution filter. The n × n size filter is decomposed into 1 × n
and n × 1 filters to further reduce the parameters and improve performance. The main idea
of U-Net is to use a feature pyramid network for feature fusion [27]. The U-Net described
in this paper used a 3 × 3 size filter to convolve a T–F image of (1, 64, 64) size to obtain
a feature map of (64, 32, 32) size, where the dimensions were the output channel, image
width, and image height. These features were deconvolved again to obtain a feature map of
size 128, 16, 16, the feature map was copied, and it was named as m1. Then, the convolution
was continued to obtain the feature maps of size (256, 8, 8) and (512, 4, 4), which were
named m2 and m3, respectively. m3 was upsampled to obtain feature maps of 512, 8, 8 size,
and concatenated with m2 on the channel to obtain sizes of 768, 8, 8. Then, up-sampling
allowed the feature maps of 768, 16, 16 size to be obtained, and these were added to m1
in order to obtain the feature maps of 896, 16, 16 size. Finally, four 3 × 3 size convolution
filters and fully connected layers were mapped to seven classification nodes, corresponding
to seven types of radar signals. The key to U-Net is the integration of deep and shallow
features to better express image features.

During the experiment, the data processing method was consistent with the use
of CMWT and the enhanced algorithm in Algorithm 1. The T–F images were fed to
AlexNet, improved AlexNet, VGGNet16, Inception-v3, U-Net, ResNet50, and our Sep-
ResNet, respectively. The PSR values of seven CNNs are shown in Figure 10.

Figure 10. The PSR of seven CNNs.

The proposed Sep-ResNet had the highest PSR for the above seven radar modulation
signals. Under SNR = −13 dB, the PSR of the Sep-ResNet was still 88.24%. The PSR
of the AlexNet, improved AlexNet, VGGNet16, Inception-v3, ResNet50 and U-Net were
58.36%, 62.31%, 81.62%, 83.17, 85.92, and 86.81%, respectively. Because the residual network
was able to design the deep enough network structure to extract T–F image features, we
observed that Sep-ResNet has a multi-scale receptive field and multi-channel feature fusion,
which can extract richer features of T–F images. It was found that Sep-ResNet has the best
classification effect in low-SNR environments, improves the PSR, and has the anti-noise
ability. Furthermore, the Sep-ResNet model showed a recognition rate of 100% for the
above seven radar signals when the SNR was ≥2 dB.

Figure 11 shows the PSR of the Sep-ResNet model for seven radar modulation signals
at different SNRs. Among the seven modulation signals, NLFM, 2FSK, 4FSK, and LFM had
higher recognition rates. When the SNR was −13 dB, their average PSR was able to reach
93.45%, and when the SNR was ≥−4 dB, the PSR could reach 100%. The average PSR of the
remaining signals—NS, 2PSK, and 4PSK—was 81.36% when the SNR was −13 dB. Their
PSR was lower because the signal characteristics were relatively similar on the T–F images.
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Furthermore, with the decrease in SNR, the signal characteristics were overwhelmed by
noise, resulting in low recognition accuracy (see Figure 12).

Figure 11. The PSR of seven RMSs in Sep-ResNet.

Figure 12. The T–F images of NS, 2PSK, and 4PSK when the SNR was −1 dB and −10 dB, respectively.
The (a,d) are the grayscale T–F images of the signal NS under −1 dB and −10 dB noise, respectively.
The (b,e) are the grayscale T–F images of the signal 2PSK under −1 dB and −10 dB noise, respectively.
The (c,f) are the grayscale T–F images of the signal 4PSK under −1 dB and −10 dB noise, respectively.

The input of the confusion matrix was 100 random enhanced T–F images from the
test dataset by CMWT when the SNR was −4 dB. The output on the diagonal was the
recognition recall rate of each radar modulation signal. The number of identification errors
was divided on the diagonal. From Table 3, we can conclude that the Sep-ResNet model
had identification errors for NS, 2PSK, and 4PSK. The PSR values of NS, 2PSK, and 4PSK
were 92%, 94%, and 95%, respectively. These values could be identified with 100% accuracy
for the remaining four types of signals—the NS, 2PSK, and 4FSK identify errors—because
their T–F images were very similar. The strong noise interfered with the characteristics of
the signal, which led to errors in the Sep-ResNet classification. The LFM, NLFM, 2FSK,
and 4FSK had high recognition accuracy because the features of their T–F images were
distinguishable. Therefore, it can be concluded that an effective T–F analysis method
is very important for the identification of radar signals. The CMWT we proposed can
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obtain clear T–F images, and there are no cross-terms. Our Sep-ResNet also has good
classification performance.

Table 3. The confusion matrix of Sep-ResNet model for signal recognition when the SNR was −4 dB.

Input
Output

NS LFM NLFM 2FSK 2PSK 4FSK 4PSK

NS 92 0 0 0 4 0 4
LFM 0 100 0 0 0 0 0

NLFM 0 0 100 0 0 0 0
2FSK 0 0 0 100 0 0 0
2PSK 3 2 0 0 94 0 1
4FSK 0 0 0 0 0 100 0
4PSK 3 0 0 0 2 0 95

4.2.3. Verification of the Effectiveness of T–F Image Enhancement

To verify the effectiveness of the proposed enhancement algorithm for T–F images,
the T–F images obtained by CMWT were enhanced using the algorithm in Algorithm 1,
which also shows the image-enhancement processing results.

Figure 13b shows the grayscale T–F image of LFM signal after adaptive filtering and
morphological processing. The noisy T–F images had better reductions in their noise
interference, which was caused by their enhancement, and they retained the characteristics
of the signal. The seven types of pre-enhanced and post-enhanced T–F images were fed
into the Sep-ResNet model for recognition.

Figure 13. The LFM signal enhancement process at SNR = 8 dB. The (a) is the image before enhance-
ment. The (b) is the image enhanced by the algorithm in this paper.

In Figure 14, it can be seen that after the T–F image enhancement algorithm was
implemented, the overall PSR was improved by 2.35%, especially in the low-SNR −13,
−10, −7, and −4 dB interval, by an average of 4.21%. When the SNR was −13 dB, the
PSR was increased by 7.08%. The proposed enhancement algorithm could improve the
PSR of radar-modulated signals in low-SNR environments. In general, a good image
denoising and enhancement algorithm can reduce the interference of noise while retaining
the characteristics of the signal, thereby improving the quality of T–F images and improving
the system PSR of radar-modulated signals in low-SNR environments.
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Figure 14. The PSR of the pre-enhancement and post-enhancement.

5. Conclusions

In response to the difficulty in identifying radar modulation signals in low-SNR
environments, this paper proposed a method for combining the T–F analysis methods
of CMWT and Sep-ResNet to intelligently identify radar modulation signals. In this
paper, the T–F analysis of CMWT was used to extract the two-dimensional feature of the
signal to obtain T–F images, and the images were enhanced through adaptive filtering
and morphological processing. The enhanced T–F images were used as the input of Sep-
ResNet for classification to intelligently and accurately achieve the recognition of radar-
modulated signals in low-SNR environments. The experiments show that the T–F analysis
of CMWT was better than the STFT and the improved CWD model. The classification
performance of the proposed Sep-ResNet was better than AlexNet, the improved AlexNet,
VGGNet16, Inception-v3, ResNet50, and the backbone of U-Net. Furthermore, the proposed
enhancement algorithm was effective in filtering out the noise on T–F images. The method
proposed successfully identified seven types of radar modulation signals (NS, LFM, NLFM,
2FSK, 2PSK, 4FSK, and 4PSK) in low-SNR environments. With SNR values ranging from
−13 dB to 8 dB, the overall recognition rate was 96.57%, which was sufficient to effectively
identify radar-modulated signals. Therefore, this method has the ability to resist noise
interference, and can still maintain high PSR in low-SNR environments of ≤−10 dB,
thereby avoiding the difficulty and instability involved in the manually identification of
radar modulation signals.
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Abbreviations

The following abbreviations were used in this manuscript:

SNR signal-to-noise ratio
T–F time–frequency
CMWT complex Morlet wavelet transform
Sep-ResNet channel-separable residual network
PSR probability of successful recognition
RMS radar modulation signal
WT wavelet transform
CWD Choi–Williams distribution
STFT short-time Fourier transform
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