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Deep Learning for Detection of Visible Land Boundaries from UAV Imagery
Reprinted from: Remote Sens. 2021, 13, 2077, doi:10.3390/rs13112077 . . . . . . . . . . . . . . . . . 117

Shih-Hong Chio and Kai-Wen Hou

Application of a Hand-Held LiDAR Scanner for the Urban Cadastral Detail Survey in Digitized
Cadastral Area of Taiwan Urban City
Reprinted from: Remote Sens. 2021, 13, 4981, doi:10.3390/rs13244981 . . . . . . . . . . . . . . . . . 137

Natalia Borowiec and Urszula Marmol

Using LiDAR System as a Data Source for Agricultural Land Boundaries
Reprinted from: Remote Sens. 2022, 14, 1048, doi:10.3390/rs14041048 . . . . . . . . . . . . . . . . . 169

Damian Wierzbicki, Olga Matuk and Elzbieta Bielecka

Polish Cadastre Modernization with Remotely Extracted Buildings from High-Resolution
Aerial Orthoimagery and Airborne LiDAR
Reprinted from: Remote Sens. 2021, 13, 611, doi:10.3390/rs13040611 . . . . . . . . . . . . . . . . . 187
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Abstract: Contemporary land administration (LA) systems incorporate the concepts of cadastre and
land registration. Conceptually, LA is part of a global land management paradigm incorporating
LA functions such as land value, land tenure, land development, and land use. The implementation
of land-related policies integrated with well-maintained spatial information reflects the aim set
by the United Nations to deliver tenure security for all (Sustainable Development Goal target 1.4,
amongst many others). Innovative methods for data acquisition, processing, and maintaining spatial
information are needed in response to the global challenges of urbanization and complex urban
infrastructure. Current technological developments in remote sensing and geo-spatial information
science provide enormous opportunities in this respect. Over the past decade, the increasing usage of
unmanned aerial vehicles (UAVs), satellite and airborne-based acquisitions, as well as active remote
sensing sensors such as LiDAR, resulted in high spatial, spectral, radiometric, and temporal resolution
data. Moreover, significant progress has also been achieved in automatic image orientation, surface
reconstruction, scene analysis, change detection, classification, and automatic feature extraction
with the help of artificial intelligence, spatial statistics, and machine learning. These technology
developments, applied to LA, are now being actively demonstrated, piloted, and scaled. This Special
Issue hosts papers focusing on the usage and integration of emerging remote sensing techniques and
their potential contribution to the LA domain.

Keywords: UAV; LiDAR; automated feature extraction; cadaster; land registration; land use planning

1. Introduction

The United Nations sustainable development goal (SDG), particularly indicator 1.4.2,
promotes tenure security for all [1]. Despite this, the majority of the world lacks formal
land and property registration. Land administration (LA) incorporates the concepts of
cadastre and land registration. This includes processes such as recording, securing, storing,
and disseminating data related to land tenure, value, use, and development [2]. Delivering
tenure security is essential for LA systems that aim to reduce poverty and ensure food secu-
rity by promoting land investments [3]. Conventionally, cadastral data has been collected
by high precision ground-based methods, which are often time-consuming, demand high
levels of expertise, and therefore unaffordable for many countries. With the technological
development, and the aim to speed up the land recordation process, many countries have
adopted the so-called fit-for-purpose LA (FFP-LA) approach [4]. It promotes multisensory
data collection and an interdisciplinary approach providing outputs that serve the purpose
of the concrete country case [5].

The FFP-LA approach is being actively supported by international organizations such
as the International Federation of Surveyors (FIG) and Global Land Tool Network (GLTN).
The crucial concept of FFP-LA also includes the use of remote sensing data acquisition
techniques such as satellite, aerial, LiDAR, RADAR, or UAV data. In addition, related

Remote Sens. 2022, 14, 4359. https://doi.org/10.3390/rs14174359 https://www.mdpi.com/journal/remotesensing1
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cutting-edge innovative analytical technologies such as machine learning [6] for data
processing and automatic feature extraction based on imagery data are used to accelerate
the cadastral mapping process [7]. Geo-cloud services are also playing big part in data
storage, management, dissemination, and e-service delivery [8].

The abovementioned approaches are the focus of the current Special Issue as a con-
tinuation of the “Remote Sensing for Land Administration” first edition [9]. Starting with
a broad review paper, focusing on the developments of photogrammetric methods and
remote sensing applied to the LA domain, the Special Issue provides an overview of
diverse experiments, demonstrations and implementations in a range of case contexts.
This includes papers related to (i) design and testing of the flight configurations of UAVs;
(ii) quantitative and qualitative methods for assessment and comparison of different re-
motely sensed techniques for valuation and taxation; (iii) innovative machine learning
methods development and integration for cadastral data extraction, including also a social-
economic parameters; and (iv) usage of LiDAR data and analysis techniques for building
extraction and agricultural land delineation.

The Special Issue consists of nine (9) individual works; developed by multi-disciplined
research by researchers from Europe, Asia, Oceania, and Africa. The works use a variety
of qualitative and quantitative research methods applied to diverse social and remotely
sensed data types, in support of lend tenure recordation, land valuation, and land use
planning (Table 1). The next section outlines each work and synthesizes the overarching
contribution of the Special Issue.

Table 1. Remote sensing applications for LA presented in this issue.

Source Title
Geographic

Focus
Applications Techniques Data

Rohan Mark
Bennett et al.

Review of Remote
Sensing for Land
Administration:

Origins, Debates, and
Selected Cases

Global and
historic

Land tenure,
photogrammetry

and remote
sensing

Review paper

LiDAR, Aerial,
UAV, topographic

and cadastral
maps among
many other

Claudia Stöcker
et al.

High-Quality
UAV-Based

Orthophotos for
Cadastral Mapping:

Guidance for Optimal
Flight Configurations

Europe and Africa Land Tenure from
UAV images

Comparative
analysis UAV imagery

Koeva et al.

Remote Sensing for
Property Valuation: A

Data Source
Comparison in

Support of Fair Land
Taxation in Rwanda

Rwanda Land valuation
and taxation

GNSS survey,
semi structured

interviews, focus
group discussion

Satellite digital
aerial and UAV

imagery, cadastral
data

Cheonjae Lee et al.
Damian Wierzbicki

et al.

Testing and Validating
the Suitability of

Geospatially Informed
Proxies on Land

Tenure in North Korea
for Korean

(Re-)Unification

North Korea
Land Tenure;

cadastral
mapping

Geospatially
informed analysis,

questionnaire

Google Earth
images

Bujar Fetai et al.

Deep Learning for
Detection of Visible

Land Boundaries from
UAV Imagery

Slovenia

Multi-purpose
cadastre; Map
creation and

updating

U-Net
ENVINet5

UAV imagery,
cadastral

boundaries
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Table 1. Cont.

Source Title
Geographic

Focus
Applications Techniques Data

Shih-Hong Chio
et al

Application of a
Hand-Held LiDAR

Scanner for the Urban
Cadastral Detail Survey
in Digitized Cadastral

Area of Taiwan

Taiwan
Land tenure;

cadastral
mapping

Pointcloud
filtering,

RANSAC

Handheld LiDAR,
cadastral data

Natalia Borowiec
et al.

Using LiDAR System as
a Data Source for
Agricultural Land

Boundaries

Poland

Land Tenure;
cadastral

mapping of
agricultural lands

Edge detectors,
Hough-

Transform

LiDAR, cadastral
data

Damian
Wierzbicki, et al.

Polish Cadastre
Modernization with
Remotely Extracted

Buildings from
High-Resolution Aerial

Orthoimagery and
Airborne LiDAR

Poland

Cadastral map
creation,

verification and
updating

Fully
convolutional

network U-Shape
Network (U-Net)

LiDAR, cadastral
data

high resolution
aerial

orthoimagery

Dušan Jovanović
et al

Building Change
Detection Method to
Support Register of
Identified Changes

on Buildings

Serbia

Cadastral
updating,

building change
detection

Pixel-based and
object-based

analysis

VHR imagery
with RGB and

NIR bands

2. Overview of the Contributions

• Paper 1

Rohan Mark Bennett et al. present a systematic review paper that enriched a complete
synthesis of the developments of photogrammetric methods and remote sensing applied to
the domain of LA. It incorporates developments from early phototopography and aerial
surveys through to analytical photogrammetric methods, the emergence of satellite remote
sensing, digital cameras, and latterly lidar surveys, UAVs, and feature extraction. The
synthesis illustrates the debates over the benefits of the techniques. Various comparative
analyses on criteria relating to time, cost, coverage, and quality are presented. Apart from
providing this more holistic view and a timely reminder of previous works, this paper
brings contemporary practical value in further demonstrating to LA practitioners that
remote sensing for data capture, and subsequent map production, are an entirely legitimate,
if not essential, part of the domain.

• Paper 2

Claudia Stöcker et al. provide a detailed investigation of different flight configurations
to guide efficient and reliable UAV data acquisition in support of cadastral map creation
and updating. Imagery from six study areas across Europe and Africa provide the basis
for an integrated quality assessment, including three main aspects: (1) the impact of land
cover on the number of tie-points as an indication of how well bundle block adjustment
can be performed, (2) the impact of the number of ground control points (GCPs) on the
final geometric accuracy, and (3) the impact of different flight plans on the extractability of
cadastral features. The results suggest that scene context, flight configuration, and GCP
setup significantly impact the final data quality and subsequent automatic delineation of
visual cadastral boundaries. This study reveals large discrepancies in the accuracy and
the completeness of automatically detected cadastral features for orthophotos generated
from different flight plans. With its unique combination of methods and integration of
various study sites, the results and recommendations presented in this paper can help land
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professionals and bottom-up initiatives alike to optimize existing and future UAV data
collection workflows.

• Paper 3

Koeva et al. in their study, assess different remote sensing data in support of develop-
ing a new approach for property valuation for taxation in Rwanda. Three different remote
sensing technologies, (i) aerial images acquired with a digital camera, (ii) WorldView2 satel-
lite images, and (iii) unmanned aerial vehicle (UAV) images obtained with a DJI Phantom 2
Vision Plus quadcopter, are compared and analyzed in terms of their fitness to fulfill the
requirements for valuation for taxation purposes. Quantitative and qualitative methods
are applied for the comparative analysis. Primary data is collected via semi-structured
interviews and focus group discussions. The results show that UAVs have the highest
potential for collecting data to support property valuation for taxation. The main reasons
are the prime need for accurate-enough and up-to-date information.

• Paper 4

Cheonjae Lee et al. investigate in their research the role of remote sensing data in
detecting, estimating, and monitoring socio-economic status (SES) such as quality of life
dimensions and sustainable development prospects. In the context of Korea, the main
challenge is the lack of complete and adequate information when it comes to clarifying
unknown land tenure relations and land governance arrangements. Deriving informative
land tenure relations from geospatial data in line with socio-economic land attributes is
currently the most innovative approach. Therefore, the authors provide empirical evidence
of whether the proposed proxies are scientifically valid, policy-relevant, and socially robust.
They revealed differences in the distributions of agreements relating to land ownership
and land transfer rights identification among scientists, bureaucrats, and stakeholders.
Moreover, the authors measured intrinsic, contextual, representational, and accessibility
attributes of information quality regarding the associations between earth observation (EO)
data and land tenure relations in North Korea from several different viewpoints.

• Paper 5

Bujar Fetai et al. with their research, aim to accelerate cadastral mapping through
innovative and automated approaches for the creation and updating of cadastral maps.
Using deep learning, they explored algorithms to automatically detect visible land bound-
aries from unmanned aerial vehicle (UAV) imagery. In addition, the authors evaluated the
advantages and disadvantages of programming-based deep learning compared to com-
mercial software-based deep learning. They used the convolutional neural network U-Net,
implemented in Keras, written in Python using the TensorFlow library. For commercial
software-based deep learning, they used ENVINet5. The results showed that both models
achieved an overall accuracy of over 95%. The high accuracy is due to the problem of
unbalanced classes, which is usually present in boundary detection tasks. U-Net provided
a recall of 0.35 and a precision of 0.68 when the threshold was set to 0.5. A threshold can be
viewed as a tool for filtering predicted boundary maps and balancing recall and precision.
The authors concluded that programming-based deep learning provides a more flexible yet
complex approach to boundary mapping than software-based, which is rigid and does not
require programming.

• Paper 6

Shih-Hong Chio and Kai-Wen Hou present a study that investigates the feasibility of a
handheld LiDAR scanner to collect 3D point clouds in an efficient way for a detail survey
in urban environments with narrow and winding streets. After point cloud filtering and
the ranging systematic error correction that was determined by a plane-based calibration
method, the collected point clouds are transformed to the local cadastral coordinate system
using control points. Using the detail points surveyed by a total station to verify the
detail line data digitized from the corrected handheld LiDAR point cloud, 97% error of
the digitized detail data was less than 15 cm The results demonstrated the feasibility of

4
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using a handheld LiDAR scanner to perform an urban cadastral detail survey in digitized
graphic areas.

• Paper 7

Natalia Borowiec and Urszula Marmol explore LiDAR sensor data to identify agricul-
tural land boundaries. Their study focuses on accurately determining the edges of parcels
using only the point cloud, which is an original approach because the point cloud is a
scattered set, which may complicate finding those points that define the course of a straight
line defining the parcel boundary. To detect automatically the edges of parcels, the author’s
first step is to do classification then use edge detectors to define land use boundaries.
The obtained boundaries are compared with the boundaries from the Polish land registry
database. The proposed algorithm allowed the detection of inconsistencies in farmers’
declarations. These mainly concerned areas of field roads that farmers misclassified as
subsidized land when in fact, they should be excluded from subsidies.

• Paper 8

Damian Wierzbicki et al. dived into automatic building extraction from remote sensing
data for cadastre verification, modernization and updating. They explored deep learning
algorithms, particularly fully convolutional network U-Shape Network (U-Net), for high
resolution aerial orthoimagery segmentation and dense LiDAR data to extract building
outlines automatically. They reached 89.5% overall accuracy and an 80.7% completeness
compared to the reference data, which made it very promising for cadastre modernization
in Poland. In addition to the numerical achievements, the authors discuss the possibilities
and limitations of the automated approaches that could help local authorities decide on the
use of remote sensing data in LA.

• Paper 9

Dušan Jovanović et al. based on satellite imagery and existing cadastral data proposed
a method based on a comparison of object-based and pixel-based image analysis approaches
to automatically detect newly built, changed, or demolished buildings and import these
data into extended cadastral records. Using only VHR images containing only RGB and
NIR bands, the results showed object identification accuracy ranging from 84% to 88%,
with kappa statistics from 89% to 96%. The accuracy of obtained results is satisfactory for
the purpose of developing a register of changes on buildings to keep cadastral records up
to date and to support activities related to the legalization of illegal buildings, etc.

Author Contributions: Conceptualization and writing—original draft preparation, M.K. and R.B.;
writing—review and editing, M.K., R.B. and C.P. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: Conventionally, land administration—incorporating cadastres and land registration—uses
ground-based survey methods. This approach can be traced over millennia. The application of
photogrammetry and remote sensing is understood to be far more contemporary, only commencing
deeper into the 20th century. This paper seeks to counter this view, contending that these methods
are far from recent additions to land administration: successful application dates back much earlier,
often complementing ground-based methods. Using now more accessible historical works, made
available through archive digitisation, this paper presents an enriched and more complete synthesis
of the developments of photogrammetric methods and remote sensing applied to the domain of
land administration. Developments from early phototopography and aerial surveys, through to
analytical photogrammetric methods, the emergence of satellite remote sensing, digital cameras, and
latterly lidar surveys, UAVs, and feature extraction are covered. The synthesis illustrates how debates
over the benefits of the technique are hardly new. Neither are well-meaning, although oft-flawed,
comparative analyses on criteria relating to time, cost, coverage, and quality. Apart from providing
this more holistic view and a timely reminder of previous work, this paper brings contemporary
practical value in further demonstrating to land administration practitioners that remote sensing for
data capture, and subsequent map production, are an entirely legitimate, if not essential, part of the
domain. Contemporary arguments that the tools and approaches do not bring adequate accuracy
for land administration purposes are easily countered by the weight of evidence. Indeed, these
arguments may be considered to undermine the pragmatism inherent to the surveying discipline,
traditionally an essential characteristic of the profession. That said, it is left to land administration
practitioners to determine the relevance of these methods for any specific country context.

Keywords: photogrammetry; aerial imagery; UAV; HRSI; lidar; artificial intelligence

1. Introduction

In the context of this work, ‘land administration’ incorporates the concepts of cadas-
tre and land registration and is understood as the process of recording, securing, and
disseminating information about land tenure, value, use, and development, within a ju-
risdiction [1]. Its core purposes are to support land rights securitisation, land market
governance, credit access, fair land taxation, and responsible spatial planning, amongst
other societal concerns [2]. ‘Photogrammetry’ incorporates methods and tools for extracting
multi-dimensional geospatial information from images needed for mapping activities [3]
(for further origins and etymology, see Polidori L. ‘Words as tracers in the history of science
and technology: the case of photogrammetry and remote sensing’. Geo-spatial Information

Remote Sens. 2021, 13, 4198. https://doi.org/10.3390/rs13214198 https://www.mdpi.com/journal/remotesensing7
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Science. 2021, 24, 167–177). ‘Remote sensing’ is the process of scanning or monitoring
the physical characteristics of a terrestrial surface, measuring the emitted radiation at a
distance [4]. Both photogrammetry and remote sensing have grown out of photographic
mapping and aerial survey traditions.

The driver for the work is to further consolidate arguments for the use of photogram-
metric and remote sensing methods in the domain of land administration [5], particularly
when used in a complementary fashion with ground-based surveying methods. Whilst
photogrammetric and remote sensing methods are used within the field in some contexts,
arguably, they are heavily underutilised, especially given the amount of imagery data
and collection ability now available at a relatively low cost, with vast spatial coverage,
and good temporal qualities [6]. Compared to other related fields, such as construction
and agriculture, rates of the application of image-based mapping, at scale, remain low
in the land administration domain. The argument can be made for both developed and
developing contexts, where field-based data collection techniques prevail in many circum-
stances [1]. Overall, it is argued that the strong bias towards the use of ground methods
alone is driven by the existing land administration practitioner community for reasons of
financial expedience and industry inertia [6].

The justification for the work is that such a review has never been undertaken, at least
in the contemporary era. The opportunity to undertake this work is now available due to
the increased availability of archival journals and records, thanks to digitisation, scanning,
and online availability. This enables a more complete understanding of the historical
developments within the domain to be presented to a new audience, thereby informing
future developments, and creating a better appreciation of the close relationship between
the fields of land administration photogrammetry and remote sensing, which have often
operated disparately. Accordingly, the structure of this paper is as follows. First, an outline
of the approach and methods used for the review is provided. Second, the presentation of
the review results, using a chronological approach, commencing from the 1700s and swiftly
moving into the 1900s, using a combination of theme and decade, is provided. Third,
a summary of the synthesis of developments is delivered in a concise fashion. Finally,
conclusions relevant for contemporary discourse on the use of photogrammetry and remote
sensing in the land administration field are articulated.

2. Materials and Methods

To enable the achievement of the objective to provide a comprehensive review of
photogrammetry and remote sensing applied in land administration, a research synthesis
methodology was applied [7]. Couched somewhere within—or between—the positivist,
constructivist, and pragmatic research paradigms [8], this approach seeks critical analysis
of a scoped body of literature, synthesizing the results, to deliver a previously unrecognised
model or description. The approach is used widely in the domain of land administration [9],
amongst others, particularly since the 2000s, due to the greater availability of historical
sources, and an increasing amount of empirical literature more generally [10].

For this review, an unlimited starting date, and up to August 2021 for the conclusion
date, were selected. This rather expansive epoch enabled the most comprehensive coverage
of documents, and was still considered to be achievable in terms of available time and
resources. For practical purposes, the initial search and selection of documents was
conducted by decade, commencing with pre-1900s, and subsequently 1900–1909, 1910–1919,
and so on, up until 2021.

Using [10] as a model, the repositories examined included those exploited in other
research syntheses from the land administration domain, including Google Scholar, Scopus,
Science Direct, and the OICRF website (International Office of Cadastre and Land Records
(See: https://www.oicrf.org/search, accessed between July and August 2021 website, a
searchable index and repository maintained by the Dutch Cadastre, Land Registry and
Mapping Agency (Kadaster). As in [10], non-Scholar Google searches were completed
alongside the academic database searches, so that relevant grey literature, from industry
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and governments, could also be captured. In general, the grey literature was given less
weighting. An important limitation of this approach is that non-English language docu-
ments received less attention, primarily documents written in French and German, which
were certainly prominent languages in terms of developments in the late 1800s, the 1900s,
and between the world wars. It is left for other scholars to fill these gaps, yet it is expected
that a similar trajectory in technological developments, albeit based on different country
experiences, will be observed.

Specific search terms and search string combinations included ‘land administration’,
‘land registry’, ‘land registration’, ‘cadastre’, ‘cadastral boundaries’, ‘cadastral surveying’,
‘land surveying’, ‘land parcel’, ‘property’, ‘monuments’, ‘photography’, ‘balloon survey’,
‘remote sensing’, ‘photogrammetry’, ‘photogrammetric methods’, ‘aerial photography’,
‘aerial survey’, ‘high-resolution satellite imagery’ (and variations, e.g., VHRSI), and ‘indi-
rect methods’—and later ‘UAVs’, ‘RPAS’, ‘lidar’, ‘SAR-radar’, ‘oblique imagery’, ‘feature
extraction’ and ‘pictometry’. During this process, it was determined that different terms
increased and decreased in popularity over time. This fact was considered when con-
ducting the searches. The approach produced thousands of returned results; however,
snowballing [11] and expert knowledge was used to determine the final constellation
of approximately 300 relevant articles. The authors took the opportunity to present this
bibliography in the references section. Whilst making the paper more cumbersome, it was
felt that this complete provision of sources increases the utility of the paper for readers and
invites the reader to undertake their own explorations.

The review, critique, and synthesis were initially undertaken and reported in chrono-
logical order, and the results are presented in Section 3 to Section 8. The further synthesis
of salient ideas and development of an overarching synthesis model was then undertaken
and is presented in Section 9.

3. First Forays (1700s to 1909)

Within the scope of a single journal paper, attempting a complete analysis of all
converging developments in land administration and photographic methods prior to the
1900s is at best overly ambitious and perhaps naïve. That said, to not attempt to include
coverage would constitute a disservice to the pioneering work. Here, a humble attempt is
made to provide a potted overview of key developments and examples.

3.1. 1700s

Whilst the contemporary view that photographic approaches, applied to land admin-
istration, only developed significant impetus in the 20th century, certainly the potential for
the developing science of photography, applied to land surveying and mapping, was well
recognised in the 19th century. The European Age of the Enlightenment of the 17th and
18th centuries spurred the development and application of many of the applied sciences,
including those tools and techniques relating to geometry and land surveying, particu-
larly as the era of colonisation advanced, and there was an increasing need to map new
territories. Here, the works and treatises of Martindale [12], Love [13], Breaks [14], and
Laybourne [15], amongst others, are remarkable, ushering in the emerging era of more
wide-scale accurate plot measurement via the use of theodolites, chain, and other plain
surveying methods.

3.2. 1800s

Similar works, out of the United Kingdom, North America, and other colonies, fol-
lowed into the early part and middle part of the 19th century: Ainslie [16] provides an
example out of the Scottish Enlightenment and the subsequent industrialisation period.

Likewise, from the same motivations came the first texts on developments and practi-
cal guides on photography and the Daguerreotype [17,18]. However, it was not until the
middle and later part of the 19th century that applications of photography in the domains
of land surveying and mapping were first documented. Tissandier [19], writing in 1877,
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hypothesises (alongside explanations of the science, tools, and applications of photographs)
that future applications of photography will prominently include ‘land surveying’. He
goes on to explain how it was already considered “possible to combine surveying with photog-
raphy” by placing “a camera on a land surveyor’s stand, fixing it upon an axis so it can be turned
around in any direction . . . ” enabling the creation of complete panorama of the landscape.
Surely, herein lies a very early envisioning for ‘Cyclorama’ and Google’s ‘Street View’,
that would appear well over a century later. Meanwhile, Reed [20], writing in 1889, pro-
vides a historical account of developments across that century, from the use of perspective
drawings for topographic mapping, to the development of telemetrography in the 1850s,
through to the development of photographic surveying in the 1860s in France. An outline
of various methods, including via plane, via cylindric, via radial, and balloon photogra-
phy is provided (although the latter was more readily used for survey reconnaissance
purposes). Thomas [21] details similar examples in geographic and engineering surveys
out of America. Devillle [22] provides similar techniques as applied in Canada (for a com-
prehensive visual overview, see: https://www.isprs.org/society/history/100Jahre.pdf,
accessed on 18 October 2021). The work of the Uniting Kingdom’s Ordnance Survey is
also noteworthy in this period. Although not using photogrammetric methods in the
field, as early as the 1840s, it was using photographic methods, specifically photozincog-
raphy, to produce and reproduce topographic maps of various scales [23–25] (note, in
the 1970s, Mumford would provide a full synthesis of these developments. See Mumford
I. Lithography, photography and photozincography in English map production before 1870. The
Cartographic Journal. 1972 Jun 1;9(1):30-6). The same techniques were later applied to map
production in India [26], apparently with great success. The approach was used in Sweden,
and presumably elsewhere across Europe [27].

By the end of the century, the techniques of aerial photographic methods were recog-
nized as legitimate [28] for surveying, and were being taken advantage of, particularly in
more rugged and inaccessible landscapes. Flemer [28], writing in ‘Science’, explains the
‘phototopography’ method being used in Alaska. Whilst it would only be in the following
century that these innovations truly impacted land administration functions, thanks to
the work of these early photographic pioneers, the vision, tools, and methods were now
in place.

3.3. 1900s

Moving into the first decade of the 1900s, there appear only limited relevant works
(recognizing, however, that works in French are not included in this review, for which
there appears to be numerous works on ‘cadastre’ during this period), although several
are truly worth noting. Writing in 1908 [29], the remarkable Vivian Thompson, apparently
later killed during World War 1 [30], picks up from the work of Deville [22] to provide
a full detailed account of the tools and techniques involved in Stereo-Photo Surveying
(Figure 1). Perhaps of most novelty is the discussion on the relative merits of the method
versus plane-table surveying, in terms of accuracy, cost, and time—a discourse quickly
settled upon by others [31], and that was to be oft returned to throughout the century,
as more photogrammetric advances emerged. Thompson explains how: “The objective of
photographic surveying is to map the detail of a triangulated area at minimum expenditure of time
and labour in the field, and at a total cost so far below that involved in plane-tabling as to warrant
the sacrifice of that that high degree of accuracy attenable in good plane-tabling”. He also clarifies:
“ . . . it might appear that photographic surveying is necessarily less accurate than plane-tabling.
This is not the case; but, to attain the same degree of accuracy in detail” . . . “the plotting would be
so tedious” and “less economical”. He suggests that photographic surveying has not proved
more popular due to it being wrongly applied: the economic benefits only increase as the
scale of the map decreases, and the ruggedness of the landscape increases. He summarises
that small-scale contour maps (2 inches = 1 mile) are the most economical, taking one-tenth
or one-fifth of the time as compared to ground-based techniques.
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Figure 1. The first mechanical stereographs, developed in parallel by (a) Van Orel of Austria and (b) Vivian Thomson
of England (Adapted from https://www.asprs.org/wp-content/uploads/pers/1985journal/jul/1985_jul_919-933.pdf,
accessed on 18 October 2021), had a significant impact on cadastral mapping in later decades.

That said, notwithstanding the prioritisation of topographic mapping over cadastral
mapping in the British Isles, the use of photographic methods in cadastral work is not
countenanced at this point: frontier and railway reconnaissance work were the prime ap-
plications. Indeed, Johnston [32,33] confirms the emerging distinction between geographic,
topographic, and cadastral mapping, in terms of the practitioners and techniques employed.
He also suggests that within a generation, most parts of the world will have been accurately
mapped topographically—as in France, Germany, and the United Kingdom—and that
mapping of the landscape is likely to become a regular or repeating activity, rather than a
singular occurrence. Importantly, he recognises that the great expenses in resources and
time used to map those jurisdictions may be avoided using emerging techniques, and
presumably, photographic methods are front of mind here.

4. New Era Begins (1910 to 1929)

4.1. 1910s

Major developments in aerial surveying and photogrammetric mapping techniques
occurred in the 1910s, largely driven by the Great War, or World War I, 1914–1918 [34]
(Figures 2 and 3). The strategic importance of these developments with regard to the
conflict—including aerial photography, sound-ranging, and flash-spotting—meant that
they remained largely unpublished until after the war [35]. Thereafter, the different devel-
opments from the German, British and French perspectives were eventually shared [36,37].
The close combat nature of trench warfare demanded large-scale and highly accurate
topographic maps, but also made conventional mapping techniques impossible. Remote
techniques, such as resection and aerial survey, were therefore developed out of necessity.

The use of these new and enhanced techniques was then considered for non-war
applications. It was duly recognised that large-scale topographic maps could be readily
produced, even for cadastral applications [38,39], although the role of the surveyor for
more detailed work remained recognised: “One may safely sum up the situation by saying
that the aeroplane is already a valuable instrument for both exploration and accurate survey in
flat country, and that it should not be long before its application will be universal, and one may
venture to predict that in survey, as in other matters, the Great War will mark the beginning of a
new era.” The analysis here included cost breakdowns and comparisons between ground
methods and aerial survey [39], summing at between 5 and 15 pounds sterling, per square
mile, at 1/2500 scale, for aerial survey, and anywhere from 10 to 1100 pounds sterling
per square mile at 1/2500 for a ground survey. In terms of costs, the new methods are
argued to abolish significant costs around traverses, bookings, calculations, and plotting,
and the associated fieldwork expenses. Instead, these dense survey networks could be

11



Remote Sens. 2021, 13, 4198

replaced with trig stations every 1–2 miles. With regard to speed, examples from Italian
work in Damascus are pointed to: “three Italian engineers took two years to produce a 1/4000
map of Damascus with its winding streets; an aeroplane produced a picture in a few hours, a
rough-scale map or mosaic in a day, and an accurately finished map on 1/2500 could be completed
with triangulation within a month of starting”.

Figure 2. By the 1920s, new-era cadastral mapping was exploiting World War I aerial photography
advances to produce higher-accuracy parcel maps (adapted from [36]). (a) Triangulation with a Lucas
signalizing lamp; (b) printing office of a field survey battalion; (c) map distribution by car; (d) first
establishment of flash-spotting post in a trench after an advance.

Figure 3. New-era techniques for mapping from aerial photographs. (a) Enlarging lantern and
tilting copying board for the rectification of aerial photographs; (b) extraction of 1:25,000 maps from
photos; (c) map for revision by plane-table and aerial photograph; (d) German triangulation signal
(adapted [34,36]).

The role of non-mapping experts undertaking work is also declared: “Anyone with
local knowledge, not necessarily a surveyor, can take this 1/2500 mosaic and go over the ground
collecting names, defined plots of ground, wells, etc.“

So positive was the idea that the approach was considered and planned for the entirety
of Palestine during the British mandate; however, it was never implemented (see: Gavish
D. An account of an unrealized aerial cadastral survey in Palestine under the British mandate.
Geographical Journal. 1987 Mar 1:93-8). There are, of course, caveats made, including the
need for ready access to airplanes, good weather (perhaps humorlessly, the British Isles
are mentioned as not being ideal), and the need for touch-up work with the support of a
draftsperson. Perhaps predictably, and as was to be the norm in decades to come, these
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articles elicited conjecture around the accuracy and reliability of the figures relating to
cost and time [40]. That said, the notion of using aerial photogrammetric methods in
creating large-scale wide-area topographic, and even cadastral, maps was now firmly on
the agenda [41].

4.2. 1920s

In the 1920s, recognition continued to increase that beyond military needs, gov-
ernments should be leading the compilation, and maintenance of, jurisdiction-wide do-
mestic mapping programs, incorporating relevant themes and scales, to support civil
governance [42,43]. In the same context, the improving techniques for aerial survey and
mapping—and more specific for photogrammetry—were articulated in handbooks and
guides [44].

For the case of cadastral maps, the Geographical Journal continued to be a platform of
choice for debating the merits of aerial photography applied to mapping. The previously
articulated aerial survey approaches, including those estimates of time and cost commit-
ments, would be more thoroughly tested in numerous contexts. Dowson [45], who had
acted as Surveyor-General of Egypt, in the previous decade, 1909-19, presented results
from that country. Whilst acknowledging the improvements to techniques in that decade,
he makes clear that aerial surveys alone cannot replace conventional ground techniques in
that context. He cautions against hype: “Great as is the promise of aeroplane photography as
an aid to map-making, there is an obvious danger that too much may be expected of this valuable
method of filling in map detail” and “So far aeroplane photography has rendered the very great
service of enabling a closely accurate record to be instantaneously taken of a considerable block
of topographic detail; the accurate assembly of this detail into controlled position in a map is the
province of the surveyor, and, so far at least, this requisite control has not been established through
the agency of aeroplane photograph”. Specifically, on cadastral surveys, he goes on to state:
“In sparsely settled, semi-arid areas, where property is held in large units and no great degree of
accuracy is required in defining a boundary, it is not usual for the limits of properties to be outlined
with sufficient continuity, visibility, and lack of ambiguity for photographic record” and that for
more densely occupied urban and rural areas: “the accuracy that is obtainable from aerial
photographs is so far of a totally different order to that required for a cadastral survey of a fertile
and closely-settled land, and it is in fertile and closely-settled lands that cadastral surveys are
principally needed”.

Others, such as Bagley [46], reviewing applications to that point, by the French in
Morocco, the English in India, and US Government bureaus, arrive at similar conclusions:
the developing technique certainly has merit for difficult to access terrain, but is not
appropriate for large-scale detailed topographic or cadastral maps. Bergen [47] similarly
argues that aerial survey mapping has limited application for cadastral mapping: its best
application is still for large-scale contour maps where there is an abundance of ground
control—as found in Europe. Its economical application in the Americas, where ground
control is often absent, is questioned. Tuttle [48] appears to counter this view, at least in
established urban areas, providing details of the application of aerial mapping to support
city planning in New York.

Another development in the 1920s was the necessity for cooperation between sur-
veying and mapping disciplines and the emerging and maturing domain of aeronautics.
Burchall [49] explores the administrative necessity and relevant costs of linking the dis-
ciplines, and later Durward [50] provides a more matured overview of the integrating
disciplines. Winterbotham [51], relaying the status-quo in Canada, remarks of the rela-
tionship forming between aeronautics and surveying in that jurisdiction, and sees a move
beyond hype and despair, towards productive application: “There is everywhere the keenest
interest in method and instrument and a marked absence of that sloppy over-confidence or wilful
pessimism we have seen sometimes elsewhere in airman and surveyor respectively”.

Perhaps confirming this view, and realizing the need for a ‘fit-for-purpose’ use of
aerial surveying in mapping applications, Fiske [52] puts it best: “In approaching the subject
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of the use or aerial photographs the engineer must formulate clearly in his own mind a definite
opinion as to what constitutes a map and the purpose it will serve.” . . . and what would be the
good purpose in . . . “securing data and trying to incorporate it in a map with any higher degree
of accuracy that can or will be employed by the user?”. Herein lies an example of the mindset
that would later grow into ‘fit for purpose land administration’ agenda.

5. Switzerland, Scaling and Spreading (1930 to 1945)

5.1. 1930s

The 1930s began to reveal, for the first time, scaled whole-of-country implementations
of aerial survey for cadastral survey, especially pioneered by Switzerland. Spender [53]
(Figure 4), writing in 1932, outlines the extensive use of terrestrial photogrammetry in
topographic mapping in Switzerland, and perhaps even more remarkably, the almost
exclusive use of aerial surveying for cadastral mapping, having commenced in the mid-
1920s. Switzerland, having been isolated from the demands of rebuilding post the Great
War, and spurred on by scientific demands, matured aerial photographic methods for
cadastral surveying. Interestingly, Spender makes it clear that the remarkable speed
in uptake—aside from the benefits of swift coverage, addition contextual information,
and reduced costs—was a result of private survey firms being primarily responsible for
cadastral surveying—and therefore being keen to utilise new technologies, such as stereo-
plotting machines, and being prepared to take on the risks to maximise economic gains.

Figure 4. A terrestrial phototheodolite station in Switzerland, although post-1925, cadastral surveys
were almost exclusively completed using aerial survey (adapted from [53]).

In terms of the benefits for cost and time: “It is unprofitable to attempt the aerial survey
of a district smaller than 20 sq. km.; a suitable size to treat as a unit is 100 sq. km. The average
total cost of the preparation of cadastral map and topographical "Uebersichtsplan" by these methods,
including flying costs but excluding the 4th order triangulation, is 800 Swiss francs per sq. km.
This is at least 15 percent cheaper than by the use of terrestrial photogrammetry and up to 30 percent
cheaper than a plane-table survey. The cost may be taken as less than 1 percent of the value of the
property. If the aeroplane makes photographs of 500 sq. km. in the course of the summer and this
figure is exceeded without any difficultly, the flying costs, including the crew, fuel, insurance, and
sinking fund, represent 10 percent of the total; the marking of points on the ground 3.75 percent; the
photographic work 1.25 percent; and the remaining survey and plotting duties undertaken by the
private firm represent 85 percent of the total cost”.

In a review by Ripley and others [54], referring to the work of one Colonel Birdseye,
the personnel cost between ground and aerial methods is suggested to be equivalent, but
the time commitment is cut to one third when using the aerial approach.

Following the lead of Switzerland, other European countries, including Germany,
France, Italy (via outsourcing arrangements with the private sector, on the agreement that
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costs would be equivalent or lower to ground survey methods [55]), and Spain followed—
although, despite some use in India [56], Wolff [57] suggests British colonies lagged in
the uptake of this method. Salmon [58] countered this view, recalling the earlier British
developments from the Great War: “I hope Dr Wolff’s interesting article will stimulate to action
some of those who have not given sufficient attention to air survey as a method of mapping or
planning those areas which lend themselves to that method. At the same time, whether so many of
us are as conservative as the author appears to think is a matter for doubt, and moreover we do not
all look upon air survey as an “innovation”.

That said, it could hardly be argued that those innovations had translated to use in
cadastral mapping in British colonies, and rudimentary understandings of photogram-
metric principles were still lacking in the surveyor community [59]. Winterbotham [60]
lamented the lack of innovation and updating of British maps themselves, seemingly
linking the neglect to the ongoing economic depression. The discourse between Wolff and
Salmon was part of the emerging professional dialogue on cadastral surveying, occurring
in the recently established Empire Survey Review, itself connected to the first Conference
of Empire Survey Offices in 1928 [61].

Meanwhile, technological photogrammetric advances and refinements emerging in
France, Germany, Italy, and Switzerland were directly contributing to faster-paced cadastral
map production [62]. These initiatives relied upon what was later termed ‘analogue pho-
togrammetry’ (for a more detailed chronology of ‘analogue photogrammetry’, see: https:
//www.asprs.org/wp-content/uploads/pers/1985journal/jul/1985_jul_919-933.pdf, ac-
cessed on 18 October 2021), underpinned by earlier-developed stereoscopes, aircraft for
aerial surveying, and the methodological refinements of Dr. Carl Pulfrich (later described
as the so-called “Father of Stereophotogrammetry”). The United States too was increas-
ingly adopting and using the technological approach, albeit more for topographic applica-
tions [54,63]. Similar developments can be observed in Australia [64].

5.2. 1940s

Perhaps predictably, those first scaled applications of photographic methods for land
administration appear to have gone into hiatus at the beginning of the 1940s, wholly
due to the advent of World War II, at least in terms of reporting. The front-running
European nations—Italy, France, and Germany—were either busy with the war effort, or
occupied by foreign forces. Those outside Europe, including many colonies of the British
Empire, were also equally embroiled in the conflict. This meant that what surveying
and mapping capacity was available was almost entirely directed to military mapping.
Dick [65], reporting on New Zealand’s status in the Empire Survey Review, makes this
clear: “ . . . ordinary routine work had further to be reduced to meet the barest needs of the day and
the main activity of the staff has consisted of topographic mapping for military purposes”.

However, whilst there may have been a growing backlog or hiatus of cadastral map-
ping, in those contexts where there was no conflict on the ground, geodetic work and
national mapping were certainly a focus. This was especially in locations strategic to
the war effort, and/or where actual conflict was not a day-to-day impediment to survey
work [66–68]. Moreover, the war itself spawned photogrammetry and remote sensing
innovations, albeit most likely not being openly reported. This was particularly with
regard to the use of aerial and aerospace technologies for surveillance and observation [69].
Therefore, it is of no great surprise that by the end of the conflict in 1945, surveyors were
already contemplating the tasks of adequately surveying post-war Europe and beyond [70],
and utilizing the innovations developed therein [71,72], including the implications for
cadastral maps.

6. Going Global (1946 to 1969)

6.1. 1950s

In the later part of the 1940s and into the 1950s, many new case applications would
appear from outside Europe: across Africa, Asia, the Middle East, the Americas, and
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Oceania, the maturing techniques were gaining widespread interest and application. The
backdrop here was an emergent global perspective on the issues of land tenure security
and land reform [73,74]. This marked a move beyond the conventional national-level or
colonial mindsets, and the beginnings of a more integrated discourse in land economics,
land law, and land surveying/mapping. The development of the United Nations and FAO
was key here, and the Land Tenure Centre at the University of Wisconsin [74] was central
to the discourse, and the amount of published works begins to increase at this point. What
follows cannot be considered complete global coverage of all instances of photogrammetric
methods applied to land administration tasks; rather, the aim is to provide insights into the
breadth and scale of uptake.

In Africa, Dowson [75], countering his own earlier claims against photogrammetric
methods, suggests application in the protectorate of Zanzibar, where an increasing number
of unstable agricultural small holdings needed recording in a quick and economical manner
(Figure 5). The advancement in techniques and the need for speed most likely informing
the change of heart. Smith and Whittaker [76] provide a new commentary and comparison
of on-ground methods versus aerial survey techniques, based on work undertaken in
Kigezi District in Uganda. Menzies [77], providing a broad historical overview, details the
uptake in South Africa, and Adams [78] suggests the use of aerial triangulation techniques
to support cadastral mapping in Kenya. For the case of Kenya, it can be noted that rectified
photography eventually formed the basis for title plans. Whilst initially intended as tempo-
rary records, these were in use well into the 2000s (see Section 8.1). However, the approach
was ultimately rejected in other African contexts: it required landowners to plant a specific
type of tree along boundary lines, and at least anecdotally speaking, this was found as
to be too onerous to achieve at scale. These developments in Africa, during this period,
gave rise to debates over the legal implications of the photogrammetric method, at least for
jurisdictions where cadastres informed legal ownership. These took the form of discussions
around ‘pegs versus plans’, ‘measurements versus monuments’, ‘fixed boundaries versus
general boundaries’, and the legal responsibilities (and liabilities) of those undertaking
both the ground-based and photogrammetric survey work (see Sections 6.1 and 7.3 and [1],
where these debates were later documented).

Figure 5. Long before GIS, overlay of cadastral boundaries using photographic techniques was
trialled and applied, including in Africa (adapted from [75]).

In the Middle East, Park [79] summarises the effectiveness of the photo mosaic tech-
nique to act as a base for resource inventory mapping in the Hashemite Kingdom of Jordan:
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even in the featureless flat landscape, the photographic method is shown to have great
utility, including the ability for quick training of Jordanian nationals, and is one-tenth of
the cost to produce compared to conventional topographic mapping.

In the Americas, where the application had until this point been limited, Van Zandt [80]
provides results of scaled application in Utah in the United States (Figure 6). Other experi-
ments demonstrated positive results in the States of Maryland and Vermont [81] and other
areas in the United States [82]. Certainly, as reported by McVay [83], the capacity to cover
large areas quickly was increasingly recognised as being suited for mapping public/state
land tenures, at least by the responsible government agencies. Andrews [84], called for
its use in cadastral surveying in Canada, with Slessor [85] delivering the results from an
experimental application of photogrammetric methods versus field methods to map an
‘Indian reserve’. From a scientific perspective, the results were considered a great success;
however, the obtained accuracies were argued as inadequate for practice. In South America,
proponents argued for the application of aerial surveying to support cadastral mapping in
Peru [86] and Northeast Brazil [87].

Figure 6. Fusion of photogrammetric and cadastral surveying in Utah, USA: photographic flight
lines and control points (adapted from [81]).

In Asia and Oceania, results from applications or experiments in the Philippines [88],
Japan [89], and Vietnam [90] (Figure 7)—the latter case having recently had most of its land
records destroyed due to conflict—are reported. In the Philippines, this included an initial
pilot of 149,000 hectares, 15 municipalities, and 61,000 lots. Plans for a 15-year program
to cover the entire country at the cost of USD 6/Ha were put forward. In Australia, there
was certainly growing interest, if not a debate about the relevance of these global devel-
opments [91,92]. In the state of NSW, Rasseby [93] reports how whilst not used for parcel
mapping directly: “Some significant progress has also been made in the use of photogrammetry to
provide control for subdivision of rural land”.
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Figure 7. Conflict-strewn Vietnam demonstrated the potential for photogrammetric methods for
fast-tracked in parcel mapping to support land reform (Adapted from [90]).

In terms of technical advances, during this period, there was a first move from ana-
logue towards analytical photogrammetry, enabled by the invention of the analytical
plotter in 1957 by Uuno (Uki) Vloho Helava: he used a computer to digitally transfer the
coordinates between the image and the map (note: Helava later played a central role in
the development of the first digital photogrammetric workstation in 1979). Additionally,
there were also new technologies emerging: the use of radar, infrared, colour, and other
remote-sensor techniques were developing [94]. There were also iterative improvements
and refinements to existing techniques and technologies. As was the case in other fields—
such as soil surveys, forestry, and engineering surveys—in cadastral surveying, these
were enabled by the closer collaboration of “surveyors, air navigators, photographers, radar
specialists, meteorologists, and instrument designers” [95]. That is, the technical improvements
in measurement and plotting accuracy from the war era, were transferred, via professional
collaboration, into the domain. The period also provided the first mention of electronic
methods and automation, particularly with regard to providing survey control via auto-
matic registration methods [96,97]—although, the same author laments a lack of investment
in technical skills to utilise the method more widely. Later in the period, the concept of the
‘numerical cadastre’ (based around coordinates), enabling the ‘multi-purpose cadastre’ and
‘integrated survey’ concepts [98] came to the fore. As outlined by Basye, the first digital
land information system was also developed [99]. These innovations were leveraging and
combining the outputs of aerial mapping with other survey data, aiming to deliver one
integrated map that, amongst other land management goals, as declared by Bonacci [100]:

“could serve the title examiner, appraiser, land negotiator, the courts, and many others serving this
whole complex of land acquisition”.

6.2. 1960s

Moving into the 1960s, applications in land use planning, and broader land management—
an emergent and closely related discipline to land registration and cadastral mapping—gained
attention [101–104]. A prime example is provided from Norway [105], where an intended
12-year whole-country mapping program sought to use the technique to produce land
use classification maps at scales between 1:5000 and 1:100,000. These would later serve as
the basis for property boundary determination. This new focus on land use mapping was
driven by the utilitarian desire to manage food production, housing, industrialisation, and
economic development more efficiently. The pace of post-war development meant that
the speed and extra details provided by photographic methods leant well to the context.
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Interestingly, with the planning domain still in its infancy, the relevant works are found in
more technical photogrammetric or aeronautic journals.

This period also saw a maturing of land registration and cadastral domains (later to
be conceptually merged and known as ‘land administration’ in 1990) into an aggregated
disciplinary body of knowledge. The seminal aggregation [106] and synthesis work of
Dowson and Sheppard [107,108] are exemplary here. In the Netherlands, the International
Training Centre (ITC) with its dedicated focus skills development in aerial surveying and
photogrammetry in developing countries, was established. From early on, the institution
considered the specific case of photogrammetry for cadastral surveying [109]. With such
developments, aerial surveying and mapping were now truly legitimizing in the field
globally. As Hart [110] and Ray [111] both assert, this forced a rethink of what it meant to
be a ‘surveyor’ and how to be trained as one. Certainly, the need for degree programs with
a holistic approach to survey and mapping techniques was recognised [112].

That said, the cadastral profession was slow to move in the adoption of photogram-
metric methods for cadastral work in many country contexts. Abrams [113] describes how
the legal validity of the boundaries produced by photogrammetry is one issue: “One of the
problems of this development has been the admissibility of photogrammetrically prepared exhibits
into court and other legal proceedings. Demonstrative evidence, particularly in the form of aerial
photographs and other photogrammetrically prepared exhibits, has great potential in the field of
eminent domain. Research of the relevant case law indicates that admissibility of demonstrative
evidence generally has been a question for the discretion of the trial judge in any given litigation”.

Irving [114] suggests that it is more to do with the relatively small size of the sector
and the lack of competition and drive for innovation: “ . . . it may be that, as we are not among
the great spenders of public or private funds, there were more important fields for new methods and
the doing of more in less time; still again it may be that equipment manufacturers were enjoying
the period of repose with us, and not constantly urging us on with new and bright ideas in bronze
and glass”.

Thompson [115] is blunter. Referring to the issue of slow adoption by surveyor
community, he blames the surveyors themselves: “In the earlier period it was claimed that the
photograph could not give the necessary accuracy, and in later period, that even if it could, it was
uneconomical. Many results in the 1920s and 1930s were interpreted as showing, both at large
and medium scales, that air photograph was not good enough.” and . . . “it is now clear that the
plane-table and chain were being treated as sacred cows, and it was blasphemy to suggest that maps
produced by their means might be inaccurate”.

At this point, it seems important to make the distinction between the typical work
of the government and the private sector with regard to land administration. Typically,
it was national or state governments that were concerned with large areas or ‘whole of
jurisdiction’ cadastral coverage, whilst the private (licensed) cadastral surveyor tended to
be more orientated towards individual parcels, or small collections thereof. For this reason,
given its advantage regarding fast and large-scale coverage, photogrammetric methods
tended to be of more interest to government mapping agencies. Most of the students at
the abovementioned ITC hailed from these government departments. The method was
a ‘harder sell’ with regard to cost and time benefits for private land surveyors. This was
despite the pleas of proponents such as Orvington [116]: “ . . . there are many aspects of air
survey and photogrammetry which have particular significance for the private surveyor, both for
cadastral and topographical surveys and other features of his professional duties”.

The divergence in perspectives was important. In many jurisdictions, private agents
of the state made up a large proportion of the cadastral surveying professional body.
The different foci, business models, and financial interests at play can be seen to have
underpinned debates on the merits of ground versus aerial methods, long after the technical
and accuracy challenges had been surmounted.
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7. Space, Cities and Digital Systems (1970 to 1999)

7.1. 1970s

Four pervasive and emergent forces came to the fore commencing in the 1970s: space
technologies, digital computing, urban planning, and systems thinking. Whilst the geo-
political ‘space race’ played out in the decade prior, its fruits were exploited by mappers in
the following decade. The new terms ‘remote sensing’ and ‘satellite imagery’ are observed
at this point. Likewise, whilst digital computing developed in the 1960s, it was the 1970s
that saw the technology make its first appearance in innovative national mapping and
cadastral agencies [117]. Additionally, as rural populations transformed into urban ones in
developing contexts, and city centres began de-industrialising in more developed contexts,
urban and city planning grew as a domain, and it too needed its maps. The fourth, perhaps
less obvious force, cutting through each of the other three, was ‘systems thinking’. Its
relevance to cadastral studies was made clear by Dale [118], and the theory would impact
greatly in developments in subsequent decades.

Regarding space technologies, the benefits of wide-area coverage, at repeated intervals,
with multi-spectral coverage, brought about by satellite-based remote sensing, were being
recognised across the domains of forestry, soil science, land use planning [119], and the
growing area of environmental protection [120]. The characteristics were also identified as
being particularly useful for developing contexts [121], where large parts of the landscape
suffered from a lack of adequate or up-to-date topographic and natural sources maps. For
cadastres, as with earlier photogrammetric approaches, it was public agencies, typically
dealing with larger-sized parcels of public lands, that saw the utilisation. Torbet and
Woll [122] describe initial applications in the United States linked to public land, deserts,
watersheds, and First Nations lands. Lambert [123] explores the potential impacts in
Australian surveying and mapping. Kellie [124] appears to undertake a direct appraisal of
the emerging techniques on the domain of cadastre; however, unfortunately, only a citation
could be found for this work.

Regarding digital computers, leveraging off the convergence of surveying and map-
ping professions in the previous decades [125], the 1970s saw the convergence of the
numerical cadastre concept based upon coordinates from photogrammetric methods [126]),
integrated surveys concept, and multi-purpose cadastre concept, into a matured concep-
tual design, most notably by McLaughlin [127]. The idea of building an integrated and
open land information system, incorporating digital imagery as a key dataset, was tak-
ing shape [128,129]. Key here was the 1979 work of Duane Brown(For more detail on
Brown’s work see: Brown, J., 2005. “Duane C. Brown Memorial Address”, Photogrammet-
ric Engineering and Remote Sensing, 71(6):677–681), whose short-arc method of geodesy
helped to prepare the way for the integration of photogrammetry into GIS, via the use of
reflective targets.

Regarding urban planning, although numerical and computation photogrammetric
approaches had been improving since the 1950s, Braasch [130], noting developments out
of Hamburg, Germany, still notes: “The ‘graphical cadastre” may be produced by either plane
table, or simple photogrammetric methods, but is not recommended” (for cadastral purposes in
urban areas) and that: “Photogrammetric methods give excessive errors on short lines, but are
gaining favor in their economy, especially in rural areas“.

That is, the growing challenge of urban tenure mapping, via photogrammetric meth-
ods, was considered a separate challenge to cadastral mapping in other areas [131,132].
Not only did it require higher accuracies (due to higher values), and therefore higher-grade
imagery—urban areas generally changed more rapidly, and whilst the time and costs
advantages of photogrammetric approaches over time-consuming ground methods were
clearly apparent, the embedded approach of using ground methods for urban cadastres
continued to curtail the use of imagery [133].

Meanwhile, alongside the abovementioned digital and remote sensing innovations,
applications of more traditional photogrammetric methods continued. Weissman [134]
provided an update on the contemporary process being used in Switzerland, combin-
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ing photogrammetric measurements with ground methods in cadastral survey creation.
Bonnell [135] explains the extensive use of photomapping for legal boundary surveys in
the contexts of mining and natural resource management. A fascinating account of the
extensive use of photogrammetric techniques, including for creating urban cadastral line
maps in Saudi Arabia is also provided [136]. Blachut [137] identifies how, for cadastral pur-
poses, winter photographs are highly useful for boundary determination (at least in more
temperate climates). Lafferty [138], echoing the much earlier work of the 1910s–20s, seeks
to provide an updated cost–benefit analysis for certain terrain types and differing cadastral
accuracy requirements of the use of photogrammetric methods. Dale [139] provides a
comprehensive overview of the role of photogrammetric methods in cadastral surveys in
Commonwealth countries, finding significant use of the techniques, although limited use
in areas with high-value land. Meanwhile, Barrie [140] questions outright the need for
ground-based parcel surveys altogether, given the recent advances in computation and
photogrammetric methods.

7.2. 1980s

Into the 1980s, space technologies and digital technologies continued to converge,
with a growing recognition of the impending impact on land surveying and cadastral
mapping [141]. New generations of satellite remote sensing technologies were launched
(i.e., Landsat 4; SPOT-1): in the Scandinavian context, including Denmark and Sweden, it
was argued that for data capture, traditional aerial photography and geodetic methods
were already giving way to spatial data acquired from satellites [142]. However, as pointed
out by Lodwick and Paine [143], due to the limitations in resolutions with Landsat 1, 2,
and 3; challenges with image registration; and issues with handling the large quantities of
data, overall, the surveying profession had lagged behind other fields in the application of
remotely sensed imagery.

Linked to these space-driven developments were techniques for integrating remotely
sensing data into geographic information systems (GIS) [144]. In the context of cadastres,
this took on the specialist form of a land information system (LIS), or equivalents vari-
ously incorporating ‘multipurpose’ and other terms [145], and the sub-domain of land
information management emerged [146]. Digital techniques for extracting vector data
from imagery and enabling its incorporation into LIS were also developed [147], as were
procedures for cadastral map renovation based on similarity transformation [148] and
digitisation of data from photogrammetric inputs [149,150]. Many countries were at least
piloting, for example, in Colombia [151] and Taiwan [152] or were undertaking scaled
implementations of these developments [153], as per the case in Canada. This area of
cadastral map renovation, upgrading, and updating would be a continued area of focus
over subsequent decades, and is more fully unpacked in Bennett et al. [10].

However, it was with conventional photogrammetric methods where most scaled
applications continued to occur. Photogrammetric techniques for control network densifi-
cation were developed [154,155] as were cadastral survey data capture techniques [156]:
cost reduction and improved legal certainty were highlighted as key benefits. The ap-
plication to development projects was also a focus [157], with the World Bank project in
Thailand a prominent example [158]. Other experiments also took place, for example, in
Zambia [159,160] and Taiwan [153]—but it was still recognised that changeable terrain
and tenure systems meant the approach might not be suitable in all locations, for example,
in Fiji [161]. The convergence created by the move from analogue photogrammetry in
1960 (e.g., stereo plotters) to analytical/digital ones—in terms of data creation, capture
and storage—was again demanding a reappraisal of what constituted a cadastral sur-
veyor [162], of how to offer education and training programs [163,164], of what name to
use (e.g., Geomatics [165]), and what research programs should constitute [166].
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7.3. 1990s

It is tempting to thematically separate the highly digitalised 1990s from the more
analogue 1970s and 1980s, given the ubiquity of PCs and scaled uptake of the Internet
in that decade; however, ultimately the 1990s capped much of the work of the previous
decades. A key development, as explained in Bennett et al. [10], was the internationalisation
of the cadastral surveying profession, spurred by the post-Cold War re-establishment of
cadastres and land registries in eastern European countries, and the uptake of the unifying
term ‘land administration’.

In a book of the same name, Dale and McLaughlin [1] provided a synthesis on the
debates and options with regard to the use of photogrammetric versus ground-based
methods, overall finding that a combination of both is possible. For the specific case
of remotely sensed satellite imagery, in agreement with Paulsson and Mundial [167],
Dale [168] flags lingering concerns: “In spite of claims that satellite imagery can be used for
cadastral surveying, remote sensing is still too crude a set of tools for such a purpose and, like the use
of photogrammetric techniques, addresses only part of the cadastral problem.“ He rightly affirms
that data capture is but one component of the challenge of getting agreement on boundary
locations, which is fundamentally a social process, not only technical one.

That said, Jensen [169], revealing an awareness of emerging higher resolution options,
is more positive: “ . . . cadastral (property line) information are best monitored using high spatial
resolution panchromatic sensors, including aerial photography (5 0.25 to 1 m) and, possibly, the
proposed EOSAT Space Imaging IKONOS (1 by 1 m), Earthwatch Quickbird pan (0.8 by 0.8 m), and
Orbview-3 (1 by 1 m) data.” Although it should be noted that he argues that a 0.25 to 0.50 m
spatial resolution is acceptable: this is generally (rightly, or wrongly) outside what cadastral
surveying professionals (and associated regulations) would deem acceptable.

Rao et al. [170,171] similarly suggest that the Indian remote sensing satellite program
will shortly deliver spatial resolutions aligned with cadastral mapping requirements,
particularly in rural areas [172]. Gonzalez [173] predicts the new generations of high-
resolution satellite imagery could be used for both state-wide and local-level cadastral map
production. Jensen [169] also illuminates the issue of invisible boundaries and combined
use of ground surveys, ortho photos, and even satellite imagery in the United States: “In
many instances, the fence lines are the cadastral property lines. If the fence lines are not visible or
are not truly on the property line, the property lines are located by a surveyor and the information
is overlaid onto an orthophotograph or planimetric map database to represent the legal cadastral
(property) map. Many municipalities in the United States use high spatial resolution imagery such
as this as the source for some of the cadastral information and or as an image back-drop upon which
surveyed cadastral and tax information are portrayed”.

Meanwhile, Schmitt et al. [174] show the application of available high-resolution
satellite imagery in identifying settlement structures and changes therein. Leberl et al. [175],
commentating on the relevance of remote sensing technologies to the Austrian context,
outline the need—if uptake and use are to increase—for the tailoring of imagery products to
suit those local and district users who are not looking for nationwide coverage. Moreover,
they also make clear the great benefit of repeated capture enabled by satellites, something
that is not a given with traditional aerial photogrammetry.

On digital computing, the transition to digital ortho-photo production and use oc-
curred in the 1990s [176], enabling the fusion of GIS/LIS and digital imagery sources [177].
Konecny [178] provides many more scaled examples from German and World Bank donor
projects, including Albania (USD 5/parcel) (as do Leke et al. [179]), Georgia, Cambodia,
Ethiopia, Argentina, Peru, and Honduras. Holstein [180] adds Brazil to a similar list, but
also explains that whilst the use of imagery has its advantages, these techniques require
up to an 18-month lead time in terms of flight preparation and base imagery production.
For this reason, more flexible methods, including an increased exploration of softcopy
digital imagery, were underway. However, here, despite the clear benefits of going digital,
issues around poor underlying technology infrastructure and limited capacity were already
recognised [181]. Anderson [182] proposes the approach in Mozambique, in alignment
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with new land laws, and Christensen et al. [183] in Namibia. With regard to the issue of
urban cadastral data, Al-garni [184] demonstrated the application using aerial photographs
in Riyadh. Harcombe and Williamson [185] show the novel use for low-value lands in
the western parts of New South Wales in Australia, making use of helicopter surveys for
geodetic control.

New applications of other imagery-based technologies also arrived in the 1990s, for
example, historical land record archive scanning, as suggested by Boatta [186]. Mohamed
et al. [187] propose the novel use for the identification and demarcation of, until then,
unrecorded indigenous lands. Ehlers [188] reveals an imagery-based approach for informal
settlement identification and management—including informal land tenure parcel identifi-
cation. Fourie [181] also highlights the need for systems build around visualisation (i.e.,
imagery) for these contexts. Onsrud [189], also on informal or unrecorded land tenures,
almost harking back to the first terrestrial photographic methods in the late 1800s, but also
foreshadowing the pro-poor approaches to come, suggests the incorporation of photos into
an integrated data gathering approach, for use by locals within an unmapped community.
Similarly, Mason and Fraser [190] look at the issue of informal settlement mapping and
propose the use of “high-resolution satellite imaging, small format digital aerial imagery and
digital multispectral video systems” and “also discuss the example of automated shack extraction
from aerial imagery.”

Bartle et al. [191], with a similar mindset, propose an automated approach for match-
ing field boundaries in Landsat imagery with cadastral boundaries. This appears to be
one of the earliest works on cadastral boundary feature extraction: a topic that would
garner much interest in the subsequent decades. However, as would be experienced later,
Pinz et al. [192] predict active fusion of remotely sensed data and cadastral boundaries
would be highly challenging compared to other thematic layers. This is not even to mention,
as explained by Okpala [193], how current laws and regulations continued to impede or
disallow the use of imagery-based techniques for the generation of crucial nationwide land
parcel maps for land management purposes.

8. Deluge of Digital, Drones, Dimensions and Data (2000 to 2021)

8.1. 2000s and 2010s

In the 2000s, a plethora of technological developments created strong momentum
for uptake of remote sensing methods in land administration: digital photogrammetry,
high-resolution satellite imagery (HRSI); unmanned aerial vehicles (UAVs); lidar; SAR
radar; oblique photogrammetry; and pictometry all emerged, or matured, as alternate tech-
nological approaches that could support endeavours. This included not only conventional
2D cadastral mapping, but also the move towards new land administration applications,
namely 3D cadastres, marine cadastres, and previously unknown or unmapped property
rights, restrictions, and responsibilities such as cable networks, biota/carbon rights, and
solar rights. Moreover, convergence with the broader establishment of a high-speed Inter-
net infrastructure, cloud-based computer processing, web mapping services, smart mobile
devices, and artificial intelligence enabled new ways of creating and sharing imagery-based
land administration information.

It needs to be noted that during this period, the quantity of published scientific
literature increased significantly across many disciplines, including land administra-
tion. The reasons for this are not the focus here, and are briefly unpacked in Bennett
et al. [5]. However, in the context of this historical review, unlike the other periods covered
thus far, this increase makes it challenging to incorporate all contributions whilst also
maintaining the structure of the paper. Opportunely, the increase in scientific contribu-
tions also drove the compilation of meta-studies, for example [194–196] (this included
detailed historic reviews on photogrammetric technologies. For example, see the 2010
work of Hobbie: https://www.isprs.org/society/history/Hobbie-The-development-of-
photogrammetric-instruments-and-methods-at-Carl-Zeiss-in-Oberkochen.pdf, accessed
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on 18 October 2021), and therefore, in this review, where appropriate, we direct readers to
those more detailed reviews of specific topics.

Regarding HRSI, improvements in spatial resolution (i.e., pixel size < 50 cm), making
it comparable with aerial orthophotos, helped to curb concerns over property boundary
identification and delimitation, particularly for rural lands. Whilst the potential was first
recognised in the 1990s [197], a wave of experimentation, piloting, and even scaled use
was observed globally in the 2000s. Sahin et al. [198] provide an early, although incomplete
analysis of Ikonos imagery for cadastres in Turkey. Likewise, Fraser [199] demonstrated the
utility and potential in Bhutan. In nearby Pakistan, Ali et al. [200,201] find that costs and
time for cadastral mapping, combined with GNSS positioning, could be cut in half. In India,
continuing their work from the 1990s, Rao et al. [202] demonstrate how HRSI is applicable
for cadastral boundary determination in India, as do Sapra et al. [203], for the case of heads-
up digitisation of HRSI for forested lands. Sengupta et al. [204], in a novel experiment,
demonstrate the fusion of HRSI (GeoEye) with older colonial-era parcel maps for cadastral
updating purposes. In neighbouring Nepal, Panday [205] successfully trials the use of HRSI
preloaded into mobile devices for remote community boundary definitions. Further south,
Andri et al. [206] suggest HRSI application for participatory tenure mapping in Indonesia.
In Africa, Asiama et al. [207] present positive results from participatory mapping activities
in rural Ghana, also with HRSI preloaded into mobile devices. Balas et al. [208] show
similar application potential in Mozambique, and importantly, regulations were friendly
towards its use. Ondulu et al. [209] consider the use of HRSI an ideal application for
undertaking long-overdue updates to what were originally intended as temporary parcel
index maps created in Kenya, 50 years earlier (See Section 6.1 for a description of this
earlier work). Lengoiboni et al. [210] suggest the approach could be extended for recording
the dynamic land tenures of Kenya’s nomadic pastoralists. In Iraq, Hassan et al. [211]
provide an accuracy assessment for the improvement of historical graphical cadastral maps
in Kurkuk City, Iraq. In another post-conflict situation, Jones et al. [212] show the potential
in Colombia. HRSI was clearly now proven, if not ubiquitous, in land administration,
certainly in terms of R&D, but unfortunately, laws and regulations did not always enable
easy or scaled application.

Alongside HRSI, much focus was also afforded to the possibilities brought about
by digital camera technology, including automatic orientation, dense image matching,
and automated data processing. In terms of image acquisition, film-based cameras were
replaced by a variety of active and passive sensors, and a combination of those, mounted
on different platforms [213]. These were increasingly integrated with onboard GNSS re-
ceivers and inertial measurement units (IMU) [214]. With the significant increase in image
quality and quantities of data, attention turned to algorithm development for sensor mod-
elling [215]. Automatic image orientation also gained significant attention, being inspired
by the computer vision algorithms such as structure from motion (SfM) and from robotics,
simultaneous localisation and mapping (SLAM), new methods were developed, including
scale-invariant feature transform (SIFT) [216], and speed up robust feature transformation
(SURF) [217]. For detecting blunders, the random sample consensus (RANSAC) [218] algo-
rithm was created. Another focus and advance were thematic information extraction [219].
In this respect, classifications such as support vector machine (SVM) [220] and random
forest (RF) [221] have been applied actively. In addition, new change detection techniques
were developed [222]. The above-mentioned developments in photogrammetry have been
applied in numerous countries. To achieve a digital cadastral database in support of LIS
in India, tests for Andhra Pradesh districts, across over 10,000 sq.km were performed in
2011 [223]. Another example is the work on land parcel boundary delineation based on
aerial survey in Azerbaijan [224]. In addition, digital aerial images taken over Ghana in
2014 were analysed by Offei et al. [225], aiming to assess the compliance with residential
building standards in the context of the local customary land tenure system. Other exam-
ples of assessment of digital aerial photogrammetry with small or large format cameras
for cadastral applications were tested in Nepal [226], Indonesia [227], Costa Rica [228],
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Jordan [229], Turkey [230]. A framework for the automatic characterisation of real property
based on aerial photography was proposed by Austrian researchers in [231]. In addition,
an interesting exploration estimating the positional accuracy of a parcel boundary dataset
based on unrectified aerial images has been done by Siriba in [232].

Regarding UAVs, developments here countered arguments that the one-time collection
of imagery was costly and too quickly became outdated: UAVs could, in a cost-effective
and as-needed manner, quickly capture a small number of parcels at high accuracy and
provide more contextual information than an equivalent ground-based survey. Mum-
bone [233] trials the application in rural Namibia, in the context of mapping communal
villages, for which aerial imagery was explored years earlier [234]. These communities
are often separated by large distances making regular aerial photography prohibitive.
Ramadhani et al. [235] and Yuwono et al. [236] assess and determine high relevance for the
approach in both rural and urban Indonesia, and later Aditya [237] undertakes a larger
scaled pilot in the context of participatory tenure mapping. Kurczynski et al. [238] and
Cienciala [239] both reveal the potential for UAVs for sporadic cadastral updating in Poland.
Other arguments are made for Kenya [240], and trials are undertaken [241] here and in
Rwanda [242]. Stocker et al. [243] reveal how for the case of Rwanda, the three different
UAV methods could align with administrative requirements, notwithstanding the limits
relating to law and capacity. In the same context, Flores et al. [244] consider the gover-
nance challenges of UAV introduction. In a related application, Ali [245] demonstrates the
potential for land valuation in Zimbabwe. Other investigations include the comparative
work of Karatas in Turkey [246], against classical methods, Koeva et al.’s comparative work
in Rwanda [247], Mbarga’s [248] assessment for application in Cameroon, and perhaps
most influentially, Stocker et al.’s [249] recognition that, again, it is regulatory issues—for
both UAV usage generally, and specifically for cadastral surveys—that may determine the
ultimate update of the technology.

Lidar techniques, both terrestrial and aerial, provided a new means for creating cadas-
tral information. Point cloud data are inherently 3D, and this creates the opportunity to sup-
port the growing demand for 3D cadastres, ‘indoor’ data capture, and marine/littoral zone
tenure mapping. Until now, these needs were not well supported by conventional ground-
survey methods nor conventional photogrammetric ones. An overview of the main devel-
opments on 3D cadastres, including applications of lidar, is provided by Stoter et al. [250],
with updates in Van Oosterom et al. [251].

Specifically, on lidar applications outdoors, in an early work, Filin et al. [252] identify
methods for fusing lidar point cloud data with cadastral maps. A significant challenge
would be creating efficient workflows for extracting simple vector boundaries: automated
feature recognition would become a focus not only for lidar data, but also other large,
remotely sensed datasets. Whist these automation techniques are covered in more detail
below, Kodors et al. [253] and Kumar et al. [254] provide an early method for build-
ing and real-estate capture. Meanwhile, others undertook country-specific explorations:
Giannaka et al. [255] explore the potential in Greece; Drobez et al. [256] more generally in
Slovenia; Luo et al. [257] develop a workflow for Vanuatu (Figure 8); Wierzbicki et al. [258]
fuse lidar and orthophoto techniques for cadastral modernisation in Poland; and Griffith
Charles et al. [259] trial the approach in low-value informal lands in Trinidad and Tobago.
On the latter, the low-cost specifications, whilst not ideal, could support the preparation
of spatial data in the context of 3D cadastres. Lubeck [260], in related developments, uses
SAR-radar and its application in fence detection to support ground methods in Brazil.
Going underground and indoor with lidar, Rajabifard et al. [261] provide full coverage
on BIM developments relating to land administration, and provide full coverage for BIM
data capture options, including lidar techniques. Koeva et al. [262] provide a novel indoor
cadastral data capture solution based on terrestrial scanning. Beida et al. [263] demonstrate
the use case for capturing underground 3D objects and converting them into cadastral
objects. Yan et al. [264] supplement similar methods with ground-penetrating radar (GPR)
to support cadastral object capture. Other novel data capture technologies emerging in
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this era and applied to land administration, at least conceptually and/or experimentally,
included oblique aerial imagery and pictometry (the process of capturing and stitching
building façade oblique imagery together), as demonstrated in Kisa et al. [265] and Lem-
mens et al. [266], respectively.

Figure 8. The 2000s saw convergence in data capture technologies and integrated workflows for map
production, as demonstrated by [257], where lidar data, aerial imagery, and open-source software
were used to generate a parcel layer (red lines) with limited human input. Note: grey lines are the
original cadastral boundaries, used for comparison.

Here, linked to Luo et al. [257] above, it is worth mentioning Luo et al. [267]. Using
existing cadastral maps as baseline data, they quantify the overlap between legal/cadastral
boundaries and visible features. This is important: remote sensing and photogrammetric
methods are premised on the idea that physical boundaries overlap with legal boundaries.
The results here tend to confirm the anecdotal notion that 70% of cadastral boundaries
were indeed visible or physical, at least in the context studied.

Additionally, during this period, computer processing speeds, networking speeds,
and storage capacity exponentially increased. As mentioned above, this reduced image
processing times, mosaic creation, and so on, although the amount of imagery data be-
ing captured and the density of pixels within these images also exponentially increased.
Geocloud platforms combining multiple sources of image data needed for land tenure
recording have been developed [268]. The first era of land information systems began to
give way to second generation systems, relying on web services for transaction and data
delivery [269]. The concept of SDIs fully matured, and alongside cadastral data layers [270],
high-resolution georeferenced imagery was often considered a fundamental layer or part
of a broader land administration data warehouse [271]: the division between imagery
data and land administration data was increasingly blurred. These developments pro-
moted standardisation in the domain, with ISO 19152 Land Administration Domain Model
(LADM) [272], a data model standard, being endorsed in 2012. The cadastral and survey
data packages within the model were generalisable enough to handle the incorporation of
imagery-derived cadastral data and imagery itself as source data.

The final major technological advance in the era was the resurgence of artificial intelli-
gence (AI) and machine learning techniques. For land administration, these offered the
opportunity to automate processes for identifying, vectorizing, and validating cadastral
boundaries. On this, Commelinck et al. [273] provide a review of these developments up
to 2016, albeit primarily focused on UAV imagery. More recently, Bennett et al. [5] provide
a review of AI techniques applied to the specific case of land administration maintenance.
In Crommelinck et al.’s [273] generalised workflow consisting of preprocessing, image seg-
mentation, line extraction, contour generation and post-processing, an open-source solution
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is developed. Due to the difficulties in training algorithms, semi-automated methods tend
to be more promising [274]. Whilst Masouleh [275] focusses on 3D cadastres, proposing a
deep learning methodology to support the reconstruction of buildings from aerial images,
most of the work at this point focuses on 2D applications. Indeed, the techniques are seen
to offer much hope in developing contexts where the greater majority of land parcels might
not be mapped, or at least are very outdated [276]. Wassie et al. [277] (Figure 9) develop
an approach using HRSI for rural Ethiopia, finding that regular smallholder parcels lend
themselves well to the technique.

Figure 9. Wassie et al. [277] used open-source software to develop a workflow to extract smallholder
parcel boundaries using HRSI in Ethiopia. Note: red = control boundaries; yellow = extracted.

Koeva et al. [278] show how such methods could be integrated with other innovations,
including cloud services, UAV usage, and sketch mapping. Meanwhile, Fetai et al. [279]
develop an approach using UAV imagery and off-the-shelf feature extraction tools, also
with promising results. Park and Song [280] develop an approach for detecting cadastral
parcel changes, also using hyperspectral UAV imagery. A key requirement for any AI
technique is that the total cost and time for delivering the final boundaries, including pre-
and post-processing and editing, should not be higher than the cost of non-automated
techniques. This remains a challenge: even if 60–70% of boundaries can be extracted, the
editing work involved still often takes the total cost over that of manual methods. For
the case of land administration, unlike other thematic geospatial layers, it is generally
an expectation to have 100% accuracy (or very close to it). Therefore, comparative work,
between manual and automated methods, undertaken by Nyandwai et al. [281] (Figure 10),
continues to be important: current rates are too low to be brought into production in many
contexts, but could act as a ‘first cut’ cadastre in some contexts. Most recently, Xia et al. [282]
used a convolutional neural network to improve extraction quality further (Figure 11).

Perhaps most promisingly in this era was the fact that the digital advances from
previous decades became affordable and accessible in most contexts globally: mobile
communications, smart devices, and high-speed Internet were not only the domain of
developed contexts. Moreover, high-resolution satellite imagery covered the majority of
the Earth’s surface. This motivated the concepts of crowdsourced cadastres, participatory
land administration, pro-poor land recordation [283], and more broadly, fit for purpose
land administration (FFPLA) [284], all of which, learning from the lessons of development
projects in the previous decades, and ongoing ones in the early 2000s, such as Cambo-
dia [285], heavily advocated for the use of remotely sensed imagery, in all forms, to support
data capture, and as Bennett et al. [5] explain, were ultimately endorsed in the Framework
for Effective Land Administration (FELA) of the United Nations Committee of Experts
on Global Geospatial Information Management. As always, this was understood to in-
clude ground visits, for sensitisation, demarcation, or validation, especially in the initial
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registration projects [286]: imagery alone was not enough [287]. Whilst many in the land
sector argued that FFPLA, and associated terms, were nothing new (indeed, as shown in
the preceding sections, imagery-intensive methods in land administration projects dated
back decades), the branding was used to frame and propel experimentation with new
technologies, pilots, and scaled work. Regarding the latter, the Rwandan case of mapping
+10M parcels, with imagery, over a 3–5-year period was oft-cited [284]. Other explorations,
including participatory methods and/or imagery-based approaches, were undertaken in
Greece [288], Namibia, Ghana, and Kenya, as described in Chigbu et al. [289] and Koeva
et al. [290]. The South African context is also demonstrated by Williams-Wynn [291] as
being ready for FFPLA, based upon imagery, and that the legislative basis is already sup-
portive. Zein et al. [292] provided an updated comparison of imagery sources—HRSI,
UAVs and digital orthophoto techniques—in the context of FFPLA. They find that a cost
of USD 7/parcel is achievable and that the selection of the most appropriate source will
depend on the context. Simplifying things even further, the point cadastre concept was
revisited [293], where a single point (rather than complex to capture polygons), overlaid on
high-resolution imagery, could be used to identify rights.

Figure 10. Nyandwai et al.’s method [281] created a ‘first cut’ cadastre (yellow) that could be taken
to the field for validation.

Figure 11. Xue et al. [282] compared three emerging feature extraction approaches for parcel
boundaries: (a) fully convolutional networks (FCNs); (b) globalised probability of boundary (gPb);
(c) multi-resolution segmentation (MRS). Note: Yellow lines are ‘true positive’; red lines are ‘false
positive’; and green lines are ‘false negative.’.

Meanwhile, beyond all the innovations around digital photogrammetry, HRSI, UAVs,
AI, lidar and FFPLA, work continued, on the many decades long, surveyor-realisation that
photogrammetric methods could and ought to be used to support formal and conventional
cadastral surveying tasks. Here, use cases including hilly areas in Nepal [226], forest land
in Greece [294], cadastral updating and illegal building detection in Turkey [230,295], urban
mapping based on satellite data in Bulgaria [296], digital aerial photogrammetric building
footprint additions to cadastres in Poland [297], and the use of historic imagery in the
Slovak Republic for updating [298] are observed.
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9. Discussion

This section does not seek to revisit the minutia in the developments, debates and
discourse outlined above. Instead, it focuses on: (i) providing a concise synthesis of the key
periods, drives, developments, and cases from the review; (ii) confirming the overarching
hypothesis that photogrammetric and remote sensing methods have a strong historical
and contemporary presence in land administration practice; (iii) providing a conclusive
statement on the various cost–benefit analyses covered in this review; (iv) showing the
limitations, at least in the contemporary era, in framing data capture methods in land
administration as a dichotomous issue; (v) providing an important reminder of the issue of
‘invisible boundaries’ in the context of remote sensing techniques; (vi) highlighting legal
and regulatory constraints; (vii) making mention of the need to consider the broader land
management domain (versus land administration); and (viii) briefly casting forward to
hypothesise emerging approaches.

First, the major findings from the review are presented both thematically (Figure 12)
and geographically (Figure 13). For the thematic depiction, these are organised by the
chronological periods identified in the review process. In addition, the key drivers, techno-
logical developments and illustrative cases are also depicted.

Figure 12. Origins and developments of photogrammetry and remote sensing applied in land administration.

Second, the overarching message is clear enough in the evidence. That is, almost one
hundred years after European countries demonstrated the ability to use photogrammetric
methods to produce high-quality and comprehensive cadastral coverage—with far more
rudimentary technologies than have since developed—any remnant arguments on the use,
and apparent limitations, of photogrammetric methods and remote sensing applied to land
administration can hardly be sustained. This is not to say that ground methods have become
redundant; on the contrary, ground methods continue to dominate in many jurisdictions.
Whether this is to do with regulatory inertia, sector self-interest, or driven by considered
cost–benefit analyses can be debated, but really ought not to be. What is more certain is
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that the surveying community, regardless of the jurisdiction in which they operate, owe
it to its citizenry to ascertain how best to incorporate imagery-driven cadastral mapping
approaches, at least in conjunction with ground-based methods, into land administration
functions. Arguments around cost, time, and accuracy for capture would appear very hard
to sustain; and cloud computing and high-speed internet overcome the issue of transferring
and processing large amounts of remotely sensed data between stakeholders.

Figure 13. Remote sensing and photogrammetry applied to land administration: review results depicted geographically.

Third, this review did not provide a conclusive endpoint or structured comparison
of the cost–benefit studies completed, as they emerged over the decades, with regard to
photogrammetric methods (including remote sensing) and ground-based methods. In
general, most of these studies sought to demonstrate the efficiencies that could be gained
by aerial or image-based methods, at a particular point in time. If these were countered, it
was usually with regard to what costs were not being included or excluded in the analyses.
Here, the authors agree that cost–benefit analyses can be open to bias or manipulation, and
without the means to test the claims in several papers, we simply presented the claims and
rebuttals of both sides. That said, through the significant body of works provided, counter
claims that imagery-based methods are not suitable in land administration tended to be
accompanied with less empirical work.

Fourth, the more recent eras demonstrate that convergence of ground-methods and
photogrammetric/remote-sensing methods is increasingly the norm: in practice, thanks to
digitalisation, the dichotomy between ground and air is harder to ascertain—that is, the
tools, the techniques, the resulting data and maps, and the underlying training programs
are increasingly intertwined.

Fifth, noting the positive developments above, it is important to always keep in mind
the issue of ‘invisible boundaries’—that is, those boundaries that exist purely as social (and
potentially legal) concepts in the minds of parties, and do not have a physical presence.
Surprisingly, this issue was only explored more empirically in the final era; however, for
imagery-based approaches, it is key issue in terms of achieving completeness and coverage,
where such approaches are said to be superior. Whilst many cadastral boundaries have
a physical presence, being able to be sensed remotely, many do not [299], and as shown
by Luo et al. [267], whilst up to 70% could be sensed, other studies show [300,301] that in
some contexts, physical boundaries may be absent altogether. That said, this still does not
negate the use of imagery in those contexts: imagery, by its nature, provides contextual
information that can be extremely supportive of land tenure, land value, and land use
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planning activities. Moreover, land administration as a domain has long recognised the
different manifestations, perspectives, or representations that cadastral boundaries have,
variously including combinations of physical natural features, person-made features (stakes
or monuments), legal authority, social recognition, textual descriptions (metes and bounds),
graphical depictions (be they scaled accurately scale, or not), numerical or coordinated
descriptions, and more recently, digital representations. No technological approach can
cover all of these aspects; however, remote sensing and photogrammetry can certainly
support in some of them.

Sixth, mainly due to the historic nature of the land administration profession being
more technology-oriented, the works reviewed here tended to have an overtly technolog-
ical bias, with an overt focus on the spatial accuracy debate. For example, many works
focused on ‘how to’ apply technologies—or, as in other examples, the cost–benefit analyses
tended to focus on the costs for data capture, rather than taking a broader view on legal
implications, staff retraining costs, awareness raising in beneficiary communities, or gover-
nance costs. However, these ‘other’ issues are most likely where the major blockers for the
uptake of remote sensing technologies in land administration occur. In particular, laws and
regulations around what tools and techniques can be used to create cadastral surveys, the
legal responsibilities or mandate (e.g., licences) of those completing the surveying (whether
ground-based or photogrammetric), or even the more philosophical debate on what can or
should constitute a cadastral boundary (see [302] and [303], for example), are of consider-
able importance, but, apart from the work of Stocker et al. [249], far fewer dedicated works
on these issues, directly relating to remote sensing and land photogrammetric methods,
were found in the review.

Seventh, it needs to be recognised that this review focused on ‘land administration’:
the broader area of land management cannot be said to have been fully covered. Most
definitions of land administration, and certainly land management, would incorporate
land tenure, land value, land use planning, and land development. Although these other
functions are certainly covered variously in this review, primarily, the review here systemat-
ically concentrated on land tenure, linked to registration and cadastres. This limitation was
somewhat intentional, given that the scope of work would have been too large. Nonethe-
less, it is noted, and moreover, it is suggested that the literature from these related areas
would reveal a similar trajectory in terms of imagery-based technologies and techniques
with regard to application, although this cannot be said for sure. Likewise, the limitation of
focusing only on English literature is again noted. Where deemed necessary, it is encour-
aged for others to undertake similar studies of French, German and Spanish works—noting
that many of the English works cited in this work refer directly to developments from
contexts using those languages.

Eighth, looking ahead, whilst past developments cannot necessarily be used to predict
future progress, it appears quite certain that emerging remote sensing technologies will
continue to be experimented on within land administration. The period for scaled diffusion
and uptake of those innovations, however, may be more rapid than in the past. The era of
digital transformation makes it harder to sustain legal and institutional barriers to change:
starts-ups and alternate land administration service providers can now more easily enter
the market. In terms of immediate developments, AI and feature extraction techniques
will continue to garner attention and will likely be fused with other data sources, both
statutory and non-statutory, and social and environmental, to create more intelligent land
boundary recognition algorithms. Regardless of this automation, it seems likely that
human mediation will remain in some form for the foreseeable future. Integration of the
use cases of land use planning, land valuation, land development, marine environment,
underground, indoor and 3D, more generally, will continue to drive developments in
practice and training courses.
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10. Conclusions

This paper began from the premise that, at least conventionally in many countries
(although, not all), land administration used ground-based survey and methods: the
application of photogrammetry and remote sensing was said to be far more contemporary,
if not considered inappropriate by some practitioners, only commencing later into the
20th century. This paper sought to counter this prevailing view, and contended that the
use of remote sensing and photogrammetry to support land administration was far from
a recent addition to the land administration toolkit: scaled implementation dated back
much earlier.

Using now more accessible historical works, made available through archive digitisa-
tion, this paper presented an enriched and more complete synthesis of the developments of
photogrammetric methods and remote sensing applied to the domain of land administra-
tion. Developments from early phototopography and aerial surveys, through to numeric
photogrammetric methods, the emergence of satellite remote sensing, digital computing,
and later lidar surveys, UAVs, and artificial intelligence were covered. That said, the review
has limitations in terms of relevant languages covered (e.g., German was not included), and
being based upon the available literature. It is encouraged for others to undertake similar
studies, where deemed necessary, of other language groups, and to undertake a more
complete country-level comparison of remote sensing and photogrammetric techniques,
and related laws, applied in land administration.

The synthesis illustrated how declarations of the benefits of the technique are hardly
new—and neither are well-meaning, though oft-flawed, comparative analyses based on
time, cost, coverage, and quality. The historic case for, and application of, photogrammetric
and remote sensing methods, in land administration is undisputable. Alongside this key
finding, this review also identified other recurring challenges, in selected country contexts,
throughout the decades, including: the problem of land sector inertia, conservatism and
legal constraints when it comes to imagery-based approaches; the recognition that invisible
boundaries will always mean some boundaries can only be identified through human
interaction; and more recently the increasing irrelevance of the distinction between ground
and aerial survey methods: technology convergence is driving fusion in practice and
educational programs.

Apart from providing this more holistic view and a timely and important reminder
of previous pioneering work, the paper brought contemporary practical value in further
demonstrating to land administration practitioners that aerial and remote methods of
data capture, and subsequent map production, are an entirely legitimate, if not essential
part of the domain. Any contemporary arguments that the tools and approaches do not
bring adequate quality for land administration purposes cannot be sustained. Indeed,
these arguments tend to undermine what should be essential characteristics of the land
surveying profession—pragmatic and pioneering mindsets. That said, it is left to land
administration practitioners to assess whether the available methods are suitable for a
given jurisdiction, and also whether cadastral laws and standards require revisiting.
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Abstract: During the past years, unmanned aerial vehicles (UAVs) gained importance as a tool
to quickly collect high-resolution imagery as base data for cadastral mapping. However, the fact
that UAV-derived geospatial information supports decision-making processes involving people’s
land rights ultimately raises questions about data quality and accuracy. In this vein, this paper
investigates different flight configurations to give guidance for efficient and reliable UAV data
acquisition. Imagery from six study areas across Europe and Africa provide the basis for an integrated
quality assessment including three main aspects: (1) the impact of land cover on the number of
tie-points as an indication on how well bundle block adjustment can be performed, (2) the impact
of the number of ground control points (GCPs) on the final geometric accuracy, and (3) the impact
of different flight plans on the extractability of cadastral features. The results suggest that scene
context, flight configuration, and GCP setup significantly impact the final data quality and subsequent
automatic delineation of visual cadastral boundaries. Moreover, even though the root mean square
error of checkpoint residuals as a commonly accepted error measure is within a range of few
centimeters in all datasets, this study reveals large discrepancies of the accuracy and the completeness
of automatically detected cadastral features for orthophotos generated from different flight plans.
With its unique combination of methods and integration of various study sites, the results and
recommendations presented in this paper can help land professionals and bottom-up initiatives alike
to optimize existing and future UAV data collection workflows.

Keywords: UAV; cadastral mapping; data quality; geometric accuracy; impact assessment;
ground control points; feature extraction; flight plan

1. Introduction

Harnessing disruptive technologies is crucial to achieving the Sustainable Development Goals.
Amongst others, unmanned aerial vehicles (UAVs) play a significant role in the so-called Fourth
Industrial Revolution. They are being referred to as mature technologies for remote delivery,
geospatial mapping, and land use detection and management [1]. In the domain of land administration,
UAV technology gained in importance as a promising technique that can bridge the gap between
time-consuming but accurate field surveys and the fast pace of conventional aerial surveys [2,3].
Various publications tested UAV-based workflows for cadastral applications, covering formal cadastral
systems such as in Albania [4] Poland [5], The Netherlands [6], or Switzerland [7] as well as less
formal systems in Namibia [8], Kenya [9], or Rwanda [10]. Findings examine vast opportunities,
especially with the additional information of textured 3D models and high-resolution orthophotos that

Remote Sens. 2020, 12, 3625; doi:10.3390/rs12213625 www.mdpi.com/journal/remotesensing

43



Remote Sens. 2020, 12, 3625

ease public participation in boundary delineation [4,8,11]. Benefitting from the advantages of UAV
data, various authors utilized approaches in artificial intelligence and developed (semi-) automatic
scene understanding procedures to extract cadastral boundaries [12–15].

The fact that UAV-derived geospatial information can support decision-making processes involving
people’s land rights raises questions about the quality of UAV data. In this context, the concept of
quality is closely linked to spatial accuracy, which can be defined as absolute (external) or relative
(internal) accuracy. According to [16], absolute accuracy refers to the closeness of reported coordinate
values to values accepted as or being true. In contrast, relative accuracy describes the similarity of
relative positions of features in the scope to their respective relative positions accepted as or being
true. Both measures are equally crucial in land administration contexts (c.f. [17]), firstly, the correct
representation of image objects such as houses or walls (relative accuracy) as well as the correct
position of corner points (absolute accuracy) [16]. Generally speaking, the spatial accuracy depends
on configurations of the UAV flight mission such as sensor specifications, UAV itself, mode of
georeferencing, flight pattern, flight height, photogrammetric processing, image overlap, but also on
external factors such as weather, illumination, or terrain.

During the past decades, remote sensing, as well as computer vision communities alike,
studied those impacting parameters emphasizing image matching algorithms, different means of
georeferencing, and various flight planning parameters, among others. Finding accurate and reliable
image correspondences is the basis for a successful image-based 3D reconstruction. Numerous authors
investigated this fundamental part of the photogrammetric pipeline while trying to increase the
precision of image correspondences and to optimize computational costs [18–21]. The quantity
of tie-points derived during feature matching mainly depends on the type and the content of the
image signal. Deficient success rates negatively impact the spatial accuracy and overall reliability
of the 3D reconstruction and ultimately worsen the quality of the digital surface model (DSM) and
orthophoto [22].

Next to the aspect of feature matching, georeferencing refers to one of the most practice-relevant yet
most discussed topics when utilizing UAV imagery for surveying and mapping applications. More than
60 studies examined various methods of sensor orientation for terrestrial applications, as outlined
by [23]. The choice for a georeferencing approach typically represents trade-offs between spatial
accuracy and operational efficiency [24]. Even though direct sensor orientation or integrated sensor
orientation brings significant time-savings for the data collection operation, planimetric accuracies
usually range between 0.5 and 1 m due to the low accuracy and reliability of directly measured
attitude and positional parameters by onboard navigational units without a reference station [25–27].
Due to inaccurate scale estimation of those insufficient methods, not only the absolute but also the
relative accuracy might be not suitable for a particular application. In contrast, the use of real-time
kinematic (RTK) or post-processing kinematic (PPK) enabled GNSS devices allows to improve the
spatial accuracy to a range of several centimeters [28–32]. However, issues of sensor synchronization,
as well as insufficient lever-arm and boresight calibration, remain challenging [29,33], particularly for
off-the-shelf UAVs.

In addition to positional or full aerial control, integrated sensor orientation offers the option
to include ground observations, known as ground control points (GCPs). This has proven to be
beneficial to mitigate systematic lateral and vertical deformations in the resulting data products [34].
Various studies addressed the impact of the survey design of GCPs in terms of quantity and distribution.
In their meta-study, [23] did not find a clear relationship between the number of GCPs and the size of
the study area, but investigated a weak negative relationship between statistics of the residuals and the
number of GCPs collected per hectare. Data from several sources confirm that the distribution of GCPs
strongly impacts the spatial accuracy, and an equal distribution is recommended [35–37]. However,
looking at the results of the optimal number of GCPs, different conclusions are evident. Results from
relatively small study sites suggest that the vertical error stabilizes after 5 or 6 GCPs [35,38] and the
horizontal error after 5 GCPs [35,36]. In contrast, [39] obtained a low spatial quality with 5 GCP and
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recommended to use a medium to a high number of GCPs to reconstruct large image blocks accurately.
In [40,41] the authors achieved similar results with a concluding recommendation to integrate 15 or
20 GCPs in the image processing workflow, respectively. Aside from GCPs, higher spatial accuracy can
be achieved by additionally including oblique imagery [42] or perpendicular flight strips [30]. In most
cases, checkpoint residuals were measured in the point cloud or obtained directly after the bundle
block adjustment and, thus, do not necessarily represent the displacement of image points in the final
data product, as potential offsets during the orthophoto generation were not taken into consideration.
However, particularly for the application in cadastral mapping, the correct estimation of the spatial
accuracy is of vital importance.

Even though weak dependencies between several impacting factors on the data quality are
evident, the results of existing studies are very heterogeneous. Furthermore, most studies remain
narrow in focus, dealing mainly with only one study site situated in non-populated areas, and it is
questionable whether recommendations can be transferred to the cadastral context. To the best of the
authors’ knowledge, existing studies on UAV-based cadastral mapping only highlight the usability of
UAVs without assessing different flight configurations or the impact on the final absolute or relative
accuracy. To this end, a comprehensive analysis of varying data quality measures should provide a
factual basis for clear recommendations that ensure data quality for UAV-based cadastral mapping.
Thus, this paper seeks to conclude on best practice guidance for optimal flight configurations by
integrating results of a detailed quality assessment including three main aspects: (1) feature matching,
(2) ground-truthing, and (3) reconstruction of cadastral features. Whereas the first two approaches
target the evaluation of the data quality during and after photogrammetric processing, the latter
method focusses on the implications of different orthophoto qualities for the automated extraction of
cadastral features. Similar to diverse practices of quality assessment, research data are also manifold
and are drawn from six study sites located in Africa and Europe.

In many low- and middle-income countries, conditions for flying, controlling, and referencing
respective data are more complex than in Western-oriented countries, a situation which is often
underestimated. Primarily spatial and radiometric accuracy can be negatively influenced by poor
flight planning and adverse meteorological conditions. Moreover, ground control measurements
can be problematic due to a lack of reference stations, the availability of professional surveying
equipment, or capacity. In the field of land administration in general and cadastral mapping in
particular, incorrect geometries of the orthophoto might cause negative consequences to civil society as
the subject deals with a spatial representation of land parcels and attached rights and responsibilities.
As an example, erroneous localization and estimations of parcel sizes might imply inadequate tax
charges, problems with land compensation funds, or challenges to merge existing databases spatially.
With its unique combination of methods and integration of various study sites, it is hoped that the
results and recommendations presented in this paper help land administration professionals and
bottom-up initiatives alike to optimize existing and future data collection workflows.

The remainder of the paper is structured as follows. Section two provides background information
on data collection, data processing, and quality assessment methods. The results section is divided into
three separate subsections with (1) findings showing the impact of land use on the number of tie-points,
(2) a comprehensive comparison of different ground control setups and its effect on the final absolute
accuracy, and (3) an evaluation of qualitative and quantitative characteristics of extracted cadastral
features. The discussion critically reflects on the results based on existing literature and outlines best
practice guidance for UAV-based data collection workflows in land administration contexts.

2. Materials and Methods

The study setup foresaw three different means of quality assessment targeting at absolute as well as
relative accuracy as outlined in the conceptual framework in Figure 1. Well-known methods as the
statistical evaluation of checkpoint residuals were combined with quantitative measures of image
matching results as well as characteristics of automatically delineated cadastral features. Different clues
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on the spatial accuracy substantiate the results to provide best practice guidance. Detailed workflows
and specifications of the analysis are outlined below.

Figure 1. Conceptual framework.

2.1. UAV and GNSS Data Collection

To test the transferability of the findings and to ultimately claim best-practice recommendations,
methods were applied to different datasets collected with diverse UAVs and sensor equipment.
This includes, in total, six study areas across Europe (Gerleve, Bentelo) and Africa (Kajiado, Kibonde,
Muhoza, Mukingo) ranging from 0.14 to 8.7 km2 (Figure 2). UAV equipment as well as sensor
specifications are outlined in Table 1 and included two fixed-wing UAVs (Ebee Plus, DT18), one hybrid
UAV (FireFly6), and two rotary-wing UAV (DJI Inspire 2, DJI Phantom 4) equipped with an RGB sensor.
Two out of the five UAVs worked with a PPK. Prices for the platforms and sensors range from 1000 to
40,000 €. Flights in Gerleve, Bentelo, Muhoza, Kajiado, and Mukingo were carried out according to
a classical flight pattern without cross-flights and an overlap of 80% forward overlap and 70% side
lap for all datasets. Additionally, the study in Kibonde foresaw several flights that were repeatedly
carried out with varying image overlap (60%, 70%, and 80% side lap) to assess the impact of flight
parameters on the characteristics of extracted cadastral features. Following existing literature that
proves the benefit of cross flight patterns [16], three perpendicular strips in a different flight height
were added to the regular flight and are part of the accuracy evaluation in Kibonde as well.
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Figure 2. Overview of all datasets presented as orthomosaics (a) Bentelo, (b) Gerleve, (c) Mukingo,
(d) Kajiado, (e) Kibonde, and (f) Muhoza (scales vary).

Table 1. Unmanned Aerial Vehicles (UAVs) and technical specifications of the sensor. GSD refers to
ground sampling distance.

Dataset Area (km2) GSD (cm) UAV Camera Sensor Size (mm) Resolution (MP)

Muhoza 0.98 2.1 BirdEyeView
FireFLY6 SONY ILCE-6000 13.50 × 15.60 24.00

Mukingo 0.50 2.2 DJI Inspire 2 DJI FC652 13.00 × 17.30 20.89

Kajiado 8.70 5.8 DJI Phantom 4 DJI FC330 06.20 × 04.65 19.96

Kibonde 0.15 3.0 SenseFly Ebee
Plus SenseFly S.O.D.A. 12.70 × 08.50 19.96

Gerleve 1.10 2.8 DelairTech DT18 DT 3Bands 08.45 × 07.07 5.00

Bentelo 0.14 2.7 DJI Phantom 4 DJI FC330 06.20 × 04.65 11.94

To allow the inclusion of external reference points into the bundle block adjustment (BBA) as well as
for means of independent quality assessment, GCPs were deployed. Due to different contexts and time
delays between marking and the data collection flights [17], different shapes and methods to mark
control points were used. In Musanze, Mukingo, Bentelo, and Kibonde quadratic plastic tiles with two
equally sized black and white squares were fixed with iron pegs. Crosses marked with permanent
white paint were used in Kajiado, as the flight missions took several days. For Gerleve, white sprayed
Compact Disks were deployed and fixed with survey pins. Three-dimensional coordinates of the
central point were determined with survey-grade GNSS devices. As Continuous Operating Reference
Stations (CORS) are only available at a few locations in Africa, different modes were used to achieve a
measurement accuracy of less than 2 cm. Real-time CORS corrections could be harnessed in Europe,
while a base-rover setting over a known survey point and either radio-transmitted real-time corrections
or a classical post-processing approach was the preferred surveying operation for the African missions.
All GCPs were measured twice, before and after the UAV flight. The average of both measurements
was converted from the local geodetic datum to WGS84 or ETRF89. A detailed list of specifications
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about the GNSS device, number of measured control points, as well as original and target geodetic
datums are given in Table 2.

Table 2. Specifications of GCP measurements.

Dataset GNSS Device Measured Points Original Datum Target Datum

Muhoza Leica CS10 17 ITRF 2005 WGS84 UTM35S

Mukingo Leica CS10 19 ITRF 2005 WGS84 UTM35S

Kajiado CHC X900+ 16 Cassini WGS84 UTM37S

Kibonde Sokkia Stratus 11 Arc1960 WGS84 UTM37S

Gerleve Trimble 22 ECEF ETRS89 UTM32N

Bentelo Leica GS14 18 Amersfoort WGS84 UTM32N

2.2. Estimating the Impact of Land Cover on the Number of Automatic Tie Points

The establishment of image correspondences is a crucial component of image orientation. In the
first step, primitives are extracted and defined by a unique description. Secondly, the descriptors of
overlapping pictures are compared, and correspondences determined. With a low number of automatic
tie-points, the image orientation is less reliable and negatively impacts the quality of subsequent image
matching processes. Different land use classes were defined (cf. Table 3) to evaluate the impact of
land cover on the number of automatic tie-points. If a particular land use was present in a dataset,
representative image pairs were manually selected and processed as described below.

Table 3. Land use classes and representation in datasets (Bentelo, Gerleve, Kajiado, Kibonde, Muhoza,
Mukingo). Digits indicate the number of image pairs used for the experiment. Percentage, as outlined
in the definition, refers to pixel representing specific land cover.

Land Use Class Definition Ben Ger Kaj Kib Muh Muk

Forest >70% covered by trees 4 5

Agriculture (cropland) >70% cultivated agricultural fields 5 5

Agriculture (grassland or
uncovered soil) >70% bare soil or sparse grass vegetation 5 5 5 5 5

Rural context <20% structures, a predominance of
agricultural activities 5 5 5

Peri-urban context 20–70% structures 5 5 5 5

Urban context >70% structures, densely populated 5 5

Most commercial photogrammetric software packages do not provide information on their image
matching techniques, and respective code might be subject to frequent changes. Instead of using
such a black-box software, we chose three state-of-the-art feature matching approaches which were
selected, reflecting the variety of blob and corner detectors with binary and string descriptors: SIFT [43],
SURF [44], and AKAZE [45]. The open-source photogrammetric software PhotoMatch [46] was
utilized to carry out the tests. Before the feature matching process, all images were pre-processed
by a contrast-preserving decolorization tool [47], maintaining the full image resolution. The feature
matching was conducted with a brute-force method and supported by RANSAC for filtering wrong
matches. Thus, image correspondences are searched by comparing each key-point with all key-points
in the overlapping image. Settings for feature extraction and description were kept to default values as
this analysis is meant to detect relative changes of feature matching rates according to the type of land
cover instead of performance evaluation of different approaches. Resulting tie-points (i.e., inlier of
key-point matches) were normalized according to the image resolution to reach comparability between
various sensor specifications within one land use class. To enable an evaluation of matching quality
and variation in different land use classes and feature extraction/matching technique, the number
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of matches per image pair was normalized with respect to the number of matches within a specific
matching algorithm, see equation below for the so-called z-score. Here ATP indicates the normalized
number of automatic tie-points per image pair, ATP the mean of all matches of the respective feature
extraction approach, and σ ATP the standard deviation of all matches of the respective matching
approach. The z-score provides insights on how many standard deviations below or above the mean
the quantity of tie-points in comparison to the other algorithms, within a land use class, is.

Z score =

(
ATP −ATP

)

σ ATP

To also visualize absolute quantities, the mean value of ATP for all different datasets in the same
land use class was calculated. Furthermore, the overlap of image pairs was added as an additional
variable. For this analysis, data from Kibonde and Bentelo served as input image pairs as both datasets
offered various overlap configurations.

2.3. Estimating the Impact of the Number of GCPs on the Final Geometric Accuracy

All images were processed using Pix4D, keeping the original image resolution. Point clouds
were created with an optimal point density, and DSMs as well as the orthomosaics were produced
with a resolution of 1 GSD. To allow the comparability of the spatial accuracy of different datasets,
uniformly distributed GCPs were included in the processing pipeline according to a standard pattern
(Figure 3). Ground markers were identified and linked to at least six images. Depending on the specific
number of GCPs (0–10), the remaining points were used as independent checkpoints to estimate the
vertical and horizontal accuracy of the final data products.

Figure 3. Distribution of GCPs for experimental assessment of the spatial accuracy.

The spatial accuracy was calculated at two different stages of the photogrammetric processing.
Firstly, the geometric error was determined after the BBA, as outlined in the quality report of Pix4D.
The horizontal error of a checkpoint was calculated using the Euclidean distance of the residuals in X
and Y directions. The residuals of the Z coordinate represented the vertical offset. Secondly, this study
also foresaw an accuracy assessment of checkpoint residuals in the final data product as the absolute
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accuracy of points in the orthophoto is of vital importance for cadastral surveying. This measure
reveals information about displacement errors introduced during the orthorectification. The center of
checkpoints was visually identified and marked in the orthomosaic using QGIS. Horizontal errors were
derived by X and Y residuals, whereas the vertical error was extracted based on the raster value of the
DSM. To describe the overall planimetric and vertical error of a particular processing scenario, the root
mean square error (RMSE) was calculated following the ISO standard [16]. In this context, the GNSS
measurement of the checkpoint coordinate was treated as true value and the extracted coordinates
from the orthophoto as the predicted value.

2.4. Estimating the Impact of Different Flight Plans on the Characteristics of Extracted Cadastral Features

In contrast to the other two methods, the third quality evaluation utilizes only data from one
regional context. Following basic photogrammetric principles, it is clear that the amount of image
overlap significantly impacts the quality of the reconstructed scene. Thus, different flight pattern
(with and without cross-flight), as well as multiple image overlap (50% and 75% forward overlap
as well as 60%, 70%, and 80% side lap) configurations, were exemplified for the study area Kibonde to
ultimately show the impact of various flight configurations on the reconstruction quality of cadastral
features and subsequent automatic delineation results. Orthophotos were processed. Subsequently,
a quadratic shape of 500 × 500 m was extracted as required by the image segmentation algorithm [48].
To ultimately analyze geometric features and line discontinuities, this paper foresaw a workflow
including image segmentation algorithms as well as raster and vector operations, as shown in
Figures 4 and 5. The first step was the establishment of reference lines and the creation of a mask to
clip all candidate lines subject to this analysis. Reference lines were based on independently captured
UAV images (80% forward overlap and side lap, cross-flight at a different altitude) and a resulting
orthomosaic with 1.5 cm resolution. Two distinct features, namely building rooftops and concrete
walls, were selected as representative visible objects that are important for cadastral applications.
Both feature types were manually digitized and served as reference lines for subsequent analyses.

Figure 4. Workflow to define reference lines and a search mask for lines representing concrete walls
and rooftops.
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A uniform vector mask representing the vicinity of concrete walls and rooftops was created to
minimize the number of candidate boundary lines. A slope layer served as the basis to select a 1 m
buffer of all raster cells of the DSM representing >75% of the height gradient. Additionally, a vegetation
mask was created to remove vegetated areas as those would negatively impact the straightness of
selected cadastral features independent of the quality of the orthomosaic and thus would introduce
unintended noise to the analysis of geometric discontinuities. The vegetation mask was based on the
Gree-Red Difference Index (GRDI). Raster cells above a GRDI of 0.02 were classified as vegetation and
polygonized to calculate a buffer of 1 m. Finally, the slope-based mask was clipped with the buffer of
the GRDI to exclude vegetation from the samples.

In the second step, multiscale combinatorial grouping (MCG) [49] was applied to all orthophotos
to ultimately derive closed contour lines of visible objects, as suggested by [50]. The segmentation
threshold was set to k = 0.6 as this has proven to limit over-segmentation while still maintaining
relevant cadastral objects in the context of this study. As shown in Figure 5, resulting lines were
polygonized and simplified according to [48]. Once the lines were clipped with the reference mask,
several geometric and spatial characteristics were queried (c.f. Figure 5). Candidate lines were selected
by overlaying the MCG lines with a 0.5 m buffer of reference lines. From those candidate lines,
actual lines representing rooftops and walls were chosen manually. To calculate the correspondence
as well as the spatial difference to reference lines, the MCG lines representing walls and rooftops
were split to segments of 10 cm and subsequently converted to points. Afterwards the distance
from each point in the MCG line to the closest point of the reference line was calculated to derive
statistical values for the spatial offset. To describe the amount of MCG lines that could automatically
be extracted (i.e., correspondence with reference lines), a neighborhood analysis was carried out to
estimate the percentage of reference lines that could be reproduced by the MCG algorithm. As a last
characteristic, this study calculated the sinuosity as a measure of the straightness of MCG lines to reflect
on inconsistencies of critical features in the orthomosaics. Similar to the spatial offset, the sinuosity
was calculated based on summed length of the MCG lines for one object in relation to the length of a
virtual straight line (Figure 5).

3. Results

3.1. Image Matching: Image Correspondences

The number of pairwise image correspondences was derived from comparing feature matching
success rates representing certain land use classes prevalent in the images. The diagram in Figure 6
depicts standardized z-scores as well as mean values of automatic tie-points for SIFT, SURF, and AKAZE.
At first glance, the results of various matching algorithms demonstrate a similar distribution,
whereas apparent differences between land use classes are evident.

52



Remote Sens. 2020, 12, 3625

Figure 6. Standardized values of automatic tie-points using SIFT, AKAZE, and SURF as feature
extraction, detection, and matching algorithm. The mean number of automatic tie-points per algorithm
and land use class is reflected as bars. The x-axis represents land use classes as defined in Table 3.

Image pairs characterized by forest and cultivated agricultural fields show significantly
low numbers of automatic tie-points. In some cases, no matches could be found. Images,
displaying non-cultivated agricultural field plots stick out by a broad range of images correspondences
for all three feature matching approaches. Here, the dataset Bentelo reaches the highest z-scores
and results are multiple standard deviations above the mean. However, also insufficient numbers of
automatic tie-points are evident in this land use class, particularly for Gerleve. This can be ascribed to
poor illumination conditions and little contrast in the images. The remaining datasets are clustered in
a range between −0.5 and 1.5 of the z-score.

For image scenes showing human-made structures, two different trends are visible. The first
trend describes the following correlation: on average Kibonde, Muhoza, and Mukingo indicate more
key-point matches if less vegetation and more structures are prevalent. Thus, for Kibonde and Mukingo,
a higher z-score was achieved with the peri-urban scene context compared to the rural context. The same
applies to Muhoza with the land uses peri-urban and urban, respectively. In contrast, Kajiado does not
follow this trend and represents the dataset with the highest z-scores for all three land use classes (rural,
peri-urban, urban). The same applies for all three image matching algorithms. A possible explanation
for this may be the climate zone. As indicated above, high vegetation presents an adverse condition
for finding tie-points. In contrast to the humid climate in Kibonde, Mukingo, and Muhoza, Kajiado is
located in a semiarid region characterized by a sparse shrub and bush vegetation. Thus, the impact of
vegetation is almost not visible and rural as well as urban scenes achieve similar z-scores. Secondly,
next to the climate zone, also the GSD might have an impact on the above-average z-score of Kajiado
for the rural, peri-urban, and urban land use class.

Looking at the impact of image overlap on the automatic tie-points in Table 4, it becomes clear
that the poor feature matching results of forest can only be overcome with 90% image overlap while
the other land use classes already show sufficient matches with less overlap. Similar to Figure 6,
non-cultivated agricultural areas present the highest rate of image correspondences for all image
overlap scenarios. Two adverse conditions could explain the low rate of automatic tie-points in the
forest. Firstly, although the flight is configured with a high image overlap, the difference in the viewing
angle is larger between image points showing the crown of the tree than for image objects on the
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ground. Thus, we observe that key-points show insufficient similarity to be determined as image
correspondence. This challenge can only be overcome by 80–90% image overlap. However, at the
same time, the descriptors of leaves could also be too similar, leading to ambiguities during the feature
matching process. Both effects are visible and could explain the comparatively low number of automatic
tie-points for all four image overlap configurations. In addition, and more or less independently from
that, high vegetation cannot be regarded “static”, which is, however, an indispensable requirement for
mono-camera bundle adjustment. It should be emphasized that those results were derived with single
image pairs. It is expected that a priori location and alignment information of images in an image
block ease the feature matching process compared to the brute-force approach used in this analysis.

Table 4. Mean of automatic tie-points of image pairs using SURF showing different land use classes
and overlap.

60% Overlap 70% Overlap 80% Overlap 90% Overlap

Agriculture (not cultivated) 289 666 2519 n/a

Rural 83 116 291 n/a

Peri-urban 18 302 326 n/a

Forest 0 5 6 50

3.2. Absolute Accuracy: Checkpoint Residuals in DSM and Orthophotos

The absolute accuracy was determined after the bundle block adjustment as well as after the
orthophoto generation. Figure 7 presents the RMSE of horizontal and vertical checkpoint residuals of
all datasets. Looking at the results, it is evident that, in general, all datasets show a similar pattern.
For photogrammetric processing with less than 5 GCPs, resulting RMSE of the datasets differ widely,
whereas, for results with more than 5 GCPs, the final RMSE seems to stabilize at a certain level.

Looking at the horizontal RMSE, the large variance of the datasets for processing scenarios from 0
to 5 GCPs can be explained by the different quality of positional sensors. If no ground truth is included
(0 GCPs), the BBA solely uses image geotags to estimate the absolute position of the reconstructed
scene. Here, Gerleve was the only dataset with a professional PPK enabled GNSS device and attained
the lowest RMSE (10 GSD) for all datasets processed with 0 GCP. In contrast, Kajiado was flown with
a consumer-grade UAV showing a large horizontal offset of more than 200 GSD. Bentelo, Mukingo,
and Muhoza achieve an RMSE between 50 and 100 GSD without GCPs, which is considered a typical
error range of GNSS positioning without enhancement methods. Except for the dataset Mukingo,
the RMSE drops significantly with including 1 GCP which corrects systematic lateral shifts. For the
scenario with 3 GCP, all datasets achieve a horizontal RMSE between 10 and 20 cm. Gerleve and
Bentelo reach an RMSE of less than 10 cm after 6 GCPs and are followed by Kajiado and Muhoza after
7 GCPs. Subsequently, almost all datasets keep the same level alternating within a range of 1 GSD.
In this aspect, Mukingo achieves the most accurate results with less than 5 cm RMSE after 5 GCPs.
Muhoza is the only dataset which nearly improves its RMSE for each scenario that adds one more GCP.
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Figure 7. RMSE of checkpoint residuals measured in the DSM (vertical) and orthophoto (horizontal).

Looking at the vertical residuals, Figure 7 suggests a higher dynamic compared to horizontal
residuals. In general, residuals are larger than the values of the horizontal RMSE and start to level only
after 7 GCPs. With a height offset of more than 1000 GSD, which corresponds to approximately 30 m,
the dataset Mukingo shows the maximum value without including GCPs. This can be attributed to a
general definition problem of the height model used by DJI and can be corrected by adding at least
1 GCP. Similar to the horizontal residuals, Gerleve achieves the highest accuracy with an RMSE of
only 10 GSD. However, after 2 GCPs, the height residuals abruptly increase before decreasing again
after 4 GCP, indicating that this dataset requires a checkpoint in the center of the scene to correct
severe height deformations. At 5 GCPs, all datasets demonstrate a significant improvement of the
vertical RMSE. Independent from the size of the area, five evenly distributed GCPs can be considered
as the minimum number of GCPs which efficiently fixes cushion and dome deformations during scene
reconstruction. After 7 GCPs the vertical residuals of Bentelo, Kajiado, and Mukingo stabilize within
the range of 1 GSD whereas Muhoza and Gerleve continue to lower its RMSE.

Additional to the absolute accuracy, the difference of the RMSE after BBA to the RMSE after
DSM and orthophoto generation are shown in Table 5. The presented values reveal insights about
the share of the overall error, which accumulates after the BBA during the 3D-reconstruction and
ortho-generation process, independent of horizontal or vertical displacement indicated during the
BBA. Negative values suggest that the RMSE after the BBA is higher than the RMSE of the residuals
taken from the DSM/orthophoto. On average, variations between the error measures remain very
low (below 1 GSD) and do not show a clear trend of an overestimation of one or the other, as well as
no relation to the number of GCPs. However, for Gerleve and Muhoza, horizontal residuals range
up to 3 GSD, and for vertical residuals we observe differences up to 5 GSD in two cases. For both
datasets, significantly higher differences in the RMSE of checkpoint residuals could be explained by the
challenging conditions for the 3D-reconstruction and orthophoto-generation processes. For Muhoza,
difficulties could arise from considerable height (i.e., land surface) dynamics of the densely populated
urbanized center. Gerleve stands out for its poor illumination conditions and subsequent problems to
reliably reconstruct the image scenes.
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Table 5. Differences of RMSE of checkpoint residuals measured after the BBA and in the orthophoto/DSM.
Values are normalized, according to GSD. Horizontal (h) and vertical (v) errors are treated separately.
Differences >1 GSD are indicated bold.

Bentelo h/v
(GSD)

Gerleve h/v
(GSD)

Kajiado h/v
(GSD)

Muhoza h/v
(GSD)

Mukingo h/v
(GSD)

0 GCP 0.39/−1.96 −0.03/−0.84 0.05/−0.45 0.29/0.69 0.38/0.22

1 GCP −0.11/−0.08 0.05/0.73 −0.09/−0.10 −0.01/3.79 −0.31/−0.02

2 GCP 0.37/0.07 −0.02/−0.11 −0.24/−0.18 0.01/2.72 −0.28/−0.22

3 GCP 0.05/−0.28 −0.19/0.20 0.18/−0.57 0.72/1.07 0.24/0.16

4 GCP 0.15/−0.52 2.11/−0.72 0.23/0.94 0.60/−4.12 −0.27/0.49

5 GCP 0.10/0.01 2.17/−1.09 0.44/−0.24 2.81/0.18 0.15/−0.34

6 GCP 0.15/0.05 −0.15/−0.55 0.58/−0.37 1.60/0.18 0.19/0.16

7 GCP −0.13/−0.35 −0.05/0.57 0.24/−0.70 1.42/−0.12 0.23/−0.23

8 GCP −0.08/−0.22 −0.03/1.63 0.35/−0.37 −0.81/0.41 0.27/−0.07

9 GCP −0.22/−0.31 −1.55/−1.02 0.29/0.39 −0.50/−4.89 0.11/−0.66

10 GCP −0.11/−0.31 0.42/0.68 0.17/−0.02 −0.24/−2.60 0.28/−0.05

3.3. Relative Accuracy: Characteristics of Automatically Extracted Cadastral Features

Various line geometry measures present the quality of the scene reconstruction and subsequent
feature extraction. For the chosen quadratic scene in the center of the Kibonde dataset, houses are
predominantly covered by corrugated iron roofs and parcels are usually separated by concrete walls or
bushes. To minimize external noise to our statistical assessment, only walls and rooftops without the
interference of vegetation were delineated as reference (Figure 8). This adds up to a total of 692.3 m of
lines referring to rooftops and 196.4 m of lines representing walls. As presented in Table 6, this relation
is also expressed by candidate lines counted in a 0.5 m buffer of all reference lines. Interestingly,
the impact of the flight pattern (cross-flight or no cross-flight) is more evident for rooftops than for walls,
shown by the difference of line counts for different flight pattern scenarios. Concerning reference walls,
marginally (within 10% range) fewer candidate lines were selected compared to the same scenario
without a cross-flight pattern. In contrast, for rooftops, differences range from 10% to 40%.

Figure 8. Selected reference lines representing rooftops (green) and walls (red) for the area of interest
in Kibonde.
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Table 6. Qualitative and quantitative characteristics of line geometries representing rooftops (R) and
walls (W) separated according to flight configuration (forward overlap (f), side lap (s)) and flight
pattern (CF = cross flight pattern, no CF = no cross-flight pattern). Minimum and maximum values are
presented in bold.

Image Overlap (f/s) 50%/60% 50%/70% 50%/80% 75%/60% 75%/70% 75%/80%

no
CF CF no

CF CF no
CF CF no

CF CF no
CF CF no

CF CF

Candidate lines 0.5 m
buffer (count)

W 144 146 121 133 177 157 158 122 165 133 129 134

R 333 273 410 285 505 310 402 271 366 295 444 369

Selected line segments
(count)

W 73 42 76 63 67 50 78 44 75 57 54 40

R 209 177 233 180 256 180 243 161 189 168 220 173

Mean length of line
segments (m)

W 3.22 4.68 3.50 3.39 3.32 4.96 3.31 3.71 3.05 3.86 4.37 5.47

R 3.65 4.37 3.34 4.28 3.01 4.21 3.24 4.87 4.14 4.54 4.40 4.50

Correspondence with
reference (%)

W 71.5 85.8 79.0 90.1 82.5 87.8 88.5 83.6 93.0 87.6 91.9 93.0

R 94.9 95.8 94.8 95.1 96.6 95.6 96.3 95.9 95.1 95.7 97.2 97.8

Sinuosity
W 1.77 1.78 1.76 1.70 1.68 1.65 1.66 1.62 1.74 1.62 1.66 1.58

R 1.58 1.59 1.58 1.60 1.59 1.60 1.60 1.61 1.58 1.59 1.61 1.58

Looking at the count of selected line segments, a more homogenous picture can be drawn. In all
cases, the line count for the cross-flight pattern is lower than for the same image overlap scenario
without a cross-flight. The mean length of line segments shows no significant difference between
walls and rooftops. However, an important observation can be made concerning the image overlap.
On average, line segments are shorter for scenarios with only 50% forward overlap compared to
flight plans with 75% overlap. The combination of a higher count of line segments and a smaller
average line length proves a higher fragmentation of boundary features for orthophotos without a cross
flight pattern, as well as for lower image overlap scenarios. This result becomes even more apparent
concerning the correlation of selected MCG lines with the reference dataset. Here, the improvement
of the correlation with reference lines is more significant for walls than for rooftops. In this aspect,
walls demonstrate a range between 71.5% and 93% and steadily increase with higher image overlap
(both, forward and side lap). This means, the MCG algorithm applied to the orthophoto generated
with a poor flight plan, produces contours for only 71.5% of the walls. In contrast, an orthophoto
based on a favorable flight plan achieves an object detection rate of 93%. Hence, the detection range of
contour lines for rooftops is comparatively small with maximal 2.9% variance between different flight
plan scenarios.

A similar observation is evident for the sinuosity. Here, rooftops do not differ much, and lines of
rooftops are on average 1.5 times longer than a perfectly straight line from the start to the endpoint.
MCG lines representing walls are on average more curved and show a clear trend concerning the flight
parameters reaching a minimal curviness with a cross flight pattern and 75% forward overlap and 80%
side lap. Particularly for lines representing rooftops, it should be noted that the sinuosity values are
relatively high due to the origin of the MCG lines, which were created based on a raster dataset and
consequently still show undulations at the pixel level.

Aside from line feature characteristics, the spatial correlation was also investigated in terms of
distance measurements of MCG lines to reference lines. Figure 9 visualizes the results and exemplifies
the spatial correlation with a small sample of the entire dataset. Rooftops are mainly delineated close
to the reference line, whereas walls show considerable variability. As an example, we included the
orthophoto generated with the poorest image overlap at the bottom of Figure 9. The visual interpretation
reveals a significant deformation and poor orthorectification of the wall, which ultimately leads to the
displacement of MCG lines for the dataset with 50%/60% overlap and without a cross-flight.
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Figure 9. Example showing the differences of automatically extracted rooftops and walls separated
according to flight configuration (forward overlap (%), side lap (%)) and flight pattern (CF = cross flight,
noCF = no cross flight).

This variability is also apparent in the statistics of the point-to-line distances, presented as
box-whisker plots in Figure 10. The interquartile range of rooftops is significantly smaller than the one
of the walls. It should be noted that the distances of reference walls are subject to a systematic offset of
15 cm as the reference line was placed in the center of the wall, whereas the MCG algorithm produced
lines on the right or left edge.

Figure 10. Box-whisker plot of point distances to reference lines separated according to the reference
wall and rooftop. Box represents the interquartile range (IQR) with the median; whisker represent
1.5 IQR, points represent outliers. x-axes label refers to flight parameter, e.g., 5060CF means 50%
forward overlap, 60% side lap and cross-flight (CF) pattern. Distances reflect the length of perpendicular
lines from points to reference lines. Points were created every 10 cm from a line geometry that was
derived by feature extraction with the MCG algorithm.
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For two flight scenarios with low overlap, outliers of point distances of rooftops exceed the outliers
of walls. In general, the share of outliers is higher for rooftops than for walls indicating that almost all
rooftops are delineated in a range of approximately 20 cm with a few extreme variations. For wall
features, the statistical analysis confirms the observations from the line characteristics, showing that
the overall quality of delineated walls differs highly with respect to the image overlap and flight plan
settings. Best results represented by the lowest five-number values of the box-whisker plot were
returned for flight scenarios with 75% forward overlap, 80% side lap, and a cross flight pattern.

As evident in Figure 11, the RMSE of horizontal checkpoint residuals of the orthophoto stays
between 0.8 and 1.5 GSD for all flight configurations, which corresponds to 2.5–4 cm. Similar to
Figure 9, the statistics of the offset of detected line features show a noticeable discrepancy between
rooftops (<10 cm) and walls (20–40 cm).

Figure 11. Scatterplot of error metrics for delineated rooftops and walls of orthophotos captured with
different flight configurations. Absolute accuracy of the orthophoto is given on the y-axis with the
RMSE of horizontal checkpoint residuals. Relative accuracy is shown on the x-axis displayed by the
RMSE of point distances to reference lines. Note that both axes have different scales.

In contrast to checkpoint residuals of the orthophoto, which do not show a correlation with the
error metrics, Figure 12 reveals that the flight pattern has implications on the relative accuracy of
extracted features. Walls directed perpendicular to the flight direction show almost the same statistics
for both scenarios, with a cross-flight or without a cross-flight pattern. However, for walls parallel
to the flight direction, a cross-flight pattern improves the results indicated by a lower median and a
smaller IQR. This result could be attributed to the fact that geometries of features parallel to epipolar
lines imply more challenges to correctly estimate the 3D position and subsequent image matching
and ortho-generation.
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Figure 12. Box-whisker plot of distances to reference lines separated according to the direction of walls
(parallel or perpendicular to the flight direction). Box represents the interquartile range (IQR) with the
median; whisker represent 1.5 IQR, points represent outliers.

4. Discussion

Even though UAV can collect images with a resolution of a few centimeters, results in this paper
show that the absolute and relative accuracy can differ from some centimeters up to several meters
depending on the chosen flight configuration. To exploit the full potential of UAV-based workflows for
land administration tasks, careful decisions on efficient mission planning are essential. This holds true
for both sides: collecting as many images and GCPs as needed to meet the expected survey accuracy,
but also for collecting just as many images and GCPs as necessary to minimize computational costs in
favor of time constraints or potential hardware limitations.

Several reports have shown that the quantity of automatic tie-points impacts the quality of
the photogrammetric 3D reconstruction as image correspondences are fundamental for the correct
estimation of image orientation parameters. Even though different sensors, UAV, scenes, and flight
conditions were analyzed in this paper, a homogenous picture can be drawn when looking at generated
tie-points in relation to land use classes. In image scenes showing trees or crops significantly lower rates
of tie-points could be extracted compared to scenes with human-made structures or grassland. In the
former case, only a high image overlap of at least 80–90% is sufficient to achieve an adequate number of
image correspondences. These results match those reported in [51]. In tropical or subtropical regions,
most rural and peri-urban scenes are also characterized by vegetated areas subject to subsistence
farming side-by-side to residential buildings. Thus, an optimal flight mission might need to be
configured with higher image overlap compared to a flight mission in arid or semiarid regions.

Although a clear correlation of generated tie-points and land use can be shown, the results suggest
that the optimal number of GCPs seems to be independent of the climate zone or land cover, as all
datasets in this analysis reveal a similar pattern and indicate no significant changes of the RMSE after
seven equally distributed GCPs. This result reflects those of [36,38,40] who also observed no significant
differences in the final vertical or horizontal RMSE after 5 or 6 GCPs, respectively. In contrast to earlier
findings [39], no evidence of the impact of the GCPs density was detected. In terms of GSD and
despite considerably different extents of the study areas, all datasets in this analysis reach a similar
error level with 10 GCPs, 2–3 GSD for the horizontal accuracy, and 2–4 GSD for the vertical accuracy.
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Thus, the number and distribution of GCPs might play a more critical role than the density of GCPs.
This is particularly interesting for the mission planning and calculation of costs as placing, marking,
and measuring of GCPs is one of the most time-consuming and consequently, most costly aspects of
the entire UAV-based data collection campaign. In the case of Mukingo, we observed a substantial
offset of the vertical error in the scenario without GCPs. This magnitude of height offset was already
reported before [35] and seemed to be specific to DJI UAV.

Contrary to most other studies that investigate checkpoint residuals, this analysis presents
the absolute accuracy with regard to the residuals after the BBA and in the final DSM and
orthophoto. For two out of six datasets, our results show significant discrepancies between the
checkpoint residuals with a magnitude of up to 5 GSD. In both cases, challenging conditions were
present, i.e., poor illumination conditions for Gerleve and a densely populated built-up area in
Muhoza. We observe that particular the height component could be strongly impacted. Consequently,
the consideration of checkpoint residuals measured in the orthophoto is indispensable for the evaluation
of the final accuracy, as additional offsets might be introduced during the 3D reconstruction and
orthophoto-generation process.

As a third central aspect, this study reveals yet another perspective on the orthophoto quality:
success rates of the automatic extraction of cadastral features. Here, our findings point on a clear
difference between the delineation of rooftops and walls. Whereas various flight configurations showed
less impact on the extractability of rooftops, the automatic extraction of walls achieves more accurate
and complete lines with large image overlaps and a cross-flight pattern. Even though the absolute
difference of the correlation seems minor in our example, values of either 70% correlation or 93%
correlation with reference lines are significant for scaled applications. A smaller percentage would
entail a lot more manual work of delineating respective walls that were not represented by MCG lines.
Furthermore, the MCG algorithm applied on an orthophoto of a weak image block—as described
by lower image overlap—produces shorter line segments which also implies more manual effort
to receive a complete delineation finally. Thus, thoughts should also be given to characteristics of
extractable features when designing a UAV flight mission. Our findings suggest that planar cadastral
features are less sensitive to differences in flight configurations than thin image objects such as walls
or fences. Consequently, the latter necessitates a higher percentage of image overlap to be reliably
reconstructed and detectable during subsequent automatic delineation processing. Additionally,
when thin cadastral objects are oriented towards different cardinal directions, a cross-flight pattern is
clearly recommendable.

In combination, the results are significant in at least two aspects. Firstly, although this
study investigated very different study sites, common trends are evident. Thus, some general
recommendations can be drawn. Independent of the sensor or feature matching algorithm,
vegetated spaces, and forests or cultivated agricultural areas, still present challenges to the establishment
of image correspondences. However, findings of checkpoint residuals suggest that the impact on the
overall accuracy is only marginal when looking at scenes with multiple land use classes.

Secondly, the research investigations reveal large discrepancies between the spatial accuracy and
the completeness of automatically detected cadastral features, even though the RMSE of the orthophoto
as commonly accepted error measure is low. According to these data, we can infer that the flight
configurations play a crucial role in achieving high data quality, particularly for cadastral features
characterized by height differences and thin shape as exemplified for concrete walls. Moreover, in most
cases, checkpoints are put out in open and visible spaces which do not necessarily reflect objects
subject to manual or automatic cadastral delineation. Consequently, it should be emphasized that
context-driven error analysis is essential to assess the overall accuracy of UAV-based data products.

Finally, a multifactorial analysis, as presented in this paper includes shortcomings on various
ends. The study design foresaw various UAV and sensor configurations to mimic a variety of different
contexts and real-world applications, focusing on the quality of final data products. Despite various
camera specifications, common trends and characteristics are evident throughout all datasets. However,
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as a limitation of this study, the impact of hardware differences on the final data quality could not
be estimated. Next to this, it cannot be ruled out that the GSD affects the quantity of generated
tie-points. Further investigations are needed to evaluate this nexus. Lastly, it should be emphasized
that all datasets were collected following flight plans as specified in the methods of this paper and the
transferability of our findings to other flight configurations or other contexts cannot be guaranteed.

5. Conclusions

This paper provides recommendations on optimal UAV data collection workflows for cadastral
mapping based on a comprehensive analysis of data quality measures applied to numerous orthophotos
generated from various flight configurations. Methods covered several aspects ranging from statistics
of automatic tie-points and an evaluation of the geometric accuracy to characteristics of automatically
delineated cadastral features. The results highlight that scene context, flight configuration, and GCP
setup significantly impact the final data quality of resulting orthophotos and subsequent automatic
extraction of relevant cadastral features.

In a nutshell, the following recommendations can be drawn:

• Land use has a significant impact on the generation of tie-points. Image scenes characterized by a
high percentage of vegetated areas and especially trees or forest require image overlap settings of
at least 80–90% to establish sufficient image correspondences.

• Independent of the size of the study area, the error level of planimetric and vertical residuals
remains steady after seven equally distributed GCPs (according to the scheme presented in
Figure 3), given at least 70% forward overlap and 70% side lap. As the absolute accuracy does
not increase significantly with adding more GCPs, 7 GCPs can be recommended as optimal
survey design.

• The quality of reconstructed thin cadastral objects, as exemplified for concrete walls, is highly
variable to the flight configuration. A large image overlap, as well as a cross-flight pattern,
has proven to enhance the reliability of the generated orthophoto as quantified by the increased
accuracy and completeness of automatically delineated walls. In contrast, the delineation results
of rooftops showed less sensitivity to the flight configuration.

• Even though checkpoint residuals indicate high absolute accuracy of an orthophoto, the reliability
of reconstructed scene objects could vary, particularly in adverse conditions with large variations
in the height component. We furthermore recommend measuring checkpoint residuals in the
generated orthophoto in addition to after the BBA.

Generally, these findings have important implications for developing UAV-based workflows
for land administration tasks. This fact that the data quality can significantly change depending
on the flight configurations involves risks and opportunities. The risk is that UAVs are used as off
the shelf products with little knowledge of photogrammetric principles and options to customize
flight configurations. Consequently, even though the end-product appears to be of good quality,
spatial offsets, deformations, or poor reconstruction results of relevant features might be present
but remain undetected. However, at the same time, we also realize immense opportunities in the
customization of UAV workflows. The results in this analysis show that different flight configurations
and various ground-truthing measures offer a wide range of options to tailor the data collection task to
financial, personnel, and time capacities and optimally align it to customer needs and requirements in
the land sector. This equips UAV workflows as a viable and sustainable tool to deliver reliable and
cost-efficient information to cope with current and future cadastral challenges.

Future research building upon our results could follow different pathways. Firstly, although our
study foresaw six different contexts, the terrain was mostly flat or slightly undulated and showed
only minor surface variations. It would be interesting to explore if data of hilly and larger study areas
could substantiate our recommendations. Secondly, this study neglects the ground sampling distance
as a variable in our assessment. It is expected that next to the orthophoto quality also variations in
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the resolution might impact the feature matching process as well as completeness and accuracy of
automatically extracted line geometries. Clues on this correlation could expand best-practice examples
by adding recommendations on camera specifications and flight heights.
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Abstract: Remotely sensed data is increasingly applied across many domains, including fit-for-
purpose land administration (FFPLA), where the focus is on fast, affordable, and accurate property
information collection. Property valuation, as one of the main functions of land administration
systems, is influenced by locational, physical, legal, and economic factors. Despite the importance
of property valuation to economic development, there are often no standardized rules or strict data
requirements for property valuation for taxation in developing contexts, such as Rwanda. This study
aims at assessing different remote sensing data in support of developing a new approach for property
valuation for taxation in Rwanda; one that aligns with the FFPLA philosophy. Three different remote
sensing technologies, (i) aerial images acquired with a digital camera, (ii) WorldView2 satellite
images, and (iii) unmanned aerial vehicle (UAV) images obtained with a DJI Phantom 2 Vision Plus
quadcopter, are compared and analyzed in terms of their fitness to fulfil the requirements for valuation
for taxation purposes. Quantitative and qualitative methods are applied for the comparative analysis.
Prior to the field visit, the fundamental concepts of property valuation for taxation and remote sensing
were reviewed. In the field, reference data using high precision GNSS (Leica) was collected and used
for quantitative assessment. Primary data was further collected via semi-structured interviews and
focus group discussions. The results show that UAVs have the highest potential for collecting data to
support property valuation for taxation. The main reasons are the prime need for accurate-enough
and up-to-date information. The comparison of the different remote sensing techniques and the
provided new approach can support land valuers and professionals in the field in bottom-up activities
following the FFPLA principles and maintaining the temporal quality of data needed for fair taxation.

Keywords: property valuation; property taxation; remote sensing; land; UAV

1. Introduction

Remote sensing (RS) data has been shown to be efficient in obtaining precise spatial
information for a variety of applications, which is crucial to achieving sustainable devel-
opment goals (SDGs). Property ownership, value, and rights are included as sub-goal
1.4 of the SDGs. Nowadays, being part of the fourth industrial revolution, remotely sensed
images are ubiquitous in many socio-economic endeavors. Therefore, the use of remotely
sensed data is highly advised for use in fit-for-purpose land administration (hereafter
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FFPLA) [1]. Moreover, contemporary developments in photogrammetry and computer
vision, coupled with high-resolution remote sensing data, has led many researchers to
explore the use of machine learning to extract information automatically from images for
cadastral applications [2].

Satellite images in various spatial and temporal resolutions are globally available,
making them very useful for monitoring daily dynamics. Dabrowski and Latos [3] investi-
gated the applicability of remote sensing images for land-related applications focusing on
the effect of the different spatial, radiometric, temporal, and spectral resolution. Haeusler,
Gomez, and Enßle [4] and Ali and Deininger [5] showed that remote sensing data, espe-
cially high-resolution satellite imagery (HRSI), can be used to extract or measure the height
of buildings, which is useful for urban planning, assessment of property taxes, estimation
of floor area, and so on. Jain [6] acquired socioeconomic attributes, roof material, shape,
structure of buildings, and the age of construction from high-resolution imagery using
object-based classification for the purpose of property taxation.

However, for deriving precise property characteristics needed for valuation for taxa-
tion purposes, higher spatial resolution is preferable. Recently, unmanned aerial vehicles
(UAVs) have proven to be promising for many applications such as agriculture [7], map-
ping [8], surveying and cadaster applications [9–12], architecture and archeology [13],
cultural heritage [14], among others. However, to the best of the authors’ knowledge, the
applicability of UAV images for property valuation has not been examined empirically [15].
Therefore, the current study aims to assess and compare different remote sensing data for
property valuation for taxation, focusing on Rwanda as a case study.

Property valuation is done for different purposes, including taxation, sales, and in-
surance, amongst others. Valuation is a process of estimating the amount for which a
property will be exchanged or the amount of taxes that should be paid for it on a par-
ticular date [16,17]. Being an art and a science, the complexity of the valuation process
covers, among others, transparency of the market, diverse purposes, and stakeholders
involved [16,18]. It is further strongly influenced by the background and experience of
the valuer, as well as the global trend of economic development and investment inter-
ests [19,20].

There are two types of valuation procedures. As stated by Wallace and Williamson [21],
the first is the valuation of a single property, and the second is so-called mass valuation,
which refers to an area combining many properties. Valuations for taxation are usually
carried out through a mass valuation. Property taxes are defined as the amount of money
levied on a person, natural or unnatural, by a government, for the holding of real estate
within a particular jurisdiction. Different approaches have been developed worldwide
for the valuation of property for taxation, including artificial neural networks (ANNs),
hedonic pricing methods, spatial analysis methods, and others [22].

Property tax collection approaches differ from country to country. However, the
two main approaches are area-based taxation and value-based [23]. Typically, area-based
taxations are used for determining the assessed value of the property where the property
markets are not mature enough to support a value-based system [24]. For area-based tax,
the taxes build on the unit, and therefore the unit assessment must be accounted for in
the rate [25]. The rate is levied per m2 of land area, building area, or a combination of the
two. The unit’s value reflects several factors such as the property’s location, accessibility,
land use/zoning, laws and regulations, socioeconomics, condition, age, and neighborhood
development. Value-based taxation is based on market value (capital or rental).

There are many factors that affect property value such as locational, physical, legal,
and economic factors [18,26]. They can be split into two groups, internal and external
factors (Figure 1). This research is focused on the use of remotely sensed data for extraction
of physical attributes or geospatial factors (e.g., parcel area, built-up area/gross floor area)
and locational factors (e.g., accessibility, neighborhood development, and environment).
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Figure 1. Factors affecting property value (Source: adapted based on [26]).

Rwanda has both property tax and a land lease fee, both of which vary depending on
the tax base. The property tax is determined based on the open market value. In Rwanda,
professional valuers prepare the valuation report of the property (parcel, buildings, and
improvement on it). The tax amount is 0.1% of the total value of the property for industrial
buildings, 1% for residential properties, and 0.5% for commercial buildings [27]. However,
the land lease fee is based on the m2 rate determined by the district [28,29]. The property
tax relies on the percentage of the open market value of the property [30]. Both single
property and mass valuation are used to assess the open market value of the property [21].

In 2008 and 2009, a traditional aerial survey with a 3000 m flying height was executed
over the territory of Rwanda with a digital photogrammetric camera Vexcel UltraCamX.
Post-processing procedures were completed by a Dutch photogrammetric company [31]. A
digital elevation model and an orthophoto with a spatial resolution of 22 cm were further
produced for the entire country [31]. The Rwandan land cadastre was built based on the
orthophotos from these aerial and satellite images. Local citizens employed and mainly
trained as ‘para-surveyors’ delineated the parcel limits on the imagery printouts that were
scanned, geo-referenced, and digitized. Currently, property valuation relies on the data
provided by the Rwanda land use management authority (RLMUA), especially the parcel
area, the location of the property, and the land use; all this information can be obtained
from an inspection of the land title and also from a field visit. For instance, the Rwanda
National land-use masterplan, as well as the subsequent master plan for Kigali city, were
developed based on the generated orthophotos from aerial images. These are currently
sources of property valuation data [32]. However, substantial changes since 2009 have
seen the database missing information such as buildings, improvements, accessibility,
conditions, and zoning [33]. Therefore, methods for regular updating of the cadastral and
valuation information are of high importance.

In summary, the usage of RS data for property valuation for taxation is still exploring
innovations in the land administration domain, particularly as higher resolution data
becomes cheaper and easier to capture more frequently. Therefore, the current research
aims to assess and compare three different remote sensing technologies for property
valuation for taxation, focusing on Rwanda as a case study, and ultimately to propose a
new UAV-based approach. In alignment with the FFPLA principles, the study aims to
glean lessons for that specific country context, but also for RS application in the domain
more generally.

In the next section, the materials and methods used are presented, framed as a compar-
ative analysis of different datasets over the case context of Rwanda. Results are presented
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first with regard to the data requirements for property valuation in Rwanda, and then
an assessment of the different datasets against those requirements. The discussion and
conclusion focus on discerning the immediacy of application of the results in Rwanda,
and particularly the identification of the most relevant data source for property valuation
for taxation purposes in Rwanda. Attention is also given to broader applications beyond
Rwanda and further research requirements.

2. Materials and Methods

2.1. Study Area

The study area of Nyarutarama cell-Remera sector Gasabo districts (Figure 2) was
selected for the current research. This area witnessed many changes over the years, which
are reflected in differences in the values of the properties.

 

Figure 2. Location of the study area.

2.2. Data Sources

As shown in Table 1 and Figure 3 below, the orthophoto based on aerial images
acquired in 2008/2009 with a digital camera on board an airplane was provided by the
RLMU, and the satellite image was obtained from the Image repository of the University
of Twente (ITC). The UAV images used for this research were collected in 2015 with a DJI
Phantom 2 Vision Plus quadcopter at a flying height of 50 m. For the study, a total of
1172 geotagged nadir images were captured, and only 954 were obtained. However, an
average of 85% forward and 75% side-overlaps was achieved. An orthophoto covering
950 m2 with a spatial resolution of 3.3 cm and a radiometric resolution of 8 bits was
produced with Pix4DCapture software. The final orthophoto with a positional accuracy of
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6.0 cm was produced based on 13 premeasured ground control points with Leica GNSS
with an accuracy of 2 cm [8].

Table 1. Used datasets and their sources.

Dataset Source Acquisition Date Spatial Resolution Radiometric Resolution Spectral Resolution

Orthophoto from airplane
aerial images RLMU 2008/2009 22 cm 8-bit 3 bands

Satellite Worldview2 image ITC image repository 2013 50 cm 16-bit 4 bands
Orthophoto from aerial

UAV images ITC image repository 2015 3.3 cm 8-bit 4 bands

 

Figure 3. Coverage of the remote sensing data in Nyarutarama cell.

In this research, a mixed-methods approach combining quantitative and qualitative
methods were used. The qualitative and quantitative data were given equal weighting
and considered to be captured in parallel. Prior to the field visit, the concepts of property
valuation for taxation and remote sensing were reviewed (Figure 4).

First, in terms of quantitative data collection, using high precision GNSS (Leica),
reference data during the field survey was collected to be used for quantitative assessment
of the extracted spatial features and property boundaries based on the images.

Second, in terms of qualitative data, primary data was collected via semi-structured
interviews [34], focus group discussions, and field surveys aiming to assess the different RS
data for valuation purposes. This interview technique was used to gather social perceptions
and included the presentation of oral–verbal stimuli and replies [35]. In this research, face
to face personal interviews were also completed. The experts sampling method [36] was
used for the selection of the respondents based on their organization and functions, as
shown in Table 2.
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Figure 4. Research workflow.

Table 2. Number of respondents by institution.

Institutions Category Number of People

RLMUA former RNRA
Central government

2
RRA 3

Ministry of Infrastructure 1
District staff Local government 3

RCMRD Regional 1
IRPV Private institution (private valuers) 3

Total 13

Further data was collected using focus group discussions, involving thirteen people
with a background and interest in valuation [37]. The topic of the discussion was “Compar-
ison of remote sensing techniques for valuation for taxation in Rwanda”. The aim of the
interviews and the focus group discussion was to collect individual and group information
on perceptions of the current property valuation for taxation purposes and to assess the
advantages of the different remote sensing approaches for property valuation for taxation.
Open-ended questions were used [38] as a quantitative approach for collecting numerical
data. The qualitative method was used to understand how the current property valua-
tion for taxation system works in Rwanda and who are the key players and their specific
roles. The perceptions of the stakeholders, especially government institutions, on using the
remote sensing data for property valuation for taxation purposes was also investigated.

2.3. Methods for Data Processing and Analysis

In terms of analysis, for the RS dataset comparison, that is, the assessment of the
usefulness of the different remote sensing techniques, four properties in the study area
were selected based on the criteria, which are shown in Table 3, inspired by FFPLA elements.
Moreover, as the acquisition years of the three datasets are different (2008, 2013, and 2015),
the properties have been selected where there is no change during these years in terms of
their area. This selection was especially needed for the accuracy assessment.
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Table 3. Criteria of sampled and surveyed properties.

Sampled Property Criteria

Property 1

Accessibility
Clearly visible boundary
Developed land (Building improvements)
Visibility of the building footprints
Comparison based on all RS data

Property 2 Accessibility

Property 3 Comparison based on all RS data

Property 4
Developed land (Building improvements)
Visibility of the building footprints
Comparison based on all RS data

An analysis of the qualitative data guided by FFPLA elements’ [1] text-based analysis
is used, dividing the factors into the following themes: (1) factors affecting or influencing
the property value; (2) characteristics of generated orthophotos from remote sensing data;
(3) time/availability of the platform; and (4) cost of acquiring the data, including the
cost of hiring the platform. ArcGIS software was used for the quantitative assessment
and the comparison of the parcel areas, location visualization of the subject property
and neighborhood, and the coordinate comparison. The interviews and focus group
discussions from participants were transcribed and analyzed using ATLAS.Ti 8.0 based on
the developed themes. Thematic analysis based on the literature review on the factors was
used to examine the collected data.

3. Results

In this section, the results are presented in separate sections following the idea of the
legal, governmental, and technical framework introduced in FFPLA. In the first section,
policies, laws, standards, and types of property taxes are described. This is followed by the
data requirements and methods for data collection and analysis. Afterwards, the existing
limitations for using RS data and considerations related to its application and comparison
with the newly proposed UAV method are shown.

3.1. Policies, Laws, Standards and Types of Properties in Rwanda

The real property valuation profession in Rwanda is regulated by law N◦ 17/2010 [39].
It specifies the structure of the Institute of Real Property Valuers (IRPV) and defines their
responsibilities. It describes the methods currently used for data analysis, but it does not
specify any methods for data collection for property valuation [39]. Before 2010, property
valuation was carried out mostly by civil engineers who had some training and experience
in property valuation methods [40].

During the interviews with the IRPV officials, two of the three respondents stated that:
“the valuation standard in Rwanda work as a practicing guide”.

However, there is confusion in understanding and applying the standard and law at a
local level. Therefore, international valuation standards are used. It is the responsibility
of IRPV to develop the valuation standard, and it requires the approval of the property
valuation regulatory council before using it.

The two forms of tenure in Rwanda are full ownership (freehold title) and long
leasehold title. About 98% of Rwandan land is held under leasehold and 2% under
freehold. Rwanda’s land law requires landowners with a freehold title to pay property tax
while emphyteutic leaseholders pay lease fees. This means that only 2% of Rwandan land
is taxable. The Rwandan National Land Policy requires that “land transactions and land
taxation be included in land administration as elements of land development” [41].

The current property tax (fixed asset tax) is amended by law N◦ 75/2018 of
7 September 2018, which determines the sources of revenue and property of decentral-
ized entities. Additionally presidential order N◦ 25/01 of 9 July 2012 establishes the list of
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fees and other charges imposed by decentralized entities and determines their thresholds.
The current laws related to property tax in Rwanda are categorized into three different
taxes as specified by the taxation law and confirmed by the Rwanda Revenue Authority
(RRA), which was confirmed by districts officials interviewed during fieldwork, including
fixed asset tax, land lease fees, and rental income [29]. During the interviews, respondents
highlighted that “fixed asset tax or property tax requires a valuation report and its taxes
are based on the market value whereby the tax value is equal to 1/1000 of the open market
value of the property”.

Ministerial order N◦ 005/12/10/TC of 22 June 2012 determines the modalities for the
implementation of law N◦ 59/2011 of 31 December 2011. Ministerial order N◦ 005/12/10/TC
of 22 June 2012 determines the modalities for the implementation of taxation law. It
specifies the process and suggests the steps to be followed by the taxpayer for all types of
taxes. The steps and key actors involved in property tax (fixed asset tax) are visualized in
Figure 5 below. These include RRA, districts, and taxpayers, Rwanda Land Management
and Use Authority (RLMUA), valuers, Institute of Real Property Valuers (IRPV), and
Rwanda Development Board (RDB).

Figure 5. Property tax system in Rwanda.

Three types of property taxes are levied on property in Rwanda. They are lease fees,
rental income taxes, and fixed asset taxes (derived from the interview with district and
RRA officials). The difference between these three types of taxes is based on the land tenure
type. Land lease fees are the tax levied from leaseholders; freeholders pay a fixed asset tax,
and rental income tax can be levied on both land tenure regimes. All these taxes are levied
on an annual basis. The only type of tax that requires a valuation report is fixed asset tax as
it is based on open market value.
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3.1.1. Land Lease Fees

Land lease fees are paid annually. The method used to determine the tax value is
based on the rate per square meter or hectare. The rate is determined by the district
council depending on the infrastructure and development in an area. The presidential
order determining the list of fees and other charges levied by decentralized entities and
determining the thresholds in article 9 states that: “Any person owning land and holding
a land lease certificate issued by the competent organization shall pay an annual land
lease fee based on the square meter or hectare”. The same article declares that it is the
responsibility of the district council to determine the fees to be paid annually based on the
available infrastructure in the area where the land is located and its use. The thresholds of
land lease fee rates are arranged from 30 Rwf (around 0.03 euro) to 80 Rwf (0.08 euro) per
square meter and (4000 Rwf) per hectare levied from agriculture and livestock land with
more than two hectares.

3.1.2. Rental Income Taxes

Rental income tax is a tax imposed on individuals who earn income from the rented
immovable property. Taxes are paid annually based on rental fees the landowners collect
from their tenants, and this tax is also paid in terms of percentages of generated income
from the property after deduction of expenses. Taxation law article 50 states that the
expenses should be 50% of the generated income per year. The tax rate ranges from
0–30%, depending on the generated income. The more income generated, the higher the
rate applied.

3.1.3. Fixed Asset Taxes

Fixed asset tax, also called “property tax” is a tax imposed on immovable property
with a freehold title. Through interviews from district and RRA officials, they highlighted
that: “property tax requires a valuation report as it is based on the open market value that
is why they require an expert in valuation to determine the open market value”. Fixed
asset tax value is normally based on the value of the property. The rate that is applied to
the value is fixed at a thousandth (1/1000) of the taxable value per year. During fieldwork,
interviewees underlined that: “they are still facing a problem of taxpayers who declare
the property and hide some information related to their property for instance when they
have a number of buildings within a few parcels, because the purpose is for taxation they
undermine the value and report only one building”. However, a mechanism of monitoring
changes on the ground is needed so that taxpayers do not hide information that can be
captured easily.

Fixed asset tax value can be updated once every four years as stipulated by taxation
law article 15. However, if improvements or changes are made to the property, the taxpayer
must file an updated valuation report (new self-assessed tax) and fill in a new tax declara-
tion or assessment notice [29]. Interviewees highlighted that: “if a property is residentially
used, the fixed asset tax value should be determined after deducting the amount equal
to three million (≈3000 EUR) on its market value”. This is specified in article 18, point
number 8 of the taxation law, on tax exempted properties.

3.2. Data Requirements for Property Valuation for Taxation in Rwanda

The required data for property valuation, based on the current approaches for taxation
purposes, depends on the type of property and its use. The most important requirement is
the land ownership titles (lease or freeholds). A land title is the one that shows the basis
upon which the land is held (whether it is under a leasehold or freehold title). Taxpayers
with freehold titles require valuation reports as tax basis calculations. The necessary
information required to value the property for taxation purposes, as said by participants,
includes: “land certificate ownerships, built-up area, technical conditions of the property,
construction materials, infrastructure attached to it, land use”.
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Most of the information is collected from the field, and others are retrieved from the
land title (LAIS database) (Table 4).

Table 4. Required data and source availability.

Required Data Fieldwork
Land Title

LAIS
Masterplan

Google
Earth

Valuers
Estate

Agencies

Parcel area � �
Current land use (on title) � �

Built-up area �
Construction materials �

External works � �
Status of the

property �

Infrastructure
attached �

Planned land use � �
Sales comparable � � � �

Location � � � �

The taxes for leaseholders do not require a valuation report. All the required data
for tax calculation is based on the Unique Parcel Identifier (UPI), which is obtained from
the land lease title and district council resolution. The tax value is based on a rate per m2

rather than on the open market value. Thus, fixed asset tax (property tax) is based on the
open market value and requires: “sales contract value or certificate of valuation by the
certified valuer to fix the open market value”.

The most highly trusted sources of the required data, as discovered during the field-
work, include RLMUA, estate agencies, and valuers. However, RLMUA data were found to
be incomplete, inaccurate, and outdated in some cases. Focus group participants confirmed
this, stating that: “the land use on the title differs from land use on the ground, the size
of the parcel on the ground differs from those in the system or title, while the number of
houses within a parcel is missing from the Rwanda land cadastre”. It is still a challenge
in Rwanda to get all the required data for the valuers to support their value assessment.
During the focus group discussion, the valuers highlighted that: “valuation depends on
the available data, purposes of valuation, and use of the property”.

For instance, for the income-generating properties, valuers need to look at the book
account and see the income the property is generating. The property value is calculated
by capitalizing of the future income from that property. Thus, many valuers depend on
the property used to assess its value. This was also confirmed by participants from the
focus group discussion, who claimed that: “there is a lack of data to use the appropriate
methods to evaluate the property according to its type, which results in the replacement
cost method being used more compared to other methods of property valuation”.

3.3. Data Collection and Analysis Methods for Property Valuation for Taxation in Rwanda

The current data collection methods consist of field visit (inspection of the property),
inspection of Google Earth/Maps, and consideration of the masterplans. During a field
visit and inspection of the site, the valuer has to use different methods and tools for data
collection for property value determination such as: “Tape measurement, digital camera,
and handheld GPS and laser distance meter”. Whilst the tape measurement is usually
used for buildings and improvements, the parcel areas are obtained from the land title.
Throughout focus group discussions, participants underlined that the tape measurements
are used to: “measure the size of the houses, gross floor area, improvement, and other
external works such as drainage system, parking, gardening” to complete the data from
land titles (LAIS database). A digital camera is used to take pictures to: “ensure that
the property exists at the date of inspection and to have a better visualization of their
physical appearances, the materials and technical conditions of the subject property to be
valued”. This was highlighted by the valuers during the focus group discussion. Acquired
images are used in property valuation as a source of information and prove their existence
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at the date of valuation. Currently, Rwandan valuers use handheld GPS to verify the
location and measure the size of the property to be valued. During the interview and focus
group discussions, the respondents said that: “even if handheld GPS is being used in data
collection, its accuracy of 3 m, is not good as it should be”.

A laser distance meter is used to measure the internal and external parts of the
buildings. According to the users, this tool is more precise, and measurements can be done
faster than with tape. Google Earth is used for location, verification, and visualization of
the existence of the property at that parcel and confirms their existence on the ground at
the date of valuation. In addition, the masterplan is one of the districts’ planning outputs,
and it is prepared for a period of 10 to 20 years. It is used mainly in urban areas to help
valuers to know the allowed land use and zoning of a particular area.

The current technical steps involved in carrying out property valuation for taxation
purposes in Rwanda are shown in Figure 6. The process starts with a call from the client
(taxpayer) or tender bid advertisement of institutions (Private, Public, or NGOs). During
this phase, an agreement for a meeting is scheduled (oral or written). After the agreement
is done, the next step is to conduct a field inspection for fieldwork. It has to be conducted
by a competent valuer in the presence of the landowner. If the valuation is for developed
land, measurements of the buildings and notes on improvements within the compound of
the parcel are required, while for undeveloped land the information provided on the land
title is used, unless there are unreported changes on the land itself. During the fieldwork,
the valuer has to collect the required data for valuation, and some pictures are taken for
further analysis. The office work consists of analyzing the collected data and preparing the
report. As a result, the validated valuation report is provided to the taxpayer. Updating
of the valuation report also follows the same steps, unless there are no changes made to
the property. However, the valuer should be well informed that there are no changes that
happened in the last four years.

 

Figure 6. Steps of the current valuation system in Rwanda.

3.4. Existing Use of RS Data in Rwanda

Remote sensing data has been used in Rwanda since 2008. During the interviews,
we found that in public institutions, such as RLMUA, RS data were used mainly in the
creation of the digital cadastral maps. The interviewees highlighted that: “the Rwanda land
cadastre was built based on the high-resolution orthophotos captured in 2008 using aircraft
and satellite images. Satellite images in particular were used in the north-western part of
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the country. Due to the topography of that area, it was not possible to cover that area using
aircraft”. The generated orthophotos were very useful in identifying entire properties.
Given that the images of 2008 are becoming outdated, the valuers often overlay them on top
of the latest available satellite images. RLMUA, as a government institution, highlighted
the importance of high spatial resolution. Currently, the government of Rwanda has signed
the “Memorandum of Understanding with the government of Gabon under which both
governments will be sharing spatial information and expertise in land registration”. The
government of Gabon will be providing satellite images as they have satellite centers,
while the government of Rwanda will be providing expertise in land registration using a
fit-for-purpose approach. The interviewee shared that “generally, the usability of remote
sensing data in property valuation for taxation purposes is very low, for instance, the most
used images are those captured during fieldwork and those images that can be downloaded
from Google Earth, which often have a low spatial resolution”.

3.5. Identified Limitations for Using RS Data for Property Valuation for Taxation in Rwanda

The general findings from interviews and focus group discussions are that the biggest
challenges are a lack of data due to a lack of funds and skilled professionals to use them. In
Rwanda, there “are no specific laws or regulations governing the use of remote sensing
tools”. This was highlighted during the interview session. The use of remote sensing
tools is governed by the law regulating Civil Aviation in Rwanda. The availability of
the platform is another challenge emphasized by the interviewees because they have to
be ordered outside of the country. During the interview discussion with the Ministry
of Infrastructure officials, they highlighted that “only one company has been registered
and has the right to fly UAVs, but, for other remote sensing techniques, they need to hire
international companies to carry out the photogrammetric acquisition and processing”.

During the interviews, the applicability of different remote sensing images and the
possible challenges associated with them were discussed, with examples shown below in
Figures 7 and 8. Figure 7 shows the property visualization of sampled property number
four in the different remote sensing datasets at the same scale (1:700). The results show
that the features on the UAVs-orthophoto in Figure 7a are better visible than the satellite
and aerial orthophoto, as shown in Figure 7b,c. The construction materials such as roof
cover and pavement or external structures are also much clearer in the UAV image.

 

Figure 7. Property visualization from three used datasets: (a) from UAV, (b) from aerial orthophoto,
and (c) from Satellite-Worldview 2.
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Figure 8. Features extracted from UAV orthophoto (a). Overlaid features on the UAV image (b).

Therefore, among these data sources, UAVs definitely outperform the others. UAV
images seem suitable for determining the physical and locational characteristics of the
property and its improvements. Based on the orientation of the camera (inclined or oblique)
during image acquisition, information on the technical condition of the property, such as
facades of the buildings and construction materials, can be obtained. The visualization
of such information enables valuers to remotely evaluate the physical obsolescence of
the property with high precision. Apart from information about the taxable property,
the quantitative data such as parcel area, built-up area, perimeter, and distance to public
facilities can be determined from the generated orthophoto (Table 5 and Figure 8).

Table 5. Physical characteristics of property identifiable on UAV-orthophoto for sampled property 1 and 2.

Physical Factors Location Factors

Property (Land
or Buildings)

Parcel
Area (m2)

Built-Up
Area (m2)

Improvement
(m2)

Shape Type Neighborhood Accessibility Land Use Environment Utilities

Property 1 708 275 282 regular built yes yes - yes yes
Property 2 557 247 175 regular built yes yes - yes yes

3.6. Consideration of the Potential for RS Data Application to Property Valuation for Taxation

The assessment of the different information that can be retrieved from remote sensing
data is done based on the factors derived from the literature, visualized in Figure 1 and
adapted for this study. These factors are classified into two main categories: internal and
external factors. Internal factors include parcel size, built-up area; improvement; shape,
and type of subject property, whereas external factors include accessibility, neighborhood,
land use, environment, and utilities.

3.6.1. Internal Factors

The parcel size is used to determine the land value of either the developed or undevel-
oped parcels. This serves as the tax base for both leaseholders and freeholders. Moreover,
for the land lease fee to be paid by the taxpayer, parcel size plays a very important role
because the bigger the parcel, the more lease fee is paid if the location of the parcels are in
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the same area whereby the rate is the same. Parcel area serves as a land lease fee basis as
the method of determining the lease fee is the rate per square meter. Additionally, for the
property tax where the parcel is not developed, the open market value is determined based
on the rate per square meter. However, the applied rate for lease fees and market value
differs. The last one must be determined by the private valuers on the basis of recent sales,
location, and infrastructure within the area and public facilities surrounding the area.

The valuers have the right only to report if the size on the title does not reflect the
actual size on the ground. The authority who is intending to use the report has to decide
on the above-reported errors if corrections should be made. The valuers must prove the
mismatch of the areas. This can be completed using remotely sensed data. As shown in
Figure 9, the parcel area for Property 2 manually digitized from UAV-orthophoto (b) is
closer to the area measured with GNSS (ground truth) compared to manually digitized
from the satellite image (c) and existing area in LAIS database, which is based on the
orthophoto from aerial images from 2008 (a).

 

m2 
m2 

m2 m2 

Figure 9. Plot size comparison of sampled property 2 from different remote sensing data: (a) existing
parcel area in the LAIS database (based on orthophoto from aerial images 2008), (b) manually
digitized from UAV-orthophoto, (c) manually digitized from satellite and (d) measured with GNSS
during the field visit.

The built-up area is one of the most relevant factors for the property tax system.
Property tax is imposed based on market value, and this includes the value of the land,
the building, and any improvements. Therefore, precise area calculations are needed.
Moreover, the size in the vertical dimension also should not be forgotten. In the built-
up-areas, the numbers of floors can be visible if there are oblique images (Table 6). The
participants from the focus group underlined that “due to the lack of data, especially related
to buildings and improvements, the fieldwork measurement and image acquisitions are
compulsory as the current property tax regime is based on open market value, and it
depends on the determined information from the field”.
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Table 6. Built-up and parcel area manually digitized from the UAV orthophoto of sample properties 3 and 4.

Physical Factors Location Factors

Property (Land
or Buildings)

Parcel
Area (m2)

Built-Up
Area (m2)

Improvement
(m2)

Shape of
Parcel

Type Neighborhood Accessibility
Land
Use

Environment Utilities

Property 3 399 263 - regular built yes yes - yes yes
Property 4 2471 417 278 regular built yes yes - yes yes

The purpose of acquired images is to show the existence of the property and to
visualize technical conditions and the physical appearance of the property (Figure 10).

 

Figure 10. Digitized building footprints from UAV-orthophoto of property 4 (a). Footprint outlines
overlaid on the UAV-orthophoto (b).

Improvement refers to the level of external work done to increase the value of the prop-
erty; this includes property maintenance, concrete parking, gardening, sewage drainage
system, water tank, and others. These features are also part of the market value of the
property to be taxed and need to be assessed and considered during data collection for
property valuation for taxation purposes. Therefore, the size of these external structures is
required. However, they are not recorded in the current cadastre, but, can be extracted from
images as shown in Figure 11. Moreover, if terrestrial images can be obtained, they can be
used as supplementary materials, and in combination with UAV images, quite detailed
information can be provided for valuation purposes.

Shape refers to the spatial form of a parcel, whether it is regular (perpendicular lines)
or irregular (polygons with curves). The shape does not affect the value of the land and
property directly, whereas it affects the improvement and design that can be put up in
that parcel.

The type refers to whether the parcel of land is built or unbuilt. However, this goes
hand in hand with land use, and development conditions that can be filled by specifying
the number of buildings requires a construction coverage ratio and allows for a number of
floors on an individual parcel.
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Figure 11. New features (improvements) digitized from UAV-orthophoto of property 4 (a). Outlines
overlaid on the UAV-orthophoto (b).

3.6.2. External Factors—Location Factors

As shown in Figure 12, location factors such as neighborhood, accessibility (roads) of
the property, public facilities, utilities, and infrastructures, all affect property value. The
neighborhood is a crucial factor in the specific surroundings that affect the value of the
property. The surrounding features of the property are determined by the buffer around
that property in a particular area. Throughout fieldwork, the participants from the focus
group discussions underscored that “location is the most important factor to be considered
compared to the physical factors”. They ranked the neighborhood factor as the first factor
influencing the property value in a specific area. The levels of surrounding development
to the property affect its value. These developments include transport facilities, retail
outlets, service outlets, and public facilities, such as schools, markets, health centers, parks,
churches, hospitals, manufacturers, and others. For instance, a property that stands out
as being too different from the others will also differ in price, even if it is in the same
neighborhood (Figure 12).

Accessibility is measured by how accessible the property is. During the discussion
with valuers, they highlighted that “accessibility is more related to the road infrastructure
and defines whether the property is accessible by primary roads or districts roads, water
pipes, fiber optic internet, and electricity”. For instance, if the property is directly attached
to tarmac roads, as shown in Figure 13 for properties 3 and 4, it is more costly than a
property located on a marram (clayey/sand) road in the same area. Accessibility was
ranked as the third factor influencing the value of a specific property after neighborhood
and construction materials.

Land-use zoning can either be the current use of the land or intended use as specified
by the master plan. In Rwanda, the land use master plan for the entire country was
developed in 2011. The district development plan was developed by referring to the
developed national land-use masterplan. Property valuation considers the highest or
best use of the land as it is being used as intended or planned to be used depending on
the surrounding developments in those areas. Results from the focus group discussion
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with valuers in Rwanda underlined that “the highest and best use of the land is tangible
potential, officially permitted, most economically feasible, and outstandingly profitable”.

 

Figure 12. Neighborhood visualization of the property based on the UAV orthophoto.

 

Figure 13. Accessibility visualization of sampled properties 3 and 4 from UAV-orthophoto.

For valuation purposes, it is important to examine and put into consideration the issues
of zoning and its changes. Additionally, land use planning laws need to be considered. For
example, the development project must fulfill the requirements of the intended land use of
the area by constructing the proposed structures on the specific parcel. Throughout our
discussion, the valuers thought that “the masterplan of all districts should be online and
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open to the public as the Kigali master plan 2013 is user friendly and is used as a method
of land use checking and to locate subject properties”.

Figure 14 shows the planned land use of sample property 1. All permitted and
prohibited constructions are specified in the zoning guidelines, which can be downloaded
from the master plan (accessible online). The current master plan was developed based on
the orthophotos from aerial images taken in 2008, and this is being used in the property
valuation profession due to the fact that valuers use it as a credible source of information.

 

Figure 14. Land use of sample property 4 via the Kigali masterplan 2013 (Source: [42]).

The environment in this research refers to a geographical condition, a specific area
where the property is located. The interviewee told us that “the area disposed to the effects
of natural phenomena, such as flooding, high winds, and earthquakes, among others, are
poor choices when buying property”. Property that is located near wetlands (informal
settlement areas) is worth less than that located in an approachable environment. Remote
sensing data can be useful to analyze and visualize the prone area compared to the location
of the property.

The utilities in this research refer to the services or features that are connected to the
properties, such as water pipes, electricity, gas, sewerage drainage, and other facilities.
With remote sensing data, utility features can be distinguished from other features. With
UAV-orthophotos in particular, more accurate and precise information on the ground can
be extracted compared to satellite images and orthophotos from aerial images.

3.7. Comparison of the Proposed New UAV Based Method for Property Valuation for Taxation

Based on the abovementioned factors, UAV images outperform the other remote
sensing images. Therefore, during the interviews and focus group discussion, we assessed
their applicability as a newly proposed method to be used for valuation for taxation in
Rwanda. The elements for the assessment that we used were accuracy, completeness,
up-to-datedness, cost, and availability of the platform.

Evaluation of the spatial accuracy was also done through a comparison of the area of
property 1, 2, 3, and 4 digitized over the three remote sensing images and compared with
the reference data measured with GNSS. As shown in Figure 15, since the resolution of
the UAV image is much higher than the other images, the digitized area is much closer to
the reference data. It should be mentioned that due to the coarse resolution, property 4
was not clearly visible for digitization on the satellite image. Therefore, it is missing in the
figure below.
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Figure 15. Area comparison between the measure of GNSS of four properties and polygons from
the existing LAIS database based on digitization over an aerial image taken in 2008 (blue), UAV
orthophotos (orange), and satellite images (grey).

Evaluation of completeness was based on the answers from both semi-structured
interviews and focus group discussions with IRPV officials, valuers, and RRA officials.
It was done by showing the features extracted from UAV-orthophoto and the other RS
data, compared with the required data for property valuation. Findings from focus group
discussions revealed that “the interior part of the property cannot be captured using
remote sensing data and construction materials can be obtained in ascertained condition”.
Regarding the completeness of data, RLMUA interviewee and focus group discussion
participants highlighted that “current information provided for property tax (fixed asset
tax) is not enough (incomplete) and the information related to the building improvements
within the compound of the parcel are not recorded in the LAIS database”. Therefore,
remotely sensed data, especially high-resolution ones such as UAV images, can be used to
compensate for this gap. The only missing element that the participants shared is that RS
data cannot provide information about the inside conditions of the properties.

The degree to which remote sensing data provides updated information was assessed
via literature review, interviews, and focus group discussions data from RLMUA, IRPV,
RRA, districts, and valuers. After the aerial data acquisition in 2008, the cadastral data
has not been updated. Rwanda authorities have planned to update the existing spatial
data in five years for urban areas and ten years for rural areas; however, satellite images
from Google Earth and sporadic field measurements are still currently used where needed.
During the interviews, valuers said that RLMUA, as an institution in charge of the spatial
information related to land management and use, should find the approach for updating
spatial information so that the data from the database reflects the reality on the ground. In
relation to property taxation, the results from interviews with RRA and district officials
concluded that the “classical approach of property to property self-declaration from land-
holders is being used for updating their data”. This traditional approach is time-consuming
and costly, and interviewees stated that “remote sensing techniques can be more useful to
monitor and keep the spatial information regarding the changes on the ground up-to-date,
which can save time compared to the traditional method”.

The cost assessment is based on the previous research done in Rwanda and abroad
on the usability of UAVs compared to the valuation fees in Rwanda. IRPV [43] has set
valuation fees. They classify the properties into different categories. The categories include
factors such as type (land or building); use (residential, commercial, and industrial), and
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location (urban, peri-urban, and rural area). What costs need to be considered for the tasks
related to the current procedure and the one based on UAVs are shown in Figure 16.

 
Figure 16. Cost assessment of the current property valuation method (a) and the proposed UAV-based
method (b).

As shown in Figure 16, for the current valuation procedure, costs should be planned
for transport, data collection, data analysis, valuation report preparation, and printing.
According to [43], the average price of the charges for property valuation in an urban area
is around 1050 Rwf per m2. For the UAV-based method, the costs were calculated based on
information provided by the Charis Company, the only company registered and allowed
to fly in Rwandan territory. Based on their experience, a UAV approach should consider
costs for obtaining flight permission, pre-planning activities, operator fees, ground control
points (GCP) measurement, data acquisition, and post-processing. According to these data,
the estimated price is $1100 per five hectares, which is equivalent to 18.95 Rwf per m2. The
price was converted into Rwf francs for better comparison. The online exchange was used
as the exchange rate at the time was 861.42 Rwf /dollar. After the data acquisition, costs
for valuation report preparation, analysis, and printing need to be included.

In terms of availability of the platform, during the interview discussion an official
from the Ministry of Infrastructure shared that currently “only one company is registered
and has the right to fly UAVs”.

4. Discussion

This section is organized as follows. First, the overall potential of remotely sensed data
in land valuation for taxation in Rwands is discussed. Second, a qualitative cost/benefit
analysis of the proposed UAV methods for property valuation for taxation. Third, the
comparison of, and discussion on, the current procedures and the proposed new methods
are shown.

First, on overall potential for RS utilization in land valuation for taxation, the usability
of remote sensing data in land administration in Rwanda is not new. The cadaster was built
based on the orthophoto from aerial images acquired using aircraft and satellites in 2008.
However, due to the high costs of such projects on a national level, these approaches are
difficult to replicate for regular ad-hoc updates. Many changes happen on a daily basis, so
up-to-date spatial and non-spatial information is of great importance. The socio-technical
assessment completed via this research proves that remotely sensed data has great potential
for all land management activities.
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Second, the findings of the research show that the current application of remote sensing
data and particularly high-resolution UAV images in property valuation for taxation is
very limited: traditional methods are still applied. However, as reviewed in ministerial
regulation N◦ 01/MOS/Trans/016, relating to UAVs, the usability of remote aircraft is
allowed, and it provides the procedures of how the permit should be issued [44]. Therefore,
they can be considered for the tasks for valuation for taxation.

From the interviews, it was confirmed that measuring the property and improvements
on the proposed UAV image can reduce fieldwork time significantly. Moreover, from the
comparison of the areas delineated over the three imagery data sources, compared to the
reference data, the UAV images have the highest spatial resolution. Regarding spatial
completeness and up-to-dateness, they have also been proven as very suitable input data.
From the interviews, it was revealed that UAVs, as a new data acquisition technology,
could be adopted at national and subnational government levels: the national government
is the main geospatial data provider in Rwanda. Being low-cost, UAVs can be implemented
by local stakeholders to support small-scale mapping with frequent flights. Such actions
can contribute to land data gathering in a decentralized way. Similar findings were also
found in [45]. Rwanda is one of the most advanced African countries in terms of usage of
geospatial data. As such, it seems it would be easier to integrate UAV-based approaches for
valuation and land administration. It will be easier to integrate such data into the existing
spatial data infrastructure [45].

Although there are many works that outline the benefits of UAV images compared
to the other RS techniques, including examples such as - higher spatial and temporal
accuracy, and completeness. - the existence of regulations; the need for registered flight
companies; license pilots, and so on, present challenges. As was argued in [45], the
four main challenges for implementing UAVs as a land tenure data acquisition tool for
Rwanda include: (1) Mixed terrain, which means that not all types of UAVs are suitable
for flying; (2) Limitations of the current UAV regulations such as flying only in visual
sight; (3) Ground truth data collection, especially in an urban environments (existence
and reliability of national CORS data); and (4) Software and hardware requirements for
data processing. Even cloud-based solutions are being used in many African countries,
including Rwanda. However, this approach is often challenging due to the instability of
the internet connection. In addition, from the interviews, the lack of human resources and
funds for education is another main challenge, especially with regard to data processing
and analysis skills.

Many researchers have investigated the optimal photogrammetric workflow configu-
ration to minimize computational costs and reference data collection [46–48]. It is known
that obtaining a high-precision GPS and IMU system onboard a UAV can minimize the
collection of GCPs, which is usually quite challenging in African countries. Even though
UAVs can provide very high-resolution images, the accuracy of captured coordinates may
differ from centimeters to several meters, depending on the flight conditions and specific
configuration. It has been proven in the research that the number of tie-points has a very
significant impact on the correct image orientation process [49]. Based on six experiments
in Europe and Africa, the authors can now identify the different flight configurations that
will lead to more reliable results for UAV data acquisition. Following the guidelines can
assist in achieving the best image outputs that can provide a reliable base for land adminis-
tration tasks. In addition, based on remotely sensed data, innovative geospatial methods
for automatic feature extraction for cadasters have been widely explored by the scientific
photogrammetric and computer vision community. For this application, especially for
urban areas, UAV data, with its high resolution capability, can outperform other remotely
sensed data [50–52].

As mentioned, using remotely sensed data in Rwanda is not new. In terms using it for
land valuation for taxation, the existing property valuation law [39] focuses on establishing
IRPV and is administratively focused on: methods for valuation, the required data, or the
need for standardization. Currently, most of the information is collected from on-ground
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field visits. The incompleteness and outdated spatial information from the cadaster in
Rwanda have been noticed and reported by other researchers [33,53]. Currently, valuers
have to create their own data collection method to execute their duties. There are no
guidance documents or rules being followed on how that data can be collected, or which
tools could be used, or which remote sensing data can be beneficial to the process. The
issue of a lack of data on market transactions results in variations and inconsistencies [33].
In addition, the respondents from RLMUA indicated that the value of land, buildings,
and improvements are not separated. Instead, they are recorded as a land value in the
LAIS database.

Concerning property tax (fixed asset tax), the taxation system has been developed,
but it is still hosted at the national level. According to the law, the property tax should
be collected by the districts [29]. Districts have not invested in establishing appropriate
revenue collection systems. This results in contracting the Rwanda Revenue Authority
as a system holder to collect the tax on behalf of the districts. Currently, self-declaration
and ad-hoc systems are being used in Rwanda as the taxation system. In Rwanda, it is
the responsibility of the taxpayer to assess their properties and come up with the property
value to fill the declaration form. Therefore, in Rwanda, the taxpayers are obliged to register
and report their tax obligations to the tax collector [33]. A challenge to the current system
is that not all taxpayers comply with this system of self-declaration (self-registration). With
the self-assessment system, taxpayers are likely to undervalue their property as the tax
is based on the open market value, and the fixed rate is applied. To avoid such results,
the proposed remote sensing methods, incorporating UAVs as data acquisition techniques,
can assure transparency, higher accuracy, and reliability. Further, to improve precision,
more detailed information from terrestrial images or indoor models can also be added.
Moreover, it is recommended that in the future this method be combined with additional
information such as construction permit data, and indoor information linked to the vertical
dimension. This will further improve the accuracy of current valuation.

5. Conclusions

RS has been used in Rwanda for the land administration since 2008, and the results of
this research show RS continues to grow as an opportunity for land administraiton tasks
in that country. In terms of national imagery datasets, there has been no update of the
underlying imagery sources since 2008. The current spatial data from RLMUA is outdated
and the current methods for spatial data capture are cumbersome and rely on physical
inspection using tape measurements, handheld GPS, digital cameras, and so on. Therefore,
identifying the best method to update imagery is a pressing concern. Many countries face
this challenge.

As such, this research explored the differences between three different remote sensing
data acquisition techniques and utimately suggests the usage of the UAV-based approach
(not widely available in 2008) for property valuation for taxation purposes, at least for
ad-hoc assessments, to be in alignment with the FFPLA principles. That said all RS sources
can support assessment of internal factors (parcel size, built-up area; improvement; shape,
and type of the subject property) and external factors (accessibility, neighborhood, land
use, environment, and utilities). However, the UAV captured RS data was superior in
many regards.

In terms of policy, legal, standards, RS approaches, whilst used in land valuation for
taxation, could be more systematically applied in the country, especially when it recognised
that these land valuation processes, by decree, should be decentralised to the district
level (i.e. smaller areas to cover). That said, the lack of finances and trained staff, and
only one company being registered to perform UAV flights in the country, present serious
inhibutors to the use of UAVs. Many innovative approaches being adopted and applied in
practice need initial and substantial governmental support to gain traction, build awareness,
and create technical capacity.
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Whilst the technical feasibility of the UAV-based approach is clear, workflow and
procedures aligned with existing laws and integrated with other land administration
processes requires more attention. Moreover, the transferability of the developed approach
to other contexts also necessarily requires further investigation. It is suggested that the
results of the work here could be the source material for, or at least provide guidance to the
ongoing developments of, ISO 19152 LADM, 2nd edition, particularly as that standard will
have a dedicated link to property valuation data and processes [54].

This comparison of different remote sensing sources, for land valuation for taxa-
tion purposes, can help practitioners, government, and involved institutions to assess
the value of remotely sensed data, and the most appropriate sources. Moreover, the
work illustrates the benefits of using data with higher spatial and temporal resolution
for delivering transparency and a fair land valuation. The use of UAVs can fill the gap
between land administration and land management authorities, and eventually strengthen
multi-sectoral collaboration.
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Abstract: The role of remote sensing data in detecting, estimating, and monitoring socioeconomic
status (SES) such as quality of life dimensions and sustainable development prospects has received
increased attention. Geospatial data has emerged as powerful source of information for enabling both
socio-technical assessment and socio-legal analysis in land administration domain. In the context of
Korean (re-)unification, there is a notable paucity of evidence how to identify unknowns in North
Korea. The main challenge is the lack of complete and adequate information when it comes to
clarifying unknown land tenure relations and land governance arrangements. Deriving informative
land tenure relations from geospatial data in line with socio-economic land attributes is currently the
most innovative approach. In-close and in-depth investigations of validating the suitability of a set
of geospatially informed proxies combining multiple values were taken into consideration, as were
the forms of knowledge co-production. Thus, the primary aim is to provide empirical evidence of
whether proposed proxies are scientifically valid, policy-relevant, and socially robust. We revealed
differences in the distributions of agreements relating to land ownership and land transfer rights
identification among scientists, bureaucrats, and stakeholders. Moreover, we were able to measure
intrinsic, contextual, representational, and accessibility attributes of information quality regarding
the associations between earth observation (EO) data and land tenure relations in North Korea
from a number of different viewpoints. This paper offers valuable insights into new techniques
for validating suitability of EO data proxies in the land administration domain off the reliance on
conventional practices formed and customized to the specific artefacts and guidelines of the remote
sensing community.

Keywords: remote sensing; land tenure; land administration; geospatially informed analysis; knowl-
edge co-production

1. Introduction

The role of remote sensing data in detecting, estimating, and monitoring socioe-
conomic status (SES) such as quality of life dimensions and sustainable development
prospects has received increased attention across number of disciplines in recent years [1–5].
Geospatial thinking and technology have provided an important opportunity to advance
the understanding of the specific questions which drives SES perspectives that include
humanitarian health [6,7], rural household poverty [4,8], neighborhood deprivation [9],
valuation of land and property [10], and urban dynamics [3]. This argument has given rise
to much debate on not only making an association of remotely sensed spatial data and
socio-economic parameters but also predicting or interpreting them.

Land administration deals with the people-to-land relationship, by describing, an-
alyzing, designing, and measuring their relations that include social, economic, spatial,
legal, and engineering perspectives [11]. Along with the growth of remote sensing applica-
tions in SES, there has been growing recognition and evidence of the vital links between
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remote sensing and land administration [12–19]. Geospatial data has emerged as powerful
source of information for enabling both socio-technical assessment [20] and socio-legal
analysis [21] in land administration sphere. Moreover, recent advancements have led to a
renewed interest in identifying socio-spatial footprints of land boundaries and associated
land rights through integration of different sets of geospatial and socio-economic data
and informative interpretation [12,21]. Thus, a novel approach to land administration
sheds a contemporary light on grounded theories and practices of land tenure, use, value,
development, and governance.

However, the challenge now is how to make better use of geospatial technologies to
generate evidence and the resulting data as robust evidence in spatial decision-making
processes. Although, the effectiveness of the earth observation (EO) data for public decision-
making in the land sector has been well-exemplified by [22,23], it was also claimed that
the existing accounts fail to fully resolve the government demands for better land policy-
making and planning [22]. This argument is line with a longstanding quarrel of evidence-
informed policy-making [24–27] that aims to ensure transparent use of sound evidence
and appropriate consultation processes in policy making [24]. It is therefore that such
evidence must meet certain criteria on technical quality, a relevant source of information
and effective communication [28]. The term "geospatially informed analysis (GIA)" is used
here to refer to evidence generation and provision of salient and legitimate evidence in
spatial decision-making, supported by geospatial technologies and geospatial data. With
regard to land management, it is important to bear in mind that spatial decision making is
conducted on various spatial scales, ranging from local to national, and thus incorporates
multiple spatial cognitions and perspectives of both state and non-state agencies.

It is possible that GIA might not be applicable to the contexts in which the limited
access to data exists, quality of data matters and reliability of data sources have been raised.
North Korea belongs to this category. Studies on North Korea [29–34] and governing
North Korean land tenure [35–38] have attracted considerable attention, both scholarly
and popular. The majority of existing research accounts for land (tenure) reform in North
Korea and land governance arrangements in unified Koreas. To date, however, there is a
notable paucity of evidence-based literature describing and investigating how to identify
unknown land tenure relations in North Korea due to the obvious difficulties in obtaining
and analyzing empirical data. Several ways of overcoming these barriers to capturing the
relationship between land tenure and governance and Korean (re-)unification process have
recently been suggested that involve understanding and suggesting methods and solutions
to problems [21,39,40]. Drawing upon both land administrative and geospatial engineering
approaches, these enabled to provide reasonably consistent evidence and knowledge-base
of an association between land tenure/land governance and (re-)unification of which
relatively little is known. Whereas previous approaches suggested here were based on
documented spatial knowledge and reasoning relating to land tenure and land governance,
this study aims to supplement and extend these insights by incorporating and reflecting on
local spatial knowledge and expertise.

Although a number of different studies have been conducted on the subject of North
Korea and its refugees, there are still insufficient insights into the fundamental differences
between North Korean and South Korean perceptions, beliefs, and experiences [41]. Such
an information gap may hamper a smooth transition towards unification. It is therefore
of fundamental importance to gain further insights directly from North Korean refugees.
Currently, the only possible way of doing this is to interview and engage with North
Korean refugees (that refers to new settlers or defectors; saeteomin or bukhanitaljumin in
Korean terms). Urban studies in North Korea tend to involve on-site work, social contact,
and face-to-face interaction with the population of interest rather than relying on existing
literature and available data. However, most of the work carried out to date has not
been able to provide robust evidence on the basis of persistent observation and in-depth
analysis [42].

94



Remote Sens. 2021, 13, 1301

In general, gathering information regarding land tenure from multiple non-human
resources such as legislation, policy documents and case studies is possible. However,
the main challenge faced by many decision-makers is the incompleteness and inadequacy
(inadequate proof or evidence) of information when it comes to clarifying how land tenure
relations and land governance arrangements are really constructed and maintained in
North Korea. In the light of these unknowns, additional data from multiple stakeholders
is valuable for obtaining a more detailed insight into the broad spectrum of personal
experience, views, and judgements [43,44]. In this respect, North Korean refugees can also
act as human capital, not only as a supplement to publications on North Korea but also as
a way of conducting an empirical analysis of primary data on North Korea [45].

When it comes to abnormal circumstances for gathering empirical evidence in this
study, it is necessary to explain the main challenges and most common practices. More
recent attention in urban planning and land management of North Korea has focused
on using focus group interview (FGI) methods with North Korean refugees and spatial
analysis with Google Earth images (EO data). Notwithstanding the fact that these methods
seem to be most feasible and effective, the current research on land tenure and land
governance in North Korea has been impeded by the lack of empirical data, rigorous
methodologies, and reliability and validity of information for the in-close and in-depth
investigation. Therefore, in addition to methods commonly used, such a content analysis
on internal documents in North Korea and joint expert consultation processes make up for
a dearth of evidence-based knowledge base [42,46].

Adopting a similar position aforementioned, findings from a previous study demon-
strate how a process of socializing the pixel (combining with land administrative and
geospatial engineering approaches) can take place through (re-)interpreted semantic land
tenure relations [21]. As a result, GIA has been proposed based on a mixed-methods
design and an information fusion approach, to construct a strong and consistent association
between land tenure and EO data. However, a further investigation into the validation of
elaborated meaning and interpreted information throughout extensive consultations with
outside experts and multiple stakeholders needs to be undertaken before the association
between land tenure and EO data can be more clearly understood in line with algorithmic
approaches. Thus, the primary aim of this paper is to provide empirical evidence for
the claim that it is possible to standardize the identification and categorization of certain
objects, environments, and semantics visible in EO data that can be used to (re-)interpret
land tenure relations.

Given our awareness of critical consequences in misidentifying geospatially informed
proxies due to the lack of appropriate and rigorous validation of suitability, a threefold
approach to empirical knowledge elicitation for GIA is taken, comprising (1) extracting
scientific knowledge with a high-level of expertise based on topical (i.e., land tenure
and land administration), methodological (i.e., remote sensing and earth observation),
and contextual (i.e., Korean (re-)unification) interests; and (2) identifying bureaucratic
knowledge (i.e., government officials); and (3) deriving knowledge of local communities
in geographic areas of interest from people (i.e., North Korean refugees) who have the
most accurate understanding (through familiarity or personal experience) of land tenure
relations, land governance and land use practices. This study seeks to answer the following
specific research questions:

• To what extent does scientific, bureaucratic and stakeholder knowledge agree or
disagree with a set of identified pixel-based proxies related to land tenure in North
Korea?

• How does a knowledge co-production process help to validate suitability of geospa-
tially informed proxies and become legitimate land tenure knowledge?

This paper comprises four sections. The first deals with the conceptual and method-
ological accounts of research and analysis. The following section brings together the key
findings relating to proxy identification and the measurement of information quality. The
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remaining sections of the paper comprises a summary and discussion of the findings and
further implications for future research, respectively.

2. Validating the Suitability of Geospatially Informed Proxies

Validating the suitability of the remote sensing data and products against the social
context of the location is critical. However, despite the explosive growth in the use of remote
sensing in a wide range of applications in many different fields, there is increasing concern
about the lack of rigorous social and contextual validation methods and techniques, which,
in turn, may result in the misidentification or misinterpretation of proxies. Therefore,
to ensure better-informed geospatial analysis, it is necessary to consider not only the
procedure and legitimacy of validating the suitability of relevant proxies and combining
multiple values through knowledge co-production processes.

2.1. On the Need of Tailored Approaches to EO Data Validation

"Validation" is a term frequently used in the remote sensing literature, yet it is used
in different disciplines to mean different things. To avoid, terminological confusion, it
is important to bear in mind that the term validation throughout this paper has come
to be used in its broadest sense to refer to validating suitability or usability of proxies
using EO data for GIA. A validation is a fundamental requirement when using EO data in
any mapping project. It provides a basis for identifying classification errors and enables
the overall accuracy and uncertainty of mapping outcomes to be estimated with sample
data [47]. Congalton [48] lists three reasons why validation has become so important.
It enables (1) the identification and correction of usage errors in images, (2) a robust
quantitative comparison of methods, and (3) the provision of more reliable information
to enable better informed decision making. Much of the available literature on remote
sensing deals with the question of accuracy; however, Campbell and Wynne [49] critically
warn that validation is a much more complex process, as considered by many, and it
displays obvious difficulties in convincingly addressing whether the outcomes are correct.
The design of sampling, response, and analysis processes are an important component of
accuracy assessment and play a key role in yielding rigorously defensible validation in
remote sensing science [47]. As conventional methods, there are several possible validation
techniques available to examine the accuracy or error of EO data, such as visual inspection,
non-site-specific analysis, difference image creation, error budgeting and quantitative
accuracy assessment [48,49]. Indeed, the renewed interest in various image classification
methods, such as geographic object-based image analysis (GEOBIA), necessitates a range
of different validation efforts to meet the respective characteristics [50].

Despite the cutting-edge advancements in EO data validation, it should be noted that
remote sensors on satellites and aircraft cannot directly detect and record a particular social,
political, economic, or historical context of landscapes and their internal dynamics [51].
Unlike the remote sensing community, some studies confirmed that including participatory
techniques with professionals in land administration domain helps to validate quality and
usability [52,53]. Moreover, a qualitative approach in conjunction with visual interpretation
and quantitative analysis to measure the scalability of the semi-automated cadastral bound-
ary feature extraction from remote sensing data has been applied to the validation [54]. In
the same vein, using EO data to derive proxies for identifying and interpreting unknown
land tenure relations requires a rigorous interpretation of various contextual information
and a more nuanced insight into the socio-legal-spatial properties. Therefore, there are
limits to how far conventional and solid validation procedures, which have already been
formed and customized for specific artefacts and validation objectives in the remote sensing
community [55], can be taken in land administration science. In other words, a tailored
validation protocol would help to establish a higher accuracy and feasibility based on the
results obtained from the EO data interpretation.
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2.2. Knowledge Co-Production: Scientific, Bureaucratic and Stakeholder Knowledge

The notion of "knowledge co-production" is commonly used to refer to the collaborative
and interactive process of synthesizing different sources and types of knowledge [56–58].
Co-produced knowledge blurs the boundaries between science and practice [59]. Therefore,
not only experts, scientists and professionals now play a pivotal role in the decision-making
process, but the committed knowledge of non-scientific stakeholders should also be taken
into account.

According to Freedman [60], if scientifically valid trials of a useful or interesting hy-
pothesis are conducted or provide reliable information on the hypothesis being tested, the
values and validity are recognized as scientific. To enable this, scientific validation needs to
consider the inclusion of expert knowledge at higher levels of education and profession-
alism in order to test for scientific acceptability such as transparency and replicability of
results [61]. Bureaucratic knowledge is now considered essential, as bureaucrats and civil
servants possess advanced knowledge from governance processes that include top-down
political representation, bottom-up citizen participation and informal knowledge-sharing
networks [62]. In administrative and government practice, "bureaucratic knowledge"
serves to navigate complex decision making. It associates the political and strategic use
of knowledge rather than the intrinsic (non-instrumental) value of knowledge, such as
the norms of ethos and ethics, with bureaucratic works [57,62–64]. Thus, bureaucratic
validation is such that it synthesizes knowledge from both internal and external resources
and creates new forms of knowledge from perceptions of political feasibility and institu-
tional arrangement [65]. Unlike scientific validation, which is based on replication logic,
bureaucratic knowledge relies on either pragmatic plausibility or feasibility logic, similar
to political logic.

However, critical questions have been raised about the uncertainty of decision making
in resolving multifaceted local and societal problems on the sole basis of scientific and
expert knowledge [66]. One of the most significant current discussions in this argument
concerns the incorporation of varying stakeholder knowledge that reduces rigidity, rep-
resents multiple perspectives, and promotes adaptability in decision making [67]. There
is also a growing body of literature that recognizes the importance of stakeholder or lay
knowledge as a key informant that emphasizes intense contextual and localized knowledge
of people in their local environments [68]. Therefore, the potential advantage of using
stakeholder validation is the increased precision both in terms of context and localization
in validating the suitability of proxies that cannot be verified through disciplinary expert
assessment or administrative capacity. In view of all that has been mentioned so far, one
may suppose, as argued by Edelenbos et al., [57] that only coproduced knowledge fully
assesses pre-identified proxies for GIA that considers scientific validity, policy relevance
and social robustness.

2.3. Geospatially Informed Analysis (GIA)

In recent decades, describing, analyzing, and understanding people-to-land relations
using geospatial technology has given rise to effective legal, social, and spatial solutions to
multifaceted problems relating to land. Recently, more advanced geospatial intelligence
has not only offered administratively straightforward, technically feasible, and financially
affordable approaches [69], but it has also provided a rich set of data and information
that conventional analytical techniques would have been unable to identify or access. We
also view land management as a combination of interventions in governance, based on
questions of how and under what conditions such land interventions are responsible and
how these can be supported by technologies. It is possible, therefore, that GIA supports
both smart and responsible land management [70,71], especially of difficult-to-access
regions where unknown or unsupported land governance exists [21,39,40].

On the one hand, geospatial intelligence is not currently sufficiently embedded in
decision-making processes, while on the other, decision makers do not sufficiently rely
on geospatial intelligence, even though it is available. Even geospatial intelligence is too
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product-oriented and insufficiently process-oriented. Based on this line of argument, we
note that, despite the above claims of GIA, it still needs to be clarified how, where, and
when it can be used to enrich both scientific and bureaucratic knowledge. Building on
the critical insights from GIA, it enables us to address proxy development in a smart
and responsible manner, where significant uncertainty exists regarding data access, data
integration and data reliability.

GIA is fast becoming the ultimate driver of spatial decision making in land manage-
ment and sheds new light on recent insights into societies, the environment, the earth,
resilience, and sustainable development. However, scientifically framed knowledge and
technical expertise in remote sensing and earth observation tends to greatly exaggerate
the excellence of laboratory experiments conducted under highly controlled conditions
and technocratic approaches to dealing with land/spatial problems. At the same time,
the dominance of bureaucratic knowledge in land policymaking devalues other forms
of knowledge and undermines the local context, the political representation of citizens
and the social processes of land governance and land use. Using geospatial tools and
instruments, the citizen (stakeholder) is now able not only to consume and produce geospa-
tial information but also to contribute grounded knowledge more effectively to spatial
decision-making processes. Synchronization, complementing and contradiction with views,
judgements and experiences in the knowledge coproduction process affect the GIA utilized
in spatial decision making and thus determine exactly how, where and when different
forms of knowledge can legitimize scientific standards and conformity as bureaucratic and
social norms.

3. A Case Study: Geospatially Informed Analysis of North Korea

The method was designed for which proxies are considered relevant and useful by
scientists, government professionals and stakeholders and to elicit their evaluation of the
information quality. This necessitated very careful investigation. A survey was conducted
with 77 sample respondents recruited from scientific, bureaucratic and stakeholder groups.
Data for this study were collected using a web-based questionnaire, and the analysis
used both the Chi-square test and the one-way ANOVA test. The following subsections
describe in greater detail what was investigated and who was involved, how the survey
was conducted and how the data was analyzed.

3.1. Identification of Proxies and Quality of Information

The first important stage of the analysis was to identify proxies by which to derive
unknown land tenure relations in North Korea in conjunction with EO data. A preliminary
investigation proposed a set of candidate proxies relating to the key questions based on the
elements of image interpretation used in remote sensing, divided into the four categories
of land ownership, land use, land transfer, and land access [21]. Within these categories, a
total of 66 proxies were derived from 32 groups of objects, environments and semantics
that were visible in the EO data and that could be (re-)interpreted to discern unknown
land tenure relations in North Korea (see Figure 1). These proxies generally consisted of
combinations of shape patterns, colors, textures relating to physical structures, types of
buildings, infrastructures, types of land use, and proximity of comparable features. The
line of reasoning attached to the proxies is significantly associated with central concepts
of tenure claims and interests such as collective ownership, land lease and use, occupa-
tion, transactions, and land access. Hence, in line with our approach to validating the
suitability of remotely sensed proxies, we set out to test the hypothesis that determines
“whether proposed proxies are (1) scientifically valid, (2) administratively relevant or
useful, and (3) contextualized and localized.” Hence, the null hypothesis (H0) is “no dif-
ference between scientific, bureaucratic, and stakeholder distributions (of agreements) for
identified proxies.”
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One of the most influential accounts of a methodology for information quality assess-
ment comes from [72], which sets out the theoretical dimensions of information quality
(IQ) and comprehensively examines four key quality attributes from both academics’ and
practitioners’ perspectives: (1) intrinsic, (2) contextual, (3) representational, and (4) accessi-
ble. Both intrinsic and contextual quality underline the informative factors, but intrinsic
attributes are associated with accuracy, believability, reputation, and objectivity, whereas
the latter considers tasks that require added value, relevance, completeness, timeliness,
and an appropriate amount. On the other hand, both representational and accessibil-
ity dimensions stress the technical accounts of the system by which information must
not only be interpretable, easy to understand and represented clearly and consistently,
but also emphasize accessibility and security [72]. To test the hypothesis, two different
approaches were taken in an attempt to account for the identification of proxies (Part
I of the questionnaire) and the measurement of information (proxy) quality (Part II of
the questionnaire).

3.2. Selection of Proxies and Measurement of Information Quality
3.2.1. Participants

The participants (see Table 1) were divided into three groups on the basis of their
knowledge production methods: (1) scientific knowledge, focusing in particular on topical,
methodological, and contextual interests (scientists); (2) bureaucratic knowledge that exists
in the context of administrative and governmental practices; and (3) stakeholder knowledge
of key informants with the emphasis on contextual and localized knowledge of North
Korea. A random sample of participants (i.e., thus, it is unable to report the participation
rate exactly.) with a different set of knowledge was identified from personal networks and
connections with government agencies (from Korea Land and the Geospatial Informatix
Corporation (LX) as well as local authorities under the Ministry of Land, Infrastructure and
Transport (MOLIT)), (non-)governmental organizations (the Korea Hana Foundation, the
Together Foundation, and the Saeil Academy), academic and research institutions (from
universities, the Korea Research Institute for Human Settlements (KRIHS), the Land &
Housing Institute (LHI), and the Spatial Information Research Institute (SIRI)) in South
Korea. Therefore, group A and B were recruited based on South Korean’s expertise, while
group C consisted of North Korean refugees living in South Korea.

A total of 77 participants took part in the study. Of the total cohort of 77 partici-
pants, 29 were members of scientific knowledge groups (38%) while 30 and 18 respondents
were from bureaucratic (39%) and stakeholder knowledge groups (23%), respectively
(see Table 1). The Participants A group comprised scientists representing a broad range
of expertise and domains in the fields of land management, land administration, land
governance, land tenure, and cadastral surveying. This group also included eligible spe-
cialists with substantial knowledge and skills in remote sensing and earth observation
technologies. In addition, participants were recruited from independent entities who
share knowledge and a deeper understanding of Korean (re-)unification. The Participant
B group represented bureaucratic knowledge and policy usefulness, with the following
parameters: government professionals and officials who demonstrated a set of profes-
sional skills and had gained relevant work experience in public sectors involving land
tenure/administration/management, land/cadastral surveying, and geospatial informa-
tion. To create our stakeholder sample, we considered people with a declared or conceivable
interest or stake in land tenure relations, land governance arrangements and land-use prac-
tices in North Korea. Thus, the Participants C group involves judgements of stakeholders
who have the most direct and accurate understanding of land systems in North Korea by
virtue of their life experience; in our context, this refers to North Korean refugees.

To begin this process, each participant group was invited via multiple contact points to
participate in the study, with a link to the online questionnaire included. The participants were
asked to complete two tasks relating to the identification of proxies and the measurement
of information quality. The invitations included a clear explanation of the purpose of the
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research, along with an introductory statement and instructions attached to the questionnaire.
Originally, the questionnaire was compiled in English. However, it was subsequently trans-
lated into Korean to gain a better understanding of the possibilities of identifying proxies
and measuring information quality. The participants were asked to complete two parts of the
anonymized questionnaire within two weeks (29 June–15 July 2020).

Table 1. Characteristics of participants.

Total
Knowledge Groups

Scientific (A) Bureaucratic (B) Stakeholder (C)

N 77 29 30 18
Gender (% female) 32% 28% 27% 50%

Age
30 years or younger 23% 17% 23% 33%

31–50 years 64% 69% 63% 56%
51 years or older 13% 14% 14% 11%

Completed educational level
Middle-level applied: Middle & high school 8% 3% 3% 22%

Higher vocational: Bachelor’s degree 35% 10% 40% 67%
Higher academic: Master’s degree 29% 35% 34% 11%

Postgraduate academic: PhD 28% 52% 23% 0%
Work experience *

0–5 years 47% 48% 37% 61%
6–10 years 15% 14% 10% 28%

10 or more years 38% 38% 53% 11%

Note. * For scientific and bureaucratic groups had land administration, management, remote sensing, or unification-related work
experiences; on the other hand, it did not require relevant professional knowledge and experiences for stakeholder groups.

3.2.2. Questionnaire

The questionnaire was developed in consultation and discussion with international
and local scientific communities (e.g., universities and research institutions), (1) by sharing
cutting-edge scientific knowledge on smart and responsible land management; (2) by
comparing how local contexts influence land tenure relations, especially in developing
countries; and (3) by underpinning a new conceptual and methodological account of a
geospatially informed analysis in a remote sensing community.

Due to budget constraints, time-limitations, and travel restrictions (owing to COVID-
19), the data was collected using a web-based questionnaire based on the freely available
Google Forms questionnaire. In order to identify the most transferrable and applicable
proxies, the participants were asked whether they agreed or disagreed by choosing one of
two possible values on a binary scale. One advantage of the binary scale is that it avoids
the problem of nuanced and neutral answers from respondents. By forcing respondents’
options, we obtained precise data with which to clarify and confirm the proxies identified
beforehand (See Figure 1). In addition, after each proxy group category, participants
were able to add their comments or suggestions for additional candidate proxies in a
supplementary space (see further details of a questionnaire with a following link: https:
//forms.gle/8SzK323vYWBhRfhF8; it is available only in Korean.). To provide a good
and full understanding of the questionnaire’s survey content, the questionnaire was fully
described with the background, purpose, and key terms of study, and provided sample
satellite images in each section with detailed descriptions. We also amended the question
format into a more respondents-friendly form with the help of a communication expert
as well as many land administration specialists in South Korea to make it easier for
respondents to answer the questions.

Unlike the binary scale format, Likert items allow more finely tuned responses and
enable respondents to indicate the extent of their agreement, including a neutral response
to the questions. For the attitude questions measuring information quality, a 5-point Likert
scale was used to ask respondents whether they agreed or disagreed, with the following
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possible variations: excellent, good, fair, poor, very poor. Questions on measurement
were in part adopted from AIMQ (a methodology for information quality assessment)
methodology [67] and referred to such as aspects as believability, completeness, consistent
representation, interpretability, objectivity, relevancy, timeliness, and understandability.
Finally, the participants were asked to leave an e-mail address if they wished to know the
results of the study.

3.2.3. Data Analysis

To formally compare the views and judgements of different group samples in iden-
tifying geospatially informed proxies, the Chi-square test was selected to test whether
there were any (significant) differences in the distributions across scientific experts, bureau-
crats, and stakeholders. We adopted the Chi-square test since this test is also suitable for
more than two nominal variables or arbitrary dimension (R × C rather than 2 × 2) [73,74].
Proxies representing only a few statistical differences (p < 0.05) were considered to be in
agreement. The experiment was conducted with two possible outcomes (agree or disagree)
with the results of the proxy identification (validation) being expressed as a proportion of
the overall respondents from the scientific, bureaucratic and stakeholder groups, since our
data were derived from random sampling.

To measure information quality, a one-way ANOVA test was conducted. The one-
way ANOVA test is one of the most commonly-used techniques for determining whether
or not there are any statistically significant differences between the means of two or
more independent variables (e.g., between groups, within groups). In an experiment,
the measurement variable is the independent variable; thus, scientific, bureaucratic, and
stakeholders’ standpoints, respectively, were determined. The nominal variable is the
dependent variable and can take one of five values (very poor/poor/fair/good/excellent)
relating to the quality of the information on proxy identification, based on a 5-point Likert
scale. It is equal to 1 if respondents give the answer “very poor” with regard to believability,
completeness, consistent representation, interpretability, objectivity, relevancy, timeliness,
and understandability. On the other hand, it is equal to 5 when participants consider it to
be “excellent”. Prior to the one-way ANOVA test, we also conducted D’Agostino–Pearson
normality and lognormality tests to determine whether the data set was well-modelled
(that the given sample comes from a normally distributed population). We followed up
the one-way ANOVA test with Tukey’s multiple comparison test (Tukey–Kramer test) to
compare every variable with every other variable.

4. Results

4.1. Identification of Proxies
4.1.1. Land Ownership (LO)

To identify land ownership, 15 proxies were incorporated in the analysis (See Figure 1).
Of these 15 proxies, first eight (LO. 1 to LO. 8) were associated with the identification of
collective (farm)land and the remainder (LO. 9 to LO. 15) with state (farm)land. Null
hypothesis (H0) cannot be rejected, i.e., that there is no difference between scientific,
bureaucratic and stakeholder distributions for nine proxies. For these nine proxies, the
judgements elicited from scientific knowledge are in agreement with those observed in
bureaucratic groups. On the other hand, we reject the null hypothesis that there is no
difference between the three different knowledge groups for the following six proxies:
rough/coarse image texture of (dry)paddy fields, high density/compactness of settlements,
signature line of a slanting roof of rural dwellings, observation of seasonal changes in
agricultural activities, small dot-shaped patch of orchards, smooth texture of pastures, and
low density of building (sites).

It was found that the Table 2 compares the results obtained in the Chi-square test of
validating the suitability of proxies for land ownership identification. In general, when
a p-value is less than 0.05 for each proxy (No 2, 3, 5, 8 to 10, and 12), it means that the
agreements elicited from the scientific, bureaucratic, and stakeholder groups are highly
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inconsistent, and thus hinder validating the suitability of a set of proxies. Although there is
higher rates of disagreement among scientific group (ranging from 13.8 % to 48.3%) arising
from the interpretations of the identified proxies, the possible proxies for land ownership
identification derived from EO data (LOs. 1, 4, 6, 7, 11, and 13 to 15) achieved a better
understanding among the bureaucratic (mean average: 46.2%) and stakeholder groups
(mean average: 63.9%).

Table 2. Validating the suitability of proxies for land ownership identification and differences between knowledge groups.

LO. Proxies for Land Ownership Identification
Chi-Square Test Knowledge Groups (Agreement, %)

χ2 (p-Value) Scientific (A) Bureaucratic (B) Stakeholder (C)

1 Presence of (dry)paddy fields 5.732 (0.056) 24.1% 43.3% 66.7%

2 Rough/coarse image texture of (dry)paddy
fields 12.950 (0.0001 **) 13.8% 33.3% 72.2%

3 High density/compactness of settlements 8.337 (0.015 *) 34.5% 50.0% 77.8%

4 Object colors in grey scales of rural
dwellings 5.873 (0.053) 31.0% 50.0% 66.7%

5 A signature line of the slanting oof of rural
dwellings 12.260 (0.002 **) 20.7% 40.0% 72.2%

6 Densely built-up structure with single-story
detached houses 5.732 (0.056) 31.0% 43.3% 66.7%

7 Presence of portable farming-related objects 5.366 (0.068) 37.9% 46.7% 72.2%

8 Observation of seasonal changes of
agricultural activities 16.140 (0.000 ***) 24.1% 26.7% 77.8%

9 Small dot-shaped patch of orchards 12.440 (0.002 **) 17.2% 30.0% 66.7%
10 Smooth texture of pastures 7.631 (0.022 *) 17.2% 30.0% 55.6%
11 Outbuildings of warehouses 4.186 (0.123) 31.0% 40.0% 61.1%
12 Low density of building (sites) 6.407 (0.040 *) 24.1% 40.0% 61.1%

13 Complex, elongated/irregular boundaries of
buildings (sites) 5.155 (0.076) 20.7% 43.3% 50.0%

14 Blue, green, yellow, red, and light roof colors 2.465 (0.291) 37.9% 50.0% 61.1%

15 Presence of agricultural, monumental and
welfare infrastructure 0.462 (0.462) 48.3% 53.3% 66.7%

Note. Agreement of knowledge groups means the percentage of yes in the survey. * p value ≤ 0.05; statistically significant between
knowledge groups. ** p value ≤ 0.01; statistically very significant between knowledge groups. *** p value ≤ 0.001; statistically extremely
significant between knowledge groups.

4.1.2. Land Use Rights (LU)

There were 35 proxies incorporated for the identification of LU from EO data. Proxies
LU. 1 to LU. 24 reflect aspects of individual land use rights, while another explanation of
group land use right is associated with proxies LU. 25 to LU. 35. Significant associations
for the difference between scientific, bureaucratic and stakeholder’s agreements were
not found to be related throughout a Chi-square test for all the possible proxies of land
use rights. In other words, we retain the null hypothesis (p value ≤ 0.05) that there is
no difference between the knowledge groups. All participant groups agreed that much
uncertainty (judging by the agreement ratio of ≤ 50%) still exists concerning the relationship
between EO data and the identification of land use rights at some points. However,
statistical difference does not fully account for difference in actual opinions. In other words,
the χ2 and p values only demonstrate a statistically significant difference, which is the
result of a rational exercise with numbers but does not denote any practical significance in
that there is no difference.

Table 3 shows the breakdown of χ2 and p values along with the fraction of total agree-
ment for validating the suitability of proxies for identifying land use rights. There is still
no systematic understanding of how EO data contributes to land use rights identification
(LUs. 11 to 15, and 24) among scientific, bureaucratic and stakeholder knowledge groups
(less than 30% are in agreement); however, strong evidence was found in support of the
validation of the six proxies in individual and seven proxies in group land use rights with
agreement of at least 40 percent in two separate groups (LUs. 5, 6, 7, 16, 17, 22, 25 to 27,
29 to 31, and 34).
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Table 3. Validating the suitability of proxies for land use rights identification and differences between knowledge groups.

LU
Proxies for Land Use
Rights Identification

Chi-Square Test Knowledge Groups (Agreement, %)

χ2 (p-Value) Scientific (A) Bureaucratic (B) Stakeholder

1 LULC changes with intense land
development 3.237 (0.198) 31.0% 50.0% 27.8%

2 LULC changes with increase in
agricultural land 1.149 (0.563) 27.6% 40.0% 38.9%

3 LULC changes in urban areas with
the development of water bodies 0.449 (0.798) 31.0% 30.0% 38.9%

4 LULC changes in border regions than
inland area 1.515 (0.468) 31.0% 46.7% 38.9%

5 Presence of different types of
houses/allotments 0.119 (0.942) 55.2% 53.3% 50.0%

6 Low building density of
(semi-)detached houses 0.026 (0.986) 37.9% 40.0% 38.9%

7 Half-stories in (semi-)detached
houses 2.018 (0.364) 27.6% 43.3% 44.4%

8 Uniformly shaped settlement of
(semi-)detached houses 1.637 (0.441) 27.6% 43.3% 33.3%

9 In close proximity to roads with
(semi-)detached houses 1.637 (0.441) 27.6% 43.3% 33.3%

10 Low to intermediate imperviousness
of (semi-)detached houses 1.527 (0.465) 31.0% 43.3% 27.8%

11 Large, simple rectangular form of
apartments 1.795 (0.407) 17.2% 30.0% 16.7%

12 Regular alignment of apartments 0.761 (0.683) 17.2% 26.7% 22.2%
13 More than three stories of apartments 1.157 (0.560) 17.2% 23.3% 11.1%

14 Low to intermediate imperviousness
of apartments 0.184 (0.912) 17.2% 20.0% 22.2%

15 Shadow silhouettes of apartments 0.590 (0.744) 10.3% 16.7% 16.7%

16 Detached small-size allotment
buildings 2.128 (0.345) 55.2% 46.7% 33.3%

17 Low built-up allotment land 0.423 (0.809) 48.3% 46.7% 38.9%
18 Low imperviousness of allotments 0.967 (0.616) 41.4% 33.3% 27.8%
19 Buffer between allotment houses 0.043 (0.978) 31.0% 33.3% 33.3%

20 Small roofs with slate material of
harmonica houses 0.281 (0.868) 27.6% 33.3% 27.8%

21
Chimneys (small dot-shaped

objects/light shadow silhouette) of
harmonica houses

4.481 (0.106) 10.3% 30.0% 33.3%

22 Fences (line-shaped objects) of
harmonica houses 1.383 (0.500) 34.5% 46.7% 50.0%

23 Observation of new construction or
extension of residential buildings 0.663 (0.717) 27.6% 33.3% 38.9%

24 Observation of expansion of
construction activities 1.103 (0.576) 27.6% 30.0% 16.7%

25 Presence of amalgamation of various
community amenities 0.539 (0.763) 41.4% 50.0% 50.0%

26
Multiple building objects with similar

patterns for land conversion in
collective use

0.835 (0.658) 48.3% 36.7% 44.4%
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Table 3. Cont.

LU
Proxies for Land Use
Rights Identification

Chi-Square Test Knowledge Groups (Agreement, %)

χ2 (p-Value) Scientific (A) Bureaucratic (B) Stakeholder

27 High density of settlement for land
conversion in collective use 0.483 (0.785) 37.9% 46.7% 44.4%

28 Simple rectangular forms for land
conversion in collective use 2.537 (0.281) 24.1% 43.3% 38.9%

29 Same roof colors for land conversion
in collective use 0.715 (0.699) 37.9% 40.0% 50.0%

30
Observation of

construction/extension of
community infrastructure

0.377 (0.828) 48.3% 46.7% 55.6%

31 Improved accessibility with increased
paved roads and wider widths 2.491 (0.287) 27.6% 40.0% 50.0%

32 Newly built greenhouses on barren
land adjacent to dwellings 0.490 (0.782) 34.5% 36.7% 44.4%

33
Light object colors/white or grey

colored roofs/rough texture of newly
built greenhouses

3.524 (0.171) 24.1% 30.0% 50.0%

34
Increase in the number of houses in a

certain vicinity present in a high
density

2.264 (0.322) 31.0% 50.0% 44.4%

35 Presence of undivided shared areas of
common property 2.413 (0.299) 27.6% 36.7% 50.0%

Note. Agreement of knowledge groups means the percentage of yes in the survey.

4.1.3. Land Transfer Rights (LT)

The proxies used to identify LT had 11 responses to the questions of each knowledge
group based on the following key components: small plots (sotoji) divided into a garden
plot (GP), side-job plot (SJP), and a tiny patch of land (TPL) in North Korea. As with data
obtained in the previous section on land use rights identification, we also found that there
is no statistical difference in a set of given observations (p value ≥ 0.05). Therefore, we
do not reject the null hypothesis for the difference in views, judgements, and experiences
between scientific, bureaucratic, and stakeholder distributions on the proposed proxies
for land transfer rights. There remain several aspects concerning small plots (sotoji) about
which relatively little is known to scientific and bureaucratic knowledge groups in South
Korea (only less than a third (30%) agreed on confirming land transfer rights). However, if
we could turn for a moment to look at both Table 4, we can see that the stakeholder group
with the most accurate understanding of land tenure relations, land governance and land
use practices had a higher mean estimated percentage (32%) of agreement than the average
ratio of other groups, with the validation of eleven proxies. This is especially the case with
LT. 2 (38.9%), LT. 3 (44.4%), LT. 4 (38.9%), and LT. 6 (44.4%).

4.1.4. Land Access Rights (LA)

As mentioned in the previous study [21], assuming and identifying EO data proxies
for LA in North Korea is one of the most challenging problems, as private land tenure is
not recognized in North Korea, and thus there are no land use regulations arising through
the restriction of private rights. With regard to restrictions of land access rights for public
purpose only, five proxies were included in the analysis. On average, these proxies received
the highest agreement among identified land tenure claims, ranging from 34.5% to 70%
among scientific, bureaucratic, and stakeholder knowledge groups. As Table 5 shows, there
is a significant difference between the bureaucratic and scientific/stakeholder groups in
the proxy with fewer green colors and rough textures in public utility networks/nature
reserves/heritage sites. Thus, the null hypothesis that there is no difference between
scientific, bureaucratic, and stakeholder distributions for this proxy cannot be rejected.
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What is interesting about the data here is that the bureaucratic knowledge group obtained
the highest level of agreement on proxy identification (63.3%, 60.0%, 70.0%, 66.7%, and
50.0%, respectively in order).

Table 4. Validating the suitability of proxies for land transfer rights identification and differences between knowledge groups.

LT
Proxies for Land Transfer Rights

Identification

Chi-Square Test Knowledge Groups (Agreement, %)

χ2 (p-value) Scientific (A) Bureaucratic (B) Stakeholder (C)

1 Presence of small plots (sotoji) 2.167 (0.338) 38.0% 26.7% 33.3%
2 Small parcel size of garden plot (GP) 0.783 (0.675) 31.0% 26.7% 38.9%

3 GP in front/back yards or attached to
each other 1.038 (0.592) 34.5% 30.0% 44.4%

4 GP with green colors 0.918 (0.631) 27.6% 26.7% 38.9%
5 Large parcel size of side-job plot (SJP) 1.034 (0.596) 17.2% 16.7% 27.8%

6 SJP in front/back yards or attached to
each other 1.415 (0.492) 27.6% 33.3% 44.4%

7 SJP with green colors 0.258 (0.878) 24.1% 30.0% 27.8%

8 Lower elevation of tiny patch of land
(TPL) 1.413 (0.493) 17.2% 30.0% 27.8%

9 Gentle slope less than 15% of TPL 1.413 (0.493) 17.2% 30.0% 27.8%

10 TPL with small patches of vegetation
cover between neighboring lands 0.761 (0.683) 17.2% 26.7% 22.2%

11 Presence on the hillsides or along the
streams or ditches of TPL 0.761 (0.683) 17.2% 26.7% 22.2%

Note. Agreement of knowledge groups means the percentage of yes in the survey.

Table 5. Validating the suitability of proxies for land access rights identification and differences between knowledge groups.

LA
Proxies for Land Transfer

Rights Identification

Chi-Square Test Knowledge Groups (Agreement, %)

χ2 (p-Value) Scientific (A) Bureaucratic (B) Stakeholder (C)

1
Public utility networks/nature
reserves/heritage sites in close

proximity to hazardous or isolated area
1.768 (0.413) 51.7% 63.3% 44.4%

2

Public utility networks/nature
reserves/heritage sites with a lack of
access to roads; low to intermediate

imperviousness

2.083 (0.352) 48.3% 60.0% 38.9%

3
Elongated shapes of public utility

networks/nature reserves/heritage site
objects

4.115 (0.127) 44.8% 70.0% 50.0%

4
Fewer green colors and rough textures

of public utility networks/nature
reserves/heritage sites

6.909 (0.031 *) 34.5% 66.7% 38.9%

5 Observation of subdivision of land
parcels 1.474 (0.478) 34.5% 50.0% 44.4%

Note. Agreement of knowledge groups means the percentage of yes in the survey. * p value ≤ 0.05; statistically significant between
knowledge groups.

4.2. Measurement of Information Quality

The participants were asked to consider data, information, or knowledge with regard
to whether an elaborated meaning or an interpreted information element is valid or not
and then to complete an eight-question survey about information quality. Of the eight
aspects, there was no statistically significant differences between group mean values (1–5)
for believability, completeness, consistent representation, interpretability, objectivity, and
timeliness as determined by one-way ANOVA. This indicates a high level of consensus on
information quality among the different knowledge groups. On the other hand, there was
a significant difference from those of variables between the means of three groups both
on relevancy at the p value ≤ 0.05 level for the three conditions (between/within/total)
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and understandability of information (see Table 6). However, the one-way ANOVA test
does not tell us where the difference exists, and which specific groups differed. The post
hoc Tukey test indicated that the relevancy in scientific and bureaucratic groups (A–B) and
bureaucratic and stakeholder (B–C) groups differed significantly at p ≤ 0.05; regarding
understandability, there was a statistically significant difference (p = 0.018) between the
scientific and bureaucratic (A–B) groups (see Table 7).

Table 6. Differences in information quality between knowledge groups.

One-Way Anova Test SUM of Squares Df (1) MEAN Square F p-Value

Believability
Between groups 8.429 2 4.215 2.801 0.067
Within groups 111.400 74 1.505

Total 119.800 76

Completeness
Between groups 9.419 2 4.710 3.074 0.052
Within groups 113.400 74 1.532

Total 122.800 76

Consistent
representation

Between groups 3.283 2 1.642 1.105 0.336
Within groups 109.900 74 1.486

Total 113.200 76

Interpretability
Between groups 5.464 2 2.732 1.633 0.202
Within groups 123.800 74 1.673

Total 129.200 76

Objectivity
Between groups 9.193 2 4.597 2.650 0.077
Within groups 128.300 74 1.734

Total 137.500 76

Relevancy
Between groups 21.820 2 10.910 7.526 0.001 **
Within groups 107.300 74 1.450

Total 129.100 76

Timeliness
Between groups 8.902 2 4.451 2.750 0.070
Within groups 119.800 74 1.619

Total 128.700 76

Understandability
Between groups 11.740 2 5.870 3.895 0.024 *
Within groups 111.500 74 1.507

Total 123.200 76

Note. (1) Degrees of Freedom; * p value ≤ 0.05; statistically significant between knowledge groups. ** p value ≤ 0.01; statistically very
significant between knowledge groups.

Table 7. Post-hoc test of differences in relevancy and understandability between knowledge groups.

Tukey’s Multiple
Comparisons Test

Difference of
Levels

Mean
Difference

Std. Error
95.00% CI of Diff.

p-Value
Lower Bound Upper Bound

Relevancy
A–B −0.7908 0.3135 −1.541 −0.04089 0.036 *
A–C 0.5536 0.3613 −0.3104 1.418 0.281
B–C 1.344 0.3590 0.4859 2.2 0.001 **

Understandability
A–B −0.8897 0.3197 −1.654 −0.1251 0.018 *
A–C −0.5230 0.3683 −1.404 0.3580 0.336
B–C 0.3667 0.3660 −0.5087 1.242 0.578

Note. * p value ≤ 0.05; statistically significant between knowledge groups; ** p value ≤ 0.01; statistically very significant between knowledge groups.

Figure 2 also displays an average of a range of values (1–5) for each level of information
quality in different knowledge groups. What stands out is that the bureaucratic group has
the highest median within the samples in all aspects of information quality, while scientific
(M = 2.5) and stakeholder knowledge (M = 2.7) groups had a lower mean score compared
to the bureaucratic groups, except in relevancy of information. The results, indicate that
relevancy of information received relatively positive scores from bureaucratic (M = 4.1)
and scientific groups (M = 3.3); on average, respondents from all groups reported lower
levels of consistent representation (M = 2.46602) and interpretability (M = 2.5).
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Figure 2. An arithmetic average of a range of values estimated. The horizontal bar plot shows minimum, mean,
and maximum values of information quality within groups. The dependent variable consists of five values (very
poor/poor/fair/good/excellent) on a 5-point Likert scale. The independent variables are scientific, bureaucratic, and
stakeholders’ agreements.

5. Summary and Discussion

The principal limitation of closed questions in a questionnaire restricted respondents’
answers and expressiveness, enabling us to clarify and confirm the proxies we preidentified
(in Figure 1). A small sample was chosen because of the expected difficulty in obtaining a
high-level of expertise and an accurate understanding in the given context, based on the
fact that significant uncertainty exists regarding geospatial and socio-economic data access,
data integration, and data reliability.

Up to now, there have been no controlled studies which compare differences in find-
ings. However, the experimental work presented here provides first investigation how
pixel-based land tenure information become legitimate land tenure knowledge to some
extent. Although differences of agreement still exist, the most obvious findings to emerge
from the analysis is that there appears to be some agreement in judgements of proxies
among scientific, bureaucratic, and stakeholder groups. They agree on some proxies but not
on others. Weak associations of EO data and land ownership were identified for eight prox-
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ies, including such as coarse image texture of (dry)paddy fields, high density/compactness
of settlements, a linear roof of rural dwellings, seasonal changes of agricultural activities,
and small dot-shaped patch or orchards.. On the other hand, some proxies are associated
with both collective and state land ownership and are strongly supported by bureaucratic
and stakeholder groups that stress the political and strategic use of proxies and possess the
most localized and contextualized knowledge.

With regard to proxies for land use rights identification, we can confirm that six proxies
relating to individual use rights such as presence of different types of houses/allotments,
detached small-size allotment buildings and low built-up allotment land and seven to
group land use rights (e.g., amalgamation of community amenities and increase in the
number of houses in a certain vicinity) were identified out of a total of 35 proxies. These
were found to be particularly associated with houses, allotments, land conversions and
improvements to the location. However, no significant agreement was found for all groups,
especially in apartment-types of proxies (e.g., rectangular forms, regular alinements, imper-
viousness, or shadow silhouettes of apartments). These proxies could have been generated
by misclassification bias or an erroneous assumption when identifying geospatially in-
formed proxies. The reason for this is not clear but it may have something to do with the
nature of apartments where multiple objects reside.

In addition, the findings indicate that elements of EO data interpretation such as
color, shape, size, height, and site (e.g., large parcel size of SJP, SJP with green colors,
lower elevation, and gentle slope of TPL) may not be associated with land transfer rights.
However, there is a knowledge gap resulting from a lack of clear understanding of specific
aspects and details of small plots (sotoji) in North Korea by South Korean scientists and
government professionals. The stakeholder group that has the most accurate understanding
of land tenure relations, land governance and land use practice showed significantly higher
ratio of agreement. Regarding the identification of land access rights, whilst there was
strong agreement in the validation of proxies between all knowledge groups and considered
to be most negotiated knowledge that is scientifically most valid, policy-relevant, and
socially robust among others in this study. As far as infrastructure elements are concerned,
three groups have shown a higher level of agreement among other proxy selections. We
may assume that a proxy identification in relation to infrastructure in North Korea could
be more important than anything else. In other words, it is possible that these identified
proxies could account for unknown aspects of land access rights in North Korea.

However, these results also need to be interpreted with caution. Firstly, we revealed
a strong and consistent association between land ownership and EO data and the mean
average of agreement in stakeholder groups—for those with the most localized knowledge
of land tenure—were higher compared to those of other groups. If the debate is to be
moved forward, a better understanding of different perceptions on land tenure among
North Korean refugees needs to be developed. It can be relatively easier for North Korean
refugees to distinguish collective and state (farm)land through EO data because they have
empirically familiar with the socialist land tenure system. Another reason to support
this claim may be that there was an obvious difficulty with defining the term which have
accustomed with South Korean land management practices.

Secondly, the present results were significant in at least two major respects. The
experimental data suggested that the three groups considered in this study were all in
a higher degree of agreement on identifying land use rights, nothing in particular really
stood out, but the agreement was distributed evenly at a relatively higher level than the
average of those observed in other claims. However, some of those experts still argued
that idea was not feasible to empirically derive changes in land use rights in North Korea
with EO data. Despite the fact that there has been increased numbers of North Korean
refugees (approximately 30,000 residents), one argued that it still remained challenging to
understand the notion of "individual" land use rights, according to his/her own experiences
of having worked and lived in North Korea.
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Thirdly, all knowledge groups showed that the proxies for land transfer rights iden-
tification were appeared to the lowest in the level of agreement. However, the questions
came up against the great problem of reliability of reported data and we are often not in a
position to know whether it enabled participants to provide fairer, more objective, and more
accurate and reliable assessments for validating the suitability of geospatially informed
proxies. For instance, making a judgement on this, however, inevitably makes additional
demands for expertise of either land management or remote sensing. Furthermore, these
validations require in-depth local knowledge of the distinguishing feature in North Korea
(i.e., sotoji) that is necessary to make association between EO data and land transfer rights.
To further identify the proxies, it is necessary to rely on multiple techniques and methods,
which combine both direct responses of individual, ranked, and stated choice responses
of either individuals or groups and indirect collections of perceptions, beliefs, and social
values. In addition to interviews and focus group discussions (FGD), one could add a
number of other relevant tools and techniques, such as, Q methodology (which combines
quantitative and qualitative data collections techniques with statistical and interpretative
data analyses methods), the Delphi technique (which relies on consecutive perceptions and
interpretations), and multi-criteria decision analysis (MCDA) (which combines and infers
from multiple opinions and preferences).

In order to ensure whether proposed proxies for land access rights were valid, the
participants were asked to select between the two, either agree or disagree. Of the 77 partic-
ipants who completed the questionnaire, nearly half reported that land access rights could
be identified in line with the proxies and the EO data. One could argue that this finding is
largely biased by the selection of respondents who had similar epistemic backgrounds. The
consequence of this bias could be that the understanding of what land rights constitute
and what not, would reflect the acquaintance with private rights tenure regimes only and
perhaps more limited awareness and experience with State-based tenure regimes. Hence, it
is important to keep this possible bias in these responses in mind, especially from scientific
and bureaucratic groups.

Nevertheless, regarding the measurement of information quality (see Figure 2), the
result was that we expected. Although EO data proxy identification for land tenure relations
in North Korea seems to be strongly relevant to respondents’ research, policies, and social
interests (i.e., relevancy of information; timeless of information), many participants did
suffer from a lack of consistent representation and interpretability of information. In order
to further investigate and confirm this finding, a provision of multi-disciplinary training
will enhance both researchers’ capacity to understand land tenure and land governance
in question and policymakers’ confidence in making spatial decisions in the context of
Korean (re-)unification based on GIA. This also enables multiple engaged stakeholders
to reveal the interconnection of geospatial science in land management practice. All
these require affinity with multiple technical disciplines such as geoinformation and earth
observation sciences, civil and environmental engineering as well as sensitivity of social
and political processes including public administration, law, economics, and (human)
geography. Secondly, one major drawback when implementing GIA was that non-remote
sensing scientists, government professionals and North Korean refugees were suffered
from scientific and technological literacy [75,76] (i.e., a high density of technical terms of
remote sensing used in research). As this case very clearly demonstrated, it is important
that reformulating the scientific language in a communicative style should be considered
to facilitate active stakeholders’ engagement in advancing GIA. Lastly, the existing and
grounded knowledge of GIA needs to be translated into voluntary guidelines, policy briefs
for scientists, policymakers, and other interest groups. In addition, fact-finding projects
from around the globe where unknown land tenure and unsupported land governance
exists needs to be implemented.

Different forms of evidence can be used to inform spatial decision making in land
management, with data being gathered via statistical and administrative evidence (from
government), analytical evidence (by scientific experts), evidence from citizens and stake-
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holders and evidence from evaluations [77]. This also accords with our approaches, which
showed that how a knowledge co-production process helps to validate suitability of geospa-
tially informed proxies and become legitimate land tenure knowledge. Given the fact that
this study has to be conducted with the best of all qualities, it should confirm or reject
our hypotheses as analytical evidence that may report a possible association between EO
data and land tenure with a case study in North Korea. Then, by incorporating and re-
flecting on local spatial knowledge from multiple stakeholders (i.e., scientists, government
professionals and North Korean refugees), it enabled us to tell policymakers what land
tenure knowledge they consider legitimate (i.e., scientific validity, policy relevance and
social robustness) and what counts as geospatially informed evidence. It is only after
knowledge (evidence) co-production processes, the finding of this study supports the view
that we can bridge and close the gap between technical aspects of the EO data evidence
generation and operational contexts in spatial decision making in land administration and
management. Much of the available literature so far on remote sensing for land administra-
tion is too product-oriented for skilled and trained technicians [12–19] and insufficiently
process-oriented for policymakers and end-users, allowing them to make decisions in the
most rational and informed way possible with EO data [22]. The point is not to go against
the promising ideas on RS applications, techniques, products, and methods, but to really
emphasize that it is an opportune time to undertake the most engaged and negotiated
knowledge for both evidence generation and provision of salient and legitimate evidence
in responsible and smart decision-making in land administration. This approach can be a
way forward remote sensing for land administration 2.0.

6. Conclusions

The aim of the research question in this study was to determine the extent to which
scientific, bureaucratic, and stakeholder knowledge coincides with a set of identified proxies
that would enable us to conclude whether certain proposed proxies are scientifically valid,
administratively relevant, contextualized, and localized. The findings from this study
could then be used to standardize the identification and categorization of certain objects,
environments, and semantics visible in EO data that can (re-)interpret land tenure relations
in North Korea in preparation for Korean (re-)unification.

Of the four different land tenure claims, both Chi-square and one-way ANOVA analy-
sis revealed that the distribution of agreements relating to land ownership and land transfer
rights identification varied among scientific experts, bureaucrats, and stakeholders. More-
over, it was possible to measure intrinsic, contextual, representational, and accessibility
attributes of comprehensive information to ascertain associations between EO data and
land tenure relations in North Korea based on different viewpoints. From here, the step
towards enhancing and developing the existing account is clearly supported by the current
findings on information quality.

The findings of this investigation complement those of a previous study relating to a
conceptual and methodological development of a geospatially informed analysis in the
land administration domain [21]. These findings contribute in several ways to our under-
standing of how the pixel can be converted to legitimate land tenure knowledge. First, it can
help us establish a tailored validation protocol with a higher accuracy and feasibility based
on the identification and interpretation of unknown land tenure relations derived from EO
data and various types of contextual information as well as a more nuanced view of socio-
legal-spatial properties. Second, these findings, being based on knowledge co-production,
are relevant to scientists, policy-makers, and practitioners involved in the decision making
process relating to land tenure reform and land governance rearrangement on the basis
of emerging geospatial technologies and datasets in the context of Korean (re-)unification.
Furthermore, the methods used in this study can also be applied to other cases elsewhere
in the world, in particular, difficult-to-access regions or fragile and conflict-affected areas.
Lastly, the present study contributes additional evidence of geospatially better-informed
analysis that emphasizes scientific validity, policy relevance, and social robustness within
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a responsible and smart land management framework. The geospatially better-informed
analysis is not about how geospatial intelligence can directly detect information but how
technology can smartly and responsibly support better information regarding land issues
for the benefit of scientists, policymakers, and stakeholders.

Although the current study is based on a small sample of participants and used a
focus group questionnaire, it offers valuable insights into new validation techniques of
suitability for EO data in the land administration domain based on conventional practices
that have been formed and customized to accommodate the specific artefacts and validation
objectives used in the remote sensing community. The scope of this study was limited in
terms of participants’ knowledge, for example their level of expertise (scientific), adminis-
trative involvement (bureaucratic), and knowledge of locales in geographic areas of interest
(stakeholder). However, the limited number of samples adds further caution regarding
the generalizability of these findings. Thus, further investigation and experimentation to
develop the internal and external validity of findings and GIA methodology would be
of great help in understanding the associations between EO data and land tenure claims.
Considerably more work will need to be done to identify intrinsic links between geospatial
data and land tenure relations. It will then be necessary to concentrate on the development
of EO data interpretation in line with artificial intelligence (AI) so as to be able to delve
deeper into the future of land administration.
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Deep Learning for Detection of

Visible Land Boundaries from UAV

Imagery. Remote Sens. 2021, 13, 2077.

https://doi.org/10.3390/rs13112077

Academic Editors: Rohan Bennett,

Claudio Persello and Mila Koeva

Received: 19 March 2021

Accepted: 24 May 2021

Published: 25 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jamova Cesta 2, 1000 Ljubljana, Slovenia;
matej.racic@fgg.uni-lj.si (M.R.); anka.lisec@fgg.uni-lj.si (A.L.)
* Correspondence: bujar.fetai@fgg.uni-lj.si; Tel.: +386-1-4768629

Abstract: Current efforts aim to accelerate cadastral mapping through innovative and automated
approaches and can be used to both create and update cadastral maps. This research aims to automate
the detection of visible land boundaries from unmanned aerial vehicle (UAV) imagery using deep
learning. In addition, we wanted to evaluate the advantages and disadvantages of programming-
based deep learning compared to commercial software-based deep learning. For the first case,
we used the convolutional neural network U-Net, implemented in Keras, written in Python using
the TensorFlow library. For commercial software-based deep learning, we used ENVINet5. UAV
imageries from different areas were used to train the U-Net model, which was performed in Google
Collaboratory and tested in the study area in Odranci, Slovenia. The results were compared with
the results of ENVINet5 using the same datasets. The results showed that both models achieved an
overall accuracy of over 95%. The high accuracy is due to the problem of unbalanced classes, which
is usually present in boundary detection tasks. U-Net provided a recall of 0.35 and a precision of
0.68 when the threshold was set to 0.5. A threshold can be viewed as a tool for filtering predicted
boundary maps and balancing recall and precision. For equitable comparison with ENVINet5, the
threshold was increased. U-Net provided more balanced results, a recall of 0.65 and a precision of
0.41, compared to ENVINet5 recall of 0.84 and a precision of 0.35. Programming-based deep learning
provides a more flexible yet complex approach to boundary mapping than software-based, which is
rigid and does not require programming. The predicted visible land boundaries can be used both to
speed up the creation of cadastral maps and to automate the revision of existing cadastral maps and
define areas where updates are needed. The predicted boundaries cannot be considered final at this
stage but can be used as preliminary cadastral boundaries.

Keywords: land; cadastral mapping; visible boundary; UAV; deep learning

1. Introduction

Accelerating cadastral mapping to establish a complete cadastre and keeping it up-
to-date is a contemporary challenge in the domain of land administration [1,2]. Cadastral
mapping is considered the first step in establishing cadastral systems and serves as the
basis for defining the boundaries of land units to which land rights refer [3]. Mapping
the boundaries of land rights in a formal cadastral system helps to increase land tenure
security [4]. More than 70% of land rights are unregistered globally and are not part of any
formal cadastral system [1]. The challenge of accelerating the creation of cadastral maps
is present mainly in developing regions with low cadastral coverage [5]. Cadastral maps
are usually defined as spatial representations of cadastral records, showing the extent and
ownership of land units [6]. An effective cadastral system should provide up-to-date land
data [7]. In countries with complete cadastral coverage, this is considered one of the major
challenges. To overcome the challenge of accelerating cadastral mapping while providing
up-to-date land data, low-cost and rapid cadastral surveying and mapping techniques are
required [5,8].
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The proposed cadastral surveying techniques are indirect rather than direct surveying.
Indirect cadastral surveying is based on the delineation of visible cadastral boundaries from
high-resolution remote sensing imagery. In contrast, direct or ground-based surveying
techniques are based on field survey and are often considered slow and expensive [1,5].
The application of image-based cadastral mapping is based on the recognition that many
cadastral boundaries coincide with visible natural or man-made boundaries, such as
hedgerows, land cover boundaries, building walls, roads, etc., and can be easily detected
from remote sensing imagery [2,9]. The detection of such boundaries from data acquired
with sensors on unmanned aerial vehicles (UAVs) has gained increasing popularity in
cadastral applications [10–12].

In cadastral applications, UAVs have gained prominence as a powerful technology
that can bridge the gap between slow but accurate field surveys and the fast approach
of conventional aerial surveys [13]. Sensors on UAVs provide low-cost, efficient and
flexible systems for high-resolution spatial data acquisition, enabling the production of
orthoimages, digital surface models and point clouds [14]. Overall, UAVs have shown
a high potential for detecting land boundaries in both rural and urban areas [8,15]. In
addition, UAV-based orthoimages have been considered as base maps for the creation of
cadastral maps and for updating or revising existing cadastral maps [10,12,16]. Besides
the high visibility of cadastral boundaries on UAV imagery, manual delineations have
been reported in many previous case studies [8]. The contemporary approach to cadastral
mapping aims to simplify and speed up image-based cadastral mapping by automating
the detection of visible cadastral boundaries from images acquired with high-resolution
optical sensors [15,17,18].

1.1. Deep Learning for Cadastral Mapping

Only a limited number of studies have investigated the automatic approach to detect
visible cadastral boundaries from UAV imagery. Mainly, tailored workflows using image
segmentation and edge detection algorithms have been applied to automate cadastral
mapping and thus provide more efficient approaches [8,15]. Multi-resolution segmentation
(MRS) and globalized probability of boundary (gPb) are among the most popular segmen-
tation and edge detection algorithms used in the cadastral mapping [15]. Early algorithms,
such as Canny edge detection, extract edges by computing gradients of local brightness,
which are then combined to form boundaries. However, the approach is characterized by
the detection of irrelevant edges in textured regions [19]. Furthermore, gPb provides more
accurate results compared to other approaches on edge detection (e.g., Canny detector and
Prewitt, Sobel, Roberts operator) [20]. MRS, gPb and Canny are unsupervised techniques.
Unsupervised techniques include methods that require segmentation parameters to be
defined. The challenge is to define appropriate segmentation parameters for features that
vary in size, shape, scale and spatial location. Then, the image is automatically segmented
according to these parameters [19]. With respect to modern methods for automatic bound-
ary detection in cadastral mapping, deep learning is becoming increasingly important—as
a supervised technique [21]. However, the deeper understanding is challenging, so the
abstraction of the process offers a solution.

Deep learning methods such as convolutional neural networks (CNNs) are very effec-
tive in extracting higher-level representations needed for classification or detection from
raw input [22,23]. Moreover, recent studies indicate that deep learning ensures higher accu-
racy in delineating visible land boundaries than some object-based methods [15,17,24]. In
the study by Crommelinck et al. [17], it was reported that CNNs, namely the VGG19 archi-
tecture, provide a more automated and accurate approach for detecting visible boundaries
from UAV imagery than the machine learning approach random forest (RF). Further-
more, the study highlighted that the model based on VGG19 architecture provides more
promising loss and accuracy metrics compared to other CNN architectures such as ResNet,
Inception, Xception, MobileNet and DenseNet. The study conducted by Xia et al. [15]
investigated the potential of fully CNNs for cadastral boundary detection in urban and
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semiurban areas. The results showed that fully CNNs outperformed other state-of-the-art
machine learning techniques, including MRS and gPb. The results indicated 0.37 in recall,
0.79 in precision and 0.50 in F1 score. The study by Park and Song [25] aims to identify the
inconsistencies between the existing land use information from existing cadastral maps
and the current land use in the field. The proposed method involves updating the existing
land cover attributes of cadastral maps using UAV hyperspectral imagery classified with
CNNs and then creating a discrepancy map showing the differences in land use. CNNs
bring innovative capabilities to cadastral mapping that can facilitate and accelerate the de-
lineation of visible cadastral boundaries. In line with these studies, improving the accuracy
of automatic visible boundary detection remains a challenge in contemporary image-based
cadastral mapping [15].

One CNN architecture that has not been satisfactorily investigated for visible bound-
ary detection in cadastral applications is U-Net. U-Net was originally developed for
biomedical image segmentation and is considered a revolutionary architecture for semantic
segmentation tasks [26–30]. Generally, it is claimed that the main challenge in CNNs is
a large amount of training data preparation and computational requirements [26]. Thus,
providing thousands of UAV training data can be considered as a limitation for visible land
boundary detection with CNNs, especially when a model is trained from scratch. However,
the U-Net architecture is designed to work with fewer training images preprocessed by
an intensive data augmentation procedure and still provide precise segmentation [26]. In
addition, a software-based module, ENVI deep learning, has recently been developed
to simplify and perform deep learning procedures with geospatial data. The number
of studies that have tested its potential is very small [31]; in particular, it has not been
sufficiently explored for the detection of visible cadastral boundaries from UAV imagery.

1.2. Objective of the Study

The main objective of this study is to investigate the potential of CNN architecture,
namely U-Net, based on UAV imagery training samples, as a deep learning-based de-
tector for visible land boundaries. In addition, we wanted to evaluate the advantages
and disadvantages of programming-based, e.g., custom, deep learning compared to a
commercial software-based solution. Here, we compared the results of U-Net with those
of the recently released software-based ENVI deep learning by focusing on the boundary
mapping approaches and their conformity in the land administration domain.

2. Materials and Methods

2.1. UAV Data

It is argued that the number of visible cadastral boundaries is higher in rural areas
than in dense urban areas (an example of a visible cadastral boundary in Figure 1b). A
rural area in Odranci, Slovenia, was selected for this study. UAV images were acquired
at a flight altitude of 90 m, resulting in 997 images to cover the study area. The images
were acquired in September 2020, at midday, under clear skies. The UAV images were
indirectly georeferenced using a uniform distribution of 18 ground control points (GCPs).
The GCPs were surveyed with real-time kinematic (RTK) using the global navigation
satellite system (GNSS) receiver Leica GS18. In addition, the GCPs were also surveyed
with RTK, using a multifrequency low-cost GNSS instrument (base and rover), namely
ZED-F9P receiver with u-blox ANN-MB-00 antenna—as a cheaper alternative to geodetic
GNSS receivers (Figure 1b). The differences were insignificant for 2D cadastral mapping
(RMSEx,y = 0.019 m). The obtained ground sampling distance (GSD) from the UAV or-
thoimage was 0.02 m. The study site had an area of 63.9 ha and was divided into areas for
training and testing the CNNs (Figure 1a).
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Figure 1. (a) UAV imagery of 0.25 ground sample distance (GSD) for Odranci–Slovenia, divided into areas for training and
testing; (b) low-cost instrument ZED-F9P and example of visible cadastral boundaries. (c) UAV imagery of 0.25 (GSD) for
Ponova vas—Slovenia, used for training; (d) UAV imagery of 0.25 (GSD) for Tetovo—North Macedonia, used for training.

With the aim of increasing the number and diversity of training data, additional UAV
images with a rural scene from Ponova vas (Slovenia) and Tetovo (North Macedonia) were
used (Figure 1c,d). The UAV data in Ponova vas was acquired at an altitude of 80 m and
had a GSD of 0.02 m. The UAV data in Tetovo have a GSD of 0.03 m and were acquired at
an altitude of 110 m. Figure 1a,c,d shows the UAV orthoimages of the study areas.

The selected areas contain agricultural fields, roads, fences, hedges and tree groups,
which are assumed to represent cadastral boundaries [8]. The cadastral reference bound-
aries were derived from the UAV orthoimages by manual land delineation on-screen in all
three study areas. All UAV images were acquired using a rotary-wing UAV, namely the DJI
Phantom 4 Pro. Table 1 shows the specifications of the data acquisition.

Table 1. Specification of unmanned aerial vehicle (UAV) dataset for the selected study areas.

Location UAV Model
Camera/Focal
Length (mm)

Overlap For-
ward/Sideward

Flight
Altitude

GSD
(cm)

Coverage
Area (ha)

Purpose

Odranci, Slovenia
DJI Phantom 4

Pro
1′ ′

CMOS/24 mm
80/70

90 m 2.35 63.9 Training and Testing
Ponova vas, Slovenia 80 m 2.01 25.0 Training

Tetovo, North
Macedonia 110 m 2.85 24.3 Training
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2.2. Detection of Visible Land Boundaries

In general, the workflow of this study consists of three main parts, namely data
preparation, visible land boundary detection and accuracy assessment. The specific steps
for both the U-Net and ENVI deep learning boundary mapping approaches are described
in the following subsections.

2.2.1. U-Net

In deep learning, CNNs can be trained in two approaches, from scratch or via transfer
learning [17,32]. In our case, the U-Net model was trained from scratch based on UAV images.

The UAV orthoimages of the selected study areas (Figure 1a–c) were randomly tiled
in 256 pixels × 256 pixels. To increase the field of view for each tile, the original spatial
resolution of the UAV orthoimages had to be converted to a larger GSD, from 2–3 to 25 cm.
The results were 219 original tiles, namely 144 tiles for training and 75 tiles for testing
(Figure 1a,c,d). In addition, corresponding label images (also called ground truth images)
were created for each UAV image. The label images, with a size of 256 × 256 × 1, were
created from the manually digitized reference boundaries, which were initially in the vector
format. The reference boundaries were buffered to 50 cm and later rasterized using GRASS
GIS tools [33]. Additionally, the UAV tiles were then rotated, flipped and scaled to improve
generalization and increase the number of training samples. This technique is known in
deep learning as data augmentation and is used to supplement original training data. Once
the data preparation and augmentation were completed, the next step was to train the
U-Net model.

The CNN based on U-Net is symmetric and contains encoding and decoding parts,
which gives it the U-shaped form. U-Net is described in detail in [26]. The left part,
the encoding path, is a typical convolutional network that contains repetitive usage of
3 × 3 convolutions, each followed by a rectified linear unit (ReLU) and a max-pooling
operation, i.e., 2 × 2 convolutions. During the encoding path, the contextual information
(depth) of the images was increased while the resolution of the images was reduced. The
right part, the decoding path, merged the contextual and resolution information of the
images through a sequence of 2 × 2 up-convolutions. The goal of the decoding path is
to provide precise localization using the contextual information from the encoding path.
During the decoding path, the resolution of the image was upconverted to its original size.
The U-Net architecture implemented in this study is shown in Figure 2.

Figure 2. The implemented U-Net architecture (adapted from [26]).
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Overall, training a CNN model requires a powerful graphics processing unit (GPU),
lots of memory and efficient computations. To overcome this requirement while providing
a cost-effective and fast approach for visible boundary detection and hence cadastral
mapping, the training of U-Net was performed by Google Collaboratory [34]. U-Net was
implemented in the high-level neural network API Keras [35]. The process was written
in Python in combination with the TensorFlow library [36]. The implementation of the
model in Keras was done by modifying and referencing to [37], which is an implementation
for grayscale biomedical images. In this study, the U-Net model was adapted to work
with three-band images, namely RGB UAV images, as input and produce a single band
boundary map as output with the same image size as the input. However, the predicted
boundary maps were not georeferenced.

Considering that georeferencing is the key component in cadastral mapping, further
improvements were made. In this study, we considered two additional steps, namely
georeferencing the predicted boundaries and merging the georeferenced tiles to obtain
the boundary map for the entire extent of the test area. The processing and analysis were
done using open-source modules, including Rasterio [38], GDAL [39] and Numpy [40].
The workflow and boundary mapping approach used in this study are shown in Figure 3.

Figure 3. Workflow for the detection of visible land boundaries based on the U-Net model.

2.2.2. ENVI Deep Learning

ENVI deep learning [41] can be categorized as software-based deep learning technol-
ogy that offers its own U-Net-like model. The model is called ENVINet5 and is described
in detail in [42]. In this study, the ENVINet5 model was used to compare it with the U-Net
model—both the results and the land boundary mapping approach.

The training approach is patch-based, i.e., the entire extent of the training UAV data
can be used as input, and the model can learn based on the pixels specified in the patch.
Considering this, a patch size of 256 pixels × 256 pixels was used for training and validating
the ENVINet5 as a single-class model. Moreover, the training of the ENVINet5 model is
based on a labelled raster that should be created within the software. Generally, there are
two approaches: by on-screen manual digitizing or by directly uploading features in vector
format. In our case, we uploaded the shapefile (.shp) of reference cadastral boundaries
(buffered to 50 cm), defined as the region of interest (ROI), from which the label raster
was created. We used the recently released version of ENVI deep learning, i.e., version
1.1.2, which has an option for data augmentation, unlike the previous version where data
augmentation was not possible. Data augmentation is performed by rotating and scaling
the original UAV training data.

The training of the ENVINet5 model was done using the toolbox deep learning guide
map. Before starting the training, it was necessary to initialize a TensorFlow model, which
defines the structure of the model, including the architecture (ENVINet5 for a single class),
the patch size (256 × 256), and the number of the bands that are used for training (3 bands,
RGB). After the model was initialized, the training data was uploaded. In the following,

122



Remote Sens. 2021, 13, 2077

the values for the training parameters are required, such as the number of epochs, the
number of patches per epoch, the number of patches per batch, class weight, etc. For the
number of patches per epoch and per batch, it is suggested to leave them blank so that
ENVI automatically determines the most appropriate values. For saving the model and
the trained weights (output model), ENVI uses the HDF5 (.h5) format. The generated
land boundary maps were georeferenced, and no post-processing step was required. The
boundary mapping approach and workflow used in this study are shown in Figure 4.

Figure 4. Workflow for the detection of visible land boundaries based on the ENVINet5 model.

However, there were some hardware and software requirements, such as NVIDIA
GPU driver version 410.x or higher and NVIDIA graphics card with CUDA compute
capability 3.5–7.5. Additionally, it is recommended to have at least 8 GB GPU memory
to perform the training of the models with the GPU. If this requirement is not met, the
training will be performed with the central processing unit (CPU), which is too slow for a
large number of images.

2.3. Accuracy Assessment

The accuracy assessment in this study investigates two aspects—the evaluation of the
two models U-Net and ENVINet5 and the evaluation of the detection quality of the visible
land boundaries for the test UAV data (Figure 1a).

Both CNN models, U-Net and ENVINet5, were monitored with loss and accuracy
during the training process. Loss is defined as the sum of errors for each sample in
training between labels and predictions. To maximize the efficiency of the model, loss
should be minimized. For this purpose, we used the cross-entropy loss expressed by the
following formula:

cross − entropy loss = −(yi log(ŷi) + (1 − yi) log(1 − ŷi)) (1)

where:
yi—actual label value,
ŷi—predicted value.
To assess the performance of the models, overall accuracy was used as the evaluation

metric. The overall accuracy was calculated by summing the percentages of pixels correctly
identified as land boundaries by the model compared to the labelled reference boundaries
and dividing by all boundaries. Overall accuracy is expressed with the following equation:

overall accuracy =
TP + TN

TP + FP + FN + TN
(2)

where true positive (TP), true negative (TN), false positive (FP) and false negative (FN) are
shown in Table 2, which is the confusion matrix used to evaluate the detection quality of
the visible land boundaries.
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Table 2. Confusion matrix.

Ground Truth

Boundary No Boundary

Prediction
Boundary TP FP

No boundary FN TN

The detection quality of the visible land boundaries was evaluated by computing the
F1 score derived from the confusion matrix. F1 score was calculated for test UAV data (not
seen by the model during training) and represented the harmonic mean between recall and
precision (Equations (3) and (4)). Larger values indicate higher accuracy.

recall =
TP

TP + FN
(3)

precision =
TP

TP + FP
(4)

The recall is the ratio of correctly predicted visible boundaries to all reference cadastral
boundaries. The precision is the ratio of correctly predicted visible boundaries to all
predicted positive visible boundaries. The F1 score combines precision and recall and is
expressed with the following equation:

F1 score = 2 ∗ recall ∗ precision
recall + precision

(5)

3. Results

3.1. CNN Architecture

In our study, the labelled images and RGB UAV images were used to train the deep
CNN models.

For the U-Net, the randomly cropped tiles (Figure 1a,c,d) were the candidate training
datasets. The greater the variety of images used in the training data, the more robust
the network and the better the detection of visible land boundaries. Data augmentation
was applied to the provided images to increase the number of UAV images available for
training the U-Net model. Of the data used for training, 30% was used for validation. Once
the U-Net model was trained, we applied it to the test UAV images (Figure 1a).

The architecture was based on the original architecture of the U-Net, considering
the number of layers (network depth) and the size of the convolutional filters. However,
to avoid the resizing of the output image by the max-pooling operation, the padding
was set to ‘same’. In addition, a dropout rate of 0.8 was used as an optional function.
The dropout rate aims to avoid overfitting the model, which means that the training and
validation accuracy curves are less likely to diverge, then the model is more robust. To
avoid under-fitting, the layer depth was set to 1024. The larger the layer size, the higher
the probability that the curve for validation will be close to the training accuracy. We
used sigmoid instead of softmax as the final activation layer to retrieve the predictions,
which is good for binary classification. The main point is that when using sigmoid, the
probabilities were independent and did not necessarily sum to one. This is because the
sigmoid considers each raw output value separately. During training, the optimization
algorithm stochastic gradient descent (SGD) was used as the optimizer, and the momentum
was set to 0.9. The learning rate in the optimization defines the speed of learning, which
makes the network training converge. We used an adjusted learning rate of 0.001. Table 3
shows the adjusted settings and parameters.
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Table 3. Settings and adjusted parameters for our fine-tuned CNN based on the U-Net architecture.

Settings Parameters

Trainable layers

pooling layer maxpooling 2D

connected layer layer depth = 1024
activation = ReLU

dropout layer dropout rate = 0.8

logistic layer activation layer = sigmoid

Learning optimizer SGD optimizer learning rate = 0.001
momentum = 0.9

Training

UAV images
256 × 256 × 3, data

augmentation, validation
split 0.3

number of epochs = 100
batch size = 32

steps per epoch = training
samples/number of epochs

The model was trained with a batch size of 32 for 100 epochs. An early stop function
was also used to monitor validation loss. The number of steps per epoch was calculated by
dividing the total number of training images by the batch size. Deep learning by the U-Net
model was performed in Google Collaboratory, which provided a GPU with 25 GB of RAM.
A total of 4768 samples, i.e., augmented images, were used for training and 2044 samples
for validation. Training the model for 100 epochs took 4 h. The best model was saved
at epoch 92 by achieving an overall accuracy of 0.978 and a loss of 0.058. The training
performance of the U-Net is visualized in Figure 5.

  
(a) (b) 

Figure 5. Model performance: (a) accuracy and (b) loss for our fine-tuned U-Net.

In this study, we also used ENVI deep learning to compare the results obtained with
the U-Net model. In this study, ENVI deep learning is considered a ‘black box’. The
information we had is that ENVINet5 is based on U-Net architecture, and it uses the same
layer size and the same number of convolution layers.

The ENVINet5 model was trained with a patch size equal to the total extent of the
training UAV data. In addition, the training data shown in Figure 1a,c,d were also processed
as UAV images for validation. The adapted training parameters of ENVINet5, namely
patch size of 256 × 256, number of epochs 50 and class weights min. 1 and max. 2, data
augmentation ‘yes’, resulted in a fine-tuned model for visible boundary detection. The
values of the other parameters were automatically filled by ENVI deep learning as they are
suggested to be left blank. The model with the best performance was saved at epoch 24,
where the validation loss reached its lowest value. The overall accuracy of the model was
0.946 and with a loss of 0.234. The training performance of the CNN model ENVINet5 is
shown in Figure 6.
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(a) (b) 

Figure 6. Model performance: (a) accuracy and (b) loss for our fine-tuned ENVINet5.

All experiments with ENVI deep learning were performed on an Intel® Core ™ i7-4771
CPU 3.5 GHz machine with an NVIDIA GeForce GTX 650 GPU with 2 GB of RAM. The
training time for 50 epochs was 6 h.

3.2. Detection of Visible Land Boundaries by U-Net

After training the CNN model, we evaluated its performance by applying it to the test
area (Figure 1a). We applied the trained U-Net model to the test UAV tiles of size 256 × 256
to predict the visible land boundaries. Some results of the predicted boundary maps based
on UAV tiles are shown in Figure 7.

   

   

   

(a) (b) (c) 

Figure 7. (a) Examples of UAV testing tiles; (b) label images; (c) predicted boundary maps with values 0–1.
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The next step was to georeference the predicted visible land boundaries and merge
them into a single land boundary map (Figure 8c). Considering that the predicted values
were in the range of 0–1, in order to assess the accuracy and thus match the ground truth
class values, it was necessary to reclassify the predicted values to 0 and 1, namely to
‘boundary’ and ‘no boundary’. In this study, few boundary map reclassifications were
performed, e.g., ‘boundary’ ≤ 0.9; ‘boundary’ ≤ 0.7; ‘boundary’ ≤ 0.5. The predicted
boundary maps for the test area showed a good match with the labelling image (ground
truth). The results of the georeferenced and merged predictions along with the reclassified
boundary maps are shown in Figure 8c–f.

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 8. (a) Test UAV area; (b) label image; (c) predicted boundary map (0–1); reclassified boundary maps when (d)
‘boundary’≤ 0.9; (e) ‘boundary’≤ 0.7; (f) ‘boundary’≤ 0.5.
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For a quantitative description of the predicted boundary maps, overall accuracy, F1
score, recall and precision are summarized in Table 4. Overall accuracy represents a general
metric by counting true positives/negatives and false positives/negatives, i.e., it considers
both ‘boundary’ and ‘no boundary’ classes. All predicted boundary maps resulted in
an overall accuracy of over 94%. To get a better insight into the detection quality, F1
score, recall and precision were calculated for the class’ boundary’ or ‘0’ as a positive class.
The results showed that more relevant visible land boundaries were detected when the
predicted boundary map was reclassified with the threshold ‘boundary’ ≤ 0.9, resulting
in an F1 score of 0.51. More balanced scores were retrieved for the boundary map with
‘boundary’ ≤ 0.7, resulting in an F1 score of 0.52. Higher precision was obtained for the
boundary map with the reclassification threshold ‘boundary’ ≤ 0.5, resulting in an F1 score
of 0.46.

Table 4. Accuracy assessment of visible land boundary detection with U-Net.

Predicted Boundary Map Overall Accuracy (%) Recall Precision F1 Score

Boundary ≤ 0.9 94.5 0.654 0.413 0.506
Boundary ≤ 0.7 96.2 0.480 0.565 0.519
Boundary ≤ 0.5 96.5 0.348 0.675 0.459

3.3. Comparison with ENVI Deep Learning—ENVINet5

The predicted land boundary map for the test area (Figure 8a) retrieved using EN-
VINet5 model was already georeferenced, so no further post-processing step was required.
In addition, the retrieved boundary map contained predicted values of 0 and 1, and no
additional reclassification step was performed to compare the results to the ground truth
map and to assess accuracy. The predicted boundary is visualized in Figure 9b.

  
(a) (b) 

Figure 9. Comparison of predicted land boundary map: (a) predicted boundary map retrieved with U-Net, threshold
‘boundary’ ≤ 0.9; (b) predicted boundary map retrieved with ENVINet5.

Considering that all predictions retrieved with ENVINet5 were assigned the prediction
value 0 for the class’ boundary’, we selected the boundary map for the comparison of
results with U-Net, where all predictions ≤0.9, were reclassified as 0—‘boundary’. With
this, we wanted to compare predictions from U-Net that were as close as possible to
the predictions of ENVINet5. The overall accuracy was 94.5% for U-Net and 96.2% for
ENVINet5. However, in terms of detection quality for the ‘boundary’ class, ENVINet5
showed higher recall and lower precision than U-Net. In short, F1 score showed a slightly
higher value for U-Net, i.e., 0.51 compared to ENVNet5, where the value was 0.49. The
confusion matrices are shown in Table 5 and the quantitative results in Table 6.
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Table 5. Confusion matrices based on the number of pixels.

Ground Truth

Boundary No Boundary

U-Net
Boundary 137,056 195,156

No boundary 72,524 8,966,912

ENVINet5
Boundary 175,559 325,076

No boundary 34,021 8,836,992

Table 6. Accuracy assessment and comparison with ENVINet5.

Predicted Boundary Map Overall Accuracy (%) Recall Precision F1 Score

U-Net 94.5 0.654 0.413 0.506
ENVINet5 96.2 0.838 0.351 0.494

4. Discussion

Deep learning is a relatively new research area and offers great potential for feature
detection from remote sensing imagery [21,24]. The application of CNNs for detecting
visible land boundaries is becoming increasingly important, especially for UAV-based
cadastral mapping. In this work, we presented a deep learning application using Python
with Keras to implement U-Net, and software-based ENVI deep learning for visible land
boundary detection from UAV imagery. The research obtained encouraging and reasonable
results that can help to automate the process of cadastral mapping.

4.1. CNN Architecture and Implementation

In both network models, the loss was constantly decreasing from the first epoch until
the end. This indicated that the model was still learning on training samples. However,
the training of the models was monitored with the validation loss to avoid overfitting. The
training performance of the network models was shown in Figures 5 and 6. The validation
loss for U-Net was decreasing until epoch 92 and for ENVINet5 until epoch 24. This was a
good sign that the model did not lose the ability to generalize predictions for test datasets
that were not seen by the model during training. The evaluation metric showed relatively
high accuracies, 0.978 for U-Net and 0.946 for ENVINet5. The high accuracy of the network
models, including the first epochs, is mainly due to the unbalanced pixels of the classes. The
land boundaries occupy a minimal number of pixels compared to the background pixels.

In this study, we used a deep learning-based visible land boundary detector. Here,
providing balanced pixels for ‘boundary’ and ‘no boundary’ is a bit challenging, especially
for UAV imagery. UAV imagery usually has a small GSD (2–5 cm) and a limited coverage
area beside the efficient and flexible data acquisition system [14]. Moreover, the number
of background pixels in cadastral maps is always much higher than the number of pixels
representing the course of the cadastral boundaries themselves (line-based). The imbalance
of pixels per class is even more evident in randomly cropped tiles from UAV imagery.
Resampling the original GSD to a larger GSD contributed somewhat to an increase in the
field of view and balance between classes. However, the size of the GSD and the number of
training tiles is limited by the coverage area. To increase the amount of training data, we
applied data augmentation. Data augmentation has proven to be an efficient technique to
supplement original UAV training data, especially when training the U-Net model from
scratch. However, it remains a challenge to confirm what should be a sufficient variety of
UAV training data to learn a robust network model for visible cadastral boundary detection.

The problem of unbalanced classes could be solved by rebalancing the class weights,
using additional evaluation metrics besides overall accuracy, or performing deep learning
with multiple classes for land cover (polygon-based). In addition, other remote sensing
imagery can be used for the training data, e.g., aerial or satellite imagery; imageries can be
cropped in a way to cover more balanced pixels for ‘boundary’ and ‘no boundary’ and may
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not be limited with the coverage area. This can be applied if the deep learning model is
to be trained using only cadastral data that requires manual data preparation, such as the
creation of image tiles and corresponding ground truths. Instead, the CNN model could be
trained via transfer learning, similar to [17]. To avoid ambiguity, the detection quality for
UAV test data in this study was evaluated using recall, precision and F1 score for the class
‘boundary’. Thus, we had two indicators, overall accuracy, which includes both ‘boundary’
and ‘no boundary’ classes and one that is specific only to the ‘boundary’ class. Although
both models performed well, there were significant differences in implementation and
training, as one approach is customized, e.g., U-Net, and is offered as an API, while the
other, e.g., ENVINet5, is software-based, where we have fewer parameters available but
can still achieve good results.

Training a deep learning model requires more memory, a stronger GPU and efficient
computation. Training of the U-Net model was performed in Google Collaboratory, which
is open-source and can be considered as an alternative for the hardware costs to get more
memory and a more powerful GPU. On the other hand, ENVI deep learning had some
hardware and software requirements to perform the training of the network model. Google
Collaboratory allowed faster training compared to our machine. For 100 epochs, the
training time was 4 h with Google Collaboratory and three times the training time with
ENVI deep learning since it was run on a local machine with less computational power. It
should be emphasized that ENVI deep learning provided more stable training in terms of
a training session interruption, which occasionally happened with Google Collaboratory.

4.2. Detection of Visible Land Boundaries

The network models, both U-Net and ENVINet5, generally performed well in detect-
ing visible land boundaries, with some exceptions in the forest area. The results of the
quality of visible land boundary detection are shown in Figures 8 and 9 and quantitatively
in Tables 4 and 6. The results show that most visible land boundaries were correctly de-
tected, which demonstrates the ability of the UAV imagery and network models to detect
these types of land boundaries, especially in rural areas.

U-Net generated boundary maps with low recall and high precision when the thresh-
old for ‘boundary’ was set ≤0.5. This resulted in a recall of 0.35 and a precision of 0.68.
More balanced results and a higher F1 score were obtained when the threshold for ‘bound-
ary’ was set ≤0.7, namely a recall of 0.48, precision of 0.57 and F1 score of 0.52. The
boundary map with high recall and low precision was generated when the threshold was
set almost to the maximum, namely ‘boundary’ ≤ 0.9. This boundary map was used for
comparison with the new map obtained with ENVINet5, since nearly all predictions were
reclassified to the ‘boundary’ class, which is in accordance with the output of ENVINet5.

The results show an overall accuracy of 94% and 96% for U-Net and ENVINet5,
respectively. However, for the ‘boundary’ class, U-Net gave 0.51 F1 score and ENVINet5
0.49. This is mainly because U-Net provided more balanced scores, namely 0.65 in recall
and 0.41 in precision. On the other hand, ENVINet5 provided higher recall (0.84) and lower
precision (0.35), which means that the ‘boundary’ class is well detected, but the model also
includes points of the background class in it.

U-Net provided boundary maps that were in the range of 0–1. This is due to the
chosen sigmoid function as the activation function of the output layer, where the output
values obtained are estimates of the probability that the input belongs to class ‘boundary’.
Then, we set a threshold to decide whether the input belongs to class ‘boundary’ or class
‘no boundary’. The results maintain a balance; the lower the threshold, the lower the recall
and the higher the precision. The significant point of the threshold is that the same can be
used as a filtering method for boundary maps, depending on the need and purpose of the
application. For example, a low threshold provided high precision, while a high threshold
provided high recall. The recall is also referred to as completeness, while the precision
is referred to as correctness [15]. Imbalanced classes are common in cadastral maps, and
when it comes to specific use cases, more importance should be given to the metrics recall
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and precision, and how a balance between them can be achieved—which in our case was
supported by filtering the predicted boundary maps (Figure 8e). Unlike U-Net, ENVINet5
provided all predictions with values 0 and 1, and no further thresholding or filtering could
be applied.

In cadastral mapping, it is desirable that the relevant or candidate boundaries are cor-
rectly extracted since the correct determination of the location of the cadastral boundaries
is the core of the cadastre itself (correctness). On the other hand, increasing the number of
possible boundaries increases the cadastral coverage (completeness). Considering this, a
model that provides a balance between recall and precision is preferable. In short, a model
that provides a high F1 score.

The comparison of the results obtained with U-Net with other studies, in particu-
lar [15,17,25], which deal with the automation of cadastral mapping using different CNN
architectures, is not possible at this stage. This is mainly because the training approach of
the network models along with the input training data differs from study to study. Thus, a
reliable and qualitative comparison is not possible.

4.3. Boundary Mapping Approach

This section refers to the visible land boundary detection workflows applied in custom-
based U-Net and software-based ENVI deep learning. In general, boundary mapping ap-
proaches are quite different, starting from data preparation to the final predicted boundary
map. However, these differences provide advantages and disadvantages for each boundary
mapping approach used in this study.

In general, programming-based deep learning is open-source and offers a more flexible
but complex approach compared to software-based deep learning. Software-based deep
learning, e.g., ENVI deep learning, is simpler but at the same time more rigid. For example,
U-Net can be trained in a machine and in online platforms such as Google Collaboratory,
where the hyperparameters can be configured individually. In contrast, ENVI deep learning
has no implementation choices, but it also requires no additional configuration. The latter
can be considered a very important aspect as not all land administrators are experts in
programming, and this can be an option for them to perform deep learning. The main
challenge with CNNs is the preparation of a large amount of training data [26], especially
when the goal is to train the network only cadastral data [17]. In order to increase the
amount of training data for the U-Net, it was necessary to decompose the UAV orthoimages
in tiles before data augmentation. Moreover, for each UAV tile, a corresponding label image
(ground truth) was manually created using additional software for rasterisation. In contrast,
training in ENVI deep learning was patch-based, and the entire extent or a larger UAV
tile can be used as input for training. In addition, the labelling images were created
quite quickly within the software—directly by uploading reference boundaries as ROIs.
The boundary maps retrieved using U-Net were the same size as the input but were not
georeferenced. Considering that georeferencing is the key element in cadastral mapping,
it was necessary to georeference and merge predicted boundary maps from the test UAV
tiles. In ENVI deep learning, the prediction boundary map was already georeferenced, and
the predictions had values of 0 and 1. Therefore, further filtering of the predicted boundary
maps was not possible. The advantages and disadvantages of the U-Net and ENVI deep
learning mapping approaches used in this study are summarized in Table 7.

131



Remote Sens. 2021, 13, 2077

Table 7. Summarized advantages (pros) and disadvantages (cons) for boundary mapping approaches used in this study.

U-Net ENVI Deep Learning

pros cons pros cons

• open-source • programming • no programming • commercial

• impl. online or on machine • additional
georeferencing step • georeferencing • impl. on machine only

• hyper-parameter
configuration

• label image manually • label image by
software

• hyper-parameter
configuration

• prediction values in range;
filtering of boundary maps • fixed predictions

4.4. Application of Detected Visible Boundaries

Cadastral boundaries are often demarcated by objects visible in remote sensing im-
agery [2,8]. Automatic detection of cadastral boundaries based on remote sensing imagery,
especially UAV imagery, has rarely been investigated. Automatic extraction of visible land
boundaries, i.e., property boundaries, offers the potential to improve current approaches to
cadastral mapping. The boundary mapping approaches investigated are based on deep
learning and offer improvements in terms of time and cost.

Both boundary mapping approaches, i.e., U-Net and ENVI deep learning, can help
to facilitate and accelerate cadastral mapping, especially in areas where large parts of the
cadastral boundaries are continuous and visible. In terms of delineation effort per parcel,
automatic delineation approaches (including post-alignments) require up to 40% less time
in rural areas compared to manual delineation, based on [17]. However, in areas where
cadastral boundaries are not visible in the image, manual delineation remains superior.
Overall, it can be said that manual methods provide slower but more accurate delineations,
while automatic methods are faster but less accurate (once the model is trained).

In countries with low cadastral coverage, deep learning-based mapping approaches
can be used to produce cadastral maps. In countries with full cadastral coverage, the de-
tected visible boundaries can be used to automate the process of revising the up-to-dateness
of existing cadastral maps. In this way, areas requiring updating and improving cadastral
boundary maps can be automatically identified. Notwithstanding the advances in cadastral
mapping, the automation of cadastral boundary detection is still ongoing [15,17,18]. This
is due to the nature of cadastral boundaries, which may have a simple geometry but are
very complex to interpret. Consequently, automatically detected visible land boundaries
should be considered as preliminary cadastral boundaries. Verification of automatically de-
tected land boundaries should be aligned with the existing technical, legal and institutional
framework of land administration. Moreover, not every cadastral boundary is demarcated
with visible objects. In this study, boundary mapping approaches were tested in rural areas.
It is argued that the number of visible cadastral boundaries is higher compared to urban
areas [2].

Automating the detection of invisible cadastral boundaries remains a challenge in land
administration, which has already been highlighted in [17]. Future work could investigate
and analyze the applicability of deep learning for invisible cadastral boundaries that are
marked prior to the UAV survey. It should be further investigated which type and size of
land boundary markers are more appropriate for demarcating the invisible boundaries.

5. Conclusions

Deep learning is becoming increasingly important in cadastral applications as a
state-of-the-art method for automatic boundary detection. The aim of this study was
to investigate the potential of CNN architecture, namely U-Net, based on UAV imagery
training samples—as a deep learning-based detector for visible land boundaries. The
results and land boundary mapping approach using U-Net were compared with software-
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based ENVI deep learning. The overall accuracy for both CNN models was higher than
95%. This indicates that deep learning-based land boundary detection usually faces an
unbalanced distribution of pixels per class, namely for ‘boundary’ and ‘no boundary’.

Regarding the quality of recognition for the class ‘boundary’ in the case of U-Net,
we obtained low recall and high precision when the threshold ‘boundary’ ≤ 0.5 was set.
This resulted in a recall of 0.35 and a precision of 0.68. Prediction reclassification can be
considered as a tool to filter the predicted boundary maps. For example, to compare the
results with ENVINet5, the threshold had to be set almost to its maximum. Here, U-Net
provided a recall of 0.65 and a precision of 0.41. For ENVI deep learning, we obtained a
recall of 0.84 and a precision of 0.35. Based on the F1 score (U-Net 0.51 and ENVI deep
learning 0.49), U-Net provided slightly better and more balanced results. The predicted
land boundary maps obtained with U-Net were georeferenced and merged in an additional
post-processing step. This was not an issue with ENVI deep learning—the output boundary
maps were already georeferenced. Overall, U-Net is a programming-based solution and
provides a more flexible boundary mapping approach in terms of hyperparameters and
CNN model setting. On the other hand, it can be somewhat complex and demanding
for the practice as not all land administrators are skilled in programming. In contrast,
ENVI deep learning does not require any programming and deep learning is guided by
the software process.

While programming-based deep learning is challenging due to the complexity of
the processes and their control, commercial software-based deep learning brings some
abstraction but at the same time has limitations in terms of influencing the processes
flow. Both land boundary mapping approaches investigated in our study can be used
to accelerate and facilitate cadastral mapping in rural areas. However, the automatically
detected visible land boundaries should be considered as preliminary boundaries for
cadastral map production and updating. The results should be further aligned with
technical, legal and institutional framework of land administration.
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Abstract: The cadastral detail data is used for overlap analysis with digitized graphic cadastral maps
to solve the problem of inconsistencies between cadastral maps and the current land situation. This
study investigated the feasibility of a handheld LiDAR scanner to collect 3D point clouds in an
efficient way for a detail survey in urban environments with narrow and winding streets. Then,
urban detail point clouds were collected by the handheld LiDAR scanner. After point cloud filtering
and the ranging systematic error correction that was determined by a plane-based calibration method,
the collected point clouds were transformed to the TWD97 cadastral coordinate system using control
points. The land detail line data were artificially digitized and the results showed that about 97%
error of the digitized detail positions was less than 15 cm compared to the check points surveyed
by a total station. The results demonstrated the feasibility of using a handheld LiDAR scanner to
perform an urban cadastral detail survey in digitized graphic areas. Therefore, the handheld LiDAR
scanner could be used for the production of the detail lines for urban cadastral detail surveying for
digitized cadastral areas in Taiwan.

Keywords: cadastral survey; detail survey; handheld LiDAR scanner; calibration

1. Introduction

Depending on the surveying method and the way the cadastral maps are stored in
Taiwan, the areas corresponding to the cadastral maps can be categorized into digital
cadastral areas, graphic cadastral areas, and digitized graphic cadastral areas. Although
graphic cadastral maps have been digitized as digitized graphic cadastral maps, they still
preserve differential shrinkage, wrinkles, folds, and damage from the original maps, and
give rise to problems such as the difference between maps and land details in the real world,
map joins, and changes to the area subsequent to a map’s registration [1]. In that case, the
possible parcel points along the parcel boundaries must be surveyed for overlap analysis
and map registration between the digitized cadastral maps and land detail data (possible
parcel points) to eliminate inconsistencies between cadastral maps and the actual land
details. The surveying of possible parcel points along the parcel boundaries or possible
lines is called a cadastral detail survey. Therefore, an urban cadastral detail survey in
the digitized cadastral area of Taiwan’s urban city is to eliminate inconsistencies between
cadastral maps and the actual land details in urban areas. However, most studies examining
this issue focused on ground survey methods in a local area using ground instruments such
as the GNSS (Global Navigation Satellite System) systems or total stations, and it is time-
consuming. For an urban cadastral detail survey by GNSS, it is still necessary to consider
the environmental sky view, multipath effects, and other errors, which are easily restricted
by the urban construction environment. With this technological development, a terrestrial
LiDAR scanner, a vehicle-based LiDAR system, and UAV aerial images were studied for an
urban cadastral detail survey. For example, Chio and Chiang [2] investigated the feasibility
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of UAV aerial photogrammetry for a boundary verification survey of a digitized cadastral
area in an urban city of Taiwan, the study demonstrated its feasibility in the accuracy of
the urban cadastral detail data by UAV aerial photogrammetry.

The GeoSLAM Zeb-Horizon LiDAR scanner is a form of handheld mobile mapping
system (HMMS) and the HMMS has been applied on many occasions due to its compact
size, cost effectiveness, and high performance [3]. Because the HMMS uses a simultaneous
localization and mapping (SLAM) algorithm [3–5] with IMU (inertial measurement unit)
data for positioning without using GNSS data [6], it can avoid the environmental limits and
be used in narrow and winding alleys, indoors and other areas where GNSS signals cannot
be received. Compared to a total station and a terrestrial LiDAR scanner, it also shows
high performance in collecting terrain data in general areas, such as in non-narrow alleys.
Therefore, it has been employed in different fields, for example, cultural asset preservation
in ancient cities [7], forest investigations [6,8–10], mine monitoring [3,11], disaster site
reconstruction [12], tunnel surveying [13], topographic surveying [14], and the mapping of
the building interior structures [7,15].

This study investigated the feasibility of GeoSLAM Zeb-Horizon LiDAR scanner for a
detail survey in urban environments with narrow and winding streets. Such an application
for a cadastral detail survey needs to consider the accuracy problem. To date, only two
studies concerning the accuracy evaluation focused on forest investigations. Park and
Um [9] employed GeoSLAM Zeb-Horizon to measure the diameter at breast height (DBH),
and showed a deviation of less than 4 cm compared to the caliper measurement. Hunčaga
et al. [10] used GeoSLAM Zeb-Horizon for diameter at DBH estimation by a circle-fitting
method from point clouds, and a 1.62 cm root mean squared error (RMSE) was reached.
The average RMSE of all cross sections was 1.26 cm. There is no relevant research on the
application of HMMS to the cadastral survey. As the maximum scale of the cadastral map
of the graphic digitized area in Taiwan’s urban area is 1/500, and the maximum mapping
accuracy is 0.3 mm, this corresponds to a 15 cm error in situ. Based on the accuracy
demand, this study investigated the feasibility of a handheld LiDAR scanner, GeoSLAM
Zeb-Horizon, which uses the SLAM algorithm for positioning without GNSS data, to collect
3D point cloud with as an efficient way to conduct a detail survey in urban environments
with narrow and winding streets. First, a plane-based calibration method proposed in our
previous study [16] was used to calibrate the handheld LiDAR scanner to improve the
accuracy of the handheld LiDAR point cloud. The rough result was presented in [16] due
to the paper page limit, therefore, the detailed derivation and result improvement were
described in this study. Then, the urban detail point cloud in the test area was collected
by the handheld LiDAR scanner. After point cloud filtering and ranging systematic error
correction, the handheld LiDAR point cloud was transformed to the TWD97 cadastral
coordinate system using ground control points. The land detail line data was artificially
digitized from the handheld LiDAR point cloud. The accuracy was evaluated to investigate
the feasibility of a handheld LiDAR scanner for the urban cadastral detail line survey in a
digitized cadastral area of Taiwan’s urban city. The following section will introduce the
methodology used in this study.

2. Methodology

Figure 1 shows the study flowchart. This study was mainly divided into two parts:
(1) the handheld LiDAR scanner calibration, as seen in the left part of Figure 1; and (2) the
urban cadastral detail survey, as seen in the right part of Figure 1. A detailed description of
a handheld LiDAR scanner calibration was explained in Section 2.1. Section 2.2 described
how to apply a handheld LiDAR scanner on collecting the point data and correcting the
system error to perform an urban cadastral detail survey with more details. Both results
were verified by the check data.
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Figure 1. Study flowchart.

2.1. Handheld LiDAR Scanner Calibration

The calibration steps for the handheld LiDAR scanner were described as follows, and
the description was more detailed than those presented by us in [16]. First, an indoor
calibration field was selected. Then, the points of this calibration field were collected by a
ground-based LiDAR scanner and the plane features in the calibration field were classified
into the calibration planes and check planes. Subsequently, the points on the corresponding
calibration planes were dynamically collected by a handheld LiDAR scanner, GeoSLAM
Zeb-Horizon. The points corresponding to the calibration planes and check planes were
selected manually and the blunder points were removed by a RANSC algorithm. The
plane-based dynamic calibration method for GeoSLAM Zeb-Horizon proposed in our
previous study [16] was used to calculate the ranging systematic errors, including the range
scale factor (S) and the rangefinder offset (C), by the least-squares adjustment method.
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The calibration results were investigated. Details for each step were described in the
following subsections.

2.1.1. Selection of the Calibration Field

The calibration field had to be filled with plane features and be large enough to collect
point clouds with various ranging measurements to extract planes as calibration reference
data for calibration.

2.1.2. Acquisition and Extraction of Calibration Reference Data
Ground-Based LiDAR Point Cloud Acquisition

In this study, a Faro ground-based LiDAR scanner was used to capture the point
cloud of the calibration site in one station instead of multiple stations to avoid the regis-
tration errors of point clouds and affecting the accuracy of calibration reference data. The
specification of FARO Focus S350 ground-based LiDAR scanner was tabulated in Table 1.
FARO Focus S350 is a phase-based 3D laser scanner and has better accuracy than a 3D laser
scanner based on time of flight (TOF) scanning technique for the collection points in short
distances under indoor conditions without interference.

Table 1. Technical information of FARO Focus S350. (https://echosurveying.com/3d-laser-scanner/
faro-focus-s350-laser-scanner, accessed on 2 December 2021).

Range: 0.6–350 m

High Dynamic Range (HDR) Photo Recording 2×/3×/5×
Measurement Speed: up to 976,000 points/s

Ranging Error: ±1 mm

Sealed Design—Ingress Protection (IP) Rating Class 54

On-site Compensation

Accessory Bay

Angular Accuracy: 19 arc sec for vertical/horizontal angles

Extraction of Calibration Planes and Check Planes

This study used the plane features that were abundant in building interior envi-
ronments as the calibration reference data, eliminating the need for a large number of
construction procedures for the calibration targets. The plane equation of the plane feature
k is shown in the following Equation (1).

akx + bky + ckz + dk = 0 (1)

where (ak, bk, ck) is a unit normal vector of plane feature k.
The plane parameters (ak, bk, ck, dk) were regarded as a priori parameters in the cali-

bration process and served as the calibration reference data. As mentioned in Section 2.1.2,
in order to improve the precision and efficiency of data acquisition, a FARO Focus S350
ground-based LiDAR scanner was operated to acquire point clouds of the calibration field,
and the points located on the used plane features were manually extracted. The extracted
plane points were used to determine the plane parameters by the least-squares method.
Moreover, the extracted plane features were classified into the calibration planes and check
planes. The calibration planes were used for the determination of the planar parameters
for calibration, and the check planes were used for the verification of the calibration result.

2.1.3. Acquisition of Handheld LiDAR Pnt Cloud for Calibration Data

The GeoSLAM Zeb-Horizon handheld LiDAR scanner with the technical specification
shown in Table 2 was used to collect the point cloud data of the calibration field in a mobile
manner to obtain as many point clouds on various plane features as possible for calibration

140



Remote Sens. 2021, 13, 4981

data. To compare with static calibration, dynamic calibration can obtain richer points with
various ranging measurements, and there is no need to place the handheld LiDAR scanner
in multiple stations to capture data separately, thus saving a lot of time [17]. According
to the manual of GeoSLAM Zeb-Horizon, the scanned path must be closed to the starting
point of the trajectory in order to employ the SLAM algorithm [3–5] together with IMU
data to calculate the better scanning trajectory. The Velodyne multibeam LiDAR sensor
was installed on the GeoSLAM Zeb-Horizon.

Table 2. Technical specification of GeoSLAM Zeb-Horizon. (https://microsolresources.com/wp-
content/uploads/2019/06/GeoSLAM-Family-Brochure.pdf, accessed on 2 December 2021).

 

Technical specification

Handheld | Backpack | UAV Ready

Range 100 m

Protection Class IP54

Scanner Weight 1.3 kg

Points per Second 300,000

Relative Accuracy 1–3 cm

Raw Data File Size 100–200 MB a minute

Processing Point Processing

Battery Life 3.5 hrs

Filtering and Subsampling of Point Clouds

According to the studies of Glennie and Lichti [18] and Glennie [17], if the Velodyne
multibeam LiDAR sensor has an excessively large incident angle to the object surface
during scanning, it is likely to cause a significant increase in point cloud noise due to the
decrease in reflection intensity. Although GeoSLAM Zeb-Horizon scans the data with
VLP-16 in a rotating manner, it might also decrease the accuracy of the point cloud due
to the large incident angle. In order to reduce the influence of errors caused by factors
other than the ranging measurement of the handheld LiDAR scanner, the GeoSLAM
Hub software was used to output the normal information of each point and the SLAM
calculation quality (SLAM condition) to calculate the incident angle λ of each point and
obtain the quality index of trajectory calculation for filtering point clouds. Points with a
large incident and bad SLAM condition were filtered out.

After the point cloud was filtered, the point cloud located on the calibration planes
and check planes were manually extracted for calibration data. In order to avoid a large
difference in the point number on different planes and the excessive concentration in certain
ranging measurements to affect the determination of the ranging system error parameters,
including the range scale factor (S) and the rangefinder offset (C), the same number of
point clouds was randomly subsampled on each plane so that the calibration point data
could be evenly collected in various ranging measurements.

Blunder Point Filtering Using the RANSAC Algorithm

In order to avoid the error or noisy points being included in the determination of the
range scale factor (S) and the rangefinder offset (C), the blunder points of the subsampled
points were removed using the RANSAC algorithm [19]. RANSAC is an algorithm for
estimating a specific mathematical model from a sample containing gross errors. A fixed
amount of data is randomly sampled from the sample to calculate a mathematical model
that matches the sampled data. The remaining data after sampling is substituted into this
mathematical model and the residual is calculated. If the residual error is less than the
threshold, the data are regarded as the inner group conforming to the mathematical model.
If the residual error is greater than the threshold, the data is regarded as gross error or
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blunder. The above steps are repeated and the largest number of inner groups conforming
to the mathematical model is regarded as the best model parameter to classify and locate
gross error data.

2.1.4. Mathematical Model for Calibration

Based on our preliminary study [16], the ranging system error Δr described only by the
range scale factor (S) and the rangefinder offset (C). They were regarded as the additional
parameters (APs) of the adjustment system and solved in the least-squares adjustment.
Due to paper page limits, the rough description was presented in [16], and the sequent
subsections describe the plane-based dynamic calibration with more detail.

Scanning Center Determination of Each Point

GeoSLAM Zeb-Horizon cannot output the original ranging measurements. In order
to obtain each ranging measurement of ri, called pseudo-ranging measurement, the laser
scanning center coordinates corresponding to each point should be obtained from the
trajectory data. The trajectory data could be output by the GeoSLAM Hub software.
The recording frequency in the trajectory data was 0.01 s. Therefore, the corresponding
laser scanning center coordinates (xic, yic, zic) for point i were determined by the linear
interpolation formula as follows:

xic = xc0 + (ti − t0)
xc1 − xc0

t1 − t0
; yic = yc0 + (ti − t0)

yc1 − yc0

t1 − t0
; zic = zc0 + (ti − t0)

zc1 − zc0

t1 − t0
(2)

where
ti is the scanning time of point i
(xc0, yc0, zc0) is the trajectory coordinates that the scanning time of point i is less

than ti but is closest to ti.
(xc1, yc1, zc1) is the trajectory coordinates that the scanning time of point i is larger

than ti but is closest to ti.
t0 is the time of the calculated trajectory that is less than the scanning time ti for point

i and is closest to ti.
t1 is the time of the calculated trajectory that is larger than the scanning time ti . for

point i and is closest to ti.
By using the laser center coordinates of point i, the space vector (Δxi, Δyi, Δzi) of point

i was calculated by the following Equation (3).

⎡
⎣ Δxi

Δyi
Δzi

⎤
⎦ =

⎡
⎣ xi

yi
zi

⎤
⎦ −

⎡
⎣ xic

yic
zic

⎤
⎦ (3)

The calculated pseudo-ranging measurement ri, the horizontal angle αi and vertical an-
gle βi should be calculated according to the following Equations (4)–(6) for
subsequent derivation.

ri =
√

Δxi
2 + Δyi

2 + Δzi
2 (4)

αi = tan−1 Δzi√
Δxi

2 + Δyi
2

(5)

βi = tan−1 Δyi
Δxi

(6)

Through the pseudo-ranging measurement ri corrected by ranging error APs (S for the
ranging scale factor and C for the rangefinder offset), the horizontal angle αi, the vertical
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angle βi, and the corresponding laser center coordinates (xic, yic, zic), the coordinates of
point i could be reconstructed by Equation (7):

⎡
⎣ xi

yi
zi

⎤
⎦ =

⎡
⎣ (ri × S + C) ∗ cos αi ∗ sin βi

(ri × S + C) ∗ cos αi ∗ cos βi
(ri × S + C) ∗ sin αi

⎤
⎦ +

⎡
⎣ xic

yic
zic

⎤
⎦ (7)

Mathematical Model for Calibration

The data obtained by the ground-based LiDAR scanner and the handheld LiDAR
scanner were respectively located in the ground-based LiDAR coordinate system and the
handheld LiDAR coordinate system. Only when the LiDAR point cloud was converted
to the ground-based LiDAR coordinate system, could the plane parameters obtained
by the ground-based LiDAR scanner be used as the calibration reference data to solve
the ranging APs. Therefore, the six rigid body conversion parameters (three translation
parameters and three rotation parameters) were regarded as the unknowns and added
to the adjustment equation for simultaneous determination. The following Equation (8)
describes the conversion of the handheld LiDAR point (xi, yi, zi) after the correction of the
ranging system error to the ground-based LiDAR coordinate system through the rigid
body six conversion parameters.

⎡
⎣ Xi

Yi
Zi

⎤
⎦ = R(κ)R(ϕ)R(ω) ∗

⎡
⎣ xi

yi
zi

⎤
⎦+

⎡
⎣ Xt

Yt
Zt

⎤
⎦ = R ∗

⎡
⎣ xi

yi
zi

⎤
⎦+

⎡
⎣ Xt

Yt
Zt

⎤
⎦ (8)

where R: rotational transformation matrix; (Xt, Yt, Zt): translation vector
Equation (8) is the main equation of the plane-based dynamic calibration method

that was originally developed by us [16]. Equation (8) also means the point i after cor-
rection by range scale factor and rangefinder offset and conversion should be located
on the corresponding calibration plane fitted by the point cloud from the ground-based
LiDAR scanner. Due to the random error, the converted point could be not located on
the calibration plane. Thus, to minimize the sum of distance squares from the converted
points to their corresponding calibration plane, the mathematical model of adjustment was
developed to determine the ranging APs. The mathematical model included the functional
model and the stochastic model. If the observation equations were regarded as the iden-
tical weight. Equation (9) shows the functional model for the least-squares adjustment.
The calibration plane parameters (ak, bk, ck) used in this study were unit vectors, so the
above-mentioned sum of distance squares from the converted points to their corresponding
calibration plane could be regarded as the square sums of correction vi (i.e., residuals), and
the pseudo-observation equation was shown in Equation (9). Each handheld LiDAR point
could establish a pseudo-observation equation, and simultaneously solve the ranging APs
and the rigid body six conversion parameters according to the least-squares principle.

Fn =
[

ak bk ck
]⎡⎣ Xi

Yi
Zi

⎤
⎦ + dk = 0 + vi (9)

where ak bk ck dk are plane parameters of plane k. (Xi, Yi, Zi) are the coordinates of point i
on the ground-based LiDAR system after rigid body conversion.

The unknowns of this adjustment were two ranging APs (S and C) and six coordinate
transformation parameters. Since Equation (9) is a non-linear equation, it should be
linearized by Taylor expansion to establish the indirect observation adjustment matrix
form, see Equation (10) required by the least-squares method. The pseudo-observation
equations were regarded as equal weights, the corrections to the initial values of the
unknowns were determined by Equation (11), and then the corrections were added to the
initial value before iterations to reorganize the indirect observation adjustment matrix,
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also see Equation (10). During iterations, the termination condition was set as the ratio of
the posterior variance change less than 0.000001; the ranging APs and the rigid body six
conversion parameters could be solved until the posterior variance change ratio converges.

JX = K + V (10)

J =

⎡
⎢⎢⎢⎢⎢⎣

∂F1
∂S

∂F1
∂C

∂F2
∂S

∂F2
∂C

· · · ∂F1
∂Zt

· · · ∂F2
∂Zt

...
...

∂Fn
∂S

∂Fn
∂C

...
...

· · · ∂Fn
∂Zt

⎤
⎥⎥⎥⎥⎥⎦

, X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dS
dC
dϕ
dω
dκ

dXt
dYt
dZt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, K =

⎡
⎢⎢⎢⎣

−F10
−F20

...
−Fn0

⎤
⎥⎥⎥⎦

where: J is Jacobian matrix.
X is the correction vector to the initial value of the unknowns.
K is the difference vector between 0 and the value of substituting the initial value into

pseudo observation equations.
V is the residual vector of the pseudo observation equations.
N is the number of pseudo observation equations.

X =
(

JT J
)−1(

JTK
)

(11)

2.1.5. Result Analysis

This subsection described the analysis of the calibration results.

Residuals Analysis

The influences on the residual distribution, the average value of the residuals, and
the posterior unit weight standard deviation before and after the ranging system error
correction were used to verify whether the residual error distribution has the trend of
implicit system error or not; whether the average value of the residual error and the
standard deviation have decreased or not in order to evaluate if the calibrated ranging
system error parameters could correct the system error and improve the accuracy of the
handheld LiDAR points.

Verification by the RMSE of Check Planes

The RMSE of the calibration data from corrected and uncorrected handheld point
clouds to each corresponding check plane before and after the adjustment was calculated for
evaluation of calibration results. The improvement ratio for each check plane was calculated
by the following Equation (12) to verify the efficiency of the system error correction.

ratio =
(RMSEwith APs − RMSEwithout APs)

RMSEwithout APs
∗ 100% (12)

where
RMSEwith APs is the RMSE calculated by adding the ranging additional parameters

(APs) to the adjustment
RMSEwithout APs is the RMSE calculated by not adding the ranging additional param-

eters (APs) to the adjustment.

Analysis of Correlation Matrix of the Unknowns

Through the correlation coefficient matrix, the quality and robustness of the calibration
results [20] can be verified, and check if there is a high correlation between the parameters of
the ranging system or the parameters of the ranging system and the conversion parameters.
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High correlation means that the calibration method or calibration data is not enough to
solve the calibration parameters well. The correlation coefficients after the adjustment were
shown as discussed in this study.

Analysis of Ranging Systematic Error Parameters

In this study, two systematic errors were estimated, S for the range scale factor and
C for the rangefinder offset. The influence of certain ranging measurements, for example,
20 m, 30 m, and 40 m, was investigated.

2.2. Urban Cadastral Detail Survey
2.2.1. Ground Control Survey

The ground control survey collected the 3D coordinates for converting the handheld
LiDAR points to the cadastral coordinate system. In Taiwan, the TWD97 coordinate
system was adopted for the cadastral coordinate system which is a horizontal coordinate
system. However, the elevation for each control point was also surveyed for 3D coordinate
conversion of the handheld LiDAR points. The TWVD2001 system was used for elevation
systems in Taiwan.

The control points might be of the announced TWD97 coordinates and for the selected
supplementary control points. Therefore, considering accuracy, cost, and ease of operation,
VBS-RTK Technology was employed for the control survey to determine the 3D coordinates,
which were in the GNSS coordinate system. The ground control points were surveyed
twice for averaging. For each survey, the standard deviation in the horizontal coordinate
component and the elevation component should not exceed 2 cm and 5 cm, respectively. At
the same time, the differences in horizontal position and elevation between the two surveys
should be less than 3 cm and 5 cm, respectively. However, the TWD97 coordinate system
was used for horizontal coordinates, and the TWVD2001 system was used for the elevation
system in Taiwan. Therefore, surveyed elevation was converted to the ortho-height system
according to the geoid model announced by the Ministry of the Interior (Taiwan).

Subsequently, coordinate conversion had to be performed to estimate and eliminate the
systematic errors between the TWD97 cadastral coordinate system and GNSS coordinate
system, as well as to verify the correctness of coordinate conversion. The systematic
error might be caused by the tension between the VBS-RTK coordinate system and the
TWD97 cadastral coordinate system due to the control network tension, crustal changes,
and projection deformation. Least-squares collocation is a combination of least-squares
adjustment, estimation, and filtering. Compared with the traditional adjustment method
that can only deal with random errors in observation [21], therefore, the least-squares
collocation method was implemented in this study to estimate the systematic error between
two kinds of coordinates, namely the TWD97 cadastral coordinate system and VBS-RTK
coordinate system, where the observation was not made [22] to determine the cadastral
coordinates for those control points without announced cadastral coordinates.

2.2.2. Path Planning for Data Collection

According to the manual of the GeoSLAM Zeb-Horizon, the scanned path must be
closed to the starting point of the scanning in order to employ the SLAM algorithm [3–5]
together with IMU data to calculate a better scanning trajectory. The start and end points of
the scanned path should be the same point to create a closed route and reduce the deviation
caused by error propagation in the trajectory [6,8].

If the scanned path passes through control points, the alignment device provided, as
shown in Figure 2, could be used to align the control point with the hole in the front of
the alignment device and stop for ten seconds. The GeoSLAM Zeb-Horizon scanner could
record the coordinates of this control point in the handheld LiDAR coordinate system for
subsequent coordinate conversion.
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Figure 2. GeoSLAM control point alignment device.

Since the GeoSLAM Zeb-Horizon scanner uses the SLAM algorithm [3–5] together
with IMU data to calculate a better scanning trajectory, the scanning environment will
have a significant impact on the quality of its trajectory calculation. It is necessary to
investigate the application environment and plan an appropriate path before scanning to
understand the scan area and its situations, which might cause incorrect estimation of the
SLAM algorithm, such as the lack of features, and good path planning could ensure the
stability of the SLAM trajectory calculation. In this study, the test area was in the urban
area. According to the user manual and past literature, the following guidelines organized
the following items:

• Avoid scanning moving objects, the SLAM algorithm may recognize them as static
features and cause calculation errors [23].

• The start and end points of the scanned path should be the same point to create a
closed route and reduce the offset caused by error propagation in the trajectory [7,9].

• The moving speed should not be too fast which is not more than normal walking
speed (1.1~1.5 m/s), and normal walking speed should be maintained to ensure a
good point cloud density. When passing the building corner, because the scanning
angle of view changes greatly, the speed and travel should be slowed down to obtain
sufficient features to establish a trajectory [15,24].

• The scanning distance is recommended to be kept within 50 m to maintain good point
cloud accuracy and point cloud density.

• The time of a single scanning task should be less than 30 min. When scanning a large
field, the scanning task should be divided into several portions and the point cloud
should be registered to reduce the probability of trajectory deviation [23].

• Avoid areas containing a lot of glass and windows. Glass and windows are prone to
refraction of the laser beam and cause false point clouds [25].

• When scanning narrow passages, the scanned path should be in the middle of the
passage so that the scanner can obtain the features of the walls on both sides. If it is too
close to the wall, the scanning angle is too small and it will lack feature acquisition [23].

2.2.3. Point Cloud Processing
Filtering of Point Clouds

As mentioned in Section 2.1.3, after the point cloud data collection, the point cloud
normal vector and the SLAM calculation quality were exported from GeoSLAM Hub
software, and the point cloud was filtered to remove the point cloud with poor quality or
poor observation conditions.

In addition to the above-mentioned filtering conditions, namely the angle of incidence
and the SLAM calculation quality, the point cloud with a longer ranging measurement
would be affected by the ranging measurement capability of the LiDAR scanner, and a
point cloud with an abnormal distance usually has a larger error and is also more likely
to be erroneous data in an outdoor environment. For mobile surveying and mapping
of a LiDAR system, the ranging measurement data of a short distance could be retained
to retain the point cloud with higher accuracy. According to the manual, the scanning
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distance is recommended to be kept within 50 m. In order to maintain a good point cloud
accuracy, the scanning distance threshold was added to the filtering condition of the points
to eliminate points of possible poor quality.

Ranging System Error Correction of Point Clouds

The corresponding laser center coordinates of each point by linear interpolation
was determined, and the space vector (Δx, Δy, Δz) of each point was calculated, then the
pseudo-ranging measurement r, horizontal and vertical angle were calculated for each
point according to Equations (4)−(6).

The ranging APs (S and C) of the ranging system obtained by the calibration method
described in Section 2.1 were employed to correct the ranging system error, and the pseudo-
ranging measurement r of each point was corrected and Equation (7) is used to reconstruct
the point coordinates to complete the system error correction.

Coordinate Conversion

After the point cloud filtering and the ranging system errors were corrected, the control
point coordinates in the handheld LiDAR coordinate system and their corresponding
horizontal coordinates in the TWD97 coordinate system and the elevation in the TWVD2001
system were used to calculate the conversion parameters, and the corrected point cloud was
converted from the handheld LiDAR coordinate system to the TWD97 cadastral coordinate
system through the rigid body six conversion parameters.

2.2.4. Urban Cadastral Detail Line Data Production

The urban cadastral detail lines mean possible parcel points on parcel boundaries.
The production of the urban cadastral detail line data is difficult to extract automatically
because it contains some subjective factors to be identified and digitized with reference to
actual building conditions, cadastral reconnaissance, existing cadastral maps, and land use
zoning maps. Therefore, this study used PointCab software to digitize the detail line data
manually. While digitizing manually, the following principles should be followed:

(1) For urban buildings along roads, most of them are bounded by the building line des-
ignated by the road centerline stake of the urban planning road or the boundary of the
existing road boundary. Road boundaries are the detail lines for manual digitization.

(2) The detail lines of townhouses are mostly bounded by the center of the wall, but
they still need to be judged by considering the difference in their structure or the
decorative form of the exterior. The centerline of a wall on a building façade with the
same building style except for the wall on the outer most boundary of a building.

(3) Where there are exposed steel bars on the walls of side houses or independent houses,
the center of the wall shall be the boundary, otherwise, the outer edge of the wall shall
be the boundary.

(4) The outer edge of a wall on the most outside boundary of a building with the same
building style, and the outer edge of a wall of a single building except the wall
attached with exposed steel reinforcing;

(5) The eaves of the building belong to the building itself.

Results Analysis

(1) Analysis of digitized detail lines.

The results analysis of the error of the urban cadastral detail survey using the handheld
LiDAR points was divided into planar position error analysis (Figure 3a) and vertical
distance error analysis (Figure 3b). If the points surveyed by a total station can be analyzed
definitely by the junction points of the digitized lines, the planar position errors of those
points could be calculated, as shown in Figure 3a. Otherwise, the vertical distances of the
remaining points surveyed by a total station to the closest digitized detail line segment
were calculated for analysis, as shown in Figure 3b.
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(a) (b) 

Figure 3. The demonstration of error calculation for an urban cadastral detail survey using the
handheld LiDAR points where points mean the survey points measured by a total station and
lines were digitized manually from the handheld LiDAR points. (a) Planar position error analysis.
(b) Vertical distance error analysis.

(2) Analysis on the effect of ranging system error correction.

The effect analysis of error correction of the ranging system was represented by the
difference, as expressed in Equation (13), of digitized detail lines using the handheld LiDAR
point clouds after and before ranging system error correction, compared with the detail
points surveyed by a total station.

Di f f erence = DEbe f ore correction − DEa f ter correction (13)

where,
DEbe f ore correction is the digitized error using uncorrected point cloud for digitization

compared with the detail points surveyed by a total station.
DEa f ter correction is the digitized error using corrected point cloud for digitization

compared with the detail points surveyed by a total station.

3. Results and Discussion

3.1. Handheld LiDAR Scanner Calibration
3.1.1. Selection of the Calibration Field

The size of the calibration site was about 35 m by 27 m by 3 m, located in the under-
ground parking lot of Research and Innovation-Incubation Center at National Chengchi
University in Taiwan. The calibration site provided a large variety of planar features with
different ranges for calibration, as shown in Figure 4.

  
Figure 4. Calibration site.

3.1.2. Acquisition and Extraction of Calibration Reference Data

As mentioned in Section 2.1.2, a Faro ground-based LiDAR scanner was used to
capture the point cloud of the calibration site in one station instead of multiple stations
to avoid the point cloud registration errors. The collected point cloud data are shown
in Figure 5.
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(a) (b) 

Figure 5. Top and side views of the collected points by a FARO Focus S350 in a single station. (a) Top view. (b) Side view.

Seventeen plane locations, labeled A to Q, were manually extracted for calibration
reference data, and the location of each plane is shown in Figure 6. The size of each plane
was about 0.7 m by 1.2 m and its planar parameters were determined by the least-squares
method. The parameters and fitting RMSEs are shown in Table 3. All plane fitting RMSEs
were not greater than 0.001 m, indicating that the point cloud data of the FARO Focus S350
was of a certain accuracy and reliability as the calibration planes and the check planes.

Figure 6. Locations of the selected 17 planes (labeled A to Q) for calibration reference data.

Table 3. Fitting plane information.

Plane a b c d Fitting RMSE (m) DIP(◦)

A 0.012 0.007 0.999 −44.416 0.0009 0

B 0.982 0.190 0.002 −23.319 0.0009 89

C −0.196 0.981 −0.001 9.670 0.0008 89

D 0.982 0.190 0.001 −1.516 0.0006 89

E −0.183 0.983 −0.003 −5.552 0.0008 89

F 0.993 0.121 0.002 19.513 0.0008 89

G 0.964 0.265 0.002 21.626 0.0006 89

H −0.193 0.981 −0.002 −2.357 0.0007 89

I −0.194 0.981 0.001 30.209 0.0006 89

J −0.191 0.982 0.001 46.958 0.0010 89

K 0.994 0.112 0.003 19.384 0.0009 89

L −0.189 0.982 −0.005 22.097 0.0006 89

M −0.191 0.982 −0.001 5.064 0.0008 89

N −0.187 0.982 −0.004 13.458 0.0005 89

O −0.004 0.005 0.999 −44.549 0.0009 0

P −0.003 −0.002 0.999 −44.667 0.0006 0

Q 0.002 0.003 0.999 −44.545 0.0010 0
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In order to solve simultaneously the ranging APs together with the six-parameter
rigid body conversion parameters. three planes with orthogonal normal were included in
the plane selection [20]. The horizontal and vertical planes were identified from the DIP in
Table 3. Table 3 shows the planes including 4 horizontal (DIP 0◦) and 13 vertical (DIP 89◦)
planes. The triple pair (a, b, c) indicated the unit normal vector in Table 3.

3.2. Acquisition of Handheld LiDAR Point Cloud for Calibration Data

A plane-based dynamic calibration developed in our previous study [11] and men-
tioned in Section 2.1.4 was employed to investigate the calibration results. The dynamic or
kinematic calibration means to capture the point cloud data for calibration in a mobile way.
The calibration data was collected on 26 January 2021 at 9:30 a.m., the scanning time took
about 87 s, the number of point clouds was about 160,000,000 points. Figure 7 shows the
collected calibration data and the scanning trajectory, the colors of points in Figure 7a were
determined based on the SLAM quality (SLAM condition), the best quality was blue (R = 0;
G = 0; B = 255), the closer to red, the worse was the quality. In an indoor environment
with rich features, the SLAM quality was noticeably stable, and the majority of the point
clouds were dark blue indicating no significant problem of SLAM solution or failure of
the SLAM solution. The color of the point clouds in Figure 7b was given according to
the scanning time of the scanning trajectory, and the color of the point clouds gradually
changed from red to blue according to the scanning time, where red was the scanning
time at the beginning, and blue was the scanning time at the end. The scanned path was
planned to walk around the center of the parking lot and close to the starting point at a
normal walking speed to ensure that the complete calibration field was scanned. It could
be found that the starting point represented by red and the scanning end point represented
by blue were closed, which met the scanning requirements.

 
(a) 

 
(b) 

Figure 7. Point cloud and scanning trajectory of calibration data. (a) Colored by SLAM condition.
(b) Colored by scanning time.
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3.2.1. Filtering and Subsampling of Point Clouds

In this study, the filtering conditions of the handheld LiDAR point cloud were per-
formed by the SLAM quality and the incident angle of the point. In order to remove the
influence caused by the poor SLAM quality, the threshold value was set to R = 0, G = 0,
and B = 255, namely the blue points colored by the best SLAM solution were used for
the calibration data. Based on the study of Glennie and Lichti [18] and Glennie [17], the
thresholds of the incidence angle for the effectiveness of filtering with the incident angle
were 60◦ and 70◦, respectively. However, the point cloud filtered at 60◦, the plane features
in the horizontal direction were relatively insufficient. Considering that a certain number
of planes in the horizontal direction must be extracted, this study used 70◦ as the filter
threshold for the incident angle.

In order to evaluate the effectiveness in filtering point clouds with poor quality by the
thresholds, a point cloud on one plane was taken for analysis to discuss whether the RMSE
of the plane fitting after filtering was reduced or not. The analysis results are shown in
Table 4. After filtering using the SLAM quality or incident angle separately, the plane fitting
RMSE was reduced from 0.0110 m to 0.0108 m. If both the SLAM quality and incident angle
were used for filtering, the plane fitting RMSE was further reduced to 0.0106 m. The results
showed that the plane fitting RMSE of the point cloud by the three filtering conditions were
all better than the original point cloud used for plane fitting. It could say that the used
conditions and thresholds could retain the point cloud with better observation conditions,
therefore this study used these combined conditions for filtering. Figure 8 shows the point
cloud data after filtering. After the point cloud filtering, the number of point clouds was
1,401,803, and the filtering ratio was about 91%. The remaining good quality point cloud
data was employed as calibration data for calibration adjustment.

Table 4. Analysis results of filtering conditions using a planar point cloud.

Filter Condition Plane Fitting RMSE (m) Number of Points Filtering Points

None 0.0110 21,650 ——

SLAM quality 0.0108 13,525 8125

Incidence angle 0.0108 19,620 2024

SLAM quality and
incidence angle 0.0106 12,969 8678

Figure 8. Handheld LiDAR point cloud after point cloud filtering.

The handheld LiDAR point cloud corresponding to each plane, see Figure 6, was
selected manually, and the point number contained on each plane and the ranging mea-
surement between each point relative to their corresponding laser center was calculated.
The coordinates of each laser center could be seen in Equation (2). In order to increase the
calculation efficiency and allow the calibration calculation to include uniform and various
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ranging measurements, the points on each plane were randomly subsampled to select the
same number of point clouds as the calibration data, except for planes B, E, I, and J, which
were of a lower number of points, the least number of points on the other planes was plane
D, and the point number was 613. Therefore, this study randomly subsampled 600 points
for the remaining planes, and evaluated whether there was a significant difference in the
calculated pseudo-ranging measurements or not before and after subsampling and blunder
removing by the RANSAC algorithm.

The statistical results of calculated pseudo-ranging measurements for each plane of
calibration data before and after subsampling and blunder removing by the RANSAC
algorithm are shown in Table 5. The statistics for pseudo-ranging measurements were
divided into minimum, maximum, median, and average to evaluate the distance measure-
ments provided by the points in each plane for calibration adjustment calculation. As seen
in Table 5, planes B, I, and J were of relatively fewer points due to the longer scanning
distances. Plane E was blocked by a wall, the point number was also relatively insufficient.
The box diagram of the calculated pseudo-ranging measurements before and after subsam-
pling and blunder removing by the RANSAC algorithm is shown in Figure 9. According to
Table 5 and Figure 9, there was no significant difference between the minimum, maximum,
median, and average values of the calculated pseudo-ranging measurements in each plane
before and after subsampling and blunder removing by the RANSAC algorithm. The
difference of statics of the calculated pseudo-ranging measurements in each plane before
and after subsampling and blunder removing by the RANSAC algorithm was less than 1 m,
indicating that the same rich calculated pseudo-ranging measurements could be retained
after subsampling and blunder removing by the RANSAC algorithm could be used for cal-
ibration. Therefore, 600 points could be used as the number of subsampling points, taking
into account the richness of the calibration data and improving the calculation efficiency.

Table 5. The statistics of pseudo-ranging measurements in each plane for calibration data before and
after subsampling and blunder removing by the RANSAC algorithm for calibration data.

Plane
No. of Point
before/after

Calculated Pseudo-Ranging Measurement (m)

Minimum
before/after

Maximum
before/after

Median
before/after

Average
before/after

A 3024/586 2.012/2.043 4.166/4.043 2.714/2.715 2.745/2.738

B 233/211 34.100/34.100 37.353/37.230 35.474/34.982 35.444/35.313

C 660/595 6.953/6.953 9.137/9.137 8.137/8.146 8.138/8.138

D 613/567 12.471/12.471 15.977/15.919 13.775/13.768 13.962/13.923

E 322/297 9.226/9.226 10.454/10.328 9.495/9.474 9.737/9.691

F 862/593 8.713/8.735 13.018/12.964 9.125/9.125 9.347/9.337

G 847/579 8.846/8.846 18.200/18.200 10.954/10.696 11.536/11.449

H 1420/581 7.832/7.860 11.380/11.380 9.227/9.161 9.354/9.317

I 80/58 22.515/22.515 28.518/28.518 24.317/24.350 24.985/25.192

J 91/62 39.675/39.757 45.099/45.099 41.515/41.605 41.833/41.836

K 1595/592 7.916/7.919 12.618/12.618 8.396/8.357 9.029/8.949

L 864/569 9.722/9.722 20.655/20.655 15.538/14.993 15.484/15.391

M 1110/599 2.310/2.310 2.909/2.906 2.542/2.536 2.546/2.542

N 1417/562 3.333/3.555 10.170/10.170 5.961/5.987 6.335/6.391

O 818/600 2.695/2.695 12.473/12.473 3.485/3.493 3.722/3.706

P 2119/599 1.456/1.466 7.881/7.295 2.082/2.088 2.342/2.348

Q 736/593 3.186/3.199 7.054/7.054 3.698/3.694 3.873/3.866
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Figure 9. Box diagram of the calculated pseudo-ranging measurements of each plane before and
after subsampling and blunder removing by the RANSAC algorithm.

3.2.2. Blunder Point Filtering Using the RANSAC Algorithm

The RANSAC algorithm was used to remove the gross errors of the subsampled points
in each plane for the calibration data. According to the point cloud precision announced
by the GeoSLAM Zeb-Horizon manufacturer, the allowable error threshold is set to 0.03 m.
The results are shown in Table 6, where the red points were evaluated as a gross error by
the RANSAC algorithm.

Table 6. RANSAC result for calibration data.

Plane RANSAC Results Number of Outliers Outliers %

A 14 2.33%

B 22 9.44%

C 5 0.83%

D 33 5.5%

E 25 7.76%

F 7 1.17%

G 21 3.5%

H 19 3.17%

I 22 27.5%

J 19 20.88%

K 8 1.33%

L 31 5.17%

M 1 0.17%

N 38 6.33%

O 0 0%

P 1 0.17%

Q 7 1.17%
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3.2.3. Results Analysis

A plane-based dynamic calibration proposed in our previous study [16] was per-
formed. The location distribution of the calibration planes in this study is shown in
Figure 10. The selection of the calibration planes should enclose the entire calibration field
as much as possible and be evenly distributed. In order to solve the rigid body conversion
parameters at the same time during the calibration adjustment calculation, in addition to
the vertical planes, the calibration planes must also include the horizontal planes (such as
planes A, O, Q) [20]. In particular, although plane E seems to be closer to the periphery of
the calibration field than plane H, plane H was of a richer scanning distance than plane
E from the maximum and minimum values in Table 6, plane H instead of plane E was
selected as a calibration plane. The following subsections investigate the calibration results.

Figure 10. The locations of calibration planes (labeled A, B, D, G, H, J, L, O, Q) and check planes
(labeled C, E, F, I, K, M, N, P).

Residuals Analysis

Figure 11 shows the residual distribution plots and Figure 12 shows the residual
scatter plots after adjustment with or without determination of the ranging system error,
respectively, where Figures 11a and 12a are the residual distribution plots and the residual
scatter plots of the adjustment results by incorporating the ranging system error into
the adjustment system as an additional parameter (referred to with APs) for determining
together with the rigid body six conversion parameters, Figures 11b and 12b are the residual
distribution plots and the residual scatter plots of the adjustment results without adding
the ranging system error as the additional parameter (referred to without APs)) and only
the rigid body six conversion parameters retained as the unknowns for determination.

 
(a) (b) 

Figure 11. The residual distribution plots of calibration data. (a) With APs. (b) Without APs.
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(a) (b) 

Figure 12. The residual scatter diagram of calibration data. (a) With APs. (b) Without APs.

Comparing Figure 11a,b, the residual value distribution was much more concentrated
at 0 and was more in line with the normal distribution curve. Regarding further analysis
by the residual scatter diagram, as shown in Figure 12, the residuals in Figure 12a were
stably and evenly dispersed within ±0.03 m, which conformed to the 3 cm precision of
point cloud announced by the manufacturer. The residuals in Figure 12b were affected
by more significant systematic errors, which caused the residual dispersion to present
an unstable undulation. After adding the ranging APs, the average residual was closer
to 0 (from −0.000045195 m to −0.000014845 m), and the posterior unit weight standard
deviation became smaller (from ±0.01278 m to ±0.01077 m), both of which were improved
compared to those without adding the ranging APs into the adjustment. There might be
no significant statistical difference in the figures. However, it could be clearly understood
from the change of the relevant figures that adding the ranging APs in this study could
eliminate most of the ranging system errors.

Verification by the RMSE of Check Planes

By evaluating the calibration results, the RMSE of each check plane was calculated
for calibration data using least-squares adjustment with and without ranging APs. Table 7
shows the RMSE results of each check plane for three datasets. Among them, the RMSE of
all check planes were all improved after the correction of the ranging system error, also see
the RMSE bar chart of each check plane in Figure 13. Among them, the RMSE of the check
planes E, F, K, M, and N were significantly improved. Up to 72.12% in plane F, an increase
of about 2.4 cm and an improvement of 1.6 cm in plane E were reached. The overall average
improvement was 32.61%, which demonstrated that the proposed calibration approach
could effectively improve the overall point cloud accuracy.

Table 7. RMSE of each check plane.

Check Plane RMSEwithAPs (m) RMSEwithoutAPs (m) Difference (m) Improvement (%)

C 0.0121 0.0125 0.0004 2.98%

E 0.0129 0.0290 0.0161 55.35%

F 0.0092 0.0329 0.0237 72.12%

I 0.0236 0.0287 0.0051 17.75%

K 0.0083 0.0164 0.0081 49.25%

M 0.0057 0.0105 0.0048 45.27%

N 0.0102 0.0118 0.0016 13.82%

P 0.0066 0.0069 0.0003 4.32%

Mean 0.0111 0.0186 0.0075 32.61%
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Figure 13. The bar chart of RMSE for check planes.

Analysis of Correlation Matrix of the Unknowns

Table 8 shows part of the matrix of correlation coefficients of the unknowns of the
least-squares calibration solution. The correlation coefficients between the ranging APs
and the coordinate conversion parameters were maintained at a low correlation, and the
absolute values of the correlation coefficients were mostly not larger than 0.7. This result
is consistent with Glennie and Lichti [18], that the calibration reference and calibration
data collected in different coordinate systems did not significantly affect the calculation
of the system error parameters; however, there was a high negative correlation between
the ranging APs (S and C), −0.82. The lower negative correlation between the ranging
APs made the solution results of the ranging APs more reliable. The result was more
reliable than the test in our previous study [16], the correlation between the ranging APs
(S and C) was −0.985. However, in the calibration data of this test, only points in the
planes B and J were with long pseudo-ranging measurements for calibration, as shown
in Figure 10, and the calculated pseudo-ranging measurements from the points on these
two planes ranged from about 35.3 m to 41.8 m, as shown in Table 5. In the future, if a
larger calibration site or suitable plan for scanning could be found to collect the handheld
LiDAR points to obtain more calculated pseudo-ranging measurements for calibration, the
negative correlation between the ranging APs could be reduced and the solutions of S and
C could be more reliable.

Table 8. The matrix of correlation coefficients of the unknowns for calibration data.

S C Xt Yt Zt ϕ ω κ

S 1 −0.82 −0.68 0.65 −0.04 −0.06 0.12 −0.61

C −0.82 1 0.30 −0.28 0.08 0.06 −0.14 0.23

Analysis of Ranging Systematic Error Parameters

The estimated ranging systematic parameters S and C were 0.9996 and −0.0088,
the corresponding standard deviations were ±0.0000397 m and ±0.00055 m. Table 9
indicates the correction for different distances. If the ranging measurement was 10 m, the
correction was 1 cm; the ranging measurement was 30 m, the correction is 2 cm; the ranging
measurement was 40 m, the correction is 2 cm. Even it was 2 m, the correction would be
1 cm. When using a handheld LiDAR scanner for precise surveying, for example, cadastral
surveying, this ranging system error should be corrected to obtain a more accurate result.

Table 9. The different distance values after correction (unit: m).

Distance 1 2 5 10 20 30 40

Distance after correction 0.99 1.99 4.99 9.99 19.98 29.98 39.98
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3.3. Urab Cadastral Detail Survey

The test area of an urban cadastral detail survey was located near National Cheng-Chi
University in Taiwan, as shown in the red box in Figure 14. The aerial photographs illustrate
that the area was densely built and filled with narrow lanes that were difficult to use GNSS
for a detail survey and was time-consuming to use total stations for a detail survey.

  

(a) (b) 

Figure 14. The test area of an urban cadastral detail survey. (a) Cadastral map. (b) Aerial image.

3.3.1. Ground Control Survey

The locations of four cadastral control points (red points) used in this study and
two supplementary control points (blue points) are shown in Figure 15. Four cadastral
control points were of the known announced control points in the TWD97 cadastral
coordinate system, including point nos. 100005, NA0591, NA0657, and GA0477; and
two supplementary control points, including point no. 1 and no. 2 were not. The cadastral
coordinates of these two points were obtained by the process of least-squares collocation
adjustment, as described in Section 2.2.3.

 

Figure 15. Two independent scanning operation areas and scanned paths.

Thee cadastral control point nos. QT77 and NA0587 were under the building eave,
the ortho-height could not be surveyed by VBS-RTK after conversion. The ortho-height of
these two points was surveyed by levelling from the known height point 10005, and their

157



Remote Sens. 2021, 13, 4981

N, E coordinates were adopted by the announced TWD97 cadastral coordinates. After the
other six points were surveyed by VBS-RTK, the TWD97 cadastral control coordinates of
point nos. 1 and 2 were obtained using least-squares collocation, as shown in Table 10. The
ortho-height was converted by the geoid undulation. The final cadastral (N, E) coordinates
and ortho-height of all control points are organized in Table 10.

Table 10. The cadastral TWD97 coordinates and ortho-height of used control points.

Point No. N Coordinate (m) E Coordinate (m) Ortho-Height (m)

1 2,764,678.099 308,072.529 17.996

2 2,764,693.030 308,157.005 18.589

NA0591 2,764,668.076 307,997.099 18.491

100005 2,764,569.887 307,967.553 17.213

NA0657 2,764,853.892 308,221.181 19.417

GA0477 2,764,471.261 308,372.474 18.782

QT77 2,764,538.592 308,073.022 18.017

NA0587 2,764,532.553 308,106.479 17.991

3.3.2. Path Planning for Data Collection

After evaluating the area and scanning time of the test area, it was divided into two
independent scanned paths. The area of these two scanned paths and the distribution of
control points are shown in Figure 15. The scanned path 1 in red started from the control
point no. QT77, passed through control point no. NA0587, 1, 2, and NA0587, then it closed
at the starting point; the scanned path 2 in blue started from the control point no. QT77,
passed through control point no. 100005, 1, NA0591, and closed at the starting point.

3.3.3. Point Cloud Filtering, System Error Correction, and Coordinate Conversion

In order to retain more point clouds for an urban cadastral detail survey to digitize the
detail line data, the SLAM quality threshold value was changed to R ≤ 50 and G ≤ 50 and
B ≥ 250, and the point cloud data that was closer to the blue (good SLAM solution) was
retained. The incident angle threshold was consistent with the calibration operation, set to
70◦. In addition, according to the manual, the scanning distance is recommended to be kept
within 50 m. The calibration results in the previous section indicate that the point cloud
larger than the calibration calculation range would tend to increase the error. Therefore,
this study set the scanning distance threshold to 50 m. The conditions and thresholds of
point cloud filtering for a land detail survey are summarized in Table 11.

Table 11. Conditions and thresholds of point cloud filtering for a cadastral detail survey.

Filtering Condition Thresholds

SLAM quality R ≤ 50 & G ≤ 50 & B ≥ 250

Incident angle ≤70◦

Scanning distance ≤50 m

By using the calculated ranging system error parameters, the pseudo-ranging measure-
ment between the coordinates of each point and the corresponding laser center coordinates
were corrected, see Equation (14), and the point coordinates after the correction of the
ranging system error were recalculated based on Equation (7).

ricorrect = ri ∗ 0.9996 − 0.0088 (14)
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The recalculated point cloud data of scanned paths 1 and 2 after filtering, merge, and
conversion are shown in Figure 16. The control points used in scanned path 1 included four
control point nos. QT77, NA0587, 1, and 2. The RMSE of the coordinate conversion was
0.0354 m, and the number of point clouds after point cloud filtering was 68118612 points,
and the filtering ratio was about 40%. The control points used in the scanned path 2
included four control point nos. QT77, 100005, NA0591, and 1, the RMSE of coordinate
conversion was 0.0309 m, the number of point clouds after point cloud filtering was
93961336 points, and the filtering ratio was about 31%. The points after filtering were used
for an urban cadastral detail survey. The result will be demonstrated in the next subsection.

  

(a) (b) 

Figure 16. Point cloud after filtering. (a) Point cloud after filtering for scanned path 1. (b) Point cloud after filtering for
scanned path 2.

3.3.4. Urban Cadastral Detail Data Production
Detail Line Data by Manual Digitization

According to the principles described in Section 2.2.4 to digitize the cadastral detail
lines, the types of possible cadastral detail lines in the test area of this study could be
roughly divided into the boundary between townhouses and the existing road boundaries.
The two types of possible cadastral detail lines are shown in Figures 17 and 18 after
manual digitization.

 
Figure 17. Possible cadastral detail line on the boundary between townhouses.
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Figure 18. Possible cadastral detail line on an existing road boundary.

• Possible cadastral detail line on the boundary between townhouses

The possible cadastral detail line of the townhouses was mostly located at the center
of the wall or the center of the stairwells. Taking the selected possible cadastral detail line
in Figure 19a as an example, Figure 19b shows the overlapping results of the point cloud
data and the cadastral map. As seen, the cadastral line was located at the center line of
the stairwell of the townhouses and was roughly parallel to the plane on both sides of the
stairwell. The point cloud data and the image of the townhouse are shown in Figure 20.

  
(a) (b) 

Figure 19. An example of the possible cadastral detail line between townhouses. (a) The digitized possible cadastral detail
lines. (b) Overlap of point cloud and the cadastral map.

 
 

(a) (b) 

Figure 20. The image of a stairwell and its corresponding point cloud. (a) Image of a stairwell.
(b) Point cloud of a stairwell.
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The digitized process of the possible cadastral detail line between townhouses is
shown in Figure 21. The blue structure in the figure is the stairwell front façade. First, line
AB was digitized according to the width of the stairwell, and a line CD from one of the two
wall sides of the stairwell was also digitized. The line CD was translated to the midpoint
of line AB to become the line C’D’ parallel to the line CD, the line C’D’ is the position of
the possible cadastral detail line.

Figure 21. The digitized process of the possible cadastral detail line between townhouse.

If there were a gap between different townhouses, as shown in Figure 22, the midpoint
of the gap space was digitized as the possible cadastral detail line. The digitization process
was similar to the above, the line digitized at one side of the gap was translated to the
midpoint of the gap width, and the translated line was regarded as a possible cadastral
detail line.

 
Figure 22. The image of two different townhouses with a gap.

• Possible cadastral line on an existing road boundary

The possible cadastral detail line on an existing road boundary is as shown as the
red line in Figure 23a. Figure 23b shows the overlapping results of the point cloud data
and the cadastral map. The possible cadastral detail line was located at the junction of the
outermost wall of the building area and the road, namely the boundary of an existing road
boundary. The point cloud data and image of the wall are shown in Figure 24.
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(a) (b)

Figure 23. Possible cadastral detail line on an existing road boundary. (a) The digitized possible
cadastral lines. (b) Overlap of point cloud and the cadastral map.

 
 

(a) (b) 

Figure 24. The image of a road boundary and the corresponding point cloud. (a) Image of a road
boundary. (b) Point cloud of a road boundary.

The digitization of a possible cadastral detail line on an existing road boundary is
illustrated in Figure 25 where blue lines indicated the outermost boundary of the building
top view. The outer boundary of the wall located on the road boundary was digitized, and
then those line segments were connected as the possible cadastral detail line, as the line EF
shown in Figure 25.

Figure 25. The digitized process of the possible cadastral line close to the road boundary.

According to the obtained hand-held LiDAR point cloud, the possible cadastral
boundaries between the townhouses and on the existing roads were digitized manually
and joined in AutoCAD software to produce the results of the urban cadastral detail lines
of the test area. The final results are shown in Figure 26.
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Figure 26. The result of digitized detail lines from the corrected handheld LiDAR point cloud.

3.3.5. Results Analysis

(1) Analysis of detail line data

The digitized data of the corrected hand-held LiDAR point cloud and the results
survey by a total station are shown in Figure 27. The orange points were the detail points
surveyed by a total station. By visual inspection, there was no significant difference
between the digitized detail lines and detail points.

 

Figure 27. The digitized results of the corrected handheld LiDAR points and detail points surveyed
by a total station.

This test area contained 10 detail points surveyed by a total station which could be
used for planar position analyses (see Figure 3a) and 32 detail points surveyed by a total
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station which were used for vertical distance analyses (see Figure 3b). The calculated
error value is shown in Figure 28. The maximum plane position error of the current point
is about 8.3 cm, most of which is between 2 to 4 cm; the maximum error of the vertical
distance between the digitized detail lines and the detail points was about 16.5 cm, and
most of them were below 5 cm. In Taiwan, the maximum map scale in graphic digitized
areas is 1/500, the accuracy is 15 cm on-site. Therefore, 5 cm was used for the first level
for the analysis, then 5 cm to 10 cm was the second level, 10 cm to 15 cm was the third
level, the other level was greater than 15 cm. Figure 29 shows the error statistics of the
integration of the two error analyses based on the four levels.

(a) 

(b) 

Figure 28. The error analysis of digitized detail line data. (a) Planar position analysis. (b) Vertical
distance error analysis.
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Figure 29. The statistics of two error analyses of the digitized line data.

The error of the digitized detail data using the point cloud after the error correction of
the ranging system verified by the detail points surveyed by a total station, the average
error was 3.44 cm. About 97.62% of the digitized detail line data was less than 15 cm. There
was still one digitized detail error greater than 15 cm, but the selection of the detail point
location obtained by a total station implied the subjective judgment of the surveyor.

In areas with more complex building types, the selection of the detail point location
by the surveyor might be slightly different from the digitized location. The digitized detail
line data was the centerline of the stairwell in the townhouses. The surveyor could only
visually observe the approximate centerline position when surveying by a total station
instrument. Compared with the corner points of the townhouses, the detail point surveyed
by a total station was more susceptible to the influence of subjective judgment of the
surveyor. Therefore, these test results verified that digitized detail line data using the
corrected hand-held LiDAR point cloud was sufficient for the detail line data production
in the cadastral graphic digitized area. With the advantages of its fast scanning speed and
mobile mapping, it could scan a larger amount of detail point cloud on the ground in a
short time, and the required detail line data could be digitized for subsequent cadastral
overlap analysis.

(2) Analysis of the effect of ranging system error correction.

Based on the description in Section 2.2.4, the error difference of digitized detail lines
using the handheld LiDAR point clouds after and before ranging system error correction is
shown in Figure 30. Among 42 detail points, the error of 25 detail points, compared with
the digitized line data using uncorrected point clouds, was greater than the digitized line
data using the corrected point cloud. The positive values shown in Figure 30 indicate that
the accuracy was improved. The error was reduced by a maximum of 2.7 cm. The error of
17 detail points compared with the digitized line data using uncorrected point clouds was
less than the digitized line data using corrected point cloud. The negative values shown in
Figure 30 indicate that the accuracy was not improved.

Regardless of the error difference within 5 mm, about 73% error of the digitized detail
line data was reduced from the detail line data digitized using the uncorrected collected
handheld LiDAR points. Although 27% error of the digitized detail line data was still
higher than the digitized detail line data using the uncorrected collected handheld LiDAR
points, only less than 5% of the digitized detail data was of an error difference greater
than 2 cm. This suggests that the correction of the ranging system error could improve the
accuracy of most of the digitized detail data. An error difference greater than 2 cm was
not only affected by the quality of the trajectory solution of the handheld LiDAR but also
affected by the detail points from the subjective judgment of the surveyor.
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Figure 30. Error difference of digitized detail line data using the corrected and uncorrected handheld
LiDAR point clouds.

4. Conclusions

In this study, the feasibility of using a hand-held LiDAR scanner for the urban cadas-
tral detail survey was studied. Before performing the urban cadastral detail survey by
the handheld LiDAR scanner, named the GeoSLAM Zeb-Horizon scanner, the scanner
calibration was conducted by using the ground LiDAR scanner to collect the planar point
cloud in the selected indoor calibration field for calibration planes to calculate the planar
parameters for calibration. The ranging system error parameters, including the range scale
factor (S) and the rangefinder offset (C), of the VLP-16 multi-beam sensor carried by the
GeoSLAM Zeb-Horizon handheld LiDAR scanner were determined by the plane-based
calibration method proposed in our previous study [16].

After calibration, the distribution of residuals was more concentrated at 0 and the
residual distribution was more in line with the normal distribution curve. The average
residual was much closer to 0, and the posterior unit weight standard deviation became
smaller, both of which were improved compared to those without adding the ranging
system error parameter into the adjustment. Therefore, the plane-based dynamic calibration
method proposed in our previous study [16] used in this study could eliminate most of the
ranging system errors of the GeoSLAM Zeb-Horizon handheld LiDAR scanner.

From the analysis of the RMSE results of the check planes, the RMSE of all the check
planes was improved after the correction of the ranging system error for calibration data.
Up to 72.12% in one plane, an increase of about 2.4 cm was reached. The overall average
improvement was 32.61%. From the improvement of the RMSE of the check planes, it
demonstrated again that the proposed calibration approach could effectively improve the
overall point cloud accuracy of the GeoSLAM Zeb-Horizon handheld scanner.

From the investigation of the correlation between the additional ranging parameters
S and C, the negative correlation between the ranging additional parameters S and C
was −0.82. The lower negative correlation between the ranging additional parameters
makes the solution results of the ranging additional parameters S and C more reliable.
Meanwhile, the calibration data with about 40 ~45 m longer pseudo-calculated ranging
measurements for calibration, the calibration data used in our previous study [16] with
about only 20 m calculated pseudo-ranging measurements for calibration. Therefore, the
negative correction in [16] was extremely high to −0.985. However, −0.82 was also high,
so if a larger calibration site or a suitable scanning could be planned to collect the handheld
LiDAR points with longer calculated pseudo-ranging measurements for calibration in the
future, the negative correlation would expect to be reduced.

For the analysis of ranging systematic error parameters S and C, this study concluded
that scanning by a handheld LiDAR scanner, even if it was 2 m, the correction would be
1 cm for the ranging measurement. When using a handheld LiDAR scanner for precise
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surveying, for example, cadastral surveying, the errors of this ranging system should be
corrected to obtain more accurate results.

For the urban cadastral detail survey test, two independent scannings were performed
in the test area. Each scanning task took about 15 min and each scanned path was all closed
paths to ensure the accuracy of the trajectory calculations. Those scanning points were
corrected by the calibration ranging system error and they were used to manually digitize
the urban detail line data. According to the test results, the use of a handheld LiDAR
scanner could collect the 3D detail point clouds more globally and is easy to use in narrow
lanes where it is not easy for GNSS to receive the satellite signals and a total station or a
ground LiDAR scanner is difficult to set up.

Using the detail points surveyed by a total station to verify the detail line data digitized
from the corrected handheld LiDAR point cloud, 97% error of the digitized detail data
was less than 15 cm. It demonstrated the digitized detail data was sufficient for the urban
cadastral detail survey in the cadastral graphic digitization area in Taiwan.

Compared with the digitized detail data from uncorrected handheld LiDAR points,
regardless of the 5 mm difference between the digitized detail line data before and after
the system error correction, about 73% error of the digitized detail line data were reduced
against the detail line data digitized using the uncorrected collected handheld LiDAR
points. Although 27% error of the digitized detail line data was still higher than the
digitized detail line data using the uncorrected collected handheld LiDAR points, only
less than 5% of the digitized detail data was of a difference greater than 2 cm, indicating
that the correction of the ranging system error could improve the accuracy of most of the
digitized detail data.

The results demonstrated the feasibility of using a handheld LiDAR scanner to perform
an urban cadastral detail survey in digitized graphic areas. Therefore, the handheld LiDAR
scanner could be used for the production of the detail lines for an urban cadastral detail
survey for digitized cadastral areas in Taiwan. In the future, it is possible that it could also
be used as a handheld scanner to create a 3D cadaster for land management.
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Abstract: In this study, LiDAR sensor data were used to identify agricultural land boundaries. This is
a remote sensing method using a pulsating laser directed toward the ground. This study focuses on
accurately determining the edges of parcels using only the point cloud, which is an original approach
because the point cloud is a scattered set, which may complicate finding those points that define the
course of a straight line defining the parcel boundary. The innovation of the approach is the fact that
no data from other sources are supported. At the same time, a unique contribution of the research is
the attempt to automate the complex process of detecting the edges of parcels. The first step was to
classify the data, using intensity, and define land use boundaries. Two approaches were decided, for
two test fields. The first test field was a rectangular shaped parcel of land. In this approach, pixels
describing each edge of the plot separately were automatically grouped into four parts. The edge
description was determined using principal component analysis. The second test area was the inner
subdivision plot. Here, the Hough Transform was used to emerge the edges. Obtained boundaries,
both for the first and the second test area, were compared with the boundaries from the Polish land
registry database. Performed analyses show that proposed algorithms can define the correct course
of land use boundaries. Analyses were conducted for the purpose of control in the system of direct
payments for agriculture (Integrated Administration Control System—IACS). The aim of the control
is to establish the borders and areas of croplands and to verify the declared group of crops on a given
cadastral parcel. The proposed algorithm—based solely on free LiDAR data—allowed the detection
of inconsistencies in farmers’ declarations. These mainly concerned areas of field roads that were
misclassified by farmers as subsidized land, when in fact they should be excluded from subsidies.
This is visible in both test areas with areas belonging to field roads with an average width of 1.26 and
3.01 m for test area no. 1 and 1.31, 1.15, 1.88, and 2.36 m for test area no. 2 were wrongly classified as
subsidized by farmers.

Keywords: LiDAR system; segmentation; edge detection; agricultural land boundary

1. Introduction

Technological progress and development methods of processing spatial data have
popularized the use and increased the availability of various products presenting infor-
mation about the area. Laser scanning became a dynamically developing technology at
the turn of the 21st century and is finding an increasing number of applications in various
fields of science. Data from an airborne laser scanning system (ALS) significantly facilitate
and accelerate the collection of information about the topography and terrain, which leads
to both cooperation and competition with the technology and products of classical pho-
togrammetry and geodesy. Currently, the construction of digital terrain models (DTMs)
and digital surface models (DSMs) using LiDAR data is common, but the identification of
agricultural land boundaries based only on point clouds is a complex issue.

Light detection and ranging (LiDAR) is an active remote sensing system that first gen-
erates a laser pulse and then records the energy reflected from a given surface. Knowledge
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of the time of signal generation and the moment of its reception, as well as the properties
of the generated light wave can be used to determine the distance to the object. Airborne
laser scanning, which is performed using a flying plane or helicopter, works according
to this principle. The system uses two main components: a laser scanner, which collects
information about the distance between the scanner and a point on the ground surface, and
a combination of Global Positioning System (GPS) and the inertial navigation system (INS),
whose task is to measure the position and orientation of the system. As a result, data are
acquired in the form of a point cloud [1].

The point cloud is not the final product. It is a set of data (points), defined by spatial
coordinates, with stored information about intensity, RGB color, and echo. This representa-
tion reveals a wealth of information, and when processed into numerical models, it enables
subsequent applications.

Airborne laser scanning and its products in the form of point clouds and digital terrain
models and digital surface models are increasingly used. Precise terrain models contain a
large amount of detailed information. Compared to photogrammetry, they enable the study
of terrain overshadowed by vegetation. Therefore, this study focuses on the possibility of
using LiDAR sensor to identify places of land use changes—agricultural boundaries.

Identification of the course of agricultural boundaries is important to control in the
direct agricultural subsidies system (Integrated Administration Control System—IACS) [2].
The Land Parcel Identification System (LPIS), which is a part of IACS, is a system supporting
direct subsidies to farmers, which depend on the area of crops. Farms with a minimum
agricultural area of at least 1.0 ha, consisting of agricultural parcels of at least 0.1 ha, qualify
for direct payments. The procedure is based on the farmer filling in a declaration, which
involves specifying the area of crops intended for payments. The purpose of the control is
to determine whether the submitted declaration is correct, i.e., whether the land declared
by the farmer is indeed eligible for subsidies. Discrepancies are evidence of irregularities in
the declarations, which should be corrected by the farmers. So far control of applications
within the framework of direct payments for land is carried out by two methods, i.e., field
inspection, most often carried out with the use of GPS technology, and the so-called “photo”
method, based mainly on high-resolution satellite images or aerial images.

This study attempts to answer the question of whether ALS data can be used as a
basis for inspecting agricultural land boundaries. LiDAR data are a powerful source of
spatial information that includes not only coordinates but also intensity, return numbers,
and point cloud classification data. Due to the increasing density of acquired data, ALS is
increasingly used in new fields.

The purpose and novelty of this study was the attempt to automate the detection of
agricultural land edges by using only LiDAR data in the analysis. The innovation of the
method is the use of only airborne laser scanning data to indicate the course of agricultural
land boundaries. Determination of the agricultural land boundary is important in the
process of checking and updating the reference databases of the Land Parcel Identification
System. The proposed algorithm—based only on free LiDAR data—was able to detect
inconsistencies in farmers’ declarations.

2. Literature Review

The data coming from the LiDAR sensor are characterized by high measurement accu-
racy. The resulting digital terrain models and digital surface models depict the surrounding
reality in detail. These features determine the multidirectional use of airborne laser scanning
in various fields of science, such as engineering solutions—calculation 3D displacements of
bridges [3], 3D object detection along the road [4,5], building extraction [6,7], land cover
change detection, and forest succession monitoring [8,9] for heterogeneous land use urban
mapping [10], coastal monitoring [11,12], or archeological research [13,14].

The subject of the LPIS is widely discussed in many publications. Among other
things, researchers compare the LPIS to the national cadastre. Reference [15] evaluated
the extent to which the reference data from the cadastral register are modified in the
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LPIS in Poland. Reference [16], using the LPIS of the Republic of Ireland, demonstrated
significant differences in cropland/grassland reporting between an inter-annual based
reporting schema and a land use history approach. Research has also been conducted on
a data model for the collaboration between land administration systems and LPIS [17].
Study [18] focuses on a conceptual model of a large Turkish rural SDI design that combines
the sensor usage and attribute datasets for all types of rural lands. In India, a government
program used high-resolution aerial and satellite orthophotomaps, Global Positioning
System, and electronic total stations (ETSs) to create and update land cadastres in a short
time [19]. Reference [20] also analyzes the quality characteristics of orthoimages for visual
identification of agricultural fields. Reference [21] presents a field boundary detection
technique based on deep learning and a variety of image features which was combined
with the graph-based growing contours (GGCs) method to extract agricultural fields in a
study area in Northern Germany.

Airborne laser scanning is increasingly used in research to identify the type of land
cover [22]. Reference [23] evaluated the use of high-resolution LiDAR for classification
of native and tame grasslands and compared these classifications to the best available
landcover mapping product that is currently available for this area. Reference [24] evaluated
the effectiveness of integrating LiDAR data with high spatial resolution near-infrared digital
imagery for object-based classification of land cover types and dominant tree species, using
decision tree analysis. In [25] the authors proposed a process for objective and automated
identification of agricultural parcel features based on processing and combining Sentinel-2
data (to sense different types of irrigation patterns) and LiDAR data (to detect landscape
elements). Another example of combination cadastral data and remote sensing is in
article [26] where high-resolution multi-spectral WorldView-2 satellite images were used
with the object-oriented approach to image classification and image classification algorithm
creation. The main objective is to compare the results obtained with the traditional methods
of cadastral land evaluation and the results obtained by the methods of remote sensing.
Analyses were performed for an area of Butmir Municipality in Sarajevo. Remote sensing
data such as Sentinel-1 radar images were also used for mapping the different crops in the
Camargue region in Southern France. In this study, deep machine learning was used to
perform land classification [27]. Reference [28] proposed a geographic object-based image
analysis approach to enable semiautomatic land classification and mapping using LiDAR
elevation and intensity data. In [29], the authors used a hybrid capsule network for land
cover classification using multispectral light detection and ranging data. Reference [30]
focused on the extraction of uncultivable trails, ditches, and cultivated field parcels within
farmland on the basis of a LIDAR high-resolution gridded DEM. Reference [31] discussed
the impact that the quality of the digital elevation model has on the final result of landslide
susceptibility modeling. The landslide map was developed on the basis of the analysis of
archival geological maps and the light detection and ranging digital elevation model.

3. Specification of Test Data

The test area is located in Lubelskie Voivodeship in the village of Zimno and includes
only the agricultural lands on which this study focuses. The test area was characterized by
varied terrain. The laser data used in the study were taken from the ISOK project [32]. ISOK
is a Polish information security system created with the aim of improving the protection
of the economy, environment, and society against extraordinary threats, in the first place
against floods. The basic specifications of the ISOK project are: 12 points per square meter,
average distance between the points is 0.3 m, overlap between scans ≥20%, scan cross
angle ≤±25◦, min scan lane width ≥100 m, and laser beam diameter ≤0.5 m. The obtained
data are in the PL-1992 situation system and PL-KRON86-NH elevation system, with
additional information, i.e., intensity and min 4 echo. In the study area, in accordance with
the Regulation of the Minister of Regional Development and Construction on land and
building cadastres [33], the following agricultural land was distinguished: arable crop land,
marked with the symbol R; permanent grassland, marked by the symbol Ł; and permanent
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pastures, marked with the symbol Ps. In the selected area, the agricultural land should
correspond to the cadastral parcels. This would make it possible to check whether there is
any anomalous information in the area, indicating a discrepancy between the declarations
in the payment system. Two study samples were selected for analysis in order to determine
the actual land use status. A visualization of the area is shown in Figure 1.

Figure 1. The figure shows a point cloud acquired from the airborne laser scanning system. The
cloud is displayed in plan view. (a) displays natural RGB colors, (b) the displayed point cloud uses
the intensity, (c) the color corresponds to the height of the point, that is the Z coordinates.

4. Scheme of the Proposed Algorithm

The proposed algorithm consists of two stages. In the first stage, a point cloud is
interpolated into a regular grid with a resolution of 0.3 m. Nearest neighbor interpolation
was used. Two algorithms are used with the obtained rasters: edge detection and segmen-
tation, on the basis of which the approximate location of agricultural land boundaries is
estimated. In the next stage, we returned to the raw point cloud for pre-selected areas from
the first part. Two methods were used for the original data: PCA and Hough Transform,
which allowed for precise determination of agricultural land boundaries. The scheme of
the algorithm is shown in Figure 2.

Figure 2. The scheme of the proposed algorithm.

5. Detection of Agricultural Land Boundaries from Raster Data

As a first step, an initial detection of agricultural land was undertaken using a point
cloud stored as a raster. For this purpose, rasters with a resolution of 0.3 m were generated—
images of intensity, classification, height differences, and RGB values.
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An edge detection and segmentation process were performed in the MATLAB envi-
ronment.

5.1. Edge Detection

Edge detection was carried out using the combined operators of Prewitt and Canny [34],
based on intensity and classification rasters. It was decided to combine the two methods
in order to obtain a more reliable agricultural land boundary. The Prewitt operator, based
on gradients, more accurately determined the edges, but the information about them was
point-wise. The Canny operator, on the other hand, introduced linear information but detected
undesirable ploughing traces in the fields. Ploughing traces were recorded as lines, which
made it difficult to eliminate them in subsequent steps. In the next step, simple morphological
operators (erosion and dilation) were applied to remove noise in the image. The performed
work made it possible to eliminate many errors and better illustrate land use boundaries in
the analyzed area. However, errors are still visible. The result of this stage is presented in
Figure 3.

Figure 3. Edge detection of agricultural lands along with the visible errors—noise. The selected noise
is marked with red circles.

5.2. Segmentation

Segmentation was used as a further supporting step. The aim was to roughly de-
termine the areas of individual agricultural lands. Segmentation was carried out on the
intensity image.

It was decided to use the multi-resolution algorithm (MRS). This is one of the most
widely used segmentation models. It is based on the minimalization of the average hetero-
geneity in a single object extracted from an image [35]. This algorithm was chosen because a
literature review suggested that this segmentation method would be more accurate [36,37].

The first key parameter of the algorithm is scale, i.e., the size of objects (segments) in
the analyzed area. In this study, the value of 200 is used. In addition to the scale parameter,
two additional parameters are required: shape and compactness [38]. The best results
were obtained for values of 0.9 and 0.1, respectively. The segmentation result is shown in
Figure 4.

The performed work allowed for a preliminary identification of the areas of agricul-
tural fields, as well as their boundaries. The effect of the work is illustrated in Figure 5.

As can be seen from Figure 5, noise—incorrect edges in object detection—is still
present. The integration of edges and segments can be used to identify some of them.
Incorrect edges, related to ploughing traces in the fields, were located by correct segments
in this area—this mainly concerns three parcels in the central-western part of the study
and one parcel in the south-eastern part. Furthermore, in a few parts the segmentation did
not work properly. This was due to the similarity of intensities in the neighboring parcels
(see Figure 1b). The different edges in these areas indicate the locations of possible errors
(mainly the central and central-southern part of the study). The stage described in this
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subsection is considered as a prelude to further work aimed at more accurate identification
of agricultural land boundaries.

Figure 4. Segmentation of agricultural lands in the study area.

Figure 5. Overlaying of the segmentation and edge detection steps.

6. Accurate Detection of Agricultural Land Boundaries

After identification of initial regions of agricultural land boundaries, there was a return
to the original point cloud, but this was limited to the indicated sub-areas defining the
course of agricultural land boundaries. It was decided to return to distributed data because
there are several airborne laser scanning points per image pixel, which will significantly
increase the accuracy of the edge location (Figure 6). Therefore, the original data increase
the amount of information that can define the agricultural land with higher accuracy.

Figure 6. Scattered points superimposed on a raster representing parcel boundaries.

In this study, precise detection of agricultural boundaries was presented for two test
areas (segments). In the first area, the segment boundaries coincided entirely with a single
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area of agricultural land. In contrast, the second selected segment included additional
agricultural boundaries within its area. Therefore, two approaches for precise identification
of agricultural boundaries with the use of scattered data (irregular point cloud) were
applied in this study. In the first one, a solution based on principal component analysis
was used to determine land parcel boundaries. On the other hand, the second approach
used Hough Transform.

6.1. Boundary Detection Using Principal Component Analysis—Test Area No. 1

The first test field is an area of agricultural use whose extent overlaps with the rough
edges delineated in stage 1 (Figure 7).

Figure 7. Test area no. 1—segment, coinciding with approximate edges.

Analyses began by indicating the test area (segment) from the segmentation image
(Figure 8a), then a product was performed with the raster depicting the edges of the
agricultural (Figure 8b), resulting in an image showing only the edges of the segment
(Figure 8c).

Figure 8. The sequence steps (a–c) leading to a raster edge representation of one segment.

The next stage leading to a correct determination of the edges was grouping the set of
points into four parts containing points describing each parcel edge separately. For this
purpose, a solution based on principal component analysis (PCA) was used. This solution
allows us to determine the scatter model of the dataset in the form of a probability ellipse.
Each pixel in the image is defined by two variables, the X variable and the Y variable
(column number, row number). The ellipse is plotted based on the assumption that the
given two variables follow a two-dimensional normal distribution (Gaussian distribution).
The orientation of ellipse depends on the sign of correlation coefficient between variables,
the size of the ellipse is determined by the intervals and its center is defined by the averages
of the variables X and Y. The term intervals refers to the root of the eigenvalues multiplied
by the user-selected value. Eigenvalues can be interpreted as proportions of the variance
explained by correlations between relevant variables. Therefore, in solving this task, the
values of variance and covariance were calculated for the variables X and Y to build the
designated perimeter of the object.

The value of variance, which determines the diversity of the community, is equal to
the sum of the arithmetic mean of squares of deviations of individual feature values from
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the arithmetic mean of the community. The unconstrained variance estimator for X and Y
coordinates was calculated from the following formulas [39]:

sx
2 =

n
∑

i=1
(x − xi)

2

n − 1
sy

2 =

n
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i=1
(y − yi)

2

n − 1
, (1)

S2
x/S2

y—the variance for X/Y calculated from the sample—unbiased variance estima-
tor;

cov(X,Y)—covariance of a variables X, Y set;
x/y—sample mean value for X/Y;
xi, yi/—value of the X/Y variable for the i-th point
n—sample size.
The covariance value, which determines the linear relationship between the random

variables X and Y, can be calculated from the following formula:

cov(X, Y) =
1
n

n

∑
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(x − xi) · (y − yi), (2)

As a result of the calculations performed, the variance–covariance matrix can be

constructed
[

S2
x cov(X, Y)

cov(X, Y) S2
y

]
for X, Y coordinates. From the obtained matrix, the

eigenvalues of the matrix can be calculated.
The obtained variance–covariance matrix and eigenvalues were used to calculate

the ellipse parameters, i.e., orientation and size of the ellipse according to Hausbrandt’s
formulas [40].
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2·cov(X,Y)
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x−s2
y

)
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Ω—the omega angle between the horizontal line and the direction of the eigenvector
with the larger eigenvalue;

S2
x/S2

y—the variance for X/Y calculated from the sample—unbiased variance estima-
tor;

cov(X,Y)—covariance of a variables X, Y set.
The lengths of the minor (a) and major (b) half-axes of the confidence area ellipse were

calculated from the formulas below:

e1 = 2 · √a1, e2 = 2 · √a2, (4)

e1—the length value for the minor half-axis of the ellipse;
e2—the length value for the major half-axis of the ellipse;
a1—minor eigenvalue of the test area object;
a2—major eigenvalue of the test area object.
In the above formula, the square root of the eigenvalues was multiplied by 2, which

means that 95.5% of the feature values lie at a distance ≤2 from the expected value. The
center of gravity was calculated as the arithmetic mean of the X, Y coordinates, which
determined the midpoint of the ellipse. The obtained parameters can be used to determine
the span of the probability ellipse and to determine the main directions along which the
points defining the boundaries of the parcel are arranged (Figure 9).
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Figure 9. Example of an error ellipse calculated for one of the parcels of land.

The parameters of the ellipse also made it possible to divide the points into four sets of
data that define four corresponding boundaries. In each of the four sets of points, a simple
least squares approximation was performed (Figure 10). The approximation is an iterative
process that, in successive iterations, discards outlier points from the straight line until
the agricultural edges are accurately determined. Outlier points are those points that lie
further than the average distance of the points from the straight line obtained in successive
iterations. The iterative process ends when the sum of the squares of the outliers reaches a
minimum.

Figure 10. Approximation of straight lines based on scattered points that define utility boundaries.

The intersections of the detected lines determined the vertices of the sought parcel.

6.2. Boundary Detection Using Hough Transform—Test Area No. 2

The second test field was an erroneously delineated segment. The rough edges
produced in the first stage indicate that there is probably more agricultural land here
(Figure 11).

Figure 11. Test area no. 2—segment with more approximate edges.

Similar to test area no. 1, a segment was first selected on which a raster representing
the edges of the utilities was overlaid, resulting in a binary image containing only the edges
of the segment (Figure 12a–c).
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Figure 12. The next steps (a–c) detected the outer and inner edges of the selected segment.

The selected segment contains not only edges describing its perimeter but also several
edges inside the area. The study showed that the principal components method cannot
automatically write to separate sets of points representing each edge (those inside and
outside). Therefore, Hough Transform was used to select and identify all the edges of the
analyzed area. Hough Transform enables fast detection of straights in a binary image [41].
When detecting collinear pixels in an image in this method, it is possible to indicate the
number of straights that need to be detected. In this study, nine lines were detected
(Figure 13).

Figure 13. A binary raster representing the edges with the detected lines by Hough Transform.

Based on the detected lines, it was possible to group the scattered points into appro-
priate sets, defining the course of the edge. The condition determining points belonging to
a given edge was the distance of the point from the straight line. Thus, nine sets of points
were defined, and in each set a straight line was approximated by the least squares method
(Figure 14).

Figure 14. Approximation of straight lines defining the course of agricultural edges.

In the next step, the vertices of the areas where the lines intersect were determined.
Next, the vector cadastral data were overlaid on the raster representing the edges of the
agricultural land (Figure 15). According to IACS, there can be several types of agricultural
land in each parcel of land. However, after visual verification it was found that in the third
segment there is one agricultural area of land in the whole cadastral parcel. Therefore, the
inclusion of two straights in further analyses was discontinued. The straights are indicated
by arrows in Figure 15.
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Figure 15. Land use boundaries and overlaid vectors from land records. Arrows indicate boundaries
that were not considered in further analyses.

7. Analysis and Discussion of the Obtained Results

7.1. Test Area No. 1

Test area no. 1 was the arable crop land (R) corresponding to cadastral parcel no. 700.
The analysis of the obtained results consisted of comparing the borders of the agricultural
land obtained by means of the PCA (Section 6.1) with the borders of the agricultural land
from the cadastral records. For this purpose, additional points were inserted on both lines
at corresponding intervals of 0.5 m. Next, deviations were determined as distances between
corresponding points.

Western boundary (W): Conformity of agricultural land boundaries with the data
recorded in the land cadastre was observed. Obtained deviations are within the range from
0.23 to 0.35 m. The average value is 0.29 m.

Southern boundary (S): Much larger differences are obtained. Deviations range from
0.37 to 2.16 m, with an average value of 1.26 m. Anomalous information is observed,
showing a discrepancy between the declaration and the actual state of use (Figure 16a).
There is a road running in the area, and its boundary is not clear, resulting in changes in
the actual state of use for these parts of the parcel.

Figure 16. Comparison of the southern boundary of the land parcel (S) (a) (red line—boundary from
the land cadastre, blue—from the LiDAR) and the northern boundary (N) (b) (red line—boundary
from the land cadastre, blue—from the LiDAR data).

Eastern boundary (E): Conformity of agricultural land boundaries with the data
recorded in the land cadastre was observed. Deviations range from 0.13 to 0.39 m. The
average value is 0.26 m.

Northern boundary (N): The largest differences were obtained for the northern bound-
ary of the agricultural land (Figure 16b). LiDAR determined a completely different course
of the agricultural land boundary than indicated by the land cadastre. Deviations range
from 1.81 to 4.21 m. The average value of deviations is as high as 3.01 m. Analyzing the data
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against the intensity map, it can be observed that both the LiDAR data and the cadastre
data show discrepancies in relation to the actual land use.

The analysis is presented in two tables. Table 1 gives the summarized results for the
analyzed agricultural land.

Table 1. Basic statistics for agricultural land R (parcel no. 700).

Agricultural
Land

Parcel Boundary
Minimum

Deviation (m)
Maximum

Deviation (m)
Average

Deviation (m)
Remarks

arable crop
land—R 700

boundary W 0.23 0.35 0.29
conformity of the

declaration with the
actual state

boundary S 0.37 2.16 1.26
non-conformity of the
declaration with the

actual state—field road

boundary E 0.13 0.39 0.26
conformity of the

declaration with the
actual state

boundary N 1.81 4.21 3.01
non-conformity of the
declaration with the

actual state—field road

It is noted that the largest amount of anomalous information occurs for areas of
agricultural land boundaries with field roads. Table 2 is a comparison carried out for
two variants: The first considers the situation of the agricultural land–agricultural land
boundary and the second the agricultural land–field road.

Table 2. Anomalous information for variant 1, land–land boundary, and variant 2, land–field road
boundary.

Boundary
Minimum

Deviation (m)
Maximum

Deviation (m)
Average Deviation

(m)

land–land boundary 0.13 0.39 0.27

land–field road
boundary 0.37 4.21 2.01

7.2. Test Area No. 2

After the analysis of the cadastral data, it was revealed that the selected segment
consists of three agricultural lands—R, Ł, corresponding to cadastral parcels with the
numbers: 702 (R), 705 (R), and 707 (Ł). The algorithm based on Hough Transform correctly
extracted these three areas.

As a first step, a detailed analysis of the agricultural land R for parcel 702 was carried
out. Western boundary (W): Conformity of agricultural land boundaries with the data
recorded in the land cadastre was observed. Deviations range from 0.23 to 0.40 m. The
average value is 0.31 m.

Southern boundary (S): Much larger differences were obtained. The deviations range
from 1 to 1.61 m, with an average deviation of 1.31 m. In this area we are dealing with a
field road, the course of which is unclear. A discrepancy between the declaration and the
actual state of use can be seen in the form of a systematic shift between the LiDAR data
and the agricultural land from the land cadastre (Figure 17a).
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Figure 17. Comparison of the southern boundary of the land parcel (S) (a) (red line—boundary from
the land cadastre, blue—from the LiDAR) and the northern boundary (N) (b) (red line—boundary
from the land cadastre, blue—from the LiDAR).

Eastern boundary (S): For the eastern boundary, deviations of 0.40–0.70 m were ob-
tained, with a mean value of 0.55 m.

Northern boundary (N): Much larger differences were obtained (Figure 17b). The
deviations range from 0.66 to 1.96 m, and the mean value of the deviations is 1.15 m. In this
case a field road is also located in the area.

Due to the repeated spatial situation, the results for parcels 705 and 707 are grouped
together in Table 3. For both parcels similar types of differences to parcel 702 appeared, as
discussed above. The results for plot 702 are also included in the table.

Table 3. Basic statistics for parcels 702, 705, and 707.

Agricultural
Land

Parcel Boundary
Minimum

Deviation (m)
Maximum

Deviation (m)
Average

Deviation (m)
Remarks

arable crop
land—R 702

boundary W 0.23 0.40 0.31
conformity of the

declaration with the
actual state

boundary S 1.0 1.61 1.31
non-conformity of the
declaration with the

actual state—field road

boundary E 0.40 0.70 0.55
conformity of the

declaration with the
actual state

boundary N 0.66 1.96 1.15
non-conformity of the
declaration with the

actual state—field road

arable crop
land—R 705

boundary W 0.40 0.70 0.55
conformity of the

declaration with the
actual state

boundary S 1.72 2.33 1.88
non-conformity of the
declaration with the

actual state—field road

boundary E 0.55 1.22 0.88
conformity of the

declaration with the
reality state

boundary N 0.72 0.77 0.74
conformity of the

declaration with the
actual state—field road
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Table 3. Cont.

Agricultural
Land

Parcel Boundary
Minimum

Deviation (m)
Maximum

Deviation (m)
Average

Deviation (m)
Remarks

grassland—Ł 707

boundary W 0.55 1.22 0.88
conformity of the

declaration with the
reality state

boundary S 1.86 2.87 2.36
non-conformity of the
declaration with the

actual state—field road

boundary E 0.00 0.42 0.16
conformity of the

declaration with the
reality state

boundary N 0.31 0.64 0.47
conformity of the

declaration with the
actual state—field road

A similar rule was observed as in the previous analyses, i.e., a much higher agreement
of boundaries for the land–land boundary variant than for the land–field road boundary
variant. This is presented in Table 4.

Table 4. Anomalous information for variant 1, land–land boundary, and variant 2, land–field road
boundary.

Boundary
Minimum

Deviation (m)
Maximum

Deviation (m)
Average

Deviation (m)

land–land boundary 0.00 1.22 0.47

land–field road
boundary 0.31 2.87 1.31

8. Conclusions

In summary, the proposed algorithms make it possible to carry out controls in the
system of direct payments to agriculture. The use of laser data makes it possible to
determine specific agricultural land and to determine the size of anomalous information.
Correctness has been noted in relation to the conformity of the actual statue with the
declaration in the case of boundaries of adjacent agricultural land (variant 1: land—land).
However, in areas where there are borders of agricultural land with field roads, there are
visible discrepancies (variant 2: land—field road). In these areas, anomalous information
connected with the difference between the actual use of a given area and the legal status
recorded in the declaration should be noted.

The obtained results were considered satisfactory. LiDAR proved to be very useful
technology in the process of detecting agricultural boundaries. Most of the boundaries
were readable in the laser data.

The advantage of using a point cloud over traditional aerial images is that an additional
elevation information can be used. In the case of aerial images, analyses are carried out on
2D data stored as a raster. In the developed algorithm, the second step returns to the raw
point cloud. The knowledge of an additional Z coordinate may allow for more precise edge
detection in areas where the 2D information is ambiguous.

It was noted that the introduction of higher resolution data would certainly contribute
to an increase in accuracy. The use of laser data from a UAV flight would allow a more
precise determination of boundaries in doubtful cases, not fully legible in the case of the
data used in this study (average distance between points 0.3 m).

The two-stage approach to analysis also proved to be a valuable solution. Edge
detection and segmentation algorithms used in the first stage allowed us to roughly estimate
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the area and boundaries of individual agricultural lands. In the second stage, we returned to
the original data for the locations presenting the contours of the agriculture boundaries. In
the developed method of detecting straights, two approaches were used. Two approaches
were chosen because the first area is a rectangular parcel of land and the second test
area is a rectangle with an internal land boundary, and precise determination of the land
boundary is possible if only one boundary is displayed in the raster image. Therefore,
in each approach, the aim was to divide the point cloud into datasets representing only
one land use boundary. With such datasets it is possible to approximate straights with
higher accuracy than by using raster data. Detected land use boundaries are described by
the equation of the straight line, determined in an iterative process, wherein subsequent
iterations’ outliers are rejected. Thus, the obtained straight line reliably reflects the course
of land use boundaries detected based on ALS data.

The created algorithm allowed the detection of inconsistencies in farmers’ declarations.
These were related to areas of field roads that were incorrectly declared by farmers as
donated land, when in fact they should be excluded from subsidies. It was detected that
both test areas, test field 1, areas belonging to field roads with an average width of 1.26 and
3.01 m, and test field 2, areas belonging to field roads with an average width of 1.31, 1.15,
1.88, and 2.36 m, were incorrectly classified by farmers as donated land.

In this study the authors focus on identification of land boundaries between land
uses covered with low vegetation. In the next research, the authors intend to analyze the
boundaries of parcels that are farmed and covered with different species of plants. Such
diversity can help at the stage of segmentation because each species can have a different
intensity value. Different intensity value will contribute to easier initial identification of
parcel edges. At the stage of precise identification of plot boundaries, on the other hand, it
may be necessary to select only points reflected from the ground. Then it will be necessary
to perform a filtering of the lidar data to be used for further analysis.

In conclusion, the method used in this study based on LiDAR data is useful for
automatic verification and monitoring of anomalous information showing inconsistency of
the declaration with the actual state of land use.
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Abstract: Automatic building extraction from remote sensing data is a hot but challenging research
topic for cadastre verification, modernization and updating. Deep learning algorithms are perceived
as more promising in overcoming the difficulties of extracting semantic features from complex scenes
and large differences in buildings’ appearance. This paper explores the modified fully convolutional
network U-Shape Network (U-Net) for high resolution aerial orthoimagery segmentation and dense
LiDAR data to extract building outlines automatically. The three-step end-to-end computational
procedure allows for automated building extraction with an 89.5% overall accuracy and an 80.7%
completeness, which made it very promising for cadastre modernization in Poland. The applied
algorithms work well both in densely and poorly built-up areas, typical for peripheral areas of
cities, where uncontrolled development had recently been observed. Discussing the possibilities and
limitations, the authors also provide some important information that could help local authorities
decide on the use of remote sensing data in land administration.

Keywords: image segmentation; deep-learning; building outlines; cadastre modernization; FCN;
high-resolution aerial orthoimages; LiDAR data

1. Introduction

Modern cadastral systems, being the part of land administration systems, constitute
an indisputable tool for sustainable land management [1]. Over the past several decades,
the cadastre, both as a concept and system, has significantly developed and changed its
role from a simple land register to a technologically advanced multidimensional and multi-
functional system, supporting effective and sustainable land management [2]. Moreover,
the continuous evolution of land administration systems, as well as the cadastre as part of
them, results from the increasing human pressure on the environment [3,4]. Particularly,
changes are driven by and heavily dependent on processes such as economic and political
reform, urbanization, agricultural intensification and deforestation, and on the other hand,
concern for nature protection, human well-being and sustainable development [1–4].

For three decades, care for the environment has been one of the key global trends
in land use and management. This has led to the emergence of many global initiatives
related to environmental protection and care for the present and future human well-being
in friendly natural and socio-economic environments. The most important of them are
Agenda 21 [5] and Agenda 2030 [6], which aim to define care for the environment and
sustainable development to a large extent and at an earlier stage of planning. Monitoring
towards the 2030 Agenda Sustainable Development Goals (SDGs) involves the availability
of high-quality, timely and disaggregated data, which are of great importance for evidence-
based decision making and for ensuring accountability for the implementation of the
2030 Agenda. Many concerns about the state of the environment reflected in the SDGs
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are related to unprecedented urban growth. Urbanization, as a complex and continuous
process worldwide, has been going on for hundreds of years, although it has significantly
accelerated in the last few decades. As stated by UN Secretary General [7] “from 2000
to 2015, in all regions of the world, the expansion of urban land outpaced the growth
of urban populations”. This results in uncontrolled urban growth and a decrease in city
density. Remote sensing data are undoubtedly one of the most important data sources
for monitoring urban sprawl and updating data in cadastral systems, as they provide not
only information on the geographic location but also some characteristics of buildings
and associated artificial infrastructure [8,9]. Since the 1990s, the implementation of remote
sensing for land management and cadastre updating has evolved significantly due to
technological advances, particularly, high-resolution and multispectral images, advances
in aerial imaging technologies, image processing algorithms as well as internet and mobile
technologies [9–11].

In Poland, the register of buildings along with the land and mortgage registers is a
coherent part of the cadastre, which is ultimately to be kept in accordance with the assump-
tions of the INSPIRE (INfrastructure for SPatial InfoRmation in Europe) Directive [12] and
Land Administration Domain Model [13]. These registers, being public registers, form part
of the Polish land administration system and provide support to local authorities in their
decision-making [12]. A significant incentive to the commencement of the Polish cadastre
modernization, resulting in its transition from analogue to electronic form, was initiated in
2004 with Poland’s accession to the European Union [12]. Since that year, intensified works of
the Head Office of Geodesy and Cartography, aimed at modernizing the existing cadastral
system, have been observed [13–15]. The amendment to the Geodetic and Cartographic Law
of 2010 and the Ministry Regulation on the land and building register (denoted as EGiB) [16]
introduce comprehensive administrative procedures for updating, verifying and modernizing
the cadastre to ensure data accuracy and reliability. The necessity to adapt the Polish cadastre
to European requirements (including the INSPIRE directive and the Land and Parcel Identifi-
cation System (LPIS)) was the driving force for launching the two nationwide projects aimed
at converting analogue parcel boundaries and building outlines to digital form, namely the
Integrated System of Real Estate Information [14] and the Polish LPIS [17].

In a few years, the modernized cadastre covered almost the entire country’s territory.
As documented by the Head Office of Geodesy and Cartography at the end of 2017, building
outlines were still recorded in an analogue (paper) form in 3% of urban and 14% rural
areas, and respectively 1% and 6% in the raster (scanned analogue map) supplemented by
buildings’ centroids [18]. Moreover, § 63.1. of the latest update of the land and buildings
register regulation [19] allowed for the registration of building outlines in the form of a
point representing the building center. The regulation also requires cadastral authorities
to periodically verify the land and building register (§ 44), as well as to eliminate existing
inconsistencies by updating or modernizing cadastral data. It should be noted, however,
that the modernization of the cadastre has been defined by law [19] as a set of technical,
organizational and administrative activities undertaken to adapt the existing cadastral
data to the requirements of a modern, up-to-date and fit-for-purpose IT system. Hence,
the motivation of this study is a thorough analysis of the possibilities and limitations of
verification and modernization of the Polish cadastre by remotely extracted buildings from
high-resolution aerial orthoimages and LiDAR data. We proposed a three-stage end-to-end
methodology of building rooftop outlines extraction. An inseparable part of the method
constituted the geo-processing of vectors of buildings’ rooftop surfaces, derived from deep
learning orthoimage segmentation and LiDAR data processing. Therefore, the research
makes both a scientific and a practical contribution. The main goal of this study is to
automate the extraction of building rooftop outlines based on the deep learning algorithm
enriched with the LiDAR segmentation and geoprocessing to map the rooftop outline of
buildings. The deep learning algorithm is based on a modified U-Shape Network (U-Net)
so it provides precise buildings segmentation with a relatively small number of training
images. In the proposed U-Net architecture, the size of the feature map was empirically
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set-up as 416 × 416 × 1. The analysis is supported by publicly available data (orthoimagery
and LiDAR densely classified data (DSM)) from the official geoportal of the Head Office of
Geodesy and Cartography, the National Mapping Agency in Poland.

The remainder of the paper is structured as follows. Section 2 gives an overview of
building extraction algorithms based on high-resolution images and LiDAR data. Study
area, materials and methods descriptions are presented in Section 3. Section 4 provides
a concise description of the experimental results, while a discussion with the results,
and hitherto achievements in the field are given in Section 5. The paper ends with the
concluding remarks, Section 6.

2. Deep Learning-Based Building Extraction-Related Works

Automatic building extraction from remotely sensed data has been a major research
topic for decades due to the importance of building data in many areas of economy and
science, inter alia land administration, topographic mapping, urban planning and sus-
tainable development, natural hazards risk management and mitigation or humanitarian
aid [20–24]. Moreover, building extraction algorithms enable cost- and time-effective
approaches to 3D data acquisition, maintenance and analysis [25]. At the beginning of
the 21st century, Baltsavias [26] observed some tendencies in the development of image
analysis methods for building extraction. These included the increasing use of holistic
and rule-based approaches to the problem, such as semantic and Bayesian networks or
artificial neural networks (ANN) and fuzzy logic. Furthermore, increased use of a priori
knowledge (e.g., from vector data) and multi-image and multi-sensor 3D methods have
become standard in both image processing and object modelling. However, in those days,
as stated by Baltsavias [26], “reliability and completeness of automated results together
with their automatic evaluation remain the major problems”. The issue of reliability and ac-
curacy of building models has improved significantly in recent years through multi-sensor
fusion-based building detection methods [23,27–30] and the possibility of applying deep
learning techniques. Ma et al. [31] provided a meta-analysis of deep learning methods in
remote sensing applications and highlighted the pioneering achievement of Zhuo et al. [32]
on increasing the OpenStreetMap (OSM) buildings’ location accuracy derived from deep
learning-based semantic segmentation of oblique Unmanned Aerial Vehicle (UAV) images.

Convolutional neural networks (CNNs), being a typical deep learning method, are
widely used in building extraction, especially for object detection and image semantic
segmentation [24,33,34]. Wang et al., [21] found that the drawback of building extraction
algorithms, due to the lack of global contextual information and careless up-sampling
methods, may be overcome by a U-shaped network and an adjusted non-local block
called the Asymmetric Pyramid Nonlocal Block (APNB). The test provided by authors [21]
showed that the accuracy of the established Efficient Non-local Residual U-shape Net-
work (ENRU-Net) gives a remarkable improvement against commonly used semantic
segmentation models (e.g., U-Net, FCN-8s, SegNet, or Deeplab v3). Shao et al., [34] have
introduced a new, two-module deep learning network named BRRNet for complete and
accurate building extraction from high-resolution images. The prediction module, based on
encoder–decoder structure, is aimed at building extraction, while the residual refinement
module improved the accuracy of building extraction. The experiment of Shao et al. [34] in
Massachusetts showed superiority over other state-of-the-art methods (e.g., USPP, EU-Net
and MC-FCN) [35] in terms of building integrity (wholeness) and building footprint accu-
racy. USPP introduced by Liu Y. et al. [35] denotes a U-shaped encoder-decoder structure
with spatial pyramid pooling. It contains four encoder blocks, one spatial pyramid pooling
module and four decoder blocks. In the encoder phase, the VGG-11 architecture is used
as the backbone. EU-Net is an effective fully convolutional network (FCN)-based neural
network consisting of three parts: encoder, dense spatial pyramid pooling (DSPP) bloc
and decoder. The network, developed by Kang et al. [36], is designated toward building
extraction from aerial remote sensing images. MC-FCN (multi-constraint fully convolu-
tional networks) consist of a bottom-up/top-down fully convolutional architecture and
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multi-constraints that are computed between the binary cross-entropy of prediction and
the corresponding ground truth [37].

Since the ascension of deep learning methods, especially convolutional neural net-
works, the trend towards applying them to improve building extraction models is clearly
observable [24,38,39]. Furthermore, the widespread availability of open remote sensing
images, including high-resolution images, and aerial laser scanning data, have signifi-
cantly contributed to the recent boost in automated building extraction algorithms. Bittner
et al. [38] presented a method to fuse depth and spectral information based on a fully
convolutional network (FCN) that can efficiently exploit mixed datasets of remote sensing
imagery to extract building rooftops. The authors [38], however, pointed out that the FCN
requirement for multiple training samples was a downside to this method and increased
data processing costs and time. Maltezos et al. [24] introduced an efficient CNN-based deep
learning model to extract buildings from orthoimages supported by height information
obtained from point clouds from dense image matching. Results from Germany (the city of
Vaihingen) and Greece (seaside resort of Perissa) showed promising potential in terms of
robustness, flexibility and performance for automatic building detection. Huang et al. [33]
noticed that “the commonly used feature fusion or skip-connection refine modules of FCNs
often overlook the problem of feature selection and could reduce the learning efficiency of
the networks”. This contributed to the development of a fully convolutional neural net-
work, namely the end-to-end trainable gated residual refinement network (GRRNet) that
fused high-resolution aerial images and LiDAR point clouds for building extraction. The
test conducted in four US cities demonstrated that the GRRNet has competitive building
extraction performance in comparison with other approaches, with an overall accuracy
of 96.20% and a mean IoU (Intersection over Union) score of 88.05% among all methods
that have the encoder–decoder network architectures. Moreover, the source code of the
GRRNet was made publicly available for researchers (see references) [33]. The literature
analysis presented above shows many types of FCN architecture modification as well as
the possibility of using various scenarios and data augmentation during network train-
ing, which in turn leads to improved accuracy and reliability of building extraction from
remotely sensed data.

Developing effective methods for automatic building detection based on multisource
data remains a challenge due to many factors related to the remotely sensed data (point
cloud sparsity or image spatial and spectral variability) as well as the complexity of urban
objects or data misalignment [40,41]. To overcome these challenges, Nguyen et al. [40] intro-
duced the Super-Resolution-based Snake Model (SRSM) that operates on high-resolution
LiDAR data that involved a balloon force model to extract buildings. The SRSM model is
insensitive to image noise and details, as well as simplifying the snake model parameter-
ization, and could be applied on a large scale. Gilani et al. [41] noticed that often, small,
shaded, or partially occluded buildings are misclassified. Therefore, based on point clouds
and orthoimagery, the building delineation algorithm identified the building regions and
segmented them into grids. The problem of nearby trees classified as buildings was solved
by synthesizing the point cloud and image data. As reported by the authors, [41] “the
correctness of above 95%, demonstrating the robustness of the approach”.

Recently, CNNs were integrated with regularized and structured building outline
delineations. Girard et al. [42] introduced a deep learning method predicting vertices of
polygons that outline the objects of interest. Zhao et al. [43] proposed the R-CNN Mask
followed by regularization algorithm to create polygons from the building segmentation
results. Girard et al. [44] employed a deep image segmentation model with a frame-field
output which ultimately improved building extraction quality and provided structural
information, facilitating more accurate polygonization. Among deep learning frameworks,
PolyMapper deserves special attention, as it directly predicts a polygon representation
describing geometric objects using a vector data structure [45,46]. The PolyMapper ap-
proach introduced by Li et al. [45]) performs building detection, instance segmentation and
vectorization within a unified approach based on modern CNNs architectures and RNNs
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with convolutional long-short term memory modules. Zhao et al. [46], however, employed
EffcientNet built on top of PolyMapper supported by a boundary refinement block (BRB)
to “strengthen the boundary feature learning” and finally to improve the accuracy of the
building’s corner prediction. The CNNs shown above, integrated with the regularized and
structured building outlines, demonstrate end-to-end approaches capable of delineating
building boundaries to be close to reference data structure.

A vital part of image classification and segmentation is accuracy assessment [47].
Literature provides a wide range of metrics to assess the accuracy of buildings extraction
from remotely sensed data. The most common are precision, completeness, overall accuracy,
F1 score, Jaccard similarity and kappa indexes [37,48]. Some of them are pixel-based and
others object-based; however, a few can be used in both pixel-based and object-based
evaluation [20,24,40,41,43]. Moreover, RMSE and normalized median absolute deviation
(NMAD) are frequently used to measure the positional accuracy [37,42,43]. Aung et al. [20]
documented that pixel-based evaluation is more objective as it is based on the status of
each pixel; however, the object-based quality assessment is a good measure when object
shape and texture are concerned. A similar opinion was shared by [42], who also noted that
the pixel-based assessment to compare polygons often requires vector data rasterization,
which influences the accuracy assessment. Hence, some authors, e.g., [40,41], used both
per-object and pixel-based accuracy measures.

Considering the limitations of existing methods to assess the accuracy of building
extraction, the authors of [42] developed a new metric for comparison of polygons and
line segments, named PoLiS. PoLiS can be used to assess the quality of extracted building
footprints, provided that reference data is available. The metric considers the shortest
distance from a corner of one building’s boundary to any point on the other boundary,
which constitutes simplicity in implementing. However, as found by Dey et al. [48], the
PoLiS metric is significantly influenced by corresponding corners selection, especially for
complex-shaped buildings, when the number of extracted corners differs substantially
from reference data. Evaluation of buildings extracted from LiDAR data is even more
complicated, as found by Dey et al. [48], due to a meandrous (zigzag) pattern without many
details, hardly comparable with reference building outlines. The authors Dey et al. [48]
overcame this problem by introducing a new, robust corner correspondence (RCC) metric
that allowed to assess the extra- and under-lap areas of extracted and reference buildings.
The RCC metric constitutes a combined measure of the positional accuracy and shape
similarity and allows for a more realistic assessment of the extracted building boundaries
from LiDAR data [48].

3. Study Area, Materials and Methods

3.1. Study Area

The experiment was carried out in Kobiałka, a peripheral part of the Polish capital,
Warsaw (see Figure 1). Kobiałka is a housing estate in northern Warsaw, a typical residential
area, dominated by detached buildings and green infrastructure. The area was selected
for several reasons. Firstly, the Warsaw Municipality has been ordering high-resolution
aerial orthophotos mainly for the development of the cadastre and the real estate market.
Secondly, from the end of the 20th century, Kobiałka was characterized by unstoppable
and in many cases uncontrolled growth of buildings due to many undeveloped areas with
favorable housing conditions, e.g., proximity to a forest, good communication with the
city center [49]. Thirdly, the reorganization of the cadastral department of the Warsaw
municipality, which has been going on for several years, and the change of some important
national regulations, including the geodetic and cartographic law and the construction law,
have delayed the cadastre modernization, particularly the building register.

In particular, the study area covered approx. 800 ha, in the east from 21◦02′52′′.2 to
21◦03′44′′.7, and in the north from 52◦03′44′′.7 to 52◦21′55′′.6 (Figure 1, the red rectangle).

191



Remote Sens. 2021, 13, 611

Figure 1. The study area: Warsaw and Kobiałka, the study region (marked by the red rectangle) and
aerial orthoimage (selected part).

3.2. Data Used

Orthorectified RGB aerial images with a 0.1 m GSD (hereinafter referred to orthoim-
ages), taken with the Leica DMC III camera during a photogrammetric campaign carried
out in 2019 on 18 April (Figure 1), were used for buildings segmentation. iIDAR dense
classified point clouds (12 points per 1 m2) stored in LAS binary format were employed for
building vectors extraction. Buildings data from the Warsaw cadastre was used for training
and final evaluation of building extraction. The data comprised the building geograph-
ical location, number of storeys, source of geometry and building type (e.g., residential,
outbuilding, office).

All data were downloaded from the official, publicly available geoportal of the Head
Office of Geodesy and Cartography, the National Mapping Agency [33] https://mapy.
geoportal.gov.pl/imap/Imgp_2.html. Data processing deploying deep learning methods
was performed in the ENVI software, developed by Harris Geospatial Solutions, Inc., while
geo-processing and final evaluation of remotely extracted building were done with ArcGIS
software, provided by ESRI.

3.3. Workflow and Applied

The adopted methodology for automated building outlines extraction consisted of
the three main stages and their subsequent processes. They are as follows: (1) building
outlines extraction by the U-Net fully convolutional network from aerial orthoimages;
(2) building vectors of rooftop surfaces, denoted as building roof outlines, extraction based
on LiDAR data and (3) geoprocessing of building roof outlines and final evaluation of
building outlines (see Figure 2).

The main assumption underlying this three-step methodology was as follows. FCN
deep-learning algorithms for building extraction from remote sensing images, while universal
in their nature, derive rough planar geometry of building outlines, which could not meet the
requirements of the cadastral system in Poland. In a second step, the LiDAR densely classified
data (DSM) improved the extraction of building outlines by creating vectors of the rooftop
surface. Finally, the geo-processing stage transformed the roof vectors into geometrically
corrected building outlines and assessed the accuracy of the buildings’ locations.
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Figure 2. Schematic flow chart of the building extraction approach.

3.3.1. Building Extraction by U-Net

In remote sensing applications, convolutional networks are generally used for image
classification, where the output to an image is a single class label. In this paper, we
used U-Net architecture developed by Ronneberger et al. [50] and implemented in ENVI
software as the ENVINet5 [51]. This U-Net architecture was modified and extended in
such a way that it provides precise image segmentation with a small number of training
images. ENVINet5 consists of the repeated applications of two paths, a contracting one
and an expansive one. The contracting path involves the repeated application of two
3 × 3 convolutions, followed by a rectified linear unit (ReLU) and a 2 × 2 max pooling
operation with stride 2 for down-sampling. The expansive path, in turn, comprises the
upsampling of the feature map followed by a 2 × 2 up-convolution which reduces by
half the number of feature channels, as well as a concatenation with a cropped feature
map from the contracting path and a two 3 × 3 convolution followed by ReLU. Based
on Ronneberger et al. [50], cropping is essential because of the loss of border pixels in
every convolution. The adopted for this study ENVINet5 (see Figure 3) is characterised
by 23 convolutional layers and a TensorFlow model added on the top of the network. The
initialization model and the trained model in ENVI use data in HDF5 (.h5) format.

The model was trained based on building vector layers, derived from the cadastre,
and 421 regions of interests (ROIs). The patch size for the training model was determined
empirically based on the coincidence with label rasters (number of edge-length pixels). For
our experiment, the patch size was 416 × 416 pixels. The following training parameters:
number of epochs: 25; number of patches per image: 300; solid distance: 10.0; blur
distance: 0. The class weight is used to highlight feature pixels at the start of training, class
weights: min 1, max 2; and loss weight: 0.5.

The implemented U-net architecture loss function architecture was binary cross-
entropy with the weighted map [50]:

E = ∑
x∈Ω

ω(x)log
(

pl(x)(x)
)

(1)
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where pl(x)(x) is the softmax loss function l : Ω → {1, . . . , K} as the true label of each
pixel and ω : Ω → R is a weight map, in order to give a higher weight to a pixel near t to
the boundary point in the image. The optimizer used in this experiment was the Stochastic
Gradient Descent (SGD) with lr = 0.01 and momentum = 0.99.

Figure 3. U-Shape Network (U-net) architecture used (based on [35]).

Five commonly known evaluation matrices were employed to assess the performance
of the building outline extraction model: namely, overall accuracy, precision (correctness),
recall (completeness), F1 score for pixel-based quality assessment and mean intersect
over union (IoU) for per-object evaluation. The Overall Accuracy (OA) was calculated by
summing the percentages of pixels that were correctly classified by the model compared to
the reference labelled image (Equation (2)) [52].

OA =

k
∑

i=0
pii

k
∑

i=0

k
∑

j=0
pij

(2)

where pii means the number of pixels for categories i correctly classified by the model,
while pij means the number of pixels for categories i incorrectly classified into category j by
the model and k is the category of building.

Precision is the fraction of true positive examples among the examples that the model
classified as positive: in other words, the number of true positives divided by the number
of false positives plus true positives (Equation (3)), as defined by [53,54]:

recision =
True Positives

True Positives + False Positives
(3)

Recall, also known as sensitivity, is the fraction of examples classified as positive,
among the total number of positive examples: in other words, the number of true positives
divided by the number of true positives plus false negatives (Equation (4)):

Recall =
True Positives

True Positives + False Negatives
(4)
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The F1 (Equation (5)) measures the fraction of the number of true target-pixels identi-
fied in the detected target-pixels. The F1 score is the harmonic mean of the precision and
recall, ranging from 0 to 1; the larger the F1, the better the prediction (Equation (5)):

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

(5)

The Intersect over union (IoU) metric, also known as the Jaccard similarity index, is
denoted as an overlap rate of detected buildings and labelled as buildings, as it is presented
in Equation (6):

IoU =
target ∩ detected
target ∪ detected

(6)

3.3.2. Building Rooftop Extraction Using LiDAR Data

Algorithms that operate on dense LiDAR data (12 points per square meter) not only
detect buildings and their approximate surface outlines but also extract flat roof surfaces,
ultimately leading to the creation of building models that correctly resemble the roof
structures [55]. In this study, ENVI LIDAR tools were used for building extraction and
delineation of planar rooftop surfaces. The algorithm used identifies the correct position,
aspect and slope of each roof plane in the work area, extracting consistent and geometrically
correct 3D building models [56]. Buildings, trees and other objects (e.g., cars) were sepa-
rated based on geometric criteria, such as size, height and shape characteristics. Overall,
ENVI LiDAR procedures filter the data and classify each point of the cloud in a few steps
(see Figure 2). Building rooftop patches were extracted, after extensive tests, by applying a
threshold to the following parameter: minimum building area, Near Ground Filter Width,
Buildings Points Range and Plane Surface Tolerance (PST). The values of these parameters
were adopted after the analysis of the height and intensity map (Figure 4).

Figure 4. LiDAR data density, the selected example.

The minimum building area was set-up as 10 m2. The Near Ground Filter Width
of 5 m allowed one to classify as buildings only features located 5 m above the ground.
The Buildings Points Range denotes spatial variation of a building’s points and is used
for a planar scan when the point density is not constant inside the analyzed area or when
there are some holes in the point cloud dataset. The value of this parameter was set to
1.5 m. The Plane Surface Tolerance (PST) [51,55] recognizes curved roofs based on a series
of successive planes. The algorithm used defines a new roof plane when the distance
between the analyzed and previous points in the cloud reaches the declared value. Due
to the importance of this parameter for distinguishing the building rooftop outlines, the
classification was preceded by an analysis of the selection of the optimal value of the PST
parameter. The test was performed for PSTs of 0.15 m, 0.30 and 0.5 m. As shown in Figure 5a,
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a low PST (i.e., 0.15 m) resulted in the incorrect classification of small construction facilities,
like bowers or garden sheds. The best results were achieved for a PST value equal to 0.5 m
(Figure 5b). Finally, the completeness of 95% was achieved in comparison with building
cadastral data.

Figure 5. LiDAR rooftop polygons: (a) adjustment of the Plane Surface Tolerance values, (b) selected examples of building
rooftop outlines (yellow lines) superimposed on aerial orthoimagery.

3.3.3. Geoprocessing of Building Roof Outlines and Final Evaluation of Building Extraction

The results of automatic building extraction based on very high-resolution orthoim-
agery and LiDAR data provide the polygons for building roof outlines and planar shapes
of building rooftop vectors. As mentioned in the literature [57,58], building footprints
and outlines of rooftop shapes differ both in shape and location. These differences, albeit
slight, make it necessary to correct the geometric building outlines in order to locate the
building accurately. The geometrical adjustment employed primary determination of
the neighborhood relations of rooftop patches contained by a building’s outline (derived
from orthoimage segmentation) and creation of a draft polygon vector layer of building
outlines. For this purpose, the spatial join and dissolve functions were used. Then, the draft
building rooftop outlines were simplified by identifying and removing redundant vertices,
according to the Douglas–Peucker algorithm [59]. As a result, the vertices of the building
outlines were reduced, and the building outline itself was simplified in accordance with the
state-of-the-art of cartographic generalization [60]. The next task was to extract the edge
points of buildings from the reference layer (cadastral building data), calculate the distance
to the extracted building outlines and finally, assess the accuracy of remote extraction of
building outlines. The following measures were used for the final accuracy assessment:
the mean, standard deviation, relative standard deviation (RSD), variance-to-mean ratio
(VMR). The measures were employed for the distance between the extracted buildings and
buildings from cadaster, and also the differences in shape and area of the buildings.

4. Results

4.1. Buildings Segmentation

The adopted training parameters of U-Net (namely patch size: 416; number of epochs:
25; number of patches per image: 300; solid distance: 10.0; blur distance: 0; class weights:
min 1, max 2; and loss weight: 0.5) resulted in a well-suited model for building extraction.
As shown in Figure 6, the training validation accuracy has increased while the validation
loss has decreased. Both the validation accuracy and validation loss trends indicate that
the algorithm used was well optimized and can be applied for image segmentation.

Figure 7 depicts the results of consecutive processes of building extraction based on
deep-learning U-Net from very high-resolution aerial imagery.
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The overall accuracy is 89.5%, indicating that the U-Net model used was well suited
to extracting buildings. The precision informed us that all features that were labelled as
buildings in 76.5% of instances were actually buildings. Recall indicated that 80.7% of all
buildings in the analyzed area were detected. For all accuracy measures, see Table 1, while
Figure 7 shows some examples of correct and incorrect building extraction.

Figure 6. U-Net training validation.

Figure 7. Buildings segmentation results: (a) single-family detached buildings, (b) multi-family building-blocks.

Table 1. Building outlines’ accuracy.

Overall
Accuracy (%)

Precision Recall F1-Score
Per-Object IoU

Mean

89.5 0.765 0.807 0.785 0.748

Factors which influenced the accuracy of automated building extraction in general are
as follows:

• variation in the spatial pattern of buildings and their surroundings, i.e., trees, paved
roads, driveways, vehicles, porches, small garden houses or play-grounds;
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• multiple colors of roofs, i.e., reddish, grayish, whitish and greenish, as well as roof
installations such as satellite TV antennas, solar panels, dormers;

• building types, e.g., single-family detached or attached, semi-detached, multi-
family buildings.

Figure 8a portrayals a group of multi-family houses. The building’s roofs were dark
grey, clearly separated from the light grayish color of the interior roads and the greenish-
brown grassy surroundings as well as a few whitish cars. However, the close location of the
buildings inside the estate, in rows of three, led to their extraction as one elongated building.
Figure 8b shows single-family attached buildings, characterized by hipped reddish and
grayish roofs, partly shadowed by trees. The ENVINet5 algorithm correctly extracted all
buildings; nevertheless, the touching buildings, i.e., buildings with adjacent roofs and
walls, were identified as one feature. The next example (Figure 8c) demonstrates correctly
extracted single-family buildings, despite some disturbance caused by vegetation and other
objects located on the land parcel. The algorithm, however, had a problem with the correct
building extraction in an area characterized by a less dynamic color scheme (dark greyish)
between the roofs and the parking lot and nearby streets. It was indicated as false positive,
over-classified (indicated in red—Figure 8d). Another error that was observed in this area
was the identification of cars as buildings.

Figure 8. Results of RGB orthoimagery segmentation based on U-Net: (a) dense built-up area; (b)
multiple colors of roofs; (c) complex roof shapes and vegetation vicinity; (d) complex pattern of
buildings, parking lots, roads.
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4.2. Building Rooftop Patches Extraction

Kobiałka, as a residential district on the outskirts of Warsaw, is characterized by a
diverse building architecture, which affected the building extraction. Particularly, multi-
slope roofs, the presence of dormers and the accompanying vegetation partially covering
the roof edges (trees and tall shrubs) hindered the extraction algorithm (as it is seen in
Figure 9) and required further geoprocessing, described in the Section 4.3.

Figure 9. Buildings’ rooftop polygons hampered by: (a) complex, multi-slope roof; (b) vegetation cover.

4.3. Geoprocessing of Building Rooftop Outlines

The geoprocessing of building rooftop patches was intended to provide geometrically
corrected building outlines. Figure 10 shows some examples of the geoprocessing results.
Building rooftop outline extracted during segmentation with the deep-learning algorithm
were used to spatially match these roof patches that pointed to one building (Figure 10a) and
outlines of rooftops were created (Figure 10b). These roof outlines consisted of many vertex
points, which led to a distortion of the shapes of the buildings. Therefore, generalization
and simplification were of utmost importance (Figure 10c). The geometrically corrected
building roof outlines still did not match the building footprints stored in cadastral data, as
it is seen in Figure 10d. This was due to the fact that in our approach, based on remotely
sensed data, the outline of the building was considered as a building’s roof footprint, while
in the cadastre it is represented by the walls of the building, the outline on the ground.

Figure 10. Geoprocessing of buildings rooftop polygons: (a) building rooftop patches (yellow lines) within deep learning
delineated building footprints (green line); (b) building the rooftop outline; (c) corrected and simplified rooftop outline;
(d) shift in building outlines (yellow line) and building footprints from cadastral data.
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The statistical analysis of the roof overhead showed an average shift of 1.18 m (with STD
equal to 0.688) between the building outlines and the cadastral data. The dispersion index
(VMR) of the shift value (near distance) amounted to 0.4, indicating a binomial distribution
(under dispersion) (Figure 11a). Less than 5.6% of the edge points of the building outlines
(190 out of 3406) were perceived as outliers because the near distances between corresponding
edges in the compared datasets were greater than 2.44 m (see Figure 11b).

Figure 11. Differences between building outlines from remote sensing and cadastral data: (a) de-
scriptive statistics, (b) analyzed cadastral buildings contained two outlines derived from LiDAR data
processing (see an example in Figure 12a).

Figure 12. Building outlines: yellow from LiDAR, red from the cadastre: (a) multi-family building
extracted as two building outlines; (b) two connected single-family houses denoted by LiDAR as one
building; (c) outlines of a kindergarten.

For the remaining 234 buildings, the mean difference between the cadastral area and
the area calculated from the LiDAR outline was 57.37 m2, and the standard deviation
was 2.59 m2. The highest values in the differences in building area were observed for
attached single-family houses, which were distinguished as one building during LiDAR
data processing (as shown in Figure 12b).

The Shape index (SHI) indicates the similarity between cadastral building outlines
and LiDAR outline shapes irrespective of their areas. Statistical measures of dispersion
(RSD and VMR) showed a weakly dispersed binomial distribution, assuming RSD 9.45%
and 14.59% and VMR 0.01 and 0.02 for the outlines of cadastral and LiDAR buildings,
respectively. Statistical measures of dispersion (RSD and VMR) showed a weakly dispersed
binomial distribution, assuming RSD 9.45% and 14.59% and VMR 0.01 and 0.02 for the
outlines of cadastral and LiDAR buildings, respectively.
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5. Discussion

Buildings are among the most important and valuable objects in cadastral systems and,
due to their economic and social roles, require frequent updating of cadastral data. More-
over, the data should be complete and of high positional and thematic accuracy. Although
building cadastral data is generally obtained through field surveys, in the past few decades,
remote sensing techniques have increasingly replaced field surveys as being cost-effective
and time-efficient (see [2,10,11,25]). Building extraction aims for the correct amount of
buildings, no commission and omission, e.g., each building should be represented and only
by one object. However, in practice, errors in building extraction are inevitable, and the
algorithms are optimized and trained to minimize inaccuracies during image segmentation.
The results of building extraction are characterized by accuracy measures that in general,
indicated the efficacy of the methods used. Nevertheless, as noticed by Avbelj et al. [47],
results reported in literature should not be directly compared due to the different accuracy
measures, the variety of building extraction approaches, study areas types, remotely sensed
and reference data used.

Maltezos et al. [24] reported that the buildings extracted by CNN were “more complete
and solid” for both the Vaihingen and Perissa research areas compared to the results of the
SVM (Support Vector Machine) classifiers. The overall pixel-based CNN accuracy ranged
from 81% to 86%, referring to an average quality rate about 83.0%, while the accuracy for the
linear SVM reached 76.3% and base function RBF SVM just 72.9%. Huang et al. [33] stated
that developed GRRNet gave the best result with an overall accuracy per pixel of 96.20%. The
authors also found that the mean IoU per-pixel values varied significantly depending on the
test area and variants of the GRRNet model. The best results (90.59%) were achieved for the
Baseline + GFL-2 (gated feature labelling-2) modification in New York and the lowest results
of 67.47% for the Baseline + FF (feature fusion) modification in Arlington. The FCM model
exploited by Bittner et al. [38] extracted the building footprint successfully with the IoU metric
of about ~68.1% (also on pixel level), which is comparable with the accuracy obtained in our
study (IoU = 64.7%). The SRSM proposed by Nguyen et al. [40] yields an average area-based
quality of 62.37% and an object-based quality of 63.21% for Quebec.

Huang et al. [33] stated that developed GRRNet gave the best result with an overall
accuracy of 96.20%. The authors also found that the mean IoU values varied significantly
depending on the test area and variants of the GRRNet model. The best results (90.59%)
were achieved for the Baseline + GFL-2 (gated feature labelling-2) modification in New
York and the lowest results of 67.47% for the Baseline + FF (feature fusion) modification in
Arlington. The dependence of the accuracy of building extraction on the network structure
and the loss function was also noted by Shao et al. [34], with the variability of IoU/F1
per-pixel measures of 0.0582/0.0402 for network structure and 0.0121/0.0080.

Rottensteiner et al. [28] detected buildings utilizing the Dempster–Shafer method for
the fusion of LiDAR data and from aerial imagery with the precision of 85% and recall
(completeness) of 89%. They also noticed that the values of both measures depend on the
building size (area), reaching the lowest values for small buildings of less than 40–50 m2.
Sohn and Dowman [29] received an overall accuracy of 80.5%, with a completeness of 88.3%
and correctness equal to 90.1% using the Binary Space Partitioning (BSP) tree for processing
fused IKONOS and LIiAR data. Kodorsa et al. [9] achieved 92% conformity of building
recognition from LiDAR data using a saliency-based method. Wang et al. [21] reached a
very high value of overall accuracy (94.12%) for building segmentation in the Massachusetts
study region due to an innovative image processing method implementing the efficient
Non-local Residual U-shape Network (ENRU-Net), composed of a U-shape encoder–
decoder structure and an improved non-local block named the asymmetric pyramid non-
local block (APNB). Reis et al. [39] investigated the availability of aerial orthophotos, for
“cadastral works” and observed an object-based accuracy of 95% and pixel-based accuracy
of 87% in comparison with cadastral data. However, the analyzed data sample included
just a few buildings, so it is difficult to consider their results as representative. A profound
and detailed accuracy analysis was presented in Khoshboresh-Masouleh et al. [61]. The
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authors evaluated building footprints’ results for different types of built-up areas, e.g.,
shadowed, vegetation-rich, complex roofs and high-density, obtaining a mean IoU value
of 76%. Nevertheless, for building footprints characterized by complex roofs, the average
IoU was 74.5%. The high efficiency of the ENVI deep learning algorithm is also reported
in Lai et al. [30], who noticed that the accuracy of building segmentation ranged from 80
to 90%. The regularization technique using LiDAR data and orthoimages proposed by
Gilani et al. [41] obtained completeness from 83% to 93% for the area with a correctness
of above 95%, which undoubtedly proved the reliability of this approach. The overall
accuracy of 89.5% obtained in our study is consistent with the results reported in literature
and can be considered adequate for cadastral purposes.

The land administration system, and cadaster as a part of it, are always tailored to the
national possibilities and requirements. The applications of remote sensing data and deep
learning techniques to update cadastral data and maps remain limited. Firstly, deep learning
methods of building footprints extraction based on satellite and aerial images and LiDAR
data allow one mainly to delineate the rooftop of buildings’ outlines. Secondly, the obtained
accuracy measures, mainly overall accuracy, completeness and RMSE, do not meet the
requirements for cadastral data, and ultimately, the guarantee of the required high reliability
of cadastral records is severely limited. Thirdly, it is challenging to precisely represent the
shape of a building, especially for multi-walled buildings with multi-pitched roofs.

In Poland, the cadastre of land and buildings (denoted in Polish as EGiB) has a long
tradition, and its transition from an analogue to a computer system, which began two
decades ago, requires further improvement.

Practitioners and scientists still note many inconsistencies between cadastral data and
field survey data, which means that the reliability of the building data is limited, and the
position accuracy ranges from 0.7 to 1.5 m [17,62,63]. The latest regulation on technical
standards for surveying measurements, in force from August 2020 [64], allow the use of
modern photogrammetric techniques and remote sensing data to update cadastral data on
buildings, provided that the accuracy of the location of the building footprint is not less than
0.1 m with reference to the nearest geodetic control point. As noted by Ostrowski et al. [65],
such high accuracy can only be achieved when vectorizing the building contour manually
on a stereomodel, what is labor-intensive, time-consuming and very expensive. Our three-
step method is of great importance as it allows one to automate the building extraction and
indicate areas where some discrepancies in building locations were noted, and ultimately
to identify priority areas for possibility of the cadastre modernization. Particularly, the
elaborated method could be applied for vector building data acquisition where it still does
not operate in vector format, but as scanned analogue cadastral maps.

The entire territory of Poland is covered with high-resolution orthorectified aerial images,
updated every five years, and dense LAS data with decimeter accuracy [64]. This undoubtedly
creates great opportunities for the cadastre modernization based on remotely sensed data
and advanced, automated feature extracting technologies, especially in areas where analogue
or raster building cadastre operates. Our three-step method certainly belongs to such tech-
nologies. The applied algorithms could be used many times and on other areas, provided
that for areas with a different building pattern and characteristics, the training area (ROIs)
should be extended. Nevertheless, the large variation in types of built-up areas and building
configurations in Poland leads to certain limitations in the fully automatic use of remote
sensing data in cadastre modernization. Particularly, the problem of proper extraction of
building footprints occurs for newly-built single-family houses, surrounded by greenery, with
hipped roofs, dormers or solar panel installations (see Figure 9 as the example). In these areas,
unfiltered noise points, as well as details on the roof surfaces, decreased the final accuracy
of the roof shape reconstruction. Another challenge in many cell segmentation tasks is the
separation of touching objects of the same class [21,22].
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6. Conclusions

Recent developments in deep learning technology, as well as the availability of high-
resolution aerial imagery and dense LAS data, offer fast and cost-effective ways of extract-
ing buildings for cadastral purposes.

Although the automatically extracted building outlines cannot be directly uploaded
the cadastral data due to differences in the outline (in the cadastre, it is the ground outline
while the imagery data gives the roof outline), they could be successfully used when
planning the cadastral modernization. Further research on reducing the roof outline to the
outline of the building’s ground floor is of utmost importance.

The experimental result showed that the proposed methodology achieved good results
and was robust after adjusting the model parameters to the specifics of the analyzed area.
This partially limits the possibility of transferring our approach to areas with different
building characteristics and the use of other aerial images. However, this limitation could
be reduced by adding ROI in such places to best portrayal the investigated area.

Summing up the discussion on the possibility of cadastre updating by remotely sensed
data, it should be noted that deep learning methods for buildings extraction are a promising
technology; however, in many countries, it could only be used to indicate areas where
the cadastre needs updating. Final registration in the cadastral system yet requires more
accurate field measurements according to national cadastral standards.
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Abstract: Based on a newly adopted “Rulebook on the records of identified changes on buildings in
Serbia” (2020) that regulates the content, establishment, maintenance and use of records on identified
changes on buildings, it is expected that the geodetic-cadastral information system will be extended
with these records. The records contain data on determined changes of buildings in relation to the
reference epoch of aerial or satellite imagery, namely data on buildings: (1) that are not registered in
the real estate cadastre; (2) which are registered in the real estate cadastre, and have been changed
in terms of the dimensions in relation to the data registered in the real estate cadastre; (3) which
are registered in the real estate cadastre, but are removed on the ground. For this purpose, the
LADM-based cadastral data model for Serbia is extended to include records on identified changes
on buildings. In the year 2020, Republic Geodetic Authority commenced a new satellite acquisition
for the purpose of restoration of official buildings registry, as part of a World Bank project for
improving land administration in Serbia. Using this satellite imagery and existing cadastral data, we
propose a method based on comparison of object-based and pixel-based image analysis approaches
to automatically detect newly built, changed or demolished buildings and import these data into
extended cadastral records. Our results, using only VHR images containing only RGB and NIR bands,
showed object identification accuracy ranging from 84% to 88%, with kappa statistic from 89% to 96%.
The accuracy of obtained results is satisfactory for the purpose of developing a register of changes
on buildings to keep cadastral records up to date and to support activities related to legalization of
illegal buildings, etc.

Keywords: image segmentation; neural network; classification; building footprint extraction; cadas-
tre; change detection; VHR aerial images

1. Introduction

With advanced technology related to collecting geospatial data in the 21st century,
each organization is faced with growing volumes of spatial data. Geospatial data can
originate from different satellites, airplanes or even UAV platforms. Collected data vary
from large amounts of LiDAR data to the satellite and aerial images with different spatial
resolutions. Very high spatial resolution (VHR) optical satellite imageries have increased
their usability in applications of change detection and urban monitoring. Classification
of VHR images requires a significant research task in remote sensing and image analysis;
thus, it has great importance in infrastructure planning and change detection in the urban
area, etc. [1]. Often, focus on these applications is on the classification of urban structures
and identification, characterization and quantification of change detection on footprints of
buildings or buildings’ rooftops.

The manual method of collecting individual building information with attributes is
very expensive and time-consuming. Automatic extraction of building information using
high resolution (HR) remote sensing images is one of the widely used methods globally.

Even though building footprint extraction has received quite a bit of attention in the
computer vision community, most approaches use supplemental data, such as point clouds,
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building height information, and multi-band imagery—all of which are too expensive to
produce or unattainable for most cities worldwide [2].

In the past, many methods based on automatic or semi-automatic processes were
developed for building footprint extraction. The large variations in appearance, geometry
and spectral properties of buildings altogether make it a challenging task to enable auto-
mated building extraction at large scale from remote sensing satellite imagery. The spectral
and geometrical properties of buildings such as rectangular shape, homogeneous surface
(uniform spectra) and low-level features such as edges, lines/corners and association of
shadows with the buildings are a few of the fundamental elements of buildings [3].

Within the context of increasing availability of high-resolution imagery, image seg-
mentation is regarded as a solution to automate conversion of the raw data into tangible
information, which is required in many application domains [4]. With the advancement of
remote sensing technology, spatial resolution has become finer to the extent that even the
smallest objects consist of a larger number of pixels, which has significantly increased vari-
ability within the class, making it difficult to classify at the pixel level and highlighting the
need for segmentation and object-oriented classification of images [5]. Hossain and Chen in
their review paper found 290 publications since 1999 that are related to object-based image
analysis (OBIA) or image segmentation [6]. A variety of image segmentation methods
have been developed. According to Schiewe [7], these methods can be grouped into three
categories: edge-based, region-based, and hybrid segmentation methods. Meinel and
Neubert [8] compared several segmentation methods and concluded that region merging
is the most effective image segmentation method for the analysis of high-resolution remote
sensing images. A characteristic region-merging method and probably the most widely
used one within the OBIA domain is multi-resolution segmentation (MRS) [9], which is
available in the eCognition® software package. Multiresolution segmentation (MRS) is
now one of the most important algorithms in the object-oriented analysis of remote sensing
imagery [10]. MRS performs region-growing segmentation, starting at the pixel level, then
adjacent pixels are merged if they are homogeneous. The unitless user-set scale parameter
represents the heterogeneity threshold, below which merging occurs, and above which
merging stops. The higher the scale parameter, the higher the allowed within-segment
heterogeneity, and thus the larger the resulting image segments. For a given scale param-
eter, heterogeneous regions will have smaller segments than homogeneous regions. The
scale parameter is defined as the maximum standard deviation of the homogeneity criteria,
which are a weighted combination of color and shape values. The user can adjust the
relative weights (importance) assigned to each [11]. In terms of the segmentation software
adopted in the 254 case studies, studies on segmentation using eCognition software account
for 80.9% [12].

Myint et al. [13] used QuickBird satellite image with four spectral ranges of 2.4 m
spatial resolution for the Phoenix area in Arizona. The target materials or classes in both
types of classification were buildings, other man-made structures (roads and parking lots),
land, trees/shrubs, grass, swimming pools and lakes/ponds. The authors used multi-
resolution segmentation, where they used different parameters and weight factors of this
method for each class. In the classification process, the authors used different parameters
(scale factor, compactness and shape) in the segmentation process and created additional
data that they used for each of the classes. Thus, in addition to the basic bands, the authors
created the PCA layer and NDVI, and in the classification, they used membership function
classifier and nearest neighbor.

Zhou et al. [14] presented a study with WorldView-2 images to provide detailed land
use and land cover map at local level using OBIA method. The result shows that a total of
nine LULC classes have been successfully classified with an overall classification accuracy
of 79.4%. Masayu at el. [15] used Sentinel 2 images to classify buildings in Selangor,
Malaysia, using suitable segmentation parameters and features. They used support vector
machine (SVM) and decision tree (DT) classifiers to categorize five different classes: water,
forest, green area, building, and road. Accuracy of the classified image using a different
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number of object features was assessed and it shown that the number of features applied
will affect the classification accuracy. Additionally, the overall accuracy of SVM was 93%
and for DT was 73%. Masayu at el. [16] extracted building footprint from high-resolution
Worldview 3 (WV3) satellite data. They used 25 experiments with three segmentation
parameters (scale, shape, and compactness), each having five varying values that directly
affect the quality of segmentation. With optimal parameters used for segmentation process
in eCognition, image objects were classified into five land cover classes (building, road,
water, trees, and grass) by using a supervised non-parametric statistical learning technique,
support vector machine (SVM) classifier.

In the last few years, algorithms for segmentation of satellite images based on convo-
lutional neural networks have been developed. These networks learn spatial-contextual
characteristics directly from the input VHR image, efficiently integrating the feature extrac-
tion step into the training classifier [17]. One of the most successful algorithms is based on
the fully convolutional network (FCN) [18]. The most common way to perform semantic
segmentation is to use a convolutional neural network because it achieves very good results.
For image segmentation, one of the most well-known architectures used is U-Net, which
has a coder-decoder type structure [19]. U-Net is a type of fully convolutional network that
was originally used for medical image analysis, but later this model began to be applied to
the pixel-based classification of satellite images [20].

Automatic building extraction from remote sensing data is a hot but challenging
research topic for cadastre verification, modernization and updating. Deep learning al-
gorithms are perceived as more promising in overcoming the difficulties of extracting
semantic features from complex scenes and large differences in buildings’ appearance.

Geospatial objects change over time and this necessitates periodic updating of the car-
tography that represents them. Currently, this updating is done manually, by interpreting
aerial photographs, but this is an expensive and time-consuming process.

Automatic detection of illegally built or changed buildings from satellite imagery is a
specific and important problem for both the research community and government agencies,
which has not been sufficiently investigated since it combines the challenge of automatic
remote sensing data interpretation and verification with a cadastral map. Recovery of
building footprints from satellite images is a very complicated process because building
areas and their surroundings are represented with various color intensities and complex
features. Yanan et al. [21] in their survey, with 195 different papers related to the change
detection methods based on different remote sensing images and multi-objective scenarios,
found that 61% of multi-source images are multispectral. Additionally, from the point of
the multi-objective scenarios, urban change detection is mostly related to the buildings and
roads, where for the buildings important information includes features such as unique roof
feature, and shape of parallelograms that represent buildings.

The Republic Geodetic Authority (RGA) in Serbia is a government organization responsi-
ble for professional and public administration related to state survey, real estate cadastre, utility
cadastre, topographic-cartographic activities, property valuation, and geodetic-cadastral. This
organization is also responsible for the legal framework related to survey and cadastre. As
part of this legal framework, the rulebook on records on determined changes on buildings
was adopted in 2020 [22]. This rulebook defines the content, development, maintenance and
use of the register about the determined changes on buildings based on satellite imagery.
For this purpose, RGA conducted the acquisition of the VHR satellite imagery data for the
entire country. The register will be built for the entire territory of the Republic of Serbia and
will be part of the geodetic-cadastral information system (GCIS). The register should contain
data about detected changes on objects in relation to the reference era of aerial or satellite
photography. These changes include data about buildings that are not recorded in the real
estate cadastre, and buildings that are recorded in GCIS, but are removed from the field
or changed in terms of dimensions of the footprint recorded in the database. The register
contains graphical and alphanumerical parts, i.e., geospatial data about footprints of the
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buildings, and attribute data that describe particular buildings (such as, unique identification
number, building area, type of change, etc.)

The aim of this paper is to develop a procedure that will automate the development
of the register on determined changes on buildings based on satellite imagery. Since there
are no additional data for Serbia other than high-resolution images, we propose the use of
pixel-based and object-based classification, over VHR images from two epochs, 2016 and
2020, as the first step in detecting changes in buildings. Furthermore, one of the largest
issues is the existence of more than two million illegal buildings (according to the official
data [23]) and a lack of software tools that can help in detection of illegal buildings (newly
built or changed). With this proposed method we want to improve the current situation
and support the implementation of the new “Rulebook on the records of identified changes
on buildings” in Serbia. The Rulebook on records on determined changes on buildings
was used as a reference framework for the development of the proposed approach that
will result in (semi)automatic extraction of changes on buildings and update of cadastral
records in the cadastral database in a timely manner. Our tests with VHR images containing
only RGB and NIR bands showed object identification accuracy ranging from 84% to 88%,
with kappa statistic from 89% to 96%. Based on these results, the LADM-based cadastral
data model for Serbia is extended to include records on identified changes on buildings
and their legality assessment.

The paper is structured as follows: after the introduction in Section 1, Section 2 presents
materials and methods used. This section describes datasets used for the experiments, and
overall methodology used for the development of the register on determined changes on
buildings based on satellite imagery, based on pixel based and object-based methods. The
data model of the register is also developed and described to demonstrate what information
is necessary to extract from the satellite imagery to build a register according to the rulebook.
Results of the development and assessment of the model are presented in Section 3. Further-
more, the results are classified into three categories of possible changes on buildings defined
in the rulebook to support the conclusion that the method is capable of solving the problem
defined in the rulebook. Discussion and conclusions are presented afterwards.

2. Materials and Methods

2.1. Study Areas and Datasets

The study areas are parts of two cities, Subotica and Zrenjanin, in the province of
Vojvodina, located in the northern part of Serbia. Topography in the study area is without
variations and it is characterized by a low altitude from 76 to 109 m. The geographical
coordinates of Subotica are 46◦06′ N and 19◦39′ E, and for Zrenjanin 45◦23′ N and 20◦23′ E
(Figure 1). These two cities are typical representatives of Serbia’s type of settlements, in
how they consist of urban parts (with high buildings and lot of impervious surfaces such
as roads, parking lots, etc.) and rural parts where there are predominantly houses with
big green spaces (parks or even gardens). Urban parts of the cities are similar not only
in Serbia, but also in the wider area of this region, and rooftops are usually created from
concrete or similar types of materials. On the other hand, what is typical for Serbia is a
different type of roof on the houses, which is built from clay tiles oriented in two or four
sides, and with lots of vegetation cover. We have chosen this kind of study area because
with our proposed method we want to include all possible kinds of buildings that can be
found in Serbia.

An area of 0.5 km2 was selected as a training area for developing classification rules
for building rooftop detection in both cities, and test area covered about 2.5 km2. The
accuracy of building rooftops detection was estimated based on the test area divided into
two categories, as previously described, comprising urban parts with high buildings and
areas that predominantly contain houses. Later, the same algorithm was applied to both
cities, to verify its reliability and transferability to other settlements in Serbia.
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Figure 1. Area of interest.

The Worldview 2 image of the area of Zrenjanin was acquired on 12 April 2016 at an
angle of 16.5◦, with the cloud cover equal to 0%. The Worldview 2 image of the area of
Subotica was acquired on 29 March 2020 at an angle of 14.1◦, with the cloud cover equal
to 1%. The WorldView-2 image includes four multispectral bands (Blue, Green, Red, and
Near-Infrared-1). The data were purchased by the private company Vekom, involved as
a partner in this research, and downloaded from the DigitalGlobe image archive, as a
standard Ortho-Ready product projected on a plane with a UTM projection (Universal
Transverse Mercator) and a WGS84 datum. The orthorectification procedure was performed
by the employees of the private company and authors of this paper.

Objects’ cadastral data are for the area of the city of Zrenjanin from 2016, and for the
area of the city of Subotica from 2020.

2.2. Methods

The general idea and overall architecture of the proposed software solution is shown
in Figure 2. According to the developed conceptual data model of the register of detected
changes, a physical model and database schema are generated. The cadastral database
is populated with the data obtained using a developed method for the (semi)automatic
change detection, which is additionally inspected and corrected using traditional GIS
editing tools.

 

Figure 2. Overall architecture of the proposed solution.
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The overview of the basic steps of the proposed methodology is shown in Figure 3. The
first step after the pre-processing and validation of the proposed model is a detection of the
building’s footprint using satellite images with a high spatial resolution. After detection of
the building’s footprint and identification of changes on objects according to the rulebook and
digital cadastral plan (DCP), it is necessary to check if the geometry of a detected object is
valid, and to fix it if it is not. This step is manual, which means that for each detection it is
necessary to validate geometry using an editing tool. After the validation, the final step is to
update the cadastral database. All steps will be explained in detail.

 
Figure 3. The overview of the proposed methodology.

The building footprint detection used in the study included two proposed methods.
The first one used OBIA methods developed using eCognition, shown in Figure 4, while
the pixel-based classification was carried out using U-Net.

 

Figure 4. Extracting footprints of buildings using ecognition.
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2.2.1. Object-Based Classification Method

Generally, this process consists of several phases. The first one was multi-resolution
segmentation (MRS) of the satellite image. This technique was used to extract reasonable
image objects that we can use in the next steps. In the segmentation stage, scale, shape,
and compactness must be determined in advance (related parameters are described in
detail in [4,24] and weights were 2 for NIR band and 1 for RGB bands. Generally, the
parameters were determined through visual assessment as well as trial and error for all
three multi-resolution segmentations. We set the scale factor as 20, 30 and 45 respectively,
shape parameter was 0.2, 0.2 and 0.4, and compactness was 0.5, 0.5 and 0.6 respectively.
After MRS, spectral difference segmentation was performed, which allows merging of
neighbouring image objects if the difference between their layer mean intensities is below
the value given by the maximum spectral difference, which in our case was 30. With this
segmentation, objects produced by previous MRS segmentations were refined by merging
spectrally similar image objects. Association of attributes or feature selection was carried
out using several indices such as NDVI, Zabud and MSAVI2, and we calculated the ratio of
RGB and NIR bands, mean brightness values and Hue of RGB bands. Specifically, for the
vegetation class we used training data or values of NDVI greater than 0.43. MSAVI2 and
Zabud2 was additionally used to distinguish vegetation, ground, and objects. For class
shadow, we used training data or values of brightness from −1 to 230. For class sun red
roof, we have used training data and size of objects greater than 15 pixels (approximately 4
m2). In the classification part we have used all parts of the features form the previous step,
and we also used relations to neighbour objects and relations to classification to reclassify
all classes (shadow, sunny red roofs, shadow red roofs, brown roofs, vegetation, white
roofs, orange roofs, red roofs with shadow and roads/concrete) in order to get one class
that represents buildings footprints. Specifically, for example, for all sunny classes (brown,
red, grey, and orange roof) the relation border to class shadow objects has a value of 0.
For classes red and orange roof, values for relative border to shadow class must be below
0.09 and rectangularity fit value must be greater than 0.6. Classes red roof with shadow
also must have a value of relative border to shadow greater than 0.1 and below 0.6. The
most difficult part was to separate concrete roofs from concrete roads and paths. In this
situation we have used relative border values with concrete (lower than 0.7), roads (lower
than 0.4), vegetation (greater than 0.4) and shadow (lower than 0.2). All these values were
defined after analysis of values of all clearly classified objects. Therefore, at the beginning
of the classification, great attention should be given to image segmentation, and by the
end of these several segmentations, we must get as clearly separated objects as possible.
Reclassification and accuracy assessment was the final step.

2.2.2. Pixel-Based Method

In the last few years, convolutional neural networks have achieved superior accuracy
in various areas of computer processing, such as image classification, object detection,
and semantic segmentation. You et al. [25] analyzed the literature related to change
detection using remote sensing images in the last five years, to summarize the current
development situation and outline the possible direction of research to detect changes in
an urban environment. Convolutional neural networks are a subtype of artificial neural
networks, a type of deep neural network, designed to process locally dependent data
coming in multiple sequences, usually images. Convolutional neural networks are widely
accepted because they have proven superior to traditional methods in tasks such as image
classification, object detection, and semantic segmentation [26–28].

Long, Shelhamer and Darrell were the first to develop an end-to-end model for
image segmentation called fully convolutional neural network (FCN). An FCN uses a
convolutional neural network to transform image pixels to pixel classes [29]. As Cheng
et al. noted after covering more than 160 papers, this is still an active research topic [30].
Avoiding the use of dense layers means fewer parameters, which makes such nets faster for
training. According to the structure, the most modern models of semantic segmentation
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can be divided into encoder-decoder and spatial association of pyramids. U-Net is a
typical architecture with an encoder-decoder structure. The descending and ascending
paths of the network are symmetrical, so the network has the appearance of the letter U,
from which it derived its name. This architecture has shown significant improvement in
several applications, especially for the detection of objects on satellite images, as evidenced
by numerous papers [31–35]. U-Net has gained popularity due to its results in various
semantic segmentation tasks. The main advantage of U-Net is the ability to perform precise
segmentation with small training data.

The second approach for the object detection used in this paper is based on the
application of convolutional neural networks, more precisely on the U-Net architecture of
the neural networks. The methodology is shown in the Figure 5, and it will be explained in
detail below.

 

Figure 5. Extracting footprints of buildings using U-net.
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The first step in this methodology is preprocessing of data, which in addition to
creating vegetation indices and dividing the data into a set for training, test, and prediction,
also includes slicing the raster into smaller parts of regular shape (128 × 128 pixels in our
case). This step is necessary to apply the U-Net neural network architecture to our data.

As shown in Figure 6, the U-Net consists of two parts: an encoder (left) and a decoder
(right). The U-Net architecture consists of an encoder that captures contextual information
and a symmetric decoder that returns the spatial resolution of the initial raster. Skip
connection is used to connect high-resolution maps from the encoder to the corresponding
caused decoder output, allowing the network to more accurately predict the outputs based
on that information.

 
Figure 6. Proposed adapted U-net architecture.

The encoder has a typical CNN architecture (convolution, activation, maximum
association). In each step of the down-sampling, we double the number of channels. This
encoder architecture contains four blocks: the first two blocks consist of two convolutional
layers with a 3 × 3 filter, while the third and fourth have three and five convolutional layers,
respectively. The addition of new convolutional layers represents a simple modification of
the basic model of the U-net architecture, which provides satisfactory accuracy. The ReLU
activation function was applied to each block, as well as a maximalization operation with a
2 × 2 filter.

The decoder and encoder contain four blocks. Each decoder block consists of a re-
sampling operation followed by a 2 × 2 convolution that halves the number of channels,
which is combined with the corresponding encoder map. Each decoder block has two
convolutional layers with a 3 × 3 filter and a ReLU activation function applied to each of
them. The last layer of the grid connects each pixel with a certain class and performs a
convolution operation with a 1 × 1 filter. Finally, we can say that the network architecture
applied in this paper has 23 convolutional layers, and 21 ReLU activation functions.

After the data were prepared in an appropriate way, the neural network architecture
was chosen and the model for classification was created, the training of that model and the
assessment of its accuracy could begin. The input data set for training was divided into
two parts with a ratio of 80:20. With this step, we could conduct a quantitative assessment
of the model during the training of the neural network, and we could obtain information
about how well the network is trained with data that did not participate in the training.
To avoid excessive network training, which can lead to poor identification of objects, the
early stop parameter in the training phase was used. With this parameter, the training
was interrupted at the moment when the accuracy rating over the validation data starts to
decrease (if better results are not obtained in the next three epochs from the moment the
highest accuracy is reached).

After the completion of the training phase, testing and evaluation of the results
was performed. We first applied the trained model for building identification, and then
evaluated the accuracy of the classification, using the dataset for testing. After that, we
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applied the same model on the part of the image, for which we do not have cadastral
records, and used it to perform semantic segmentation of the raster (building detection).

The goal of the semantic image segmentation is to mark each pixel of an image with an
appropriate class. Image segmentation is the process of dividing a digital image into multiple
segments known as image objects. Modern models for image segmentation are based on
convolutional networks. Consequently, deep learning, especially the deep convolutional
neural network (CNN), is a good and rewarding approach to automatic learning of object
characteristics. Panboonyuen et al. [36] proposed a new method to improve the accuracy of
semantic segmentation. The proposed model showed superiority over other models on all
tested data. The important thing to note is that in this segmentation, instances of the same
class are not separated, in other words, if we have two objects of the same category in the
input image, we do not essentially distinguish them as separate objects.

After we applied the model over the input data, the result was a raster that represents
probability maps with a range of (0, 1), with 0 as the lowest probability of the building’s
existence, and with 1 as the highest probability of the building’s existence. The next step is
to define the probability value, based on which buildings will be identified. The probability
value used in this work is 0.5.

The last step is to merge all the classified parts of the initial raster in order to obtain a raster
with two classes (object and not object) of the same dimensions as the initial satellite image.

2.2.3. Accuracy Assessment
Metrics

In addition to the visual assessment, the most important is certainly the numerical, i.e.,
quantitative, assessment of the accuracy of the obtained results. In classification tasks, the
confusion matrix is often used to assess the accuracy and reveal information and performance
of the model, where each row of the confusion matrix represents the prediction category, and
each column represents the actual category to which the pixel belongs.

Overall accuracy is one indicator for evaluating the classification model. The total
accuracy tells us the number of accurately classified pixels, from all reference locations.
Total accuracy is usually expressed as a percentage, with an accuracy of 100% representing
perfect classification where all reference locations are correctly classified [37].

Formally, accuracy has the following definition:

OA =
Number o f correct predictions
Total number o f predictions

∈ [0, 1] (1)

For binary classification, accuracy can also be calculated using positives and negatives
as follows: [38]

OA =
TP + TN

TP + TN + FP + FN
∈ [0, 1] (2)

True positive (TP) is the number of correctly identified pixels of buildings, and true
negative (TN) is the number of correctly identified pixels that do not belong to buildings.
False positive (FP) pixels are those that are classified as a building in a place where it
does not exist, while false negative pixels (FN), are those that belong to buildings and are
classified in another class.

The Kappa coefficient is one of the parameters used in this paper to assess the quality
of the model and it is a measure of the correspondence between the classification results
and the reference data [39]:

k =
p0 − pe

1 − pe
= 1 − 1 − p0

1 − pe
(3)

where p0 is observed accuracy and pe is random agreement. The observed accuracy
is determined by the diagonal in the confusion matrix, while the random agreement
includes the members outside the diagonal. If p0 and pe completely agree, then the Kappa
statistic is equal to 1. However, if there is no agreement between these values the Kappa
statistic will be zero. Similar to most correlation statistics, Kappa can range from −1 to +1.

216



Remote Sens. 2021, 13, 3150

Although Kappa is one of the most commonly used statistics for reliability testing, it also
has limitations on the level of Kappa statistics that are sufficient to accept a model. To solve
this problem Landis and Koch [40] proposed the following scale:

• <0—No agreement
• 0—0.20 Slight
• 0.21—0.40 Fair
• 0.41—0.60 Moderate
• 0.61—0.80 Substantial
• 0.81–1.0—Perfect

Additionally, the values of the Precision and Recall parameters provide accuracy
information. The overall performance of the model is not well described when it comes to
an unbalanced data set, and the precision and recall parameters reflect the true performance
of the classification [18]:

Precision =
TP

TP + FP
∈ [0, 1] (4)

Recall =
TP

TP + FN
∈ [0, 1] (5)

Precision is the measurement of accurately identified positive cases from all positive
cases and will decrease if the number of false positive results is high. Recall is the measure-
ment of accurately identified positive cases from all actual positive cases. This will indicate
whether false negatives have a large impact on model performance. These ratings range
from 0 to 1, where a higher number indicates better performance.

Loss Function

Deep learning is an iterative process, usually with many parameters. In order to make
the adjustment as efficient as possible, the loss function is applied to the problem, among
other things. The loss function is a cost that the optimizer will try to reduce by updating
the weights, so the neural network learns and improves its performance. The loss function
examines each pixel individually and compares class predictions with accurate data.

One of the most commonly used loss functions for image segmentation tasks is pixel-
wise cross entropy. Cross entropy can be derived from the maximum likelihood (ML)
method, which is a method for estimating model parameters [41,42]. A good estimate of
the parameters is obtained by using the parameter model pmodel(xi; θ), where x is the input
data and θ the model parameters. The ML will try to fit the function that maps the given
entry as close as possible to the true function, and this is achieved by optimization via the
parameter θ, with the criterion:

θML = argmax
θ

m

∏
i=1

pmodel(xi; θ) (6)

In the case of a binary classification problem, binary cross entropy can be used as a
loss function, assuming that there are only two classes. The loss minimization in this paper
was conducted using the Adam optimizer.

2.2.4. Data Model for the Register on Determined Changes on Buildings

Due to the frequent occurrence of illegal construction of buildings and due to the
inconsistency of data in the field and in official registers in general, the Rulebook on
established changes on buildings was adopted in July 2020 [22]. This rulebook regulates
the content, establishment, maintenance and use of the records that contain data about
identified changes on buildings.

The records should contain data on the determined changes in the buildings in relation
to reference epoch of aerial photography. Three cases of change should be recorded:

• Buildings which are not registered in the real estate cadastre.
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• Buildings which are registered in the real estate cadastre, but their base dimension has
changed in relation to buildings registered in the real estate cadastre.

• Buildings which are registered in the real estate cadastre but are demolished in
the field.

The buildings for which changes are determined are buildings of all types (residen-
tial, commercial and commercial buildings, cultural, sports and recreation buildings and
similar buildings).

The rulebook defines the new records as an extension of real estate cadastre records.
Therefore, it is necessary to define a data model for the determined changes on the buildings.
A well-defined data model is the core of the cadastral information system. Thus, it must be
in accordance with existing international standards as well as with national legislation. A
conceptual data model for real estate cadastre in Serbia [43] was developed according to
the Law on State Survey and Cadastre [44] and ISO 19152 Land Administration Domain
Model [45]. A conceptual data model (UML Class diagram) for Serbian cadastre is based
on four classes that represent main concepts of real estate cadastre as shown on Figure 7:
parties (RS_Party), spatial units such as parcels, buildings and building parts (flats, business
offices) (RS_SpatialUnit), rights and restrictions that parties can have over spatial units
(RS_RRR) and basic administrative units that collect all the data regarding one spatial unit
(RS_BAUnit).

 

class RS-LADM core

LA_SpatialUnit

«FeatureType»
RS_SpatialUnit

::LA_SpatialUnit
+ area: LA_AreaValue [0..*]
+ dimension: LA_DimensionType [0..1]
+ extAddressID: ExtAddress [0..*]
+ label: CharacterString [0..1]
+ referencePoint: GM_Point [0..1]
+ suID: Oid
+ surfaceRelation: LA_SurfaceRelationType [0..1]
+ volume: LA_VolumeValue [0..1]

LA_RRR
RS_RRR

::LA_RRR
+ description: CharacterString
+ rID: Oid
+ share: Fraction[0..1]
+ shareCheck: Boolean [0..1]
+ timeSpec: ISO8601_ISO14825_Type[0,,1] [0..1]

LA_Party
RS_Party

+ address: RS_Address
+ middlename: CharacterString
+ personalid: Integer
+ personalNumber: Float
+ role: RS_PartyRoleType
+ surname: CharacterString
+ type: RS_PartyType
::LA_Party
+ extPID: Oid [0..1]
+ name: CharacterString[0..1]
- pID: Oid
+ role: LA_PartyRoleType [0..*]
+ type: LA_PartyType

LA_BAUnit
RS_BAUnit

+ type: RS_BAUnitType
::LA_BAUnit
+ name: CharacterString [0..1]
+ type: LA_BAUnitType
+ uID: Oid

+unit

0..*

baunitAsParty

+party

0..*

+party

0..1

+rrr

0..*

+su1 0..*

+su2 0..*

+unit1 0..*
+unit2 0..*

+baunit

1

+su

1

+unit 1

+rrr 1..*

Figure 7. LADM core clasess.

This core model is further developed in detail to introduce all necessary classes
and associations between them to fully represent the standardized cadastral domain for
Serbia [43]. In order to extend this model to contain new records on changed buildings, a
new class RS_Changed_Building was added (Figure 8).
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class Identified changes on buildings

«FeatureType»
RS_Changed_Building

+ buildingStatus: CL_IdentifiedBuildingStatus
+ calculatedArea: Double
+ comment: String
+ dateDCP: DateTime
+ dateOtherSource: DateTime
+ isOnMoreParcels: Integer
+ source: String
+ sourceType: CL_SourceType
+ typeOfChange: CL_TypeOfIdentifiedBuilding
+ UPIN: String

«Code List»
CL_TypeOfIdentifiedBuilding

+ demolished
+ modified_existing
+ new_notInOfficialRecords

LA_SpatialUnit

«FeatureType»
RS_SpatialUnit

::LA_SpatialUnit
+ area: LA_AreaValue [0..*]
+ dimension: LA_DimensionType [0..1]
+ extAddressID: ExtAddress [0..*]
+ label: CharacterString [0..1]
+ referencePoint: GM_Point [0..1]
+ suID: Oid
+ surfaceRelation: LA_SurfaceRelationType [0..1]
+ volume: LA_VolumeValue [0..1]

LA_SpatialUnitGroup

«FeatureType»
RS_SpatialUnitGroup

+ type: RS_SpatialUnitGroupType
::LA_SpatialUnitGroup
+ hierarchyLevel: Integer
+ label: CharacterString [0..1]
+ name: CharacterString [0..1]
+ referencePoint: GM_Point [0..1]
+ sugID: Oid

«Code List»
RS_SpatialUnitGroupType

+ administrativeMunicipality
+ cadastralDistrict
+ cadastralMunicipality
+ country

«FeatureType»
RS_Parcel

+ maunal: Integer
+ number: Integer
+ numidx: Integer
+ planNum: CharacterString [0..1]
+ purposeParcel: RS_PurposeParcelType
+ sketchNum: CharacterString [0..1]
+ year: Integer
::LA_SpatialUnit
+ area: LA_AreaValue [0..*]
+ dimension: LA_DimensionType [0..1]
+ extAddressID: ExtAddress [0..*]
+ label: CharacterString [0..1]
+ referencePoint: GM_Point [0..1]
+ suID: Oid
+ surfaceRelation: LA_SurfaceRelationType [0..1]
+ volume: LA_VolumeValue [0..1]

«FeatureType»
RS_Building

+ aboveGroundFloors: Integer
+ atticFloors: Integer
+ buildDate: DateTime
+ buildingNumber: Integer
+ entnum: int
+ floorsUnderground: Integer
+ groundFloors: Integer
+ legalStatusID: RS_LegalStatus
+ UPIN: String
+ wayUse: RS_WayOfUseBuilding
::LA_SpatialUnit
+ area: LA_AreaValue [0..*]
+ dimension: LA_DimensionType [0..1]
+ extAddressID: ExtAddress [0..*]
+ label: CharacterString [0..1]
+ referencePoint: GM_Point [0..1]
+ suID: Oid
+ surfaceRelation: LA_SurfaceRelationType [0..1]
+ volume: LA_VolumeValue [0..1]

«CodeList»
CL_IdentifiedBuildingStatus

+ archived
+ deletedFromOfficialRecords
+ inOfficialRecords
+ notASubjectOfRegistration
+ notDeletedFromOfficialRecords
+ notInOfficialRecords

«Code List»
CL_SourceType

+ areal photography
+ DCP
+ official records
+ other

1..* 1..*

+su1 0..*

+su2 0..*

0..* 0..1
0..*1..*

1..*0..1

Figure 8. Proposed conceptual model for the register on determined changes on buildings.

An attribute UPIN represents the unique property identification number that is de-
fined for each property in Serbia. For the new building this number is generated, and for
the modified or deleted building it is the same as the UPIN in the real estate cadastre for a
specific building. For the case of new and modified buildings, a geometry attribute will be
populated, and the area of the building base will be calculated. Class RS_Changed_Building
is derived from RS_SpatialUnit and contains a link to a specific spatial unit group such as
cadastral municipality. When the building is built illegally it is possible that it is placed not
on just one, but on multiple parcels. In order to record such data, an association between
classes RS_Parcel and RS_Changed_Building is added. There is also association to the class
RS_Building to show the connection with existing buildings in the real estate cadastre.
Further, it is necessary to keep the information about the source (for example, aerial pho-
tography) that is used to compare with actual real estate cadastre data (CL_SourceType).
Whether the identified change is the new building, demolished building or modified build-
ing, is one of the key pieces of information for these records. These data are selected from
CL_TypeOfIdentidiedBuilding code list. Two dates, dateDCP and dateOtherSource, represent
the dates of digital cadastral plan validity and other source’s validity. Based on collected
data, derived building status can be chosen from CL_IdentifiedBuildingStatus.

These records are used in the process of maintaining the real estate cadastre, in the
procedure of legalization of buildings in accordance with the national laws.

3. Results

3.1. Preprocessing

In the initial phase of data collection and analysis, a large amount of data on buildings
were collected; this set contains over 1500 polygons which represent the position and shape
of each object. Of the total amount of data on buildings, for classification in eCognition
and U-net, about 80% was taken for model training while the remaining 20% was used for
model testing to assess accuracy (Figure 9).
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(a) (b) 

Figure 9. Data used for training (blue) and model testing data (yellow): (a) Subotica; (b) Zrenjanin.

In the next phase, inaccuracies in the vector data were corrected, and then that data
were converted to raster format. In this way, binary rasters were obtained where pixels
with a value of 1 represent the locations where the object is located, while pixels with a
value of 0 represent locations where there are no objects. The raster obtained in this way,
together with satellite image, will represent the input data for the training of the U-Net
neural network (Figure 10).

(a) (b) 

Figure 10. An example of a pair of input data used for training: (a) Subotica; (b) Zrenjanin.

Since the models of deep learning for the training phase need to forward images of
fixed size, it is necessary to slice satellite images and rasters with object masks into smaller
parts (defined dimensions of the input data are 128 × 128 pixels).

The following table (Table 1) provides data on the number of images for training, test,
and prediction for both analyzed locations, and total number of objects from cadastral data.
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Table 1. Number of images used for training, test and prediction, and total number of objects.

City
Number of Images Number of

ObjectsTraining Test Prediction Total

Zrenjanin 269 32 106 407 780
Subotica 321 80 604 1005 778

3.2. Training and Accuracy

The neural network training was conducted using the publicly available cloud plat-
form Collaborators, hosted on Google Cloud [46].

Using early stop parameter, we determine that the number of epochs required for
training the U-Net network with data for Zrenjanin and Subotica is 17, while the accuracy
of the training model in both cases is over 90%.

In the following diagrams (Figures 11 and 12), we can see the accuracy and loss
function curve, that are obtained in the process of training the neural network. From these
diagrams we can see that, for both analyzed areas, slightly weaker results are obtained
for data that did not participate in the training. What can still be concluded is that with
the increase in the number of epochs, greater accuracy of the model will not be obtained,
since after the first 10 epochs the evaluation curve of the model takes a stable appearance
without major jumps, while the validation curve follows with smaller variations. Therefore,
if necessary, the accuracy of the model could be increased in some other way, such as
increasing the set of input data, satellite image bands, use of DSM, or change of neural
network architecture (by adding new layers).

 
Figure 11. Subotica—accuracy and loss function curve.

 
Figure 12. Zrenjanin—accuracy and loss function curve.

3.3. Building Identification Results

After the completion of the training phase, testing and evaluation of results is per-
formed. Next, the trained model was applied to the testing data set, and accuracy assess-
ment of the classification was performed again. The same procedure was applied on the
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remaining data set. The results obtained using the U-Net neural network in the test area
for both locations are shown in (Table 2):

Table 2. Building identification results in test area.

City
Total Number of

Objects

Number of Correctly Identified Objects

U-Net eCognition

Zrenjanin 141 127 126

Subotica 120 104 111

The total number of objects in both tables (Tables 1 and 2) represents a number of all
objects from the official cadastral database. As we can see, there are a number of buildings
that have not been identified, but based on the results shown above, we can conclude that
the accuracy of object identification on the new data set is about 90%, which follows the
accuracy of the model obtained during training. Based on this, we can conclude that the
model is able to identify buildings with high accuracy for areas that are outside the area
used for training. In the next figure (Figure 13) we can see the result of the identification of
objects in the test area of the city of Subotica.

 

Figure 13. Ground truth cadastral data overlap with results—Subotica.

Evaluation of the accuracy of the classification (object identification) was carried out
using 2000 points for each test area, and 1000 points for each of the classes (we have
two classes of buildings and not buildings). That number was chosen because with
2000 points a high density was obtained and the entire test area was evenly covered.
Accuracy assessment was performed based on error matrix and Kappa statistics. The
results of the accuracy assessment are shown in the following table (Table 3).

Table 3. Accuracy assessment.

City
Accuracy Kappa Statistic

U-Net eCognition U-Net eCognition

Zrenjanin 86.08 86.02 89 89

Subotica 83.99 88.04 96.84 96

During the analysis of the results, the raster data obtained after the applied classifi-
cation were compared with the reference data, and a new raster was obtained in which
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the pixels were classified into three categories: TP—true positive, FP—false positive and
FN—false negative. A visual overview for one of the three test areas is given in the fol-
lowing figure (Figure 14). Green polygons represent correctly identified objects (TP), blue
polygons represent an object that was not recognized the with model but does exist (FN),
and red parts are recognized as objects but do not exist (FP).

(a) (b) 

Figure 14. Example of object identification in Subotica: (a) U-Net; (b) eCognition.

In the next figure (Figure 15) RGB view of the satellite image, ground truth data,
prediction results and the difference between this data and ground truth data are presented.
This is an example of how the resulting changes can be identified.

Figure 15. Test data—Subotica.
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Very often with this type of analysis, a problem in identifying roofs can be caused
by the size of the building, which varies greatly, so the building can be defined with a
few pixels or can cover most of the image. Additionally, another problem consists of old
buildings that have dark roofs and are visually difficult to distinguish from other buildings
and structures. The orientation of the object can also play an important role in identifying
objects, because the part of the roof that is oriented towards the sun (in the shade) has a
weak reflection, while the opposite side is light and shows a high reflection in all lanes; thus,
obtained high contrast can make it impossible to identify the part of the roof that is in the
shade (this is typical for classification results from eCognition). However, in the following
figure (Figure 16), which displays the result of identifying objects without ground truth
data, we can see that the proposed U-Net neural network architecture copes very well with
these problems and easily overcomes them.

Figure 16. Examples of object identification without ground truth data—Zrenjanin.
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Additionally, the proposed architecture of the U-Net neural network is capable of
solving problems in the input data, when some parts of the image are incorrectly marked
as parts under the object. Such errors most often occur in densely built-up parts of the city
when several buildings are located next to each other. In these cases, it may happen in the
input data, that all these near objects are marked as one, although this is not the case. In the
following figure (Figure 17), we can see the building blocks and the error in the input data,
which was partially corrected after classification. As can be seen, in the end, individual
polygons are obtained, which represent separate objects and not one common polygon for
all buildings, as was the case in the input data.

Figure 17. Corrected errors in the input data.

We can conclude that the proposed architecture of the U-Net neural network can
easily cope with errors in the input data, which is the main advantage of this type of object
identification compared to other models of machine learning that are much more sensitive
to input data errors.

Errors in this type of building identification can also be caused by red cars that have a
reflection similar to the reflection of roofs (Figure 18).

Figure 18. A car identified as a building.

Moreover, due to the existence of residential buildings in the area of analysis that have
gray roofs, errors are visible in concrete surfaces (such as playgrounds, football fields, etc.).
Examples of these errors are given in the figure below (Figure 19).

Figure 19. Concrete terrain identified as a building.
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3.4. Identification of Objects According to the Rulebook

The following results show how identified objects can be classified according to the
Rulebook and demonstrate the applicability of the method to address the requirements
given in this official document.

3.4.1. Objects That Exist in Cadastral Records but Are Not Visible on the Orthophoto

The lack of up to date data in the cadastre is a big problem for the further development
of the cadastre itself and the successful collection of taxes. In addition to not registering
newly built facilities, another problem is outdated records of facilities, i.e., we can find
information about buildings that have been demolished and do not exist anymore but are
still registered in the cadastre. To solve this problem, two different methods of satellite
image classification have been applied. The following figures indicate the errors in the
input data and show the classification results.

Figure 20 shows that both methods correctly identified the non-existence of objects that
are still registered in the real estate cadastre. Here we can also see the correct identification
of newly built objects that are not registered in the cadastre, so we conclude that U-Net
and eCognition give quite similar results.

Figure 20. Non-existence of objects that are still registered in the real estate cadastre—Subotica.

Figure 21 show the success of both methods in overcoming this problem, with very
similar results obtained using U-Net and eCognition.

Figure 21. Non-existence of objects that are still registered in the real estate cadastre—Zrenjanin.

3.4.2. Objects That do Not Exist in Cadastre but Are Visible on the Orthophoto

One of the reasons for the non-existence of some objects in the input data set (cadastral
data), which can be seen on the orthophoto, is the result of illegally constructed buildings
that need to be identified, which with the estimate of two million illegally constructed
buildings [47] represent a major issue in Serbia. As already mentioned, the biggest advan-
tage of the U-Net neural network architecture is that it can handle errors in the input data
set used for training without major problems. Therefore, if some buildings were not given
in the training set (cadastral data), after training and running the model over the same data
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all objects that were omitted from the input data set will be successfully identified, which
can be seen in the following figures (Figures 22 and 23) circled in red.

Figure 22. Correctly identified objects that were not in the training set—Zrenjanin.

Figure 23. Correctly identified objects that were not in the training set—Subotica.

Due to the comparison of this type of classification (U-Net neural network) with the
object-oriented classification from eCognition, the following images show the same part
of the satellite image with the results in the identification of illegal objects obtained in
both ways. In the following example, we notice that two smaller objects are successfully
recognized by both methods, but we can also see that in addition to these two objects, there
is a certain number of pixels that are incorrectly classified. Depending on the classification
method and the area of analysis, the number of these misclassified pixels varies, so for this
area we see that the best results were achieved using the U-Net neural network (Figure 24).

Figure 24. New identified objects.

The following examples (Figure 25) also show a comparison of the two classification
models, where we can see that both methods successfully recognized the upgrade of one
object. In this example as well as in the previous one, we see that the best results (with the
least number of misclassified pixels) are achieved using the proposed architecture of the
U-Net neural network.
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Figure 25. Comparison of the two classification models—misclassified pixels.

3.4.3. Objects Exist in Cadastre and in Orthophoto, but with Different Surfaces

A problem that can occur when comparing the data obtained from the cadastre and
the data obtained during the identification of buildings is the identification of a slightly
wider zone around the building and the assignment to the same class of buildings. The
reason for the appearance of this “buffer” is often the acquisition angle, which can make
it difficult to separate the roof from the side walls of the object. U-Net neural network
architecture can solve this problem, by reducing the probability limit. The following figure
(Figure 26) gives an example of this problem for all classification methods. This problem,
which is especially pronounced in tall buildings, leads to incorrect identification of objects,
i.e., an object with a larger area than the actual area of the object in cadastral records;
moreover, spatial position of the identified object will be shifted in relation to the building
(the position of the object will differ from the cadastre).

Figure 26. Examples of identifying tall objects.

On the other side, proposed methods for classification of objects show very good
results in identification of objects that exist in the cadastre and in orthophoto, but with
different surfaces. The following figure (Figure 27) shows the difference between the objects
identified by both analyzed methods and the objects in the cadastre. We can now see much
more clearly that both classification methods found a newly constructed building near an
existing one.

Figure 27. Difference of identified buildings and cadastral data.
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3.5. Verification of the Results in the Register on Determined Changes on Buildings

Based on the obtained data, a register on determined changes on buildings can be
established. Such a register should be based on the data model defined in Section 2.2.4. The
main class (that represents a database table after conversion) that will be populated with
detected data is RS_Changed_Building. An algorithm for this process will be based on
spatial operators in order to create associations with parcels and buildings that are stored
in the official records and also to create additional values and codes that will be stored
in attributes of the RS_Changed_Building database table. The next three figures present
three cases that can arise from the obtained data. These cases are important to recognize
according to the Rulebook.

The first case is a situation when the detected data show that the building is demol-
ished. A building 4602/1/3 is stored in the official records. The proposed method showed
that there is no building on that location anymore. Since the date of satellite acquisition
is later than the validity date in the official records, it can be concluded that the building
has been demolished in the meantime. An instance diagram and building in the official
records that represent such situation in Subotica are presented on Figure 28.

 
(a) (b) 

Figure 28. (a) Building in the official records. (b) An instance diagram of the detected demolished building.

The second case is a situation when the detected data show the existence of new
buildings that do not exist in the official records. An example on Figure 29 shows that
two buildings have been built on agricultural parcels in Subotica in the period between
the date of satellite acquisition and the validity date in the official records. Additionally,
the new buildings are located on two parcels which means that these buildings are built
without proper building permit, and that further processes of decision-making should be
conducted by the surveying and mapping authority.

The third case is a situation when the detected data show that the building was
modified since its footprint differs from the one in the official records. Figure 30 shows an
example in Subotica where the existing building was expanded, which was also carried
out without proper permits and requires an appropriate response from the surveying and
mapping authority.
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(a) (b) 

Figure 29. (a) Purple—parcels in the official records, yellow—buildings in the official records, pink—detected buildings. (b)
An instance diagram of detected new buildings.

 
(a) (b) 

Figure 30. (a) Blue—parcels in the official records, red—buildings in the official records, green—detected buildings. (b) An
instance diagram of detected change on the building.

4. Discussion

Organized and well-structured cadastral maps are a prerequisite for better services in
land administration. Following best practices with using remote sensing techniques instead
of a filed survey, Republic Geodetic Authority of the Republic of Serbia has acquired very
high resolution satellite images for the years 2015/2016, and 2020. New very high resolution
satellite images were acquired within the project “Improvement of Land Administration in
Serbia” that is being implemented with the support of the World Bank [47]. These images
will provide numerous benefits for both citizens and the economy, through the provision
of up to date information on real properties.

Very high resolution satellite images from the years 2015/2016 and 2020 were of
great importance for the implementation of infrastructure projects, spatial planning, and
projects of national importance in the fields of agriculture, water management, forestry,
environmental protection, mining and energy, risk management, and establishment of
spatial information systems at the national and local levels.
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By using orthophotos, made on the basis of satellite images that were collected in 2020
and 2015/2016, it will be possible to determine changes on real properties in order to update
official registers and records on real properties of the responsible state institutions. The results
of building extraction presented in this paper can be compared to other results reported in
the literature, but also not directly due to different study areas, data that are used, variety of
buildings and finally approaches that are used and the purpose of the study.

Lucian et al. [48] evaluated the impact of the spatial extent on the geometric accuracy
of the objects delineated through multiresolution image segmentation. The experiments
revealed that the geometric accuracy improved by 8–19% in quality rate when multireso-
lution segmentation was performed in smaller extents, as compared to the segmentation
of whole images. Mariana and Lucian [49] also compared supervised and unsupervised
segmentation approaches in OBIA by using them to classify buildings from three test areas
in Salzburg, Austria, using QuickBird and WorldView-2 imagery. All three of the methods
evaluated achieved similar classification accuracies, with overall accuracies between 82.3%
and 86.4% and Kappa coefficients between 0.64 and 0.72. They also concluded that segmen-
tation has an impact on classification with very different image objects, but accuracies were
very similar. This result suggests that, as long as under-segmentation remains at acceptable
levels, imperfections in segmentation can be ignored so that a high level of classification
accuracy can still be achieved. Lei et al. [12], using information available in 173 scientific
publications, among other things have found that high spatial resolution remote-sensing
imagery remains the most frequently used data source for supervised object-based land-
cover image classification, and the dominant image resolutions are 0–2 m. Divyesh in his
thesis [50] used two datasets from East Asia and Munich, Germany (Ikonos and WV2)
and DSM. He used information similarity measures for change detection of buildings,
using VHR satellite images and DSM (incorporating height information from DSMs to
assess changes in both horizontal as well as vertical direction). The effectiveness of the
presented approach was evaluated through pixel-based assessment, as well as object-based
assessment, with overall accuracy ranging from 86.307% to 93.75 % for object-based and
96.99 to 99.1291 for pixel-based quality assessment.

Khosravi et al. [51] evaluated and compared four building detection algorithms: two
pixel-based and two object-based algorithms, using a diverse set of high-resolution satellite
imagery. The results indicated that the performance and the reliability of object-based
algorithms were better than pixel-based algorithms. Kriti et al. [52] compared several deep
learning techniques with different architecture in automatic building footprint extraction.
The evaluation over the test datasets with different networks showed accuracy from 85.2%
to 91.5% in global results, and in urban areas of slums, isolated and dense built-up areas,
accuracy went from 60% to 96.75% due to low spectral and textural variance among the
buildings. Additionally, distances between buildings are less than 2 pixels which are
difficult to delineate even through visual interpretation, resulting in creation of relatively
poor training data for slum areas, with model accuracy of 72.5%. On the other hand, Wang
et al. [31] reached a very high value of overall accuracy (94.12%) for building segmentation
with their proposed innovative image processing method implementing the efficient Non-
local Residual U-shape Network (ENRU-Net).

The main issue in Serbia is a lack of (or limited access to) up to date VHR images and
other remote sensing data such as LiDAR and other derived products, not just for practical
application, but also for research. Furthermore, one of the largest issues is the existence of
more than two million illegal buildings [23] (newly built or changed), which results in an
inaccurate cadastral database and a lack of tools that can help in detection of those illegally
built or changed buildings in a (semi)automatic manner. With our proposed method we
want to improve the current situation and support the implementation of a newly adopted
“Rulebook on the records of identified changes on buildings” in Serbia, which requires
the development of a special register of such buildings. This method will significantly
speed up the entire process of detecting such buildings, entering data in the register, and,
consequently, it will lead to an up to date cadastral database. The methodology proposed in
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this paper for automatic building extraction is simple, fast, efficient and achieves accuracy
from 84% to 88% (Table 3). It does not require additional information, such as digital
surface models (DSM), and gives good results even when we have only a satellite image
with RGB and NIR bands. The proposed methodology can be further used for various
applications, not only in Serbia, but also in all developing countries, which have a problem
of lack of funds and access to additional spatial data that can help. In addition, it can
be used in the process of the identification of illegally constructed or changed buildings,
for which it is applied in this paper, and to assess damage by identifying damaged and
undamaged buildings. Interpretation of the obtained results shows that buildings with
very light and dark roofs have been successfully identified. Additionally, interpretation
of obtained results shows that proposed models can be used in a typical Serbian type of
settlements, in an urban part, but also in the rural part of settlements where there are
dominantly houses with different types of roofs and big green spaces. Similarly, some
non-building structures such as cars are classified in the class of buildings because of their
similar reflection value and structural properties.

Future work should consider the development of an appropriate software solution
with a fully automated proposed methodology for storing and maintaining acquired data
and using U-Net as a tool for change detection, since it is simple for implementation and
achieves results comparable to the object-based method. The database for the solution
should be organized according to the extended LADM country profile defined in the
Methods and Material section. Available data not just for research, but also for practical
application are limited, so future work will include improvements of proposed methods
for building detection in terms of accuracy based on those available data.

5. Conclusions

The paper proposes a building change detection method to support the development
of the register of identified changes on buildings defined in the official Rulebook of the
Government of Serbia. Our results, using only VHR images containing only RGB and NIR
bands, showed object identification accuracy ranging from 84% to 88%, with kappa statistic
from 89% to 96%.

The proposed method is simple, efficient and achieves sufficient accuracy in both
building detection and legality assessment, without the need of additional information such
as LiDAR data or a digital terrain model. The proposed method can greatly increase the
speed of the development of such a register compared to the manual procedure, considering
a very large number of objects that need to be identified. The results are classified into
three categories of possible changes on buildings defined in the rulebook to support the
conclusion that the method is capable of solving the set of requirements specified in this
Rulebook. Further improvements of the method will consider achieving higher accuracy
based on the available data. Furthermore, the development of an appropriate software
solution for storing and maintaining acquired data is anticipated.
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