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Preface to ”Mathematics and Its Applications in

Science and Engineering”

Mathematics, which is applied in science and engineering problems, is seen as one of the most

important languages and tools to address daily situations. This book contains several applications

of mathematics that were presented at the II ICMASE conference (International Conference on

Mathematics and its Applications in Science and Engineering) held in Salamanca (Spain) organized

by the Universidad de Salamanca and the Ankara Hacı Bayram Veli Üniversitesi (Turky).

The researchers contributing to this book have extensive experience in mathematical courses and

the application of mathematics in different countries.

This book is dedicated to professionals, researchers, as well as PhD and master’s degree students.

It covers several research topics from numerical linear algebra to approximation theory, geometry

and its applications, and more. Each contribution was written by a different author or team of

authors. The references also naturally supply a source of additional information about the subject

of the chapter.
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Mathematics and Its Applications in Science and Engineering

Araceli Queiruga-Dios 1,*, María Jesus Santos Sánchez 2, Fatih Yilmaz 3, Deolinda M. L. Dias Rasteiro 4,

Jesús Martín-Vaquero 5 and Víctor Gayoso Martínez 6

1 Department of Applied Mathematics, Higher Technical School of Industrial Engineering,
Universidad de Salamanca, 37700 Béjar, Salamanca, Spain

2 Department of Applied Physics, Science Faculty, University of Salamanca, Plaza. de la Merced s/n,
37008 Salamanca, Spain

3 Department of Mathematics, Ankara Hacı Bayram Veli University, Ankara 06570, Turkey
4 Department of Mathematics and Physics, Coimbra Polytechnic—ISEC, 3045-093 Coimbra, Portugal
5 Department of Applied Mathematics, Institute of Fundamental Physics and Mathematics,

Universidad de Salamanca, 37008 Salamanca, Spain
6 Data Research & Computation Group (DRACO), Centro Universitario de Tecnología y Arte Digital (U-Tad),

Las Rozas de Madrid, 28290 Madrid, Spain
* Correspondence: queirugadios@usal.es

This book contains the successful submissions [1–19] of those invited to participate
in a Special Issue of Mathematics on “Mathematics and Its Applications in Science and
Engineering”. These submissions were presented at the II. International Conference on
Mathematics and its Applications in Science and Engineering (ICMASE), organized by the
Universidad de Salamanca (Spain), which took place 1–2 July 2021.

These papers are related to new and innovative proposals for the use of mathematics
in science and engineering, as well as in non-mathematical contexts; and applications of
mathematics in tasks such as the use of differential equations to model structures, the shape
of a machine or the growth of a population, or to ensure information security through
cryptographic protocols.

Nowadays, Mathematics provides useful tools for engineering students, teachers, and
professionals. It contains state-of-the-art research, which is of particular importance, as
mathematical education has been changing and acquiring a different role in undergraduate
and graduate degrees in recent years. The goal of this book, apart from its scientific
contribution, is to integrate different methodologies for mathematical education.

Our call for submissions received the following response:

Submissions (40);
Publications (19);
Rejections (21);
Article types: Research Articles (19).

Published submissions are related to mathematical modelling in science and engineer-
ing applications; optimisation and control in engineering applications, complex systems
modelling, stochastic models in physics and engineering, numerical methods for science
and engineering applications; mathematics in engineering and scientific studies, good
practices in motivating students to learn mathematics during university studies, assessing
mathematics using applications and projects, and teaching and assessment methodologies
in science and engineering, among other topics.

We found the selection and editorial process for the papers for this book very inspiring
and rewarding. We would like to thank the editorial staff and reviewers for their efforts
and help during the process.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: This paper presents the results of a model-based predictive control (MPC) design for a
quadrotor aerial vehicle with a suspended load. Unlike previous works, the controller takes into
account the hanging payload dynamics, the dynamics in three-dimensional space, and the vehicle
rotation, achieving a good balance between fast stabilization times and small swing angles. The
mathematical model is based on the Euler–Lagrange formulation and considers the dynamics of
the vehicle, the cable, and the load. Then, the mathematical model is represented as an input-affine
system to obtain the linear model for the control design. A constrained MPC strategy was designed
and compared with an unconstrained MPC and an algorithm from the literature for the case of study.
The constraints to be considered include the limits on the swing angles and the quadrotor position.
The constrained control algorithm was constructed to stabilize the aerial vehicle. It aims to track a
trajectory reference while attenuating the load swing, considering a maximum swing range of ±10◦.
Numerical simulations were carried out to validate the control strategy.

Keywords: unmanned aerial vehicle; predictive control; optimal control; suspended load;
constraints

1. Introduction

In recent years, the development of aerial robotics has been rapid via both scientific
and commercial research, since the use of these autonomous systems is now not restricted
to the military field. The versatility of unmanned aerial vehicles (UAVs), together with
recent technological advances, has allowed the development of new devices that have
a higher degree of autonomy; hence, they considered for different types of applications,
mainly in those where the user’s safety may be compromised or where the areas of interest
are difficult to access. The transport of a load suspended by a cable is one of the most
common activities with unmanned aerial vehicles. The modeling and design of control
strategies for these systems is a topic that has attracted the attention of researchers in recent
decades; this is because there is a variety of tasks where fast and efficient handling of a
load is required, which leads to aggressive movements that generate oscillations in the
load that when not controlled can cause accidents. The works focused on the use of UAVs
for payload transport are relatively recent [1].

There are several devices reported in the literature that are used to attach a load to
such a vehicle. For example, in [2,3] a clamp-type mechanical device with only one degree
of freedom that keeps the load attached to the structure of the UAV was used. In [4] the
use of a manipulator with a robotic arm was mentioned. In these configurations, the load
is closer to the vehicle’s center of gravity, which causes increases in weight and rotational

Mathematics 2021, 9, 1822. https://doi.org/10.3390/math9151822 https://www.mdpi.com/journal/mathematics3
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inertia that affect the maneuverability of the vehicle in flight. Another approach, which
is widely used in transportation, consists of suspending the payload through a rope or
cable connected directly to the vehicle’s structure, allowing fast and agile movements. This
approach adds degrees of freedom to the system, and a swinging motion of the payload
that acts as a pendulum that can transmit oscillations through the cable and negatively
affect the operations and stability of the vehicle in flight [5].

In the literature, different control strategies have been proposed to address the gen-
eral problem of transporting a payload suspended by a cable from a UAV. For example,
in [6] the effect of dynamic load disturbances introduced by instantaneously increased load
mass and how those affect UAVs under PID flight control was studied. Ref. [7] introduced
the use of dynamic programming to generate an optimal trajectory and adaptive control
for maneuvering without swinging effects. Ref. [8] presented a nonlinear dynamic model
and two IDA-PBC control algorithms for a quadrotor with a cable-suspended payload that
explicitly incorporate total energy-shaping; however, the vehicle travels only in the x–z
plane and then in the y–z plane to achieve control in three-dimensional space. Additionally,
ref. [9] proposed a mathematical model of the interconnected multi-body system using
Kane’s equations and a tracking controller based on the backstepping technique. Ref. [10]
considered a hierarchical scheme combining energy-based control (translational dynamics)
and a nonlinear state feedback controller based on a linear matrix inequality (rotational
dynamics) to solve the problem of transporting a cable-suspended payload by a UAV.
Meanwhile, in [11] two novel nonlinear control algorithms for controlling a quadcopter’s
position and attenuating the swing angle of the payload were designed. The controllers
take advantage of the natural coupling existing between the horizontal quadcopter move-
ment and the payload oscillation; however, the vehicle only travels in one plane at a time.
Ref. [12] shows a nonlinear control approach with an elaborately constructed integral
term for an aerial transportation systems. This method achieves satisfactory anti-swing
and positioning performance and reduces steady errors during real flight. A model of a
quadrotor with a suspended payload was derived in [13]. The hierarchical control structure
of inner-loop attitude and outer-loop position using PID was adopted in the design of
trajectory tracking of the quadrotor transporting a payload. Ref. [14] presents a quadrotor
with the payload connected to the vehicle through a cable. The payload swing is rejected
by using a nonlinear controller based on a system model derived using the Euler–Lagrange
equations. However, the payload is considered a disturbance. Ref. [15] presents a model
and a proportional-derivative control of a quadrotor with payload uncertainties; the pay-
load is also considered a disturbance. A mathematical model of the payload and quadrotor
was presented in [16] through the Euler–Lagrange formulation. In addition, a robust sliding
mode control was designed for the transitional movements to cope with both disturbances
such as wind, and payload swings. Ref. [17] proposes an adaptive control technique to
control the velocity of a volumetric payload with unknown mass, which is transported by
a quadrotor in the presence of rotor down-wash.

Optimal control techniques have also been applied. For example, ref. [18] developed
an iterative linear quadratic regulator (iLQR) optimal strategy of a mathematical model
for a quadrotor with a cable-suspended heavy rigid body. The algorithm considers an
anti-swinging load in a transporting task; however, the stabilization times are very long
compared to the results of works found in the literature and to those obtained in the present
article. Reference [19] explores a trajectory planning method based on predictive control
for a quadrotor with a suspended payload. The authors contemplated the anti-swing and
obstacle avoidance in the flight path. However, this research did not consider the rotational
dynamics of the vehicle and treated the quadrotor as a three-dimensional overhead crane.
Moreover, ref. [20] presented a linear quadratic Gaussian control method for a quadrotor
transporting an unknown suspended load: the load parameters were unknown, and the
load state was not available. This paper also did not consider the rotational dynamics
of the vehicle. Reference [21] presents a cascade control strategy with anti-disturbance
functionality and a predictive optimal function to control the rotation of a quadrotor
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carrying unknown payloads. However, the translational control was not realized and the
payload was considered a disturbance.

The primary mission of aerial transportation is to maintain the hanging load within
the desired operating and safety limits. Therefore, the prime aim is to design control
algorithms that ensure minimal swing angles without sacrificing response times. However,
some works listed above presented swing angles between ±12◦ and ±35◦, or in order
to achieve small angles, they employed very conservative control laws, resulting in long
settling times—e.g., [18,22]. Thus, motivated by the previous works—where the authors
dealt with the hanging payload transportation problem by (i) considering the payload as
a disturbance; (ii) including the payload dynamics, but considering only a longitudinal
translation of the UAV; (iii) considering three-dimensional dynamics but neglecting the
rotation of the vehicle; or (iv) reducing the payload swing by sacrificing performance—in
this paper, we offer an alternative approach to stabilize a quadrotor transporting a payload
by using a predictive control strategy. Here, the quadrotor-payload system model includes
the hanging payload dynamics, and the predictive controller considers both the system’s
translation dynamics in three-dimensional space and the vehicle’s rotation. Constraints
on the load swing angles are to keep the vehicle transporting a load within the desired
operating and safety limits. Considering constraints on the quadrotor positioning in x
and y allows one to avoid overshoot in the transient responses of this positioning and
thus to evade further oscillations of the load angles. Predictive control was chosen for its
inherent ability to handle constraints on the system’s output, which are applied to restrict
the maximum swing angle of the load, guaranteeing the safe flight of the aircraft. An
additional contribution of this work is the linear model representation of the quadrotor-
payload system used in the design of the model-based predictive control (MPC) strategy;
although a modest contribution on its own, it is valuable within the controller design
methodology. Moreover, as evidenced in the results section, this strategy achieves a good
balance between fast stabilization times and small swing angles.

The article is organized as follows: Section 2 describes the nonlinear model of the
quadrotor with the suspended load; in the same section, the linearized model used for the
controller design is presented. Section 3 introduces the theoretical basis of the predictive
controller. Section 4 shows the numerical results obtained. Section 5 presents the conclu-
sions and future work. Finally, due to the many of variables used, the nomenclature is
summarized in Appendix A.

2. Dynamic Model

This section aims to present the dynamic model that describes the complete system,
including the coupling problem between the load suspended by means of a cable and
the aerial vehicle as an integral problem and not as a disturbance. For this purpose, the
following assumptions are made:

(a) The multi-rotor fuselage is considered rigid and symmetrical.

(b) The cable that connects to the load is attached to the center of mass of the air vehicle.

(c) The cable is considered rigid, inelastic, and massless. Its length is constant and
is known.

(d) The payload is considered to be a point-mass.

(e) Aerodynamic effects on the load are neglected.

Consider a quadcopter type multirotor vehicle evolving in three dimensions, capable
of carrying a suspended payload by means of a cable as shown in Figure 1. The inertial
coordinate system fixed to ground is represented by {O} and the body-fixed frame is
defined by {B}.

The generalized coordinates of the model can be written as:

q =
[
ξ η μ

]T ∈ R
8 (1)
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where ξ =
[

x y z
]T ∈ R3 represents linear positions and η =

[
ψ θ φ

]T ∈ R3

represents angular positions of the vehicle. μ =
[

α β
]T ∈ R2 represents the oscillation

angles of the suspended load. l is the length of the cable, d is the distance between the
motors and the center of mass, the gravitational acceleration constant is represented by
g, the mass of the quadrotor is defined by M, and the payload is m. The vector of control
inputs is represented by u =

[
u1 τ

]T ∈ R4, where u1 = fP1 + fP2 + fP3 + fP4 is the

total propulsive force and τ =
[

τψ τθ τφ

]T are the input torques.

Figure 1. Three-dimensional quadrotor with a cable-suspended payload.

2.1. Euler–Lagrange Methodology

The Euler–Lagrange equations of motion represent an adequate and convenient ana-
lytical method to obtain the dynamic model of the system. Their mathematical structure
allows one to analyze and study in detail all the physical phenomena of the plant quadrotor-
payload, since the dynamic nature of the system is highly nonlinear, underactuated, and
multivariable, and the subsystems are strongly coupled.

The Euler–Lagrange formulation is based on the energy of the system; therefore, the ki-
netic energy has to be calculated as the potential energy to obtain the Lagrangian of the sys-
tem. The total kinetic energy TQSP(q̇) of the plant is represented by the following expression:

TQSP(q̇) =
1
2

Mξ̇T ξ̇ +
1
2

η̇T Jη̇︸ ︷︷ ︸
Quadrotor

+
1
2

mξ̇T
p ξ̇p +

1
2

Ip(α̇
2 + β̇2)︸ ︷︷ ︸

Payload

(2)

where J is the inertia matrix and Ip contains the mass moments of inertia of the payload.
The positions relative to the center of the load in Cartesian coordinates are described by:

ξp = ξ + lr, (3)

where ξp =
[
xp yp zp

]T and r =
[
sαcβ sαsβ −cα

]T , to simplify the presentation, we
have used the short notation sα = sin(α) and cα = cos(α). The potential energy is due to
the position or the configuration of the body with respect to a reference frame, so the total
potential energy is described by:

V(q) = Mgz + mg(z − lcα) (4)

6
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The Lagrangian L, which is what we are interested in calculating, is obtained by
subtracting the kinetic energy TQSP from the potential energy V(q), as shown in the
following expression:

L =
1
2

Mξ̇T ξ̇ +
1
2

η̇T Jη̇ +
1
2

mξ̇T
p ξ̇p +

1
2

Ip(α̇
2 + β̇2)− Mgz − mg(z − lcα) (5)

By applying the Euler–Lagrange formulation,

d
dt

(
∂L
∂q̇

)
−

(
∂L
∂q

)
= Bu, (6)

we obtain the non-linear model of the quadrotor system with a suspended load by means
of a cable represented by the following equations:

ẍ =u1((sφsψ + cφcψsθ)− (mlcαα̈ + lmsαα̇2))/(m + M); (7)

ÿ =u1((cφsθsψ − cψsφ)− (mlcββ̈ + lmsββ̇2))/(m + M); (8)

z̈ =(u1(cθcφ)− (m + M)g − ml(sαcβα̈ − ml(sβcαβ̈ − mlβ̇2cα − mlβ̇2cβ + 2Mlsβsαα̇β̇)))/(m + M); (9)

ψ̈ =(τψ − θ̈(Iy Izcθsφcφcθsφcφ) + Ixφ̈sθ − ψ̇(Ix θ̇sθcθ + Iy(−θ̇sθcθs2
φ + φ̇c2

θsφcφ)− Iz(θ̇sθcθc2
φ + φ̇sφcφc2

θ)

− θ̇(Ixψ̇sθcθ − Iy(θ̇sθsφcφ + φ̇cθs2
φ − φ̇cθc2

φ + ψ̇sθcθs2
φ + Iz(φ̇cθs2

φ − φ̇cθc2
φ − ψ̇sθcθc2

φ + θ̇sθsφcφ))

+ φ̇(Ix θ̇cθ − Iyψ̇c2
θsφcφ + Izψ̇c2

θsφcφ))/(Ixs2
θ + Iyc2

θs2
φ + Izc2

θc2
φ); (10)

θ̈ =(τθ−ψ̈(Iycθsφcφ− Izcθsφcφ)−ψ̇(−Ixψ̇sθcθ+ Iyψ̇sθcθs2
φ+ Izψ̇sθcθ(cφ)

2)+θ̇(Iyφ̇sφcφ − Izφ̇sφcφ)

−φ̇(Ixψ̇cθ+ Iy(−θ̇sφcφ+ψ̇cθc2
φ−ψ̇cθs2

φ)+ Iz(ψ̇cθs2
φ−ψ̇cθc2

φ)+θ̇sφcφ)+θ̇(Iyφ̇sφcφ− Izφ̇sφcφ))/(Iyc2
φ+ Izs2

φ); (11)

φ̈ =(τφ+ψ̈Ixsθ+ψ̇(Iyψ̇c2
θsφcφ− Izψ̇sφcφc2

θ−θ̇(−Ixψ̇cθ+ Iy(θ̇sφcφ+ψ̇cθs2
φ−ψ̇cθc2

φ)− Iz(ψ̇cθs2
φ−ψ̇cθc2

φ+θ̇sφcφ)))/(Ix); (12)

α̈ =(−mlcα ẍ − mlcβsα z̈ − ml2cαcβsαsββ̈ − gmlsαcβ + ml2α̇2cαsα − ml2c2
βsαcαα̇2

+ 2ml2s2
αcβsβα̇β̇ − ml2c2

βsαcαβ̇2)/(ml2(c2
α + c2

αc2
β) + Ip); (13)

β̈ =(−mlcβÿ − mlcαsβ z̈ − ml2cαcβsαsβα̈ − gmlsβcα + ml2 β̇2cβsα − ml2c2
αsβcββ̇2

+ 2ml2s2
βcαsαα̇β̇ − ml2c2

αsβcβα̇2)/(ml2(c2
β + c2

βc2
α) + Ip). (14)

In the previous expressions, Ix, Iy, and Iz represented the inertias of the quadrotor,
and Ip represented the inertia of the suspended load.

2.2. Linear Model

In this subsection, the equations of motion of the quadrotor with a suspended load are
linearized around the equilibrium points considering the state vector
χ =

[
x ẋ y ẏ z ż ψ ψ̇ θ θ̇ φ φ̇ α α̇ β β̇

]T and the output vector

yc =
[
x y z ψ θ φ α β

]T . In order to determine them, the system is consid-
ered to be fixed in an equilibrium coordinate; i.e., the UAV is in a hover position. There is
also an assumption of smooth movements, so the rotation and swing angles are relatively
small. The translational and rotational system of the quadrotor with suspended load is
linearized around the equilibrium point:

χeq =
[
xeq 0 yeq 0 zeq 0 0 0 0 0 0 0 0 0 0 0

]T , (15)

and for control inputs:

ueq =
[
(m + M)g 0 0 0

]T . (16)
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Then, equations can be represented in state space as follows:

χ̇ = Acχ + Bcu

yc = Ccχ
(17)

By means of the Taylor series expansion and evaluating the equilibrium point, the
linear model (17) is obtained with:

Ac =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 a2,9 0 0 0 a2,13 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 a4,11 0 0 0 a4,15 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 a14,9 0 0 0 a14,13 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 a16,11 0 0 0 a16,15 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; (18)

Bc =

⎡⎢⎢⎢⎣
0 0 0 0 0 1

M+m 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1

Iz
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1
Iy

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1
Ix

0 0 0 0

⎤⎥⎥⎥⎦
T

; (19)

Cc =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; (20)

where a2,9=g(2l2m2 + Ml2m+ Ipm+ Ip M)/(M+m)(ml2 + Ip); a4,11=−g(2l2m2 + Ml2m+
Ipm + Ip M/(M + m)(ml2 + Ip), a2,13 = a4,15 = gl2m2(2l2m2 + Ml2m + Ipm + Ip M)/
(M+m)2/(ml2+ Ip)2; a14,9 = −glm(2l2m2 + Ml2m + Ipm + Ip M)/(M + m)(ml2 + Ip)2=
a14,13=a16,11; a16,15=−glm(2l2m2 + Ml2m + Ipm + Ip M)/(M + m)(ml2 + Ip)2.

3. Model-Based Predictive Control

Predictive control makes explicit use of a model of the plant to predict the output of
the process in future instants, and based on the minimization of a cost function, a strategy
is proposed to obtain the optimal control signal. The minimization of the cost function
can be obtained explicitly if the model is linear and there are no constraints; otherwise, an
iterative optimization method must be used.
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3.1. State Space Model and Input Increments

The behavior of the plant considering the system in discrete-time without disturbances
and without measurement errors with n states, l outputs, and m inputs can be described by
the following model in state space:

xk+1 = Adxk + Bduk

yk = Cdxk
(21)

where xk+1 ≡ x(k + 1), xk ∈ Rn represents the sate vector, yk ∈ Rl the output vector, uk
∈ Rm the input vector, and k the time-step. For convenience, the increment in the control
signal is considered an input variable as follows:

Δuk = uk − uk−1 (22)

resulting in an augmented plant model:

ζk+1 = Aζ ζk + Bζ Δuk

yk = Cζ ζk
(23)

where

ζk+1 =

[
xk+1
uk

]
; Aζ =

[
Ad Bd
0 I

]
; Bζ =

[
Bd
I

]
; Cζ =

[
Cd 0

]
.

3.2. Predictions

The future evolution of the states can be calculated by iterating over the model (23):

⎡⎢⎢⎢⎢⎢⎣
ζk+1
ζk+2
ζk+3

...
ζk+ny

⎤⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

ζ−→k

=

⎡⎢⎢⎢⎢⎢⎢⎣

Aζ

A2
ζ

A3
ζ

...
A

ny
ζ

⎤⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

Pζζ

ζk +

⎡⎢⎢⎢⎢⎢⎢⎣

Bζ 0 · · · 0
Aζ Bζ Bζ · · · 0
A2

ζ Bζ Aζ Bζ · · · Bζ

...
...

. . .
...

A
ny−1
ζ Bζ A

ny−2
ζ Bζ · · · A

ny−nu
ζ Bζ

⎤⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

PζΔu

⎡⎢⎢⎢⎣
Δuk

Δuk+1
...

Δuk+nu−1

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

Δu−→k−1

(24)

where the arrow notation denotes prediction and is defined as x−→k =
[

xT
k+1 xT

k+2 . . .
]T

. ny

is the prediction horizon and nu the control horizon—it is generally chosen by nu ≤ ny.
The state predictions can be obtained by extracting them from the augmented states:

x−→k = diag
([

I 0
])︸ ︷︷ ︸

Pxζ

ζ−→k. (25)

By substituting the state prediction into the output equation, the output predictions
can be obtained:

y−→k = Pyζζk + PyΔuΔu−→k−1, (26)

where Pyζ = diag(C)Pζζ and PyΔu = diag(C)PζΔu.

9
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Finally, the input predictions are

u−→k−1 =

⎡⎢⎢⎢⎣
I 0 · · · 0
I I · · · 0
...

...
. . .

...
I I · · · I

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

PuΔu

Δu−→k−1 + col
([

0 I
])︸ ︷︷ ︸

Puζ

ζk. (27)

Our paper adopts an independent model approach to prediction [23,24]. Then, by
defining ŷk as the output vector of the independent model (given by simulating model (21)
in parallel with the plant), the model’s residual estimate is d̂k = yk − ŷk and it is assumed
to be constant over the prediction horizon. This value is subtracted from the reference to
compensate for disturbances or model mismatches.

3.3. Cost Function

The most common cost function for obtaining the control law consists of penalizing
the squared errors multiplied by a weight, that is, penalizing the difference between the
reference minus the squared output plus the control effort multiplied by a weight, along a
prediction and control horizon. The general expression of this function is:

JMPC =
ny

∑
i=1

(yk+i − r̂)TQ(yk+i − r̂) +
nu−1

∑
i=0

ΔuT
k+iRΔuk+i (28)

Q and R are tuning parameters that impact future behavior and r̂ is the setpoint. By
substituting the model of the predictions within the objective function by differentiating
and setting it to zero, the optimal control sequence is obtained:

Δu−→
∗
k−1 = −

(
PT

yΔudiag(Q)PyΔu + diag(R)
)−1

PT
yΔudiag(Q)

(
Pyζ ζk − r̂−→

)
(29)

where ∗ denotes optimality. Additionally, the control input uk is formed by adding to the
previous input uk−1, the first element of Δu−→

∗
k−1—that is, Δu∗

k−1.

3.4. The Constrained MPC Algorithm

Constraints help to keep the process within desired operating limits or conditions.
Constraints have to be fulfilled for all the prediction horizon:

diag(Ax) x−→k ≤ col(bx); diag(Ay) y−→k ≤ col(by);

diag(Au) u−→k−1 ≤ col(bu); diag(AΔu)Δu−→k−1 ≤ col(bΔu). (30)

where Ax, Ay, Au, AΔu = [I, − I]T and bx, by, bu, bΔu are vectors that contain the maximum
and minimum values allowed in the form [max min]T .

The cost function (28) and constraints (30) can be expressed in terms of the desi-
cion variable Δu−→k−1, and the following quadratic programming optimization problem
is obtained:

Δu−→
∗
k−1 =arg min

Δu−→k−1

{
1
2

Δu−→
T
k−1

(
PT

yΔudiag(Q)PyΔu + diag(R)
)

Δu−→k−1 +
(

PyΔudiag(Q)(Pyζ ζk − r̂−→k)
)T

Δu−→k−1

}
(31)

s.t.

⎡⎢⎢⎣
diag(Ax)Pxζ PζΔu

diag(Ay)PζΔu
diag(Au)PuΔu

diag(AΔu)

⎤⎥⎥⎦
︸ ︷︷ ︸

Ma

Δu−→k−1 ≤

⎡⎢⎢⎣
col(bx)
col(by)
col(bu)

col(bΔu)

⎤⎥⎥⎦ −

⎡⎢⎢⎣
diag(Ax)Pxζ Pζζ

diag(Ay)Pyζ

diag(Au)Puζ

0

⎤⎥⎥⎦
︸ ︷︷ ︸

qa(ζk)

(32)
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and the control law is:

uk = uk−1 + Δu∗
k , (33)

where Δu∗
k is the first element of Δu−→

∗
k−1.

3.5. MPC for a Quadrotor with a Suspended Load

This subsection presents the design and configuration with to implement the predic-
tive control algorithm for a quadrotor carrying a suspended load. We start from a continu-
ous state space model representation (17) to obtain a discretized and augmented version
of the system (23) represented by the matrices Aζ ∈ R20x20, Bζ ∈ R20x4 and Cζ ∈ R8x20

that are used to calculate the prediction matrices Pζζ , PζΔu, Pyζ , PyΔu, Px,ζ , Pu,Δu, Pu,ζ to form
the unconstrained control law (29) and the optimization problem (31) and (32) for the
constrained case. To solve the optimization problem, Matlab’s quadprog function was used.
It is worth mentioning that for this particular process, only constraints on the positions
of the quadrotor x, y, and z, and on the oscillation angles of the suspended load α and β
were considered.

The physical parameters of the suspended-load quadrotor system are presented in
Table 1 and were taken from [8]. Predictive control tuning parameters are the prediction
ny and control nu horizons, and the weights Q and R. To select the horizons, the tuning
guidelines provided by [25] were used. In general, for stable open-loop models, the
literature suggests that ny should be larger than the settling time plus nu. For unstable
open-loop models, as this is the case, large values of ny are preferred, and then the value
is detuned until the system achieves the desired robustness. Here, intermediate values of
ny result in an adequate performance. The control horizon nu was chosen to be as small
as possible to get the required behavior while minimizing computational load (although
a higher value of nu should improve performance if the processing capabilities allow it).
Finally, Q and R were heuristically adjusted—a compromise between response time and
input rate (aggressiveness). Alternatively, a global search could be done to achieve better
performance, as suggested by [26]. The tuning parameters of the predictive controller are
presented in Table 2.

Table 1. System parameters.

Parameter Value Units

M 0.4 m
m 0.03 m
d 0.1 m
l 0.35 m
g 9.8 m/s2

Ix 1.77 × 10−3 kgm2

Iy 1.77 × 10−3 kgm2

Iz 3.54 × 10−3 kgm2

Ip 1.00 × 10−6 kgm2

Table 2. Controller parameters.

Parameter Value Units

Ts 0.1 s
ny 10 –
nu 3 –
Q I –
R 0.00001 × I –
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4. Numerical Simulations and Results

This section presents the numerical results of the simulations performed to validate the
achievement of the designed MPC controller. The main goal was to bring the quadcopter
to the desired reference position while the suspended load oscillation was restricted to a
maximum swing of ±10◦ = ±0.175 rad. For the model’s linearization, the values of M, m,
and g were constant and are defined in Table 1. The values of xeq, yeq, zeq were zero, which
is an arbitrary point in three-dimensional space located well above the ground.

4.1. MPC Performance

In transport operations with multirotors, rapid handling of loads is required, which
can be dangerous because the load can generate unwanted oscillations that can vary the
flight conditions—the process must be kept within limits. In this particular process, the use
of constraints for positions x and y of the vehicle and in the oscillation angles of the load
were considered to avoid overshoots that can cause damage to the transported payload and
guarantee safety in operations. The results that correspond to the constrained predictive
controller are presented in Figure 2.
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Figure 2. Results for the proposed predictive controller.
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Figure 2a displays the positions x, y, and z of the quadrotor with their respective
constraints 0 ≤ x ≤ 1, 0 ≤ y ≤ 2, and 0 ≤ z ≤ 3. The signals responded quickly to reach
the reference in no longer than 3 s. The controller kept each constrained position x and y
at its reference value without any overshoots in the transient responses to avoid further
oscillations of the load angles.

In Figure 2b the attitude of the quadrotor is shown. No constraint was applied;
however, lower values in θ and φ angles occurred in comparison to the unconstrained
predictive control.

Figure 2c presents the swing angles of the suspended load with their respective
constraints, for −0.1047 ≤ α ≤ 0.1047 and −0.1745 ≤ β ≤ 0.1745. As can be seen, the
predictive controller kept the oscillation within the established values, demonstrating good
performance.

Figure 2d shows the variations of the control inputs in the quadrotor, which ensured
that the oscillations of the suspended load did not exceed the values established in the
constraints and that the air vehicle could stabilize quickly. In the bottom plot of this figure,
we can see the force u1 in the z axis that stabilized at (m + M)g maintain hovering, and in
the top plot the control torques τψ, τθ , and τφ.

In summary, numerical simulations have been presented that demonstrate good
performance by the predictive controller when considering the constraints to attenuate the
oscillations of the suspended load. It is possible to place the quadrotor at a desired position
while the oscillations of the load do not exceed the proposed limits. Next, the results of not
considering the constraints are shown, for comparative purposes.

4.2. Comparative Results

In Figure 3, a direct comparison of the performance of the proposed MPC algorithm
with respect to a nonlinear controller based on the feedback linearization proposed in
Equation (16) of [22] has been added. The control law in [22] was chosen because it
manages to achieve small swing angles of the payload.

For a better understanding of the figures, know that the subscript “c” means the
constrained MPC controller and the subscript “l” the algorithm in [22]. In order to contrast
the results with a more aggressive strategy, we also added the unconstrained MPC control
law, which is referred to with the subscript “u”. The performance responses of all controllers
are displayed in Figure 3. In Figure 3c we can observe the swing angles. It is clear that [22]
achieved smaller maximum angles, but the oscillation times for α and β were longer
than in the MPC strategy. Moreover, by analyzing Figure 3a, it is possible to appreciate
better performance in the vehicle position response of the proposed constrained MPC
controller with respect to [22], because the settling time of the vehicle position obtained
from control law ul was larger than that obtained with the MPC law. In summary, ref. [22]
achieveed small swing angles of the payload but at the cost of poor performance in the
vehicle positioning and settling time of the payload swing. In contrast, this proposal
produced shorter settling times for the payload and vehicle positioning while still meeting
the constraints imposed on the payload swing angles.

In order to quantify the comparisons, Table 3 summarizes the results of the proposed
controller and those of the algorithm in [22] with respect to performance measures and
oscillation angles. We computed for α and β, the setting time (Ts) and the maximum swing
(MS). The superior performance of the proposed scheme over the one in [22] is evidenced
by the running-time cost JMPC.
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Figure 3. Comparison results for the proposed MPC with the controller of [22].

Table 3. Performances of the proposed control and the controller in [22].

Controller Cost JMPC Swing Angle Ts (s) MS (Rad)

uc 624.8 α 3.5 0.1
β 3.5 0.175

uu 985.1 α 3.5 0.28
β 3.5 0.5

ul 1997.3 α 7.2 0.05
β 7.2 0.15

5. Conclusions

This work presents the formulation of a model-based predictive controller meant to
solve the problem of transporting a payload suspended by a cable from a multi-rotor-type
unmanned aerial vehicle. This strategy considers the three-dimensional translation and
rotation of the aerial vehicle, and the payload dynamics. The dynamic model was obtained
by formulating a Euler–Lagrange in a global approach that mathematically describes the
relationship of the vehicle, the load, and the cable. Next, an affine representation of the
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input of the model was derived to obtain a linear model for the MPC design. It is worth
mentioning that the steps carried out to obtain the linear model of the quadrotor-payload
are specific for this system, and the linear model was used as a prediction model for the
control strategy. Finally, we evaluated the dynamic model of the UAV with a suspended
load, and the proposed controller, using a numerical simulation software. The simulations
showed excellent performance by the MPC in comparison to a nonlinear controller based on
feedback linearization from the literature. Therefore, the proposed controller demonstrated
its ability to precisely control the multi-rotor and achieve rapid attenuation of the oscillation
of the suspended load while keeping it within the limits of the constraints. Future work
will include considering a flexible cable in the mathematical model and an MPC with
variable constraints.
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Appendix A. Nomenclature

Tables A1 and A2 show the lists of variables used in the mathematical model and
controller derivations.

Table A1. Mathematical model variables.

Variable Description

O: xO, yO, zO Inertial frame
B: xB, yB, zB Body-fixed frame for quadrotor
ξ: x, y, z Quadrotor linear positions
η: ψ, θ, φ Quadrotor angular positions (yaw, pitch, roll)
μ: α, β Oscillations angles of the payload
ξp: xp, yp, zp Payload position
q Generalized coordinates vector
r Unit vector of vehicle center of mass to payload
l Cable length
d Distance from motors to center of mass
M, m Quadrotor and payload masses
g Gravitational acceleration constant
u: u1, τ Control inputs
u1 Total propulsive force
fPi Propulsion force provided by the motor i
τ: τψ, τθ , τφ Input torques
L Lagrangian
TQSP, Vq Total kinetic and potential energy
Ix, Iy, Iz Moments of inertia in x, y and z
Ip Moment of inertia of the suspended payload
χ State vector
χeq, ueq Equilibrium state and input vectors
yc Output vector
Ac, Bc, Cc Continuous-time model matrices
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Table A2. Predictive control variables.

Variable Description

Ad, Bd, Cd Discrete-time model matrices
ζ Augmented state
Aζ , Bζ , Cζ Augmented model matrices
xk, uk, yk Discrete state, input and output vectors
Δuk Increment in control signal
ny, nu Prediction and control horizons
Pζζ , PζΔu Augmented state prediction matrices
Pyζ , PyΔu Output prediction matrices
Pxζ State prediction matrix
PuΔu, Pu,ζ Input prediction matrices
x−→ Column vector of prediction of x

Q, R State and input penalty matrices
ŷk Independent model output
d̂ Model residual estimate
JMPC Cost function
x∗ Optimal value of x.
r̂ Setpoint
col(Ai) Block column vector of Ai matrices
diag(Ai) Block diagonal matrix of Ai matrices
max, min Maximum and minimum bound of a variable
Ts Sampling time
Ma, qa(ζk) Constraints matrices
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Abstract: This paper examines the impact of hybrid nanoparticles on the stagnation point flow
towards a curved surface. Silica (SiO2) and alumina (Al2O3) nanoparticles are added into water
to form SiO2-Al2O3/water hybrid nanofluid. Both buoyancy-opposing and -assisting flows are
considered. The governing partial differential equations are reduced to a set of ordinary differential
equations, before being coded in MATLAB software to obtain the numerical solutions. Findings show
that the solutions are not unique, where two solutions are obtained, for both buoyancy-assisting and
-opposing flow cases. The local Nusselt number increases in the presence of the hybrid nanoparticles.
The temporal stability analysis shows that only one of the solutions is stable over time.

Keywords: curved surface; hybrid nanofluid; mixed convection; heat transfer; stability analysis;
stagnation point

1. Introduction

The phenomenon of the flow on a stagnation region commonly occurs in aerodynamic
industries and engineering applications. To name a few, such applications are polymer
extrusion, drawing of plastic sheets, and wire drawing. In some situations, the flow is
stagnated by a solid wall, while in other cases a free stagnation point or line exists interior
to the fluid domain. Historically, Hiemenz [1] was the first researcher to consider the
boundary layer flow toward a stagnation point on a rigid surface. Moreover, the axisym-
metric flow was considered by Homann [2], whereas the oblique flow was studied by
Chiam [3]. Furthermore, Merkin [4] studied a similar problem by considering the mixed
convection flow. He discovered that the solution is not unique for the opposing flow case.
However, Ishak et al. [5] exposed that the dual solutions occur for both opposing and
assisting flows. Several studies on the stagnation point flow subjected to various flow and
physical conditions have been considered by the researchers for the past few years. For in-
stance, the magnetohydrodynamic and the double stratification effects were examined
by Khashi’ie et al. [6]. The unsteady flow was studied by Dholey [7] and Fang et al. [8].
The stagnation point viscoelastic fluid flow was examined by Mahapatra and Sidui [9].
Moreover, Weidman [10] investigated the porous medium effects, while the thermophoretic
and Brownian diffusions were reported by Kumar et al. [11].

In 1995, Choi and Eastman [12] introduced the nanofluid, which is a mixture of the base
fluid and a single type of nanoparticles, to enhance the thermal conductivity. The advan-
tages of nanofluids in a rectangular enclosure have been reported by Khanafer et al. [13],
Tiwari and Das [14], and Oztop and Abu-Nada [15]. Several researchers have published
papers on nanofluids with various physical aspects, for example, magnetic field [16], vis-
cous dissipation and chemical reaction [17], activation energy [18], Dufour and Soret [19],
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magnetic dipole [20], and velocity slip [21]. For additional references, the experimental
study on the nanoparticle’s viscosity behavior can be found in refs. [22,23].

Recently, some studies have found that advanced nanofluid consists of another type
of nanoparticle dispersed into the regular nanofluid could improve its thermal properties,
and this mixture is termed as ‘hybrid nanofluid’. Hybrid nanofluid is used to signal a
promising increase in the thermal performance of working fluids since this technology has
resulted in a significant change in the design of thermal and cooling systems. As a result
of the addition of more types of nanostructures, a fluid with better thermal conductivity
is created. Furthermore, hybrid nanofluids are used in several applications, for example,
in the vehicle brake fluid, domestic refrigerator, solar water heating, transformer, and heat
exchanger [24]. The earlier experimental works that using the hybrid nanoparticles were
reported by Turcu et al. [25] and Jana et al. [26]. Moreover, Suresh et al. [27] conducted
experimental works using Al2O3-Cu hybrid nanoparticles to study the enhancement of
the fluid thermal conductivity. Moreover, the significance of the combination of Al2O3
and other nanoparticles was reported by Singh and Sarkar [28] and Farhana et al. [29].
The numerical studies on the hybrid nanofluid flow were studied by Takabi and Salehi [30].
In recent years, hybrid nanofluid was attracting the researcher’s attention to study the flow
and thermal behavior, numerically. For instance, the flow in the mini-channel heat sink was
done by Kumar and Sarkar [31]. Meanwhile, the flow between two parallel plates with the
squeezing effect was reported by Salehi et al. [32] and Muhammad et al. [33]. Apart from
that, Waini et al. [34] and Khan et al. [35] considered the flow towards a shrinking surface.
For further reading, the review papers on hybrid nanofluid can be found in Refs. [36–40].

It seems that Sajid et al. [41] were the first who studied the flow over a curved surface.
They found that less drag force is required to move the fluid on a curved surface rather
than that on a flat surface. Later, Sajid et al. [42] extended their work by considering
a micropolar fluid. Since then, many researchers have continued the study of the flow
and heat transfer induced by a curved surface under different conditions. For example,
Abbas et al. [43] studied the curved stretching surface under the effect of the magnetic
field in a viscous fluid, then later, they extended the problem with heat generation and
thermal radiation effects in a nanofluid flow as reported in Abbas et al. [44]. Similarly,
Hayat et al. [45], Imtiaz et al. [46], and Saba et al. [47] also reported the flow over a curved
stretching surface in a nanofluid. Furthermore, Sanni et al. [48] and Hayat et al. [49]
considered the nonlinear stretching velocity of the curved surface, while Okechi et al. [50]
reported on the exponentially stretching curved surface. The unsteady flow was reported by
Saleh et al. [51]. Naveed et al. [52] examined the dual solutions in hydromagnetic viscous
fluid flow past a shrinking curved surface. Meanwhile, Khan et al. [53] explored the
hybrid nanofluid flow with mixed convection. Based on the paper by Khan et al. [53], this
paper aims to investigate the stagnation point flow of a hybrid nanofluid towards a curved
surface containing Al2O3-SiO2 nanoparticles with buoyancy effects. It should be mentioned
that the condition of the surface temperature was assumed constant in Khan et al. [53].
In contrast to [53], the present paper considers the prescribed surface temperature case.
Additionally, this paper examines the temporal stability of the numerical solutions.

2. Basic Equations

Consider the flow configuration model as shown in Figure 1. Here, the curved surface
with radius R is measured about the curvilinear coordinates (r, s) where r is normal to
tangent vector at any point on the sheet and s is the arc length coordinate along the flow
direction, so that large values of R correspond to small curvature (slightly curved surface).
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Figure 1. Flow configuration model of a curved surface.

According to Sajid et al. [41], the pressure is not constant across the boundary layer.
Therefore, the pressure gradient in the case of a curved surface cannot be neglected. Here, it
is supposed that ue(s) = as with a > 0 and Tw(s) = T∞ + T0(s/L) where T∞ is the constant
ambient temperature, while T0 and L, respectively, are the reference temperature and
length. The prescribed surface temperature is employed to allow the similarity reduction
of the equations. Considering hybrid nanofluid flow, a few assumptions are considered
for the physical model. The hybrid nanofluid is assumed to be stable. Thus, the effect of
nanoparticle aggregation and sedimentation is omitted. The nanoparticles are assumed
to have a uniform size with a spherical shape. It is assumed that both the base fluid
and nanoparticles are in a thermal equilibrium state, and they flow at the same velocity.
Accordingly, under these assumptions along with the boundary layer approximations, the
governing equations of hybrid nanofluid are [41,53]:

∂

∂r
[(R + r)v] + R

∂u
∂s

= 0 (1)

u2

R + r
=

1
ρhn f

∂p
∂r

(2)

v
∂u
∂r

+
R

R + r
u

∂u
∂s

+
uv

R + r
= − 1

ρhn f

R
R + r

∂p
∂s

+
μhn f

ρhn f

(
∂2u
∂r2 +

1
R + r

∂u
∂r

− u

(R + r)2

)
+

(ρβ)hn f

ρhn f
(T − T∞)g (3)

v
∂T
∂r

+
R

R + r
u

∂T
∂s

=
khn f

(ρCp)hn f

(
∂2T
∂r2 +

1
R + r

∂T
∂r

)
(4)

subject to:
u = v = 0, T = Tw(s) at r = 0

u → ue(s), ∂u
∂r → 0, T → T∞ as r → ∞

(5)

where v and u are the velocity components along r- and s- directions. Moreover, g and
p are the acceleration caused by the gravity and the pressure, respectively, while the
temperature is given by T. Furthermore, the thermophysical properties can be referred to
in Tables 1 and 2 [30,53]. Please note that ϕ1 (Al2O3) and ϕ2 (SiO2) are the nanoparticles
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volume fractions where ϕhn f = ϕ1 + ϕ2, and the subscripts n1 and n2 are corresponded to
their solid components, while the subscripts hn f and f signify the hybrid nanofluid and
base fluid, respectively.

Table 1. Thermophysical properties of nanoparticles and water.

Properties
Base Fluid Nanoparticles

Water Al2O3 SiO2

ρ
(
kg/m3) 997.1 3970 2200

Cp (J/kgK) 4179 765 745
k (W/mK) 0.613 40 1.4

β × 10−5 (1/K) 21 0.85 42.7
Prandtl number, Pr 6.2

Table 2. Thermophysical properties of hybrid nanofluid.

Properties Correlations

Dynamic viscosity μhn f =
μ f

(1−ϕhn f )
2.5

Density ρhn f =
(

1 − ϕhn f

)
ρ f + ϕ1ρn1 + ϕ2ρn2

Heat capacity (ρCp)hn f =
(

1 − ϕhn f

)
(ρCp) f + ϕ1(ρCp)n1 + ϕ2(ρCp)n2

Thermal
conductivity

khn f
k f

=

ϕ1kn1+ϕ2kn2
ϕhn f

+2k f +2(ϕ1kn1+ϕ2kn2)−2ϕhn f k f

ϕ1kn1+ϕ2kn2
ϕhn f

+2k f −(ϕ1kn1+ϕ2kn2)+ϕhn f k f

Thermal expansion (ρβ)hn f =
(

1 − ϕhn f

)
(ρβ) f + ϕ1(ρβ)n1 + ϕ2(ρβ)n2

3. Similarity Transformations

Consider the similarity variables as in Sajid et al. [41]:

u = as f ′(η), v = − R
R + r

√
aν f f (η), p = ρ f a2s2P(η), θ(η) =

T − T∞

Tw − T∞
, η = r

√
a

ν f
(6)

where (′) signifies the differentiation with respect to η. Using Equation (6), the continuity
equation, i.e., Equation (1) is identically fulfilled. Now, inserting Equation (6) in Equations
(2) and (3), one obtains:

P′ =
ρhn f

ρ f

1
K + η

f ′2 (7)

ρ f
ρhn f

2K
K+η P =

μhn f /μ f
ρhn f /ρ f

(
f ′′′ + 1

K+η f ′′ − 1
(K+η)2 f ′

)
+ K

(K+η)2 f f ′− K
K+η f ′2

+ K
K+η f f ′′ +

(ρβ)hn f /(ρβ) f
ρhn f /ρ f

λθ
(8)

Then, the pressure P term in these equations is eliminated to obtain the following equation:

μhn f /μ f

ρhn f /ρ f

(
f iv +

2
K + η

f ′′′ − 1

(K + η)2 f ′′ +
1

(K + η)3 f ′
)
+

K
K + η

(
f f ′′′ − f ′ f ′′

)
(9)

Similarly, using Equation (6), Equation (4) is transformed to:

1
Pr

khn f /k f

(ρCp)hn f /(ρCp) f

(
θ′′ +

1
K + η

θ′
)
+

K
K + η

(
f θ′ − f ′θ

)
= 0 (10)
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subject to:
f (0) = 0, f ′(0) = 0, θ(0) = 1

f ′(∞) = 1, f ′′ (∞) = 0, θ(∞) = 0
(11)

where K = R
√

a/ν f (=constant) specifies the curvature parameter, ν f represents the fluid

kinematic viscosity, and Pr = μ f
(
Cp

)
f /k f represents the Prandtl number. Moreover,

λ = gβ f T0/a2L = Grs/Re2
s (=constant) represents the mixed convection or the buoyancy

parameter, with Grs = gβ f (Tw − T∞)s3/ν f
2 corresponds to the local Grashof number and

Res = ues/ν f stands for the local Reynolds number. Please note that λ < 0 signifies
the opposing and λ > 0 signifies the assisting flows, while the forced convection flow
(no buoyancy effects) is given by λ = 0.

The coefficient of the skin friction Cf and the local Nusselt number Nus are given as:

Cf =
1

ρ f u2
e

μhn f

(
∂u
∂r

− u
R + r

)
r=0

, Nus = − s
k f (Tw − T∞)

khn f

(
∂T
∂r

)
r=0

(12)

Using Equations (6) and (12), one gets:

Re1/2
s Cf =

μhn f

μ f
f ′′ (0), Re−1/2

s Nus = −
khn f

k f
θ′(0) (13)

Please note that by taking ϕhn f = 0 (regular fluid) and K → ∞ (vertical plane surface),
the problem reduces to the problem of Lok et al. [54] without the micropolar effects. Thus,
the numerical values of f ′′ (0) and −θ′(0) can be validated with those obtained by them.

4. Stability Analysis

The temporal stability of the dual solutions as time evolves is studied. This analysis
was first introduced by Merkin [55] and then followed by Weidman et al. [56]. First,
consider the new variables as follows:

u = as ∂ f
∂η (η, τ), v = − R

R+r
√aν f f (η, τ), p = ρ f a2s2P(η, τ),

θ(η, τ) = T−Tw
Tw−T∞

, η = r
√

a
ν f

, τ = at
(14)

Now, the unsteady form of Equations (3) and (4) are employed, while Equation (1)
remains unchanged. On using (14), one obtains:

μhn f /μ f
ρhn f /ρ f

(
∂4 f
∂η4 +

2
K+η

∂3 f
∂η3 − 1

(K+η)2
∂2 f
∂η2 +

1
(K+η)3

∂ f
∂η

)
+ K

K+η

(
f ∂3 f

∂η3 − ∂ f
∂η

∂2 f
∂η2

)
+ K

(K+η)2

(
f ∂2 f

∂η2 −
(

∂ f
∂η

)2
)
− K

(K+η)3 f ∂ f
∂η +

(ρβ)hn f /(ρβ) f
ρhn f /ρ f

λ
(

∂θ
∂η + 1

K+η θ
)

− 1
K+η

∂2 f
∂η∂τ − ∂3 f

∂η2∂τ
= 0

(15)

1
Pr

khn f /k f

(ρCp)hn f /(ρCp) f

(
∂2θ

∂η2 +
1

K + η

∂θ

∂η

)
+

K
K + η

(
f

∂θ

∂η
− ∂ f

∂η
θ

)
− ∂θ

∂τ
= 0 (16)

subject to:
f (0, τ) = 0, ∂ f

∂η (0, τ) = 0, θ(0, τ) = 1
∂ f
∂η (∞, τ) = 1, ∂2 f

∂η2 (∞, τ) = 0, θ(∞, τ) = 0
(17)

Then, consider the following perturbation functions [56]:

f (η, τ) = f0(η) + e−γτ F(η), θ(η, τ) = θ0(η) + e−γτG(η) (18)

Here, Equation (18) is used to apply a small disturbance on the steady solution
f = f0(η) and θ = θ0(η) of Equations (9)–(11). The functions F(η) and G(η) in Equation
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(18) are relatively small compared to f0(η) and θ0(η). The sign (positive or negative) of
the eigenvalue γ determines the stability of the solutions. By employing Equation (18),
Equations (15)–(17) become:

μhn f /μ f
ρhn f /ρ f

(
Fiv + 2

K+η F′′′ − 1
(K+η)2 F′′ + 1

(K+η)3 F′
)
+ K

K+η

(
f0F′′′ + f ′′′0 F − f ′0F′′ − f ′′0 F′)

+ K
(K+η)2

(
f0F′′ + f ′′0 F − 2 f ′0F′) − K

(K+η)3 ( f0F′ + f ′0F)

+
(ρβ)hn f /(ρβ) f

ρhn f /ρ f
λ
(

G′ + 1
K+η G

)
+ γ

K+η F′ + γF′′ = 0

(19)

1
Pr

khn f /k f

(ρCp)hn f /
(
ρCp

)
f

(
G′′ +

1
K + η

G′
)
+

K
K + η

(
f0G′ + θ′0F − f ′0G − θ0F′) + γG = 0 (20)

subject to:
F(0) = 0, F′(0) = 0, G(0) = 0

F′(∞) = 0, F′′ (∞) = 0, G(∞) = 0
(21)

To obtain γ of Equations (19) and (20), the new boundary condition F′′ (0) = 1 is
included in Equation (21) to replace F′′ (∞) = 0.

5. Results and Discussion

Equations (9)–(11) are solved numerically by using the bvp4c function in MATLAB
software (Matlab_R2014b, MathWorks, Singapore). As described in Shampine et al. [57],
the aforesaid solver occupies a finite difference method that employs the 3-stage Lobatto
IIIa formula. The selection of the initial guess and the boundary layer thickness, η∞ is
important to achieve the convergence of the numerical solution. This convergence issue is
also influenced by the value of the physical parameters considered. The effects of several
physical parameters on the flow and the thermal fields are investigated.

The values of f ′′ (0) and −θ′ (0) for various λ when ϕhn f = 0 (regular fluid), Pr = 0.7
and K → ∞ (plane surface) are compared with Lok et al. [54]. It is found that the results
are comparable for each λ considered, as shown in Table 3. Moreover, the decreasing trend
is observed in the first solution of f ′′ (0) and −θ′ (0) for smaller values of λ. Furthermore,
Table 4 provides the values of Re1/2

s Cf and Re−1/2
s Nus when Pr = 6.2 and K = 103 for

numerous values of ϕhn f and λ. The consequence of rising ϕhn f exaggerates the values of
Re1/2

s Cf and Re−1/2
s Nus for both branch solutions. Moreover, the values of Re1/2

s Cf are
reduced as λ decreases for both branch solutions. Meanwhile, the values of Re−1/2

s Nus
for the first solution are decreased with the decrease in λ, but they are increased for the
second solution.

Table 3. Values of f ′′ (0) and −θ′ (0) when ϕhn f = 0 (regular fluid), Pr = 0.7 and K → ∞ for different λ.

λ
Lok Et Al. [54] Present Results

f”(0) −θ
′

(0) f”(0) −θ
′

(0)

−1.0 0.691693 0.633269 0.691661 0.633247
(−0.285049) (−0.222165)

−1.5 0.371788 0.578230 0.371754 0.578206
(−0.527666) (−0.004360) (−0.527651) (−0.004347)

−2.0 −0.039513 0.486576 −0.039572 0.486540
(−0.578523) (0.198572) (−0.578476) (0.198599)

Results in “( )” are the lower branch (second) solutions.
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Table 4. Values of Re1/2
s Cf and Re−1/2

s Nus when K = 103 and Pr = 6.2 for different physical parame-
ters.

ϕhnf λ

Re1/2
s Cf Re−1/2

s Nus

First
Solution

Second
Solution

First
Solution

Second
Solution

2% 1 1.609474 0.652232 1.708511 2.232347
4% 1.684045 0.691249 1.759909 2.317150
6% 1.761695 0.731805 1.811141 2.401796
2% −1 0.969496 −0.380839 1.530307 −1.239090

−2 0.594987 −0.642901 1.403953 −0.295385
−3 0.131804 −0.707488 1.208754 0.282748

Furthermore, the variations of Re1/2
x Cf and Re−1/2

x Nux against λ when Pr = 6.2 and
K = 103 for various ϕhn f are presented in Figures 2 and 3. The enhancement in the values
of Re1/2

x Cf and Re−1/2
x Nux are observed with a high percentage of the hybrid nanoparticle

compositions. Moreover, the dual solutions are obtained for both opposing (λ < 0) and
assisting (λ > 0) flows where the turning point of the solutions occurs in the opposing
region (λ < 0). It is noticed that the critical values are λc = −3.6169,−3.6219,−3.6270 for
ϕhn f = 2%, 4%, 6%, respectively. Additionally, it is observed that the second solution of
Re1/2

x Cf and Re−1/2
x Nux are undefined for non-buoyant case (λ = 0). From Figure 3, there

exists an asymptotic line at λ = 0 where the second solutions of Re−1/2
x Nux show that the

values of Re−1/2
x Nux → +∞ as λ → 0+ and Re−1/2

x Nux → −∞ as λ → 0− .
Moreover, Figures 4 and 5 display the profiles of f ′(η) and θ(η)when ϕhn f = 2%, Pr = 6.2,

and K = 103 for various values of λ. It is noticed that the profiles of the first and the second
solutions are merged towards some values of λ. Additionally, a negative value (θ(η) < 0)
for the second solution of θ(η) is observed when λ = 1 and its gradient is greater than
that of the first solution. Next, Figures 6 and 7 show the consequence of ϕhn f on f ′(η) and
θ(η) when λ = −1, Pr = 6.2, and K = 103. It is seen that both branch solutions of f ′(η)
show the decreasing pattern, whereas both branch solutions of θ(η) increases for a higher
percentage of ϕhn f .

Figure 2. Variation of the skin friction coefficient Re1/2
s Cf against the mixed convection parameter λ

for different values of ϕhn f .
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Figure 3. Variation of the local Nusselt number Re−1/2
s Nus against the mixed convection parameter

λ for different values of ϕhn f .

Figure 4. Velocity profiles f ′(η) for different values of λ.

Figure 5. Temperature profiles θ(η) for different values of λ.
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Figure 6. Velocity profiles f ′(η) for different values of ϕhn f .

Figure 7. Temperature profiles θ(η) for different values of ϕhn f .

Furthermore, the dimensionless stream function is plotted to show the flow patterns.
In this respect, the streamlines of the first and the second solutions for the opposing flow
(λ = −2) when ϕhn f = 2%, K = 103, and Pr = 6.2 are shown in Figures 8 and 9, respectively.
The flow patterns for the first solution show that the fluid is moving away from the slot
(x = 0) and acts as the normal stagnation point flow. Meanwhile, the flow is split into two
regions for the second solution, i.e., upper and lower regions. The upper region has similar
pattern with that of the first solution, whereas reverse flow is observed in the lower region.

The variations of the smallest eigenvalues γ against the mixed convection parameter
λ when ϕhn f = 2%, Pr = 6.2, and K = 103 are described in Figure 10. For the positive
value of γ, it is noted that e−γτ → 0 as time evolves (τ → ∞). In the meantime, for the
negative value of γ, e−γτ → ∞ . These behaviors show that the first solution is physically
reliable and stable over time.
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Figure 8. Streamlines for the first solution.

Figure 9. Streamlines for the second solution.

Figure 10. Variation of the smallest eigenvalues γ against the mixed convection parameter λ.
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6. Conclusions

In the present paper, the stagnation point flow towards a curved surface containing
Al2O3-SiO2 hybrid nanoparticles with buoyancy effects was accomplished. Findings re-
vealed that dual solutions appeared for both assisting (λ > 0) and opposing (λ < 0) flows.
The dual solutions were found for λ > λc and no solution for λ < λc, while the solutions
bifurcated at λ = λc. It was found that the critical values occur in the opposing flow region
(λ < 0). The domain of the mixed convection parameter λ where the dual solutions are in
existence increases as the percentage of ϕhn f is increased. Moreover, the higher percentage
of ϕhn f gave rise to the heat transfer rate and the skin friction coefficient. Lastly, it was
found that the first solution is stable and physically reliable as time evolves, while the
second solution is not.

Author Contributions: Conceptualization, I.P.; funding acquisition, A.I.; methodology, I.W.; Project
administration, A.I.; supervision, A.I. and I.P.; validation, I.P.; writing—original draft, I.W.; writing—
review and editing, A.I., I.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Universiti Kebangsaan Malaysia (Project Code: DIP-2020-001).

Acknowledgments: The financial supports received from the Universiti Kebangsaan Malaysia
(Project Code: DIP-2020-001) and the Universiti Teknikal Malaysia Melaka are gratefully acknowledged.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hiemenz, K. Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder. Dinglers
Polytech. J. 1911, 326, 321–410.

2. Homann, F. Der Einflub grober Zähigkeit bei der Strömung um den Zylinder und um die Kugel. Z. für Angew. Math. und Mech.
1936, 16, 153–164. [CrossRef]

3. Chiam, T.C. Stagnation-point flow towards a stretching plate. J. Phys. Soc. Jpn. 1994, 63, 2443–2444. [CrossRef]
4. Merkin, J.H. Mixed convection boundary layer flow on a vertical surface in a saturated porous medium. J. Eng. Math. 1980, 14,

301–313. [CrossRef]
5. Ishak, A.; Nazar, R.; Arifin, N.M.; Pop, I. Dual solutions in mixed convection flow near a stagnation point on a vertical porous

plate. Int. J. Therm. Sci. 2008, 47, 417–422. [CrossRef]
6. Khashi’ie, N.S.; Arifin, N.M.; Rashidi, M.M.; Hafidzuddin, E.H.; Wahi, N. Magnetohydrodynamics (MHD) stagnation point flow

past a shrinking/stretching surface with double stratification effect in a porous medium. J. Therm. Anal. Calorim. 2019, 8, 1–14.
[CrossRef]

7. Dholey, S. An unsteady separated stagnation-point flow towards a rigid flat plate. J. Fluids Eng. 2019, 141, 021202. [CrossRef]
8. Fang, T.; Wang, F.; Gao, B. Unsteady magnetohydrodynamic stagnation point flow—closed-form analytical solutions. Appl. Math.

Mech. 2019, 40, 449–464. [CrossRef]
9. Mahapatra, T.R.; Sidui, S. Non-axisymmetric Homann stagnation-point flow of a viscoelastic fluid towards a fixed plate. Eur. J.

Mech. B/Fluids 2020, 79, 38–43. [CrossRef]
10. Weidman, P. Non-axisymmetric stagnation-point flow in a fluid saturated porous medium. J. Porous Media 2020, 23, 563–572.

[CrossRef]
11. Kumar, B.; Seth, G.S.; Nandkeolyar, R. Quadratic multiple regression model and spectral relaxation approach to analyse stagnation

point nanofluid flow with second-order slip. Proc. Inst. Mech. Eng. Part E J. Process. Mech. Eng. 2020, 234, 3–14. [CrossRef]
12. Choi, S.U.S.; Eastman, J.A. Enhancing thermal conductivity of fluids with nanoparticles. Proc. 1995 ASME Int. Mech. Eng. Congr.

Expo. FED 231/MD 1995, 66, 99–105.
13. Khanafer, K.; Vafai, K.; Lightstone, M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing

nanofluids. Int. J. Heat Mass Transf. 2003, 46, 3639–3653. [CrossRef]
14. Tiwari, R.K.; Das, M.K. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing

nanofluids. Int. J. Heat Mass Transf. 2007, 50, 2002–2018. [CrossRef]
15. Oztop, H.F.; Abu-Nada, E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids.

Int. J. Heat Fluid Flow 2008, 29, 1326–1336. [CrossRef]
16. Hamad, M.A.A. Analytical solution of natural convection flow of a nanofluid over a linearly stretching sheet in the presence of

magnetic field. Int. Commun. Heat Mass Transf. 2011, 38, 487–492. [CrossRef]
17. Kameswaran, P.K.; Narayana, M.; Sibanda, P.; Murthy, P.V.S.N. Hydromagnetic nanofluid flow due to a stretching or shrinking

sheet with viscous dissipation and chemical reaction effects. Int. J. Heat Mass Transf. 2012, 55, 7587–7595. [CrossRef]

29



Mathematics 2021, 9, 2330

18. Khan, U.; Zaib, A.; Khan, I.; Nisar, K.S. Activation energy on MHD flow of titanium alloy (Ti6Al4V) nanoparticle along with a
cross flow and streamwise direction with binary chemical reaction and non-linear radiation: Dual solutions. J. Mater. Res. Technol.
2020, 9, 188–199. [CrossRef]

19. Waini, I.; Ishak, A.; Pop, I. Dufour and Soret effects on Al2O3-water nanofluid flow over a moving thin needle: Tiwari and Das
model. Int. J. Numer. Methods Heat Fluid Flow 2021, 31, 766–782. [CrossRef]

20. Majeed, A.; Zeeshan, A.; Hayat, T. Analysis of magnetic properties of nanoparticles due to applied magnetic dipole in aqueous
medium with momentum slip condition. Neural Comput. Appl. 2019, 31, 189–197. [CrossRef]

21. Ghosh, S.; Mukhopadhyay, S. Stability analysis for model-based study of nanofluid flow over an exponentially shrinking
permeable sheet in presence of slip. Neural Comput. Appl. 2020, 32, 7201–7211. [CrossRef]

22. Olayiwola, S.O.; Dejam, M. Experimental study on the viscosity behavior of silica nanofluids with different ions of electrolytes.
Ind. Eng. Chem. Res. 2020, 59, 3575–3583. [CrossRef]

23. Bollineni, P.K.; Dordzie, G.; Olayiwola, S.O.; Dejam, M. An experimental investigation of the viscosity behavior of solutions of
nanoparticles, surfactants, and electrolytes. Phys. Fluids 2021, 33, 026601. [CrossRef]

24. Sidik, N.A.C.; Adamu, I.M.; Jamil, M.M.; Kefayati, G.H.R.; Mamat, R.; Najafi, G. Recent progress on hybrid nanofluids in heat
transfer applications: A comprehensive review. Int. Commun. Heat Mass Transf. 2016, 78, 68–79. [CrossRef]

25. Turcu, R.; Darabont, A.; Nan, A.; Aldea, N.; Macovei, D.; Bica, D.; Vekas, L.; Pana, O.; Soran, M.L.; Koos, A.A.; et al. New
polypyrrole-multiwall carbon nanotubes hybrid materials. J. Optoelectron. Adv. Mater. 2006, 8, 643–647.

26. Jana, S.; Salehi-Khojin, A.; Zhong, W.H. Enhancement of fluid thermal conductivity by the addition of single and hybrid
nano-additives. Thermochim. Acta 2007, 462, 45–55. [CrossRef]

27. Suresh, S.; Venkitaraj, K.P.; Selvakumar, P.; Chandrasekar, M. Synthesis of Al2O3-Cu/water hybrid nanofluids using two step
method and its thermo physical properties. Colloids Surf. A Physicochem. Eng. Asp. 2011, 388, 41–48. [CrossRef]

28. Singh, S.K.; Sarkar, J. Energy, exergy and economic assessments of shell and tube condenser using hybrid nanofluid as coolant.
Int. Commun. Heat Mass Transf. 2018, 98, 41–48. [CrossRef]

29. Farhana, K.; Kadirgama, K.; Rahman, M.M.; Noor, M.M.; Ramasamy, D.; Samykano, M.; Najafi, G.; Sidik, N.A.C.; Tarlochan, F.
Significance of alumina in nanofluid technology: An overview. J. Therm. Anal. Calorim. 2019, 138, 1107–1126. [CrossRef]

30. Takabi, B.; Salehi, S. Augmentation of the heat transfer performance of a sinusoidal corrugated enclosure by employing hybrid
nanofluid. Adv. Mech. Eng. 2014, 6, 147059. [CrossRef]

31. Kumar, V.; Sarkar, J. Particle ratio optimization of Al2O3-MWCNT hybrid nanofluid in minichannel heat sink for best hydrother-
mal performance. Appl. Therm. Eng. 2020, 165, 114546. [CrossRef]

32. Salehi, S.; Nori, A.; Hosseinzadeh, K.; Ganji, D.D. Hydrothermal analysis of MHD squeezing mixture fluid suspended by hybrid
nanoparticles between two parallel plates. Case Stud. Therm. Eng. 2020, 21, 100650. [CrossRef]

33. Muhammad, K.; Hayat, T.; Alsaedi, A.; Ahmad, B. Melting heat transfer in squeezing flow of basefluid (water), nanofluid (CNTs
+ water) and hybrid nanofluid (CNTs + CuO + water). J. Therm. Anal. Calorim. 2021, 143, 1157–1174. [CrossRef]

34. Waini, I.; Ishak, A.; Pop, I. Hybrid nanofluid flow over a permeable non-isothermal shrinking surface. Mathematics 2021, 9, 538.
[CrossRef]

35. Khan, U.; Waini, I.; Ishak, A.; Pop, I. Unsteady hybrid nanofluid flow over a radially permeable shrinking/stretching surface. J.
Mol. Liq. 2021, 331, 115752. [CrossRef]

36. Sarkar, J.; Ghosh, P.; Adil, A. A review on hybrid nanofluids: Recent research, development and applications. Renew. Sustain.
Energy Rev. 2015, 43, 164–177. [CrossRef]

37. Babu, J.A.R.; Kumar, K.K.; Rao, S.S. State-of-art review on hybrid nanofluids. Renew. Sustain. Energy Rev. 2017, 77, 551–565.
[CrossRef]

38. Sajid, M.U.; Ali, H.M. Thermal conductivity of hybrid nanofluids: A critical review. Int. J. Heat Mass Transf. 2018, 126, 211–234.
[CrossRef]

39. Huminic, G.; Huminic, A. Entropy generation of nanofluid and hybrid nanofluid flow in thermal systems: A review. J. Mol. Liq.
2020, 302, 112533. [CrossRef]

40. Yang, L.; Ji, W.; Mao, M.; Huang, J. An updated review on the properties, fabrication and application of hybrid-nanofluids along
with their environmental effects. J. Clean. Prod. 2020, 257, 120408. [CrossRef]

41. Sajid, M.; Ali, N.; Javed, T.; Abbas, Z. Stretching a curved surface in a viscous fluid. Chin. Phys. Lett. 2010, 27, 024703. [CrossRef]
42. Sajid, M.; Ali, N.; Abbas, Z.; Javed, T. Flow of a micropolar fluid over a curved stretching surface. J. Eng. Phys. Thermophys. 2011,

84, 864–871. [CrossRef]
43. Abbas, Z.; Naveed, M.; Sajid, M. Heat transfer analysis for stretching flow over a curved surface with magnetic field. J. Eng.

Thermophys. 2013, 22, 337–345. [CrossRef]
44. Abbas, Z.; Naveed, M.; Sajid, M. Hydromagnetic slip flow of nanofluid over a curved stretching surface with heat generation and

thermal radiation. J. Mol. Liq. 2016, 215, 756–762. [CrossRef]
45. Hayat, T.; Kiran, A.; Imtiaz, M.; Alsaedi, A. Hydromagnetic mixed convection flow of copper and silver water nanofluids due to

a curved stretching sheet. Results Phys. 2016, 6, 904–910. [CrossRef]
46. Imtiaz, M.; Hayat, T.; Alsaedi, A. Convective flow of ferrofluid due to a curved stretching surface with homogeneous-

heterogeneous reactions. Powder Technol. 2017, 310, 154–162. [CrossRef]

30



Mathematics 2021, 9, 2330

47. Saba, F.; Ahmed, N.; Hussain, S.; Khan, U.; Mohyud-Din, S.; Darus, M. Thermal analysis of nanofluid flow over a curved
stretching surface suspended by carbon nanotubes with internal heat generation. Appl. Sci. 2018, 8, 395. [CrossRef]

48. Sanni, K.M.; Asghar, S.; Jalil, M.; Okechi, N.F. Flow of viscous fluid along a nonlinearly stretching curved surface. Results Phys.
2017, 7, 1–4. [CrossRef]

49. Hayat, T.; Saif, R.S.; Ellahi, R.; Muhammad, T.; Ahmad, B. Numerical study of boundary-layer flow due to a nonlinear curved
stretching sheet with convective heat and mass conditions. Results Phys. 2017, 7, 2601–2606. [CrossRef]

50. Okechi, N.F.; Jalil, M.; Asghar, S. Flow of viscous fluid along an exponentially stretching curved surface. Results Phys. 2017, 7,
2851–2854. [CrossRef]

51. Saleh, S.H.M.; Arifin, N.M.; Nazar, R.; Pop, I. Unsteady micropolar fluid over a permeable curved stretching shrinking surface.
Math. Probl. Eng. 2017, 2017, 3085249. [CrossRef]

52. Naveed, M.; Abbas, Z.; Sajid, M.; Hasnain, J. Dual solutions in hydromagnetic viscous fluid flow past a shrinking curved surface.
Arab. J. Sci. Eng. 2018, 43, 1189–1194. [CrossRef]

53. Khan, M.R.; Pan, K.; Khan, A.U.; Nadeem, S. Dual solutions for mixed convection flow of SiO2−Al2O3/water hybrid nanofluid
near the stagnation point over a curved surface. Phys. A Stat. Mech. its Appl. 2020, 547, 123959. [CrossRef]

54. Lok, Y.Y.; Amin, N.; Campean, D.; Pop, I. Steady mixed convection flow of a micropolar fluid near the stagnation point on a
vertical surface. Int. J. Numer. Methods Heat Fluid Flow 2005, 15, 654–670. [CrossRef]

55. Merkin, J.H. On dual solutions occurring in mixed convection in a porous medium. J. Eng. Math. 1986, 20, 171–179. [CrossRef]
56. Weidman, P.D.; Kubitschek, D.G.; Davis, A.M.J. The effect of transpiration on self-similar boundary layer flow over moving

surfaces. Int. J. Eng. Sci. 2006, 44, 730–737. [CrossRef]
57. Shampine, L.F.; Gladwell, I.; Thompson, S. Solving ODEs with MATLAB; Cambridge University Press: Cambridge, UK, 2003.

31





mathematics

Article

On Third-Order Bronze Fibonacci Numbers

Mücahit Akbiyik * and Jeta Alo

Citation: Akbiyik, M.; Alo, J. On

Third-Order Bronze Fibonacci

Numbers. Mathematics 2021, 9, 2606.

https://doi.org/10.3390/math9202606

Academic Editors: Araceli

Queiruga-Dios, Abdelmejid Bayad,

Maria Jesus Santos, Fatih Yilmaz,

Deolinda M. L. Dias Rasteiro, Jesús

Martín Vaquero and Víctor Gayoso

Martínez

Received: 29 July 2021

Accepted: 11 October 2021

Published: 16 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Mathematics, Beykent University, Istanbul 34520, Turkey; jeta@beykent.edu.tr
* Correspondence: mucahitakbiyik@beykent.edu.tr

Abstract: In this study, we firstly obtain De Moivre-type identities for the second-order Bronze
Fibonacci sequences. Next, we construct and define the third-order Bronze Fibonacci, third-order
Bronze Lucas and modified third-order Bronze Fibonacci sequences. Then, we define the general-
ized third-order Bronze Fibonacci sequence and calculate the De Moivre-type identities for these
sequences. Moreover, we find the generating functions, Binet’s formulas, Cassini’s identities and
matrix representations of these sequences and examine some interesting identities related to the
third-order Bronze Fibonacci sequences. Finally, we present an encryption and decryption application
that uses our obtained results and we present an illustrative example.

Keywords: De Moivre-type identity; third-order Bronze Fibonacci numbers; Binet’s formula; Affine-
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1. Introduction

In the literature, the roots of the equation x2 − x − 1 = 0 are given as

α1 = (1 +
√

5)/2,

α2 = (1 −
√

5)/2,

and the following relation is satisfied

(
1 ±

√
5

2
)n =

Ln ±
√

5Fn

2
, (1)

where Ln denotes the n-th Lucas number and Fn denotes the n-th Fibonacci number.
Relation (1) is the De Moivre-type identity for Fibonacci numbers [1]. Lin, in [2,3], gave
the De Moivre-type identities for the tribonacci and the tetranacci numbers by using the
equation x3 − x2 − x − 1 = 0 and the equation x4 − x3 − x2 − x − 1 = 0, respectively.
Moreover, the authors in [4] obtained the De Moivre-type identities for the second- and
third-order Pell numbers by using the roots of characteristic equations x2 − 2x − 1 = 0 and
x3 − 2x2 − x − 1 = 0, respectively. They presented a way to construct the second-order Pell
and Pell–Lucas numbers and the third-order Pell and Pell–Lucas numbers. Additionally,
in [5], the author studied the generalized third-order Pell numbers. In [6], the authors gave
the De Moivre-type identities for the second-order and third-order Jacobsthal numbers.

The second-order Bronze Fibonacci sequence or short Bronze Fibonacci sequence is
given by the linear recurrence equation Bn+1 = 3Bn + Bn−1 with initial conditions B0 = 0
and B1 = 1; it is also called the 3-Fibonacci Sequence and is defined as the sequence A006190
in the OEIS [7]. In [8], Kartal extended the Bronze Fibonacci numbers to the Gaussian
Bronze Fibonacci numbers and obtained Binet’s formula and generating functions for these
numbers. In [9], the author introduced (l, 1, p + 2q, q) numbers, (l, 1, p + 2q, q) quaternions,
(l, 1, p + 2q, q) symbol elements. In [10], the authors presented a special class of elements
in the algebras obtained by the Cayley Dickson process, called l-elements or (l, 1, 0, 1)
numbers. They gave some properties of these sequences.
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It is also known that Fibonacci Numbers are used in encryption theory. In [11], a
class of square Fibonacci (p + 1)× (p + 1) -matrices, which are based on the Fibonacci
p numbers p = 0, 1, 2, 3, ..., with a determinant equal to ±1, was considered. The author
defined a Fibonacci coding/decoding method from the Fibonacci matrices which leads
to a generalization of the Cassini formula. In [12], the authors present a new method of
coding/decoding algorithms using Fibonacci Q matrices. In addition to this, the authors
of [13] introduced two new coding/decoding algorithms using Fibonacci Q matrices and R
matrices. In [12,13], the used methods are based on the blocked message matrices. In [14],
the authors present an application in cryptography and applications of some quaternion
elements. In [15], the authors presented a public key cryptosystem using an Affine-Hill
chipher with a generalized Fibonacci (multinacci) matrix with large power k, denoted by
Qk

λ, as a key.
In this paper, we give the De Moivre-type identities for the second-order Bronze

Fibonacci and the third-order Bronze Fibonacci numbers derived from the characteristic
equations x2 − 3x − 1 = 0 and x3 − 3x2 − x − 1 = 0, respectively. Thus, we define the
generalized third-order Bronze Fibonacci numbers, third-order Fibonacci numbers, third-
order Bronze Lucas numbers and modified third-order Bronze Fibonacci numbers. We
present the generating functions, Binet’s formulas, Cassini’s identity, matrix representation
of third-order Bronze Fibonacci sequences and some interesting identities related to these
sequences. Finally, we develop an encryption and decryption algorithm using an Affine-
Hill chipher with the third-order Bronze Fibonacci matrix as a key. At the end of paper, we
give a numerical example of an encryption and decryption algorithm.

2. De Moivre-Type Identity for the Second- and Third-Order Bronze
Fibonacci Numbers

In this section, we firstly obtain De Moivre-type identities for the second-order Bronze
Fibonacci numbers. Next, we present a method for constructing the third-order Bronze
Fibonacci numbers. We define the third-order Fibonacci numbers, third-order Bronze Lucas
numbers, modified third-order Bronze Fibonacci numbers and generalized third-order
Bronze Fibonacci numbers. We establish De Moivre-type identities for the third-order
Bronze Fibonacci numbers.

The roots of the equation x2 − 3x − 1 = 0 are

α1,2 =
3 ±

√
13

2
. (2)

The De Moivre-type identity for the second-order Bronze Fibonacci numbers can be
found as:

(
3 ±

√
13

2
)n =

BL
n ±

√
13BF

n
2

, (3)

where BL
n represents the Bronze Lucas numbers, which form a Bronze Fibonacci sequence

with the initial conditions BL
0 = 2 and BL

1 = 3, and BF
n represents Bronze Fibonacci numbers

with the initial conditions BF
0 = 0 and BF

1 = 1.
The third-order Bronze Fibonacci numbers are related to the roots of the equation

x3 − 3x2 − x − 1 = 0. (4)

The three roots of this equation are

α1 = 1 + U + V,

α2 = 1 − 1
2
(U + V) + i

√
3

2
(U − V),

α3 = 1 − 1
2
(U + V)− i

√
3

2
(U − V),

34
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where U = 3

√
2 +

√
4 − 64

27 , V = 3

√
2 −

√
4 − 64

27 , UV = 4
3 , and U3 + V3 = 4. Thus, the

powers of the root α1 can be calculated as follows:

α2
1 =

11
3

+ 2(U + V) + 1(U2 + V2),

α3
1 =

39
3

+ 7(U + V) + 3(U2 + V2),

α4
1 =

131
3

+ 24(U + V) + 10(U2 + V2),

α5
1 =

443
3

+ 81(U + V) + 34(U2 + V2),

α6
1 =

1499
3

+ 274(U + V) + 115(U2 + V2).

The coefficients of the above equations construct three third-order Bronze Fibonacci
sequences, which are denoted by {BL

n }, {BM
n } and {BF

n}, respectively.

1. {BL
n } is a third-order Bronze Lucas sequence with the recurrence relation BL

n =

3BL
n−1 +BL

n−2 +BL
n−3 for n ≥ 3 and BL

0 = 3,BL
1 = 3,BL

2 = 11.
2. {BM

n } is a modified third-order Bronze Fibonacci sequence with the recurrence
relation BM

n = 3BM
n−1 + BM

n−2 + BM
n−3 for n ≥ 3 and BM

0 = 1,BM
1 = 2 and

BM
2 = 7. Additionally, this sequence is also called Bisection of Tribonacci Numbers

in OEIS with the code A099463, [7] .
3. {BF

n} is a third-order Bronze Fibonacci sequence with the recurrence relation BF
n =

3BF
n−1 +BF

n−2 +BF
n−3 for n ≥ 3 and BF

0 = 1,BF
1 = 3 and BF

2 = 10. The sequence
is also a sum of even indexed terms of Tribonacci Numbers in OEIS with the code
A113300 in [7].

The first eleven terms of the above sequences are presented in the Table 1.

Table 1. The third-order Bronze Fibonacci numbers.

N 0 1 2 3 4 5 6 7 8 9 10

BL
n 3 3 11 39 131 443 1499 5071 17,155 58,035 196,331

BM
n 1 2 7 24 81 274 927 3136 10,609 35,890 121,415

BF
n 1 3 10 34 115 389 1316 4452 15,061 50,951 172,366

Now, by using these three special third-order Bronze Fibonacci sequences we define a
generalized third-order Bronze Fibonacci sequence as follows:

The sequence {BG
n } with the recurrence relation BG

n = 3BG
n−1 + BG

n−2 + BG
n−3

for n ≥ 3, where BG
0 ,BG

1 ,BG
2 are any arbitrary numbers not all being zero, is called a

generalized third-order Bronze Fibonacci sequence.
By using the sequences {BL

n }, {BM
n }, and {BF

n}, and applying induction over n,
we find

αn
1 =

1
3
BL

n +BM
n−1(U + V) +BF

n−2(U
2 + V2). (5)

Similarly, we obtain

αn
2 =

1
3
BL

n − 1
2
BM

n−1(U + V)− 1
2
BF

n−2(U
2 + V2)

+

√
3i

2
BM

n−1(U − V) +

√
3i

2
BF

n−2(U
2 − V2),

(6)
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and

αn
3 =

1
3
BL

n − 1
2
BM

n−1(U + V)− 1
2
BF

n−2(U
2 + V2)

−
√

3i
2

BM
n−1(U − V)−

√
3i

2
BF

n−2(U
2 − V2).

(7)

So, we have αn
1 , αn

2 and αn
3 in terms of BL

n , BM
n , and BF

n . Consequently, Equations (5)–(7)
are called De Moivre-type identities for the third-order Bronze Fibonacci numbers.

3. Generating Function and Binet’s Formula for the Third-Order Bronze Fibonacci
Numbers

In this section, we obtain the generating functions and Binet’s formulas for the third-
order Bronze Fibonacci sequences.

Theorem 1. The generating function for the generalized third-order Bronze Fibonacci sequence
{BG

n } is given by

BG(x) =
BG

0 + (BG
1 − 3BG

0 )x − (BG
2 − 3BG

1 +BG
0 )x2

1 − 3x − x2 − x3 , (8)

where BG(x) = ∑∞
n=0 B

G
n xn.

Proof. Let BG(x) = ∑∞
n=0 B

G
n xn. By using the recurrence relation, we find

BG(x) =
∞

∑
n=3

BG
n xn +BG

2 x2 +BG
1 x +BG

0

= 3
∞

∑
n=3

BG
n−1xn +

∞

∑
n=3

BG
n−2xn +

∞

∑
n=3

BG
n−3xn +BG

2x2 +BG
1x +BG

0

= 3x(BG(x)−BG
0 −BG

1 x) + x2(BG(x)−BG
0 ) + x3BG(x) +BG

2 x2 +BG
1 x +BG

0

(9)

and BG(x)(1 − 3x − x2 − x3) = BG
0 + (BG

1 − 3BG
0 )x + (BG

2 − 3BG
1 −BG

0 )x2.

Corollary 1. The generating functions for the sequences {BL
n }, {BM

n } and {BF
n} can be calcu-

lated as follows

BL(x) =
−x2 − 6x + 3

1 − 3x − x2 − x3 , (10)

where BL(x) = ∑∞
n=0 B

L
n xn,

BM(x) =
1 − x

1 − 3x − x2 − x3 , (11)

where BM(x) = ∑∞
n=0 B

M
n xn and

BF(x) =
1

1 − 3x − x2 − x3 , (12)

where BF(x) = ∑∞
n=0 B

F
nxn.

Theorem 2. Binet’s formula for the generalized third-order Bronze Fibonacci numbers is given by:
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BG
n =

BG
0 α2α3 −BG

1 (α2 + α3) +BG
2

(α2 − α1)(α3 − α1)
αn

1 +
−BG

0 α1α3 +BG
1 (α1 + α3)−BG

2

(α3 − α2)(α2 − α1)
αn

2

+
BG

0 α1α2 −BG
1 (α1 + α2) +BG

2

(α3 − α2)(α3 − α1)
αn

3 .
(13)

Proof. We seek for constants d1, d2 and d3 such that

BG
n = d1αn

1 + d2αn
2 + d3αn

3 .

These are found by solving the system of linear equations for n = 0, n = 1 and n = 2

d1α0
1 + d2α0

2 + d3α0
3 = BG

0

d1α1
1 + d2α1

2 + d3α1
3 = BG

1

d1α2
1 + d2α2

2 + d3α2
3 = BG

2 .

Corollary 2. Binet’s formulas for the sequences {BL
n }, {BM

n }, and {BF
n} can be calculated as:

BL
n = 3α2α3−3(α2+α3)+11

(α2−α1)(α3−α1)
αn

1 +
−3α1α3+3(α1+α3)−11

(α3−α2)(α2−α1)
αn

2 +
3α1α2−3(α1+α2)+11
(α3−α2)(α3−α1)

αn
3 or after making the

necessary arrangements
BL

n = αn
1 + αn

2 + αn
3 , (14)

BM
n =

α2α3 − 2(α2 + α3) + 7
(α2 − α1)(α3 − α1)

αn
1 +

−α1α3 + 2(α1 + α3)− 7
(α3 − α2)(α2 − α1)

αn
2

+
α1α2 − 2(α1 + α2) + 7
(α3 − α2)(α3 − α1)

αn
3 ,

(15)

BF
n =

α2α3 − 3(α2 + α3) + 10
(α2 − α1)(α3 − α1)

αn
1 +

−α1α3 + 3(α1 + α3)− 10
(α3 − α2)(α2 − α1)

αn
2

+
α1α2 − 3(α1 + α2) + 10
(α3 − α2)(α3 − α1)

αn
3 .

(16)

4. Some Properties of {BG
n }, {BL

n}, {BM
n } and {BF

n}
In this section, we give some properties of the third-order Bronze Fibonacci sequences

such as some equalities and linear sums.
Using the definitions of three third-order Bronze Fibonacci sequences, the following

results can be derived easily:

• BM
n+1 = BF

n+1 −BF
n;

• BM
n+3 = 2BF

n+2 +BF
n+1 +BF

n;
• BL

n+2 = 2BM
n+2 −BM

n+1 −BM
n;

• BL
n+3 = BF

n+3 +BF
n+1 + 2BF

n;
• BF

n+3 −BF
n+1 = BM

n+3 +BM
n+2;

• BL
n+4 = 10BL

n+2 + 4BL
n+1 + 4BL

n;
• 33BL

n+4 = −247BL
n+3 + 134BL

n+1 + 106BL
n;

• BL
n+4 = 4BL

n+3 − 2BL
n+2 −BL

n;
• BM

n+4 = 10BM
n+2 + 4BM

n+1 + 3BM
n;

• BF
n+4 = 3BF

n+2 + 4BF
n+1 + 10BF

n;
• ∑n

k=0 B
M

k = BF
n .
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Theorem 3. Linear sums for the generalized third-order Bronze Fibonacci numbers are given
as follows:

n

∑
k=0

BG
k =

1
4
(BG

n+3 − 2BG
n+2 − 3BG

n+1 −BG
2 + 2BG

1 + 3BG
0), (17)

n

∑
k=0

BG
2k+1 =

1
4
(BG

2n+4 − 3BG
2n+3 −BG

2 + 3BG
1), (18)

n

∑
k=0

BG
2k =

1
4
(BG

2n+3 − 3BG
2n+2 −BG

1 + 3BG
0). (19)

Proof. From the linear recurrence relation of BG
n+3, we have:

BG
n = BG

n+3 − 3BG
n+2 −BG

n+1,

or
BG

0 = BG
3 − 3BG

2 −BG
1,

BG
1 = BG

4 − 3BG
3 −BG

2,

BG
2 = BG

5 − 3BG
4 −BG

3,

...

BG
n−2 = BG

n+1 − 3BG
n −BG

n−1,

BG
n−1 = BG

n+2 − 3BG
n+1 −BG

n,

BG
n = BG

n+3 − 3BG
n+2 −BG

n+1.

Summing the left and the right sides of these equations, we obtain:

n

∑
k=0

BG
k =

n+3

∑
k=3

BG
k − 3

n+2

∑
k=2

BG
k −

n+1

∑
k=1

BG
k,

n

∑
k=0

BG
k = (BG

n+1 +BG
n+2 +BG

n+3 +
n

∑
k=0

BG
k −BG

2 −BG
1 −BG

0),

− 3(BG
n+1 +BG

n+2 +
n

∑
k=0

BG
k −BG

1 −BG
0),

− (BG
n+1 +

n

∑
k=0

BG
k −BG

0).

By solving this equation, we obtain

n

∑
k=0

BG
k =

1
4
(BG

n+3 − 2BG
n+2 − 3BG

n+1 −BG
2 + 2BG

1 + 3BG
0).

In the similar way, by using the linear recurrence equation, we find:

BG
1 = BG

4 − 3BG
3 −BG

2,

BG
3 = BG

6 − 3BG
5 −BG

4,

BG
5 = BG

8 − 3BG
7 −BG

6,

...

BG
2n−1 = BG

2n+2 − 3BG
2n+1 −BG

2n,
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BG
2n+1 = BG

2n+4 − 3BG
2n+3 −BG

2n+2,

and by summing side by side, we obtain

n

∑
k=0

BG
2k+1 = (BG

2n+2 +BG
2n+4 +

n

∑
k=0

BG
2k −BG

0 −BG
2)

− 3(
n

∑
k=0

BG
2k+1 −BG

2n+3 −BG
1)

− (
n

∑
k=0

BG
2k +BG

2n+2 −BG
0)

then, solving this equation we obtain:

n

∑
k=0

BG
2k+1 =

1
4
(BG

2n+4 − 3BG
2n+3 −BG

2 + 3BG
1).

Similarly, for even indexes, we have

BG
0 = BG

3 − 3BG
2 −BG

1,

BG
2 = BG

5 − 3BG
4 −BG

3,

BG
4 = BG

7 − 3BG
6 −BG

5,

...

BG
2n−2 = BG

2n+1 − 3BG
2n −BG

2n−1,

BG
2n = BG

2n+3 − 3BG
2n+2 −BG

2n+1,

and ∑n
k=0 B

G
2k = (BG

2n+3 + ∑n
k=0 B

G
2k+1 −BG

1)− 3(∑n
k=0 B

G
2k +BG

2n+2 −BG
0)−

∑n
k=0 B

G
2k+1; then, the result is obtained by solving this equation

n

∑
k=0

BG
2k =

1
4
(BG

2n+3 − 3BG
2n+2 −BG

1 + 3BG
0).

Corollary 3. Linear sums for the third-order Bronze Lucas sequence {BL
n } are:

n

∑
k=0

BL
k =

1
4
(BL

n+3 − 2BL
n+2 − 3BL

n+1 + 4), (20)

n

∑
k=0

BL
2k+1 =

1
4
(BL

2n+4 − 3BL
2n+3 − 2), (21)

n

∑
k=0

BL
2k =

1
4
(BL

2n+3 − 3BL
2n+2 + 6). (22)

Corollary 4. Linear sums for the modified third-order Bronze Fibonacci sequence {BM
n } are:

n

∑
k=0

BM
k =

1
4
(BM

n+3 − 2BM
n+2 − 3BM

n+1), (23)

n

∑
k=0

BM
2k+1 =

1
4
(BM

2n+4 − 3BM
2n+3 − 1), (24)
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n

∑
k=0

BM
2k =

1
4
(BM

2n+3 − 3BM
2n+2 + 1). (25)

Corollary 5. Linear sums for the third-order Bronze Fibonacci sequence {BF
n} are:

n

∑
k=0

BF
k =

1
4
(BF

n+3 − 2BF
n+2 − 3BF

n+1 − 1), (26)

n

∑
k=0

BF
2k+1 =

1
4
(BF

2n+4 − 3BF
2n+3 − 1), (27)

n

∑
k=0

BF
2k =

1
4
(BF

2n+3 − 3BF
2n+2). (28)

5. Cassini’s Identity for the Bronze Fibonacci Numbers

In this section, we obtain the well known Cassini identity, sometimes called Simson’s
formulas, for the third-order Bronze Fibonacci sequences.

Theorem 4. Cassini’s identity for the generalized third-order Bronze Fibonacci numbers is given by∣∣∣∣∣∣
BG

n+4 BG
n+3 BG

n+2

BG
n+3 BG

n+2 BG
n+1

BG
n+2 BG

n+1 BG
n

∣∣∣∣∣∣ =
∣∣∣∣∣∣
BG

4 BG
3 BG

2

BG
3 BG

2 BG
1

BG
2 BG

1 BG
0

∣∣∣∣∣∣ (29)

Proof. By using the induction method, for n = 1∣∣∣∣∣∣
BG

5 BG
4 BG

3
BG

4 BG
3 BG

2
BG

3 BG
2 BG

1

∣∣∣∣∣∣ =
∣∣∣∣∣∣
3BG

4 +BG
3 +BG

2 BG
4 BG

3
3BG

3 +BG
2 +BG

1 BG
3 BG

2
3BG

2 +BG
1 +BG

0 BG
2 BG

1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
BG

2 BG
4 BG

3
BG

1 BG
3 BG

2
BG

0 BG
2 BG

1

∣∣∣∣∣∣ =
∣∣∣∣∣∣
BG

4 BG
3 BG

2

BG
3 BG

2 BG
1

BG
2 BG

1 BG
0

∣∣∣∣∣∣
Let us assume that this identity is true for n = k∣∣∣∣∣∣

BG
k+4 BG

k+3 BG
k+2

BG
k+3 BG

k+2 BG
k+1

BG
k+2 BG

k+1 BG
k

∣∣∣∣∣∣ =
∣∣∣∣∣∣
BG

4 BG
3 BG

2

BG
3 BG

2 BG
1

BG
2 BG

1 BG
0

∣∣∣∣∣∣
then, by using the recurrence relation and properties of determinants, we find that (29) is
satisfied for n = k + 1.

From this theorem, we give the following corollary:

Corollary 6. Cassini’s identities for the third-ordered Bronze Fibonacci sequences {BL
n }, {BM

n },
and {BF

n} are given by∣∣∣∣∣∣
BL

n+4 BL
n+3 BL

n+2

BL
n+3 BL

n+2 BL
n+1

BL
n+2 BL

n+1 BL
n

∣∣∣∣∣∣ =
∣∣∣∣∣∣
131 39 11
39 11 3
11 3 3

∣∣∣∣∣∣ = −176, (30)

∣∣∣∣∣∣
BM

n+4 BM
n+3 BM

n+2

BM
n+3 BM

n+2 BM
n+1

BM
n+2 BM

n+1 BM
n

∣∣∣∣∣∣ =
∣∣∣∣∣∣
81 24 7
24 7 2
7 2 1

∣∣∣∣∣∣ = −4, (31)
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∣∣∣∣∣∣∣
BF

n+4 BF
n+3 BF

n+2

BF
n+3 BF

n+2 BF
n+1

BF
n+2 BF

n+1 BF
n

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣
115 34 10
34 10 3
10 3 1

∣∣∣∣∣∣ = −1, (32)

respectively.

6. Matrix Representation of the Third-Order Bronze Fibonacci Numbers

In this section, we give the matrix representation of the the generalized third-order
Bronze Fibonacci sequence. Additionally, we derive some properties of this sequence.

The Matrix representation of the generalized third-order Bronze Fibonacci sequence is
given by ⎡⎣BG

n+3

BG
n+2

BG
n+1

⎤⎦ =

⎡⎣3 1 1
1 0 0
0 1 0

⎤⎦⎡⎣BG
n+2

BG
n+1

BG
n

⎤⎦. (33)

By induction over n, we find⎡⎣BG
n+2

BG
n+1

BG
n

⎤⎦ =

⎡⎣3 1 1
1 0 0
0 1 0

⎤⎦n⎡⎣BG
2

BG
1

BG
0

⎤⎦.

Now, let us define a matrix B by

B =

⎡⎣3 1 1
1 0 0
0 1 0

⎤⎦. (34)

Theorem 5. For n ≥ 4,

Bn =

⎡⎢⎣ BF
n BF

n−1 +BF
n−2 BF

n−1

BF
n−1 BF

n−2 +BF
n−3 BF

n−2

BF
n−2 BF

n−3 +BF
n−4 BF

n−3

⎤⎥⎦ (35)

and det Bn = 1.

Proof. For n = 4, we have

B4 =

⎡⎣115 44 34
34 13 10
10 4 3

⎤⎦ =

⎡⎣BF
4 BF

3 +BF
2 BF

3
BF

3 BF
2 +BF

1 BF
2

BF
2 BF

1 +BF
0 BF

1

⎤⎦.

Suppose that for n = k

Bk =

⎡⎣ BF
k BF

k−1 +BF
k−2 BF

k−1
BF

k−1 BF
k−2 +BF

k−3 BF
k−2

BF
k−2 BF

k−3 +BF
k−4 BF

k−3

⎤⎦
then,

Bk+1 = BkB =

⎡⎣ BF
k BF

k−1 +BF
k−2 BF

k−1
BF

k−1 BF
k−2 +BF

k−3 BF
k−2

BF
k−2 BF

k−3 +BF
k−4 BF

k−3

⎤⎦⎡⎣3 1 1
1 0 0
0 1 0

⎤⎦
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and

Bk+1 =

⎡⎣BF
k+1 BF

k +BF
k−1 BF

k
BF

k BF
k−1 +BF

k−2 BF
k−1

BF
k−1 BF

k−2 +BF
k−3 BF

k−2

⎤⎦
which proves the theorem. Similarly, by using the properties of determinants and induction
over n, we find that det Bn = 1.

For n ≥ 4, let us define a matrix

Yn =

⎡⎣ BG
n BG

n−1 +BG
n−2 BG

n−1

BG
n−1 BG

n−2 +BG
n−3 BG

n−2

BG
n−2 BG

n−3 +BG
n−4 BG

n−3

⎤⎦. (36)

Theorem 6. For n, m ≥ 4

1. Yn = Bn−4Y4.
2. Y4Bn = BnY4.
3. Yn+m = YnBm.

Proof.

1. Since BYn = Yn+1, it can be easily shown by induction that Yn = Bn−4Y4.
2. Using the definition of Yn and induction, we find Y4Bn = BnY4.
3. From 1 and 2, it follows that Yn+m = Bn+m−4Y4 = Bn−4BmY4 = Bn−4Y4Bm = YnBm.

Theorem 7. For n, m ≥ 4, we have

BG
n+m = BG

n BF
m +BG

n−1(B
F
m−1 +BF

m−2) +BG
n−2B

F
m−1. (37)

Proof. From the above theorem, we have Yn+m = YnBm, or⎡⎣ BG
n+m BG

n+m−1 +BG
n+m−2 BG

n+m−1

BG
n+m−1 BG

n+m−2 +BG
n+m−3 BG

n+m−2

BG
n+m−2 BG

n+m−3 +BG
n+m−4 BG

n+m−3

⎤⎦ =

⎡⎣ BG
n BG

n−1 +BG
n−2 BG

n−1

BG
n−1 BG

n−2 +BG
n−3 BG

n−2

BG
n−2 BG

n−3 +BG
n−4 BG

n−3

⎤⎦
⎡⎢⎣ BF

m BF
m−1 +BF

m−2 BF
m−1

BF
m−1 BF

m−2 +BF
m−3 BF

m−2

BF
m−2 BF

m−3 +BF
m−4 BF

m−3

⎤⎥⎦.

(38)

Since the BG
n+m entry is the product of the first row of the Yn and the first column of Bn,

the result follows.

Corollary 7. For the third-ordered Bronze Fibonacci sequences {BL
n }, {BM

n }, and {BF
n}, we have

BL
n+m = BL

nB
F
m +BL

n−1(B
F
m−1 +BF

m−2) +BL
n−2B

F
m−1, (39)

BM
n+m = BM

n BF
m +BM

n−1(B
F
m−1 +BF

m−2) +BM
n−2B

F
m−1, (40)

BF
n+m = BF

nB
F
m +BF

n−1(B
F
m−1 +BF

m−2) +BF
n−2B

F
m−1, (41)

respectively.

7. Application: Encryption and Decryption via Third-Order Bronze Fibonacci
Numbers

In this section, as a useful application of all obtained results, we give a third-order
Bronze Fibonacci encryption and decryption algorithm. In this algorithm, we use the
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Affine-Hill chipher method for encryption using a third-order Bronze Fibonacci matrix as
a key. First of all, let us list the notations which we use in the encryption and decryption
algorithms:

• p is the number of the characters which the sender and receiver use. We chose p to be
a prime.

• φ(p) is the image of the number p under the Euler Phi function. It is known that if p
is prime then φ(p) = p − 1.

• D is the private key of the receiver.
• P1 is any primitive root of p .
• P2 = PD

1 mod p.
• (p, P1, P2) is the public key.
• ε is a positive integer which satisfies 1 < ε < φ(p). The prime p provides a large key

space for the selection of ε. This strengthens the security of the system.
• λ = Pε

2 mod p.
• T = [BF

λ BF
λ+1 BF

λ+2] mod p is the 1 × 3 shifting vector.
• M = [m1m2...mn] is the plain text and E = [e1e2...en] is the cipher text. Note that if the

plain text has not suitable length in Step 6 of encryption algorithm, zero will be added
until it can be divided by 3 with no remainder.

• Mi is ith vector of type 1 × 3 obtained using the character table after dividing the
plain text into 3-length parts.

• Ei is ith vector of type 1× 3 obtained using the character table after dividing the cipher
text E into 3-length parts.

Note that the prime number p and the large value of λ increase the security of three digital
signatures λ, k, T. This makes it difficult to break the system.

Encryption Algorithm:

• Step 1: The sender chooses a secret number ε where 1 < ε < φ(p).
• Step 2: The sender calculates the signature k = Pε

1 mod p.
• Step 3: The sender calculates λ = Pε

2 mod p.
• Step 4: The sender constructs Bλ.
• Step 5: The sender constructs T.
• Step 6: The sender calculates Ei = MiB

λ + T mod p for 1 ≤ i ≤ n
3 .

• Step 7: The sender sends the cipher text E = [e1e2...en] and the signature k.

Decryption Algorithm:

• Step 1: The receiver calculates λ = kD mod p.
• Step 2: The receiver calculates Bλ and B−λ.
• Step 3: The receiver calculates the shifting vector S.
• Step 4: The receiver calculates Mi = (Ei − T)B−λ mod p for 1 ≤ i ≤ n

3 .
• Step 5: The receiver constructs the plain text M = [m1m2...mn].

Example 1. Let p = 29 and consider 29—characters with the numerical values 1–26, 27, 28 and
29 are assigned for the alphabets A–Z, ., 0 and blank space, respectively. Consider that the plain
text is “STAY AT HOME", private key is D = 13 and P1 = 11. Then, we calculate P2 = 21. So,
the public key is (29,11,21).

Encryption Algorithm:

• Step 1: We choose ε = 17 where 1 < ε < 28.
• Step 2: The signature k = 3.
• Step 3: λ = 19.

• Step 4: Since λ = 19 then B19 =

⎡⎣12 10 27
27 18 1
1 24 17

⎤⎦ mod 29, from Equation (35).

• Step 5: The shifting vector T = [BF
19 BF

20 BF
21] = [12 6 28] mod 29. We can also use the

Binet Formula (16) here to calculate the shifting vector T.
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• Step 6:

E1 = M1Bλ + T mod 29

= [19 20 1]

⎡⎣12 10 27
27 18 1
1 24 17

⎤⎦ + [12 6 28] mod 29

= [27 0 27] = [. .],

E2 = M2Bλ + T mod 29

= [25 29 1]

⎡⎣12 10 27
27 18 1
1 24 17

⎤⎦ + [12 6 28] mod 29

= [23 19 24] = [WSX],

E3 = M3Bλ + T mod 29

= [20 29 8]

⎡⎣12 10 27
27 18 1
1 24 17

⎤⎦ + [12 6 28] mod 29

= [28 21 8] = [0UH],

E4 = M4Bλ + T mod 29

= [15 13 5]

⎡⎣12 10 27
27 18 1
1 24 17

⎤⎦ + [12 6 28] mod 29

= [26 17 9] = [ZQI].

• Step 7: We send the receiving (cipher) text E = [. .WSX0UHZQI] and the signature k = 3.

Decryption Algorithm:

• Step 1: λ = 313 mod 29 = 19.

• Step 2: Since λ = 19 then B19 =

⎡⎣12 28 27
27 18 1
1 24 17

⎤⎦ mod 29,

and B−19 =

⎡⎣12 8 18
20 10 12
12 11 23

⎤⎦ mod 29,

• Step 3: We calculate the shifting vector T = [12 6 28].
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• Step 4: We calculate all Mi, i = 1, 2, 3, 4 as follows:

M1 = (E1 − T)B−19 mod 29

= ([13 21 25]− [12 6 28])

⎡⎣12 8 18
20 10 12
12 11 23

⎤⎦ mod 29

= [19 20 1] = [STA],

M2 = (E2 − T)B−19 mod 29

= ([23 19 24]− [12 6 28])

⎡⎣12 8 18
20 10 12
12 11 23

⎤⎦ mod 29

= [25 29 1] = [Y A],

M3 = (E3 − T)B−19 mod 29

= ([23 19 24]− [12 6 28])

⎡⎣12 8 18
20 10 12
12 11 23

⎤⎦ mod 29

= [20 29 8] = [T H],

M4 = (E4 − T)B−19 mod 29

= ([26 17 9]− [12 6 28])

⎡⎣12 8 18
20 10 12
12 11 23

⎤⎦ mod 29

= [15 13 5] = [OME].

• Step 5: The sending (plain) text M = [STAY AT HOME].

8. Conclusions

In this paper, we define some third-order Bronze Fibonacci sequences. Additionally,
we present the De Moivre-type identities for the second- and third-order Bronze Fibonacci
numbers. In addition to this, we obtain the generating functions, Binet’s Formulas, Cassini’s
identity, and matrix representation of these sequences and some interesting identities
related to the third-order Bronze Fibonacci sequences. Finally, we develop a new third-
order Bronze Fibonacci encryption and decryption algorithm in encryption theory.
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Catarino, P. On Leonardo Pisano

Hybrinomials. Mathematics 2021, 9,

2923. https://doi.org/10.3390/

math9222923

Academic Editors: Araceli

Queiruga-Dios, Maria Jesus Santos,

Fatih Yilmaz, Deolinda M. L. Dias

Rasteiro, Jesús Martín Vaquero and

Víctor Gayoso Martínez

Received: 17 October 2021

Accepted: 15 November 2021

Published: 17 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Engineering, Istanbul Gelisim University, Istanbul 34310, Turkey
2 Department of Weight and Balance, Turkish Aviation Academy, Istanbul 34149, Turkey;

m.a.dagdeviren@gmail.com
3 Department of Mathematics, University of Trás-os-Montes and Alto Douro, Quinta de Prados,

5001-801 Vila Real, Portugal; pcatarino23@gmail.com
* Correspondence: fkuruz@gelisim.edu.tr
† These authors contributed equally to this work.

Abstract: A generalization of complex, dual, and hyperbolic numbers has recently been defined
as hybrid numbers. In this study, using the Leonardo Pisano numbers and hybrid numbers we
investigate Leonardo Pisano polynomials and hybrinomials. Furthermore, we also describe the basic
algebraic properties and some identities of the Leonardo Pisano polynomials and hybrinomials.

Keywords: hybrid numbers; Leonardo Pisano numbers; hybrinomials

1. Introduction

Fibonacci numbers, for n ≥ 2, are given by the recurrence relation Fn = Fn−1 + Fn−2
with the initial conditions F0 = 0, F1 = 1. There are many works regarding Fibonacci
numbers, such as [1–3]. Furthermore, they have also been studied on different number
systems such as quaternions and hybrid numbers [4,5].

When the literature is examined, it is seen that Leonardo Pisano numbers are only
called Leonardo numbers. However, the name Leonardo in these studies refers to Leonardo
Pisano, who is also called Fibonacci, from the Latin Filius Bonacci. It is well known that
Leonardo commonly stands for Leonardo Da Vinci, so in this study to avoid confusion we
prefer to use the name “Leonardo Pisano”.

Leonardo Pisano numbers have recently been studied in detail by Catarino and Borges
in [6] and they have demonstrated some properties of this sequence. For n ≥ 2, Leonardo
Pisano numbers are defined by the following recurrence relation

Len = Len−1 + Len−2 + 1 (1)

where the initial conditions are Le0 = Le1 = 1. Moreover, another recurrence relation for
Leonardo Pisano’s numbers is

Len+1 = 2Len − Len−2. (2)

The relationship between Leonardo Pisano numbers and Fibonacci numbers can be
given as

Len = 2Fn+1 − 1. (3)

Binet’s formula and the characteristic equation of Leonardo Pisano numbers are

Len =
2αn+1 − 2βn+1 − α + β

α − β
and λ3 − 2λ2 + 1 = 0 (4)

respectively. Cassini’s, Catalan and d’Ocagne’s identities were defined in [6]. In [7]
generalized Leonardo Pisano numbers have been defined. In [8], incomplete Leonardo
Pisano numbers and matrix representation of Leonardo Pisano numbers have also been

Mathematics 2021, 9, 2923. https://doi.org/10.3390/math9222923 https://www.mdpi.com/journal/mathematics47
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given. Additionally, in [9] the authors give some important properties of Leonardo Pisano
numbers and in [10] hybrid Leonardo Pisano numbers are defined.

Hybrid numbers are a generalization of the complex, dual and hyperbolic numbers.
A hybrid number can be denoted by w = r0 + r1i + r2ε + r3h, where r0, r1, r2, r3 are real
numbers [11]. Hybrid numbers, K, are defined as

K =

{
w = r0 + r1i + r2ε + r3h : r0, r1, r2, r3 ∈ R, i2 = −1, ε2 = 0, h2 = 1

ih = −hi = ε + i

}
. (5)

Equality, addition and multiplication are defined by

(i) w1 = w2 ⇐⇒ r0 = s0, r1 = s1, r2 = s2, r3 = s3,
(ii) w1 + w2 = (r0 + s0) + (r1 + s1)i + (r2 + s2)ε + (r3 + s3)h,
(iii) w1 · w2 = (r0 + r1i + r2ε + r3h).(s0 + s1i + s2ε + s3h)

= (r0s0 − r1s1 + r2s1 − r1s2 + r3s3) + (r0s2 + r1s0 + r1s3 − r3s1)i

+ (r0s2 + r2s0 − r2s3 + r3s2 + r1s3 − r3s1)ε + (r0s3 + r3s0 + r1s2 + r2s1)h,
for hybrid numbers w1 = r0 + r1i + r2ε + r3h and w2 = s0 + s1i + s2ε + s3h. More details
on hybrid numbers can be found in [11].

Fibonacci polynomials were first studied by Bicknell [12]. Since then, many authors
have published works on the subject of Fibonacci-type polynomials [13–17]. These types
of polynomials have some considerable applications in number theory, geometry and
algebra. Moreover, hybrinomial sequences have become an increasing area of attention.
For instance, the authors studied Fibonacci and Lucas hybrinomials [18], Petroudi and
Pirouz studied Van der Laan hybrinomials [19] and Petroudi et al. studied Narayana
polynomials and Narayana hybrinomial sequences [20]. Moreover, Horadam hybrinomials
were studied by Kızılateş in [21].

In this work, in Section 2, we define the Leonardo Pisano polynomials and hybrino-
mials. Then, in Section 3, we present some identities of Leonardo Pisano polynomial and
hybrinomial sequences such as Catalan-like identities and summing formulas.

2. Leonardo Pisano Polynomials and Hybrinomials

In this section, we introduce Leonardo Pisano polynomials and hybrinomials.

Definition 1. For a non-negative integer n, Leonardo Pisano polynomials Len(x) are defined by

Len(x) =

⎧⎪⎨⎪⎩
1 , n = 0, 1
x + 2 , n = 2
2xLen−1(x)− Len−3(x) , n ≥ 3

.

The first few Leonardo Pisano polynomials are 1, 1, x + 2, 2x2 + 4x − 1, 4x3 + 8x2 −
2x− 1, 8x4 + 16x3 − 4x2 − 3x− 2, 16x5 + 32x4 − 8x3 − 8x2 − 8x+ 1. Using Leonardo Pisano
polynomials, we can define Leonardo Pisano hybrinomials.

Definition 2. The nth Leonardo Pisano hybrinomial is defined as follows:

Le[H]
n (x) = Len(x) + iLen+1(x) + εLen+2(x) + hLen+3(x). (6)

The first four Leonardo Pisano hybrinomials are
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Le[H]
0 (x) = 1 + i + ε(x + 2) + h(2x2 + 4x − 1) (7)

Le[H]
1 (x) = 1 + i(x + 2) + ε(2x2 + 4x − 1) + h(4x3 + 8x2 − 2x − 1) (8)

Le[H]
2 (x) = (x + 2) + i(2x2 + 4x − 1) + ε(4x3 + 8x2 − 2x − 1)

+ h(8x4 + 16x3 − 4x2 − 3x − 2) (9)

Le[H]
3 (x) = (2x2 + 4x − 1) + i(4x3 + 8x2 − 2x − 1) + ε(8x4 + 16x3 − 4x2 − 3x − 2)

+ h(16x5 + 32x4 − 8x3 − 8x2 − 8x + 1). (10)

If we put x = 1, then we obtain

Le[H]
0 (x) = 1 + i + 3ε + 5h = LeH0

Le[H]
1 (x) = 1 + 3i + 5ε + 9h = LeH1

Le[H]
2 (x) = 3 + 5i + 9ε + 15h = LeH2

Le[H]
3 (x) = 5 + 9i + 15ε + 25h = LeH3

where LeHn stand for Leonardo Pisano hybrid numbers. Therefore, it can be easily seen that
Leonardo Pisano hybrinomials are a generalization of Leonardo Pisano hybrid numbers.

We can define the character of Leonardo Pisano hybrinomials by making use of
the character of hybrid numbers that Özdemir defined in his article.

Definition 3. The character of Leonardo Pisano hybrinomials is

C(Le[H]
n (x)) = Le2

n(x) + Le2
n+1(x)− 2Len+1(x)Len+2(x)− Le2

n+3(x).

Using the character of the Leonardo Pisano hybrinomials, we can set the norm.

Theorem 1. The norm of the Leonardo Pisano hybrinomials Le[H]
n (x) is given by

‖Le[H]
n (x)‖ =

√
|Le2

n+1(x)− 2Len+1(x)Len+2(x)− 4x2Le2
n+2(x) + 4xLen+2(x)Len(x)|.

Proof. From the character of Leonardo Pisano hybrinomials which is given above,

‖Le[H]
n (x)‖2

= |Le2
n(x) + Le2

n+1(x)− 2Len+1(x)Len+2(x)− Le2
n+3(x)|

= |Le2
n(x) + Len+1(x)− 2Len+1(x)Len+2(x)− (2xLen+2(x)− Len(x))2|

= |Le2
n+1(x)− 2Len+1(x)Len+2(x)− 4x2Le2

n+2(x) + 4xLen+2(x)Len(x)|.

In the following theorem using the matrix representation of hybrid numbers:

M(a + bi + cε + dh) =

[
a + c b − c + d

c − b + d a − c

]
,

we give the matrix representation for Leonardo Pisano hybrinomials.

Theorem 2. Every Leonardo Pisano hybrinomials can be written in the following matrix form,
for Le[H]

m (x)

M(Le[H]
m (x)) =

[
Lem(x) + Lem+2(x) Lem+1(x)− Lem+2(x) + Lem+3(x)

Lem+2(x) + Lem+3(x)− Lem+1(x) Lem(x)− Lem+2(x)

]
.

49



Mathematics 2021, 9, 2923

Proof. Using the matrix equivalent of hybrid units 1, i, ε and h, we have

Le[H]
m (x) = Lem(x) + iLem+1(x) + εLem+2(x) + hLem+3(x)

M(Le[H]
m (x)) = Lem(x)

[
1 0
0 1

]
+ Lem+1(x)

[
0 1
−1 0

]
+ Lem+2(x)

[
1 −1
1 −1

]
+ Lem+3(x)

[
0 1
1 0

]
then we can write

M(Le[H]
m (x)) =

[
Lem(x) + Lem+2(x) Lem+1(x)− Lem+2(x) + Lem+3(x)

Lem+2(x) + Lem+3(x)− Lem+1(x) Lem(x)− Lem+2(x)

]

Lemma 1. Let Le[H]
n (x) be the nth Leonardo Pisano hybrinomial. The recurrence relation of

Le[H]
n (x) is

Le[H]
n (x) = 2xLe[H]

n−1(x)− Le[H]
n−3(x).

Proof. Using equation (6);

Le[H]
n (x) = Len(x) + iLen+1(x) + εLen+2(x) + hLen+3(x)

= 2xLen−1(x)− Len−3(x) + i{2xLen(x)− Len−2(x)}
+ ε{2xLen+1(x)− Len−1(x)}+ h{2xLen+2(x)− Len(x)}

= 2xLe[H]
n−1(x)− Le[H]

n−3(x).

Theorem 3. Let Len(x) be the nth Leonardo Pisano polynomial. The generating function of Len(x)
is defined as

gLen(x)(λ) =
∞

∑
n=0

Len(x)λn =
1 + (1 − 2x)λ + (2 − x)λ2

1 − 2xλ + λ3 .

Proof. Assume that the generating function of Leonardo Pisano polynomial series {Len(x)} is,

gLen(x)(λ) =
∞

∑
n=0

Len(x)λn = Le0(x) + Le1(x)λ + Le2(x)λ2 + · · · (11)

Using this form, we obtain

− 2xλgLen(x)(λ) = −2xλLe0(x)− 2xλ2Le1(x)− 2xλ3Le2(x)− · · · , (12)

λ3gLen(x)(λ) = λ3Le0(x) + λ4Le1(x) + λ5Le2(x) + · · · . (13)

If we sum these Equations (11)–(13) side by side, then we obtain

[1 − 2xλ + λ3]gLen(x)(λ) = Le0(x) + Le1(x)λ + Le2(x)λ2 − 2xLe0(x)λ − 2xLe1(x)λ2

= Le0(x) + λ(Le1(x)− 2xLe0(x)) + λ2(Le2(x)− 2xLe1(x)) (14)

= 1 + (1 − 2x)λ + (2 − x)λ2

Then the proof is completed.
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Corollary 1. Let Le[H]
n (x) be the nth Leonardo Pisano hybrinomial. The generating function of

Le[H]
n (x) is

G
Le[H]

n (x)
(λ) =

Le[H]
0 (x) + λ[Le[H]

1 (x)− 2xLe[H]
0 (x)] + λ2[Le[H]

2 (x)− 2xLe[H]
1 (x)]

1 − 2xλ2 + λ3 .

Theorem 4. Let Len(x) be the nth Leonardo Pisano polynomial. The Binet-like formula for
the sequence {Len(x)} is

Len(x) = Aαn + Bβn + Cγn

where α, β and γ are the roots of the characteristic equation λ3 − 2xλ2 + 1 = 0 and A, B, C are
as follows:

A =
α2 + (2 − x)α + (x + 2)

(α − β)(α − γ)
, (15)

B =
β2 + (2 − x)β + (x + 2)

(β − α)(β − γ)
, (16)

C =
γ2 + (2 − x)γ + (x + 2)

(γ − α)(γ − β)
. (17)

Proof. Let f (λ) = λ3 − 2xλ2 + 1 = 0 be the characteristic equation of the recurrence
relation Len(x) = 2xLen−1(x)− Len−3(x). It is obvious that f (λ) should have three distinct
roots α, β and γ. Then, 1

α , 1
β and 1

γ are the roots of the equation

f (λ) = λ3 − 2xλ2 + 1 = 0 (18)

f
( 1

λ

)
=

1
λ3 − 2x

λ2 + 1 =
λ3 − 2xλ + 1

λ3 = 0 (19)

Since λ3 �= 0, then h(λ) = λ3 − 2xλ + 1.
From the generating function of Leonardo Pisano polynomials and from the sum of

geometric series, we have

gLen(x)(λ) =
1 + (1 − 2x)λ + (2 − x)λ2

1 − 2xλ + λ3 =
A

1 − αλ
+

B
1 − βλ

+
C

1 − γλ

= A
∞

∑
n=0

(αλ)n + B
∞

∑
n=0

(βλ)n + C
∞

∑
n=0

(γλ)n (20)

=
A(1 − βα)(1 − γλ) + B(1 − αλ)(1 − γλ) + C(1 − αλ)(1 − βλ)

(1 − αλ)(1 − βλ)(1 − γλ)
.

Then we have the following equality

1 + (1 − 2x)λ + (2 − x)λ2 = A(1 − βα)(1 − γλ) + B(1 − αλ)(1 − γλ) + C(1 − αλ)(1 − βλ).

If we substitute λ by 1
α , we obtain

1 + (1 − 2x)
1
α
+ (2 − x)

1
α2 = A(1 − β

α
)(1 − γ

α
) (21)

α2 + (1 − 2x)α + (2 − x) = A(α − β)(α − γ) (22)

then it is easy to obtain

A =
α2 + (1 − 2x)α + (2 − x)

(α − β)(α − γ)
. (23)
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In the same way, we can obtain B and C as follows:

B =
β2 + (1 − 2x)β + (2 − x)

(β − α)(β − γ)
, C =

γ2 + (1 − 2x)γ + (2 − x)
(γ − α)(γ − β)

.

If we substitute A, B, C into (20), we obtain the following equation

gLen(x)(λ) = A
∞

∑
n=0

(αλ)n + B
∞

∑
n=0

(βλ)n + C
∞

∑
n=0

(γλ)n

=
∞

∑
n=0

[Aαn + Bβn + Cγn]λn

Consequently, we get

Len(x) = Aαn + Bβn + Cγn. (24)

Theorem 5. The Binet-like formula for the Leonardo Pisano hybrinomial sequence is

Le[H]
n (x) = Aααn + Bββn + Cγγn

where α = 1 + αi + α2ε + α3h, β = 1 + βi + β2ε + β3h and γ = 1 + γi + γ2ε + γ3h.
Additionally, A, B and C are as in (17).

Proof. We have Le[H]
n (x) = Len(x) + iLen+1(x) + εLen+2(x) + hLen+3(x) from (6) and

Len(x) = Aαn + Bβn + Cγn from the previous theorem.

Le[H]
n (x) = (Aαn + Bβn + Cγn) + (Aαn+1 + Bβn+1 + Cγn+1)i

+ (Aαn+2 + Bβn+2 + Cγn+2)ε + (Aαn+3 + Bβn+3 + Cγn+3)h

= Aααn + Bββn + Cγγn.

3. Some Identities for Leonardo Pisano Polynomial and Hybrinomial Sequences

In this section we state some identities, such as Cassini-like, d’Ocagne-like identities,
where Leonardo Pisano polynomials and hybrinomials are involved.

Theorem 6 (Sum identities). Let n ≥ 1 be an integer, {Lek(x)} is the Leonardo Pisano polynomial
sequence and {Le[H]

k (x)} is the Leonardo Pisano hybrinomial sequence, respectively. Then

i.
n

∑
k=0

Lek(x) =
1

2 − 2x

(
4 − 3x + Len−1(x) + Len(x)− Len+1(x)

)
,

ii.
n

∑
k=0

Le[H]
k (x) =

1
2 − 2x

(
Le[H]

0 (x) + Le[H]
1 (x) + Le[H]

2 (x)− 2xLe[H]
0 (x)

− 2xLe[H]
1 (x) + Le[H]

n−1(x) + Le[H]
n (x)− Le[H]

n+1(x)
)

.

Proof.

i. From the definition of Leonardo Pisano polynomial sequence

Len(x) = 2xLen−1(x)− Len−3(x)
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we have the following equations

Le3(x) = 2xLe2(x)− Le0(x)

Le4(x) = 2xLe3(x)− Le1(x)

Le5(x) = 2xLe4(x)− Le2(x)
...

...

Len(x) = 2xLen−1(x)− Len−3(x).

when we sum up these equations side by side we get

n

∑
k=3

Lek(x) = 2x
n−1

∑
k=2

Lek(x)−
n−3

∑
k=0

Lek(x) (25)

In order to equalize the indexes, we add P1 = Le0(x) + Le1(x) + Le2(x), P2 =
2x(Le0(x) + Le1(x) + Len(x)), and P3 = −(Len−2(x) + Len−1(x) + Len(x)) to both
sides. Therefore we can write

P2 + P3 +
n

∑
k=0

Lek(x) = P1 + 2x
n

∑
k=0

Lek(x)−
n

∑
k=0

Lek(x) (26)

Eventually, we obtain the desired result.
ii. The proof can be demonstrated the same way.

We can verify the previous theorem with the following example.

Example 1. The sum of the first four Leonardo Pisano polynomials Le0 = 1, Le1 = 1, Le2 = x+ 2,
Le3 = 2x2 + 4x − 1 is 2x2 + 5x + 3. Indeed, we can verify this result using the previous theorem
as follows:

3

∑
k=0

Lek(x) =
4 − 3x + x + 2 + 2x2 + 4x − 1 − 4x3 − 8x2 + 2x + 1

2 − 2x

=
−4x3 − 6x2 + 4x + 6

2 − 2x
= 2x2 + 5x + 3.

Theorem 7 (Catalan-like Identities). Let n and r be two non-negative integers and n ≥ r.

i. The Catalan-like identity for Leonardo Pisano polynomials is

Len+r(x)Len−r(x)− Le2
n(x) = ABαn−rβn−r(αr − βr)2

+ ACαn−rγn−r(αr − γr)2

+ BCβn−rγn−r(βr − γr)2.

ii. The Catalan-like identity for Leonardo Pisano hybrinomials is

Le[H]
n+r(x)Le[H]

n−r(x)− (Le[H]
n (x))2 = A2α2nα2 + B2β2nβ2 + C2γ2nγ2

+ ABαn−rβn−r(α2rαβ + β2rβα)

+ ACαn−rγn−r(α2rαγ + γ2rγα)

+ BCβn−rγn−r(β2rβγ + γ2rγβ).

Proof. Proofs can be easily seen if the Binet-like formula is used for Leonardo Pisano
polynomials and Leonardo Pisano hybrinomials.
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Corollary 2 (Cassini-like identities). Let n be a positive integer.

i. The Cassini-like identity for Leonardo Pisano polynomials is

Len+1(x)Len−1(x)− Le2
n(x) = ABαn−1βn−1(α − β)2

+ ACαn−1γn−1(α − γ)2

+ BCβn−1γn−1(β − γ)2.

ii. The Cassini-like identity for Leonardo Pisano hybrinomials is

Le[H]
n+1(x)Le[H]

n−1(x)− (Le[H]
n (x))2 = A2α2nα2 + B2β2nβ2 + C2γ2nγ2

+ ABαn−1βn−1(α2αβ + β2βα)

+ ACαn−1γn−1(α2αγ + γ2γα)

+ BCβn−1γn−1(β2βγ + γ2γβ).

Theorem 8 (d’Ocagne-like identities). Let m and n be two non-negative integers.

i. The d’Ocagne-like identity for Leonardo Pisano polynomials is

Lem(x)Len+1(x)− Lem+1(x)Len(x) = AB(α − β)(αnβm − αmβn)

+ AC(α − γ)(αnγm − αmγn)

+ BC(β − γ)(βnγm − βmγn).

ii. The d’Ocagne-like identity for Leonardo Pisano hybrinomials is

Le[H]
m (x)Le[H]

n+1(x)− Le[H]
m+1(x)Le[H]

n (x) = AB(α − β)(αnβmαβ − αmβnβα)

+ AC(α − γ)(αnγmαγ − αmγnγα)

+ BC(β − γ)(βnγmβγ − βmγnγβ).

Proof. i. Let us use the Binet-like formula for Leonardo Pisano polynomials.

Lem(x)Len+1(x)− Lem+1(x)Len(x)

= ABαmβn(β − α) + ACαmγn(γ − α) + ABαnβm(α − β) + BCβmγn(γ − β)

+ ACαnγm(α − γ) + BCβnγm(β − γ)

= AB(α − β)(αnβm − αmβn) + AC(α − γ)(αnγm − αmγn)

+ BC(β − γ)(βnγm − βmγn).

ii. This can be proven similarly to (i) using the Binet-like formula for Leonardo Pisano
hybrinomials.
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Abstract: The numerical investigations of hybrid ferrofluid flow with magnetohydrodynamic (MHD)
and heat source/sink effects are examined in this research. The sheet is assumed to stretch or shrink
exponentially near the stagnation region. Two dissimilar magnetic nanoparticles, namely cobalt
ferrite, CoFe2O4 and magnetite, Fe3O4, are considered with water as a based fluid. Utilizing the
suitable similarity transformation, the governing equations are reduced to an ordinary differential
equation (ODE). The converted ODEs are numerically solved with the aid of bvp4c solver from
Matlab. The influences of varied parameters on velocity profile, skin friction coefficient, temperature
profile and local Nusselt number are demonstrated graphically. The analysis evident the occurrence
of non-unique solution for a shrinking sheet and it is confirmed from the analysis of stability that only
the first solution is the stable solution. It is also found that for a stronger heat source, heat absorption
is likely to happen at the sheet. Further, hybrid ferrofluid intensifies the heat transfer rate compared
to ferrofluid. Moreover, the boundary layer separation is bound to happen faster with an increment
of magnetic parameter, while it delays when CoFe2O4 nanoparticle volume fraction increases.

Keywords: hybrid ferrofluid; dual solution; exponentially stretching/shrinking; stability analysis;
heat source/sink

1. Introduction

Ferrofluids or magnetic colloids are made by disseminating magnetic nanoparticles
like cobalt ferrite CoFe2O4, hematite Fe2O3, magnetite Fe3O4 and many other nanometer-
sized particles containing iron in the base fluid [1]; as a result, these particles have a
dipolar interaction energy and magnetic moment in the base fluid. Ferrofluids have vari-
ous biomedicine and engineering applications specifically in drug delivery [2], chemical
activity monitoring in the human brain in real-time, destruction of tumors and toxin
elimination from the body [3], rotary seals in computer hard drives and other rotating
shaft motors [4]. For these reasons, many researchers [5–8] have focused their investi-
gation on ferrofluids. Usually, nanofluid comprises only one nanoparticle whereas the
hybrid nanofluid comprises two distinct nanoparticles disseminated in a base fluid [9].
Through the combination of two dissimilar nanomaterials, hybrid nanofluids are created
to improve their thermal and rheological properties [10]. Suresh et al. [11] presented
an experimental investigation using a two-step method (thermomechanical method) to
synthesize hybrid (Al2O3-Cu/water) nanofluid. The outcomes demonstrated that the
prepared hybrid nanofluid for a concentration of 2% nanoparticle volume fraction increase
its thermal conductivity by 12.11%. In another experimental investigation, Madhesh and
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Kalaiselvam [12] examined the properties of Cu-TiO2/water nanofluid in a cooling sys-
tem, while Esfe et al. [13] scrutinized the thermal conductivity of the hybrid (Ag-MgO)
nanofluid and discovered that its conductivity rises with augmentation of nanoparticles
concentration. Chu et al. [14] examined the thermal performance and flow characteristics
of hybridized nanofluid (MWCNT-Fe3O2/water) in a cavity. The flow features of hybrid
ferrofluids (Fe3O4–CoFe2O4) with water–ethylene glycol mixture (50–50%) as a based fluid
in the thin film flow were investigated by Kumar et al. [15] and they revealed that hybrid
ferrofluid offers a higher rate of heat transfer than that of ferrofluid. Researchers from all
over the world have been drawn to hybrid nanofluids because of their exceptional heat
augmentation behavior, which gives fine control over heat transfer in numerous industries.
Due to that, several experimental and theoretical investigations on hybrid nanofluid have
been published widely such as in references [16–18]. Therefore, the aim of developing
hybrid ferrofluid is therefore to manage heat transfer efficiently in the flow field.

It seems that magnetohydrodynamic (MHD), heat source (generation) and heat sink
(absorption) effects are crucial in monitoring the heat transfer in the production of quality
products as it depends on the heat monitoring factor. This is also mainly due to the rea-
son that MHD terms extremely appeared in various engineering and industrial processes
like MHD generator, cancer therapy, MHD power generation, nuclear reactor, etc. [19].
The influences of heat source and sink are also important in cooling problems associated
with nuclear reactions, combustion processes, and magnetized utilization in neurobiol-
ogy to learn brain function [20]. In view of the increasing importance of MHD and heat
source/sink, a lot of work has been carried out to investigate these effects in boundary
layer flow. For instance, the simultaneous impact of MHD, heat source/sink and suction
instigated by a shrinking sheet can be observed in the work of Bhattacharyya [21] and
observed that increasing heat sink parameters cause the heat transfer to enhance. Further,
Gorla et al. [22] explored the same effects in a hybrid nanofluid-filled porous cavity. Re-
cently, Armaghani et al. [23] scrutinized the generation/absorption of heat and MHD in
their investigation of hybrid nanofluid in an L-shaped cavity. They deduced that using the
highest number of sink power results in the best heat transfer. Furthermore, the studies on
MHD flow and heat source/sink by means of various physical configurations have been
conducted by Jamaludin et al. [24] and Reddy et al. [25].

Nowadays, the existence of non-unique solutions has gained the attention of modern
researchers. In some boundary layer flow problems, non-unique solutions have generally
been found for linear shrinking sheet cases. For instance, non-unique solutions have been
observed by Wang [26], Bachok et al. [27], Kamal et al. [28] and Anuar and Bachok [29],
among others for the stagnation flow problem. Meanwhile, Bhattacharyya and Vajrav-
elu [30], Bachok et al. [31] and Anuar et al. [32] have observed the occurrence of non-unique
solutions in their investigation of stagnation flow when the sheet is shrunk exponentially.
They conclude that the domain of similarity solution to existing is larger for the stagnation
flow in the exponential case rather than in the linear case. However, there also exist some
situations where non-unique solutions happen to exist for both cases, i.e., stretching and
shrinking (see for instance the research carried out by Lund et al. [33] and Waini et al. [34]).
With regards to the existence of more than one solution, a stability analysis on the solutions
obtained has been performed by some researchers. This kind of analysis is important
in order to avoid any misleading interpretation of flow. Some important investigations
concerning the stability analysis on the solutions of boundary layer flow problem were
made by Merkin [35], Weidman et al. [36], Harris et al. [37] and more recently by Anuar
et al. [38], Mustafa et al. [39] and Aladdin et al. [40,41], among others. It has been observed
that the second solution has always been unstable and therefore unobtainable in practice,
while the other solution is stable.

Owing to the nonlinearity of equations that describe most engineering and science
phenomena, many authors used numerical methods such as finite element methods [22,23],
shooting method [6,15,30] and bvp4c solver [18,24,34,40] to solve the governing equations.
For the present problem, in solving the system of nonlinear equations, Matlab bvp4c
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built-in code is employed. The Matlab bvp4c solver is a residual control-based adaptive
mesh solver. The algorithm is based on the Runge–Kutta improved formulas that have
interpolation capability [42]. It has been used successfully by many researchers to solve
boundary value problems from different models in science and engineering. This method
was found to be robust and consistent, showing superiority over the shooting method.

The goal of this investigation is to scrutinize the heat generation/absorption of MHD
hybrid ferrofluid (CoFe2O4–Fe3O4/water) flow instigated by an exponentially deformable
sheet. In the light of the previous literature survey, it is worthy to mention that no at-
tempt has been made on this kind of flow problem yet. Here, the similarity variable is
used to convert the governing equations into an ODE which later be solved numerically
using bvp4c (Matlab’s built-in function). The computed results for relevant parameters
concerning local Nusselt number and skin friction coefficient, together with temperature
profile and velocity profile, are visualized graphically and elaborated in detail. Further, the
occurrence of two solutions motivates us to identify the stable and unstable solutions by
performing the stability analysis. In addition, this theoretical study would help engineers
who are experimentally working on hybrid ferrofluids, and the findings are expected to
reduce the cost of future experiments.

2. Problem Formulation

2.1. Mathematical Framework

The two-dimensional and steady flow of MHD hybrid ferrofluid past a deformable
sheet are investigated and portrayed in Figure 1. The x-axis is selected along the direction of
the horizontal surface while y-axis is perpendicular to it. The surface of the sheet is shrunk
or stretched with exponential velocity uw(x) = a exp(x/L) given that a and L are the
positive constant and characteristic length, respectively. As shown in Figure 1, magnetic B
and heat generation/absorption Q(x) are applied parallel to the y-axis and will be defined
later. Distant from the horizontal surface, the flow is kept at constant temperature T∞
and free stream velocity ue(x) = b exp(x/L); here b is the positive constant. Further, the
surface temperature is assumed to vary as prescribed exponential function and denoted by
Tw = T∞ + T0 exp

( x
2L

)
where T0 is the rate at which the temperature rises along the sheet

is measured.

Figure 1. Flow model of shrinking sheet and its coordinate system.

Following the mathematical formulation and idea proposed by Kumar et al. [15],
Wang [26] and Kamal et al. [28], the governing partial differential equations are denoted as:

∂u
∂x

+
∂v
∂y

= 0 (1)
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u
∂u
∂x

+ v
∂u
∂y

= ue
due

dx
+

μh f

ρh f

∂2u
∂y2 −

σh f

ρh f
B2(u − ue) (2)

u
∂T
∂x

+ v
∂T
∂y

=
kh f(

ρCp
)

h f

∂2T
∂y2 +

Q(x)(
ρCp

)
h f
(T − T∞) (3)

(u, v) in the above equation indicates the velocity component in the (x, y) direction and
T refers to the fluid’s temperature. Further, μ denotes the dynamic viscosity, ρ refers to
the density, σ and k are the electrical and thermal conductivity, respectively, and Cp is the
specific heat where the subscript ′h f ′ signifies the hybrid ferrofluid.

The relevant boundary conditions are given as (Bachok et al. [27]):

T = Tw(x), v = 0, u = uw(x) at y = 0; T → T∞, u → ue(x) as y → ∞ (4)

2.2. Correlation Used for Hybrid Ferrofluid

The thermophysical properties for the hybrid ferrofluid are employed from the work
of Takabi and Salehi [9] and Gorla et al. [22] (see Table 1). The first and second nanoparticles
are denoted by subscripts “1” and “2” in the table. Further, ϕ is the summation of the
volume concentration of two dissimilar kinds of nanoparticles, i.e., ϕ = ϕ1 + ϕ2.

Table 1. Thermophysical traits of hybrid ferrofluid.

Properties Hybrid Ferrofluid

Density ρh f = (1 − ϕ)ρ f + ϕ1ρ1 + ϕ2ρ2

Thermal conductivity kh f
k f

=
((ϕ1k1+ϕ2k2)/ϕ)+2k f +2(ϕ1k1+ϕ2k2)−2ϕk f

((ϕ1k1+ϕ2k2)/ϕ)+2k f −(ϕ1k1+ϕ2k2)+ϕk f

Heat capacity
(
ρCp

)
h f = (1 − ϕ)

(
ρCp

)
f + ϕ1

(
ρCp

)
1 + ϕ2

(
ρCp

)
2

Dynamic viscosity μh f = μ f /(1 − ϕ)2.5

Electrical conductivity σh f
σf

= 1 +
3(((ϕ1σ1+ϕ2σ2)/σf )−ϕ)

(((ϕ1σ1+ϕ2σ2)/(ϕσf ))+2)−(((ϕ1σ1+ϕ2σ2)/σf )−ϕ)

It should be emphasized that the desired hybrid ferrofluid is formed by suspending
1% of Iron Oxide (Fe3O4) nanoparticle into the base fluid (water). Then, Cobalt Iron Oxide
(CoFe2O4) nanoparticle is added into the Fe3O4/water nanofluid and eventually formed a
hybrid ferrofluid. In addition, the volume fraction of CoFe2O4 nanoparticles is fluctuated
from 0 to 2%. Therefore, in this study, the first nanoparticle is denoted by Fe3O4 while the
second nanoparticle refers to CoFe2O4. The physical characteristics of the base fluid and the
nanosized particles are shown in Table 2 (Abbas and Sheikh [7], Oztop and Abu-Nada [43],
Sheikholeslami et al. [44], Tlili et al. [45]).

Table 2. Thermophysical properties of nanoparticle and base fluid.

Physical Properties

Cp
(
J·kg−1·K−1) ρ

(
kg·m−3) k

(
W·m−1·K−1) σ

(
S·m−1)

water, H2O 4179 997.1 0.613 0.05

Magnetic nanoparticles
Magnetite, Fe3O4 670 5180 9.7 0.74 × 106

Cobalt Ferrite, CoFe2O4 700 4907 3.7 1.1 × 107

Non-magnetic nanoparticles
Copper, Cu 385 8933 401 5.96 × 107

Titania, TiO2 686.2 4250 8.9538 1 × 10−12

Alumina, Al2O3 765 3970 40 1 × 10−10
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2.3. Similarity Solutions

The similarity transformations take the following form (Bhattacharyya and Vajrav-
elu [30]):

η = y

(
b

2ν f L

)1/2

exp
( x

2L

)
, θ(η) =

T − T∞

Tw(x)− T∞
, ψ =

(
2ν f Lb

)1/2
exp

( x
2L

)
f (η) (5)

where ν f , η and ψ are the kinematic viscosity, similarity variable and stream function, while
f and θ is the dimensionless functions. Next, we defined u = ∂ψ/∂y and v = −∂ψ/∂x.
Accordingly, Equation (1) is automatically satisfied.

We take Q(x) = Q0
2L exp(x/L) and B = B0 exp

( x
2L

)
where Q0 denotes the heat

source/sink coefficient and B0 is the constant magnetic field in order for the similar-
ity solutions to exist. Variables (5) are substituted into the governing Equations (2) and (3)
to produce the following ODEs:

μh f /μ f

ρh f /ρ f
f ′′′ − 2 f ′2 + f f ′′ −

σh f /σf

ρh f /ρ f
M

(
f ′ − 1

)
+ 2 = 0 (6)

1
Pr

kh f /k f(
ρCp

)
h f /

(
ρCp

)
f

θ′′ + f θ′ − f ′θ +
1(

ρCp
)

h f /
(
ρCp

)
f

β θ = 0 (7)

in which prime denotes the differentiation with respect to η. Further, Pr = ν f
(
ρCp

)
f /k f

and M =
2σf B0

2L
bρ f

refer to the Prandtl number and magnetic field parameter, while β =

Q0
b(ρCp) f

denotes the heat source/sink parameter where β > 0 stands for heat generation

(source) and β < 0 refers to heat absorption (sink).
Subsequently, Equation (4) becomes:

θ(0) = 1, f ′(0) = λ, f (0) = 0; θ(η) → 0, f ′(η) → 1 as η → ∞ (8)

Here, λ = a/b is the stretching/shrinking parameter given that λ < 0 and λ > 0
denote the sheet is shrunk and stretch, respectively, λ = 0 refers to a static sheet.

2.4. Physical Quantities

The skin friction Cf and Nusselt number Nux are the physical quantities of interest in
this research and can be described as:

Cf =
μh f

(
∂u
∂y

)
y=0

ρ f u2
e

, Nux = −
2Lkh f

(
∂T
∂y

)
y=0

k f (Tw − T∞)
(9)

By implementing the variables (5) into Equation (9), we have:

Cf Re1/2
x =

μh f

μ f
f ′′ (0), NuxRe−1/2

x = −
kh f

k f
θ′(0) (10)

where Rex = 2L ue/ν f is the Reynolds number.

3. Stability Analysis of Solutions

The present investigation admits more than one solution for some range of governing
parameters. As a result, a stability analysis is required. The first step is to consider
the current problem as an unsteady problem as suggested by Merkin [35]. Therefore,
Equation (1) remains the same while the unsteady governing equations is rewritten as:
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∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= ue
due

dx
+

μh f

ρh f

∂2u
∂y2 −

σh f

ρh f
B2(u − ue) (11)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

=
kh f(

ρCp
)

h f

∂2T
∂y2 +

Q(x)(
ρCp

)
h f
(T − T∞) (12)

subjected to the conditions (4). Next, a new dimensionless time variable τ is introduced:

τ =
b

2L
t exp

( x
L

)
(13)

while the new dimensionless transformation can be rewritten as:

η = y
(

b
2ν f L

)1/2
exp

( x
2L

)
, ψ =

(
2ν f Lb

)1/2
exp

( x
2L

)
f (η, τ), θ(η, τ) = T−T∞

Tw(x)−T∞
(14)

When the variables (13) and (14) are substituted into Equations (11) and (12), the
obtained equations are:

μh f /μ f
ρh f /ρ f

∂3 f
∂η3 − 2

(
∂ f
∂η

)2
+ f ∂2 f

∂η2 + 2 − σh f /σf
ρh f /ρ f

M
(

∂ f
∂η − 1

)
− ∂2 f

∂η∂τ + 2τ
(

∂ f
∂τ

∂2 f
∂η2 − ∂ f

∂η
∂2 f

∂η∂τ

)
= 0 (15)

1
Pr

kh f /k f

(ρCp)h f /(ρCp) f

∂2θ
∂η2 − θ

∂ f
∂η + f ∂θ

∂η + β

(ρCp)h f /(ρCp) f
θ − ∂θ

∂τ − 2τ
(

∂ f
∂η

∂θ
∂τ − ∂ f

∂τ
∂θ
∂η

)
= 0 (16)

and the transform conditions are:

f (0, τ) + 2τ
∂ f
∂τ (0, τ) = 0, θ(0, τ) = 1, ∂ f

∂η (0, τ) = λ,

θ(η, τ) → 0, ∂ f
∂η (η, τ) → 1 as η → ∞

(17)

Afterwards, we write [36]:

f (η, τ) = f0(η) + e−γτ F(η, τ), θ(η, τ) = θ0(η) + e−γτ H(η, τ), (18)

for the purpose to specify the stability of the steady flow solution of θ(η) = θ0(η) and
f (η) = f0(η). From the above equation, F(η, τ) and H(η, τ) are relatively smaller than
f0(η) and θ0(η), while γ is the smallest eigenvalues parameter. Substitute Equation (18)
into Equations (15)–(17) and setting τ = 0, we have H(η) = H0(η) and F(η) = F0(η).
Therefore, the final linearized equations take the following form:

μh f /μ f

ρh f /ρ f
F′′′

0 − 4 f0
′F0

′ + f0F′′
0 + f ′′0 F0 −

σh f /σf

ρh f /ρ f
M F′

0 + γF′
0 = 0 (19)

1
Pr

kh f /k f

(ρCp)h f /(ρCp) f
H′′

0 + f0H0
′ + F0θ0

′ − F0
′θ0 − H0 f0

′ + β

(ρCp)h f /(ρCp) f
H0 + γH0 = 0 (20)

associated with conditions:

H0(0) = 0, F0
′(0) = 0, F0(0) = 0; H0(η) → 0, F0

′(η) → 0 as η → ∞ (21)

To solve the above-linearized equations, we need to relax a boundary condition of
F′

0(η) → 0 when η → ∞ and replace it with a new boundary condition F′′
0 (0) = 1 as

advocated by Harris et al. [37]. This set of linearized equations will eventually display an
infinite set of eigenvalues γ1 < γ2 < . . . < γn.

4. Results and Discussion

With the help of Matlab’s in-built function (i.e., bvp4c solver), the self-similar ODEs (6)
and (7) associated with its conditions (8) are solved numerically. In this section, the Prandtl
number is fixed to 6.2 which denotes water [43], and the nanoparticle volume fraction
(ϕ1, ϕ2) is varied from 0 to 0.2. Further, we take β = −0.2,−0.4,−0.6 (for a heat sink),
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β = 0 (without heat source/sink), β = 0.2, 0.4, 0.6 (for the heat source) and magnetic
parameter M = 0.1, 0.2, 0.3.

4.1. Validation of Results

To validate the present model, we computed the outcomes as in Tables 3 and 4 for the
skin friction coefficient Cf Re1/2

x and local Nusselt number NuxRe−1/2
x when λ = −0.5, 0, 0.5.

The results of our numerical calculation are in a good harmony with the results obtained
from the work of Bachok et al. [31] when M and β are set to zero. Therefore, we are assured
that the present code is true and this problem can be solved using the bvp4c solver.

Table 3. Comparison values of Cf Re1/2
x for some values of λ when ϕ1 = 0.1, ϕ2 = 0 and M = 0.

λ

Cu-Water Al2O3-Water TiO2-Water

Bachok
et al. [31]

Present
Bachok

et al. [31]
Present

Bachok
et al. [31]

Present

−0.5 3.2381 3.238160 2.7531 2.753091 2.7827 2.782709
0 2.5794 2.579342 2.1929 2.192963 2.2166 2.216555

0.5 1.4682 1.468240 1.2483 1.248302 1.2618 1.261731

Table 4. Comparison values of NuxRe−1/2
x for some values of λ when ϕ1 = 0.1, ϕ2 = 0 and β = 0.

λ

Cu-Water Al2O3-Water TiO2-Water

Bachok
et al. [31]

Present
Bachok

et al. [31]
Present

Bachok
et al. [31]

Present

−0.5 3.2381 3.238160 2.7531 2.753091 2.7827 2.782709
0 2.5794 2.579342 2.1929 2.192963 2.2166 2.216555

0.5 1.4682 1.468240 1.2483 1.248302 1.2618 1.261731

4.2. Interpretation of Results

In Figures 2 and 3, numerical results for various nanoparticle volume fraction ϕ1
and ϕ2 for shrinking sheet (λ = −1.2) are plotted for velocity f ′(η) and temperature θ(η)
profiles. Both figures are exemplified for 3 sets of nanoparticle volume fraction, i.e., ϕ1 =
ϕ2 = 0 (Set 1), ϕ1 = 0.01, ϕ2 = 0 (Set 2) and ϕ1 = ϕ2 = 0.01 (Set 3). Here, set 1 indicates
the regular fluid, while sets 2 and 3 refer to ferrofluid (Fe3O4/water) and hybrid ferrofluid
(CoFe2O4–Fe3O4/water), respectively. From these graphical results, the second and first
solutions are displayed through the dashed line and solid line, respectively. From the
figures, we observed that set 3 shows a thinner boundary layer thickness (momentum and
thermal) for the first and second solutions than sets 1 and 2. The disparities of skin friction
coefficient Cf Re1/2

x and local Nusselt number NuxRe−1/2
x against stretching/shrinking

parameter λ for some values of CoFe2O4 nanoparticle volume fraction ϕ2 are portrayed in
Figures 4 and 5. It is observed from Equation (10) that Cf Re1/2

x and NuxRe−1/2
x are directly

associated with the dimensionless velocity gradient f ′′ (0) and temperature gradient −θ′(0)
at the wall, respectively. It is seen that these physical quantities of interest (Cf Re1/2

x and
NuxRe−1/2

x ) enhance with an upsurge in the volume fraction of CoFe2O4 nanoparticle ϕ2
for the first solution. However, we observed that the values of Cf Re1/2

x and NuxRe−1/2
x

decrease when stretching/shrinking parameter λ near its critical value λc. The rise in the
Cf Re1/2

x is due to an increment in the nanoparticles colloidal suspension that enhanced the
collision of nanoparticle dispersion of ferrofluid. An increase in the nanoparticles volume
fraction may physically increase its synergistic effect which, consequently, improves the
heat transfer rate. This demonstrates that cooling in hybrid ferrofluid is much faster,
whereas cooling in ferrofluid flow may take longer. It can also be seen from Figures 4
and 5 that a non-unique solution (dual solutions) happens to exist for shrinking sheet
(λ < −1), unique (one) solution is observed when −1 ≤ λ ≤ 1 and no solution when
λ < λc, i.e., boundary layer separation is bound to take place. It should be noted that
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λc = −1.53463,−1.53634 and −1.53818 are the respective critical values of ϕ = 0, 0.01 and
0.02. Accordingly, we can deduce that nanoparticle volume fraction acts in postponing the
boundary later separation.

Figure 2. Velocity profile f ′(η) for various value of ϕ1 and ϕ2 (Shrinking sheet case) when M = 0.1
and β = 0.2.

Figure 3. Temperature profile θ(η) for various values of ϕ1 and ϕ2 (Shrinking sheet case) when
M = 0.1 and β = 0.2.

Figure 4. Skin friction coefficient Cf Re1/2
x with λ for some values of CoFe2O4 nanoparticle volume

fraction ϕ2 when M = 0.1 and β = 0.2.
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Figure 5. Local Nusselt number NuxRe−1/2
x with λ for some values of CoFe2O4 nanoparticle volume

fraction ϕ2 when M = 0.1 and β = 0.2.

Figures 6 and 7 depict the graphical representation of the temperature profile θ(η)
for selected values of heat source/sink parameter β. The influence of rising values of heat
source (β > 0) is to increase the boundary layer thickness (thermal) for both solutions. As
the heat source is increased, the temperature rises, thereby the sheet’s temperature also
increases. On the contrary, heat sink (β < 0) leads to decrement of the boundary layer
(thermal) in first and second solutions. More heat is removed from the sheet as the heat
sink increases, lowering the sheet’s temperature. Furthermore, the temperature overshoot
is observed for the second solution. This is in line with the fact that the dashed line which
indicates the second solution always has a thicker boundary layer than the solid line, i.e.,
the first solution. The effect of heat source/sink (β = −0.2, 0, 0.2) on the local Nusselt
number NuxRe−1/2

x versus stretching/shrinking sheet λ for hybrid ferrofluid is portrayed
in Figure 8. One can see that as β is increased, the temperature rises, which consequently
lowers NuxRe−1/2

x . Again, the appearance of the non-unique solution is discovered for the
shrinking sheet (λ < −1) only. In addition, for all heat source/sink parameter values β,
the critical value λc is the same, i.e., λc = −1.53634.

Figure 6. Temperature profile θ(η) for selected values of heat source β (Shrinking sheet case) when
M = 0.1.

65



Mathematics 2021, 9, 2932

Figure 7. Temperature profile θ(η) for selected values of heat sink β (Shrinking sheet case) when
M = 0.1.

Figure 8. Local Nusselt number NuxRe−1/2
x with λ for some values of heat source/sink β when

M = 0.1.

The influence of magnetic parameter M in the existence of heat source (β = 0.2) on
the velocity f ′(η) profile and temperature θ(η) profile are depicted in Figures 9 and 10,
while skin friction coefficient Cf Re1/2

x and local Nusselt number NuxRe−1/2
x are plotted

in Figures 11 and 12, respectively. For accumulating amounts of magnetic parameter
M, these profiles ( f ′(η) and θ(η)) significantly decrease and also cause the boundary
layer thickness to reduce in the first solution. Nevertheless, an opposite observation is
made for the other solution. The upsurge value of M in the flow causes an increase
in the Lorentz force or also known as resistive type force and consequently generates
much more resistance to the flow and increases the temperature. Figures 11 and 12 for
the skin friction coefficient Cf Re1/2

x and local Nusselt number NuxRe−1/2
x demonstrate

an increasing behavior for hybrid ferrofluid with an increasing magnetic parameter M.
The influence of magnetic parameter M on NuxRe−1/2

x is minimal as M is not explicitly
occurred in Equation (7). Again, the same observation is observed for the presence of dual
solutions (see Figures 4, 5 and 8). It is also clear from these graphs that as the magnetic
parameter M intensifies, the domain of the occurrence of dual solutions expands. For
instance, the critical values of stretching/shrinking parameter for M = 0.1, 0.2 and 0.3
are λc = −1.53634, −1.58568 and −1.63506. This implies that the presence of magnetic
parameters can slow down the boundary layer separation to occur.
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Figure 9. Velocity profile f ′(η) for selected values of magnetic parameter M (Shrinking sheet case)
when β = 0.2.

Figure 10. Temperature profile θ(η) for selected values of magnetic parameter M (Shrinking sheet
case) when β = 0.2.

Figure 11. Skin friction coefficient Cf Re1/2
x with λ for selected values of magnetic parameter M when

β = 0.2.
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Figure 12. Local Nusselt number NuxRe−1/2
x with λ for selected values of magnetic parameter M

when β = 0.2.

The linearized Equations (19)–(21) are numerically solved using the same numerical
approach as before in order to execute the stability of the solutions. To verify the stability
of the solutions, a sign of the smallest eigenvalues γ is essential. Hence, Figure 13 is plotted
to demonstrate the behavior of the smallest eigenvalues γ when β = 0.2 and M = 0.1 for
hybrid ferrofluid (ϕ1 = ϕ2 = 0.01) concerning λ. Here, the positive eigenvalues indicate
the stable solution (i.e., there is only a small disturbance that does not interrupt the flow)
while negative eigenvalues convey the unstable solution (which explains the growth of
disturbance). Therefore, it can be concluded from Figure 13 that the first solution is a
stable solution and the other solution is not. In addition, it can be clearly seen that as
stretching/shrinking parameter λ near its critical value λc, the value of γ also approximate
to zero.

Figure 13. Smallest eigenvalues γ with λ when ϕ1 = ϕ2 = 0.01, β = 0.2 and M = 0.1.

5. Concluding Remarks

The steady, stagnation point, MHD of hybrid ferrofluid flow caused by an exponen-
tially deformable surface with heat source/sink effect is studied. The similarity transfor-
mation is applied to generate self-similar equations, which are then numerically solved
with Matlab’s built-in solver (bvp4c). The impact of governing parameters such as heat
source/sink parameter, nanoparticle volume fraction, magnetic parameter and stretch-
ing/shrinking parameter are discussed in detail. We can therefore conclude that:
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• Non-unique solution (two solutions) occurs for a specific range of shrinking parameter
(λc < λ < −1), whereas one solution exists when λ ≥ −1.

• The range of stretching/shrinking parameter λ for which the non-unique solutions
are in existence increased as magnetic parameter increase, while it decreased with an
increase in CoFe2O4 nanoparticle volume fraction.

• The heat transfer and skin friction are escalated for increasing of CoFe2O4 nanoparticle
volume fraction and magnetic parameter.

• When the heat source/sink parameter is increased, the surface temperature rises, and
the local Nusselt number decreases.

• The first solution is confirmed to be a stable solution from the stability analysis test.
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Abstract: This paper studies the boundary layer flow and heat transfer characteristics past a per-
meable isothermal stretching/shrinking surface using both nanofluid and hybrid nanofluid flows
(called modified Buongiorno nonliquid model). Using appropriate similarity variables, the PDEs are
transformed into ODEs to be solved numerically using the function bvp4c from MATLAB. It was
found that the solutions of the resulting system have two branches, upper and lower branch solutions,
in a certain range of the suction, stretching/shrinking and hybrid nanofluids parameters. Both the
analytic and numerical results are obtained for the skin friction coefficient, local Nusselt number, and
velocity and temperature distributions, for several values of the governing parameters. It results in
the governing parameters considerably affecting the flow and heat transfer characteristics.

Keywords: hybrid nanofluid; stretching/shrinking; buongiorno model; dual solutions

1. Introduction

Owing to the necessary improvement of the thermal conductivity of conventional
fluid, the term nanofluid was introduced by Choi [1] in 1995, which aims to provide highly
developed heat conductivity. Nanofluids, which are a colloidal mixture of nanoparticles
(1–100 nm) and a base liquid (nanoparticle fluid suspensions), are the new class of media
of nanotechnology for heat transfer (see for e.g., Buongiorno [2]). In particular, Buon-
giorno [2] noted that the nanoparticle absolute velocity can be viewed as the sum of the
base fluid velocity and a relative velocity. He considered, in turn, seven slip mechanisms:
inertia, Brownian diffusion, thermophoresis, diffusion phoresies, Magnus effect, fluid
drainage, and gravity settling. He concluded that, in the absence of turbulent effects, it
is the Brownian diffusion and the thermophoresis that will be important. Buongiorno
proceeded to write down conservation equations based on these two effects. His model is
the basis of the present study. Soon after discoveries made by Choi [1], many researchers
interested in this new type of working fluid, because of its importance for the emergence
and enhancement of thermal properties in practical applications, in various engineering
applications such as engine cooling, diesel generator efficiency, cooling of electronics and
heat exchanging devices, and solar water heating (see for e.g., Mahian et al. [3]). In a
review paper, Manca et al. [4] have shown that cooling is one of the most important techni-
cal challenges facing many diverse industries, including microelectronics, transportation,
solid-state lighting and manufacturing. Kamel and Lezsovits [5] found that the enrichment
of thermophysical properties and heat transfer performance in nanofluid play an essential
role in establishing high heat flux with small temperature differences during the boiling
process in thermal engineering systems. The addition of nanometre-sized solid metal or
metal oxide particles to base fluids elicits a rise in the thermal conductivity of the outgrowth
fluids, see for example, Aly and Sayed [6].
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To further improve nanofluids that could possess a number of favorable characteristics,
researchers developed a new generation heat transfer fluid called hybrid nanofluids (HNF).
They are prepared either by dispersing dissimilar nanoparticles as individual constituents
or by dispersing nanocomposite particles in the base fluid. HNF may possess better thermal
network and rheological properties due to synergistic effect. Researchers, to adjudge the
advantages, disadvantages and their suitability for diversified applications, are extensively
investigating the behavior and properties of these hybrid nanofluids. Babu et al. [7] have
reviewed the contemporary investigations on synthesis, thermophysical properties, heat
transfer characteristics, hydrodynamic behavior and fluid flow characteristics reported by
researchers on different HNFs. This review also outlines the applications and challenges
associated with hybrid nanofluid and makes some suggestions for the future scope of
research in this fruitful area. On the other hand, and in an excellent review paper, Huminic
and Huminic [8] discussed the HNF, which consists of two solid materials dispersed in a
viscous fluid. In this work, it was shown that hybrid nanofluids lead to increased thermal
conductivity and finally to a heat transfer enhancement in heat exchangers. Experimental
and numerical results show that the hybrid nanofluids are working fluids, which could
significantly improve the heat transfer in heat exchangers; however, research concerning to
the study of different combinations of hybrid nanoparticles and their stability is still needed.

Numerous researchers have studied the flow and heat transfer of the boundary layer
past a stretching/shrinking sheet with applications in manufacturing technology, for in-
stance, glass blowing, extrusion of plastic sheets, drawing plastic films, and hot rolling
(see Fisher [9]). As documented by Karwe et al. [10], the outcome quality of the required
features is greatly affected by the heat transfer rate along the fluid flow and stretch-
ing/shrinking surface. Sakiadis [11] started a boundary layer flow analysis at a steady
speed rate through a continuously moving flat surface by employing an integral method.
Of all the fundamental fluid flow problems of a linear stretching/shrinking sheet, the
current literature testifies that flow behavior due to a non-linear stretching sheet is also
a crucial element in most industrial processes. Hybrid nanofluid versus the nanofluid of
MHD flow and heat transfer over a stretching/shrinking sheet was introduced by Aly and
Pop [12].

Unique and/or multiple (dual) solutions for a stretching/shrinking sheet have recently
been presented in the works by Aly et al. [13], Waini et al. [14] and Khashi’ie et al. [15].
These papers show that unique and dual solutions exist for a stretching and shrinking
sheet, respectively. In addition, Liao and Pop [16] deduced multiple solutions for both
impermeable and permeable shrinking sheets. It should be noted that most of these
solutions are based on the boundary layer assumptions and hence do not constitute exact
solutions for Navier–Stokes equations (see for e.g., Wang [17]). It is also worth mentioning
that Aly [18] has discussed the dual exact solutions of graphene–water nanofluid flow
over a stretching/shrinking sheet with a suction/injection and heat source/sink, see also
Roşca et al. [19], Aly [20] and Aly and Pop [21].

Finally, we mention here that Pop et al. [22], Zhu et al. [23], Uddin and Rahman [24],
Rana et al. [25,26] and Pati et al. [27] have studied the boundary layer flow beneath a
uniform free stream permeable continuous moving surface in a nanofluid using both
Buongiorno’s [2] and Tiwari and Das’ [28] nanofluid models. However, we consider in
this paper Buongiorno’s [2] nanofluid model combined with Devi and Devi’s [29] hybrid
nanofluid model.

2. Mathematical Model

In this work, we consider the 2D flow and heat transfer of a hybrid nanofluid past a
permeable stretching/shrinking surface, as shown in Figure 1, where (x, y) are Cartesian
coordinates with associated velocities (u, v). The streamwise flows are directed along the
x− direction and y is the plate–normal coordinate. It is assumed that the surface velocity is
uw(x) and the mass flux velocity is v0 with v0 < 0 for suction and v0 > 0 for the injection
or withdraw of the fluid. It is also assumed that the constant temperature and constant
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nanofluid volume fraction of the surface of the sheet are Tw and Cw while those of the
ambient fluid are T∞ and C∞.
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Figure 1. Physical model and coordinate system; (a) stretching sheet and (b) shrinking sheet.

Therefore, the governing equations of the investigating physical model can be written
as (Yousefi et al. [30] and Bognár et al. [31])

∂u
∂x

+
∂v
∂y

= 0, (1)

u
∂u
∂x

+ v
∂u
∂y

=
μhn f

ρhn f

∂2u
∂y2 (2)

u
∂T
∂x

+ v
∂T
∂y

=
khn f(

ρCp
)

hn f

∂2T
∂y2 + δ

[
DB

∂C
∂y

∂T
∂y

+
DT
T∞

(
∂T
∂y

)2
]

, (3)

u
∂C
∂x

+ v
∂C
∂y

= DB
∂2C
∂y2 +

DT
T∞

∂2T
∂y2 , (4)

subject to the following boundary conditions (see for e.g., Kuznetsov and Nield [32])

u = uw(x) = Uw(x)λ, v = v0, T = Tw, DB
∂C
∂y

+
DT
T∞

∂T
∂y

= 0, at y = 0, (5a)

u = ue(x) → 0, T = T∞, C = C∞, as y → ∞. (5b)

Here, T is the temperature of the hybrid nanofluid, C is the nanoparticle concentration,
DB is the Brownian diffusion coefficient, DT is the thermophoretic diffusion coefficient,
δ = (ρCp)s/(ρCp) f is the ratio of nanoparticle heat capacity and the base fluid heat capacity.
Further, μhn f is the dynamic viscosity of the hybrid nanofluids, ρhn f is the density of the
hybrid nanofluids, khn f is the thermal conductivity of the hybrid nanofluid, (ρCp)hn f is the
heat capacity of the hybrid nanofluid, λ is the constant stretching/shrinking parameter
with λ > 0 for a stretching sheet, λ < 0 for a shrinking sheet and λ = 0 for a static sheet,
respectively, and we assume that Uw(x) = ax, where a is a positive constant. Equation
DB ∂C/∂y + (DT/T∞) ∂T/∂y = 0 is a statement that, with thermophoresis taken into
account, the normal flux of nanoparticles is zero at the boundary. Furthermore, ( )hn f
denotes the hybrid nanofluid quantities, which are defined as follows (Devi and Devi [29]
and Gorla et al. [33])
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ρhn f

ρ f
= (1 − ϕ2)

[
1 − ϕ1 + ϕ1

ρs1

ρ f

]
+ ϕ2

ρs2

ρ f
, (6a)

μhn f

μ f
=

1
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2.5(1 − ϕ2)

2.5 , (6b)

khn f

k f
=

ks2 + 2kb f + 2ϕ2

(
ks2 − k f

)
ks2 + 2kb f − ϕ2

(
ks2 − k f

) , where
kb f

k f
=

ks1 + 2k f + 2ϕ1

(
ks1 − k f

)
ks1 + 2k f − ϕ1

(
ks1 − k f

) , (6c)

(ρCp)hn f

(ρCp) f
= (1 − ϕ2)

[
1 − ϕ1 + ϕ1

(ρCp)s1

(ρCp) f

]
+ ϕ2

(ρCp)s2

(ρCp) f
, (6d)

where ϕ1 and ϕ2 are the nanoparticle volume fraction for hybrid nanofluid (where ϕ1 = ϕ2 = 0
correspond to a regular fluid), ρ f is the density of the base fluid, ρs1 and ρs2 are the densities
of the hybrid nanoparticles, k f is the thermal conductivity of the base fluid, ks1 and ks2 are
the thermal conductivities of the hybrid nanoparticles, (ρCp) f is the heat capacity of the
base fluid. (ρCp)s1 and (ρCp)s2 are the heat capacitance of the hybrid nanoparticles, and Cp
is the heat capacity at the constant pressure of the base fluid. Furthermore, the physical
properties of the base fluid (water), alumina (Al2O3) and copper (Cu) hybrid nanofluids
are given in Table 1. Here, it should be noted that the hybrid nanofluid is assumed to be
homogeneous, neglecting internal fluctuations of the particle density or flows.

Table 1. Thermophysical properties of the water and nanoparticles [34].

Physical Base Fluid Nanoparticles

Properties Water Al2O3 Cu

ρ (kg/m3) 997.1 3970 8933
Cp (J/kg K) 4179 765 385
k (W/m K) 0.613 40 401
σ (Ω/m)−1 0.05 1 × 10−10 5.96 × 107

Now, we introduce the following similarity variables

u = ax f ′(η), v = −√
aν f f (η), θ(η) =

T − T∞

Tw − T∞
, φ(η) =

C − C∞

C∞
, η = y

√
a

ν f
, (7)

so that
v0 = −√

aν f S, (8)

where S is the constant mass flux parameter with S > 0 for suction and S < 0 for injection
or withdrawal, respectively. Invoking the similarity variables (7), Equations (2)–(4) along
with the boundary conditions (5a) are transformed into the following ordinary (similarity)
differential equations (see for e.g., Aly [35])

α2 f ′′′ + α1

(
f f ′′ − f ′2

)
= 0, (9)

α4

α3Pr
θ′′ + f θ′ + Nb θ′φ′ + Nt θ′2 = 0, (10)

φ′′ + Le f φ′ +
Nt
Nb

θ′′ = 0, (11)

which have to be solved subject to the following conditions:
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f (0) = S, f ′(0) = λ, θ(0) = 1, Nb φ′(0) + Nt θ′(0) = 0, (12a)

f ′′(η) → 0, θ(η) → 0, φ(η) → 0, as η → ∞, (12b)

here, primes denote differentiation with respect to η, Pr
(
= ν

α

)
is Prandtl number, where

α
(
= k

ρcp

)
is the thermal diffusivity, Le

(
= ν

DB

)
is Lewis number, Nb

(
= δDB(ϕw−ϕ∞)

ν

)
is

the Brownian motion parameter and Nt
(
= δDT(Tw−T∞)

νT∞

)
is the thermophoresis parameter.

Further, αi, i = 1 to 4, are defined as:

α1 =
ρhn f

ρ f
, α2 =

μhn f

μ f
, α3 =

(
ρCp

)
hn f(

ρCp
)

f
and α4 =

khn f

k f
. (13)

The physical quantities of interest are the skin friction coefficient Cf and the local Nusselt
number Nux, which are defined as:

Cf =
τw

ρ f U2
w(x)

, Nux =
xqw

k f (Tw − T∞)
, (14)

where τw is the skin friction or shear stress along the plate and qw is the heat flux from the
plate, which are given by:

τw = −μhn f

(
∂u
∂y

)
y=0

, qw = −khn f

(
∂T
∂y

)
y=0

. (15)

On using (7) and (14), we get:

Sr = Cf
√

Rex = −α2 f ′′(0), Nur =
Nu√
Rex

= −α4 θ′(0), (16)

where Rex =
Uw(x)x

ν f
is the local Reynolds number.

3. Solutions of the System

On considering conditions of the dimensionless stream function in Equation (12a),
f (η) can be then deduced as:

f (η) = S +
λ

β

(
1 − e−βη

)
, (17)

where β is a constant to be determined and has to be positive to have a physical meaning.
Therefore, by substituting the last relation in Equation (9), β can be obtained as follows:

β =
1

2α2

[
α1S ±

√
α2

1S2 + 4α1α2λ

]
. (18)

Now, when λ > 0 (stretching sheet) and for any values of S, one can note that the positive
sign of the second root makes β positive. This means that there exists only a unique solution
for any combination of the considered parameters (see for e.g., Aly [36]). However, for the
shrinking sheet (λ < 0), suppose that:

Sc =

∣∣∣∣∣ 2
√
−α2

α1
λ

∣∣∣∣∣ > 0. (19)

Then, we obtain the following three cases;
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• There is no any physical solution when S < Sc.
• A unique solution is gotten if S = Sc.
• Dual solution can be only obtained for S > Sc.

Similarly, on supposing that

λc = −S2

4
α1

α2
< 0, (20)

there is then

• no solution when [0 > λ ≥ λc, S < 0] and [λ < λc, ∀S],
• a unique solution if λ = λc, S > 0, and
• dual solution at [0 > λ > λc, S > 0],

where the suffix ( )c refers the critical value of the specific parameter. Figures 2 and 3
present the regions of no, unique and dual solutions of S as a function of λ and vice versa,
respectively, for a stretching/shrinking sheet. Further, 3D of the terminated curve for S as
a function of (λ, φ2) for a shrinking sheet is presented in Figure 4.

In addition, from Equation (16), the reduced skin friction coefficient (Sr) is obtained as:

Sr = λ α2 β. (21)

With β determined from relation (18), we obtain the analytical solution (17) for f (η). Now,
in order to calculate θ and φ, f from Equation (17) is replaced into Equations (10) and (11)
to obtain the following system of differential equations:

α4

α3Pr
θ′′ +

[
S +

λ

β

(
1 − e−βη

)]
θ′ + Nb θ′φ′ + Nt θ′2 = 0, (22)

φ′′ + Le
[

S +
λ

β

(
1 − e−βη

)]
φ′ +

Nt
Nb

θ′′ = 0, (23)

along with the following boundary conditions:

θ(0) = 1, Nb φ′(0) + Nt θ′(0) = 0, (24a)

θ(η) → 0, φ(η) → 0, as η → ∞. (24b)

S

unique 
solution

unique 
solution

dual
solution

no 
solution

no 
solution

λ

Terminated   
curve

cS S=

st
re

tc
hi

n
g 

sh
ee

t

sh
ri

nk
in

g 
sh

e
et

unique 
solution

where
( )cS S>

( )cS S<

Figure 2. Regions of no, unique and dual solutions of S as a function of λ for stretching/shrinking
sheet when ϕ1 = 0.1 and ϕ2 = 0.04.
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Figure 3. Regions of no, unique and dual solutions of λ as a function of S for stretching/shrinking
sheet when ϕ1 = 0.1 and ϕ2 = 0.04.

2φ

λ

S

Figure 4. Three-dimensional (3D) of terminated curve for S as a function of (λ, ϕ2) for shrinking
sheet when ϕ1 = 0.1.

4. Results and Discussion

The boundary value problem (22)–(24) is numerically solved using the function bvp4c
from MATLAB (see for e.g., Shampine et al. [37]) for different values of the included
parameters λ, S, Pr, Le, Nb, Nt with hybrid nanofluids ϕ1 and ϕ2. Brief details on the
function bvp4c are introduced in the next paragraph.

The function bvp4c is a finite difference code that implements the three-stage Lobatto
IIIa formula. This is a collocation formula and the collocation polynomial gives us a C1–
continuous solution, which is fourth-order accurate uniformly in the interval where the
function is integrated. Further, in order to apply this routine, the present problem has to
be rewritten as systems of first-order ODEs. In particular, we have chosen a suitable finite
value of η → ∞, namely η = η∞ = 20, where the relative tolerance is set at 10−7. Mesh
selection and error control are based on the residual of the continuous solution. In addition,
the starting mesh has 100 points equally distributed on the interval [0, η∞ = 20] and then
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the mesh is automatically adjusted by the bvp4c routine. It is expected that the present
problem may have more than one solution; therefore, a good initial guess is needed to
obtain the desired solutions.

It should be noted that the results for f (η) are to be analytically obtained from the
expression (17), corresponding to the values of β. Therefore, the ODEs, (22) and (23), along
with the BCs. (24) have more than one solution when λ < 0 (shrinking sheet); we use the
two analytical solutions described by (17) corresponding to the values of β from (18) to
numerically determine the corresponding dual (upper and lower) solutions for θ and φ.

The obtained results are displayed in terms of the skin-friction coefficient Cf , local
Nusselt number Nux, dimensionless velocity f ′(η) and temperature θ(η) profiles for dif-
ferent values of the parameters S, λ and ϕ. Both the cases of λ > 0 (stretching) and λ < 0
(shrinking) sheets have been studied. Because there are many cases to be considered, we
limit presentation to only six figures, namely Figures 5–10. This is also for sewing space.
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Figure 5. Variation of f ′′(0) as a function of λ for several values of S for the hybrid nanofluid when
ϕ1 = 0.025 and ϕ2 = 0.025.
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Figure 6. Variation of −θ′(0) as a function of λ for several values of S for the hybrid nanofluid when
ϕ1 = 0.025 and ϕ2 = 0.025.
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Figure 7. Variation of f ′′(0) as a function of λ when S = 3 and the overall volume fraction of hybrid
particles is constant as ϕhn f = 0.05.
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Figure 8. Variation of −θ′(0) as a function of λ when S = 3 and the overall volume fraction of hybrid
particles is constant as ϕhn f = 0.05.
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Figure 9. Velocity profiles for the hybrid nanofluid when the overall volume fraction of hybrid
nanoparticles is constant as ϕhn f = 0.05 for λ = −2 and S = 3.
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Figure 10. Temperature profiles for the hybrid nanofluid when the overall volume fraction of hybrid
nanoparticles is constant as ϕhn f = 0.05 for λ = −2 and S = 3.

Figures 5 and 6 illustrate the variation of the reduced skin friction coefficient f ′′(0)
and reduced heat transfer from the plate −θ′(0) with the stretching/shrinking parameter λ
for several values of the suction parameter S. We can observe that a higher value of suction
strength S is necessary to induce the dual steady similarity solutions for the shrinking case.
As the shrinking parameter expands from −1.1204 to −4.4817, the required value of the
suction parameter contracts from S = 4 to S = 2. The dual solution regions also expand
with the increase of suction parameter S. Figures 7 and 8 show that dual solution regions
expand with the increase of the concentration of the Al2O3 particles and the decrease
of the Cu nanoparticles’ concentration when the suction is present. We can see from all
Figures 5–8 that the dual solution exists only for the shrinking sheet in the case of suction
(S > 0). All these figures show that unique solutions exist for Equations (9)–(11) with
the boundary conditions (12a,b) when λ > 0 (stretching sheet), dual solutions (upper and
lower branch solutions) exist for λc ≤ λ ≤ 0 (shrinking sheet) and no solutions exist for
λ ≤ λc ≤ 0, where λc < 0 is the critical value of λ < 0 for which the boundary value
problems (9)–(12) have no solutions. It should be stated that, for λ < λc < 0, the full
Navier–Stokes and energy equations have to be solved.

Further, Figures 9 and 10 present the velocity f ′(η) and temperature θ(η) profiles
for shrinking case λ = −2 when the suction is presented as S = 3. In these figures, the
solid lines indicate the upper branch solution, while the dot lines refer to the lower branch
solution, respectively. It is evident from these figures that the far field boundary conditions
(12b) are approached asymptotically. Thus, it supports the numerical results obtained for
the boundary value problems (9)–(12). Moreover, it is clearly seen from Figures 9 and 10
that, for both velocity and temperature profiles, the upper branch solution displays a
thinner boundary layer thickness compared to the lower branch solution. It is worth
pointing out that the solution of the boundary value problem (9)–(12) exists only for large
values of suction parameter S(>0). This is in full agreement with the results reported by
Fang et al. [38] for the problem of viscous flow over an unsteady shrinking sheet with
mass transfer.

5. Conclusions

This paper considered both analytical and numerical solutions of the problem of
a permeable stretching/shrinking sheet in both nanofluid and hybrid nanofluids using
the mathematical models proposed by Buongiorno [2] and Devi and Devi’s [29] hybrid
nanofluid model. The important conclusions of the present study are:

• One solution exists for stretching sheet (λ > 0).
• Dual solutions exist for shrinking case (λ < 0).
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• Skin friction coefficient and the local Nusselt number are increased as the rate of
suction S > 0 is increased.

• The analysis of the present investigation plays a predominant role in the applications
of science and technology. Particularly, the results of the present problem are of great
interest for controlled metal welding or the magnetically controlled coating of metals
in fusion engineering problems, polymer engineering, metallurgy, and so forth.
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Abstract: Melting heat transfer has a vital role in forming energy storage devices such as flexible
thin film supercapacitors. This idea should be welcomed in the thin film theoretical models to
sustain technological advancement, which could later benefit humankind. Hence, the present work
endeavors to incorporate the melting heat transfer effect on the Carreau thin hybrid nanofluid film
flow over an unsteady accelerating sheet. The mathematical model that obeyed the boundary layer
theory has been transformed into a solvable form via an apt similarity transformation. Furthermore,
the collocation method, communicated through the MATLAB built-in bvp4c function, solved the
model numerically. Non-uniqueness solutions have been identified, and solutions with negative
film thickness are unreliable. The melting heat transfer effect lowers the heat transfer rate without
affecting the liquid film thickness, while the Carreau hybrid nanofluid contributes more entropy than
the Carreau nanofluid in the flow regime.

Keywords: thin film; Carreau fluid; hybrid nanoparticles; melting heat transfer

1. Introduction

The thin film flow research has a great prospect in technological advancement due to
its significance in producing electronic devices such as integrated circuits and microscopic
fluidic devices [1]. For example, one can see how a solid surface is coated by a thin liquid
film in those manufacturing operations. Another potential manufacturing process subset
to the thin film flow application is the cast film extrusion that produces polymer sheets
and films [2]. Realising the strength of the thin film flow research as an enzyme to attain
the next stage of technological development, Wang [3] pioneered the problem of the thin
film flow past an accelerating sheet and attested the unavailability of similarity solutions
when the flow unsteadiness’ rate exceeds 2. Then, Usha and Sridharan [4] revisited the
flow problem in [3] asymmetrically and proved that the similarity solutions are absent
when the flow unsteadiness’ rate exceeds 4. As time went by, the researchers learned that
heat transfer analysis is crucial in the thin film flow problem, aligned with the initiative
to comprehend the heat exchangers and chemical processing equipment’s design. Thus,
Andersson et al. [5] solved the thin film flow and heat transfer past an accelerating sheet;
they also devised a novel similarity solution for the temperature field. This contribution
of [5] is remarkable and highly assists in investigating the heat transfer aspect in the present
work. After that, Wang [6] presented the analytic solutions for the thin film flow and heat
transfer problem over an unsteady accelerating sheet. The strong contributions of [3–6]
are the impetus for the thin film flow and heat transfer research under the following
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effects: thermocapilarity [7,8], general surface temperature [9,10], thermal radiation [11],
magnetohydrodynamics (MHD) [12], viscous dissipation [13], slip effects [14,15].

The strength of the non-Newtonian fluid in illuminating varying fluid viscosity under
the applied force has vast industrial applications and managed to attract the researchers’
attention to be considered under various settings, such as in [16,17]. On the other hand, the
researchers’ consideration of the non-Newtonian fluid in the thin film flow problem is raised
because the protective coating applied on an extrudate is a non-Newtonian fluid. Therefore,
Andersson et al. [18] investigated the power-law thin liquid film flow past an accelerating
sheet and found a contradict trend in the fluid velocity when the power-law fluid adapts
to the pseudoplastic and dilatant features respectively. Furthermore, Chen [19] enhanced
the work of [18] by incorporating the heat transfer characteristic as it is an essential factor
to decide the final product’s quality. Subsequently, the researchers’ consideration of other
generalised non-Newtonian fluid models such as the Carreau fluid model increased due
to its validity for high and low shear rates. Myers [20] critically analysed the generalised
non-Newtonian fluid’s potential in the thin film flow and suggested that the Carreau
fluid model is a better choice due to its accuracy rate. Accordingly, there is a number of
significant works reported within the scope of the Carreau thin film flow; see [21–24].

Besides that, hybrid nanofluid is an incredible invention by humankind to uplift tech-
nological advancement to the next level. Choi and Eastman [25] introduced the brilliant
idea of suspending the nanosized metal element in the fluid to boost its heat transfer rate.
Although nanofluid hits the peak of the researchers’ interest due to its applications in the
heat transfer equipment, nanofluid is incompatible with some specified real-world applica-
tions that require substitution between some nanofluids’ properties [26]. Thus, the hybrid
nanofluid is proposed to encounter this issue through the experimental works [27,28],
and the hybrid nanofluid managed to gain vast interest from the researchers. Shortly, the
theoretical works, such as [29] gained momentum in the hybrid nanofluid after the valuable
works of Devi and Devi [30,31]. The hybrid nanofluid also succeeded in the thin film flow
over an accelerating sheet owing to industrial applications such as microfluidics [32]. For
instance, Sadiq et al. [33] explored the Maxwell thin hybrid nanofluid film flow across the
Darcy-Forchheimer porous media and inferred that the augmentation of the heat transfer
rate in the hybrid Maxwell nanofluid is better than the single-typed Maxwell nanofluid.

Melting heat transfer is a common phase experienced by industrial processes such
as casting. Epstein and Cho [34] is one of the earliest works involved in the melting
heat transfer effect in the laminar boundary layer flow. Epstein and Cho [34] solved the
boundary layer flow problem past the horizontal positioned static flat surface along with
the melting heat transfer effect. Ishak et al. [35] extended the work in [29] by considering
the flow past the moving sheet and reported that the melting heat transfer effect is the
decreasing function of the convective heat transfer rate. Then, Khashi’ie et al. [36] recon-
sidered the problem solved in [35] by incorporating the presence of hybrid nanoparticles
and corroborated the finding as mentioned above in [35]. Even though the melting heat
transfer effect has been probed under several settings; see [37,38]; yet, the inspection of the
melting heat transfer effect in the thin film flow is scarce. Thus, this motivates the present
work to scruntise the melting heat transfer effect in the thin film flow.

Overall, the present work attempts to solve the problem of the Carreau thin hybrid
nanofluid film flow past an accelerating sheet under the influence of the melting heat trans-
fer. The present model is relatively new, and entropy generation analysis is performed. The
present work also adapts the similarity transformation suggested by Andersson et al. [5],
and the formulated mathematical model has been solved in the built-in collocation method,
the bvp4c, to produce the approximate solutions. Furthermore, non-uniqueness solutions
have been reported for every case of governing parameters’ variations. The findings of the
present work may serve as a reference for improving the material processing industry.
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2. Mathematical Model

Ruminate the Carreau fluid flow bounded by a thin liquid film and a horizontally
placed accelerating sheet from a narrow opening at the Cartesian coordinate system origin.
The two-dimensional flow is assumed to be incompressible, unsteady while the thin liquid
film has an unvarying thickness, H(t). Figure 1 depicts the flow setup, and y−coordinate
is located normal to the x−coordinate. The sheet’s accelerated act, which portrays the
stretching sheet situation, brings about the fluid motion delimited by the thin film and the
accelerating sheet. The sheet is accelerated with speed Uw(x, t) = bx

(1−σt) , where b and σ

are positive constants with dimension time–1, σt �= 1, while b > 0 conveys the stretching
rate. The sheet surface is impermeable and melts. The melting surface temperature is
denoted by Tm̃, whereas T is the fluid temperature. The wall temperature, Tw is defined

as Tw = Ts − T0

√
b2x4

4ν2
f (1−σt)

, and 0 ≤ T0 ≤ Ts [39]. Here, the slit temperature and reference

temperature are denoted by Ts and T0, respectively. Besides, the end effects and gravity
are assumed to be very small and thus omitted. The formulated boundary layer model
in the present work is only sensible if the liquid film thickness does not overlap with the
boundary layer thickness. Otherwise, the present formulated model becomes irrational [40].
Also, the planar thin liquid film is assumed to be smooth and free of any surface waves [5].

Figure 1. Schematic diagram of the thin film flow past an accelerated sheet.

The Carreau fluid’s Cauchy stress tensor is given as [20]

τ = −pI + ηA1, (1)

where

η = η∞ + (η0 − η∞)
[
1 +

(
λ

.
γ
)2

] n−1
2 . (2)

Here, τ is the Cauchy stress tensor, p is the pressure, I denotes the identity tensor, η0
signifies the zero-shear-rate viscosity, η∞ is the infinite-shear-rate viscosity, λ implies the
material time constant, and n represents the power-law index. The shear rate,

.
γ can be

elaborated as

.
γ =

√
1
2
( .
γ :

.
γ
)
=

√
1
2

Π =

√
1
2

tr
(

A2
1

)
=

√
1
2∑

i
∑

j

.
γij

.
γji. (3)

In Equation (3), Π is the second invariant strain rate tensor and A1 is the Rivlin-
Ericksen tensor expressed further as

A1 = (gradV) + (gradV)T . (4)
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The most practical cases where η0 � η∞ is considered. Normally, the value of η∞
is determined by the extrapolation procedure or chosen to be zero (suggested theoretical
value) [41]. Thus, in the present work, the value of η∞ is set to zero, and affect Equation (1)
to become

τ = −pI + η0

[
1 +

(
λ

.
γ
)2

] n−1
2

A1. (5)

The Carreau fluid model shows pseudoplastic, dilatant, and Newtonian features when
0 < n < 1, n > 1 and n = 0, respectively, where n is the power-law index. Under these
assumptions, the governing liquid film flow of the Carreau fluid can be written as [42].

∂u
∂x

+
∂v
∂y

= 0, (6)

∂u
∂t + u ∂u

∂x + v ∂u
∂y =

μhn f
ρhn f

∂2u
∂y2

[
1 + λ2

(
∂u
∂y

)2
] n−1

2

+
μhn f
ρhn f

(n − 1)λ2 ∂2u
∂y2

(
∂u
∂y

)2
[

1 + λ2
(

∂u
∂y

)2
] n−3

2
,

(7)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

=
khn f(

ρCp
)

hn f

∂2T
∂y2 , (8)

where u and v are the velocity components along the x- and y- directions, respectively, λ is
a material time constant, n signifies the power-law index. Meanwhile,

(
ρCp

)
hn f , μhn f , ρhn f ,

and khn f are the hybrid nanofluid’s heat capacity, dynamic viscosity, density and thermal
conductivity, respectively. The further definition of μhn f , ρhn f , khn f , and

(
ρCp

)
hn f are

expressed in Table 1.

Table 1. The hybrid nanofluid’s correlation properties’ definitions (see [43]).

Properties Au-Cu/(CMC/H2O) Mathematical Relation

Density ρhn f =
(

1 − φhn f

)
ρ f + φ1ρs1 + φ2ρs2

Dynamic viscosity
(Brinkman model) μhn f =

μ f

(1−φhn f )
2.5

Thermal capacity
(
ρCp

)
hn f =

(
1 − φhn f

)(
ρCp

)
f + φ1

(
ρCp

)
s1 + φ2

(
ρCp

)
s2

Thermal
conductivity

(Maxwell model)
khn f
k f

=

(
φ1ks1+φ2ks2

φhn f

)
+2k f +2(φ1ks1+φ2ks2)−2φhn f k f(

φ1ks1+φ2ks2
φhn f

)
+2k f −(φ1ks1+φ2ks2)+φhn f k f

According to Table 1, the nanoparticle volume fraction is φ and φ = 0 reduces
the model into a regular fluid. Next, φ1 and φ2 signify the Au’s and Cu’s nanoparticle
volume fraction, respectively. The total volume concentration of two types of nanoparticles
suspended in the hybrid nanofluid is determined as φhn f = φ1 + φ2. Meanwhile, ρ f and
ρhn f are the densities of the base fluid and the hybrid nanoparticle, respectively, k f and khn f
are the thermal conductivities of the base fluid and the hybrid nanoparticles, respectively,(
ρCp

)
f and

(
ρCp

)
hn f are the heat capacitance of the base fluid and the hybrid nanoparticle,

respectively. These correlations are based on physical assumptions and agree with the
conservation of mass and energy. Thus, the physical properties of the base fluid (water),
gold (Au) and copper (Cu) hybrid nanofluids are given in Table 2.
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Table 2. The thermophysical properties of selected nanoparticles and base fluid (sodium car-
boxymethyl cellulose (CMC)/water) (see [44,45]).

Properties ρ (kg/m3) k(W/mK) β̂ × 10−5 (mK) Cp (J/kgK)

Au 19,300 318 1.4 129
Cu 8933 400 1.67 385

CMC/H2O
(0–0.3%) 997.1 0.613 21 4179

The Equations (6)–(8) are getting along with the boundary conditions

t < 0 : u = 0, v = 0, T = ∂T
∂y = 0 for all x and y.

t ≥ 0 : u = Uw(x, t),
khn f
ρhn f

(
∂T
∂y

)
y=0

=
[
L +

(
Cp

)
s(Tm̃ − Ts)

]
v(x, t),

T = Tm̃ at y = 0,
∂u
∂y = 0, ∂T

∂y = 0, v = dh
dt at y = h,

(9)

At y = h, the kinematic constraint is enforced in the fluid motion through v = dh/dt.
The wall shear stress and heat flux disappear entirely at the adiabatic free surface and thus
∂u/∂y = ∂T/∂y = 0 at y = h. Next, we introduce the similarity transformations as follows
(Andersson et al. [5]):

ψ = x f (ζ)
√

ν f b
1−σt , u = ∂ψ

∂y = bx
1−σt f ′(ζ),

v = − ∂ψ
∂x = −

√
ν f b

1−σt f (ζ), θ(ζ) = T−Tm̃
T0−Tm̃

,

T = Ts − T0

(
bx2

2ν f

)
1√

(1−σt)3 θ(ζ),

(10)

ζ = y

√
b

ν f (1 − σt)
, (11)

where prime infers the derivative concerning ζ. Employing the similarity conversion as
in (10) and (11) into the governing model (6)–(9) satisfies the continuity equation, and the
remaining equations are transformed as follows:

(
μhn f /μ f
ρhn f /ρ f

)(
1 + nWe2 f ′′ 2

)(
1 + We2 f ′′ 2

) n−3
2 f ′′′ +

(
f f ′′ − ωζ

2 f ′′ − f ′2 − ω f ′
)
= 0, (12)

khn f /k f(
ρCp

)
hn f

/(
ρCp

)
f

θ′′ + Pr
(

f θ′ − 2 f ′θ − ζω

2
θ′ − 3ω

2
θ

)
= 0, (13)

with the boundary conditions

Pr f (0) +
khn f /k f
ρhn f /ρ f

χθ′(0) = 0, f ′(0) = 1, f (β) = ωβ/2,

f ′′ (β) = 0, θ(0) = 0, θ′(β) = 0,
(14)

wherein We =
√

λ2b3x2

ν f (1−σt)3 , is the local Weissenberg number [46], ω = σ
b is the dimen-

sionless measure of unsteadiness, the Prandtl number is defined as Pr =
(Cp) f μ f

k f
, while

the melting heat transfer parameter is signified by χ =
(Cp) f (T0−Tm̃)

L+(Cp)s(Tm̃−Ts)
. Moreover, β is an

unknown constant that conveying the dimensionless film thickness. β also implies the
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similarity variable (ζ) value at the free surface, and hence the expression in (11) can take
the following form:

β = h

√
b

ν f (1 − σt)
, (15)

This unknown constant β must be calculated as an integral part of the boundary-value
problem. Thus,

dh
dt

= − βσ

2

√
ν f

ν f (1 − σt)
, (16)

elucidates the film thickness’s rate of change. On the other hand, when n = 1 and We = 0,
the Carreau fluid model in Equations (12) and (13) reveals the Newtonian characteristics.
The physical quantities of interest in the present work are the local skin friction coefficient(

Cf x

)
and the local Nusselt number (Nux), which can be defined as follows:

Cf x =
τw

ρ f (Uw)
2/2

, Nux =
qwx
k f T0

, (17)

Here, the wall shear stress (τw) and the heat flux from the surface of the sheet (qw)
are given by [47].

τw =

⎧⎨⎩μhn f
∂u
∂y

[
1 + λ2

(
∂u
∂y

)2
] n−1

2
⎫⎬⎭

y=0

, qw = −khn f

(
∂T
∂y

)∣∣∣∣
y=0

, (18)

By employing (10)–(11) and inducing (19) into (18) provides the following expression.

Cf xRe1/2
x =

μhn f
μ f

2 f ′′ (0)
{

1 + We2[ f ′′ (0)]2
} n−1

2 , 2NuxRe−3/2
x (1 − αt)1/2 k f

khn f
= θ′(0). (19)

The local Reynolds number is defined as Rex = xUw(x,t)
ν f

.

3. Entropy Analysis

The entropy generation analysis is ideal for calculating the dissipated heat energy and
measuring any flow systems’ performance deterioration. This nonconserved property can
be communicated in the following dimensional form [48]:

�
S

′′′
gen =

khn f

T2
0

(
∂T
∂y

)2
+

μhn f

T0

[
1 + λ2

(
∂u
∂y

)2
] n−1

2 (
∂u
∂y

)2
, (20)

where terms on heat irreversibility is given followed by the fluid friction irreversibility. By
using Equations (10) and (11) into (20), the nondimensional form of the volumetric entropy
generation can be formed as follows:

�
Ns =

khn f

k f
θ′2(ζ) +

μhn f

μ f

Br
ε

f ′′ 2(ζ), (21)

Here, the local entropy generation rate
(
�
Ns

)
, the Brinkman number (Br), and the

temperature difference parameter (ε) are further defined as follows:

�
Ns =

�
S

′′′
genT2

0 (1 − σt)ν f

bk f (T0 − Tm̃)
2 , Br =

μ f b2x2

k f (1 − σt)2(T0 − Tm̃)
, ε =

T0

T0 − Tm̃
. (22)
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In the entropy generation analysis, it is necessary to compute the Bejan number to
identify which entropy generation appears to dominate the flow system, either frictional or
thermal entropy generation. Thus, the Bejan number is calculated in the present work, and
it takes the following form:

Be =

( khn f
k f

θ′2(ζ)
)

( khn f
k f

θ′2(ζ) +
μhn f
μ f

Br
ε f ′′ 2(ζ)

) =
1

1 + Φ
, (23)

where Φ =

(
μhn f

μ f
Br
ε f ′′ 2(ζ)

)
(

khn f
k f

θ′2(ζ)
) is the irreversibility ratio. Expression in (23) signifies the

heat transfer irreversibility and total entropy ratio in the flow system. Contact melting,
lubrication, and electronic cooling are some heat transfer applications where the Bejan
number is vital. Equation (23) also can be utilised to determine the following effects in the
flow system (see Table 3):

Table 3. Physical significance of the Bejan number [49].

No. Condition in Equation (23) Interpretation

1. When Φ = 0, Be = 1 Heat transfer irreversibility is highly
influencing the flow system.

2. When Φ = 1, Be = 0.5
Both heat transfer irreversibility and fluid

friction irreversibility are equally influencing
the flow system.

3. When Be = 0 Fluid friction irreversibility is highly
influencing the flow system.

4. Results and Discussion

The transport phenomena in the thin film flow regime can be learned by plotting
the velocity and temperature profiles. In addition, calculating the local skin friction
coefficient, the local Nusselt number and the dimensionless film thickness when the
pertinent parameters vary is also necessary to inspect the present model’s performance.
Thus, all numerical outputs were generated by setting the governing parameters’ values
within the following fixed range: 0 ≤ We ≤ 0.3, 0 ≤ χ ≤ 2.5, 0.8 ≤ ω ≤ 1.4, and
0.6 ≤ n ≤ 1.6. The Prandtl number is fixed to 8 throughout the computation process.
Also, φ1 and φ2 represents the gold (Au) and copper (Cu) nanoparticle volume fractions,
respectively. The numerical outputs are compared between the Carreau hybrid nanofluid
case, where φ1 = 0.02, φ2 = 0.03, and the single-typed Carreau nanofluid is considered
with φ1 = 0, φ2 = 0.03. These parameter values are chosen based on the availability
of the numerical solutions. However, those parameter values lie within the acceptable
range established in previously published works. Equations (12)–(14), which convey the
simplified form of the present thin film flow problem, are solved using the bvp4c function
found in the MATLAB 2019a software. This built-in collocation code eases the solving
process even though the present work has dimensionless film thickness as the unknown
parameter [50]. Besides that, all computed numerical results are accurate within 1 × 10−10.
In order to test the precision of the present method, the thin film flow problem studied by
Wang [6] have been resolved via the bvp4c function, and the comparison of the results is
given in Table 4. Table 4 proves that the built-in collocation method agrees well with the
numerical results produced via the homotopy analysis method in [6]. Meanwhile, the CPU
time for calculating the non-uniqueness solutions is presented in Table 5. In this sample, it
is apparent that the CPU time increases from the first to the second solution in every case
of n. Before the presentation and discussion of the results go further, it is appropriate to
confer about the non-uniqueness numerical solutions. It is undeniable that more than one
numerical solutions are obtainable by providing a good set of guess values since that is the
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built-in bvp4c routine’s requirement. The present work found that the second solutions
always yield negative film thickness. The negative film thickness implies the thin liquid
film’s distortion, and hence an ideal thin liquid film cannot be formed [23]. Therefore, the
trends showed by the second solution are disregarded.

Table 4. Comparison value of −θ′(0) in the problem solved by Wang [6].

Pr
−θ

′
(0)

Wang [6] Present Result

0.01 0.037734 0.0377342
0.1 0.343931 0.3439312
1 1.999590 1.9995914
2 2.975450 2.9759050

Table 5. CPU time for calculating the first and second solutions when χ = 1.5, ω = 0.8, Pr = 8, and
We = 0.05.

n
CPU Time (Seconds)

First Solution Second Solution

0.6 0.491 1.502
0.8 0.499 1.496
1.0 0.502 1.436
1.2 0.508 1.399
1.6 0.512 1.368

Now, Table 6 demonstrates the trend of β for the Carreau hybrid nanofluid and Carreau
nanofluid when We increases. The increment of We from 0 to 0.3 affects the dimensionless
film thickness to decrease by 0.25% for Carreau hybrid nanofluid and decrement by 0.18%
for the Carreau nanofluid. The reason for this occurrence can be collected from Figure 2
and Table 7. Figure 2 shows that the fluid velocity increases insignificantly across the
flow regime when We increases. The increment in We elucidates a longer relaxation
rate; thus, the Carreau fluid takes more time to react with the external forces. Since the
accelerating sheet imposes drag force towards the Carreau fluid (this can be evident by
the negative values of Cf xRe1/2

x in Table 7), the fluid velocity increases slightly past the
unsteady accelerating sheet, which elevates the wall shear stress and increases the values
of Cf xRe1/2

x in a minimal amount.

Table 6. Numerical outputs of β for the hybrid nanofluid (φ1 = 0.02, φ2 = 0.03) and nanofluid when
ω = 0.8, n = 0.8, Pr = 8, and χ = 1.5.

We
β

Hybrid Nanofluid Nanofluid (φ1 = 0, φ2 = 0.03)

0
1.54820137 1.64482153

(−7.56677274) (−8.69372861)

0.01
1.54819697 1.64481817

(−7.56278525) (−8.68784901)

0.05
1.54809161 1.64473765

(−7.47673697) (−8.56397941)

0.1
1.54776380 1.64448683

(−7.28412028) (−8.30238316)

0.3
1.54439508 1.64188656

(−6.63114764) (−7.49066700)
() Second solution.
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Figure 2. Velocity distribution/profile when ω = 0.8, n = 0.8, Pr = 8, and χ = 1.5.

Table 7. Numerical outputs of Cf xRe1/2
x for the hybrid nanofluid (φ1 = 0.02, φ2 = 0.03) and

nanofluid when ω = 0.8, n = 0.8, Pr = 8, and χ = 1.5.

We
CfxRe1/2

x

Hybrid Nanofluid Nanofluid (φ1 = 0, φ2 = 0.03)

0
−3.09668738 −2.57368640

(−19.16027074) (−20.29066744)

0.01
−3.09667513 −2.57367904

(−19.13980681) (−20.26302661)

0.05
−3.09638151 −2.57350275

(−18.69982744) (−19.68364588)

0.1
−3.09546813 −2.57295373

(−17.72582610) (−18.47813713)

0.3
−3.08610125 −2.56727029

(−14.52820034) (−14.88712835)
() Second solution.

Meanwhile, Figure 3 displays the temperature profiles across the thin film flow vicinity.
For the Carreau fluid associated with the hybrid nanoparticles, the temperature increases
when We increases. This behavior is evident when 0 ≤ ζ < 0.72727. It should be noted
that the fluid is under the influence of shear thinning effect (n = 0.8), and hence the fluid
viscosity may decrease with the act of the accelerating sheet and the melting heat transfer’s
effect. At this moment, when the effect of We is amplified, the fluid temperature augments
since the relaxation time is prolonged. A similar result has been reported by Hayat et al. [51].
However, after ζ = 0.72727, the fluid far from the accelerating surface is less affected with
the melting heat transfer and thus, the fluid temperature decreases when We increases.
On the other hand, in the case of the Carreau nanofluid, fluid temperature increases with
declining values of We when 0 ≤ ζ < 0.72727, and the opposite trend is observed after
ζ = 0.72727. Such an interesting difference in the trend might be due to the suspended
nanoparticles’ thermal conductivity in the base fluid. Besides that, Table 8 tabulates changes
in the heat transfer rate at the accelerating impermeable surface. The flow with the copper
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nanoparticles spectacle a gradual increase in θ′(0), and this is acceptable because copper
has better thermal conductivity and results in an increased rate in heat exchange. However,
the hybrid nanofluid does not exhibit a gradual degree of improvement. The heat transfer
rate decreases when We’s value increases from 0 to 0.3. The increment in the fluid relaxation
time affects the Carreau hybrid nanofluid to become warm, which lowers heat flux from
the accelerating surface and diminishes θ′(0).

φ φ

Figure 3. Temperature distribution/profile when ω = 0.8, n = 0.8, Pr = 8, and χ = 1.5.

Table 8. Numerical outputs of θ′(0) for the hybrid nanofluid (φ1 = 0.02, φ2 = 0.03) and nanofluid
when ω = 0.8, n = 0.8, Pr = 8, and χ = 1.5.

We
θ
′
(0)

Hybrid Nanofluid Nanofluid (φ1 = 0, φ2 = 0.03)

0
−2.323216453 × 10−16 −1.98241088 × 10−16(
−1.63498096 × 10−13) (

3.92924247 × 10−16)
0.01

−2.34231832 × 10−16 −1.97629390 × 10−16(
−1.81621360 × 10−13) (

−4.96367481 × 10−8)
0.05

−2.38023218 × 10−16 −1.84582892 × 10−16(
−2.65814195 × 10−17) (

−1.16042427 × 10−15)
0.1

−2.38200133 × 10−16 −1.46101909 × 10−16(
−3.67289115 × 10−15) (

4.52972244 × 10−14)
0.3

−9.21786995 × 10−17 3.65397478 × 10−17(
8.12603466 × 10−17) (

−3.53683008 × 10−9)
() Second solution.

The results’ discussion is further by examining the behavior of the temperature profiles
and θ′(0) when χ increases. Even though the temperature profiles in Figure 4 reveal an
unusual degree of dissonance, Table 9 informs that the convective heat transfer rate at the
accelerating sheet increases in the single-typed nanofluid but deteriorates in the Carreau
fluid with hybrid suspensions. The increment in χ indicates more cold fluid molecules
exist from the melting accelerating sheet towards the warm fluid. Therefore, the nanofluid
temperature declines at the moving surface and augments the heat exchange rate. The
work of Khan et al. [52] also conveyed such similar result. Conversely, the hybrid nanofluid
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temperature may have retained a low thermal conductivity, ensuring the low heat flux rate
and reducing θ′(0) at the accelerating surface. Table 10 confirms that when the Carreau
fluid with the presence of the nanoparticles changes its character from the shear thinning
to the shear thickening feature, the dimensionless film thickness slightly increases, in
increments of about 0.035% and 0.025% for the Carreau hybrid nanofluid and Carreau
single-typed nanofluid, respectively.

θ

φ φ

θ

φ φ

Figure 4. Temperature distribution/profile when ω = 0.8, n = 0.8, Pr = 8, and We = 0.05.

Table 9. Numerical outputs of θ′(0) for the hybrid nanofluid (φ1 = 0.02, φ2 = 0.03) and nanofluid
when ω = 0.8, n = 0.8, Pr = 8, and We = 0.05.

χ
θ
′
(0)

Hybrid Nanofluid Nanofluid (φ1 = 0, φ2 = 0.03)

0.5
8.06112535 × 10−16 −2.50887021 × 10−17(
4.40156253 × 10−9) (

5.80458696 × 10−7)
1.0

−1.84797181 × 10−14 −3.67551030 × 10−16(
−4.87963701 × 10−8) (

2.33177392 × 10−13)
1.5

−2.38023218 × 10−16 −1.84582892 × 10−16(
−2.65814195 × 10−17) (

−6.39677735 × 10−15)
2.0

−2.90618915 × 10−16 3.70535475 × 10−16(
−4.54529432 × 10−17) (

−1.34610120 × 10−14)
2.5

−5.43841326 × 10−16 6.27111798 × 10−16(
−2.19788267 × 10−15) (

1.09052102 × 10−16)
() Second solution.
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Table 10. Numerical outputs of β for the hybrid nanofluid (φ1 = 0.02, φ2 = 0.03) and nanofluid
when χ = 1.5, ω = 0.8, Pr = 8, and We = 0.05.

n
β

Hybrid Nanofluid Nanofluid (φ1 = 0, φ2 = 0.03)

0.6
−1.54798177 1.64465370
(−7.39052211) (−8.44119210)

0.8
1.54809161 1.64473765

(−7.47673697) (−8.56397941)

1.0
1.54820137 1.64482153

(−7.56677274) (−8.69372861)

1.2
1.54831102 1.64490536

(−7.66098390) (−8.83125851)

1.6
1.54853004 1.64507283

(−7.86361369) (−9.13373232)
() Second solution.

Meanwhile, the temperature profiles in Figure 5 display that when ζ ≤ 0.444, the
Carreau hybrid nanofluid temperature decreases while n increases from 0.6 to 1.6. This is
because the dilatant feature retards the heat energy transmission. However, when the liquid
film vicinity travel at ζ > 0.444, the fluid temperature becomes an increasing function of n.
The area far from the accelerating sheet is possibly less affected by the shear force from
the accelerating sheet, so heat transmission is reduced. Also, from Figure 5, it is observed
that the fluid temperature is low at the area far from the accelerating sheet compared to
the fluid temperature near the sheet’s surface. Table 11 identifies that the heat transfer
rate at the accelerating sheet gradually decreases for the Carreau hybrid nanofluid when
n increases. This is true because Metzner et al. [53] corroborated that dilatant fluid has
a lower heat transfer rate than the shear-thinning fluid. On the other hand, the opposite
trend is perceived for the single-typed hybrid nanofluid. In the single-typed nanofluid
considered in the present work, the nanoparticle volume fraction is less than the hybrid
nanofluid, which may increase the fluid’s thermal conductivity as the low-temperature
molecules enter the flow stream. Thus, a moderate increase in θ′(0)’s values can be noticed
along with the increment of n. Table 12 delivers the decrement of Cf xRe1/2

x along with the
increment of n. The strengthening effect of n reduces the wall shear stress at the accelerating
sheet. Hence, the values of Cf xRe1/2

x decline.

Figure 5. Temperature distribution/profile when χ = 1.5, ω = 0.8, Pr = 8, and We = 0.05.

94



Mathematics 2021, 9, 3092

Table 11. Numerical outputs of θ′(0) for the hybrid nanofluid (φ1 = 0.02, φ2 = 0.03) and nanofluid
when χ = 1.5, ω = 0.8, Pr = 8, and We = 0.05.

n
θ
′
(0)

Hybrid Nanofluid Nanofluid (φ1 = 0, φ2 = 0.03)

0.6
−4.47529129 × 10−16 6.06222801 × 10−16(
−2.02318698 × 10−15) (

1.07353816 × 10−14)
0.8

−5.43841326 × 10−16 6.27111798 × 10−16(
−2.19788267 × 10−15) (

1.09052102 × 10−16)
1.0

−6.39204439 × 10−16 6.48824224 × 10−16(
−3.75921582 × 10−14) (

1.62156980 × 10−15)
1.2

−7.28671413 × 10−16 6.70578557 × 10−16(
2.96819224 × 10−17) (

2.17295471 × 10−14)
1.6

−9.13862705 × 10−16 7.14748340 × 10−16(
−3.81864083 × 10−9) (

2.90372611 × 10−16)
() Second solution.

Table 12. Numerical outputs of Cf xRe1/2
x for the hybrid nanofluid (φ1 = 0.02, φ2 = 0.03) and

nanofluid when χ = 1.5, ω = 0.8, Pr = 8, and We = 0.05.

n
CfxRe1/2

x

Hybrid Nanofluid Nanofluid (φ1 = 0, φ2 = 0.03)

0.6
−3.09607536 −2.57331897

(−18.26496764) (−19.11861939)

0.8
−3.09638151 −2.57350275

(−18.69982744) (−19.68364589)

1.0
−3.09668738 −2.57368640
(−7.56677274) (−20.29066744)

1.2
−3.09699297 −2.57386991

(−19.64894688) (−20.94523474)

1.6
−3.09760332 −2.57423653

(−20.72373597) (−22.42507737)
() Second solution.

Figures 6–9 show the results of the entropy generation analysis. Figure 6 views the

increment in
�
Ns when Br increases. Adding value in Br engenders more heat in the fluid

flow vicinity, affecting the system more in chaos and resulting in undesirable flow systems’
performance. Moreover, Figure 7 exposes the Bejan number profiles when Br varies, and
the values of Be increases along with the increment in Br. It is clear that the heat transfer
irreversibility is gradually influencing throughout the flow system when Br rises, except
for the case of the Carreau single-typed nanofluid, and Br = 0.5. Figure 7 indicates that
when Carreau nanofluid at Br = 0.5, fluid friction irreversibility dominates the flow system.

Figures 8 and 9 present the profiles of
�
Ns and Be profiles when n varies. The variation in n

gives insignificant changes on
�
Ns and Be profiles. For example, from Figure 8, the state of

the Carreau fluid from portraying the shear-thinning trait and then to the shear-thickening
feature yields more heat energy incorporated to the system but minimal. However, the heat
transfer irreversibility highly influences the fluid flow system, although Figure 9 shows the
minor decrement in Be when the values of n increases.
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φ φ

Figure 6.
�
Ns profiles when χ = 2.5, ω = 0.6, Pr = 8, ε = 0.2, n = 0.8 and We = 0.05.

Figure 7. Be profiles when χ = 2.5, ω = 0.6, Pr = 8, ε = 0.2 and We = 0.05.
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Figure 8.
�
Ns profiles when χ = 2.5, ω = 0.6, Pr = 8, ε = 0.2, Br = 1.5 and We = 0.05.

Figure 9. Be profiles when χ = 2.5, ω = 0.6, Pr = 8, ε = 0.2, Br = 1.5 and We = 0.05.

5. Conclusions

The present work endeavored to investigate the performance of the Carreau thin
hybrid nanofluid film flow and heat transfer while the melting heat transfer effect imposed
on the accelerating sheet. Interestingly, this is the original work in the thin film Carreau
hybrid nanofluid theoretical model, considering the impact of the melting heat transfer.
Two approximate solutions were identified for every variation case. The Carreau hybrid
nanofluid’s heat transfer rate decreases when the fluid adapts to the dilatant feature.
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Besides that, the presence of the hybrid nanoparticles promotes entropy in the flow system
compared to the mono-typed nanoparticles. The numerical solutions with negative film
thickness indicated defective thin film flow and unreliable. However, the melting heat
transfer effect does not affect the liquid film thickness.
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A1 first Rivlin-Ericksen tensor (Pa)
Au gold
b stretching rate

(
s−1)

Be Bejan number (−)
Cf x local skin friction coefficient (−)

Cp specific heat at constant pressure
(

Jkg−1K−1
)

Cu copper
f (ζ) dimensionless stream function (−)
H(t) liquid thin film thickness (m)
I identity tensor (−)

k f fluid’s thermal conductivity
(

Wm−1K−1
)

khn f hybrid nanofluid’s thermal conductivity
(

Wm−1K−1
)

L fluid’s latent heat (J/kg)
n power-law index (−)
�
Ns local entropy generation rate
Nux local Nusselt number (−)
p pressure (Pa)
Pr Prandtl number (−)

qw wall heat flux
(

Js−1m−2
)

Rex local Reynolds number (−)
T temperature (K)
Ts temperature at slit (K)
Tw wall temperature (K)
T0 reference temperature (K)
Tm̃ melting surface temperature (K)
t time (s)
u, v velocity components at x− and y− axes

(
ms−1)

Uw(x, t) accelerating sheet’s velocity
(
ms−1)

V velocity fields
(
ms−1)

We local Weissenberg number (−)
x, y Cartesian coordinates (m)
Greek Symbols

Π second invariant strain rate tensor (Pa)
β unknown parameter (−)
.
γ shear rate (s)
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ω unsteadiness parameter (−)
ζ similarity variable (−)
η apparent viscosity

(
kgm−1s−1)

η∞ high shear rates viscosity
(
kgm−1s−1)

η0 zero shear rates viscosity
(
kgm−1s−1)

θ non-dimensional temperature (−)
λ material time constant (s)
μhn f hybrid nanofluid’s dynamic viscosity

(
kgm−1s−1)

μ f fluid’s dynamic viscosity
(
kgm−1s−1)

ν f base fluid’s kinematic viscosity
(
m2s−1)

ρhn f hybrid nanofluid’s density
(
kgm−3)

σ positive constant
(
s−1)

τ Cauchy stress tensor (Pa)
τw wall shear stress

(
kgm−1s−2

)
φ1 Au’s nanoparticle volume fraction (−)
φ2 Cu’s nanoparticle volume fraction (−)
ψ stream function (−)
χ melting heat transfer parameter (−)
Subscripts

w condition at the stretching sheet’s wall
f base fluid
n f nanofluid
hn f hybrid nanofluid
s1 Au’s solid component
s2 Cu’s solid component
Superscript
′ derivative with respect to ζ
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Abstract: This article presents a qualitative mathematical model to simulate the relationship between
supplied water and plant growth. A novel aspect of the construction of this phenomenological model
is the consideration of a structure of three phases: (1) The soil water availability, (2) the available
water inside the plant for its growth, and (3) the plant size or amount of dry matter. From these
phases and their interactions, a model based on a three-dimensional nonlinear dynamic system
was proposed. The results obtained showed the existence of a single equilibrium point, global and
exponentially stable. Additionally, considering the framework of the perturbation theory, this model
was perturbed by incorporating irrigation to the available soil water, obtaining some stability results
under different assumptions. Later through the control theory, it was demonstrated that the proposed
system was controllable. Finally, a numerical simulation of the proposed model was carried out, to
depict the soil water content and plant growth dynamic and its agreement with the results of the
mathematical analysis. In addition, a specific calibration for field data from an experiment with
wheat was considered, and these parameters were then used to test the proposed model, obtaining
an error of about 6% in the soil water content estimation.

Keywords: nonlinear systems; stability; controllability; irrigation strategy; soil–plant-
atmosphere continuum

1. Introduction

A clear example of World Climate Change’s effects has been the generalized increase
in drought in some Mediterranean climatic-type areas of South America [1]. Particularly in
Chile, since the end of the 1990s, this phenomenon has produced more frequent and severe
droughts that have been referred to as a mega-drought [2,3]. Climate change has serious
implications for agricultural production [4]. Agriculture is the activity that consumes the
most water worldwide because of irrigation, which has been estimated at around 70% [5].
Irrigation is the artificial application of controlled amounts of water to the soil to replace
the water consumed by agricultural crops [6]. Irrigation directly affects the plant’s growth,
yield, and quality of products, playing a key role in Mediterranean climate-type zones [7].
In Chile, irrigated agriculture represents 52% of the total agricultural surface [8] and 1.7%
of the gross domestic product [9], where this economic activity would be impossible
without irrigation.

Specific studies have demonstrated the advantages of applying an adequate irrigation
strategy [10]. Irrigation scheduling must ideally reflect the crop and climate interactions,
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considering the water availability, the moment of its application, and the appropriate distri-
bution in the field [6,11,12]. Indeed, several works that analyzed the irrigation strategies
used to optimize seasonal water consumption have been developed through engineering
crop models, based on biophysical and physiological principles, considering the soil–plant-
Atmosphere Continuum (SPAC) system [13,14]. In general, these engineering crop models
are computer programs that reliably simulate the growth and development of crops based
on specific data. All of them have previously been parameterized and validated, offering
reliable results, which have been broadly studied for specific situations [15]. Another alter-
native to crop modeling is the mathematical approach. Among their advantages are that
they enrich the scientific understanding of the phenomena [16] because they manipulate
all variables involved, analyzing all the possible responses. To mathematically model how
irrigation affects crop growth and the water flow in the SPAC, the phenomenological (or
macroscopic) approach is preferred to the mechanistic (or microscopic) one. This is because
the phenomenological models are generalist models based on energy and mass transfer
principles [17]. Phenomenological models do not require specific soil and plant parameters
that may be hard to determine [17,18].

As far as the authors are aware, there are no mathematical models to describe the
complete SPAC fluxes. Examples of the effects of the aforementioned mega-drought on
agriculture, provided by the development of a generalized mathematical approach, would
help to understand water flows in the SPAC. Additionally, these models offer the possibility
of analyzing how different irrigation strategies could influence productive parameters such
as water productivity, defined as the kilograms of growth per kilogram of water consumed.

We hypothesize that a qualitative mathematical model based on the SPAC interactions
will provide reliable trends on the overall relationship among the water in the soil, plant,
and growth. Considering that mentioned above, the objective of this work was to develop
a phenomenological mathematical model to simulate the relationship between supplied
water and plant growth. Taking into account that there are mathematical models that are
built to explore, test, and generate hypotheses [19], this tool may provide a useful way of
analyzing complex systems and the underlying mechanisms [19,20].

It is important to mention that for simplicity, this model assumes ideal field crop
management. Thus, other factors that affect the accumulation of dry matter [21], such
as soil nutrients, fertilizers, and so forth were considered ideal, the only limiting factor
being the water supply. This model will allow for a description of the effects of different
irrigation strategies on crop growth. The main relevance of this study is that it provides
a mathematical model in a context in which as far as the authors are aware, there are
no similar studies that analyzed the irrigation problem through this approach, coupling
between the water supplied to the plant and its dry mass change.

In this work, the development of the model and its analysis is presented as follows.
Firstly, we propose a system formulated and studied with an initial available amount
of water in the soil. For simplicity, we assumed this concept as being equivalent to the
available water capacity (AWC), water holding capacity (SWHC), or total available water
(TAW) [6,22]. This initial available amount of water in the soil does not consider external
water contributions. This approach is equivalent to assuming, as an initial condition,
soil full of water being available for the plant. Additionally, a qualitative analysis of the
behavior of the dynamic system was carried out, determining the equilibrium points, the
invariant planes, phase diagrams, bounded solutions, and global stability of equilibrium
points. Secondly, a system with external water input (i.e., with irrigation) was studied.
We started by studying irrigation as a perturbation of the original system, and then it is
shown that the said perturbation is a control. Furthermore, simulations were carried out
for some parameter values that allowed us to appreciate the dynamics of the system state
variables, and then a continuous and periodic irrigation strategy was incorporated to show
the effects of irrigation on plant growth. Finally, a calibration and validation example of the
resulting parameters of the proposed model will be presented, based on field experiment
data obtained from a previous study.
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2. Model Formulation

The soil–plant water flow has been traditionally explained by Ohm’s law [23], dividing
the water flow into three phases that represent the stages of the system: (1) variation of
water at the soil root zone; (2) variation of the water inside the plant; and (3) a third
phase that corresponds to the effects of this flow on the variation in the plant growth
and size [24]. In this case, the studied phenomenon was irrigation, and how the soil
water content variations affect the growth of plants. This process is represented by the
following abstraction: The process begins by considering that the soil at the root-zone of the
plant acts like a pond v(t) that contains the available water for plant water consumption
v(t0) = vmax. Then the water from the soil fluxes through the plant to the atmosphere, and
due to photosynthesis, a proportion of that water is transformed into biomass.The other
proportion remains in the plant cells, and a fraction of it allows their growth [25]. The latter
has traditionally been assumed as a sigmoidal growing shape. Under these assumptions, a
three-phase model is proposed: (1) Soil water availability v(t), (2) water inside the plant
available for its growth ω(t), and (3) the plant size or amount of dry matter x(t).

2.1. Water Dynamics at the Root Zone

In the development of this model, the soil at the root zone was assumed to act as a
pond. This assumption is of an analogy that will be repeatedly used in the text. At the
beginning of the growing cycle, it is assumed that this pond starts at full capacity of water
v(t0) = vmax. Then, during the growing cycle, the variations of the water in the pond v′(t)
are composed of two terms: the first is proportional to the amount of water in the soil at
the root-zone, and the second term accounts for the interaction of water inside the plant
with the water of the pond. Here, it must be considered that for large values ω(t), the rate
reaches a constant threshold, as follows:

v′(t) = −γ v(t) − ρ

(
ω(t)

1 + rω(t)

)
v(t), (1)

where r is a constant that modifies the limiting factor of the water inside the plant, γ is the
internal rate of decline in pond water by evaporation, and ρ is the intrinsic rate of water
that goes to the plant.

2.2. Water Dynamics Inside the Plant

The water flow from the soil to roots and then to the whole plant is considered as a
mass transfer process, where the water that enters the plant is equal to that lost through
transpiration, plus that which is stored in the tissues. Then the variation of water w ′(t)
inside the plant available for its growth, responds to the type,

w′(t) =
{

Water absorption
per unit of time

}
−

{
Water removed
per unit of time

}
. (2)

Water absorption: The plant absorbs the soil-water in proportion to the amount of
water v(t) that the pond has in interaction with the water inside the plant ω(t); however,
the water inside the plant for large values ω(t) reaches a constant rate,{

Water absorption
per unit of time

}
= δ

(
ω(t)

1 + rω(t)

)
v(t), (3)

with δ being the intrinsic rate of increase of the water inside the plant.
Water removed: The water that passes throughout the plant is moved by transpiration,

which is considered proportional to the amount of water ω(t) that the plant has, and the
other is retained in the plant tissues and a fraction of it is utilized for plant growth. This
process is considered proportional to the gain of mass G(x) (this term gain will be defined
later) in interaction with the amount of water ω(t). Then:
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{
Water removed
per unit of time

}
= β ω(t) + μ G(x)ω(t), (4)

with constant β being the rate of decrease of water inside the plant, and μ is the plant
growth rate.

From Equations (2)–(4), we have the following relationship for ω′(t).

ω′(t) = δ

(
ω(t)

1 + rω(t)

)
v(t) − β ω(t) − μ G(x)ω(t). (5)

2.3. Plant Growth Dynamics

For the growth of the plant, the variation of dry matter is considered, and it is the result
of a gain less than a degradation term, where an alternative that includes the Ref. [24] is,

x′(t) =
σ x(t)

1 + g x(t)n − m x(t), (6)

where x(t) represents the amount of dry mass at time t, the constant σ corresponds to
the intrinsic growth rate of the plant, g modifies the limiting factor of plant growth, m
corresponds to the rate of degradation of the plant, and factor n allows for modification of
the rapidity of growth of the plant.

Let us now discuss the first term of the Equation (6), as in any population, particularly
of cells of a plant, the rate of gain of a new mass per unit of time at all times t can be a
function of important internal or environmental parameters, also of the same accumulated
mass as a limiting element to growth (dense dependence with negative correlation). The
form of the function that represents the gain and that corresponds to the first term of (6) is
G(x) = ϑ x

1+g xn , which can be seen to be very sensitive to the parameter n. The form of G
(x) is discussed below for some intervals of n, with constant ϑ.

Next are four cases for different values of n:

(a) If n < 0, then G(x) = ϑ x
1+g x−|n| , which for x � 1 tends to ϑ x, which is not realistic,

because the dry mass can not grow forever.
(b) For n = 0, it has G(x) = ( ϑ

1+g ) x, and the dry mass gain increases linearly with the
size of the plant, which, like the previous case, does not represent reality.

(c) For n > 1, if x � 1 then G(x) = ϑ
g

1
x(n−1) , it tends quickly to zero. This case is

unusual, and has been discarded in further analysis.
(d) Finally, the fourth case, with 0 < n ≤ 1, was assumed for the model.

Figure 1 illustrates the effects of parameter n on the function G(x) that represents
the mass gain. Five different values of n are taken into account, considering the four
previous cases.

In relation to the second term of Equation (6), the literature assumes that the plant in
any state of growth has some loss of mass at time t, considered proportional to the size of
the plant at time x(t), with a constant degradation rate m.

Figure 2 represents the size of the plant as a function of time, obtained from the
relationship (6). It can be seen in Figure 2 that at the beginning of the time scale, the size
of the plant tends to grow unlimitedly in a short time interval, for values of n ≤ 0 (blue,
red). This situation does not agree with plants which grow in a common pattern. In nature,
plants can present with accelerated growth in their first growth stages, but it then decreases
in their maturity until reaching a plateau; after that, there is a decrease in their harvest,
or after the end of each growing season [22]. For n = 2 (green), the plant’s size reaches a
constant value very soon (there is no growth), which is not adjusted to the aforementioned
pattern of plant growth. By assuming values of n = 0.8 (yellow) and n = 1.0 (purple), the
simulated behavior of the size of the plant over time shows a shape that reflects the natural
plant growth pattern.
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Figure 1. Rate of mass gain as a function of size of the plant, considering the following parameter
values: ϑ = 0.07 and g = 0.1. This figure shows that for values of n ≤ 0 (blue, red; cases (a), and (b)),
the gain in dry matter grows rapidly (monotonous growth). Similarly, for n = 2 (green; case (c)), the
dry matter gain falls very quickly to zero. For values of n = 0.8 (yellow, case (d)) and n = 1.0 (purple;
case (d)) the behavior of the gain is more realistic. In this work, a value of n = 1 was assumed for
the model.
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Figure 2. Simulation of dry mass growth as a function of time, where: n is the factor that allows for
modification of the plant’s rapidity of growth in t time (days), and x(t) is the amount of dry matter
(unit of mass). For parameter values n ∈ {−1, 0, 0.8, 1, 2}, σ = 0.07, g = 0.1 and m = 0.01.

Finally, in the first term of Equation (6), the intrinsic growth rate of the plant σ is
considered a function of omega, σ(ω) = κω, to incorporate an interaction with the water
entering the plant, where κ is a proportionality constant that accounts for the influence of
water inside the plant on the growth of the crop. In this way, the gain increases when more
water enters the plant, then Equation (6) remains:

x′(t) =
κ x(t)ω(t)
1 + g x(t)

− m x(t), (7)

where one should remember that 0 < n ≤ 1, and for simplicity, we chose n = 1.

Assumptions

A1: In relation to the water that flows from the pond to the plant, it is assumed that
the water absorption rate of the plant is less than or equal to the rate of loss of water
from the pond to the plant, that is, δ ≤ ρ.
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A2: In relation to the process of photosynthesis and plant growth, it is assumed that the
dry matter accumulation rate of the plant is approximately equal to the rate of decrease
of the water inside the plant that goes to photosynthesis. This assumption is supported
by the equation of photosynthesis [26]. Photosynthesis is the process that occurs in
plants (chlorophyll) where the solar energy, through the water hydrolysis, is used for
atmospheric carbon dioxide assimilation, resulting in the production of carbohydrate
molecules and oxygen. The balanced general equation of this phenomenon, for C3
plants, is as follows: 6H2O + 6CO2 −→ C6H2O6 + 6O2, resulting in κ ≈ k.
A3: It is assumed that the rate of water loss through transpiration β is greater than the
rate of water loss through evaporation γ, which is β > γ. In addition, it is assumed
that the degradation rate of the plant m is greater than the rate of water loss through
evaporation γ, which is m > γ. Finally, it is assumed that β > m.

2.4. Mathematical Model

From Equations (1)–(7), the following dynamic system is obtained, which represents
the coupling between the water supplied to the plant and the change of its dry mass.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x′(t) = κ x(t)ω(t)
1+g x(t) − m x(t),

w′(t) = δ
ω(t) v(t)
1+r ω(t) − β ω(t) − k x(t)ω(t)

1+g x(t) ,

v′(t) = −γ v(t) − ρ
ω(t) v(t)
1+r ω(t) .

(8)

More simply,
(x′, ω′, v′)T = f (x, ω, v), (9)

where f (x, ω, v) represents the right side of the system (8).
For obtaining a system of nonlinear differential equations in three dimensions where

it has been used, μ ϑ = k is a constant that represents the intrinsic rate of water decrease
by photosynthesis. The parameters are presented in Table 1.

System (8) is defined in the region Ω = {(x, ω, v) ∈ R3 | x, ω, v ≥ 0}.

Table 1. Parameters considered in the present study.

Parameters Meaning Units

κ Intrinsic growth rate per unit of water inside the plant [time× mass]−1

g Limiting factor constant of x(t) [mass]−1

m Plant degradation rate [time]−1

δ Intrinsic rate of increase of the water inside the plant [time ×mass]−1

r Limiting factor constant of ω(t) [mass]−1

β Rate of decrease of water inside the plant [time]−1

k Intrinsic rate of water decrease by photosynthesis [time × mass]−1

γ Inner rate of decrease of the pond water [time]−1

ρ Intrinsic rate of water that goes to the plant [time × mass]−1

Remarks

• Plant size variation. In the Equation (8), the first term of x′ corresponds to the growth
rate of the plant due to the water inside the plant represented by ω, and the expression
(1 + g x)−1 is the limiting factor of plant growth. The second term corresponds to the
rate of degradation of the plant.

• Variation of water inside the plant. The first term of ω′ accounts for the rate of
increase of the water inside the plant due to the water coming from the pond v, and
the expression (1 + r ω)−1 corresponds to the limiting factor of the increase in water
inside the plant. The second term represents the rate of decrease of the water inside
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the plant caused by transpiration. The third term is the rate of water loss inside the
plant as a result of photosynthesis, and the expression k x(1 + g x)−1 represents the
rate of decrease per capita, the x = g−1 value corresponds to half of the maximum
decrease rate kg−1.

• Variation of water in the pond. The first term corresponds to the rate of decrease in
pond water due to evaporation losses. The second term is the rate of decrease of the
pond water flowing into the plant, the expression ρ ω(1 + r ω)−1 represents the rate
of decrease per capita of pond water flowing to the plant, and the ω = r−1 value
corresponds to half of the maximum decrease rate ρr−1.

3. Main Results

Lemma 1. The coordinate planes of the system (8) are invariant.

Proof. It will be proved that the x ω plane is invariant, and the proof is similar for the
other planes. On one side, let S1 be the plane x ω with v = 0, then the vector 〈0, 0, 1〉
is always normal to S1. On the other hand, points (x, ω, 0) of S1 comply, 〈x′, ω′, v′〉 =
〈 κ x ω

1+g x − m x, −β ω − k x ω
1+g x , 0〉.

In this way, the following result is obtained:

〈0, 0, 1〉 · 〈x′, ω′, v′〉 = 〈0, 0, 1〉 ·
〈

κ x ω

1 + g x
− m x, −β ω − k x ω

1 + g x
, 0

〉
= 0,

which shows that the plane x ω is invariant.

Proposition 1. The solutions of system (8) are uniformly bounded.

Proof. Defining z(t) as:

z(t) =
x(t)

κ
+

ω(t)
k

+
δ

ρ k
v(t), z(t = 0) = z0 =

x0

κ
+

ω0

k
+

δ

ρ k
v0.

Then,

z′(t) =
x′(t)

κ
+

ω′(t)
k

+
δ

ρ k
v′(t) = −

(
m
κ

x(t) +
β

k
ω(t) +

γδ

k ρ
v(t)

)
,

and by assumption A3, the min{m, β, γ} = γ. Then, z′(t) satisfies

z′(t) ≤ − γ

(
x(t)

κ
+

ω(t)
k

+
δ

ρ k
v(t)

)
= −γ z(t). (10)

Using the comparison principle (lemma) [27], then from the differential inequality (10),
we obtain

0 ≤ z(t) ≤ z0 e−γt, ∀t > 0.

The equilibrium points of the system (8) are:

p0 = (0, 0, 0),

p1 = (0, − γ
ε , βρ

δε ),

p2 = ( −β
k+βg , km

κ(k+βg) , 0),

p3 =
(
− 1

mg (
κγ
ε + m), −γ

ε , kρ
κgδγε (

κgβγ
k + κγ + mε)

)
,
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with ε = ρ + γr. Considering that the state variables represent non-negative quantities,
then only the equilibrium points that are in the first octant are of interest. Thus, the only
equilibrium point of interest is p0 = (0, 0, 0).

Lemma 2. The equilibrium point p0 = (0, 0, 0) is locally asymptotically stable.

Proof. The eigenvalues of the Jacobian matrix evaluated at the point (0, 0, 0) are: λ1 =
−m, λ2 = −β, λ3 = −γ; therefore, (0, 0, 0) is locally stable.

Proposition 2. p0 = (0, 0, 0) is a globally exponentially stable equilibrium point.

Proof. Using the direct method of Lyapunov demonstrates the global exponential stability
of the system. The following scalar function is considered:

V(x, ω, v) =

(
k
κ

x + ω +
δ

ρ
v
)2

. (11)

(i) Clearly, V(0, 0, 0) = 0 and V(x, ω, v) > 0 for (x, ω, v) �= (0, 0, 0).

(ii) V′(x, ω, v) = − 2
(

k
κ x + ω + δ

ρ v
) (

k m
κ x + β ω + γ δ

ρ v
)

.

Then, V′(x, ω, v) < 0 in Ω−{(0, 0, 0)}, given that all the parameters: k, κ, δ, ρ, m, β
and γ are positive, and the state variables are also positive.

(iii) V(x, ω, v) =
(

k
κ x + ω + δ

ρ v
)2

≤ r1
(
2(xω + xv + ωv) + (x2 + ω2 + v2)

)
. With

r1 = max{( k
κ )

2, 1, ( δ
ρ )

2, k
κ , kδ

κρ , δ
ρ}, according to the Assumptions r1 = 1, obtaining

V(x, ω, v) ≤ 4 ‖(x, ω, v)‖2.
On the other hand, V(x, ω, v) ≥

(
( k

κ )
2x2 + ω2 + ( δ

ρ )
2v2

)
≥ r2‖(x, ω, v)‖2,

with r2 = min{( k
κ )

2, 1, ( δ
ρ )

2}, according to the Assumptions r2 = ( δ
ρ )

2, obtaining

V(x, ω, v) ≥ ( δ
ρ )

2‖(x, ω, v)‖2.

Obtaining ( δ
ρ )

2‖(x, ω, v)‖2 ≤ V(x, ω, v) ≤ 4 ‖(x, ω, v)‖2.

(iv) V′ ≤ −2 min{m, β, γ}
(

k
κ x + ω + δ

ρ v
)2

, according to the Assumptions,
min{m, β, γ} = γ.
Obtaining V′ ≤ −2γ V.

(v) Since the Lyapunov function it is strictly increasing, lim
‖(x,ω,v)‖→∞

V(x, ω, v) = ∞.

4. Modeling with Irrigation

To consider adding external water to the system, in Equation (9), a term I(t, x, ω, v) is
incorporated that accounts for the way in which the water is added.

(x′, ω′, v′)T = f (x, ω, v) + I(t, x, ω, v). (12)

The term I = (0, 0, I3)
T is considered a perturbation of the system. Suppose the

perturbation term satisfies the linear growth bound.

‖I(t, x, ω, v)‖ < η ‖(x, ω, v)‖. ∀ t ≥ 0, ∀ (x, ω, v) ∈ Ω, (13)

where η is a nonnegative constant,

η <
c3

c4
, (14)

where c3 and c4 are defined by the Lyapunov function (11) of the nominal system (9) that
satisfies the following three conditions,

c1‖(x, ω, v)‖2 ≤ V ≤ c2‖(x, ω, v)‖2, (15)
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V′ =
∂V
∂t

+
∂V

∂(x, ω, v)
f (x, ω, v) ≤ −c3‖(x, ω, v)‖2, (16)∥∥∥∥ ∂V

∂(x, ω, v)

∥∥∥∥ ≤ c4 ‖(x, ω, v)‖, (17)

where c1 = min{( k
κ )

2, 1, ( δ
ρ )

2}, c2 = 4 max{( k
κ )

2, 1, ( δ
ρ )

2, k
κ , kδ

κρ , δ
ρ},

c3 = min{mk2

κ2 , β, γδ2

ρ2 }, c4 = 4
[(

k
κ

)2
+ 1 +

(
δ
ρ

)2
] 1

2
max{ k

κ , 1, δ
ρ}.

Considering the Assumptions of the model, the following is obtained: c1 = ( δ
ρ )

2, c2 ≈ 4,

c3 = γ( δ
ρ )

2. For the case c4, from the Assumptions A2, we have that k
κ ≈ 1, where from A1

you get δ
ρ ≤ 1, then max{ k

κ , 1, δ
ρ} = 1, obtaining c4 ≤ 4

√
3; then, we assume that c4 ≈ 6.

Lemma 3. Suppose the perturbation term satisfies I(t, 0, 0, 0) = 0, for t ≥ 0. Then, equilibrium
point p0 = (0, 0, 0) is globally exponentially stable of the system (12).

Proof. We use V of the nominal system (9) as a Lyapunov function candidate for (12).

Lyapunov function V(x, ω, v) =
(

k
κ x + ω + δ

ρ v
)2

.

V′ =
∂V
∂t

+
∂V

∂(x, ω, v)
[ f (x, ω, v) + I(t, x, ω, v)],

occupying Equation (16), we obtain

V′ ≤ −c3‖(x, ω, v)‖2 +

∥∥∥∥ ∂V
∂(x, ω, v)

∥∥∥∥‖I(t, x, ω, v)‖, (18)

substituting Equations (17) and (13) into (18)

V′ ≤ (−c3 + ηc4)‖(x, ω, v)‖2,

using the relation (14) we obtain V′ ≤ 0.

Now we are going to consider the more general case I(t, 0, 0, 0) �= 0, and we cannot
expect the solutions to approach the origin for long times, but we can ensure that the
solutions are ultimately confined by a small bound in some sense.

Theorem 1. Suppose the perturbation I(t, x, ω, v) satisfies

‖I(t, x, ω, v)‖ <
1

8
√

2
γ r, (19)

where equilibrium point p0 = (0, 0, 0) is globally asymptotically stable of the system (9). Then, the
system solutions (12) satisfy

‖(x(t), ω(t), v(t))‖ ≤ τ e−α(t−t0) ‖(x(t0), ω(t0), v(t0))‖, ∀ t0 ≤ t < t0 + T,

and
‖(x(t), ω(t), v(t))‖ ≤ b, ∀ t ≥ t0 + T,

where τ =
√

c2
c1

= 2 ( ρ
δ ), α = 1

8 γ(1 − θ)( δ
ρ )

2, b = 3
√

2
4 ( ρ

δ )
3 r

θ , 0 < θ < 1.

Proof. We use V of the nominal system (9) for a perturbed system (12) and using Equation (18),
we obtained

V′ ≤ −c3‖(x, ω, v)‖2 +

∥∥∥∥ ∂V
∂(x, ω, v)

∥∥∥∥‖I(t, x, ω, v)‖.
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Using Equations (17) and (19), with γ r
8
√

2
≡ λ was obtained,

V′ ≤ −(1 − θ)c3‖(x, ω, v)‖2 − θc3‖(x, ω, v)‖2 + c4λ‖(x, ω, v)‖, 0 < θ < 1.

For ‖(x, ω, v)‖ ≥ c4λ
c3θ ≡ μ was obtained,

V′ ≤ −(1 − θ)c3‖(x, ω, v)‖2. (20)

Now we separate the proof into two cases.
First case: V ≥ c2 μ2, with (15) is obtained ‖(x, ω, v)‖ ≥ μ, for all t0 ≤ t < t0 + T.
From Equation (15) and (20), V′ ≤ −(1 − θ) c3

c2
V obtaining,

V ≤ e−
c3
c2
(1−θ)(t−t0) V0, with V0 = V(t0). (21)

Replacing (21) in (15), and using V0 ≤ c2 ‖(x(t0), ω(t0), v(t0))‖2 is obtained,

‖(x, ω, v)‖ ≤
[

1
c1

V
] 1

2
≤

√
c2

c1
e−

c3
2 c2

(1−θ)(t−t0) ‖(x(t0), ω(t0), v(t0))‖. (22)

This inequality (22) is valid for the interval [t0, t0 + T) during which V ≥ c2 μ2.
Second case: V < c2 μ2, t ≥ t0 + T.

From Equation (15), ‖(x, ω, v)‖ ≤
[

1
c1

V
] 1

2 ≤
[

1
c1

c2 μ2
] 1

2 , then,

‖(x, ω, v)‖ ≤
√

c2

c1
μ ≡ b.

5. Irrigation as Control

Now the external water added to the system is considered as a control
I(t, x, ω, v) = h(x, ω, v) u, and from (9) the equation of state is obtained, with
h(x, ω, v) = (0, 0, 1)T . Thus, the system (12) assumes the following form:

(x′, ω′, v′)T = f (x, ω, v) + h(x, ω, v) u, (23)

with output equation
y = l(x, ω, v) = x. (24)

Lemma 4. vicente

(a) The input-affine system model (23) and (24) is linearizable.
(b) Let (x, ω, v) ∈ int(Ω) =

{
(a, b, c) ∈ R3/a, b, c > 0

}
, the system (23) is feedback linearizable.

Proof. In the first case, using the Lie derivative, we calculate the relative degree of the
nonlinear systems (23) and (24).

We define Ψ1 = l(x, ω, v) = x, then ∂Ψ1
∂(x,ω,v) = (1 0 0). Thus,

Ψ2 ≡ ∂Ψ1

∂(x, ω, v)
f (x, ω, v) =

κ x ω

1 + gx
− mx,

and ∂Ψ2
∂(x,ω,v) = ( κ ω

(1+gx)2 − m κ x
1+gx 0) is obtained. Finally,
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Ψ3 ≡ ∂Ψ2

∂(x, ω, v)
f (x, ω, v),

= (
κ ω

(1 + gx)2 − m)(
κ xω

1 + gx
− mx) +

κ x
1 + gx

(
δωv

1 + rω
− βω − k xω

1 + gx
).

Therefore,

∂Ψ1

∂(x, ω, v)
h(x, ω, v) =

∂Ψ2

∂(x, ω, v)
h(x, ω, v) = 0, and

∂Ψ3

∂(x, ω, v)
h(x, ω, v) = (

∂Ψ3

∂x
∂Ψ3

∂ω

∂Ψ3

∂v
)

⎛⎝ 0
0
1

⎞⎠ =
κδxω

(1 + gx)(1 + rω)
�= 0.

Therefore, the (23) and (24) system has relative degree 3.
In the second case, we calculate the rank of matrix G =

[
h, ad f h, ad f

2h
]

constructed
from Lie brackets, and check that the distribution D = span{h, ad f h} is involutive.

(I) Let’s evaluate the second term of G,

ad f h = [ f , h] =
∂h

∂(x, ω, v)
f (x, ω, v) − ∂ f

∂(x, ω, v)
h(x, ω, v)

=

⎛⎝ 0
δω

1+rω
−γ − ρω

1+rω

⎞⎠.
(25)

Now let’s calculate the third term of G:
ad2

f h = [ f , ad f h]

=

⎛⎜⎝0 0 0
0 δ

(1+rω)2 0
0 − ρ

(1+rω)2 0

⎞⎟⎠
⎛⎝ f1

f2
f3

⎞⎠ −

⎛⎝ f1 x f1 ω f1 v
f2 x f2 ω f2 v
f3 x f3 ω f3 v

⎞⎠ ⎛⎝ 0
δω

1+rω
−γ − ρω

1+rω

⎞⎠

ad2
f h =

⎛⎜⎜⎜⎜⎜⎜⎝

κδxω
(1+gx)(1+rω)

f2
δ

(1+rω)2 − ∂ f2
∂ω

δω
1+rω + ∂ f2

∂v (γ + ρω
1+rω )

− f2
ρ

(1+rω)2 − ∂ f3
∂ω

δω
1+rω + ∂ f3

∂v (γ + ρω
1+rω )

⎞⎟⎟⎟⎟⎟⎟⎠ ≡

⎛⎝ r1
r2
r3

⎞⎠ (26)

The matrix remains G

G =

⎛⎝0 0 r1
0 δω

1+rω r2
1 (−γ − ρω

1+rω ) r3

⎞⎠.

Then rg(G) = 3.
(II) The distribution D = span{h, ad f h} is involutive, since:

(i) Clearly, {h, ad f h} is linearly independent, with h =

⎛⎝ 0
0
1

⎞⎠ and

ad f h =

⎛⎝ 0
δω

1+rω
−γ − ρω

1+rω

⎞⎠.
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(ii) Let’s evaluate the range of
[

h, ad f h, [h, ad f h]
]
.

rg
[

h, ad f h, [h, ad f h]
]

= rg

⎛⎝0 0 0
0 δω

1+rω 0
1 (−γ − ρω

1+rω ) 0

⎞⎠ = 2.

Corollary 1. Under the conditions of the Lemma above the input-affine system, (23) and (24)
are controllable.

Proof. From the input-affine form (23) and (24), the following sets of vector field L are
constructed, formed by the Lie brackets. L =

{
h, ad f h, ad f

2h
}

. From (25) and (26), we get

L =

⎧⎨⎩
⎛⎝ 0

0
1

⎞⎠,

⎛⎝ 0
δω

1+rω
(−γ − ρω

1+rω )

⎞⎠,

⎛⎝ r1
r2
r3

⎞⎠⎫⎬⎭.

Then, dim(L) = 3.

6. Numerical Examples and Simulations

6.1. Dynamics of the State Variables of the System

The model (9) was implemented using a script written using Matlab© R2019a (Math-
works Inc., Natick, MA, USA). It is important to highlight that water is the main component
of plants—approximately between 80 % and 90 % of the fresh weight in herbaceous plants,
and more than 50 % in woody plants [23]. In this simulation, it has been considered
for the initial values of the states that 70% corresponds to water inside the plant avail-
able for growth, and 30% corresponds to dry mass, then x(0) = 3.0, ω(0) = 7.0 and
v(0) = vmax = 20.0 (Figures 3–5). The parameter g = 0.1 was taken from Thornley [24].
The parameters β and γ were conditioned by Assumption A3, β > m and γ < m, and
we took β = 0.1, γ = 0.000009 and m = 0.00001 and κ = 0.01. From Assumption A2,
k ≈ κ = 0.01. Parameters δ, ρ and r were arbitrarily manipulated to fit the curves, and
do not necessarily represent values associated with particular cases, with the condition
imposed by Assumption A1, δ ≤ ρ.

Figure 3 presents a simulation of the system without irrigation, which allows us to
appreciate the dynamics of the states, for a cultivation period of 300 days. It can be seen that
the curve that represents the water available in the soil v(t) (green line) approaches zero for
a time t around 35, like the water available inside the plant ω(t) (black line). Additionally,
the amount of dry matter x(t) (red line) has strong growth of t around 30, and then very
slowly decays.

The study of the behavior of the long-term solutions and their stability was carried
out in order to determine the validity of the model and its construction in qualitative terms,
however, for practical application purposes, the behavior of the crops in the short term is
of interest for decision-making. This motivated the next numerical scenario.

114



Mathematics 2022, 10, 151

t

0 50 100 150 200 250 300

x
(t
),
ω
(t
),
v
(t
)

0

5

10

15

20

25

30

x(t)

ω(t)

v(t)

Figure 3. State dynamics for the system without irrigation, time t in days, where v(t) (green line),
ω(t) (black line), and x(t) (red line) are the water available in the soil, the water inside the plant,
and the amount of dry matter, respectively. Parameter values: x(0) = 3.0, ω(0) = 7.0, v(0) = 20.0,
κ = 0.01, g = 0.1, m = 0.00001, δ = 1.0, r = 20, β = 0.1, k = 0.01, γ = 0.000009, ρ = 2.0.

6.2. Irrigation Strategy

Now we incorporate irrigation in the system (9) to analyze through simulations how
irrigation of a farm field influences plant growth. For this, an irrigation function I(t) is
incorporated to state variable v(t) of the system (9). We consider a bounded, continuous,
differentiable, and periodic irrigation I(t) function, Figure 6. Crop seasons were of 300 days,
with irrigation during the first 200 days, an irrigation period of 32 days, with each watering
lasting one day, and levels of irrigation of 30 volume units.

When applying the irrigation function I(t) to the system (9), there are fluctuations
in the amount of water in the soil available v(t) for the growth of the plant, as shown
in Figure 4. The horizontal lines mark the thresholds for the availability of water in the
soil; most of the pores of Saturated soils (Sat) were occupied by water, which prevents
the uptake of oxygen by the roots; Field Capacity (FC) is the amount of water in the soil
after drainage; and Management Allowed Depletion (MAD) is the percentage of depletion
without reduction of crop yield [6]. The vertical arrows indicate the times when irrigation is
applied. Six irrigation applications were made during the season, where the first irrigation
was carried out when the initial amount of water v(0) = vmax = 20.0 reached the MAD
value, approximately at t = 32; thus, the irrigation period will be 32. The amount of water
supplied in each irrigation slightly exceeds FC.
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Figure 4. Soil water content v(t) for the plants’ growth. The horizontal lines represent the soil water
thresholds, Saturated soils (Sat, upper line), Field Capacity (FC), and Management Allowed Depletion
(MAD, bottom line). The vertical arrows indicate the times when irrigation is applied. Initial
conditions x(0) = 3.0, ω(0) = 7.0, v(0) = 20.0, parameter values κ = 0.01, g = 0.1, m = 0.00001,
δ = 1.0, r = 20, β = 0.1, k = 0.01, γ = 0.000009, ρ = 2.0.

Figure 5 shows the dynamics of the states of system (9) when applying the irrigation
function of Figure 6. Comparing Figure 5 with Figure 3, it is possible to see how irrigation
affects crop growth. The irrigation schedule allows the accumulation of dry matter x(t) to
increase during the irrigation period (200 days in the numerical example). When irrigation
is suspended, ω(t) and v(t) tend to zero, and the process of dry matter accumulation stops.
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Figure 5. State dynamics for the system with irrigation, time t in days, where v(t) (green line), ω(t)
(black line), and x(t) (red line) are the water available in the soil, the water inside the plant, and the
amount of dry matter, respectively. Parameter values: x(0) = 3.0, ω(0) = 7.0, v(0) = 20.0, κ = 0.01,
g = 0.1, m = 0.00001, δ = 1.0, r = 20, β = 0.1, k = 0.01, γ = 0.000009, ρ = 2.0.
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Figure 6. Irrigation function I(t) in days t. This function is considered bounded, continuous,
differentiable, and periodic in order to represent a realistic case. Six watering applications were
considered during the season.

6.3. Assessment of the Model Performance Using Experimental Data

As our work did not have its own field data, and under the need to evaluate the perfor-
mance of the proposed model, it was assessed against field data obtained from Andarzian
et al. [28]. In this work, the authors presented the results from a field experiment carried
out on full and deficit irrigated wheat production in Iran. Mainly, data from this research
were obtained from [28] (Figure 1, page 4), which describes the soil moisture dynamics
for wheat (1) under full and (2) with water deficit irrigation. The values from this figure
were hand-extracted to a Comma Separated Values (CSV) file, using the WebPlotDigitizer
webpage (https://automeris.io/WebPlotDigitizer/, accessed on 13 December 2021). Please
consult the work of Andarzian et al. [28] for more details.

Data-processing and statistical analysis. The system (9) was solved numerically,
adjusting the output v(t) for the soil water content, considering the case under water
deficit. This parameterization was carried out using a nonlinear least squares curve-fitting
method [29], by occupying a script developed in Matlab© R2019a (Mathworks Inc., Natick,
MA, USA). The actual data from the soil moisture obtained from Andarzian et al. [28] were
used to fit the parameters to find the best solution. The resulting parameter values of the
model that minimized the difference between simulated and measured data are presented
in Table 2. The performance of the data fit is presented in Figure 7.

Table 2. Proposed model resulting parameters.

Parameters Values Units

κ 0.99373 [days× mm]−1

g 0.10390 [mm]−1

m 1.07359 [days]−1

δ 1.02885 [days × mm]−1

r 1.22763 [mm]−1

β 1.35470 [days]−1

k 0.01003 [days × mm]−1

γ 0.00001 [days]−1

ρ 0.01146 [days × mm]−1
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Figure 7. Model fit from the deficit irrigated wheat data (data extracted from Andarzian et al., [28].)

Then the parameters from Table 2 were used to test the proposed model, considering
the simulation with irrigation v(t). For this purpose, the data extracted from Andarzian
et al. [28] for the experiment with full irrigation were used as ground truth, and they were
compared against the proposed model’s outputs. The model performance of that simulated
against measured data was carried on by the classical curve fit suggested by Mayer and
Butler [30]. The statistical parameters used were the Pearson’s correlation coefficient (r), the
Mean Absolute Error (MAE), and the Root Mean Square Error (RMSE) deviance parameters.
Figure 8 shows the graphs of the simulated and measured data.
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Figure 8. Soil water content trends for modeled and actual data for full irrigated wheat (using the
calibrated parameters from Table 2, and measured data from Andarzian et al. [28]). Field Capacity
(FC), Permanent Wilting Point (PWP), Root Mean Square Error (RMSE), Mean Absolute Error (MAE),
and Pearson’s correlation coefficient (r).

The performance of the modeled against measured values, depicted in Figure 8,
showed good trends, highlighting the model’s capabilities to simulate the soil water content
behavior. The green line was very close to the measured values (orange crosses), considering
a cycle of two irrigations for the experiment on wheat. Regarding the statistical validation,
the r = 0.51, with an RMSE and MAE of 28.63 and 20.11 mm, can be considered acceptable
for irrigation purposes [28,31,32].
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7. Discussion

As far as the authors are aware, in the literature, there is a large number of works
that study the irrigation phenomenon considering the SPAC system from computational
simulations [6,15,20,33–36]. The models above have been described as methods to under-
stand and reproduce the water fluxes from the root zone to the atmosphere, evaluating
specific climatic scenarios and their influence on plant growth. These approaches can be
used to simulate point examples, and are very useful for particular field conditions and
management. In our case, the qualitative characteristics of the proposed model could allow
for simulations of all situations. In the development of this model, it was assumed that
the relation between irrigation and plant growth could be compartmentalized into three
parts: The soil water availability, (2) the available water inside the plant for its growth, and
(3) the plant size or amount of dry matter. In the construction of the model, it has been
considered that the water in the soil only reduces due to the evaporation from the soil and
the water consumed by the plant by the transpiration. This last flux allows the plant to
photosynthesize. This phenomenon increases the plant’s biomass (dry mass amount) due
to the water inside the plant available for growth, considering the losses due to degradation.
For the relationship between the parameters of the model (8), whose description is given in
Table 1, some assumptions have been considered: the rate of flow of water from the pond
(soil) to the plant (ρ) being greater or equal to the rate of flow of water entering from the
soil to the plant (δ). Furthermore, the rate of accumulation of dry matter (or dry mass) (κ) is
approximately equal to the rate of decrease of the water inside the plant that goes towards
photosynthesis (k). Finally, the rate of flow of water corresponding to transpiration (β) is
greater than the flow rate of evaporated water (γ).

The stability analysis of the proposed model was divided into two parts, with and
without an external water supply. The system without an external water supply was first
studied (8). Second, it was studied with an external water supply giving rise to the two
models (12) and (23) based on the perturbation theory and control theory results.

For the analysis of the model, it was considered that the soil starts with a certain
amount of water, the plant starts with a certain size, and at the beginning of the process,
there is a certain amount of water inside the plant available for growth. These considera-
tions were both for the system without external water supply (or irrigation) (8) and also for
the systems with an external water supply, both the perturbed (12) and control (23).

The proposed mathematical model (8) without an external water supply meets the
following properties: The solutions of the system are uniformly bounded, and this indicates
that the states’ variables do not grow indefinitely. It was also found that the system
has a single equilibrium point given by (0,0,0) which is globally exponentially stable,
showing that given any initial condition, the water–plant interaction does not persist in the
long term.

The simulation shown in Figure 3 indicates that the proposed mathematical model
allows to qualitatively account for the expected behavior in the dry matter changes of the
plant as a function of the soil water, and the dynamics of the curves are in accordance with
what is expected in general for the behavior of plants.

The effect of an external water supply was subsequently studied. In the first place, the
external water supply was treated as a perturbation to the original model (8) through an
irrigation function, obtaining the system (12). If the perturbation is bounded and null at the
origin, that is, at the beginning of the process, there is no external water supply, then the
equilibrium point (0,0,0) is globally exponentially stable, maintaining the stability behavior
similar to the original system. If the perturbation is not null at the origin, that is, at the
beginning of the process there is an external water supply, a bound was found in terms of
the system parameters so that said perturbation maintains similar stability to the original
system, this bound turned out to be proportional to inner rate of decrease of the soil water
content (γ). Second, the irrigation was treated as a control (23) and it was found that the
system is controllable by taking the size of the plant as the output state, which implies that
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it is theoretically possible to achieve a desired plant size level from any initial state through
a continuous irrigation strategy dependent on the state variables.

Figures 4 and 5 show that when applying continuous and periodic irrigation, there
are fluctuations in the amount of water in the soil available for the plant, that oscillate
between the thresholds for the availability of water in the soil FC and MAD, thus achieving
sustained growth of the plant. This was most evident when comparing Figures 3 and 5.

After the parameterization, the proposed model obtained an acceptable simulation
of the soil water content seasonal trends (Figure 8), considering a specific calibration for
field data, from an experiment on wheat. Notwithstanding, this is a specific example. The
proposed model’s performance should be parameterized and validated whenever tested
against field data.

8. Conclusions

In this work, a mathematical model based on the SPAC system was proposed from
a phenomenological paradigm to study the effect of irrigation on plant growth from a
macroscopic perspective. This mathematical approach has been focused on increasing the
understanding of plant–water relation growth dynamics from a qualitative point of view.

A contribution of this work is that it provides a mathematical simplified model to
describe the dynamic of the water from the root zone to the plant, their interactions, and
how they affect plant growth. This is the first attempt to approximate such a phenomenon
in a simple way.

The application of the model to actual data resulted in an acceptable performance for
wheat irrigation, considering specific parameters calibration. For future work, it is expected
to adjust the model with the results of other field experiments quantitatively. Their potential
for use and limitations will depend on its configuration and calibration using ground truth
data. Its simplicity, if adequately parameterized, could lead to obtaining representative
simulations for more specific purposes, such as irrigation management. As indicated herein,
the complex interactions among the soil water availability, water availability, and plant
growth open new needs for exploring an adjustment to the proposed model.
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Abstract: Social networking sites (SNSs) are used widely, raising new issues in terms of privacy and
disclosure. Although users are often concerned about their privacy, they often publish information
on social networking sites willingly. Due to the growing number of users of social networking sites,
substantial research has been conducted in recent years. In this paper, we conducted a systematic
review of papers that included structural equations models (SEM), or other statistical models with
privacy and disclosure constructs. A total of 98 such papers were found and included in the analysis.
In this paper, we evaluated the presentation of results of the models containing privacy and disclosure
constructs. We carried out an analysis of which background theories are used in such studies and
have also found that the studies have not been carried out worldwide. Extending the research to
other countries could help with better user awareness of the privacy and self-disclosure of users
on SNSs.

Keywords: structural equations modeling; social networking sites; privacy; disclosure

1. Introduction

Nowadays, people use multiple social networking sites (SNSs) and other digital tech-
nologies, which have presented an important communication form in recent years, and
are also, therefore, of great interest for researchers. SNSs are networked communication
platforms where users publish their profiles that include user-supplied content, content
provided by other users and data provided by the system; platforms where users can connect
with other users; and a platform where users interact with user-generated content on the
SNSs [1]. Facebook has been the most popular social network since 2009, with 2.89 billion
monthly active users, and it is estimated that, in 2022, SNSs will reach 3.96 billion users [2].
Facebook is just one example of SNSs; however, in most research, it is used as a platform
that researchers take as an example while asking users different questions regarding their
use of SNSs.

User-generated content raises privacy issues, and questions on what effect privacy
issues have on the disclosure of users on SNSs. Privacy is a personal boundary regulation
process that regulates private information, and, depending on the context and disclosure of
the information is defined as the act of revealing personal information to others [3–5]. The
number of social networking users is rising, and although users are often concerned about
their privacy, they often publish information on social networking sites willingly, which is
also called a privacy paradox [6].

In this paper, we have searched for publications with statistical models containing
both privacy and disclosure constructs. Most of the statistical models were structural
equations models (SEM). The purpose of SEM is to assess model fit and test the hypotheses
of the research [7]. SEM models are used in different areas, including financial operations,
vaccination prediction and similar [8,9].

The motivation to start this study was to present a systematic review and analysis
of state-of-the-art research in the field of privacy and disclosure on SNSs. In recent years,
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several studies researching the topic have been published, and the aim of this paper is also
to indicate the missing links in the topic, and to show successfully presented research on
this topic. This review could help future researchers to establish new models based on the
existing models, and also give an overview of where the current studies were carried out
and what their main findings were. This paper also presents measurement parameters for
the presentation of models, and this could help with a better presentation of the research in
this topic.

The systematic review only includes papers or publications containing privacy and
disclosure constructs in the statistical models used. We have excluded review type re-
search, discussions and model proposals without confirmation of the models presented.
Researchers building new models with privacy and disclosure constructs on SNSs or other
technologies could get a better overview of the research that has already been conducted
on this topic and the missing research in the field.

The contribution of this study is to present state-of-the-art research where statistical
models were formed in regard to SNSs users, their views of privacy and disclosure. Further
on, a list of measurement parameters of the papers will be presented, and could be used by
researchers as a checklist on what they should report in papers with statistical models.

The rest of the paper is organized as follows. In Section 2, we have reviewed existing
literature and presented the background of SNSs, privacy and disclosure. In Section 3, we
have defined the methodology for the systematic review, research questions, data sources,
evaluation process, study criteria, data collection and literature measurement parameters.
In Section 4, we have presented a bibliometric overview of the 98 selected publications, and
carried out the analysis of the publications and the parameters of the papers included in
the presentation of the models. A discussion of the results and the conclusion is presented
in Section 5. In Appendix A, there is a full bibliometric overview of the 98 selected papers,
and in Appendix B there is a table with scores for the measurement parameters of the
models presented in the papers.

2. Background

This section discusses the fundamentals of privacy and disclosure in SNSs and the
fundamentals of structural equations modeling (SEM), to help understand the rest of this
paper. There were some systematic literature reviews done on this topic, but none of
them include privacy and disclosure constructs in models where SNSs users were used
as respondents to a questionnaire. In one study, the privacy paradox was explained by a
systematic literature review, and other studies have focused their reviews only on privacy
or disclosure constructs separately [10–15].

2.1. Privacy and Disclosure on SNSs

Privacy and disclosure on SNSs have been a topic of interest in many previous studies.
Privacy presents an option where a person chooses the information they share and with
whom they share it by using privacy controls on the SNSs. This is also similar to offline
conversations in communication privacy management theory [16,17]. Many studies use
different privacy constructs in their models; in one study there have been significant effects
of information collection, profile control and general privacy concerns on privacy concerns
and willingness to share users’ profiles with Facebook apps [18]. In regard to privacy
control, some studies show that users tend to close their profiles on Facebook if their friends
also have their profiles closed [19]. The privacy paradox shows that users often have high
privacy concerns, but do not put any effort into making their information private [15].
Privacy constructs are often also connected to risk, where a user evaluates the risk of
posting their personal information on the SNSs [20,21]. Trust is also a construct often
connected to privacy, and has an impact on the user’s disclosure [22].

There are different disclosure factors in research connected to SNSs; some of them
only involve self-disclosure, others also involve general information disclosure or intention
to disclose information on the SNSs. Privacy constructs often have an effect on different
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disclosure behaviors of users on SNSs. Studies often confirm the effect of privacy concerns
on self-disclosure [23,24]. Regarding information disclosure on Facebook, parents’ educa-
tional influence and frequent use of SNS motivate users to be more concerned about their
privacy and to disclose less information [25]. Other constructs that have some impact on the
disclosure of information on SNSs are the time being spent on SNSs, the number of friends,
perceived risks and benefits, the need for popularity and personality factors [26–28]. The
effects of privacy concerns, trusting beliefs and information sensitivity on information
disclosure were confirmed in a study on Facebook users [29]. Moreover, other studies
found a significant effect of privacy constructs on self-disclosure behaviors [30–32]. Often,
data mining techniques are also used for SNSs’ network analysis for discovering patterns
in users, and these techniques also bring a better understanding of users’ behavior on
SNSs [33,34].

In research, SEM or regression models are usually based on previous theories, and the
theories most often referred to will be presented in the next section.

2.2. Theories on Which the Models for Privacy and Disclosure Are Based

SEM and regression models are usually built based on previously established theories.
There are many theories that could be a baseline for creating new SEM or regression models.
One of the most used theories is privacy calculus, where it is expected that the users’
anticipated benefits and risks have an effect on sharing information on social networking
sites, meaning that the users will act accordingly to what they view as costs and benefits of
their information disclosure [35–37].

Another highly used theory is communication privacy management (CPM) theory,
which defines privacy as the process of opening and closing boundaries to others [17]. First,
if a user shares information with others, they extend the co-ownership of that information
to other persons with whom they are sharing the information. Next, in the CPM theory,
the control of private information is given to an individual, and the individual decides on
revealing or concealing that information. Furthermore, boundary turbulence, according to
the CPM theory, can occur when information that should be kept private is shared with
others without the permission of the owner. This theory aligns well with SNSs, where users
can control with whom they share their information.

A technology acceptance model (TAM) is also often used with SNSs. In TAM, external
variables have an effect on perceived usefulness and perceived ease of use, and the latter
also has an effect on perceived usefulness. Next, perceived usefulness and perceived ease
of use have an effect on the attitude toward using technologies, and the attitude has an
effect on the behavioral intention to use technology. The latter also has an effect on actual
systems use. Although the TAM theory does not predict any privacy constructs, they
are often used in the first part as external variables affecting the rest of the constructs
in the proposed model. A behavioral intention to use technology is highly connected to
information disclosure on SNSs [38,39].

The theory of reasoned action (TRA) proposes the effect of attitude and subjective norm
on behavioral intention, and the effect of behavioral intention on actual behavior [40]. This
theory separates the belief of what a person believes others would say if they share some
information and the motivation of a person to share information. The theory of planned
behavior (TPB) is a theory developed a bit later by one of the authors of TRA [41]. TPB uses
the same model as in TRA, adding a new construct, perceived behavioral control, which has
an effect on behavioral intention and behavior. The new construct presents the opportunities
for performing a given behavior, where the individual with more opportunities acts so that
their behavioral intention and behavior on the used technology is higher.

The above are the most commonly used theories in newly created models connected
to privacy, disclosure and SNSs. There are also other theories, which could be used for
creating models, but are not used so often.
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2.3. Presentation of Model Results

It is crucial that scientific papers present clear results, so that they can be repeated
by other researchers. When building new models and testing the relationships between
proposed constructs, it is important that the background of the study is explained very
clearly. That is why we looked to see if the papers have information on the constructs used
in the model—this is also referred to as content validity. Next, it is important that we do a
pre-test of the study on a smaller sample to test the validity of the results. Most often the
models involving constructs use quantitative measures, and it is important that the reader
of such a paper is informed on what kind of scale they used. Often, they use a 5-point
or 7-point Likert scale to get the results for each item in the construct. Normally, people
collaborating in the survey see a statement, and they have to evaluate it on a 5- or 7-point
scale, for example, 1 meaning “I do not agree” and 5 meaning “I fully agree”.

It is also important to know when and where the study to test the model was carried
out, so in the presentation of model results, a year and preferably also the month and days
of the survey should be presented, as well as the country where the survey was distributed.
Next, the authors of papers with models should present their sample frame, which should
include information on who was invited to participate in their study. Next, we looked for
an explanation if they used random sampling or any other method for sampling. If possible,
the response rate should be over 20%, where it is possible to measure this (depending on
the sampling method).

In the presentation of the model’s results, we were also looking for the number of par-
ticipants in the survey, to evaluate if the results could be generated to a broader population.
Next, it is also important to know from what age range the participants have collaborated
in the survey. If, for example, the survey was sent to college students, it can possibly be
generalized to a college population, but not to the whole population. Lastly, it is important
that the researchers present the gender ratio of participants collaborating in the survey, again
to see if this can be generalized to the general public. In the next section, we will present
some measures important for presenting the results of structural equations modeling.

2.4. Structural Equations Modeling (SEM)

Quantitative studies can be analyzed in several ways. There are different ways of
testing the hypothesis, but the mostly used method for building models for behavior in
SNSs is structural equations modeling. There are a few steps that need to be carried out
beforehand to prepare the data and analyze it [42]. To understand the steps better, we will
present some basic descriptions of measures that should be published in papers presenting
their models.

The authors of papers containing SEM should present what items they used to test
each construct. Normally, each construct should have more items for testing the whole
model. Next, it is important that the convergent validity of items is presented by measuring
Cronbach’s alpha, composite reliability and average variance extracted measures. Cron-
bach’s alpha is a measure that tests to what extent multiple items for a construct belong
together. Cronbach’s alpha coefficient ranges from 0 to 1, and the acceptable reliability
coefficient is above 0.7; in some research, authors also discuss that a coefficient above 0.6 is
sufficient [43,44]. Cronbach’s alpha is calculated for each construct in the model. Composite
reliability is a measure of the internal consistency required in internally correlated latent
variables, and its measure should be greater than 0.7 [45]. The average variance extracted
measures the amount of variance captured by a construct in relation to the amount of
variance due to measurement error, and it should be greater than 0.5 [46,47].

In the next step, authors of papers should present construct validity with exploratory
factor analysis, carried out with factor loadings, where some items could be excluded
before continuing to confirmatory factor analysis [48].

Next, confirmatory methods for the proposed model should be presented in papers
with model fit to validate the proposed model. Most often presented are the chi-square
statistic (Cmin/df), the normed fit index (NFI), the goodness-of-fit (GFI), the comparative fit
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index (CFI) and the root mean square error of approximation (RMSEA). The recommended
values for these model fits are below 0.3 for chi-square, above 0.9 for NFI, GFI and CFI, and
below 0.1 for RMSEA [46,49,50].

In regression or SEM models, the path coefficient analysis and the results of the t-
statistic are very important to understand the paths between different constructs. The
strength and significance of each path are normally evaluated by the standardized coef-
ficient (β), and by a t value higher than 2.0 or lower than −2.0 [51]. It is important that
the authors present these results in the paper, and it is also important how they form the
results. If the results are presented as a picture, a reader can see some of the path coefficient
results from it right away. If they are presented in a table, the results are readable, but it
takes more time to consolidate the results. Some authors also use explanations of path
coefficients in text without any supporting materials such as pictures or tables. It is usually
quite time consuming to find the results needed from such a form of presentation.

Next to path analysis, the coefficient of determination or variance explained (R2) for
the dependent variable also presents the degree to which the percentage of variance in
the dependent variable is accounted for by the independent variables that have an effect
on it [42]. The higher this percentage is, the more variance is explained in the specific
dependent variable, and the fewer outer independent variables could have an effect on it.

At the end of each paper, it is important that internal validity is discussed—the model
results should be compared to existing literature and explained.

3. Methodology

First, we defined the methodology to be used. The objective of our study was to carry
out a systematic review of all existing models used on social networking sites with users
regarding their views of privacy and disclosure.

3.1. Research Questions

In this study, we intend to answer the following research questions:

• RQ1: To what extent is privacy and disclosure behavior researched in social networking sites?
• RQ2: Which are the most commonly used background theories for the models contain-

ing privacy and disclosure constructs?
• RQ3: Do the SEM or regression models on privacy and disclosure include recom-

mended measures for explaining the results of the model?

3.2. Data Sources

The systematic review included the following 6 electronic databases:

• Clarivate Analytics—Web of Science (WoS),
• Elsevier ScienceDirect (SD),
• Springer SpringerLink (Springer),
• Google Scholar,
• IEEE Xplore (IEEE),
• ACM Digital Library (ACM).

The review was conducted by three reviewers, and the search in all databases returned
35,588 results. Due to a lack of advanced search options in Google Scholar and SpringerLink,
some results were not related to our search. Therefore, we have only included the 500 most
relevant papers from Google Scholar and the 400 most relevant from SpringerLink in
our research.

The query strings defined below have been used to search for relevant publications.
The search strings were created by using the research domain and the research ques-

tions as a guide.
We used the following search terms:
((“SNS” OR “SNSs” OR “OSN” OR “OSNs” OR “online social networking” OR “online

social networks” OR “social networking sites” OR “social networking site” OR “Facebook”) AND
(privacy) AND
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(“disclosure” OR “self-disclosure” OR “Willingness to provide information” OR “in-
formation sharing”) AND

(“model” OR “path” OR “SEM” OR “coefficient” OR “coefficients” OR “impact” OR “PLS”))
The search in the online digital libraries was conducted in August 2021. The search

query was made as broad as possible, to consider as many results as possible related to
the research questions posed in this systematic review. The procedure used for searching
and the selection of publications are summarized in Figure 1. The summary of the results
returned for each database search is presented in Table 1.

Figure 1. Flow diagram of the search.
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Table 1. Summary of search results.

Springer IEEE SD ACM WoS
Google
Scholar

Total

Search done in All text Metadata
Only

Title,
abstract or
keywords

Title, author
keywords,

abstract
Title/Topic Relevance

Search results
(Search done on) 6733 (400) 66 47 20 355 35,100 (500) 42,321 (1388)

Number of
suitable results for

inclusion after
screening

20 6 20 2 76 13 137

Percentage of
results used for

detailed screening
5.00% 9.09% 42.55% 10.00% 21.41% 2.60% 9.87%

3.2.1. Selection of Studies

The selection process started with 1388 publications gathered from online digital
libraries. The publications were then included in the systematic review if they fulfilled the
selection criteria. The selection process was then divided into four stages:

• Stage 1: The search results were filtered according to the inclusion and exclusion
criteria. We limited our systematic review to models, done on social networking sites’
users regarding their views of privacy and disclosure. We included studies from 2006
to 2022. The reason for choosing the year 2006 as the beginning of the range is the
introduction of modern social networking sites to the general public, such as Facebook
in 2006 [52]. The process was reviewed by three researchers.

• Stage 2: We read paper titles and abstracts, and included in the further screening only
papers with SEM or regression models done on social networking sites that included
privacy and disclosure factors. In cases where relevancy could not be determined from
the title and abstract, we studied the entire paper to make sure that all relevant papers
were included. We excluded 1251 results.

• Stage 3: We removed the duplicates from 6 different databases. There were 137 publi-
cations found, and after removing the duplicates, 113 publications were left for the
next phase.

• Stage 4: A thorough reading was used to analyze the remaining results in detail.
The analyzed papers had to be related closely to the research topic and questions.
The remaining results also had to include social networking sites, SEM models or
regression models and privacy and disclosure factors. Some results were excluded, as
the models did not include social networking site analysis, or included only one of the
factors needed. Altogether, 15 results were excluded.

A total of 98 publications were included in the systematic review. The selection
procedure was thorough, in order to ensure that only studies were examined that were
relevant and of high quality. The CASP Systematic Review Checklist [53], which addresses
the assessment of research in systematic reviews, was used to manage the process of
acquiring, selecting, and reviewing data for the review.

3.3. Evaluation Process

In the evaluation process, we had several stages for including the papers into the
final selection:

1. Range: We extracted the relevant papers through a comprehensive search in databases
and evaluated the studies based on publication date (between 2006 and 2022) and
originality (we included only original research).
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2. Relevance: The title and abstract were scanned for relevance to the defined objective
of including a model with privacy and disclosure constructs and SNSs users.

3. Inclusion: Studies were assessed based on the stage 1 (see Section 3.2.1) rules of
selection of studies.

4. Thorough examination: We conducted a full reading of the papers to see if the studies
fit the defined objective, and excluded the papers that did not fit the objective.

5. Data: Studies from the selection were analyzed, and we extracted data related to the
objective and research questions from each paper.

6. Quality assessment: Studies were assessed thoroughly using the 23 criteria.

3.4. Study Criteria

We set the inclusion and exclusion criteria to form the final selection of the papers. In
the inclusion criteria, the following points were checked:

1. Original research study.
2. Publication on the topic of social networking sites, privacy and disclosure.
3. The publication includes a sufficient explanation of the research findings.
4. Publication years range between 2006 and 2022.

We set the inclusion and exclusion criteria to form the final selection of the papers. For
the exclusion criteria, the papers with the following characteristics were excluded:

5. Secondary research, review papers and other non-relevant publications.
6. Publications presenting ideas and no results (e.g., research designs).
7. Publications presenting only privacy or only disclosure on models based on users of

social networking sites.
8. Publications in any other language but English.

3.5. Data Collection

After the final 98 papers were selected, we extracted data from those papers. First, we
extracted the title, authors, year of publication, publication type, publisher and number
of citations on Google Scholar. After collecting this information, each paper was analyzed
thoroughly, and we extracted data connected to SEM models and regression models from it.

First, we collected the information on which theory the model in the papers was
based. Then, we collected data if the factors in the model were discussed. Next, we looked
for information if the authors of the papers wrote that they had conducted a pre-test of
the questionnaire, and in what form the questionnaire was distributed. We also checked
if the authors explained the scale used for validation, and if they have published the
year of research. Later, we examined the papers for specification of the sample frame,
meaning if the researchers explained who was invited to participate in their survey. We
also looked for information on which SNSs platform the questions were referring to, and
what kind of sampling the authors used (e.g., convenience, random). Next, we also looked
for information whether the response rate was over 20%. Following this, we collected the
information on the country of research, the number of participants in the study, the age
span of participants and their gender ratio.

Next, we collected data on the model that was presented in the paper. First, we
collected the information on the type of model (SEM, PLS-SEM, regression, . . . ), if the
authors used multi-items for testing the model, the number of constructs and number of
items in the SEM model. We also collected information if the authors of the selected papers
had presented convergent validity by presenting the Cronbach’s alpha results, composite
reliability and average variance extracted results. Further on, we searched in all papers if
construct validity and the results of confirmatory methods were presented. In the latter,
we extracted the results of the χ2, NFI, GFI, CFI and RMSEA tests. Next, we collected the
information on what kind of form the results of the model were presented in, and if there
was internal validity or a discussion at the end of the paper. We also collected coefficient of
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determination (R2) results for privacy and disclosure factors, and all the path coefficients
for predictor or consequence factors of privacy or disclosure factor.

3.6. Literature Quality

We assessed the literature quality by observing the measurement parameters based on
the criteria defined in Table 2. The parameters for measuring quality were based on the
review of the papers involving SEM models, and some papers on how to report the results
of SEM and regression models [54,55]. We collected the data from each paper, and assigned
the number of points each paper got considering the full paper content. The criteria were
designed to measure the quality of each paper by examining if the paper presented all
the measures needed for SEM or regression models. All 98 publications were assessed by
three reviewers.

Table 2. Measurement parameters.

Parameters Possible Points Received

1. Theory presented Yes—1.00, No—0.00

2. Content validity Yes—1.00, No—0.00

3. Pre-test Yes—1.00, No—0.00

4. Scale explained Yes—1.00, No—0.00

5. Year of research Yes—1.00, No—0.00

6. Sample frame (who was invited) Yes—1.00, No—0.00

7. Random sampling Yes—1.00, No—0.00

8. Response rate over 20% Yes—1.00, No—0.00

9. Country of research Yes—1.00, No—0.00

10. Number of participants who responded to the survey Number of participants

11. Age of participants Yes—1.00, No—0.00

12. Gender ratio of participants Yes—1.00, No—0.00

13. Multi-item variables Yes—1.00, No—0.00

14. Average number of items per variable Number of items per variable

15.

Convergent validity

Cronbach’s alpha Yes—1.00, No—0.00

16. Composite reliability Yes—1.00, No—0.00

17. Average variance extracted Yes—1.00, No—0.00

18. Construct validity Yes—1.00, No—0.00

19. Confirmatory methods Yes—1.00, No—0.00

20. χ2, NFI, GFI, CFI, RMSEA
0.20 points for each

confirmatory method

21. Form of the presented results
Text—0.30 points,

Table—0.50 points,
Picture—1.00 points

22. Internal validity Yes—1.00, No—0.00

23. Coefficient of determination (R2) results Yes—1.00, No—0.00

Each parameter was presented to the reviewer, who assessed the number of points the
paper should get in each line. The reviewers could answer the questions with a number
of points. All the parameters were objective and not subject to individual judgment, but
the three reviewers were used for double-checking the number of points. A higher score
presents a better fulfilment of the criteria.
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The reviewers also checked if the year of conducting the survey for the research (5) was
written, and the sample frame (6), meaning who was invited to participate in the survey,
was explained. The reviewers also checked if the authors of the selected papers stated
that they used random sampling (7). The reviewers also looked for the information if the
response rate of the invited participants and responding participants was over 20% (8), or
the country where the research was conducted (9). For each of the parameters from 1–9 the
paper could receive 0 points for not fulfilling the requirement and 1 point for fulfilling it.

Next, the reviewers wrote down the number of participants (10) in the survey from
the paper presenting the sample size (the number of participants responded to the sur-
vey). If the number of participants was not stated, the paper received 0 points for that
parameter. Next, if the demographical data like the age of participants (11) and gender
ratio of participants (12) were written in the paper, the paper received 1 point for these
two parameters.

The next parameters were oriented towards models’ presentation. If the model was
built with multi-item variables (13), the paper received 1 point. The average number of
items per variable (14) was also collected. Next, the reviewers collected data if convergent
validity was presented with three measures—Cronbach’s alpha (15), composite reliabil-
ity (16) and average variance extracted (17). For each of the three measures, the paper
received 1 point if the authors presented the results of the measures in the paper. Also, if
construct validity (18) was elaborated by exploratory factor analysis with factor loadings,
the paper received 1 point. Next, the reviewers searched for information on confirmatory
methods (19) in the paper. If some confirmatory methods existed, the paper received
1 point, and if methods χ2, NFI, GFI, CFI, RMSEA (20) were presented, 0.20 point was given
for each of these five methods. Next, if the results of the models (21) were presented in the
text, the paper received 0.30 points, if they were presented in a table, the paper received
0.50 points, and if the results were presented in a picture, the paper received 1 point. It is
a lot easier for a reader to see a picture with the results presented than to search for the
correlation results in a table or text in a long paper. Finally, the paper received 1 point
if internal validity (22) was present, meaning that the results were discussed thoroughly,
and another point if the coefficient of determination (R2) results (23) were presented. The
analysis of these parameters are presented in Section 4.3.

4. Analysis

4.1. Bibliometric Overview

In this section, a bibliometric overview of the selected publications is presented in
Figure 2. The publications from the early years of research on this topic had a higher
number of citations than the ones from the last years. The reason for low citation numbers
in the last years is that there was not enough time for gathering citations, but we can
assume those papers will receive additional citations. Among the 98 final papers, 84 were
journal papers, 13 were conference papers, and one was a book section. If we observe the
publication type through the years, we can see that, in the first years, there were more
conference papers or an equal amount of conference papers to journal papers. This shifted
drastically from 2012, where we can see that most of the papers with the topic on social
networking sites, privacy and disclosure were published in journals. In 2021, only the first
part of the year is included, and that is why the number of papers on the topic is lower, but we
can already see some decline in 2020 in the total number of papers, which could also be due
to the SARS-CoV-2 pandemic. The research field of social networking sites remains relevant.
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Figure 2. Number of citations for all publications per year for all papers and number of papers per
publication type per year.

As presented in Table 3, in the scope of the review we found papers from 65 different
publishers. Some journals or conferences published more than one paper with models on
privacy and disclosure. The journal Computers in Human Behavior published 11 papers,
and the Journal of the Association for Information Science and Technology published five
papers on this topic. The conference where most papers with models were published was
The Americas Conference on Information Systems.

Table 3. Journals or conferences in which more than one selected paper was published.

Publication Type Journal/Conference Number of Papers Published

Journal Computers in Human Behavior 11

Journal Journal of the Association for Information Science
and Technology 5

Journal Behaviour & Information Technology 4
Journal Information Technology & People 4
Conference AMCIS 3
Journal International Journal of Information Management 3
Journal Journal of Computer-Mediated Communication 3
Journal Decision Support Systems 2
Journal European Journal of Information Systems 2
Conference Hawaii International Conference on System Sciences 2
Journal Information & Management 2
Journal Information Systems and e-Business Management 2
Journal New Media & Society 2
Journal Sustainability 2
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4.2. Analysis of Gathered Data

Basic information on the publications is presented in Table A1. The publication ID will
be used on graphs and in the tables. Presented also are the authors, the title of the paper,
the year of publication and publication type as well as publisher. Out of all the papers,
84 were published in journals, 13 in conferences and one in the book section. The first paper
was published in 2007.

We conducted an analysis on which theories the models in the papers were based
on. As presented in Table 4, most publications used the privacy calculus theory [37] and
communication privacy management (CPM) [17] theory as the basic theory behind their
model. Out of 98 papers, in 40 papers, the authors did not present any broader theory as
a basis for their model. In 53 papers the authors used one theory, and in five papers the
authors used two different theories.

Table 4. Most commonly used background theories for the models.

Theory Used in Papers Number of Papers the Theory Was Used in

Privacy calculus 20
Communication privacy management (CPM) 18
Technology acceptance model (TAM) 7
Theory of reasoned action (TRA) 5
Theory of planned behavior (TPB) 3
Social capital theory (SCT) 2
Protection motivation theory (PMT) 2
Construal level theory (CLT) 1
Unified Theory of Acceptance and Use of
Technology (UTAUT2) 1

Concern about others’ privacy (COP) 1
Disclosure of information about others (DIO) 1
Social penetration theory (SPT) 1
Social role theory (SRT) 1

The frequency of theories used in papers by publication year is shown in Figure 3.
In recent years, there has been a growth of privacy calculus and CPM theories’ use. The
theory acceptance model (TAM) theory [38] was used in most cases until 2015.

 

Figure 3. Frequency of theories used in papers by year of publication.
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The world map in Figure 4 presents the number of studies carried out in which country.
In some studies, more than one country was selected to confirm the models, so all the
countries are counted leading to a total of 99 studies in 25 different countries. By continents,
there were 38 studies carried out in North America, 36 in Asia, 24 in Europe and one
in Africa.

 

Figure 4. Number of studies done in each country.

After collecting the data from 98 papers, we also collected information on the coeffi-
cient of determination (R2) for privacy factors in each study (if available), and the R2 for
disclosure factor in each study. R2 presents the percentage of the variation in the dependent
variable that is predictable from the independent variables [56]. We collected the R2 for the
privacy factor from 26 studies, and for the disclosure factor from 55 studies. As presented
in Figure 5, we created a scatter plot of R2 and the number of participants in those studies.

Figure 5. Coefficient of determination (R2) for privacy and the disclosure factor in studies and the
number of participants in the studies.
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4.3. Analysis of the Acquired Publications

The last part of the systematic review presents the scores for measuring the number of
included parameters in the selected publications in regard to a good presentation of the
paper. The used methodology for scores is presented in the Literature Section on quality. In
Table 2 the score of the models in the papers is presented, based on the 23 measurement
parameters from Table 2.

In Table 5, minimum and maximum values, as well as means and standard deviations
are presented for each of the parameters. Since most of the parameters have 0 or 1 values,
the mean also presents the percentage in how many papers the measurement parameters
of the paper were met. Background theory was presented in 58 papers, while content
validity was not presented in just one paper. A pre-test was included in 39 papers, and an
explanation of the scale used for the measurements was found in 87 papers. The year of
research was presented in 42 papers, and information on who was invited to participate in
the survey in all papers. Random sampling was used only in eight papers, and a response
rate of over 20% was reported in nine papers. In 85 papers, the country of research was
given. The average number of participants in a survey was 522 respondents, and the age of
participants was reported in 86 papers. The gender ration was reported in 88 papers.

Table 5. Descriptive statistics of the measurement parameters.

Min Max Mean S.D.

1. Theory presented 0.00 1.00 0.59 0.49

2. Content validity 0.00 1.00 0.99 0.10

3. Pre-test 0.00 1.00 0.40 0.49

4. Scale explained 0.00 1.00 0.89 0.32

5. Year of research 0.00 1.00 0.43 0.50

6. Sample frame (who was invited) 0.00 1.00 1.00 0.00

7. Random sampling 0.00 1.00 0.08 0.28

8. Response rate over 20% 0.00 1.00 0.09 0.29

9. Country of research 0.00 1.00 0.87 0.34

10. Number of participants who responded to the survey 66 3085 521.89 527.92

11. Age of participants 0.00 1.00 0.88 0.33

12. Gender ratio of participants 0.00 1.00 0.90 0.30

13. Multi-item variables 0.00 1.00 0.95 0.22

14. Average number of items per variable 2.00 8.00 4.04 1.02

15.

Convergent validity

Cronbach’s alpha 0.00 1.00 0.79 0.41

16. Composite reliability 0.00 1.00 0.64 0.48

17. Average variance extracted 0.00 1.00 0.70 0.46

18. Construct validity 0.00 1.00 0.71 0.45

19. Confirmatory methods 0.00 1.00 0.45 0.50

20. χ2, NFI, GFI, CFI, RMSEA 0.00 1.00 0.33 0.39

21. Form of the presented results 0.30 1.00 0.90 0.21

22. Internal validity 0.00 1.00 0.99 0.10

23. Coefficient of determination (R2) results 0.00 1.00 0.55 0.50

Multi-item variables were used in 93 papers, and the average amount of items used for
models was 4.04. Convergent validity was reported with Cronbach’s alpha, and composite
reliability and average variance extracted in 77, 63 and 69 papers, respectively. Construct
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validity was reported in 70 papers, and confirmatory methods were used in 44 papers.
Internal validity was discussed in 97 papers and coefficient of determination results were
presented in 54 papers.

Next, we performed an ordered probit model with convergent validity (15–17) as
a dependent variable, and theory presented (01), construct validity (18) and coefficient
of determination (23) as independent variables. Cronbach’s alpha, composite reliability
and average variance extracted were summed into one dependent variable, convergent
validity, having 0, 1, 2 or 3 as a result for this variable for each paper. The results of the
omnibus test were significant with the likelihood ratio chi-square 46.15, which means that
our proposed model containing the three predictors represents a significant improvement
compared to the unconditional model. The relationship between independent variables
and the dependent variable were positive, with the p-values lower than 0.05, as presented
in Table 6. We can assume that these relationships are statistically significant, and that there
is a statistically significant positive linear relationship between theory presented, coefficient
of determination, construct validity and convergent validity. Papers that have included
theory presented, coefficient of determination and construct validity have a positive effect
on convergent validity, meaning that they have also likely presented convergent validity
measures if they have also presented the three parameters. All three parameters are
statistically significant and were tested with the Wald chi-square test.

Table 6. Results of the probit model.

Dependent Variable:
Convergent Validity B Std. Dev.

Hypothesis Test

Wald Chi-Square Sig.

Theory presented 0.837 0.256 10.675 0.001

Construct validity 1.072 0.279 14.788 0.000

Coefficient of determination 1.099 0.262 17.605 0.000

We also calculated the sum of scores for each publication by summing all points for
the 23 parameters, but we divided the number of participants by 1000 and the average
number of items available by 30, so that each of the parameters had similar minimum
and maximum values. We also transformed the final scores to percentages for an easier
graph reading. This score cannot be interpreted as a measure of quality, but it presents a
number of items that were included in papers from the 23 parameters presented in Table 2.
Moreover, if the authors exclude one parameter from reporting, it does not mean that it
has the same scientific value as the other parameter they are reporting. The parameters
are not presented in a balanced scale, but can serve as a checklist of which parameters
were included in the reporting. Ideally, all the presented parameters should be included in
studies explaining SEM models.

We used the sum of scores per year and per used theory in the papers, and created
a graph in Figure 6. The clustered column presents the average score for all the papers
that built the model based on a specific theory. In 40 papers, the authors did not use any
theory as a background for building a model, and these papers had an average score of
52.95%, which was the lowest average score when comparing it to groups of papers with
some background theories. In five papers, the authors used two theories as a background,
and those papers were counted in each theory category. The highest sum of scores was
received by the paper using the Social penetration theory (SPT). Further on, the average
sum of scores per year of publication for each theory used in the papers is presented on
the graph.
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Figure 6. Average sum of scores per year of publication and theory type, and the average sum of
scores for papers with theories or no theory behind the model.

As is presented in Figure 7, the graph shows the average scores per publication year
and per measurement parameter. All measures have a minimum and maximum value of
0 and 1, except measures 10 and 14. Measure 10 has a minimum of 0.07 and maximum
of 3.09, and the highest average of 0.96 in 2018. Measure 14 has a minimum of 0.60 and
maximum of 2.40, and the highest average of 1.31. In Figure 7 the orange column presents
the average amount of points received in each parameter, and the blue dots present the
average amount of points per years of publication. The darker dots present more recent
studies, and are more often seen above the average of the specific parameter than the lighter
dots. A further detailed analysis of each parameter shows that some measures have been
used more often in recent years than they were in the first years. This increase of reporting
specific parameters in papers can be seen in: (1) theory presented, (16) composite reliability,
(17) average variance extracted, (18) construct validity and (19, 20) confirmatory methods,
Moreover, the value for parameter (10), which presents the number of participants who
responded to the survey, was increasing until 2018, from 117 to 962 participants on average
per year, but after that year, the number of participants decreased to 350, 462 and 356 in
the years 2019, 2020 and 2021 respectively. The results show that the authors in the recent
publications have improved the quality of reporting SEM or other statistical models on the
topic of privacy and disclosure on SNSs.
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Figure 7. Average scores for each of the 23 measurement parameters by year of publication.

5. Discussion and Conclusion

In this section, we discuss the proposed research questions based on the presented
analysis of the papers.

RQ1: To what extent is privacy and disclosure behaviour researched in social net-

working sites?

The most popular social networking site, Facebook, was founded in 2006, and has been
the most popular SNS since 2009. Researchers had already started carrying out research
with building models with privacy and disclosure of users in 2007, so the topic has been
extensively researched for the past 14 years. In the review process, we included 98 papers
containing such papers with models, found in 6 electronic databases. The number of
citations these papers received are very high; papers with more than 500 citations up to
now have been received by the papers published in 2007, 2010, 2012 and 2014 [57–60]. This
shows that the topic is still interesting to other researchers.
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The number of citations for all publications per year, summed for all papers in a year
and the number of papers per publication type per year are presented in Figure 2. In the
first years more conference papers were published, but, later on, journal papers prevailed.

Further on, in Table 3, we found that 65 different publishers have published papers
containing models with privacy and disclosure. Among most published papers are the
Computers in Human Behavior journal, which published 11 papers, and the Journal of
the Association for Information Science and Technology, which published five papers on
this topic.

In Figure 4, we also presented a world map, where the number of studies in each
country is presented. Some studies did not have that information, and some studies
were conducted in more than two countries. Altogether, the studies were carried out in
25 different countries. If we consider the continents, most studies (38) were conducted in
North America, followed by 36 in Asia, 24 in Europe and one in Africa.

All our findings show that this is an active field, and none of the studies included all
factors that could have an effect on privacy or disclosure factors when considering SNSs
because the highest coefficient of determination presented in Figure 5 is 65% for privacy
factor and 87% for disclosure factor.

RQ2: Which are the most commonly used background theories for the models con-

taining privacy and disclosure constructs?

In this paper, we also collected information on the background theories used in the
models, containing privacy and disclosure constructs, built with SNSs users. Normally,
when building a model for SNSs, established theories are used as a background for newly
created models. We collected information on which background theories were used in
specific papers. In 40 out of 98 papers, the authors did not present any background theory.
In 52 papers, the authors used one background theory, and in five papers, the authors used
two different theories.

Altogether, the privacy calculus theory has been used in 20 papers, and the communi-
cation privacy management theory has been used in 18 papers. There has been a growth of
these two theories’ usage in the papers in recent years. The technology acceptance model
(TAM) has been used in seven studies, the theory of reasoned action (TRA) in five studies,
the theory of planned behavior (TPB) in three studies, and social capital theory (SCT) in
two studies, but all these four theories were used mostly in the beginning of the research,
mainly until 2015. Since 2016, new theories have been used in the papers, such as the
protection motivation theory (PMT), the construal level theory (CLT), the unified theory
of acceptance and use of technology (UTAUT2), concern about others’ privacy (COP),
disclosure of information about others (DIO), the social penetration theory (SPT) and the
social role theory (SRT).

The analysis of the used background theories are presented in Table 4, where the
number of papers the theory was used in is presented, and in Figure 3, where frequency of
theories used in papers is presented by year of publication.

RQ3: Do the SEM or regression models on privacy and disclosure include recom-

mended measures for explaining the results of the model?

In the research papers it is very important that the quality of the presented results is
high. When presenting SEM or regression models, it is important to include substantial
information on how the data were gathered and how the measurement items were estab-
lished. Further, it is important that the analysis of results is presented in the most detailed
way possible for the possibility of replication and better understanding by the reader of the
analysis results. Based on the presentation of the results, the papers were given a score for
the 23 measurement parameters, which we searched for in each paper. The 23 measurement
parameters are presented in Table 2, their analysis in Table 5, and the individual scores
given to each of the 98 papers are presented in Table 2.

The parameters with the three lowest average number of points are presented, meaning
that these parameters were not presented in the papers often, and further research papers
could focus on also including these parameters. First, random sampling was not mentioned
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in 90 out of 98 papers, which is often hard to achieve. Most commonly the convenience
sampling method was used, and this method does not require random sampling. Second,
the response rate was not mentioned in 89 papers, which is, again, expected if most papers
are using the convenience sampling method where response rate is often difficult to track.
Third, in confirmatory methods, information on the results of the χ2, NFI, GFI, CFI and
RMSEA methods were collected, and 54 papers did not present any of the confirmatory
methods for their models. The confirmatory methods are used for presenting model fit to
validate the proposed model, and it is vital for readers to understand how the proposed
model fits within the well-established methods for testing SEM models.

The results also show that papers with some background theory had a better quality
of reporting the models, and that, in recent years, the amount of measurement parameters
included in reporting has also improved in papers presenting privacy and disclosure
in SNSs.

In sum, the research in building models with privacy and disclosure constructs in
connection to SNSs is quite broad, but it is still an active field for researchers, because
the SNSs are evolving. Also, the theories used as background theories are changing
through time, and, most importantly, researchers need to understand that the quality of
the results’ presentation for statistical models is very important if they want to achieve
acknowledgement.

5.1. Conclusions

This research presents a current overview of state-of-the art papers, where models have
been built containing privacy and disclosure constructs in regard to SNSs’ use. Many users
visit Facebook and other SNSs on a daily basis. SNSs users share a great deal of personal
information daily, hence the reason for privacy and disclosure being highly researched
from the beginning of the use ofSNSs.

In this paper, we collected 98 papers in six online databases published between 2006
and 2022. The papers contain privacy and disclosure constructs, and were tested on SNSs’
users. We defined three research questions and analyzed 98 papers according to the research
questions. The selected papers are highly cited, and most studies were conducted in North
America, Asia and Europe, in 25 different countries.

Our findings also indicate that papers which used background theories for their
models also presented their analysis better in the paper, scoring a higher percentage for
the sum of scores. In 40 out of 98 papers, the authors did not present any background
theory. Next, it is crucial that the researchers present their SEM or regression models with
detailed background information and analysis results, for the reader to understand the
results better. The parameters that received the lowest score on average for all papers were
random sampling, response rate and confirmatory methods. It is difficult to achieve random
sampling because most researchers work on a budget, and that is why, usually, response rate
is also not calculated, because most papers use convenience sampling methods. However,
it is very important that the researchers confirm their built SEM models with confirmatory
methods, which did not happen in 54 papers.

The limitation of this paper is that the sum of scores for parameters presents a weighted
scale, and because most of the analyzed models were SEM, the scores were established
from multiple sources to obtain broader information of the paper presentation and results.
The sum of scores for papers was used in two figures and it presents a one-dimensional
quality ranking of papers. However, we find that the results in the two figures present a
good outline for future papers on this topic.

The limitation of this study is also that papers appearing in database searches up to
August 2021 are included in the analysis, while more papers could have been published by
the time the paper was published. These papers could be added for further research on this
topic to extend the list of 98 extracted papers.

There is greater potential for publishing quality research work regarding privacy and
disclosure models. Most of the built models also present a foundation for SNSs developers
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to understand the users’ view of privacy, and, afterwards, users’ disclosure of information.
The field is still very active and important for researchers to continue their research work
on SNSs to get a better understanding of SNSs information development.

Some systematic review studies have already included SEM or regression models for
SNSs users, but, to the best of our knowledge, none of the studies included such a sample of
models focusing on privacy and disclosure constructs [15]. Some existing literature reviews
focus only on privacy constructs or disclosure, or behavior constructs separately [10–14].
No other paper has analyzed SEM and regression models with such methods.

5.2. Future Research Directions

This paper gives future researchers on this topic an overview of state-of-the-art papers
containing models with privacy and disclosure constructs tested on SNSs users. In the
paper, theories used in such studies as a background are presented, and may be useful
for future researchers. Additionally, also presented are journals or conferences that have
accepted the most papers, which is useful for authors looking for journals or conferences
where they could publish their work.

There is some lack of worldwide research on this topic, because most of the studies
were carried out in North America, Asia and Europe, but SNSs are used by most of the
population of the world. This is a possibility of constructing the same research in parts of
the world where such studies have not yet been conducted and can bring new findings in
this topic. It is also important that researchers in the future studies with SEM and other
statistical models present their results in detail, so that the paper reaches more readers and
acknowledgements. The topic selected for this systematic review is still very active, and
new research should be conducted because SNSs are also changing constantly, as well as
users’ opinions.

For future research, there are many studies that could be carried out to extend the
current knowledge on the topic. Our research shows that privacy constructs often have
an effect on disclosure constructs in SEM done on SNSs users. The highest coefficients of
determination for privacy and disclosure constructs were 65% and 87%, respectively. This
shows that there is opportunity for future research on finding new constructs that affect
privacy or disclosure.

One systematic literature review on privacy attitude and behavior was carried out in
2017 [15]. The area of systematic literature reviews on privacy, disclosure and SNSs also
lacks a thorough review of what factors have an effect on privacy and disclosure constructs,
and which privacy and which disclosure constructs are used in existing models. This could
give researchers a better idea of what is still not researched in the field of privacy and
disclosure on SNSs.
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B.

Table 2. Scores for measurement parameters of the presented models.

Paper
ID

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23.
Sum of
Scores

1 0 1 0 1 1 1 0 0 0 117 1 1 1 1 0 0 0 0 0.0 0.3 1 0 9.42

2 1 1 0 1 0 1 0 0 1 80 1 1 1 4.17 1 1 1 1 0 0.0 1.0 1 1 16.33

3 1 1 0 1 0 1 0 0 1 80 1 1 1 4.75 1 1 1 1 0 0.0 1.0 1 1 16.51

4 0 1 1 1 1 1 0 0 1 259 1 1 1 4.00 1 1 1 1 1 0.8 1.0 1 1 19.26

5 1 1 0 0 0 1 0 0 1 529 1 1 0 0 1 0 0 0 0.0 1.0 1 1 10.53

6 0 1 1 1 1 1 1 1 0 562 1 1 1 4.29 1 0 0 0 0 0.0 0.5 1 1 15.35

7 0 1 1 1 0 1 0 0 1 66 1 1 1 3.75 1 0 0 1 0 0.0 0.5 0 0 11.69

8 0 1 0 1 0 1 0 0 1 481 1 1 1 4.86 1 0 1 1 0 0.0 1.0 1 1 14.94

9 1 1 0 0 1 1 0 0 1 122 1 1 0 1 0 0 0 0 0.0 0.5 1 0 9.62

10 1 1 1 1 1 1 0 0 1 1628 1 1 1 7.25 1 1 1 1 0 0.0 1.0 1 1 20.80

11 1 1 1 1 0 1 0 0 1 222 1 1 1 3.00 1 1 1 0 0 0.0 1.0 1 0 15.12

12 1 1 1 1 1 1 0 0 1 138 1 1 1 4.80 1 1 1 0 0 0.0 0.5 1 0 16.08

13 0 1 1 0 1 1 0 0 0 207 1 1 1 0 1 1 1 0 0.0 0.5 1 0 11.71

14 0 1 0 1 0 1 0 0 1 364 1 1 1 3.60 0 0 0 1 1 0.6 1.0 1 0 13.04

15 1 1 0 1 1 1 0 0 1 368 1 1 1 3.22 1 1 1 1 0 0.0 1.0 1 1 17.33

16 0 1 1 1 0 1 0 0 1 222 1 1 1 3.17 1 1 1 0 0 0.0 1.0 1 1 15.17

17 1 1 1 1 0 1 0 0 1 222 1 1 1 3.25 1 1 1 0 0 0.0 1.0 1 0 15.20

18 1 0 1 1 1 1 0 0 0 246 1 1 1 4.25 1 0 0 0 1 0.8 1.0 1 1 15.32

19 0 1 1 1 1 1 0 0 1 653 1 1 1 3.25 1 1 1 1 1 1.0 1.0 1 1 19.63

20 0 1 1 1 0 1 0 0 1 780 1 1 1 3.00 1 0 0 1 1 0.8 1.0 1 0 15.48

21 0 1 0 1 0 1 0 0 1 486 1 1 1 4.33 0 1 1 1 0 0.0 1.0 1 1 14.79

22 0 1 0 1 1 1 0 0 1 718 1 1 0 0 0 0 0 0 0.0 0.5 1 0 9.22

23 1 1 0 0 1 1 0 0 1 171 0 0 1 3.86 1 0 1 1 1 0.8 1.0 1 0 14.13

24 0 1 0 1 0 1 0 0 1 210 0 0 1 6.00 1 0 1 1 1 0.8 1.0 1 0 13.81

25 1 1 0 1 1 1 0 0 1 675 1 1 1 4.17 1 1 1 0 1 0.8 1.0 1 0 17.73

26 0 1 1 1 1 1 0 0 1 192 0 1 1 3.00 1 0 0 1 1 0.2 0.5 1 0 13.79

27 1 1 1 1 1 1 0 0 1 305 1 1 1 5.43 0 1 1 1 1 0.8 1.0 1 0 18.73

28 0 1 0 1 0 1 0 0 0 638 1 1 1 4.00 1 1 1 1 0 0.0 1.0 1 1 14.84

29 1 1 0 1 0 1 0 0 1 927 1 0 1 3.44 1 1 1 1 1 0.8 1.0 1 1 17.76

30 1 1 0 0 0 1 0 0 1 2739 1 1 1 4.17 1 0 0 0 1 0.8 1.0 1 0 15.79

31 1 1 0 1 0 1 0 0 0 514 0 0 1 3.00 1 0 0 0 1 0.2 0.5 1 1 11.11

32 0 1 1 1 0 1 0 0 1 170 1 0 1 3.29 1 1 1 1 1 0.8 1.0 1 1 16.96

33 0 1 0 1 1 1 0 1 1 515 0 0 1 2.60 0 0 0 0 1 0.4 1.0 1 0 11.70

34 0 1 0 1 0 1 0 0 1 405 1 1 1 3.50 0 1 1 1 0 0.0 1.0 1 1 14.46

35 0 1 0 1 0 1 0 0 1 220 1 1 1 2.67 1 1 1 1 1 0.8 1.0 1 1 16.82

36 0 1 0 1 1 1 0 0 1 1116 1 1 1 3.33 1 0 0 0 0 0.0 0.5 1 1 13.62

37 1 1 0 1 1 1 0 0 0 246 1 1 1 4.25 1 0 0 0 1 0.8 1.0 1 1 15.32
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Table 2. Cont.

Paper
ID

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23.
Sum of
Scores

39 1 1 1 1 1 1 0 0 1 661 1 1 1 3.71 1 1 1 1 1 1.0 1.0 1 1 20.78

38 1 1 0 1 0 1 0 0 1 362 1 1 1 3.83 1 1 1 1 1 1.0 1.0 1 1 18.51

40 1 1 1 1 1 1 0 0 1 273 1 1 1 5.60 1 1 1 1 1 1.0 1.0 1 0 19.95

41 1 1 0 1 1 1 1 1 1 528 1 1 1 1 0 0 0 1 0.6 1.0 1 0 16.13

42 1 1 0 1 1 1 1 0 1 1156 1 1 1 6.00 1 1 1 0 1 0.6 1.0 1 0 19.56

43 0 1 1 1 0 1 0 1 1 405 1 1 1 3.80 1 1 1 1 0 0.0 1.0 1 1 17.55

44 0 1 0 1 1 1 0 0 1 1564 1 1 1 4.20 1 0 0 1 0 0.0 1.0 1 1 15.82

45 1 1 0 1 0 1 0 0 1 380 1 1 1 3.43 1 1 1 1 0 0.0 1.0 1 1 16.41

46 0 1 1 1 1 1 0 1 1 103 1 1 1 8.00 0 0 0 0 0 0.0 1.0 1 0 14.50

47 1 1 1 1 1 1 0 0 1 291 1 1 1 2.78 1 1 1 1 1 1.0 1.0 1 1 20.12

48 0 1 1 1 1 1 0 0 1 727 1 1 1 4.13 1 1 1 1 1 1.0 1.0 1 1 19.96

49 0 1 0 1 1 1 0 0 1 378 1 1 1 4.50 1 1 1 1 0 0.0 0.5 1 1 16.23

50 1 1 0 1 0 1 0 0 1 396 1 1 1 4.00 1 1 1 1 1 1.0 1.0 1 1 18.60

51 0 1 1 1 1 1 0 0 1 476 1 1 1 3.44 1 1 1 1 0 0.0 0.5 1 0 16.01

52 1 1 0 1 0 1 0 0 0 327 1 1 1 2.86 0 1 1 1 0 0.0 1.0 1 1 14.18

53 1 1 0 0 1 1 0 0 1 298 1 1 1 3.00 0 1 1 1 0 0.0 1.0 1 0 14.20

54 1 1 1 1 0 1 0 0 1 222 1 1 1 5.00 1 0 1 1 1 0.8 1.0 1 0 17.52

55 1 1 0 1 0 1 0 0 1 537 1 1 1 3.38 1 1 1 0 1 0.6 1.0 1 1 17.15

56 1 1 1 1 0 1 0 0 1 1121 1 1 1 4.17 1 1 1 1 0 0.0 1.0 1 0 17.37

57 1 1 0 1 0 1 0 0 1 364 1 1 1 4.18 1 1 1 1 0 0.0 1.0 1 1 16.62

58 1 1 0 1 0 1 0 0 1 432 1 1 1 6.11 0 0 0 1 0 0.0 0.5 1 0 12.77

59 0 1 0 1 0 1 0 0 1 314 1 1 1 5.29 0 1 1 1 0 0.0 1.0 1 1 14.90

60 1 1 0 1 0 1 0 0 1 1550 1 1 1 2.00 1 0 0 1 1 0.6 1.0 1 0 15.75

61 1 1 1 1 0 1 0 0 1 913 1 1 1 3.44 0 1 1 1 1 0.8 1.0 1 1 18.75

62 1 1 0 1 1 1 0 1 1 3085 0 1 1 5.17 0 0 0 0 0 0.0 0.5 1 0 15.14

63 1 1 0 1 0 1 0 0 1 831 1 1 1 4.21 1 1 1 1 0 0.0 0.5 1 1 16.60

64 1 1 0 1 0 1 0 0 1 606 1 0 1 2.57 1 0 0 0 0 0.0 0.5 1 0 10.88

65 1 1 0 1 1 1 0 0 1 326 1 1 1 4.86 1 1 1 1 1 1.0 1.0 1 1 19.78

66 0 1 1 0 0 1 0 0 1 244 1 1 1 4.43 1 1 1 1 1 0.6 1.0 1 1 17.17

67 1 1 0 1 0 1 0 0 1 117 0 1 1 5.17 1 1 1 1 0 0.0 1.0 1 1 15.67

68 0 1 0 1 1 1 0 0 1 2789 1 1 1 4.33 1 0 0 0 1 0.6 1.0 1 0 16.69

69 0 1 0 1 1 1 0 0 1 454 1 1 1 3.75 1 0 1 1 1 0.6 1.0 1 0 16.18

70 1 1 1 1 0 1 0 0 1 210 1 1 1 3.13 1 1 1 1 1 1.0 1.0 1 0 18.15

71 1 1 0 1 1 1 0 0 1 382 1 1 1 3.80 1 0 0 0 0 0.0 0.5 1 0 13.02

72 1 1 0 1 0 1 0 0 1 452 0 0 1 4.71 1 1 1 1 0 0.0 0.5 1 0 13.37

73 1 1 0 1 1 1 1 1 1 305 1 1 1 5.13 1 1 1 1 0 0.0 0.5 1 0 18.34

74 1 1 0 1 1 1 1 0 1 525 1 1 1 3.43 1 0 1 1 1 0.6 1.0 1 0 18.15

75 1 1 1 1 0 1 0 0 1 168 1 1 1 5.78 1 1 1 1 1 0.6 1.0 1 1 19.50

76 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0.0 1.0 1 0 6.00
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Table 2. Cont.

Paper
ID

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23.
Sum of
Scores

39 1 1 1 1 1 1 0 0 1 661 1 1 1 3.71 1 1 1 1 1 1.0 1.0 1 1 20.78

77 0 1 0 1 0 1 0 0 1 473 1 1 1 4.22 1 1 1 1 0 0.0 1.0 1 1 15.74

78 0 1 1 1 0 1 0 0 1 110 1 1 1 3.50 1 0 0 1 0 0.0 1.0 1 1 14.16

79 1 1 1 1 0 1 0 0 1 602 1 1 1 3.33 1 1 1 1 1 0.8 1.0 1 1 19.40

80 0 1 1 1 0 1 0 0 1 419 1 1 0 0 0 0 0 0 0.0 0.5 1 0 8.92

81 1 1 0 0 0 1 0 0 1 406 1 1 1 3.50 1 1 1 1 1 1.0 1.0 1 1 17.46

82 1 1 0 1 0 1 0 0 0 237 1 1 1 3.00 1 1 1 1 0 0.0 1.0 1 1 15.14

83 1 1 1 1 0 1 0 0 1 249 1 1 1 3.71 1 1 1 1 1 0.2 1.0 1 1 18.56

84 0 1 1 1 0 1 0 0 1 213 0 1 1 4.60 1 1 1 1 0 0.0 1.0 1 1 15.59

85 0 1 0 1 1 1 0 0 1 1159 1 1 1 4.86 0 0 1 1 1 0.6 1.0 1 0 16.22

86 0 1 1 1 1 1 0 0 1 515 1 1 1 3.57 1 1 1 1 0 0.0 1.0 1 1 17.59

87 0 1 1 1 1 1 1 0 1 751 1 1 1 3.38 0 1 1 1 0 0.0 1.0 1 0 16.77

88 1 1 0 0 0 1 1 1 0 310 1 1 1 2.75 1 1 1 1 0 0.0 1.0 1 0 15.14

89 1 1 1 1 0 1 0 0 1 405 0 1 1 3.57 1 1 1 1 0 0.0 1.0 1 1 16.48

90 1 1 0 1 0 1 0 0 1 315 1 1 1 4.11 1 1 1 1 0 0.0 1.0 1 1 16.55

91 1 1 0 1 0 1 0 0 1 128 1 1 1 3.50 0 0 0 0 1 0.6 1.0 1 0 12.78

92 1 1 0 1 0 1 0 0 1 305 1 0 1 5.20 0 0 0 1 1 0.8 1.0 1 0 13.67

93 1 1 0 1 1 1 1 1 1 556 1 1 1 2.71 1 1 1 0 1 0.6 1.0 1 0 18.97

94 1 1 1 0 0 1 0 0 1 180 1 1 1 4.33 1 1 1 1 0 0.0 1.0 1 1 16.48

95 1 1 1 0 0 1 0 0 0 397 1 1 1 5.17 1 1 1 1 0 0.0 1.0 1 1 15.95

96 0 1 1 1 0 1 0 0 1 412 0 1 1 3.40 1 1 1 1 1 0.8 1.0 1 1 17.23

97 1 1 0 1 1 1 0 0 1 400 1 1 1 4.17 1 1 1 1 0 0.0 1.0 1 1 17.65

98 0 1 0 1 1 1 0 0 0 216 1 1 1 4.20 0 1 1 1 0 0.0 1.0 1 1 14.48
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Abstract: The curve number (CN) rainfall–runoff model is widely adopted. However, it had been
reported to repeatedly fail in consistently predicting runoff results worldwide. Unlike the existing
antecedent moisture condition concept, this study preserved its parsimonious model structure for
calibration according to different ground saturation conditions under guidance from inferential
statistics. The existing CN model was not statistically significant without calibration. The calibrated
model did not rely on the return period data and included rainfall depths less than 25.4 mm to for-
mulate statistically significant urban runoff predictive models, and it derived CN directly. Contrarily,
the linear regression runoff model and the asymptotic fitting method failed to model hydrological
conditions when runoff coefficient was greater than 50%. Although the land-use and land cover
remained the same throughout this study, the calculated CN value of this urban watershed increased
from 93.35 to 96.50 as the watershed became more saturated. On average, a 3.4% increase in CN
value would affect runoff by 44% (178,000 m3). This proves that the CN value cannot be selected
according to the land-use and land cover of the watershed only. Urban flash flood modelling should
be formulated with rainfall–runoff data pairs with a runoff coefficient > 50%.

Keywords: curve number; flash flood model; inferential statistics

1. Introduction

Flood and its related disasters are caused by excessive volumes of water (runoff)
which are not absorbed by the ground. Residents at low-elevated regions are often at
risk of inundation, financial loss, and even the loss of lives. As the pace of urbanisation
accelerates around the world, flash flood damage takes place more frequently. Between
1961 and 2020, nearly 10,000 cases were reported with 1.3 million deaths and a minimum
of USD 3.3 trillion of financial losses at an equivalent loss rate of almost USD 1800 per
second [1]. On average, the total reported deaths worldwide were 23,000/year for the
past 6 decades at an equivalent rate of one death every 24 min [1]. Thus, it is important to
study the relationship between rainfall and runoff in order to quantify the runoff amount
from rainfall with equations or predictive models for water resources management, flood
prediction, and risk mitigation to benefit mankind. Although there are many rainfall–runoff
models for runoff prediction, this study assessed a popular rainfall–runoff model from the
United States Department of Agriculture (USDA), Soil Conservation Services (SCS) for flash
flood prediction and benchmarked its runoff prediction accuracy against two parsimonious
models which also used two modelling parameters. The main objective is to formulate
and identify a parsimonious runoff predictive model which requires the least modelling
parameters for urban flash flood prediction.
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Near the end of the 1930s and beginning of the 1940s, infiltrometer tests were carried
out by the Natural Resources Conservation Service (NRCS) agency, also known as USDA,
SCS in order to assess the impact of watershed treatments along with soil conservation
measures on the rainfall–runoff process. The US Congress administered a Watershed
Protection and Flood Prevention Act (Public Law PL-566) years later in August 1954.
Therefore, the SCS had to establish a procedure for national implementation and thus,
hydrologic methods that were once an agency procedure to tackle particular scenarios were
taken and applied with immediate effect. Having said that, the method did not emerge in
the archived literature, nor underwent professional review and critical procedures for a
decade and a half [2,3]. The procedure established by the SCS was developed according
to available data primarily from watersheds overseen with rain and streamflow gages
in the USA. However, the SCS had to overcome most issues in ungagged watersheds.
Hydrological models and procedures constructed by early pioneers were therefore adopted
and grew into a runoff equation for the SCS curve number (CN) as:

Q =
(P − Ia)

2

P − Ia + S
(1)

where

Q = Amount of runoff depth (mm).
P = Depth of rainfall (mm).
Ia = The initial abstraction amount (mm).
S = Maximum potential water retention of a watershed (mm).

Furthermore, the SCS developed a hypothesis whereby Ia = λS, λ being the initial ab-
straction ratio coefficient. The equation was vaguely supported by daily rainfall and runoff
data and the sole source of accredited evidence was the NRCS’s National Engineering Hand-
book, Section 4 (NEH-4). In 1954, the SCS also created the CN methodology, although certain
preliminary field data and core assumptions emerged undocumented and untraced [2–4].

In addition to that, the SCS proposed that Ia = λS = 0.20S where the initial abstraction
ratio coefficient (λ) was 0.20, in which the criterion correlates Ia and S. Field data acquired
from different regions in the USA also contributed to the proposed relationship of Ia to S.
They determined that λ = 0.20 due to the simple correlation between Ia and S data points
used by the SCS. Notwithstanding the sizeable scatter in the data, λ = 0.20 was adopted by
the SCS with the conclusion that half of the data points fell in range of 0.095 < λ < 0.38 [2,4].
The initial abstraction (Ia) is otherwise the depth of the rainfall event necessary for runoff
commencement. Replacing Ia = 0.20S simplifies Equation (1) to become the conventional
SCS runoff forecast model that is commonly used in textbooks, certified hydrological
design manuals, and is widely used in design software as well as programs following its
establishment in 1954 [2–4]. The conventional (simplified) SCS runoff prediction model is:

Q =
(P − 0.2S)2

P + 0.8S
(2)

Equation (2) holds a restriction where P > 0.20S, or else Q would be equal to zero.
Howbeit, proliferating studies lean against the accuracy of Equation (2)’s predictions
as well as the hypothesis where Ia = 0.20S. Literature reviews exhibit inconsistency in
using Equation (2) to predict runoff results and a number of researchers encouraged the
calibration of regional hydrological conditions to be carried out instead of simply following
that of the SCS [5,6].

In the past six decades, the CN technique gained wide acceptance and appliance to hy-
drological problems that were not originally intended to be solved by the SCS. The technique
became the most popular method to predict runoff and was widely taught in colleges and
universities worldwide. The model was also integrated into many software and USDA SCS
systems like the Chemicals, Runoff and Erosion System simulation from the Agricultural Man-
agement Systems (CREAMS) model. It is also used in other models, such as the Agricultural
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Nonpoint Source model (AGNPS), Hydrologic Engineering Centre–Hydrologic Modelling
System (HEC-HMS), USDA Technical Release 20 (TR-20), and USDA Technical Release 55
(TR-55). In fact, it presented a runoff component for successive water quality and erosion
models comprising the Areal Nonpoint Source Watershed Environment Response System
(ANSWERS), the simulator for Water Resources in Rural Basins (WRRB), the Erosion Produc-
tivity Impact Calculator (EPIC), the Pesticide Root Zone model (PRZM), the Water Erosion
Prediction Project (WEPP), and the distributed Soil Water Assessment Tool (SWAT) [2–5].
Although not mentioned here, any software and technical handbooks which incorporated
Equation (2) are very likely to produce inconsistent runoff prediction results.

Recently, researchers proposed a global gridded CN concept for runoff modelling [7,8].
However, some reported that the usage of the CN in representing a watershed is arbitrary,
vague, and often contradictory in describing related areas of land cover [2,9]. Other researchers
emphasised the importance to apply a multi-modelling approach and statistical methods
with land-use and cover variations in order to achieve better flood modelling results [10,11],
while [12] even concluded that even very-fine-resolution topography and high-resolution
land cover data may not be able to produce reliable urban flood modelling results using the
HEC-RAS software. Some researchers also reported difficulty to determine an optimum λ

value [13] in the SCS CN model. Therefore, it is crucial to ameliorate the modelling approach
in order to achieve better model applications to manage water resources and river basins.

As Equation (2) was rooted into many fields, the model re-assessment prevents SCS
practitioners from committing type II errors (a statistical term used within the context of
hypothesis testing that describes the error that occurs when one accepts a null hypothesis
that is actually false). The calibration methodology will derive a statistically significant
rainfall–runoff model with better runoff prediction accuracy and produce a watershed-
specific CN system for an area of interest. Instead of referring to the conventional CN
table compiled by SCS which originated from USA, researchers will be able to derive
watershed-specific CN anywhere with the presented methodology in this study. The CN
derivation methodology will also replace the common unscientific CN adjustments or
tweaking practices in order to achieve better runoff prediction results. The approach entails
performing “trial and error” CN refining with the observed data to better the results of
runoff prediction and assumes that λ = 0.20 for any watershed. However, such practice lacks
statistical justification and often leads to inconsistent runoff prediction results. Study [14]
cautioned that a ±10% CN variation could lead to ±50% change in runoff. It would create
CN value(s) for a watershed; however, the “calibrated” CN value(s) may not even be able
to predict runoff conditions of other watersheds with similar land-use and land cover
conditions again. CN values are a better match for traditional agricultural watersheds
but less accurate in the estimation of semiarid rangelands and are the worst for forested
watersheds [2]. Therefore, CN values should be derived from the local P-Q dataset to reflect
realistic situations [6,13,15].

It is not a common practice for practitioners to assess the statistical significance of a
predictive model with their dataset. Many engineering students were not taught about the
importance of such validation procedures prior to the use of any formulas and equations.
The main aim of this study is to emphasise that any formula or predictive model should
not be blindly adopted, in order to avoid committing type II error.

2. Methodology and Study Site

When the SCS runoff model was adopted to model rainfall and runoff conditions of
a watershed, the assumption of the initial abstraction ratio coefficient (λ = 0.20) was also
accepted. SCS practitioners do not question the validity of the runoff model and therefore,
there is a potential of perpetrating a type II error. A hypothesis was used to assess the validity
of the existing SCS model according to the rainfall–runoff dataset of this study. The model
will be calibrated only when the hypothesis is rejected. In the event that the hypothesis cannot
be rejected, the existing SCS model will be adopted for modelling in this study.
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Null Hypothesis (H0): Ia = λS where λ = 0.20 is valid and applicable for this study. The
null hypothesis assesses the validity of Equation (2) as pertaining to the collected dataset.
H0 must be statistically significant at least at alpha (α) significance level of = 0.05 for it to be
adopted to model the rainfall–runoff condition at the watershed of study. Otherwise, the
model should be calibrated. According to the SCS, λ is a constant value of 0.20 in Ia = λS.

In the event of H0 rejection, a statistically significant initial abstraction ratio coefficient
(λ) and total abstraction value (s) will be derived at alpha = 0.01 which will lead to the
calculation of the best collective representative CN for the watershed as proposed by the
authors’ previous study that based model calibration on the non-parametric inferential
statistics, the bootstrapping bias corrected, and an accelerated (BCa) procedure [6]. Unlike
the existing antecedent moisture condition (AMC) concept which correlates CNI (CN in
dry conditions), CNII (CN in normal conditions), and CNIII (CN in wet conditions) to
determine the runoff condition of a saturated soil, this study extends the model calibration
method proposed previously [6] to model the runoff condition of an urban watershed
under different ground saturation conditions without using return period data. Other than
that, this study added a new control factor to calibrate the model by limiting the overall
model prediction bias near to zero to prevent the newly calibrated model’s bias toward a
specific dataset under this study. As such, the supervised numerical optimisation algorithm
will identify the optimum λ and S value under the model bias control within the bootstrap
BCa confidence intervals while keeping the overall runoff predictive model’s error and bias
near to zero. The BCa technique was chosen as it is the only inferential statistic with a bias
correction ability while able to provide a confidence interval (CI) at specific alpha levels for
statistical assessments. It is also a data-distribution-free method which is compatible to the
nature of any rainfall data distribution and available in the IBM statistical software SPSS
used by this study.

The SCS rainfall–runoff model was calibrated previously by US researchers under
the recommendation to only consider rainfall depths > 25.4 mm (1 inch) in order to avoid
modelling bias towards small rainfall events resulting in higher CNs in rural watersheds [2].
However, the recommended guideline often excludes low-rainfall-depth field data, leading
to an insufficient sample size to produce statistically significant results. Some researchers
even lowered the limit to 15 mm (arbitrary) with a minimum of 10 events in their study
plots [16]. Therefore, this study reviewed the recommended guidelines and demonstrated
the possibility to extend the authors’ previously proposed calibration methodology and to
propose another new model calibration method based on watershed saturation conditions.

A 22.33 km2 urban watershed (Sungai Kayu Ara) in the capital city of Malaysia, Kuala
Lumpur, which consists of a large portion of impervious area, was chosen for this study.
Over the years, this urban watershed is plagued by flash flood damages while the return
period-based concept to assess the drainage capacity efficiency has neither rectified nor
improved the condition. Sungai Kayu Ara watershed covers an area as shown in Figure 1.

The river originates from a forest reserve in the northern upstream and flows toward
the relatively flattened developed suburban areas. The outlet of this watershed is marked
by a dash circle in Figure 1 under the monitor of a water level station. Ninety-two storm
events (1.4 to 90 mm) were collected in this study to produce the rainfall–runoff dataset
through the separation of base flow from the hydrograph. A total of 61% (56 rainfall events)
of this dataset has a rainfall depth of <25.4 mm (1 inch), but with a measurable runoff
amount. Runoff coefficient (Q/P) of this dataset spans from 6% to 97% which is ideal
to model runoff change according to the watershed saturation conditions, out of which,
thirty-seven (37) rainfall–runoff data pairs have Q/P greater than 50% and twenty-four
data pairs are greater than 60%.

This watershed was chosen to show that it is possible to include rainfall depth < 25.4 mm
(1 inch) and incorporate watershed saturation conditions into the SCS runoff model calibration for
urban runoff prediction. The dataset also contains multiple Q/P (%) data batches in order to reflect
the runoff trend and characteristic change due to increasing watershed saturation conditions.
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Figure 1. Location of Sungai Kayu Ara Watershed in Kuala Lumpur, Malaysia.

This study highlights the modelling effect on runoff predictions with different saturation-
based datasets and advises practitioners against the blind adoption of the authors’ previously
proposed model calibration methodology [6] for urban flash flood modelling with any rainfall–
runoff dataset.

Unlike the Hortonian runoff model, hydrologists have recognised that runoff was the
result of rainfall from very wet parts of a watershed since 1960 [17,18]. When the effective
soil water-storage capacity is exceeded, runoff will be produced. This runoff generation
process is referred to as the saturation-excess runoff. Q/P (%) of a watershed will become
larger when effective soil water-storage is reducing [19–22]. Even a medium-sized storm
event over a saturated watershed with a high runoff coefficient may cause severe flooding;
therefore, it is critical to assess the performance of different runoff models under different
runoff coefficient conditions in order to select the best performing parsimonious urban
rainfall–runoff model for urban runoff estimation.

This study formulated a feasible runoff predictive model for urban flash flood prediction
without using the return period data. Inspired by the saturation-excess runoff concept used
by past studies [23–25], the SCS rainfall–runoff model’s calibration methodology presented
previously [6] was extended to model urban runoff under different ground saturation con-
ditions according to the runoff coefficient which was calculated by dividing runoff amount
(Q) to the corresponding rainfall depths (P). The P-Q dataset was then sorted in descending
order of the calculated runoff coefficient of each P-Q data pair. A minimum of twenty P-Q
events were used to ensure a sufficient sample size for analyses [2,26,27]. The significance of
this extended application paved the way for the calibrated SCS runoff model to model urban
runoff under different watershed ground saturation conditions (i.e., Q/P > 50%, 60%, and
70% etc.) for urban flash flooding forecasting, the design of hydraulic infrastructures, and
drainage capacity assessment.

This study also presented the possibility of developing an urban rainfall–runoff model
with a P-Q dataset which includes any rainfall depth that is less than 25.4 mm but with
a significant measurable runoff amount. Equation (1) is calibrated with urban hydrolog-
ical constraints according to the rainfall–runoff dataset to illustrate that the calibrated
SCS runoff model could be utilised for modelling urban runoff. In the authors’ previous
works [6,27], Equation (1) was rearranged into an S general formula, whereby the S and
λ values can be derived according to the corresponding P-Q data pairs, the formula is:

Sλ =

[
P− (λ−1)Q

2λ

]
−

√
PQ−P2+

[
P− (λ−1)Q

2λ

]2

λ . The corresponding S values will be denoted by Sλ
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to differentiate from the conventional S value where λ value = 0.20. Sλ must be correlated
to the S0.2 values prior to the calculation of the CN value [2,6,27]. The non-parametric boot-
strapping (BCa) technique was set in SPSS for 2000 random samplings with replacements
from the 92 data pairs and produced 99% confidence interval (CI) for parameter optimi-
sation. In another words, the parameter of interest underwent 2000 random validations
against its dataset. By utilizing Equation (1), the λ and S optimisation was achieved using
the approach of numerical analyses. Model calibration of this study was conducted by
removing data pairs of Q/P > 60%, between 40 and 60%, and <40% for model calibration, re-
spectively, with validation against the remaining dataset. Through several iterations of the
minimisation of the overall predictive model fitting bias and residual sum of square error
(RSS) between the predicted Q against its observed values, the final model was formulated.

Runoff models are compared for their model predictive accuracy in this study. The
residual spread of a model is indicated by residual sum of squares (RSS) in which a lower
RSS is equivalent to an improved conjecturing model. On the other hand, the model
efficiency index (E also known as the Nash–Sutcliffe) lies on a spectrum of minus infinity
to 1.0 whereby index value = 1.0 shows an ideal conjectured model. In the instance where
E < 0, it is inferior to utilizing an average to predict the dataset. The average residual of
a predictive model (BIAS) indicates an altogether model prediction error quantified by
the average of its residual to stipulate a pattern in the overall model prediction. A zero
value means that it is an ideal error-free overall model prediction, and a negative value
demonstrates the under-predictive overall model tendency, and conversely. In addition, a
better predictive model will also have smaller residual range and interval, smaller standard
deviation in residual, and mean residual near to zero.

2.1. Linear Regression Model

Equation (1) will be calibrated (only if H0 was rejected) and benchmarked against the
linear regression model for runoff prediction accuracy in this study with models of parsi-
monious interest. For urban rainfall–runoff, the one-dimensional linear regression model
was proposed by early pioneers and often utilised, whereby the slope of the regression
equation represents a hydrological reduction variable [28] or a proportion in relation to a
whole of an impermeable area of a watershed [29]. The intercept on the x-axis estimates a
watershed’s local depression amount or depression loss [30]. The linear regression model’s
base form is:

Q = mP + c (3)

where

Q = Amount of runoff (mm).
P = Depth of rainfall (mm).
m = Gradient (slope).
c = Constant (intercept on the x-axis).

2.2. Asymptotic Curve Number Modelling

US researcher [31] first pointed out that the most common use of Equation (2) was
to calculate runoff from the rainfall depth with the same return period and proposed to
perform “frequency matching” by pairing P-Q data pairs with same return periods, while
another US researcher [32] reported that CN values decreased against increasing rainfall
amounts, and there was a notable pattern in that CN would eventually approach a constant
value in most cases. He also proposed a two-parameter asymptotic fitting method (AFM) to
sort the rainfall and runoff dataset separately in descending order and pair them up again
as “ordered data”. The method accepted the SCS proposal where λ = 0.20. Three different
patterns were observed and classified as standard behaviour, complacent behaviour, and
violent behaviour.

AFM was proposed to determine the representative CN for the watershed of interest
through its P-Q dataset (λ value remains as 0.20 under this method) under the theoretical
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projection when P approaches infinity amount. CN cannot be determined for the com-
placent behaviour watershed, but standard behaviour watershed follows the following
formula for CN determination:

CN(P) = CN∞ + (100 − CN∞)e(−
P
k ) (4)

where

CN(P) = Fitted CN value of a specific rainfall depth.]
CN∞ = CN of a watershed of interest.
P = Rainfall depth (mm).
K = Fitting parameter.

Violent behaviour watershed follows the following formula for CN determination:

CN(P) = CN∞

[
1 − e−k(P−Pth)

]
(5)

where

Pth = Threshold Rainfall depth (mm).

AFM was chosen to benchmark against the linear regression model and the proposed
calibrated model in this study because it is the only CN model that relies on two fitting
parameters and has been widely adopted by SCS practitioners.

3. Results

3.1. Linear Regression Model

Using the IBM SPSS, the best fitted model of linear regression for the P-Q dataset of
this study based on the basic linear intercept Equation (3) was identified as below while the
descriptive and inferential statistics are tabulated in Table 1. Equation (6) has the highest
R2

adj of 0.831 and the lowest fitting model standard error (SE) of 4.648.

Q = 0.62P − 3.182 (6)

Table 1. Descriptive and Inferential Statistics of Equation (6) at α = 0.05.

CI BCa CI

Model Coeff. p Value Lower Upper p Value Lower Upper

Constant −3.182 0.001 −4.956 −1.408 0.004 −5.484 −0.882
Gradient 0.62 0.000 0.561 0.678 0.000 0.531 0.703

From Table 1, both fitting parameters of the linear regression model are statistically
significant (p < 0.01) and the BCa results reaffirmed the p value significances. Previous
researchers [29] used the fitting gradient to estimate the percentage of impervious area while
the constant value implies the local depression amount or the watershed’s depression loss.
However, at alpha = 0.05, the confidence interval (CI) spans 252% and 83% in the respective
constant and gradient fitting while the BCa CI results show 622% and 76% variation in those
categories. At alpha = 0.05, stringent BCa CI results imply that the local depression, or the
depression-loss, of the Sungai Kayu Ara watershed can be any value between 0.89 mm and
5.5 mm (BCa lower-to-upper confidence interval of the fitting constant parameter) while
the interpretation of impervious area estimates within the watershed can be any value
between 53.1% and 70.3% (BCa lower-to-upper confidence interval of the fitting gradient
parameter). Hydrological implications from those two parameters are open to a wide range
of interpretations at this point.
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3.2. The Existing (Simplified) SCS Runoff Model

Using the entire dataset, the results of BCa established a CI span for derived λ values
of the P-Q dataset at the Sungai Kayu Ara watershed (Table 2) can also be used to assess
H0. To implement Equation (2), H0 must be accepted. The λ confidence interval span and
the standard deviation are utilised to assess H0.

Table 2. BCa results (α = 0.01) of derived λ values at Sungai Kayu Ara watershed.

BCa 99% CI

λ Lower Upper S Lower Upper

Mean 0.021 0.007 0.051 36.3 28.2 46.7
Median 0.004 0.004 0.006 30.0 22.7 33.7

Skewness 9.020 3.2
Kurtosis 84.332 16.8

Std. Deviation 0.097 35.8

The mean and median CI span (Table 2) did not comprise of a λ = 0.20. Furthermore,
the derived λ dataset’s standard deviation is not zero (to indicate that it is a constant),
hence H0 can be rejected at α = 0.01, ruling out the validity of Equation (2) to model runoff
conditions at this watershed. Therefore, the SCS model must undergo model calibration to
avoid the risk of type II errors.

3.3. Calibrated SCS Runoff Model for the Sungai Kayu Ara Watershed

Tabulated in Table 2 are the descriptive statistics regarding the nature of the data
distribution of the values of λ and S. The supervised least-square-fitting algorithm has been
configured to find the optimum value of λ and S in the confine of the median confidence
intervals because of the nature of their skewed data distribution (Table 2). For the Sungai
Kayu Ara watershed, the optimum λ value would be 0.004 and the best collective represen-
tation of S is 31.47 mm (denoted as S0.004), with an overall model bias of zero (α = 0.01) to
model the entire dataset. As Ia = λ S, substituting λ and S values produces Ia = 0.11 mm.

The calibrated SCS urban rainfall–runoff prediction model, when Ia and S are substi-
tuted back to Equation (1), would be:

Q0.004 =
(P − 0.11)
P + 31.36

2
(7)

where

Q0.004 = Runoff amount (mm) of the new model formulated with λ = 0.004.

The urban runoff model calibrated by the SCS is displayed by Equation (7). It is bound
to the condition of P > 0.11 mm, otherwise Q0.004 = 0 mm. Equation (7) has an overall model
bias value of zero which implies that it does not have an over- or under-prediction tendency
on runoff-amount prediction. The correlation between S0.004 and S0.2 can be determined
with SPSS as: S0.2 = 0.901 S0.004

0.87 (R2
adj of 0.97, SE of 0.174, and p < 0.001). Subsequently,

the equivalent S0.2 can be calculated as 18.11 mm leading to the derivation of CN0.2 = 93.35
with the SCS CN formula: CN0.2 = 25,400

S0.2+254 . The 99% BCa CI of S0.004 ranges from 22.7
to 33.7 mm (Table 2). Those values can also be used to calculate its equivalent upper and
lower CN0.2 limits in the same manner; therefore, the best collective CN0.2 = 93.35 (α = 0.01,
99% CI ranges from 92.96 to 94.91) for the urban watershed under this study (The CN0.2
value derivation and SCS CN model calibration steps were summarised and listed in a
step-wise instruction format in Appendix A (or authors’ previous publication [6])).

3.4. Asymptotic Curve Number Modelling

Using the AFM, the derived CN0.2 values versus rainfall depths graph (Figure 2)
resembles the standard behaviour pattern, hence Equation (4) was adopted to derive CN∞
as the best representative CN0.2 value for the Sungai Kayu Ara watershed and to verify the
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modelling result in this section. Using the least-square-fitting method, the fitting parameter
k was identified to be 19.23 and CN∞ is 90.27. Rounding to the nearest positive integer,
CN∞ = CN0.2 = 90. This CN value is in proximity to the equivalent CN0.2 value of 93.35
which was derived by the calibrated SCS runoff model in Section 3.3.

 

Figure 2. Asymptotic CN fitting of Sungai Kayu Ara watershed: The CN∞ resembles standard
behaviour pattern with CN∞ = 90 near to stable state at the higher rainfall depths.

From the SCS CN formula, the calculated S0.2 value is 27.39 mm and Ia = 0.20 × 27.39 mm
= 5.48 mm. As such, the AFM runoff predictive model can be formulated from Equation (1) to
benchmark the accuracy of the runoff prediction of the original (unsorted) rainfall–runoff dataset
against Equations (6) and (7), with the descriptive and inferential statistics of the runoff predictive
model’s residual listed in Table 3.

Table 3. Runoff Models’ BCa 99% residual analyses comparison.

Equation (6) Equation (7) AFM Model

CN0.2

E
N/A
0.832

93.35
0.823

90.27
0.784

RSS 1945.06 2052.37 2507.72
Residual Standard Deviation: 4.62 4.75 4.630

Standard Deviation CI: [3.61, 5.70] [3.64, 5.84] [3.55, 5.70]
Skewness −0.52 0.72 0.554

Mean Residual: 0.008 0.000 −2.460
Residual CI: [−1.31, 1.23] [−1.31, 1.29] [−3.78, −1.19]

Residual: Range 26.84 27.98 28.10
Note: Smaller residual standard deviation and residual range imply a better model. Narrower residual interval
shows a model with less error distribution while a residual interval that does not span across zero indicates a
model with either an over- or under-prediction tendency.

3.5. Runoff Models Comparison

Inferential statistics results of the runoff models’ residual analyses were also generated
and tabulated in Table 3. Equation (7), which is the calibrated runoff model (using λ = 0.004),
was benchmarked with the linear intercept model of Equation (6) and AFM. The non-calibrated
SCS runoff model of Equation (2) was ruled out as it is not statistically significant, hence it
was excluded from the model comparison. The model’s prediction efficiency index (E) as well
as its residual sum of squared error (RSS) and descriptive statistics were quantified to extract
further comparisons.

From Table 3, the model residual of Equations (6) and (7) have skewness values near
to zero, implying that each respective residual distribution is almost normally distributed;
therefore, the mean residual can be a good indicator of the prediction accuracy of those
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models. The mean residual’s BCa 99% confidence interval range of all three models spanned
across zero to indicate the possibility of producing zero residual prediction is significant
(α = 0.01), hence all models (except AFM) can achieve an accurate runoff prediction.

The AFM runoff model has a higher RSS, with lower E index when compared to the
other two models listed in Table 3. The AFM model shows the runoff amount’s under-
prediction tendency, as its mean residual’s confidence interval range fluctuates within a
negative range and it also has the widest residual range compared to the other models.
According to the SCS, there will be no runoff until a rainfall depth is larger than Ia, but the
calculated Ia value of the AFM runoff model is larger than six recorded events (6.5%) of
the P-Q dataset, while Equation (7) does not have this issue. Although the AFM runoff
model derived a proximate CN0.2 as the value from Equation (7), a 3.4% increase in the
CN0.2 value from 90.27 (AFM model) to 93.35 (Equation (7)) was able to improve the runoff
model’s E index efficiency by nearly 5% and reduce the RSS by 18% (Table 3).

Up to this point, the linear regression runoff predictive model (Equation (6)) is sta-
tistically significant and outperformed against other models to model runoff conditions
with the entire dataset. The AFM model is the worst model to predict runoff conditions.
To test the robustness of the linear regression runoff predictive model, this study further
assessed the runoff prediction ability of Equation (3) against the AFM technique and the
newly proposed SCS runoff model calibration method of this study with the same dataset,
but regrouped under two different Q/P conditions of >50% and 60%.

4. Further Assessment with Saturation-Excess Runoff Scenarios

Using the same P-Q dataset, the runoff coefficients were calculated to regroup the
dataset. The original P-Q dataset has wide distribution range of Q/P from 6% to 97%. Of
this, thirty-seven (37) events were found to have Q/P > 50% and twenty-four (24) events
were greater than 60%. Thirty-seven (37) and twenty-four (24) P-Q data pairs with runoff
coefficients of >50% and >60% were grouped separately to repeat the aforementioned cali-
bration methodology for the rederivation of all rainfall–runoff models for runoff prediction
re-assessment. This will further assess the reliability and robustness of all compared runoff
predictive models when the watershed becomes increasingly saturated.

4.1. Linear Regression Model

According to the basic linear form of Equation (3), for the given rainfall–runoff dataset,
IBM SPSS established the best fitting linear regression model as:

For Q/P > 50%, Q = 0.654P − 0.216 (8)

For Q/P > 60%, Q = 0.747P − 0.913 (9)

Q and P as defined previously. Equation (8) has R2
adj of 0.936 and SE of 3.549 while

Equation (9) has R2
adj of 0.977 and SE of 2.242. The descriptive statistics are tabulated in Table 4.

Table 4. Inferential statistics of Equations (8) and (9) at α = 0.05.

Model
Q/P > 50%

Coeff. p Value
Model

Q/P > 60%
Coeff. p Value

Constant −0.216 0.834 Constant −0.913 0.254
Gradient 0.654 0.000 Gradient 0.747 0.000

From Table 4, the constant coefficients are not significant (p > 0.05) under both runoff
coefficient scenarios for both equations. When the constant becomes insignificant (x-intercept = 0),
the fitting constant parameter will be discarded. The linear intercept runoff model relies on the
interception on the x-axis (the constant term) to estimate the local depression, initial loss, or the
depression loss of a watershed [30]. In the event when the fitting constant becomes statistically
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insignificant, or local depression, initial loss, or the depression loss becomes zero, the only logically
hydrological implication is that 100% rainfall becomes complete runoff (Q = P) thereafter.

In order to maintain the proposal of [30], the suitable structure of the alternative linear
regression is a regression model through the origin (RTO), with the gradient as the only accept-
able model-fitting parameter. The data were assessed with IBM SPSS again under both runoff
coefficient conditions and identified the best-fitted RTO given by Equations (10) and (11), and
their statistics shown in Tables 5 and 6.

For Q/P > 50%, Q = 0.649P (10)

For Q/P > 60%, Q = 0.724P (11)

Table 5. Descriptive statistics of Equations (10) and (11) at α = 0.05.

Confidence Interval
Model Coeff. Lower Upper p Value

Q/P > 50% Gradient 0.649 0.616 0.681 0.001
Q/P > 60% Gradient 0.724 0.695 0.753 0.001

Table 6. Inferential statistics of Equations (10) and (11) at α = 0.05.

Confidence Interval BCa
Model Coeff. Lower Upper p Value

Q/P > 50% Gradient 0.649 0.605 0.696 0.001
Q/P > 60% Gradient 0.724 0.680 0.756 0.001

According to the assessment statistics in Tables 5 and 6, although both RTO models
are significant (p value < 0.01), neither confidence interval span shows a possible inclusion
of 1.0 as a fitting gradient for both runoff coefficient scenarios. Q = P is not statistically
significant and does not fit the modelling dataset under either condition. As such, the
100% complete runoff scenario becomes impossible and posts a conflict with the proposal
from [30]. The validity of Equation (3) for runoff prediction is now in question.

On the other hand, complacent behaviour patterns were detected for both runoff
coefficient (Q/P > 50% and 60%) scenarios with the AFM. It failed to derive a representative
CN0.2 value as the value reduced according to the increasing rainfall depths and did not
approach any stable value. Both the linear regression (two-parameters) model and the
AFM model failed to model the runoff conditions and calculate the CN0.2 value for the
watershed in this study when Q/P > 50%.

4.2. Calibrated SCS Runoff Model

Although Equation (7) is able to model the Q/P > 50% and Q/P > 60% datasets
with zero bias and an E index of 0.854 and 0.851, respectively, the runoff under-prediction
tendency is increasing with Q/P (%), which defeats the aim of developing an effective urban
flood predictive model. As such, thirty-seven (37) and twenty-four (24) P-Q data pairs
of the Sungai Kayu Ara watershed with Q/P > 50% and >60% were grouped separately
for λ value rederivation in order to perform SCS model calibration and to formulate
statistically significant runoff predictive models again. Optimisation of λ in Equation (1)
was conducted within the median confidence interval because of skewed λ datasets of
both runoff coefficient scenarios. Tables 7 and 8 illustrate the data distribution of λ values
through descriptive statistics analyses conducted with IBM SPSS.
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Table 7. Inferential statistics of derived λ at α = 0.01 for Q/P > 50% scenario.

Q/P > 50% 99% BCa CI of λ
λ Dataset Statistics Lower Upper

Mean 0.043 0.011 0.117
Median 0.009 0.005 0.013

Skewness 5.815
Kurtosis 34.691

Std. Deviation 0.149

Table 8. Inferential statistics of derived λ at α = 0.01 for Q/P > 60% scenario.

Q/P > 60% 99% BCa CI of λ
λ Dataset Statistics Lower Upper

Mean 0.061 0.014 0.171
Median 0.013 0.007 0.026

Skewness 4.724
Kurtosis 22.764

Std. Deviation 0.184

The Q/P > 50% dataset (54% dataset with P < 25.4 mm) gave an optimal λ value of
0.005 and an ideal collective S representation of 19.26 mm to yield Ia = 0.104 mm. The
optimum λ value and best collective representation of S for Q/P > 60% dataset (63% dataset
with P < 25.4 mm) are 0.007 and 12.42 mm, which yield Ia = 0.092 mm. By substituting Ia
and S back into Equation (1), the formulation of the calibrated rainfall–runoff prediction
models are:

For Q/P > 50%, Q0.005 =
(P − 0.104)
P + 19.159

2
(12)

For Q/P > 60%, Q0.007 =
(P − 0.092)
P + 12.325

2
(13)

Q0.005 = Runoff (mm) where λ = 0.005.
Q0.007 = Runoff (mm) where λ = 0.007.

Equation (12) bounds to a constraint where P > 0.104 mm, else Q0.005 = 0, whereas
Equation (13) bounds to P > 0.092 mm, else Q0.007 = 0. These models were formulated with
the extra model bias control factor during the supervised numerical optimisation process
under the guiding control of BCa. Both equations have an overall model BIAS value of
zero. Conceptualisation of the calibrated SCS runoff prediction Equations (12) and (13) with
the optimum λ value hold an identical inherent significant level (α = 0.01). Following the
equivalent CN0.2 derivation process as stated in Section 3.3, Equation (12) yields the equivalent
CN0.2 value of 94.89, while Equation (13) derives the value of 96.50 to represent the respective
ground saturation conditions of the Sungai Kayu Ara watershed. In Tables 7 and 8, the
BCa confidence interval ranges of both scenarios do not consist of the λ value of 0.20, hence
Equation (2) is still invalid to model either runoff conditions. As such, it will be excluded from
runoff model comparison in this section again.

4.3. Model Comparison under Different Saturation-Excess Runoff Scenarios

The newly calibrated runoff models of Equations (12) and (13) were benchmarked against
the RTO linear model Q = P only (since the constant-fitting parameter becomes statistically
insignificant, refer to Table 4 results) under two different runoff coefficient scenarios. The AFM
was excluded as it failed to model the runoff conditions when Q/P > 50% and derive any CN0.2
for the watershed. For further comparison, the model’s prediction efficiency index (E), RSS, as
well as the predictive model BIAS have been formulated, as seen in Table 9.
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Table 9. Runoff predictive model’s comparison.

Q/P > 50% Equation (12) Q = P Q/P > 60% Equation (13) Q = P

E 0.85 0.11 E 0.94 0.59
BIAS 0.000 10.419 BIAS 0.000 7.588
RSS 1051.23 6319.41 RSS 303.25 2056.83

RTO models failed to achieve runoff prediction accuracy with a runoff over-prediction
tendency (positive model bias in Table 9). On the contrary, Equations (12) and (13) managed
to predict runoff with high E index, and the E index value even improved from 0.85 to 0.94
as the ground saturation condition increased from 50% to 60%. In this study, the proposed
calibrated model is the only runoff predictive model that is capable of modelling urban
runoff conditions accurately, even when the watershed becomes increasingly saturated.

5. Discussion

5.1. Hydrological Implication of the New Runoff Predictive Models

The new runoff models (Equations (7), (12) and (13)) were derived to represent different
hydrological conditions of the Sungai Kayu Ara watershed. Equation (7) modelled the overall
runoff condition of the entire dataset. On the other hand, Equations (12) and (13) represent higher
ground saturation conditions where runoff coefficients Q/P are >50% and >60%, respectively.
The runoff and incremental trend of all the three models are shown in Figure 3. Equation (7)
under-predicted runoff amount significantly when compared to Equations (12) and (13), even
though it was under the bias control and guided by BCa.

 

Figure 3. Runoff models using all P-Q data (Equation (7)), Q/P > 50% (Equation (12)), Q/P > 60%
(Equation (13)) and runoff depth (mm) increment at Sungai Kayu Ara watershed. By comparing
Equations (7) and (13), CN0.2 increased 3.4% with an average of 44% (nearly 178,000 m3) runoff
amount increment while CN0.2 increased 1.7% from Equations (12) and (13) with an average increment
of 15.7% (about 75,000 m3) in runoff amount. Note: Runoff depth increment of 1 mm = 22,330 m3

runoff volume increase at the study site.

It is noteworthy to highlight that the land-use and land cover of the Sungai Kayu
Ara watershed remained the same throughout this study. However, the CN0.2 value of
this watershed still increased from 93.35 to 94.89 and 96.50 as the watershed became more
saturated. This proves that CN0.2 value cannot be selected from any handbook according
to the land-use and land cover of a watershed only, and it must be derived according to
the rainfall–runoff dataset under different ground saturation conditions in order to reflect
specific hydrological characteristics of a watershed.

The runoff coefficient distribution for Equation (7) diversifies across a wide range from
6% to 97% (47% on average). Equations (12) and (13) quantify scenarios where the Sungai
Kayu Ara watershed becomes more saturated, and the runoff amount from Equation (13)
is the highest. The actual incremental runoff from Equations (7)–(13) is also higher than
the incremental runoff difference between Equations (7) and (12). Equations (12) and (13)
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are as postulated by the “saturation-excess runoff” concept—that the runoff coefficient
of a watershed becomes larger when effective soil water-storage reduces and induces
higher runoff amounts. This proves that runoff predictive models must be formulated with
appropriate datasets to reflect ground saturation conditions accurately. The proposed SCS
model calibration methodology in this study cannot be adopted blindly for urban flash
flood modelling if the Q/P of the dataset is less than 50%.

5.2. Comparison of Rainfall–Runoff Models

The prospects of the Sungai Kayu Ara watershed utilizing a linear regression model
for urban runoff analyses is evaluated in this study. Table 3 tabulated comparisons for
runoff models. During the saturation-excess assessment, linear intercept regression models
had insignificantly fitted constant terms under both runoff coefficient scenarios (Table 4).

According to [30], the constant-fitting parameter is crucial to the x-intercept approach
that represents an estimate of initial loss, local depression, or even watershed depression.
The absence of an initial- or depression loss at the watershed according to its P-Q dataset
is inferred by an insignificant-fitting constant. Further hydrological interpretation shows
a completely saturated watershed with 100% of runoff by any volume of rainfall. The
only reasonable linear regression runoff model takes the form of Q = P, however its RTO
equation-fitting results state otherwise (Tables 5 and 6). Best-regressed RTO linear models
from IBM SPSS show no possibility to model complete runoff conditions. For the Q/P > 50%
dataset, at most Q = 0.696 P where 30.4% of initial loss still exists. For the Q/P > 60% dataset,
at most Q = 0.756 P where 24.4% of initial loss still exists. Q = P is statistically insignificant
(p > 0.05) under both runoff coefficient scenarios. The hydrological implications of the
linear regression model conflicts and detaches from the statistical justification. As such,
hydrological-condition implications based on those two fitting parameters of the linear
regression model become inconsistent and unreliable. The linear regression runoff model
failed to describe the hydrological conditions of the Sungai Kayu Ara watershed when
runoff coefficient is greater than 50%. On the other hand, the AFM did not outperform
against compared models in this study (Table 3). It also failed to model the watershed and
derive the CN0.2 value when the runoff coefficient is greater than 50%.

The original SCS hypothesis where the value of λ = 0.20 was met with repeated
rejections (α = 0.01 level) as the BCa 99% confidence interval span did not show the
possibility of having the value of 0.20 (Tables 2, 7 and 8), concluding that Equation (2) was
not valid and therefore inapplicable for this study. H0 also faced rejection (α = 0.01 level) as
its BCa findings indicated a standard deviation of λ that was not equivalent to zero (Table 2),
showing the nature of λ’s value fluctuations, thus, λ does not meet the requirement of a
constant as was suggested in 1954 by the SCS, and is, rather, a variable. As a matter of fact,
H0 in this study was rejected, and thus, it opens the opportunity for SCS model calibration.
The notion of approaching this matter based on numerical analysis was also utilised in this
study, along with guidance of non-parametric inferential statistics, identifying the ideal
collective representation of λ and S values to formulate a calibrated runoff predictive model
for the Sungai Kayu Ara watershed.

Many researchers in this field suggested different λ values to recalibrate the SCS runoff
predictive model. However, the statistical significance of those new values was not re-
ported [6,27]. This study is also in line with the latest findings in this area which reported
the detection of multiple CN and Ia values within a watershed and suggested the practice of
using multiple CN and Ia values to represent the heterogeneity of a watershed. Those studies
also concluded that the SCS CN model must be calibrated according to local rainfall–runoff
data to improve the runoff prediction accuracy [33–35]. As such, Equation (2) can no longer
be blindly adopted for runoff prediction modelling according to the SCS with Ia = 0.2S. The
latest findings of [34,35] increased the SCS CN model calibration difficulty level for SCS
practitioners because they can only use one Ia value to calibrate Equation (1) [2,9–13]. The
non-parametric inferential statistics model calibration guide proposed by this study offers a
solution for SCS practitioners to select statistically significant key parameters of S and λ values
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from its confidence interval range to calibrate the fundamental SCS CN runoff framework
(Equation (1)) according to their rainfall–runoff dataset.

6. Conclusions

1. The hydrological implications of the linear regression model conflicts and detaches from
the statistical justification and, therefore, implications based on the two main-fitting
parameters of the linear regression model become inconsistent and unreliable. The linear
regression runoff model and the AFM technique failed to describe the hydrological
conditions of this case study when the runoff coefficient (Q/P) is greater than 50%.
On the other hand, λ �= 0.20, and the simplified SCS runoff model (Equation (2)) is
not statistically significant (α = 0.01). These three models are unsuitable in terms of
modelling the condition of urban runoff in this study;

2. The decimal CN0.2 value can be calculated in order to reflect runoff conditions with
higher accuracy. Unlike the antecedent moisture-condition CN concept, CN0.2 can be
calculated directly and independently to represent the runoff condition of the watershed
when it reaches 50% and 60% ground saturation level. The optimum is λ = 0.004 and
CN0.2 = 93.35 (at α = 0.01 level) to model all P-Q data pairs runoff for the Sungai Kayu
Ara watershed. Although the land-use and land cover remained the same throughout
this study, the CN0.2 value of this case study still increased from 94.89 (λ = 0.005) to
96.50 (λ = 0.007) as the watershed became more saturated. In line with [14], the CN0.2
value was found to be a sensitive parameter. Comparing Equations (7) and (13), the
CN0.2 value increases by 3.4% with an average of 44% increase in runoff amount, which
is almost 178,000 m3 of the runoff increment. Runoff prediction-difference is more
profound toward higher-rainfall-depth storm events. As such, Equation (13) should be
used to assess the urban drainage capacity and for flash flood prediction, while CN0.2
value cannot be decided according to the land-use and land cover conditions only. It can
be derived according to the rainfall–runoff dataset and ground saturation conditions in
order to reflect the specific hydrological characteristics of a watershed with the proposed
method in this study for urban runoff predictions;

3. This study also demonstrated that it is possible to calibrate Equation (1) and to include
rainfall depths less than 1 inch (25.4 mm) in order to formulate a statistically significant
urban runoff predictive model. Otherwise, nearly 61% (56 events with measurable runoff)
of the P-Q data pairs of this study will be discarded for modelling as the corresponding
rainfall values are less than 25.4 mm, out of which, 34% (19 events) with Q/P > 50% and
27% (15 events) with Q/P > 50% would not be available to formulate Equations (12) and (13)
with a sufficient sample size. This study also preserved the parsimonious form of the SCS
runoff model for calibration and it emerged as the simplest two-parameter rainfall–runoff
predictive model in this study. Flood prediction through rainfall–runoff modelling should
be formulated with rainfall–runoff data pairs with runoff coefficients > 50% instead of using
datasets with low runoff coefficients;

4. In general, the proposed methodology in this study is applicable to any urban watershed
with a measurable runoff amount (even with rainfall depth < 25.4 mm) and enough
datasets (at least 20 events) with Q/P > 50% or above. It offers a quick and economical
runoff assessment in developing areas with rapid land-use and cover change without
relying on return period information. Future works may analyse the cost effectiveness
of return period-based infrastructure design at urban scale with a longer period rainfall–
runoff dataset. The SCS CN model has two parameters (λ and S) only. The proposed
model calibration methodology offers a quick quantification of runoff depth from a
storm event, whereby SCS practitioners can estimate flood volume at the watershed of
interest. Instead of selecting the CN value subjectively by looking at the land-use and
land cover, SCS CN model practitioners can derive a range of statistically significant
CN values to estimate probable flood volume, assess drainage capacity, and identify
probable flood prone area(s). In conjunction, GIS software can be used to assess flood
risk, financial losses, and propose needed mitigation strategies;
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5. The authors caution that there are several limitations to the proposed methodology.
The minimum sample size should be at least 20 to achieve meaningful inferential
results. The choice of the statistical software must have the option to conduct boot-
strapping BCa procedures and provide confidence intervals for median values. The
SCS CN lump model must be used with caution when re-creating the specific features
of an actual storm as it does not contain time parameters. It is not a precipitation
runoff model to model runoff from snowmelt or rain on frozen ground conditions.
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Appendix A

The CN0.2 value derivation and SCS CN model calibration steps can be summarized
as below:

1. Given that: Effective rainfall (Pe) = P − Ia and Ia = λS; Equation (1) can be rearranged as:

Q = Pe
2

Pe+S where S = Pe
2

Q − Pe and λ = Ia
S

2. For each P-Q data pair (Pi, Qi), calculate corresponding λi and Si value;
3. Perform bootstrap, BCa procedure, and normality test in SPSS (version 18.0 or an

equivalent statistics software) for (λi, Si);
4. Check the normality test results of Si to see whether it is normally distributed or not:

(a) If yes, refer to the mean BCa confidence interval for Si optimisation.
(b) Otherwise, refer to the median BCa confidence interval for Si optimisation;

5. Check the normality test results of λi to see whether it is normally distributed or not:

(a) If yes, refer to the mean BCa confidence interval for λi optimisation.
(b) Otherwise, refer to the median BCa confidence interval for λi optimisation;

6. Substitute the λoptimum and Soptimum value into Equation (1) to formulate the calibrated
SCS runoff predictive model;

7. Given (Pi, Qi) and λoptimum, compute Sλi values with Sλ =

[
P− (λ−1)Q

2λ

]
−

√
PQ−P2+

[
P− (λ−1)Q

2λ

]2

λ

8. Given (Pi, Qi) and λ = 0.2, compute S0.2i values with Sλ =

[
P− (λ−1)Q

2λ

]
−

√
PQ−P2+

[
P− (λ−1)Q

2λ

]2

λ
again;

9. Correlate S0.2i and Sλi to form a S correlation equation in SPSS (or an equivalent
statistics software);

10. Substitute the S correlation equation into the SCS curve number formula: CN0.2 = 25,400
S0.2+254

to derive CN0.2 value.
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Abstract: We study the inverse scattering problem for a Schrödinger operator related to a static wave
operator with variable velocity, using the GLM (Gelfand–Levitan–Marchenko) integral equation. We
assume to have noisy scattering data, and we derive a stability estimate for the error of the solution
of the GLM integral equation by showing the invertibility of the GLM operator between suitable
function spaces. To regularise the problem, we formulate a variational total least squares problem,
and we show that, under certain regularity assumptions, the optimisation problem admits minimisers.
Finally, we compute numerically the regularised solution of the GLM equation using the total least
squares method in a discrete sense.

Keywords: inverse scattering; Gelfand–Levithan–Marchenko equation; total least squares

1. Introduction

In many scientific, medical and industrial problems, one has to retrieve unknown
coefficients of a governing differential equation (PDE) from (partial) measurements of its
solution. This way, properties of materials can be studied in a medium that we do not have
direct physical access to. In geophysics, for example, a well-known problem is estimating
the elastic parameters of the subsurface from surface measurements. The governing PDE is
a wave equation, and the measurements consist of a trace of its solution on the boundary
of the domain. See, for example, [1] for an overview.

In particular, we focus on the inverse problem for the 1D static wave/Helmholtz
equation

− d
dy

{
c2(y)

d
dy

v(k, y)
}
= k2v(k, y), y ∈ R, (1)

with v = vi + vs and (asymptotic) boundary conditions

lim
y→±∞

{dvs(k, y)
dx

± ikvs(k, y)
}
= 0 (2)

We let vi(k, y) = e−ıky, which corresponds to an incoming plane wave from the left.
The measurements at y = 0 are given by

K(t) =
∫
R

vs(k, 0)e2ıktdk,

for t ∈ [0, T]. The goal is now to retrieve c from these measurements.
Various methods for solving the inverse coefficient problem for the wave equation have

been developed. A well-known method is full waveform inversion, which poses the inverse
problem as a PDE-constrained optimisation problem [2,3]. Other variational formulations
for the inverse problem have been proposed as well; see, for example, [4,5]. We refer to
such methods as indirect, as they are based on an implicit non-linear relation between
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data and coefficients that need to be solved iteratively. On the other hand, the inverse
problem can be solved using a direct method. Here, an explicit formula leads to the exact
solution of the inverse problem (for noiseless data). A classical direct method is given by
the Gelfand–Levitan–Marchenko (GLM) integral equation [6–8]. This method has its roots
in inverse scattering theory, and has recently attracted renewed attention [9–12]. In [13], for
example, a GLM-like approach for wavefield redatuming was proposed. Here, boundary
measurements are used to estimate the wavefield in the entire domain. Subsequently, such a
wavefield can be used to estimate medium parameters by solving the Lippmann–Schwinger
integral equation [14].

One advantage of the indirect (variational) methods over the direct ones is that they
can handle better situations where there is noise in the data. In direct methods, noise in the
data likely gets amplified. To counter such instabilities, one typically adds regularisation. In
particular, the GLM approach with noisy data requires a total least squares (TLS) approach,
and was studied numerically by [15]. Other regularised approaches for similar integral
equations in seismic imaging are discussed in [16].

In this paper, we revisit the classical GLM approach for the 1D inverse medium
problem and consider in particular the infinite dimensional case with noisy measurements.
To regularise the problem, we formulate a regularised (TLS) approach for it. To solve the
resulting variational problem, we use an alternating iterative method [17]. Some numerical
examples complete the paper.

Our main contributions are as follows:

• We extend the stability estimates that can be found in [18] to the classical GLM
integral equation.

• We show that the variational TLS formulation of the GLM method admits minimisers.

This paper is organised as follows. In Section 2, we state the forward scattering
problem and we review some classical results from scattering theory. We also review basic
properties of the GLM integral operator. In Section 3, we include our new findings, namely
the stability estimate for the GLM inversion assuming having access to noisy scattering data.
We then continue studying the variational total least squares problem of reconstructing the
solution of the inverse problem from noisy scattering data, and we show the well-posedness
of it. We also discuss its analytical limitations. In Section 4 we implement numerically
the proposed total least squares regularisation method. In Section 5 we show a number of
numerical examples and conclude the paper with a discussion section.

2. Preliminaries

This section summarises mostly known and well-established results in 1D scattering
theory. In Section 2.1, we use the travel time coordinate transform to derive the equivalence
of the static wave equation with variable velocity to the Schrödinger equation and we
formulate the forward scattering problem. In Section 2.2, we repeat the classical procedure
of using the Jost solutions to construct the solution of the forward scattering problem. In
Section 2.3, we briefly discuss the derivation of the GLM integral equation and we review
some basic properties of the GLM integral operator.

2.1. Formulation of the Forward Problem

It has been well-established (see, for example, [7,8]) that the inverse problem for the 1D
static wave/ Helmholtz equation may equivalently be stated in terms of the 1D Schrödinger
equation {

− d2

dx2 + q(x)
}

u(k, x) = k2u(k, x), x ∈ R, (3)

with boundary conditions

lim
x→+∞

{dus(k, x)
dx

+ ıkus(k, x)
}
= 0, (4)
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lim
x→−∞

{dus(k, x)
dx

− ıkus(k, x)
}
= 0, (5)

where
u(k, ·) = ui(k, ·) + us(k, ·) (6)

with ui(k, x) = e−ıkx, x ∈ R. The quantities are related via

u(k, x) = η(x)v(k, y(x)), x ∈ R, (7)

q(x) =
1

η(x)
d2η(x)

dx2 , x ∈ R. (8)

where
η(x) = {c(y(x))}1/2, (9)

and
y(x) =

∫ x

0
η2(r)dr, x ∈ R. (10)

We assume that the velocity c > 0 is bounded and an element of C1(R). We also
assume that c′ is bounded and has a compact support and that c′′ ∈ L2(R) is a bounded
function. Therefore, q is bounded and compactly supported since η′′ is bounded and
compactly supported. We refer to the Appendix A for a discussion on the L2-validity of
the calculations that lead from the static wave equation to the Schrödinger equation. Fur-
thermore, we note that we seek for an element of H2

loc(R) as the solution of the differential
equation since the scattering potential is discontinuous in general, and thus, we cannot
necessarily obtain a solution of C2-regularity.

A key result that we will need later on is the absence of bound states.

Theorem 1. Let the Schrödinger operator

S = − d2

dx2 + q : H2(R) → L2(R), (11)

where q is given by relation (8). Then the discrete spectrum of S is empty.

We include the proof in the Appendix A. To show Theorem 1, we use the positivity
of the static wave operator and its equivalence to the Schrödinger operator. We use this
positivity argument thanks to the conversation and the hint given to author 1 (A.T.) from
Vassilis Papanicolaou [19]. The result of the absence of bound states for this particular
Schrödinger operator can be derived using also physical arguments; see [8].

2.2. Classical Results from Scattering Theory

It is well known that the Schrödinger differential equation can be reduced to the
following Schrödinger integral equations at ±∞.

f+(k, x) = eıkx −
∫ ∞

x

sin(k(x − y))
k

q(y) f+(k, y)dy, x ∈ R,

and

f−(k, x) = e−ıkx +
∫ x

−∞

sin(k(x − y))
k

q(y) f−(k, y)dy, x ∈ R.

Such Volterra-type integral equations can be derived using the variation of constants
and we refer to [20] for a discussion about the existence and uniqueness of solutions of these
integral equations. The functions f±(±k, ·) are called the Jost solutions, and the solution of
the forward scattering problem can be decomposed as a sum of these functions as

u(k, x) = T(k) f−(k, x) = f+(−k, x) + R(k) f+(k, x), x ∈ R, (12)
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where the functions T, R are called the transmission and reflection coefficients respectively.
The transmission and reflection coefficients, as functions of the wavenumber k, satisfy the
following relations

T(k) = 1 +
1

2ık

∫
R

u(k, y)q(y)eıkydy,

R(k) =
1

2ık

∫
R

u(k, y)q(y)e−ıkydy, (13)

for k ∈ R \ {0} and the conservation of energy

|T(k)|2 + |R(k)|2 = 1, k ∈ R \ {0}. (14)

The scattering theory for the Schrödinger equation is a classical mathematical subject
that dates back to the 1960s. We refer, for example, to [20–22] and the references therein for
introduction and extensive analysis of the quantum scattering problem.

2.3. The Inverse Scattering Problem and the Gelfand–Levitan–Marchenko Inversion Method

The inverse scattering problem is now to retrieve the scattering potential, q, from
the reflection coefficient R. The GLM integral equation is the key for solving this inverse
scattering problem. In this section, we review the classical inverse scattering problem of
the determination of the scattering potential from scattering data, using the GLM integral
equation. In Section 2.3.2, we study the integral operator defined by the GLM equation in
order to derive properties that will help us to construct an inequality for the error of the
solution of the GLM equation as we show in Section 3.1.

2.3.1. Derivation of the GLM Equation

The key ingredient for deriving the GLM integral equation is the scattering iden-
tity (12). For fixed x, we get that CIm>0 � k �→ f+(k, x)e−ikx − 1 is an element of the
Hardy class H+

2 . Using the Paley–Wiener theorem, we obtain that f+(·, x) satisfies the
following relation

e−ıkx f+(k, x) = 1 +
∫ ∞

0
B(x, t)e2ıktdt, ∀k ∈ R \ {0}, (15)

where B(x, ·) ∈ L2(0, ∞) satisfies

− dB(x, 0)
dx

= q(x). (16)

The calculation of the Fourier transform of relation (12) gives the classical GLM
integral equation. For more details on the application of the Paley–Wiener theorem to the
Jost function f+(·, ·), we refer to [20]. Below, we give the GLM integral equation. For a
detailed proof, we refer again to [20], which gives a very detailed exposition of the quantum
scattering problem on the line using analytical methods.

Theorem 2. Let x ∈ R. Then the function B(x, ·) satisfies the GLM integral equation

K(x + t) +
∫ ∞

0
B(x, z)K(x + t + z)dz + B(x, t) = 0, a.e. for t ∈ [0, ∞), (17)

where the scattering data K = Kc + Kd are given by

Kc(t) =
1
π

∫
R

R(k)e2ıktdk, t ∈ [0, ∞), (18)

Kd(t) = 2
N

∑
n=1

ρne−2pnt, t ∈ [0, ∞), (19)
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where (−ρn)N
n=1 are the eigenvalues of the Schrödinger operator S = − d2

dx2 + q and (−pn =

− 1
‖ fn‖L2(R)

)N
n=1, fn are the eigenfunctions corresponding to the eigenvalues.

Remark 1. Due to the absence of bound states in our setting, we do not have to consider Kd and
will denote the measured scattering data by K, with the understanding that it is directly related to R
through a Fourier transform.

The inverse procedure is as follows. First, the scattering data K are collected by
measuring the response at the boundary (i.e., x = 0). Then follows the solution of the GLM
integral Equation (17). After the GLM kernel is recovered, the scattering potential, q, can be
found using relation (16).

2.3.2. Analysing the GLM Operator

In this subsection, we study the GLM integral operator and we review some of its
properties. In particular, we use these properties in Section 3.1 for deriving an upper bound
for the error of the noisy inverse problem. Since we assume that the scattering potential
q is compactly supported, we obtain that for every fixed x ∈ R, the solution of the GLM
equation B(x, ·) is compactly supported. In particular, this is justified using the following
inequality,

|B(x, t)| ≤
∫ ∞

x+t
|q(z)|dz exp

(∫ ∞

x
(z − x)|q(z)|dz

)
, (20)

for x ∈ R and t > 0, see [20]. Consequently, the domain of integration in the GLM integral
equation can be reduced to an integration over a finite interval. For a fixed potential q, we
assume that the interval of integration is (0, Tx), where Tx depends on the fixed value of
x ∈ R. In addition, since we are interested in reconstructing B(·, ·) for the values of x where
the scattering potential is supported, it is reasonable to consider the following. Since the set
{Tx : x ∈ supp(q)} is bounded from above, we denote with T its supremum. We assume
without loss of generality that (0, T)⊃supp(q). We define

Y = { f ∈ L2(R) : supp( f ) ⊂ (0, T)}. (21)

We also define the set B(Y) = {L : Y → Y : bounded and linear}. Additionally, for a
fixed x ∈ (0, T) and f ∈ Y we define

{A(K) f }(x, t) :=
∫ T

0
χ(0,T)(t)K(x + t + z) f (z)dz, t ∈ R. (22)

Since we fix K ∈ L2(R), we write for simplicity

{A(K) f }(x, ·) = Ax f . (23)

With χω(·), we denote the characteristic function which is 1 in ω and 0 in R \ ω. Since
the reflection coefficient R ∈ L2(R), thus K ∈ L2(R), see [20], we find the following.

Lemma 1. For fixed x, the operator
Ax : Y → Y (24)

is compact and self-adjoint.

Lemma 2. The numbers λ = ±1 are not eigenvalues of Ax.

Considering the previous lemmas, the following result follows.

Proposition 1. The operator I + Ax ∈ B(Y) is invertible and its inverse is given by the Neumann
series expansion in B(Y).
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3. Main Results

So far, we have summarised mainly known results for the scattering problem of our
study. In the following subsection, we provide the reader with a new result regarding the
stability of the reconstruction of the GLM kernel from noisy scattering data. In Section 3.2,
we show the existence of minimisers for the variational total least squares regularisation of
the GLM inversion.

3.1. Stability Estimates

Assuming now that there is an error ε ∈ L2(R) in the measurements of the scattering
data K (due to noise, measuring errors, etc.); we are then dealing with the following problem.

Given K� = K + ε ∈ L2(R), find B�
x ∈ L2(0, T) : (25)

B�
x(t) +

∫ T

0
χ(0,T)(t)K

�(x + t + z)B�
x(z)dz + K�(x + t) = 0, a.e. for t in (0, T), (26)

where we let Bx(·) = B(x, ·) for ease of notation. We then want to bound ‖B�
x − Bx‖L2(R)

in terms of ‖ε‖L2(R). A similar upper bound for the error for a similar GLM equation is
given in [18], but not in L2(R). In addition, we refer to [23] for a discussion on a stability
estimate of the Marchenko inversion where the bounds are on the scattering potential. In
the application of recovering the scattering potential from scattering data, a pointwise
estimate for the error is sufficient in view of relation (16). We denote

ΔBx = B�
x − Bx. (27)

and
εx(t) = K�(x + t)− K(x + t), a.e for t ∈ R. (28)

Assuming further that the error e is real valued, we obtain, as before, that A�
x is a

compact and self-adjoint operator. We then find the following result.

Lemma 3. Let the previous assumptions be true. The following inequality holds,

‖A�
x − Ax‖B(Y) ≤

√
T‖εx‖L2(R). (29)

Proof. Let f ∈ Y . We obtain

|[(A�
x − Ax) f ](t)| =

∣∣∣∣∫ T

0
χ[0,T](z)

{
K�(x + z + t)− K(x + z + t)

}
f (z)dz

∣∣∣∣ ≤ (30)

‖εx+t‖L2(0,T)x‖ f ‖L2(0,T) ≤ ‖ε‖L2(R)‖ f ‖Y a.e. for t ∈ (0, T) ⇒ (31)

the operator (A�
x − Ax) is well defined and

‖(A�
x − Ax) f ‖L2(0,T) ≤

√
T‖ε‖L2(R)‖ f ‖Y , (32)

∀ f ∈ Y .

With this, we are ready to present the error bound.

Theorem 3. Under the previous assumptions, we obtain the following:

‖ΔBx‖Y ≤
‖εx‖L2(R)(1 +

√
T‖B�

x‖Y )
1 − ‖Ax‖B(Y)

(33)

Proof. We subtract (17)–(26) to obtain

(I + Ax + {A�
x − Ax})B�

x − (I + Ax)Bx = −εx ⇐⇒ (34)
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(I + Ax)ΔBx = −(A�
x − Ax)B�

x − εx ⇒ (35)

since 1 is not an eigenvalue of Ax

ΔBx = (I + Ax)
−1{−εx − (A�

x − Ax)B�
x} ⇒ (36)

‖ΔBx‖Y ≤ ‖(I + Ax)
−1‖B(Y){‖εx‖Y + ‖A�

x − Ax‖Y‖B�
x‖Y} ≤ (37)

‖ε‖L2(R)(1 +
√

T‖B�
x‖Y )

1 − ‖Ax‖B(Y)
. (38)

The previous stability estimate gives an upper bound for the error of the solution of
the GLM equation, which is proportionate to the L2-norm of the error in the measurements
e. Though, we cannot rule out the case where the operator norm of Ax is almost 1. In
general, the operator norm of Ax is determined by K. However, what kind of potential
produces scattering data that make the operator norm be closer to 1 is still something to
investigate.

3.2. Variational Regularisation

In this section, we define and show well-posedness for the variational total least
squares regularisation problem of determining the kernel B from inexact scattering data.
Similar work on this subject was done in the finite dimensional setting by [15], where they
considered discrete scattering data and they followed a data analytic way for studying the
total least squares problem for regularizing the GLM equation. In our approach, we fill the
theoretical gap of showing well-posedness of the total least squares regularisation method
of the GLM inversion in the infinite dimensional setting.

Now, for a set Ω ⊂ RN , N = 1, 2 and a generic function space Ψ(Ω) = { f : Ω → C},
we define the extension operator

E0 : Ψ(Ω) → Ψ(RN), (39)

as the map that extends a function to 0 if the argument is not included in Ω. (This is
a bounded operator if, for example, Ψ(Ω) = L2(0, T).) Then, we consider the usual
Lebesgue space

L2((0, T)2) = { f : (0, T) → L2(0, T) :
∫ T

0
‖ f (t, ·)‖2

L2(0,T)dt < ∞}.

The inner product is given by

〈 f , g〉L2((0,T)2) =
∫ T

0
〈 f (t), g(t)〉L2(0,T)dt =

∫ T

0

∫ T

0
f (x, t)g(x, t)dxdt.

We also define
Θ : L2((0, T)2) → L2((0, T), L2(R)) (40)

with
Θ f = x �→ E0 f (x, ·), for almost all x ∈ (0, T). (41)

Lemma 4. Θ is a bounded linear operator.

Proof. The linearity is easy to show. Now, for the boundedness, let f ∈ L2((0, T)2)

‖ f ‖2
L2((0,T)2) =

∫ T

0

∫ T

0
| f (x, t)|2dtdx =

∫ T

0

∫
R

|E0 f (x, t)|2dtdx = ‖Θ f ‖2
L2((0,T),L2(R)).
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We define G : L2((0, T)2)× L2(R) → L2((0, T), L2(R)) as

G(B, K) = {I + A(K)}ΘB =

x �→
{

t �→ ΘB(x, t) +
∫ T

0
χ(0,T)(y)ΘB(x, z)K(x + t + z)dz

}
(42)

Remark 2. We need Θ in order to have a well-defined convolution type relation in G. In addition,
compare this with the setting of the previous section. By using Θ, we avoid the use of the space Y
altogether.

Proposition 2. G : L2((0, T)2)× L2(R) → L2((0, T), L2(R)) is well defined.

Proof. Let (B, K) ∈ L2((0, T)2)× L2(R). We want to show that G(B, K) ∈ L2((0, T), L2(R)).
For almost all x ∈ (0, T), t ∈ R, we obtain that

|A(K)ΘB(x, t)| =
∣∣∣ ∫ T

0
χ(0,T)(t)ΘB(x, z)K(x + t + z)dz

∣∣∣ ≤
‖E0B(x, ·)‖L2(R)‖K‖L2(R) = ‖B(x, ·)‖L2(0,T)‖K‖L2(R) ⇒∫ T

0

{ ∫ T

0
χ(0,T)(t)ΘB(x, z)K(x + t + z)dz

}2
dt ≤ T‖B(x, ·)‖2

L2(0,T)‖K‖2
L2(R).

Therefore,∥∥∥x �→
{

t �→
∫ T

0
χ(0,T)(t)ΘB(x, z)K(x + t + z)dz

}∥∥∥2

L2((0,T),L2(R))
≤ T‖K‖2

L2(R)‖B‖2
L2((0,T)2).

Finally,

‖G(B, K)‖L2((0,T),L2(R)) ≤
√

T‖K‖L2(R)‖B‖L2((0,T)2) + ‖B‖L2((0,T)2).

Now, for a function g ∈ L2(R), we define for almost all x ∈ (0, T)

S(g) : x �→ g(x + ·). (43)

Lemma 5. S : L2(R) → L2((0, T), L2(R)) is linear and bounded.

Proof. Let g, g1, g2 ∈ L2(R).

S(ag)(x, t) = ag(x + t) = aSg(x, t), a.e. in (0, T)×R.

In addition,

S(g1 + g2)(x, t) = (g1 + g2)(x + t) = Sg1(x, t) + Sg1(x, t), a.e. in (0, T)×R.

Now, we observe that

‖Sg‖2
L2((0,T),L2(R)) =

∫ T

0
‖g(x + ·)‖2

L2(R)dx = (44)

∫ T

0
‖g‖2

L2(R)dx = T‖g‖2
L2(R) ⇒ ‖Sg‖L2((0,t),L2(R)) =

√
T‖g‖L2(R). (45)
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Let K ∈ L2(R) given. Let also α, β > 0. We define the total least squares functional
φK : H1((0, T)2)× H1

0(0, 3T) → [0, ∞] as

φK(B, e) :=

‖G(B, K + E0e) + S(K + E0e)‖2
L2((0,T),L2(R)) + α‖B‖2

L2((0,T)2) + β‖e‖2
L2(0,3T). (46)

We assume that we have access to inexact scattering data K ∈ L2(R). We will define
the solution of the inverse problem of finding the kernel B (in a region where the potential
is supported) from K.

Definition 1. Let K ∈ L2(R) inexact scattering data. Let α, β > 0, and let that there exist
functions B̂ ∈ H1((0, T)2) and ê ∈ H1

0(0, 3T) such that

(B̂, ê) ∈ argmin
B∈U ,e∈V

φK(B, e), (47)

with U ⊂ H1((0, T)2), V ⊂ H1
0(0, 3T), both bounded convex and closed in the respective

topologies. Then, we call B̂ a regularised total least squares solution of the GLM integral equation.

Remark 3. Ideally, we would like to find a perturbation e that will almost cancel out the noise ε
which is included in K.

We state some auxiliary results needed for showing well-posedness for the variational
inverse problem (47).

Lemma 6. Let K ∈ L2(R) and let the strongly convergent sequences

Bn → B in L2((0, T)2) (48)

and
en → e in L2(0, 3T). (49)

Then
A(K + E0en)ΘBn → A(K + E0e)ΘB in L2((0, T), L2(R)). (50)

Proof. For almost all x ∈ (0, T), t ∈ R, we take∫ T

0
χ(0,T)(t)ΘBn(x, z)(K + E0en)(x + t + z)dz−

∫ T

0
χ(0,T)(t)ΘB(x, z)(K + E0e)(x + t + z)dz =

∫ T

0
χ(0,T)(t)Θ{Bn(x, z)− B(x, z)}(K + E0en)(x + t + z)dz+ (51)

∫ T

0
χ(0,T)(t)ΘB(x, z)(K + E0e)(x + t + z)dz = (52)

Using the triangular inequality and working similarly to Proposition 2, we obtain

‖A(K + E0en)ΘBn − A(K + E0e)ΘB‖L2((0,T),L2(R)) ≤ (53)

√
T‖K + E0en‖L2(R)‖Bn − B‖L2((0,T)2) +

√
T‖E0en − E0e‖L2(R)‖B‖L2((0,T)2) ≤

√
T(‖K‖L2(R)‖+ en‖L2(0,3T))‖Bn − B‖L2((0,T)2) +

√
T‖en − e‖L2(0,3T)‖B‖L2((0,T)2). (54)

As n → ∞, ‖en‖L2(R) is bounded, so we conclude the result.
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Now, using the above auxiliary results, we find the following well-posedness result.

Theorem 4. The optimisation problem (47) admits minimisers.

Proof. Since
0 ≤ φK(B, e), ∀(B, e) ∈ U × V, (55)

we can find a minimizing sequence ( fn, en) ⊂ U × V with

lim
n

φK(Bn, en) = inf
(e,B)∈U×V

φK(B, e) = M. (56)

Since U ,V , are bounded in their respective spaces these two sequences are bounded.
By reflexivity, see ([24] pages 67–68), there exist weak limits f , e such that (passing to
subsequences using the same indexing)

Bn ⇀ B in σ(H1((0, T)2), H1((0, T)2)′) (57)

and
en ⇀ e in σ(H1(0, 3T), H−1(0, 3T)). (58)

Since U, V are strongly closed and convex subsets of reflexive spaces, they are also
weakly closed; see ([24] page 60). Therefore,

(B, e) ∈ U × V . (59)

Now, by the following compact embeddings,

H1
0(0, 3T)

c
↪→ L2(0, 3T)

and
H1((0, T)2)

c
↪→ L2((0, T)2)

we can conclude the strong convergence

Bn → B in L2((0, T)2) (60)

and
en → e in L2(0, 3T). (61)

Using the above lemmas, we obtain that

M = lim
n→∞

φK(Bn, en) = (62)

(continuity of the square function and the norm function)

‖ lim
n

G(Bn, K + E0en) + S(K) + lim
n

S(E0en)‖2
L2((0,T),L2(R))+

α‖ lim
n

Bn‖2
L2((0,T)2) + β‖ lim

n
en‖2

L2(0,3T) =

‖ lim
n

Bn + lim
n

A(K + E0en)Bn + S(K) + lim
n

S(E0en)‖2
L2((0,T),L2(R)+

α‖ lim
n

Bn‖2
L2((0,T)2) + β‖ lim

n
en‖2

L2(0,3T) =

‖G(B, K + E0e) + S(K) + S(E0e)‖2
L2((0,T),L2(R)) + α‖B‖2

L2((0,T)2) + β‖e‖2
L2(0,3T) ⇒ (63)

φK(B, e) = M
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Remark 4. The set (0, T)2 ⊂ R2 is a bounded Lipschitz domain. By the Rellich–Kondrachov
theorem, we conclude the following compact embedding

H1((0, T)2)
c
↪→ L2((0, T)2),

see [25].

Remark 5. Regarding the choice of H = H1((0, T)2) and the choice of H1
0(0, 3T) as the space

of the perturbations. We choose in particular these spaces for the space of the GLM kernels (in
the total least squares sense) and the perturbations since we have the above compact embedding
properties. Otherwise [working, for example, with the L2((0, T2)) and the L2(0, 3T)], we cannot
pass to some further strongly convergent subsequences in the proof of existence of minimisers of our
variational inverse problem and conclude the existence result. Similar work on this subject was done
in [26]. However, the assumptions made in this paper are too strong to require in our application. In
particular, the authors considered the existence of minimisers issue for a general class of total least
squares problems. Assuming that the inverse problem is described by a bilinear operator with the
property that weakly convergent sequences are mapped to strongly convergent sequences, they show
existence. However, without working the way we did, the weak to strong continuity property of the
forward operator is a very strong assumption to claim, and in general it does not hold. To see that,
it is sufficient to pick a weakly convergent sequence of the form (Bn, 0)n ⊂ L2((0, τ)2)× L2(R)
and then observe that (G(Bn, 0))n is not necessarily norm convergent. Keep also in mind that G is
not bilinear. In addition, the convolution type relation between K and B should be carefully studied
under the convolution and the weak convergence.

To sum up our approach, we pick the spaces of interest so that we have a compact embedding
property. This way, we do not need to make any assumptions on G.

Remark 6. Regarding the reasonability of the H1-regularity assumption for the GLM kernels.
Even though a GLM kernel naturally has an L2-regularity at least in the box of interest, we know
that it satisfies a Goursat-type hyperbolic PDE (see [20])

{∂x(∂x − ∂t)− q(x)}B(x, t) = 0, x ∈ R, t > 0 (64)

B(x, 0) =
∫ ∞

x
q(z)dz, x ∈ R (65)

lim
x→∞

‖B(x, 0)‖∞ = 0. (66)

So either we study the regularity of solutions of the above PDE, or we just view our proposed
existence of minimisers result as a relaxed version of the problem of seeking kernels with L2-regularity
(and perturbations).

Remark 7. Finally, another thing to keep in mind is that it is possible to obtain multiple minimisers
of the above optimisation problem since the TLS functional, φK, is not convex.

4. Numerical Results

4.1. Numerical Implementation

In this section, we show the discrete form of the GLM equation and its numerical
implementation. We also implement numerically the total least squares regularisation
method of the GLM equation, using noisy scattering data.

4.1.1. Discretisation of the GLM Equation

We discretise the quantities K and B on a regular grid of samples ti = i · Δt. We then
denote the discrete scattering data by k ∈ Rn. The discrete GLM kernel is denoted by
B ∈ R(m+1)×(m+1). The discrete counterpart to GLM equation is then given by
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bij + Δt
m

∑
l=0

bilki+j+l = −ki+j, (67)

for i, j = 0, 1, . . . m. We will assume that n = 3m to properly define these relations. The
discrete GLM equation can be more compactly expressed using the map G : R(m+1)×(m+1)×
Rn → R(m+1)2

and S : Rn → R(m+1)2
:

G(B, k) + S(k) = 0. (68)

For fixed k, this system of equations decouples in m independent systems of equations
of the form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Im+1×m+1 + Δt

⎛⎜⎜⎜⎝
ki ki+1 · · · ki+m

ki+1 ki+2 · · · ki+m+1
...

. . .
ki+m ki+m+1 · · · ki+2m

⎞⎟⎟⎟⎠
︸ ︷︷ ︸

Ai

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎝
bi0
bi1
...

bim

⎞⎟⎟⎟⎠ = −

⎛⎜⎜⎜⎝
ki

ki+1
...

ki+m

⎞⎟⎟⎟⎠,

for i = 0, . . . , m. For fixed B, the system of equations takes the following form

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T0 0(m+1)×m

0(m+1)×1 T1 0(m+1)×(m−1)

. . .

0(m+1)×m Tm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎝
k0
k1
...

k3m

⎞⎟⎟⎟⎠ = −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b00
...

b0m
b10

...
b1m

...
bm0

...
bmm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (69)

with Ti ∈ R(m+1)×(2m+1) defined as

Ti =

⎛⎜⎜⎜⎝
1 0 . . .
0 1 0 . . .

. . .
. . . 0 1 0 . . .

⎞⎟⎟⎟⎠ + Δt

⎛⎜⎜⎜⎝
bi0 bi1 . . . bim
0 bi0 bi1 . . . bim

. . .
bi0 bi1 . . . bim

⎞⎟⎟⎟⎠.

4.1.2. Numerical Regularisation

Having discretised the GLM equation, we can now define the numerical regularisation
strategies. The Tikhonov-regularised problem (LS) reads

min
B

‖G(B, k) + S(k)‖2
2 + α‖LB‖2

F, (70)

where L represents a finite-difference approximation of the second derivative. Due to the
special form of the equations for fixed k, this problem separates in m separate least-squares
problems for the columns of B. These problems can be readily solved using standard
iterative methods, such as LSQR.
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The total least-squares (TLS) functional in the discrete setting is given by

φk(B, e) = ‖G(B, k + e) + S(k + e)‖2
2 + α‖LB‖2

F + β‖e‖2
2. (71)

To find a minimiser, we apply an alternating minimisation algorithm, as proposed
by [17] we repeat for k = 0, 1, ...

B(k+1) = argmin
B

φk(B
(k), e(k)) (72)

e(k+1) = argmin
e

φk(B
(k+1), e(k)). (73)

As explained in the previous section, both steps involve a quadratic problem that can
easily be solved using an iterative method like LSQR. The convergence of this alternating
approach is guaranteed by the bi-convex nature of the functional φk [17].

Having solved either of the regularised problems for B and in view of relation (16),
we can compute the scattering potential from the reconstructed kernel by extracting the
first column from B and using a finite-difference approximation to compute the derivative.

4.1.3. Choice of Regularisation Parameters

Both regularised formulations (LS and TLS) include regularisation parameter(s) that
need to be estimated. In particular, for the TLS method, we need to estimate two parameters,
α, β. In practice, though we expect that β does not play a significant role, as the problem
for e is overdetermined, G(B, k + e) = −S(k + e) defines (m + 1)2 equations in 3m + 1
unknowns. Moreover, the corresponding system matrix consists of an identity matrix plus
a small perturbation (cf. (69)), so the system is unlikely to be ill-posed. Thus, we pick a
(small) reference value for β = β̂ and focus on estimating the remaining parameter, α.

Ideally, we would pick α to minimise the reconstruction error, i.e.,

α̂ = argmin
α

‖B̂α − B‖2, (74)

where B is the unregularised solution corresponding to noiseless data, k, (i.e., G(B) = −S(k)),
and B̂α denotes the optimal solution of either the LS or the TLS method corresponding
to noisy data, k = k + ε. For the sake of completeness, we mention below a number of
commonly used methods for choosing regularisation parameters and how these could
potentially be applied in the problem of estimating α.

A posteriori parameter selection methods aim to achieve this by using only knowledge
of the data and the noise level. A well-known method in this class is the discrepancy principle.
The particular nature of our problem (involving a product of B and k) makes it difficult to
apply such rules, however, as they would require an estimate of the residual at the optimal
solution. To see why, note that the residual for (LS) is given by ‖G(B, ε) + S(ε)‖2. The
discrepancy principle then finds an α such that

‖G(B̂α, k) + S(k)‖2 ≈ ‖G(B, ε) + S(ε)‖2, (75)

but this would require knowledge of the true kernel. For the total least squares approach,
we could use the estimated error êα and find α such that

‖êα‖2 ≈ ‖ε‖2. (76)

Heuristic methods such as the L-curve method could be applied. However, it is not
clear how well they would perform on problems of this nature, as even for classical ill-
posed linear inverse problems, such heuristic methods are not convergent [27]. Despite this
theoretical shortcoming, such methods are often applied in practice with success [28].
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5. Numerical Examples

In this subsection, we present a couple of numerical examples comparing the regu-
larised approaches (LS and TLS) outlined above. The least-squares (sub-) problems are
solved using LSQR. Unless stated otherwise, we use 10 iterations of the alternating method
and 10 iterations of LSQR for the sub problems. The scattering potential is obtained by
numerically differentiating the reconstructed kernel, as in (16).

We find that the TLS method is not sensitive to the choice of β (as argued in the
previous section). We therefore use a fixed value of β = 1 · 10−16 for all experiments. The
remaining regularisation parameter α for each method (LS and TLS) is obtained via (74).
Although this requires knowledge of the noiseless data in order to compute B, it allows us
to make a fair best-case comparison between the methods.

The reconstruction quality of the methods is measured by the relative L2-error between
the reconstructed kernel and the reference solution B.

The code used to produce the examples is available on https://github.com/ucsi-
consortium/1DInverseScatteringGLM/releases/tag/publication (accessed on 6 Decem-
ber 2021).

5.1. Example 1: The Plasma Wave-Equation with a Smooth Potential

In this first numerical experiment, we consider the case where the scattering data are
generated directly by the plasma wave equation. The measured scattering data and the
scattering potential are shown in Figure 1.
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Figure 1. Scattering potential and scattering data. The scattering potential has a relatively smooth profile.

We apply the methods described in the previous subsections, and thus, we solve the
GLM integral equation to find the GLM kernel and then the scattering potential. Figure 2
shows the solution of the GLM equation (matrix B) and the comparison between the true
and the recovered potential. For such a smooth potential, the generated scattering data
lead to a good reconstruction.
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Figure 2. Reconstruction using the unregularised GLM approach from noiseless data. Shown are the
kernel (left) and corresponding reconstructed scattering potential (right). The recovered scattering
potential matches well with the ground truth.

As we studied previously, the presence of noise in the scattering data is expected
to affect the reconstruction of both the GLM kernel and the potential. To test this, we
add i.i.d. normally distributed random noise to the data with mean zero and variance σ2.
Reconstructions using the unregularised, LS and TLS approach for σ = 1 · 10−3 are shown
in Figure 3. The results for various noise levels are summarised in Table 1. In all cases, the
TLS approach is superior and requires less regularisation (smaller value of α).
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Figure 3. Comparison of the unregularised (left), LS (middle) and TLS (right) approaches on noisy
data (σ = 1 · 10−3). The true potential corresponds to the blue curve.

Table 1. Table for comparing the relative errors of the regularisation methods for various noise levels.

Unregularised LS TLS

σ Rel. Error α Rel. Error α Rel. Error

1 · 10−4 9.30 · 10−2 1.99 · 10−2 9.30 · 10−2 1.68 · 10−2 6.48 · 10−2

1 · 10−3 8.35 · 10−1 1.34 4.85 · 10−1 2.79 · 10−1 2.86 · 10−1

1 · 10−2 7.62 6.27 · 102 8.89 · 10−1 2.94 · 101 7.52 · 10−1
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5.2. Example 2: Data from the Wave Equation

In this second example, we consider scattering data generated from the wave equation
with variable density,

ρvtt = {ρc2vy}y.

The coefficients of the wave equation, the corresponding scattering potential and the
measured data are shown in Figure 4. This example is more challenging than the previous
one, due to significant multiple scattering.
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Figure 4. Shown are the the elastic parameters ρ, c (left), the corresponding scattering potential
(middle) and the resulting scattering data (right). The chosen elastic parameters result in significant
multiple scattering, seen on the right.

The results of the GLM method on noise-free data are shown in Figure 5. The band
limitation of our source and the singular behaviour of the potential affects the reconstruction
of q.
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Figure 5. Results for noise-free data. Shown are the reconstructed kernel (left) and the reconstructed
scattering potential (right). The band limitation of our source clearly affects the approximation.

Reconstructions using the unregularised, LS and TLS approach for σ = 1 · 10−2 are
shown in Figure 6. The results for various noise levels are summarised in Table 2. In all
cases, the TLS approach is superior.
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Figure 6. Comparison of the unregularised (left), LS (middle) and TLS (right) approaches on noisy
data (σ = 1 · 10−2). The true potential corresponds to the blue curve.

Table 2. Table for comparing the relative errors of the regularisation methods for various noise levels.

Unregularised LS TLS

σ Rel. Error α Rel. Error α Rel. Error

1 · 10−3 3.81 · 10−2 6.56 · 10−3 3.91 · 10−2 9.52 · 10−3 3.26 · 10−2

1 · 10−2 3.87 · 10−1 3.91 · 10−1 3.27 · 10−1 1.01 · 10−1 1.76 · 10−1

1 · 10−1 3.59 · 100 1.00 · 102 8.05 · 10−1 1.68 · 101 7.03 · 10−1

6. Conclusions and Discussion

We revisited some classical results from inverse scattering to solve the 1D inverse
coefficient problem for the wave equation. In particular, we considered the GLM method
with noisy data and proposed a regularised total least squares formulation in the infinite
dimensional setting. We contributed an error bound for the unregularised GLM approach
and have shown existence of minimisers for the variational formulation of the TLS approach.
Numerical results illustrate the approach, showing that the TLS approach gives superior
results as compared to conventional Tikhonov regularisation.

The results from inverse scattering, in particular a GLM-like approach has recently
received renewed attention in the geophysical literature. Noisy data is a significant source
of error in these methods, and various discrete regularisation schemes have been proposed
to address this issue. While these methods have been shown to work well in practice,
careful analysis of the infinite dimensional problem has not been done. We believe that it
is important to study this because it will yield new insight in the behaviour of practical
approaches as they are pushed to include higher frequency data (and hence finer discretisa-
tion). Ultimately, these insights may lead to adaptive methods. Moreover, the 1D problem
analysed here serves as a model problem for many practical problems in 2D and 3D, and
the insights may inspire new approaches there as well.
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Appendix A. Absence of Bound States Auxiliary Results

In this part of the paper, we include some auxiliary results needed for the proof of
Theorem 1. We also provide the proof of Theorem 1 in the end of the Appendix A.

Lemma A1. Assume that c, c′ are bounded, c ∈ C1(R), c > 0. Then the travel time coordi-
nate transform

R � y �→ x ∈ R,

with
c(y)dx(y) = dy, y ∈ R, (A1)

x(y) =
∫ y

0

1
c(r)

dr, y ∈ R, (A2)

is a 2-diffeomorphism

Proof. Since the new variable x is defined as a function of the independent variable y and
the integrand in (A2) is strictly positive, we get immediately that x is injective. In addition,
x′, x′′ are bounded functions since c, c′ are bounded. Since x is a continuous function and
since the integrand is in C2(R), we get that x ∈ C2(R). Now, let us study the inverse of x.
By the inverse function theorem the inverse of x, x−1, exists and is an element of C1(R)
with the property

dx−1(t)
dt

= c(x−1(t)), t ∈ R. (A3)

Therefore, (x−1)′ is bounded since

|c(x−1(t)| ≤ M, t ∈ R, (A4)

(M is the upper bound of c) and also

d2x−1(t)
dt2 = c′(x−1(t))(x−1)′(t) = c′(x−1(t))c(x−1(t)), t ∈ R, (A5)

which is also bounded since c′ is assumed to be bounded. Finally,

dx
dy

=
1

c(y)
, y ∈ R. (A6)

Therefore, since c is bounded from above and from below,∣∣∣∣dx(y)
dy

∣∣∣∣, y ∈ R, (A7)

is also bounded from above and below.

Corollary A1. Let f ∈ H2(R). Then y �→ f (x(y)) ∈ H2(R).
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Now, since
(c(y))1/2 = η(x), x ∈ R, (A8)

we can view c(y) as a function of x as

x
bijective x(·)�→ y �→ c(y). (A9)

Since our differential relation is

dy
dx

= c(y), (A10)

we can write
dy
dx

= η2(x). (A11)

Since also
y = 0 if x = 0, (A12)

we can have y as a function of x,

y(x) =
∫ x

0
η2(r)dr, x ∈ R. (A13)

So, similarly to [9], we have established

y 1−1 onto�→ x, (A14)

x 1−1 onto�−→ y. (A15)

Having that, we can also write

η(x) = (c(y(x)))1/2, x ∈ R. (A16)

Corollary A2. The inverse travel time coordinate transform is a 2-diffeomorphism.

Proof. We have shown that x(·) and its inverse are continuous. We have also shown that
their first and second derivatives are continuous and bounded. What is left to show is that
the derivative of the inverse is bounded from below. First, we observe that

z′(x) = η2(x), x ∈ R. (A17)

However, since η(x)2 = c(y(x)) and c(·) is bounded from below, we obtain the
result.

Remark A1. In view of the differential relations (A10) and (A11), we can express the one variable
as a function of the other.

The 2-diffeomorphisms given by the travel time coordinate transform and the inverse
define bounded linear operators from H2(R) to H2(R); see [29]. The static wave operator

W = − d
dy

{c2 d
dy

} : Ĥ → L2(R), (A18)

has domain of definition

D(W) = Ĥ = {v ∈ H1(R) : c2v′ ∈ H1(R)}. (A19)

We will now show that the relations that lead from the 1D static wave equation to the
Schrödinger equation are well defined in the L2-sense. First, using the 2-diffeomorphism
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defined by y(·), we can find the following. According to [24] (Proposition 9.6) for v ∈ Ĥ ⊂
H1(R), we get the L2(R, dx)-relation,

dv(y(x))
dx

=
dv(y(x))

dy
dy(x)

dx
=

dv(y(x))
dy

c(y(x)), x ∈ R. (A20)

Now, since the function 1/c(y(x)), x ∈ R defines a multiplication operator T :
L2(R, dx) → L2(R, dx), we obtain

dv(y(x))
dx

1
c(y(x))

=
dv(y(x))

dy
, x ∈ R. (A21)

Assuming also that v ∈ Ĥ, we obtain the L2(R, dy)-relation defined by the static wave
Equation (1)

− {c2vy}y = λv, (A22)

with λ ∈ C. Using the inverse travel time coordinate transform, we get that

− Φ{(c2vy}y = λΦv, (A23)

with Φg = g ◦ y, with g ∈ L2(R, dy). Now, observe that c2vy ∈ H1(R, dy), therefore we
obtain again that

d(c2vy)

dy
(y(x)) =

d(c2vy)

dx
1

c(y(x))
, x ∈ R. (A24)

Therefore, combining the above relations, we find that

− Φ{c2vy}y = x �→ −{c2(y(x))vy(y(x))}y ⇒ (A25)

− Φ{c2vy}y = x �→ −(c(y(x))vx)x
1

c(y(x))
∈ L2(R, dx). (A26)

Therefore, the transformed wave equation has the form

− (c(y(x))vx)x
1

c(y(x))
L2(R,dx)

= λv(y(x)), x ∈ R. (A27)

Again, using the multiplication operator T, we obtain

− (c(y(x))vx)x
L2(R,dx)

= λc(y(x))v(y(x)), x ∈ R, (A28)

which becomes

− (η2(x)vx)x
L2(R,dx)

= λη2(x)v(y(x)), x ∈ R. (A29)

Previously, we defined u as

u(x) = η(x)v(y(x)), x ∈ R. (A30)

Let us view this as a L2(R, dx)-relation for the moment. It follows that since v ∈ Ĥ,
then u ∈ H2(R) (otherwise we obtain a contradiction by Corollary A3). Now, we can
consider the following L2(R, dx)- relation similarly as above (using again a multiplication
operator)

v(y(x)) = η−1(x)u(x), x ∈ R, (A31)

and since by assumption c ∈ C1(R) and y ∈ C1(R), then η ∈ C1(R), and we get pointwise

vx(y(x)) = (η−1(x)u(x))x =
η(x)ux(x)− ηx(x)u(x)

η2(x)
, x ∈ R, (A32)
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since H2(R) ⊂ C1(R). Since η−1, ηxη−1 are bounded, the relation is valid in the L2(R, dx)-
sense. Again, using a multiplication operator, we obtain the L2(R, dx) relation

η2(x)vx(y(x)) = η(x)ux(x)− ηx(x)u(x), x ∈ R. (A33)

We can weakly differentiate the above relation once more (using density arguments)
and we find

(η2(x)vx(y(x)))x = η(x)uxx(x)− ηxx(x)u(x), x ∈ R, (A34)

which is again valid in L2(R, dx). We substitute (A34) in (A29) and using once more a
multiplication operator, we find the L2(R, dx)-relation

uxx(x)− ηxx(x)
η(x)

u(x) = λu(x), x ∈ R, (A35)

which is our Schrödinger equation after rearranging. Now, for the sake of completeness we
prove the assertions that we used previously.

Lemma A2. Let u ∈ H2(R). The function

y �→ v(y) = η−1(x(y))u(x(y))

is an element of Ĥ.

Proof. We need to show that v, vy ∈ L2(R) and (c2vy)y ∈ L2(R). First, we observe that
v ∈ L2(R). Indeed, ∫

R

|v(y)|2dy =
∫
R

|η−1(x(y))u(x(y))|2dy ≤

sup
y∈R

{|η−2(x(y))|}
∫
R

|u(x(y))|2dy < ∞, (A36)

since u ∈ H2(R), y �→ x(y) defines a 2-diffeomorphism and η(x(y)) =
√

c(y), y ∈ R is
assumed to be bounded.

Now, we show that vy ∈ L2(R). Let φ ∈ C∞
c (R). We get

(v, φ′)L2 =
∫
R

c−1/2(y)u(x(y))φ′(y)dy =

(u(x(·)), c−1/2φ′)L2 .

Since u(x(·)) ∈ H2(R), we pick ( fn)n ⊂ C∞
c (R) with fn

H2
→ u(x(·)). Thus, since c−1/2φ

defines a bounded functional on L2(R) we obtain

(v, φ′)L2 = (u(x(·)), c−1/2φ′)L2 = lim
n
( fn, c−1/2φ′)L2 =

lim
n

∫
R

fn(y)c−1/2(y)φ′(y)dy = − lim
n

∫
R

( f ′n(y)c
−1/2(y) + fn(y)(c−1/2)′(y))φ(y)dy =

− lim
n
( f ′n, c−1/2φ)− lim

n
( fn, (c−1/2)′φ).

Since c−1/2φ, (c−1/2)′φ are in L2(R), and fn
L2
→ u(x(·)), f ′n

L2
→ u(x(·))y, we have that

(v, φ′)L2 = −
∫
R

(u(x(y))yc−1/2(y) + u(x(y))(c−1/2)′(y))φ(y)dy.

Since c−1/2, (c−1/2)′ are bounded and u(x(·)) ∈ H2(R), we obtain that v ∈ H1(R).
Similarly, (c2vλy)y ∈ L2(R). We obtain
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(c2vy, φ′)L2 =
∫
R

c2(y){c−1/2(y)u(x(y))}yφ′(y)dy =∫
R

c2(y)c−1/2(y)u(x(y))yφ′(y)dy +
∫
R

c2(y)
( 1

c1/2(y)

)′
u(x(y))φ′(y)dy (A37)

Let again ( fn)n ⊂ C∞
c (R), such that fn

H2
→ u(x(·)). We shift our attention to the first

term of (A37). Since c−1/2 is bounded and is in C1(R), thus c−1/2c2φ′ = c3/2φ′ is in L2(R),
we follow similar steps as before to calculate that

lim
n
( f ′n, c3/2φ′) = − lim

n

∫
R

((3/2)c1/2c′ f ′n + c3/2 f ′′n )φdy =

−3
2

lim
n
( f ′n, c1/2c′φ)− 3

2
lim

n
( f ′′n , c3/2φ),

and we continue as before to find∫
R

c2(y)c−1/2(y)u(x(y))yφ′(y)dy = −3
2

∫
R

u(x(y))c1/2(y)c′(y)φ(y)dy−

3
2

∫
R

c3/2(y)uyy(x(y))φ(y)dy. (A38)

Now, we look at the second term of (A37). We first observe that since c ∈ C1(R)

(c−1/2(y))′ = −(1/2)c−3/2(y)c′(y), ∀y ∈ R,

thus ∫
R

c2(y)c1/2′(y)u(x(y))φ′(y)dy = −1
2

∫
R

c1/2(y)c′(y)u(x(y))φ′(y)dy. (A39)

By assumption we have that c′, u(x(·))) ∈ H1(R). We already have that fn
H1
→ u(x(·))

and we pick gn ⊂ C∞
c (R) with gn

H1
→ c′. Similarly to [24], we obtain that

fngn
L2
→ u(x(·))c′ (A40)

and
( fngn)

′ = f ′ngn + fng′n
L2
→ u(x(·))yc′ + u(x(·))c′′. (A41)

Now, we return to (A39). Since c1/2φ′ ∈ L2(R), it defines a bounded functional and
we obtain that ∫

R

c1/2(y)c′(y)u(x(y))φ′(y)dy = lim
n

∫
R

( fngn)c1/2φ′dy. (A42)

Since c is an element of C1(R), we obtain that

lim
n

∫
R

( fngn)c1/2φ′dy = − lim
n

∫
R

{1
2

c−1/2c′( fngn) + c1/2( f ′ngn + fng′n)
}

φdy =

−1
2

lim
n
( fngn, c−1/2c′φ)− lim

n
( f ′ngn + fng′n, c1/2φ) =

−
∫
R

{1
2
(c′(y))2c−1/2(y)u(x(y)) + c′(y)c1/2(y)(u(x(y))y + c′′(y)u(x(y)))

}
φ(y)dy. (A43)

Combining relations (A38) and (A43) and under our assumptions on c, we conclude
that (c2vy)y ∈ L2(R).
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Corollary A3. Let v ∈ Ĥ. Then the function

u(x) = η(x)v(y(x)), x ∈ R (A44)

is in H2(R).

Proof. Let v ∈ Ĥ. Then let u ∈ L2(R) \ H2(R) with u, v related according to (A45). Then,
we obtain the L2-relations

u(x) = η(x)v(y(x)), x ∈ R ⇐⇒ (A45)

(we can switch variables through the 2-diffeomorphisms)

u(x(y)) = η(x(y))v(y), y ∈ R ⇐⇒ (A46)

(action of a multiplicator operator)

v(y) = η−1(x(y))u(x(y)), y ∈ R (A47)

Since u /∈ H2(R), then v is not necessarily in Ĥ, according to Lemma A2, which yields
a contradiction.

Since Theorem 1 is not standard, we provide its proof.

Proof of Theorem 1. Let λ = −k2 < 0 an eigenvalue of S and u ∈ H2(R) the associated
eigenfunction such that {

− d2

dx2 + q
}

u L2
= −k2u. (A48)

We defined previously the static wave operator as

W = − d
dy

{c2 d
dy

} : Ĥ → L2(R), (A49)

with Ĥ = {v ∈ H1(R) : c2v′ ∈ H1(R)}.
We showed above (Lemma A2) that the function v such that R � x �→ v(y(x)) =

η−1(x)u(x) or equivalently

y �→ v(y) = η−1(x(y))u(x(y))

belongs to Ĥ. Now, we want to show that if u solves the Schrödinger equation, then v solves
the static wave equation. If we assume that v does not solve the wave equation, then since
the calculations that lead from the static wave equation to the Schrödinger equation are
well defined in the L2-sense, we obtain that u is not a solution of the Schrödinger equation,
which is not true. We will show that W is a positive operator. Indeed ∀v ∈ Ĥ

(Wv, v)L2 = −
∫
R

{c2vy}yvdy = − lim
R→∞

∫ R

−R
{c2vy}yvdy = (A50)

lim
R→∞

{ ∫ R

−R
vyc2vydy − c2vyv

∣∣R
−R

}
=

∫
R

c2|vy|2 > 0. (A51)

Considering that H1(−R, R) is continuously embedded in H1(R), ∀R > 0, and since
the product rule of differentiation is still valid in H1(−R, R) ∀R > 0, see [24], we obtain
the above result. In addition, note that c2vy, v ∈ H1(R) and H1(R) = H1

0(R) is an algebra.
Furthermore, the eigenvalues of a positive operator are positive, therefore λ = −k2 cannot
be an eigenvalue of W. Thus, this contradicts the initial statement of λ being an eigenvalue
of S.
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The absence of bound states makes the use of the GLM method applicable in a practical
situation of solving an inverse scattering problem from measurements at the surface of an
acoustic 1D medium. The only thing required for the inversion is the knowledge of the
reflection coefficient, or, equivalently, its Fourier transform.
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Abstract: In this study, a hybrid statistical analysis (Taguchi method supported by analysis of variance
(ANOVA) and regression analysis) and numerical analysis (utilizing a Silvaco device simulator)
was implemented to optimize the structural parameters of silicon-on-insulator (SOI)-based self-
switching diodes (SSDs) to achieve a high responsivity value as a radio frequency (RF) detector.
Statistical calculation was applied to study the relationship between the control factors and the output
performance of an RF detector in terms of the peak curvature coefficient value and its corresponding
bias voltage. Subsequently, a series of numerical simulations were performed based on Taguchi’s
experimental design. The optimization results indicated an optimized curvature coefficient and
voltage peak of 26.4260 V−1 and 0.05 V, respectively. The alternating current transient analysis from
3 to 10 GHz showed the highest mean current at 5 GHz and a cut-off frequency of approximately
6.50 GHz, indicating a prominent ability to function as an RF detector at 5G related frequencies.

Keywords: silicon-on-insulator (SOI); self-switching diode (SSD); curvature coefficient; Taguchi
method; ANOVA; regression

1. Introduction

The rapid evolution of modern wireless networks and maturing 4G networks has
paved the path to the new 5G communication generation, which is no longer exclusively
an advancement of legacy 4G mobile networks and behaves as a system with several fresh
carrier proficiencies [1]. This emerging 5G technology provides low latency and ultra-high-
speed massive connectivity between devices, leading to cross-industry transformations
and pervasive processing in an ecosystem where all devices are interconnected. However,
it also faces various challenges [2]. To effectively employ these inclusive ideas, a range
of applied sciences is required, such as heterogeneous networks, large multiple-input
multiple-output, millimeter wave (mmWave) detection, device-to-device communications,
software-defined networks, network function visualization, and networking slicing [1].
The motivation of this paper is in the scope of mmWave detection improvement, where
a unique, low-cost radio frequency (RF) detector suitable for 5G networks is proposed,

Mathematics 2022, 10, 326. https://doi.org/10.3390/math10030326 https://www.mdpi.com/journal/mathematics203



Mathematics 2022, 10, 326

both for signal detection and for opportunistically reusing the cellular spectrum and
energy efficiency for future RF energy harvesting applications. The critical aspect of this
operation is to ensure sufficient efficiency in detecting the received RF signal in the zero-bias
condition to convert it into useful energy [3,4]. Zero-bias detectors in 5G networks have
been reported using metal oxide semiconductor field effect transistors [5], PN junction
diodes [6], and Schottky diodes. Schottky diodes have been most commonly used because
of their inherently low turn-on voltages [7]. However, they require a sophisticated nanogate
fabrication process that often results in parasitic effects and the coupling of a Schottky
device with antennas and waveguides; moreover, the fabrication of large arrays poses
additional engineering issues [8]. In addition, self-switching devices (SSDs) have received
attention from researchers worldwide as they have been reported to effectively function
as zero-bias RF detectors [9–11]. The rectification property of the SSD is dependent on the
nonlinear IV characteristic of the device, which can be obtained by controlling the electric-
field-independent zone (depletion region) of the SSD asymmetric channel. The L-shaped
channel can be simply realized by electron beam lithography and chemical etching and
does not involve junctions, doping, or the third gate terminal, being more adequate in terms
of fabrication complexity compared to the most-used Schottky diode [12] (more details on
the SSD working principle and mechanism can be found in [13]).

Several works on SSDs have focused on the detection and application in the “terahertz
(THz) gap” region, the region from 0.1 THz to 10 THz on the electromagnetic spectrum
where functionable detectors are scarcely reported [14]. To function in this high-frequency
region, the use of high-mobility substrate materials, such as III-V materials (InGaAs, GaAs,
InAs, and GaN) [10], is mandatory. Exploration of the usage of SSD in the lower 5G network
region, which targets frequencies from approximately 3 to 5 GHz in the sub-6 GHz region
in the worldwide communication spectrum [15], has been reported in a small number
of studies using silicon as an alternative substrate [16–19], as the mobility of electrons
is sufficiently high to accommodate the transition of the sinusoidal RF wave, with the
advantage of a considerably lower cost compared to that of III-V materials. Optimization
of the structural and material parameters of the SSD is crucial for manipulating nonlinear
IV characteristics of the device, which strongly influence the rectification performance of
the SSD [20]. Most optimization approaches of the SSD involve varying the channel length,
L, channel width, W, and channel trench, Wt, where the depletion region is more affected to
control the electron flow. Almost all reported optimization processes were performed using
the trial-and-error method, where the parameters were individually varied using a range
of values without any structured optimization method [21–24]. In this work, we propose
the integration of a statistical analysis using the Taguchi optimization method, supported
by the analysis of variance (ANOVA) and regression analysis with a numerical simulation
to determine the best structural parameters of a silicon-on-insulator (SOI)-based SSD to
achieve the best responsivity in the zero-bias region.

The Taguchi method has been widely used in quantitative research and reported in
recent studies on experiment-based procedures to obtain an optimized result and pro-
duce high product quality by reducing the production cost using robust design experi-
ments [13,25]. Integration of the Taguchi method with numerical analysis in simulation-
based research was also reported using device simulators such as ANSYS [26,27] and
ATLAS [20,28]. This shows the capability of the integration between statistical and numeri-
cal analysis to reduce the number of simulations and to obtain a prominent result with the
aid of the noise ratio analysis in the Taguchi method [14]. Apart from the Taguchi, other de-
signs of experiments (DOE) such as the central composite design and Box–Behnken design,
or other quasi-random sequences can be an alternative. These alternatives may offer more
precise results in trend prediction involving a higher number of runs and are more complex
in design, but are not in the scope of this work. In this study, numerical simulations using
the ATLAS device simulator were performed, corresponding to the DOE and analysis
of the Taguchi method to obtain the highest curvature coefficient, γ, of a device that is
proportional to the responsivity of the detector [28]. In addition, ANOVA and regression
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analyses were performed to further analyze the sensitivity of the corresponding control
factors. By integrating an organized optimization method and numerical simulation, we
aimed for an optimized SOI-SSD structure with high responsivity in the 5G network region.

2. Materials and Methods

The SSD was characterized using a Silvaco ATLAS two-dimensional (2D) simulator
with a top-view (TV) simulation. Figure 1a shows the geometry of a silicon-based SSD with
air as the dielectric in the etched channel of the device (white area), and the cross-section of
the device is shown in Figure 1b.

Electrode
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400 nm

780 m
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line
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Figure 1. (a) Structural parameters of an SOI-based SSD, showing three main control factors: L, W,
and Wt, and (b) the cross-section of the device.

By considering the three-dimensional (3D) nature of the diode, we assigned an ap-
proximate positive background doping of 2.45 × 1016 cm−3 and an interface charge density
of 3.16 × 1011 cm−2 along the channel [16,29]. Physical models such as Klaassen’s unified
low-field mobility model, the Watt model, Auger recombination, and the energy balance
transport model [30] were defined in the simulation to simulate the electron transport
and imitate the mechanism of the real device. The materials and physical models used in
the simulation were validated by comparing the electrical characteristics with those of a
fabricated SOI SSD from [16], and the results were in good agreement, as shown in Figure 2.

 

Figure 2. Comparison of IV characteristics between simulation and experimental data of Farhi et al. [16].
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2.1. Determination of Control Factors and Levels for the Design of Experiment

Prior to the DOE in the Taguchi method, a series of simulations were conducted by
varying the individual geometrical parameters of SSD: channel length, L, channel width, W,
and trench width, Wt (refer to Figure 1a). These are the primary parameters affecting the
depletion region in the SSD channel, which controls the on–off condition of the device. We
have reported the performance of these individually varied parameters and their physical
explanation in [19]. The control factors and their levels in this optimization work were
selected based on the best electrical performance (high forward current and low leakage
current) in each reported variation and are listed in Table 1.

Table 1. Control factors and their level parameters selected from analysis of individual parameters
and their electrical performance.

Control Factors
Level (μm)

1 2 3

Channel Length, L 1.100 1.200 1.300
Channel Width, W 0.228 0.230 0.232
Trench Width, Wt 0.200 0.150 0.100

2.2. Selection of Suitable Orthogonal Array

To determine a suitable orthogonal array for the DOE, the degrees of freedom must
be considered, and they are defined as the number of comparisons between the process
parameters of an experiment and the levels [31]. In this study, three control factors and
three levels with nine degrees of freedom were used [28]; thus, an L9 orthogonal array
of Taguchi’s DOE was implemented. The run number and its parameters with their
corresponding level values are listed in Table 2.

Table 2. DOE using selected control factors and their level parameters for SSD optimization.

Run No.

Control Factors (Level) Parameter Values (μm)

Channel
Length, L

Channel
Width, W

Trench
Width, Wt

Channel
Length, L

Channel
Width, W

Trench
Width, Wt

1 L1 W1 Wt1 1.100 0.228 0.200
2 L1 W2 Wt2 1.100 0.230 0.150
3 L1 W3 Wt3 1.100 0.232 0.100
4 L2 W1 Wt3 1.200 0.228 0.100
5 L2 W2 Wt1 1.200 0.230 0.200
6 L2 W3 Wt2 1.200 0.232 0.150
7 L3 W1 Wt2 1.300 0.228 0.150
8 L3 W2 Wt3 1.300 0.230 0.100
9 L3 W3 Wt1 1.300 0.232 0.200

2.3. Evaluation of Curvature Coefficient Peak Value and Its Corresponding Voltage

By using the structural parameters from the DOE table, the IV characteristic perfor-
mance of each run was numerically simulated using the ATLAS device simulator to analyze
the rectification performance. The rectification performance in a nonlinear device can be
represented by the curvature coefficient, γ, which is proportional to the rectified current [14]
and can be calculated as:

γ =
f (2)

f (1)
, (1)

where f (2) and f (1) are the second and first derivatives, respectively, of the simulated IV
characteristics. The peak value of the plotted γ versus voltage (V) and its corresponding
bias voltage were recorded for further statistical analysis.
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2.4. Evaluation of the Signal-to-Noise Ratio

The signal-to-noise (S/N) ratio in the Taguchi method is used to analyze the quality
characteristics of each run [32]. The S/N ratio consists of three quality characteristics:
nominal, lower, and higher [33]. To obtain the optimum response for this work, the S/N
ratios for γpeak and Vpeak were calculated using the higher, the better (Equation (2) and the
lower, the better (Equation (3) quality characteristics, respectively. The higher the γpeak,
the better the rectification performance in a nonlinear device, and a lower Vpeak indicates a
lower bias needed in the device to function.

ηγ = −10 log10
1
n ∑

1
γ2 ; (2)

ηv = −10 log10
1
n ∑ V2. (3)

3. Results and Discussion

3.1. Analysis of S/N Ratio Using Taguchi Method

The γpeak and Vpeak calculated from the simulated IV characteristics in each run and
their corresponding S/N ratios from the functions of Equations (2) and (3) are listed in
Table 3.

Table 3. Curvature coefficient from simulated IV characteristics and corresponding S/N ratio for
each run.

Run No.
Peak of Curvature

Coefficient, γpeak (V−1)
S/N Ratio, ηγ

(dB)
Corresponding Peak

Voltage, Vpeak (V)
S/N Ratio, ηv

(dB)

1 23.0730 27.2621 0.1100 19.1721
2 23.3971 27.3832 0.0800 21.9382
3 18.9586 25.5561 0.0400 27.9588
4 26.0832 28.3272 0.0600 24.4370
5 24.0095 27.6077 0.1100 19.1721
6 24.2728 27.7024 0.0800 21.9382
7 27.1127 28.6634 0.1000 20.0000
8 26.4260 28.4406 0.0500 26.0206
9 24.8394 27.9028 0.1100 19.1721

The average S/N ratio from individual control factors from each run can be calculated,
as shown in Table 4, by adding all similar levels for each factor or parameter according to
the results in Table 3. The results are presented in Table 5.

Table 4. S/N ratio equation for each level of the control factors.

Control Factor Level 1 Level 2 Level 3

Channel Length, L (μm) η1 + η2 + η3 η4 + η5 + η6 η7 + η8 + η9
Channel Width, W (μm) η1 + η4 + η7 η2 + η5 + η8 η3 + η6 + η9
Trench Width, Wt (μm) η1 + η5 + η9 η2 + η6 + η7 η3 + η4 + η8

Table 5. Calculated average S/N ratio for each level of the control factors.

Factors
Average S/N Ratio for γpeak (dB) Average S/N Ratio for Vpeak (dB)

Level 1 Level 2 Level 3 Level 1 Level 2 Level 3

Channel Length, L 26.7338 27.8791 28.3356 23.0230 21.8491 21.7309
Channel Width, W 28.0842 27.8105 27.0537 21.2030 22.3770 23.0230
Trench Width, Wt 27.5909 27.9164 27.4413 19.1721 21.2921 26.1388
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The overall S/N ratios for both γpeak and Vpeak were calculated using the expression:

ηoverall =

(
ηγavg + ηvavg

)
2

. (4)

The results are tabulated in Table 6 and plotted in Figure 3 for a better visualization
of the S/N values of the levels for each control factor. As observed, the highest S/N ratio
level of each control parameter can be determined and used as the optimal parameter of
the SSD, as shown in Figure 4, where the L, W, and Wt are 1.30 μm, 0.23 μm, and 0.10 μm,
respectively.

Table 6. Overall S/N ratio in each level of the control factors.

Factors
Level

Optimal Parameter
1 2 3

Channel Length, L 24.8784 24.8641 25.0333 L3
Channel Width, W 24.6436 25.0937 25.0384 W2
Trench Width, Wt 23.3815 24.6042 26.7901 Wt3

 

Figure 3. Overall S/N ratio for each control factor level.

 
Figure 4. Optimized structure obtained from Taguchi method.
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3.2. Taguchi Method with ANOVA and Regression Analysis
3.2.1. Analysis of S/N Ratio

To understand the sensitivity of the involved geometrical parameters to the RF signal
response and to validate the optimized structure results obtained from the Taguchi method,
ANOVA and regression analysis were conducted using Minitab statistical tool software to
assist in solving the statistical and S/N ratio equations.

The S/N ratios for both γpeak and Vpeak obtained using the Minitab statistical tool
were equal to those calculated using the Taguchi method in Table 3, and the average S/N
ratio is shown in Table 7. The delta values in the table refer to the difference between
the highest average S/N ratio and the lowest S/N ratio for each control factor and were
calculated using rank values to determine the most influential control factor for both
observed parameters [34,35]. From the delta values, it can be seen that the most influential
factors for γ and V are L and Wt, respectively. Figures 5 and 6 show the main effect plots
for γ and V, respectively. As observed, the degree of the slope in L for γ and Wt for V is the
highest, indicating the presence and proportionality of the main effects [34,35].

Table 7. Response table of S/N ratio for the curvature coefficient γ and corresponding voltage V.

Levels

S/N Ratio for Curvature Coefficient, γ (dB) S/N Ratio for Corresponding Voltage, V (dB)

Channel
Length, L

Channel
Width, W

Trench
Width, Wt

Channel
Length, L

Channel
Width, W

Trench
Width, Wt

1 26.7338 28.0843 27.5909 23.0230 21.2030 19.1721
2 27.8791 27.8105 27.9154 21.8491 22.3770 21.2921
3 28.3356 27.0538 27.4413 21.7309 23.0230 26.1388

Delta 1.60 1.03 0.48 1.29 1.82 6.97
Rank 1 2 3 3 2 1

 

Figure 5. Plot of main effects of S/N ratio for γ.
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Figure 6. Plot of main effects of S/N ratio for V.

3.2.2. Analysis of Variance for S/N Ratio

To further clarify the sensitivity of geometrical parameters to the RF signal response,
an ANOVA was performed for both γ and V using the equations shown in Table 8 with
95% confidence level for the p-test.

Table 8. ANOVA related equations.

Equation Notation

Mean Square (MS) Factor MSF = SSF
DFF

SSF SS Factor
DFF DF Factor

MS Errors MSE = SSE
DFE

SSE SS Error
DFE DF Error

Sum of Square (SS) Factor SSF = ∑ ni(yi. − y..)2 yi. Mean of the observation at the ith factor level

SS Error SSE = ∑i ∑j

(
yij − yi.

)2 y.. Mean of all observations

SS Total SST = ∑i ∑j

(
yij − y..

)2 yij Value of the jth observation at the ith factor level

Degree of freedom (DF) Factors DFF = r − 1 nT Total number of observations
DF Error DFE = nT − r r Number of factor levelsTotal DF DFT = nT − 1

F-value F = MSF
MSE

MSF MS Factor
MSE MS Error

Percentage of contribution % = SSF
SST

SSF SS Factor
SST SS Total

In ANOVA, the null hypothesis for the p-test is important to determine the relationship
between the factors and the signal response, where the null hypothesis is rejected when
there is a significant relationship between the factor and the signal response [36]. As
observed in the ANOVA results of γ and V (refer to Tables 9 and 10), the null hypothesis
was rejected only for Wt and V, which indicates a strong relationship between Wt and the
response. However, in terms of % contribution, the % order was similar to the order of the
rank from the delta results, and the % contribution for W in the γ showed a high value of
25.19% to the response. Thus, an additional regression analysis was performed to confirm
the simultaneous relationship of all control factors with the results.
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Table 9. ANOVA results for γ.

Source DF Adj SS Adj MS F-Value p-Value % Contribution

Channel Length, L 2 4.0859 2.0429 6.43 0.1350 60.21
Channel Width, W 2 1.7095 0.8547 2.69 0.2710 25.19
Trench Width, Wt 2 0.3540 0.1770 0.56 0.6420 5.22

Error 2 0.6359 0.3179
Total 8 6.7852

Table 10. ANOVA results for V.

Source DF Adj SS Adj MS F-Value p-Value % Contribution

Channel Length, L 2 3.0617 1.5309 5.49 0.1540 3.59
Channel Width, W 2 5.1080 2.5540 9.17 0.0980 5.99
Trench Width, Wt 2 76.5186 38.2593 137.30 0.0070 89.76

Error 2 0.5573 0.2787
Total 8 85.2456

3.2.3. Regression Analysis

The p-value hypothesis now involves the regression and control factors. The p-value in
the regression analysis explains the changes in the response, where the null hypothesis of
the model means that there are no significant changes to the response. As can be observed
from Tables 11 and 12, the p-values in both regressions for γ and V reject the null hypothesis,
indicating that there are variations in the parameters and responses. For the control factor
parameters, L and W for γpeak (refer to Table 11) and W and Wt for Vpeak (refer to Table 12)
reject the null hypothesis. These results are different from the previous analysis from
ANOVA, where only Wt in the Vpeak rejected the null hypothesis. This may occur because in
the regression analysis, the coinciding factors from two sets of responses are simultaneously
considered in the null hypothesis analysis, whereas in ANOVA, the individual element
response is considered [37].

Table 11. Regression ANOVA for the curvature coefficient, γ.

Source DF Adj SS Adj MS F-Value p-Value

Regression 3 39.1836 13.0612 8.5700 0.0200
Channel Length, L 1 27.9477 27.9477 18.3300 0.0080
Channel Width, W 1 11.2016 11.2016 7.3500 0.0420
Trench Width, Wt 1 0.0344 0.0344 0.0200 0.8870

Error 5 7.6237 1.5427
Total 8 46.8073

Table 12. Regression ANOVA for V.

Source DF Adj SS Adj MS F-Value p-Value

Regression 3 0.005817 0.001939 69.800 0.000
Channel Length, L 1 0.000150 0.000150 5.4000 0.068
Channel Width, W 1 0.000267 0.000267 9.6000 0.027
Trench Width, Wt 1 0.005400 0.005400 194.40 0.000

Error 5 0.000139 0.000028
Total 8 0.005956

The relationship between the three control factors (L, W, and Wt) and their levels was
studied and analyzed using linear regression. The percentages of R-sq, R-sq (adj), and R-sq
(pre) values for the linear regression equations of γ and V are listed in Table 13. These
values explain the variation in the response, a modification of R-sq by adjusting the number
of expressions, and the precision of prediction of the model for a new observation [38]. The
results indicated a good prediction percentage of 92.27% in voltage and a lower percentage
value of 35.51% in curvature coefficient.
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Table 13. Linear regression between control factors and response.

Regression Equation R-sq, % R-sq (adj), % R-sq (pre), %

Curvature coefficient, γ 155.2 + 21.58L − 683W + 1.5Wt 83.71 73.94 35.51
Voltage, V 0.699 + 0.0500L − 3.33W + 0.6000Wt 97.67 96.27 92.27

Thus, to determine the validity of the prediction using regression analysis, the simu-
lated and predicted values from the simulation and regression equations were compared,
as shown in Figures 7 and 8, respectively. A larger difference between the simulated and
predicted results was obtained for γ compared to V, in agreement with the R-sq (pre) values
in Table 13. The percentage error between the simulated and predicted results was then
calculated using Equation (5):

Percentage error =
∣∣∣∣ simulatedresult − predictedresult

predictedresult

∣∣∣∣ × 100%. (5)

 

Figure 7. Comparison between predicted and simulated results for curvature coefficient peak, γpeak.

 

Figure 8. Comparison between predicted and simulated results for corresponding voltage, Vpeak.
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The values of the simulated and predicted results are in good agreement, with average
percentage errors (from all runs) of 3.26% and 4.29% for γ and V, respectively, and are
considered acceptable for a reliable statistical analysis [39].

Therefore, the response optimizer of the regression analysis was utilized in Minitab
(Figure 9). From the optimizer, a high composite desirability of 0.8252 was obtained with a
well-balanced rectification performance of γ and V predicted at 26.3239 V−1 and 0.0572 V,
respectively, using the optimized structure. This balance is beneficial and achieved the
objective of having high responsivity in the zero-bias region (lower than 0.3 V). The detection
signal of the SOI SSD detector was then evaluated using these optimized structural parameters.

 

Figure 9. Response optimizer plot for regression analysis using optimized structure of SSD.

3.3. Characterization of the Optimized SSD Structure

The curvature coefficient analysis performed on the optimized structure indicated a
prominent rectification performance of γpeak at 26.4260 V−1 and Vpeak of 0.05 V, improved
from the highest reported γ value of 25.9172 V−1 using the trial-and-error method [19],
which shows promising ability to function in zero bias (Figure 10).

 

Figure 10. The curvature coefficient, γ, of the optimized SSD structure.
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An alternating current (AC) transient analysis was performed on the optimized SSD
structure to imitate an RF wave input of 0.30 V with a frequency ranging from 3 to 10 GHz.
With 0.30 V input, the device can function in zero bias without an external power supply. In
sequence, the current output for each frequency was analyzed using Equation (6) in terms
of the mean current, Imean, and plotted (see Figure 11) to obtain the cut-off frequency (the
frequency where Imean is equal to 0), which indicates no rectifying current and detection
from the RF.

Imean =
1

(t1 − ti)

∫ t1

ti

f (t1)dt − 1
(t2 − t1)

∫ t2

t1

f (t2)dt. (6)

 

Figure 11. Cutoff frequency and the mean current values in each simulated frequency by using the
optimized SSD structure.

As observed, the highest Imean was obtained at 5 GHz, with a cut-off at approximately
6.50 GHz. This cutoff frequency is higher than the previously reported cutoff frequency
using the SOI structure [40], which was suggested to be 4 ± 1 GHz. This indicates an im-
provement in the detection frequency by using an optimized structure, where an increased
performance in 5G networks was achieved with the assistance of statistical optimization.

4. Conclusions

In this work, an optimized SSD structure utilized as an RF detector was analyzed
by integrating statistical and numerical analyses using the Taguchi method and ATLAS
device simulator, respectively. By performing numerical simulations based on Taguchi’s
DOE using the identified control factors and their corresponding levels, the number of
significant simulation frequencies was reduced to nine runs, whereas the trial-and-error
method requires a range of varied parameters in each structural parameter. Simulations
were performed using the ATLAS device simulator by utilizing the physical models vali-
dated with the experimental results. The curvature coefficients, γ, from the resulting IV
characteristics from each run were used for the analysis of the S/N ratios of the γ peak, and
its corresponding voltage, V, was used for the overall ratio. By performing the overall cal-
culation of the S/N ratios, the give-and-take of both γ and V was considered, where a high
γ value in the lower bias voltage region was desired. The optimized structure was 0.23 μm,
1.30 μm, and 0.10 μm in channel width, channel length, and trench width, respectively.

Furthermore, the ANOVA conducted in this study provided an understanding of
the sensitivity and the most affected control factors in both observed parameters of the
SSD, where the γ peak value and its corresponding voltage were mostly affected by the
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channel length and trench width, respectively. However, only the p-value of the trench
width rejected the null hypothesis, despite the high contribution percentage of other control
factors. Additional regression analysis was performed to reconfirm the simultaneous
relationship of all control factors with the results, which showed the rejection of the null
hypotheses in most of the parameters. From the regression analysis, it can be understood
that γ was mostly affected by the channel length and width, and its corresponding voltage
was dependent on the channel width and trench. The average percentage errors of the
predicted and simulated S/N ratios from regression and numerical analyses in all runs
were 3.26% and 4.29% for γ and V, respectively, which shows acceptable prediction using
regression analysis. Analysis using the response optimizer of the regression analysis
showed a favorable composite desirability of 0.8252 with well-balanced performances of γ
and V predicted at 26.3239 V−1 and 0.0572 V, respectively, using the optimized structure.

Characterization of the optimized SSD from the Taguchi method analysis by means
of ATLAS device simulator showed prominent rectification performance with a γ of
26.4260 V−1 at 0.05 V bias, which was improved from the highest reported γ value of
25.9172 V−1 using the trial-and-error method. The AC analysis of the optimized struc-
ture showed a cutoff frequency of ~6.50 GHz, which is higher than the reported cutoff of
4 ± 1 GHz, with a detection peak at 5 GHz. This shows the promising ability of the SOI
SSD to function in the 5G network frequency range, which can be a good alternative for a
5G network RF detector with the advantages of fabrication simplicity and low cost.
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Abstract: The teaching of mathematics has always concerned all the professionals involved in
engineering degrees. Curently students have less interest in these studies, what has caused an
increase of this concern. The lack of awareness of students about the significance of mathematics
in their careers, provoke the decrease of undergraduate students’ motivation, which derives in a
low interest in engineering degrees. The aim of this work is that engineering students achieve a
greater motivation and involvement in first academic courses, through the implementation of real
and technological applications related to their degrees in the learning of mathematical concepts. To
this end, the 2019/2020 and 2020/2021 academics years, the seminar “Applications of Multivariable
Calculus in Engineering” has been held in Universitat Politècnica de Catalunya-BarcelonaTech
(UPC), based on the teaching of Multivariable Calculus by the execution of real problems where
calculus concepts are necessary to solve them. With the aim of analyzing students’ motivation and
assessment of the seminar, anonymous surveys and personal interviews have been conducted. The
number of attending students to the sessions in each academic year has been 16 and all of them have
been participants in the surveys and interviews. The results show that students’ responses were
generally positive and they agree that their motivation to the subject Multivariable Calculus has
increased with the use of real applications of mathematics. The execution of practical problems with
engineering applications improves the acquirement of mathematical concepts, what could imply
an increase of students’ performance and a decrease of the dropout in the first academic courses of
engineering degrees.

Keywords: calculus; engineering education; mathematics education; motivation; STEM

1. Introduction

The economic development of countries is mainly based on technology. Thus, pro-
fessionals in fields related to science, technology, engineering and mathematics (STEM)
are necessary to improve the economy of countries. Technological production implies
encouraging and supporting students to become technological professionals. Therefore,
STEM disciplines are considered essential for the economic development of technological
societies. The potential negative economic impact of undersupply is of concern due to
opportunity costs and loss of competitiveness [1]. In addition, STEM education could
integrate students’ skills and better professional competences. The 21st century, as the age
of information technologies, entails new job prospects and upcoming jobs which require
new skills from professionals. Nowadays, technology is necessary in many jobs such as
science, business, engineering, etc.

Moreover, high occupancy demands for STEM degrees are expected [2,3]. As tech-
nological knowledge and expertise is becoming more specialized and economically in-
creasingly important, ever more jobs specialized in STEM disciplines are required and this
demand is expected to further increase in the upcoming years, as remarked in [4,5].

However, at the present time in most countries, undergraduate students have less
interest in technological degrees [1,6,7], which is mainly due to the lack of awareness of
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the importance of mathematical subjects in first academic courses of these studies. This
lack of awareness derives, in most cases, in the decrease of students’ motivation, which has
as a result a low performance and a high dropout rate in the first years of these degrees.
Thus, the engineering education community work to identify the causes of this situation,
as indicates [2].

The worrying dropout in higher education has gained much interest in academic
research. One third of undergraduate students leave university without obtaining a degree,
mainly during their first academic year [8]. The dropout rate is higher in STEM careers [7].

The importance of students’ motivation and engagement has been analyzed in previ-
ous studies [9,10], and in particular for technological degrees [11]. In first academic years is
essential to promote student engagement [12,13], which involves the improvement of moti-
vation [14,15], relatedness [16], student achievement [17] and academic performance [18],
what imply the decrease of the dropout rate.

Practical and real applications used in mathematics subjects of engineering degrees,
encourage student engagement and motivation [14], as has been studied in previous
works [19–23]. A proper coordination among mathematical subjects and technological
subjects of engineering degrees syllabus contribute to the decrease of dropout rates [24].
Active learning has positive results on the rise of students’ motivation and on the enhance-
ment of their learning, what entails the improvement of their performance, as it is stated
in several studies [25–28]. For instance, the relationship between mathematical creativity
and the relevance of problem-solving in the teaching of mathematics has been studied
in [29]. Moreover, key employee expected abilities involve problem-solving and analytical
thinking skills besides the competences to communicate them. The use of problem-posing
in engineering degrees contributes to increase student involvement. This methodology
consists of exposing a problem to students, related to technological disciplines, which will
lead them to discover what they need to learn to solve this problem. Furthermore, it implies
the development of essential abilities and competences for their career, as they are auton-
omy, continuous learning, critical thinking, planning and communications skills [30,31].
Moreover, the integration of theory and practice entails the improvement of motivation,
what implies an increase of academic performance [32–35].

The purpose of this work is to generate an integrated STEM curricula, connecting
mathematical applications with STEM education. The aim of the present study is to increase
undergraduate engineering students’ motivation by contextualization of mathematical
subjects with technological applications related to the disciplines taught in the following
academic courses of these degrees. The material developed in this work is expected to be in-
troduced for a future adaptation of mathematical subjects’ syllabus in engineering degrees.

Engineering students have to solve engineering problems and mathematical method-
ologies are the tools to solve them. They need to know the usefulness of mathematics and
how essential they are for their degrees and their future careers. In this regard, the motiva-
tion and involvement of students are considered a key element, clarifying the importance
of mathematics for technological subjects and for their future profession.

This study is part of the work “Applications of Mathematics in Engineering”, which
is formed by two seminars: “Applications of Linear Algebra in Engineering” [36] and
“Applications of Multivariable Calculus in Engineering”. These two seminars entail the
mathematical subjects of first academic courses in technological degrees. This study focuses
on the seminar “Applications of Multivariable Calculus in Engineering”, whose purpose is
to present real and technical applications of Multivariable Calculus related to engineering
degrees with the objective of increasing students’ motivation towards the learning of
mathematics in first academic courses. Knowing the need of mathematical concepts to
solve those technical applications, students realized of the importance of mathematics
not only for the execution of their degrees but also for the development of their careers
as engineers.

This article focuses on these research questions:
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• How does the implementation of real and practical applications in mathematical
subjects’ influence on students’ motivation?

• What are the benefits of including real and practical applications in mathematical
subjects of first academic courses in technological degrees?

The results of the study show that for students is really motivating to know what they
will be capable to do in the next courses of their degree. They also realized of how essential
Multivariable Calculus is for their future profession and increased their interest towards
the subject.

These results verifies that this experience lets students obtain a greater understanding
of mathematical concepts, which increases students’ performance in mathematical subjects
of engineering degrees.

2. Materials and Methods

The study has been conducted at the Universitat Politècnica de Catalunya-BarcelonaTech
(UPC), a public university specialised in STEM degrees. The work “Applications of Math-
ematics in Engineering” is formed by two seminars: “Applications of Linear Algebra in
Engineering” [36] and “Applications of Multivariable Calculus in Engineering”, which
started in the 2019/2020 academic year and were undertaken in the first and the second
semester, respectively. Both seminars were organised in weekly sessions of one hour and a
half each session. These sessions have been held also in the 2020/2021 academic year and it
is planned to repeat them during the following years.

Thus, since the 2019/2020 academic year, weekly sessions have been given to first-
year students of the Industrial Engineering Bachelor’s Degree from the Barcelona School
of Industrial Engineering (ETSEIB) of the UPC, this degree lasts four years. Currently,
the syllabus of mathematical subjects in engineering degrees do not content technolog-
ical applications. Mathematical subjects focus on mathematical concepts, they are not
contextualized in the technological disciplines of engineering degrees. The aim of this
work is to contextualize mathematics through the connection of mathematical subjects
with technological disciplines, taught in the following academic courses, and with their
future technological professions. Thus, students will be able to realize of the importance
of mathematics for engineering, as well as they learn engineering applications from the
beginning of their degrees.

The two seminars “Applications of Linear Algebra in Engineering” and “Applications
of Multivariable Calculus in Engineering” are offered in the same semesters in which the
ordinary classes of the compulsory subjects Linear Algebra and Multivariable Calculus
are taught, first and second semesters, respectively, so that the students who wish could
complement in a parallel way and from a practical point of view the theoretical concepts in-
troduced in the ordinary classes. The seminars have been devised with the aim of increasing
students’ motivation and involvement in the early stages of engineering studies. In addi-
tion to the benefits of these sessions, Universitat Politècnica de Catalunya-BarcelonaTech
(UPC) recognizes with 1 European Credit Transfer and Accumulation System (ETCS) the
attendance for students.

This article focuses on the seminar “Applications of Multivariable Calculus in En-
gineering”. In each of the sessions of this seminar, applications illustrating the use of
mathematical concepts related to multivariable calculus in different engineering areas are
explained. The compulsory subject of Multivariable Calculus lasts one semester (14 weeks).
Instead, the optional seminar presented in this work consists of 10 weeks. During the first
two weeks of the semester, students are informed of the existence of this seminar in order
to enable registration; and two other weeks, before the partial and final exams, no seminar
sessions are given. So, this seminar consists of 10 sessions, 8 main sessions and 2 review
sessions. The 8 main sessions are detailed in Table 1.
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Table 1. Applications of Multivariable Calculus in Engineering.

Session Title

1 “Discontinuous phenomena: hysteresis, caustics”
2 “Thom’s catastrophes”
3 “Taylor and Fourier series”
4 “Chain, implicit and inverse theorems”
5 “Inverse kinetics”
6 “Kinematics of mechanisms with links”
7 “Optimization”
8 “Miscellany”

To evaluate the results of this study, anonymous surveys and personal interviews were
conducted, with the aim of analyzing students’ appreciation of the seminar “Applications
of Multivariable Calculus in Engineering”.

Surveys were undertaken at the end of each session and evaluate the impact of the
experience on the students attending to the sessions, as regards the mathematical and
engineering contents, the technological applications and the motivation towards the subject
of Multivariable Calculus. These surveys consisted of five questions which must be valued
on a 5-point scale (1 = Strongly disagree, 2 = Disagree, 3 = Nor agree nor disagree, 4 = Agree,
5 = Strongly agree). In addition, there is the possibility to include an opinion, where students
could explain their impression about the session. The questions set in the surveys were:

Question 1: The assessment of mathematical contents is positive.
Question 2: The assessment of engineering contents is positive.
Question 3: The sessions “Applications of Multivariable Calculus in Engineering” let

students know technological applications of different mathematical concepts.
Question 4: The applications of mathematical concepts achieve to increase the motiva-

tion to the subject Multivariable Calculus.
Question 5: The execution of practical exercises with technological applications im-

prove the learning of mathematical concepts.
With the aim of extracting more opinions from the students attending the sessions

“Applications of Multivariable Calculus in Engineering”, personal interviews have been
undertaken at the end of all the sessions in 2019/2020 and 2020/2021 academic years,
which consisted of several open questions, where students could express in detail their
opinion and assessment of the sessions. It should be noted that, in order to avoid bias in the
answers, the person who interviewed students was not a professor but a master’s student.
The main questions set to students were:

1. What aspects do you assess most positively of these sessions?
2. What applications have been more interesting? Why?
3. How have these sessions influenced on your motivation and on your interest toward

Multivariable Calculus?
4. Have these sessions helped you understand mathematical concepts of the subject

Multivariable Calculus? What applications? What concepts?
5. After these sessions, do you consider that Mathematics are more important and

essential to the development of engineering degrees? How? Why?

The influence of the implementation of the seminar “Applications of Multivariable
Calculus in Engineering” on the students attending the seminar has been analyzed from the
answers to the surveys and to the interviews undertaken after the sessions of this seminar.

3. Results

3.1. Students’ Mathematical Contents

The 8 main sessions of the seminar “Applications of Multivariable Calculus in Engi-
neering” consists of real and practical applications of the contents developed in the subject
Multivariable Calculus, whose syllabus is:
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1. Continuity and derivability of multivariable functions.
2. Integration of multivariable functions.
3. Laplace transform and Fourier series.

The first three sessions of the seminar are focused in discontinuous phenomena.
Although they are not still included in mathematical subject programmes, discontinuous
phenomena are very common in engineering problems and entail most of the contents
of engineering subjects and contribute to illustrate the importance of these mathematical
theories to solve real engineering problems. The applications developed in sessions 1, 2
and 3 include the Thom’s catastrophes and Taylor and Fourier series.

The sessions 4, 5 and 6 are related to differential calculus and the basic theorems: chain
rule, implicit function theorem and inverse function theorem, which are the basis of a great
number of classical applications in engineering.

The session 7 is about optimization, which is the most important goal of engineering.
The last session, miscellany, deal with the use of engineering vision to solve ap-

plications in order to apply mathematical calculations, concluding that engineers must
complement the use of mathematical tools with their engineering knowledge.

Some practical and real applications explained to the students in the sessions “Ap-
plications of Multivariable Calculus in Engineering” are explained below. They consist
of applications of Multivariable Calculus related to engineering disciplines which can be
understood and learnt by undergraduate students in the first academic courses.

3.1.1. Application 1: A Gravitational Machine

The first application is an example of discontinuous phenomena and it was explained
in the session 1 (Discontinuous phenomena: hysteresis, caustics), where discontinuous
phenomena were introduced highlighting how frequent they are in engineering.

In a gravitational machine appear discontinuous phenomena as it is going to be shown
hereunder. A gravitational machine consists of a flat sheet limited by a parabola, leant on
a horizontal plane. The most important point of this machine is that the center of gravity
(CDG) is variable through the position of a magnet which can be moved on the sheet
surface. Supposing the sheet mass negligible, the CDG would be the magnet position
(Figure 1).

 
Figure 1. Centre of gravity.

When the CDG is displaced on the sheet, how will the sheet situate in a stable way?
The stability situation will happen when the CDG is placed in a minimum height,

therefore the stable equilibrium point P on the parabola outline is the relative minimum of
the distance between the CDG and the parabola points, that is, the orthogonal base to the
parabola from the CDG, as it is shown in the following figure (Figure 2).
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Figure 2. Position of the center of gravity.

If CDG is placed on the parabola vertical axis, the equilibrium point could be stable
or instable depending on the CDG height. If the distance between the CDG and the
equilibrium point is a relative minimum, there would be stable equilibrium but if this
distance is a relative maximum, the equilibrium point is the parabola vertex and it would
be instable equilibrium.

If we consider the parabola
{(

z, z2), |z| ≤ 2
}

and the CDG = (0, 2), the distance
between any point on the parabola outline and the CDG placed on the parabola axis
would be:

E =
(

d
(

z, z2
)

, (0, 2)
))2

= z2 +
(

z2 − 2
)2

= z4 − 3z + 4 (1)

If we derivate and equal to zero, we obtain:

D
(

d
((

z, z2
)

, (0, 2)
))2

= 4z3 − 6z = 0 (2)

where z = 0 is a relative maximum and z = ±
√

3
2 are relative minimums.

Therefore, if CDG is = (0,2), there is instable equilibrium in the parabola vertex, V =

(0, 0). In addition, there is stable equilibrium on the parabola outline points P1 =

(√
3
2 , 3

2

)
,

P2 =

(
−

√
3
2 , 3

2

)
. These points are indicated in the following figure (Figure 3):

 
Figure 3. Stability of the center of gravity.

If the CDG height is less than 1
2 . there is only one relative extreme, which is the

parabola vertex and, in this case, there would be 1 stable equilibrium point.
Depending on the position of de CDG, there can exist three equilibrium points or only

one equilibrium point. This situation happens not only if the CDG is placed on the parabola
axis but also on any point inside the parabola.
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The question is in what positions of the CDG, there are three equilibrium points
(two stable points and one instable point) and in what positions there is only one stable
equilibrium point. To answer this question, we must analyze in what positions of the CDG
there are three orthogonals, corresponding to two relative minims and one relative maxim
and in what positions there is only one equilibrium point, corresponding to a relative
minim. To solve it we have to make the orthogonals envelope. We must distinguish the area
where there are three orthogonals and the area with only one orthogonal, the separation
between these two areas is the orthogonals envelope. To obtain the expression of this
envelope, we have to do the following calculations.

The orthogonal in: (
z, z2

)
=

{
(β, α) :

β − z
−2z

= α − z2
}

(3)

The expression of the orthogonal is:

0 = β − z + 2z
(

α − z2
)
= β + (2α − 1)z − 2z3 (4)

To eliminate z, we calculate the derivative:

0 = DZ
(

β − z + 2z
(

α − z2
)
) = (2α − 1)− 6z2 (5)

with these 2 expressions, we can obtain that:

z2 = 2α−1
6 ⇒ 0 = β + z

(
(2α − 1)− 2 2α−1

6

)
⇒ 0 = β + z 2

3 (2α − 1) ⇒

⇒ β2 = z2 4
9 (2α − 1)2 = 2α−1

6
4
9 (2α − 1)2

(6)

As a result, it can be deduced that the envelope expression is:

β2 =
16
27

(
α − 1

2

)3
(7)

That is a cusp curve that separates the triple orthogonality area from the simple
orthogonality area, as it is shown in this figure (Figure 4):

Figure 4. Cusp curve.

If the CDG is placed over the cusp, the gravitational machine will have three equilib-
rium points. In the figure, CDG1 is placed over the cusp and in this case the two stable
equilibrium points are P1 and P2 and the instable equilibrium point is the parabola vertex V.
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If the CDG is placed under the cusp, the gravitational machine has one equilibrium
point. In the figure, CDG2 is under the cusp and the only one stable point is P.

The following expressions represent these conditions:

CDG(β, α)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
β2 < 16

27

(
α − 1

2

)3
⇒

{
2 STABLE

1 INSTABLE

β2 > 16
27

(
α − 1

2

)3
⇒ 1 STABLE

(8)

Now we are going to analyze the machine behavior when the CDG moves from a
position over the envelope to a position under it. In this case the system will lose one stable
equilibrium point. Therefore, it will provoke a discontinuity.

To show it, we are going to study the following figure (Figure 5).

 
Figure 5. Machine behavior.

If CDG moves slowly among the points G1, G2 and G3, the equilibrium point changes
continuously among the points P1, P2 and P3, respectively.

If CDG changes from G3 to G4, the parabola falls discontinuously, the equilibrium
point jumps from P3 to P4. The disruption occurs when β ∼= −0.28.

In the case that α = 0.4 and the CDG changes horizontally, there will not be disruption
because the CDG is always under the envelope.

3.1.2. Application 2: Euler’s Arc

The second example, explained in session 3, is an application of Thom’s catastrophes
and of Fourier and Taylor’s series.

Supposing a compressed arc (with length π) and a load m slightly off-center (ε), as it is
represented in the following figure (Figure 6):
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Figure 6. Compressed arc.

The beam resistance depends on two control parameters (m,ε), which must be modelled
by the Thom’s 2nd catastrophe.

Expressing the arc with the following function:

f (s), 0 ≤ s ≤ π (9)

Fourier analysis establishes that periodic functions can be modelled by additions of
harmonics of different periods. Therefore, the bean function can be expressed as an addition
of sinus of different periods:

f (s) = ∑ cn sin ns (10)

In this example, supposing one or two harmonics, it is obtained that:

m =0, ε = 0 ⇒ f (s) ∼= r sin s (11)

If the elastic module is μ = 1
π , potential energy and elastic energy are:

VP = m f
(π

2
+ ε

)
(12)

VE =
1

2π

∫ π

0
( f ′′ (s))2 1(

1 + ( f ′(s))2
)3 ds (13)

Applying Taylor (ε �):

VP = mx cos ε + mz(− sin 2ε) ∼= mx
(

1 − ε2

2

)
+ mz(−2ε) (14)

The variable x depends on the variable z because the beam distance does not change
when the beam distorts:

d =
∫ π

0

√
1 − ( f ′(s))2ds (15)

In both cases (considering one or two harmonics) this distance is the same:

d =
∫ π

0

√
1 − (r cos s)2ds ∼=

∫ π
0

√(
1 + 1

2 r2 cos2 s + −1
8 r4 cos4 s

)
ds =

= π
4
(
4 − r3 − 3

16 r4 − 5
64 r6) (16)

d =
∫ π

0

√
1 − (xcoss + 2z cos 2s)2ds ∼= . . . =

= π
4
(
4 − x2 − 4z2 − 3

16 x4 − 3x2z2 − 5
64 x6) (17)
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Equaling the two expressions below and applying Taylor approximation:

x ∼= ao + a2z2 +a4z4 =⇒ ao = r, a2 = −2
r
− 3r

4
, a4 =

−2
r3 (18)

It is obtained x as an implicit function of z:

x ∼= r + z2
(
−2

r
− 3r

4

)
+ z4 −2

r3 (19)

Now we can obtain the elastic energy depending only on z:

VE ∼= . . . = constant +
(

3 +
13
8

r2
)

z2 (20)

The total energy is the addition of the potential and the elastic energy:

V = VP + VE ∼= constant − 2mεz +
((

3 +
13
8

r2
)
− m

(
2
r
+

3r
4

))
z2 − 2m

r3 z4 (21)

which is the expression of the Thom’s 2nd catastrophe with vertex (supposing ε = 0):

mo =

(
3 +

13
8

r2
) (

2
r
+

3r
4

)−1
∼= 3

2
r − 1

4
r3 (22)

Consequently:

V ∼= − 3
r2 z4 − 2

r
(m − mo)z2 − 2rεz (23)

The maxim load decreases quickly when ε increases, as it represents the Thom’s cusp
represented in the following figure (Figure 7):

Figure 7. Thom’s cusp.

3.1.3. Application 3: Crank and Connecting Rod

This exercise, explained in session 4, is an example of the implicit function theorem,
which has many applications in mechanic in order to relation the different parameters
operating in a mechanism.

This application is the crank/connecting rod system of explosion motors (see Figure 8),
which consists of:

• one crank moving with an angle θ;
• one connecting rod whose movement depends on the crank turn;
• one piston moving horizontally on an axis.
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Figure 8. Crank/connecting rod system.

Supposing that the crank length r and the connecting rod length L are known, this
system has three position parameters:

• x: piston distance to the crank turn center;
• θ: crank angle;
• ϕ: connecting rod angle.

These three parameters are related according to the following expressions:{
x = r cos θ + L cos ϕ

r sin θ = L sin ϕ
(24)

There are three parameters to determine the position and two equations which relate
them. One of the three parameters could be expressed in function of the other two pa-
rameters and act as a control parameter determining those two parameters following the
equations below.

Fixing the value of one from the three variables, we would obtain a system with two
equations and two unknown factors, which would have a unique solution.

Applying the implicit function theorem:

(x, θ, ϕ)
f→ (x − r cos θ − L cos ϕ, r sin θ − L sin ϕ) (25)

Calculating the derivative matrix:

D f =

(
1 r sin θ L sin ϕ
0 r cos θ −L cos ϕ

)
(26)

According to this theorem, one variable acts as implicit (control variable) if the minor
formed by the other columns is different to zero.

If we calculate the minor of the variable x:

det
(

r sin θ L sin ϕ
r cos θ −L cos ϕ

)
= −rL(sin θ cos ϕ + cos θ sin ϕ) =

= −rL sin(θ + ϕ) �= 0 if(θ + ϕ) �= 0, π

(27)

Therefore, x acts as a control parameter except for the neutrals:

(θ + ϕ)= 0 , π ⇐⇒ x =
L + r
L − r

(28)

Indeed, the crank turn can be reversed in neutrals.
If we calculate the minor of the variable θ:

det
(

1 L sin ϕ
0 −L cos ϕ

)
= −L cos ϕ �= 0 (29)

Therefore, the crank angle θ is a control parameter for all the values.
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3.1.4. Application 4: Articulated Arm

However, in order to simplify the above computation and the further ones, a key tool
is the matrix of the linear map. Let us obtain the matrix of f in ordinary basis.

This example, explained in session 5, is an application of inverse kinetics, which is,
calculating input position, speed, etc., from outputs position, speed, etc.

This application explains the work of a robot articulated arm, whose scheme is repre-
sented in the following figure (Figure 9), which is composed by:

• a shoulder situated in the coordinates origin;
• an upper arm with length 5 and an angle θ > 0 from the vertical;
• an elbow situated at the end of the upper arm;
• a lower arm with length 4 and angle ϕ < π from the upper arm;
• a hand situated at the end of the lower arm, in the coordinates (x, y);
• torsion motors in the articulations (the shoulder and the elbow).

The analysis consists of a direct and an inverse kinetics study of the articulated arm.

Figure 9. Articulated arm.

The direct kinetics study obtains the hand position from the shoulder and elbow
angles, as it is calculated hereunder.

]0, π[ ]0, π[
f→ Ω. (30)

(θ, ϕ) → (x, y) (31){
x = 5 sin θ + 4 sin(θ + ϕ)
y = 5 cos θ + 4 cos(θ + ϕ)

(32)

The hand speed is calculated applying the chain rule, as it indicated hereunder:( .
x
.
y

)
= (D f )

( .
θ
.
ϕ

)
, D f =

(
5 cos θ + 4 cos(θ + ϕ) 4 cos(θ + ϕ)
−5 sin θ − 4 sin(θ + ϕ) −4 sin(θ + ϕ)

)
(33)

what is really interesting in robots is calculating the shoulder and the elbow rotor speeds
from the hand position, that is, the inverse kinetics study. To obtain these speeds, it is
necessary to apply the chain rule, the inverse function theorem and the implicit function
theorem, as it is carried out in the following example.

If the output is M = (5, 4), it is asked to obtain the shoulder and the elbow speeds
.
θ

and
.
ϕ.
It is clear to see that is a functional dependence between the hand position (x, y) and

the shoulder and the elbow positions (θ, ϕ) since there is only one possible triangle which
determine the hand position from the shoulder and the elbow positions. Therefore

Ω
f−1

→ ]0, π[ ]0, π[ (34)
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(x, y) → (θ, ϕ) (35)

Applying the inverse function theorem, it is confirmed the f−1 derivability:

detD f = −20 cos θ sin (θ + ϕ) + 20 sin θ cos (θ + ϕ) =

= −20 sin(θ − (θ + ϕ)) = −20 sin ϕ �= 0
(36)

The relation between the shoulder and the elbow speeds, and the hand speed is:( .
θ
.
ϕ

)
= (D f )−1

( .
x
.
y

)
(37)

The hand position M = (5, 4) corresponds to the angles = π
2 , ϕ = π

2 .
Replacing in the expression below, it is obtained that:( .

θ
.
ϕ

)
=

(
4 4
−5 0

)−1( .
x
.
y

)
=

1
20

(
0 −4
5 4

) ( .
x
.
y

)
(38)

.
θ = −1

5
.
y (39)

.
ϕ =

1
4

.
x+

1
5

.
y (40)

3.1.5. Application 5: Electrical Dispatch

This example, explained in session 7, is about the most important goal of engineering,
which is the optimization of all the technological process.

The problem of the electrical dispatch deals with assigning the electrical central
productions to the required power. All the distributions companies need to calculate the
production of each supply central P1, · · · , Pn to cover the instant demand P.

In each moment, it must be decided, which centrals act and with what power, con-
sidering the cost of productions of those supply centrals. The objective is reaching the
minimum production cost.

The production cost of each supply electrical central is defined by the expression:

Cj = αj + β j Pj + γjP2
j , 1 ≤ j ≤ n, αj, β j, γj > 0 (41)

The problem is, if we have several supply electrical centrals which have quadratic
production costs and there is a certain demand P lower than the maximum, knowing the
power distribution of the different centrals and the first central that must be stopped.

To illustrate the solving of this problem, we are going to use an example with only
three supply electrical centrals, whose costs are hereunder indicated:

C1 = 7 + P1+P2
1 . (42)

C2 = 4 + 2P2 + 2P2
2 (43)

C3 = 2 + 4P3 + 3P2
3 (44)

Total power is the three powers sum:

P = P1 + P2 + P3 (45)

Total cost production of the three centrals is the cost productions sum:

C =
(
7 + P1 + P2

1
)
+

(
4 + 2P2 + 2P2

2
)
++

(
2 + 4(P − P1 − P2) + 3(P − P1 − P2)

2
)
=

= 13 + 4P − 3P1−2P2+P2
1+2P2

2 + 3(P − P1 − P2)
2

(46)
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To minimize the cost, the cost partial derivatives are calculated and equaled to zero:

D1C = −3 + 2 P1 − 6(P − P1 − P2) = −3 − 6P + 8P1 + 6P2 = 0 (47)

D2C = −2 + 4 P2 − 6(P − P1 − P2) = −2 − 6P + 6P1 + 10P2 = 0 (48)

The system obtained is compatible determined, therefore has a unique solution, which
is:

P∗
1 = 1

22 (9 + 12P)

P∗
2 = 1

22 (−1 + 6P)
⇒ P∗

3 =
1

22
(−8 + 4P) (49)

This solution is valid only if P∗
1 , P∗

2 , P∗
3 ≥ 0:

P∗
1 > 0, ∀P (50)

P∗
2 > 0 ⇔ P ≥ 1

6
(51)

P∗
3 > 0 ⇔ P ≥ 2 (52)

Therefore, the solution is valid only if P ≥ 2.
If P decreases under P = 2, the solution below is not valid. From this value, P∗

3 turns
to be negative, what indicates that the third central must be the first central to stop.

In this case only the other two centrals act and the production cost is:

C = 7 + P1 + P2
1 + 4 + 2(P − P1) + 2(P − P1)

2 (53)

The cost derivative calculation equaled to zero is:

P∗
1 =

1
6
(1 + 4P) (54)

P∗
2 =

1
6
(−1 + 2P) ⇔ 1

2
≤ P ≤ 2 (55)

P∗
3 = 0 (56)

Therefore, if P decreases under P = 1
2 , P∗

3 turns to be negative, what indicates that the
second central must stop.

In this case, the only one central which supplies power is the first central and in this
case the distribution is:

P∗
1 = P, P∗

2 = P∗
3 = 0 siP≤ 1

2
(57)

3.2. Students’ Surveys and Interviews Results

Up to now, two editions of the seminar “Application of Multivariable Calculus in
Engineering” have been held, corresponding to the second semester of the 2019/2020 and
2020/2021 academic years. The contents explained in these sessions has been studied
considering the answers to the anonymous questionnaires and to the personal interviews
conducted to students.

Students’ surveys of the sessions undertaken until now have been analyzed. The
surveys were held in the 2019/2020 and 2020/2021 academic years, after each of the
sessions. The number of attending students to the sessions has been 16 and all of them
have been participants in the surveys. The results obtained in these two academic years
did not have relevant differences. In the following figures the answers to each question
for all the sessions in both years are presented. So, for each figure, 256 represents the total
number of cases, which are the answers of 16 students in each of the 8 sessions and during
two academic years.
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The answers to the first question (Figure 10) show that most of the students, almost
90% of the total 256 answers of students, agree with the mathematical contents developed
in the sessions.

 

Figure 10. Answers to question 1: The assessment of mathematical contents is positive.

Likewise, in the answers to the second question (Figure 11), it can be observed that
almost 90% of the total 256 answers of students agree with the engineering contents
explained in the sessions.

 
Figure 11. Answers to question 2: The assessment of engineering contents is positive.

According to the answers to question 3, almost 90% of the total 256 answers of students
think that the sessions “Applications of Multivariable Calculus in Engineering” let them
know technological applications of different mathematical concepts (Figure 12).

Almost 70% of the total 256 answers of students agree that applications of mathematical
concepts achieve to increase their motivation to the subject Multivariable Calculus, as the
answers to question 4 (Figure 13) show.
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Figure 12. Answers to question 3: The sessions “Applications of Multivariable Calculus in Engineer-
ing” let students know technological applications of different mathematical concepts.

 

Figure 13. Answers to question 4: The applications of mathematical concepts achieve to increase the
motivation to the subject Multivariable Calculus.

More than 70% of the total 256 answers of students state that the execution of practical
exercises with technological applications improves the learning of mathematical concepts
(Figure 14).

 

Figure 14. Answers to question 5: The execution of practical exercises with technological applications
improve the learning of mathematical concepts.

The response of the attending students to these sessions in 2019/2020 and 2020/2021
academic years has been very positive. As can be observed in the above figures, the
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number of students who agree or strongly agree with the statements about the seminar is
higher than the number of students who nor agree nor disagree, except for the question
4 (Figure 13). The reason is that some students have answered that although they assess
positively the contents of the seminar, they were already motivated to the study of Calculus
Multivariable before attending to the seminar.

It is also worth mentioning some students’ comments expressed in the open questions
asked in the anonymous surveys in both years, such as:

• These sessions let know real applications of mathematics in engineering, which gives
more sense to the study of mathematics.

• Discovering that discontinuous phenomena produced in engineering processes can be
modeled by mathematical theories increases the motivation towards the learning of
mathematics.

• The use of mathematical concepts in technological applications, as they are implicit
function theorem or Taylor and Fourier series, let students realize about the need of
mathematics in engineering.

• Applications of Multivariable Calculus in mechanics and robotics increase the curiosity
and the interest of students towards mathematical subjects.

The information extracted from students’ answers in personal interviews in both
academic years is presented hereunder:

• The real applications shown in the sessions “Applications of Multivariable Calculus in
Engineering” let students realize of the usefulness of mathematics for their degree and
for their future career.

• Applications studied in this seminar have been very practical and students will use
them in their future profession. Learning to solve real engineering problems shows
students how essential mathematical subjects are for engineers.

• Seeing how mathematics can be applied in engineering motivates to learn mathematics
in order to be able to use them in the future as engineers.

• Seeing technological applications of mathematics increases the interest towards the
subject.

• These applications help students understand related mathematical concepts as the
implicit function theorem, the Fourier series or the calculations of maximums and
minimums in functions defined in compact sets.

• Interesting applications: Zeeman machine solved with Thom’s catastrophes theory
and Taylor series and the crank/connecting rod system of explosion motors using the
implicit function theorem.

• It has been very impressive knowing no technological applications of Thom’s catastro-
phes, such as the analysis of dogs’ behavior and sociological applications.

• Students knew that mathematics were necessary for engineering but, attending this
seminar, they have discovered that mathematics are also necessary for other different
disciplines.

• Mathematics are not subjects to prepare students for beginning the degree, mathemat-
ics are applications in the future work of engineers.

4. Discussion

In this work we contribute to develop an integrated STEM curriculum, introducing an
implementation of mathematical applications integrated in STEM education. This study
provides a connection of mathematical subjects with technological disciplines and with
engineering careers, with the objective of enhancing the motivation and engagement of
engineering students.

In the present engineering curriculum, the first two academic courses content very few
engineering subjects, but consist of mathematics, science, communications and electives
subjects. With the implementation developed in this work, mathematical subjects should
cover real applications related to the main area of students enrolled degree, offering
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a wider view in STEM education [37,38], what would involve the improvement of the
understanding and learning of mathematical concepts, as [39] states.

The main issue of this work has been the relevance of solving real and technolog-
ical problems in the teaching of mathematics, since students’ analytical thinking skills
are enhanced with the use of mathematical problem solving [29,30,40]. In addition, the
implementation of real and practical problems in basic sciences subjects promote student
engagement and motivation in STEM degrees [14,19–21]. Considering the results shown
in Figure 13, it can be seen that almost the 70% of the total 256 answers of students agree
that applications of mathematical concepts achieve to increase their motivation to the
subject of Multivariable Calculus, what will lead to reduce dropout, since it is connected to
motivation [14], student achievement [17] and academic performance [11]. In the results of
Figure 14, it has been shown that according to more than the 70% of the total 256 answers of
students, the applications explained in the seminar, let them learn mathematical concepts
trough practical examples. This fact increases their motivation to mathematics, as it is
confirmed in previous studies such as [28]. In addition, as shows Figure 12, almost the 90%
of the total 256 answers of students state that with this sessions they have known multiple
real application of Multivariable Calculus in engineering and other disciplines, what attain
to encourage and motivate them to the learning of the subject, as it was analyzed in several
studies [14,19,20].

The answers to the questions taken to the students in the personal interviews after
the sessions “Applications of Multivariable Calculus in Engineering”, show that most of
the practical problems have impressed students because they have discovered that Multi-
variable Calculus have applications in many different areas. Moreover, it is to highlight
that for students is really motivating to know what they will be capable to do in the next
academic courses, using the concepts of Multivariable Calculus. They also realized of
how essential Multivariable Calculus is for their future career and increased their interest
towards the subject.

The results obtained in this study support that this experience contribute to an im-
provement of students’ learning of mathematical concepts, as it was concluded in [33],
which involves the increase of students’ performance in mathematical subjects of engineer-
ing degrees, as it was studied in previous works such as [25].

5. Conclusions

This study was carried out at the Universitat Politècnica de Catalunya-BarcelonaTech
(UPC), a university focused on STEM fields. The work is based on the teaching of Multi-
variable Calculus by the execution of real and technological applications where Calculus
concepts are necessary to solve them. The aim of this work is to generate and integrated
STEM curriculum, presenting a contribution about the relationship among mathematical
applications and STEM education. The work provides evidence that it is possible to increase
students’ motivation through the implementation of engineering applications in the learn-
ing of mathematics, what could imply an improvement of the learning of mathematics and
therefore, an increase of students’ performance and a decrease of the dropout in the first
academic courses of engineering degrees. This entails a rise of interest in STEM degrees,
which are essential for the economic growth of technological countries.

In view of the success of the seminar “Applications of Multivariable Calculus in
Engineering”, more real applications are planned to be developed. These sessions are going
to be repeated in the second semester of the next academic year 2021/2022. Likewise, the
seminar “Applications of Linear Algebra in Engineering” is going to be repeated in the
first semester of the next academic year. These two seminars cover the most mathematical
subjects of the first academic course in engineering degrees.

It is also planned to conduct surveys and interviews to the students attending the
seminar of the following academic year with the aim of collecting a greater sample of
surveys results and more information about students’ experience in these sessions.
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With the results obtained, it is expected that the contents developed in this work
will be included in a future adaptation of mathematical subjects’ syllabus in engineering
degrees.
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Abstract: Photovoltaic (PV) technology is gaining much interest as a clean, sustainable, noise-free
source of energy. However, the non-linear behavior of PV modules and their dependency on varying
environmental conditions require thorough study and analysis. Many PV modeling techniques have
been introduced in the literature, yet they exhibit several complexity levels for parameter extraction
and constants estimation for PV power forecast. Comparatively, a simple, accurate, fast, and user
friendly PV modeling technique is proposed in this paper featuring the least computational time
and effort. Based on function representation of PV curves’ available in PV datasheets, an empirical
mathematical equation is derived. The proposed formula is considered a generic tool capable of
modeling any PV device under various weather conditions without either parameter estimation nor
power prediction. The proposed model is validated using experimental data of commercial PV panels’
manufacturers under various environmental conditions for different power levels. The obtained
results verified the effectiveness of the proposed PV model.

Keywords: PV model; PV datasheet; non-linear PV characteristics; empirical mathematical model;
standard testing condition

1. Introduction

With the increasing world-wide demand for renewable energy resources, photovoltaic
(PV) systems are gaining much interest. Hence, advances are continuously carried out in
the field of their modeling and performance [1]. A PV system includes a PV power source
in the form of series and/or parallel combinations of PV modules forming a PV array
with the required voltage and amperage [2]. Under uniform environmental conditions,
a PV module exerts non-linear electrical characteristic curves, as shown in Figure 1a,
where the PV module gives its maximum possible output power at a certain operating
point. This maximum power point (MPP) is irradiance and temperature dependent, as
presented in Figure 1b [3]. In order to maximize the PV source efficiency under varying
environmental conditions, it should be followed by a pulse width modulation (PWM)
converter for continuous maximum power point tracking (MPPT) [4].

For robust control of the entire PV system operation, the PV device should be sim-
ulated in the virtual environment [5]. Thus, a simple, reliable and precise mathematical
model of the PV source is mandatory for accurate analysis of its non-linear characteristics
under varying conditions. An efficient PV model is useful in the prediction of PV output
power, the analysis of PV converter dynamic behavior and the study of MPP tracking algo-
rithms [6]. PV model accuracy is evaluated by the proximity of the model characteristics
to that of the practical device experimental data. Hence, the model should be adjusted
using the set of data provided by manufacturers regarding the PV module thermal and
electrical characteristics.
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However, PV datasheets present a few experimental data that include the nominal
open-circuit voltage (VOC), the nominal short-circuit current (ISC), the voltage at the MPP
(VMPP), the current at the MPP (IMPP), the maximum experimental peak output power
(PMPP), the open-circuit voltage/temperature coefficient (KV), and the short circuit cur-
rent/temperature coefficient (KI) [7]. These data are given under the so-called standard test
condition (STC) which is defined by irradiation level of 1000 W/m2, cell temperature of
25 ◦C, and air mass value of 1.5 [8]. Some manufacturers may also provide I–V characteristic
curves, obtained experimentally under variable operating conditions, to validate and adjust
the derived mathematical model. However, obtaining such curves experimentally requires
costly and difficult measurements in controlled environmental chambers that should be
carried out under certain conditions and according to a number of guidelines [9].
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Figure 1. Power versus voltage curves of PV panel under (a) uniform conditions, (b) varying
environmental conditions [3].

Many approaches have been developed for PV modules’ modeling and representation
as will be illustrated in the following. Equivalent circuit-based PV models, applying the
Shockley diode equation for solar cell mathematical representation, have been developed
and validated using the experimental data given in manufacturers’ datasheets [10]. This
equation represents the non-linear characteristics of the PV cell, yet it includes several
parameters that are not available in commercial manufacturers’ datasheets, hence have to
be estimated [7,11]. These parameters include the diode ideality factor (a), diode reverse
saturation current (Io), the light-generated current (IPV), and practical PV device series
and shunt resistances. The series resistance (Rs) represents the summation of PV panel
structural resistances while the parallel resistance (RP) mirrors the p − n junction leakage
current and depends on the PV cell fabrication method. These unknown parameters differ
from one panel to another, thus they should be accurately estimated for correct model
adjustment of the considered PV device.

Equivalent circuit-based PV models are either based on single-diode equivalent
circuits [12–15], two-diode circuits [16–19], or three-diode circuits [20,21]. When more
diodes are included in the model, higher accuracy is obtained, though at the cost of more
complexity and computational effort as more parameters have to be estimated (i.e., ad-
ditional ideality factor and reverse saturation current for each added diode) [22,23]. For
simplicity, most developed PV models are based on the single-diode equivalent circuit,
as this model offers a satisfactory compromise between simplicity and accuracy [11]. Dif-
ferent mathematical procedures for estimating the unknown PV parameters required are
elaborated with different levels of implementation complexity, computational time, and ac-
curacy [24–26]. These procedures can be analytical, numerical, artificial intelligence-based,
evolutionary algorithms-based, or hybrid ones.

Normally, analytical mathematical methods give exact solutions by means of algebraic
equations. However, due to PV nonlinearity, it is hard to find out the analytical solution
of all unknown parameters. Thus, analytical methods apply approximations or simplified
assumptions for some PV parameters resulting in fast and simple solution at the cost of
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relatively less accuracy [27,28]. Generally, the RP value is high while that of Rs is very low,
thus some authors neglect the former [29–32] while others neglect the latter [33,34] or both [35].
In [36–40], an analytical method based on Lambert W function is introduced for parameters
extraction, while in [41] transcendental equations for solar cell analysis are presented and
solved using Special Tran Function Theory (STFT) to increase estimation accuracy.

Numerical methods develop a set of equations which are solved using numerical
or iterative algorithms for precise parameters estimation. In [42], an iterative process is
applied where Rs is slowly incremented and corresponding RP and IPV values are obtained
such that the mathematical I–V equation fits specific experimental points on the practical
module I–V curve. In [43], an iterative method to find the actual value of the diode ideality
factor is presented. Other methods apply optimization numerical algorithms such as
Levenberg–Marquardt Algorithm (LMA), Newton Raphson nonlinear, or least-squares
algorithm for best curve fitting [27,44]. Although numerical methods outweigh analytical
algorithms regarding accuracy, they require long-term time series data, thus consume
more time.

Applying artificial intelligence [45–47] and evolutionary techniques [48–53] for PV
parameters extraction can be observed as a fast and accurate solution, yet one which
lacks simplicity and requires more computational effort, making it less practical. Hybrid
techniques are introduced to compromise between simplicity, accuracy, and computational
time. In [54] a combination between numerical and analytical methods is presented where
PV output current expression is determined by Lambert W function while the PV voltage is
computed numerically by the Newton–Raphson method. Lambert W function along with
artificial neural network were employed for determination of PV I–V and PV curves [55].

Beside the equivalent circuit-based PV modeling techniques, an alternative PV cell
mathematical representation based on trigonometrically function (sine and cosine function
based model) is presented in [56,57]. It depends on observing how PV short-circuit current
and open-circuit voltage change versus irradiance and temperature, then translating this ob-
servation into a trigonometrically property. However, this trigonometric function includes
seven constants whose values have to be obtained through PV experimental characteristics
which, in turn, adds to the computational efforts and affects its practicality.

Recently, many approaches have been developed to build PV models based on short-
term and long-term PV power forecast using ANN and machine learning techniques [58–62].
However, they require complicated implementation, a large number of data samples, and
continuous training and fitting results for accurate forecasting. The developed PV modules’
modeling approaches and representation can be summarized and listed as shown below:

PV Modeling Approaches:

• Equivalent circuit based model:

1. Parameters Estimation:

– Analytical [27–41]
– Numerical [42–44]
– Artificial Intelligence [45–47]
– Evolutionary algorithms [48–53]
– Hybrid [54,55]

2. Diodes Number:

– Single-diode [12–15]
– Double-diodes [16–19]
– Triple-diodes [20,21]

• Trigonometric-function based [56,57]
• Short-term or long-term PV power forecast [58–62]
• Proposed empirical PV model

In this paper, a novel generic PV model is presented featuring an empirical mathe-
matical equation based on function representation of captured figures from the datasheet.
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This model is able to produce characteristic curves for any PV device at any condition
based only on four electrical terms found in any practical PV datasheet at standard testing
condition (STC). The proposed approach outweighs other models regarding its simplicity
and reduced computational time and effort as none of parameters extraction, constants
estimation, or PV power forecast are required. Thus, PV experimental curves at different
environmental conditions can be emulated easily with the least cost. The proposed model
is tested for different practical PV modules at various power ratings, then compared to a
conventional PV model based on a single-diode equivalent circuit. The results validated
the proposed approach and verified its competitiveness.

This paper is organized as follows: Section 2 illustrates the methodology adopted for
developing the proposed empirical mathematical model of the PV based on captured figures
from datasheet. Section 3 includes phase one of the model development of digitizing the
captured figures and the data extraction process from the datasheet. Section 4 demonstrates
phase two, which presents the formulation of the model through three cases: (i) varying
irradiance at fixed STC temperature level, (ii) varying temperature at fixed STC irradiance
level, and (iii) specific irradiance and temperature values differ from STC nominal values.
Section 5 includes the simulation results of the proposed model compared to the extracted
data. Section 6 contains the model validation using various datasheet with different
ratings. Section 7 presents a comparison between the proposed mathematical model and a
conventional equivalent circuit based PV model. Finally, Section 8 presents the discussion
and conclusion.

2. Methodology of the Proposed Empirical Mathematical Model

The process of developing an empirical mathematical model to be used for gener-
ating the characteristic I–V curves of the PV panel at different levels of irradiance and
temperatures passes through several steps, represented in Figure 2. In this paper, the
proposed methodology is performed using the datasheet of KYOCERA PV-model (KK280P-
3CD3CG) [63]. The adopted method for developing an empirical mathematical model starts
with capturing the curves as images form the datasheet for the irradiance and temperature
variations, as shown in Figure 3. We then used software to digitize these curves by trans-
forming the captured images into numerical data points that are used to analyze the curve
features in order to represent them in mathematical functions forms, as shown in Figure 4.
By investigating the curves’ characteristics and linking them with the panel standard test
condition (STC) the model is developed to represent the I–V curves for the STC irradiance
and temperature values (G0 = 1000 W/m2 and T0 = 25 ◦C). Then, the proposed empirical
mathematical model is generalized for any irradiance and/or temperature values based
on analyzing the effect of the variation in some of I–V curves in the used main datasheet
due to the changing in the values of irradiance and temperature. After that, the remaining
unused curves of the same datasheet are used to test the proposed model. To validate
the developed empirical model, various data from different panels rating datasheets are
used [64–67]. The following sections will include a detailed illustration of each stage of the
proposed methodology.
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Validating proposed model
using various PV ratings

Test the proposed model us-
ing the PV actual ratings

Formulating empirical mathe-
matical model from some curves

Using the GetData
Graph Digitizer Software
(image → numerical data)

Capturing P–V curve
from Datasheet as image

Figure 2. Methodology Work Flow.

Figure 3. Capturing characteristic curves from datasheet as image.
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Figure 4. Digitizing the characteristic curves images into numerical data.

3. Stage One: Digitizing the Extracted I–V Curves Images from PV Panel Datasheet

In order to study the I–V curves of the PV-panels presented in datasheet, it is first
required to transform them into numerical values. Hence, the software GetData Graph
Digitizer� is used. This software is based on manually selecting the points from the curves
image. At the beginning, one defines the minimum and maximum values of each axis and
sets on image and after that defines its scale values. Then, for each curve in the image, the
points are selected by tracing the curve using data pointers. These steps are presented in
Figure 5.

A zoom preview exists on the bottom right of this program window to increase the
accuracy of selecting the points. The data points are stored in Excel sheet format which can
be exported to be used in analyzing and validating the mathematical model. This process
of data extraction is used for both curves at various irradiance and temperature values.

Xmin

Ymin

Ymax

Extract data

Xmax

Figure 5. Axis Scale Determination.

The following part of this section includes a step-by-step illustration guide of how to
use the program in transforming the datasheet I–V curves images into Excel sheet format
aided with screen shoots. The data extraction steps are:

1. Import the datasheet curves to the software as image, then start to set the axes points
as shown in Figure 6.

2. Set the minimum and maximum points of the x-axis (default 0, 1) as shown in
Figures 7 and 8, respectively.
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3. Set the minimum and maximum points of the y-axis (default 0, 1) as shown in
Figures 9 and 10, respectively.

4. Adjust the scale of the maximum values of the axes based on datasheet values as
shown in Figure 11.

5. Extract the data from each curve for a certain irradiance value by moving the selecting
cursor along each curve as shown in Figure 12.

6. For adding more than one curve in the data, select add line to start selecting data for
the new curve as shown in Figure 13.

7. Export the data from the software as Excel spreadsheet as two columns for each line,
representing x and y values for each pair of points, as shown in Figure 14.

Figure 6. Step (1): Import the datasheet curves image to the software.

(a) (b)

Figure 7. Step (2a): set the minimum value point of x-axis, (a) Set the location of the minimum point
of x-axis, (b) The default value for minimum is 0.
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(a) (b)

Figure 8. Step (2b): set the maximum value point of x-axis, (a) Set the location of the maximum point
of x-axis, (b) The default value for maximum is 1.

(a) (b)

Figure 9. Step (3a): set the minimum value point of y-axis, (a) Set the location of the minimum point
of y-axis, (b) The default value for minimum is 0.

(a) (b)

Figure 10. Step (3b): set the maximum value point of y-axis, (a) Set the location of the maximum
point of y-axis, (b) The default value for maximum is 1.
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(a) (b)

Figure 11. Step (4): Scale the maximum values of x-axis and y-axis, (a) Select the dialog box of
adjusting the axes limits, (b) Set the maximum values according to the captured figures.

(a) (b)

Figure 12. Step (5): Extract the data of each curve, (a) Select the point capture mode, (b) Start selecting
points from the curve.

Figure 13. Step (6): Adding curves from the image to be extracted.
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(a) (b)

Figure 14. Step (7): Exporting data as excel sheet, (a) Select export option rom file menu, (b) The
exported data in excel sheet format.

4. Stage Two: The Proposed Empirical Mathematical Model of PV
Characteristics Curves

The proposed model is developed based on analyzing the I–V curves in several
datasheets. By analyzing the curves we observed that the curve can be represented in the
form of combination of two mathematical functions. The first function is negative slop
straight line and the second one is inverted decaying exponential function. Varying the
values of irradiance and temperature have nearly a scaling effect on the I–V curve shape
but with preserving the same form. Therefore, the empirical mathematical model proposed
in this paper is developed over two stages. The first one is to resemble the curve features in
terms of the STC electrical performance terms. The second stage is to represent the impact
of varying levels of irradiance and/or temperature on the curves to generalize the model.

In datasheets, it is common to include the curves of the varying irradiance at fixed
temperature and/or varying temperature at fixed irradiance. Some datasheets also include
a general case at a certain value of irradiance and temperatures which differ from the STC
conditions. Therefore, the proposed model is considered over three cases: (i) varying the
irradiance levels at STC temperature value, (ii) varying the temperature values at STC
irradiance level, and (iii) general form at any value of irradiance and temperature. Each
case of them is represented with separate model.

By investigating the first case of different irradiance level at the STC temperature value
(T0 = 25 ◦C) the effect of this change on the current and voltage is presented for any value
of irradiance relative to the STC one as a scale ratio. However, for the second case, the
effect of changing the temperature values at the STC irradiance level (G0 = 1000 W/m2) is
represented in the model with a different ratio of temperature change, producing another
form of the model generating the curves at any temperature value at STC irradiance level.

Finally, the general case of producing the curve at any environmental condition
different from the STC case is investigated and presented in a general form of the proposed
empirical mathematical model after updating the electrical terms used over two passes,
one for new irradiance level and STC temperature then for new condition of both new
irradiance and temperature required conditions.

The following subsections demonstrate each case of the three models and the used
electrical performance terms notations in the models are defined as the following:

G : Irradiance Level G0: STC Irradiance Level
T : Temperature Value T0: STC Temperature Value
IMPP : Maximum Power Current VMPP : Maximum Power Voltage
ISC : Short Circuit Current VOC : Open Circuit Voltage
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4.1. Case One: I–V Characteristics Empirical Mathematical Model for Varying Irradiance Levels

The varying irradiance level leads to varied values of the current produced by the PV
panel with the same curve features mentioned early as a combination of two mathematical
functions, (i) negative slop straight line and (ii) inverted decaying exponential function.
Therefore, with decreasing the irradiance value the current decreases with a ratio of the
irradiance level to STC level. In addition, the value of the open circuit voltage reduces with
the exponential reduction in the irradiance amount. The maximum power point voltage
value is independent of irradiance level, so it is constant for all its values.

The current for any irradiance value at STC temperature value can be calculated using
the shown Equation (1):

I(G, T0) = R ×
[
C + M × V − B ×

(
1 − exp

(
V

VOC(G,T0)

))
× (1 − exp(A[V − VMPP(G0, T0)]))

]
(1)

where,

R =
G
G0

VOC(G, T0) = VOC(G0, T0)− (1 − R)×
(

VMPP(G0, T0)

IMPP(G0, T0)

)(1−R) VOC(G0,T0)
VMPP(G0,T0)

C = ISC(G0, T0)

M =
IMPP(G0, T0)− ISC(G0, T0)

VMPP(G0, T0)

B = exp
(−VMPP(G0, T0)

VOC(G, T0)

)

a =

(
1 +

VOC(G, T0)− V
VMPP(G0, T0)

)(
1

VOC(G, T0)− VMPP(G0, T0)

)

A = a × ln
(

1 − (C + M × VOC(G, T0))

B(1 − e)

)
4.2. Case Two: I–V Characteristics Empirical Mathematical Model for Varying Temperature Levels

The same equation previously mentioned in Equation (1) is used to find the I–V curve
at fixed level of irradiance (STC level), and any temperature values, but with updated
values of some electrical performance terms. The change in temperature at fixed irradiance
level has an effect on the values of the short circuit current, open circuit voltage, and
maximum power point voltage, although the maximum power point current is constant
for various temperature values.

The current for any temperature value at STC irradiance level can be calculated using
the shown Equation (2):

I(G0, T) = C + M × V − B ×
(

1 − e
V

VOC(G0,T)

)
×

(
1 − eA×(V−VMPP(G0,T))

)
(2)
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where,

S =
T − T0

T0

ISC(G0, T) = ISC(G0, T0) + 0.1 × S

VOC(G0, T) = VOC(G0, T0)− S ×
(

VMPP(G0, T0)− 1
IMPP(G0, T0)

)

VMPP(G0, T) = VMPP(G0, T0)e
−S∗

(
IMPP(G0,T0)

2VMPP(G0,T0)

)

C = ISC(G0, T)

M =
IMPP(G0, T0)− ISC(G0, T)

Vmp(G0, T)

B = e
−VMPP(G0,T)

VOC(G0,T)

a =

(
1 +

VOC(G0, T)− V
VMPP(G0, T)

)(
1

VOC(G0, T)− VMPP(G0, T)

)

A = a × ln
(

1 − (C + M × VOC(G0, T))
B(1 − e)

)
4.3. Case Three: I–V Characteristics Empirical Mathematical Model for Certain Irradiance and
Temperature Values

The current at STC irradiance and temperature values can be produced using ei-
ther Equation (1) for the case where [R = 1 at G = G0] or Equation (2) at the case of
[S = 0 at T = T0]. However, to generate a curve of PV-panel current output at a certain
irradiance and temperature level different from the STC, the same equation is used after up-
dating the model electrical performance terms over two phases, one for updating irradiance
to new level, and one updating for the new temperature value, as illustrated below:

Phase one: calculate terms for required irradiance value and at STC temperature
(G, T0), the following equations are used to find the updated values:

R =
G
G0

VOC(G, T0) = VOC(G0, T0)− (1 − R) ∗
(

VMPP(G0, T0)

IMPP(G0, T0)

)(1−R) VOC(G0,T0)
VMPP(G0,T0)

ISC(G, T0) = R ∗ ISC(G0, T0)

IMPP(G, T0) = R ∗ IMPP(G0, T0)

VMPP(G, T0) = VMPP(G0, T0)
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Phase two: based on the values generated from phase one to find the terms for the re-
quired environmental condition (G, T), the following equations are used, resulting in the
updated values:

S =
T − T0

T0

VOC(G, T) = VOC(G, T0)− S ∗
(

VMPP(G0, T0)− 1
IMPP(G0, T0)

)
ISC(G, T) = ISC(G, T0) + 0.1 ∗ S

IMPP(G, T) = ISC(G, T0)

VMPP(G, T) = VMPP(G, T0)e
−S∗

(
IMPP(G0,T0)

2VMPP(G0,T0)

)

After updating the electrical terms for the required irradiance and temperature values the
I–V curve is calculated using the following Equation (3):

I(G, T) = C + M × V − B ×
(

1 − e
V

VOC(G,T)

)
×

(
1 − eA∗(V−VMPP(G,T))

)
(3)

where,

C = ISC(G, T)

M =
IMPP(G, T)− ISC(G, T)

VMPP(G, T)

B = e
−VMPP(G,T)

VOC(G,T)

a =

(
1 +

VOC(G, T)− V
VMPP(G, T)

)(
1

VOC(G, T)− VMPP(G, T)

)

A = a × ln
(

1 − (C + M × VOC(G, T))
B(1 − e)

)
5. Proposed Model Simulation

The datasheet of the PV-panel KYOCERA PV-model (KK280P-3CD3CG) [63] is to
develop and test the model. Developing the empirical model, at least three curves are
needed, including the STC one which the model is based on, scaling it with varying the
irradiance or the temperature values. The remaining unused curves are used to test the
model. The extracted data versus the curves produced from the proposed mathematical
empirical model is presented in the following subsection as follows:

• STC case curve.
• Varying irradiance levels at fixed STC temperature.
• Testing the proposed model with the unused irradiance levels at fixed STC temperature.
• Varying temperature values at fixed STC irradiance.

The standard electrical performance testing condition values used in simulating the
curves are listed below in Table 1:
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Table 1. Electrical performance values of STCs [63].

Item Value

G0 1000 W/m2

T0 25 ◦C

ISC(G0, T0) 9.53 A

IMPP(G0, T0) 8.89 A

VMPP(G0, T0) 31.5 V

VOC(G0, T0) 38.9 V

PMPP(G0, T0) 280 W

5.1. Simulation of I–V Characteristics Curves Generated by the Mathematical Model

The STC case (G = 1000 W/m2 and T0 = 25 ◦C) is simulated using the proposed
mathematical model and the produced I–V curve is compared with the data extracted from
the datasheet [63], as shown in the following Figure 15.
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Figure 15. (KK280P-3CD3CG) I–V curves of mathematical model and datasheet for the STC case.

5.2. Simulation of I–V Characteristics Curves for Varying Irradiance Levels at Fixed
STC Temperature

Three curves at different levels of irradiance are used to develop the model including
the STC one at fixed STC temperature value. The model is simulated for the irradiance
levels (G = 400, 800, and 1000 W/m2) at fixed temperature value of STC case T0 = 25 ◦C and
both the mathematical model and the datasheet current values are presented in Figure 16.
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Figure 16. (KK280P-3CD3CG) I–V curves of mathematical model and datasheet for different irradi-
ance levels.

As shown in the results, with the irradiance value decreasing, the current decreases
as well. Additionally, the value of the open circuit voltage reduces with a reduction in the
irradiance amount on the cell. The maximum power point voltage value is fixed for all
irradiance levels.

5.3. Testing the Proposed Model with the Unused Irradiance Levels at Fixed STC Temperature

The model is tested using the rest of the irradiance levels (200, 600 W/m2) at fixed
temperature value of STC case T0 = 25 ◦C, and both the mathematical model and the
datasheet current values are presented in Figure 17.
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Figure 17. (KK280P-3CD3CG) I–V curves of mathematical model and datasheet for different irradi-
ance levels.

As shown from the simulation, the model is performing reasonably compared to the
actual extracted data.

5.4. Simulation of I–V Characteristics Curves for Varying Temperature Values at Fixed STC
Irradiance Level

The model is simulated with varying the values of temperature from 25 ◦C to 75 ◦C at
fixed irradiance level of STC case G0 = 1000 W/m2 and both the mathematical proposed
model and the datasheet current values are shown in Figure 18.
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Figure 18. (KK280P-3CD3CG) I–V curves of mathematical model and datasheet for different temper-
ature values.

The results of varying temperatures show that, with increasing temperature, the
maximum power point voltage and the value of the open circuit voltage decreases. The
maximum power point current value is fixed for different values of temperatures.

6. Model Validation

In this section, various datasheets with different ranges of output power ratings are
used to validate the proposed empirical mathematical model. The electrical performance
values of STCs of each PV-panel with its rating power are shown in Table 2. Figures 19–22
present the I–V curves of the used datasheet for validating the proposed empirical mathe-
matical model for different irradiance and temperature levels.

Table 2. Electrical performance values of STCs for model validation datasheets.

Datasheet

Elect. Item
Pmax ISC(G0, T0) IMPP(G0, T0) VMPP(G0, T0) VOC(G0, T0) Figure

KFSolar (KF245-
280P-200)

[64]
265 W 9.17 A 8.49 A 31.2 V 37.9 V Figure 19

Amerisolar
(AS-6P30) [65] 275 W 9.2 A 8.79 A 31.3 V 38.5 V Figure 20

Canadian Solar
HiKu

(CSL325-350P)
[66]

330 W 10.82 A 10.24 A 32.2 V 39.2 V Figure 21

Trina (TSM-
DE18M(II))

[67]
490 W 12.14 A 11.56 A 42.4 V 51.3 V Figure 22

STC: G0 = 1000 W/m2 and T0 = 25 ◦C.
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Figure 19. (KF245-280P-20) I–V curves of mathematical model and datasheet one for different
irradiance and temperature levels.
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Figure 20. (AS-6P30) I–V curves of mathematical model and datasheet two for different irradiance
and temperature levels.
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Figure 21. (CSL325-350P) I–V curves of mathematical model and datasheet four for different irradi-
ance and temperature levels.
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Figure 22. (TSM-DE18M(II)) I–V curves of mathematical model and datasheet three for different
irradiance and temperature levels.

To add to the proposed model validation, the root mean square error (RMSE) between
the PV I–V curves, modeled by the proposed approach, and their relative experimen-
tal datasheet curves are computed and presented in the tables below. The following
Tables 3 and 4 present the root mean square error calculated for various irradiance levels
and temperature values, respectively. It is noted that, for the tested PV models, the RMSE
under different irradiance levels is less than 0.4 in most severe cases (at 1000 W/m2) which
verifies the proposed approach capability during different irradiances. During varying
temperatures, the proposed approach shows high performance encountering RMSE less
than 0.4 for temperatures ≥25 ◦C. However, at severe temperature cases (temperatures
≤10 ◦C), RMSE reaches high levels which show the proposed model limitations at very
low temperatures.

Table 3. Root Mean Square Error Calculated for various irradiance levels.

PV Model

Irradiance

200 400 600 800 1000

KYOCERA
PV-model

(KK280P-3CD3CG)
[63]

0.0499 0.1212 0.1896 0.2321 0.3101

KFSolar
(KF245-280P-200)

[64]
0.0395 0.0789 0.1309 0.1914

Amerisolar
(AS-6P30) [65] 0.0434 0.1372 0.2032 0.2105

Canadian Solar
HiKu

(CSL325-350P) [66]
0.1604 0.310 0.3241

Trina
(TSM-DE18M(II))

[67]
0.0715 0.2140 0.3642

T0 = 25 ◦C.
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Table 4. Root Mean Square Error Calculated for various temperature values.

PV Model

Temperature

0 5 10 25 45 50 55 75

KYOCERA
PV-model
(KK280P-
3CD3CG)

[63]

0.313 0.2751 0.0432

KFSolar
(KF245-

280P-200)
[64]

0.727 0.1914 0.0820

Amerisolar
(AS-6P30)

[65]
1 0.2105 0.1120

Canadian
Solar HiKu

(CSL325-
350P)
[66]

1 0.3241 0.2266

G0 = 1000 W/m2.

7. Comparison of the Proposed Model with a Single Diode Equivalent-Circuit
Based Model

In this section, a comparison between the proposed empirical mathematical PV model
and conventional model is presented in order to verify the proposed model. The conven-
tional model is an equivalent circuit-based iterative approach and it is derived for single
diode equivalent circuit with the I–V equation given by Equation (4):

I = IPV − I0[exp
(

V + Rs I
Vta

)
− 1]− V + Rs I

RP
(4)

where, Vt which is equal to NsKT
q , is the PV thermal voltage with Ns PV cells connected

in series, q is the electron charge (1.60217646 × 10−19 C), K is the Boltzmann constant
(1.3806503 × 10−23 J/◦K), T (in ◦K) is the temperature of the p − n junction.

Unlike the proposed approach, which only requires four electrical terms (VOC, ISC,
VMPP, and IMPP) obtained from PV datasheet, the iterative model requires seven electrical
terms (VOC, ISC, VMPP, IMPP, Kv, KI , and Ns) as well as an iterative parameters extraction
procedure. The latter puts a random estimation for the ideality factor (a), uses an analytical
equation to compute Io, and finally applies a numerical iterative method to compute Rs
then Rp and Ipv. The curves fitting steps can be summarized as follows [7];

• a is selected in the range 1 ≤ a ≤ 1.5. In the considered case, a is chosen to be 1.25.
• I0 is computed using Equation (5)

I0 =
ISC + KIΔT

exp
(

VOC+KV ΔT
Vta

)
− 1

(5)

ΔT = T − T0 (T and T0 are the actual and STC temperatures, respectively, (in ◦K)).
• Rs and RP are calculated using an iterative method shown in Figure 23.

– Rs is slowly incremented starting from Rs = 0
– RP = RP−min = VMPP

ISC−IMPP
− VOC−VMPP

IMPP
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– Several values of Rs and Rp are calculated till the P–V curve peak power PMPP
coincides with the experimental peak power PMPP−e given by datasheet (=135 W
in the considered case).

– The relation between Rs and Rp, can be found by making PMPP = PMPP−e and
solving the resulting equation to find RP as shown in Equations (6) and (7)

PMPP = VMPP

{
Ipv − I0

[
exp

(
q

KT
VMPP+Rs IMPP

Nsa

)
− 1

]
− VMPP+Rs IMPP

RP

}
(6)

RP =
VMPP(VMPP + Rs IMPP){

VMPP Ipv − VMPP I0exp
(

q
KT

VMPP+Rs IMPP
Nsa

)
+ VMPP I0 − PMPP−e

} (7)

In the considered case, the resistances are found to be Rs = 0.18 Ω and Rp = 63 Ω for
a peak power tolerance of 0.1 W.

• Calculate the light-generated current at the considered conditions (Ipv) from the
nominal light-generated current (Ipv−n) using Equation (8)

Ipv = (Ipv−n + KIΔT)
G
G0

(8)

where, Ipv−n = RP+Rs
RP

ISC and (W/m2) is the irradiation on the device surface, and G0
is the STC irradiation.

The iterative method flowchart applied for finding Rs and Rp is shown in Figure 23.
Both models are validated using the ratings of KD135SX-UPU [68] module PV with
datasheet parameters shown in Table 5.

Inputs:

T0, G0 at STC
choose 1 ≤ a ≤ 1.5

I0 Equation (5)
Rs = 0

RP = RP−min

Tolerance
(Pmax > tol)

RP Equation (7)
Ipv Equation (8)

solve Equation (4) for 0 ≤ V ≤ VOC
calculate P for 0 ≤ V ≤ VOC

Find maximum P(PMPP)
Tolerance Pmx =‖ PMPP − PMPP−e ‖

Increment Rs

check toleranceEnd

yes

no

Figure 23. Flowchart of the iterative method applied for finding Rs and Rp [7].
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Table 5. KD135SX-UPU module specifications at standard test conditions [68].

Item Notation Value

STC irradiance G0 1000 W/m2

STC temperature T0 25 ◦C

Nominal Short Circuit Current ISC 8.37 A

Nominal Open Circuit Voltage VOC 22.1 V

Maximum Power Current IMPP 7.63 A

Maximum Power Voltage VMPP 17.7 V

Maximum Output Power PMPP−e 135 W

Temperature Coefficient of ISC KI 5.02 × 10−3 A/◦C

Temperature Coefficient of
VOC

KV −8 × 10−2 V/◦C

Series Cells Ns 36

The simulation comparison results of the two models are shown in Figure 24 that
represents the performance for different irradiance levels and Figure 25 which represents
the performance for different temperature values. Each figure include both I–V and P–V
curves to illustrate the variance in the performance of the two models. From the simulation
results of the conventional model and the proposed mathematical model it was found that
the performance of the proposed one deliver better accuracy as its maximum power value
is 135.056 W where the conventional model maximum power is 134.15 W for the same
datasheet ratings at STC condition. This verifies the proposed model’s effectiveness, yet
with simpler implementation and less computational time and efforts when compared to
the iterative model. The proposed model depends solely on a generic empirical equation
that requires only four basic electrical terms found in any PV datasheet without the need
for any parameter estimation.

(a) (b)

Figure 24. Proposed approach versus iterative method during varying irradiance conditions (a) I–V
curves, (b) P–V curves.
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(a) (b)

Figure 25. Proposed approach versus iterative method during varying temperature conditions (a) I–V
curves, (b) P–V curves.

The proposed approach-based I–V curves versus the iterative approach-based ones,
for KD135SX-UPU PV module, are compared to those of the P–V experimental datasheet
curves. As shown in Figures 26 and 27, these comparisons are achieved at all the irradiance
and temperature levels presented by the experimental datasheet curves which include
low irradiance cases. Results show that both approaches gave close I–V curves to those
experimental ones presented in datasheet. However, this is achieved with the proposed
simpler, faster, less parameter-dependent, and iteration-free empirical method.

(a) (b)

Figure 26. Experimental I–V curves of KD135SX-UPU, at T0 25 ◦C under varying irradiance, versus
those modeled by (a) iterative method, (b) proposed approach.
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(a) (b)

Figure 27. Experimental I–V curves of KD135SX-UPU, at G0 1000 W/m2 under varying temperature,
versus those modeled by (a) iterative method, (b) proposed approach.

For further validation, the latter is retested with a different PV panel with different
rating from another manufacturer, the KC200GT PV-module, with specifications presented
in Table 6. The experimental I–V curves applied are shown in Figures 28 and 29. Results
confirm that both techniques experience relatively close I–V curves which fit onto the
experimental curves of this module with the datasheet given below:

Table 6. KC200GT module specifications at standard test conditions [69].

Item Notation Value

STC irradiance G0 1000 W/m2

STC temperature T0 25 ◦C

Nominal Short Circuit Current ISC 8.21 A

Nominal Open Circuit Voltage VOC 32.9 V

Maximum Power Current IMPP 7.61 A

Maximum Power Voltage VMPP 26.3 V

Maximum Output Power PMPP−e 200.143 W

Temperature Coefficient of ISC KI 0.0032 A/◦C

Temperature Coefficient of
VOC

KV −0.123 V/◦C

Series Cells Ns 54
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(a) (b)

Figure 28. Experimental I–V curves of KC200GT, at T0 25 ◦C under varying irradiance, versus those
modeled by (a) iterative method, (b) proposed approach.

(a) (b)

Figure 29. Experimental I–V curves of KC200GT, at G0 1000 W/m2 under varying temperature,
versus those modeled by (a) iterative method, (b) proposed approach.

8. Privileges and Limitations Discussion

The proposed empirical method is based mainly on the mathematical representation
of experimental I–V curves extracted from a PV module datasheet. The model formulates
the STC case in mathematical function depending on only four electrical components of the
PV-panel (VOC, ISC, VMPP, IMPP). By investigating the STC case I–V curve, it was found
that the point of maximum power is a critical point that divides the curve into two parts.
The one on the left, starting from the short circuit point and ending at the maximum power
point, is a straight line with a negative slope. The equation of this line is formulated based
on these two points of the start and end, so it is represented in terms of the electrical
terms mentioned earlier. The other curve to the right of the maximum power point is
behaving similarly to the inverted decaying exponential function. The two points used to
formulate the power of this exponential function are the point of maximum power and the
open circuit point. The PV-model proposed in the paper is based on combining these two
functions together, that is, the basic equation which is used to generate the STC case curve,
as shown in Figure 30. To represent the effect of changing in irradiance or temperature,
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the authors used other curves and investigated the impact of these changes on the curve
relative to the STC case values.
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Figure 30. Proposed empirical mathematical model curve mathematical function representation for
STC case.

It is worth nothing that this curve extraction is a one-time process, followed by the
derivation of empirical equations that mathematically represent this curve for different
irradiance and temperature conditions. These equations are valid for any other PV-model
and can be applied for all PV ratings from different manufacturers i.e., any PV-module
I–V characteristics and curves can be obtained by direct substitution of the new relative
(VOC, ISC, VMPP, and IMPP) in the derived empirical equations. Unlike the proposed
approach, the physical models depend more on electrical terms, and not all of them are
available on datasheets. Thus, they require parameter extraction techniques which depend
on iterative and estimation approaches, which in turn adds to system complexity and
computational time.

The Table 7 summarizes the main differences between single-diode equivalent circuit-
based iterative physical approach presented in Section 7 and the proposed empirical
approach regarding approach realization, error cause, implementation complexity, and
computational time.

The proposed model relies on data extracted from PV panel manufacturer datasheets
available on the market. Commonly, those curves listed in various vendors are experimen-
tally obtained to achieve proper standardized certification as IEC, IEEE, NEC, or UL. In
addition, data extraction is only performed once, as stated and performed by the authors.
Any further investigation of other PV panels from any other vendors do not require curve
extraction, as explained. Only four parameters are needed to substitute in the authors’ pre-
elaborated proposed formula. Hence, fear form any further unavailability of experimental
datasheets is not crucial.

The proposed technique in this paper is developed by using the captured images from
the datasheet only once, and then, for generating any graphs at various rating power, the
developed proposed model is used directly. There is no need to capture the images from
the datasheet every time for reproduction, as this model features the graphs in terms of the
electric parameters of the PV-panel (VOC, ISC, VMPP, and IMPP). The developing process
of the model used some curves from the main datasheet, then the rest of the curves were
used for testing the model. After that, many datasheets at different rating power were used
to validate the model. The authors generated the curves using the proposed model and
compared them to the datasheet curves so these curves were not used to develop a newer
model. The proposed model is formulated for generating I–V curves for three cases: (i)
various irradiance level at fixed STC temperature (Equation (1)), (ii) various temperature
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levels at fixed irradiance level (Equation (2)), and (iii) certain value or irradiance and
temperature differ from the STC case (Equation (3)).

Table 7. Comparison between single-diode equivalent circuit-based iterative physical approach and
the proposed empirical approach.

Point of Comparison Iterative Approach Proposed Model

Parameters required Parameters VOC, ISC, VMPP, IMPP,
Kv, KI , Ns, a, Io, Rs, Rp , Ipv

VOC, ISC, VMPP, IMPP

Number 12 4

Availability in datasheet

7 are available: VOC, ISC,
VMPP, IMPP, Kv, KI , Ns and 5
are unavailable: a, Io, Rs, Rp ,

Ipv

All Available

Requires parameter extraction technique? Yes (to extract a, Io, Rs, Rp ,
Ipv) NO

Iteration Required Yes (to calculate Rs, Rp , Ipv ) NO

Error Present YES YES

Why?

Random estimation of ideality
factor a

PMPP tolerance error in the
iteration procedure

Captured figure resolution
error

Manual data selection error

Implementation Complexity More complicated Simpler

Why?

Every time a new PV is
modeled, iterations should be

performed to compute the
corresponding Rs, Rp , Ipv

The proposed empirical
model is valid for any PV

model, just the new VOC, ISC,
VMPP, IMPP are substituted in

the proposed equation. So,
there is no need to capture any

figure from datasheet.

Processing Time Duration Longer Shorter

Why? Time required for iterations to
compute Rs, Rp , Ipv

Direct substitution in the
proposed empirical equation

As the developed model is based on digitizing the characteristic curves captured from
the datasheet there are some sources of error that affect the data accuracy. The first source of
error is the resolution of the captured image from the datasheet. To overcome this source of
error, aiming to enhance the accuracy of the extracted data from the datasheet, the authors
used image editing software to increase the DPI of the figures.

The second source of error is the manual selection of the graph points in order to
extract its numerical value. To mitigate this source of error, the authors used many graph
digitizing software packages and compared their output to select the software that delivers
the most accurate data extraction. The manual process itself is, unfortunately, unavoidable.

9. Conclusions

In this paper, a novel generic empirical mathematical formula is proposed to model
any PV device at varying conditions, based on function representation of captured PV
experimental figures. This approach shows simpler implementation and less computational
time and efforts when compared to existing PV models that require parameter estimation
or power forecast. However, this apporach also offers competitive accuracy. PV curves
resulting from the proposed formula show close resemblance to experimental curves
of practical PV devices at different environmental conditions. The proposed formula’s
effectiveness is verified using commercial, market-available PV panels from different
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manufacturers at various power ratings to highlight the claimed robust performance and
accurate PV device modeling features. The proposed PV model can be implemented on a
graphical user interface GUI toolbox, presented as a user-friendly block for energy system
designers and circuit simulator developers. This facilitates the simulation of PV devices
their performance during dynamic shading and address the MPPT problem to assess.
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Abstract: The present work aims to primarily provide a general representation of the solution of
the simplified elastostatics version of Mindlin’s Form II first-strain gradient elastic theory, which
converges to the solution of the corresponding classical elastic boundary value problem as the
intrinsic gradient parameters become zero. Through functional theory considerations, a solution
representation of the one-intrinsic-parameter strain gradient elastostatic equation that comprises the
classical elastic solution of the corresponding boundary value problem is rigorously provided for
the first time. Next, that solution representation is employed to give an answer to contradictions
arising by two well-known first-strain gradient elastic models proposed in the literature to describe
the strain gradient elastostatic bending behavior of Bernoulli–Euler beams.

Keywords: strain gradient elastic theory; general solution representation; Bernoulli–Euler beam;
material with microstructure

MSC: 35C05

1. Introduction

It is well known that a structure consisting of a linear, isotropic, classical elastic
material, subjected to external time-invariant boundary conditions, behaves according to
the Navier–Cauchy equilibrium equation [1–3], which in terms of displacements uclassical

and without the presence of body forces reads:

μ∇2uclassical + (λ + μ)∇∇ · uclassical = 0, (1)

where ∇ is the gradient operator, while λ and μ indicate the Lamé constants.
Despite the discrete nature of real materials, the continuum theory of classical

elasticity—described by (1) for the elastostatics case—is deduced by considering that the
dimensions of the material microstructure are much smaller than a material representative
volume element (RVE), which in turn is much smaller than any dimension of the loaded
structure. Additionally, the material properties and the generated elastic fields in the RVE
are projected, by averaging, around a point x lying at the center of the RVE. That projection
imposes the local nature of the classical theory of elasticity and requires that displacements,
stresses, and strains vary constantly or linearly throughout the material RVE [4,5]. Obvi-
ously, the situation becomes problematic when the material inhomogeneity is comparable
with the size of the structure and the averaging performed in the RVE requires the consid-
eration of strain gradients in the potential energy density and the introduction of internal
length scale parameters, which are able to capture size effect phenomena.

At the beginning of 20th century, the Cosserat brothers [6] proposed the idea of an
enhanced elastic theory in which, except strains and stresses, the gradient of rotations
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and the dual in energy, couple stresses should be considered. Their idea reached maturity
almost fifty years later with the general works of Toupin [7], Mindlin and Tiersten [8], Green
and Rivlin [9] and Koiter [10]. Meanwhile Mindlin [11], while investigating the influence
of couple stresses to stress concentrations mentions that “Also, it would seem to be desirable to
explore the consequences of taking into account the remaining components of the strain gradient
and, perhaps, second and higher gradients of the strain”. Indeed, one year later, Mindlin [12]
published his general dynamic theory for elastic materials with microstructure, where
the microstructure is considered as an additional micro-continuum embedded at every
point of the macro-continuum, thus justifying, the presence of higher order strain gradients
in the expressions of potential energy density. Ignoring inertia terms, the couple stress
theory of Toupin [7], Mindlin’s elastic theory with microstructure [12] and later the virtual
power theory of Germain [13] lead, for a material with microstructural effects, to the same
equilibrium equation and boundary conditions. However, the elastostatic Form II version
of Mindlin’s theory has the very attractive characteristic of retaining the symmetry of the
considered total stress tensor as in the classical elasticity case, and concludes in a simple
equilibrium equation of the following form:

(λ + 2μ)(1 − l2
1∇2)∇∇ · ugradient − μ(1 − l2

2∇2)∇×∇× ugradient = 0, (2)

where l2
1, l2

2 are internal length scale parameters that can facilitate microstructural effects
for dilatational and shear deformations, respectively.

Considering uniform microstructural effects for all types of deformation, i.e., l2
1 = l2

2 = g,
Equation (2) can be further simplified obtaining the form:(

1 − g2∇2
)[

μ∇2ugradient + (λ + μ)∇∇ · ugradient
]
= 0 (3)

Equation (3) and the corresponding boundary conditions of Mindlin’s Form II theory
consist of an attractive enhanced elastic theory with a microstructure, known as strain
gradient elasticity (SGE) or dipolar gradient elasticity (DGE), since it employs only one
internal length scale parameter in addition to the two classical Lamé constants, and the
most important strains and stresses, appearing in its constitutive equations, are symmetric
as in the classical elastic case. During the last thirty years, many authors exploited the
simplicity of SGE to solve analytically and/or numerically elastostatic problems with
microstructural effects in many fields of linear elastic continuum mechanics, such as
fracture and dislocations mechanics [14–20] and structural and material response [21–30],
while interesting remarks on SGE can be found in [5,31–34].

Mindlin [11] first proposed a solution representation of Equation (2) based on
Papkovich–Neuber type vector and scalar potentials B, B0 [3,35], which, in the case of
Equation (3), is simplified to [30]:

ugradient = B − λ+μ
2(λ+2μ)

[
r ·

(
1 − g2∇2)B + B0

](
1 − g2∇2)∇2B = 0(
1 − g2∇2)∇2B0 = 0.

(4)

Instead of (4), Charalambopoulos and Polyzos [26] utilized the following representa-
tion of the solution of (3):

ugradient = ue + ug

μ∇2ue + (λ + μ)∇∇ · ue = 0(
1 − g2∇2)ug = 0.

(5)

without providing any correlation of (5) with the solution representation (4). The proof of
the decomposition (5) is provided in this paper through the proof of theorem 1 in Section 2
and via Papkovich–Neuber type potentials in Appendix A. It should be mentioned at
this point that the Papkovich–Neuber type gradient elastic solution (4) agrees with the
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corresponding one provided by Solyaev et al. [36,37], while the solution decomposition
(5) is in agreement with the decomposition proposed by Lazar [38] if one considers that
for a classical elastic solution ue satisfying Equation (1), the vector function

(
1 − g2∇2)ue

remains a classical elastic solution. In [34], Gourgiotis et al. solve a sharp notch problem
in microstructured solids utilizing a Knein–Williams technique, and mentioned that their
asymptotic solution shows significant departure from those of classical elasticity. This
statement is basically the motivation for the present work, which, among others, proposes
a solution representation of (3) by comprising the solution of the corresponding classical
elastic boundary value problem, which is absent in both representations (4) and (5).

The first attempt at incorporating the classical elastic solution in the solution of (3) is
that of Ru and Aifantis [39]. More specifically, considering the elastic displacement field
uclassical that satisfies (1) and the corresponding classical elastic boundary conditions in a
domain Ω confined by a surface ∂Ω, they proposed as strain gradient elastic solution of (3)
the vector ugradient that satisfies the non-homogeneous partial differential equation:

(1 − g2∇2)ugradient = uclassical , (6)

and the extra boundary condition

∂2

∂n2 ugradient = 0, (7)

where ∂/∂n denotes differentiation with respect to the unit normal vector of ∂Ω.
Comparing (3) with (6), the obvious advantage of this representation is the reduction

in the order of the partial differential equation of the problem by two. However, as it
is mentioned in Charalambopoulos and Polyzos [26], the representation (6) and (7) is
questionable for the following reasons: (i) the solution of the partial differential equation
of second order—as Equation (6)—satisfies a boundary condition of second order as the
condition (7) is in contradiction with the mathematically accepted condition that the
maximal degree of boundary conditions never exceeds the crucial number n − 1, where n
stands for the degree of the differential equation. (ii) The boundary condition (7) is arbitrary
and not the outcome of a variational process. (iii) The classical solution uclassical satisfies
the equilibrium Equation (3), but not Equation (6).

Charalambopoulos et al. [30] utilized a representation of the solution that satisfies
Equation (3) and the corresponding Form II boundary conditions and comprises the cor-
responding classical elastic solution, without, however, providing any systematic proof
of that representation. This is, among others, the goal of the present work. The possible
application of the presented here methodology to Equation (1) and to equations describing
the behavior of linear pantographic sheets [40] or obeying to the generalized Hook’s law
for isotropic second gradient materials [41] will be the subject of future work. The structure
of the present work is the following: The next section illustrates the Form II SGE theory
of Mindlin with only one internal length scale parameter. Section 3 is entirely devoted to
the mathematical establishment of a solution representation of (3), which encompasses the
corresponding classical solution and its convergence behavior as the gradient parameter
tends to zero. The same solution representation is exploited in Section 4 to show that
the bending stiffness of a Form II SGE Bernoulli–Euler beam depends on the material
rigidity EI and the internal length scale parameter g and not on EI, g plus the area of the
cross-section of the beam.

2. Strain Gradient Elastostatics with One Internal Length Scale Parameter

The present section reports a boundary value problem in terms of the simplest possible
strain gradient elastostatic theory with one intrinsic parameter. Mindlin [42] in the second
version of his theory considered that the first gradient elastic potential energy density for
an elastic body with microstructure is a quadratic form of the strains εij and the gradient
of strains κijk. For isotropic materials, this theory provides a potential energy density
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containing the two Lamé material constants and five constants that normalize the terms of
strain gradients, i.e.,

U = 1
2 λεiiε jj + μεijεij + α̂1κiikκkjj + α̂2κijjκikk + α̂3κiikκjjk

+α̂4κijkκijk + α̂5κijkκkji

εij =
1
2
(
∂iuj + ∂jui

)
= ε ji

κijk = ∂iε jk =
1
2
(
∂i∂juk + ∂i∂kuj

)
= κikj,

(8)

where ∂i denotes spatial differentiation, ui are the displacement components,λ, μ are the
well-known Lamé constants having units N/m2 and α̂1 ÷ α̂5 are five constants having units
of force, all explicitly provided in [12].

For the case of α̂1 = α̂3 = α̂5 = 0 and α̂2 = λg2, α̂4 = μg2, the potential energy density
U obtains the form

U = 1
2 λεiiε jj + μεijεij +

1
2 λg2κijjκikk

+ μg2κijkκijk,
(9)

where g is the only internal length scale parameter that correlates the microstructure with
macrostructure, having units of length (m).

Strains and gradient of strains are dual in energy with the Cauchy-like stresses and
double stresses, respectively, defined as:

τij =
∂W
∂εij

= 2μεij + λεkkδij, (10)

and
μijk =

∂W
∂κijk

= g2∂iτjk (11)

If the Young modulus E and Poisson ratio v are used instead of the Lame constants λ,
μ, then the replacements λ = Ev

(1+v)(1−2v) , μ = E
2(1+v) should be made.

Considering a material with a microstructure of volume V and external boundary
S, the variation of the total potential energy (9) provides, after some algebra [12,43,44],
the following relation:∫

V
δUdV = −

∫
V

[
∂j

(
τjk − ∂iμijk

)]
δukdV +

∫
S

RkDδukdS

+
∫

S1∪S2

pkδukdS + 〈Ekδuk〉,
(12)

where the vectors pk, Rk represent the traction and double traction vectors, respectively,
defined on the boundary S and written as

pk = nj

(
τjk − ∂iμijk

)
− Dj

(
niμijk

)
+ (Dmnm)ninjμijk, (13)

and
Rk = ninjμijk, (14)

where Dj and D represent the tangential and normal gradient operators on S, respectively,
and have the form

Dj =
(
δjm − njnm

)
∂m

D = nm∂m.
. (15)

The vector Ek in Equation (12) concerns non-smooth boundaries with at least one
corner c in two dimensions or at least one closed edge line � in three dimensions, admitting
the form:
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〈Ekδuk〉 =

⎧⎨⎩
‖nimjμijk‖corner cδuk f or 2D∮
�

‖nimjμijk‖edge �δukd� f or 3D , (16)

where ‖•‖ denotes the difference of • at both sides of the corner c or the edge �, while mj
stands for the tangential vector in both sides of a corner or edge.

Equilibrating (12) with the variation of the work performed by external body force Fk,
boundary tractions pk, double traction Rk and jump traction Ek, we arrive at the following
equilibrium equation:

∂j(τjk − ∂iμijk) + Fk = 0, (17)

accompanied by the classical essential and natural boundary conditions where the dis-
placement vector uk and/or the traction vector pk must be defined on the global boundary
S ≡ S1 ∪ S2, i.e.,

uk(x) = uk(x), x ∈ S1
pk(x) = pk(x), x ∈ S2,

(18)

and the non-classical essential and natural boundary conditions where the normal displace-
ment vector qk = Duk, the double traction vector Rk or jump traction Ek are prescribed on
S ≡ S3 ∪ S4, i.e.,

qk(x) = qk(x), x ∈ S3
Rk(x) = Rk(x), x ∈ S4
Ek(x) = Ek(x), x ∈ corner or edge.

(19)

In terms of the displacement vector u(x) and free of body forces, Equation (17) obtains
the form (

1 − g2∇2
)[

μ∇2u(x) + (λ + μ)∇∇ · u(x)
]
= 0. (20)

Theorem 1. The solution of Equation (20) can be written as

u ≡ ugradient = uclassical + ug, (21)

with uclassical ∈ ker
(
μ∇2 + (λ + μ)∇∇·

)
and ug ∈ ker

(
1 − g2∇2).

Proof. We denote as Δ∗ the classical elastic elliptic differential operator μΔ + (λ + μ)∇(∇·)
Given that

(
1 − g2Δ

)
Δ∗ugradient = Δ∗(1 − g2Δ

)
ugradient = 0, we infer that

Δ∗ugradient = wg ∈ ker
(

1 − g2Δ
)

, (22)

and (
1 − g2Δ

)
ugradient = we ∈ ker(Δ∗). (23)

Consequently,(
1 − g2Δ

)
ugradient = we ⇒ μΔugradient =

μ

g2 ugradient − μ

g2 we. (24)

Equations (22) and (24) imply that

μ

g2 ugradient − μ

g2 we + (λ + μ)∇
(
∇ · ugradient

)
= wg ⇒

ugradient = − λ+μ
μ g2∇

(
∇ · ugradient

)
+ we + g2

μ wg.
(25)
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We consider the Helmholtz decomposition of the field wg : wg = ∇H +∇× K. Then,
Equation (22) leads to

∇ ·
[
μΔugradient + (λ + μ)∇

(
∇ · ugradient

)]
= ∇ · (∇H +∇× K) ⇒

Δ
[
(λ + 2μ)∇ · ugradient − H

]
= 0 ⇒

(λ + 2μ)∇ · ugradient = H + B0,

(26)

where B0, is a harmonic function. Then, Equations (25) and (26) give

ugradient = − λ + μ

μ(λ + 2μ)
g2∇(H + B0) + we +

g2

μ
wg. (27)

Additionally, it holds that ΔH = ∇ · wg ∈ ker
(
1 − g2Δ

)
and therefore

Δ
[(

1 − g2Δ
)

H
]
= 0 ⇒

(
1 − g2Δ

)
H = B1 , where B1 is another harmonic function. One

partial solution of this equation is clearly exactly the function B1 and so the general solution
is H = ug + B1, with ug ∈ ker

(
1 − g2Δ

)
. Then, (27) is rewritten as

ugradient = − λ+μ
μ(λ+2μ)

g2∇(B0 + B1) + we

+ g2

μ wg − λ+μ
μ(λ+2μ)

g2∇ug.
(28)

The first two terms of the decomposition (28) form the classical part ue ∈ kerΔ∗

while the remaining terms form the component ug obeying to the homogeneous modified
Helmholtz equation. �

3. On Representing Strain Gradient Elastic Solutions via the Solution of the
Corresponding Classical Elastic Boundary Value Problem

All the representations of the solution of a strain gradient elastostatic problem appear-
ing in the literature, do not include as a constituent the respective classical elastic solution,
while the convergence behavior of these solutions when the gradient parameters fade away
is not studied. As in [45,46], in the following, we present a general result considering all
the above concerns.

Consider a bounded open region Ω ⊂ Rd, d = 2, 3, with its boundary ∂Ω being a
Lipschitz surface. Assuming that the body forces are absent, we consider the solution of
the boundary value problem consisting of the fourth order partial differential Equation (20)
and a set of classical and non-classical boundary conditions as those illustrated in Section 2.
More precisely, we partition the surface ∂Ω twice, first in two subdomains ∂ΩD and
∂ΩN (with meas(∂ΩD) > 0), where classical conditions are imposed, and secondly, in the
subdomains ∂ΩQ and ∂ΩR, whose common boundary Γ is of dimension (d − 2) and
represents the corners c or the edges l of the surface ∂Ω. Then, the general set of mixed-type
classical conditions can be formulated as

u(x) = f(x), x ∈ ∂ΩD (a)
P(x) = g(x), x ∈ ∂ΩN (b),

(29)

along with the set of non-classical conditions

∂u(x)
∂n = h(x; g), x ∈ ∂ΩQ (a)

R(x) = r(x; g), x ∈ ∂ΩR (b)
E(x) = s(x; g), x ∈ Γ (c),

(30)

where P = Pix̂i, R = Rix̂i and E = Eix̂i.
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The solution u(x) and the fields P(x), R(x), E(x) depend of course on the parameter g,
but this is omitted for simplicity and will be notified only when it is necessary.

It is assumed that the given functions f, g, h, r and s share all the required regularity for
the well-posedness of the traces of the solution of Equation (20)—and its derivatives—on ∂Ω.
To clarify rigorously the last remark, we could additionally invoke the functional theoretic
framework of variational problems settled in Sobolev spaces. This approach is described
extensively in Wloka [47] for the general case of elliptic boundary value problems of a
higher order and is very profitable since it provides results with crucial influence in the
solvability of the problem under consideration with existence, uniqueness, and stability.
It is out of the scope of the present work to give an extensive investigation via the afore-
mentioned alternative framework, but it would be very helpful to give some brief concepts,
facilitating the comprehension of the inner structure of the boundary value problems under
investigation. Then, we recall the Sobolev spaces Hs(Ω) and Hs(∂Ω), which are complete
Hilbert spaces built by functions (or distributions) with specific integration behavior over
Ω and ∂Ω. Among the more recognizable Sobolev spaces, we encounter the space of square
integrable measurable functions H0(Ω) = L2(Ω) and its subspace H1(Ω), whose elements
possess distributional derivatives with the same square integrable behavior. Every Hilbert
space Hm(Ω), with m ∈ N, has a usual inner product and an induced norm consisting of
the L2 norms of the derivatives up to degree m. Therefore, the inclusion Hm1(Ω) ⊂ Hm2(Ω)
when m1 > m2 is an obvious relation. For real and positive order s, the norm is defined in
a more complicated manner, but generalizes naturally what happens for an integer order.
The linear spaces inclusion above still holds. When s ≥ 0, the elements of the space Hs(Ω)
belong to L2(Ω), but this is not the case when s < 0 and constitute then pure distributions
without functional representative.

Although not necessarily classical functions, the elements of Hs(Ω) have trace on the
boundary ∂Ω, which are generalized functions belonging to Hs− 1

2 (∂Ω). The distributional
surface normal derivative (of order k) of an element in Hs(Ω) belongs to Hs−k− 1

2 (∂Ω) in
the case that the smoothness of the surface allows the induced differentiability. The space
Hs

0(Ω) is a subspace of Hs(Ω), with elements that, along with all their normal derivatives
of order less than s, have zero traces on ∂Ω.

Notice at this point that, for the case of the closed surface ∂Ω, the space H−s(∂Ω) is
the dual space of Hs(∂Ω) and so surface terms of the form 〈h, f 〉|∂Ω naturally arise, where
h ∈ H−s(∂Ω) and f ∈ Hs(∂Ω). This term expresses the action of h on f and it is very
reminiscent of the virtual work of a force over a displacement. Only when s = 0, we have
the reduction in the dual pairing 〈h, f 〉|∂Ω to the usual inner product

∫
∂Ω h(x) f (x)dSx.

After this brief discussion, we notice that in the framework of a boundary value prob-
lem whose differential equation is of order 2m = 4, the boundary Equations (29) and (30)
involve m(= 2) boundary operators (of possibly mixed type) (when Γ = ∅). These op-
erators are characterized by their own orders, which obey to the rule: 0 ≤ mj ≤ 2m − 1.
If, for example, we had exactly the boundary conditions (29) and (30) valid on the whole
surface ∂Ω (with Γ = ∅), the involved boundary operators Bj, j = 1, 2 would be B1 = I
(with order m1 = 0) and B2 = ∂/∂n (with order m2 = 1). This example corresponds to the
so called Dirichlet boundary value problem of fourth order. This settlement lies totally in
the general framework of the abstract theory of elliptic boundary value problems: The main
outcome is the existence and uniqueness of the solution of the problem (20), (29) and (30)
with the following regularity general result [47]

‖u‖HS(Ω) ≤ Cg

(
‖f‖

Hs−m1− 1
2 (∂ΩD)

+ ‖g‖
Hs−m2− 1

2 (∂ΩN)
+ ‖h‖

Hs−m3− 1
2 (∂ΩQ)

+ ‖r‖
Hs−m4− 1

2 (∂ΩR)
+ ‖s‖

H(s−m4− 1
2 )−

1
2 (Γ)

)
,

275



Mathematics 2022, 10, 1152

and so, assigning to boundary operators their exact orders, we obtain

‖u‖HS(Ω) ≤ Cg

(
‖f‖

Hs− 1
2 (∂ΩD)

+ ‖g‖
Hs− 7

2 (∂ΩN)
+ ‖h‖

Hs− 3
2 (∂ΩQ)

+‖r‖
Hs− 5

2 (∂ΩR)
+ ‖s‖Hs−3(Γ)

)
.

(31)

We would like to note the double consecutive dimension reduction Ω → ∂Ω → Γ ,
which takes place in the treatment of the fifth term of the r.h.s of the last equation.
The regularity of the solutions depends on the regularity of the data in a specific man-
ner. It is not explicitly apparent, but when the parameter s increases, the validity of
Equation (31) passes through further assumptions for additional smoothness of the bound-
ary ∂Ω. The most encountered evocation of the representation (31) is with the selection
s = 2m = 4 (the order of the differential equation). Therefore, for the solution u to have
square integrable (in Ω) derivatives up to fourth order, all the data must belong to “smooth”
Sobolev spaces of positive order. Then, the differential equation is satisfied in L2-sense.
However, this is accompanied with the hypothesis of a smooth C1,1 boundary. To permit a
boundary with corners or edges and to obtain the broader class of admissible solutions,
it is preferable to work with m = 2. Then,

‖u‖H2(Ω) ≤ Cg

(
‖f‖

H
3
2 (∂ΩD)

+ ‖g‖
H− 3

2 (∂ΩN)

+ ‖h‖
H

1
2 (∂ΩQ)

+ ‖r‖
H− 1

2 (∂ΩR)
+ ‖s‖H−1

(Γ)

)
.

(32)

In this case, the data f, h loose regularity, but still belong to the realm of square
integrable functions. However, the data g, r, and s pertaining to stresses and jumps of
double stresses over corners (edges) might become not square integrable distributions,
ready to act—via the mentioned above dual pairings—on their reciprocal fields. In this
point, we would like to say that our analysis has been facilitated from the fact that we are
in absence of body forces. The differential equation is not any more valid classically, but in
the distributional sense. It is noticeable that due to the special coercivity behavior of the
bilinear form corresponding to the gradient elasticity operator, the generic constant Cg
appearing in relation (32) cannot present worse behavior than the asymptotic convergence
O

(
g−2) for g → 0 . In addition, (32) implies a fortiori the boundedness

‖u‖H1(Ω) ≤ C
(
‖f‖

H
3
2 (∂ΩD)

+ ‖g‖
H− 3

2 (∂ΩN)

+ ‖h‖
H

1
2 (∂ΩQ)

+ ‖r‖
H− 1

2 (∂ΩR)
+ ‖s‖H−1(Γ)

)
.

(33)

It is noticeable here that the constant C is independent of g since suppressing down-
wards the energy bilinear form and keeping only norms of first derivatives involve exclu-
sively the Lamé constants of classical elasticity.

After the brief introduction of the functional theoretic setting, we are in position to
present the two main accomplishments of the current work. First, we are going to present
the construction of a very useful decomposition of the unique solution of the problem under
consideration. In the sequel, we will state the necessary assumptions on the data so that
this representation obtains a stable (with respect to g) behavior, incorporating appropriately
the classical solution.

Consider the auxiliary second order classical boundary value problem (titled Problem I),
satisfied by the solution uclassical(x):

Δ∗uclassical(x) = 0, x ∈ Ω

Δ∗ ≡ μ∇2 + (λ + μ)∇∇,
(34)
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uclassical(x) = f(x), x ∈ ∂ΩD, (35)

tclassical(x) = g(x), x ∈ ∂ΩN , (36)

where tclassical = τijx̂ix̂j · n̂, is the classical surface traction field.
The above defined problem involving Equations (34)–(36) used the classical data from

the gradient problem and “ignores” the non-classical ones. We emphasize that in Problem I,
the gradient boundary term P(x) offers its place to its classical counterpart tclassical(x).
Applying the classical well-known framework of the preceding analysis concerning this
time the traditional second order elliptic boundary value problems, we deduce easily that
the unique classical solution satisfies the stability relation

‖uclassical‖H1(Ω) ≤ C
(
‖f‖

H
1
2 (∂ΩD)

+ ‖g‖
H− 1

2 (∂ΩN)

)
.

It is worthwhile to mention here that the last equation defines exactly the needed
regularity of the data f, g for the stated stability to be guaranteed. However, the gradient
problem has already assigned specific regularity assumptions on the data. Compromising
the two groups of requirements, we deduce that f ∈ H

3
2 (∂ΩD) ⊂ H

1
2 (∂ΩD) as well as

g ∈ H− 1
2 (∂ΩN) ⊂ H− 3

2 (∂ΩN).
We are in position to state the main representation theorem of this work. We set

first, as induced by the discussion above, the broader possible space in which the data are
permitted to belong:

(f, g, h, r, s) ∈ B = H
3
2 (∂ΩD)× H− 1

2 (∂ΩN)× H
1
2
(
∂ΩQ

)
× H− 1

2 (∂ΩR)× H−1(Γ).

The following theorem holds:

Theorem 2. Let the boundary value problem consist of Equations (20), (29) and (30) where the data
(f, g, h, r, s) ∈ B. This problem is a well-posed fourth order elliptic boundary value problem with a
unique solution. This solution can be represented as follows

u(x; g) = uclassical(x) + w(x; g), x ∈ Ω
w(x; g) = uN(x; g) + g2uG(x; g),

(37)

where uclassicalsatisfies Problem I, uNsatisfies the classical elastostatic equation and uGobeys to the
modified Helmholtz equation:

μ∇2uN(x; g) + (λ + μ)∇∇ · uN(x; g) = 0, x ∈ Ω, (38)

(1 − g2∇2)ug(x; g) = 0, x ∈ Ω. (39)

Proof. As explained above, the problem (20), (29) and (30) disposes a unique solution
u(x, g), which is stable with respect to the data as Equations (32) and (33) guarantee. We
consider the decomposition

u(x; g) = uclassical(x) + w(x; g).

The function w(x; g) satisfies Equation (20) given that both uclassical(x) and the field
u(x; g) obey to this equation too. Based on the Papkovich-type representation [26,30],
the field w(x; g) can be written as

w(x; g) = B − λ+μ
2(λ+2μ)

{
(1 − g2∇2)B+[

(1 − g2∇2)∇B
]
· r + ∇B0},

(40)
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where (
1 − g2∇2

)
∇2B(x; g) = 0, (41)(

1 − g2∇2
)
∇2B0(x; g) = 0. (42)

Working with Equation (41), we have that necessarily (1 − g2∇2)B(x; g) is a harmonic
function BL(x; g). Then,

B(x; g) = (1 − g2∇2)B(x; g) + g2∇2B(x; g) = BL(x; g) + g2BG(x; g),

where BG(x; g) satisfies the modified Helmholtz equation (1 − g2∇2)BG(x; g) = 0.
A similar treatment applies to Equation (42) and the result is that the fields of

Equations (41) and (42) have the decomposed form

B(x; g) = BL(x; g) + g2BG(x; g)

B0(x; g) = BL
0 (x; g) + g2BG

0 (x; g),
(43)

∇2BL(x; g) = 0,
(
1 − g2∇2)BG(x; g) = 0

∇2BL
0 (x; g) = 0,

(
1 − g2∇2)BG

0 (x; g) = 0.
(44)

Inserting these representations in Equation (40) leads to the decomposition

w(x; g) = uN(x; g) + g2uG(x; g), (45)

where
uN =

λ + 3μ

2(λ + 2μ)
BL − λ + μ

2(λ + 2μ)
∇BL · r − λ + μ

2(λ + 2μ)
∇BL

0 , (46)

and
uG = BG − λ + μ

2(λ + 2μ)
∇BG

0 . (47)

It is evident that uG ∈ ker(1 − g2∇2). In addition, it comes out easily that uN belongs
to the kernel of the operator ∇2. Consequently, we deduce that

0 = (1 − g2∇2)
[
μ∇2w + (λ + μ)∇∇ · w

]
= μ∇2uN + (λ + μ)∇∇ · uN + (1 − g2∇2)

[
μ∇2uG + (λ + μ)∇∇ · uG]

= μ∇2uN + (λ + μ)∇∇ · uN ,

from where we infer that uN ∈ ker
[
μ∇2 + (λ + μ)∇∇·

]
. �

As a conclusion, the decomposition (37) with the differential properties (38) and (39)
was derived from the point of view of the underlying differential equations and al-
ways can be applied to the unique solution of the fourth order boundary value prob-
lem under discussion. The implication of boundary conditions is of course the next step.
The representation (37) has the advantage that it disposes additional degrees of freedom
since the involved “free” functions satisfy the second order differential equations in which
the gradient elasticity law decomposes. In addition, the representation (37) involves the
classical solution of the problem in the absence of the microstructure g = 0 as a cornerstone
constituent. It is very interesting to examine whether taking the limit of the expression (37)
as g → 0 leads to the classical solution. What matters of course is primary the construction
of the solution of the boundary value problem independently of its convergence behavior.
Nevertheless, it is essential to construct sufficient conditions on the data assuring this
desirable convergence property.

The next theorem verifies that under specific assumptions on the data, convergence
is established. The first requirement is in accordance with the underlying constitutive
equations concerning double stresses. Indeed, it is natural that the magnitude of the
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double stresses and the relevant jump fields imposed on the structure obey to specific order
analysis with respect to the microstructure parameter. More precisely, the boundary tensors
R(x) and E(x) are selected as follows:

r(x; s) = g2r̃(x), x ∈ ∂ΩR, (48)

s(x; g) = g2s̃(x), x ∈ Γ, (49)

and as stated, this choice has a physical origin. The additional requirements are related to
the necessary regularity of the rest of the data. It is necessary, in the convergence setting
for the boundary data g, to be a genuine square integrable function, in fact an element of
H

1
2 (∂ΩN) and that ‖h(·, g)‖

H
1
2 (∂ΩQ)

remains bounded as g varies. In practice, the term

h(x, g) is usually independent of g.
As far as the stated above restriction of g is concerned, the concept stems from the

treatment of the classical solution. As we will see, under this assumption, the function
∂

∂n uclassical(x) becomes a square integrable function with a crucial role in the
convergence analysis.

The following theorem holds.

Theorem 3. Let the boundary value problem consist of Equations (20), (29) and (30). The data
(f, g, h, r, s) are elements of B with the restriction that r, s obey to Equations (48) and (49),
g ∈ H

1
2 (∂ΩN) ⊂ H− 1

2 (∂ΩN) and ‖h(·, g)‖
H

1
2 (∂ΩQ)

is a bounded function of g. Two mutually

exclusive alternatives arise:

(A) h(x; g) = h(x) = ∂
∂n uclassical(x), x ∈ ∂ΩQ a.e.

(B) h(x; g)− ∂
∂n uclassical(x) �= 0, x ∈ ∂ΩQ

In case (B), we impose further regularity on the data by demanding f ∈ H
5
2 (∂ΩD) and

g ∈ H
3
2 (∂ΩN).

Let u(x; g) be the unique solution of the gradient elasticity boundary value problem constructed
in Theorem 2. Then, the following asymptotic analysis holds:

uG = BG − λ + μ

2(λ + 2μ)
∇BG

0 , (50)

rendering Problem I, the asymptotic classical limit of the gradient problem, when the impact of the
microstructure fades away.

Proof. The classical elastic displacement field satisfies the following stability condition:

‖uclassical‖H1(Ω) ≤ C
(
‖f‖

H
1
2 (∂ΩD)

+ ‖g‖
H− 1

2 (∂ΩN)

)
, (51)

as stated before. However, due to the additional regularity f ∈ H
3
2 (∂ΩD) ⊂ H

1
2 (∂ΩD)

(valid throughout the work) and the extra requirement g ∈ H
1
2 (∂ΩN) ⊂ H− 1

2 (∂ΩN)
introduced in the assumptions of the current theorem, we are in position to invoke
the well-known regularity theory for second order elliptic boundary value problems
guaranteeing that

‖uclassical‖H2 ≤ C
(
‖f‖

H
3
2 (∂ΩD)

+ ‖g‖
H

1
2 (∂ΩN)

)
. (52)

Consequently, the classical solution has square integrable derivatives of the second
order and the theory of traces on the boundary implies that all the terms ∂ι∂ju

classical
∣∣∣
∂Ω

belong to H− 1
2 (∂Ω) as well as ∂i∂j∂kuclassical

∣∣∣
∂Ω

∈ H− 3
2 (∂Ω).
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On the basis of Equation (7) and via tensor symbolism—just for condensing the form
of the expressions—the following Betti’s form type result, referring to the elastic field w,
can be constructed:

0 =
∫
Ω
(∇ · (τ̃w −∇ · μ̃w)) · wdx = 〈Rw, Dw〉|∂Ω + 〈Pw, w〉|∂Ω

+ 〈Ew, w〉|Γ −
∫
Ω

(
τ̃w : ε̃w + μ̃w

...ε̃w∇
)

dx.
(53)

Here, we encounter the dual pairings 〈Rw, Dw〉|∂Ω = 〈Rw, Dw〉|
H− 1

2 (∂Ω)×H
1
2 (∂Ω)

,

〈Pw, w〉|∂Ω = 〈Pw, w〉|
H− 3

2 (∂Ω)×H
3
2 (∂Ω)

and 〈Ew, w〉|Γ = 〈Ew, w〉|H−1(Γ)×H1(Γ) between

dual spaces that represent surface and curve virtual actions. Only when all the involving
fields are regular enough (square integrable functions) these terms give place to the well-
known surface L2 inner products.

On the basis of decomposition (45), the boundary conditions satisfied by the two
partners of this decomposition and the splitting imposed by Equation (19), we remark that

w(x; g) = 0, x ∈ ∂ΩD, (54)

Pw(x; g) = g(x)− Puclassical (x, g) =

−((D · n̂(x))n̂(x)n̂(x)− Dn̂(x)) : μ̃uclassical (x; g)
+n̂(x)n̂(x) : Dμ̃uclassical (x; g)+

n̂(x) · (D · μ̃uclassical (x; g)) + n̂(x)
(

D · μ̃213
uclassical (x; g)

)
, x ∈ ∂ΩN ⇒

Pw(x; g) = g2(Dn̂(x)− (D · n̂(x))n̂(x)n̂(x)) : ∇τ̃uclassical

+ g2n̂(x)n̂(x) : D∇τ̃uclassical

+ g2n̂(x) · (D · ∇τ̃uclassical ) + g2n̂(x) ·
(

D · ∇τ̃213
uclassical

)
,

(55)

where D = x̂iDi (see Equation (13)).
Handling the non-classical boundary conditions of w(x; g) leads to

Dw(x; g) = ∂
∂n u(x; g)− ∂

∂n uclassical(x) =

h(x; g)− ∂
∂n uclassical(x), x ∈ ∂ΩQ,

and
Rw(x; g) = g2r̃(x)− Ruclassical (x; g) =

g2 (̃r(x)− n̂(x)n̂(x) : ∇τ̃uclassical ), x ∈ ∂ΩR.

Then, Equation (53) obtains the form:

∫
Ω

(
τ̃w : ε̃w + μ̃w

... ε̃w∇
)

dx = g2〈k(·), w(·; g)〉
∣∣
∂ΩN

+

+
〈

Rw(x; g), h(x; g)− ∂
∂n uclassical(x)

〉∣∣∣
∂ΩQ

+

g2〈(̃r − n̂(x)n̂(x) : ∇τ̃uclassical ), Dw〉
∣∣
∂ΩR

+ g2〈s̃(x), w〉
∣∣
Γ−

g2〈suclassical (x), w〉
∣∣
Γ,

(56)

where

k(x) = {(Dn̂(x)− (D · n̂(x))n̂(x)n̂(x)) : ∇τ̃uclassical

+n̂(x)n̂(x) : D∇τ̃uclassical + n̂(x) · (D · ∇τ̃uclassical ) + n̂(x) ·
(

D · ∇τ̃213
uclassical

)}
.

Thanks to the introductory discussion of this theorem, pertaining to the regularity
of surface terms generated by the classical field, it is clear that all the terms participating
in k(x) are well defined and belong to H− 3

2 (∂ΩN). In addition, given that in our elliptic
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boundary value problem, every surface norm of traces of the classical field and its deriva-
tives is controlled by the volume norm ‖uclassical‖H2(Ω), which is bounded by the data as

Equation (52) implies, the surface field g2k(x) is uniformly bounded in H− 3
2 (∂ΩN) with

magnitude of order g2.
The fields w and Dw, on surfaces and (or) curves have appropriate norms, which are

bounded by the norm of the solution ‖w‖H1(Ω) (due to the continuity of the traces with re-
spect to the solution of the boundary value problem), which is, by its turn, bounded
uniformly with respect to the gradient parameter g, via an estimate of the form (33)
(applied to w).

If the case (A) holds, the second dual pairing in r.h.s. of Equation (56) disappears
and no need to handle the functional Rw(x; g) on ∂ΩD arises. When we have case (B), we
impose further regularity on the displacement and stresses leading to higher regularity
on the classical solution. This regularity is optimally selected to guarantee that the crucial
field ∂

∂n uclassical(x) belongs to H
3
2 (∂Ω) (since under this choice, the norm ‖uclassical‖H3(Ω)

is kept bounded).
Finally, the field Rw(x; g) on ∂ΩQ equals with the field g2n̂(x)n̂(x) : ∇τw, which

incorporates second order derivatives of w. Then, the adequate surface H− 3
2 —norm of

Rw(x; g) is again uniformly bounded (due to the continuity of the traces with respect to
the solution of the boundary value problem) by g2‖w‖H1(Ω), which via (33) is bounded
by the norms of the data multiplied by g2C. This coefficient goes to 0 as g → 0 , since,
as mentioned before, the generic constant does not depend on g.

In any case, taking the limit as g → 0 , in expression (56), all the terms of the right-hand
side converge uniformly to 0, therefore

∫ (
τ̃wg=0 : ε̂wg=0 + μ̃wg=0

... ε̂wg=0∇
)

dx = 0. (57)

The positivity of the bilinear elastic form guarantees that ε̃wg=0 = 0̃, which implies
that w(x, 0) is a constant. Given that the trace w(x, 0)|∂ΩD

= 0, we infer that

lim
g→0

w(x, g) = 0, x ∈ Ω, (58)

from where we obtain immediately the asymptotic behavior (50). �

Much effort was places in finding the necessary regularity of the data assuring the
desired convergence when microstructure behavior disappears. It is interesting that this is
necessarily valid when the data are smooth analytic functions of their arguments. Indeed,
we have the following corollary, which would be the main outcome of this work if the data
were considered analytic, but in our opinion, this could not be proven without the herein
adopted generalization to abstract functional spaces.

Corollary 1. Consider that the boundary value problem consists of Equations (20), (29) and (30).
The data (f, g, h, r, s) are analytic functions of their arguments with the restriction that r, s obey to
Equations (48) and (49). Let u(x; g) be the unique solution of the gradient elasticity boundary value
problem, expressed on the basis of the decomposition constructed in Theorem 2. Then, the following
asymptotic result is obtained:

u(x; g) → uclassical(x) as g → 0, x ∈ Ω.

Proof. The assumed analytic smoothness of the data confirms that the assumptions of the
alternative (B) of Theorem 3 are always valid and then the convergence outcome holds in
any case. �
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Remark 1. As far as the field Rw(x; g) on ∂ΩQ is concerned, we could easily find that the surface
H− 1

2 —norm of Rw(x; g) is again uniformly bounded by g2‖w‖H2(Ω). On the basis of (24a), this
term is bounded by the norms of the data multiplied by g2Cg. Therefore, if no extra assumption on
data was made, the limit lim

g→0
g2Cg would be ambiguous.

Remark 2. We would like to mention once again here that, despite the convergence, which needs
some special settlement of the nature of the imposed data, the decomposition (37) is always valid,
and when the conditions are arbitrary, what is exactly stated for the participants of the decomposition
is that they satisfy the corresponding differential equations, while their superposition satisfies the
boundary value problem.

A number of simple one-dimensional problems can reveal the essence of the previous
theorems. Let us consider, for example, the elastostatic response of a finite length string.
The considered differential equation is given by uxx − g2uxxxx = 0, x ∈ (0, 1) accompanied
by the classical boundary conditions u(0) = 1, ux(1)− g2uxxx(1) = 2 and the non-classical
ones g2uxxx(0) = 3g2 and ux(1) = 0.

The solution is

u(x) = 2x + 1 − eg2 +

[(
3g2 + 2ge−

1
g

)
e−

x
g + g

(
3ge−

1
g − 2

)
e

x−1
g

](
1 + e−

2
g
)−1

,

while the classical elastic solution that satisfies the conditions u(0) = 1 and ux(1) = 2 is
ucl(x) = 2x + 1.

The same differential equation with the boundary conditions u(0) = 0, u(1)= 1,
ux(0) = 2 and uxxx(1) = 0 has the following solution:

u(x) = x + g
[(

1 − e−
2
g
)
(x − 1) + e−

x
g − e

x−2
g

](
g − 1 − (g + 1)e−

2
g
)−1

with corresponding classical solution, the function ucl.(x) = x.

Remark 3. The second example of Remark 2 implies that sometimes it is useful to write Equation (37)
in the following form

u(x, g) = (1 + δ(g))uclassical(x) + uN(x, g) + g2uG(x, g) (59)

with δ(g) → 0 as g → 0 , where uN(x, ξ) obeys to the same differential regime. This approach
consists of a repartition of the partners of the decomposition, which seems to be more flexible in
applications. This reordering is realizable since both fields uclassical(x) and uN(x) belong to the
kernel of the classical elasticity operator.

Remark 4. The result stated by Theorem 3 could be violated if the boundary conditions are set
arbitrarily. As an example, consider the same differential equation as in Remark 2, accompanied
with the boundary conditions u(0) = 0, u(1) = 1, ux(0) − g2uxxx(0) = 2 and uxx(1) = 0.

This problem has the unique solution u(x) = 2x − 1 +
[

e−
x
g − e−

1
g e

x−1
g

](
1 − e−

2
g
)−1

. However,

the classical solution 2x − 1 satisfies the boundary conditions u(1) = 1, ux(0) = 2, but does not
satisfy the classical boundary condition u(0) = 0. Additionally, the part of the solution containing
the displacement uG does not converge to zero as g → 0 at the endpoint x = 0. The critical factor
here, is that two classical boundary conditions are prescribed simultaneously at the same part of
the boundary.

Remark 5. In the statement of the theorem, we demanded that meas(∂ΩD) > 0). In mathematical
terms, this is needed for the uniqueness of the solution. Physically, it reflects the necessity of some
anchoring of the structure. However, we would like to say that this condition is not of major
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importance for the validity of Theorem 3. The modifications needed could be stated mathematically—
they include some compatibility conditions for the data—but the essence is very simple: The results
are exactly the same modulo motions of a rigid body. Consequently, imposing a-posteriori a condition
not allowing rigid motions is sufficient to construct the unique solution of the problem.

4. Revisiting Bending Theories of Strain Gradient Elastic Beams

In this section, the solution representation addressed in Section 3 is employed to
present an answer to contradictions arising by two well-known first-strain gradient elastic
models proposed in the literature to describe the strain gradient elastostatic bending
behavior of Bernoulli–Euler beams.

During the last two decades, a plethora of papers dealing with the static and dy-
namic response of Bernoulli–Euler strain gradient elastic beams have appeared in the
literature. Most of them are based on variational approaches and, for the elastostatic case,
the equilibrium equation they conclude has either the following form [48–52]

EIu′′′′ − EIg2u′′′′′′ + q(x) = 0 (60)

where x coincides with the neutral axis of the beam, E stands for the material Young
modulus, I is the moment of inertia of the beam’s cross-section A, u(x) is the transverse
beam deflection, q(x) is the transverse external load, and g2 is the intrinsic strain gradient
elastic parameter, or the form [53–61](

EI + g2 A
)

u′′′′ − EIg2u′′′′′′ + q(x) = 0. (61)

The essential difference between these two equations is that the first is derived by
considering the strain exx and the gradient of strain exxx in the expression of the potential
energy density of the beam, while the second one considers the strain exx and the strain
gradients exxx, eyxx with eyxx being the differentiation of exx with respect to axis y directed
along the thickness of the beam. The result is that the bending stiffness in Equation (60)
is the same as that of classical elasticity, while the bending stiffness in (61) depends on
the internal length scale parameter g2 and the cross-section of beam A. The interesting
point here is that the same categorization is valid for other works dealing with the bending
of strain gradient elastic Timoshenko beams and plates, as well as for experimental and
numerical validations on the bending response of strain gradient elastic beams. Here, one
can mention the works of Papargyri-Beskou and Beskos [62], Papargyri-Beskou et al. [63],
Triantafyllou and Giannakopoulos [64], and Gortsas et al. [29] for the strain gradient
model of Equation (60), and the works of Lazopoulos and Lazopoulos [65], Khakalo and
Niiranen [57,58,60,66], and Korshunova et al. [67] for the model of Equation (61).

Since there is a principal difference between the two above-mentioned bending models,
the question here is which of them is the correct one. Lurie et al. [68] and Lurie and
Solyaev [69,70] proposed elegant answers to that question by proving that Equation (60) is
the only correct one for the bending response of a strain gradient elastic Bernoulli–Euler
beam. Among others, they mentioned that “ . . . a formal variational procedure for obtaining
the governing equilibrium equations in the beam theories, ignoring boundary conditions on the top
and bottom surfaces of the beam leads to an erroneous result of abnormal increasing of the beam
normalized bending stiffness with decreasing its thickness. . . . ”. Polizzotto [31] upholds this
argument because the normal derivative of displacements identically vanishes at the beam
lateral surface, and thus cannot play any role as a boundary layer. In the present section, we
reach the same conclusion under the light of the theorems proved in the previous section.

The starting point of our analysis is the pure bending of a classical elastic, isotropic two-
dimensional orthogonal rectangle subjected to pure bending under plane strain conditions,
as depicted in Figure 1. The boundary conditions of the problem are pk(x1,±a) = 0 and
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p2(0, x2) = p2(L, x2) = 0, p1(0, x2) = p1(L, x2) = P1x2/a and the corresponding solution
is provided by Selvadurai [3] in the following form:

uclassical
1 =

P1(1−ν2)
Ea x1x2

uclassical
2 = − P1

2Ea
[
ν(1 + ν)x2

2 + (1 − ν2)x2
1
]
.

(62)

 
Figure 1. Pure bending of an elastic beam.

Consider a rectangular 3D plate of length L and cross-section 2a × b. The torque at
both boundaries of the plate is defined as

M =

a∫
−a

x2

(
P1

x2

a

)
dS =

a∫
−a

x2

(
P1

x2

a

)
bdx2 =

P1 I
a

(63)

with I = 2ba3/3 being the moment of inertia of the cross-section 2a × b. Equation (62),
valid for the midplane of the plate, obtain the form

uclassical
1 =

M(1−ν2)
EI x1x2

uclassical
2 = − M

2EI
[
ν(1 + ν)x2

2 + (1 − ν2)x2
1
] (64)

while the deflection of the neutral axis is given by uclassical
2 for x2 = 0, i.e.,

uclassical
2 = − M

2EI
(1 − ν2)x2

1 (65)

which, for ν = 0, is identical to the deflection of a classical elastic Bernoulli–Euler beam
subjected to pure bending [3,69], i.e.,

uclassical
Bernoulli−Euler = − M

2EI
x2

1. (66)

Next, we consider the same pure bending problem presented in Figure 1, however,
for a strain gradient elastic material. The classical boundary conditions remain the same as
in the classical elastic problem, i.e.,

pk(x1,±a) = 0
p2(0, x2) = p2(L, x2) = 0
p1(0, x2) = p1(L, x2) =

M
I x2

(67)

while in non-classical boundary conditions, we consider the zeroing of double tractions at
all the external boundaries, for example:
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Rk(x1,±a) = 0
Rk(0, x2) = Rk(0, x2) = 0.

(68)

According to the theorem presented in Section 3, the strain gradient elastic solution of
this problem is written as

u1(x1, x2; g) = uclassical
1 (x1, x2) + uN

1 (x1, x2; g) + g2uG
1 (x1, x2; g)

u2(x1, x2; g) = uclassical
2 (x1, x2) + uN

2 (x1, x2; g) + g2uG
2 (x1, x2; g).

(69)

Evidently, the solution (69) imposes the following forms for tractions and double
tractions, respectively

p1(n̂, x1, x2; g) = pclassical
1 (n̂, x1, x2; g) + pN

1 (n̂, x1, x2; g)

+g2 pG
1 (n̂, x1, x2; g)

p2(n̂, x1, x2; g) = pclassical
2 (n̂, x1, x2; g) + pN

2 (n̂, x1, x2; g)

+ g2 pG
2 (n̂, x1, x2; g)

(70)

R1(n̂, x1, x2; g) = Rclassical
1 (n̂, x1, x2; g) + RN

1 (n̂, x1, x2; g)

+ g2RG
1 (n̂, x1, x2; g)

R2(n̂, x1, x2; g) = Rclassical
2 (n̂, x1, x2; g) + RN

2 (n̂, x1, x2; g)

+ g2RG
2 (n̂, x1, x2; g)

(71)

with n̂ being the unit normal vector of the surface, to which both tractions and double
tractions are referred.

Concentrating our attention on the classical part of the solution (69), it is easy to
observe that [30]

τclassical
11 = (λ + 2μ)∂1uclassical

1 + λ∂2uclassical
2 = M

I x2

τclassical
22 = λ∂1uclassical

1 + (λ + 2μ)∂2uclassical
2 = 0

τclassical
12 = τclassical

21 = μ(∂2uclassical
1 + ∂1uclassical

2 ) = 0

(72)

and
μclassical

111 = (λ + 2μ)g2∂2
1uclassical

1 + λg2∂1∂2uclassical
2 = 0

μclassical
222 = λg2∂1∂2uclassical

1 + (λ + 2μ)g2∂2
2uclassical

2 = 0

μclassical
112 = μclassical

121 = μg2(∂1∂2uclassical
1 + ∂2

1uclassical
2 ) = 0

μclassical
122 = λg2∂2

1uclassical
1 + (λ + 2μ)g2∂1∂2uclassical

2 = 0

μclassical
211 = (λ + 2μ)g2∂1∂2uclassical

1 + λg2∂2
2uclassical

2 = g2 M
I

μclassical
212 = μclassical

221 = μg2(∂2
2uclassical

1 + ∂1∂2uclassical
2 ) = 0.

(73)

As it is explained by Charalambopoulos et al. [30], the two components of the gradient
elastic traction and double traction vectors, defined on a surface with unit normal vector
n̂(n1, n2), have the form, respectively,

p1 = n1τ11 + n2τ21 + n1(n2
1 − 2)∂1μ111 + n2(n2

2 − 2)∂2μ221

+n2(n2
1 − 1)(∂1μ121 + ∂1μ211) + n1(n2

2 − 1)(∂2μ121 + ∂2μ211)

+n2n2
1∂2μ111 + n1n2

2∂1μ221

p2 = n2τ22 + n1τ12 + n1(n2
1 − 2)∂1μ112 + n2(n2

2 − 2)∂2μ222

+n2(n2
1 − 1)(∂1μ212 + ∂1μ122) + n1(n2

2 − 1)(∂2μ122 + ∂2μ212)

+n2n2
1∂2μ112 + n1n2

2∂1μ222

(74)
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and
R1 = n2

1μ111 + n1n2μ121 + n1n2μ211 + n2
2μ221

R2 = n2
2μ222 + n2

1μ112 + n1n2μ122 + n1n2μ212
(75)

In view of (72)–(75), the classical part of the gradient elastic traction and double
traction vectors defined on a surface with unit normal vector n̂(n1, n2) exhibit the following
forms, respectively

R1 = n2
1μ111 + n1n2μ121 + n1n2μ211 + n2

2μ221
R2 = n2

2μ222 + n2
1μ112 + n1n2μ122 + n1n2μ212

(76)

and
Rclassical

1 (n̂, x1, x2; g) = n1n2μclassical
211 = n1n2

M
I

Rclassical
2 (n̂, x1, x2; g) = 0.

. (77)

Inserting Equations (76) and (77) into (70) and (71), respectively, and satisfying the
boundary conditions (67) and (68) one obtains:

pN
k (n2, x1,±a; g) + g2 pG

k (n2, x1,±a; g) = 0, k = 1, 2

pN
k (n1, 0, x2; g) + g2 pG

k (n1, 0, x2; g) = 0, k = 1, 2

pN
k (n1, L, x2; g) + g2 pG

k (n1, L, x2; g) = 0, k = 1, 2

(78)

and
RN

k (n2, x1,±a; g) + g2RG
k (n2, x1,±a; g) = 0, k = 1, 2

RN
k (n1, 0, x2; g) + g2RG

k (n1, 0, x2; g) = 0, k = 1, 2

RN
k (n1, L, x2; g) + g2RG

k (n1, L, x2; g) = 0, k = 1, 2.

(79)

Equations (78) and (79) indicate that the parts uN
k (x1, x2; g), uG

k (x1, x2; g) satisfy a
homogeneous system of algebraic equations for arbitrary material properties. Apparently,
this leads to the conclusion that

uN
k (x1, x2; g) = uG

k (x1, x2; g) = 0 (80)

which means that the pure bending of the strain gradient elastic plate presented in Figure 1
has absolutely the same response as that of the classical elastic one.

Extending this result to the behavior of the neutral axis of the plate for ν = 0, we obtain

uclassical
Bernoulli−Euler ≡ ugradient

Bernoulli−Euler = − M
2EI

x2
1. (81)

This result is possible only when Equation (60) is valid. Equation (61) is misleading
since the double stress μyxx does not contribute to the solution of the problem.

5. Conclusions

A material with microstructural effects obeys the simplified elastostatic version of
Mindlin’s Form II first-strain gradient elastic theory, and its displacement field u(x) satisfies
the fourth-order partial differential Equation (3) and the relevant classical and non-classical
boundary conditions. In the present work, it has been rigorously proved that the solution
of Equation (3) admits the following representation:

u(x, g) = (1 + δ(g))uclassical(x) + uN(x, g) + g2uG(x, g), (82)

which has the following convenient advantages:

1. Incorporates the solution uclassical(x) of the respective classical elastic boundary value
problem, that satisfies the same classical boundary conditions with the strain gradient
elastic problem.

2. Converges to the classical elastic solution as g → 0 .
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3. Comprises two displacements fields uN(x, g), uG(x, g), which satisfy the simpler
equations μ∇2uN + (λ + μ)∇∇ · uN = 0 and (1 − g2∇2)uG = 0, respectively.

The representation of the solution presented above was employed to prove that a
strain gradient elastic Bernoulli–Euler beam subjected to pure bending does not present
microstructural effects and its behavior is identical to that of a classical elastic Bernoulli–
Euler beam. This result is in full agreement with the corresponding conclusions provided
by Lurie and Solyaev [69] on the same subject.
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Appendix A

In this Appendix, the proof of decomposition (5) through the solution representation (4)
is provided.

It is well known that the solution of Equation (1), via Papkovich–Neuber potentials,
has the form [3,64]

uclassical = Bclassical − 1
4(1 − v)

∇
(

r · Bclassical + Bclassical
0

)
, (A1)

with
∇2Bclassical = 0
∇2Bclassical

0 = 0.
(A2)

On the other hand, the solution representation (4) reads

ugradient = Bgradient − 1
4(1 − v)

[
r ·

(
1 − g2∇2

)
Bgradient + Bgradient

0

]
, (A3)

with (
1 − g2∇2)∇2Bgradient = 0(
1 − g2∇2)∇2Bgradient

0 = 0.
(A4)

Comparing (A2) with (A4), it is apparent that
(
1 − g2∇2)Bgradient ≡ Bclassical ,

and subsequently (A3) can be written as

ugradient = Bgradient − 1
4(1 − v)

[
r · Bclassical + Bgradient

0

]
. (A5)

By adding and subtracting Bclassical and Bclassical
0 in (A5), we obtain

ugradient = Bgradient + Bclassical − Bclassical

− 1
4(1−v)

[
r · Bclassical + Bgradient

0 + Bclassical
0 − Bclassical

0

]
⇒

ugradient = Bclassical − 1
4(1−v)∇

[
r · Bclassical + Bclassical

0

]
+Bgradient − Bclassical − 1

4(1−v)∇
[

Bgradient
0 − Bclassical

0

]
,
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and because of (A1), it is apparent that

ugradient = uclassical + Bgradient − Bclassical−
1

4(1−v)∇
[

Bgradient
0 − Bclassical

0

]
.

(A6)

However,(
1 − g2∇2)(Bgradient − Bclassical

)
(
1 − g2∇2)(Bgradient

0 − Bclassical
0

)
⎫⎪⎬⎪⎭ (A.4)

=
Bclassical − Bclassical

Bclassical
0 − Bclassical

0

}
= 0. (A7)

Equations (A6) and (A7) easily imply that

ugradient = uclassical + ug

uclassical ∈ ker
(
μ∇2(λ + μ)∇∇·

)
ug ∈ ker

(
1 − g2∇2) (A8)

which confirms (5).
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Abstract: In industrial engineering degrees in Spain, mathematics subjects are usually taught during
the first two academic years. Consequently, it is often the case that students sometimes do not
feel motivated to learn subjects such as Mathematics II (calculus). Nevertheless, this subject is
fundamental for understanding other subjects in the degree study plan, as well as for the graduate’s
future professional career as an engineer. To address this, a problem-based teaching methodology
was carried out with the help of a fourth-year student who explained an activity to first-year students
in a manner which was both friendly and approachable. In this experiment, the student went through
a series of practical problems taken from different engineering subjects, which required multivariable
integrals to be calculated and which he had learned in mathematics as a first-year student. In addition,
a method based on pre-test and post-test assessments was applied. From this work, various benefits
were observed in terms of learning, as well as an increase in the level of motivation of first-year
students. There was a greater appreciation of the usefulness of calculus and computer programs to
solve real-life problems, and the students generally responded positively to this type of activity.

Keywords: multivariable integrals; interdisciplinary activities; engineering and science students;
problem-based teaching

MSC: 97I10; 97I50

1. Introduction

Engineering degrees involve studies that are extremely oriented toward problem
solving. As such, problem-based learning (PBL) strategies were introduced after the
Second World War as a means to reform universities, involving new educational models
established between 1965 and 1975 [1]. This specific approach uses constructivist principles
that encourage the application of prior knowledge, collaborative learning, and active
engagement [2], and it feeds into another important methodology directly applicable in
engineering degrees, namely, project-based learning. These two methodologies serve as
inspiration for each other [3]. Therefore, the activities to be developed in the context of PBL
should be associated with recurrent topics related to work the students may encounter in
their future careers or a real situation with, for example, missing information or unclear
answers [4–6].

In teaching engineering, it is important to integrate activities that reflect real-life
situation rather than purely theoretical aspects [7]. In this regard, the use of PBL to teach
mathematic subjects has also been called realistic mathematics education [8–12], which
has been shown to have a positive effect on student motivation and participation in the
classroom [13–16].

Mathematics is usually seen as being one of the most abstract and difficult subjects [17]
and can cause students to experience negative feelings such as self-doubt and anxiety [18].
Thus, the manner in which an individual perceives their own competence in relation to the
subject can influence final outcomes [19–21].
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Intrinsic motivation can be defined as the satisfaction inherent to the performance
of an activity, as opposed to that which is caused by the consequences or profits gained
by the activity. When intrinsically motivated, a person is driven to act for reasons of
satisfaction or challenge, rather than external rewards, pressures, or products [22]. By
contrast, extrinsic motivation is that provoked by external factors. Intrinsic motivation
is beneficial for the student because it favors student involvement in learning through
satisfaction and enjoyment [23,24].

In this work, a learning methodology based on problem solving is proposed, using
software to improve mathematical competence and an approach similar to that proposed by
other authors [13,14]. The study was carried out on students enrolled in the subject entitled
Mathematics II (calculus in one and several variables), which is a compulsory subject
in the first academic year for the following degrees: mechanical engineering, electrical
engineering, and electronic and automatic engineering. It has been observed that students
do not always understand the reason why they must study such complicated mathematics,
as they tend to prefer to solve more applied problems related to engineering. In addition,
the students often do not realize they are being provided with tools for building a solid
foundation for future studies.

The flow work employed for this activity is unique in that a fourth-year student,
supervised by the teacher, was asked to teach an activity to the students. In doing so,
they shared their experiences and perspective about the usefulness of math throughout a
particular degree course. In this way, the learning experience became more relevant and
real and could help to change our students’ opinion and level of motivation regarding the
importance of mathematics in engineering. This is the main focus of this research.

In Section 2, the methodology used to carry out this work is explained, including a
description of the context and participants. In Section 3, the main details of the activity
undertaken are provided, and the perception that our students had about calculus is
examined, in addition to whether the strategy helped them. The questionnaire and its
results are analyzed in Section 4, and our conclusions are presented in Section 5.

2. Methodology

2.1. Context and Participants

During the academic year 2020–2021, 63 students were enrolled in the subject Math-
ematics II (calculus) distributed among the following three degrees: 21 students were
studying for a bachelor’s degree in electrical engineering, 13 were studying for a bachelor’s
degree in electronical and automatic engineering, and 29 were studying for a bachelor’s
degree in mechanical engineering. University of Salamanca students can also study for
double degrees such as electrical and mechanical engineering or electrical and electronic
engineering. It should be noted that all these degrees fall within what in Spain is called
“degrees of the field of industrial engineering” due to previous professional regulations
maintained in the new context of the European Higher Education Area. All these degrees
in Spain are distributed over 4 years, and Mathematics I (algebra) and Mathematics II
(calculus) are always taught in the first year.

Even though the students were enrolled in different degree programs, they were
grouped together in the same classroom, since Mathematics II is a compulsory subject for
all students. This educational context (with students taking different degrees but all related
to industrial engineering) is ideal for educational research. For this reason, other studies
have been successfully conducted on a multidisciplinary group of students such as the one
used here [25].

To this end, we asked the students to participate in the activity and to take the pre-
and post-test described in Section 4. Additionally, we explained to the students that all of
their answers would be treated anonymously according to the ethical code for carrying
out questionnaires used by our university. Furthermore, participation in the study was
totally optional; thus, only 17 of the 63 students decided to answer the survey. They were
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13 men and four women within the age range of 18 to 22 years old. None of the students
were excluded from the study.

Consequently, the study sample comprised 17 students out of the 63 students (27%)
enrolled in Mathematics II (Table 1). Double degree corresponds to students in electrical
and mechanical engineering.

Table 1. Distribution of the sample.

Degree Program ECTS * Academic Year

Students

Number
Percentage of the

Total Study Group

Bachelor in Mechanical Engineering 240 4 9 52.9%
Bachelor in Electrical Engineering 240 4 1 5.9%
Bachelor in Electronic and Automatic
Engineering 240 4 4 23.5%

Double degree 276 4 3 17.6%

* ECTS is the number of credits according to the European Credit Transfer System. It serves to measure the
work that students must complete in order to acquire the knowledge, skills, and abilities necessary to pass their
curriculum. One credit according to ECTS corresponds to 25–30 h of student work. Thus, 240 credits according to
ECTS corresponds to 4 years, and most of our students in the double degree require at least 5 years to complete
their studies.

Prior to conducting the experiment and to gather more information about the sample,
a questionnaire was filled out by the students, yielding the following results:

• On a Likert scale [26] of 1–5, students answered the following question: “I think
my level of digital competence is high”. The average response value was 3, and the
standard deviation was 0.75.

• Students were asked if they had previous experience using the package Wolfram
Mathematica [27], of which 94.1% answered no.

• Finally, students were asked if they were currently enrolled in any second, third, or
fourth subjects, of which 88.2% answered no.

The competencies to be acquired specific to this subject are based on Spanish regula-
tions that are drawn from the regulations of the European Higher Education Area (EHEA).
The three university degrees programs belong to the field of industrial engineering; hence,
the first two academic years are common to all degrees. By contrast, the subjects taken
during the first 2 years are specific to each specialization and, therefore, are different.

In addition, double degrees are also offered at our school. In this case, students enrolled
in the double degree program in electrical and mechanical engineering are included in the
sample as a different group.

According to Spanish regulations for engineers, some engineering projects and tasks
can be performed by any of the engineers in the industrial field. However, other more
specialized projects and tasks can only be carried out by specialists in the field; for example,
low-voltage electrical projects can be carried out by any industrial field engineer, but
high-voltage electric projects can only be carried out by electrical engineers. Please note
that a degree in chemical engineering belongs to degrees within the branch of industrial
engineering but is not offered by the School of Industrial Engineering of the University of
Salamanca and, as such, was not included in this research.

2.2. Analysis of the Methodology
2.2.1. Interdisciplinary Problems to Teach Calculus

The students studying our degree programs will be future engineers. In [28], it is
stated that the work of an engineer “is predominantly intellectual and varied and not of
a routine mental or physical character. It requires the exercise of original thought and
judgement and the ability to supervise the technical and administrative work of others”.
For this reason, we consider teaching competences through interdisciplinary problems to be
beneficial. Additionally, we are of the opinion that the first academic year of an engineering
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degree should provide general tools that allow engineers to solve a large array of daily
problems: “their education and training will have been such that they will have acquired
a broad and general appreciation of the engineering sciences, as well as thorough insight
into the special features of their own branch” [28].

Students are constantly asking questions such as the following: “Why is this concept
or topic interesting?” “Why do I need to study this part of the subject?” “Am I going to use
this in the future and, if so, how?”

Additionally, some of our subjects are taught in the first 2 years of the degree program,
which is the case of the subject calculus taught in the industrial engineering degree program
in Béjar, Spain. This subject is included in the first year, and most of our students are not
yet aware of the real situations that require engineers to know calculus in several variables,
for example. The usefulness of some of the operations learnt in calculus does not become
obvious until later on during the final stages of the degree.

Since multivariable (calculus) integrals are used by engineers in many situations to
solve real problems, we decided it would be useful for third- and fourth-year students, as
well as professors teaching other specialty subjects, to share their experiences with the use
of calculus (in this case multivariable (calculus) integrals in several variables) to younger
students. Obviously, this subject is only a tool for the students and not a main topic of
study; therefore, it needs to be remembered that the students’ appreciation of integrals in
several variables may differ greatly from that of a mathematician’s.

For this reason, multivariable (calculus) integrals were initially taught to the students
in the normal fashion: theory, properties of integrals, and the most common ways to calcu-
late some types of integrals. Additionally, some exercises in one dimension were shown,
followed on by integrals in several variables, as well as solving some common exercises of
integrals in several variables. Forming part of the experiment, an interdisciplinary activity
was included, together with another teacher and a fourth-year student. The workflow for
this activity is shown in Figure 1.

Figure 1. Workflow of the activity.

The aim of this work was to analyze the results of this activity, where it was proposed
to evaluate not only how real problem solving can improve (or decrease) but also the
motivation of engineering students in relation to the learning of mathematical subjects.
In addition, we also wanted to measure the effect of the use of mathematical software in
calculus classes. Computers are useful for assisting in two-step problem solving: first,
consider the steps needed to solve the problem; then, use the acquired technical skills to
control the computer to help solve the problem [29]. In this way, using computer tools,
we can solve more complex problems; additionally, we are teaching our students the use
of mathematical and computation software that they will have to use in other subjects
and possibly also in their future profession as engineers, allowing the development of
mathematical thinking. Doing so moves away from more theoretical exercises, permitting
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the student to have a change from classes that they consider to be more tedious. In ad-
dition, the group of researchers who carried out this activity included a professor from
the Department of Applied Mathematics, a professor from the Department of Mechanical
Engineering and a fourth-year student who had an interest in educational research. Conse-
quently, a broader view was achieved, from the perspective of mathematical education, the
specific technological application of integrals to mechanical engineering, and the student’s
experience, perception, and interaction with the other students. The instructor teaching
mechanical engineering and the student shared their experiences with using integrals in
other engineering subjects from both points of view. Moreover, we asked the students to
anonymously answer a pre-test and post-test survey as a means to measure whether this
new method was helpful in increasing their motivation and becoming more active in the
teaching–learning process.

2.2.2. Computer Tools

Many of the problems related to mathematics in the world of engineering are advanced.
Thus, engineers need to use several competencies/skills to resolve these kinds of problems,
such as the need to formulate the problem mathematically and knowledge about useful
tools. However, currently, in many cases, this is not enough, and, depending on the
difficulty of the problem at hand, in most cases, specific mathematical software is required
to calculate some difficult operations.

In [13], the authors used operations and properties of matrices (which are complex
and abstract concepts for our students) with the help of an application in digital imaging
and data processing. Obviously, the resulting matrices have very large dimensions, and it
would make no sense to do these calculations by hand. Today, computers are very much a
part of the life of our students, and more and more computer tools are being used not only
in teaching engineering but also by professionals.

At the University of Salamanca, during the activity, we had a license for Wolfram
Mathematica [29], as well as MATLAB®. Additionally, Wolfram Alpha is available for
use in the classroom for carrying out some small and fast calculations. Since our students
solve many more simple exercises, we also teach them how to check their results using this
software. Hence, the students are able to use these computer mathematical tools together
with codes such as those described in Appendix A.

These codes and corresponding manuals are uploaded to the Moodle Learning Plat-
form [30] and are available to students. Thus, students and teachers can access the work
and activities at any time, and students have all resources available, allowing them to
organize their work.

In this way, codes are provided to enhance the learning of students, but the goal is for
them to develop the code that allows them to solve the problem. Codes can be uploaded to
the Campus Virtual Studium (our Moodle platform) for the students to see, and the teacher
can directly explain real problems and discuss how they should be solved. Therefore, the
students come into contact with much more complicated calculations.

Wolfram Mathematica allows the student to work with code which is executed line by
line. Modifications can be made in previous lines without the need to repeat introducing
all the commands or generate scripts. In addition, the definition of functions is simpler
and does not need to be raised separately. Therefore, this program was considered more
suitable for carrying out this activity rather than other alternatives like MATLAB or similar
free applications such as Octave or SciLab. These programs are very useful and can be used
in other activities and subjects, especially those in which the use of matrices is necessary.
However, Wolfram Mathematica was chosen in this case owing to its intuitiveness and the
ability to introduce functions. In the past, other authors used Mathematica for very similar
activities to teach algebra or calculus [13,14].
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3. Development of Our Activities and Results

An increasingly technological and competitive environment requires the industrial
engineer to pose very diverse problems. In its modeling and resolution, one of the most
frequently used mathematical tools is multivariable (calculus) integrals. Therefore, engi-
neering students must understand its importance and practical applications, as well as the
computer tools available to facilitate their work.

However, many students, mainly in the first year, do not understand the importance
of multivariable (calculus) integrals in engineering and limit themselves to learning mostly
repetitive problems. Subsequently, this situation ends up causing the students to become
less focused and motivated throughout the course.

Thus, we decided to introduce different real-life engineering problems where multi-
variable integral calculus is used and to show its different applications. Obviously, solving
some of these problems can be quite complex and iterative; hence, the use of mathematical
software was required.

The problem-based activity was carried out after having taught all the theoretical
lessons on the basic principles of calculus in several variables, Thereby helping the students
to link the knowledge acquired through real-life engineering cases.

This session lasted 2 h, with a 10 min break in the middle. In the first half (Section 3.1),
the fourth-year student explained to the class several real-life exercises that he faced during
the engineering degree, in which multivariable integration was needed to find the solution.
For each problem, he first introduced the basic principles required to fully understand the
path to the solution and, then, the answer was explained step by step. Finally, the fourth-
year student talked about the different degree subjects each problem belonged to and what
the students would learn from each one. In the second half of the class (Section 3.2), a
complex topography problem was addressed, in which not only interpolation in several
variables and integration was needed, but also computational mathematical tools (this
exercise is described in Section 3.2 and solved in Appendix A with the help of Mathematica).

3.1. Real-Life Engineering Problems

Industrial engineering studies encompass very diverse areas of knowledge structured
in different subjects, some of which were used in this activity.

Fluid mechanics is a second-year subject in which students learn the scientific funda-
mentals of the design and calculation of fluid systems and installations. To delve into these
problems, it is first necessary to be able to characterize the properties of a given fluid. For
this reason, the exercise proposed consisted of designing a coaxial cylinder viscosimeter
to determine the properties of a lubricant. This apparatus works by rotating an internal
cylinder immersed in some given fluid and measuring the power needed to turn it at a
certain speed. By knowing the rotation speed of the cylinder and the properties of the
lubricant, students are easily able to calculate the power required by the device using the
shear stress of the fluid. To do so, double integrals are needed: one for the lateral surface of
the cylinder and another one for the bottom surface.

Theory of machines and mechanisms is also a second-year course in which students
learn about the modeling, calculation, and design of mechanisms and machines from a
static, kinematic, and dynamic point of view. The suggested problem in this area consists
of balancing the crankshaft of an engine with the help of CAD/CAE Software such as
Autodesk Inventor. An initial model of a simplified and unbalanced engine crankshaft is
given, which means that its center of gravity is not aligned with its axis of rotation. Using
the design software mentioned and multivariable integrals, students come up with a fixed
design by changing the geometry of the initial mechanism to move the centroid. As the
center of gravity is above the axis, a semi-cylindrical volume is added in the lower bar,
forcing it downward. Therefore, they calculate the diameter of the added volume so that
the centroid matches the rotation shaft. For that, triple integrals are needed to obtain the
center of mass of the half cylinder.

296



Mathematics 2022, 10, 1764

Other real engineering examples mentioned during the first half of the activity were
about the following:

- Industrial robots and manipulators. One of the most important features of these
automatons is their work range, i.e., the surface or volume represented by all the
robot’s positions in space. To calculate this, a manipulator position study is carried
out obtaining a cloud of points with its limit positions. These data are interpolated,
and, with multivariable integration, the range surface or volume can be obtained.

- Self-driving cars and LIDAR sensors. These active sensors scan their surroundings
with an infrared laser, mapping thousands of points. The point cloud obtained is
treated in a similar way to the previous problem.

- Metrology. Laser interferometers can be used to measure roughness. These perform a
micrometric scan of the part to be analyzed creating a point cloud that approximates
its surface. To calculate the volume of material that needs to be removed in a grinding
operation to improve its finish, it is necessary to apply multivariable integration.

- Calculation of structures. It is increasingly common to see constructions with a
quadric surface shape, since they have very interesting properties. For instance, the
cooling towers of nuclear power plants are shaped like hyperboloids, to boost natural
convection and expel hot gases outside.

All of these cases were described in different subjects using mechanical and electrical
engineering examples. Anuar R. Giménez (the first author of this paper) made a collection
and briefly described them in the first hour of the practical case activity (third section in
the whole activity; see Figure 1). During the second hour of the activity, Anuar described
and explained in detail how he solved the problem that appears in Section 3.2. This was a
problem the students had already solved in the subject topography which is compulsory in
the mechanical engineering degree. However, in this subject, they solved it with computer
tools, and the mathematical aspects were not explained in detail.

3.2. Estimating the Volume of a Building Excavation, from a Point Cloud Collected by
Topography Measurements

Among the attributes and competencies of an industrial engineer is the ability to
design, build, and operate structures and buildings for industrial use. The construction
process consists of several phases. One of the most important stages is the taking of
measurements directly on the ground and precisely transferring them to paper. This basic
operation is known as topographic surveying. That is why topography is part of the
curricula in these studies.

The activity that we developed consists of estimating the volume of excavated ma-
terial needed to raise an industrial building, from a series of measurements made with a
theodolite on a plot of a nearby town. The provided data are the Cartesian coordinates
(X, Y, Z) of a series of points (identified with signals on the ground) referred to an origin,
which will determine the depth of emptying.

Indeed, the position of each point is obtained in polar coordinates (r, ϕ, θ). The device
used gives, for each point, an azimuthal and a zenithal angle measurement, as well as the
distance between the instrument and the point of sight, using the stadia method. Applying
basic trigonometry, the projections of each point are obtained on cardinal directions axes.
Therefore, cartesian coordinates are calculated.

To ease understanding and simplify the calculations, only 13 terrain signals were set,
as can be seen in Figure 2.

The procedure used to solve the suggested problem can be structured in three steps:

(i) Finding an interpolating polynomial that fits the point cloud set up by the previous
coordinates. For this, the least squares adjustment method is used. We calculate the
coefficients of the polynomial (introduced in Appendix A) so that they minimize
the quadratic error between the interpolating function and the data points. The
approximation obtained is shown in Figure 2. This is a fourth-order polynomial in x
and y, with 12 terms (12 unknown coefficients determined).
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(ii) Determining the equations of the different lines between the perimeter points, in order
to establish the limits of integration with which the volume will be calculated later.

(iii) Subdividing the prismoid formed by the coordinates of each plot point and the origin
plane in different integrable prisms. Its edges are defined by the equations of the line
obtained previously. The total volume of the excavation is calculated as the sum of
the volumetric integrals of these bodies.

  
(a) Plots depicting (b) Interpolation 

Figure 2. (a) Representation of the plot’s relief, with a 13-point cloud in cartesian coordinates. (b) Its
numerical approximation with an interpolating polynomial obtained with the least squares method.

When it comes to developing the scripts for doing the calculations, interesting setbacks
arose that were successfully solved. The values of the obtained coordinates were measured
on the field using a reference origin with a position of (500 m, 500 m, 500 m). This resulted
in very high values during the calculation which the program truncated. Therefore, we
obtained an inconsistent final result. To solve this, the points were transferred to an
equivalent reference system centered at (0, 0, 0), obtaining more congruent values. If the
coordinate origin was not changed, some numbers in matrix A were O (1010). These types
of difficulties and related mishaps appear in the daily work of an engineer, and the results
provided by software may be erroneous if they are not correctly interpreted.

There are commercial programs available to the engineer such as TopoCal 2016 [31],
capable of resolving the issue raised. However, students are not aware of the mathematics
behind this type of software. After carrying out the activity, it is interesting that students
acquire a general idea of the different calculation tools used by these programs, such as
multivariable integration or interpolation, as seen with the mentioned example.

It is also important to familiarize the students with mathematical software from the
subjects in the first year, as they are very powerful tools that are used to solve some real
problems in engineering, also in addition to complementing their training. That is why,
in Appendix A, some small scripts examples are included, so that they can complete
calculations in mathematics.

3.3. Questionnaire

Since the purpose of this paper was to analyze the methodology explained above, we
conducted a pre-test and post-test questionnaire on students in different bachelor’s degrees
of industrial engineering. This included 15 questions about different items that were to be
measured. The questionnaire was carried out in Salamanca before and after the use of the
activities proposed in this study.

Students were able to answer each one of these questions using a scale from 1 to 5,
where 1 meant the student totally disagreed and 5 meant they totally agreed. Question
Q1 measures the student’s opinion about mathematics. Q2 and Q3 measure extrinsic
motivation, while Q4 measures intrinsic motivation. Q5 measures the usefulness of the
practical class using software with respect to the theoretical one. Q6 measures the student’s
opinion about using a computer. Q7 and Q8 measure the student’s perception about how
useful the activity is to solve real problems. Q9 addresses the scalability of the activity.
Q10 assesses the student’s perception about their computer skills. Finally, Q11 and Q12
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address student’s the opinion on the part of the activity taught by the fourth-year student.
This questionnaire was completed by the students before (pre-test) and after the activity
(post-test) in order to identify possible differences in the students’ responses.

The questions included in the survey are shown in Table 2, and the descriptive statistics
for the responses to the pre-test and post-test questionnaire are shown in Table 3.

Table 2. All questions included in the questionnaire with a Likert scale.

Code Question Category

Q1 I think mathematics is a field closely related to engineering. Motivation
Q2 I think that integral calculus is related to other subjects in my degree course. Motivation
Q3 I think that integral calculus will be important in my professional career. Motivation
Q4 The math classes are fun and catch my interest. Motivation

Q5 I think a math class with practical applications, like this one, is more useful than a
conventional class. Usability

Q6 I think computers are needed when teaching math. Usability

Q7
The activities of this subject serve to organize my learning and to be able to approach
solving problems of different types in a structured way (and not just learn
mathematical content).

Critical thinking

Q8 Knowing the formulas of the surface and the length of the line in different types of
coordinates (cartesian, parametric, and polar) can help me solve real-life problems. Critical thinking

Q9 Activities that mix engineering and mathematics should also be included when
learning other subjects. Usability

Q10 I think my computer skills are high. Usability
Q11 I think it is a good idea for a senior classmate to teach a math class. Usability

Q12 When I am a fourth-year student grade and see the usefulness of mathematics in other
subjects, I would like the opportunity to give a class to first-year students. Usability

Table 3. Questions included in the questionnaire. All of them were evaluated using a Likert scale.

Question Mean Standard Deviation Standard Error

Q1
Pre-test 4.29 0.77 0.19
Post-test 4.47 0.62 0.15

Q2
Pre-test 3.77 1.09 0.26
Post-test 4.35 0.49 0.12

Q3
Pre-test 3.06 1.25 0.30
Post-test 4.12 0.78 0.19

Q4
Pre-test 2.24 1.15 0.28
Post-test 3.18 1.13 0.27

Q5
Pre-test 3.76 1.03 0.25
Post-test 4.06 0.75 0.18

Q6
Pre-test 3.41 0.87 0.21
Post-test 3.65 0.93 0.22

Q7
Pre-test 3.35 0.79 0.19
Post-test 3.59 0.87 0.21

Q8
Pre-test 2.71 0.99 0.24
Post-test 3.82 1.01 0.25

Q9
Pre-test 3.77 0.97 0.24
Post-test 4.18 0.81 0.20

Q10
Pre-test 3.00 1.00 0.24
Post-test 2.88 1.11 0.27

Q11
Pre-test 4.00 0.71 0.17
Post-test 4.24 0.75 0.18

Q12
Pre-test 2.65 1.37 0.33
Post-test 2.71 1.31 0.32

Through these questions, the authors attempted to measure several important issues
related to the teaching–learning process such as motivation, usability, and critical thinking.
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4. Discussion on the Results

4.1. Questionnaire Given to First-Year Students

In the case of the pre-test, a standardized Cronbach’s alpha coefficient of 0.71955 was
obtained. In the post-test, a standardized alpha equal to 0.83614 was obtained. These
results can be considered good and are in line with other results reported for questionnaires
of a similar type [13].

In general terms, the students, after carrying out the activity, considered that math-
ematics is close to engineering (x = 4.294, SE = 0.151), and that integrals are related to
other subjects of their degree course (x = 4.353, SE = 0.120).

The students also believe that multivariable (calculus) integrals will be useful for their
future professional career (x = 4.118, SE = 0.190), and that lessons based on practical
applications are more useful than theoretical classes (x = 4.06, SE = 0.181). They also
are of the opinion that activities that mix both mathematics and engineering should be
included when teaching or learning other subjects (x = 4.060, SE = 0.181). The students
also considered the proposed methodology (shown by a fourth-year student) to be a good
idea (x = 4.000, SE = 0.171). However, they were not interested in participating as a fourth-
year student in the future (x = 2.7059, SE = 0.318). In this last question, the dispersion
results were noticeably higher than in other questions; hence, a high polarization in terms
of the answer was expected (hypothetically motivated by the fact that some students
have teacher vocation and others do not). Lastly, there is no clear position regarding the
consideration of mathematics as fun and attractive (x = 3.177, SE = 0.274), although the
score was higher after the activity was carried out.

It can be observed that the mean results of the post-test were more favorable than
those of the pre-test for all questions raised, except for question Q10. According to the
students’ responses, the activity caused students to consider their computer skills to be
inferior. This may hypothetically be due to the complexity of the software and the need to
use programming code to solve the activity.

Once the descriptive analysis of both pre-test and post-test responses were analyzed
(Table 3), a hypothesis contrast based on Levene’s test for equality of variances (to check
the homoscedasticity) and on the t-test for equality of means was applied.

Statistically significant differences were detected between the pre- and post-test re-
sults for questions Q3, Q4, and Q8. The results showed that the activity changed the
students’ perception about the importance of mathematics for their professional career (Q3)
(T(28.86) = 2.964, p-value = 0.006) and about the perception that math could be fun and
appealing (Q4) (T(32) = 2.409, p-value = 0.022). Please note that question Q4 was related
to the intrinsic motivation of the student, while questions Q2 and Q3 were related to the
extrinsic motivation. Lastly, differences were detected regarding specific issues about the
activity (Q8) (T(32) = 3.258, p-value = 0.003).

Since the parametric statistical treatment of Likert type data can be a controversial issue
when an ordinal scale is used, two approaches were applied: parametric and nonparametric
tests [32]. An interval scale is handled using parametric statistics [33], but some authors
have argued that nonparametric statistics should be used [34]. In this way, different
nonparametric tests (median test, Mann–Whitney U test, Kolmogorov–Smirnov test, and
Kruskal–Wallis test) were also applied. The results of these tests are shown in Table 4.

Table 4. The p-values of all questions included in the survey were rated using a Likert scale. Results
in bold are those where the p-value was below the significance level (0.05).

Test Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

Kolmogorov–
Smirnov 1.00 0.454 0.046 0.240 0.954 0.954 0.954 0.046 0.954 1.00 0.954 1.00

Median test 1.00 0.707 0.396 0.120 1.00 0.493 0.493 0.016 0.463 0.463 1.000 1.000
Mann–Whitney U 0.586 0.131 0.012 0.024 0.540 0.433 0.413 0.003 0.259 0.786 0.375 0.838
Kruskal–Wallis 0.542 0.087 0.008 0.200 0.495 0.403 0.366 0.002 0.223 0.774 0.332 0.830
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First, the Kolmogorov–Smirnov test was applied, which showed that questions Q4
and Q8 did not conform to a normal distribution. The Mann–Whitney test (like the t-test for
the parametric approach) also showed the existence of statistically significant differences
between pre-test and post-test for questions Q3 (p-value = 0.012), Q4 (p-value = 0.024),
and Q8 (p-value = 0.003), while the median test only detected the existence of significant
differences in the median for question Q8 (p-value = 0.016). The Kruskal–Wallis test
showed statistically significant differences for Q3 (p-value = 0.008) and Q8 (p-value = 0.002).
According to the results, the existence of statistically significant differences in the questions
Q3, Q4, and Q8 was demonstrated for a nonparametric approach based on different
statistics. These results are compatible with those obtained by the parametric tests.

4.2. Participant Observation

Through the results obtained from the questionnaires, a quantitative analysis of the
proposed methodology was carried out. The fourth-year student taking part in the activity
and the professor teaching the subject assessed the feedback received from a qualitative
point of view. Once the activity was completed, the student wrote a report on the observa-
tions made.

The fourth-year student found the activity rewarding, as it allowed him to empathize
with his fellow students by sharing his experience and making it easier for them to face difficult
mathematical concepts in a more enjoyable and practical way. He stated the following:

“I consider that these teaching methodologies are very enriching for both students and
teachers. The mathematics subjects taught in the first years of engineering are usually
very theoretical and overwhelm many students. In my opinion, exploring real-world
problems and challenges from early grades drives students to obtain a deeper knowledge
of the subjects they are studying and encourages them to develop confidence and moti-
vation. Personally, I would have loved to participate in this type of activity when I first
entered college.

At the beginning of the activity, I noticed how the students seemed curious and were
excited to do something new, outside the usual routine. As the session progressed,
although some of them were rather clueless, most students remained attentive and really
seemed to be interested in what we were doing. Overall, the atmosphere was quite
welcoming. I would highly recommend other senior students to continue carrying out
these experiences.”

It is worth stressing that the exercise that seemed to motivate the students the most
was about balancing the crankshaft of an engine, perhaps because many of them were
enrolled in mechanical engineering. When the class finished, the fourth-year student had a
good overall feeling. Even a few days later, a couple of students asked him questions about
different subjects they would be taking the following year.

The fourth-year student also mentioned how his perspective on calculus in several
variables had changed during each subject over the course of this university degree. When
he was first introduced to this area, he had problems understanding its theoretical basis and
found the subject complex; therefore, he became discouraged. Moreover, he did not find it
useful in other engineering subjects. It was not until third year, while studying surveying,
that he realized its importance, as he needed multivariable integration to estimate the
volume of an industrial building excavation.

In sum, he considered these activities to be helpful for most students, not only in terms
of realizing the relationship between mathematical tools taught in first year subjects and
other engineering areas, but also in appreciating the relevance of this subject in terms of
their future career. As a student in his last year of a mechanical and electrical engineering
double degree, he realized that calculus is a key tool for solving many real problems in all
branches of industrial engineering. Therefore, associating real engineering applications
with mathematical concepts that might seem complex could help first-year students to
better understand them. Since some of the activities carried out included complex and
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iterative operations, mathematical software was required. This could also help the students
understand the mathematical operations behind certain functions of some commercial
programs that they might use in their studies and professional career, drawing their
attention to programing.

This teaching experience allowed the fourth-year student to gain mathematical knowl-
edge as he had to return to studying calculus in several variables, in a more in-depth way
and from a different point of view. The experience also permitted him to improve his public
communication skills and sparked an interest in teaching. For this reason, he suggested that
it might be very enriching for future fourth-year students to take part in similar activities.

At the end of the activity, the professor asked several students their opinion about
the experience. The students who responded affirmed their preference for this type of
activity rather than solving more theoretical exercises, and they liked hearing from a more
experienced peer about the usefulness of calculus in other types of subjects normally
associated with their engineering degrees. His comments confirmed the results later
observed in the questionnaire described above.

5. Conclusions

Students should be able to solve daily mathematical-related problems throughout
their professional careers. Therefore, as instructors, we are obliged to provide them with
the tools for solving real problems and teach students how to apply them for the benefit
of society. Additionally, new university programs and requirements, as well as societal
demands, require the subjects to be as practical as possible. This in turn has encouraged
teachers to redesign and rethink how subjects are taught, where subjects are made more
attractive to students. This is particularly true for a topic like mathematics, since students
generally have problems understanding the concepts and do not like the theoretical part
of math-related subjects. For this reason, in this work, an activity was carried out aimed
at improving motivation for learning mathematics in a group of students studying in
different degrees associated with the field of industrial engineering. The activity involved
the participation of a fourth-year student, who is a coauthor of this paper, who explained
how to resolve problems to first-year students. During his explanation of the activity,
the fourth-year student also tried to explain to the students his perception regarding the
importance of mathematics in terms of the subjects he had taken over the course of his
degree. At the same time, the teacher responsible for the subject observed the behavior of
the students and the progress of the activity.

The activity was based on solving different real-life engineering problems in which
multivariable integrals were needed to find the solution, enriching the knowledge acquired
in a competency-based mathematics subject using a problem-based teaching method. The
exercises carried out covered quite different areas, such as fluid mechanics or construction
and topography, some of them involving several calculations; therefore, mathematical
software was required.

First, the students completed a pre-test questionnaire, and, once the activity had been
completed, the students then completed a post-test questionnaire with the same questions
as those presented in the pre-test questionnaire. The results of the questionnaire indicated
that the students on a general level do not perceive mathematics as a fun subject. This
response is in line with other published reports on the topic [14]. Additionally, the results of
the questionnaire were consistent with what both the fourth-year student and the professor
observed in the classroom during the activity, showing that, overall, the activity was
satisfactory and motivating in general terms. The students indicated that they would like
to carry out more activities of this type, which they considered to be helpful for problem
solving, although the results also indicated that the students did not wish to participate in
the future as a fourth-year student.

The results of pre-test and post-test questionnaire were compared using parametric
and nonparametric inferential techniques. Both tests provided similar results, the most re-
markable being that statistically significant differences were found for questions measuring
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intrinsic motivation, extrinsic motivation, and the usefulness of the activity to solve real
problems similar to those reported in other studies [13,14,34].

Lastly, protocols should be developed if we want that students in the latest years of
our degrees show specific tasks/problems to the first-year students related to the practical
application of mathematics in engineering.
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Appendix A

Estimating the volume of a building excavation

The comments in the code used in the classroom are in Spanish for academic purposes. In
this work, they have been translated into English to allow readers to understand them.

(* From the Excel file, we import data that the students previously calculated in another
third-year subject. *)

data = Import[“C:\\data_palomares.xlsx”][[1]]

{{−0.937085, −5.90457, 0.492498}, {13.5512, −7.28953, 0.326174}, {25.4282, −9.473, 0.168468},
{18.6554, −40.5825, 3.69048}, {−6.18117, −16.894, 1.41553}, {−13.2269, −33.8948, 3.37329},
{−7.95319, −66.4691, 6.04395}, {12.8675, −61.5239, 5.9983}, {2.85255, −84.6279, 7.25412},
{−0.12187, −93.8704, 7.74539}, {−26.3122, −86.2181, 7.02484}, {−19.8547, −56.455, 5.19855},
{1.05622, −39.5746, 3.50618}}

data = {{−0.93708456`, −5.90457219`, 0.49249848`}, {13.551175`, −7.28952502`, 0.32617372`},
{25.4281851`, −9.47299653`, 0.16846814`}, {18.6554001`, −40.5824811`, 3.69047693`},
{−6.18117493`, −16.8939747`, 1.41553061`}, {−13.2268731`, −33.8947756`, 3.37329311`},
{−7.95318955`, −66.4691303`, 6.04395385`}, {12.8674808`, −61.5238784`, 5.99830393`},
{2.85254857`, −84.6279358`, 7.25411933`}, {−0.12186975`, −93.8704137`, 7.74539119`},
{−26.312194`, −86.2180903`, 7.02483645`}, {−19.8547003`, −56.4550142`, 5.1985514`},
{1.056217`, −39.574576`, 3.506184`}};

(* We must choose how we want the polynomials to be. We want the polynomials to be like
the one below (for example). *)

pol[x_, y_] = a1 + a2*x + a3*y + a4*xˆ2 + a5*x*y + a6*yˆ2 + a7*xˆ3 + a8*xˆ2*y + a9*x*yˆ2 +
a10*yˆ3 + a11*x*yˆ3 + a12*xˆ2*yˆ2;

(* Thus, the system of vectors, the generators of our vector space, is formed by means of
the below phi functions. *)

phi[i_, x_, y_] =
Which[i == 1, 1, i == 2, x, i == 3, y, i == 4, xˆ2, i == 5, x*y,
i == 6, yˆ2, i == 7, xˆ3, i == 8, xˆ2*y, i == 9, x*yˆ2, i == 10,
yˆ3, i == 11, x*yˆ3, i == 12, xˆ2*yˆ2];

(* Now, we can calculate the coefficients of the polynomial that reaches (or is closest to all
the points from our Excel file, depending on the dimensions of our problem). We evaluate
our basis in all the points and solve the least squares problem. *)

A = Table[ phi[j, data[[i, 1]], data[[i, 2]] ], {i, 1, Length[data]}, {j, 1, 12}];

b = Table[ data[[i, 3]], {i, 1, Length[data]}];

LeastSquares[A, b]
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{0.0565949, 0.0797015, −0.070381, −0.00583912, 0.00981652, 0.000672554, 0.000107678,
−0.000217221, 0.00022677, 5.86501*10ˆ−6, 1.46394*10ˆ−6, −1.51735*10ˆ−6}

(* This problem can also be solved as an optimization problem, and Plot3D can be used to
draw our polynomial and compare it with the real points as shown in Figure A1. *)

NMinimize[ dist, {a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12} ]

{0.00415069, {a1 -> 0.0565949, a2 -> 0.0797015, a3 -> −0.070381, a4 -> −0.00583912, a5 ->
0.00981652, a6 -> 0.000672554, a7 -> 0.000107678, a8 -> −0.000217221, a9 -> 0.00022677, a10
-> 5.86501*10ˆ−6, a11 -> 1.46394*10ˆ−6, a12 -> −1.51735*10ˆ−6}}

Figure A1. Approximation of the plot´s relief with an interpolating polynomial obtained previously
with the least squares method.

(* Finally, we are ready to approximate the volume. *)

ord1 = Ordering[data]; (* Order of the coordinates *)
data2 = {{−26.312194`, −86.2180903`, 7.02483645`},{−19.8547003`, −56.4550142`, 5.1985514`},
{−13.2268731`, −33.8947756`, 3.37329311`},{−0.93708456`, −5.90457219`, 0.49249848`},
{13.551175`, −7.28952502`, 0.32617372`},{25.4281851`, −9.47299653`, 0.16846814`},{18.6554001`,
−40.5824811`, 3.69047693`}, {−6.18117493`, −16.8939747`, 1.41553061`},{12.8674808`,
−61.5238784`, 5.99830393`}, {2.85254857`, −84.6279358`, 7.25411933`},{−0.12186975`,
−93.8704137`, 7.74539119`},{−26.312194`, −86.2180903`, 7.02483645`}};

(* We calculate the lines that will be used in the integration. *)
For[i = 1,i < Length[data2],i++,
m[i] = (data2[[i + 1,2]]-data2[[i,2]])/(data2[[i + 1,1]]-data2[[i,1]]);
b[i] = data2[[i,2]]-m[i]*data2[[i,1]]
];
Integrate[ Z[x, y],{x,data2[[1,1]],data2[[2,1]]},{y,(m [11]*x + b [11]),(m [1]*x + b [1])}] +
Integrate[ Z[x, y],{x,data2[[2,1]],data2[[3,1]]},{y,(m [11]*x + b [11]),(m [2]*x + b [2])}] +
Integrate[ Z[x, y],{x,data2[[3,1]],data2[[4,1]]},{y,(m [11]*x + b [11]),(m [3]*x + b [3])}] +
Integrate[ Z[x, y],{x,data2[[4,1]],data2[[5,1]]},{y,(m [11]*x + b [11]),(m [4]*x + b [4])}] +
Integrate[Z[x, y],{x,data2[[5,1]],data2[[11,1]]},{y,(m [11]*x + b [11]),(m [5]*x + b [5])}] +
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Integrate[Z[x, y],{x,data2[[11,1]],data2[[10,1]]},{y,(m [10]*x + b [10]),(m [5]*x + b [5])}] +
Integrate[Z[x, y],{x,data2[[10,1]],data2[[9,1]]},{y,(m [9]*x + b [9]),(m [5]*x + b [5])}] +
Integrate[Z[x, y],{x,data2[[9,1]],data2[[6,1]]},{y,(m [8]*x + b [8]),(m [5]*x + b [5])}] +
Integrate[Z[x, y],{x,data2[[6,1]],data2[[8,1]]},{y,(m [8]*x + b [8]),(m [6]*x + b [6])}] +
Integrate[Z[x, y],{x,data2[[8,1]],data2[[7,1]]},{y,(m [7]*x + b [7]),(m [6]*x + b [6])}]

10070.1

(* The result is similar to others obtained using engineering software. *)
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Abstract: There is tremendous interest in designing feedback strategy control for clusters in modern
control theory. We propose a novel numerical solution to target team control problems by using
the Hamilton formalism methods. In order to ensure the smooth wireless information exchange,
all members of the team are located in a virtual ellipsoidal container during the whole movement
process. An ellipsoidal container tube is constructed as the external state constraint of the team.
The corresponding value function is then formulated based on collision avoidance conditions and
energy constraints in the process of the team motion. Time-dependent partial differential equations
are formulated based on Hamilton formalism, which have been solved numerically by using the
traditional finite difference method (FDM). The objective of the presented method is to obtain optimal
control and motion trajectory of the cluster at each moment. Lastly, we conduct a simulation study of
unmanned aerial vehicles (UAVs) to demonstrate the performance of the proposed method.

Keywords: ellipsoidal trajectory; team control; value function; finite difference method

MSC: 93-10; 93A16; 49L12

1. Introduction

The control problem has always been an important research object in the field of math-
ematics. Many new theoretical results have been made such as Virtual Reference Feedback
Tuning (VRFT) [1] and indirect adaptive iterative learning control (iAILC) scheme [2]. In
particular, the feedback strategy design of the control system is one of the most important
parts in modern mathematical control theory. It is widely used in synthesizing controls, for
example, team motion in biological systems such as flocks of geese or schools of fish [3]. In
this study, we focus on the method of guiding the team with members (named as “cluster”)
to move towards the given target set [4] by avoiding the collision among the cluster member,
which is the key to realize the optimal control of the bionics cluster. This paper proposes a
decentralized cluster control scheme with strong scalability, which can be widely used in
aerospace engineering problems, such as the formation of unmanned aerial vehicles (UAVs),
multiple spacecrafts cooperation in a specific orbit, multiple small satellites cooperation in
the cavity of a large satellite, and so on.

The intelligent objects investigated in the team control problem include but are not
limited to UAVs, ships, satellites, robots [5–7], and their applications in the fields of military,
aerospace, and industry [8–10]. This kind of problem studies the control of a multi-agent
system according to the requirements of distributed tasks during the process of moving to a
specific target or direction given the constraints of maintaining a predetermined geometric
form and other environmental limitations at the same time. The research scope of formation
control mainly includes the following five aspects: formation generation, formation keeping,
formation switching, formation obstacle avoidance, and formation adaptive problems. In the
present literature, formation control methods mainly include leader–follower strategy [11–17],
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behavior-based method [18,19], virtual structure method [20–23], and artificial potential field
method [24–26].

On the basis of Hamilton formalism, Kurzhanski et al. [27] described this kind of
cluster motion by the terms of the corresponding Hamilton–Jacobi–Bellman (HJB) equa-
tion. Based on the duality theory of convex analysis [28], the solvable conditions for the
trajectory of virtual ellipsoid were given in [29], where the optimal control model and
the corresponding numerical simulation procedures were also provided. Although the
mathematical model and solvable conditions of the cluster motion were available in [4,30],
obtaining accurate and efficient numerical solutions is still a challenging problem that
should develop new numerical techniques, which is pointed out by Kurzhanski in [30,31].

This work applies the Hamilton formalism methods to the numerical solutions of
target team control problems described above. In this problem, the formation of clusters is
decentralized and all members of the cluster should be located within the preset virtual
ellipsoid container [4] during the entire movement process to ensure the smooth wireless
information exchange among the members. Given the collision avoidance conditions and
energy constraints, we present a mathematical model to formulate how the cluster members
achieve the given target set. By solving the corresponding value function, we obtain the
optimal controls of the members. Besides this, a numerical simulation based on the classical
finite difference method (FDM) is provided. We then simulate algorithm by applying it
to the formation of UAVs. This algorithm can be used to realize the formation of UAVs
and control the entire UAV group to move to a preset target position simultaneously while
maintaining the formation. The algorithm guarantees the optimal control of UAVs under
the current constraints, which further proves the successful application of this algorithm to
aerospace engineering problems.

Our study provides an alternative approach to solve decentralized cluster control
problem and demonstrate the scalability and practical feasibility of the model. This model
can be widely used in aerospace engineering problems. The method ensures the flexible
and dynamic adjustment of the members’ relative position, given the whole formation
shape of the cluster remains stable. Finally, several extended applications of the model are
provided to demonstrate the variability of the model.

Our method has significant advantages in dealing with such problems. It overcomes
the inflexibility in the traditional rigid structure motion model in which the relative posi-
tions of the cluster members are fixed, thus, limiting the movement of the cluster when the
obstacle avoidance or the formation strategy change is required, despite that the formation
can be maintained to a certain extent. Compared with the traditional artificial potential field
method [24–26], we solve the problem that the target is unreachable when the obstacle is too
close to the target set while maintaining good formation. Besides this, the cluster control
method proposed in this paper is a decentralized method, which has the advantages of high
anti-interference and fault tolerance compared with the leader–follower strategy [11–17]. In
addition, the traditional virtual structure method [20–23] cannot solve the obstacle avoidance
problem well, but the cluster formation algorithm proposed in this paper can be solved by
adding constraints in the value function.

The paper is organized as follows: The basic model is described in Section 2. The
detailed problem statement is provided in Section 3, and the control problem of cluster
members in the ellipsoid is solved in Section 4. We verify accuracy of the proposed method
through comprehensive numerical examples in Section 5. In Section 6, we conduct a
simulation study to demonstrate effectiveness of the proposed method. Lastly, concluding
remarks are offered in the Section 7.

2. Basic Model

Define a non-degenerate ellipsoid [32] in Rn :

ε(q, Q) ={p ∈ R
n : 〈p − q, Q−1(p − q)〉 ≤ 1}, q ∈ R

n, Q ∈ R
n×n, Q = Q′ > 0, (1)
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with center q and configuration matrix Q [33]. On a given finite time interval [t0, θ], suppose
functions q(t), Q(t) are piece-wise continuous differentiable and satisfy the following
dynamic system of equations [29]:

q̇(t) = A(t)q(t) + C(t)v(t), q(t0) = q0, (2)

Q̇(t) = T(t)Q(t) + Q(t)T′(t) + B(t)V(t)B′(t), (3)

T(t) = T′(t), V(t) = V′(t), Q(t0) = Q0, (4)

where the coefficient matrices A(t), B(t), C(t) and T(t) are assumed to be continuously
differentiable, Ec[t] = ε(q(t), Q(t)) represents the motion of the virtual ellipsoid whose
continuity is given in Appendix A, and v(t) ∈ Rn, V(t) ∈ Rn×n control the trajectory of the
center q(t) of the ellipsoid and the configuration matrix Q(t) of the ellipsoid, respectively.
Systems (2)–(4) are considered under the constraints [29]:

〈v(t), v(t)〉≤μ2(t), [V(t), V(t)]≤υ2(t), (5)

[Q(t), Q(t)]≤λ+
2, λ+ > 0, (6)

[Q(t), Q(t)]≥λ−2, λ+ > λ− > 0, (7)

where and elsewhere, angle brackets represent the inner product of vectors, and square
brackets stand for the inner product of matrices. The inner product of matrices A and B is
defined as [A, B] = tr(A′B), where tr(A′B) denotes the trace of matrix A′B [34], suppose
that functions μ2(t) and υ2(t) are piece-wise continuous functions with only finite first
kind discontinuities. In summary, the inequality condition (5) is a constraint on energy
consumption; conditions (6) and (7) are constraints of ellipsoid volume, where λ+ and λ−
are given constants.

Consider the following equations of joint motions for a family of control systems:

ẋ(t) = u(t), x ∈ R
n×m, u ∈ R

n×m, (8)

x(t0) = x0, (9)

x = {x1, x2, · · · , xm}, u = {u1, u2, · · · , um}, (10)

xi =

⎛⎜⎜⎜⎝
xi1
xi2
...

xin

⎞⎟⎟⎟⎠, ui =

⎛⎜⎜⎜⎝
ui1
ui2
...

uin

⎞⎟⎟⎟⎠, i = 1, · · · , m, (11)

and Equations (8)–(11) describe a joint motion of m systems with phase vectors xi, ẋi ∈ Rn,
and controls ui ∈ Rn(i = 1, · · · , m) subject to hard geometrical constraints

ui ∈ Pi, i = 1, · · · , m, (12)

in which Pi ⊂ Rn stands for a symmetric convex compact set.

Definition 1 ([4]). A solution x(t) of systems (8)–(11) described by m trajectories xi(t) is called a
team motion on the interval t ∈ [t0, θ] if the following constraints are fulfilled:

γ2 ≤ d2(xj(t), xk(t)), 1 ≤ j < k ≤ m, (13)

xi(t) ∈ Ec[t] = ε(q(t), Q(t)) ⊂ Rn, i = 1, · · · , m, (14)

where d(xj(t), xk(t)) is the Euclidean distance between points xj(t) and xk(t), and γ is a given
constant. The team members satisfying the constraints (13) and (14) are named as a ‘cluster’.
Constraint (13) provides collision avoidance condition for each of the members located inside the
cluster, while condition (14) ensures that every member is close to each other to maintain the overall

309



Mathematics 2022, 10, 1970

formation shape. These two conditions must be consistent. The ellipsoid Ec[t] = ε(q(t), Q(t)), as
shown in Equation (14), can represent a virtual structure which contains all cluster members and
also satisfies the above-mentioned collision avoidance condition of the cluster members.

3. Problem Statement

Given a finite time interval [t0, θ], a positive number σ > 0, an initial ellipsoid Ec[t0] =
ε(q(t0), Q(t0)), and the initial state x(t0) of cluster members, our goal is to find optimal
controls ui(t)(i = 1, · · · , m) over the above systems xi(t)(i = 1, · · · , m) so that the cluster
motion reaches a given target set under constraints (13) and (14), which is

Mσ = {q, Q : 〈q − m f , q − m f 〉+ [Q − M, Q − M] ≤ σ2, M = M′ > 0}. (15)

Here the target set Mσ is given in the form of the neighborhood of an ellipsoid
EM = ε(m f , M).

This problem mentioned above can be divided into two sub-problems. The first is to
find the control of the ellipsoid so as to obtain the motion of the virtual ellipsoid in the
time interval [t0, θ] and satisfy Ec(θ) ∈ Mσ, that is, the system (2)–(4) with the constraints
(5)–(7) reaches the preset set of targets. Solving this problem is equivalent to minimizing
the following function:

Ψ(t, q, Q|α1, α2, β1, β2, v(·), V(·)) =
∫ θ

t

(
α1〈v(τ), v(τ)〉

+ α2[V(τ), V(τ)] + β1(λ
2
+ − [Q(τ), Q(τ)]) + β2([Q(τ), Q(τ)]− λ2

−)
)

dτ

+ (〈q(θ)− m f , D(q(θ)− m f )〉+ [Q(θ)− M,D(Q(θ)− M)]),

(16)

where the constant coefficients α1, α2, β1, β2 ≥ 0, the configuration parameters D = D′ > 0,
and D = D′ > 0. The solution to this problem has been given in [29]. The second is to
obtain the numerical solutions of target team control problems under the constraints (13)
and (14), which is another important part of the present paper.

4. Control of Cluster Members in the Ellipsoid

The solution of the first problem generates function Ec(t), which is the virtual ellipsoid
tube containing the cluster x(t) and finally moving to the target set Mσ. The main idea of
the method to solve the second problem is using the pre-constructed motion Ec(t) as the
reference motion. Therefore, the problem can be divided into two situations: One is when
the initial state of the cluster satisfies x(t0) /∈ Ec(t0), the cluster members gather towards
the virtual ellipsoid. The other is when the initial state of the cluster satisfies x(t0) ∈ Ec(t0),
the cluster members follow the virtual ellipsoid tube to reach the given target set.

Consider the dynamic equations of the systems (8)–(11) with the constraints (13) and
(14). Different to the methods available in existing literatures, which are to maximize the
distance between m members, this paper considers minimizing the following function:

ϕ(t, x, u) =
∫ θ

t

(
ω

m

∑
i=1

〈ui(τ), ui(τ)〉 +
m

∑
i=1

βi〈xi(τ)− q(τ), Q−1(τ)(xi(τ)− q(τ))〉

− 1
2
(

∑
1≤i<j≤m

κij〈xi(τ)− xj(τ), xi(τ)− xj(τ)〉

+ ∑
1≤i<j≤m

κji〈xj(τ)− xi(τ), xj(τ)− xi(τ)〉
))

dτ

+
m

∑
i=1

〈xi(θ)− mi, xi(θ)− mi〉,

(17)

where ω, βi, κij, κji ≥ 0(i, j = 1, · · · , m) are constant coefficients, mi ∈ Mσ(i, j = 1, · · · , m)
are the terminal targets of each cluster member, 〈ui(τ), ui(τ)〉 depicts the energy con-
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sumed during the movement of the cluster members, 〈xi(τ)− q(τ), Q−1(τ)(xi(τ)− q(τ))〉
describes the distance between the cluster members and the virtual ellipsoid, 〈xi(τ) −
xj(τ), xi(τ)− xj(τ)〉 represents the distance between cluster members, and the last one
〈xi(θ)− mi, xi(θ)− mi〉 figures the gap between the terminal state of the cluster members
and the terminal target.

According to the above analysis, the corresponding value function (objective function)
can be established as follows:

VE(t, x) = min
ui(·)

{ ∫ θ

t

(
ω

m

∑
i=1

〈ui(τ), ui(τ)〉 +
m

∑
i=1

βi〈xi(τ)− q(τ), Q−1(τ)(xi(τ)− q(τ))〉

− 1
2
(

∑
1≤i<j≤m

κij〈xi(τ)− xj(τ), xi(τ)− xj(τ)〉

+ ∑
1≤i<j≤m

κji〈xj(τ)− xi(τ), xj(τ)− xi(τ)〉
))

dτ

+
m

∑
i=1

〈xi(θ)− mi, xi(θ)− mi〉
}

,

(18)

with the terminal condition VE(θ, x) =
m
∑

i=1
〈xi(θ)− mi, xi(θ)− mi〉. It is interesting to note

that the value function (18) is the solution of the following HJB equation:

∂VE
∂t

+ min
ui(·)

{ m

∑
i=1

〈∂VE
∂xi

, ẋi〉+ ω
m

∑
i=1

〈ui(t), ui(t)〉+
m

∑
i=1

βi〈xi − q, Q−1(xi − q)〉

− 1
2
(

∑
1≤i<j≤m

κij〈xi − xj, xi − xj〉+ ∑
1≤i<j≤m

κji〈xj − xi, xj − xi〉
)

∣∣∣xi = xi(t), q = q(t), Q = Q(t)
}
= 0.

(19)

For briefly, assume

F =
m

∑
i=1

〈∂VE
∂xi

, ẋi〉+ ω
m

∑
i=1

〈ui(t), ui(t)〉+
m

∑
i=1

βi〈xi − q, Q−1(xi − q)〉

− 1
2
(

∑
1≤i<j≤m

κij〈xi − xj, xi − xj〉+ ∑
1≤i<j≤m

κji〈xj − xi, xj − xi〉
)
,

(20)

and from
∂F

∂ui(t)
= 0, i = 1, · · · , m, (21)

we can obtain
ui(t) = − 1

2ω

∂VE
∂xi

, i = 1, · · · , m. (22)

According to the quadratic form of xi in Equation (18), we construct the value function
VE(t, x) as

VE(t, x) =
m

∑
i=1

〈xi, sii(t)xi〉+
m

∑
i=1

〈xi, ki(t)〉+
1
2
(

∑
1≤i<j≤m

〈xi, sij(t)xj〉

+ ∑
1≤i<j≤m

〈xj, sji(t)xi〉
)
+ r(t),

(23)
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where the parameters sii(t) = s′ii(t) > 0, ki(t), r(t) and sij(t) = s′ij(t) > 0 are continuously
differentiable and satisfy sij(t) = sji(t), κij = κji. Taking the partial derivative of the above
equation for t and xi(i = 1, · · · , m) respectively, we obtain:

∂VE
∂t

=
m

∑
i=1

〈xi, ṡii(t)xi〉+
m

∑
i=1

〈xi, k̇i(t)〉+
1
2
(

∑
1≤i<j≤m

〈xi, ṡij(t)xj〉

+ ∑
1≤i<j≤m

〈xj, ṡji(t)xi〉
)
+ ṙ(t),

(24)

∂VE
∂xi

=2sii(t)xi + ki(t) +
1
2
( ∑

j∈Bi

sij(t)xj + ∑
j∈Bi

sji(t)xj), i = 1, · · · , m, (25)

where set Bi as Bi = {j ∈ {1, · · · , m}
∣∣j �= i}. Substituting Equations (22) into (26) provides

∂VE
∂t

+
{ m

∑
i=1

〈∂VE
∂xi

,− 1
2ω

∂VE
∂xi

〉+ ω
m

∑
i=1

〈− 1
2ω

∂VE
∂xi

,− 1
2ω

∂VE
∂xi

〉+
m

∑
i=1

βi〈xi − q, Q−1(xi − q)〉

− 1
2
(

∑
1≤i<j≤m

κij〈xi − xj, xi − xj〉+ ∑
1≤i<j≤m

κji〈xj − xi, xj − xi〉
)

∣∣∣xi = xi(t), q = q(t), Q = Q(t)
}
= 0.

(26)

Then, substituting Equations (24) and (25) into (26), yields

m

∑
i=1

〈xi, ṡii(t)xi〉+
m

∑
i=1

〈xi, k̇i(t)〉+
1
2
( ∑

1≤i<j≤m
〈xi, ṡij(t)xj〉+ ∑

1≤i<j≤m
〈xj, ṡji(t)xi〉) + ṙ(t)

− 1
4ω

m

∑
i=1

〈(2sii(t)xi + ki(t) +
1
2
( ∑

j∈Bi

sij(t)xj + ∑
j∈Bi

sji(t)xj)), 2sii(t)xi + ki(t)

+
1
2
( ∑

j∈Bi

sij(t)xj + ∑
j∈Bi

sji(t)xj)〉+
m

∑
i=1

βi〈xi − q, Q−1(xi − q)〉

− 1
2
( ∑

1≤i<j≤m
κij〈xi − xj, xi − xj〉+ ∑

1≤i<j≤m
κji〈xj − xi, xj − xi〉) = 0.

(27)

For the above equation, matching the coefficients of like powers of xi(t)(i = 1, · · · , m),
the following differential equations can be obtained:

ṡii(t)−
1

4ω
(4s′ii(t)sii(t) + ∑

j∈Bi

sij(t)sji(t)) + βiQ−1 − 1
2 ∑

j∈Bi

(κij + κji)I = 0, sii(θ) = I, (28)

k̇i(t)−
1

4ω
(4s′ii(t)ki(t) + ∑

j∈Bi

(sij(t) + sji(t))kj(t))− 2βiQ−1q = 0, ki(θ) = −2βimi, (29)

ṡij(t)−
1

4ω
(4s′ii(t)(sij(t) + sji(t)) + 2 ∑

l �=i,j
sil(t)sjl(t)) + (κij + κji)I = 0, sij(θ) = 0, (30)

ṙ(t)− 1
4ω

(
m

∑
i=1

k′
i(t)ki(t)) +

m

∑
i=1

βiq′Q−1q = 0, r(θ) =
m

∑
i=1

mi
′mi, (31)
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where 1 ≤ i < j ≤ m. The differential Equations (28)–(31) can be solved here numerically
using the traditional finite difference method (FDM) by Explicit Euler’s method:

ṡii(tk+1) = (sii(tk)− sii(tk+1))/(Δt),

k̇i(tk+1) = (ki(tk)− ki(tk+1))/(Δt),

ṡij(tk+1) = (sij(tk)− sij(tk+1))/(Δt),

ṙ(tk+1) = (r(tk)− r(tk+1)/(Δt),

(32)

the specific solution process is provided in Appendix B.

Theorem 1. The value function (23) in which the parameters are determined by system (28)–
(31) specifies a solution of the optimization problem (18). In this case, the optimal controls
ui(t)(i = 1, · · · , m) are given by (22), namely,

ui(t) = − 1
2ω

(2sii(t)xi + ki(t) +
1
2
( ∑

j∈Bi

sij(t)xj + ∑
j∈Bi

sji(t)xj)), i = 1, · · · , m, (33)

where the parameters sii(t), ki(t), r(t), sij(t) and sji(t) are solved by differential Equations (28)–(31).

Thus, for given ω, βi, κij, κji ≥ 0(i, j = 1, · · · , m) , we can obtain the trajectory of
system members. In this way, for a given m, the numerical solution of team control can be
obtained. The optimality proof for controls ui(t)(i = 1, · · · , m) is given in Appendix C.

5. Numerical Results and Discussions

Numerical results for the problem are given below using the Matlab R2014b software.
We consider a two-dimensional (2D) problem defined on the time interval t ∈ [0, 1] with
m = 3. We first calculate the trajectory of the virtual ellipsoid according to the calculation
method given in [29], and then use the computed result as the reference motion of the
cluster in this paper. The initial states of the cluster members are taken to be x1(0) =
[0, 0.5], x2(0) = [0.5, 0], x3(0) = [0, 0]. For terminal targets, we here set m1 = [0.75, 0.75],
m2 = [1.25, 1.25], m3 = [1, 1]. The parameters here are chosen as ω = 0.1, β1 = 5.87,
β2 = 5.88, β3 = 5.85, κ12 = 1.13, κ13 = 1.15, κ23 = 1.10. Taking the state information of the
virtual ellipsoid and the above numerical values as known conditions, and substituting
them into the algorithm given in this paper for derivation, the problem can be transformed
into a differential equation system of the form (28)–(31). Solving them by Explicit Euler’s
method, the numerical results for the team motion of all cluster members can be seen in
Figure 1. If the initial state of the cluster members changes to x1(0) = [0, 1.5], x2(0) = [2, 0],
x3(0) = [0, 0], the team motion shown in Figure 2 can be obtained. If the parameters κ12,
κ13, κ23 are taken to be κ12 = 1.03, κ13 = 1.05, κ23 = 1.00, the resulting team motion can
be found in Figure 3, where we can observe from Figure 4 that there is still no collision
between each of the cluster members.
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(a)

(b)

(c)

Figure 1. Team motion with initial states x1(0) = [0, 0.5], x2(0) = [0.5, 0], x3(0) = [0, 0] and
parameters ω = 0.1, β1 = 5.87, β2 = 5.88, β3 = 5.85, κ12 = 1.13, κ13 = 1.15, κ23 = 1.10. (a) The
state-time relationship diagram of the cluster. (b) The control-time relationship diagram of the cluster.
(c) The norm of the control-time relationship diagram of the cluster.
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(a)

(b)

(c)

Figure 2. Team motion with initial states x1(0) = [0, 1.5], x2(0) = [2, 0], x3(0) = [0, 0] and parameters
ω = 0.1, β1 = 5.87, β2 = 5.88, β3 = 5.85, κ12 = 1.13, κ13 = 1.15, κ23 = 1.10. (a) The state-time
relationship diagram of the cluster. (b) The control-time relationship diagram of the cluster. (c) The
norm of the control-time relationship diagram of the cluster.
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(a)

(b)

(c)

Figure 3. Team motion with initial states x1(0) = [0, 0.5], x2(0) = [0.5, 0], x3(0) = [0, 0] and
parameters ω = 0.1, β1 = 5.87, β2 = 5.88, β3 = 5.85, κ12 = 1.03, κ13 = 1.05, κ23 = 1.00. (a) The
state-time relationship diagram of the cluster. (b) The control-time relationship diagram of the cluster.
(c) The norm of the control-time relationship diagram of the cluster.
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Figure 4. Distance between cluster members with parameters ω = 0.1, β1 = 5.87, β2 = 5.88,
β3 = 5.85, κ12 = 1.03, κ13 = 1.05, κ23 = 1.00.

In Figures 1–3, the vertical axis stands for the time direction. The X axis represents the
first component of the state vector of the cluster members, while the Y axis represents the
second in three Figures 1a, 2a and 3a, and they represent the two components of the control
vector of the cluster members, respectively, in Figures 1b, 2b and 3b. The vertical elliptical
tube depicts the initial ellipse, and the curved elliptical tube depicts the elliptical orbit
under optimal control, which can be obtained according to [29]. The three curves represent
the trajectories of the three members in the cluster respectively. In Figure 4, the horizontal
axis denotes the time direction, and the vertical axis is the distance between each of the
member during the movement. In summary, based on the value function constructed in
this article, the optimal control obtained by the convex analysis technique and the Hamilton
method can achieve the preconceived goals.

In summary, based on the value function constructed in this paper, the optimal control
obtained by the convex analysis technique and the Hamilton method can achieve the
preconceived goals: The first is to control the system members whose initial state are inside
the initial ellipsoid to follow the movement of the virtual ellipsoid to reach a predetermined
target set. The second is that, for cluster members whose initial state are not in the initial
ellipsoid, they can enter the ellipsoid trajectory and follow the movement of the virtual
ellipsoid to reach a predetermined target set through the applied control. In the above-
mentioned movement process, the cluster members satisfy all the constraints.

6. Aerospace Applications

The swarm formation algorithm provided in this article can be widely used in aerospace
engineering problems, such as the formation of UAVs, the problem of multiple spacecrafts
working together in a specific orbit, and the formation of multiple small satellites wrapped
in the cavity of a large satellite. Taking the UAV formation problem as an example, the
cluster described in this paper represents the UAV swarm, and the virtual ellipsoid where
the cluster is located can represent the safe area where the UAV can move. We verify the
application of the algorithm in this article to the formation of UAV swarms through the
AirSim&Unreal Engine simulation platform. Taking three UAVs as an example, we choose
to simulate numerical examples shown in Figures 1 and 2. The unit of distance is ten meters
and the entire simulation process takes ten seconds. We use the geodetic coordinate system
and assume that the drone remains at an altitude of fifty meters throughout the simulation.
Here, the state vs. time of the three UAVs are shown in Figures 1a and 2a, the control vs.
time of the three UAVs are shown in Figures 1b and 2b. Lastly, the norm of control vs. time
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of the three UAVs are shown in Figures 1c and 2c. The results are shown in Figures 5 and 6,
which demonstrate the feasibility of this algorithm in a real environment.

Figure 5. The movement of the UAV swarm corresponding to Figure 1.

Figure 6. The movement of the UAV swarm corresponding to Figure 2.
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Figure 5 shows the trajectory when the initial state of the UAV swarm is in the initial
ellipse, and Figure 6 shows the trajectory when the initial state of the UAV swarm is not
in the initial ellipse. The upper left corner of both figures is a partial enlarged view of the
figure. In these figures, the four ellipses correspond to the security area of the UAV cluster
at four instants (t = 0.00, t = 0.40, t = 0.85 and t = 1.00). We can observe that for the UAV
swarm whose initial state is in the initial ellipse, the given set of targets can be reached
by the control we exert on it and the entire movement process remains within the virtual
ellipse. On the contrary, for the UAV swarm whose initial state is not in the initial ellipse,
the control we exert on it will make it gradually enter the virtual ellipse first, and then
move to the given target set. It is worth mentioning here that the control strategy of the
UAV swarm given in this article is decentralized and the control strategy of each UAV is
optimized in real-time.

In addition to the problems described in this article, considering the complex real
environment, we list the following situations for different practical needs. For each situation,
corresponding problem-solving ideas are given.

Case 1: Considering that the movement of the UAV swarm will be affected by the
wind field, we can rewrite the system dynamic Equation (8) as:

ẋ(t) = u(t) + w(x, t), x ∈ R
n×m, u ∈ R

n×m, w ∈ R
n×m, (34)

where w(x, t) is the expression for the wind field which the cluster is subjected. It depends
not only on time, but also on the state of the cluster. Assuming the remaining conditions
keep unchanged, according to the optimization algorithm given in this paper, the optimal
trajectory of the UAV swarm under the influence of the wind field can be obtained.

Case 2: If the UAV swarm needs to avoid obstacles (such as enemy fighters or radar ar-
eas) during the movement, we can add an obstacle term to the integral term of Equation (16)
to achieve the effect of avoiding obstacles for the entire UAV swarm. Take the exam-
ple of avoiding an obstacle χ, we could add the term −ςD(Ec[t], O) to the integrand in
Equation (16). Here, ς is a constant coefficient, O denotes the minimal convex compact set
containing the external obstacle χ, and D(Ec[t], O) is defined as:

D(Ec[t], O) = in f {‖z∗ − z∗∗‖, z∗ ∈ Ec[t], z∗∗ ∈ O}. (35)

Following the calculation process given in this work, the ellipsoidal trajectory that
satisfies the collision avoidance of the external obstacle can be calculated in advance forms
a reference motion, and then the cluster motion on the premise of avoiding the collision
between cluster and the external obstacle can be obtained.

Case 3: Considering the fact that the dimension of the control input is different from
the dimension of the UAV state, we can replace Equation (8) with

ẋ(t) = A(t)x(t) + B(t)u(t), x ∈ R
n×m, u ∈ R

p×m, (36)

where the coefficient matrices A(t) ∈ Rn×n and B(t) ∈ Rn×p are assumed to be continu-
ously differentiable.

Case 4: The term β1(λ
2
+ − [Q(τ), Q(τ)]) + β2([Q(τ), Q(τ)]− λ2

−) in Equation (16) in
this paper is the constraint on the volume of the virtual ellipsoid, and we can also constrain
the sum of squares of semiaxes of the ellipsoid by replacing it with β1(λ

2
+ − trQ(τ)) +

β2(trQ(τ)− λ2
−).

In short, we can achieve different practical needs by transforming the system dynamic
equation or value function, and the algorithm framework provided in this work is still
applicable. On the other hand, it also shows that our proposed model has strong variability
and is more suitable for environments with high scalability requirements.

319



Mathematics 2022, 10, 1970

7. Conclusions

This work proposes a solving model of the decentralized cluster control problem and
demonstrates the scalability and practical feasibility of the model. It is mainly to construct
a new matrix valued function based on the comprehensive consideration of cluster member
collision avoidance and energy constraints. Applying the Hamilton formalism methods,
the model and the optimization algorithm of the cluster objective control problem are given,
and the numerical method of the optimal control of the cluster members satisfying the
constraints is established. Furthermore, the algorithm provided in this article can meet
the different needs of practical problems. In addition to the aforementioned, we can also
flexibly adjust the distance between cluster members by adjusting parameters in value
function. As a consequence, the proposed method provides a new framework for general
team control problems and also provides an efficient alternative for cluster problems in
bionics. Simultaneously, this paper offers research ideas for the study of military combat
formations or ecological groups.

Several problems remain to be addressed in future work. Firstly, we may improve
computational efficiency by applying the proposed method in parallel computing system.
Secondly, our algorithm focuses on single-cluster coordinated movement under static
reorganization. It is of interest to study potentials of the presented method in multi-cluster
and dynamic reorganization setting. Lastly, we want to combine this control problem with
game theory to study the obstacle avoidance problem in the movement of virtual ellipsoid,
including fixed obstacles and moving obstacles.
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Appendix A

In this appendix, the proof of the continuity of the virtual ellipsoid is given.
It is known that the center and the configuration matrix of the ellipsoid satisfy the

dynamic equations:
q̇(t) = A(t)q(t) + C(t)v(t), q(t0) = q0, (A1)

Q̇(t) = T(t)Q(t) + Q(t)T′(t) + B(t)V(t)B′(t), (A2)

T(t) = T′(t), V(t) = V′(t), Q(t0) = Q0, (A3)

where the given coefficient matrices A(t), B(t), C(t), T(t), μ(t), and ν(t) are bounded. For
the convenience of description, we assume that the time interval t ∈ [t0, θ] was divided
into n sections, the step length is recorded as Δt.

Let ‖A(t)‖ ≤ A, ‖B(t)‖ ≤ B, ‖C(t)‖ ≤ C, ‖T(t)‖ ≤ T ,
√
〈v(t), v(t)〉≤|μ(t)| ≤ μ0.

For the center of the virtual ellipsoid q(t), t ∈ [t0, θ], Δt = θ−t0
nt

where nt denotes the
number of time steps, the following inequality holds:
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‖q(t0 + Δt)‖ ≤ ‖q(t0)‖+ Δt‖q̇(t0)‖
≤ ‖q(t0)‖+ Δt(‖A(t0)q(t0)‖+ ‖C(t0)v(t0)‖)
≤ ‖q(t0)‖+ Δt(A‖q(t0)‖+ Cμ0)

≤ (1 +AΔt)‖q(t0)‖+ Cμ0Δt,

(A4)

‖q(t0 + Δt + Δt)‖ ≤ (1 +AΔt)‖q(t0 + Δt)‖+ Cμ0Δt

≤ (1 +AΔt)[(1 +AΔt)‖q(t0)‖+ Cμ0Δt] + Cμ0Δt

≤ (1 +AΔt)[(1 +AΔt)‖q(t0)‖+ Cμ0Δt] + Cμ0Δt

≤ (1 +AΔt)2‖q(t0)‖+ (1 +AΔt)Cμ0Δt + Cμ0Δt,

(A5)

· · ·

‖q(t0 + ntΔt)‖ ≤ (1 +AΔt)nt‖q(t0)‖+ (1 +AΔt)nt−1Cμ0Δt

+ (1 +AΔt)nt−2Cμ0Δt + ... + Cμ0Δt

= (1 +AΔt)nt‖q(t0)‖+ Cμ0Δt
1 − (1 +AΔt)nt

1 − (1 +AΔt)

= (‖q(t0)‖+
Cμ0

A )(1 +AΔt)nt − Cμ0

A ,

(A6)

It is obvious that (1 +AΔt)nt = (1 +A θ−t0
nt

)nt is monotone increasing with nt, and

lim
nt→∞

(1 +AΔt)nt = lim
nt→∞

(1 +A θ − t0

nt
)nt = eA(θ−t0). (A7)

Thus,

‖q(t0 + ntΔt)‖ ≤ (‖q(t0)‖+
Cμ0

A )eA(θ−t0) − Cμ0

A (A8)

is bounded. The same boundedness holds for any q(t0 + iΔt), i = 0, 1, ...nt. Let nt → ∞ this
gives proof that q(t) is bounded over [t0, θ].

Therefore,

‖q(t + Δt)− q(t)‖ ≤ Δt‖q̇(t)‖ ≤ Δt(‖A(t)‖‖q(t)‖+ ‖C(t)‖‖v(t)‖)
≤ Δt(A‖q(t)‖+ Cμ0)

(A9)

gives proof that the function q(t) satisfies the Lipschitz continuity condition, and the
function q(t) is continuously proved.

The continuity of Q(t) can be proved in a similar way. Thus, the continuity of the
virtual ellipsoid Ec(t) = ε(q(t), Q(t)) is proved.
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Appendix B

Algorithm A1 Algorithmic Steps for Numerical Computing

Require: The total time interval [t0, θ], the number of time step nt, the center q(t) and
configuration matrix Q(t) for the ellipsoid ε(q, Q), the number of cluster members m,
the destination mi for every member, and the coefficients ω, βi, κij for i = 1, 2, ..., m, j =
1, 2, ..., m.

Ensure: The optimal control u∗
i (t) for the cluster member with index i = 1, 2, ..., m at the

following time node: t0, t0 + Δt, t0 + 2Δt, ..., t0 + nΔt = θ.
1: Δt = θ−t0

nt
;

2: s=0;
3: for (i = 1; i <= m;i ++)
4: s+ = m′

imi;
5: r(θ) = s;
6: ki(θ) = −2βimi;
7: for (t = θ; t > t0; t− = Δt){
8: for (i = 1; i <= m; i ++){
9: sii(θ) = Im;

10: M1 = M2 = zeros(m, m), z1 = z2 = z3 = 0, v1 = v2 = zeros(m, 1);
11: //zeros(m,n) stands for 0m×n
12: for (j = 1; j <= m; j ++){
13: sij(θ) = 0;
14: z1 = k′

i(t)ki(t);
15: z2 = βiq

′(t)Q−1(t)q(t);}
16: for l = 1; l <= m; l ++;
17: z3+ = sil(t)sjl(t);
18: if(i!=j){
19: M1+ = sij(t)sji(t);
20: M2+ = (κij + κji)Im;
21: v1+ = [sij(t) + sji(t)]kj(t);
22: sii(t − Δt) = sii(t) + { 1

4ω [4s′ii(t)sii(t)]− M1 − βiQ−1(t) + 1
2 M2} ∗ Δt;

23: r(t)(t − Δt) = r(t) + ( 1
4ω z1 − z2) ∗ Δt;

24: ki(t − Δt) = ki(t) + { 1
4ω [4s′ii(t)ki(t)− v1] + 2βiQ−1(t)q(t)]} ∗ Δt;

25: sij(t − Δt) = sij(t) + { 1
4ω 4s′ii(t)[sij(t) + sji(t)] + 2z3 + (κij + κji)Im} ∗ Δt;

26: for (j = 1; j <= m; j ++)
27: if (j! = i)
28: v2+ = (sij(t − Δt) + sji(t − Δt))xj;
29: ui(t)(t − Δt) = − 1

2ω [2sii(t − Δt)xi + ki(t − Δt) + 1
2 v2];}}

Appendix C

In this Appendix, we give the conditions and proofs for the optimality of the control.
For simplicity in the proof process, we define the following notation:

F(x(t), u(t), t) = ω
m

∑
i=1

〈ui(t), ui(t)〉 +
m

∑
i=1

βi〈xi(t)− q(t), Q−1(t)(xi(t)− q(t))〉

− 1
2
(

∑
1≤i<j≤m

κij〈xi(t)− xj(t), xi(t)− xj(t)〉

+ ∑
1≤i<j≤m

κji〈xj(t)− xi(t), xj(t)− xi(t)〉

(A10)

and
f (x(t), u(t), t) = ẋ = u(t). (A11)
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Set

H[x(t), u(t), t] =
m

∑
i=1

〈∂VE
∂xi

, ẋi〉+ ω
m

∑
i=1

〈ui(t), ui(t)〉+
m

∑
i=1

βi〈xi − q, Q−1(xi − q)〉

− 1
2
(

∑
1≤i<j≤m

κij〈xi − xj, xi − xj〉+ ∑
1≤i<j≤m

κji〈xj − xi, xj − xi〉
)
,

(A12)

we can obtain the relation

H[x(t), u(t), t] = F(x(t), u(t), t) + λ(t) f (x(t), u(t), t), (A13)

where λ(t) = ∂VE
∂x |x=x∗ with x∗(t) being the optimal trajectory. Assuming u∗ is the control

obtained in the text, then we have

H[x(t), u∗(t), t] = − 1
4ω

m

∑
i=1

〈(2sii(t)xi + ki(t) +
1
2
( ∑

j∈Bi

sij(t)xj + ∑
j∈Bi

sji(t)xj)),

2sii(t)xi + ki(t)+
1
2
( ∑

j∈Bi

sij(t)xj + ∑
j∈Bi

sji(t)xj)〉+
m

∑
i=1

βi〈xi − q, Q−1(xi − q)〉

− 1
2
( ∑

1≤i<j≤m
κij〈xi − xj, xi − xj〉+ ∑

1≤i<j≤m
κji〈xj − xi, xj − xi〉) .

(A14)

At the same time, we mark

S(x, θ) =
m

∑
i=1

〈xi(θ)− mi, xi(θ)− mi〉, (A15)

then, the following theorem holds.

Theorem A1. u∗ is an optimal control if H[x(t), u∗(t), t] is convex in x for each t and S(x, θ) is
convex in x.

Proof. From the above definition we know

H[x(t), u(t), t] ≥ H[x(t), u∗(t), t]. (A16)

Since H[x(t), u∗(t), t] is differential and convex in x and we assume that x∗(t) is the
optimal trajectory, we can use the definition of convex function to obtain

H[x(t), u(t), t] ≥ H[x∗(t), u(t), t] + Hx[x∗(t), u(t), t][x(t)− x∗(t)], (A17)

hence we have

H[x(t), u(t), t] ≥ H[x∗(t), u∗(t), t] + Hx[x∗(t), u∗(t), t][x(t)− x∗(t)]. (A18)

By definition of H in (A13), yields

F(x(t), u(t), t) + λ(t) f (x(t), u(t), t) ≥ F(x∗(t), u∗(t), t) + λ(t) f (x∗(t), u∗(t), t)

− λ̇(t)[x(t)− x∗(t)].
(A19)

Using Equation (A11), transposing, and regrouping,

F(x∗(t), u∗(t), t)− F(x(t), u(t), t) ≤ λ̇(t)[x(t)− x∗(t)] + λ(t)[ẋ(t)− ẋ∗(t)]. (A20)

323



Mathematics 2022, 10, 1970

Furthermore, since S(x, θ) is a differential and convex function, we have

S(x(θ), θ) ≥ S(x∗(θ), θ) + Sx(x∗(θ), θ)[x(θ)− x∗(θ)] (A21)

or,
S(x∗(θ), θ)− S(x(θ), θ) ≤ −Sx(x∗(θ), θ)[x(θ)− x∗(θ)]. (A22)

Integrating both sides of (A20) from t0 to θ and adding (A21), we have

∫ θ

t0

[F(x∗(t), u∗(t), t)dt + S(x∗(θ), θ)]−
∫ θ

t0

[F(x(t), u(t), t)dt + S(x(θ), θ)]

≤ [λ(θ)− Sx(x∗(θ), θ)][[x(θ)− x∗(θ)]]− λ(t0)[x(t0 − x ∗ (t0)]

(A23)

or,

VE(u∗)− VE(u) ≤ [λ(θ)− Sx(x∗(θ), θ)][[x(θ)− x∗(θ)]]− λ(t0)[x(t0 − x ∗ (t0)], (A24)

where VE(u) is the value of the value function (objective function) associated with a control
u. Since x(t0) = x∗(t0) = x0, the initial condition, and since λ(θ) = Sx(x∗(θ), θ), we have

VE(u∗) ≤ VE(u). (A25)

Thus, u∗ is an optimal control. This completes the proof. �
In the numerical example of this paper, we know

H[x(t), u∗(t), t] = − 1
4ω

3

∑
i=1

〈(2sii(t)xi + ki(t) +
1
2
( ∑

j∈Bi

sij(t)xj + ∑
j∈Bi

sji(t)xj)),

2sii(t)xi + ki(t)+
1
2
( ∑

j∈Bi

sij(t)xj + ∑
j∈Bi

sji(t)xj)〉+
3

∑
i=1

βi〈xi − q, Q−1(xi − q)〉

− 1
2
( ∑

1≤i<j≤3
κij〈xi − xj, xi − xj〉+ ∑

1≤i<j≤3
κji〈xj − xi, xj − xi〉) ,

(A26)

and

S(x, θ) =
3

∑
i=1

〈xi(θ)− mi, xi(θ)− mi〉. (A27)

After numerical verification, the algorithm in this paper satisfies the above theorem
conditions. The optimality of control u provided in this paper is proved.
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Abstract: The Alekseev-type annular membranes here refer to annular membranes fixed at outer
edges and connected with a movable, weightless, stiff, con-centric, circular thin plate at inner edges,
which were proposed originally by Alekseev for bearing centrally concentrated loads. They are
used to bear the pressure acting on both membranes and plates, which was proposed originally in
our previous work for developing pressure sensors. The pressure is applied onto an Alekseev-type
annular membrane, resulting in the parallel movement of the circular thin plate. Such a movement
can be used to develop a capacitive pressure sensor using the circular thin plate as a movable
electrode plate of a parallel plate capacitor. The pressure applied can be determined by measuring
the change in capacitance of the parallel plate capacitor, based on the closed-form solution for the
elastic behavior of Alekseev-type annular membranes. However, the previous closed-form solution
is unsuitable for annular membranes with too large deflection, which limits the range of pressure
operation of the developed sensors. A new and more refined closed-form solution is presented here
by improving simultaneously the out-of-plane equilibrium equation and geometric equation, making
it possible to develop capacitive pressure sensors with a wide range of pressure operations. The new
closed-form solution is numerically discussed in its convergence and effectiveness and compared
with the previous one. Additionally, its beneficial effect on developing the proposed capacitive
pressure sensors is illustrated.

Keywords: annular membrane; uniform transverse loading; large deflection; power series method;
closed-form solution

MSC: 74G10; 74K15

1. Introduction

Membrane structures can be used in civil engineering, aerospace engineering, tech-
nical applications and other fields, among which, axisymmetric membrane structures
are often preferred for some technical applications, such as the bulge tests [1–3], blister
tests [4–6] or constrained blister tests [7–10], and non-contact or contact capacitive pressure
sensors [11–14]. The problem of axisymmetric deformation of membranes in these technical
applications often has strong nonlinearity due to the concomitant of large deflection. So,
analytical solutions to these membrane problems are available only in a few cases, and
there are far fewer analytical solutions in the literature for annular membrane problems
than for circular membrane problems. However, analytical solutions are often found to
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be necessary to implement these technical applications. This paper is devoted to the an-
alytical study to the problem of axisymmetric deformation with large deflection of the
Alekseev-type annular membrane structures under uniformly distributed transverse loads.
The analytical solution of this problem can be used to develop a kind of capacitive pressure
sensor [15], but the available analytical solution in the existing literature is not suitable for
the case where the annular membranes exhibit too large deflection or rotation angle [15],
which limits the range of pressure operation of the developed sensors. The purpose or
significance of this work is to provide a new and more refined closed-form solution for
developing capacitive pressure sensors with a wide range of pressure operation.

There are two methods for analytically solving the problem of axisymmetric deforma-
tion of circular or annular membranes in the existing literature—one is the power series
solution, and the other is the algebraic solution. Hencky is the first person who used
the power series method to solve circular membrane problems. He presented a power
series solution of a circular membrane fixed at its outer edge and loaded transversely and
uniformly in 1915 [16], where a computational error was corrected, respectively, by Chien
in 1948 [17] and Alekseev in 1953 [18]. This is the first solution of circular membrane
problems. This solution is often referred to as the well-known Hencky’s solution and is
cited in related studies [19–22]. Sun et al. improved the well-known Hencky’s solution
many times to make it suitable for heavily loaded membranes [23]. The peripherally fixed
and uniformly normally loaded circular membranes are another type of circular membrane
problems [24,25], where the direction of normally loading is always perpendicular to the
membrane with deflection (while the direction of transversely loading is always perpendic-
ular to the membrane without deflection). Gas pressure is typical normal loading while
structural dead weight is typical transverse loading.

According to the Mathematics Subject Classification (MSC), membranes and thin films
belong to different categories in the mechanics of deformable solids of the MSC database. A
membrane is not necessarily as thin as a thin film, and can be a thin film, a thin plate or even
a thick plate, but must have rigid edges that do not produce displacement under transverse
loads. Annular membrane problems are often more complicated than circular membrane
problems because circular membranes have only outer edges while annular membranes
have both outer edges and inner edges. The outer edges of annular membranes are all
fixed and, thus, rigid, just like that of circular membranes, while their inner edges are all
movable rigid edges, which can be divided into two types. The first type is the inner edges
attached to a weightless, stiff, concentric, circular thin plate, which is proposed originally
by Alekseev [26]; while the second type is those attached to a weightless stiff ring, which is
proposed originally by Sun et al. [27]. For convenience, the annular membranes with the
first type of inner edges are referred to simply as Alekseev-type annular membranes (or
annular membrane structures) [15,26], and those with the second type of inner edges are
referred to simply as Sun-type annular membranes (or annular membrane structures) [27].
In this study, only the Alekseev-type annular membranes are involved.

Alekseev is the first person to deal with annular membrane problems [26], who
algebraically solved the axisymmetric deformation problem of a peripherally fixed annular
membrane, connected with a movable, weightless, stiff, concentric, circular thin plate at its
inner edge, and transversely loaded at the center point of the circular thin plate. However,
the closed-form solution presented in [26] is valid only for membranes with Poisson’s ratios
less than 1/3. Sun et al. [28] algebraically solved the problem dealt with originally by
Alekseev [26] again and presented a global or complete closed-form solution that is valid
for membranes with Poisson’s ratio less than, equal to, or greater than 1/3. Yang et al. [29]
extended the closed-form solution presented by Sun et al. [28] to the more general case of
annular membranes with or without initial in-plane stress. In fact, many widely used thin
films, such as polymers, often have Poisson’s ratios greater than 1/3, and all the structures
constituted more or less have some initial in-plane stresses. It is worth mentioning that the
solutions presented by Alekseev [26], Sun et al. [28] and Yang et al. [29] are the only three
algebraic solutions for membrane problems in the literature so far, which are derived from

328



Mathematics 2022, 10, 2121

directly solving nonlinear differential equations by the algebraic method. As mentioned
above, all these three solutions apply only to the problem of axisymmetric deformation of
Alekseev-type annular membrane structures under concentrated forces, the case where the
external loads (the concentrated forces) are applied at the center point of the weightless,
stiff, concentric, circular thin plates and do not directly contact the annular membranes.

Lian et al. [15] proposed to use Alekseev-type annular membrane structures to design
a membrane elastic deflection and parallel plate capacitor-based capacitive pressure sensor,
where the uniformly distributed transverse loads are synchronously applied onto both
the weightless, stiff, concentric, circular thin plate and the annular membrane, resulting
in the parallel movement of the circular thin plate. It is obvious that the distance of par-
allel movement of the circular thin plate, wich is caused by the application of uniformly
distributed transverse loads, is exactly equal to the maximum deflection of the annular
membrane. Therefore, the circular thin plate, if made of conductive materials, can be
used as a movable electrode plate of a parallel plate capacitor. The change in the capaci-
tance of the parallel plate capacitor corresponds to the distance of parallel movement of
the circular thin plate, also the maximum deflection of the annular membrane, and the
uniformly distributed transverse loads applied. In this way, the pressure applied, i.e.,
the applied uniformly distributed transverse loads, may be determined by measuring
the capacitance of the parallel plate capacitor, as long as the closed-form solution of the
axisymmetric elastic deformation of the Alekseev-type annular membrane under uniformly
distributed transverse loads can be obtained. Such a closed-form solution has been given
by Lian et al. [15], which is in the form of power series. This closed-form solution is also
the first power series solution for annular membrane problems. The derivation of this
power series solution was a salutary reminder of the convergence of annular membrane
problems: the power series method for annular membrane problems is more difficult to
converge than that for circular membrane problems, due to the fact that the stress, strain or
deflection in annular membrane problems can not be expanded into a power series at the
center of the membranes while that in circular membrane problems can. This limitation
means that the annular membrane problems solved by using the power series method must
be first examined in convergence before the convergence of their power series solutions can
be tested.

However, the closed-form solution presented by Lian et al. [15] is not applicable to the
case where the annular membranes exhibit a too large rotation angle or deflection, because
it was derived from the assumption of a small rotation angle of membrane which is usually
adopted in membrane problems. This assumption will affect the accuracy of the closed-
form solution and introduce large computational errors, especially when heavily loaded
membranes exhibit a large rotation angle or deflection. In the derivation of the closed-form
solution presented by Lian et al. [15], the out-of-plane and in-plane equations and geometric
equations are established by using the assumption of a small rotation angle, except that
the physical equations are established by using the assumption of a small deformation
(the stress–strain relationships are assumed to satisfy Hooke’s law). In this paper, the
physical equations are still assumed to satisfy Hooke’s law, but the assumption of a small
rotation angle of membrane is given up during the establishments of the out-of-plane
equilibrium equation and geometric equations, resulting in a new and more refined closed-
form solution. Furthermore, our attempt to simultaneously give up the assumption of a
small rotation angle in the establishments of the geometric equation, in-plane equation and
out-of-plane equilibrium equation failed to achieve a closed-form solution. This suggests,
to some extent, that the power series method for annular membrane problems is much
more complicated than the power series method for circular membrane problems.

The paper is organized as follows: The problem of axisymmetric deformation with
large deflection of an Alekseev-type annular membrane under uniformly distributed
transverse loads is reformulated and solved in the following section, where the out-of-
plane equilibrium equation and geometric equations are re-established with the assumption
of a small rotation angle of membrane given up, and finally, a new and more refined closed-
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form solution of the problem under consideration is given. In Section 3, the convergence
and effectiveness of the closed-form solution given in Section 2 are discussed. A numerical
comparison between the present and previous closed-form solutions was conducted. The
beneficial effect of the improved closed-form solution in Section 2 on developing the
capacitive pressure sensors proposed by Lian et al. [15] is investigated by comparing the
pressure values, which are, under the same deflection, calculated by using the closed-form
solution presented in this paper and using the one presented by Lian et al. [15]. Concluding
remarks are given in Section 4.

The innovation of this paper is mainly reflected in the following two aspects: one is the
contribution to thin film mechanics, and the other is the practical applications that can be
derived from this study. The new closed-form solution derived in Section 2 can be used for
heavily loaded annular membranes with larger rotation angles, while the previous closed-
form solution is only suitable for lightly loaded annular membranes with smaller rotation
angles, thus, developing and enriching the theory of annular membranes. On the other
hand, by simultaneously improving the out-of-plane equilibrium equation and geometric
equation, the computational accuracy of the new closed-form solution is greatly improved.
Therefore, if the new closed-form solution is used to design the capacitive pressure sensors
proposed by Lian et al. [15], the pressure measurement error of the sensors designed may
be reduced by up to 40% in comparison with the use of the previous closed-form solution,
which is also the application significance and value of the work presented here.

2. Membrane Equation and Its Solution

A linearly elastic, initially flat annular membrane with inner radius b, outer radius
a, thickness h, Young’s modulus of elasticity E and Poisson’s ratio v is fixed at its outer
edge and connected at its inner edge with a movable, concentric, weightless, stiff, circular
thin plate, forming an Alekseev-type annular membrane structure. A loads q is uniformly,
transversely and quasi-statically applied onto the circular thin plate and the annular
membrane, resulting in an out-of-plane displacement (deflection) of the annular membrane
and a parallel movement of the circular thin plate, as shown in Figure 1, where the origin o
of the introduced cylindrical coordinate system (r, ϕ, w) sits at the centroid of the initially
flat annular membrane, the geometric middle plane of the initially flat annular membrane
is located in the polar coordinate plane (r, ϕ), the radial coordinate is denoted by r, the
angle coordinate is denoted by ϕ but not shown in Figure 1, and the axial coordinate is
denoted by w that also denotes the deflection of the deflected annular membrane. Suppose
a free body of a deflected annular membrane of radius r (b ≤ r ≤ a) is taken from the central
portion of the deflected annular membrane, to study the static equilibrium of this free body
under the joint action of the external active force πr2q and internal reactive force 2πrσrh,
which are produced by the uniformly distributed transverse loads q and the membrane
force σrh at the boundary r, as shown in Figure 2, where θ is the rotation angle of the
deflected annular membrane and σr is the radial stress.

Figure 1. Deflection profile along a diameter of an Alekseev-type annular membrane under loads q.
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Figure 2. Equilibrium diagram of the free body with radius r (b ≤ r ≤ a).

In the transverse (vertical) direction, there are only two opposing forces, i.e., πr2q and
2πrσrhsinθ. Therefore, the equilibrium condition in this direction is that the resultant force
of these two opposing forces is equal to zero, i.e.,

πr2q − 2πrσrh sin θ = 0. (1)

If w(r) is used to denote the deflection of the annular membrane at r, then

tan θ = −dw(r)
dr

. (2)

It is well known from trigonometric functions that sin θ = 1/
√

1 + 1/ tan2 θ. There-
fore, from Equations (1) and (2), the so-called out-of-plane equilibrium equation can be
written as

2σrh = rq
√

1 + 1/(−dw/dr)2. (3)

By comparing Equation (3) in this paper and Equation (4) in [15], it can be found that
the out-of-plane equilibrium equation in [15], i.e., Equation (4) in [15], uses the assumption
of sinθ = tanθ. Obviously, this assumption is valid only when the rotation angle of mem-
brane, θ, is small. For instance, the error caused by the assumption of sinθ = tanθ can be
written as (tanθ−sinθ)/sinθ and is about 1.54% when θ = 10◦, 6.42% when θ = 20◦, 15.47%
when θ = 30◦, and 30.54% when θ = 40◦. However, Equation (3) is not affected by this
assumption, since this assumption is given up during the establishment of Equation (3).

If the circumferential stress is denoted by σt, then the in-plane equilibrium equation
may be written as [15]

d
dr

(rσrh)− σth = 0. (4)

If the radial displacement and strain and circumferential strain are denoted by u(r), er
and et, respectively, then the geometric equations may be written as [23]

er = [(1 +
du
dr

)
2
+ (

dw
dr

)
2
]

1/2

− 1 (5)

and
et =

u
r

(6)

By comparing Equation (5) in this paper and Equation (6a) in [15], it can be found that
the radial relationship between strain and displacement has been changed. The classical
radial relationship between strain and displacement, i.e., Equation (6a) in [15], is heavily
dependent on the assumption of small rotation angle of membrane, see [23] for details.

Moreover, the physical equations are still assumed to be linearly elastic [15]
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σr =
E

1 − ν2 (er + νet) (7)

and
σt =

E
1 − ν2 (et + νer). (8)

In the above physical equations, geometric equations, in-plane equilibrium equation
and out-of-plane equilibrium equation, there are six equations and six variables, i.e., σr, σt,
er, et, u(r) and w(r). Therefore, this boundary value problem can be solved. Substituting
Equations (5) and (6) into Equations (7) and (8) yields

σr =
E

1 − ν2 {[(1 +
du
dr

)
2
+ (

dw
dr

)
2
]

1/2

− 1 + ν
u
r
} (9)

and

σt =
E

1 − ν2 {
u
r
+ ν[(1 +

du
dr

)
2
+ (

dw
dr

)
2
]

1/2

− ν}. (10)

Eliminating u/r from Equations (9) and (10) and using Equation (4) yields

u
r
=

1
Eh

(σth − νσrh) =
1

Eh
[

d
dr

(rσrh)− νσrh]. (11)

After the u in Equation (11) is substituted into Equation (9), then the so-called consis-
tency equation can be written as

ν − 1
E

σr +
νr
E

dσr

dr
+ {[1 + (1 − ν)

E
σr +

(3 − ν)r
E

dσr

dr
+

r2

E
d2σr

dr2 ]

2

+ (
dw
dr

)
2
}

1/2

− 1 = 0. (12)

σr, σt and w can be obtained by solving Equations (3), (4) and (12). The boundary
conditions of solving Equations (3), (4) and (12) are

et = 0
(u

r
= 0

)
at r = b, (13)

et = 0
(u

r
= 0

)
at r = a (14)

and
w = 0 at r = b. (15)

The following dimensionless variables are introduced

Q =
aq
Eh

, W =
w
a

, Sr =
σr

E
, St =

σt

E
, α =

b
a

, x =
r
a

, (16)

and transform Equations (3), (4), (11)–(15) into

2Sr = xQ
√

1 + 1/(−dW/dx)2, (17)

d(xSr)

dx
− St = 0, (18)

u
r
= (1 − ν)Sr + x

dSr

dx
, (19)

(ν − 1)Sr + νx
dSr

dx
+ {[1 + (1 − ν)Sr + (3 − ν)x

dSr

dx
+ x2 d2Sr

dx2 ]

2

+ (
dW
dx

)
2
}

1/2

− 1 = 0, (20)

(1 − ν)Sr + x
dSr

dx
= 0 at x = α, (21)

(1 − ν)Sr + x
dSr

dx
= 0 at x = 1 (22)

332



Mathematics 2022, 10, 2121

and
W = 0 at x = 1. (23)

For practical physical problems, the displacement, strain and stress are all finite within
α ≤ x ≤ 1. Therefore, Sr and W can be expanded into the power series of the x − β

Sr =
∞

∑
i=0

ci(x − β)i (24)

and

W =
∞

∑
i=0

di(x − β)i, (25)

where β = (1 + α)/2. After introducing X = x − β, then Equations (17), (20), (24) and (25)
can be transformed into

[4S2
r − (X + β)2Q2](−dW

dX
)

2
− (X + β)2Q2 = 0, (26)

[1 + (1 − ν)Sr + (3 − ν)(X + β)
dSr

dX
+ (X + β)2 d2Sr

dX2 ]

2

+ (
dW
dX

)
2

−[1 − (ν − 1)Sr − ν(X + β)
dSr

dX
]
2
= 0

, (27)

Sr =
∞

∑
i=0

ciXi (28)

and

W =
∞

∑
i=0

diXi. (29)

After substituting Equations (28) and (29) into Equations (26) and (27), the sums of
the coefficients of the same powers of the X can be obtained by merging similar terms. A
system of equations for determining the recursion formulas of the coefficients ci and di
may be obtained by letting all the sums of the coefficients be equal to zero. The resulting
recursion formulas for the coefficients ci and di are listed in Appendix A. It can be seen from
Appendix A that the coefficients ci (i = 2, 3, 4, . . . ) and di (i = 1, 2, 3, . . . ) can be expressed
in terms of the first two coefficients c0 and c1.

The remaining coefficients c0, c1 and d0 are three undetermined constants. Their values
depend on the problem being dealt with, and are determined by Equations (21)–(23), the
boundary conditions. After expressing the coefficients di (i = 1, 2, 3, . . . ) and ci (i = 2, 3, 4, . . . )
in terms of c0 and c1, substituting Equation (24) into Equations (21) and (22) yields

(1 − ν)
∞

∑
i=0

ci(α − β)i + α
∞

∑
i=1

ici(α − β)i−1 = 0 (30)

and

(1 − ν)
∞

∑
i=0

ci(1 − β)i +
∞

∑
i=1

ici(1 − β)i−1 = 0, (31)

and further, substituting Equation (25) into Equation (23) yields

d0 = −
∞

∑
i=1

di(1 − β)i. (32)

Because Equations (30) and (31) contain only c0 and c1, therefore, the values of c0 and
c1 can be determined by simultaneously solving Equations (30) and (31). Further, with
the known c0 and c1, all the values of ci (i = 2, 3, 4, . . . ) and di (i = 1, 2, 3, . . . ) can be
determined, and the value of d0 can, thus, be determined by Equation (32).
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Finally, with the known ci and di, the particular solution of stress σr(r) and deflection w(r)
can be determined. As for the expression of σt(r), it can easily be determined with the known
expression of σr(r) and Equation (4). It is not necessary to address this easy problem here.
Obviously, the maximum deflection, wm, should be at x = α, and from Equations (16) and (25),
is given by

wm = a
∞

∑
i=0

di(
b − a

2a
)

i
. (33)

From Equations (16) and (24), the maximum stress, σm, is given by

σm = σr(b) = E
∞

∑
i=0

ci(
b − a

2a
)

i
. (34)

3. Results and Discussions

This section will first analyze the convergence of the closed-form solution given in
Section 2, then investigate its effectiveness (asymptotic behavior) and, finally, make a
comparison between the present and previous closed-form solutions.

3.1. Convergence Analysis

As mentioned in the introduction, the annular membrane problems solved by using
the power series method are usually difficult to converge. Therefore, they must be first
examined in convergence before their power series solutions are tested in convergence.
To this end, an annular membrane problem is considered of an Alekseev-type annular
membrane with Poisson’s ratio v = 0.47, Young’s modulus of elasticity E = 7.84 MPa, outer
radius a = 70 mm, inner radius b = 40 mm, and thickness h = 0.2 mm subjected to the loads
q = 0.0001 MPa. After the values of E, ν, a, b, h and q are substituted into Equation (16), it is
found that α = 4/7, β = (1 + α)/2 = 11/14 and Q = 0.00446429.

First, let us truncate the infinite power series in Equations (30)–(32) to the nth terms, i.e.,

(1 − ν)
n

∑
i=0

ci(α − β)i + α
n

∑
i=1

ici(α − β)i−1 = 0, (35)

(1 − ν)
n

∑
i=0

ci(1 − β)i +
n

∑
i=1

ici(1 − β)i−1 = 0 (36)

and

d0 = −
n

∑
i=1

di(1 − β)i. (37)

The parameter n in Equations (35)–(37) can first take 2 to start the numerical calcula-
tions of the undetermined constants c0, c1 and d0, then take 3, 4, . . . until 11. The results
of the numerical calculations of c0, c1 and d0 are listed in Table 1. The variations of c0, c1
and d0 with n are shown in Figures 3–5, where the dash-dotted lines show the convergence
trends of the data points of even terms (n = 2, 4, 6 . . . ) and the dashed lines show that of
odd terms (n = 3, 5, 7 . . . ). From Figures 3–5, it can be seen that the data sequences for
c0, c1 and d0 have a very good convergence trend and show a very good saturation when
the parameter n takes 8 or 9, which indicates that the undetermined constants c0, c1 and d0
when q = 0.0001 MPa can take the numerical values calculated by n = 8 or 9.

Table 1. The results of numerical calculation of c0, c1 and d0 for q = 0.0001 MPa.

n c0 c1 d0

2 0.01197985 −0.00943991 0.03886790
3 0.01492981 −0.00851534 0.03058498
4 0.01287976 −0.00753818 0.03579442
5 0.01323855 −0.00739810 0.03468850
6 0.01301745 −0.00730386 0.03531982
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Table 1. Cont.

n c0 c1 d0

7 0.01306394 −0.00728509 0.03517532
8 0.01303710 −0.00727377 0.03525289
9 0.01304256 −0.00727152 0.03523588
10 0.01303968 −0.00727034 0.03524527
11 0.01304025 −0.00726945 0.03524248

c

n

Figure 3. Variation of c0 with n for q = 0.0001 MPa, where the dash-dotted line shows the convergence
trend of the data points of even terms (n = 2, 4, 6 . . . ) and the dashed line shows that of odd terms
(n = 3, 5, 7 . . . ).

c

n

Figure 4. Variation of c1 with n for q = 0.0001 MPa, where the dash-dotted line shows the convergence
trend of the data points of even terms (n = 2, 4, 6 . . . ) and the dashed line shows that of odd terms
(n = 3, 5, 7 . . . ).

It is well known that higher order equations can generate multiple roots, meaning,
multiple roots of c0 and c1 could be generated when solving Equations (35) and (36)
simultaneously. In boundary value problems, however, there are usually no judgment
conditions that can be used to determine which of these roots is a valid root. However, it can
be believed that since the power of the power series in Equations (35)–(37) is continuously
increasing at equal intervals (i.e., the parameter n in Equations (35)–(37) consecutively
takes values from 2 to 11), the corresponding results of numerical calculations of c0, c1
and d0 should also be consecutively changing. Therefore, the variations of the numerically
calculated values of c0, c1 and d0 with n should obey some continuous and smooth functions,
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and, if expressed graphically, should follow some continuous and smooth curves. So,
continuity and smoothness can be used to judge and determine valid roots, and the results
of numerical calculations of c0, c1 and d0 listed in Table 1 are obtained in such a way (invalid
roots are not listed in Table 1). Of course, we can also make no distinction between odd
and even terms when drawing Figures 3–5. This will give oscillation convergence trends,
as shown in Figures 6–8. However, doing so is not conducive to the full demonstration of
smoothness in some cases, as shown in Figure 7 (please compare to Figure 4).

d

n

Figure 5. Variation of d0 with n for q = 0.0001 MPa, where the dash-dotted line shows the convergence
trend of the data points of even terms (n = 2, 4, 6 . . . ) and the dashed line shows that of odd terms
(n = 3, 5, 7 . . . ).

c

n

Figure 6. Variation of c0 with n for q = 0.0001 MPa.

It should be pointed that for the boundary value problems solved by the power
series method, the convergence of the particular solutions can be checked only after the
convergence values of the undetermined constants c0, c1 and d0 are determined. From
Figures 3–5 or Figures 6–8, it can be seen that the data sequences of c0, c1 and d0 have
been converging well at about n = 8 or 9, therefore, the undetermined constants c0, c1
and d0 when q = 0.0001 MPa can take the numerical values calculated by n ≥ 8 or 9.
Here, we take the numerical values at n = 11 in Table 1 as the convergence values of
the undetermined constants c0, c1 and d0 when q = 0.0001 MPa, that is, c0 = 0.01304025,
c1 = −0.00726945 and d0 = 0.03524248. Obviously, the power series particular solutions
of stress and deflection converge throughout the closed interval [4/7, 1] as long as they
converge at the two ends of the closed interval. Tables 2 and 3 show the numerical
values of stress and deflection at the two ends of the closed interval [4/7, 1], which are
calculated by using Equations (24) and (25). Figures 9–12 show the variations of ci(1 − β)i,
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ci(α − β)i, di(1 − β)i and di(α − β)i with i, indicating that the power series particular
solutions of stress and deflection converge very quickly.

c

n
Figure 7. Variation of c1 with n for q = 0.0001 MPa.

d

n

Figure 8. Variation of d0 with n for q = 0.0001 MPa.

Table 2. The numerically calculated values of ci(1 − β)i and ci(α − β)i when q = 0.0001 MPa, α = 4/7
and β = 11/14.

i ci(1 − β)i ci(α − β)i

0 0.01304025 0.01304025
1 −0.00155774 0.00155774
2 0.00029641 0.00029641
3 −0.00016810 0.00016810
4 5.29538927 × 10−5 5.29538927 × 10−5

5 −1.80161742 × 10−5 1.80161742 × 10−5

6 5.60599264 × 10−6 5.60599264 × 10−6

7 −1.75933493 × 10−6 1.75933493 × 10−6

8 5.35507803 × 10−7 5.35507803 × 10−7

9 −1.62632278 × 10−7 1.62632278 × 10−7

10 4.86626780 × 10−8 4.86626780 × 10−8

11 −1.44986110 × 10−8 1.44986110 × 10−8
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Table 3. The numerically calculated values of di(1 − β)i and di(α − β)i when q = 0.0001 MPa, α = 4/7
and β = 11/14.

i di(1 − β)i di(α − β)i

0 0.03524248 0.03524248
1 −0.02908424 0.02908424
2 –0.00580824 −0.00580824
3 –0.00028009 0.00028009
4 −5.91427706 × 10−5 −5.91427706 × 10−5

5 −9.23001859 × 10−6 9.23001859 × 10−6

6 −8.68232313 × 10−7 −8.68232313 × 10−7

7 −4.31388327 × 10−7 4.31388327 × 10−7

8 −3.77046968 × 10−9 −3.77046968 × 10−9

9 −1.85145370 × 10−8 1.85145370 × 10−8

10 −1.25152469 × 10−10 −1.25152469 × 10−10

11 −5.73606617 × 10−10 5.73606617 × 10−10

i
ic β−

i

Figure 9. Variation of ci(1 − β)i with i for q = 0.0001 MPa and β = 11/14.

i
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i

Figure 10. Variation of ci(α − β)i with i for q = 0.0001 MPa, α = 4/7 and β = 11/14.

i
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i

Figure 11. Variation of di(1 − β)i with i for q = 0.0001 MPa and β = 11/14.
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i
id α β−

i

Figure 12. Variation of di(α − β)i with i for q = 0.0001 MPa, α = 4/7 and β = 11/14.

In fact, the magnitude of the applied loads q (corresponding to the different geometry
of a deflected annular membrane) has a certain effect on the convergence values of the
undetermined constants c0, c1 and d0, which can be seen from the calculations below. Let
us continue with the example above but increase the loads q from 0.0001 MPa to 0.008 MPa.
Table 4 shows the results of the numerical calculation of the undetermined constants c0, c1
and d0 for the problem of an Alekseev-type annular membrane with Poisson’s ratio v = 0.47,
Young’s modulus of elasticity E = 7.84 MPa, outer radius a = 70 mm, inner radius b = 40 mm
and thickness h = 0.2 mm, where q = 0.008 MPa, α = 4/7, β = (1 + α)/2 = 11/14 and
Q = aq/Eh = 0.35714286. The variations of c0, c1 and d0 with n are shown in Figures 13–15,
where the dash-dotted lines show the convergence trend of the data points of even terms
(n = 2, 4, 6 . . . ) and the dashed line show that of odd terms (n = 3, 5, 7 . . . ). From
Figures 13–15, it can be seen that the data sequences of c0, c1 and d0 have a very good
convergence trend and show a very good saturation when the parameter n takes 9 or 10,
which indicates that the undetermined constants c0, c1 and d0 when q = 0.008 MPa can take
the numerical values calculated by n = 9 or 10.

Table 4. The results of the numerical calculation of c0, c1 and d0 when q = 0.008 MPa.

n c0 c1 d0

2 0.24525643 −0.19325783 0.19851576
3 0.29529305 −0.16306971 0.14895366
4 0.26747513 −0.14877045 0.17425372
5 0.27846455 −0.14657377 0.16504231
6 0.27237181 −0.14333397 0.17021351
7 0.27426590 −0.14246365 0.16824011
8 0.27364233 −0.14211856 0.16936731
9 0.27435725 −0.14198977 0.16918853

10 0.27420479 −0.14206417 0.16928792
11 0.27422132 −0.14202197 0.16921323
12 0.27421202 −0.14205290 0.16926132
13 0.27421591 −0.14203814 0.16923154

From the comparison between Figures 13–15 and Figures 3–5, it can be seen that due
to the increase from q = 0.0001 MPa to q = 0.008 MPa, the convergence points have been
moved slightly back, i.e., from n = 8 or 9 at q = 0.0001 MPa (see Figures 3–5) to n = 9 or 10 at
q = 0.008 MPa (see Figures 13–15). This means that the magnitude of the applied loads q
has a certain effect on the convergence values of the undetermined constants c0, c1 and d0.

From Figures 13–15, it can be seen that the data sequences of c0, c1 and d0 have been
converging well at about n = 9 or 10, indicating that the undetermined constants c0, c1
and d0 when q = 0.008MPa can take the numerical values calculated by n ≥ 9 or 10. There-
fore, the numerical values at n = 13 in Table 4, i.e., c0 = 0.27421591, c1 = −0.14203814 and
d0 = 0.16923154, can be taken as the convergence values of the undetermined constants c0, c1
and d0 when q = 0.008 MPa to determine the power series particular solutions of stress and
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deflection. The results of numerical calculation of stress and deflection at the two ends of
the closed interval [4/7, 1], which are calculated by using Equations (24) and (25), are listed
in Tables 5 and 6. Figures 16–19 show the variations of ci(1 − β)i, ci(α − β)i, di(1 − β)i and
di(α − β)i with i, indicating that the power series particular solutions of stress and de-
flection when q = 0.008 MPa still converge very quickly in comparison with Figures 9–12
(q = 0.0001 MPa).

c

n

Figure 13. Variation of c0 with n for q = 0.008 MPa, where the dash-dotted line shows the convergence
trend of the data points of even terms (n = 2, 4, 6 . . . ) and the dashed line shows that of odd terms
(n = 3, 5, 7 . . . ).

c

n

Figure 14. Variation of c1 with n for q = 0.008 MPa, where the dash-dotted line shows the convergence
trend of the data points of even terms (n = 2, 4, 6 . . . ) and the dashed line shows that of odd terms
(n = 3, 5, 7 . . . ).

Combining the above, it can be concluded that the increase in the loads q from
0.0001 MPa to 0.008 MPa mainly affects the determination of the convergence values of
the undetermined constants c0, c1 and d0, but has little influence on the convergence of
the power series particular solutions of stress and deflection. Therefore, regardless of the
magnitude of the applied loads q (corresponding to the different geometry of a deflected
annular membrane), the convergence values of the undetermined constants c0, c1 and
d0 should be determined in terms of the convergence on the scatter diagrams (such as
Figures 3–5 or Figures 13–15). From this point of view, drawing a scatter diagram is a very
important work for the power series solution of ordinary differential equations, but in
practice, its importance is often ignored.
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d

n

Figure 15. Variation of d0 with n for q = 0.008 MPa, where the dash-dotted line shows the convergence
trend of the data points of even terms (n = 2, 4, 6 . . . ) and the dashed line shows that of odd terms
(n = 3, 5, 7 . . . ).

Table 5. The numerically calculated values of ci(1 − β)i and ci(α − β)i when q = 0.008 MPa, α = 4/7
and β = 11/14.

i ci(1 − β)i ci(α − β)i

0 0.27421591 0.27421591
1 −0.03043674 0.03043674
2 0.00655555 0.00655555
3 −0.00409301 0.00409301
4 9.57948254 × 10−4 9.57948254 × 10−4

5 −4.72257108 × 10−4 4.72257108 × 10−4

6 8.39765267 × 10−5 8.39765267 × 10−5

7 −5.62440026 × 10−5 5.62440026 × 10−5

8 2.39571485 × 10−6 2.39571485 × 10−6

9 −8.48354140 × 10−6 8.48354140 × 10−6

10 1.71560584 × 10−6 1.71560584 × 10−6

11 −1.92778425 × 10−6 1.92778425 × 10−6

12 8.75934218 × 10−7 8.75934218 × 10−7

13 −6.26245384 × 10−7 6.26245384 × 10−7

Table 6. The numerically calculated values of di(1 − β)i and di(α − β)i when q = 0.008 MPa, α = 4/7
and β = 11/14.

i di(1 − β)i di(α − β)i

0 0.16923154 0.16923154
1 −0.12761152 0.12761152
2 −0.03316675 −0.03316675
3 −0.00559019 0.00559019
4 −0.00186868 −0.00186868
5 −6.72098886 × 10−4 6.72098886 × 10−4

6 −2.62267256 × 10−4 −2.62267256 × 10−4

7 −1.11698057 × 10−4 1.11698057 × 10−4

8 −4.86768405 × 10−5 −4.86768405 × 10−5

9 −2.22870953 × 10−5 2.22870953 × 10−5

10 −1.04435147 × 10−5 −1.04435147 × 10−5

11 −5.03839569 × 10−6 5.03839569 × 10−6

12 −2.48735974 × 10−6 −2.48735974 × 10−6

13 −1.25620215 × 10−6 1.25620215 × 10−6
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Figure 16. Variation of ci(1 − β)i with i when q = 0.008 MPa and β = 11/14.
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Figure 17. Variation of ci(α − β)i with i when q = 0.008 MPa, α = 4/7 and β = 11/14.
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Figure 18. Variation of di(1 − β)i with i when q = 0.008 MPa and β = 11/14.
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Figure 19. Variation of di(α − β)i with i when q = 0.008 MPa, α = 4/7 and β = 11/14.

3.2. Asymptotic Behavior of the Closed-Form Solution

The effectiveness of the closed-form solution obtained in Section 2 may be proved by
its asymptotic behavior from an annular membrane to a circular membrane, that is, the
closed-form solution of an Alekseev-type annular membrane with outer radius a and inner
radius b, which is given in Section 2, should be equivalent to the closed-form solution of a
circular membrane with outer radius a, when the inner radius of the annular membrane
approaches zero (b→0). To this end, the closed-form solution of circular membranes
presented by Lian et al. in 2020 [23] is specially used here, which is obtained by using
the same out-of-plane, in-plane, geometric and physical equations used in this paper. The
circular membrane and Alekseev-type annular membrane are subjected to the same action
of loads q = 0.0002 MPa and have the same thickness h = 0.2 mm, outer radius a = 70 mm,
Poisson’s ratio v = 0.47, and Young’s modulus of elasticity E = 7.84 MPa, and the inner
radius of the Alekseev-type annular membrane takes b = 60 mm, 40 mm, 20 mm and
10 mm, respectively. Their deflection profiles along a diameter are shown in Figure 20,
where the solid lines (“Present study”) refer to the deflection curves of the Alekseev-type
annular membranes, which are calculated by the closed-form solution given in Section 2,
and the dash-dotted solid line (“Lian et al., 2020”) refers to the deflection curve of the
circular membrane, which is calculated by the closed-form solution given by Lian et al.
in 2020 [23]. From Figure 20, it can be seen that as the inner radius of the Alekseev-type
annular membranes gradually approach zero (b→0), their deflection curves are gradually
closed to the deflection curve of the circular membrane. This indicates that the derivation
of the closed-form solution given in Section 2 is, to some extent, correct and reliable.

w

r

b =

b =

b =
b =

Figure 20. Deflection profiles along a diameter of four Alekseev-type annular membranes and a
circular membrane when q = 0.0002 MPa.
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3.3. Comparison between Closed-Form Solutions before and after Improvement

To quantitatively analyze the difference between the closed-form solutions before and
after improvement (i.e., the closed-form solutions presented by Lian et al. [15] and in this
paper), an example is considered of an Alekseev-type annular membrane with thickness
h = 0.2 mm, inner radius b = 40 mm, outer radius a = 70 mm, Poisson’s ratio v = 0.47 and
Young’s modulus of elasticity E = 7.84 MPa, which is subjected to the loads q = 0.0002 MPa,
0.008 MPa and 0.035 MPa, respectively. Figures 21 and 22 show the variations of deflection
and stress differences with loads q, where the dashed lines (“Lian et al., 2017”) are calcu-
lated by using the closed-form solution which was presented by Lian et al. in 2017 [15] and
the solid lines (“Present study”) by using the closed-form solution given in Section 2. It can
be seen from Figure 21 that as the uniformly distributed transverse loads q increase from
0.0002 MPa to 0.035 MPa, the differences in deflection also increase, and the differences in
maximum deflection are about 5.195 mm − 5.162 mm = 0.033 mm when q = 0.0002 MPa,
18.761 mm − 17.654 mm = 1.107 mm when q = 0.008 MPa, and 32.346 mm − 28.873 mm
= 3.473 mm when q = 0.035 MPa. Additionally, it can be seen from Figure 22 that as the
uniformly distributed transverse loads q increase from 0.0002 MPa to 0.035 MPa, the differ-
ences in stress also increase. The differences in maximum stress are about 0.189518 MPa
− 0.187173 MPa = 0.002345 MPa when q = 0.0002 MPa, 2.484320 MPa − 2.189192 MPa =
0.295128 MPa when q = 0.008 MPa, and 8.142192 MPa − 5.856020 MPa = 2.286172 MPa
when q = 0.035 MPa, while the differences in minimum stress are about 0.145827 MPa
− 0.143930 MPa = 0.001897 MPa when q = 0.0002 MPa, 1.934280 MPa − 1.684316 MPa =
0.250864 MPa when q = 0.008 MPa, and 6.483791 MPa − 4.503084 MPa = 1.980707 MPa
when q = 0.035 MPa. Figures 21 and 22 suggest that the closed-form solutions, which
are presented by Lian et al. [15] and in this paper, are very close to each other for lightly
loaded membranes and diverge gradually as the loads q applied intensifies. Therefore,
the closed-form solution presented in this paper should be used preferentially for heavily
loaded Alekseev-type annular membranes with larger rotation angles.
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r

q =

q =

=q

Figure 21. Variations of differences in deflection with loads q.

Now, let us analyze qualitatively the difference between the closed-form solutions
before and after improvement from the point of view of the asymptotic behavior of annular
membrane solutions gradually approaching circular membrane solutions. We continue
with the example in Section 3.2 but increase the loads q from 0.0002 MPa to 0.01 MPa.
The deflection profiles along a diameter are shown in Figure 23, where the solid lines
(“Present study”) refer to the deflection curves of four Alekseev-type annular membranes
with outer radius a = 70 mm and inner radius b = 60 mm, 40 mm, 20 mm and 10 mm under
q = 0.01 MPa, which are calculated by using the closed-form solution given in Section 2,
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the dashed lines (“Lian et al., 2017”) refer to the deflection curves of four Alekseev-type
annular membranes with outer radius a = 70 mm and inner radius b = 60 mm, 40 mm, 20 mm
and 10 mm under q = 0.01 MPa, which are calculated by using the closed-form solution
presented by Lian et al. in 2017 [15], and the dash-dotted solid line (“Lian et al., 2020”)
refers to the deflection curve of the circular membrane with outer radius a = 70 mm under
q = 0.01 MPa, which is calculated by using the closed-form solution given by Lian et al. in
2020 [23]. It can be seen from Figure 23 that the asymptotic behavior of the “Present study”
gradually approaching the “Lian et al., 2020” can still remain constant when q = 0.01 MPa.
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Figure 22. Variations of differences in stress with loads q.
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Figure 23. Deflection profiles along a diameter of eight Alekseev-type annular membranes and a
circular membrane when q = 0.01 MPa.

However, from Figure 23 it can also be seen that the asymptotic behavior of the
“Lian et al., 2017” gradually approaching the “Lian et al., 2020” is, in terms of the effect,
inferior to the asymptotic behavior of the “Present study” gradually approaching the
“Lian et al., 2020”. The gap between the two gradually increases as the inner radius b of the
Alekseev-type annular membranes gradually decreases, see Figure 23. So, in theory, when
b→0, if the “Present study” can be close to the “Lian et al., 2020”, then the “Lian et al., 2017”
will never be close to the “Lian et al., 2020”. Therefore, from this point of view, if the
“Lian et al., 2020” is used as the benchmark (the closed-form solution of circular membranes
presented by Lian et al. in 2020 [23] has certain credibility because it is an improvement on a

345



Mathematics 2022, 10, 2121

classic well-established solution, the well-known Hencky solution, see [23] for details), then
it can be qualitatively concluded as follows: under the same conditions the closed-form
solution presented in this paper has higher computational accuracy than the closed-form
solution presented by Lian et al. in 2017 [15].

3.4. Beneficial Effect of Improved Closed-Form Solution on Pressure Measurement

In the pressure measurement systems (using the capacitive pressure sensors proposed
by Lian et al. [15]), the maximum deflection wm of the Alekseev-type annular membranes
under pressure q can be determined by capacitance measurement, then the pressure q
applied can be determined with the determined maximum deflection wm and the closed-
form solution of the elastic behavior of the Alekseev-type annular membranes under
pressure q. Therefore, the beneficial effect of the improved closed-form solution presented
in this paper on developing the pressure measurement systems (using the capacitive
pressure sensors proposed by Lian et al. [15]) can be directly reflected by the difference of
the pressure calculation values, where the closed-form solutions presented in this paper
and presented by Lian et al. [15] are used for the pressure calculations under the same
maximum deflection wm.

To this end, the Alekseev-type annular membrane used in Section 3.3 is used again, i.e.,
thickness h = 0.2 mm, inner radius b = 40 mm, outer radius a = 70 mm, Poisson’s ratio v = 0.47
and Young’s modulus of elasticity E = 7.84 MPa. Let this Alekseev-type annular membrane
first subjected to the loads q = 0.0002 MPa, 0.008 MPa and 0.035 MPa, respectively, where the
maximum deflections produced are wm = 5.195 mm for q = 0.0002 MPa, wm = 18.761 mm
for q = 0.008 MPa, and wm = 32.346 mm for q = 0.035 MPa, which are calculated by using the
closed-form solution presented in this paper. Then, use the closed-form solution presented
by Lian et al. [15] to calculate the pressure q required when this Alekseev-type annular
membrane produces the same maximum deflections wm, i.e., wm = 5.195 mm, 18.761 mm
and 32.346 mm, respectively. These calculations result in that wm = 5.195 mm requires about
q = 0.000204 MPa, wm = 18.761 mm requires about q = 0.0096 MPa, and wm = 32.346 mm
requires about q = 0.0492 MPa, respectively. For the sake of intuition and clarity, the
calculation results are listed in Table 7 and shown in Figure 24, where the “Present study”
refers to the results calculated by using the closed-form solution given in Section 2 and the
“Lian et al., 2017” refers to the results calculated by using the closed-form solution which
was given by Lian et al. in 2017 [15]. It can be seen from Table 7 that as the maximum
deflection wm increases from 5.195 mm to 32.346 mm (the ratio of maximum deflection to
diameter of the annular membrane is about 0.037 to 0.231), the relative errors of “Lian et al.,
2017” with respect to “Present study” increases from 2% to 40.57%. This is because the
increase in the maximum deflection wm makes the rotation angle of the annular membrane
bigger and bigger, so that the small rotation angle assumption used for establishing the
out-of-plane equilibrium equation and geometric equation in [15], i.e., Equations (4) and (6)
in [15], is less and less valid due to the bigger and bigger rotation angle. So, if the closed-
form solution which was presented by Lian et al. in 2017 [15] is used to predict the pressure
q required for a certain maximum deflection wm determined by capacitance measurement,
then the resulting error will increase with the increase in the maximum deflection wm.
Therefore, the closed-form solution presented in this paper should be used preferentially
for the pressure measurement systems using the capacitive pressure sensors proposed
in [15].

Table 7. Required pressures q and their relative errors under the same maximum deflections wm.

Maximum Deflections
wm [mm]

Required Pressures q [MPa]
Relative Errors

Lian et al., 2017 Present Study

5.195 0.000204 0.0002 2%
18.761 0.0096 0.008 20%
32.346 0.0492 0.035 40.57%
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Figure 24. Variations of differences in pressure q with maximum deflection wm.

4. Concluding Remarks

In this paper, the axisymmetric deformation problem of an Alekseev-type annular
membrane structure under uniformly distributed transverse loads, which was originally
proposed in our previous work [15], is investigated again. The main improvement on our
previous work is that the assumption of small rotation angle of membrane, which was
used in the establishment of the previous out-of-plane equilibrium equation and geometric
equations, is given up, resulting in a new and more refined closed-form solution. The
following main conclusions can be drawn from this study.

Since the size of the rotation angle of the annular membrane corresponds to the size of
the maximum deflection of the annular membrane, the assumption of small rotation angle
of membrane will become less and less valid with the increase in the maximum deflection
of the annular membrane, making the previous closed-form solution obtained by using the
assumption of small rotation angle of membrane become less and less accurate. Therefore,
the closed-form solution, which is presented in this paper, should be preferred for the
design of the capacitive pressure sensors proposed in [15], in order to reduce pressure
measurement error. When the ratio of maximum deflection to diameter of the annular
membrane is in the range of 0.037 to 0.231, the pressure measurement error is reduced by
about 2% to 40%, indicating that the improvement on our previous work has produced a
significant beneficial effect.

The work presented here can be further combined with the design of the capacitive
pressure sensors proposed in [15].
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Nomenclature

a Outer radius of the annular membrane
b Inner radius of the annular membrane
h Thickness of the annular membrane
v Poisson’s ratio
E Young’s modulus of elasticity
q Uniformly distributed transverse loads
r Radial coordinate
ϕ Angle coordinate
w Transverse coordinate and deflection
o Coordinate origin
π Pi (ratio of circumference to diameter)
σr Radial stress
σt Circumferential stress
θ Rotation angle of the deflected membrane
er Radial strain
et Circumferential strain
u Radial displacement
Q Dimensionless q (aq/hE)
W Dimensionless w (w/a)
Sr Dimensionless σr (σr/E)
St Dimensionless σt (σt/E)
α Ratio v of b to a (b/a)
x Dimensionless r (r/a)
β Introduced parameter β=(1+α)/2
ci Coefficients of the power series for Sr
di Coefficients of the power series for W

Appendix A

d1 = − βQ√
−Q2β2+4c2

0
,

c2 = 1
2β2 (

√
β2ν2c1

2 + 2βν2c0c1 − 2βνc0c1 + ν2c02 − 2βνc1 − 2νc02 − 2νc0 + c02 − d1
2 + 2c0 + 1

+βνc1 − 3βc1 + νc0 − c0 − 1)
,

d2 = −Q2βd1
2−4c0c1d1

2+Q2β

2d1(Q2β2−4c0
2)

,

c3 = 1
6β2(2β2c2−βνc1+3βc1−νc0+c0+1) (4β3νc2

2 − 20β3c2
2 + 20β2νc1c2 − 38β2c1c2

+10βνc0c2 + 9βνc1
2 − 10βc0c2 − 12βc1

2 + 3νc0c1 − 10βc2 − 3c0c1 − 2d1d2 − 3c1)
,

d3 = − 1
6d1(Q2β2−4c0

2)
(4Q2β2d2

2 + 8Q2βd1d2 + Q2d1
2 − 16c0

2d2
2

−32c0c1d1d2 − 8c0c2d1
2 − 4c1

2d1
2 + Q2)

,

c4 = − 1
24β2(2β2c2−βνc1+3βc1−νc0+c0+1) (36β4c3

2 − 36β3νc2c3 + 204β3c2c3

−84β2νc1c3 − 52β2νc2
2 + 174β2c1c3 + 136β2c2

2 − 42βνc0c3 − 86βνc1c2 + 42βc0c3

+134βc1c2 − 16νc0c2 − 12νc1
2 + 42βc3 + 16c0c2 + 15c1

2 + 6d1d3 + 4d2
2 + 16c2)

,

d4 = − 1
2d1(Q2β2−4c0

2)
(3Q2β2d2d3 + 3Q2βd1d3 + 2Q2βd2

2 + Q2d1d2 − 12c0
2d2d3

−12c0c1d1d3 − 8c0c1d2
2 − 8c0c2d1d2 − 2c0c3d1

2 − 4c1
2d1d2 − 2c1c2d1

2)
,
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c5 = − 1
20β2(2β2c2−βνc1+3βc1−νc0+c0+1) (72β4c3c4 − 32β3νc2c4 − 18β3νc3

2

+192β3c2c4 + 126β3c3
2 − 72β2νc1c4 − 98β2νc2c3 + 156β2c1c4 + 296β2c2c3

−36βνc0c4 − 78βνc1c3 − 46βνc2
2 + 36βc0c4 + 132βc1c3 + 90βc2

2 − 15νc0c3

−25νc1c2 + 36βc4 + 15c0c3 + 35c1c2 + 4d1d4 + 6d2d3 + 15c3)

,

d5 = − 1
10d1(Q2β2−4c0

2)
(16Q2β2d2d4 + 9Q2β2d3

2 + 16Q2βd1d4 + 24Q2βd2d3 + 6Q2d1d3

+4Q2d2
2 − 64c0

2d2d4 − 36c0
2d3

2 − 64c0c1d1d4 − 96c0c1d2d3 − 48c0c2d1d3 − 32c0c2d2
2

−32c0c3d1d2 − 8c0c4d1
2 − 24c1

2d1d3 − 16c1
2d2

2 − 32c1c2d1d2 − 8c1c3d1
2 − 4c2

2d1
2)

,

c6 = − 1
60β2(2β2c2−βνc1+3βc1−νc0+c0+1) (240β4c3c5 + 144β4c4

2 − 100β3νc2c5

−120β3νc3c4 + 620β3c2c5 + 936β3c3c4 − 220β2νc1c5 − 316β2νc2c4 − 174β2νc3
2

+490β2c1c5 + 1036β2c2c4 + 633β2c3
2 − 110βνc0c5 − 246βνc1c4 − 314βνc2c3 + 110βc0c5

+438βc1c4 + 698βc2c3 − 48νc0c4 − 84νc1c3 − 48νc2
2 + 110βc5 + 48c0c4 + 126c1c3 + 80c2

2

+10d1d5 + 16d2d4 + 9d3
2 + 48c4)

,

d6 = − 1
6d1(Q2β2−4c0

2)
(10Q2β2d2d5 + 12Q2β2d3d4 + 10Q2βd1d5 + 16Q2βd2d4 + 9Q2βd3

2

+4Q2d1d4 + 6Q2d2d3 − 40c0
2d2d5 − 48c0

2d3d4 − 40c0c1d1d5 − 64c0c1d2d4 − 36c0c1d3
2

−32c0c2d1d4 − 48c0c2d2d3 − 24c0c3d1d3 − 16c0c3d2
2 − 16c0c4d1d2 − 4c0c5d1

2 − 16c1
2d1d4

−24c1
2d2d3 − 24c1c2d1d3 − 16c1c2d2

2 − 16c1c3d1d2 − 4c1c4d1
2 − 8c2

2d1d2 − 4c2c3d1
2)

,

c7 = − 1
42β2(2β2c2−βνc1+3βc1−νc0+c0+1) (180β4c3c6 + 240β4c4c5 − 72β3νc2c6

−90β3νc3c5 − 48β3νc4
2 + 456β3c2c6 + 750β3c3c5 + 432β3c4

2 − 156β2νc1c6 − 232β2νc2c5

−270β2νc3c4 + 354β2c1c6 + 802β2c2c5 + 1098β2c3c4 − 78βνc0c6 − 178βνc1c5

−238βνc2c4 − 129βνc3
2 + 78βc0c6 + 328βc1c5 + 574βc2c4 + 336βc3

2 − 35νc0c5

−63νc1c4 − 77νc2c3 + 78βc6 + 35c0c5 + 99c1c4 + 143c2c3 + 6d1d6 + 10d2d5 + 12d3d4 + 35c5)

,

d7 = − 1
14d1(Q2β2−4c0

2)
(24Q2β2d2d6 + 30Q2β2d3d5 + 16Q2β2d4

2 + 24Q2βd1d6

+40Q2βd2d5 + 48Q2βd3d4 + 10Q2d1d5 + 16Q2d2d4 + 9Q2d3
2 − 96c0

2d2d6

−120c0
2d3d5 − 64c0

2d4
2 − 96c0c1d1d6 − 160c0c1d2d5 − 192c0c1d3d4 − 80c0c2d1d5

−128c0c2d2d4 − 72c0c2d3
2 − 64c0c3d1d4 − 96c0c3d2d3 − 48c0c4d1d3 − 32c0c4d2

2

−32c0c5d1d2 − 8c0c6d1
2 − 40c1

2d1d5 − 64c1
2d2d4 − 36c1

2d3
2 − 64c1c2d1d4 − 96c1c2d2d3

−48c1c3d1d3 − 32c1c3d2
2 − 32c1c4d1d2 − 8c1c5d1

2 − 24c2
2d1d3 − 16c2

2d2
2 − 32c2c3d1d2

−8c2c4d1
2 − 4c3

2d1
2)

,

c8 = − 1
112β2(2β2c2−βνc1+3βc1−νc0+c0+1) (504β4c3c7 + 720β4c4c6 + 400β4c5

2

−196β3νc2c7 − 252β3νc3c6 − 280β3νc4c5 + 1260β3c2c7 + 2196β3c3c6 + 2760β3c4c5

−420β2νc1c7 − 640β2νc2c6 − 772β2νc3c5 − 408β2νc4
2 + 966β2c1c7 + 2296β2c2c6

+3382β2c3c5 + 1896β2c4
2 − 210βνc0c7 − 486βνc1c6 − 670βνc2c5 − 762βνc3c4

+210βc0c7 + 918βc1c6 + 1710βc2c5 + 2202βc3c4 − 96νc0c6 − 176νc1c5 − 224νc2c4

−120νc3
2 + 210βc7 + 96c0c6 + 286c1c5 + 448c2c4 + 255c3

2 + 14d1d7 + 24d2d6 + 30d3d5

+16d4
2 + 96c6)

,
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d8 = − 1
4d1(Q2β2−4c0

2)
(7Q2β2d2d7 + 9Q2β2d3d6 + 10Q2β2d4d5 + 7Q2βd1d7

+12Q2βd2d6 + 15Q2βd3d5 + 8Q2βd4
2 + 3Q2d1d6 + 5Q2d2d5 + 6Q2d3d4 − 28c0

2d2d7

−36c0
2d3d6 − 40c0

2d4d5 − 28c0c1d1d7 − 48c0c1d2d6 − 60c0c1d3d5 − 32c0c1d4
2

−24c0c2d1d6 − 40c0c2d2d5 − 48c0c2d3d4 − 20c0c3d1d5 − 32c0c3d2d4 − 18c0c3d3
2

−16c0c4d1d4 − 24c0c4d2d3 − 12c0c5d1d3 − 8c0c5d2
2 − 8c0c6d1d2 − 2c0c7d1

2 − 12c1
2d1d6

−20c1
2d2d5 − 24c1

2d3d4 − 20c1c2d1d5 − 32c1c2d2d4 − 18c1c2d3
2 − 16c1c3d1d4

−24c1c3d2d3 − 12c1c4d1d3 − 8c1c4d2
2 − 8c1c5d1d2 − 2c1c6d1

2 − 8c2
2d1d4 − 12c2

2d2d3

−12c2c3d1d3 − 8c2c3d2
2 − 8c2c4d1d2 − 2c2c5d1

2 − 4c3
2d1d2 − 2c3c4d1

2)

,

c9 = − 1
72β2(2β2c2−βνc1+3βc1−νc0+c0+1) (336β4c3c8 + 504β4c4c7 + 600β4c5c6

−128β3νc2c8 − 168β3νc3c7 − 192β3νc4c6 − 100β3νc5
2 + 832β3c2c8 + 1512β3c3c7

+2016β3c4c6 + 1100β3c5
2 − 272β2νc1c8 − 422β2νc2c7 − 522β2νc3c6 − 572β2νc4c5

+632β2c1c8 + 1556β2c2c7 + 2412β2c3c6 + 2912β2c4c5 − 136βνc0c8 − 318βνc1c7

−448βνc2c6 − 526βνc3c5 − 276βνc4
2 + 136βc0c8 + 612βc1c7 + 1192βc2c6

+1636βc3c5 + 900βc4
2 − 63νc0c7 − 117νc1c6 − 153νc2c5 − 171νc3c4 + 136βc8

+63c0c7 + 195c1c6 + 323c2c5 + 399c3c4 + 8d1d8 + 14d2d7 + 18d3d6 + 20d4d5 + 63c7)

,

d9 = − 1
18d1(Q2β2−4c0

2)
(32Q2β2d2d8 + 42Q2β2d3d7 + 48Q2β2d4d6 + 25Q2β2d5

2

+32Q2βd1d8 + 56Q2βd2d7 + 72Q2βd3d6 + 80Q2βd4d5 + 14Q2d1d7 + 24Q2d2d6

+30Q2d3d5 + 16Q2d4
2 − 128c0

2d2d8 − 168c0
2d3d7 − 192c0

2d4d6 − 100c0
2d5

2

−128c0c1d1d8 − 224c0c1d2d7 − 288c0c1d3d6 − 320c0c1d4d5 − 112c0c2d1d7 − 192c0c2d2d6

−240c0c2d3d5 − 128c0c2d4
2 − 96c0c3d1d6 − 160c0c3d2d5 − 192c0c3d3d4 − 80c0c4d1d5

−128c0c4d2d4 − 72c0c4d3
2 − 64c0c5d1d4 − 96c0c5d2d3 − 48c0c6d1d3 − 32c0c6d2

2

−32c0c7d1d2 − 8c0c8d1
2 − 56c1

2d1d7 − 96c1
2d2d6 − 120c1

2d3d5 − 64c1
2d4

2 − 96c1c2d1d6

−160c1c2d2d5 − 192c1c2d3d4 − 80c1c3d1d5 − 128c1c3d2d4 − 72c1c3d3
2 − 64c1c4d1d4

−96c1c4d2d3 − 48c1c5d1d3 − 32c1c5d2
2 − 32c1c6d1d2 − 8c1c7d1

2 − 40c2
2d1d5 − 64c2

2d2d4

−36c2
2d3

2 − 64c2c3d1d4 − 96c2c3d2d3 − 48c2c4d1d3 − 32c2c4d2
2 − 32c2c5d1d2 − 8c2c6d1

2

−24c3
2d1d3 − 16c3

2d2
2 − 32c3c4d1d2 − 8c3c5d1

2 − 4c4
2d1

2)

,

c10 = − 1
180β2(2β2c2−βνc1+3βc1−νc0+c0+1) (864β4c3c9 + 1344β4c4c8

+1680β4c5c7 + 900β4c6
2 − 324β3νc2c9 − 432β3νc3c8 + 2124β3c2c9

+3984β3c3c8 + 5544β3c4c7 + 6420β3c5c6 − 684β2νc1c9 − 1076β2νc2c8

−1356β2νc3c7 − 1524β2νc4c6 − 790β2νc5
2 + 4465β2c5

2 + 3170βc2c7 + 4554βc3c6

−160νc0c8 − 300νc1c7 − 400νc2c6 − 460νc3c5 + 18d1d9 + 32d2d8 + 42d3d7 + 48d4d6

+1602β2c1c9 + 4052β2c2c8 + 6522β2c3c7 + 8292β2c4c6 − 342βνc0c9 − 806βνc1c8

−1154βνc2c7 − 1386βνc3c6 − 1502βνc4c5 + 342βc0c9 + 1574βc1c8 + 5342βc4c5

+342βc9 + 1150c3c5 + 160c8 − 504β3νc4c7 − 540β3νc5c6 − 240νc4
2 + 160c0c8

+510c1c7 + 880c2c6 + 624c4
2 + 25d5

2)

,
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d10 = − 1
10d1(Q2β2−4c0

2)
(18Q2β2d2d9 + 24Q2β2d3d8 + 28Q2β2d4d7 + 30Q2β2d5d6

+18Q2βd1d9 + 32Q2βd2d8 + 42Q2βd3d7 + 48Q2βd4d6 + 25Q2βd5
2 + 8Q2d1d8

+14Q2d2d7 + 18Q2d3d6 + 20Q2d4d5 − 72c0
2d2d9 − 96c0

2d3d8 − 112c0
2d4d7

−120c0
2d5d6 − 72c0c1d1d9 − 128c0c1d2d8 − 168c0c1d3d7 − 192c0c1d4d6 − 100c0c1d5

2

−64c0c2d1d8 − 112c0c2d2d7 − 144c0c2d3d6 − 160c0c2d4d5 − 56c0c3d1d7 − 96c0c3d2d6

−120c0c3d3d5 − 64c0c3d4
2 − 48c0c4d1d6 − 80c0c4d2d5 − 96c0c4d3d4 − 40c0c5d1d5

−64c0c5d2d4 − 36c0c5d3
2 − 32c0c6d1d4 − 48c0c6d2d3 − 24c0c7d1d3 − 16c0c7d2

2

−16c0c8d1d2 − 4c0c9d1
2 − 32c1

2d1d8 − 56c1
2d2d7 − 72c1

2d3d6 − 80c1
2d4d5 − 56c1c2d1d7

−96c1c2d2d6 − 120c1c2d3d5 − 64c1c2d4
2 − 48c1c3d1d6 − 80c1c3d2d5 − 96c1c3d3d4

−40c1c4d1d5 − 64c1c4d2d4 − 36c1c4d3
2 − 32c1c5d1d4 − 48c1c5d2d3 − 24c1c6d1d3

−16c1c6d2
2 − 16c1c7d1d2 − 4c1c8d1

2 − 24c2
2d1d6 − 40c2

2d2d5 − 48c2
2d3d4 − 40c2c3d1d5

−64c2c3d2d4 − 36c2c3d3
2 − 32c2c4d1d4 − 48c2c4d2d3 − 24c2c5d1d3 − 16c2c5d2

2

−16c2c6d1d2 − 4c2c7d1
2 − 16c3

2d1d4 − 24c3
2d2d3 − 24c3c4d1d3 − 16c3c4d2

2 − 16c3c5d1d2

−4c3c6d1
2 − 8c4

2d1d2 − 4c4c5d1
2)

,

c11 = − 1
110β2(2β2c2−βνc1+3βc1−νc0+c0+1) (−200β3νc2c10 − 270β3νc3c9

−320β3νc4c8 − 350β3νc5c7 − 420β2νc1c10 − 854β2νc3c8 − 978β2νc4c7

−1040β2νc5c6 + 5598β2c4c7 − 210βνc0c10 − 498βνc1c9 − 722βνc2c8

−882βνc3c7 − 978βνc4c6 − 505βνc5
2 + 2034βc2c8 + 3024βc3c7 + 3714βc4c6

+99c9 + 540β4c3c10 + 864β4c4c9 + 1260β4c6c7 − 668β2νc2c9 + 6350β2c5c6

+210βc0c10 − 99νc0c9 − 187νc1c8 − 253νc2c7 − 297νc3c6 − 319νc4c5 − 180β3νc6
2

+1120β4c5c8 + 4238β2c3c8 + 2558β2c2c9 + 10d1d10 + 18d2d9 + 24d3d8 + 28d4d7

+30d5d6 + 2340β3c6
2 + 990β2c1c10 + 1980βc5

2 + 99c0c9 + 323c1c8 + 575c2c7

+783c3c6 + 899c4c5 + 210βc10 + 1320β3c2c10 + 2538β3c3c9 + 3648β3c4c8

+984βc1c9 + 4410β3c5c7)

,

d11 = − 1
22d1(Q2β2−4c0

2)
(40 Q2β2d2d10 + 54Q2β2d3d9 + 64Q2β2d4d8 + 70Q2β2d5d7

+36Q2β2d6
2 + 40Q2βd1d10 + 72Q2βd2d9 + 96Q2βd3d8 + 112Q2βd4d7 + 120Q2βd5d6

+18Q2d1d9 + 32Q2d2d8 + 42Q2d3d7 + 48Q2d4d6 + 25Q2d5
2 − 160c0

2d2d10 − 216c0
2d3d9

−256c0
2d4d8 − 280c0

2d5d7 − 144c0
2d6

2 − 160c0c1d1d10 − 288c0c1d2d9 − 384c0c1d3d8

−448c0c1d4d7 − 480c0c1d5d6 − 144c0c2d1d9 − 256c0c2d2d8 − 336c0c2d3d7 − 384c0c2d4d6

−200c0c2d5
2 − 128c0c3d1d8 − 224c0c3d2d7 − 288c0c3d3d6 − 320c0c3d4d5 − 112c0c4d1d7

−192c0c4d2d6 − 240c0c4d3d5 − 128c0c4d4
2 − 96c0c5d1d6 − 160c0c5d2d5 − 192c0c5d3d4

−80c0c6d1d5 − 128c0c6d2d4 − 72c0c6d3
2 − 64c0c7d1d4 − 96c0c7d2d3 − 48c0c8d1d3

−32c0c8d2
2 − 32c0c9d1d2 − 8c0c10d1

2 − 72c1
2d1d9 − 128c1

2d2d8 − 168c1
2d3d7 − 192c1

2d4d6

−100c1
2d5

2 − 128c1c2d1d8 − 224c1c2d2d7 − 288c1c2d3d6 − 320c1c2d4d5 − 112c1c3d1d7

−192c1c3d2d6 − 240c1c3d3d5 − 128c1c3d4
2 − 96c1c4d1d6 − 160c1c4d2d5 − 192c1c4d3d4

−80c1c5d1d5 − 128c1c5d2d4 − 72c1c5d3
2 − 64c1c6d1d4 − 96c1c6d2d3 − 48c1c7d1d3

−32c1c7d2
2 − 32c1c8d1d2 − 8c1c9d1

2 − 56c2
2d1d7 − 96c2

2d2d6 − 120c2
2d3d5 − 64c2

2d4
2

,
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−96c2c3d1d6 − 160c2c3d2d5 − 192c2c3d3d4 − 80c2c4d1d5 − 128c2c4d2d4 − 72c2c4d3
2

−64c2c5d1d4 − 96c2c5d2d3 − 48c2c6d1d3 − 32c2c6d2
2 − 32c2c7d1d2 − 8c2c8d1

2 − 40c3
2d1d5

−64c3
2d2d4 − 36c3

2d3
2 − 64c3c4d1d4 − 96c3c4d2d3 − 48c3c5d1d3 − 32c3c5d2

2 − 32c3c6d1d2

−8c3c7d1
2 − 24c4

2d1d3 − 16c4
2d2

2 − 32c4c5d1d2 − 8c4c6d1
2 − 4c5

2d1
2)

,

c12 = − 1
264β2(2β2c2−βνc1+3βc1−νc0+c0+1) (1320β4c3c11 + 2160β4c4c10

+2880β4c5c9 + 3360β4c6c8 − 660β3νc3c10 − 924β3νc6c7 + 3212β3c2c11 + 6300β3c3c10

+11600β3c5c8 + 12852β3c6c7 − 1356β2νc6
2 + 2398β2c1c11 + 6304β2c2c10

+10686β2c3c9 + 14536β2c4c8 + 17134β2c5c7 − 506βνc0c11 − 1206βνc1c10 + 506βc0c11

+2406βc1c10 + 5078βc2c9 + 9858βc4c7 − 240νc0c10 + 240c10 − 484β3νc2c11

−880β3νc5c8 + 9288β3c4c9 − 1012β2νc1c11 − 1624β2νc2c10 − 2100β2νc3c9

−2440β2νc4c8 − 2644β2νc5c7 − 1766βνc2c9 − 2186βνc3c8 − 2466βνc4c7

−2606βνc5c6 + 7754βc3c8 + 11006βc5c6 − 456νc1c9 − 624νc2c8 − 744νc3c7 − 816νc4c6

+36d6
2 − 792β3νc4c9 + 1295c5

2 + 1764β4c7
2 + 506βc11 + 9024β2c6

2 − 420νc5
2

+240c0c10 + 798c1c9 + 1456c2c8 + 2046c3c7 + 2448c4c6 + 22d1d11 + 40d2d10 + 54d3d9

+64d4d8 + 70d5d7)

,

d12 = − 1
6d1(Q2β2−4c0

2)
(11 Q2β2d2d11 + 15Q2β2d3d10 + 18Q2β2d4d9 + 20Q2β2d5d8

+21Q2β2d6d7 + 11Q2βd1d11 + 20Q2βd2d10 + 27Q2βd3d9 + 32Q2βd4d8 + 35Q2βd5d7

+18Q2βd6
2 + 5Q2d1d10 + 9Q2d2d9 + 12Q2d3d8 + 14Q2d4d7 + 15Q2d5d6 − 44c0

2d2d11

−60c0
2d3d10 − 72c0

2d4d9 − 80c0
2d5d8 − 84c0

2d6d7 − 44c0c1d1d11 − 80c0c1d2d10

−108c0c1d3d9 − 128c0c1d4d8 − 140c0c1d5d7 − 72c0c1d6
2 − 40c0c2d1d10 − 72c0c2d2d9

−96c0c2d3d8 − 112c0c2d4d7 − 120c0c2d5d6 − 36c0c3d1d9 − 64c0c3d2d8 − 84c0c3d3d7

−96c0c3d4d6 − 50c0c3d5
2 − 32c0c4d1d8 − 56c0c4d2d7 − 72c0c4d3d6 − 80c0c4d4d5

−28c0c5d1d7 − 48c0c5d2d6 − 60c0c5d3d5 − 32c0c5d4
2 − 24c0c6d1d6 − 40c0c6d2d5

−48c0c6d3d4 − 20c0c7d1d5 − 32c0c7d2d4 − 18c0c7d3
2 − 16c0c8d1d4 − 24c0c8d2d3

−12c0c9d1d3 − 8c0c9d2
2 − 8c0c10d1d2 − 2c0c11d1

2 − 20c1
2d1d10 − 36c1

2d2d9 − 48c1
2d3d8

−56c1
2d4d7 − 60c1

2d5d6 − 36c1c2d1d9 − 64c1c2d2d8 − 84c1c2d3d7 − 96c1c2d4d6

−50c1c2d5
2 − 32c1c3d1d8 − 56c1c3d2d7 − 72c1c3d3d6 − 80c1c3d4d5 − 28c1c4d1d7

−48c1c4d2d6 − 60c1c4d3d5 − 32c1c4d4
2 − 24c1c5d1d6 − 40c1c5d2d5 − 48c1c5d3d4

−20c1c6d1d5 − 32c1c6d2d4 − 18c1c6d3
2 − 16c1c7d1d4 − 24c1c7d2d3 − 12c1c8d1d3

−8c1c8d2
2 − 8c1c9d1d2 − 2c1c10d1

2 − 16c2
2d1d8 − 28c2

2d2d7 − 36c2
2d3d6 − 40c2

2d4d5

−28c2c3d1d7 − 48c2c3d2d6 − 60c2c3d3d5 − 32c2c3d4
2 − 24c2c4d1d6 − 40c2c4d2d5

−48c2c4d3d4 − 20c2c5d1d5 − 32c2c5d2d4 − 18c2c5d3
2 − 16c2c6d1d4 − 24c2c6d2d3

−12c2c7d1d3 − 8c2c7d2
2 − 8c2c8d1d2 − 2c2c9d1

2 − 12c3
2d1d6 − 20c3

2d2d5 − 24c3
2d3d4

−20c3c4d1d5 − 32c3c4d2d4 − 18c3c4d3
2 − 16c3c5d1d4 − 24c3c5d2d3 − 12c3c6d1d3

−8c3c6d2
2 − 8c3c7d1d2 − 2c3c8d1

2 − 8c4
2d1d4 − 12c4

2d2d3 − 12c4c5d1d3 − 8c4c5d2
2

−8c4c6d1d2 − 2c4c7d1
2 − 4c5

2d1d2 − 2c5c6d1
2)

,
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c13 = − 1
156β2(2β2c2−βνc1+3βc1−νc0+c0+1) (792β4c3c12 + 1320β4c4c11

+1800β4c5c10 + 2160β4c6c9 + 2352β4c7c8 + 1920β3c2c12 + 3828β3c3c11 − 970β2νc2c11

+1428β2c1c12 + 3808β2c2c11 + 6576β2c3c10 + 9156β2c4c9 + 11116β2c5c8 + 12168β2c6c7

−1060βνc2c10 − 834βνc6
2 + 300βc0c12 + 1444βc1c11 + 3100βc2c10 + 4836βc3c9

+143c11 − 288β3νc2c12 − 396β3νc3c11 − 576β3νc6c8 − 294β3νc7
2 + 5760β3c4c10

+7380β3c5c9 + 8448β3c6c8 − 600β2νc1c12 − 1488β2νc4c9 − 300βνc0c12 − 1630βνc5c7

+6316βc4c8 + 7300βc5c7 − 143νc0c11 − 273νc1c10 − 377νc2c9 − 455νc3c8 − 533νc5c6

−480β3νc4c10 − 540β3νc5c9 + 4410β3c7
2 − 1266β2νc3c10 − 1636β2νc5c8 − 1710β2νc6c7

−718βνc1c11 − 1326βνc3c9 − 1516βνc4c8 + 3822βc6
2 − 507νc4c7 + 300βc12 + 143c0c11

+483c1c10 + 899c2c9 + 1295c3c8 + 1599c4c7 + 1763c5c6 + 12d1d12 + 22d2d11 + 30d3d10

+36d4d9 + 40d5d8 + 42d6d7)

,

d13 = − 1
26d1(Q2β2−4c0

2)
(48 Q2β2d2d12 + 66Q2β2d3d11 + 80Q2β2d4d10

+90Q2β2d5d9 + 96Q2β2d6d8 + 49Q2β2d7
2 + 48Q2βd1d12 + 88Q2βd2d11 + 120Q2βd3d10

+144Q2βd4d9 + 160Q2βd5d8 + 168Q2βd6d7 + 22Q2d1d11 + 40Q2d2d10 + 54Q2d3d9

+64Q2d4d8 + 70Q2d5d7 + 36Q2d6
2 − 192c0

2d2d12 − 264c0
2d3d11 − 320c0

2d4d10

−360c0
2d5d9 − 384c0

2d6d8 − 196c0
2d7

2 − 192c0c1d1d12 − 352c0c1d2d11 − 480c0c1d3d10

−576c0c1d4d9 − 640c0c1d5d8 − 672c0c1d6d7 − 176c0c2d1d11 − 320c0c2d2d10 − 432c0c2d3d9

−512c0c2d4d8 − 560c0c2d5d7 − 288c0c2d6
2 − 160c0c3d1d10 − 288c0c3d2d9 − 384c0c3d3d8

−448c0c3d4d7 − 480c0c3d5d6 − 144c0c4d1d9 − 256c0c4d2d8 − 336c0c4d3d7 − 384c0c4d4d6

−200c0c4d5
2 − 128c0c5d1d8 − 224c0c5d2d7 − 288c0c5d3d6 − 320c0c5d4d5 − 112c0c6d1d7

−192c0c6d2d6 − 240c0c6d3d5 − 128c0c6d4
2 − 96c0c7d1d6 − 160c0c7d2d5 − 192c0c7d3d4

−80c0c8d1d5 − 128c0c8d2d4 − 72c0c8d3
2 − 64c0c9d1d4 − 96c0c9d2d3 − 48c0c10d1d3

−32c0c10d2
2 − 32c0c11d1d2 − 8c0c12d1

2 − 88c1
2d1d11 − 160c1

2d2d10 − 216c1
2d3d9 − 256c1

2d4d8

−280c1
2d5d7 − 144c1

2d6
2 − 160c1c2d1d10 − 288c1c2d2d9 − 384c1c2d3d8 − 448c1c2d4d7

−480c1c2d5d6 − 144c1c3d1d9 − 256c1c3d2d8 − 336c1c3d3d7 − 384c1c3d4d6 − 200c1c3d5
2

−128c1c4d1d8 − 224c1c4d2d7 − 288c1c4d3d6 − 320c1c4d4d5 − 112c1c5d1d7 − 192c1c5d2d6

−240c1c5d3d5 − 128c1c5d4
2 − 96c1c6d1d6 − 160c1c6d2d5 − 192c1c6d3d4 − 80c1c7d1d5

−128c1c7d2d4 − 72c1c7d3
2 − 64c1c8d1d4 − 96c1c8d2d3 − 48c1c9d1d3 − 32c1c9d2

2

−32c1c10d1d2 − 8c1c11d1
2 − 72c2

2d1d9 − 128c2
2d2d8 − 168c2

2d3d7 − 192c2
2d4d6

−100c2
2d5

2 − 128c2c3d1d8 − 224c2c3d2d7 − 288c2c3d3d6 − 320c2c3d4d5 − 112c2c4d1d7

−192c2c4d2d6 − 240c2c4d3d5 − 128c2c4d4
2 − 96c2c5d1d6 − 160c2c5d2d5 − 192c2c5d3d4

−80c2c6d1d5 − 128c2c6d2d4 − 72c2c6d3
2 − 64c2c7d1d4 − 96c2c7d2d3 − 48c2c8d1d3

−32c2c8d2
2 − 32c2c9d1d2 − 8c2c10d1

2 − 56c3
2d1d7 − 96c3

2d2d6 − 120c3
2d3d5 − 64c3

2d4
2

−96c3c4d1d6 − 160c3c4d2d5 − 192c3c4d3d4 − 80c3c5d1d5 − 128c3c5d2d4 − 72c3c5d3
2

−64c3c6d1d4 − 96c3c6d2d3 − 48c3c7d1d3 − 32c3c7d2
2 − 32c3c8d1d2 − 8c3c9d1

2 − 40c4
2d1d5

−64c4
2d2d4 − 36c4

2d3
2 − 64c4c5d1d4 − 96c4c5d2d3 − 48c4c6d1d3 − 32c4c6d2

2 − 32c4c7d1d2

−8c4c8d1
2 − 24c5

2d1d3 − 16c5
2d2

2 − 32c5c6d1d2 − 8c5c7d1
2 − 4c6

2d1
2)

,
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c14 = − 1
364β2(2β2c2−βνc1+3βc1−νc0+c0+1) (−676 β3νc2c13 − 936β3νc3c12

−1144β3νc4c11 − 1300β3νc5c10 − 1404β3νc6c9 − 1456β3νc7c8 − 1404β2νc1c13

−2284β2νc2c12 − 3004β2νc3c11 − 3564β2νc4c10 − 3964β2νc5c9 − 4204β2νc6c8

−2506βνc2c11 − 3162βνc3c10 − 3654βνc4c9 − 3982βνc5c8 − 4146βνc6c7

−1872β4c3c13 + 3168β4c4c12 + 4400β4c5c11 + 5400β4c6c10 + 6048β4c7c9

+16401β2c7
2 − 702βνc0c13 − 1686βνc1c12 + 3414βc1c12 + 7434βc2c11 + 11802βc3c10

+15750βc4c9 + 18702βc5c8 − 336νc0c12 − 644νc1c11 − 896νc2c10 − 1092νc3c9

−1232νc4c8 − 1316νc5c7 + 336c0c12 + 1150c1c11 + 2176c2c10 + 3198c3c9 + 4048c4c8

+4606c5c7 + 23184β3c7c8 + 3354β2c1c13 + 9052β2c2c12 + 15874β2c3c11 + 22524β2c4c10

+27994β2c5c9 + 31564β2c6c8 + 702βc0c13 + 20274βc6c7 − 672νc6
2 + 702βc13 + 26d1d13

+48d2d12 + 66d3d11 + 80d4d10 + 3136β4c8
2 + 4524β3c2c13 + 9144β3c3c12 + 13992β3c4c11

+18300β3c5c10 + 21492β3c6c9 − 2142β2νc7
2 + 2400c6

2 + 90d5d9 + 96d6d8 + 49d7
2

+336c12)

,

d14 = − 1
14d1(Q2β2−4c0

2)
(26 Q2β2d2d13 + 36Q2β2d3d12 + 44Q2β2d4d11

+50Q2β2d5d10 + 54Q2β2d6d9 + 56Q2β2d7d8 + 26Q2βd1d13 + 48Q2βd2d12 + 66Q2βd3d11

+80Q2βd4d10 + 90Q2βd5d9 + 96Q2βd6d8 + 49Q2βd7
2 + 12Q2d1d12 + 22Q2d2d11

+30Q2d3d10 + 36Q2d4d9 + 40Q2d5d8 + 42Q2d6d7 − 104c0
2d2d13 − 144c0

2d3d12

−176c0
2d4d11 − 200c0

2d5d10 − 216c0
2d6d9 − 224c0

2d7d8 − 104c0c1d1d13 − 192c0c1d2d12

−264c0c1d3d11 − 320c0c1d4d10 − 360c0c1d5d9 − 384c0c1d6d8 − 196c0c1d7
2 − 96c0c2d1d12

−176c0c2d2d11 − 240c0c2d3d10 − 288c0c2d4d9 − 320c0c2d5d8 − 336c0c2d6d7 − 88c0c3d1d11

−160c0c3d2d10 − 216c0c3d3d9 − 256c0c3d4d8 − 280c0c3d5d7 − 144c0c3d6
2 − 80c0c4d1d10

−144c0c4d2d9 − 192c0c4d3d8 − 224c0c4d4d7 − 240c0c4d5d6 − 72c0c5d1d9 − 128c0c5d2d8

−168c0c5d3d7 − 192c0c5d4d6 − 100c0c5d5
2 − 64c0c6d1d8 − 112c0c6d2d7 − 144c0c6d3d6

−160c0c6d4d5 − 56c0c7d1d7 − 96c0c7d2d6 − 120c0c7d3d5 − 64c0c7d4
2 − 48c0c8d1d6

−80c0c8d2d5 − 96c0c8d3d4 − 40c0c9d1d5 − 64c0c9d2d4 − 36c0c9d3
2 − 32c0c10d1d4

−48c0c10d2d3 − 24c0c11d1d3 − 16c0c11d2
2 − 16c0c12d1d2 − 4c0c13d1

2 − 48c1
2d1d12

−88c1
2d2d11 − 120c1

2d3d10 − 144c1
2d4d9 − 160c1

2d5d8 − 168c1
2d6d7 − 88c1c2d1d11

−160c1c2d2d10 − 216c1c2d3d9 − 256c1c2d4d8 − 280c1c2d5d7 − 144c1c2d6
2 − 80c1c3d1d10

−144c1c3d2d9 − 192c1c3d3d8 − 224c1c3d4d7 − 240c1c3d5d6 − 72c1c4d1d9 − 128c1c4d2d8

−168c1c4d3d7 − 192c1c4d4d6 − 100c1c4d5
2 − 64c1c5d1d8 − 112c1c5d2d7 − 144c1c5d3d6

−160c1c5d4d5 − 56c1c6d1d7 − 96c1c6d2d6 − 120c1c6d3d5 − 64c1c6d4
2 − 48c1c7d1d6

−80c1c7d2d5 − 96c1c7d3d4 − 40c1c8d1d5 − 64c1c8d2d4 − 36c1c8d3
2 − 32c1c9d1d4

−48c1c9d2d3 − 24c1c10d1d3 − 16c1c10d2
2 − 16c1c11d1d2 − 4c1c12d1

2 − 40c2
2d1d10

−72c2
2d2d9 − 96c2

2d3d8 − 112c2
2d4d7 − 120c2

2d5d6 − 72c2c3d1d9 − 128c2c3d2d8

−168c2c3d3d7 − 192c2c3d4d6 − 100c2c3d5
2 − 64c2c4d1d8 − 112c2c4d2d7 − 144c2c4d3d6

−160c2c4d4d5 − 56c2c5d1d7 − 96c2c5d2d6 − 120c2c5d3d5 − 64c2c5d4
2 − 48c2c6d1d6

−80c2c6d2d5 − 96c2c6d3d4 − 40c2c7d1d5 − 64c2c7d2d4 − 36c2c7d3
2 − 32c2c8d1d4

−48c2c8d2d3 − 24c2c9d1d3 − 16c2c9d2
2 − 16c2c10d1d2 − 4c2c11d1

2 − 32c3
2d1d8 − 56c3

2d2d7

,
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−72c3
2d3d6 − 80c3

2d4d5 − 56c3c4d1d7 − 96c3c4d2d6 − 120c3c4d3d5 − 64c3c4d4
2 − 48c3c5d1d6

−80c3c5d2d5 − 96c3c5d3d4 − 40c3c6d1d5 − 64c3c6d2d4 − 36c3c6d3
2 − 32c3c7d1d4

−48c3c7d2d3 − 24c3c8d1d3 − 16c3c8d2
2 − 16c3c9d1d2 − 4c3c10d1

2 − 24c4
2d1d6 − 40c4

2d2d5

−48c4
2d3d4 − 40c4c5d1d5 − 64c4c5d2d4 − 36c4c5d3

2 − 32c4c6d1d4 − 48c4c6d2d3 − 24c4c7d1d3

−16c4c7d2
2 − 16c4c8d1d2 − 4c4c9d1

2 − 16c5
2d1d4 − 24c5

2d2d3 − 24c5c6d1d3 − 16c5c6d2
2

−16c5c7d1d2 − 4c5c8d1
2 − 8c6

2d1d2 − 4c6c7d1
2)

,

c15 = − 1
210β2(2β2c2−βνc1+3βc1−νc0+c0+1) (2632 β3c2c14 + 8352β3c4c12

+11110β3c5c11 + 13320β3c6c10 + 14742β3c7c9 − 1758β2νc3c12 − 2102β2νc4c11

−2360β2νc5c10 − 2532β2νc6c9 − 2618β2νc7c8 − 406βνc0c14 − 978βνc1c13 + 6720βc7
2

+406βc14 + 195c0c13 + 675c1c12 + 1295c2c11 + 1935c3c10 + 2499c4c9 + 2915c5c8 + 3135c6c7

+26d2d13 + 36d3d12 + 44d4d11 + 195c13 + 1872β4c4c13 − 448β3νc8
2 + 5382β3c3c13

+13586β2c4c11 + 406βc0c14 + 1992βc1c13 + 4390βc2c12 + 7072βc3c11 + 9606βc4c10

+11656βc5c9 + 12982βc6c8 − 195νc0c13 − 375νc1c12 − 525νc2c11 − 645νc3c10 − 735νc4c9

−795νc5c8 − 825νc6c7 − 1281βνc7
2 + 9426β2c3c12 + 1946β2c1c14 + 19866β2c6c9

+17210β2c5c10 + 5306β2c2c13 + 21266β2c7c8 + 4032β4c8c9 + 2640β4c5c12 + 3780β4c7c10

+3300β4c6c11 + 1092β4c3c14 − 1328β2νc2c13 − 812β2νc1c14 + 14d1d14 + 7616β3c8
2 + 50d5d10

+54d6d9 + 56d7d8 − 392β3νc2c14 − 546β3νc3c13 − 672β3νc4c12 − 770β3νc5c11 − 840β3νc6c10

−882β3νc7c9 − 1462βνc2c12 − 1858βνc3c11 − 2166βνc4c10 − 2386βνc5c9 − 2518βνc6c8)

,

d15 = − 1
30d1(Q2β2−4c0

2)
(120 Q2β2d6d10 + 104Q2βd2d13 − 336c0c6d3d7 − 128c0c7d1d8

−192c0c9d3d4 − 128c0c10d2d4 − 64c0c11d1d4 − 96c0c11d2d3 − 176c1c3d1d11 − 384c1c4d3d8

−128c1c7d4
2 − 192c1c8d3d4 − 72c1c9d3

2 − 160c2
2d2d10 − 216c2

2d3d9 − 256c2
2d4d8

−64c4c7d1d4 − 8c4c10d1
2 − 40c5

2d1d5 − 64c5
2d2d4 − 8c5c9d1

2 − 4c7
2d1

2 + 96Q2β2d4d12

−312c0
2d3d13 − 440c0

2d5d11 − 504c0
2d7d9 − 224c0c1d1d14 − 352c0c3d2d11 − 448c0c5d4d7

−256c0c6d2d8 − 352c1c2d2d11 − 512c1c3d4d8 − 32c1c11d2
2 − 8c1c13d1

2 − 88c2
2d1d11

−280c2
2d5d7 − 200c2c4d5

2 − 128c2c6d4
2 − 224c3c4d2d7 − 160c3c6d2d5 − 32c3c10d1d2

−32c4c9d1d2 − 48c5c7d1d3 + 200Q2βd5d10 − 160c0c5d1d10 − 480c0c5d5d6 − 128c0c8d4
2

−72c0c10d3
2 − 384c1

2d6d8 − 288c1c4d2d9 − 480c1c4d5d6 − 144c1c5d1d9 − 160c1c8d2d5

−80c1c9d1d5 − 128c1c9d2d4 − 64c2c9d1d4 − 8c2c12d1
2 − 128c3

2d2d8 − 128c3c4d1d8

−240c3c5d3d5 − 64c4
2d4

2 − 192c4c5d3d4 − 36c5
2d3

2 − 16c6
2d2

2 + 176Q2βd4d11

−224c0
2d2d14 − 480c0

2d6d10 − 192c0c3d1d12 − 512c0c4d4d8 − 288c0c5d2d9 − 384c0c6d4d6

−320c0c7d4d5 − 192c1
2d2d12 − 264c1

2d3d11 − 320c1c3d2d10 − 448c1c4d4d7 − 32c2c11d1d2

−96c3c6d1d6 − 32c3c9d2
2 − 56c4

2d1d7 − 96c4
2d2d6 − 96c4c5d1d6 − 48c4c8d1d3 − 32c4c8d2

2

−96c5c6d2d3 + 56Q2βd1d14 + 144Q2βd3d12 + 224Q2βd7d8 − 320c0c4d2d10 − 288c0c4d6
2

−384c0c5d3d8 − 200c0c6d5
2 − 112c0c8d1d7 − 240c0c8d3d5 − 96c0c9d1d6 − 360c1

2d5d9

−192c1c2d1d12 − 640c1c2d5d8 − 64c1c10d1d4 − 144c2
2d6

2 − 112c3c5d1d7 − 192c3c5d2d6

−80c3c7d1d5 − 160c4c5d2d5 − 80c4c6d1d5 + 110Q2β2d5d11 + 126Q2β2d7d9 + 49Q2d7
2

−416c0c1d2d13 − 576c0c1d3d12 − 480c0c3d3d10 − 576c0c3d4d9 − 432c0c4d3d9 − 144c0c6d1d9

−288c0c7d3d6 − 320c1
2d4d10 − 196c1

2d7
2 − 672c1c2d6d7 − 288c1c3d6

2 − 200c1c5d5
2
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−64c3c8d1d4 − 96c3c8d2d3 − 128c4c6d2d4 − 32c5c8d1d2 − 8c6c8d1
2 + 64Q2β2d8

2 + 26Q2d1d13

+48Q2d2d12 + 66Q2d3d11 + 80Q2d4d10 + 90Q2d5d9 + 96Q2d6d8 − 384c0
2d4d12 − 392c0c2d7

2

−640c0c3d5d8 − 224c0c7d2d7 − 192c0c8d2d6 − 48c0c12d1d3 − 32c0c13d1d2 − 432c1c3d3d9

−160c1c4d1d10 − 288c3c4d3d6 − 48c3c9d1d3 − 96c4c7d2d3 − 32c6c7d1d2 + 78Q2β2d3d13

−256c0
2d8

2 − 672c0c3d6d7 − 160c0c9d2d5 − 32c0c12d2
2 − 8c0c14d1

2 − 104c1
2d1d13

−480c1c2d3d10 − 576c1c2d4d9 − 560c1c3d5d7 − 96c1c8d1d6 − 192c2c7d3d4 − 80c2c8d1d5

−128c2c8d2d4 − 72c2c8d3
2 − 48c2c10d1d3 − 32c2c10d2

2 − 100c3
2d5

2 − 192c3c6d3d4 − 120c4
2d3d5

−72c4c6d3
2 − 704c0c1d4d11 − 800c0c1d5d10 − 864c0c1d6d9 − 896c0c1d7d8 − 208c0c2d1d13

−384c0c2d2d12 − 528c0c2d3d11 − 640c0c2d4d10 − 720c0c2d5d9 − 768c0c2d6d8 − 224c2c5d2d7

−288c2c5d3d6 − 320c2c5d4d5 − 112c2c6d1d7 − 192c2c6d2d6 − 240c2c6d3d5 − 96c2c7d1d6

−160c2c7d2d5 − 288c1c6d3d6 − 320c1c6d4d5 − 112c1c7d1d7 − 192c1c7d2d6 − 240c1c7d3d5

−96c1c10d2d3 − 48c1c11d1d3 − 32c1c12d1d2 − 160c2c3d1d10 − 288c2c3d2d9 − 384c2c3d3d8

−448c2c3d4d7 − 480c2c3d5d6 − 144c2c4d1d9 − 256c2c4d2d8 − 336c2c4d3d7 − 384c2c4d4d6

−128c2c5d1d8 + 56Q2β2d2d14 + 216Q2βd6d9 − 176c0c4d1d11 − 560c0c4d5d7 − 80c0c10d1d5

−256c1c5d2d8 − 336c1c5d3d7 − 384c1c5d4d6 − 128c1c6d1d8 − 224c1c6d2d7 − 96c2c9d2d3

−72c3
2d1d9 − 168c3

2d3d7 − 192c3
2d4d6 − 320c3c4d4d5 − 128c3c5d4

2 − 128c3c7d2d4

−72c3c7d3
2 − 8c3c11d1

2 − 64c5c6d1d4 − 32c5c7d2
2 − 24c6

2d1d3)

.
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Abstract: The composition of self-compacting concrete (SCC) contains 60–70% coarse and fine
aggregates, which are replaced by construction waste, such as recycled aggregates (RA). However,
the complexity of its structure requires a time-consuming mixed design. Currently, many researchers
are studying the prediction of concrete properties using soft computing techniques, which will
eventually reduce environmental degradation and other material waste. There have been very
limited and contradicting studies regarding prediction using different ANN algorithms. This paper
aimed to predict the 28-day splitting tensile strength of SCC with RA using the artificial neural
network technique by comparing the following algorithms: Levenberg–Marquardt (LM), Bayesian
regularization (BR), and Scaled Conjugate Gradient Backpropagation (SCGB). There have been very
limited and contradicting studies regarding prediction by using and comparing different ANN
algorithms, so a total of 381 samples were collected from various published journals. The input
variables were cement, admixture, water, fine and coarse aggregates, and superplasticizer; the data
were randomly divided into three sets—training (60%), validation (10%), and testing (30%)—with
10 neurons in the hidden layer. The models were evaluated by the mean squared error (MSE) and
correlation coefficient (R). The results indicated that all three models have optimal accuracy; still, BR
gave the best performance (R = 0.91 and MSE = 0.2087) compared with LM and SCG. BR was the best
model for predicting TS at 28 days for SCC with RA. The sensitivity analysis indicated that cement
(30.07%) was the variable that contributed the most to the prediction of TS at 28 days for SCC with
RA, and water (2.39%) contributed the least.

Keywords: artificial neural network; self-compacting concrete; recycled aggregates; tensile strength;
Levenberg–Marquardt; Bayesian regularization; scaled conjugate gradient backpropagation

MSC: 68T07

1. Introduction

Concrete is the most widely used construction material in the world. One of the
main arduous tasks is to produce durable concrete without excessive voids and with a
long service life [1]. Due to extensive research, concrete design technology has improved
in past years by adding certain admixtures [2,3]. Self-compacting concrete, created in
Japan in the 1980s to achieve high-performance, long-lasting concrete buildings, is one
of the outcomes of improved concrete design technology [4–6]. The main distinction
between self-compacting concrete and conventional concrete is the mixing proportions of
the materials [7–9]. SCC is known as the innovative concrete of the era and has the property
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of self-settlement in construction areas without vibratory force. SCC settles under its weight
by making its path like fluid [10–12]. SCC is considered innovative because it can easily be
used in congested areas where concreting is not easy. In SCC, noise pollution reduces and
improves the filling capability and enhances the construction speed [13–15]. The population
is growing at an alarming rate worldwide, along with the adoption and implementation
of new concrete design technologies, resulting in increased resource consumption and
environmental degradation. In consequence, there has been an increase in the amount of
building and construction waste [16,17]. In terms of the composition of concrete, coarse
aggregate (natural crushed stone) and fine aggregate (sand) make up most of the self-
compacting concrete, approximately 60–70% [18–20]. Simultaneously, natural resources are
being depleted at a high speed due to modern urbanization [21–23]. The primary source
of well-quality aggregates, i.e., mountains, are being depleted at an alarming rate [24–26].
Because of this, natural catastrophes have struck many countries worldwide [27–29]. On the
other hand, many buildings are demolished yearly due to earthquakes or after completing
their service life [19,27,30]. Therefore, a considerable amount of construction waste is
generated annually. To counter such things, the most sustainable revolution is to use
recycled aggregates in self-compacting concrete. Recycled aggregates (RA) are abundant
waste products developed by demolishing the building and then crushing, sieving, and
adequately cleaning [31]. The second procedure is to bypass all these experimental works,
thus reducing environmental degradation and other wastage of natural materials.

Currently, many researchers are working on using soft computing techniques. One
such method is using an artificial neural network (ANN) to validate and predict specific
parameters of concrete. The artificial neural network technique is generally motivated by
the human brain, which is composed of billions of neurons. The ANN works similarly,
learning from experiences and then utilizing the data to predict different parameters [32,33].

2. Background Literature

2.1. Artificial Neural Network

Artificial neural networks (ANNs) are a fundamental technique in deep learning.
Deep learning (DL) is a subset of machine learning (ML) that allows for the computation
of multi-layer neural networks. Machine learning is a subset of artificial intelligence (AI)
that uses statistical methods to enable computers to develop over time, unlike the primary
subject of AI, which allows machines to mimic human behavior. The primary difference
between ML and DL is that in deep learning, the machine performs feature extraction and
classification. Still, in machine learning, we must perform the feature extraction ourselves,
and the machine performs the classification and prediction [34].

An artificial neural network (ANN) is a mathematical or computer model inspired
by the human brain’s enormous biological neural network [35]. It can improve its perfor-
mance by learning from its mistakes, which is how an artificial neural network receives
information, i.e., by learning. It comprises several functions and weights that operate as
artificial neurons and are connected in a network. They are primarily used in artificial
intelligence projects that solve complicated and complex issues [32]. ANN can be operated
using specific algorithms that are unique in their way. From this paper’s point of view, LM,
BR, and SCGB are discussed below.

2.1.1. Levenberg–Marquardt Algorithm

The Levenberg–Marquardt (LM) algorithm is a procedure composed of several iter-
ations. These iterations are used to find the minimum value of a multivariate function
written as the sum of squares of non-linear real-valued functions [36,37]. Researchers
recently adopted this approach to solve nonlinear least square complex problems across a
wide range of fields [38]. In the LM algorithm, two methods are combined to speed up the
iterations and minimize errors, i.e., the steepest descent and the Gauss–Newton method.
When the present outcome is correct, the algorithm becomes the Gauss–Newton method
faster than another. When the outcome is incorrect, it behaves like the steepest descent,
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which is relatively slow but always converges [39]. This algorithm generally uses more
memory but less time.

2.1.2. Bayesian Regularization

Standard backpropagation nets are less reliable than Bayesian regularized artificial
neural networks (BRANNs), which can decrease or eliminate the requirement for prolonged
cross-validation [40]. In the same way that ridge regression makes a nonlinear regression
into a “well-posed” statistical issue, Bayesian regularization does the same for nonlinear
regression. It takes more time, but the model has numerous benefits over complex data [41].
The advantage of using BRANNs is that the models are reliable, and a validation procedure
is not required [40,42]. These networks address various issues that emerge in Quantitative
Structure–Activity Relationship (QSAR) modeling, including model selection, robustness,
validation set selection, and network architectural optimization [43]. Bayesian criteria
are stopped during training by empirical processes, making the network impossible to
over train.

2.1.3. Scaled Conjugate Gradient Backpropagation

The weights are attuned in the steepest descent direction, i.e., the most negative of the
gradients, via the fundamental backpropagation method. This is the fastest reducing path
for the performance function. It is noted that while the function reduces the quickest along
with the negative of the gradient, this does not lead to the fastest convergence [44].

The conjugate gradient algorithms search in a path that generally yields quicker
convergence than the sharpest descent direction while sustaining the error reduction made
in the previous phases [45]. The conjugate direction is the name given to this direction.
The step size is modified in most conjugate gradient algorithms through each iteration. A
search is conducted along the conjugate gradient direction to calculate the step size that will
lessen the performance function along the line [46]. It is also reasonable to approximate the
step size using a method other than the line search methodology. The goal is to merge the
Levenberg algorithm’s model trust region method with the conjugate gradient technique.
SCG is the name given to this method, which was first described in the literature by Møller
(1993) [47]. At every iteration user, design parameters are updated independently, which
is critical for the algorithm’s success. This is an essential benefit of line search-based
algorithms [47].

3. Research Significance

This research aimed to validate and predict the splitting tensile strength of self-
compacting concrete incorporated with recycled aggregates by artificial neural networks.
From the author’s best information related to the present literature, no significant studies
have been conducted on applying different deep learning methods to predict the split
tensile strength of SCC with RA. For this purpose, different algorithms were implemented,
namely Levenberg–Marquardt (LM), Bayesian regularization (BR), and Scaled Conjugate
Gradient Backpropagation (SCGB) algorithms. The best model was selected after compar-
ing them using statistical indicators: correlation coefficient (R-value) and mean squared
error (MSE). In the end, sensitivity analysis was performed to see how each input variable
affected the output variable.

4. Methodology

4.1. Data Collection

The data were collected from various research articles. Table 1 shows the database
containing a total of 381 samples comprised of the tensile strength of self-compacting
concrete with recycled aggregates with several variables, such as water, cement, admixtures,
coarse aggregates, water, fine aggregates, and superplasticizers. The database includes the
Sr No., indicating the total number of research papers, authors’ references, amount of data
(# data) contributing from each article, and percentage (% data) of the overall data.
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Table 1. Experimental database.

No. Reference # Data % Data No. Reference # Data % Data

1 Ali et al., 2012 [48] 18 4.72 22 Nieto et al., 2019 [49] 22 5.77
2 Aslani et al., 2018 [50] 15 3.94 23 Nili et al., [51] 10 2.62
3 Babalola et al., 2020 [52] 14 3.67 24 Pan et al., 2019 [53] 6 1.57
4 Bahrami et al., 2020 [54] 10 2.62 25 Revathi et al., 2013 [55] 5 1.31
5 Behera et al., 2019 [56] 6 1.57 26 Revilla Cuesta et al., 2020 [57] 5 1.31
6 Chakkamalayath et al., 2020 [58] 6 1.57 27 Sadeghi-Nik et al., 2019 [59] 12 3.15
7 Duan et al., 2020 [60] 10 2.62 28 Señas et al., 2016 [61] 6 1.57
8 Fiol et al., 2018 [62] 12 3.15 29 Sharific et al., 2013 [63] 6 1.57
9 Gesoglu et al., 2015 [64] 24 6.30 30 Khafaga, S.A., 2014 [65] 15 3.94
10 Grdic et al., 2010 [66] 3 0.79 31 Silva et al., 2016 [67] 5 1.31
11 Guneyisi et al., 2014 [68] 5 1.31 32 Singh et al., 2019 [69] 12 3.15
12 Guo et al., 2020 [70] 11 2.89 33 Sun et al., 2020 [71] 10 2.62
13 Katar et al., 2021 [72] 4 1.05 34 Surendar et al., 2021 [73] 7 1.84
14 Khodair et al., 2017 [74] 20 5.25 35 Tang et al., 2016 [75] 5 1.31
15 Kou et al., 2009 [76] 13 3.41 36 Thomas et al., 2016 [77] 4 1.05
16 Krishna et al., 2018 [78] 5 1.31 37 Tuyan et al., 2014 [79] 12 3.15
17 Kumar et al., 2017 [80] 4 1.05 38 Uygunoglu et al., 2014 [81] 8 2.10
18 Long et al., 2016 [82] 4 1.05 39 Wang et al., 2020 [83] 5 1.31
19 Mahakavi and Chitra, 2019 [84] 25 6.56 40 Yu et al., 2014 [85] 3 0.79
20 Manzi et al., 2017 [86] 4 1.05 41 Zhou et al., 2013 [87] 6 1.57
21 Martínez-García et al., 2020 [88] 4 1.05 Total 381 100

Table 2 presents the statistical characteristics, such as the minimum, maximum, mean,
median, mode, and standard deviation, of certain variables as inputs (water, cement, ad-
mixtures, coarse aggregates, water, fine aggregates, and superplasticizers) and one possible
output from these published research articles, i.e., the tensile strength of self-compacting
recycled aggregate concrete. Their graphical representation is shown in Figures 1 and 2.

 

Figure 1. Statistical characteristics of input variables.

4.2. Data Visualization

The correlation between the input variables—i.e., water, cement, admixtures, coarse
aggregates, water, fine aggregates, and superplasticizers—and output—i.e., splitting tensile
strength (TS)—was investigated to see whether there was a link between them; this statisti-
cal analysis assisted in the creation of the predictive model by increasing the accuracy of the
outcome’s prediction [89]. For this purpose, the Pearson correlation matrix (heat map) was
generated, as shown in Figure 3, which analyzed the correlation between the independent
input variables. A correlation (|r| > 0.8) between input variables might indicate that there
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is currently multicollinearity between variables, which could alter modeling findings and
bias the model. As seen in the heat map, although there was a substantial connection
between some of the characteristics, such as between admixtures and cement (r = −0.608)
and between coarse aggregates and fine aggregates (r = −0.685), none of the characteristics
had a correlation greater than 0.80, showing that multicollinearity did not occur [90,91].

 

Figure 2. Statistical characteristics of the output variable.

Table 2. Statistical characteristics of input and output variables.

Variables Abbreviation Minimum Mean Maximum Median Mode
Standard
Deviation

Input
(kg/m3)

Cement C 78.00 368.73 550.00 385.00 500.00 98.38
Admixture A 0.00 138.27 515.00 123.00 0.00 94.95

Water W 45.50 167.29 246.00 172.00 172.00 31.02
Fine Aggregates FA 532.20 844.71 1200.00 846.00 919.00 130.52

Coarse Aggregates CA 328.00 196.05 1170.00 803.00 803.00 154.06
Super Plasticizer SP 0.00 5.07 16.00 4.55 7.50 3.12

Output (MPa) Tensile Strength TS 0.96 3.52 7.20 3.37 2.70 1.00

Figure 3. Correlation coefficient heat map between the input and output variables.
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4.3. Artificial Neural Network for the Training, Validation, and Prediction of the Tensile Strength

An artificial neural network (ANN) is a mathematical or computational model influ-
enced by biological neural networks’ structural and/or functional characteristics. It can
improve its performance by learning from its mistakes. Artificial neural networks, like
human brains, acquire knowledge through learning. They are made up of a network of
artificial neurons that communicate with one another and analyze data using a connec-
tionist approach to computation. They are primarily employed to simulate complicated
input–output interactions or data patterns in data [14]. Training, validation, and testing are
the three phases of ANNs. The model is repeated until it reaches the desired outcome in the
training phase. The validation step’s mistakes are detected during the training phase [92].

An ANN model generally comprises several layers, the first of which is input and
output, which contains input and output data. Depending on the model, one or more
hidden layers exist between these layers. It is made up of neurons that are linked by
weights. The output of each neuron is determined by its activation function. Activation
functions come in several different forms. Nonlinear activation functions, such as sigmoid
and step, are commonly employed [1]. The general structure of an ANN is shown in
Figure 4.

Figure 4. General structure of ANN.

A variety of factors must be considered while creating an ANN model. The first step
is selecting the most appropriate structure for the ANN model. Then, the data are inserted
into the selected ANN model in terms of input and output. Then, in the activation function,
the number of layers and the number of hidden layers, as well as some neurons in each
hidden layer, must be selected by experience [93,94].

In this research, concerning Tables 1 and 2, the network was made utilizing six input
parameters and one output parameter with one hidden layer. The input layer consists of
variables such as cement, admixtures, water, fine and coarse aggregates, and superplasti-
cizer. The output parameter was selected by splitting the tensile strength of self-compacting
recycled aggregate concrete. The feedforward backpropagation neural network was used
in this study. The architecture of the current research on ANN is shown in Figure 5.

It should be noted that three algorithms were used and compared in this study,
namely Levenberg–Marquardt (LM), Bayesian regularization (BR), and Scaled Conjugate
Gradient backpropagation (SCG). Designing and performing the network were performed
on MATLAB software. The Levenberg–Marquardt algorithm usually necessitates more
memory, but it takes less time. Training terminates when generalization stops improving,
as demonstrated by an increase in the mean square error of the validation samples. But in
the case of Bayesian regularization, although this technique takes longer, it can provide
strong generalization for complex, tiny, or noisy datasets. Adaptive weight reduction
causes training to come to an end (regularization). On the other hand, the Scaled Conjugate
Gradient Backpropagation algorithm uses less memory than the previous one. Training
automatically terminates when generalization stops improving, as shown by a rise in the
mean square error of the validation sample [45,46,94,95].
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Figure 5. Artificial neural network architecture.

The models were developed and performed in MATLAB. The network was divided
into three phases, i.e., training, validation, and testing. Sixty percent of data was selected
for training, and the remaining 10% and 30% of data were selected for the validation and
testing stage, respectively. In the training stage, 10 neurons were selected for the hidden
layer. The network randomly chose data for training, validation, and testing according
to its selected percentage, with 229 samples for training, 38 samples for validation, and
114 samples for the testing stage. In the case of Bayesian regularization (BR), validation is
not required, so the numbers of samples taken for training and testing were 267 and 114,
respectively. This is because validation is often employed as a type of regularization, while
BR algorithms have their built-in form of validation. The splitting of data is summarized in
Table 3.

4.4. ANN Network Model Evaluation

Using the ANN tool to develop the neural network; the models’ performance was
assessed using two measures; coefficient of correlation (R-value) and mean squared error
(MSE) [96,97], as given in Equation (1).

MSE =
1
n ∑(yi− ŷi)

2 (1)

where n = number of data points, yi = observed values, and ŷi = predicted values.
Regression is considered the best evaluation measurement to check the accuracy of

the overall network. The correlation between outputs and predicted targets was measured
using R-values. A strong relationship has an R-value of 1, whereas a random relationship
has an R-value of 0 [48,96].

The average squared discrepancy between outputs and objectives is known as the
mean squared error. The lower the value, the better. There is no error if the value is zero.
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Table 3. Data split for model testing.

Step Percentage % No. of Specimens

Levenberg–Marquardt Algorithm
Train 60 229

Validation 10 38
Test 30 114
Total 100 381

Bayesian Regularization
Train 70 267

Validation - 0
Test 30 114
Total 100 381

Scaled Conjugate Gradient Backpropagation
Train 60 229

Validation 10 38
Test 30 114
Total 100 381

5. Results and Discussion

The model was run on the basis of three algorithms, namely LM, BR, and SCG,
separately, and their results are compared and discussed below.

5.1. Levenberg–Marquardt Algorithm

The network was trained again and again to find the best-fit model. The performance
of the model is shown in Figure 6 with 10 neurons. The plot contains different colored lines
indicating training, validation, and testing. The model started training with a high MSE,
which was eventually reduced by the validation parameters preventing overfitting data. It
shows that after 44 epochs, the training error was still decreasing, but the validation and
testing errors were increasing. Therefore, after six more epochs, the model training was
stopped, and an optimized model was produced with minimum MSE.

Figure 6. LM algorithm model performance.

The model error histogram is shown in Figure 7 between training, validation, and test-
ing. The graph shows that the error bars converge to the zero-error line. The performance
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criteria results show that the model is suitable for predicting the outcomes of splitting
tensile strength of SCC with RA.

Figure 7. LM algorithm model error histogram.

After that, a regression analysis was performed. Figure 8a–c shows the correlation
of training, validation, and testing between the input and output values of the model.
The model’s overall accuracy, i.e., correlation, is shown in Figure 8d. In each scenario, a
black-colored linear fit is displayed. It should be noted that the overall R-value was found
to be 0.86, which shows that the correlation was very close to a linear fit, confirming a good
model for predicting values of the splitting tensile strength of SCC using RA. Finally, all
the performance parameters results, i.e., the R-value and MSE of the overall model with
training, validation, and testing, are summarized in Table 4. Overall, these results indicate
that the Levenberg–Marquardt algorithm is a good algorithm for predicting the splitting
tensile strength of self-compacting recycled aggregate concrete.

Table 4. Summary of different model evaluation parameters of LM Algorithm.

Step Function MSE R

Training trainlm 0.1508 0.9267
Validation trainlm 0.3992 0.7899

Testing trainlm 0.3282 0.8294
Overall trainlm 0.2927 0.8573

5.2. Bayesian Regularization

In the same manner, the model was trained using the Bayesian regularization approach.
The model’s performance is shown in Figure 9 with the same number of neurons. The plot
consists of two colored lines indicating training and testing only, as BR does not need a
validation step because it has a built-in form of validation in the training step. The model
started training with high MSE, which was eventually reduced by the training parameters
preventing overfitting data. As BR takes more time, the graph shows that the model
took several epochs, and after 100 epochs, training and testing error lines were reduced
considerably and approximately became a straight line. The model is trained further to
validate thoroughly, and training is stopped at 190 epochs. An optimized model has a
0.14403 performance indicator at 189 epochs.
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(a) (b) 

  
(c) (d) 

Figure 8. LM algorithm regression graphs between the experimental and predicted tensile strength:
(a) training; (b) validation; (c) testing, and (d) overall dataset.

Figure 9. BR model performance.
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The model error histogram is shown in Figure 10 between training and testing. The
graph shows that the bins convergence to the zero-error line is excellent, and the error is
also small compared to the LM algorithm. The results of this performance criteria are shown
that the model is perfect for predicting the outcomes of splitting tensile strength of SCC
with RA. After that, a regression analysis is performed in the same manner. Figure 11a,b
show the correlation of training and testing between the input and output values of the
model. Overall correlation is shown in Figure 11c. In each scenario, a black-colored linear
fit is displayed. It is noted that the overall R-value is found to be 0.91. The model trained by
Bayesian regularization has excellent accuracy for predicting output, i.e., splitting tensile
strength of SCC with RA. Finally, all the performance parameters results, i.e., R-value and
MSE of the overall model with training and test, are summarized in Table 5. Overall, these
results indicate that Bayesian regularization can be adopted for predicting the splitting
tensile strength of self-compacting recycled aggregate concrete.

Figure 10. BR model error histogram.

Table 5. Summary of different model evaluation parameters of BR.

Step Function MSE R

Training trainbr 0.1440 0.9254
Testing trainbr 0.2734 0.8638
Overall trainbr 0.2087 0.9049

5.3. Scaled Conjugate Gradient Backpropagation

The model is trained by using the Scaled Conjugate Gradient Backpropagation ap-
proach. The performance of the model is shown in Figure 12 with 10 neurons. The plot
contains different color lines indicating training, validation, and testing. The model starts
training with high MSE, which is eventually reduced by the validation parameters prevent-
ing overfitting data. The graph shows that MSE did not reduce much compared with the
other two algorithms. It shows that after 66 epochs, the training errors were decreasing,
but the validation and testing errors were increasing a little bit. Therefore, after eight more
epochs, the model training was stopped, and an optimized model was produced, with a
minimum MSE achieved.
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(a) (b) 

 
(c) 

Figure 11. Bayesian regularization regression graphs between the experimental and predicted tensile
strength: (a) training, (b) testing, and (c) overall dataset.

The model error histogram is shown in Figure 13 between training, validation, and
testing. The graph shows that the error bar bins converge to the zero-error line with low
accuracy. The results of this performance criteria indicate that the model has high error
values compared with other algorithms and is below par for predicting the outcomes of
splitting tensile strength of SCC with RA. After that, a regression analysis was performed.
Figure 14a–c show the correlation of training, validation, and testing between the input
and output values of the model. The model’s overall accuracy, i.e., correlation, is shown in
Figure 14d. In each scenario, a maroon-colored linear fit is displayed. It should be noted
that the overall R-value was found to be 0.64, which shows that the correlation was far
from a linear fit, confirming a below-par or average model for predicting values of splitting
tensile strength of SCC using RA.
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Figure 12. SCG model performance.

 

Figure 13. BR model error histogram.

Finally, all the performance parameters results, i.e., the R-value and MSE of the overall
model with training, validation, and testing, are summarized in Table 6. These results
indicate that Scaled Conjugate Gradient Backpropagation is rated as a below-par algorithm
compared with LM and BR for predicting the splitting tensile strength of self-compacting
recycled aggregate concrete.

Table 6. Summary of different model evaluation parameters of SCGB algorithm.

Step Function MSE R

Training trainscg 0.4588 0.6920
Validation trainscg 0.5189 0.6616

Testing trainscg 0.8925 0.5425
Overall trainscg 0.6234 0.6368
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(a) (b) 

  
(c) (d) 

Figure 14. SCG algorithm regression graphs between the experimental and predicted tensile strength:
(a) training; (b) validation; (c) testing, and (d) overall dataset.

5.4. Comparison of LM and SCG Approaches

The comparison between all three algorithms was performed on the basis of the
experimental results and predicted results by ANN. Figure 15a–c shows the comparison
between the experimental and predicted values of a model trained by LM, BR, and SCG
approaches, respectively. On the y-axis, the blue line indicates the predicted values, and the
red line shows the experimental values of tensile strength of SCC with recycled aggregates.
On the x-axis, the data set of 381 samples is given.

All graphs indicate that values predicted from the three algorithms correlated well
with the experimental values. The more significant difference between the two lines
indicates a high error between the two parameters. The overall R-value and mean squared
error of all three algorithms are summarized in graphical format, as shown in Figure 16.
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(a) 

 
(b) 

(c) 

Figure 15. Comparison of experimental and predicted values by ANN of (a) LM, (b) BR, and
(c) SCGB algorithms.

Thus, Figures 15a–c and 16 confirm that the best fitting graph is that of Bayesian
regularization (Figure 15b), which has a more significant R-value and minimum MSE. The
BR approach performed better because of the heterogeneity of the data, as it can provide
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strong generalization for complex datasets [98]. It was concluded that among all three
algorithms, i.e., Levenberg–Marquardt, Bayesian regularization, and Scaled Conjugate
Gradient Backpropagation, Bayesian regularization had the highest accuracy (>90%) and
could accurately predict the splitting tensile strength of self-compacting concrete with
recycled aggregates.

Figure 16. R-value and MSE of LM, BR, and SCGB algorithms.

5.5. Sensitivity Analysis

The sensitivity analysis allows us to see how each input variable affects the output
variable. The more significant the influence of the input variables on the output variable,
the higher the sensitivity values. As per Shang et al. [99], the variables of input have a
significant influence on the prediction of the output variable. Sensitivity analysis was used
to examine the impact of each input variable—fine-aggregate cement, coarse-aggregate
superplasticizer, water, and superplasticizers—on the variability of splitting tensile strength
of self-compacting concrete with recycled aggregates. Equations (2) and (3) were used to
determine the sensitivity analysis:

Si =
Ni

∑n
i=1 Ni

× 100 (2)

Ni= fmax(xi)−fmin(xi) , i = 1, . . . , n (3)

where fmax(xi) and fmin(xi) are the input variables projected highest and lowest splitting
tensile strength.

As indicated in the graph (Figure 17), each of the variables of input—coarse-aggregate
cement, water, superplasticizers, water, fine aggregate, and mineral admixture—had a
considerable impact in forecasting the splitting tensile strength of self-compacting concrete
with recycled aggregates. The most significant contributions to the estimate of splitting
tensile strength of self-compacting concrete with recycled aggregates were cement (30.07%),
fine aggregate (22.83%), and mineral admixture (22.08%). According to Shang et al. [99],
cement is a factor that significantly impacts the prediction of the tensile strength of SCC
with RA. The input variables of coarse aggregate and superplasticizer had contributions of
13.02% and 9.61%, respectively. On the other hand, water was the least efficient variable in
predicting the tensile strength of SCC with RA (2.39%); these findings are consistent with
prior studies [98].
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Figure 17. Contribution of input variables to split tensile strength of SSSC with RA in BR approach.

6. Conclusions

This study aimed to predict and compare the results of predicting the tensile strength
of SCC modified with RA using different algorithms of artificial neural networks, namely
LM, BR, and SCG. The model was trained with six input parameters: cement, water,
admixtures, coarse and fine aggregates, and superplasticizer. For evaluation, two metrics
were used: R-value and MSE. From this study, the following conclusions were drawn.

1. A dataset of 381 samples was collected through journals and randomly divided into
60%, 10%, and 30% for training (267), validation (38), and testing (114), respectively,
for the development of the LM, BR, and SCG models. However, in the case of BR, the
ratio was 70% for training and 30% for testing due to the built-in validation function
in the training step.

2. Different algorithms, namely LM, BR, and SCG, were trained and tested for this study
and gave an overall accuracy of 85%, 91%, and 64% with MSEs of 0.2927, 0.2087,
and 0.6234.

3. It is evident that out of all three, the SCG algorithm was a poor model for predicting
the tensile strength of SCC, with RA having the lowest R-value and the highest MSE.

4. Bayesian regularization gave the best performance with a high coefficient of correla-
tion (R > 90%) and a minimal MSE (0.2087) concerning LM and SCG.

5. The results showed that the BR algorithm is a good model and can be adopted for the
prediction of the 28-day tensile strength of self-compacting concrete modified with
recycled aggregates

6. According to the sensitivity analysis, cement is the essential input variable in predict-
ing the 28-day tensile strength of SCC with RA (30.07%). On the other hand, water
had the smallest influence on the 28-day tensile strength of SCC with RA (2.39%).

There are some limitations in this research regarding the collection of data. As there
were not enough experimental data, we could not gather large datasets for this research.
As a result, more datasets must be collected for future research on this topic to avoid this
limitation and make a more accurate prediction model. With more data, various inputs and
outputs can be further examined.
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