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This volume consists of a collection of a total of 12 peer-reviewed and accepted submissions
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journal Symmetry on the general subject area of integral transformation, operational calculus and

their applications.

For this Special Issue, we cordially invited and welcomed reviews and expository and

original research articles dealing with the recent state-of-the-art advances on the topics of integral

transformations and operational calculus as well as their multidisciplinary applications with some

relevance to the aspect of symmetry. The theory and applications of integral transformations

and associated operational calculus are remarkably widespread in many diverse areas of the

mathematical, physical, chemical, engineering and statistical sciences. The topics of interest covered

in this Special Issue include the following: integral transformations and integral equations as well

as other related operators, including their symmetry properties and characteristics; applications

involving mathematical (or higher transcendental) functions, including their symmetry properties

and characteristics; applications involving fractional-order differential and integral equations

and their associated symmetry; applications involving symmetrical aspects of the geometric

function theory of complex analysis; applications involving q-series and q-polynomials and their

associated symmetry; applications involving special functions of mathematical physics and applied

mathematics and their symmetrical aspect; applications involving analytic number theory and

symmetry.

Finally, it gives me great pleasure to thank all of the participating authors, referees and reviewers

for their invaluable contributions toward the remarkable success of this Special Issue. I do also

express my appreciation for the editorial and managerial help and assistance provided efficiently and

generously by Mr. Philip Li and other colleagues and associates in the Editorial Office of Symmetry.

The dedicated and wholehearted support and help of one and all are indeed greatly appreciated.

Hari Mohan Srivastava

Editor
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Unified Integrals of Generalized Mittag–Leffler Functions and
Their Graphical Numerical Investigation
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Abstract: In this article, we obtain certain finite integrals concerning generalized Mittag–Leffler
functions, which are evaluated in terms of the generalized Fox–Wright function. The integrals
of concern are unified in nature and thereby yield some new integral formulas as special cases.
Moreover, we numerically compute some integrals using the Gaussian quadrature formula and draw
a comparison with the main integrals by using graphical numerical investigation.

Keywords: Fox–Wright function; generalized hypergeometric function; Mittag–Leffler function

1. Introduction

In mathematics, functions and symmetric functions are very common in theory and
applications. They have been applied to various fields including group theory, Lie algebras,
and algebraic geometry, to mention but a few. In applied mathematics, many functions are
defined via integrals or series (or infinite products), which are usually referred to as special
functions [1–6]. One of them is the Mittag–Leffler function, which was introduced in con-
nection with a method of summation of some divergent series. The Mittag–Leffler function
has recently received the interest of scientists due to its wide applications in pure as well
as applied mathematics. It is noted that the importance of the Mittag–Leffler function has
been envisaged during the last two decades due to its entanglement in physics, chemistry,
biology, engineering and applied sciences. The Mittag–Leffler function naturally occurs as
a solution of fractional order differential equations or fractional order integral equations.
Problems of physics and applied mathematics involve a notable numerical implementation
of the Mittag-Leffler function in general and modified forms; therefore, it remains an engag-
ing object of applied research. The implementation of Mittag-Leffler functions is required
in a wide variety of problems of physics and mathematics. Because of their crucial require-
ment, many research works have been dedicated to them, and various representations and
generalizations of Mittag-Leffler functions can be found in the literature. Among the most
popular special function of fractional calculus is the simplest pΨq function and p = 0, q = 1,
called the Wright function or the Bessel–Maitland function or the Wright–Bessel function.
From this point of view, the Mittag–Leffler function, expressible in terms of the Fox–Right
function, is a special function of fractional calculus. Therefore the Mittag–Leffler function
is called the queen function of fractional calculus. The results obtained in the manuscript,
connected with a generalized Mittag=-Leffler function that will be used to solve a variety
of problems of fractional calculus, for example, Riemann-–Liouville fractional integrals and
derivatives, Laplace and Sumudu fractional and integral derivatives and Marichev–Saigo–
Maeda fractional integrals and derivatives, etc. Recently, fractional calculus associated with
some special functions has proved itself to be a useful tool for applications in many fields of

Symmetry 2022, 14, 869. https://doi.org/10.3390/sym14050869 https://www.mdpi.com/journal/symmetry1
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research such as physical systems, biomedicine, nonlinear electronic circuits, chaos-based
cryptography, and image encryption. Examples of systems that can be precisely described
by fractional-order differential equations (FODEs) involve viscoelastic material models,
electrical components, electronic circuits, diffusion waves, the propagation of waves in
non-local elastic continua, hydro-logic systems, earthquakes’ nonlinear oscillations, models
of world economies, fractional viscoelastic models and continuous random walk and equa-
tions of muscular blood vessels (see [7–12]). In the past few years, several integral formulas
having a variety of special functions have been achieved by many authors (see [13–30]).
The present paper provides the study of finite integrals of the generalized Mittag-Leffler
function and investigates some useful formulas. We have computed many new results
involving integral transforms of the Mittag–Leffler function and plotted three graphs as the
major novelty of our work. The results derived in this paper are of general character and
likely to find certain applications in the theory of special functions. Additionally, the results
provide unification and extension of known results given earlier by various researchers. We
compare the results of analytically evaluated integrals with integrals evaluated numerically
using the Gaussian quadrature formula. We conclude that the results obtained will provide
a significant step in the theory of integral formulas and can yield some potential applica-
tions in the field of classical and applied mathematics. Motivated by the aforementioned
research and success of the application of integral formulas, we evaluate a new type of
integral formulas involving the generalized Mittag–Leffler function (GMLF) expressed in
terms of the Fox–Wright function. The Mittag–Leffler function [31,32] is defined as

Eσ(w) =
∞

∑
n=0

wn

Γ(σn + 1)
, σ ∈ C, Re(σ) > 0 (1)

where ω ia a complex variable and Γ(.) is the gamma function [25].
In 1905, A. Wiman [33] established a generalization of Eσ(w), as follows:

Eσ,μ(w) =
∞

∑
n=0

wn

Γ(σn + μ)
, (σ, μ ∈ C, Re(μ) > 0, Re(σ) > 0). (2)

In 1971, Prabhakar [23] came up with a further generalization of Eσ,μ(w) in the form

Eγ
σ,μ(w) =

∞

∑
n=0

(γ)n

Γ(σn + μ)

wn

n!
(γ, μ, σ ∈ C, Re(σ) > 0, Re(γ) > 0, Re(μ) > 0), (3)

where (γ)n is known as the Pochhammer symbol [25]. The underlying generalization of
the Mittag–Leffler function is given by Shukla and Prajapati (2007) [29] as

Eγ,b
σ,μ(w) =

∞

∑
n=0

(γ)bn
Γ(σn + μ)

wn

n!
(4)

and expressed by Salim (2009) [26] in the form

Eγ,δ
σ,μ(w) =

∞

∑
n=0

(γ)n wn

Γ(σn + μ)(δ)n
. (5)

A certain further generalization of the Mittag–Leffler function was given by Salim and
Faraj (2012) [27] as

Eγ,δ,b
σ,μ,a(w) =

∞

∑
n=0

(γ)bn wn

Γ(σn + μ)(δ)an
. (6)

On the other hand, Khan and Ahmad introduced a new generalization of the Mittag–
Leffler function (2013) [34] as

Eγ,b
σ,μ,δ(w) =

∞

∑
n=0

(γ)bn wn

Γ(σn + μ) (δ)n
, (7)

2
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where σ, μ, γ, δ ∈ C; Re(σ) > 0, Re(μ) > 0, Re(γ) > 0, Re(δ) > 0; b ∈ (0, 1) ∪N.
Consequently, they have introduced a generalization of (7) in the following form [34]

Eξ,λ,γ,b
σ,μ,ν,φ,δ,a(w) =

∞

∑
n=0

(ξ)λn (γ)bn wn

Γ(σn + μ)(ν)φn(δ)an
, (8)

where σ, μ, ν, φ, δ, ξ, λ, γ ∈ C; min{Re(σ), Re(μ), Re(ν), Re(φ), Re(δ), Re(ξ), Re(λ), Re(γ)}
> 0; a, b > 0, b ≤ Re(σ) + a.

Above all, (8) is the most generalized definition of all the above formalizations in-
troduced in (1)–(7). Upon substituting ξ = ν, λ = φ and a = 1 in (8), it becomes (7),
which has been established by Khan and Ahmad (2013) [34]. Upon substituting ξ = ν and
λ = φ, in (8), it becomes a special case (6), which has been established by Salim and Faraj
(2012) [27]. Upon substituting ξ = ν, λ = φ and b = a = 1 in (8), it becomes (5), which
has been discussed by Salim (2009) [26]. Upon substituting ξ = ν, λ = φ and δ = a = 1
in equation (8), it is a special case (4); see Shukla and Prajapati (2007) [29]. If b = 1, it
becomes a special case (3) of Prabhakar (1971) [23]. On substituting ξ = ν, λ = φ and
γ = δ = a = b = 1 in (8), it becomes a special case (2) established by A. Wiman (1905) [33].
Furthermore, if μ = 1, we get the Mittag–Leffler function Eσ(w) defined in (1). Finally,
on setting δ = a = b = 1 in (8), we establish a new generalization of the Mittag–Leffler
function in the form

Eξ,λ,γ
σ,μ,ν,φ(w) =

∞

∑
n=0

(ξ)λn (γ)n

Γ(σn + μ)(ν)φn

wn

n!
, (9)

where σ, μ, ν, φ, ξ, λ, γ ∈ C; Re(μ) > 0, Re(σ) > 0, Re(ν) > 0, Re(φ) > 0, Re(ξ) > 0,
Re(λ)> 0 and Re(γ) > 0.

The Fox–Wright function rΨs[w] (see [35–42]), is defined by

rΨs[w] = rΨs

⎡⎣ (λ1, λ́1), . . . , (λr, λ́r);

(l1, ĺ1), . . . , (ls, ĺs);
w

⎤⎦ (10)

=
∞

∑
k=0

Γ(λ1 + λ́1k), . . . , Γ(λr + λ́rk)
Γ(l1 + ĺ1k), . . . , Γ(ls + ĺsk)

wk

k!
(11)

= H1,r
r,s+1

⎡⎣−w

∣∣∣∣∣
(1− λ1, λ́1), . . . , (1− λr, λ́r)

(0, 1), (1− l1, ĺ1), . . . , (1− ls, ĺs)

⎤⎦, (12)

where H1,r
r,s+1[w] represents the Fox-H function [38]. When λ́1, . . . , λ́r = 1, ĺ1, . . . , ĺs = 1

in (10), the Fox–Wright function reduces to the generalized hypergeometric function rFs[w]
(see [41])

rΨs

[
(λ1, 1), . . . , (λr, 1);
(l1, 1), . . . , (ls, 1);

w
]
=

Γ(λ)1, . . . , Γ(λ)r

Γ(l)1, . . . , Γ(l)s
rFs(λ1, . . . , λr; l1, . . . , ls; w). (13)

Here, we recall the result due to Prudnikov et al. [24] (see also [39], p. 250 (2.8)), by
means of which we have established our main result in the present article∫ q

p

(x − p)α−1(q − x)β−1

[(q − p) + r1(x − p) + r2(q − x)]α+β
dx

=
Γ(α)Γ(β)

Γ(α + β)
(q − p)−1(1 + r1)

−α(1 + r2)
−β, (14)

provided that Re(α) > 0, Re(β) > 0, q �= p and the constants r1 and r2 are such that none
of the expression 1 + r1, 1 + r2, [(q − p) + r1(x − p) + r2(q − x)], where p ≤ x ≤ q is zero.

3
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2. Main Results

Theorem 1. Let α and β exist such that Re(α) > 0, Re(β) > 0, q �= p and the constants r1 and
r2 are such that none of the expressions 1 + r1, 1 + r2, [(q − p) + r1(x − p) + r2(q − x)], where
p ≤ x ≤ q is zero. Let σ, μ, ν, φ, δ, ξ, λ, γ ∈ C; if min{Re(σ), Re(μ), Re(ν), Re(φ), Re(δ), Re(ξ),
Re(λ), Re(γ)} > 0; a, b > 0, b ≤ Re(σ) + a, then the following identity holds:

∫ q

p

(x − p)α−1(q − x)β−1

[(q − p) + r1(x − p) + r2(q − x)]α+β
Eξ,λ,γ,b

σ,μ,ν,φ,δ,a

[
w
{

(x − p)(q − x)
[(q − p) + r1(x − p) + r2(q − x)]2

}m]
dx

=
1

(q − p) (1 + r1)α (1 + r2)β

Γ(ν)Γ(δ)
Γ(ξ)Γ(γ)

× 5Ψ4

⎡⎣ (ξ, λ), (γ, b), (α, m), (β, m), (1, 1);

(μ, σ), (ν, φ), (δ, a), (α + β, 2m);

w
(1 + r1)m(1 + r2)m

⎤⎦, (15)

where Eξ,λ,γ,b
σ,μ,ν,φ,δ,a(w) is a GMLF given by (8).

Proof. Denoting the left hand side of (15) by I, writing Eξ,λ,γ,b
σ,μ,ν,φ,δ,a(w) in its summation

formula in the integrand with the help of (8), we obtain

I =
∫ q

p

(x − p)α−1(q − x)β−1

[(q − p) + r1(x − p) + r2(q − x)]α+β

×
∞

∑
n=0

(ξ)λn(γ)bn (1)n wn (x − p)mn(q − x)mn

Γ(σn + μ) (ν)φn (δ)an [(q − p) + r1(x − p) + r2(q − x)]2mn n!
dx, (16)

which, by further simplification, yields

I =
∞

∑
n=0

(ξ)λn (γ)bn
Γ(σn + μ) (ν)φn (δ)an

wn

n!

∫ q

p

(x − p)mn+α−1 (q − x)mn+β−1

[(q − p) + r1(x − p) + r2(q − x)]2mn+α+β
dx. (17)

We apply the result of (14), and, through simplifying, this yields

I =
1

(q − p) (1 + r1)α (1 + r2)β

Γ(ν) Γ(δ)
Γ(ξ) Γ(γ)

×
∞

∑
n=0

Γ(ξ + λn) Γ(γ + bn) Γ(α + mn) Γ(β + mn) Γ(1 + n)
(

w
(1+r1)m (1+r2)m

)n

Γ(μ + σn) Γ(ν + λn) Γ(δ + an) Γ(α + β + 2mn) n!
. (18)

Finally, after summing up, with the help of (11), we arrive at (15). This completes the
proof of Theorem 1.

Corollary 1. For b = δ = a = 1 and all the conditions already stated in (15), the following
identity holds:

∫ q

p

(x − p)α−1(q − x)β−1

[(q − p) + r1(x − p) + r2(q − x)]α+β
Eξ,λ,γ

σ,μ,ν,φ

[
w
{

(x − p)(q − x)
[(q − p) + r1(x − p) + r2(q − x)]2

}m]
dx

=
1

(q − p) (1 + r1)α (1 + r2)β

Γ(ν)
Γ(ξ)Γ(γ)

× 4Ψ3

⎡⎣ (ξ, λ), (γ, 1), (α, m), (β, m);

(μ, σ), (ν, φ), (α + β, 2m);

w
(1 + r1)m(1 + r2)m

⎤⎦. (19)

4
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Theorem 2. Let α and β be such that Re(α) > 0, Re(β) > 0, q �= p and the constants r1 and
r2 are such that none of the expressions 1 + r1, 1 + r2, [(q − p) + r1(x − p) + r2(q − x)], where
p ≤ x ≤ q is zero. Let σ, μ, ν, φ, δ, ξ, λ, γ ∈ C; if min{Re(σ), Re(μ), Re(ν), Re(φ), Re(δ), Re(ξ),
Re(λ), Re(γ)} > 0; a, b > 0, b ≤ Re(σ) + a, the following identity holds:

∫ q

p

(x − p)α−1(q − x)β−1

[(q − p) + r1(x − p) + r2(q − x)]α+β
Eξ,λ,γ,b

σ,μ,ν,φ,δ,a

[{
(x − p)(q − x)

[(q − p) + r1(x − p) + r2(q − x)]2

}m
w
]

dx

=
1

(q − p) (1 + r1)α (1 + r1)β

Γ(α)Γ(β)

Γ(α + β)Γ(μ) 2m+λ+b+1F2m+σ+φ+a

⎡⎣ Δ(m; α), Δ(m; β), Δ(λ; ξ),

Δ(σ; μ), Δ(φ; ν), Δ(a; δ),

Δ(b; γ), 1;

Δ(2m; α + β);

w λλbb

σσφφaa4m(1 + r1)m(1 + r2)m

⎤⎦, (20)

where Δ(m; λ) abbreviates the arrangement of m parameters λ
m

λ+1
m . . . λ+m−1

m and m ≥ 1.

Proof. By using the formulas
Γ(λ + n) = Γ(λ)(λ)n (21)

and

(λ)mn = mmn
(

λ

m

)
n

(
λ + 1

m

)
n

. . .
(

λ + m − 1
m

)
n
, (22)

and after a little simplification, the required result (20) can be obtained. Therefore, we omit
the proof.

Corollary 2. On putting a = b = δ = 1 under the condition already set out in (20), the following
identity holds:

∫ q

p

(x − p)α−1(q − x)β−1

[(q − p) + r1(x − p) + r2(q − x)]α+β
Eξ,λ,γ

σ,μ,ν,φ

[
w
{

(x − p)(q − x)
[(q − p) + r1(x − p) + r2(q − x)]2

}m]
dx

=
1

(q − p) (1 + r1)α (1 + r2)β

Γ(α)Γ(β)

Γ(α + β)Γ(μ)

× 2m+λ+1F2m+σ+φ

⎡⎣ Δ(m; α), Δ(m; β), Δ(λ; ξ),

Δ(σ; μ), Δ(φ; ν),

γ;

Δ(2m; α + β);

w λλ

σσφφ4m(1 + r1)m(1 + r2)m

⎤⎦. (23)

3. Special Cases

Here, we compute certain integral formulas as special cases of our key results.

(i) On setting ξ = ν, λ = φ in (15), the following identity holds:

∫ q

p

(x − p)α−1(q − x)β−1

[(q − p) + r1(x − p) + r2(q − x)]α+β
Eγ,δ,b

σ,μ,a

[
w
{

(x − p)(q − x)
[(q − p) + r1(x − p) + r2(q − x)]2

}m]
dx

=
1

(q − p) (1 + r1)α (1 + r2)β

Γ(δ)
Γ(γ)

× 4Ψ3

⎡⎣ (γ, b), (α, m), (β, m) (1, 1);

(μ, σ), (δ, a), (α + β, 2m);

w
(1 + r1)m(1 + r2)m

⎤⎦; (24)

(ii) Setting ξ = ν, λ = φ and a = 1 in (15), the following identity holds:

∫ q

p

(x − p)α−1(q − x)β−1

[(q − p) + r1(x − p) + r2(q − x)]α+β
Eγ,b

σ,μ,δ

[
w
{

(x − p)(q − x)
[(q − p) + r1(x − p) + r2(q − x)+]2

}m]
dx

5
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=
1

(q − p) (1 + r1)α (1 + r2)β

Γ(δ)
Γ(γ)

× 4Ψ3

⎡⎣ (γ, b), (α, m), (β, m) (1, 1);

(μ, σ), (δ, 1), (α + β, 2m);

w
(1 + r1)m(1 + r2)m

⎤⎦; (25)

(iii) Setting ξ = ν, λ = φ and a = b = 1 in (15), the following identity holds:

∫ q

p

(x − p)α−1(q − x)β−1

[(q − p) + r1(x − p) + r2(q − x)]α+β
Eγ,δ

σ,μ

[
w
{

(x − p)(q − x)
[(q − p) + r1(x − p) + r2(q − x)]2

}m]
dx

=
1

(q − p) (1 + r1)α (1 + r2)β

Γ(δ)
Γ(γ)

× 4Ψ3

⎡⎣ (γ, 1), (α, m), (β, m) (1, 1);

(μ, σ), (δ, 1), (α + β, 2m);

w
(1 + r1)m(1 + r2)m

⎤⎦; (26)

(iv) Setting ξ = ν, λ = φ and a = δ = 1 in (15), the following identity holds:

∫ q

p

(x − p)α−1(q − x)β−1

[(q − p) + r1(x − p) + r2(q − x)]α+β
Eγ,b

σ,μ

[
w
{

(x − p)(q − x)
[(q − p) + r1(x − p) + r2(q − x)]2

}m]
dx

=
1

(q − p) (1 + r1)α (1 + r2)β

1
Γ(γ)

× 3Ψ2

⎡⎣ (γ, b), (α, m), (β, m);

(μ, σ), (α + β, 2m);

w
(1 + r1)m(1 + r2)m

⎤⎦; (27)

(v) Setting ξ = ν, λ = φ and a = b = δ = 1 in (15), the following identity holds:

∫ q

p

(x − p)α−1(q − x)β−1

[(q − p) + r1(x − p) + r2(q − x)]α+β
Eγ

σ,μ

[
w
{

(x − p)(q − x)
[(q − p) + r1(x − p) + r2(q − x)]2

}m]
dx

=
1

(q − p) (1 + r1)α (1 + r2)β

1
Γ(γ)

× 3Ψ2

⎡⎣ (γ, 1), (α, m), (β, m);

(μ, σ), (α + β, 2m);

w
(1 + r1)m(1 + r2)m

⎤⎦; (28)

(vi) Setting ξ = ν, λ = φ and a = b = γ = δ = 1 in (15), the following identity holds:

∫ q

p

(x − p)α−1(q − x)β−1

[(q − p) + r1(x − p) + r2(q − x)]α+β
Eσ,μ

[
w
{

(x − p)(q − x)
[(q − p) + r1(x − p) + r2(q − x)]2

}m]
dx

=
1

(q − p) (1 + r1)α (1 + r2)β

× 3Ψ2

⎡⎣ (α, m), (β, m), (1, 1);

(μ, σ), (α + β, 2m);

w
(1 + r1)m(1 + r2)m

⎤⎦; (29)

(vii) Setting ξ = ν, λ = φ and a = b = γ = δ = μ = 1 in (15), the following identity holds:

∫ q

p

(x − p)α−1(q − x)β−1

[(q − p) + r1(x − p) + r2(q − x)]α+β
Eσ

[
w
{

(x − p)(q − x)
[(q − p) + r1(x − p) + r2(q − x)]2

}m]
dx

=
1

(q − p) (1 + r1)α (1 + r2)β

6
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× 3Ψ2

⎡⎣ (α, m), (β, m), (1, 1);

(1, σ), (α + β, 2m);

w
(1 + r1)m(1 + r2)m

⎤⎦; (30)

(viii) Setting ξ = ν, λ = φ and a = b = γ = δ = μ = σ = 1 in (15), the following identity
holds:

∫ q

p

(x − p)α−1(q − x)β−1

[(q − p) + r1(x − p) + r2(q − x)]α+β
e

[
w
{

(x−p)(q−x)
[(q−p)+r1(x−p)+r2(q−x)]2

}m]
dx

=
1

(q − p) (1 + r1)α (1 + r2)β

× 2Ψ1

⎡⎣ (α, m), (β, m),

(α + β, 2m);

w
(1 + r1)m(1 + r2)m

⎤⎦; (31)

(ix) Setting ξ = ν, λ = φ and a = b = γ = δ = μ = 1, σ = 0 in (15), the following
identity holds:

∫ q

p

(x − p)α−1(q − x)β−1

[(q − p) + r1(x − p) + r2(q − x)]α+β

1[
1− w

{
(x−p)(q−x)

[(q−p)+r1(x−p)+r2(q−x)]2

}m] dx

=
1

(q − p) (1 + r1)α (1 + r2)β

× 3Ψ2

⎡⎣ (α, m), (β, m), (1, 1);

(1, 0), (α + β, 2m);

w
(1 + r1)m(1 + r2)m

⎤⎦; (32)

(x) Setting ξ = ν, λ = φ in (20), the following identity holds:

∫ q

p

(x − p)α−1(q − x)β−1

[(q − p) + r1(x − p) + r2(q − x)]α+β
Eγ,δ,b

σ,μ,a

[
w
{

(x − p)(q − x)
[(q − p) + r1(x − p) + r2(q − x)]2

}m]
dx

=
1

(q − p) (1 + r1)α (1 + r2)β

Γ(α)Γ(β)

Γ(α + β)Γ(μ)

× 2m+b+1F2m+σ+a

⎡⎣ Δ(m; α), Δ(m; β), Δ(b; γ),

Δ(σ; μ), Δ(a; δ),

1;

Δ(2m; α + β);

w bb

4mσσaa(1 + r1)m(1 + r2)m

⎤⎦; (33)

(xi) Setting ξ = ν, λ = φ and a = 1 in (20), the following identity holds:

∫ q

p

(x − p)α−1(q − x)β−1

[(q − p) + r1(x − p) + r2(q − x)]α+β
Eγ,b

σ,μ,δ

[
w
{

(x − p)(q − x)
[(q − p) + r1(x − p) + r2(q − x)]2

}m]
dx

=
1

(q − p) (1 + r1)α (1 + r2)β

Γ(α)Γ(β)

Γ(α + β)Γ(μ)

× 2m+b+1F2m+σ+1

⎡⎣ Δ(m; α), Δ(m; β), Δ(b; γ),

Δ(σ; μ), Δ(2m; α + β),

1;

δ;

w bb

4mσσ(1 + r1)m(1 + r2)m

⎤⎦; (34)

(xii) Setting ξ = ν, λ = φ and a = b = 1 in (20), the following identity holds:

∫ q

p

(x − p)α−1(q − x)β−1

[(q − p) + r1(x − p) + r2(q − x)]α+β
Eγ,δ

σ,μ

[
w
{

(x − p)(q − x)
[(q − p) + r1(x − p) + r2(q − x)]2

}m]
dx

=
1

(q − p) (1 + r1)α (1 + r2)β

Γ(α)Γ(β)

Γ(α + β)Γ(μ)

7
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× 2m+2F2m+σ+1

⎡⎣ Δ(m; α), Δ(m; β), γ,

Δ(σ; μ), Δ(2m; α + β),

1;

δ;

w
4mσσ(1 + r1)m(1 + r2)m

⎤⎦; (35)

(xiii) Setting ξ = ν, λ = φ and a = δ = 1 in (20), the following identity holds:

∫ q

p

(x − p)α−1(q − x)β−1

[(q − p) + r1(x − p) + r2(q − x)]α+β
Eγ,b

σ,μ

[
w
{

(x − p)(q − x)
[+(q − p)r1(x − p) + r2(q − x)]2

}m]
dx

=
1

(q − p) (1 + r1)α (1 + r2)β

Γ(α)Γ(β)

Γ(α + β)Γ(μ)

× 2m+bF2m+σ

⎡⎣ Δ(m; α), Δ(m; β), Δ(b; γ);

Δ(σ; μ), Δ(2m; α + β);

w bb

4mσσ(1 + r1)m(1 + r2)m

⎤⎦; (36)

(xiv) Setting ξ = ν, λ = φ and a = b = δ = 1 in (20), the following identity holds:

∫ q

p

(x − p)α−1(q − x)β−1

[(q − p) + r1(x − p) + r2(q − x)]α+β
Eγ

σ,μ

[
w
{

(x − p)(q − x)
[(q − p) + r1(x − p) + r2(q − x)]2

}m]
dx

=
1

(q − p) (1 + r1)α (1 + r2)β

Γ(α)Γ(β)

Γ(α + β)Γ(μ)

× 2m+1F2m+σ

⎡⎣ Δ(m; α), Δ(m; β), γ;

Δ(σ; μ), Δ(2m; α + β);

w
4mσσ(1 + r1)m(1 + r2)m

⎤⎦; (37)

(xv) Setting ξ = ν, λ = φ and a = b = γ = δ = 1 in (20), the following identity holds:

∫ q

p

(x − p)α−1(q − x)β−1

[(q − p) + r1(x − p) + r2(q − x)]α+β
Eσ,μ

[
w
{

(x − p)(q − x)
[(q − p) + r1(x − p) + r2(q − x)]2

}m]
dx

=
1

(q − p) (1 + r1)α (1 + r2)β

Γ(α)Γ(β)

Γ(α + β)Γ(μ)

× 2m+1F2m+σ

⎡⎣ Δ(m; α), Δ(m; β), 1;

Δ(σ; μ), Δ(2m; α + β);

w
4mσσ(1 + r1)m(1 + r2)m

⎤⎦; (38)

(xvi) Setting ξ = ν, λ = φ and a = b = γ = δ = μ = 1 in (20), the following identity holds:

∫ q

p

(x − p)α−1(q − x)β−1

[(q − p) + r1(x − p) + r2(q − x)]α+β
Eσ

[
w
{

(x − p)(q − x)
[(q − p) + r1(x − p) + r2(q − x)]2

}m]
dx

=
Γ(α)Γ(β)

Γ(α + β)

1
(q − p) (1 + r1)α (1 + r2)β

× 2m+1F2m+σ

⎡⎣ Δ(m; α), Δ(m; β), 1;

Δ(σ; 1), Δ(2m; α + β);

w
4mσσ(1 + r1)m(1 + r2)m

⎤⎦; (39)

(xvii) Setting ξ = ν, λ = φ and a = b = γ = δ = μ = σ = 1 in (20), the following
identity holds:

∫ q

p

(x − p)α−1(q − x)β−1

[(q − p) + r1(x − p) + r2(q − x)]α+β
e

[
w
{

(x−p)(q−x)
[(q−p)+r1(x−p)+r2(q−x)]2

}m]
dx

=
Γ(α)Γ(β)

Γ(α + β)

1
(q − p) (1 + r1)α (1 + r2)β

8
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× 2mF2m

⎡⎣ Δ(m; α), Δ(m; β);

Δ(2m; α + β);

w
4mσσ(1 + r1)m(1 + r2)m

⎤⎦. (40)

4. Graphical Representation

Here, in terms of the parameter β, we illustrate Equations (14) and (15) using graphical
simulations. For this, we evaluate the integrals numerically using the Gaussian quadrature
Method (see [37]) and compare this with the main results. We choose k = 5 and n = 8 to
get more precise results.

5. Conclusions

It is worth stressing that the generalized Mittag–Leffler function obtained and the inte-
gral formulas computed are amenable to further generalizations and future investigation.
We have attempted to exploit the close connection of the generalized Mittag–Leffler func-
tions with several important special functions and compute the integrals of the functions
mentioned above in the form of the generalized Mittag–Leffler, linking different families of
special functions. Our main results (15) and (20) and some special cases (24)–(32) can yield
several new integrals in terms of Fox-H functions obtained from Equations (11) and (13).
For instance, we write

∫ q

p

(x − p)α−1(q − x)β−1

[(q − p) + r1(x − p) + r2(q − x)]α+β
Eξ,λ,γ,b

σ,μ,ν,φ,δ,a

[
w
{

(x − p)(q − x)
[(q − p) + r1(x − p) + r2(q − x)]2

}m]
dx

=
1

(q − p) (1 + r1)α (1 + r2)β

Γ(ν) Γ(δ)
Γ(ξ) Γ(γ)

× 5Ψ4

⎡⎣ (ξ, λ), (γ, b), (α, m), (β, m), (1, 1);

(μ, σ), (ν, φ), (δ, a), (α + β, 2m);

w
(1 + r1)m(1 + r2)m

⎤⎦ (41)

=
1

(q − p) (1 + r1)α (1 + r2)β

Γ(ν) Γ(δ)
Γ(ξ) Γ(γ)

× H1, 5
5, 5

⎡⎣ −w
(1 + r1)m(1 + r2)m

∣∣∣∣∣
(1− ξ, λ), (1− γ, b), (1− α, m), (1− β, m), (0, 1)

(0, 1), (1− μ, σ), (1− ν, φ), (1− δ, a), {1− (α + β, 2m)]}

⎤⎦, (42)

with all the conditions prescribed in Theorem 1. We have also proved that Figures 1–3 show
a good compatibility of the numerical solution obtained by the Gaussian quadrature method
and the analytic expression. We conclude that the results obtained will provide a significant
step in the theory of integral transforms and can yield some potential applications in the
field of the classical and applied mathematics.

9
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Figure 1. Solution of (14) for α = 6, r1 = 2, r2 = 2, p = 0 and q = 1.

Figure 2. Solution of (15) (for q = 1) for α = 6, r1 = 2, r2 = 4, p = 0, ξ = 1, λ = 2, γ = 2 b = 3, σ = 2,
μ = 5, v = 2, φ = 3, δ = 2, a = 4, w = 3 and m = 2.

10
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Figure 3. Solution of (15) (for all q) for α = 6, r1 = 2, r2 = 4, p = 0, ξ = 1, λ = 2, γ = 2 b = 3, σ = 2,
μ = 5, v = 2, φ = 3, δ = 2, a = 4, w = 3 and m = 2.
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1. Introduction

The origin of the multi-dimensional linear canonical transform (LCT) dates back to
the early 1970s with the foundational work of Moshinsky and Quesne [1] in quantum
mechanics to study the linear maps of phase space. Soon after its inception in quantum
mechanics, the linear canonical transform has been exclusively studied both in theory and
applications [2,3]. The theory of multi-dimensional non-separable LCT involving a general
2n × 2n real, symplectic matrix M = (A, B : C, D) with n(2n + 1) independent parameters
offers a canonical formalism for the representation of several physical systems in a lucid
and insightful way. For any f ∈ L2(Rn), the non-separable LCT with respect to a real,
symplectic matrix M is given by [4,5]

FM
[

f
]
(w) =

1
|det B|1/2

∫
Rn

f (t) eiπ
(

wT DB−1w−2wT BT−1
t+tT B−1 At

)
dt, |det B| �= 0. (1)

The importance of the arbitrary real symplectic matrices involved in Equation (1) lies in
the fact that an appropriate choice of the matrix can be taken to inculcate a sense of rotation
and shift into both the time and frequency axes, resulting in an efficient representation of the
chirp-like signals, which are ubiquitous both in nature and man-made systems. Due to the
extra degrees of freedom, the non-separable LCT has been successfully employed in diverse
problems arising in various branches of science and engineering, such as harmonic analysis,
reproducing kernel Hilbert spaces, optical systems, quantum mechanics, sampling, image
processing, and so on [6,7].
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Undoubtedly, wavelet transforms have fascinated the scientific, engineering, and
research communities both with their versatile applicability and lucid mathematical frame-
work [8,9]. In recent years, the classical wavelet transform has been extended and employed
in different domains. The most prompt ones are the fractional wavelet transform [10],
linear canonical wavelet transform [11,12], special affine wavelet transform [13,14], quater-
nion linear canonical wavelet transform [15], and quadratic-phase wavelet transform [16].
Unfortunately, all these transforms only perform well at representing point singularities
and are incompetent at handling the distributed singularities, such as curves or edges
in higher-dimensional signals [17–20]. The intuitive reason for this inadequacy is that
wavelets are isotropic entities generated by isotropically dilating the mother wavelet, and
as such, they ignore the geometric properties of the structures to be analyzed. Therefore,
the conventional wavelet approach is inadequate while dealing with multi-dimensional
signals, wherein the primary interest is to efficiently capture the geometric features, such
as edges and corners, appearing due to the spatial occlusion between different objects. As
such, the key problem in multi-dimensional signal analysis is to extract and characterize
the relevant geometric information regarding the occurrence of curves and boundaries in
signals. Subsequently, a higher-dimensional variant of the standard wavelet transform
has been proposed, which serves as a potent tool for representing non-transient multi-
dimensional signals in the time-frequency domain. Mathematically, the multi-dimensional
wavelet transform of any f ∈ L2(Rn) is defined by [21]

Wψ

[
f
]
(a, b) =

1√
a

∫
Rn

f (t)ψ

(
t − b

a

)
e−iw·t dt, a ∈ R

+, b ∈ R
n, (2)

where a is called the scaling parameter, which controls the degree of compression or scale,
and b is the translation parameter that determines the time location of the wavelet. The
multi-dimensional wavelet transform in Equation (2) has found numerous applications
across diverse fields of science and engineering, particularly in video image processing,
medical imaging, singular detection problems, fluid dynamics, shape recognition, and so
on [21,22]. In the context of higher-dimensional wavelet theory, the symmetry property
of wavelets is often desirable in practical applications, and as such, wavelets can reveal
different patterns and singularities of highly nonstationary signals, such as Brownian
motions, patterns on the water surfaces, fractal properties of the velocity field, computations
of Renyi dimensions, Hurst and H¨older exponents. Some prominent examples of the
symmetric wavelets include biorthogonal wavelets, quincunx wavelets, and carinal B-
splines.

Keeping in view the profound characteristics of the multi-dimensional wavelet trans-
form and more degrees of freedom of non-separable linear canonical transforms, we are
deeply motivated to intertwine these integral transforms into a novel integral transform
coined as a non-separable linear canonical wavelet transform. The novel integral transform
can efficiently localize any non-transient signal in the time-frequency plane with more
degrees of freedom. With major modifications to the existing multi-dimensional wavelet
transform in Equation (2), we propose the non-separable linear canonical wavelet transform
of any f ∈ L2(Rn) concerning the free symplectic matrix M = (A, B : C, D) as

WM
ψ

[
f
]
(a, b) =

1
|det B|1/2

∫
Rn

f (t)ψ

(
t − b

a

)
e−πi

(
ΛT

a DB−1Λa−2ΛT
a BT−1

t+tT B−1 At
)

dt, (3)

where Λa = (a a . . . a)T . Besides studying all the fundamental properties of the novel
wavelet transform, we derive some well-known theorems, including the Rayleigh’s the-
orem, inversion formula, and range theorem. In the sequel, we also formulate several
uncertainty inequalities such as the Heisenberg’s, logarithmic, and Nazorav-type inequali-
ties for the non-separable linear canonical wavelet transform in Equation (3).

The rest of the article is structured as follows: Section 2 is concerned with the prelimi-
nary aspects of the study and the formulation of the non-separable linear canonical wavelet

16



Symmetry 2021, 13, 2182

transform. Section 3 is devoted to formulating several variants of the uncertainty princi-
ples, such as Heisenberg’s, logarithmic, and Nazorav-type inequalities, for the proposed
transform. Finally, a conclusion is extracted in Section 4.

2. Non-Separable Linear Canonical Wavelet Transform in L2(Rn)

In this section, we first provide a healthy overview of the non-separable linear canoni-
cal transform. Then, we introduce the notion of the non-separable linear canonical wavelet
transform in L2(Rn), followed by some fundamental properties of the proposed transform,
including the orthogonality relation, energy preserving relation, range theorem, and the
inversion formula.

2.1. Non-Separable Linear Canonical Transform

For typographical convenience, we shall denote a real 2n × 2n matrix

M =

(
A B
C D

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 . . . a1n b11 b12 . . . b1n
a21 a22 . . . a2n b21 b22 . . . b2n
...

...
. . .

...
...

...
. . .

...
an1 an2 . . . ann bn1 bn2 . . . bnn
c11 c12 . . . c1n d11 d12 . . . d1n
c21 c22 . . . c2n d21 d22 . . . d2n
...

...
. . .

...
...

...
. . .

...
cn1 cn2 . . . cnn dn1 dn2 . . . dnn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4)

as M = (A, B : C, D), where A, B, C, and D are n × n sub-matrices with real entries.
Moreover, the matrix M = (A, B : C, D) is said to be free symplectic if MTJM = J

and |det B| �= 0, where J = (0, In : −In, 0), and In denotes the n-dimensional iden-
tity matrix. Furthermore, the sub-matrices corresponding to the free symplectic matrix
M = (A, B : C, D) satisfy

ABT = BAT , CDT = DCT , ADT − BCT = In, (5)

or equivalently

ATC = CT A, BT D = DT B, AT D − CT B = In. (6)

The transpose and inverse corresponding to the free symplectic matrix M = (A, B : C, D)
are given by MT =

(
AT , CT : BT , DT) and M−1 =

(
DT ,−BT : −CT , AT), respectively.

Moreover, we have

MM−1 =

(
A B
C D

)(
DT −BT

−CT AT

)

=

(
ADT − BCT −ABT + BAT

CDT − DCT −CBT + DAT

)

=

(
In 0
0 In

)
.

A typical example of a 4× 4 free symplectic matrix is given below

M =

⎛⎜⎜⎝
1 2 −1/2 −1/2
−2 1 −1/2 1/2
−1 −3 1 1
−1 0 −1/2 1/2

⎞⎟⎟⎠.
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Definition 1. Given a free symplectic matrix M = (A, B : C, D), the non-separable linear canoni-
cal transform of any f ∈ L2(Rn) is denoted by FM

[
f
]

and is defined as

FM
[

f
]
(w) =

∫
Rn

f (t)KM(t, w) dt, (7)

where the kernel KM(t, w) is given by

KM(x, w) =
1

|det B|1/2 exp
{

πi
(
wT DB−1w − 2wT BT−1

t + tT B−1 At
)}

, |det B| �= 0. (8)

The additive property of the non-separable LCT (Equation (7)) is very crucial for its
understanding and application and is given by

FM1
[
FM2

[
f (t)

]]
(w) = FM1M2

[
f (t)

]
(w).

The Plancheral and inversion formulae corresponding to Equation (7) are given by〈
f , g

〉
2 =

〈
FM

[
f
]
, FM

[
g
]〉

2
, ∀ f , g ∈ L2(Rn) and (9)

f (t) = FM−1
[
FM

[
f
]
(w)

]
(x) =

∫
Rn

FM
[

f
]
(w)KM−1

(w, t) dw, (10)

respectively, where M−1 =
(

DT ,−BT : −CT , AT). Furthermore, the kernel in Equation (8)
satisfies the following properties:

(i) KM−1
(w, t) = KM(t, w),

(ii)
∫
Rn

KM(t, w)KM−1
(t, z) dt = δ(z − w),

(iii)
∫
Rn

KM(t, w)KM−1
(z, w) dw = δ(z − t),

(iv)
∫
Rn

KM(t, w)KN(t, z) dt = KMN(w, z).

The non-separable linear canonical transform (Equation (7)) encompasses several
well-known integral transforms, including the Fourier transform (FT), fractional Fourier
transform (FrFT), linear canonical transform (LCT), and the Fresnel transforms (FrT) [4].
Table 1 shows some special cases of the non-separable linear canonical transform.

Table 1. Some special cases of the non-separable linear canonical transform.

Free Symplectic MATRIX M = (A, B : C, D) Free Metaplectic Transformation

• A = D = 0, B = −C = In n-dimensional FT
• A = diag(a11, · · · , ann),

B = diag(b11, · · · , bnn),
C = diag (c11, · · · , cnn),

D = diag (d11, · · · , dnn)
n-dimensional separable LCT

• A = D = diag (cos θ1, · · · , cos θn),
B = −C = diag (sin θ1, · · · , sin θn) n-dimensional separable FrFT

• A = D = In cos θ, B = −C = In sin θ n-dimensional non-separable FrFT
• A = D = In, B = diag (b11, · · · , bnn), C = 0 n-dimensional separable FrT

• A = D = In, C = 0 n-dimensional non-separable FrT

2.2. Non-Separable Linear Canonical Wavelet Transform

Wavelets act as window functions whose radius increases in time (reduces in fre-
quency) while resolving the low-frequency contents and decreases in time (increases in
frequency) while resolving high-frequency contents of a non-transient signal. Mathemat-
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ically, a doubly indexed family of wavelets ψa,b is generated by restricting the scaling
parameter a belonging to R+ and the translation parameter b belonging to Rn as [8]:

ψa,b(t) =
1√
a

ψ

(
t − b

a

)
, a ∈ R

+, b ∈ R
n. (11)

The scaling parameter a measures the degree of compression or scale, whereas the
translation parameter b determines the location of the wavelet. With major modifications
of the family (Equation (4)), we define a new family of functions ψM

a,b(t) with respect to a
free symplectic matrix M = (A, B : C, D) as:

ψM
a,b(t) =

1√
a

ψ

(
t − b

a

)
KM(t, a), (12)

where

KM(t, a) =
1

|det B|1/2 exp
{

πi
(

ΛT
a DB−1Λa − 2ΛT

a BT−1
t + tT B−1 At

)}
, (13)

where Λa = (a a . . . a)T . Having formulated a family of analyzing functions, we are now
ready to introduce the definition of the non-separable linear canonical wavelet transform
in L2(Rn).

Definition 2. For any f ∈ L2(Rn), the non-separable linear canonical wavelet transform of f
with respect to an analyzing wavelet ψ and the free symplectic matrix M = (A, B : C, D) is defined
by

WM
ψ

[
f
]
(a, b) =

1√
a|det B|

∫
Rn

f (t)ψ

(
t − b

a

)
e−πi

(
ΛT

a DB−1Λa−2ΛT
a BT−1

t+tT B−1 At
)

dt. (14)

Definition 2 allows us to make the following comments:
(i) The non-separable linear canonical wavelet transform can be written in the inner-

product form as

WM
ψ

[
f
]
(a, b) =

〈
f , ψM

a,b

〉
,

where ψM
a,b(t) is given by Equation (12).

(ii) It is worth noticing that the proposed transform in Equation (7) encompasses
several existing integral transforms, such as the classical wavelet transform, fractional
wavelet transform, linear canonical wavelet transform, and so on [8,9]. The corresponding
wavelet transforms can be obtained by choosing an appropriate symplectic matrix M =
(A, B : C, D).

We now present an example for the lucid illustration of the proposed non-separable
linear canonical wavelet transform in Equation (14).

Example 1. (a) Consider the function f (t) = e(
12
11 t1− 30

11 t2)
2

and the 2D-Morlet function ψ(t) =

eiΛ·t−|t|2/2, Λ = (λ1, λ2) > 0. Then, the translated and scaled versions of ψ(t) are given by

ψ

(
t − b

a

)
= exp

{
− i

(
λ1b1 + λ2b2

)
a

−
(
b2

1 + b2
2
)

2a2

}
exp

{
− t2

1
2a2 +

(
iλ1

a
+

b1

a2

)
t1

}

× exp

{
− t2

2
2a2 +

(
iλ2

a
+

b2

a2

)
t2

}
. (15)
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Consequently, the family of non-separable linear canonical wavelets ψM
a,b(t) is obtained as:

ψM
a,b(t) =

1√
a |det B|

ψ

(
t − b

a

)
exp

{
iπ

(
ΛT

a DB−1Λa − 2ΛT
a BT−1

t + tT B−1 At
)}

. (16)

To compute the non-separable linear canonical wavelet transform of f (t) with respect to the
window function ψ(t), Λ = (1, 1), and a real symplectic matrix

M =

(
A B
C D

)
=

⎛⎜⎜⎜⎜⎜⎝
1/6 1 −2 1/6

−5/6 −1/6 1/6 5/3

1 0 12/29 −31/29

−6/29 −36/29 36/29 0

⎞⎟⎟⎟⎟⎟⎠,

we proceed as:

WM
ψ

[
f
]
(a, b) =

1√
a |det B|

exp

{
i
(
b1 + b2

)
a

−
(
b2

1 + b2
2
)

2a2

}

×
∫
Rn

e(
12
11 t1− 30

11 t2)
2

exp

{
− t2

1
2a2 +

(
b1

a2 − i
a

)
t1

}
exp

{
− t2

2
2a2 +

(
b2

a2 − i
a

)
t2

}

× exp
{
− πi

(
ΛT

a DB−1Λa − 2ΛT
a BT−1

t + tT B−1 At
)}

dt1 dt2. (17)

Moreover, we have

ΛT
a DB−1Λa = − 36

121
(
a a

)(12/29 −31/29

36/29 0

)(
5/3 −1/6

−1/6 −2

)(
a

a

)

= − 36
121

(
a a

)(5579/6786 1720/1131

60/29 −6/29

)(
a

a

)

= −756 a2

605
, (18)

ΛT
a BT−1

t = − 36
121

(
a a

)( 5/3 −1/6

−1/6 −2

)(
t1

t2

)

= − 6a
121

(9t1 − 13t2), (19)

tT B−1 At = − 36
121

(
t1 t2

)( 5/3 −1/6

−1/6 −2

)(
1/6 1

−5/6 −1/6

)(
t1
t2

)

= − 36
121

(
t1 t2

)( 5/2 61/6

59/6 1

)(
t1
t2

)

= − 36
121

(
5t2

1
2

+ 20t1t2 + t2
2

)
. (20)

Implementing Equations (18)–(20) in Equation (17), we obtain
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WM
ψ

[
f
]
(a, b) =

11
6
√

a
exp

{
i
(
b1 + b2

)
a

−
(
b2

1 + b2
2
)

2a2 +
756πia2

605

}

×
∫
R

exp
{
−
(

1
2a2 −

90πi + 144
121

)
t2
1 +

(
b1

a2 −
i
a
− 12aπi

121

)
t1

}
dt1

×
∫
R

exp
{
−
(

1
2a2 −

36πi + 900
121

)
t2
2 +

(
b2

a2 −
i
a
− 156aπi

121

)
t2

}
dt2

=
11π

6

√
a
(

1
2a2 −

90πi + 144
121

)(
1

2a2 −
36πi + 900

121

)

× exp

{
i
(
b1 + b2

)
a

−
(
b2

1 + b2
2
)

2a2 +
756πia2

605

}

× exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

b1

a2 −
i
a
− 12aπi

121

)2

4
(

1
2a2 −

90πi + 144
121

)
⎫⎪⎪⎪⎬⎪⎪⎪⎭ exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

b2

a2 −
i
a
− 156aπi

121

)2

4
(

1
2a2 −

36πi + 900
121

)
⎫⎪⎪⎪⎬⎪⎪⎪⎭. (21)

For different values of a and b, the corresponding non-separable linear canonical wavelet
transforms are plotted in Figures 1–3.

(b) Consider the constant function f (t) = K and the two-dimensional Morlet wavelet ψ(t) =

eiΛ·t−|t|2/2, Λ = (λ1, λ2) > 0. Then, the non-separable linear canonical wavelet transform of f (t)
with respect to the real symplectic matrix

M =

(
A B
C D

)
=

⎛⎜⎜⎝
2 −1/8 1/4 −1

1/8 −2 1 1/4
−2/15 −31/30 1 0

1 2/3 −4/5 −14/15

⎞⎟⎟⎠
is given by

WM
ψ

[
f
]
(a, b) =

1√
a |det B|

exp

{
i
(
λ1b1 + λ2b2

)
a

−
(
b2

1 + b2
2
)

2a2

}

×
∫
Rn

K exp

{
− t2

1
2a2 +

(
b1
a2 − iλ1

a

)
t1

}
exp

{
− t2

2
2a2 +

(
b2

a2 − iλ2
a

)
t2

}
× exp

{
−iπ

(
ΛT

a DB−1Λa − 2ΛT
a BT−1

t + tT B−1 At
)}

dt. (22)

Moreover, we have

ΛT
a DB−1Λa =

16
15

(
a a

)( 1 0

−4/15 −14/15

)(
−1/4 1

−1 1/4

)(
a

a

)
=

12 a2

25
, (23)

ΛT
a BT−1

t =
16
15

(
a a

)(−1/4 1

−1 1/4

)(
t1

t2

)
= −4a

3
(t1 − t2), (24)

tT B−1 At =
16
15

(
t1 t2

)(−1/4 1

−1 1/4

)(
2 −1/8

1/8 −2

)(
t1
t2

)
= −2

5

(
t2
1 + t2

2

)
. (25)
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Implementing Equations (23)–(25) in Equation (22), we obtain

WM
ψ

[
f
]
(a, b) = K

√
15
16a

exp

{
i
(
λ1b1 + λ2b2

)
a

−
(
b2

1 + b2
2
)

2a2 − 12πia2

25

}

×
∫
R

exp
{
−
(

1
2a2 −

2πi
5

)
t2
1 +

(
b1

a2 −
iλ1

a
+

8aπi
3

)
t1

}
dt1

×
∫
R

exp
{
−
(

1
2a2 −

2πi
5

)
t2
2 +

(
b2

a2 −
iλ2

a
− 8aπi

3

)
t2

}
dt2

=
Kπ(

1
2a2 −

2
5

) √
15
16a

exp

{
i
(
λ1b1 + λ2b2

)
a

−
(
b2

1 + b2
2
)

2a2 − 12πia2

25

}

× exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

b1

a2 −
iλ1

a
+

8aπi
3

)2

4
(

1
2a2 −

2πi
5

)
⎫⎪⎪⎪⎬⎪⎪⎪⎭ exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

b2

a2 −
iλ2

a
− 8aπi

3

)2

4
(

1
2a2 −

2πi
5

)
⎫⎪⎪⎪⎬⎪⎪⎪⎭. (26)
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The non-separable linear canonical wavelet transforms shown in Equation (26) of f
corresponding to Λ = (1, 1) are plotted in Figures 4–6.
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Next, we shall derive a fundamental relationship between the non-separable linear
canonical wavelet transform (Equation (7)) and the non-separable linear canonical trans-
form (Equation (1)). With the aid of this formula, we shall study the fundamental properties
of the proposed transform.

Proposition 1. Let WM
ψ

[
f
]
(a, b) and FM

[
f
]
(a) be the non-separable linear canonical wavelet

transform and the non-separable linear canonical transform of any f ∈ L2(Rn), respectively. Then,
we have

FM
[
WM

ψ

[
f
]]
(w) =

√
a |det B| KM(b, Λa) eπi a2wT DB−1wFM

[
f
]
(w)FM

[
Ψ
]
(aw), (27)

where

Ψ(t, a) = eπi
(

2(aΛa)T BT−1
t−tT B−1 At

)
ψ(t). (28)

Proof. Applying the definition of the non-separable linear canonical transform, we have

FM
[
ψM

a,b(t)
]
(w)

=
∫
Rn

1√
a

ψ

(
t − b

a

)
1√

|det B|
exp

{
−πi

(
ΛT

a DB−1Λa − 2ΛT
a BT−1

t + tT B−1 At
)}

× 1√
|det B|

exp
{

πi
(

wT DB−1w − 2wT BT−1
t + tT B−1 At

)}
dt

=

√
a

|det B|
∫
Rn

ψ(z) exp
{
−πi

(
ΛT

a DB−1Λa − 2ΛT
a BT−1

(b + az)
)}

× exp
{

πi
(

wT DB−1w − 2wT BT−1
(b + az)

)}
dz

=

√
a

|det B|
∫
Rn

ψ(z) exp
{

πi
(

wT DB−1w − 2(awT)BT−1
z + zT B−1 Az

)}
× exp

{
−πi

(
ΛT

a DB−1Λa − 2(aΛa)
T BT−1

z + zT B−1 Az
)}

× exp
{

πi
(

2ΛT
a BT−1

b − 2wT DB−1w
)}

dz

=

√
a

|det B|
∫
Rn

ψ(z) exp
{

πi
(
(aw)T DB−1(aw)− 2(aw)T BT−1

z + zT B−1 Az
)}

× exp
{

πi
(

wT DB−1w − 2wT BT−1
b + bT B−1 Ab

)}
× exp

{
−πi

(
ΛT

a DB−1Λa − 2ΛT
a BT−1

b + bT B−1 Ab
)}

× exp
{
−πi

(
(aw)T DB−1(aw)− 2(aΛa)

T BT−1
z + zT B−1 Az

)}
dz

=
√

a |det B| e−πi a2wT DB−1w KM(b, w)KM(b, Λa)

×
∫
Rn

eπi
(

2(aΛa)T BT−1
z−zT B−1 Az

)
ψ(z)KM(z, aw) dz

=
√

a |det B| e−πi a2wT DB−1w KM(b, w)KM(b, Λa)FM
[
Ψ
]
(aw), (29)

where Ψ(t, a) = eπi
(

2(aΛa)T BT−1
t−zT B−1 At

)
ψ(t).

Invoking the Plancheral theorem for the non-separable linear canonical transform
and using Equation (29), we have
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WM
ψ

[
f
]
(a, b) =

√
a |det B| KM(b, Λa)

∫
Rn

eπi a2wT DB−1wFM
[

f
]
(w)FM

[
Ψ
]
(aw)KM(b, w) dw

= FM−1

[√
a |det B| KM(b, Λa) eπi a2wT DB−1wFM

[
f
]
(w)FM

[
Ψ
]
(aw)

]
(b).

Consequently,

FM
[
WM

ψ

[
f
]
(a, b)

]
(w) =

√
a |det B| KM(b, Λa) eπi a2wT DB−1wFM

[
f
]
(w)FM

[
Ψ
]
(aw).

This completes the proof of Proposition 1.

2.3. Basic Properties of the Non-Separable Linear Canonical Wavelet Transform

In this subsection, we shall study some mathematical properties of the proposed non-
separable linear canonical wavelet transform (Equation (7)), including Rayleigh’s theorem,
inversion formula, and the range theorem. In this direction, we have the following theorem,
which assembles some of the basic properties of the proposed transform.

Theorem 1. For any f , g ∈ L2(Rn) and α, β ∈ R, k ∈ Rn, and μ ∈ R+, the non-separable linear
canonical wavelet transform as defined by Equation (7) satisfies the following properties:

(i) Linearity: WM
ψ

[
α f + βg

]
(a, b) = αWM

ψ

[
f
]
(a, b) + βWM

ψ

[
g
]
(a, b)

(ii) Anti-linearity: WM
αψ+βφ

[
, f

]
(a, b) = ᾱWM

ψ

[
f
]
(a, b) + β̄WM

φ

[
f
]
(a, b)

(iii) Translation:

WM
ψ

[
f (t − k)

]
(a, b) = e2πiΛaBT−1

kWM
ψ

[
f (t) eπi(kT B−1 Ax+xT B−1 Ak)

]
(a, b − k)

(iv) Scaling: WM
ψ

[
f (μt)

]
(a, b) = |μ|1− n

2 WM′
ψ f (μa, μb), M′ = (A/μ, B/μ : μC, μD)

(v) Conjugation: WM
ψ̄

[
f̄
]
(a, b) =

1√
a
WM′

ψ

[
f
]
(a, b), M′ = (A,−B : −C, D).

Proof. For the sake of brevity, we omit the proof of the theorem.

Next, we shall define the admissibility condition for a function ψ ∈ L2(Rn).

Definition 3. A function ψ ∈ L2(Rn) is said to be admissible with respect to a real free symplectic
matrix M = (A, B : C, D) if

Cψ =
∫
R+

∣∣FM
[
Ψ
]
(aw)

∣∣2
a

da < ∞, a.e. w ∈ R
n, (30)

where Ψ(t, a) is given by Equation (28).

We are now in a position to derive the orthogonality relation for the proposed trans-
form defined in Equation (7). As a consequence of the orthogonality relation, we will
demonstrate that the non-separable wavelet transform is an isometry from the space of
square-integrable functions L2(Rn) to the space of transforms L2(Rn ×R+).

Theorem 2. Let WM
ψ

[
f
]
(a, b) and WM

ψ

[
g
]
(a, b) be the non-separable linear canonical wavelet

transforms of f and g belonging to L2(Rn), respectively. Then, we have∫
Rn×R+

WM
ψ

[
f
]
(a, b)WM

ψ

[
g
]
(a, b)

db da
a2 = Cψ

〈
f , g

〉
, (31)

where Cψ is given by Equation (30).
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Proof. For any pair of square integrable functions f and g, Proposition 1 implies that

WM
ψ

[
f
]
(a, b) =

√
a |det B|

∫
Rn

eπi a2wT DB−1wFM
[

f
]
(w)KM(b, w)KM(b, Λa)FM

[
Ψ
]
(aw) dw

and

WM
ψ

[
g
]
(a, b) =

√
a |det B|

∫
Rn

eπi a2xT DB−1xFM
[
g
]
(x)KM(b, x)KM(b, Λa)FM

[
Ψ
]
(ax) dx,

where Ψ are given by Equation (28). Consequently, we have

∫
Rn×R+

WM
ψ

[
f
]
(a, b)WM

ψ

[
g
]
(a, b)

db da
a2

= |det B|
∫
Rn×Rn×Rn×R+

eπia2(wT DB−1w−xT DB−1x) FM
[

f
]
(w)FM

[
g
]
(x)

×FM
[
Ψ
]
(aw)FM

[
Ψ
]
(ax)KM(b, Λa)KM(b, Λa)KM(b, x)KM(b, w)

db dw dx da
a

=
∫
Rn×Rn×R+

eπia2(wT DB−1w−xT DB−1x) FM
[

f
]
(w)FM

[
g
]
(x)

×FM
[
Ψ
]
(aw)FM

[
Ψ
]
(ax)

{∫
Rn

KM(b, x)KM(b, w) db

}
dw dx da

a

=
∫
Rn×Rn×R+

eπia2(wT DB−1w−xT DB−1x) FM
[

f
]
(w)FM

[
g
]
(v)

× FM
[
Ψ
]
(aw)FM

[
Ψ
]
(ax) δ(w − x)

dw dx da
a

=
∫
Rn×R+

FM
[

f
]
(w)FM

[
g
]
(w)

∣∣∣FM
[
Ψ
]
(aw)

∣∣∣2 dw da
a

=
∫
Rn

FM
[

f
]
(w)FM

[
g
]
(w)

{∫
R+

∣∣FM
[
Ψ
]
(aw)

∣∣2
a

da

}
dw

= Cψ

〈
FM

[
f
]
(w), FM

[
g
]
(w)

〉
2

= Cψ
〈

f , g
〉

2.

This completes the proof of Theorem 2.

Remark 1. (i). For f = g, Theorem 2 yields the energy preserving relation associated with the
non-separable linear canonical wavelet transform (Equation (10)):∫

Rn×R+

∣∣∣WM
ψ

[
f
]
(a, b)

∣∣∣2 db da
a2 = Cψ

∥∥ f
∥∥2

2. (32)

(ii). The operator WM
ψ is a bounded-linear operator. Moreover, for Cψ = 1 and |det B| = 1, the

operator WM
ψ becomes an isometry from L2(Rn) to L2(Rn ×R+).

In our next theorem, we demonstrate that the non-separable linear canonical wavelet
transform WM

ψ

[
f
]
(a, b) of any function f ∈ L2(Rn) is reversible in the sense that f can be

easily recovered from the transformed domain L2(Rn ×R+).

Theorem 3. Let WM
ψ

[
f
]
(a, b) be the non-separable linear canonical wavelet transform of an

arbitrary function f ∈ L2(Rn). Then, f can be reconstructed via

f (t) =
1

Cψ

∫
Rn×R+

WM
ψ

[
f
]
(a, b)ψM

a,b(t)
db da

a2 , a.e. (33)
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Proof. According to Theorem 2, we can write

〈
f , g

〉
=

1
Cψ

∫
Rn×R+

WM
ψ

[
f
]
(a, b)WM

ψ

[
g
]
(a, b)

db da
a2

=
1

Cψ

∫
Rn×R+

WM
ψ

[
f
]
(a, b)

{∫
Rn

g(t)ψM
a,b(t) dt

}
db da

a2

=
1

Cψ

∫
Rn×Rn×R+

WM
ψ

[
f
]
(a, b)ψM

a,b(t) g(t)
dt db da

a2

=
1

Cψ

〈∫
Rn×R+

WM
ψ

[
f
]
(a, b)ψM

a,b(t)
db da

a2 , g(t)
〉

.

Since g is chosen arbitrarily from L2(Rn), using the elementary properties of inner products,
one can obtain

f (t) =
1

Cψ

∫
Rn×R+

WM
ψ

[
f
]
(a, b)ψM

a,b(t)
db da

a2 a.e.

This completes the proof of Theorem 3.

Finally, we investigate the characterization of the range for the proposed trans-
form (Equation (7)). As a consequence of the range theorem, we shall demonstrate that the
range of the non-separable linear canonical wavelet transforms; that is, WM

ψ (L2(Rn)) is a
reproducing kernel Hilbert space.

Theorem 4. If f ∈ L2(Rn ×R+), then f belongs to the range WM
ψ

(
L2(Rn)

)
if and only if

f
(
a′, b′) = 1

Cψ

∫
Rn×R+

f (a, b)
〈

ψM
a,b, ψM

a′ ,b′

〉
2

db da
a2 , (34)

where Cψ satisfies Equation (27).

Proof. Assume that f ∈ WM
ψ (L2(Rn)). Then, there exists a square integrable function g

such that WM
ψ g = f . In order to show that f satisfies Equation (34), we proceed as

f
(
a′, b′) = WM

ψ

[
g
](

a′, b′)
=

∫
Rn

g(t)ψM
a′ ,b′(t) dt

=
1

Cψ

∫
Rn

{∫
Rn×R+

WM
ψ

[
g
]
(a, b)ψM

a,b(t)
db da

a2

}
ψM

a′ ,b′(t) dt

=
1

Cψ

∫
Rn×R+

WM
ψ

[
g
]
(a, b)

{∫
R

ψM
a,b(t)ψM

a′ ,b′(t) dt

}
db da

a2

=
1

Cψ

∫
Rn×R+

f (a, b)
〈

ψM
a,b, ψM

a′ ,b′

〉
2

db da
a2 ,

which evidently verifies our claim. Conversely, suppose that the function f satisfies
Equation (34). To verify that f ∈ WM

ψ (L2(Rn)), it is sufficient to find out a function
g ∈ L2(Rn) such that WM

ψ g = f . Therefore, the desired function g will be constructed as
follows:

27



Symmetry 2021, 13, 2182

Let

g(t) =
1

Cψ

∫
Rn×R+

f (a, b)ψM
a,b(t)

db da
a2 . (35)

Then, it is straightforward to obtain
∥∥g

∥∥
2 ≤

∥∥ f
∥∥

2 < ∞; that is g ∈ L2(Rn). Further-
more, by virtue of the Fubini theorem, we have

WM
ψ

[
g
](

a′, b′) = ∫
Rn

g(x)ψM
a′ ,b′(t) dt

=
1

Cψ

∫
Rn

{∫
Rn×R+

f (a, b)ψM
a,b(t)

db da
a2

}
ψM

a′ ,b′(t) dt

=
1

Cψ

∫
Rn×R+

f (a, b)
〈

ψM
a,b, ψM

a′ ,b′

〉
2

db da
a2

= f
(
a′, b′).

This completes the proof of Theorem 4.

Corollary 1. For any admissible wavelet ψ ∈ L2(Rn), the range of the proposed non-separable
linear canonical wavelet transform; that is, WM

ψ (L2(Rn)) is a reproducing kernel Hilbert space
embedded as a subspace in L2(Rn ×R+

)
with the kernel given by

KΛ
ψ

(
a, b; a′, b′) = 〈

ψM
a,b, ψM

a′ ,b′

〉
2
. (36)

3. Uncertainty Principles for the Non-Separable Linear Canonical Wavelet Transform

The uncertainty principle lies at the heart of harmonic analysis, which asserts that
“the position and the velocity of a particle cannot be both determined precisely at the
same time” [23]. The harmonic analysis version of this principle states that “a non-trivial
function cannot be properly localized in both the time and frequency domains at the same
time” [24]. This standard inequality has been extensively studied in numerous domains and
vistas [25–27]. Keeping in view the fact that the theory of uncertainty principles for the non-
separable linear canonical wavelet transform is yet to be explored exclusively; therefore, it
is both theoretically and practically fascinating to develop some new uncertainty principles,
including the Heisenberg’s, logarithmic, and Nazaros uncertainty principles for the non-
separable linear canonical wavelet transform 7.

Theorem 5. Let WM
ψ

[
f
]
(a, b) be the non-separable linear canonical wavelet transform of any

non-trivial function f ∈ L2(Rn) with respect to a real free symplectic matrix M = (A, B : C, D),
then the following uncertainty inequality holds:

{∫
Rn×R+

∣∣b∣∣2∣∣∣WM
ψ

[
f
]
(a, b)

∣∣∣2 da db

a2

}1/2{∫
Rn

∣∣w∣∣2∣∣∣FM
[

f
]
(w)

∣∣∣dw

}1/2

≥ n σmin(B)
√

Cψ

4π

∥∥∥ f
∥∥∥2

2
, (37)

where σmin(B) denotes the minimum singular value of matrix B.

Proof. The classical Heisenberg–Pauli–Weyl uncertainty inequality for any f ∈ L2(Rn) in
the non-separable linear canonical domain is given by [7]:

{∫
Rn

∣∣b∣∣2∣∣ f (b)
∣∣2db

}1/2{∫
Rn

∣∣w∣∣2∣∣∣FM
[

f
]
(w)

∣∣∣2dw

}1/2

≥ n σmin(B)
4π

{∫
Rn

∣∣ f (b)
∣∣2db

}
. (38)
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We shall identify WM
ψ

[
f
]
(a, b) as a function of the time variable b and then in-

voke Equation (38) so that{∫
Rn

∣∣b∣∣2∣∣∣WM
ψ

[
f
]
(a, b)

∣∣∣2db

}1/2{∫
Rn

∣∣w∣∣2∣∣∣FM
[
WM

ψ

[
f
]
(a, b)

]
(w)

∣∣∣2dw

}1/2

≥ n σmin(B)
4π

{∫
Rn

∣∣∣WM
ψ

[
f
]
(a, b)

∣∣∣2db

}
. (39)

Integrating Equation (39) with respect to the da/a2, we obtain

∫
R+

{∫
Rn

∣∣b∣∣2∣∣∣WM
ψ

[
f
]
(a, b)

∣∣∣2db

}1/2{∫
Rn

∣∣w∣∣2∣∣∣FM
[
WM

ψ

[
f
]
(a, b)

]
(w)

∣∣∣2dw

}1/2 da
a2

≥ n σmin(B)
4π

{∫
Rn×R+

∣∣∣WM
ψ

[
f
]
(a, b)

∣∣∣2 db da
a2

}
. (40)

As a consequence of the Cauchy–Schwartz’s inequality, Fubini theorem, and Equa-
tion (30), we can express Equation (40) as

{∫
Rn×R+

∣∣b∣∣2∣∣∣WM
ψ

[
f
]
(a, b)

∣∣∣2 da db

a2

}1/2{∫
Rn×R+

∣∣w∣∣2∣∣∣FM
[
WM

ψ

[
f
]
(a, b)

]
(w)

∣∣∣2 dw da
a2

}1/2

≥ n σmin(B)Cψ

4π

∥∥∥ f
∥∥∥2

2
.

Using Proposition 1, we can rewrite the above inequality as follows

{∫
Rn×R+

∣∣b∣∣2∣∣∣WM
ψ

[
f
]
(a, b)

∣∣∣2 da db

a2

}1/2{∫
Rn×R+

∣∣w∣∣2∣∣∣FM
[

f
]
(w)FM

[
Ψ
]
(aw)

∣∣∣2 da dw

a

}1/2

≥ n σmin(B)Cψ

4π

∥∥∥ f
∥∥∥2

2
,

or equivalently,

{∫
Rn×R+

∣∣b∣∣2∣∣∣WM
ψ

[
f
]
(a, b)

∣∣∣2 da db

a2

}1/2{∫
Rn

∣∣w∣∣2∣∣∣FM
[

f
]
(w)

∣∣∣2(∫
R+

∣∣FM
[
Ψ
]
(aw)

∣∣2
a

da

)
dw

}1/2

≥ n σmin(B)Cψ

4π

∥∥∥ f
∥∥∥2

2
.

Finally, using Equation (27), we obtain the desired result:

{∫
Rn×R+

∣∣b∣∣2∣∣∣WM
ψ

[
f
]
(a, b)

∣∣∣2 da db

a2

}1/2{∫
Rn

∣∣w∣∣2∣∣∣FM
[

f
]
(w)

∣∣∣dw

}1/2
≥ n σmin(B)

√
Cψ

4π

∥∥∥ f
∥∥∥2

2
.

This completes the proof of Theorem 5.

Remark 2. The uncertainty inequality in Equation (37) embodies a wide class of uncertainty
relations including the ones corresponding to the separable linear canonical wavelet transform,
fractional wavelet transform, and classical wavelet transforms. The corresponding uncertainty
principles can be obtained by choosing an appropriate matrix parameter M = (A, B : C, D).

Example 2. For the sake of computational convenience, we restrict ourselves to the two-dimensional
space. From the inequality in Equation (37), we observe that the lower bound can be adjusted suitably
by choosing a real, free symplectic matrix M = (A, B : C, D) and the analyzing function ψ.
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(i). Consider the real, free symplectic matrix

M1 =

(
A1 B1
C1 D1

)
=

⎛⎜⎜⎝
1/2 −3/2 1 −1
3/2 1/2 −1 −1

0 −1 1 −1
−1 0 1 1

⎞⎟⎟⎠
and the two-dimensional Morlet wavelet ψ1(t) given by

ψ1(t) = eiΛ·t−|t|2/2, Λ = (λ1, λ2) > 0.

Then, by virtue of Equation (28), we obtain

Ψ(t, a) = exp
{

πi
(

2aΛT
a BT−1

t − tT B−1 At
)}

ψ(t)

= exp

{
πi

(
−2a2t2 +

t2
1 + t2

2
2

)}
exp

{
i(λ1t1 + λ2t2)−

t2
1 + t2

2
2

}

= exp
{
−
(

1− πi
2

)
t2
1 + λ1t1

}
exp

{
−
(

1− πi
2

)
t2
2 + (λ2 − 2a2)t2

}
.

Subsequently, we have

FM
[
Ψ
]
(aw)

=
1

|det B|1/2

∫
R2

Ψ(t, a) exp
{

πi
(
(aw)T DB−1(aw)− 2(aw)T BT−1

t + tT B−1 At
)}

dt

=
1

|det B|1/2

∫
R2

exp
{
−
(

1− πi
2

)
t2
1 + λ1t1

}
exp

{
−
(

1− πi
2

)
t2
2 + (λ2 − 2a2)t2

}

× exp

{
πi

(
a2(ω2

1 − ω2
2
)
+ aω1(t2 − t1) + aω2(t1 + t2)−

t2
1 + t2

2
2

)}
dt1 dt2

=
√

2 eπia2(ω2
1−ω2

2)
∫
R

exp

{
− t2

1
2
+

(
λ1 − aπi(ω1 − ω2)

)
t1

}
dt1

×
∫
R

exp

{
− t2

2
2
+

(
λ2 − 2a2 + aπi(ω1 + ω2)

)
t1

}
dt2

= 2π
√

2a eπia2(ω2
1−ω2

2) exp

{(
λ1 − aπi(ω1 − ω2)

)2

2

}
exp

{(
λ2 − 2a2 + aπi(ω1 + ω2)

)2

2

}
.

Taking λ1 = aπi and λ2 = 2a2, we obtain∣∣∣FM
[
Ψ
]
(aw)

∣∣∣2 = 8π2a exp
{
− a2π2(1 + 2ω2

1 + 2ω2
2 + ω2

)}
. (41)

Implementing Equation (41) in Equation (30) yields

Cψ = 8π2
∫
R+

exp
{
− π2(1 + 2ω2

1 + 2ω2
2 + ω2

)
a2
}

da =
4π3/2√

1 + 2ω2
1 + 2ω2

2 + ω2

.

In particular, for (ω1, ω2) = (1, 1), we obtain

Cψ =
4π3/2
√

6
. (42)
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Therefore, for any normalized function f ∈ L2(R2), an application of Equation (42) in Equation
(37) yields the lower bound for the Heisenberg’s inequality in Equation (37) of the form

{∫
Rn×R+

∣∣b∣∣2∣∣∣WM
ψ

[
f
]
(a, b)

∣∣∣2 da db

a2

}1/2{∫
Rn

∣∣w∣∣2∣∣∣FM
[

f
]
(w)

∣∣∣dw

}1/2
≥

(
2

3π

)1/4
. (43)

(ii). Consider the real, free symplectic matrix

M2=

(
A2 B2
C2 D2

)
=

⎛⎜⎜⎝
1/6 1 −2 1/6

−5/6/2 −1/6 1/6 5/3
1 0 12/29 −31/29

−6/29 −36/29 36/29 6

⎞⎟⎟⎠,

and the two-dimensional DOG wavelet ψ2 given by

ψ2(t) =
1

2α2 e−|t|
2/(2α2) − e−|t|

2/2, 0 < α < 1.

Similar to computations carried out in (i), we can show that

Cψ2 =
6π

11

√
1 + 3α2

1 + α2 , and, (44)

{∫
Rn×R+

∣∣b∣∣2∣∣∣WM
ψ

[
f
]
(a, b)

∣∣∣2 da db

a2

}1/2{∫
Rn

∣∣w∣∣2∣∣∣FM
[

f
]
(w)

∣∣∣dw

}1/2
≥

√
101(1 + 3α2)

66π(1 + α2)
. (45)

(iii). Finally, for the real free symplectic matrix

M3=

(
A3 B3
C3 D3

)
=

⎛⎜⎜⎝
2 −1/8 1/4 −1

1/8 −2 1 1/4
−2/15 −31/30 1 0

1 2/3 −4/5 −14/15

⎞⎟⎟⎠
and the two-dimensional Maxican-hat wavelet ψ3

ψ3(t) =
(
2− |t|2

)
e−|t|

2/2.

The admissibility constant Cψ3 and inequality in Equation (37) turn out to be

Cψ3 =
π5/2

2

√
16
17

, and, (46){∫
Rn×R+

∣∣b∣∣2∣∣∣WM
ψ

[
f
]
(a, b)

∣∣∣2 da db

a2

}1/2{∫
Rn

∣∣w∣∣2∣∣∣FM
[

f
]
(w)

∣∣∣dw

}1/2
≥

(
16π

17

)1/4√17
32

. (47)

The lower bounds of the Heisenberg’s uncertainty inequality in Equation (37) corre-
sponding to the aforementioned parametric symplectic matricies and analyzing functions
are summarized in Table 2.
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Table 2. Lower bounds associated with the Heisenberg’s inequality in Equation (37).

Symplectic Matrix Admissibility Constant Cψ Lower Bound

Cψ1 = 4π3
√

π

6

(
2

3π

)1/4

M1 = (A1, B1 : C1, D1)
Cψ2 =

6π

11

√
1 + 3α2

1 + α2

1
21/4

√
1 + 3α2

1 + α2

Cψ3 =
π5/2

2

√
16
17

( π

32

)1/4

Cψ1 = 4π3
√

π

6

(
11π3

3

)1/4 √
101

(12π)

M2 = (A2, B2 : C2, D2)
Cψ2 =

6π

11

√
1 + 3α2

1 + α2

√
101(1 + 3α2)

66π(1 + α2)

Cψ3 =
π5/2

2

√
16
17

π1/4
√

101
88

Cψ1 = 4π3
√

π

6

(
17π3

8

)1/4 √17
8π

M3 = (A3, B3 : C3, D3)
Cψ2 =

6π

11

√
1 + 3α2

1 + α2
1
8

(
16
17

)1/4
√

17(1 + 3α2)

π(1 + α2)

Cψ3 =
π5/2

2

√
16
17

(
16π

17

)1/4 √17
32

In our next theorem, we shall establish the logarithmic uncertainty principle for the
non-separable linear canonical wavelet transform in Equation (14).

Theorem 6. Let ψ be an admissible function and suppose that WM
ψ

[
f
]
(·, b) ∈ S(Rn), then the

non-separable linear canonical wavelet transform (Equation (14)) of any f ∈ S(Rn) satisfies the
following logarithmic estimate of the uncertainty inequality:∫

Rn×R+
ln

∣∣b∣∣∣∣∣WM
ψ

[
f
]
(a, b)

∣∣∣2 da db

a2 + Cψ

∫
Rn

ln
∣∣∣wBT−1

∣∣∣∣∣∣FM
[

f
]
(w)

∣∣∣2 dw

≥
[

Γ′(n/2)
Γ(n/2)

− ln π

]
Cψ

∥∥ f
∥∥2

2. (48)

whenever the L.H.S of Equation (48) is defined.

Proof. For any f ∈ S(R) ⊆ L2(Rn), the logarithmic uncertainty principle for the non-
separable linear canonical transform (Equation (7)) is given by

∫
Rn

ln|t|
∣∣ f (t)

∣∣2dt +
∫
Rn

ln
∣∣∣wBT−1

∣∣∣ ∣∣FM
[

f
]
(w)

∣∣2dw ≥
(

Γ′(n/2)
Γ(n/2)

− ln π

) ∫
Rn

∣∣ f (t)
∣∣2dt.

(49)

Identifying WM
ψ

[
f
]
(a, b) as a function of the translation parameter b and then replace

f ∈ S(Rn) with WM
ψ

[
f
]
(a, b), we have

∫
Rn

ln|b|
∣∣∣WM

ψ

[
f
]
(a, b)

∣∣∣2db +
∫
Rn

ln
∣∣∣wBT−1

∣∣∣∣∣FM
[
WM

ψ

[
f
]
(a, b)

]
(w)

∣∣2dw

≥
(

Γ′(n/2)
Γ(n/2)

− ln π

) ∫
Rn

∣∣∣WM
ψ

[
f
]
(a, b)

∣∣∣2db. (50)
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Integrating Equation (50) with respect to the measure da/a2, we obtain

∫
Rn×R+

ln|b|
∣∣∣WM

ψ

[
f
]
(a, b)

∣∣∣2 da db

a2 +
∫
Rn×R+

ln
∣∣∣wBT−1

∣∣∣∣∣FM
[
WM

ψ

[
f
]
(a, b)

]
(w)

∣∣2 da dw

a2

≥
(

Γ′(n/2)
Γ(n/2)

− ln π

) ∫
Rn×R+

∣∣∣WM
ψ

[
f
]
(a, b)

∣∣∣2 da db

a2 . (51)

As a consequence of Proposition 1, we can simplify Equation (51) as:

∫
Rn×R+

ln|b|
∣∣∣WM

ψ

[
f
]
(a, b)

∣∣∣2 da db

a2 +
∫
Rn

ln
∣∣∣wBT−1

∣∣∣∣∣FM
[

f
]
(w)

∣∣2{∫
R+

∣∣FM[Ψ](aw)
∣∣2

a
da

}
dw

≥
(

Γ′(n/2)
Γ(n/2)

− ln π

)
Cψ

∥∥ f
∥∥2

2. (52)

Equivalently,∫
Rn×R+

ln|b|
∣∣∣WM

ψ

[
f
]
(a, b)

∣∣∣2 da db

a2 + Cψ

∫
Rn

ln
∣∣∣wBT−1

∣∣∣∣∣FM
[

f
]
(w)

∣∣2dw

≥
(

Γ′(n/2)
Γ(n/2)

− ln π

)
Cψ

∥∥ f
∥∥2

2. (53)

This completes the proof of Theorem 6.

Nazarov’s uncertainty principle measures the localization of a non-trivial function f
by taking into consideration the notion of support of the function instead of the dispersion
as used in the Heisenberg–Pauli–Weyl inequality (38). In this direction, we have the
following theorem.

Theorem 7. Let WM
ψ

[
f
]
(a, b) be the non-separable linear canonical wavelet transform of any

function f ∈ L2(Rn). Then, the following inequality holds:

CeC(T1,T2)

(∫
Rn\T1×R+

∣∣∣WM
ψ

[
f
]
(a, b)

∣∣∣2 da db

a2 + Cψ

∫
Rn\(T2BT)

∣∣FM[
f
]
(w)

∣∣2dw

)

≥ Cψ

∫
Rn

∣∣ f (t)
∣∣2dt, (54)

where C(T1, T2) = C min
(
|T1||T2|, |T1|1/nW(T2),W(T1)T1/n

2

)
, W(T1) is the mean width of

T1, and |T1| denotes the Lebesgue measure of T1.

Proof. For an arbitrary function f ∈ L2(Rn) and a pair of finite measurable subsets T1 and
T2 of Rn, Nazarov’s uncertainty principle in the linear canonical domain reads [5]

CeC(T1,T2)

(∫
Rn\T1

∣∣ f (t)
∣∣2dt +

∫
Rn\(T2BT)

∣∣FM[
f
]
(w)

∣∣2dw

)
≥

∫
Rn

∣∣ f (t)
∣∣2dt, (55)

where C(T1, T2) = C min
(
|T1||T2|, |T1|1/nW(T2),W(T1)T1/n

2

)
, W(·) is the mean width of

the measurable subset, and | · | denotes the Lebesgue measure.
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By identifying WM
ψ

[
f
]
(a, b) as a function of b followed by invoking Equation (55),

we obtain

CeC(T1,T2)

(∫
Rn\T1

∣∣WM
ψ

[
f
]
(a, b)

∣∣2db +
∫
Rn\(T2BT)

∣∣FM[
WM

ψ

[
f
]
(a, b)

]
(w)

∣∣2dw

)

≥
∫
Rn

∣∣WM
ψ

[
f
]
(a, b)

∣∣2db, (56)

Upon integrating Equation (56) with respect to the measure da/a2, we have

CeC(T1,T2)
(∫

Rn\T1×R+

∣∣WM
ψ

[
f
]
(a, b)

∣∣2 da db

a2 +
∫
Rn\(T2BT)×R+

∣∣FM[
WM

ψ

[
f
]
(a, b)

]
(w)

∣∣2 da dw

a2

)
≥

∫
Rn×R+

∣∣WM
ψ

[
f
]
(a, b)

∣∣2 da db

a2 .

Finally, as a consequence of orthogonality relation in Equation (31) and Proposition 1,
we obtain the desired result

CeC(T1,T2)

(∫
Rn\T1×R+

∣∣WM
ψ

[
f
]
(a, b)

∣∣2 da db

a2 + Cψ

∫
Rn\(T2BT)

∣∣FM[
f
]
(w)

∣∣2dw

)

≥ Cψ

∫
Rn

∣∣ f (t)
∣∣2dt.

This completes the proof of Theorem 7.

4. Conclusions

In the present article, we introduced the notion of a kernel-based non-separable linear
canonical wavelet transform in L2(Rn) for obtaining an efficient time-frequency repre-
sentation of higher-dimensional non-transient signals that has more degrees of freedom.
Besides studying all the fundamental properties, such as Rayleigh’s theorem, inversion
formula, and range theorem, we have also formulated several uncertainty inequalities for
the proposed transform containing Heisenberg’s, logarithmic, and Nazarov’s inequalities
in the non-separable linear canonical domain.
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1. Significance Statement

P.S. Laplace (1749–1827) introduced the Laplace transform as part of their famous
study of probability theory and celestial mechanics [1]. R.H Mellin (1854–1933) first gave
a systematic formulation of the Mellin transformation and its inverse [2]. He used their
transform to develop applications of the theory of special functions to the solution of
hypergeometric differential equations.

The double Laplace transform is studied in the work of Debnath [3] to solve initial and
boundary value problems in applied mathematics, and mathematical physics. The double
Laplace transform has been used to study European vulnerable options under constant as
well as stochastic (the Hull–White) interest rates [4].

In this work, we derive a double integral whose kernel involves generalized expo-
nential, logarithmic and polynomial functions. The form of this kernel can be viewed as
a double Laplace transform of logarithmic and polynomial functions when the powers
of the variable x in the exponential function is equal to one. On the other hand, since a
polynomial is involved in this kernel, we can also consider this double integral as a double
Mellin transform of the logarithm and exponential functions when c = e = 1.

These integral types are also used to derive geometric probability constants by calcu-
lating the expected Euclidean distance δ(n) to the center of an n-dimensional cube [5], and
have some similarities with the generalized hyperterminants in globally valid remainder
terms for asymptotic expansions about saddles and contour endpoints of arbitrary order
degeneracy derived from the method of steepest descents [6].

2. Introduction

In this paper, we derive the double integral given by∫ ∞

0

∫ ∞

0
tcm−1x−em+e−1e−btc−dxe

logk(atcx−e)dxdt (1)

where the parameters k, a, b, d, m ∈ C, Re(c) > 0, Re(e) > 0. The derivations follow the
method used by us in [7]. This method involves using a form of the generalized Cauchy’s
integral formula given by

yk

Γ(k + 1)
=

1
2πi

∫
C

ewy

wk+1 dw. (2)

Symmetry 2021, 13, 1983. https://doi.org/10.3390/sym13111983 https://www.mdpi.com/journal/symmetry37
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where C is in general an open contour in the complex plane, which has the same value at
the end points of the contour. We then multiply both sides by a function of x and t, then
take a definite double integral of both sides. This yields a definite integral in terms of a
contour integral. Then, we multiply both sides of Equation (2) by another function of y
and take the infinite sums of both sides such that the contour integral of both equations are
the same.

3. Definite Integral of the Contour Integral

We use the method shown in [7]. The variable of integration in the contour integral is
α = w + m. The cut and contour are in the first quadrant of the complex α-plane. The cut
approaches the origin from the interior of the first quadrant and the contour goes round
the origin with zero radius and is on opposite sides of the cut. Using a generalization
of Cauchy’s integral formula, we replace equations by replacing y by logk(atcx−e) and
multiplying by tcm−1xe(−m)+e−1e−btc−dxe

then taking the definite integral with respect
x ∈ [0, ∞) and t ∈ [0, ∞) to obtain

1
Γ(k+1)

∫ ∞
0

∫ ∞
0 tcm−1x−em+e−1e−btc−dxe

logk(atcx−e)dxdt

= 1
2πi

∫ ∞
0

∫ ∞
0

∫
C aww−k−1tc(m+w)−1xe(−(m+w))+e−1e−btc−dxe

dwdxdt

= 1
2πi

∫
C

∫ ∞
0

∫ ∞
0 aww−k−1tc(m+w)−1xe(−(m+w))+e−1e−btc−dxe

dxdtdw

= 1
2πi

∫
C

πaww−k−1b−m−wdm+w−1 csc(π(m+w))
ce dw

(3)

from Equation (3.381.10) in [8], where Re(w + m) > 0, Re(c) > 0, Re(e) > 0, Re(b) >
0, Re(d) > 0, Re(m) > 0 and using the reflection formula for the Gamma function (25.4.1)
in [9]. We are able to switch the order of integration over α, x and t using Fubini’s theorem
since the integrand is of bounded measure over the space C× [0, ∞)× [0, ∞).

4. The Hurwitz–Lerch Zeta Function and Infinite Sum of the Contour Integral

4.1. The Hurwitz–Lerch Zeta Function

The Hurwitz–Lerch zeta function, shown in Section (25.14) in [9–11] has a series
representation given by

Φ(z, s, v) =
∞

∑
n=0

(v + n)−szn (4)

where |z| < 1, vs. �= 0,−1, .. and is continued analytically by its integral representation
given by

Φ(z, s, v) =
1

Γ(s)

∫ ∞

0

ts−1e−vt

1− ze−t dt =
1

Γ(s)

∫ ∞

0

ts−1e−(v−1)t

et − z
dt (5)

where Re(v) > 0, and either |z| ≤ 1, z �= 1, Re(s) > 0, or z = 1, Re(s) > 1.

4.2. Infinite Sum of the Contour Integral

Using Equation (2) and replacing y by log(a) − log(b) + log(d) + iπ(2y + 1) then
multiplying both sides by

− 2iπb−mdm−1eiπm(2y+1)

ce
(6)

then taking the infinite sum over y ∈ [0, ∞) and simplifying in terms of the Hurwitz–Lerch
zeta function to obtain
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−
(2iπ)k+1eiπmb−mdm−1Φ

(
e2imπ ,−k,−i log(a)+i log(b)−i log(d)+π

2π

)
ceΓ(k+1)

= − 1
2πi ∑∞

y=0
∫

C
1
ce 2iπb−mdm−1w−k−1 exp(w(log(a)− log(b) + log(d))

+iπ(2y + 1)(m + w))dw

= − 1
2πi

∫
C ∑∞

y=0
1
ce 2iπb−mdm−1w−k−1 exp(w(log(a)− log(b) + log(d))

+iπ(2y + 1)(m + w))dw

= 1
2πi

∫
C

πaww−k−1b−m−wdm+w−1 csc(π(m+w))
ce dw

(7)

from Equation (1.232.3) in [8], where Im(w + m) > 0 in order for the sum to converge.

5. Definite Integral in Terms of the Hurwitz–Lerch Zeta Function

Theorem 1. For all k, a, b, d, m ∈ C, Re(c) > 0, Re(e) > 0,∫ ∞
0

∫ ∞
0 tcm−1x−em+e−1e−btc−dxe

logk(atcx−e)dxdt

= − 1
ce (2iπ)k+1eiπmb−mdm−1Φ

(
e2imπ ,−k, −i log(a)+i log(b)−i log(d)+π

2π

) (8)

Proof. Observe the right-hand side of Equations (3) and (7) are equal so we may equate
the left-hand sides and simplify the factorial to yield the stated result.

Lemma 1. ∫ ∞
0

∫ ∞
0 t

c
2−1x

e
2−1e−btc−dxe

logk(−tcx−e)dxdt

= − 1√
bc
√

de
ik+2(2π)k+1

(
2kζ

(
−k, i log(b)−i log(d)+2π

4π

)
−2kζ

(
−k, 1

2

(
i log(b)−i log(d)+2π

2π + 1
))) (9)

Proof. Use Equation (8) and set m = 1/2, a = −1 and simplify using entry (4) in the table
below (64:12:7) in [12].

6. Special Cases

In this section, we evaluate Equation (8) for various values of the parameters in terms
of special functions and fundamental constants. In this section, we use the following
functions and fundamental constants; Euler’s constant γ, Catalan’s constant C, Glaisher’s
constant A, Aprey’s constant ζ(3), Hurwitz zeta function ζ(s, a), hypergeometric function
2F1(a, b; c; z), Polylogarithm function Lin(z) and Riemann zeta function ζ(s).

Example 1.

∫ ∞

0

∫ ∞

0
tcm−1x−em+e−1e−btc−dxe

dxdt =
πb−mdm−1 csc(πm)

ce
(10)

Proof. Use Equation (8) and set k = 0 and simplify using entry (2) in the table below
(64:12:7) in [12].
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Example 2. ∫ ∞
0

∫ ∞
0

e−2(t2+x3)(t2px2−3p−t2mx2−3m)
t log

(
t2
x3

) dxdt

= 1
6

(
tanh−1(eiπm)

− tanh−1(eiπp)) (11)

Proof. Use Equation (8) and form a second equation by replacing m → p and taking their
difference and setting k = −1, a = 1, b = c = d = 2, e = 3 and simplifying using entry (3)
in the table below (64:12:7) in [12].

Example 3.∫ ∞
0

∫ ∞
0
√

xe−2t2−3x3
log

(
log

(
− t2

x3

))
dxdt

= π
12
√

6

(
4log Γ

(
− i log( 3

2 )
4π

)
− 4log Γ

(
− 1

2 −
i log( 3

2 )
4π

)
+ 3iπ + log(16)

+2 log(π) + 4 log
(
log

( 3
2
))

+ log
(

1

(log( 3
2 )−2iπ)

4

)) (12)

Proof. Use Equation (9) and take the first partial derivative with respect to k and set
k = 0, b = c = 2, d = e = 3 and simplify using Equation (25.11.18) in [9].

Example 4. ∫ ∞

0

∫ ∞

0

√
xe−5x3−it2

log2
(

it2

5x3

) dxdt =
(−1)3/4C

3
√

5π
(13)

Proof. Use Equation (9) and set k = −2, a = i/5, b = i, c = 2, d = 5, e = 3 and simplify
using Equation (3) in [13].

Example 5.

∫ ∞

0

∫ ∞

0

t
1
6 (
√

2−6)x
1
4 (
√

2−4)e−t
1√
2 −x

1√
2
(

x
1

6
√

2 − t
1

6
√

2

)
log

(
t

1√
2 x−

1√
2

) dxdt = − log(3) (14)

Proof. Use Equation (8) and form a second equation by replacing m → p and taking their
difference and setting k = −1, a = 1, b = 1, d = 1, m = 1/2, p = 1/3, c = 1/

√
2, e = 1/

√
2

and simplify using Equation (7) in [14].

Example 6.

∫ ∞
0

∫ ∞
0

e−t
1√
2 −x

1√
2 x

− m+p−1√
2

−1
(

x
m√

2 t
p√
2 −t

m√
2 x

p√
2

)

t log

(
t

1√
2 x

− 1√
2

) dxdt

= 2 log
(
cot

(
πm

2
)

tan
(πp

2
))

(15)

Proof. Use Equation (8) and form a second equation by replacing m → p and taking their
difference and setting k = −1, a = 1, b = 1, d = 1, c = 1/

√
2, e = 1/

√
2 and simplifying

using entry (1) in the table below (64:12:7) in [12].
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Example 7.

∫ ∞

0

∫ ∞

0

t
1
8 (
√

2−8)x
1
8 (
√

2−8)e−t
1√
2 −x

1√
2
(

t
1

2
√

2 − x
1

2
√

2

)
log

(
t

1√
2 x−

1√
2

) dxdt = 4 sinh−1(1) (16)

Proof. Use Equation (15) and set m =
2 cot−1(1+

√
2)

π , p =
2 tan−1(1+

√
2)

π and simplify. Note
this is a double integral representation for the Universal Parabolic constant, P, given in [15].
This integral has similarities with the generalized hyperterminants in [6].

Example 8. ∫ ∞

0

∫ ∞

0

x3/2e−t2−x5

4 log2
(

t2

x5

)
+ π2

dxdt =
π + log

(
3− 2

√
2
)

20
√

2π
(17)

and ∫ ∞

0

∫ ∞

0

x3/2e−t2−x5
log

(
t2

x5

)
log2

(
t2

x5

)
+ π2

4

dxdt = 0 (18)

Proof. Use Equation (8) and set k = −1, a = i, c = 2, e = 5, b = 1, d = 1, m = 1/2 and
simplify using entry (1) in table below (64:12:7) in [12]; then, rationalize the denominator
and equate real and imaginary parts.

Example 9. ∫ ∞

0

∫ ∞

0

√
tx3/2e−t3−x5

(
log2

(
t3

x5

)
− π2

)
(

log2
(

t3

x5

)
+ π2

)2 dxdt = − π

360
(19)

and ∫ ∞

0

∫ ∞

0

√
tx3/2e−t3−x5

log
(

t3

x5

)
(

log2
(

t3

x5

)
+ π2

)2 dxdt = 0 (20)

Proof. Use Equation (8) and set k = −1, a = −1, c = 3, e = 5, b = 1, d = 1, m = 1/2 and
simplify using entry (1) in table below (64:12:7) in [12]; then, rationalize the denominator
and equate real and imaginary parts.

Example 10. ∫ ∞
0

∫ ∞
0
√

xe−5t2−5x3
log

(
− t2

x3

)
log

(
log

(
− t2

x3

))
dxdt

= 1
30 iπ2 log(2iπ)− 2

15 iπ2 log
(

A3
3√2 4√e

) (21)

Proof. Use Equation (8) and take the first partial derivative with respect to k and set
m = 1/2, k = 1, b = d = 5, a = −1, c = 2, e = 3 and simplify using Equation (8) in [14].

Example 11.

∫ ∞

0

∫ ∞

0

√
xe−5t2−5x3

log2
(
− t2

x3

)
log

(
log

(
− t2

x3

))
dxdt =

7πζ(3)
15

(22)

Proof. Use Equation (8) and take the first partial derivative with respect to k and set
m = 1/2, k = 2, b = d = 5, a = −1, c = 2, e = 3 and simplify using Equation (9) in [14].
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Example 12.

∫ ∞

0

∫ ∞

0

√
te−t3−x2√
log

(
it3

x2

)dxdt =
1
6
(−1)3/4√π

(
ζ

(
1
2

,
7
8

)
− ζ

(
1
2

,
3
8

))
(23)

Proof. Use Equation (8) and set m = 1/2, k = −1/2, b = 1, a = i, c = 3, d = 1, e = 2 and
simplify using entry (4) in the table below (64:12:7) in [12].

Example 13.∫ ∞
0

∫ ∞
0

√
te−x2+(−1−i)t3

log
i
2

(
it3

x2

)
dxdt

= 1
3 (−1)

7
8+

i
4 2−

1
4+iπ1+ i

2

(
ζ
(
− i

2 , 13
16 +

i log(2)
8π

)
− ζ

(
− i

2 , 5
16 +

i log(2)
8π

)) (24)

Proof. Use Equation (8) and set m = 1/2, k = −i/2, b = 1 + i, a = i, c = 3, d = 1, e = 2
and simplify using entry (4) in the table below (64:12:7) in [12].

Example 14.

∫ ∞

0

∫ ∞

0

te−t3−x2

3
√

x log
(

it3

x2

)dxdt = −2
9

(
−1

2
+

i
√

3
2

)
2F1

(
3
4

, 1;
7
4

;−1
2
− i

√
3

2

)
(25)

Proof. Use Equation (8) and set m = 2/3, k = −1, b = 1, a = i, c = 3, d = 1, e = 2 and
simplify using Equation (9.559) in [8].

Example 15. ∫ ∞
0

∫ ∞
0 t3m−1x1−2me−d(t3+x2) logk

(
− t3

x2

)
dxdt =

− i(2i)kπk+1e−iπmLi−k(e2imπ)
3d

(26)

Proof. Use Equation (8) and set b = d, a = −1, c = 3, e = 2 and simplify using Equation
(25.14.3) in [9].

Example 16.

∫ ∞

0

∫ ∞

0

√
te−d(t3+x2) logk

(
− t3

x2

)
dxdt = −

(2i)k
(

2k+1 − 1
)

πk+1ζ(−k)

3d
(27)

Proof. Use Equation (26) and set m = 1/2 and simplify using

Example 17. ∫ ∞

0

∫ ∞

0

√
te−t3−x2

(
π2 − 3 log2

(
t3

x2

))
(

log2
(

t3

x2

)
+ π2

)3 dxdt =
ζ(3)
32π3 (28)

and ∫ ∞

0

∫ ∞

0

√
te−t3−x2

log
(

t3

x2

)(
log2

(
t3

x2

)
− 3π2

)
(

log2
(

t3

x2

)
+ π2

)3 dxdt = 0 (29)

Proof. Use Equation (27) and set k = −3, d = 1, rationalize the denominator and compare
real and imaginary parts and simplify.
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Example 18.

∫ ∞

0

∫ ∞

0

√
te−t3−x2

(
5 log4

(
t3

x2

)
− 10π2 log2

(
t3

x2

)
+ π4

)
(

log2
(

t3

x2

)
+ π2

)5 dxdt =
5ζ(5)
512π5 (30)

and ∫ ∞

0

∫ ∞

0

√
te−t3−x2

log
(

t3

x2

)(
log4

(
t3

x2

)
− 10π2 log2

(
t3

x2

)
+ 5π4

)
(

log2
(

t3

x2

)
+ π2

)5 dxdt = 0 (31)

Proof. Use Equation (27) and set k = −5, d = 1, rationalize the denominator and compare
real and imaginary parts and simplify.

Example 19.

∫ ∞

0

∫ ∞

0

√
te−t3−x2

√
log

(
− t3

x2

)
dxdt =

(
1
12

+
i

12

)(
2
√

2− 1
)√

πζ

(
3
2

)
(32)

Proof. Use Equation (27) and set k = 1/2, d = 1 and simplify.

Example 20.

∫ ∞
0

∫ ∞
0

√
te−t3−x2

log
(

log
(
− t3

x2

))
log

(
− t3

x2

) dxdt =

1
12 (π log(2) + i(γ log(4)− log(2)(log(8) + 2 log(π))))

(33)

Proof. Use Equation (27) to take the first partial derivative with respect to k and apply
l’Hopital’s rule as k → −1 and simplify using Equation (37) in [16].

7. Discussion

In this work, we derived a double integral in terms of the Hurwitz–Lerch zeta function.
We then used this integral to derive special cases in terms of other special functions and
fundamental constants. We were also able to derive double integral representations for
geometric constants [15] and double integrals associated with with generalized hyperter-
minants in [6]. We will be using our method to derive more double integrals in terms of
special functions. We checked our results numerically using Mathematica by Wolfram.
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Abstract: In this work, the authors use their contour integral method to derive an application
of the Fourier integral theorem given by

∫ ∞
−∞

∫ ∞
−∞ emx−my−ex−ey+y(log(a) + x − y)kdxdy in terms

of the Lerch function. This integral formula is then used to derive closed solutions in terms of
fundamental constants and special functions. Almost all Lerch functions have an asymmetrical zero
distribution. There are some useful results relating double integrals of certain kinds of functions to
ordinary integrals for which we know no general reference. Thus, a table of integral pairs is given for
interested readers. All of the results in this work are new.

Keywords: Fourier integral theorem; double integral; Lerch function; contour integral; exponential
function

1. Statement of Significance

In 1906, Niels Nielsen [1] produced his famous book on the Gamma function. In this
work, the authors use their contour integral method and apply it to an interesting integral
in the book of Nielsen [1] to yield a double integral and express its closed form in terms of
the Lerch function. This derived integral formula is then used to provide formal derivations
and new formulae in the form of a summary table of integrals, Table 1. The Lerch function
being a special function has the fundamental property of analytic continuation, which
enables enables the expansion of the range of evaluation for the parameters involved in the
definite integral.

Double integrals over a real line are used in very interesting areas in mathematics.
Some areas of high interest are namely in the use of the Fourier integral theorem in Elec-
tromagnetic Theory of Propagation, Interference, and Diffraction of Light [2], evaluation
of two-dimensional Gaussian integrals in the constructions of representation theory and
related topics of differential geometry and analysis [3], and the implementation of Cahn’s
scheme for simulating the morphology of isotropic spinodal decomposition [4].

2. Introduction

In 1882, Joseph Fourier (1768–1830) discovered a double integral representation [5]
of a non-periodic function f (x) for all real x, which is universally known as the Fourier
Integral Theorem in the form

f (x) =
1

2π

∫ ∞

−∞
eikx

(∫ ∞

−∞
f (α)e−ikαdα

)
dk (1)

Throughout the nineteenth and twentieth centuries, mathematicians and mathematical
physicists recognized the significance of this theorem. It is regarded as one of the most
fundamental representation theorems of modern mathematical analysis according to Lord
Kelvin (1824–1907) and Peter Guthrie Tait (1831–1901).
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In this work, we will derive the Fourier integral theorem applied to a function in-
volving the product of the exponential of an exponential function and a polynomial and
express this integral in terms of the Lerch function. The application of the Fourier integral
theorem is in the form of a double integral over a real line. The definite integral derived in
this manuscript is given by∫ ∞

−∞

∫ ∞

−∞
emx−my−ex−ey+y(log(a) + x − y)kdxdy (2)

where the parameters k and a are general complex numbers and 0 < Re(m) < 1. In the
book of Titchmarsh [6], examples on the Fourier integral theorem are applied to a vast
number of functions and real-world applications are showcased. This work is important
because the authors were unable to find similar derivations in current literature. The
derivation of the definite integral follows the method used by us in [7], which involves
Cauchy’s integral formula. The generalized Cauchy’s integral formula is given by

yk

Γ(k + 1)
=

1
2πi

∫
C

ewy

wk+1 dw. (3)

where C is, in general, an open contour in the complex plane, where the bilinear concomi-
tant has the same value at the end points of the contour. This method involves using a
form of Equation (3), then multiplying both sides by a function, and then taking a definite
integral of both sides. This yields a definite integral in terms of a contour integral. A second
contour integral is derived by multiplying Equation (3) by a function and performing some
substitutions so that the contour integrals are the same.

3. Definite Integral of the Contour Integral

We use the method in [7]. The variable of integration in the contour integral is
t = m + w. The cut and contour are in the second quadrant of the complex t-plane. The
cut approaches the origin from the interior of the second quadrant and the contour goes
around the origin with zero radius and is on opposite sides of the cut. Using Equation (3),
we replace y by x − y + log(a) and then multiply it by emx−my−ex−ey+y. Next, we take the
double infinite integral over x ∈ (−∞, ∞) and y ∈ (−∞, ∞) to obtain

1
Γ(k + 1)

∫ ∞

−∞

∫ ∞

−∞
emx−my−ex−ey+y(log(a) + x − y)kdxdy

=
1

2πi

∫ ∞

−∞

∫ ∞

−∞

∫
C

aww−k−1emx−my+w(x−y)−ex−ey+ydwdxdy

=
1

2πi

∫
C

∫ ∞

−∞

∫ ∞

−∞
aww−k−1emx−my+w(x−y)−ex−ey+ydxdydw

=
1

2πi

∫
C

πaww−k−1 csc(π(m + w))dw (4)

from Equation (3.328) in [8], where −1 < Re(w + m) < 0, and using the reflection formula
for the Gamma function. We are able to switch the order of integration over t, x, and y using
Fubini’s theorem since the integrand is of bounded measure over the space C ×R×R.

4. The Lerch Function

We use Equation (1.11.3) in [9], where Φ(z, s, v) is the Lerch function, which is a
generalization of the Hurwitz zeta ζ(s, v) and Polylogarithm functions Lin(z). The Lerch
function has a series representation given by

Φ(z, s, v) =
∞

∑
n=0

(v + n)−szn (5)

where |z| < 1, v �= 0,−1,−2,−3, .., and is continued analytically by its integral representa-
tion given by
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Φ(z, s, v) =
1

Γ(s)

∫ ∞

0

ts−1e−vt

1− ze−t dt =
1

Γ(s)

∫ ∞

0

ts−1e−(v−1)t

et − z
dt (6)

where Re(v) > 0 and either |z| ≤ 1, z �= 1, Re(s) > 0, or z = 1, Re(s) > 1.

5. Infinite Sum of the Contour Integral

In this section, we again use Cauchy’s integral formula from Equation (3) and take
the infinite sum to derive equivalent sum representations for the contour integrals. We
proceed by using Equation (3), replacing y by log(a) + iπ(2y + 1), multiplying both sides
by −2iπeiπm(2y+1), and simplifying to obtain

− 2iπe
1
2 iπ(k+4my+2m)(−i log(a) + 2πy + π)k

Γ(k + 1)

= − 1
2πi

∫
C

2iπaww−k−1eiπ(2y+1)(m+w)dw (7)

Next, we take the infinite over y ∈ [0, ∞) and simplify it using the Lerch function to obtain

−
(2iπ)k+1eiπmΦ

(
e2imπ ,−k, π−i log(a)

2π

)
Γ(k + 1)

= − 1
2πi

∞

∑
y=0

∫
C

2iπaww−k−1eiπ(2y+1)(m+w)dw

= − 1
2πi

∫
C

∞

∑
y=0

2iπaww−k−1eiπ(2y+1)(m+w)dw

=
1

2πi

∫
C

πaww−k−1 csc(π(m + w))dw (8)

from (1.232.3) in [8] and Im(m + w) > 0 for convergence of the sum.

6. Definite Integral in Terms of the Lerch Function

Theorem 1. For all k, a ∈ C, 0 < Re(m) < 1,

∫ ∞

−∞

∫ ∞

−∞
emx−my−ex−ey+y(log(a) + x − y)kdxdy

= (2iπ)k+1
(
−eiπm

)
Φ
(

e2imπ ,−k,
π − i log(a)

2π

)
(9)

Proof. Since the right-hand sides of Equations (4) and (8) are equal, we can equate the
left-hand sides and simplify the factorial to achieve the stated result.

Main Results and Table of Integrals

In this section, we evaluate Equation (9) for various values of the parameters in terms
of special functions and fundamental constants and create a table of integrals. Some of
the fundamental constants evaluated are Aprey’s constant ζ(3) from Section 1.6 in [10];
Catalan’s constant C, Equation (9.73) in [8]; Euler’s constant γ, Equation (9.73) in [8]; and
the Glaisher–Kinkelin constant A, Section 2.15 in [10]. Some special functions used are
the polylogarithm function Lin(z) from Equation (64:12:2) in [11] and the hypergeometric
function 2F1(a, b; c; z) from Equation (9.559) in [8].
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7. Derivation of the Degenerate Case

7.1. Derivation of Entry (1)

Lemma 1. For 0 < Re(m) < 1,∫ ∞

−∞

∫ ∞

−∞
emx−my−ex−ey+ydxdy = π csc(πm) (10)

Proof. Use Equation (9), set k = 0, and simplify using entry (2) from the Table below
(64:12:7) in [11].

7.2. Derivation of Entry (2)

Lemma 2. ∫ ∞

−∞

∫ ∞

−∞

e
1
2 (−2(ex+ey)+x+y)

(x − y)2 + π2 dxdy =
log(2)

π
(11)

and ∫ ∞

−∞

∫ ∞

−∞

e
1
2 (−2(ex+ey)+x+y)(x − y)

(x − y)2 + π2 dxdy = 0 (12)

Proof. Use Equation (9), set k = −1, a = −1, m = 1/2, rationalize the denominator,
compare the real and imaginary parts, and simplify using entry (3) from the table below
(64:12:7) in [11].

7.3. Derivation of Entry (3)

Theorem 2. For all k, a ∈ C, 0 < Re(m) < 1, 0 < Re(n) < 1,

∫ ∞

−∞

∫ ∞

−∞
ey(−(m+n−1))−ex−ey(

emy+nx − emx+ny)(log(a) + x − y)kdxdy

= (2iπ)k+1
(

eiπmΦ
(

e2imπ ,−k,
π − i log(a)

2π

)
− eiπnΦ

(
e2inπ ,−k,

π − i log(a)
2π

))
(13)

Proof. Use Equation (9) to form a second equation by replacing m by n, and take their
difference.

7.4. Derivation of Entry (4)

Lemma 3. For all 0 < Re(m) < 1, 0 < Re(n) < 1,

∫ ∞

−∞

∫ ∞

−∞

ey(−(m+n−1))−ex−ey
(emy+nx − emx+ny)

x − y
dxdy = log

(
cot

(πm
2

)
tan

(πn
2

))
(14)

Proof. Use Equation (13), set k = −1, a = 1, and simplify using entry (5) from the table
below (64:12:7).

7.5. Derivation of Entry (5)

Theorem 3. For k ∈ C, 0 < Re(m) < 1,

∫ ∞

−∞

∫ ∞

−∞
(x − y + iπ)kemx−my−ex−ey+ydxdy = (2iπ)k+1

(
−e−iπm

)
Li−k

(
e2imπ

)
(15)

Proof. Use Equation (9), set a = −1, and simplify using Equation (64:12:2) in [11].
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7.6. Derivation of Entry (6)

Lemma 4. For a ∈ C,

∫ ∞

−∞

∫ ∞

−∞
e

1
2 (−2(ex+ey)+x+y) log(ia + x − y)dxdy = π log

(
4iπΓ

( a
4π + 3

4
)2

Γ
( a+π

4π

)2

)
(16)

Proof. Use Equation (9), and set m = 1/2. Next, take the first partial derivative with
respect to k, set k = 0, and simplify using entry (4) from the table below (64:12:7) and from
Equation (64:10:2) in [11].

7.7. Derivation of Entry (7)

Lemma 5.

∫ ∞

−∞

∫ ∞

−∞
e

1
2 (−2(ex+ey)+x+y) log

(
x − y − 1

2

)
dxdy = π log

⎛⎜⎝4iπΓ
(

3
4 + i

8π

)2

Γ
(

1
4 + i

8π

)2

⎞⎟⎠ (17)

Proof. Use Equation (16), set a = i/2, and simplify.

7.8. Derivation of Entry (8)

Lemma 6.∫ ∞

−∞

∫ ∞

−∞
e

1
6 (−6(ex+ey)+2x+3y)

(
ey/6 − ex/6

)
log(x − y)dxdy

= 2(−1)5/6πΦ′
(
(−1)2/3, 0,

1
2

)
− iπ2

2
+

iπ2
√

3
+

π log(4)√
3

− π log(π) +
2π log(π)√

3
+ π log

⎛⎜⎝ 4Γ
(

1
4

)2

Γ
(
− 1

4

)2

⎞⎟⎠ (18)

Proof. Use Equation (13), set m = 1/2, n = 1/2, a = 1, take the first partial derivative
with respect to k, set k = 0, and simplify using entry (4) from the table below (64:12:7)
in [11].

7.9. Derivation of Entry (9)

Lemma 7. ∫ ∞

−∞

∫ ∞

−∞

e
1
6 (−6(ex+ey)+2x+3y)

(
ey/6 − ex/6

)
x − y

dxdy = − log(3)
2

(19)

Proof. Use Equation (13), set k = −1, a = 1, m = 1/2, n = 1/3, and simplify using entry
(1) from the table below (64:12:7) in [11].

7.10. Derivation of Entry (10)
Lemma 8.∫ ∞

−∞

∫ ∞

−∞
e

1
6 (−6(ex+ey)+2x+3y)

(
ey/6 − ex/6

)
(x − y) log(x − y)dxdy

=
1
3

π

(
(−1)5/6π

(
12iΦ′

(
1
2

i
(√

3 + i
)

,−1,
1
2

)
+

(√
3 + i

)
log(2π)

)
+ 12iC − iπ2

)
(20)

Proof. Use Equation (13), set a = 1, m = 1/2, n = 1/3, and take the first partial derivative
with respect to k, set k = 1, and simplify using Equation (21) in [12].
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7.11. Derivation of Entry (11)

Lemma 9.∫ ∞

−∞

∫ ∞

−∞
e

1
6 (−6(ex+ey)+2x+3y)

(
ex/6 − ey/6

)
(π − i(x − y))2 log(x − y + iπ)dxdy

=
8π3Φ′

(
(−1)2/3,−2, 1

)
√

3

−
8(−1)2/3π3Φ′

(
(−1)2/3,−2, 1

)
√

3

− 14πζ(3) +
8π3 log(2iπ)

3
√

3
− 8 3

√
−1π3 log(2iπ)

3
√

3
(21)

Proof. Use Equation (13), set a = −1, m = 1/2, n = 1/3, and take the first partial derivative
with respect to k, then set k = 2, and simplify using Equation (19) in [12].

7.12. Derivation of Entry (12)

Lemma 10.∫ ∞

−∞

∫ ∞

−∞
e

1
6 (−6(ex+ey)+2x+3y)

(
ey/6 − ex/6

)
(x − y + iπ) log(x − y + iπ)dxdy

= 4(−1)2/3π2Li′−1

(
(−1)2/3

)
+ 12iπ2 log(A)

− iπ2 − 1
3

iπ2 log(16)−
(

2
3
+ i

)
π2 log(2iπ) +

2iπ2 log(2iπ)√
3

(22)

Proof. Use Equation (13), set a = −1, m = 1/2, n = 1/3, take the first partial derivative
with respect to k, then set k = 1, and simplify using Equation (18) in [12].

7.13. Derivation of Entry (13)

Lemma 11. ∫ ∞

−∞

∫ ∞

−∞
e

1
8 (−8(ex+ey)+3x+5y)(x − y) sinh

(
x − y

8

)
dxdy =

π2
√

2
(23)

Proof. Use Equation (13), set k = 1, a = 1, m = 1/4, n = 1/2, and simplify using entry (1)
from the table below (64:12:7) in [11].

7.14. Derivation of Entry (14)

Lemma 12. ∫ ∞

−∞

∫ ∞

−∞
e

1
8 (−8(ex+ey)+3x+5y) sinh

(
x − y

8

)
dxdy = −1

2

(√
2− 1

)
π (24)

Proof. Use Equation (13), set k = 0, a = 1, m = 1/4, n = 1/2, and simplify using entry (2)
from the table below (64:12:7) in [11].
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7.15. Derivation of Entry (15)

Lemma 13.

∫ ∞

−∞

∫ ∞

−∞

e
1
6 (−6(ex+ey)+2x+3y)

(
ex/6 − ey/6

)
log(x − y)

x − y
dxdy

= − 3
√
−1Φ′

(
(−1)2/3, 1,

1
2

)
+

iγπ

2
+

1
4

log(9) log(2π) +
1
4

iπ log

⎛⎜⎝ 192π6

Γ
(

1
4

)8

⎞⎟⎠ (25)

Proof. Use Equation (13), set a = 1, n = 1/2, m = 1/3, take the first partial derivative with
respect to k, then set k = −1, and simplify using entry (1) from the table below (64:12:7)
in [11].

7.16. Derivation of Entry (16)

Theorem 4. For k ∈ C,∫ ∞

−∞

∫ ∞

−∞
e

1
2 (−2(ex+ey)+x+y)(x − y + iπ)kdxdy = −ik

(
2k+1 − 1

)
(2π)k+1ζ(−k) (26)

Proof. Use Equation (9), set a = −1, m = 1/2, and simplify using entry (4) from the table
below (64:12:7) and entry (2) from the table below (64:7) in [11].

7.17. Derivation of Entry (17)

Lemma 14. ∫ ∞

−∞

∫ ∞

−∞

e
1
6 (−6(ex+ey)+2x+3y)

(
ex/6 − ey/6

)
x − y

dxdy =
log(3)

2
(27)

Proof. Use Equation (13), set k = −1, a = 1, n = 1/2, m = 1/3, and simplify using entry
(1) from the table below (64:12:7) in [11].

7.18. Derivation of Entry (18)

Theorem 5. For 0 < Re(m) < 1, 0 < Re(n) < 1,

∫ ∞

−∞

∫ ∞

−∞

ey(−(m+n−1))−ex−ey
(emy+nx − emx+ny)

2x − 2y + iπ
dxdy

=
2
3

(
eiπm

2F1

(
3
4

, 1;
7
4

; e2imπ

)
− eiπn

2F1

(
3
4

, 1;
7
4

; e2inπ

))
(28)

Proof. Use Equation (13), set k = −1, a = i, and simplify using Equation (9.559) in [8].

7.19. Derivation of Entry (19)

Theorem 6. For 0 < Re(m) < 1, 0 < Re(n) < 1,

∫ ∞

−∞

∫ ∞

−∞

ey(−(m+n−1))−ex−ey
(emy+nx − emx+ny)

x − y + iπ
dxdy

= e−iπn log
(

1− e2iπn
)
− e−iπm log

(
1− e2iπm

)
(29)

Proof. Use Equation (13), set k = −1, a = −1, and simplify using Equation (9.559)
in [8].
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7.20. Derivation of Entry (20)

Lemma 15. ∫ ∞

−∞

∫ ∞

−∞
e

1
2 (−2(ex+ey)+x+y)(x − y) log(x − y)dxdy = −4iπC (30)

Proof. Use Equation (9), set m = 1/2, and simplify using entry (4) below Table (64:12:7)
in [11]. Then, take the first partial derivative with respect to k, set k = 1, a = 1, and simplify
using Equation (9.73) in [8].

7.21. Derivation of Entry (21)

Lemma 16.∫ ∞

−∞

∫ ∞

−∞
e

1
2 (−2(ex+ey)+x+y)(x − y + iπ) log(x − y + iπ)dxdy

=
1
6

π2
(
−3π + 2i log

(
128e3π3

A36

))
(31)

Proof. Use Equation (9), set m = 1/2, and simplify using entry (4) below Table (64:12:7)
in [11]. Then, take the first partial derivative with respect to k, set k = 1, a = −1, and
simplify using 2.15 in [10].

7.22. Derivation of Entry (22)
Lemma 17.

∫ ∞

−∞

∫ ∞

−∞

e
1
2 (−2(ex+ey)+x+y) log(x − y + iπ)

x − y + iπ
dxdy =

1
2

log(2)
(

2iγ + π − i log
(

8π2
))

(32)

Proof. Use Equation (9), set m = 1/2, and simplify using entry (4) below Table (64:12:7)
in [11]. Then, take the first partial derivative with respect to k; set a = −1; apply L’Hopital’s
rule to the right-hand side as k → −1; and simplify using Equations (1:7:7), (44:7:7), and
(64:4:1) in [11].

7.23. Derivation of Entry (23)

Lemma 18. ∫ ∞

−∞

∫ ∞

−∞
e

1
2 (−2(ex+ey)+x+y) log(x − y + iπ)dxdy = π log(4) +

iπ2

2
(33)

Proof. Use Equation (9) set m = 1/2 and simplify using entry (4) below Table (64:12:7)
in [11]. Then, take the first partial derivative with respect to k, set k = 0, a = −1, and
simplify.

7.24. Derivation of Entry (24)

Lemma 19. ∫ ∞

−∞

∫ ∞

−∞

e
x
2−ex−ey+

y
2√

x − y + iπ
dxdy =

(√
2− 1

)
e

3iπ
4
√

2πζ

(
1
2

)
(34)

Proof. Use Equation (9), set k = −1/2, m = 1/2, a = −1, and simplify using Equation
(64:12:1) and entry (2) from the table below (64:7) in [11] and 1.5 in [13].

7.25. Derivation of Entry (25)

Lemma 20.∫ ∞

−∞

∫ ∞

−∞
e

x
2−ex−ey+

y
2
√

x − y + iπdxdy = 2
√

2
(

1− 2
√

2
)

e
iπ
4 π3/2ζ

(
−1

2

)
(35)
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Proof. Use Equation (9), set k = 1/2, m = 1/2, a = −1, and simplify using Equation
(64:12:1) and entry (2) from the table below (64:7) in [11].

7.26. Derivation of Entry (26)

Lemma 21. ∫ ∞

−∞

∫ ∞

−∞

e
1
2 (−2(ex+ey)+x+y)((x − y)2 − π2)

((x − y)2 + π2)
2 dxdy = − π

24
(36)

and ∫ ∞

−∞

∫ ∞

−∞

e
1
2 (−2(ex+ey)+x+y)(x − y)

((x − y)2 + π2)
2 dxdy = 0 (37)

Proof. Use Equation (9), set k = −1, then take the first partial derivative with respect to a,
set a = −1, m = 1/2, rationalize the denominator, compare the real and imaginary parts,
and simplify using entry (3) from the table below (64:12:7) in [11].

7.27. Derivation of Entry (27)

Lemma 22.

∫ ∞

−∞

∫ ∞

−∞

e
1
2 (−2(ex+ey)+x+y)((x − y + 2)(x − y)3 + 6π2(y − x)− π4)

((x − y)2 + π2)
3 dxdy

= − π

24
(38)

and

∫ ∞

−∞

∫ ∞

−∞

πe
1
2 (−2(ex+ey)+x+y)((x − y + 3)(x − y)2 + π2(x − y − 1)

)
((x − y)2 + π2)

3 dxdy

= −3ζ(3)
16π2 (39)

Proof. Use Equation (9), set k = −1, then take the second partial derivative with respect to
a, set a = −1, m = 1/2, rationalize the denominator, compare the real and imaginary parts,
and simplify using entries (1) and (3) from the table below (64:12:7) and entry (2) from the
table below (64:7) in [11].

7.28. Derivation of Entry (28)

Lemma 23. ∫ ∞

−∞

∫ ∞

−∞

e
1
4 (−4(ex+ey)+x+3y)(x − y)

((x − y)2 + π2)
2 dxdy =

π2 − 48C
192

√
2π2

(40)

and ∫ ∞

−∞

∫ ∞

−∞

e
1
4 (−4(ex+ey)+x+3y)((x − y)2 − π2)

((x − y)2 + π2)
2 dxdy = −48C + π2

96
√

2π
(41)

Proof. Use Equation (9), set k = −1, then take the first partial derivative with respect to a,
set a = −1, m = 1/4, rationalize the denominator, compare the real and imaginary parts,
and simplify using entry (3) from the table below (64:12:7) in [11].

8. Summary Table of Results

In this section we will summarize the evaluation of Equation (9) from the previous
section.
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Table 1. Summary Table of Results.

f (x, y)
∫ ∞
−∞

∫ ∞
−∞

f (x, y)dxdy

emx−my−ex−ey+y π csc(πm)

e
1
2 (−2(ex+ey)+x+y)

(x−y)2+π2
log(2)

π

ey(−(m+n−1))−ex−ey
(emy+nx−emx+ny)

x−y log
(
cot

(
πm

2
)

tan
(

πn
2
))

(x − y + iπ)kemx−my−ex−ey+y (2iπ)k+1(−e−iπm)
Li−k

(
e2imπ

)
e

1
2 (−2(ex+ey)+x+y) log(ia + x − y) π log

(
4iπΓ( a

4π + 3
4 )

2

Γ( a+π
4π )

2

)
e

1
2 (−2(ex+ey)+x+y) log

(
x − y − 1

2

)
π log

(
4iπΓ( 3

4+
i

8π )
2

Γ( 1
4+

i
8π )

2

)
e

1
6 (−6(ex+ey)+2x+3y)(ey/6−ex/6)

x−y − log(3)
2

e
1
8 (−8(ex+ey)+3x+5y)(x − y) sinh

(
x−y

8

)
π2√

2

e
1
8 (−8(ex+ey)+3x+5y) sinh

(
x−y

8

)
1
2

(√
2− 1

)
π

e
1
2 (−2(ex+ey)+x+y)(x − y + iπ)k −ik

(
2k+1 − 1

)
(2π)k+1ζ(−k)

e
1
6 (−6(ex+ey)+2x+3y)(ex/6−ey/6)

x−y
log(3)

2

ey(−(m+n−1))−ex−ey
(emy+nx−emx+ny)

2x−2y+iπ
2
3
(
eiπm

2F1
( 3

4 , 1; 7
4 ; e2imπ

)
− eiπn

2F1
( 3

4 , 1; 7
4 ; e2inπ

))
ey(−(m+n−1))−ex−ey

(emy+nx−emx+ny)
x−y+iπ e−iπn log

(
1− e2iπn)− e−iπm log

(
1− e2iπm)

e
1
2 (−2(ex+ey)+x+y)(x − y) log(x − y) −4iπC

e
1
2 (−2(ex+ey)+x+y) log(x−y+iπ)

x−y+iπ
1
2 log(2)

(
2iγ + π − i log

(
8π2))

e
1
2 (−2(ex+ey)+x+y) log(x − y + iπ) π log(4) + iπ2

2

e
x
2 −ex−ey+ y

2√
x−y+iπ

(√
2− 1

)
e

3iπ
4
√

2πζ
(

1
2

)
e

x
2−ex−ey+

y
2
√

x − y + iπ 2
√

2
(

1− 2
√

2
)

e
iπ
4 π3/2ζ

(
− 1

2

)

9. Discussion

In this work, the authors derived a double integral formula in terms of the Lerch func-
tion. This integral formula was then used to derive special cases in terms of fundamental
constants and special functions. A table of integrals featuring some of the integral results
was presented for the benefit of interested readers. We used Wolfram Mathematica to
numerically verify the formulas for various ranges of the parameters for real and imaginary
values. We will use our contour integral method to derive other double integrals and
produce more tables of integrals in future work.
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Abstract: It is a familiar fact that convex and non-convex fuzzy mappings play a critical role in
the study of fuzzy optimization. Due to the behavior of its definition, the idea of convexity plays
a significant role in the subject of inequalities. The concepts of convexity and symmetry have a
tight connection. We may use whatever we learn from one to the other, thanks to the significant
correlation that has developed between both in recent years. Our aim is to consider a new class of
fuzzy mappings (FMs) known as strongly preinvex fuzzy mappings (strongly preinvex-FMs) on the
invex set. These FMs are more general than convex fuzzy mappings (convex-FMs) and preinvex fuzzy
mappings (preinvex-FMs), and when generalized differentiable (briefly, G-differentiable), strongly
preinvex-FMs are strongly invex fuzzy mappings (strongly invex-FMs). Some new relationships
among various concepts of strongly preinvex-FMs are established and verified with the support of
some useful examples. We have also shown that optimality conditions of G-differentiable strongly
preinvex-FMs and the fuzzy functional, which is the sum of G-differentiable preinvex-FMs and
non G-differentiable strongly preinvex-FMs, can be distinguished by strongly fuzzy variational-like
inequalities and strongly fuzzy mixed variational-like inequalities, respectively. In the end, we
have established and verified a strong relationship between the Hermite–Hadamard inequality and
strongly preinvex-FM. Several exceptional cases are also discussed. These inequalities are a very
interesting outcome of our main results and appear to be new ones. The results in this research can
be seen as refinements and improvements to previously published findings.

Keywords: preinvex fuzzy mappings; strongly preinvex fuzzy mappings; strongly invex fuzzy
mappings; strongly fuzzy monotonicity; strongly fuzzy mixed variational-like inequalities

1. Introduction

Recently, many generalizations and extensions have been studied for classical con-
vexity. Polyak [1] introduced and studied the idea of strongly convex functions on the
convex set, which have a significant impact on optimization theory and related fields.
Karmardian [2] discussed how strongly convex functions can be used to solve nonlinear
complementarity problems for the first time. Qu and Li [3] and Nikodem and Pales [4]

Symmetry 2021, 13, 1816. https://doi.org/10.3390/sym13101816 https://www.mdpi.com/journal/symmetry57
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developed the convergence analysis for addressing equilibrium issues and variational
inequalities, using strongly convex functions. For further study, we refer the reader to
applications and properties of the strongly convex functions of [5–10], and the references
therein. For differentiable functions, invex functions were introduced by Hanson [11],
which played a significant role in mathematical programing. The concept of invex sets and
preinvex functions were introduced and studied by Israel and Mond [12]. It is well known
that differential preinvex function are invex functions. The converse also holds under Con-
dition C [13]. Furthermore, Noor [14], studied the optimality conditions of differentiable
preinex functions and proved that the minimum can be characterized by variational-like
inequalities. Noor et al. [15,16] studied the properties of the strongly preinvex function and
investigated its applications. For more applications and properties of strongly preinvex
functions, see [17–19] and the references therein.

In [20], a large amount of research work on fuzzy sets and systems was devoted to
the advancement of various fields, playing an important role in the analysis of broad class
problems emerging in pure and applied sciences, such as operation research, computer
science, decision sciences, control engineering, artificial intelligence, and management
sciences. Convex analysis has made significant contributions to the improvement of
several practical and pure science domains. In the same way, fuzzy convex analysis is a
fundamental principle in fuzzy optimization and it is worthwhile to explore some basic
principles of convex sets in fuzzy set theory. Many scholars have addressed fuzzy convex
sets. Liu [21] investigated some properties of convex fuzzy sets and updated the definition
of shadow of fuzzy sets with the support of useful examples. Lowen [22] gathered some
well-known convex sets’ results and proved the separation theorem for convex fuzzy sets.
Ammar and Metz [23,24] investigated forms of convexity and established the generalized
convexity of fuzzy sets. Furthermore, they used the principle of convexity to formulate a
general fuzzy nonlinear programming problem.

A fuzzy number is a generalized version of an interval that can be discussed
(in crisp set theory). Zadeh [20] defined fuzzy numbers, while Dubois and Prade [25]
built on Zadeh’s work by adding new fuzzy number conditions. Furthermore, Goetschel
and Voxman [26] adjusted many conditions on fuzzy numbers to make them easier to han-
dle. For example, in [25], one of the conditions for a fuzzy number is that it is a continuous
function, whereas in [26], the fuzzy number is upper semi-continuous. The purpose is to
establish a metric for a collection of fuzzy numbers, using the relaxation of requirements
on fuzzy numbers, and then use this metric to examine some basic features of topological
space. Nanda and Kar [27], Syau [28] and Furukawa [29] introduced the concept of convex-
FMs from Rn to the set of fuzzy numbers. Furthermore, they also defined different type
of convex-FMs, such as logarithmic convex-FMs and quasi-convex-FMs, as well studying
Lipschitz continuity of fuzzy valued mappings. Yan and Xu [30] provided the notions
of epigraphs and the convexity of FMs, as well as the characteristics of convex-FMs and
quasi-convex-FMs, based on Goetschel and Voxman’s concept of ordering [31]. The concept
of fuzzy preinvex mapping on the invex set was introduced and studied by Noor [32]. He
also demonstrated that variational inequalities may be used to specify the fuzzy optimality
conditions of differentiable fuzzy preinex mappings. Syau [33], introduced notions of
(φ1, φ2)−convexity, φ1-B-vexity and φ1-convexity-FMs through the so-called fuzzy max
order among the fuzzy numbers, and proved that the φ1-B-vexity and φ1-convexity, B-
vexity, convexity and preinvexity of FMs are the subclasses. Syau and Lee [34] examined
various aspects of fuzzy optimization and discussed continuity and convexity through
linear ordering and metrics defined on fuzzy integers. They also extended the Weirstrass
theorem from real-valued functions to FMs. For recent applications, see [35–39] and the
references therein.

On the other hand, integral inequalities have various applications in linear program-
ing, combinatory, orthogonal polynomials, quantum theory, number theory, optimization
theory, dynamics, and the theory of relativity; see [40,41] and the references therein. The
HH-inequality is a familiar, supreme and broadly useful inequality. This inequality has
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fundamental significance [42,43], due to other classical inequalities, such as the Olsen,
Gagliardo–Nirenberg, Hardy, Opial, Young, Linger, arithmetic–geometric, Ostrowski,
Levinson, Minkowski, Beckenbach–Dresher, Ky Fan and Holer inequalities [44–49], which
are closely linked to the classical HH-inequality. It can be stated as follows:

Let H : K → R be a convex function on a convex set K and , ν ∈ K with u ≤ ν . Then,

H
(

u + ν

2

)
≤ 1

ν − u

∫ ν

u
H(z)dz ≤ H(u) +H(ν)

2
. (1)

If H is a concave function, then inequality (1) is reversed.
There are several integrals that deal with FMs and have FMs as integrands. For FMs,

Oseuna-Gomez et al. [50] and Costa et al. [51] constructed Jensen’s integral inequality.
Costa and Floures [52] used the same method to present Minkowski and Beckenbach’s in-
equalities, where the integrands are fuzzy mappings. Costa et al. established a relationship
between elements of fuzzy-interval space and interval space and introduced level-wise
fuzzy order relation on fuzzy-interval space through Kulisch–Miranker order relation
defined on an interval space. This was motivated by [48–53] and particularly [54], because
Costa et al. established a relationship between elements of fuzzy-interval space and interval
space and introduced a level-wise fuzzy order relation on fuzzy-interval space through the
Kulisch–Miranker order relation defined on interval space. By using this relation on the
fuzzy-interval space, we generalize integral inequality (1) by constructing fuzzy integral
inequalities for strongly preinvex-FMs, where the integrands are strongly preinvex-FMs.
Recently, Khan et al. [55] introduced the new class of convex-FMs, which is known as
(h1, h2)-convex-FMs by means of the fuzzy order relation and presented the following new
version of HH-type inequality for (h1, h2)-convex-FM involving fuzzy-interval Riemann
integrals:

Theorem 1. Let H : [u, ν] → F0 be a (h1, h2) -convex-FM with h1, h2 : [0, 1] → R+ and
h1

(
1
2

)
h2

(
1
2

)
�= 0. If H is fuzzy Riemann integrable (in sort, FR -integrable), then the following

holds:
1

2h1( 1
2 )h2( 1

2 )
H
( u+ν

2
)
� 1

ν−u
∫ ν

u H(z)dz

�
[
H(u) +̃ H(ν)

] ∫ 1
0 h1(τ)h2(1− τ)dτ.

(2)

Theorem 1 reduces to the result for convex fuzzy-IVF:

H
(

u + ν

2

)
� 1

ν − u

∫ ν

u
H(z)dz �

H(u) +̃ H(ν)

2
. (3)

For further information related to fuzzy integral inequalities, see [56–68].
Motivated by ongoing studies as well as the relevance of the concepts of invexity and

preinvexity of FMs, in Section 2, we provide an overview of some fundamental concepts,
preliminary notations, and findings that will be useful in further research. In the parts that
follow, the key results are considered and discussed. Section 3 introduces the concepts of
strongly preinvex-FMs and discusses some of their properties. Moreover, new relationships
among various concepts of strongly preinvex-FMs are also investigated in Section 3. In
Section 4, we introduce fuzzy variational-like and Hermite–Hadamard inequalities for
strong preinvex-FMs.

2. Preliminaries

In this section, we first provide some definitions, preliminary notations and results,
which will be helpful for further study.

A fuzzy set of R is a mapping Ψ : R → [0, 1] , for each fuzzy set and γ ∈ (0, 1]; then, γ-
level sets of Ψ are denoted and defined as follows: Ψγ = {u ∈ R| Ψ(u) ≥ γ}. The support
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of Ψ is denoted by supp(Ψ) and is defined as supp(Ψ) = {u ∈ R| Ψ(u) ≥ γ}. A fuzzy
set is normal if there exist u ∈ R such that Ψ(u) = 1. A fuzzy set is convex and concave
if Ψ((1− τ)u + τν) ≥ min(Ψ(u), Ψ(ν)) and Ψ((1− τ)u + τν) ≤ max(Ψ(u), Ψ(ν)) for
u, ν ∈ R, τ ∈ [0, 1], respectively. A fuzzy convex set is a generalization of the classical
convex set.

A fuzzy set is said to be fuzzy number with the following properties.
(a) Ψ is normal. (b) Ψ is a convex fuzzy set. (c) Ψ is upper semi-continuous. (d) Ψ0

is compact.
F0 denotes the set of all fuzzy numbers. For a fuzzy number, it is convenient to

distinguish the following γ-levels:

Ψγ = {u ∈ R| Ψ(u) ≥ γ},

From these definitions, we have the following:

Ψγ = [Ψ∗(γ), Ψ∗(γ)]

where
Ψ∗(γ) = in f {u ∈ R| Ψ(u) ≥ γ}, Ψ∗(γ) = sup{u ∈ R| Ψ(u) ≥ γ}.

Since each r ∈ R is also a fuzzy number, it is defined as follows:

r̃(u) =
{

1 if u = r
0 if u �= r

.

It is also well known that for any Ψ, φ ∈ F0 and r ∈ R, the following holds:

Ψ+̃φ = {(Ψ∗(γ) + φ∗(γ), Ψ∗(γ) + φ∗(γ), γ) : γ ∈ [0, 1]}, (4)

rΨ = {(rΨ∗(γ), rΨ∗(γ), γ) : γ ∈ [0, 1]}. (5)

Obviously, F0 is closed under addition and nonnegative scaler multiplication. Fur-
thermore, for each scaler number r ∈ R, the following holds:

Ψ+̃r = {(Ψ∗(γ) + r, Ψ∗(γ) + r, γ) : γ ∈ [0, 1]}. (6)

For any Ψ, φ ∈ F0, we say that Ψ � φ (“� ” relation between fuzzy numbers Ψ and φ
if for all γ ∈ (0, 1], Ψ∗(γ) ≤ φ∗(γ) (“ ≤ ” relation Ψ∗(γ) and φ∗(γ)) and Ψ∗(γ) ≤ φ∗(γ).
We say it is comparable if for any Ψ, φ ∈ F0, we have Ψ � φ or Ψ � φ; otherwise, they are
non-comparable.

We can state that F0 is a partial ordered set under the relation � if we write Ψ � φ
instead of φ � Ψ. If Ψ, φ ∈ F0, there exist ω ∈ F0 such that Ψ = φ+̃ω; then, we have the
existence of the Hukuhara difference (in short, H-difference) of Ψ and φ, and we say that
ω is the H-difference of Ψ and φ, denoted by Ψ−̃φ; see [37]. If this fuzzy operation exists,
then we have the following:

(ω)∗(γ) =
(
Ψ−̃φ

)∗
(γ) = Ψ∗(γ)− φ∗(γ), (ω)∗(γ) =

(
Ψ−̃φ

)
∗(γ) = Ψ∗(γ)− φ∗(γ).

A mapping H : K → F0 is called fuzzy mapping (FM). For each γ ∈ [0, 1], denote
[H(u)]γ = [H∗(u, γ), H∗(u, γ)] and in parameterized form, denote
H(u) = {(H∗(u, γ),H∗(u, γ), γ) : γ ∈ [0, 1]}.

Definition 1. Let us say I = (m, n) and  ∈ (m, n) [35]. Then, FM H : (m, n) → F0 is said to
be a generalized differentiable (briefly, G-differentiable) at  if there exists an element H,(u) ∈ F0
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such that for any 0 < τ, sufficiently small, there exist H(u + τ)−̃H(u), H(u)−̃H(u − τ), and
the limits are (in the metric D) as follows:

lim
τ→0+

H(u+τ)−̃H(u)
τ = lim

τ→0+
H(u)−̃H(u−τ)

τ = H′(u)

or lim
τ→0+

H(u)−̃H(u+τ)
−τ = lim

τ→0+
H(u−τ)−̃H(u)

−τ = H′(u)

or lim
τ→0+

H(u+τ)−̃H(u)
τ = lim

τ→0+
H(u−τ)−̃H(u)

−τ = H′(u)

or lim
τ→0+

H(u)−̃H(u+τ)
−τ = lim

τ→0+
H(u)−̃H(u−τ)

τ = H′(u),

where the limits are taken in the metric space (E, D), for Ψ, φ ∈ F0 as follows:

D(Ψ, φ) = sup
0≤γ≤1

H(Ψγ, φγ),

and H denotes the well-known Hausdorff metric on the space of intervals.

Definition 2. A FM H : K → F0 is said to be convex on the convex set K if the following
holds [27]:

H((1− τ)u + τν) � (1− τ)H(u)+̃τH(ν), ∀ u, ν ∈ K, τ ∈ [0, 1]. (7)

Similarly, H is said to be concave-FM on K if inequality (7) is reversed.

Definition 3. The set Kξ in R is said to be invex set with respect to (w.r.t.) arbitrary bifunction
ξ(., .), if the following holds [12]:

u + τξ(ν, u) ∈ Kξ , ∀ u, ν ∈ Kξ , τ ∈ [0, 1].

The invex set Kξ is also known as a ξ -connected set. Note that each convex set with
ν − u = ξ(ν, u) is an invex set in the classical sense, but the reverse is not true. For instance, the
following set Kξ = [−7,−2]∪ [2, 10] is an invex set w.r.t. non-trivial bi-function ξ : R×R → R

given as follows:
ξ(ν, u) = ν − u, ν ≥ 0, u ≥ 0,
ξ(ν, u) = ν − u, 0 ≥ ν, 0 ≥ u,
ξ(ν, u) = −7− u, ν ≥ 0 ≥ u,
ξ(ν, u) = 2− u, u ≥ 0 ≥ ν.

Definition 4. A FM H : Kξ → F0 is said to be preinvex on the invex set Kξ w.r.t. bi-function ξ if
the following holds [32]:

H(u + τξ(ν, u)) � (1− τ)H(u)+̃τH(ν), (8)

for all u, ν ∈ Kξ , τ ∈ [0, 1], where ξ : Kξ × Kξ → R. H is said to be preconcave-FM on Kξ if
inequality (8) is reversed.

Lemma 1. Let Kξ be an invex set w.r.t. ξ and let H : Kξ → F0 be a FM, parameterized by the
following [21]:

H(u) = {(H∗(u, γ),H∗(u, γ), γ) : γ ∈ [0, 1]}, ∀ u ∈ Kξ

Then, H is preinvex on Kξ if, and only if, for all γ ∈ [0, 1],
H∗(u, γ) and H∗(u, γ) are preinvex w.r.t. ξ on Kξ .
If ξ(ν, u) = ν − u, then Lemma 1 reduces to the following result:
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“Let Kξ be a convex set and let H : Kξ → F0 be a FM parameterized by the following:

H(u) = {(H∗(u, γ),H∗(u, γ), γ) : γ ∈ [0, 1]}, ∀ u ∈ Kξ

Then, H is convex on Kξ if, and only if, for all γ ∈ [0, 1], H∗(u, γ) and H∗(u, γ) are
convex w.r.t. ξ on Kξ .

Theorem 2. If H : [c, d] ⊂ R→ KC is an interval valued function on : [c, d] such that [H∗, H∗][54].
Then H is Riemann integrable over : [c, d] if and only if, H∗ and H∗ both are Riemann integrable
over: [c, d] such that the following holds:

(IR)
∫ d

c
H(z)dz =

[
(R)

∫ d

c
H∗(u)dz, (R)

∫ d

c
H∗(u)dz

]
(9)

From the above literature review, the following results can be concluded; see [31,32,53,54].

Definition 5. Let H : [c, d] ⊂ R → F0 be a FM [47]. The fuzzy Riemann integral of H over
[c, d], denoted by (FR)

∫ d
c H(z)dz, is defined by the following:[

(FR)
∫ d

c
H(z)dz

]γ

= (IR)
∫ d

c
Hγ(z)dz =

{∫ d

c
H(z, γ)dz : H(z, γ) ∈ R[c, d]

}
, (10)

for all γ ∈ [0, 1], where R[c, d] is the collection of end-point functions of IVFs. H is (FR)-

integrable over [c, d] if (FR)
∫ d

c H(z)dz ∈ F0. Note that, if both end-point functions are
Lebesgue-integrable, then H is fuzzy Aumann-integrable.

Let Kξ be a nonempty invex set in R for future investigation. Let ξ : Kξ × Kξ → R be an
arbitrary bifunction and H : Kξ → F0 be an FM. We denote ‖.‖ and 〈., .〉 as the norm and inner
product, respectively. Furthermore, throughout this article, FMs are discussed through the so-called

“fuzzy-max” order among fuzzy numbers. As is well known, the fuzzy-max order is a partial order
relation “ � ” on the set of fuzzy numbers.

3. Strongly Preinvex Fuzzy Mappings

In this section, we propose and study the class of strongly preinvex-FMs. We also
establish the relationship between strongly preinvex-FMs, strongly monotone operators
and strongly invex-FMs. Firstly, we define the following notion of strongly preinvex-FM.

Definition 6. Let Kξ be an invex set and ω be a positive number. Then, FM H : Kξ → F0 is said
to be strongly preinvex-FM on Kξ w.r.t. bi-function ξ(., .) if the following holds:

H(u + τξ(ν, u)) � (1− τ)H(u)+̃τH(ν)−̃ωτ(1− τ)‖ξ(ν, u)‖2, (11)

for all u, ν ∈ Kξ , τ ∈ [0, 1]. H is said to be strongly preconcave-FM on Kξ if inequality (11) is
reversed. H is said to be strongly affine preinvex-FM on Kξ if the following holds:

H(u + τξ(ν, u)) = (1− τ)H(u)+̃τH(ν)−̃ωτ(1− τ)‖ξ(ν, u)‖2, (12)

for all u, ν ∈ Kξ , τ ∈ [0, 1].

Remark 1. Strongly preinvex-FMs, such as preinvex-FMs, have the following highly desirable
features:

(1) YH is also strongly preinvex for Y ≥ 0, if H is strongly preinvex-FM.
(2) max(H(u), �(u)) is also strongly preinvex-FM if H and � both are strongly preinvex-FMs.

Now, we discuss some special cases of strongly preinvex-FMs:
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If ξ(ν, u) = ν − u, then strongly preinvex-FM becomes strongly convex-FM, that is

H((1− τ)u + τν) � (1− τ)H(u)+̃τH(ν)−̃ωτ(1− τ)‖ν − u‖2, ∀ u, ν ∈ Kξ , τ ∈ [0, 1].

If ω = 0, then inequality (11) reduces to inequality (8).
If ω = 0 and ξ(ν, u) = ν − u, then inequality (11) reduces to inequality (7).
The following result characterizes the definition of strongly preinvex-FMs and estab-

lishes the relationship between strongly preinvex-FMs and end-point functions. With the
help of this theorem, we can easily handle the upcoming results.

Theorem 3. Let H : Kξ → F0 be a FM parametrized by the following:

H(u) = {(H∗(u, γ),H∗(u, γ), γ) : γ ∈ [0, 1]}, ∀ u ∈ Kξ . (13)

Then, H is strongly preinvex on K w.r.t. ξ, with modulus ω if and only if, for all
γ ∈ [0, 1],

H∗(u, γ) and H∗(u, γ) are strongly preinvex w.r.t. ξ and modulus ω.

Proof. Assume that for each γ ∈ [0, 1], H∗(u, γ) and H∗(u, γ) are strongly preinvex
w.r.t. ξ and modulus ω on Kξ . Then, from (11), for all u, ν ∈ Kξ , τ ∈ [0, 1], we have the
following:

H∗(u + τξ(ν, u), γ) ≤ (1− τ)H∗(u, γ) + τH∗(ν, γ)− ωτ(1− τ)‖ξ(ν, u)‖2

and

H∗(u + τξ(ν, u), γ) ≤ (1− τ)H∗(u, γ) + τH∗(ν, γ)− ωτ(1− τ)‖ξ(ν, u)‖2.

Then, by (13), (4), (5) and (6), we obtain the following:
H(u + τξ(ν, u)) = {(H∗(u + τξ(ν, u), γ),H∗(u + τξ(ν, u), γ), γ) : γ ∈ [0, 1]},

� {((1− τ)H∗(u, γ), (1− τ)H∗(u, γ), γ) : γ ∈ [0, 1]}+̃{(τH∗(ν, γ), τH∗(ν, γ), γ) : γ ∈ [0, 1]}
−̃ωτ(1− τ)‖ξ(ν, u)‖2,

= (1− τ)H(u)+̃H(ν)−̃ωτ(1− τ)‖ξ(ν, u)‖2.

Hence, H is strongly preinvex-FM on Kξ with modulus ω. �

Conversely, let H be a strongly preinvex-FM on Kξ with modulus ω. Then, for all u, ν ∈
Kξ and τ ∈ [0, 1], we have H(u + τξ(ν, u)) � (1− τ)H(u)+̃τH(ν)−̃ωτ(1− τ)‖ξ(ν, u)‖2.
From (13), we have the following:

H(u + τξ(ν, u)) = {(H∗(u + τξ(ν, u), γ),H∗(u + τξ(ν, u), γ), γ) : γ ∈ [0, 1]}.

Again, from (13), (4), (5) and (6), we obtain the following:

(1− τ)H(u)+̃τH(u)−̃ωτ(1− τ)‖ξ(ν, u)‖2

= {((1− τ)H∗(u, γ), (1− τ)H∗(u, γ), γ) : γ ∈ [0, 1]}
+̃{(τH∗(ν, γ), τH∗(ν, γ), γ) : γ ∈ [0, 1]}−̃ωτ(1− τ)‖ξ(ν, u)‖2,

for all u, ν ∈ Kξ and τ ∈ [0, 1]. Then, by strongly preinvexity of H, we have for all u, ν ∈ Kξ

and τ ∈ [0, 1] such that the following holds:

H∗(u + τξ(ν, u), γ) ≤ (1− τ)H∗(u, γ) + τH∗(ν, γ)− ωτ(1− τ)‖ξ(ν, u)‖2,
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and

H∗(u + τξ(ν, u), γ) ≤ (1− τ)H∗(u, γ) + τH∗(ν, γ)− ωτ(1− τ)‖ξ(ν, u)‖2,

for each γ ∈ [0, 1]. Hence, the result follows.

Example 1. We consider the FM H : [0, 1] → F0 defined by the following:

H(u)(σ) =

⎧⎪⎨⎪⎩
σ

2u2 σ ∈
[
0, 2u2]

4u2−σ
2u2 σ ∈

(
2u2, 4u2]

0 otherwise,
(14)

Then, for each γ ∈ [0, 1], we have Hγ(u) =
[
2γu2, (4− 2γ)u2 ]

. Since H∗(u, γ),
H∗(u, γ) are strongly preinvex functions for each γ ∈ [0, 1], H(u) is strongly preinvex-FM
w.r.t. the following:

ξ(ν, u) = ν − u,

with 0 < ω = γ ≤ 1. It can be easily seen that for each ω ∈ (0, 1], there exists a
strongly preinvex-FM, and H(u) is neither a convex FM nor a preinvex-FM w.r.t. bifunction
ξ(ν, u) = ν − u with 0 < ω ≤ 1.

Now, we show that the difference between a strongly preinvex-FM and a strongly
affine preinvex-FM is, again, a preinvex-FM for a strongly preinvex-FM.

Theorem 4. Let FM f : Kξ → F0 be a strongly affine preinvex w.r.t. ξ and 0 ≤ ω . Then, H is
strongly preinvex-FM w.r.t. the same bi-function ξ if, and only if, � = H− f is a preinvex-FM.

Proof. The “If” part is obvious. To prove the “only if”, assume that f : Kξ → F0 is a
strongly fuzzy affine preinvex w.r.t. the non-negative bi-function ξ and 0 ≤ ω. Then, the
following holds:

f (u + τξ(ν, u)) = (1− τ) f (u)+̃τ f (ν)−̃ωτ(1− τ)‖ξ(ν, u)‖2 (15)

Therefore, for each γ ∈ [0, 1], we have the following:

f∗(u + τξ(ν, u), γ) = (1− τ) f∗(u, γ) + τ f∗(ν, γ)− ωτ(1− τ)‖ξ(ν, u)‖2,
f ∗(u + τξ(ν, u), γ) = (1− τ) f ∗(u, γ) + τ f ∗(ν, γ)− ωτ(1− τ)‖ξ(ν, u)‖2.

Since H is strongly preinvex-FM w.r.t. the same bi-function ξ, then, for each γ ∈ [0, 1],
we have the following:

H∗(u + τξ(ν, u), γ) ≤ (1− τ)H∗(u, γ) + τH∗(ν, γ)− ωτ(1− τ)‖ξ(ν, u)‖2,
H∗(u + τξ(ν, u), γ) ≤ (1− τ)H∗(u, γ) + τH∗(ν, γ)− ωτ(1− τ)‖ξ(ν, u)‖2.

(16)

From (15) and (16), we have the following:

H∗(u + τξ(ν, u), γ)− f∗(u + τξ(ν, u), γ) ≤ (1− τ)H∗(u, γ) + τH∗(ν, γ)
−(1− τ) f∗(u, γ)− τ f∗(ν, γ),

H∗(u + τξ(ν, u), γ)− f ∗(u + τξ(ν, u), γ) ≤ (1− τ)H∗(u, γ) + τH∗(ν, γ)
−(1− τ) f ∗(u, γ)− τ f ∗(ν, γ),

H∗(u + τξ(ν, u), γ)− f∗(u + τξ(ν, u), γ) ≤ (1− τ)(H∗(u, γ)− f∗(u, γ))
+τ(H∗(ν, γ)− f∗(ν, γ)),

H∗(u + τξ(ν, u), γ)− f ∗(u + τξ(ν, u), γ) ≤ (1− τ)(H∗(u, γ)− f ∗(u, γ))
+τ(H∗(ν, γ)− f ∗(ν, γ)),
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from which it follows that

�∗(u + τξ(ν, u), γ) = H∗(u + τξ(ν, u), γ)− f∗(u + τξ(ν, u), γ),
�∗(u + τξ(ν, u), γ) = H∗(u + τξ(ν, u), γ)− f ∗(u + τξ(ν, u), γ),

�∗(u + τξ(ν, u), γ) ≤ (1− τ)�∗(u, γ) + τ�∗(ν, γ),
�∗(u + τξ(ν, u), γ) ≤ (1− τ)�∗(u, γ) + τ�∗(ν, γ),

that is
�(u + τξ(ν, u)) � (1− τ)�(u)+̃τ�(u),

showing that � = H− f is preinvex-FM. �

We know that under certain condition invex-FMs, we obtain a solution of the fuzzy
optimization problem because with the help of these FMs, we can obtain the relationship
between the fuzzy variational inequalities and optimization problems.

Definition 7. The G-differentiable FM H : Kξ → F0 on Kξ is said to be strongly invex-FM w.r.t.
bi-function ξ if there exist a constant 0 ≤ ω such that the following holds:

H(ν)−̃H(u) � F′(u), ξ(ν, u)+̃ω‖ξ(ν, u)‖2, f or all u, ν ∈ Kξ . (17)

Example 2. We consider the FMs H : (0, 1) → F0 defined by, Hγ(u) =
[
2γu2, (4− 2γ)u2],

as in Example 1; then, H(u) is strongly invex-FM w.r.t. bifunction ξ(ν, u) = ν − u, with
0 < ω = γ ≤ 1, where u ≤ ν. We have H∗(u, γ) = γu2 and H∗(u, γ) = (2− γ)u2. Now, we
compute the following:

H∗(ν, γ)−H∗(u, γ) = γν2 − γu2,

while
〈H∗′(u, γ), ξ(ν, u)〉+ ω‖ξ(ν, u)‖2 = 2γ(ν − u) + ω‖ν − u‖2.

and γν2 − γu2 ≥ 2γ(ν − u) + ων − u2, with 0 < ω ≤ 1, where u ≤ ν.
Similarly, it can be easily shown that

H∗(ν, γ)−H∗(u, γ) ≥ 〈H∗′(u, γ), ξ(ν, u)〉+ ω‖ξ(ν, u)‖2

Hence, H(u) is strongly invex-FM w.r.t. bifunction ξ(ν, u) = ν − u, with 0 < ω ≤ 1. It
can be easily seen that H(u) is not invex-FM w.r.t. bifunction ξ(ν, u) = ν − u.

Definition 8. The G-differentiable FM H : Kξ → F0 on Kξ is said to be strongly pseudo invex-FM
w.r.t. bi-function ξ if there exists a constant 0 ≤ ω such that the following holds:

〈H′(u), ξ(ν, u)〉+̃ω‖ξ(ν, u)‖2 � 0̃ ⇒ H(ν)−̃H(u) � 0̃, f or all u, ν ∈ Kξ . (18)

If ω = 0, then from Definition 7 and Definition 8, we obtain the classical definitions of
invex-FM and pseudo invex-FM, respectively. If ξ(ν, u) = ν − u, then Definition 7 and Definition
8 reduce to known ones.

Example 3. We consider the FMs H : (0, ∞) → F0 defined by, Hγ(u) = [γu, (3− 2γ)u], then
H(u) is strongly pseudo invex-FM w.r.t. bifunction ξ(ν, u) = ν − u, with 0 ≤ ω = γ, where
u ≤ ν. We have H∗(u, γ) = γu and H∗(u, γ) = (3− 2γ)u. Now we compute the following:

〈H∗′(u, γ), ξ(ν, u)〉+ ω‖ξ(ν, u)‖2 = γ(ν − u) + ω‖ν − u‖2 ≥ 0,

for all u, ν ∈ Kξ and γ ∈ [0, 1] with u ≤ ν, 0 ≤ ω; which implies the following:

H∗(ν, γ) = γν ≥ γu = H∗(u, γ),
H∗(ν, γ) ≥ H∗(u, γ),
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Similarly, it can be easily shown that the following holds:

〈H∗′(u, γ), ξ(ν, u)〉+ ω‖ξ(ν, u)‖2 = (3− 2γ)(ν − u) + ω‖ν − u‖2 ≥ 0,

for all u, ν ∈ Kξ and γ ∈ [0, 1] with u ≤ ν, 0 ≤ ω. This means that the following holds:

H∗(ν, γ) = (3− 2γ)ν ≥ γu = H∗(u, γ),

from which, it follows that
H∗(ν, γ) ≥ H∗(u, γ)

Hence, the FM Hγ(u) = [γu, (3− 2γ)u] is strongly pseudo invex-FM w.r.t.
ξ(ν, u) = ν − u, with 0 ≤ ω, where u ≤ ν. It can be easily seen that H(u) is not a pseudo
invex-FM w.r.t. ξ.

Theorem 5. Let H : Kξ → F0 be a G-differentiable and strongly preinvex-FM then H is a strongly
invex-FM.

Proof. Let H : Kξ → F0 be G-differentiable strongly preinvex-FM. Since H is strongly
preinvex, then for each u, ν ∈ Kξ and τ ∈ [0, 1], we have the following:

H(u + τξ(ν, u)) � (1− τ)H(u)+̃τH(ν)−̃ωτ(1− τ)‖ξ(ν, u)‖2,
� H(u)+̃τ

(
H(ν)−̃H(u)

)
−̃ωτ(1− τ)‖ξ(ν, u)‖2,

Therefore, for every γ ∈ [0, 1], we have the following:

H∗(u + τξ(ν, u), γ) ≤ H∗(u, γ) + τ(H∗(ν, γ)−H∗(u, γ))− ωτ(1− τ)‖ξ(ν, u)‖2,
H∗(u + τξ(ν, u), γ) ≤ H∗(u, γ) + τ(H∗(ν, γ)−H∗(u, γ))− ωτ(1− τ)‖ξ(ν, u)‖2,

which implies that the following:

τ(H∗(ν, γ)−H∗(u, γ)) ≥ H∗(u + τξ(ν, u), γ)−H∗(u, γ) + ωτ(1− τ)‖ξ(ν, u)‖2,

τ(H∗(ν, γ)−H∗(u, γ)) ≥ H∗(u + τξ(ν, u), γ)−H∗(u, γ) + ωτ(1− τ)‖ξ(ν, u)‖2,

H∗(ν, γ)−H∗(u, γ) ≥ H∗(u+τξ(ν,u),γ)−H∗(u,γ)
τ + ω(1− τ)‖ξ(ν, u)‖2,

H∗(ν, γ)−H∗(u, γ) ≥ H∗(u+τξ(ν,u),γ)−H∗(u,γ)
τ + ω(1− τ)‖ξ(ν, u)‖2.

Taking the limit in the above inequality as τ → 0 , we have the following:

H∗(ν, γ)−H∗(u, γ) ≥ 〈H∗′(u, γ), ξ(ν, u)〉+ ω‖ξ(ν, u)‖2,
H∗(ν, γ)−H∗(u, γ) ≥ 〈H∗′(u, γ), ξ(ν, u)〉+ ω‖ξ(ν, u)‖2,

that is,
H(ν)−̃H(u) � 〈H′(u), ξ(ν, u)〉+̃ω‖ξ(ν, u)‖2.

As a special case of Theorem 5, when ω = 0, we have the following. �

Corollary 1. Let H : Kξ → F0 be a G-differentiable preinvex-FM on Kξ [32]. Then, H is an
invex-FM.

It is well known that the differentiable preinvex functions are invex functions, but
the converse is not true. However, Mohan and Neogy [13] showed that the preinvex
functions and invex functions are equivalent under Condition C. Similarly, the converse of
Theorem 5 is not valid; the natural question is how to obtain a strongly preinvex-FM from
strongly invex-FM. To prove the converse, we need the following assumption regarding
the bi-function ξ, which plays an important role in G-differentiation of the main results.

66



Symmetry 2021, 13, 1816

Condition C.
ξ(ν, u + τξ(ν, u)) = (1− τ)ξ(ν, u),

ξ(u, u + τξ(ν, u)) = −τξ(ν, u).

Clearly for τ = 0, we have ξ(ν, u) = 0 if, and only if, ν = u for all u, ν ∈ Kξ . Addition-
ally, note that from Condition C, we have the following:

ξ(u + τ2ξ(ν, u), u + τ1ξ(ν, u)) = (τ2 − τ1)ξ(ν, u)

For the application of Condition C, see [13–17].
The following Theorem 6 gives the result of the converse of Theorem 5.

Theorem 6. Let H : Kξ → F0 be a G-differentiable FM on Kξ . Let Condition C holds and H(u)
satisfies the following condition:

H(u + τξ(ν, u)) � H(ν), (19)

and then, the following are equivalent:
(a) H is strongly preinvex-FM.

(b) H(ν)−̃H(u) � H′(u), ξ(ν, u)+̃ω‖ξ(ν, u)‖2, for all u, ν ∈ Kξ , (20)

〈(c)H′(u), ξ(ν, u)〉
〈
+̃H′(ν), ξ(u, ν)〉 � −̃ω

{
‖ξ(ν, u)‖2 + ‖ξ(u, ν)‖2

}
(21)

for all u, ν ∈ Kξ .

Proof. (a) implies (b) �

The demonstration is analogous to the demonstration of Theorem 5.
(b) implies (c). Let (b) hold. Then, for everyγ ∈ [0, 1] , we have the following:

H∗(ν, γ)−H∗(u, γ) ≥ 〈H∗′(u, γ), ξ(ν, u)〉+ ω‖ξ(ν, u)‖2,
H∗(ν, γ)−H∗(u, γ) ≥ 〈H∗′(u, γ), ξ(ν, u)〉+ ω‖ξ(ν, u)‖2,

(22)

Then, by replacing ν by u and u by ν in (22), we obtain the following:

H∗(u, γ)−H∗(ν, γ) ≥ 〈H∗′(ν, γ), ξ(u, ν)〉+ ω‖ξ(u, ν)‖2,
H∗(u, γ)−H∗(ν, γ) ≥ 〈H∗′(ν, γ), ξ(u, ν)〉+ ω‖ξ(u, ν)‖2.

(23)

Adding (22) and (23), we have the following:

〈H∗′(u, γ), ξ(ν, u)〉+ 〈H∗′(ν, γ), ξ(u, ν)〉 ≤ −ω
(
‖ξ(ν, u)‖2 + ‖ξ(u, ν)‖2

)
,

〈H∗′(u, γ), ξ(ν, u)〉+ 〈H∗′(ν, γ), ξ(u, ν)〉 ≤ −ω
(
‖ξ(ν, u)‖2 + ‖ξ(u, ν)‖2

)
,

That is, the following:

〈H′(u), ξ(ν, u)〉+̃〈H′(ν), ξ(u, ν)〉 � −̃ω
{
‖ξ(ν, u)‖2 + ‖ξ(u, ν)‖2

}
(c) implies (b). Assume that (21) holds. Then, for every γ ∈ [0, 1], we have the

following:

〈H∗′(ν, γ), ξ(u, ν)〉 ≤ −〈H∗ ,(u, γ), ξ(ν, u)〉 − ω
(
‖ξ(ν, u)‖2 + ‖ξ(u, ν)‖2

)
,

〈H∗′(ν, γ), ξ(u, ν)〉 ≤ −〈H∗′(u, γ), ξ(ν, u)〉 − ω
(
‖ξ(ν, u)‖2 + ‖ξ(u, ν)‖2

)
.

(24)
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Since, ντ = u + τξ(ν, u) ∈ Kξ for all u, ν ∈ Kξ and τ ∈ [0, 1]. Taking ν = ντ in (24), we
obtain the following:

〈H∗′ (u + τξ(ν, u), γ), ξ(u, u + τξ(ν, u))〉 ≤ −〈H∗′ (u, γ), ξ(u + τξ(ν, u), u)〉
−ω

(
‖ξ(u + τξ(ν, u), u)‖2 + ‖ξ(u, u + τξ(ν, u))‖2

)
,

〈H∗′ (u + τξ(ν, u), γ), ξ(u, u + τξ(ν, u))〉 ≤ −〈H∗′ (u, γ), ξ(u + τξ(ν, u), u)〉
−ω

(
‖ξ(u + τξ(ν, u), u)‖2 + ‖ξ(u, u + τξ(ν, u))‖2

)
,

by using Condition C, we have the following:

〈H∗′(u + τξ(ν, u), γ), τξ(ν, u)〉 ≥ 〈H∗′(u, γ), τξ(ν, u)〉+ 2ωτ2‖ξ(ν, u)‖2,
〈H∗′(u + τξ(ν, u), γ), τξ(ν, u)〉 ≥ 〈H∗′(u, γ), τξ(ν, u)〉+ 2ωτ2‖ξ(ν, u)‖2,

〈H∗′(u + τξ(ν, u), γ), ξ(ν, u)〉 ≥ 〈H∗′(u, γ), ξ(ν, u)〉+ 2ωτ‖ξ(ν, u)‖2,
〈H∗′(u + τξ(ν, u), γ), ξ(ν, u)〉 ≥ 〈H∗′(u, γ), ξ(ν, u)〉+ 2ωτ‖ξ(ν, u)‖2,

(25)

Let the following hold:

H∗(τ) = H∗(u + τξ(ν, u), γ),
H∗(τ) = H∗(u + τξ(ν, u), γ).

Taking the derivative w.r.t. τ, we obtain the following:

H∗′(τ) = H∗′(u + τξ(ν, u), γ).ξ(ν, u) = 〈H∗′(u + τξ(ν, u), γ), ξ(ν, u)〉,
H∗′(τ) = H∗′(u + τξ(ν, u), γ).ξ(ν, u) = 〈H∗′(u + τξ(ν, u), γ), ξ(ν, u)〉,

from which, using (25), we have the following:

H∗′(τ) ≥ 〈H∗′(u, γ), ξ(ν, u)〉+ 2ωτ‖ξ(ν, u)‖2,
H∗′(τ) ≥ 〈H∗′(u, γ), ξ(ν, u)〉+ 2ωτ‖ξ(ν, u)‖2.

(26)

By integrating (26) between 0 to 1, w.r.t. τ, we obtain the following:

H∗(1)− H∗(0) ≥ 〈H∗′(u, γ), ξ(ν, u)〉+ ω‖ξ(ν, u)‖2,
H∗(1)− H∗(0) ≥ 〈H∗′(u, γ), ξ(ν, u)〉+ ω‖ξ(ν, u)‖2.

H∗(u + ξ(ν, u), γ)−H∗(u, γ) ≥ 〈H∗′(u, γ), ξ(ν, u)〉+ ω‖ξ(ν, u)‖2,
H∗(u + ξ(ν, u), γ)−H∗(u, γ) ≥ 〈H∗′(u, γ), ξ(ν, u)〉+ ω‖ξ(ν, u)‖2.

Using (19), we have the following:

H∗(ν, γ)−H∗(u, γ) ≥ 〈H∗′(u, γ), ξ(ν, u)〉+ ω‖ξ(ν, u)‖2,
H∗(ν, γ)−H∗(u, γ) ≥ 〈H∗′(u, γ), ξ(ν, u)〉+ ω‖ξ(ν, u)‖2,

that is, the following:

H(ν)−̃H(u) � 〈H′(u), τξ(ν, u)〉+̃ω‖ξ(ν, u)‖2, for all u, ν ∈ Kξ .

(b) implies (a). Assume that (20) holds. Since Kξ , ντ = u + τξ(ν, u) ∈ Kξ for all
u, ν ∈ Kξ and τ ∈ [0, 1]. Taking ν = ντ in (20), we obtain the following:

H(u + τξ(ν, u))−̃H(u) � 〈H′(u), ξ(u + τξ(ν, u), u)〉+̃ω‖ξ(u + τξ(ν, u), u)‖2.

Therefore, for every γ ∈ [0, 1], we have the following:
H∗(u + τξ(ν, u), γ)−H∗(u, γ) ≥ 〈H∗′(u, γ), ξ(u + τξ(ν, u), u)〉+ ω‖ξ(u + τξ(ν, u), u)‖2,
H∗(u + τξ(ν, u), γ)−H∗(u, γ) ≥ 〈H∗′(u, γ), ξ(u + τξ(ν, u), u)〉+ ω‖ξ(u + τξ(ν, u), u)‖2.
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Using Condition C, we have the following:
H∗(u + τξ(ν, u), γ)−H∗(u, γ) ≥ (1− τ)〈H∗′(u, γ), ξ(ν, u)〉+ ω(1− τ)2‖ξ(ν, u)‖2,
H∗(u + τξ(ν, u), γ)−H∗(u, γ) ≥ (1− τ)〈H∗′(u, γ), ξ(ν, u)〉+ ω(1− τ)2‖ξ(ν, u)‖2.

(27)

In a similar way, we have the following:

H∗(u, γ)−H∗(u + τξ(ν, u), γ) ≥ −τ〈H∗′(u, γ), ξ(ν, u)〉+ ωτ2‖ξ(ν, u)‖2,
H∗(u, γ)−H∗(u + τξ(ν, u), γ) ≥ −τ〈H∗′(u, γ), ξ(ν, u)〉+ ωτ2‖ξ(ν, u)‖2.

(28)

Multiplying (27) by τ and (28) by (1− τ), and adding the resultant, we have the
following:

H∗(u + τξ(ν, u), γ) ≤ (1− τ)H∗(u, γ) + τH∗(ν, γ)− ωτ(1− τ)‖ξ(ν, u)‖2,
H∗(u + τξ(ν, u), γ) ≤ (1− τ)H∗(u, γ) + τH∗(ν, γ)− ωτ(1− τ)‖ξ(ν, u)‖2,

That is, the following holds:

H(u + τξ(ν, u)) � (1− τ)H(u)+̃τH(ν)−̃ωτ(1− τ)‖ξ(ν, u)‖2.

Hence, H is strongly preinvex-FM w.r.t.
Theorems 5 and 6, enable us to define the followings new definitions.

Definition 9. A G-differentiable FM H : Kξ → F0 is said to be as follows:

(i) Strongly monotone w.r.t. bi-function ξ if, and only if, there exists a constant 0 ≤ ω such that
the following is true:

〈H′(u), ξ(ν, u)〉+̃〈H′(ν), ξ(u, ν)〉 � −̃ω
{
‖ξ(ν, u)‖2 + ‖ξ(u, ν)‖2

}
, f or all u, ν ∈ Kξ

(ii) Strongly pseudo monotone w.r.t. bi-function ξ if, and only if, there exists a constant 0 ≤ ω
such that the following is true:

〈H′(u), ξ(ν, u)〉+̃ω‖ξ(ν, u)‖2 � 0̃ ⇒ −̃〈H′(ν), ξ(u, ν)〉 � 0̃, f or all u, ν ∈ Kξ .

If ξ(ν, u) = −ξ(u, ν), then Definition 9. reduces to new one.

Example 4. We consider the FMs H : (0, ∞) → F0 defined by the following:

H(u)(σ) =

⎧⎪⎨⎪⎩
σ

2u2 σ ∈
[
0, 2u2]

5u2−σ
3u2 σ ∈

(
2u2, 5u2]

0 otherwise.

Then, for each γ ∈ [0, 1], we have Hγ(u) =
[
2γu2, (5− 3γ)u2 ]

, where H(u) is strongly
fuzzy pseudomonotone w.r.t. bifunction ξ(ν, u) = u − ν, with 1 ≤ ω, where ν ≤ u. We have
H∗(u, γ) = 2γu2 and H∗(u, γ) = (5− 3γ)u2. Now, we compute the following:

〈H∗′(u, γ), ξ(ν, u)〉+ ω‖ξ(ν, u)‖2 = 4γu(u − ν) + ωu − ν2 ≥ 0,

for all u, ν ∈ Kξ and γ ∈ [0, 1] with ν ≤ u, 1 ≤ ω; which implies he following:

−〈H∗′(ν, γ), ξ(u, ν) = −4γu(ν − u)〉 = 4γν(u − ν) ≥ 0, ∀ u, ν ∈ Kξ ,
−〈H∗′(ν, γ), ξ(u, ν)〉 ≥ 0.

Similarly, it can be easily shown that the following holds:

〈H∗′(u, γ), ξ(ν, u)〉+ ω‖ξ(ν, u)‖2 = 2(5− 3γ)u(u − ν) + ω‖u − ν‖2 ≥ 0,
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for all u, ν ∈ Kξ and γ ∈ [0, 1] with ν ≤ u, 1 ≤ ω. This means the following is true:

− 〈H∗′(ν, γ), ξ(u, ν)〉 = −2(5− 3γ)u(ν − u) = 2(5− 3γ)ν(u − ν) ≥ 0, ∀ u, ν ∈ Kξ ,

From which, it follows that

− 〈H∗′(ν, γ), ξ(u, ν)〉 ≥ 0.

Hence, the G-differentiable FM Hγ(u) = [γu, (5− 4γ)u] is strongly fuzzy pseudomonotone
w.r.t. ξ(ν, u) = u− ν, with 1 ≤ ω, where ν ≤ u. It can be easily noted that H′(u) is neither fuzzy
pseudomonotone nor fuzzy quasimonotone w.r.t. ξ.

If ω = 0 , then from Theorem 6, we obtain following result.

Corollary 2. [36] Let H : Kξ → F0 be a G-differentiable FM on Kξ . Let Condition C holds and
H(u) satisfies the following condition:

H(u + τξ(ν, u)) � H(ν),

and then, the following are equivalent:

(a) H is invex-FM.
(b) H′ is monotone.

Theorem 7. Let H : Kξ → F0 be FM on Kξ w.r.t. ξ and Condition C hold. Let H(u) is G-
differentiable on Kξ with the following conditions:

(a) H(u + τξ(ν, u)) � H(ν).
(b) H′(u) is a strongly fuzzy pseudomonotone.

Then, H is a strongly pseudo invex-FM.

Proof. Let H′ be strongly pseudomonotone. Then, for all u, ν ∈ Kξ , we have the following:

〈H′(u), ξ(ν, u)〉+̃ω‖ξ(ν, u)‖2 � 0̃.

Therefore, for every γ ∈ [0, 1], we have the following:

〈H∗′(u, γ), ξ(ν, u)〉+ ω‖ξ(ν, u)‖2 ≥ 0,
〈H∗′(u, γ), ξ(ν, u)〉+ ω‖ξ(ν, u)‖2 ≥ 0,

which implies that the following is true:

−〈H∗′(ν, γ), ξ(u, ν)〉 ≥ 0,
−〈H∗′(ν, γ), ξ(u, ν)〉 ≥ 0.

(29)

Since ντ = u + τξ(ν, u) ∈ Kξ for all u, ν ∈ Kξ and τ ∈ [0, 1 ]. Taking ν = ντ in (29), we
obtain the following:

−〈H∗′(u + τξ(ν, u), γ), ξ(u, u + τξ(ν, u))〉 ≥ 0,
−〈H∗′(u + τξ(ν, u), γ), ξ(u, u + τξ(ν, u))〉 ≥ 0.

By using Condition C, we have the following:

〈H∗′(u + τξ(ν, u), γ), ξ(ν, u)〉 ≥ 0,
〈H∗′(u + τξ(ν, u), γ), ξ(ν, u)〉 ≥ 0.

(30)
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Assume the following:

H∗(τ) = H∗(u + τξ(ν, u), γ),
H∗(τ) = H∗(u + τξ(ν, u), γ),

taking G-derivative w.r.t. τ, then using (30), we have the following:

H∗′(τ) = 〈H∗′(u + τξ(ν, u), γ), ξ(ν, u)〉 ≥ 0,
H∗′(τ) = 〈H∗′(u + τξ(ν, u), γ), ξ(ν, u)〉 ≥ 0,

(31)

Integrating (31) between 0 to 1 w.r.t. τ, we obtain the following:

H∗(1)− H∗(0) ≥ 0,
H∗(1)− H∗(0) ≥ 0,

which implies the following:

H∗(u + ξ(ν, u), γ)−H∗(u, γ) ≥ 0,
H∗(u + ξ(ν, u), γ)−H∗(u, γ) ≥ 0.

From condition (i), we have the following:

H∗(ν, γ)−H∗(u, γ) ≥ 0,
H∗(ν, γ)−H∗(u, γ) ≥ 0,

that is,
H(ν)−̃H(u) � 0̃, ∀ u, ν ∈ Kξ .

Hence, H is a strongly pseudo invex-FM.
If ω = 0, then Theorem 7 reduces to the following result. �

Corollary 3. Let H : Kξ → F0 be a FM on Kξ w.r.t. ξ and Condition C hold [36]. Let H(u) be
G-differentiable on Kξ with the following conditions:

(a) H(u + τξ(ν, u)) � H(ν).
(b) H′(.) is fuzzy pseudomonotone.

Then, H is a pseudo invex-FM.
The fuzzy optimality requirement for G-differentiable strongly preinvex-FMs, which

is the fundamental impetus for our findings, is now discussed.

4. Fuzzy Mixed Variational-like and Integral Inequalities

The variational inequality problem has a close relationship with the optimization
problem, which is a well-known fact in mathematical programming. Similarly, the fuzzy
variational inequality problem and the fuzzy optimization problem have a strong link.

Consider the following unconstrained fuzzy optimization problem:

min
u∈Kξ

H(u),

where Kξ is a subset of R, H : Kξ → F0 and is a FM.
A feasible point is defined, as u ∈ Kξ is called an optimal solution, a global optimal

solution, or simply a solution to the fuzzy optimization problem if u ∈ Kξ and no ν ∈ Kξ ,
H(u) � H(ν).

The fuzzy optimality criterion for G-differentiable preinvex-FMs is discussed in the
following theorems, and this is the fundamental rationale for the results.
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Theorem 8. Let H be a G-differentiable strongly preinvex-FM modulus 0 ≤ ω . If u ∈ Kξ is the
minimum of the FM H , then the following holds:

H(ν)−̃H(u) � ω‖ξ(ν, u)‖2, for all u, ν ∈ Kξ . (32)

Proof: Let u ∈ K be a minimum of H. Then
H(u) � H(ν), for all ν ∈ Kξ .
Therefore, for every γ ∈ [0, 1], we have the following:

H∗(u, γ) ≤ H∗(ν, γ),
H∗(u, γ) ≤ H∗(ν, γ).

(33)

For all u, ν ∈ Kξ , τ ∈ [0, 1], we have the following:

ντ = u + τξ(ν, u) ∈ Kξ

Taking ν = ντ in (33), and dividing by “τ”, we obtain the following:

0 ≤ H∗(u+τξ(ν,u),γ)−H∗(u,γ)
τ ,

0 ≤ H∗(u+τξ(ν,u),γ)−H∗(u,γ)
τ .

Taking limit in the above inequality as τ → 0 , we obtain the following:

0 ≤ 〈H∗′(u, γ), ξ(ν, u)〉,
0 ≤ 〈H∗′(u, γ), ξ(ν, u)〉. (34)

Since H : Kξ → F0 is a G-differentiable strongly preinvex-FM, we have the following:

H∗(u + τξ(ν, u), γ) ≤ (1− τ)H∗(u, γ) + τH∗(ν, γ)− ωτ(1− τ)‖ξ(ν, u)‖2,
H∗(u + τξ(ν, u), γ) ≤ (1− τ)H∗(u, γ) + τH∗(ν, γ)− ωτ(1− τ)‖ξ(ν, u)‖2,

H∗(ν, γ)−H∗(u, γ) ≥ H∗(u+τξ(ν,u),γ)−H∗(u,γ)
τ + ω(1− τ)‖ξ(ν, u)‖2,

H∗(ν, γ)−H∗(u, γ) ≥ H∗(u+τξ(ν,u),γ)−H∗(u,γ)
τ + ω(1− τ)‖ξ(ν, u)‖2,

Again, taking the limit in the above inequality as τ → 0 , we obtain the following:

H∗(ν, γ)−H∗(u, γ) ≥ 〈H∗′(u, γ), ξ(ν, u)〉+ ω‖ξ(ν, u)‖2,
H∗(ν, γ)−H∗(u, γ) ≥ 〈H∗′(u, γ), ξ(ν, u)〉+ ω‖ξ(ν, u)‖2,

from which, using (34), we have the following:

H∗(ν, γ)−H∗(u, γ) ≥ ω‖ξ(ν, u)‖2 ≥ 0,
H∗(ν, γ)−H∗(u, γ) ≥ ω‖ξ(ν, u)‖2 ≥ 0,

that is,
H(ν)−̃H(u) � 0̃.

Hence, the result follows. �

Theorem 9. Let H be a G-differentiable strongly preinvex-FM modulus 0 ≤ ω, and

〈H′(u), ξ(ν, u)〉+̃ω‖ξ(ν, u)‖2 � 0̃, for all u, ν ∈ Kξ , (35)

then u ∈ Kξ is the minimum of the FM H.
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Proof. Let H : Kξ → F0 be a G-differentiable strongly preinvex-FM and u ∈ Kξ satisfies
(35). Then, by Theorem 5, we have the following:

H(ν)−̃H(u) � 〈H′(u), ξ(ν, u)〉+̃ω‖ξ(ν, u)‖2,

Therefore, for every γ ∈ [0, 1], we have the following:

H∗(ν, γ)−H∗(u, γ) ≥ 〈H∗′(u, γ), ξ(ν, u)〉+ ω‖ξ(ν, u)‖2,
H∗(ν, γ)−H∗(u, γ) ≥ 〈H∗′(u, γ), ξ(ν, u)〉+ ω‖ξ(ν, u)‖2,

from which, using (35), we have the following:

H∗(ν, γ)−H∗(u, γ) ≥ 0,
H∗(ν, γ)−H∗(u, γ) ≥ 0,

that is,
H(u) � H(ν).

�

If ω = 0, then Theorem 9 reduces to the following result:

Corollary 4. Let H be a G-differentiable preinvex-FM w.r.t. ξ [32]. Then, u ∈ Kξ is the minimum
of H if, and only if, u ∈ Kξ satisfies the following:

〈H′(u), ξ(ν, u)〉 � 0̃, f or all u, ν ∈ Kξ .

Remark 2. The inequality of the type (35) is called a strongly variational-like inequality. It is very
important to note that the optimality condition of preinvex-FMs cannot be obtained with the help of
(35). So, this idea inspires us to introduce a more general form of a fuzzy variational-like inequality
of which (35) is a special case. To be more unambiguous, for given FM Ψ, bi function ξ(., .) and a
0 ≤ ω, consider the problem of finding u ∈ Kξ , such that the following holds:

〈Ψ(u), ξ(ν, u)〉+̃ω‖ξ(ν, u)‖2 � 0̃, ∀ ν ∈ Kξ . (36)

This inequality is called a strongly fuzzy variational-like inequality.
We look at the functional I(ν) , which is defined as follows:

I(ν) = H(ν)+̃J (ν), ∀ ν ∈ R, (37)

where H is a G-differentiable preinvex-FM and J is a strongly preinvex-FM, which is non-G-
differentiable.

The following theorem shows that the functional I(ν) minimum can be distinguished by a
class of variational-like inequalities.

Theorem 10. Let H : Kξ → F0 be a G-differentiable preinvex-FM and J : Kξ → F0 be a non-G-
differentiable strongly preinvex-FM. Then, the functional I(ν) has minimum u ∈ Kξ , if and only if
u ∈ Kξ satisfies the following:

〈H′(u), ξ(ν, u)〉+̃J (ν)−̃J (u)+̃ω‖ξ(ν, u)‖2 � 0̃, ∀ ν ∈ Kξ . (38)

Proof: Let u ∈ Kξ be the smallest value of I.
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Therefore, for every γ ∈ [0, 1], we have the following:

I∗(u, γ) ≤ I∗(ν, γ),
I∗(u, γ) ≤ I∗(ν, γ).

(39)

Since ντ = u + τξ(ν, u), for all u, ν ∈ Kξ and τ ∈ [0, 1]. Replacing ν by ντ in (39), we
obtain the following:

I∗(u, γ) ≤ I∗(u + τξ(ν, u), γ),
I∗(u, γ) ≤ I∗(u + τξ(ν, u), γ).

which implies that, using (37), the following holds:

H∗(u, γ) + J∗(u, γ) ≤ H∗(u + τξ(ν, u), γ) + J∗(u + τξ(ν, u), γ),
H∗(u, γ) + J ∗(u, γ) ≤ H∗(u + τξ(ν, u), γ) + J ∗(u + τξ(ν, u), γ).

Since J is strongly preinvex-FM, then the following holds:

H∗(u, γ) + J∗(u, γ) ≤ H∗(u + τξ(ν, u), γ) + (1− τ)J∗(u, γ) + τJ∗(ν, γ)

+ωτ(1− τ)‖ξ(ν, u)‖2,
H∗(u, γ) + J ∗(u, γ) ≤ H∗(u + τξ(ν, u), γ) + (1− τ)J ∗(u, γ) + τJ ∗(ν, γ)

+ωτ(1− τ)‖ξ(ν, u)‖2,

that is

0 ≤ H∗(u + τξ(ν, u), γ)−H∗(u, γ) + τ(J∗(ν, γ)−J∗(u, γ)) + ωτ(1− τ)‖ξ(ν, u)‖2,
0 ≤ H∗(u + τξ(ν, u), γ)−H∗(u, γ) + τ(J ∗(ν, γ)−J ∗(u, γ)) + ωτ(1− τ)‖ξ(ν, u)‖2,

Now dividing by “τ” and taking lim
τ→0

, we have the following:

0 ≤ lim
τ→0

{H∗(u+τξ(ν,u),γ)−H∗(u,γ)
τ + J∗(ν, γ)−J∗(u, γ) + ω(1− τ)‖ξ(ν, u)‖2

}
,

0 ≤ lim
τ→0

{H∗(u+τξ(ν,u),γ)−H∗(u,γ)
τ + J ∗(ν, γ)−J ∗(u, γ) + ω(1− τ)‖ξ(ν, u)‖2

}
,

then
0 ≤ 〈H∗′(u, γ), ξ(ν, u)〉+ J∗(ν, γ)−J∗(u, γ) + ω‖ξ(ν, u)‖2,
0 ≤ 〈H∗′(u, γ), ξ(ν, u)〉+ J ∗(ν, γ)−J ∗(u, γ) + ω‖ξ(ν, u)‖2,

that is,
0̃ � 〈H′(u), ξ(ν, u)〉+̃J (ν)−̃J (u)+̃ω‖ξ(ν, u)‖2.

Conversely, let (38) be satisfied to prove that u ∈ Kξ is a minimum of I. Assume that for
all ν ∈ Kξ , we have I(u)−̃I(ν) = H(u)+̃J (u)−̃H(ν)−̃J (ν), = H(u)−̃H(ν)+̃J (u)−̃J (ν),

Therefore, for every γ ∈ [0, 1], we have the following:

I∗(u, γ)− I∗(ν, γ) = H∗(u, γ)−H∗(ν, γ) + J∗(u, γ)−J∗(ν, γ),
I∗(u, γ)− I∗(ν, γ) = H∗(u, γ)−H∗(ν, γ) + J ∗(u, γ)−J ∗(ν, γ).

By Corollary 1, we have the following:

I∗(u, γ)− I∗(ν, γ) ≤ −[〈H∗′(u, γ), ξ(ν, u)〉+ J∗(ν, γ)−J∗(u, γ)],
I∗(u, γ)− I∗(ν, γ) ≤ −[〈H∗′(u, γ), ξ(ν, u)〉+ J ∗(ν, γ)−J ∗(u, γ)],

from which, using (38), we have the following:

I∗(u, γ)− I∗(ν, γ) ≤ −ω‖ξ(ν, u)‖2 ≤ 0,
I∗(u, , γ)− I∗(ν, γ) ≤ −ω‖ξ(ν, u)‖2 ≤ 0,

that is, I(u)−̃I(ν) � 0̃, hence, I(u) � I(ν). �
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Note that (38) are called strongly fuzzy mixed variational-like inequalities. This
result shows that the minimum of fuzzy functional I(ν) can be characterized by a strongly
fuzzy mixed variational-like inequality. It is very important to observe that the optimality
conditions of preinvex-FMs and strongly preinvex-FMs cannot be obtained with the help
of (38). This idea encourages us to introduce a more general type of fuzzy variational-like
inequality of which (38) is a particular case. In order to be more precise, for given FMs
Ψ, �, bi function ξ(., .) and a 0 ≤ ω, consider the problem of finding u ∈ Kξ , such that the
following holds:

〈Ψ(u), ξ(ν, u)〉+̃�(ν)−̃�(u)+̃ω‖ξ(ν, u)‖2 � 0̃, ∀ ν ∈ Kξ . (40)

This inequality is called a strongly fuzzy mixed variational-like inequality.
Now, we look at a few specific types of strongly fuzzy mixed variational-like inequali-

ties:
If ξ(ν, u) = ν − u, then (40) is called a strongly fuzzy mixed variational inequality

such as the following:

〈Ψ(u), ν − u〉+̃�(ν)−̃�(u)+̃ω‖ν − u‖2 � 0̃, ∀ ν ∈ Kξ .

If ω = 0, then (40) is called fuzzy mixed variational-like inequality such as the
following:

〈Ψ(u), ξ(ν, u)〉+̃�(ν)−̃�(u) � 0̃, ∀ ν ∈ Kξ .

If ξ(ν, u) = ν − u and ω = 0, then (40) is called a fuzzy mixed variational inequality
such as the following:

〈Ψ(u), ν − u〉+̃�(ν)−̃�(u) � 0̃, ∀ ν ∈ Kξ .

Similarly, we can obtain a fuzzy variational inequality and fuzzy variational-like
inequality in [32] as special cases of (40). In a similar way, some special cases of strongly
fuzzy variational-like inequality (36) can also be discussed.

Remark 3. The inequalities (36) and (40) show that the variational-like inequalities arise naturally
in connection with the minimization of the G-differentiable preinvex-FMs, subject to certain
constraints.

The Theorem 11 provides the Hermite –Hadamard inequality for strongly preinvex-
FM. This inequality provides a lower and an upper estimation for the average of strongly
preinvex-FM defined on a compact interval.

Theorem 11. Let H : [u, u + ξ(ν, u)] → F0 be a strongly preinvex-FM with H(z) � 0̃ . If H
is fuzzy integrable and ξ(., .) satisfies Condition C, then the following holds:

H
(

2u + ξ(ν, u)
2

)
+̃

ω

12
‖ξ(ν, u)‖2 � 1

ξ(ν, u)
(FR)

∫ u+ξ(ν, u)

u
H(z)dz � H(u) +̃ H(ν)

2
−̃ω

6
‖ξ(ν, u)‖2. (41)

If H is preconcave FM then, inequality (41) reduces to the following inequality:

H
(

2u + ξ(ν, u)
2

)
+̃

ω

12
‖ξ(ν, u)‖2 � 1

ξ(ν, u)
(FR)

∫ u+ξ(ν, u)

u
H(z)dz � H(u) +̃ H(ν)

2
−̃ω

6
‖ξ(ν, u)‖2.

Proof. Let H : [u, u + ξ(ν, u)] → F0 be a strongly preinvex-FM. Then, by hypothesis, we
have the following:

2H
(

2u+ξ(ν, u)
2

)
� H(u + (1− τ)ξ(ν, u))
+̃ H(u + τξ(ν, u))−̃ω

2 (1− 2τ)2‖ξ(ν, u)‖2.
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Therefore, for every γ ∈ (0, 1 ], we have the following:

2H∗
(

2u+ξ(ν, u)‖
2 , γ

)
≤ H∗(u + (1− τ)ξ(ν, u), γ) +H∗(u + τξ(ν, u), γ)

−ω
2 (1− 2τ)2‖ξ(ν, u)‖2

2H∗
(

2u+ξ(ν, u)‖
2 , γ

)
≤ H∗(u + (1− τ)ξ(ν, u), γ) +H∗(u + τξ(ν, u), γ)

−ω
2 (1− 2τ)2‖ξ(ν, u)‖2.

Then

2
1∫

0
H∗

(
2u+ξ(ν, u)

2 , γ
)

dτ ≤
1∫

0
H∗(u + (1− τ)ξ(ν, u), γ)dτ +

1∫
0
H∗(u + τξ(ν, u), γ)dτ

−ω
6 ‖ξ(ν, u)‖2,

2
1∫

0
H∗

(
2u+ξ(ν, u)

2 , γ
)

dτ ≤
1∫

0
H∗(u + (1− τ)ξ(ν, u), γ)dτ +

1∫
0
H∗(u + τξ(ν, u), γ)dτ

−ω
2 ‖ξ(ν, u)‖2.

It follows that

H∗
(

2u+ξ(ν, u)‖
2 , γ

)
+ ω

12‖ξ(ν, u)‖2 ≤ 1
ξ(ν, u)

∫ u+ξ(ν, u)
u H∗(z, γ)dz,

H∗
(

2u+ξ(ν, u)‖
2 , γ

)
+ ω

12‖ξ(ν, u)‖2 ≤ 1
ξ(ν, u)

∫ u+ξ(ν, u)
u H∗(z, γ)dz.

That is[
H∗

(
2u+ξ(ν, u)

2 , γ
)

, H∗
(

2u+ξ(ν, u)
2 , γ

)]
+ ω

12‖ξ(ν, u)‖2

≤I
1

ξ(ν, u)

[∫ u+ξ(ν, u)
u H∗(z, γ)dz,

∫ u+ξ(ν, u)
u H∗(z, γ)dz

]
.

Thus,

H
(

2u + ξ(ν, u)
2

)
+

ω

12
‖ξ(ν, u)‖2 � 1

ξ(ν, u)
(FR)

∫ u+ξ(ν, u)

u
H(z)dz. (42)

In a similar way as above, we have the following:

1
ξ(ν, u)

(FR)
∫ u+ξ(ν, u)

u
H(z)dz � H(u) +̃ H(ν)

2
− ω

6
‖ξ(ν, u)‖2. (43)

Combining (42) and (43), we have the following:

H
(

2u + ξ(ν, u)
2

)
+̃

ω

12
‖ξ(ν, u)‖2 � 1

ξ(ν, u)
(FR)

∫ u+ξ(ν, u)

u
H(z)dz � H(u) +̃ H(ν)

2
−̃ω

6
‖ξ(ν, u)‖2.

This completes the proof. �

Remark 4. If ω = 0, then Theorem 11 reduces to the result for preinvex convex-FM as follows:

H
(

2u + ξ(ν, u)
2

)
� 1

ξ(ν, u)
(FR)

∫ u+ξ(ν, u)

u
H(z)dz � H(u) +̃ H(ν)

2
.

If ξ(ν, u) = ν − u , then Theorem 11 reduces to the result for strongly convex-FM as follows:

H
(

u + ν

2

)
+̃

ω

12
ν − u2 � 1

ν − u
(FR)

∫ ν

u
H(z)dz � H(u) +̃ H(ν)

2
−̃ω

6
‖ν − u‖2.
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If ξ(ν, u) = ν − u and ω = 0, then Theorem 11 reduces to the result for convex-FM in [55]
as follows:

H
(

u + ν

2

)
� 1

ν − u
(FR)

∫ ν

u
H(z)dz � H(u) +̃ H(ν)

2
. (44)

If H∗(u, γ) = H∗(ν, γ) with ω = 0 and γ = 1, then Theorem 11 reduces to the result for
preinvex function as follows (see [36]):

H
(

2u + ξ(ν, u)
2

)
≤ 1

ξ(ν, u)
(R)

∫ u+ξ(ν, u)

u
H(z)dz ≤ H(u) +H(ν)

2
. (45)

If H∗(u, γ) = H∗(ν, γ) with ξ(ν, u) = ν− u, ω = 0 and γ = 1, then Theorem 11 reduces
to the result for convex function as follows (see [42,43]):

H
(

u + ν

2

)
≤ 1

ν − u
(R)

∫ ν

u
H(z)dz ≤ H(u) +H(ν)

2
. (46)

Example 5. We consider the fuzzy-IVF H : [u, u + ξ(ν, u)] = [0, ξ(2, 0)] → F0 defined by the
following:

H(z)(σ) =

⎧⎪⎨⎪⎩
σ

2z2 , σ ∈
[
0, 2z2],

4z2−σ
2z2 , σ ∈

(
2z2, 4z2],

0, otherwise,

Then, for each γ ∈ [0, 1], we have Hγ(z) =
[
2γz2, (4− 2γ)z2]. Since for each γ ∈ [0, 1],

H∗(z, γ) = 2γz2, H∗(z, γ) = (4− 2γ)z2 are preinvex functions w.r.t. ξ(ν, u) = ν − u and
ω = 2

3 γ. Hence H(z) is preinvex fuzzy-IVF w.r.t. ξ(ν, u) = ν − u. We now compute the
following:

H∗
(

2u+ξ(ν, u)
2 , γ

)
+ ω

12‖ξ(ν, u)‖2 = H∗(1, γ) = 8γ
3 ,

1
ξ(ν, u)

∫ u+ξ(ν, u)
u H∗(z, γ)dz = 1

2

∫ 2
0 2γz2dz = 8γ

3 ,

H∗(u,γ)+H∗(ν, γ)
2 − ω

6 ‖ξ(ν, u)‖2 = 32γ
9 ,

for all γ ∈ [0, 1]. That means the following holds:

8γ

3
≤ 8γ

3
≤ 32γ

9
.

Similarly, it can be easily shown that the following holds:

H∗
(

2u + ξ(ν, u)
2

, γ

)
≤ 1

ξ(ν, u)

∫ u+ξ(ν, u)

u
H∗(z, γ)dz ≤ H∗(u, γ) +H∗(ν, γ)

2
.

for all γ ∈ [0, 1], such that we have the following:

H∗
(

2u+ξ(ν, u)
2 , γ

)
+ ω

12 ξ(ν, u)2 = H∗(1, γ) = 36−16γ
9 ,

1
ξ(ν, u)

∫ u+ξ(ν, u)
u H∗(z, γ)dz = 1

2

∫ 2
0 (4− 2γ)z2dz = 8(2−γ)

3 ,

H∗(u, γ)+H∗(ν, γ)
2 − ω

6 ‖ξ(ν, u)‖2 = 72−22γ
9 .

From which, it follows that

36− 16γ

9
≤ 8(2− γ)

3
≤ 72− 22γ

9
,
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that is[
8γ

3
,

36− 16γ

9

]
≤ I

[
8γ

3
,

8(2− γ)

3

]
≤ I

[
32γ

9
,

72− 22γ

9

]
, f or all γ ∈ [0, 1],

and hence, the Theorem 11 is verified.

5. Conclusions

In this study, we introduced and studied a new class of preinvex-FMs called strongly
preinvex-FMs. Using Condition C, we obtained the equivalence relation between strongly
preinvex- and strongly invex-FMs. To characterize the optimality condition of the sum
of preinvex-FMs and strongly preinvex-FMs, we introduced the strong fuzzy mixed
variational-like inequality. Moreover, we established a strong relationship between strongly
preinvex-FM and the Hermite–Hadamard inequality. There is much room for further study
to explore this concept in fuzzy convex and non-convex theory, such as the existence of
a unique solution of strong fuzzy mixed variational-like inequalities and some iterative
algorithms, which can also obtained under some mild conditions. From last two sections,
we can conclude that these classes of FMs will play an important and significant role in
fuzzy optimization and their related areas.
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1. Significance Statement

Quadruple definite integrals are widely used in a vast number of areas spanning
mathematics and physics, from integrating over a four-dimensional volume, integrating
over a Lagrangian density in field theory and four-dimensional Fourier transforms of a
function of spacetime (x, y, z, t).

Some interesting areas where these integrals are used are in asymptotic expansion [1],
calculating the mean distance between two independent points within a circle [2], provid-
ing a classical derivation of the Compton effect [3], the radiation impedance computations
of a square piston in a rigid infinite baffle [4], the acoustic radiation impedance of a rectan-
gular panel [5], the statistical basis for the theory of stellar scintillation [6], modelling in
three dimensions of a guiding center plasma within the purview of gyroelastic magnetohy-
drodynamics [7], and the formulation of an axisymmetric potential problem for a plane
circular electrode [8].

After perusing the current literature, the authors found many applications of quadru-
ple integrals. In some cases these integrals were separable and in some cases asymptotic
expansions were used to attain a solution. To the best of our knowledge the authors were
unable to find quadruple definite integrals involving the logarithmic, exponential and
polynomial functions derived in terms of a closed form solution.

In this present work we provide a formal derivation for a quadruple integral not
present in the current literature. This integral features a kernel with the product of the
logarithmic, exponential and polynomial functions. The log term mixes the variables so
that the integral is not separable except for special values of k.

In this work our goal is to expand upon the current literature of definite quadruple
integrals by providing a formal derivation in terms of the Lerch function.

2. Introduction

In this paper we derive the quadruple definite integral given by∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0
(t + z)−m(x + y)m−1e−p(x+z)−q(t+y) logk

(
a(x + y)

t + z

)
dxdydzdt (1)

where the parameters k, a, p, q and m are general complex numbers. This definite integral
will be used to derive special cases in terms of special functions and fundamental constants.
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The derivations follow the method used by us in [9]. This method involves using a form of
the generalized Cauchy’s integral formula given by

yk

Γ(k + 1)
=

1
2πi

∫
C

ewy

wk+1 dw. (2)

where C is in general an open contour in the complex plane where the bilinear concomitant
has the same value at the end points of the contour. We then multiply both sides by a
function of x, y, z and t, then take a definite quadruple integral of both sides. This yields a
definite integral in terms of a contour integral. Then we multiply both sides of Equation (2)
by another function of x, y, z and t and take the infinite sums of both sides such that the
contour integral of both equations are the same.

3. Definite Integral of the Contour Integral

We use the method in [9]. The variable of integration in the contour integral is
α = w + m. The cut and contour are in the second quadrant of the complex α-plane. The
cut approaches the origin from the interior of the second quadrant and the contour goes
round the origin with zero radius and is on opposite sides of the cut. Using a generalization
of Cauchy’s integral formula we form the quadruple integral by replacing y by log

(
a(x+y)

t+z

)
and multiplying by (t + z)−m(x + y)m−1e−p(x+z)−q(t+y) then taking the definite integral
with respect to x ∈ [0, ∞), y ∈ [0, ∞), z ∈ [0, ∞) and t ∈ [0, ∞) to obtain

1
Γ(k+1)

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0 (t + z)−m(x + y)m−1e−p(x+z)−q(t+y) logk

(
a(x+y)

t+z

)
dxdydzdt

= 1
2πi

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

(∫
C aww−k−1(t + z)−m−w(x + y)m+w−1e−p(x+z)−q(t+y)dw

)
dxdydzdt

= 1
2πi

∫
C

(∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0 aww−k−1(t + z)−m−w(x + y)m+w−1e−p(x+z)−q(t+y)dxdydzdt

)
dw

= 1
2πi

∫
C

πaww−k−1 csc(π(m+w))(p−m−w+1−q−m−w+1)(pm+w−qm+w)
pq(p−q)2 dw

(3)

from Equation (3.1.3.7) in [10] where 0 < Re(w+m) and using the reflection Formula (8.334.3)
in [11] for the Gamma function. We are able to switch the order of integration over α, x, y,
z and t using Fubini’s theorem since the integrand is of bounded measure over the space
C× [0, ∞)× [0, ∞)× [0, ∞)× [0, ∞).

4. The Lerch Function and Infinite Sum of the Contour Integral

In this section we use Equation (2) to derive the contour integral representations for
the Lerch function.

4.1. The Lerch Function

The Lerch function has a series representation given by

Φ(z, s, v) =
∞

∑
n=0

(v + n)−szn (4)

where |z| < 1, v �= 0,−1, . . . and is continued analytically by its integral representation
given by

Φ(z, s, v) =
1

Γ(s)

∫ ∞

0

ts−1e−vt

1− ze−t dt =
1

Γ(s)

∫ ∞

0

ts−1e−(v−1)t

et − z
dt (5)

where Re(v) > 0, and either |z| ≤ 1, z �= 1, Re(s) > 0, or z = 1, Re(s) > 1.

4.2. Derivation of the First Contour Integral

In this section we will derive the contour integral given by

1
2πi

∫
C

πaww−k−1 csc(π(m + w))

p(p − q)2 dw (6)
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Using Equation (2) and replacing y by log(a) + iπ(2y + 1) then multiplying both sides by
− 2iπeiπm(2y+1)

p(p−q)2 taking the infinite sum over y ∈ [0, ∞) and simplifying in terms of the Lerch
function we obtain

−
(2iπ)k+1eiπmΦ

(
e2imπ ,−k, π−i log(a)

2π

)
Γ(k+1)p(p−q)2

= − 1
2πi

∞
∑

y=0

∫
C

2iπaww−k−1eiπ(2y+1)(m+w)

p(p−q)2 dw

= − 1
2πi

∫
C

∞
∑

y=0

2iπaww−k−1eiπ(2y+1)(m+w)

p(p−q)2 dw

= 1
2πi

∫
C

πaww−k−1 csc(π(m+w))
p(p−q)2 dw

(7)

from Equation (1.232.3) in [11] and Im(w + m) > 0 in order for the sum to converge.

4.3. Derivation of the Second Contour Integral

In this section we will derive the contour integral given by

1
2πi

∫
C

πaww−k−1 csc(π(m + w))

q(p − q)2 dw (8)

Using Equation (2) and replacing y with log(a) + iπ(2y + 1) then multiplying both sides
by − 2iπeiπm(2y+1)

q(p−q)2 taking the infinite sum over y ∈ [0, ∞) and simplifying in terms of the
Lerch function we obtain

−
(2iπ)k+1eiπmΦ

(
e2imπ ,−k, π−i log(a)

2π

)
Γ(k+1)q(p−q)2

= − 1
2πi

∞
∑

y=0

∫
C

2iπaww−k−1eiπ(2y+1)(m+w)

q(p−q)2 dw

= − 1
2πi

∫
C

∞
∑

y=0

2iπaww−k−1eiπ(2y+1)(m+w)

q(p−q)2 dw

= 1
2πi

∫
C

πaww−k−1 csc(π(m+w))
q(p−q)2 dw

(9)

from Equation (1.232.3) in [11] and Im(w + m) > 0 in order for the sum to converge.

4.4. Derivation of the Third Contour Integral

In this section we will derive the contour integral given by

− 1
2πi

∫
C

πaww−k−1 pm+w−1q−m−w csc(π(m + w))

(p − q)2 dw (10)

Using Equation (2) and replacing y with log(a) + log(p)− log(q) + iπ(2y + 1) then mul-

tiplying both sides by 2iπpm−1q−meiπm(2y+1)

(p−q)2 taking the infinite sum over y ∈ [0, ∞) and
simplifying in terms of the Lerch function we obtain

(2iπ)k+1eiπm pm−1q−mΦ
(

e2imπ ,−k,−i log(a)−i log(p)+i log(q)+π
2π

)
Γ(k+1)(p−q)2

= 1
2πi

∞
∑

y=0

∫
C

2iπw−k−1 pm−1q−m exp(w(log(a)+log(p)−log(q))+iπ(2y+1)(m+w))
(p−q)2 dw

= 1
2πi

∫
C

∞
∑

y=0

2iπw−k−1 pm−1q−m exp(w(log(a)+log(p)−log(q))+iπ(2y+1)(m+w))
(p−q)2 dw

= − 1
2πi

∫
C

πaww−k−1 pm+w−1q−m−w csc(π(m+w))
(p−q)2 dw

(11)

from Equation (1.232.3) in [11] and Im(w + m) > 0 in order for the sum to converge.
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4.5. Derivation of the Fourth Contour Integral

In this section we will derive the contour integral given by

− 1
2πi

∫
C

πaww−k−1 p−m−wqm+w−1 csc(π(m + w))

(p − q)2 dw (12)

Using Equation (2) and replacing y by log(a)− log(p) + log(q) + iπ(2y + 1) then multiply-

ing both sides by 2iπp−mqm−1eiπm(2y+1)

(p−q)2 taking the infinite sum over y ∈ [0, ∞) and simplifying
in terms of the Lerch function we obtain

(2iπ)k+1eiπm p−mqm−1Φ
(

e2imπ ,−k,−i log(a)+i log(p)−i log(q)+π
2π

)
Γ(k+1)(p−q)2

= 1
2πi

∞
∑

y=0

∫
C

2iπw−k−1 p−mqm−1 exp(w(log(a)−log(p)+log(q))+iπ(2y+1)(m+w))
(p−q)2 dw

= 1
2πi

∫
C

∞
∑

y=0

2iπw−k−1 p−mqm−1 exp(w(log(a)−log(p)+log(q))+iπ(2y+1)(m+w))
(p−q)2 dw

= − 1
2πi

∫
C

πaww−k−1 p−m−wqm+w−1 csc(π(m+w))
(p−q)2 dw

(13)

from Equation (1.232.3) in [11] and Im(w + m) > 0 in order for the sum to converge.

5. Definite Integral in Terms of the Lerch Function

Theorem 1. For all k, a, p, q ∈ C,−1 < Re(m) < 1,

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0 (t + z)−m(x + y)m−1e−p(x+z)−q(t+y) logk( a(x+y)

t+z )dxdydzdt
= 1

(p−q)2 (2iπ)k+1eiπm p−m−1q−m−1(−pmqm(p + q)Φ(e2imπ ,−k, π−i log(a)
2π )+

qp2mΦ(e2imπ ,−k, −i log(a)−i log(p)+i log(q)+π
2π )+

pq2mΦ(e2imπ ,−k, −i log(a)+i log(p)−i log(q)+π
2π ))

(14)

Proof. Since the right-hand side of Equation (3) is equal to the addition of the right-hand
side of Equations (7), (9), (11) and (13) we can equate the left-hand sides and simplify the
gamma function to obtain the stated result.

Corollary 1. ∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

e−p(x+z)−q(t+y) logk(
a(x+y)

t+z )√
t+z

√
x+y

dxdydzdt

= 1
pq(p−q)2 ik22k+1πk+1((p + q)ζ(−k, π−i log(a)

4π )

−(p + q)ζ(−k, 3
4 −

i log(a)
4π )

+
√

p
√

q(−ζ(−k, −i log(a)+i log(p)−i log(q)+π
4π )

+ζ(−k, −i log(a)+i log(p)−i log(q)+3π
4π )

−ζ(−k, −i log(a)−i log(p)+i log(q)+π
4π )

+ζ(−k, −i log(a)−i log(p)+i log(q)+3π
4π )))

(15)

Proof. Use Equation (14) and set m = 1/2 and simplify in terms of the Hurwitz zeta
function ζ(s, v) using entry (4) below the Table in [12].

Corollary 2. ∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0 (t + z)−m(x + y)m−1e−p(x+z)−q(t+y)dxdydzdt

= −πp−m−1q−m−1 csc(πm)(pm−qm)(qpm−pqm)
(p−q)2

(16)

Proof. Use Equation (14) and set k = 0 and simplify using entry (2) below Table in [12].

84



Symmetry 2021, 13, 1638

Corollary 3.∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0 (t + z)−m(x + y)m−1 log( x+y

t+z )e
−p(x+z)−q(t+y)dxdydzdt

= 1
(−1+e2iπm)2(p−q)2 4πe2iπm p−m−1q−m−1(−π cos(πm)(pm − qm)(qpm

−pqm)− sin(πm)(pq2m − qp2m)(log(p)− log(q)))
(17)

Proof. Use Equation (14) and set k = 1 and simplify using entry (3) in the Table below
(64:12:7) [12].

Corollary 4.

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

(t−x−y+z) logk(
x+y
t+z )e

−p(x+z)−q(t+y)
√

t+z(x+y)3/2 dxdydzdt

= 1
p3/2q3/2(p−q)2 ik22k+1πk+1(p + q)(−2

√
p
√

qζ(−k, 1
4 )

+2
√

p
√

qζ(−k, 3
4 ) + pζ(−k, i log(p)−i log(q)+π

4π )

−pζ(−k, i log(p)−i log(q)+3π
4π ) + qζ(−k, −i log(p)+i log(q)+π

4π )

−qζ(−k, −i log(p)+i log(q)+3π
4π ))

(18)

Proof. Use Equation (14) and form a second equation by replacing m → n and take their
difference. Using the resulting equation set m = 1/2, n = −1/2, a = 1 and simplify
in terms of the Hurwitz zeta function ζ(s, v) using entry (4) in the Table below (64:12:7)
in [12].

Lemma 1.∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

e−
t
2 −x− y

2 −z(t−x−y+z)√
t+z(x+y)3/2 log( x+y

t+z )
dxdydzdt

= 3i
(

4π +
√

2
(
−H− 1

4−
i log(2)

4π

+ H− 3
4−

i log(2)
4π

+ 2H− 3
4+

i log(2)
4π

− 2H− 1
4+

i log(2)
4π

)) (19)

Proof. Use Equation (18) apply l’Hopital’s rule to the right-hand side as k → −1 and set
p = 1, q = 1/2 and simplify in terms of the Harmonic number function Hn using Equations
(44:1:1) and (64:4:1) in [12].

Lemma 2.

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0

e−2t−x−2y−z
(

log2
(

x+y
t+z

)
− π2

)
√

t + z
√

x + y
(

log2
(

x+y
t+z

)
+ π2

)2 dxdydzdt = π

(
47
16

−
√

2
log2(2)

)
(20)

and

Lemma 3. ∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

2πe−2t−x−2y−z log( x+y
t+z )√

t+z
√

x+y(log2( x+y
t+z )+π2)

2 dxdydzdt = 0 (21)

Proof. Use Equation (15) and set k = −2, a = −1, p = 1, q = 2 and simplify by rationaliz-
ing the denominator and comparing real and imaginary parts and using Equation (9.521.1)
in [11]. Note the integrand in Equation (21) is highly oscillatory.

Corollary 5.

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

e−p(x+z)−q(t+y)
√

t+z
√

x+y log2(− x+y
t+z )

dxdydzdt =
π

(
p(−p2+26pq+23q2)

(p−q)2
− 48

√
p
√

q
(log(p)−log(q))2

−q

)
24pq(p−q)2

(22)
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Proof. Use Equation (15) and set k = −2, a = −1 and simplify using Equation (9.521.1)
in [11].

Corollary 6.∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

e−t−2x−y−2z(t−x−y+z)√
t+z(x+y)3/2 log( x+y

t+z )
dxdydzdt

= 3
8 i
(

4π +
√

2
(
−H− 1

4−
i log(2)

4π

+ H− 3
4−

i log(2)
4π

+ 2H− 3
4+

i log(2)
4π

− 2H− 1
4+

i log(2)
4π

)) (23)

Proof. Use Equation (14) and form a second equation by replacing m → n and take their
difference. Next, using the resulting equation set k = −1, a = 1, m = 1/2, n = −1/2, p = 2,
q = 1 and simplify using Equations (44:1:1) and (64:4:1) in [12].

Corollary 7.

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

e−2(t+y)−x−z logk(− x+y
t+z )√

t+z
√

x+y
dxdydzdt

= ik2k− 1
2 πk+1(3

√
2ζ(−k) + 2k+1(−ζ(−k, 1

2 −
i log(2)

4π ) + ζ(−k, 1− i log(2)
4π )

−ζ(−k, 1
2 +

i log(2)
4π ) + ζ(−k, 1 + i log(2)

4π )− 3
√

2ζ(−k)))

(24)

Proof. Use Equation (14) and set m = 1/2 and simplify in terms of the Hurwitz zeta
function ζ(s, v) using entry (4) in the Table below (64:12:7) in [12]. Next set a = −1, p =
1, q = 2 and simplify.

Example 1.

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

e−2(t+y)−x−z log(log(− x+y
t+z ))√

t+z
√

x+y
dxdydzdt

= π(log(8) +
√

2(−logΓ(− i log(2)
4π )− logΓ( i log(2)

4π ) + logΓ(− 1
2 −

i log(2)
4π )

+logΓ(− 1
2 +

i log(2)
4π ) + log(π +

log2(2)
4π )− 2 log(log(2))))

+ 1
4 i(3− 2

√
2)π2

(25)

Proof. Use Equation (24) take the first partial derivative with respect to k and set k = 0
and simplify using Equation (64:10:2) in [12]. Note the integrand is highly oscillatory.

Lemma 4. ∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

e−t−2x−y−2z
√

t+z
√

x+y(log2( x+y
t+z )+π2)

dxdydzdt

=
log(64)+

√
2

(
−H

− i log(2)
4π

−H i log(2)
4π

+H
− 1

2 −
i log(2)

4π

+H
− 1

2 +
i log(2)

4π

)
4π

(26)

and

Lemma 5.

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0

e−t−2x−y−2z log
(

x+y
t+z

)
√

t + z
√

x + y
(

log2
(

x+y
t+z

)
+ π2

)dxdydzdt = 0 (27)

Proof. Use Equation (15) apply l’Hopitals’ rule as k → −1 and set a = −1, p = 1, q = 2
and simplify by rationalizing the denominator and comparing real and imaginary parts
and using Equation (9.521.1) in [11].
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Lemma 6. ∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

(log2( x+y
t+z )−π2)e−p(x+z)−q(t+y)

√
t+z

√
x+y(log2( x+y

t+z )+π2)
2 dxdydzdt

=
π

(
− p2

q − (p−q)2
p − 48(p−q)2√

p
√

q(log(p)−log(q))2
+26p+23q

)
24(p−q)4

(28)

and

Lemma 7.

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0

π log
(

x+y
t+z

)
e−p(x+z)−q(t+y)

√
t + z

√
x + y

(
log2

(
x+y
t+z

)
+ π2

)2 dxdydzdt = 0 (29)

Proof. Use Equation (15) set k = −2, a = −1 and simplify using Equation (64:3:5)
in [12].

Lemma 8. ∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

e−2(t+y)−3(x+z)(log2( x+y
t+z )−π2)

√
t+z

√
x+y(log2( x+y

t+z )+π2)
2 dxdydzdt

= 1
24 π

(
715

6 − 8
√

6
log2( 3

2 )

) (30)

Proof. Use Equation (28) set p = 3, q = 2 and simplify. Note the integrand is highly
oscillatory.

Lemma 9.

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0

e−
t
2−x− y

2−z
(

log2
(

x+y
t+z

)
− π2

)
√

t + z
√

x + y
(

log2
(

x+y
t+z

)
+ π2

)2 dxdydzdt = π

(
47
2
− 8

√
2

log2(2)

)
(31)

Proof. Use Equation (28) set p = 1, q = 1/2 and simplify. Note the integrand is highly
oscillatory.

6. Discussion

In the current work, the authors use their contour integration method to derive a
quadruple integral based on the Lerch function that does not exist in the current literature.
The formulae derived in this work use our method [9], which can be used to derive other
quadruple integrals. The authors will use their method in future work to generate more
multiple definite integrals. Wolfram Mathematica was used to verify numerical values of
the parameters in the integral formulae.
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1. Introduction and Preliminaries

Over the last half a century, rapid developments in inequality theory and its appli-
cations have contributed greatly to many branches of mathematics such as linear and
nonlinear analysis, differential equations, finance, statistics, physics, fractional calculus,
and so on; for more details, one can refer to [1–4] and the references therein.

The original Dunkel integral inequality can be stated as follows.

Theorem 1 (original Dunkel integral inequality; see [1–3,5,6]). Let f (x) be a continuous
real-valued function on [a, b] which is not identically zero and satisfies 0 ≤ f (x) ≤ M for all
x ∈ [a, b]. Then

0 <

(∫ b

a
f (x)dx

)2

−
(∫ b

a
f (x) cos xdx

)2

−
(∫ b

a
f (x) sin xdx

)2

≤ 1
12

M2(b − a)2. (1)

There are many ways to prove Dunkel integral inequality (see [1–3,5,6] and references
therein). Some interesting proofs of Dunkel integral inequality are the probabilistic method
(see, e.g., [1]), re-integral method (see [2,3]), and so on.

In fact, if f (x) is a nonnegative continuous real-valued function on [a, b] (here, f is
allowed to be a zero function), then from (1) one deduces the following fascinating concise
inequality: (∫ b

a
f (x) cos xdx

)2

+

(∫ b

a
f (x) sin xdx

)2

≤
(∫ b

a
f (x)dx

)2

. (2)

In 1923, Professor Issai Schur first systematically studied the functions preserving
the ordering of majorization. In Schur’s honor, such functions are named to have “Schur-
convexity”. During the previous more than four decades, majorization theory and Schur-
convexity have been applied widely in many areas of mathematics including integral
inequality, stochastic matrices, rearrangement theory, analytic inequalities, information
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theory, quantum correlations, quantum cryptography, combinatorial optimization, and
other related fields (see, e.g., [7–12]).

Let us recall some basic definitions and notation that will be needed in this paper.

Definition 1 (see [4,8]). Let Ω be a nonempty subset of Rn.

(i) Let x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ Rn. x is said to be majorized by y (in symbols
x ≺ y) if ∑k

i=1 x[i] ≤ ∑k
i=1 y[i] for k = 1, 2, . . . , n − 1 and ∑n

i=1 xi = ∑n
i=1 yi, where

x[1] ≥ · · · ≥ x[n] and y[1] ≥ · · · ≥ y[n] are rearrangements of x and y in a descending order;
(ii) Ω is called convex if αx + βy ∈ Ω for any x, y ∈ Ω and α, β ≥ 0 with α + β = 1;
(iii) Ω is called symmetric if x ∈ Ω implies Px ∈ Ω for every n × n permutation matrix P;
(iv) A function ϕ : Ω → R is called symmetric if for every permutation matrix P, ϕ(Px) = ϕ(x)

for all x ∈ Ω;
(v) A function ϕ : Ω → R is said to be Schur convex on Ω if x ≺ y on Ω implies ϕ(x) ≤ ϕ(y).

ϕ is said to be Schur concave on Ω if and only if −ϕ is Schur convex.

The paper is divided into five sections. In Sections 2 and 3, by applying majorization
theory, we present some new generalized Dunkel type integral inequalities and new Dunkel
(p)-type integral inequalities for p ≥ 2. As applications of our new results, some new
integral inequalities are established in Section 4. Finally, some summary and conclusions
are given in Section 5.

2. Some Generalizations of Dunkel Integral Inequality

The following two known results are important for proving our new theorem.

Lemma 1 (see [4]). Let a ≤ b. Let u(t) := ta + (1 − t)b and v(t) := tb + (1 − t)a for
1
2 ≤ t1 ≤ t2 ≤ 1 or 0 ≤ t1 ≤ t2 ≤ 1

2 . Then(
a + b

2
,

a + b
2

)
≺ (u(t2), v(t2)) ≺ (u(t1), v(t1)) ≺ (a, b).

Lemma 2 (see [4,7]). Let Ω ⊂ Rn be a nonempty convex set and has a nonempty interior set Ω◦.
Let ϕ : Ω → R be continuous on Ω and differentiable in Ω◦. Then, ϕ is a Schur convex (resp.
Schur concave) function, if and only if it is symmetric on Ω and

(x1 − x2)

(
∂ϕ

∂x1
− ∂ϕ

∂x2

)
≥ 0 (resp. ≤ 0)

holds for any x = (x1, · · · , xn) ∈ Ω◦.

Remark 1. It is worth noticing that Lemma 2 is equivalent to the following:
ϕ is a Schur convex (resp. Schur concave) function, if and only if it is symmetric on Ω and

∂ϕ

∂xi
≥ ∂ϕ

∂xi+1
(resp. ≤ 0), i = 1, 2, . . . , n − 1.

for all x ∈ D ∩ Ω, where D = {x : x1 ≥ · · · ≥ xn}.

With the help of Lemmas 1 and 2, we can establish the following crucial result.
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Theorem 2. Let I be an interval of R. Assume that f (x) and g(x) are two nonnegative continuous
real-valued functions on I, and κ(x) and λ(x) are two continuous real-valued functions on I.
Define L : I × I → R by

L(a, b) =
∫ b

a
f (x)dx

∫ b

a
g(x)dx

−
∫ b

a
f (x)κ(x)dx

∫ b

a
g(x)κ(x)dx −

∫ b

a
f (x)λ(x)dx

∫ b

a
g(x)λ(x)dx

for any (a, b) ∈ I × I. Then the following holds:

(i) If κ(x) · κ(b) + λ(x) · λ(b) ≤ 1 and κ(x) · κ(a) + λ(x) · λ(a) ≤ 1 for x, a, b ∈ I, then L is
Schur convex on I × I;

(ii) If κ(x) · κ(b) + λ(x) · λ(b) ≥ 1 and κ(x) · κ(a) + λ(x) · λ(a) ≥ 1 for x, a, b ∈ I, then L is
Schur concave on I × I.

Proof. Obviously, L(a, b) is a symmetric operator for a, b ∈ I. So, without loss of generality,
we may assume that b ≥ a. Since

∂L
∂b

= f (b)
∫ b

a
g(x)dx + g(b)

∫ b

a
f (x)dx

− f (b)κ(b)
∫ b

a
g(x)κ(x)dx − g(b)κ(b)

∫ b

a
f (x)κ(x)dx

− f (b)λ(b)
∫ b

a
g(x)λ(x)dx − g(b)λ(b)

∫ b

a
f (x)λ(x)dx

and

∂L
∂a

=− f (a)
∫ b

a
g(x)dx − g(a)

∫ b

a
f (x)dx

+ f (a)κ(a)
∫ b

a
g(x)κ(x)dx + g(a)κ(a)

∫ b

a
f (x)κ(x)dx

+ f (a)λ(a)
∫ b

a
g(x)λ(x)dx + g(a)λ(a)

∫ b

a
f (x)λ(x)dx,

we have

Δ :=(b − a)
(

∂L
∂b

− ∂L
∂a

)
=( f (a) + f (b))

∫ b

a
g(x)dx + (g(a) + g(b))

∫ b

a
f (x)dx

− ( f (b)κ(b) + f (a)κ(a))
∫ b

a
g(x)κ(x)dx − ( f (b)λ(b) + f (a)λ(a))

∫ b

a
g(x)λ(x)dx

− (g(b)κ(b) + g(a)κ(a))
∫ b

a
f (x)κ(x)dx − (g(b)λ(b) + g(a)λ(a))

∫ b

a
f (x)λ(x)dx

= f (b)
∫ b

a
g(x)(1− κ(b)κ(x)− λ(b)λ(x))dx + f (a)

∫ b

a
g(x)(1− κ(a)κ(x)

− λ(a)λ(x))dx + g(b)
∫ b

a
f (x)(1− κ(b)κ(x)− λ(b)λ(x))dx

+ g(a)
∫ b

a
f (x)(1− κ(a)κ(x)− λ(a)λ(x))dx.

(i) When κ(x) · κ(b) + λ(x) · λ(b) ≤ 1 and κ(x) · κ(a) + λ(x) · λ(a) ≤ 1, we have Δ ≥ 0.
By Lemma 2, L is Schur convex on I × I.
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(ii) When κ(x) · κ(b) + λ(x) · λ(b) ≥ 1 and κ(x) · κ(a) + λ(x) · λ(a) ≥ 1, we have Δ ≤ 0.
By Lemma 2, L is Schur concave on I × I.

The proof is completed.

We now present the following generalized Dunkel type integral inequality which is
one of the main results of this paper.

Theorem 3. Let I be an interval of R. Assume that f (x) and g(x) are two nonnegative continuous
real-valued functions on I, and κ(x) and λ(x) are two continuous real-valued functions on I.
Let u(t) := ta + (1− t)b and v(t) := tb + (1− t)a, for 1

2 ≤ t ≤ 1. Then the following holds:

(i) If κ(x) · κ(b) + λ(x) · λ(b) ≤ 1 and κ(x) · κ(a) + λ(x) · λ(a) ≤ 1 for x, a, b ∈ I, then

∫ b

a
f (x)κ(x)dx

∫ b

a
g(x)κ(x)dx +

∫ b

a
f (x)λ(x)dx

∫ b

a
g(x)λ(x)dx

≤
∫ b

a
f (x)dx

∫ b

a
g(x)dx −

∫ v(t)

u(t)
f (x)dx

∫ v(t)

u(t)
g(x)dx

+
∫ v(t)

u(t)
f (x)κ(x)dx

∫ v(t)

u(t)
g(x)κ(x)dx +

∫ v(t)

u(t)
f (x)λ(x)dx

∫ v(t)

u(t)
g(x)λ(x)dx

≤
∫ b

a
f (x)dx

∫ b

a
g(x)dx;

(ii) If κ(x) · κ(b) + λ(x) · λ(b) ≥ 1 and κ(x) · κ(a) + λ(x) · λ(a) ≥ 1 for x, a, b ∈ I, then

∫ b

a
f (x)κ(x)dx

∫ b

a
g(x)κ(x)dx +

∫ b

a
f (x)λ(x)dx

∫ b

a
g(x)λ(x)dx

≥
∫ b

a
f (x)dx

∫ b

a
g(x)dx −

∫ v(t)

u(t)
f (x)dx

∫ v(t)

u(t)
g(x)dx

+
∫ v(t)

u(t)
f (x)κ(x)dx

∫ v(t)

u(t)
g(x)κ(x)dx +

∫ v(t)

u(t)
f (x)λ(x)dx

∫ v(t)

u(t)
g(x)λ(x)dx

≥
∫ b

a
f (x)dx

∫ b

a
g(x)dx.

Proof. We only show case (i) and a similar argument could be made for the case (ii). Define
L : I × I → R by

L(a, b) =
∫ b

a
f (x)dx

∫ b

a
g(x)dx

−
∫ b

a
f (x)κ(x)dx

∫ b

a
g(x)κ(x)dx −

∫ b

a
f (x)λ(x)dx

∫ b

a
g(x)λ(x)dx

for any (a, b) ∈ I × I. If κ(x) · κ(b) + λ(x) · λ(b) ≤ 1 and κ(x) · κ(a) + λ(x) · λ(a) ≤ 1 for
x, a, b ∈ I, by applying Theorem 2 (i), we show that L is Schur convex on I × I. On the
other hand, by using Lemma 1, we get

L(a, b) ≥ L(u(t), v(t)) ≥ L
(

a + b
2

,
a + b

2

)
= 0.
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Hence, we obtain∫ b

a
f (x)dx

∫ b

a
g(x)dx −

∫ b

a
f (x)κ(x)dx

∫ b

a
g(x)κ(x)dx

−
∫ b

a
f (x)λ(x)dx

∫ b

a
g(x)λ(x)dx

≥
∫ v(t)

u(t)
f (x)dx

∫ v(t)

u(t)
g(x)dx −

∫ v(t)

u(t)
f (x)κ(x)dx

∫ v(t)

u(t)
g(x)κ(x)dx

−
∫ v(t)

u(t)
f (x)λ(x)dx

∫ v(t)

u(t)
g(x)λ(x)dx

≥ 0,

which implies

∫ b

a
f (x)κ(x)dx

∫ b

a
g(x)κ(x)dx +

∫ b

a
f (x)λ(x)dx

∫ b

a
g(x)λ(x)dx

≤
∫ b

a
f (x)dx

∫ b

a
g(x)dx −

∫ v(t)

u(t)
f (x)dx

∫ v(t)

u(t)
g(x)dx

+
∫ v(t)

u(t)
f (x)κ(x)dx

∫ v(t)

u(t)
g(x)κ(x)dx +

∫ v(t)

u(t)
f (x)λ(x)dx

∫ v(t)

u(t)
g(x)λ(x)dx

≤
∫ b

a
f (x)dx

∫ b

a
g(x)dx.

The proof is completed.

As a direct consequence of Theorem 3, we can obtain the following generalized Dunkel
integral inequality.

Theorem 4 (Generalized Dunkel integral inequality). Let f (x) and g(x) be two nonnegative
continuous real-valued functions on [a, b] and m be any real number. Then

(∫ b

a
f (x) cos mxdx

)(∫ b

a
g(x) cos mxdx

)
+

(∫ b

a
f (x) sin mxdx

)(∫ b

a
g(x) sin mxdx

)
(3)

≤
(∫ b

a
f (x)dx

)(∫ b

a
g(x)dx

)
.

Proof. In theorem 3, we take I = [a, b], κ(x) = cos mx, and λ(x) = sin mx for x ∈ I. Thus,
κ(x) and λ(x) are two continuous real-valued functions on I. Clearly, we have

κ(x) · κ(b) + λ(x) · λ(b) = cos mx · cos mb + sin mx · sin mb

= cos m(b − x) ≤ 1

and

κ(x) · κ(a) + λ(x) · λ(a) = cos mx · cos ma + sin mx · sin ma

= cos m(a − x) ≤ 1.

Thus, all the assumptions of Theorem 3 (i) are satisfied. Therefore the desired conclu-
sion follows immediately from Theorem 3.

The following generalized Dunkel integral inequality is an immediate consequence of
Theorem 4.
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Corollary 1 (Generalized Dunkel integral inequality). Let f (x) be a continuous nonnegative
real-valued function on [a, b] and m be any real number. Then(∫ b

a
f (x) cos mxdx

)2

+

(∫ b

a
f (x) sin mxdx

)2

≤
(∫ b

a
f (x)dx

)2

. (4)

Remark 2. It is worth noticing that inequality (3) in Theorem 4 and inequality (4) in Corollary 1
are real generalizations of inequality (2).

3. A New Dunkel (p)-Type Integral Inequality for p ≥ 2

In this section, we will present a new Dunkel (p)-type integral inequality for p ≥ 2.
In order to prove our results, we need the following important auxiliary lemma.

Lemma 3. Let k ∈ N∪ {0}. Denote Ik :=
[
2kπ, 2kπ + π

2
]
. Assume that f (x) is a nonnegative

continuous real-valued function on Ik. Define M : Ik × Ik → R by

M(a, b) =
[
(b − a)

∫ b

a
f (x) sin xdx

]p

+

[
(b − a)

∫ b

a
f (x) cos xdx

]p

−
[
(b − a)

∫ b

a
f (x)dx

]p

for (a, b) ∈ Ik × Ik. If p ≥ 2, then M is Schur concave on Ik × Ik.

Proof. It is obvious that M(a, b) is symmetric for a, b. Hence, without loss of generality,
we may assume that b ≥ a. By Corollary 1, we have

∂M
∂b

= p
[
(b − a)

∫ b

a
f (x) sin xdx

]p−1[∫ b

a
f (x) sin xdx + (b − a) f (b) sin b

]
+ p

[
(b − a)

∫ b

a
f (x) cos xdx

]p−1[∫ b

a
f (x) cos xdx + (b − a) f (b) cos b

]
− p

[
(b − a)

∫ b

a
f (x)dx

]p−1[∫ b

a
f (x)dx + (b − a) f (b)

]
= p(b − a)p−1

[∫ b

a
f (x) sin xdx

]p−2

×
[(∫ b

a
f (x) sin xdx

)2

+ (b − a) f (b) sin b
∫ b

a
f (x) sin xdx

]

+ p(b − a)p−1
[∫ b

a
f (x) cos xdx

]p−2

×
[(∫ b

a
f (x) cos xdx

)2

+ (b − a) f (b) cos b
∫ b

a
f (x) cos xdx

]

− p(b − a)p−1
[∫ b

a
f (x)dx

]p−2
[(∫ b

a
f (x)dx

)2

+ (b − a) f (b)
∫ b

a
f (x)dx

]
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≤ p(b − a)p−1
(∫ b

a
f (x)dx

)p−2

×
[(∫ b

a
f (x) sin xdx

)2

+

(∫ b

a
f (x) cos xdx

)2

−
(∫ b

a
f (x)dx

)2

+(b − a) f (b)
∫ b

a
f (x)(sin b · sin x + cos b · cos x − 1)dx

]
= p(b − a)p−1

(∫ b

a
f (x)dx

)p−2

×
[(∫ b

a
f (x) sin xdx

)2

+

(∫ b

a
f (x) cos xdx

)2

−
(∫ b

a
f (x)dx

)2

+(b − a) f (b)
∫ b

a
f (x)(cos(b − x))− 1)dx

]
≤ 0

and

∂M
∂a

= p
[
(b − a)

∫ b

a
f (x) sin xdx

]p−1[
−

∫ b

a
f (x) sin xdx − (b − a) f (a) sin a

]
+ p

[
(b − a)

∫ b

a
f (x) cos xdx

]p−1[
−

∫ b

a
f (x) cos xdx − (b − a) f (a) cos a

]
− p

[
(b − a)

∫ b

a
f (x)dx

]p−1[
−

∫ b

a
f (x)dx − (b − a) f (a)

]
= −p(b − a)p−1

[∫ b

a
f (x) sin xdx

]p−2

×
[(∫ b

a
f (x) sin xdx

)2

+ (b − a) f (a) sin a
∫ b

a
f (x) sin xdx

]

− p(b − a)p−1
[∫ b

a
f (x) cos xdx

]p−2

×
[(∫ b

a
f (x) cos xdx

)2

+ (b − a) f (a) cos a
∫ b

a
f (x) cos xdx

]

+ p(b − a)p−1
[∫ b

a
f (x)dx

]p−2
[(∫ b

a
f (x)dx

)2

+ (b − a) f (a)
∫ b

a
f (x)dx

]

≥ −p(b − a)p−1
(∫ b

a
f (x)dx

)p−2

×
[(∫ b

a
f (x) sin xdx

)2

+

(∫ b

a
f (x) cos xdx

)2

−
(∫ b

a
f (x)dx

)2

+(b − a) f (a)
∫ b

a
f (x)(sin a · sin x + cos a · cos x − 1)dx

]
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= −p(b − a)p−1
(∫ b

a
f (x)dx

)p−2

×
[(∫ b

a
f (x) sin xdx

)2

+

(∫ b

a
f (x) cos xdx

)2

−
(∫ b

a
f (x)dx

)2

+(b − a) f (a)
∫ b

a
f (x)(cos(a − x))− 1)dx

]
≥ 0,

which deduce

Δ
′

:= (b − a)
(

∂M
∂b

− ∂M
∂a

)
≤ 0.

By Lemma 2, M is Schur concave on Ik × Ik. The proof is completed.

The following result is a new Dunkel (p)-type integral inequality for p ≥ 2.

Theorem 5. Let k ∈ N∪ {0}. Denote Ik :=
[
2kπ, 2kπ + π

2
]
. Assume that f (x) is a nonnegative

continuous real-valued function on Ik. If p ≥ 2 and [a, b] ⊆ Ik, then(∫ b

a
f (x) cos xdx

)p

+

(∫ b

a
f (x) sin xdx

)p

≤
(∫ b

a
f (x)dx

)p

.

Proof. Define M : Ik × Ik → R by

M(a, b) =
[
(b − a)

∫ b

a
f (x) sin xdx

]p

+

[
(b − a)

∫ b

a
f (x) cos xdx

]p

−
[
(b − a)

∫ b

a
f (x)dx

]p

for (a, b) ∈ Ik × Ik. By Lemmas 1 and 3, we obtain

M(a, b) ≤ M
(

a + b
2

,
a + b

2

)
= 0,

which means that(∫ b

a
f (x) cos xdx

)p

+

(∫ b

a
f (x) sin xdx

)p

≤
(∫ b

a
f (x)dx

)p

.

The following result is immediate from Theorem 5.

Corollary 2. Let n ∈ N. Let k1, k2, · · · , kn ∈ N ∪ {0}. Assume that fi(x) is a nonnegative
continuous real-valued function on

[
2kiπ, 2kiπ + π

2
]

and [ai, bi] ⊆
[
2kiπ, 2kiπ + π

2
]

for any
1 ≤ i ≤ n. If p ≥ 2, then

n

∑
i=1

(∫ bi

ai

fi(x) cos xdx
)p

+
n

∑
i=1

(∫ bi

ai

fi(x) sin xdx
)p

≤
n

∑
i=1

(∫ bi

ai

fi(x)dx
)p

.

4. Some New Integral Inequalities

In this section, we will provide some new integral inequalities by applying our main
results.
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Lemma 4 (Bessel inequality; see [1]). Let f (x) be a continuous or a piecewise continuous
nonnegative function on [0, 2π]. The Fourier series of f (x) is

a0

2
+

∞

∑
m=1

(am cos mx + bm sin mx),

where a0 = 1
π

∫ 2π
0 f (x)dx, am = 1

π

∫ 2π
0 f (x) cos mxdx, and bm = 1

π

∫ 2π
0 f (x) sin mxdx,

for m ∈ N. Then
a2

0
2
+

n

∑
m=1

(a2
m + b2

m) ≤
1
π

∫ 2π

0
f 2(x)dx.

Lemma 5 (see [1]). Let f (x) be a nonnegative integrable concave function on [a, b]. If p ≥ 1, then

∫ b

a
f p(x)dx ≤ 2p

(b − a)p−1(p + 1)

(∫ b

a
f (x)dx

)p

.

Theorem 6. Let f (x) be a nonnegative continuous concave function on [0, 2π]. Then(∫ 2π

0
f (x) sin xdx

)2

+

(∫ 2π

0
f (x) cos xdx

)2

≤ 4
9π2

(∫ 2π

0
f (x)dx

)2

.

Proof. Using the notations in Lemma 4 and applying Theorem 4, we get

n

∑
m=1

(a2
m + b2

m) ≤ na2
0. (5)

By combining (5) with Bessel inequality (see Lemma 4), we obtain

n

∑
m=1

(a2
m + b2

m) ≤ 2n

(
1
π

∫ 2π

0
f 2(x)dx −

n

∑
m=1

(a2
m + b2

m)

)

which implies
n

∑
m=1

(a2
m + b2

m) ≤
2n

(2n + 1)π

∫ 2π

0
f 2(x)dx.

Let n = 1. By applying Lemma 5, we obtain(∫ 2π

0
f (x) sin xdx

)2

+

(∫ 2π

0
f (x) cos xdx

)2

≤ 2
3π

∫ 2π

0
f 2(x)dx

≤ 4
9π2

(∫ 2π

0
f (x)dx

)2

.

The proof is completed.

Theorem 7. Let f (x) be a nonnegative continuous function on [a, b]. If 0 < a ≤ x ≤ b < π
2 ,

then(∫ b

a
f (x) tan xdx

)2

+

(∫ b

a
f (x) cot xdx

)2

≥ 2
(∫ b

a
f (x)dx

)2

+

(∫ v(t)

u(t)
f (x) tan xdx

)2

+

(∫ v(t)

u(t)
f (x) cot xdx

)2

− 2
(∫ v(t)

u(t)
f (x)dx

)2

≥ 2
(∫ b

a
f (x)dx

)2

,
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where u(t) = ta + (1− t)b and v(t) = tb + (1− t)a, for 1
2 ≤ t ≤ 1.

Proof. Let κ(x) =
√

2
2 tan x and λ(x) =

√
2

2 cot x for x ∈ [a, b]. By the arithmetic mean-
geometric mean (AM-GM) inequality, we have

κ(x) · κ(b) + λ(x) · λ(b) =
1
2

tan x · tan b +
1
2

cot x · cot b

≥(tan x · tan b · cot x · cot b)
1
2 = 1.

In the same way, we also have κ(x) · κ(a) + λ(x) · λ(a) ≥ 1. By Theorem 2 (ii),
we obtain (∫ b

a
f (x)

√
2 tan x

2
dx

)2

+

(∫ b

a
f (x)

√
2 cot x

2
dx

)2

≥
(∫ b

a
f (x)dx

)2

+

(∫ v(t)

u(t)
f (x)

√
2 tan x

2
dx

)2

+

(∫ v(t)

u(t)
f (x)

√
2 cot x

2
dx

)2

−
(∫ v(t)

u(t)
f (x)dx

)2

≥
(∫ b

a
f (x)dx

)2

,

which deduces (∫ b

a
f (x) tan xdx

)2

+

(∫ b

a
f (x) cot xdx

)2

≥2
(∫ b

a
f (x)dx

)2

+

(∫ v(t)

u(t)
f (x) tan xdx

)2

+

(∫ v(t)

u(t)
f (x) cot xdx

)2

− 2
(∫ v(t)

u(t)
f (x)dx

)2

≥2
(∫ b

a
f (x)dx

)2

.

The proof is completed.

Theorem 8. Let 0 ≤ a < b ≤ 1 and f (x) be a nonnegative continuous function on [a, b]. If β ≥ 1
2 ,

then (∫ b

a
xβ f (x)dx

)2

+

(∫ b

a
(1− x)β f (x)dx

)2

≤
(∫ b

a
f (x)dx

)2

. (6)

Proof. Let κ(x) = xβ and λ(x) = (1 − x)β for x ∈ [a, b]. For any x ∈ [a, b], since β ≥ 1
2 ,

we have

κ(x) · κ(b) + λ(x) · λ(b) = xβ · bβ + (1− x)β · (1− b)β

≤ x
1
2 · b

1
2 + (1− x)

1
2 · (1− b)

1
2

≤ x + b + 1− x + 1− b
2

= 1.

In the same way, we can also show that κ(x) · κ(a) + λ(x) · λ(a) ≤ 1 for x ∈ [a, b].
Therefore, the desired inequality (6) follows immediately from Theorem 2 (i).
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Theorem 9. Let p ≥ 1 and 0 ≤ a < b ≤ 1. Assume that f (x) is a nonnegative continuous func-
tion on [a, b]. If f (x) is decreasing and x f (x) is increasing, or f (x) is increasing and (1− x) f (x)
is decreasing, then

2mp
(∫ b

a
f (x)dx

)2

≤
(∫ b

a
xp f (x)dx

)2

+

(∫ b

a
(1− x)p f (x)dx

)2

≤
(∫ b

a
f (x)dx

)2

, (7)

where m := min{a(1− a), b(1− b)}.

Proof. From Theorem 8, we know that the right side of the desired inequality (7) holds.
Next, we verify that the left side of desired inequality (7) also holds. By the AM-GM
inequality, we have(∫ b

a
xp f (x)dx

)2

+

(∫ b

a
(1− x)p f (x)dx

)2

≥ 2
∫ b

a
xp f (x)dx

∫ b

a
(1− x)p f (x)dx.

Let ϕ(x) = xp f (x) and μ(x) = (1− x)p f (x) for x ∈ [a, b]. Thus, we get

ϕ′(x) = xp−1(p f (x) + x f ′(x))

and
μ′(x) = (1− x)p−1[−p f (x) + (1− x) f ′(x)].

Since p ≥ 1, if f (x) is decreasing and x f (x) is increasing, we obtain ϕ′(x) ≥ 0 and
μ′(x) ≤ 0. Similarly, if f (x) is increasing and (1 − x) f (x) is decreasing, we also have
ϕ′(x) ≥ 0 and μ′(x) ≤ 0. By the Chebyshev inequality, we have(∫ b

a
xp f (x)dx

)2

+

(∫ b

a
(1− x)p f (x)dx

)2

≥ 2
∫ b

a
xp f (x)dx

∫ b

a
(1− x)p f (x)dx

≥ 2(b − a)
∫ b

a
[x(1− x)]p f (x)dx.

Since h(x) = x(1 − x) is concave, h attains its minimum value h(a) or h(b). Due to
m = min{a(1− a), b(1− b)}, we obtain(∫ b

a
xp f (x)dx

)2

+

(∫ b

a
(1− x)p f (x)dx

)2

≥2(b − a)
∫ b

a
[x(1− x)]p f (x)dx

≥2(b − a)mp
∫ b

a
f 2(x)dx

≥2mp
(∫ b

a
f (x)dx

)2

.

The proof is completed.

5. Conclusions

In this paper, we establish the following two important main results for the generalized
Dunkel type integral inequality:
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• (Generalized Dunkel integral inequality; see Theorem 4.)

Let f (x) and g(x) be two nonnegative continuous real-valued functions on [a, b] and
m be any real number. Then(∫ b

a
f (x) cos mxdx

)(∫ b

a
g(x) cos mxdx

)
+

(∫ b

a
f (x) sin mxdx

)(∫ b

a
g(x) sin mxdx

)
≤

(∫ b

a
f (x)dx

)(∫ b

a
g(x)dx

)
.

• (Dunkel (p)-type integral inequality for p ≥ 2; see Theorem 5.)

Let k ∈ N ∪ {0}. Denote Ik :=
[
2kπ, 2kπ + π

2
]
. Assume that f (x) is a nonnegative

continuous real-valued function on Ik. If p ≥ 2 and [a, b] ⊆ Ik, then(∫ b

a
f (x) cos xdx

)p

+

(∫ b

a
f (x) sin xdx

)p

≤
(∫ b

a
f (x)dx

)p

.

As applications of our new results, some new integral inequalities are presented in
Section 4.
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Abstract: In this article, by utilizing the theory of quantum (or q-) calculus, we define a new subclass
of analytic and multivalent (or p-valent) functions class Ap, where class Ap is invariant (or symmetric)
under rotations. The well-known class of Janowski functions are used with the help of the principle
of subordination between analytic functions in order to define this subclass of analytic and p-valent
functions. This function class generalizes various other subclasses of analytic functions, not only
in classical Geometric Function Theory setting, but also some q-analogue of analytic multivalent
function classes. We study and investigate some interesting properties such as sufficiency criteria,
coefficient bounds, distortion problem, growth theorem, radii of starlikeness and convexity for this
newly-defined class. Other properties such as those involving convex combination are also discussed
for these functions. In the concluding part of the article, we have finally given the well-demonstrated
fact that the results presented in this article can be obtained for the (p, q)-variations, by making some
straightforward simplification and will be an inconsequential exercise simply because the additional
parameter p is obviously unnecessary.

Keywords: analytic functions; multivalent (or p-valent) functions; differential subordination; q-
derivative (or q-difference) operator

MSC: Primary 30C45; 30C50; 30C80; Secondary 11B65; 47B38

1. Introduction, Definitions and Motivation

The calculus without the notion of limits, which is known as the quantum (or q-)
calculus, has influenced many scientific fields due to its important applications. The
generalizations of the derivative and integral operators in q-calculus, which are known as
the q-derivative and q-integral operators, were introduced and studied by Jackson [1,2].

Recently, Anastassiu [3] and Aral [4] generalized some complex-valued operators,
which are known as the q-Picard and q-Gauss–Weierstrass singular integral operators.
Geometric Function Theory is no exception in this regard and many authors have already

Symmetry 2021, 13, 1275. https://doi.org/10.3390/sym13071275 https://www.mdpi.com/journal/symmetry101
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made a substantial contribution to the field of Complex Analysis. Ismail et al. (see [5])
presented the q-deformation of the familiar class S∗ of starlike functions. However, in
the context of Geometric Function Theory in 1989, the usage of the q-difference (or the
q-derivative) operator Dq was systematically given by Srivastava [6]. Furthermore, the
survey-cum-expository review article by Srivastava [7] is potentially useful for those who
are interested in Geometric Function Theory. In this review article, many various applica-
tions of the the fractional q-calculus, in Geometric Function Theory were systematically
highlighted. Moreover, the triviality of the so-called (p, q)-calculus involving an obviously
redundant and inconsequential additional parameter p was revealed and exposed (see, for
details, [7], p. 340).

Based on the aforementioned works [5,7], a number of researches got inspiration
to gave and their finding to Geometric Function Theory of Complex Analysis. For ex-
ample, Srivastava and Bansal [8] used the q-derivatives and gave close-to-convexity for
certain Mittag-Leffer type functions. Kanas and Răducanu [9] defined the q-analogue of the
Ruscheweyh derivative operator and they discussed its various important properties. The
applications of this q-derivative operator were further studied by Mahmood and Sokół [10].
More recently, Srivastava et al. [11,12] first defined certain subclasses of q-starlike func-
tions and then studied their various properties including for example some coefficient
inequalities, inclusion properties, and a number of sufficient conditions. Moreover, the
subclasses of q-starlike functions associated with the Janwoski or some other functions
have been studied by the many authors (see, for example, [13–20]). For some more recent
investigations based upon the q-calculus, we may refer the interested reader to the works
in [21–38]. Our present research is a continuation of some of these earlier developments. It
is fairly general in its nature as it not only generalizes many known classes, but also gives
a different direction to the study of such classes.

In this article, we are essentially motivated by the recently published paper of
Khan et al. in Symmetry (see [27]) and some other related works on this subject, which
we have mentioned above. We first introduce a new subclass of analytic and multiva-
lent (or p-valent) functions by using the concept of the q-calculus in association with the
Janowski functions. We then study some of its geometric properties such as sufficiency
criteria, coefficient bounds, radii problems, distortion theorem and growth theorem, and so
on. Before stating and proving our main results, we give a brief discussion on the basics of
this area which will be beneficial in understanding the work to follow.

Let Ap be the class of analytic and multivalent (or p-valent) functions f (z) in the open
unit disk

D = {z : z ∈ C and |z| < 1},

with the series representation given by

f (z) = zp +
∞

∑
n=1

an+pzn+p (z ∈ D; p ∈ N := {1, 2, 3, · · · }). (1)

We note for p = 1 that
A(1) = A,

where A is the familiar class of normalized analytic functions in D and the class A is
invariant (or symmetric) under rotations.

For analytic functions f and g in open unit disk D, the function f is said to subordinate
to the function g and written as

f ≺ g or f (z) ≺ g(z),

if there exists a Schwarz function w, which is analytic in D with

w(0) = 0 and |w(z)| < 1,
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such that
f (z) = g

(
w(z)

)
.

Furthermore, if the function g is univalent in D, then it follows that

f (z) ≺ g(z) (z ∈ D) =⇒ f (0) = g(0) and f (D) ⊂ g(D).

Definition 1. Let the Υ(z) is analytic in D with Υ(0) = 1 then Υ(z) said to be in the class
P [A, B], if

Υ(z) ≺ 1 + Az
1 + Bz

(1 � B < A � 1).

Equivalently, we can write ∣∣∣∣ Υ(z)− 1
A − BΥ(z)

∣∣∣∣ < 1.

The class P [A, B] was introduced by Janowski [39].

Definition 2. Let q ∈ (0, 1) and define the q-number [λ]q by

[λ]q =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1− qλ

1− q
(λ ∈ C)

n−1
∑

k=0
qk = 1 + q + q2 + · · ·+ qn−1 (λ = n ∈ N).

The q-derivative operator Dq, also known as the q-difference operator, for a function f
is defined by

Dq f (z) =
f (z)− f (qz)

z(1− q)
(z �= 0), (2)

where 0 < q < 1. One can easily see for n ∈ N and z ∈ D that

Dq

{
∞

∑
n=1

anzn

}
=

∞

∑
n=1

[n]qanzn−1, (3)

where

[n]q =
1− qn

1− q
= 1 +

n−1

∑
l=1

ql and [0]q = 0.

Motivated by the above-cited works in [39–44], we now define a new subclass
Sq(p, α, A, B) of Ap as follows.

Definition 3. A function f ∈ Ap is said to be in the class Sq(p, α, A, B), if it satisfies the following
subordination condition:

1
1− α

(
zDq f (z)
[p]q f (z)

− α
z2D2

q f (z)
[p]q[p − 1]q f (z)

)
≺ 1 + Az

1 + Bz
(4)

or, equivalently, ∣∣∣∣∣∣∣∣
zDq f (z)
[p]q f (z) − α

z2D2
q f (z)

[p]q [p−1]q f (z) − (1− α)

(1− α)A − B
(

zDq f (z)
[p]q f (z) − α

z2D2
q f (z)

[p]q [p−1]q f (z)

)
∣∣∣∣∣∣∣∣ < 1, (5)

where −1 � B < A � 1, α � 0 and q ∈ (0, 1).
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Remark 1. First of all, it is easily seen that

lim
q→1−

Sq(1, 0, A, B) = S∗[A, B],

where S∗[A, B] is the function class introduced and studied by Janowski [39]. Secondly, we have

Sq(1, 0, A, B) = S∗
q [A, B],

where S∗
q [A, B] is the function class introduced and studied by Srivastava et al. [19]. Thirdly,

we have
lim

q→1−
Sq(1, 0, 1,−1) = S∗,

where S∗ is the well-known class of starlike functions.

For proving our main results we will need the following lemma due to Rogosinski [45].

Lemma 1. (see [45]) Let the function h(z) be given by

h(z) = 1 +
∞

∑
n=1

dnzn

and let another function k(z) be given by

k(z) = 1 +
∞

∑
n=1

knzn.

Suppose also that
h(z) ≺ k(z) (z ∈ D).

If k(z) is univalent in D and k(D) is convex, then

|dn| � |k1| (n � 1).

2. The Main Results and Their Consequences

This section is devoted to our main results. Throughout our discussion, we assume that

−1 � B < A � 1 and q ∈ (0, 1)

and that
λ1 = [p − 1]q and λ2 = [p + n]q. (6)

Theorem 1. Let f ∈ Ap be of the form (1). Then the function f ∈ Sq(p, α, A, B), if and only if
the following inequality holds true:

∞

∑
n=1

(
(1 + B)

(
λ1λ2 + αλ2[p + n − 1]q

)
+ (1− α)(1 + A)[p]qλ1

)∣∣an+p
∣∣

� (1− α)(A − B)[p]qλ1, (7)

where λ1 and λ2 are given in (6).
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Proof. Let us suppose that the inequality in (7) holds true. Then, in order to show that
f ∈ Sq(p, α, A, B), we only need to prove the inequality (5). For this purpose, we consider∣∣∣∣∣∣∣∣

zDq f (z)
[p]q f (z) − α

z2D2
q f (z)

[p]qλ1 f (z) − (1− α)

(1− α)A − B
(

zDq f (z)
[p]q f (z) − α

z2D2
q f (z)

[p]qλ1 f (z)

)
∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣
λ1zDq f (z)− αz2D2

q f (z)− (1− α)[p]qλ1 f (z)

A(1− α)[p]qλ1 f (z)− B
(

λ1zDq f (z)− αz2D2
q f (z)

)
∣∣∣∣∣∣.

Now, with the help of (1)–(3), and after some simplification, the above equation can
be written as follows:∣∣∣∣∣∣

∑∞
n=1

(
λ1λ2 − αλ2[p + n − 1]q − (1− α)[p]qλ1

)
an+pzn+p

(A − B)(1− α)[p]qλ1zp + ∑∞
n=1 Λq(λ1, λ2)an+pzn+p

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑∞

n=1

(
λ1λ2 − αλ2[p + n − 1]q − (1− α)[p]qλ1

)
an+pzn

(A − B)(1− α)[p]qλ1 + ∑∞
n=1 Λq(λ1, λ2)an+pzn

∣∣∣∣∣∣
�

∑∞
n=1

(
λ1λ2 + αλ2[p + n − 1]q + (1− α)[p]qλ1

)∣∣an+p
∣∣

(A − B)(1− α)[p]qλ1 − ∑∞
n=1 Λq(λ1, λ2)

∣∣an+p
∣∣

� 1,

where
Λq(λ1, λ2) = A(1− α)[p]qλ1 − Bλ2

(
λ1 − Bα[p + n − 1]q

)
.

This last inequality can be rewritten as follows:∣∣∣∣∣∣
∑∞

n=1

(
λ1λ2 − αλ2[p + n − 1]q − (1− α)[p]qλ1

)
an+pzn+p

(A − B)(1− α)[p]qλ1zp + ∑∞
n=1 Λq(λ1, λ2)an+pzn+p

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑∞

n=1

(
λ1λ2 − αλ2[p + n − 1]q − (1− α)[p]qλ1

)
an+pzn

(A − B)(1− α)[p]qλ1 + ∑∞
n=1 Λq(λ1, λ2)an+pzn

∣∣∣∣∣∣
�

∑∞
n=1

(
λ1λ2 + αλ2[p + n − 1]q + (1− α)[p]qλ1

)∣∣an+p
∣∣

(A − B)(1− α)[p]qλ1 − ∑∞
n=1 Λq(λ1, λ2)

∣∣an+p
∣∣

< 1,

where we have used the inequality (7). This completes the direct part of the result asserted
by Theorem 1.

Conversely, let f ∈ Sq(p, α, A, B) be given by (1). Then, from (5), we find for z ∈ D that∣∣∣∣∣∣∣∣
zDq f (z)
[p]q f (z) − α

z2D2
q f (z)

[p]q [p−1]q f (z) − (1− α)

(1− α)A − B
(

zDq f (z)
[p]q f (z) − α

z2D2
q f (z)

[p]q [p−1]q f (z)

)
∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑∞

n=1

(
λ1λ2 − αλ2[p + n − 1]q − (1− α)[p]qλ1

)
an+pzn

(A − B)(1− α)[p]qλ1 + ∑∞
n=1 Λq(λ1, λ2)an+pzn

∣∣∣∣∣∣.
Since

�(z) � |z|,
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therefore, we have

�

⎧⎨⎩∑∞
n=1

(
λ1λ2 − αλ2[p + n − 1]q − (1− α)[p]qλ1

)
an+pzn

(A − B)(1− α)[p]qλ1 + ∑∞
n=1 Λq(λ1, λ2)an+pzn

⎫⎬⎭
< 1. (8)

We now choose values of z on the real axis in the complex z-plane, so that

1
1− α

(
zDq f (z)
[p]q f (z)

− α
z2D2

q f (z)
[p]q[p − 1]q f (z)

)

is real. Upon clearing the denominator in (8) and letting z → 1− through real values, we
obtain (7). This completes the proof of Theorem 1.

Theorem 2. If the function f (z), given by (1), belongs to the class Sq(p, α, A, B), then

∣∣ap+1
∣∣ � [p]qλ1(1− α)(A − B)

l(1)
,

∣∣ap+2
∣∣ � [p]qλ1(1− α)(A − B)

l(2)
+

(
[p]qλ1(1− α)(A − B)

)2

l(1)l(2)
,

∣∣ap+3
∣∣ � [p]qλ1(1− α)(A − B)

l(3)
+

(
[p]qλ1(1− α)(A − B)

)2

l(3)l(1)

+

(
[p]qλ1(1− α)(A − B)

)2

l(3)l(2)
+

(
[p]qλ1(1− α)(A − B)

)3

l(3)l(2)l(1)
,

where
λ1 = [p − 1]q

and
l(n) = λ1[p + n]q − α[p + n − 1]q[p + n]q − (1− α)[p]qλ1.

Proof. Let f ∈ Sq(p, α, A, B). Then

1
1− α

(
zDq f (z)
[p]q f (z)

− α
z2D2

q f (z)
[p]qλ1 f (z)

)
= h(z), (9)

where
h(z) ≺ 1 + Az

1 + Bz
= 1 + (A − B)z + · · · ,

is of the form given by

h(z) = 1 +
∞

∑
n=1

dnzn.

Thus, by the Rogosinski Lemma, we get

|dn| � (A − B). (10)
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Now, using the series expansions of h(z) and f (z) in (9), together with simplification
and comparsion of the coefficients of like powers of z, we get(

λ1 − α[p + n − 1]q
)

λ2

1− α
ap+n

= [p]qλ1
(
ap+n + ap+n−1d1 + ap+n−2d2 + . . . + ap+1dn−1 + dn

)
,

which can be written as follows:(
λ1 − α[p + n − 1]q

)
λ2 − (1− α)[p]qλ1

1− α
ap+n

= [p]qλ1
(
ap+n−1d1 + ap+n−2d2 + . . . + ap+1dn−1 + dn

)
.

Next, by first using the triangle inequality for the modulus and then applying (10),
we obtain (

λ1 − α[p + n − 1]q
)

λ2 − (1− α)[p]qλ1

1− α

∣∣ap+n
∣∣

� [p]qλ1(A − B)
n−1

∑
i=0

∣∣ap+i
∣∣,

which implies that

∣∣ap+n
∣∣ � (1− α)[p]qλ1(A − B)(

λ1 − α[p + n − 1]q
)

λ2 − (1− α)[p]qλ1

n−1

∑
i=0

∣∣ap+i
∣∣. (11)

If we now put n = 1, 2 and 3 in (11) and use the fact that ap = 1, we get the required
result asserted by Theorem 2.

Theorem 3. Let the function f (z), given by (1), belong to the class Sq(p, α, A, B). Then, for
|z| = r,

[p]qrp−1 − τ1rp �
∣∣Dq f (z)

∣∣ � [p]qrp−1 + τ1rp,

where

τ1 =
(1− α)(A − B)[p + 1]q[p]qλ1

(1 + B)
(

λ1 + α[p]q
)
[p + 1]q + (1− α)(1 + A)[p]qλ1

and
λ1 = [p − 1]q.

Proof. From (1) we can write

Dq f (z) = [p]qzp−1 +
∞

∑
n=1

λ2an+p zn+p−1,

so that, by applying the triangle inequality, we have

∣∣Dq f (z)
∣∣ � [p]q|z|

p−1 +
∞

∑
n=1

λ2
∣∣an+p

∣∣ |z|n+p−1

Since |z| = r < 1 so that rn+p−1 � rp, and hence we have

Dq f (z) � [p]qrp−1 + rp
∞

∑
n=1

λ2
∣∣an+p

∣∣. (12)
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Similarly, we get

Dq f (z) � [p]qrp−1 − rp
∞

∑
n=1

λ2
∣∣an+p

∣∣. (13)

We know from (7) that

∞

∑
n=1

[
(1 + B)(λ1 + α[p + n − 1]q) +

(1− α)(1 + A)λ1[p]q
λ2

]
λ2

∣∣an+p
∣∣

� (1− α)(A − B)[p]qλ1.

We also know that

[
(1 + B)

(
λ1 + α[p]q

)
+

(1− α)(1 + A)[p]qλ1

[p + 1]q

]
∞

∑
n=1

λ2
∣∣an+p

∣∣
�

∞

∑
n=1

[
(1 + B)

(
λ1 + α[p + n − 1]q

)
+

(1− α)(1 + A)[p]qλ1

λ2

]
λ2

∣∣an+p
∣∣.

Hence, by the transitive property, we get

[
(1 + B)

(
λ1 + α[p]q

)
+

(1− α)(1 + A)[p]qλ1

[p + 1]q

]
∞

∑
n=1

λ2
∣∣an+p

∣∣
� (1− α)(A − B)[p]qλ1,

which implies that

∞

∑
n=1

λ2
∣∣an+p

∣∣ � (1− α)(A − B)[p]qλ1[p + 1]q

(1 + B)[p + 1]q
(

λ1 + α[p]q
)
+ (1− α)(1 + A)[p]qλ1

.

Now, by using the above inequility in (12) and (13), we obtain the required result
asserted by Theorem 3.

Theorem 4. Let the function f (z), given by (1), belong to the class Sq(p, α, A, B). Then, for
|z| = r,

rp(1− τ2) � | f (z)| � rp(1 + τ2),

where

τ2 =
(1− α)(A − B)[p]qλ1

[p + 1]q(1 + B)
(

λ1 + α[p]q
)
+ (1− α)(1 + A)[p]qλ1

.

Proof. By applying the triangle inequality in (1), and using the fact that |z| = r, we have

| f (z)| � rp +
∞

∑
n=1

∣∣an+p
∣∣ rn+p

Since |z| = r < 1 so that rn+p < rp, therefore, the above relation becomes

| f (z)| � rp + rp
∞

∑
n=1

∣∣an+p
∣∣. (14)
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Similarly, we get

| f (z)| � rp − rp
∞

∑
n=1

∣∣an+p
∣∣. (15)

We know from (7) that

∞

∑
n=1

[
λ2(1 + B)

(
λ1 + α[p + n − 1]q

)
+ (1− α)(1 + A)[p]qλ1

]∣∣an+p
∣∣

� (1− α)(A − B)[p]qλ1.

But[
[p + 1]q(1 + B)

(
λ1 + α[p]q

)
+ (1− α)(1 + A)[p]qλ1

] ∞

∑
n=1

∣∣an+p
∣∣

�
∞

∑
n=1

[
λ2(1 + B)

(
λ1 + α[p + n − 1]q

)
+ (1− α)(1 + A)[p]qλ1

]∣∣an+p
∣∣

� (1− α)(A − B)[p]q[p − 1]q.

Hence [
[p + 1]q(1 + B)

(
λ1 + α[p]q

)
+ (1− α)(1 + A)[p]qλ1

] ∞

∑
n=1

∣∣an+p
∣∣

� (1− α)(A − B)[p]q[p − 1]q,

which gives

∞

∑
n=1

∣∣an+p
∣∣ � (1− α)(A − B)[p]qλ1

[p + 1]q(1 + B)
(

λ1 + α[p]q
)
+ (1− α)(1 + A)[p]qλ1

.

Now, by substituting from the above inequality into (14) and (15), we get the required
result asserted by Theorem 4.

Now before starting radii problems let us remaind the definition of important classes
of multivalent starlike and convex functions.

A function f ∈ Ap, is said to be multivalent starlike functions of order σ if it satisfies
the following inequality

�
{

z f
′
(z)

p f (z)

}
> σ, z ∈ D, (0 ≤ σ ≤ p, p ∈ N),

and we denoted this class by S∗
p (σ).

Furthermore, by Cp(σ) we mean the class of multivalent convex functions, that is a
function f ∈ Ap and satisfies the inequality below

�

⎧⎪⎨⎪⎩
z
(

z f
′
(z)

)′

p2 f (z)

⎫⎪⎬⎪⎭ > σ, z ∈ D, (0 ≤ σ ≤ p, p ∈ N).

Theorem 5. Let f ∈ Sq(p, α, A, B). Then f ∈ Cp(σ) for |z| < r1, where

r1 =

⎧⎪⎪⎨⎪⎪⎩inf

⎛⎝ p(p − σ)
(
(1 + B)λ2

(
λ1 + α[p + n − 1]q

)
+ (1− α)(1 + A)[p]qλ1

)
(p + n)(n + p − σ)(1− α)(A − B)[p]qλ1

⎞⎠
1
n

: n ∈ N

⎫⎪⎪⎬⎪⎪⎭.
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Proof. Suppose that f ∈ Sq(p, α, A, B). Then, in order to prove that f ∈ Cp(σ), we only
need to show that ∣∣∣∣ z f ′′(z)− (p − 1) f ′(z)

z f ′′(z) + (1− 2σ + p) f ′(z)

∣∣∣∣ < 1.

Using (1) followed by some simplifications, we have

∞

∑
n=1

(p + n)(n + p − σ)

p(p − σ)

∣∣an+p
∣∣|z|n < 1. (16)

Now, from (7), we can easily see that

∞

∑
n=1

(
λ2(1 + B)

(
λ1 + α[p + n − 1]q

)
+ (1− α)(1 + A)[p]qλ1

)∣∣an+p
∣∣

� (1− α)(A − B)[p]qλ1,

which implies that

∞

∑
n=1

λ2(1 + B)
(

λ1 + α[p + n − 1]q
)
+ (1− α)(1 + A)[p]λ1

(1− α)(A − B)[p]qλ1

∣∣an+p
∣∣ < 1.

The inequality in (16) will be true, if the following condition holds true:

∞

∑
n=1

(p + n)(n + p − σ)

p(p − σ)

∣∣an+p
∣∣|z|n

<
∞

∑
n=1

λ2(1 + B)
(

λ1 + α[p + n − 1]q
)
+ (1− α)(1 + A)[p]qλ1

(1− α)(A − B)[p]qλ1

∣∣an+p
∣∣,

which implies that

|z|n <
p(p − σ)

(
λ2(1 + B)

(
λ1 + α[p + n − 1]q

)
+ (1− α)(1 + A)[p]qλ1

)
(p + n)(n + p − σ)(1− α)(A − B)[p]qλ1

,

or, equivalently, that

|z| <

⎛⎝ p(p − σ)
(

λ2(1 + B)
(

λ1 + α[p + n − 1]q
)
+ (1− α)(1 + A)[p]qλ1

)
(p + n)(n + p − σ)(1− α)(A − B)[p]qλ1

⎞⎠
1
n

= r1.

This completes the proof of Theorem 5.

Theorem 6. Let f ∈ Sq(p, α, A, B). Then f ∈ S∗
p (σ) for |z| < r2, where

r2 =

⎧⎪⎪⎨⎪⎪⎩inf

⎛⎝ (p − σ)
(

λ2(1 + B)
(

λ1 + α[p + n − 1]q
)
+ (1− α)(1 + A)[p]qλ1

)
(n + p − σ)(1− α)(A − B)[p]qλ1

⎞⎠
1
n

: n ∈ N

⎫⎪⎪⎬⎪⎪⎭.

Proof. We know that f ∈ S∗
p (α), if and only if∣∣∣∣ z f ′(z)− p f (z)

z f ′(z) + (p − 2σ) f (z)

∣∣∣∣ � 1.
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Using (1) and upon simplification, we get

∞

∑
n=1

(
n + p − σ

p − σ

)∣∣an+p
∣∣|z|n < 1. (17)

Now from (7), we can easily find that

∞

∑
n=1

λ2(1 + B)
(

λ1 + α[p + n − 1]q
)
+ (1− α)(1 + A)[p]qλ1

(1− α)(A − B)[p]qλ1

∣∣an+p
∣∣ < 1.

For the inequality (17) to be true, it will be sufficient to show that

∞

∑
n=1

(
n + p − σ

p − σ

)∣∣an+p
∣∣|z|n

<
∞

∑
n=1

λ2(1 + B)
(

λ1 + α[p + n − 1]q
)
+ (1− α)(1 + A)[p]q

(1− α)(A − B)[p]qλ1

∣∣an+p
∣∣,

which yields

|z|n <
(p − σ)

(
λ2(1 + B)

(
λ1 + α[p + n − 1]q

)
+ (1− α)(1 + A)[p]qλ1

)
(n + p − σ)(1− α)(A − B)[p]qλ1

,

and hence

|z| <

⎛⎝ (p − σ)
(

λ2(1 + B)
(

λ1 + α[p + n − 1]q
)
+ (1− α)(1 + A)[p]qλ1

)
(n + p − σ)(1− α)(A − B)[p]qλ1

⎞⎠
1
n

= r2.

We thus obtain the required result asserted by Theorem 6.

Let the functions fl(z) (l = 1, 2, 3, · · · , k) be defined by

fl(z) = z +
∞

∑
n=1

an,lzn+p (z ∈ D). (18)

Now we state and prove the following results.

Theorem 7. The class Sq(p, α, A, B) is closed under convex combination.

Proof. Suppose that the functions fl(z) (l = 1, 2), given by (18), belong to the class Sq(p, α, A, B).
Then we need to show that the function h(z) given by

h(z) = ν f1(z) + (1− ν) f2(z) (0 � λ � 1),

is also in the class Sq(p, α, A, B). Indeed, for 0 � ν � 1, we have

h(z) = z +
∞

∑
n=2

[νan,1 + (1− ν)an,2]zn.

Thus, if
λ1 = [p − 1]q and λ2 = [p + n]q,
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then we have

∞

∑
n=1

[
(1 + B)

(
λ1λ2 + αλ2[p + n − 1]q

)
+(1− α)(1 + A)[p]qλ1

]∣∣νan+p,1 + (1− ν)an+p,2
∣∣

= ν
∞

∑
n=1

[
(1 + B)

(
λ1λ2 + αλ2[p + n − 1]q

)
+(1− α)(1 + A)[p]qλ1

]∣∣an+p,1
∣∣

+ (1− ν)
∞

∑
n=1

[
(1 + B)

(
λ1λ2 + αλ2[p + n − 1]q

)
+(1− α)(1 + A)[p]qλ1

]∣∣an+p,2
∣∣

� ν
[
(1− α)(A − B)[p]qλ1

]
+ (1− ν)

[
(1− α)(A − B)[p]qλ1

]
= (1− α)(A − B)[p]qλ1.

Hence, by Theorem 1, h(z) ∈ Sq(p, α, A, B). The demonstration of Theorem 7 is
thus completed.

Theorem 8. Let the L functions fl(z) (l = 1, 2, 3, · · · , L), defined by (18), be in the class
Sq(p, α, A, B). Then the function F(z), given by

F(z) =
L

∑
l=1

νl fl(z)

(
λl � 0;

L

∑
l=1

λl = 1

)
, (19)

is also in the class Sq(p, α, A, B),

Proof. The proof of Theorem 8 is fairly straightforward. We, therefore, omit the details
involved.

3. Concluding Remarks and Observations

Applications of the q-calculus have been the focus point in the recent times in various
branches of Mathematics and Physics mentioned [7]. In this article, we have introduced a
new q-operator for multivalent functions. Then a new subclass of analytic and multivalent
functions has been defined and studied systematically. In particular, we have investigated
some of its geometric properties such as sufficient conditions, coefficient estimates, dis-
tortion Theorems, radii problems, closure-type results, and so on. The idea used in this
article can easily be implemented to define several subclasses of analytic and univalent (or
multivalent) functions connected with different image domains. This will open up a lot of
new opportunities for research in this and related fields.

Basic (or q-) series and basic (or q-) polynomials, especially the basic (or q-) hypergeo-
metric functions and basic (or q-) hypergeometric polynomials are applicable particularly
in several diverse areas (see, for example, [46] (pp. 350–351); see also [28,29,47]). More-
over, as we remarked above and in the introductory Section 1, in Srivastava’s recently-
published survey-cum-expository review article [7], the triviality of the so-called (p, q)-
calculus was exposed and it is also mentioned as an obviously inconsequential variation
of the classical q-calculus, the additional parameter p being redundant or superfluous
(see, for details, [7] (p. 340)). Indeed one can apply Srivastava’s observation and exposition
in [7] to any attempt to produce the rather trivial and straightforward (p, q)-variations of
the q-results which we have presented in this paper.
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1. Introduction

In recent years, q-analysis has attracted the interest of scholars because of its numerous
applications in mathematics and physics. Jackson [1,2] was the first to consider the certain
application of q-calculus and introduced the q-analog of the derivative and integral. Very
recently, several authors published a set of articles [3–13] in which they concentrated
upon the classes of q-starlike functions related to the Janowski functions [14] from some
different aspects. Further, a recently published survey-cum-expository review paper by
Srivastava [15] is very useful for scholars working on these topics. In this review paper,
Srivastava [15] gave certain mathematical explanation and addressed applications of the
fractional q-derivative operator in Geometric Function Theory. In the same survey-cum-
expository review paper [15], the trivial and inconsequential (p, q) variations of various
known q-results by adding an obviously redundant parameter p were clearly exposed (see,
for details, [15] p. 340).

In this article, motivated essentially by the above works, we shall define a new subclass
of meromorphic multivalent functions by using the q-difference operator and Janowski
functions and study its geometric properties, such as sufficient and necessary conditions,
coefficient estimates, growth and distortion theorems, radius of starlikeness and convexity,
partial sums and closure theorems.

Let Mp denote the class of meromorphic multivalent functions of the form

f (z) = z−p +
∞

∑
n=1

anzn (p ∈ N = {1, 2, 3, · · · }),

which are analytic in the punctured open unit disk D∗ = {z ∈ C : 0 < |z| < 1} = D \ {0}
with a pole of order p at the origin.

A function f (z) ∈ Mp is said to be the meromorphic p-valent starlike function of order
σ if

Re
{
− z f ′(z)

f (z)

}
> σ (0 � σ < p)

Symmetry 2021, 13, 1035. https://doi.org/10.3390/sym13061035 https://www.mdpi.com/journal/symmetry115
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for all z ∈ D∗. We denote this class by MS∗p(σ).
A function f (z) ∈ Mp is said to be the meromorphic p-valent convex function of order

σ if

Re
{
−
(

1 +
z f ′′(z)
f ′(z)

)}
> σ (0 � σ < p)

for all z ∈ D∗. We denote this class by MCp(σ).
For two functions, f (z) and g(z), which are analytic in D, we can say that g(z) is

subordinate to f (z) and denote g(z) ≺ f (z) (z ∈ D) , if there exists a Schwarz function
w(z), analytic in D with w(0) = 0 and |w(z)| < 1 (z ∈ D), such that g(z) = f (w(z))
(z ∈ D). Further, if f (z) is univalent in D, then we have the following equivalence:

g(z) ≺ f (z) (z ∈ D) ⇐⇒ g(0) = f (0) and g(D) ⊂ f (D).

A function ϕ(z) is said to be in the class P[A, B], if it is analytic in D with ϕ(0) = 1 and

ϕ(z) ≺ 1 + Az
1 + Bz

(−1 � B < A � 1),

equivalently, we can write ∣∣∣∣ ϕ(z)− 1
A − Bϕ(z)

∣∣∣∣ < 1.

Let q ∈ (0, 1) and define the q-number [λ]q by

[λ]q =

{
1−qλ

1−q (λ ∈ C)

∑n−1
k=0 qk = 1 + q + q2 + · · ·+ qn−1 (λ = n ∈ N).

Particularly, when λ = 0, we write [0]q = 0.

Definition 1. For q ∈ (0, 1), the q-difference operator Dq of a function f (z) is defined by

Dq f (z) =

{
f (z)− f (qz)
(1−q)z (z �= 0)

f ′(0) (z = 0),

provided that f ′(0) exists.
From Definition 1, we observe that

lim
q→1−

Dq f (z) = lim
q→1−

f (qz)− f (z)
(q − 1)z

= f ′(z)

for a differentiable function f (z).
For f (z) = z−p + ∑∞

n=1 anzn ∈ Mp, we can see that

Dq f (z) = [−p]qz−p−1 +
∞

∑
n=1

[n]qanzn−1 (z �= 0),

where [−p]q = 1−q−p

1−q = −q−p[p]q and [p]q = 1−q−p

1−q = 1 + q + q2 + · · ·+ qp−1.

We now define a new subclass Σp,q(α, A, B) of Mp as the following.

Definition 2. For q ∈ (0, 1), α > 1 and −1 � B < A � 1, a function f (z) ∈ Mp is said to
belong to the class Σp,q(α, A, B), if it satisfies

1
1− α

(
zDq f (z)
[−p]q f (z)

− α
z2D2

q f (z)
[−p]q[−p − 1]q f (z)

)
≺ 1 + Az

1 + Bz
,
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or equivalently ∣∣∣∣∣∣∣∣
zDq f (z)
[−p]q f (z) − α

z2D2
q f (z)

[−p]q [−p−1]q f (z) − (1− α)

(1− α)A − B
(

zDq f (z)
[−p]q f (z) − α

z2D2
q f (z)

[−p]q [−p−1]q f (z)

)
∣∣∣∣∣∣∣∣ < 1 (z ∈ D). (1)

2. Main Results

Theorem 1. Let 1 < α � 1− 1
[−p]q

and

f (z) = z−p +
∞

∑
n=1

anzn (an � 0) ∈ Mp.

Then f (z) ∈ Σp,q(α, A, B) if

∞

∑
n=1

(
(1− α)(1 + A)[−p]q[−p − 1]q − (1 + B)[n]q([−p − 1]q − α[n − 1]q)

)
an

� (1− α)(B − A)[−p]q[−p − 1]q. (2)

Proof. Suppose that the inequality (2) holds true. Then we have∣∣∣∣∣∣∣∣
zDq f (z)
[−p]q f (z) − α

z2 D2
q f (z)

[−p]q [−p−1]q f (z) − (1− α)

(1− α)A − B
(

zDq f (z)
[−p]q f (z) − α

z2 D2
q f (z)

[−p]q [−p−1]q f (z)

)
∣∣∣∣∣∣∣∣

=

∣∣∣∣∣ [−p − 1]qzDq f (z)− αz2D2
q f (z)− (1− α)[−p]q[−p − 1]q f (z)

(1 − α)A[−p]q[−p − 1]q f (z)− B([−p − 1]qzDq f (z)− αz2D2
q f (z))

∣∣∣∣∣
=

∣∣∣∣ ∑∞
n=1([n]q([−p − 1]q − α[n − 1]q)− (1− α)[−p]q[−p − 1]q)anzn

(1 − α)(A − B)[−p]q[−p − 1]qz−p − ∑∞
n=1(B[n]q([−p − 1]q − α[n − 1]q)− (1− α)A[−p]q[−p − 1]q)anzn

∣∣∣∣
=

∣∣∣∣ ∑∞
n=1([n]q([−p − 1]q − α[n − 1]q)− (1− α)[−p]q[−p − 1]q)anzn+p

(1 − α)(A − B)[−p]q[−p − 1]q − ∑∞
n=1(B[n]q([−p − 1]q − α[n − 1]q)− (1− α)A[−p]q[−p − 1]q)anzn+p

∣∣∣∣
=

∣∣∣∣ ∑∞
n=1((1− α)[−p]q[−p − 1]q − [n]q([−p − 1]q − α[n − 1]q))anzn+p

(1 − α)(B − A)[−p]q[−p − 1]q − ∑∞
n=1((1− α)A[−p]q[−p − 1]q − B[n]q([−p − 1]q − α[n − 1]q))anzn+p

∣∣∣∣
< 1.

This shows that f (z) ∈ Σp,q(α, A, B).
Conversely, let f (z) = z−p +∑∞

n=1 anzn (an � 0) ∈ Σp,q(α, A, B). From (1), we obtain
∣∣∣∣∣∣∣∣

zDq f (z)
[−p]q f (z) − α

z2 D2
q f (z)

[−p]q [−p−1]q f (z) − (1− α)

(1− α)A − B
(

zDq f (z)
[−p]q f (z) − α

z2 D2
q f (z)

[−p]q [−p−1]q f (z)

)
∣∣∣∣∣∣∣∣

=

∣∣∣∣ ∑∞
n=1((1− α)[−p]q [−p − 1]q − [n]q([−p − 1]q − α[n − 1]q))anzn+p

(1− α)(B − A)[−p]q [−p − 1]q − ∑∞
n=1((1− α)A[−p]q [−p − 1]q − B[n]q([−p − 1]q − α[n − 1]q))anzn+p

∣∣∣∣
< 1. (3)

The inequality (3) is true for all z ∈ D∗. Thus, we choose z = Rez → 1− and obtain
the inequality (2). The proof of Theorem 1 is completed.

From Theorem 1, we can easily obtain the following coefficient estimates.

Corollary 1. Let −1 < B < A � 1 and 1 < α < 1− 1+B
(1+A)[−p]q

. If

f (z) = z−p +
∞

∑
n=1

anzn (an � 0) ∈ Σp,q(α, A, B),
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then

an � (1− α)(B − A)[−p]q[−p − 1]q
(1− α)(1 + A)[−p]q[−p − 1]q − (1 + B)[n]q([−p − 1]q − α[n − 1]q)

(n = 1, 2, · · · ).

The results are sharp for the function given by

f (z) = z−p +
(1− α)(B − A)[−p]q[−p − 1]q

(1− α)(1 + A)[−p]q[−p − 1]q − (1 + B)[n]q([−p − 1]q − α[n − 1]q)
zn.

Theorem 2. Let −1 < B < A � 1 and 1 < α < 1− 1+B
(1+A)[−p]q

. If

f (z) = z−p +
∞

∑
n=1

anzn (an � 0) ∈ Σp,q(α, A, B),

then, for 0 < |z| = r < 1, it is asserted that

1
rp − rτ1 � | f (z)| � 1

rp + rτ1,

where

τ1 =
(1− α)(B − A)[−p]q

(1− α)(1 + A)[−p]q − (1 + B)
. (4)

The results are sharp for the function

f (z) = z−p +
(1− α)(B − A)[−p]q

(1− α)(1 + A)[−p]q − (1 + B)
z.

Proof. Let

f (z) = z−p +
∞

∑
n=1

anzn (an � 0) ∈ Σp,q(α, A, B).

Then, by applying the triangle inequality, we have

| f (z)| =
∣∣∣∣∣z−p +

∞

∑
n=1

anzn

∣∣∣∣∣ � 1
|z|p +

∞

∑
n=1

an|z|n.

Since |z| = r < 1, we can see that rn � r. Thus, we have

| f (z) � 1
rp + r

∞

∑
n=1

an (5)

and

| f (z) � 1
rp − r

∞

∑
n=1

an. (6)

From Theorem 1, we know that

∞

∑
n=1

(
(1− α)(1 + A)[−p]q[−p − 1]q − (1 + B)[n]q

(
[−p − 1]q − α[n − 1]q

))
an

� (1− α)(B − A)[−p]q[−p − 1]q.

It is easy to see that the sequence{
(1− α)(1 + A)[−p]q[−p − 1]q − (1 + B)[n]q

(
[−p − 1]q − α[n − 1]q

)}

118



Symmetry 2021, 13, 1035

is an increasing sequence with respect to n(n � 1). Thus,

(
(1− α)(1 + A)[−p]q[−p − 1]q − (1 + B)[−p − 1]q

) ∞

∑
n=1

an

�
∞

∑
n=1

(
(1− α)(1 + A)[−p]q[−p − 1]q − (1 + B)[n]q([−p − 1]q − α[n − 1]q)

)
an

� (1− α)(B − A)[−p]q[−p − 1]q,

which shows that
∞

∑
n=1

an � (1− α)(B − A)[−p]q
(1− α)(1 + A)[−p]q − (1 + B)

. (7)

Substituting from (7) into the inequalities (5) and (6), we obtain the required results. The
proof of Theorem 2 is completed.

Theorem 3. Let −1 < B < A � 1 and 1 < α < 1− 1+B
(1+A)[−p]q

. If

f (z) = z−p +
∞

∑
n=1

anzn (an � 0) ∈ Σp,q(α, A, B),

then, for 0 < |z| = r < 1, it is asserted that

−[−p]q
1

rp+1 − τ1 � |Dq f (z)| � −[−p]q
1

rp+1 + τ1,

where τ1 is given by (4).

Proof. Let

f (z) = z−p +
∞

∑
n=1

anzn (an � 0) ∈ Σp,q(α, A, B).

Then, from Definition 1, we can write

Dq f (z) = [−p]qz−p−1 +
∞

∑
n=1

[n]qanzn−1.

For |z| = r < 1, we have

|Dq f (z)| =
∣∣∣∣∣[−p]qz−p−1 +

∞

∑
n=1

[n]qanzn−1

∣∣∣∣∣ � −[−p]q
1

|r|p+1 +
∞

∑
n=1

[n]qan. (8)

Similarly, we obtain

|Dq f (z)| � −[−p]q
1

rp+1 −
∞

∑
n=1

[n]qan. (9)

Since f (z) ∈ Σp,q(α, A, B), we know from Theorem 1 that

∞

∑
n=1

(
(1− α)(1 + A)[−p]q[−p − 1]q

[n]q
− (1 + B)([−p − 1]q − α[n − 1]q)

)
[n]qan

� (1− α)(B − A)[−p]q[−p − 1]q.

As we know that the sequence{
(1− α)(1 + A)[−p]q[−p − 1]q

[n]q
− (1 + B)([−p − 1]q − α[n − 1]q)

}
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is an increasing sequence with respect to n (n � 1). Thus, we have

((1− α)(1 + A)[−p]q[−p − 1]q − (1 + B)([−p − 1]q)
∞

∑
n=1

[n]qan

�
∞

∑
n=1

(
(1− α)(1 + A)[−p]q[−p − 1]q

[n]q
− (1 + B)([−p − 1]q − α[n − 1]q)

)
[n]qan

� (1− α)(B − A)[−p]q[−p − 1]q,

which implies that

∞

∑
n=1

[n]qan � (1− α)(B − A)[−p]q
(1− α)(1 + A)[−p]q − (1 + B)

. (10)

Now, the theorem is proven.

Theorem 4. Let 1 < α < 1− 1+B
(1+A)[−p]q

, −1 < B < A � 1 and 0 � σ < p. If

f (z) = z−p +
∞

∑
n=1

anzn (an � 0) ∈ Σp,q(α, A, B),

then f (z) is meromorphic p-valent starlike function of order σ in 0 < |z| < r1, where

r1 = min

⎧⎨⎩ inf
n�1

(
(p − σ)((1− α)(1 + A)[−p]q[−p − 1]q − (1 + B)[n]q([−p − 1]q − α[n − 1]q))

(n + σ)(1− α)(B − A)[−p]q[−p − 1]q

) 1
n+p

, 1

⎫⎬⎭.

Proof. In order to prove that f (z) is the meromorphic p-valent starlike function of order σ
in 0 < |z| < r1, we need only to show that

−z f ′(z)
f (z) − σ

p − σ
≺ 1 + z

1− z
, 0 � σ < p.

The subordination above is equivalent to
∣∣∣ −z f ′(z)−p f (z)
−z f ′(z)+(p−2σ) f (z)

∣∣∣ < 1. After some calculations
and simplifications, we have

∞

∑
n=1

n + σ

p − σ
an|z|n+p < 1. (11)

From (2), we can see that

∞

∑
n=1

(1− α)(1 + A)[−p]q[−p − 1]q − (1 + B)[n]q([−p − 1]q − α[n − 1]q)
(1− α)(B − A)[−p]q[−p − 1]q

an < 1.

The inequality (11) will be true if

n + σ

p − σ
an|z|n+p <

(1− α)(1 + A)[−p]q[−p − 1]q − (1 + B)[n]q([−p − 1]q − α[n − 1]q)
(1− α)(B − A)[−p]q[−p − 1]q

an

or

|z| <
(
(p − σ)((1− α)(1 + A)[−p]q[−p − 1]q − (1 + B)[n]q([−p − 1]q − α[n − 1]q))

(n + σ)(1− α)(B − A)[−p]q[−p − 1]q

) 1
n+p

.
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Let

r1 = min

⎧⎨⎩ inf
n�1

(
(p − σ)((1 − α)(1 + A)[−p]q[−p − 1]q − (1 + B)[n]q([−p − 1]q − α[n − 1]q))

(n + σ)(1− α)(B − A)[−p]q[−p − 1]q

) 1
n+p

, 1

⎫⎬⎭.

Then, clearly, we obtain the required condition. The proof of Theorem 4 is completed.

Theorem 5. Let 1 < α < 1− 1+B
(1+A)[−p]q

, −1 < B < A � 1 and 0 � σ < p. If

f (z) = z−p +
∞

∑
n=1

anzn (an � 0) ∈ Σp,q(α, A, B),

then f (z) is the meromorphic p-valent convex function of order σ in 0 < |z| < r2, where

r2 = min

⎧⎨⎩ inf
n�1

(
p(p − σ)((1 − α)(1 + A)[−p]q[−p − 1]q − (1 + B)[n]q([−p − 1]q − α[n − 1]q))

n(n + σ)(1− α)(B − A)[−p]q[−p − 1]q

) 1
n+p

, 1

⎫⎬⎭.

Proof. To prove that f (z) is the meromorphic p-valent convex function of order σ in
0 < |z| < r2, we need only to show that

−
(

1 + z f ′′(z)
f ′(z)

)
− σ

p − σ
≺ 1 + z

1− z
, 0 � σ < p.

This subordination relation is equivalent to the inequality
∣∣∣ −z f ′′(z)−(p+1) f ′(z)
−z f ′′(z)+(p−1−2σ) f ′(z)

∣∣∣ < 1. After
some calculations and simplifications, we have

∞

∑
n=1

n(n + σ)

p(p − σ)
an|z|n+p < 1. (12)

From the inequality (2), we obtain that

∞

∑
n=1

(1− α)(1 + A)[−p]q[−p − 1]q − (1 + B)[n]q([−p − 1]q − α[n − 1]q)
(1− α)(B − A)[−p]q[−p − 1]q

an < 1.

The inequality (12) will be true if

n(n + σ)

p(p − σ)
an|z|n+p <

(1− α)(1 + A)[−p]q[−p − 1]q − (1 + B)[n]q([−p − 1]q − α[n − 1]q)
(1− α)(B − A)[−p]q[−p − 1]q

an,

or

|z| <
(

p(p − σ)((1− α)(1 + A)[−p]q[−p − 1]q − (1 + B)[n]q([−p − 1]q − α[n − 1]q))
n(n + σ)(1− α)(B − A)[−p]q[−p − 1]q

) 1
n+p

.

Let

r2 = min

⎧⎨⎩ inf
n�1

(
p(p − σ)((1− α)(1 + A)[−p]q[−p − 1]q − (1 + B)[n]q([−p − 1]q − α[n − 1]q))

n(n + σ)(1− α)(B − A)[−p]q[−p − 1]q

) 1
n+p

, 1

⎫⎬⎭.

Then, we obtain the required condition. Now, Theorem 5 is proven.

Theorem 6. Let 1 < α � (1+2A−B)[−p]q−(1+B)
(1+2A−B)[−p]q

and −1 < B < A � 1. If

f (z) = z−p +
∞

∑
n=1

anzn (an � 0) ∈ Σp,q(α, A, B)
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and

fk(z) = z−p +
k

∑
n=1

anzn (an � 0; k � 1),

then

Re
(

f (z)
fk(z)

)
� 1− 1

ϕk+1
(13)

and

Re
(

fk(z)
f (z)

)
� ϕk+1

1 + ϕk+1
, (14)

where

ϕk+1 =
(1− α)(1 + A)[−p]q[−p − 1]q)− (1 + B)[k + 1]q([−p − 1]q − α[k]q)

(1− α)(B − A)[−p]q[−p − 1]q
. (15)

Proof. In order to prove the inequality (13), we set

ϕk+1

[
f (z)
fk(z)

−
(

1− 1
ϕk+1

)]
=

1 + ∑k
n=1 anzn+p + ϕk+1 ∑∞

n=k+1 anzn+p

1 + ∑k
n=1 anzn+p

=
1 + w(z)
1− w(z)

.

After some simplifications, we have

w(z) =
ϕk+1 ∑∞

n=k+1 anzn+p

2 + 2 ∑k
n=1 anzn+p + ϕk+1 ∑∞

n=k+1 anzn+p

and

|w(z)| � ϕk+1 ∑∞
n=k+1 an

2− 2 ∑k
n=1 an − ϕk+1 ∑∞

n=k+1 an
.

From (2), we know that ∑∞
n=1 ϕnan � 1. The sequence {ϕn} given by (15) is an

increasing sequence with respect to n and ϕn � 1 (n = 1, 2, 3, · · · ). Therefore,

k

∑
n=1

an + ϕk+1

∞

∑
n=k+1

an �
k

∑
n=1

ϕnan +
∞

∑
n=k+1

ϕnan =
∞

∑
n=1

ϕnan � 1.

This shows that |w(z)| < 1(z ∈ D). Now, the proof of the inequality (13) is completed.
To prove the inequality (14), we put

(1 + ϕk+1)

[
fk(z)
f (z)

− ϕk+1
1 + ϕk+1

]
=

1 + ∑k
n=1 anzn+p − ϕk+1 ∑∞

n=k+1 anzn+p

1 + ∑∞
n=1 anzn+p =

1 + w(z)
1− w(z)

.

After some simplifications , we find that

w(z) =
−(1 + ϕk+1)∑∞

n=k+1 anzn+p

2 + 2 ∑k
n=1 anzn+p − (ϕk+1 − 1)∑∞

n=k+1 anzn+p

and

|w(z)| � (1 + ϕk+1)∑∞
n=k+1 an

2− 2 ∑k
n=1 an − (ϕk+1 − 1)∑∞

n=k+1 an
.

Now, we can see that |w(z)| < 1(z ∈ D) if

k

∑
n=1

an + ϕk+1

∞

∑
n=k+1

an � 1.

The proof of Theorem 6 is completed.
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Theorem 7. Let 1 < α � 1− 1
[−p]q

. If

fj(z) = z−p +
∞

∑
n=1

an,jzn (an,j � 0; j = 1, 2) ∈ Σp,q(α, A, B),

then, for 0 � λ � 1, the function H(z) = λ f1(z) + (1− λ) f2(z) ∈ Σp,q(α, A, B).

Proof. For 0 � λ � 1, we have

H(z) = λ f1(z) + (1− λ) f2(z) = z−p +
∞

∑
n=1

(λan,1 + (1− λ)an,2)zn.

Since f j(z) (j = 1, 2) ∈ Σp,q(α, A, B), by Theorem 1, we have

∞

∑
n=1

(
(1− α)(1 + A)[−p]q[−p − 1]q − (1 + B)[n]q([−p − 1]q − α[n − 1]q)

)
(λan,1 + (1− λ)an,2)

= λ
∞

∑
n=1

(
(1− α)(1 + A)[−p]q[−p − 1]q − (1 + B)[n]q([−p − 1]q − α[n − 1]q)

)
an,1

+ (1− λ)
∞

∑
n=1

(
(1− α)(1 + A)[−p]q[−p − 1]q − (1 + B)[n]q([−p − 1]q − α[n − 1]q)

)
an,2

� λ(1− α)(B − A)[−p]q[−p − 1]q + (1− λ)(1− α)(B − A)[−p]q[−p − 1]q

= (1− α)(B − A)[−p]q[−p − 1]q.

This shows that H(z) ∈ Σp,q(α, A, B). The theorem is provem.

Corollary 2. Let 1 < α � 1− 1
[−p]q

. If

fj(z) = z−p +
∞

∑
n=1

an,jzn (an,j � 0; j = 1, 2, · · · , t) ∈ Σp,q(α, A, B),

then the function

F(z) =
t

∑
j=1

λj f j(z) ∈ Σp,q(α, A, B),

where λj � 0 and ∑t
j=1 λj = 1.

Theorem 8. Let 1 < α � 1− 1
[−p]q

. If

fj(z) = z−p +
∞

∑
n=1

an,jzn (an,j � 0; j = 1, 2) ∈ Σp,q(α, A, B),

then, for −1 � m � 1, the function

Qm(z) =
(1− m) f1(z) + (1 + m) f2(z)

2
∈ Σp,q(α, A, B).

Proof. For −1 � m � 1, we have

Qm(z) =
(1− m) f1(z) + (1 + m) f2(z)

2
= z−p +

∞

∑
n=1

(
1− m

2
an,1 +

1 + m
2

an,2

)
zn.
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In view of f1(z), f2(z) ∈ Σp,q(α, A, B), by Theorem 1, we obtain

∞

∑
n=1

(
(1− α)(1 + A)[−p]q[−p − 1]q − (1 + B)[n]q([−p − 1]q − α[n − 1]q)

)(1− m
2

an,1 +
1 + m

2
an,2

)
=

1− m
2

∞

∑
n=1

(
(1− α)(1 + A)[−p]q[−p − 1]q − (1 + B)[n]q([−p − 1]q − α[n − 1]q)

)
an,1

+
1 + m

2

∞

∑
n=1

(
(1− α)(1 + A)[−p]q[−p − 1]q − (1 + B)[n]q([−p − 1]q − α[n − 1]q)

)
an,2

� 1− m
2

(1− α)(B − A)[−p]q[−p − 1]q +
1 + m

2
(1− α)(B − A)[−p]q[−p − 1]q

= (1− α)(B − A)[−p]q[−p − 1]q,

which shows that Qm(z) ∈ Σp,q(α, A, B). The proof of the theorem is completed.

3. Conclusions

In this article, we introduce a new subclass Σp,q(α, A, B) of meromorphic multivalent
functions by using the q-difference operator and Janowski functions. Some geometric prop-
erties of functions in Σp,q(α, A, B), such as sufficient and necessary conditions, coefficient
estimates, growth and distortion theorems, radius of starlikeness and convexity, partial
sums and closure theorems, are studied.
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1. Introduction

Let B(R4) denote the Borel algebra of R4 (with respect to the Euclidean topology) [1] and let

B0(R
4) = {Γ ∈ B(R4) : Γ is relatively compact}. (1)

Let
H+

m = {p ∈ R4 : p2 = m2, p0 > 0}, (2)

and
H−

m = {p ∈ R4 : p2 = m2, p0 < 0}, (3)

be the mass shells (cones) corresponding to mass m > 0 (m = 0) and let

H+
im = {p ∈ R4 : p2 = −m2, p0 > 0}, (4)

and
H−

im = {p ∈ R4 : p2 = −m2, p0 < 0}, (5)

be the positive time (negative time) imaginary mass hyperboloids corresponding to mass m > 0.
Define measures on these hyperboloids (cones) by

Ω±
m(Γ) =

∫
π(H±

m∩Γ)

d
⇀
p

ωm(
⇀
p )

, m ≥ 0, (6)

Ω±
im(Γ) =

∫
π(H±

im∩Γ)

d
⇀
p

ωim(
⇀
p )

, m > 0, (7)
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and
Ωim = Ω+

im + Ω−
im, (8)

where π : R4 → R3 is defined by

π(p) = π(p0, p1, p2, p3) =
⇀
p = (p1, p2, p3), (9)

and ωm : R3 → [0, ∞) is defined by

ωm(
⇀
p ) = (m2 + |

⇀
p |2) 1

2 . (10)

An equivalent set of definitions to these definitions of the measures Ω±
m and Ω±

im is to specify the effect
of applying the measures to measurable functions ψ : R4 → C. In fact

< Ω±
m , ψ >=

∫
ψ(±ωm(

⇀
p ),

⇀
p )

d
⇀
p

ωm(
⇀
p )

, m ≥ 0, (11)

< Ω±
im, ψ >=

∫
ψ(±ωim(

⇀
p ),

⇀
p )

d
⇀
p

ωim(
⇀
p )

, m > 0. (12)

Consider the following general form of a complex measure μ : B0(R
4) → C on Minkowski space.

μ(Γ) = cδ(Γ) +
∫ ∞

m=0
Ω+

m(Γ) σ1(dm) +
∫ ∞

m=0
Ω−

m(Γ) σ2(dm) +
∫ ∞

m=0
Ωim(Γ) σ3(dm), (13)

where c ∈ C (the complex numbers), δ is the Dirac delta function (measure), σ1, σ2, σ3 : B0([0, ∞)) → C

are Borel complex measures. Then μ is a Lorentz invariant Borel complex measure. Conversely [2]
leads to the following.

Theorem 1. The Spectral Theorem. Let μ : B0(R
4) → C be a Lorentz invariant Borel complex measure.

Then μ has the form of Equation (13) for some c ∈ C and Borel spectral measures σ1, σ2 and σ3.

(More generally, from [2] Lorentz invariant distributions in D∗(R4) are of the form of Equation (13)
where c ∈ C, σ1, σ2, σ3 ∈ D∗(R) with the possible addition of a distribution supported at the origin of
the form P(�)δ where � is the wave operator and P is some polynomial.)

In Section 3, we show how the Feynman scalar propagator in momentum space can be identified
with the causal Lorentz invariant measure Ωm. In Section 4, we will present a spectral calculus
whereby the spectrum of a causal Lorentz invariant Borel complex measure on Minkowski space can
be calculated, whereby causal is meant that the support of the measure is contained in the closed future
null cone of the origin.

In Section 5 of the paper, we use the spectral calculus and other methods to compute the spectrum
of the measure Ωm ∗ Ωm which is the convolution of the standard Lorentz invariant measure on the
mass m mass shell (i.e., the Feynman scalar propagator corresponding to mass m on the space of
positive energy functions) with itself, where m > 0. In Section 7, we use general arguments to compute
the spectrum of Ωim ∗Ωim, m > 0. In Section 8, we will show how the density with respect to Lebesque
measure associated with a causal Lorentz invariant Borel complex measure can be determined from
its spectrum and in Section 9 we will show how the convolution and product of such measures can
be computed.

Some of the work of this paper may be compared to the work of Scharf and others, dating back to
the paper of Epstein and Glaser [3] on forming products of causal distributions.
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The concept of spectral representation in quantum field theory (QFT) dates back to the work of
Källén [4] and Lehmann [5] who, independently, proposed the representation

< 0|[φ(x), φ†(y)]|0 >= i
∫ ∞

0
dm′2σ(m′2)Δm′(x − y), (14)

for the commutator of interacting fields where Δm′ is the Feynman propagator corresponding to mass
m′. Itzykson and Zuber [6] state, with respect to σ, “In general this is a positive measure with δ-function
singularities." While Källén, Lehmann and others propose and use this decomposition they do not
present a way to compute the spectral measure σ. As mentioned above one of the main results of the
present paper is a presentation of a spectral calculus that enables one to compute the spectral function
of a causal Lorentz invariant Borel complex measure on Minkowski space. This spectral calculus is
quite easy to use in practice but it is somewhat tedious to prove rigorously its validity. This use in
practice involves a general form of argument which is exemplified by the argument used in the case of
the computation of the spectrum of the convolution Ωm ∗ Ωm which we call Argument 1. The validity
of Argument 1 is proved in Section 6.

2. Related Work

Our work has some connection with the spectral theory of hyperbolic surfaces [7,8] and its
multivarious ramifications in quantum physics, number theory, and discrete groups as the hyperboloid
Hm is a higher dimensional hyperbolic space and the standard measure Ωm on Hm is a fundamental
solution of the Klein-Gordon equation on Minkowski space (whose solutions are eigenfunctions of the
wave operator) whereas the spectral theory of hyperbolic surfaces is concerned with eigenfunctions of
the Laplace operator.

Bollini et al. [9] describe how the convolution of two ultradistributions of exponential type
(UET) can exist. They then define the product of two UETs in terms of the convolution of their
Fourier transforms. They obtain expressions for the Fourier transform of Lorentz invariant UETs
(generalizing Bochner’s theorem). Kamiński and Mincheva-Kaminska [10] present results concerning
the convolution of distributions such as the existence of the convolution of tempered distributions
whose supports are polynomially compatible sets. Ortner and Wagner [11] consider the Fourier
transform of O(p, q) invariant distributions. They present a condition under which two Lorentz
invariant tempered distributions are convolvable and a formula for their convolution.

Zinoviev [12] considers Lorentz invariant tempered distributions on (R4)k supported on the
product of closed future light cones. Soloviev [13] discusses the theory of Lorentz covariant
distributions, ultradistributions and hyperfunctions.

Harish-Chandra [14] realized the fruitfulness of regarding the space of invariant distributions as a
module for the algebra of polynomial differential operators. In this context Kolk and Varadarajan [15]
consider Lorentz invariant distributions supported on the boundary of the cone representing the causal
future of the origin.

Our work does not consider the complexities and partial results of the general theory of Lorentz
invariant distributions, ultradistributions and other such spaces but restricts attention to Lorentz
invariant Borel complex measures. There are two reasons for this. Firstly one can obtain complete,
unencumbered and “elegant" results. Secondly, many the distributional objects of interest in QFT
(such as correlation functions) can, through Wick’s theorem, or else the operator product expansion,
be represented in terms of Feynman propagators and the propagators are Lorentz invariant measures
(or else K invariant matrix-valued measures whose trace is Lorentz invariant) [16].

3. The Feynman Scalar Field Propagator as a Tempered Measure

In this section, we give a well-defined definition of the Feynman scalar propagator of QFT in
terms of tempered measures and distributions. The propagator is viewed as being a complex tempered
distribution. It is constructed from the Fourier transform of the tempered measure Ωm.
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Consider the Feynman scalar field propagator. It is written as ([6], p. 35)

�F(x) = −(2π)−4
∫ e−ip.x

p2 − m2 + iε
dp. (15)

This is to be understood with respect to the i−epsilon procedure described in Mandl and Shaw ([17], p. 57),
and the dot product p.x is given by

p.x = ηαβ pαxβ,

where η = diag(1,−1,−1,−1). Therefore �F(x) is written as

�F(x) = −(2π)−4
∫

R3

∫
CF

e−ip.x

p2 − m2 dp0d
⇀
p , (16)

where CF is the standard Feynman propagator contour. Thus �F(x) is written as

�F(x) = −(2π)−4
∫

R3
I(

⇀
p , x) d

⇀
p , (17)

where

I(
⇀
p , x) =

∫
CF

e−ip.x

(p0)2 − ωm(
⇀
p )2

dp0, (18)

and
ωm(

⇀
p ) = (|

⇀
p |2 + m2)

1
2 , m ≥ 0. (19)

The contour integral Equation (18) exists for ωm(
⇀
p ) �= 0 and is given by

I(
⇀
p , x) = − πi

ωm(
⇀
p )

⎧⎨⎩ e−i(ωm(
⇀
p )x0−

⇀
p .

⇀
x ) if x0 > 0,

e−i(−ωm(
⇀
p )x0−

⇀
p .

⇀
x ) if x0 < 0.

(20)

To prove this consider the contour C1(R) given by

C1(R) = {Reit : 0 ≤ t ≤ π}.

We will show that

I1(R) =
∫

C1(R)

e−ip.x

(p0)2 − ωm(
⇀
p )2

dp0 → 0 as R → ∞,

as long as x0 < 0. To this effect we note that

|I1(R)| =|
∫ π

t=0

e−iReitx0+i
⇀
p .

⇀
x

(Reit)2 − ωm(
⇀
p )2

iReit dt|

≤
∫ π

t=0

∣∣∣∣∣ eR sin tx0

(Reit)2 − ωm(
⇀
p )2

∣∣∣∣∣ R dt

≤
∫ π

t=0

1

|R2 − ωm(
⇀
p )2|

R dt

=
πR

|R2 − ωm(
⇀
p )2|

,

→ 0 as R → ∞, if x0 < 0.

(21)
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Therefore, for x0 < 0,

I(
⇀
p , x) = 2πires(p0 �→ e−ip.x

(p0)2 − ωm(
⇀
p )2

,−ωm(p)).

Now
e−ip.x

(p0)2 − ωm(
⇀
p )2

=
e−ip.x

(p0 − ωm(
⇀
p ))(p0 + ωm(

⇀
p ))

.

Thus

I(
⇀
p , x) = −πi

e−i(−ωm(
⇀
p )x0−

⇀
p .

⇀
x )

ωm(
⇀
p )

.

Similarly, if x0 > 0, then

I(
⇀
p , x) = −πi

e−i(ωm(
⇀
p )x0−

⇀
p .

⇀
x )

ωm(
⇀
p )

.

Hence ∫
R3
|I(

⇀
p , x)| d

⇀
p = π

∫
R3

1

ωm(
⇀
p )

d
⇀
p = ∞, (22)

and so the integral Equation (17) defining �F(x) does not exist as a Lebesgue integral.
We would like to give a well-defined interpretation of the propagator �F. H±

m for m ≥ 0 are
orbits of the action of the Lorentz group on Minkowski space (these orbits correspond to real mass
orbits, there are also “imaginary mass" hyperboloid orbits Him). Ω±

m are Lorentz invariant measures
for Minkowski space supported on H±

m ([18], p. 157). Ω±
m is locally finite for m ≥ 0. Now, for any

non-negative measurable function ψ : R4 → [0, ∞],

∫
R4

ψ(p)Ω±
m(dp) =

∫
R3

ψ(±ωm(
⇀
p ),

⇀
p )

d
⇀
p

ωm(
⇀
p )

. (23)

Here, and for the rest of the section, the symbol ψ stands for a test function in Minkowski space.
It follows from Equations (17), (20) and (23) that one may write

�F(x) =

{
(2π)−4πi

∫
e−ip.x Ω+

m(dp), if x0 > 0,
(2π)−4πi

∫
e−ip.x Ω−

m(dp), if x0 < 0.
(24)

Equations (16), (17) and (24) are all integral expressions equivalent to Equation (15) and none of them
exist as Lebesgue integrals. However, formally, Equation (24) can be written as

�F(x) =

⎧⎨⎩ πi
∨

Ω+
m(−x) if x0 > 0,

πi
∨

Ω−
m(−x) if x0 < 0,

(25)

where ∨ denotes the inverse Fourier transform operator (and we use the “physics"convention for the
definition of the Fourier transform). Since Ω+

m and Ω−
m are tempered distributions their inverse Fourier

transforms exist and are tempered distributions. Let S±(R4) ⊂ S(R4) be the space of test functions
supported in S±, where

S+ = {x ∈ R4 : x0 > 0}, S− = {x ∈ R4 : x0 < 0}. (26)

Then

< �F, ψ >= πi <
∨

Ω∓
m , ψ >= πi < Ω∓

m ,
∨
ψ >, (27)
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for ψ ∈ S±(R4), where < ω, ψ > denotes the evaluation of a distribution ω on its test function
argument ψ. Therefore the momentum space scalar field propagator on (S±(R4))∧ is

∧
�F = πiΩ∓

m . (28)

(S+(R4))∧ is the space of wave functions with only positive frequency components while (S−(R4))∧

is the space of wave functions with only negative frequency components.
This measure is a tempered measure, i.e., it is a tempered distribution as well as being a measure.
Equations (15) and (25) lead to the ansatz

1
p2 − m2 + iε

→ −πiΩ±
m(p). (29)

4. A Spectral Calculus for Lorentz Invariant Measures

Suppose that μ is a Lorentz invariant Borel complex measure on Minkowski space. Then by the
spectral theorem, it must have the form of Equation (13). If σ2 = σ3 = 0 then μ will be said to be
causal or a type I measure. If σ1 = σ3 = 0 then μ will be said to be a type II measure and if c = 0 and
σ1 = σ2 = 0 then μ will be said to be a type III measure. Thus any Lorentz invariant measure is a sum
of a type I measure, a type II measure and a type III measure. In particular, any measure of the form

μ(Γ) =
∫ ∞

m=0
σ(m)Ω+

m(Γ) dm, (30)

where σ is locally integrable function and the integration is carried out with respect to the Lebesgue
measure, is a causal Lorentz invariant Borel complex measure. If σ is polynomially bounded then μ is
a tempered measure.

The spectral calculus that we will now explain is a way to compute the spectrum σ of a Lorentz
invariant measure μ if we know that μ can be written in the form of Equation (30) and σ is continuous.

For m > 0 and ε > 0 let S(m, ε) be the hyperbolic (hyper-)disc defined by

S(m, ε) = {p ∈ R4 : p2 = m2, |
⇀
p | < ε, p0 > 0}, (31)

where
⇀
p = π(p) = π(p0, p1, p2, p3) = (p1, p2, p3). For a, b ∈ R with 0 < a < b let Γ(a, b, ε) be the

hyperbolic cylinder defined by
Γ(a, b, ε) =

⋃
m∈(a,b)

S(m, ε). (32)

Now suppose that we have a measure in the form of Equation (30) where σ is continuous. Then we
can write

μ(Γ(a, b, ε)) =
∫ ∞

m=0
σ(m)Ωm(Γ(a, b, ε)) dm

=
∫ ∞

m=0
σ(m)

∫
π(Γ(a,b,ε)∩H+

m )

d
⇀
p

ωm(
⇀
p )

dm

=
∫ b

a
σ(m)

∫
Bε(

⇀
0 )

d
⇀
p

ωm(
⇀
p )

dm

≈ 4
3

πε3
∫ b

a

σ(m)

m
dm.

(33)

where

ωm(
⇀
p ) = (

⇀
p

2
+ m2)

1
2 , (34)

and Bε(
⇀
0 ) = {

⇀
p ∈ R3 : |

⇀
p | < ε}.
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The approximation ≈ in the last line comes about because ωm is not constant over Bε(
⇀
0 ).

Thus if we define
ga(b) = g(a, b) = lim

ε→0
ε−3μ(Γ(a, b, ε)), (35)

then we can retreive σ using the formula

σ(b) =
3

4π
bg′a(b). (36)

Thus we have proved the following fundamental theorem of the spectral calculus of causal Lorentz
invariant measures.

Theorem 2. Suppose that μ is a causal Lorentz invariant measure with continuous spectrum σ. Then σ can be
calculated from the formula

σ(b) =
3

4π
bg′a(b), (37)

where, for a, b ∈ R, 0 < a < b, ga : (a, ∞) → R is given by Equation (35).

To make the proof of this theorem rigorous we prove the following.

Lemma 1. Let a, b ∈ R, 0 < a < b. Then

lim
ε→0

ε−3
∫

Bε(0)

d
⇀
p

ωm(
⇀
p )

=
4π

3
1
m

, (38)

uniformly for m ∈ [a, b].

Proof. Define

I = I(m, ε) =
∫

Bε(0)

d
⇀
p

ωm(
⇀
p )

. (39)

Then

I =
∫ ε

r=0

4πr2 dr

(r2 + m2)
1
2

. (40)

Now
I1 < I < I2,

where

I1 =
∫ ε

r=0

4πr2 dr

(ε2 + m2)
1
2
=

4π

(ε2 + m2)
1
2

1
3

ε3,

I2 =
∫ ε

r=0

4πr2 dr
m

=
4π

m
1
3

ε3.

Therefore
4π

3(ε2 + m2)
1
2
< ε−3 I <

4π

3m
.

Thus
4π

3m
− 4π

3(ε2 + m2)
1
2
>

4π

3m
− ε−3 I > 0.

Hence ∣∣∣∣ε−3 I − 4π

3m

∣∣∣∣ < 4π

3m
− 4π

3(ε2 + m2)
1
2

. (41)
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We have

4π

3m
− 4π

3(ε2 + m2)
1
2

=
4π

3
(ε2 + m2)

1
2 − m

m(ε2 + m2)
1
2

=
4π

3
ε2

m(ε2 + m2)
1
2 ((ε2 + m2)

1
2 + m)

<
4π

3
ε2

2m3

≤ 4π

3
ε2

2a3 , for all m ∈ [a, b].

Therefore ∣∣∣∣ε−3 I − 4π

3m

∣∣∣∣ < 2πε2

3a3 , (42)

for all m ∈ [a, b]

This lemma justifies the step of taking the limit under the integral sign (indicated by the symbol ≈)
in the proof of Theorem 2.

More generally, suppose that μ : B0(R
4) → C is a causal Lorentz invariant Borel measure on

Minkowski space with spectrum σ. Then, by the Lebesgue decomposition theorem there exist unique
measures σc, σs : B0([0, ∞)) → C such that σ = σc + σs where σc, the continuous part of the spectrum of
μ, is absolutely continuous with respect to Lebesque measure and σs, the singular part of the spectrum
of μ, is singular with respect to σc.

It is straightforward to prove the following.

Theorem 3. Suppose that a′, b′ ∈ R are such that 0 < a′ < b′, σc|(a′ ,b′) is continuous. Then for all a, b ∈ R

with a′ < a < b < b′, ga(b) defined by Equation (35) exists and is continuously differentiable. Furthermore
σc|(a′ ,b′) can be computed using the formula

σc(b) =
3

4π
bg′a(b), (43)

and
σs(E) = 0, ∀ Borel E ⊂ (a′, b′). (44)

Conversely suppose that a′, b′ ∈ R are such that 0 < a′ < b′ and for all a, b ∈ R with a′ < a < b < b′,
ga(b) defined by Equation (35) exists and is continuously differentiable. Then σc|(a′ ,b′) is continuous and can be
retrieved using the formula of Equation (43).

5. Investigation of the Measure Defined by the Convolution Ωm ∗ Ωm

5.1. Determination of Some Properties of Ωm ∗ Ωm

Consider the measure defined by

μ(Γ) = (Ωm ∗ Ωm)(Γ) =
∫

χΓ(p + q)Ωm(dp)Ωm(dq), (45)

where, for any set Γ, χΓ denotes the characteristic function of Γ defined by

χΓ(p) =

{
1 if p ∈ Γ
0 otherwise.

(46)
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μ exists as a Borel measure because as |p|, |q| → ∞ with p, q ∈ H+
m , (p + q)0 → ∞ and so p +

q is eventually /∈Γ for any compact set Γ ⊂ R4. Now

μ(Λ(Γ)) =
∫

χΛ(Γ)(p + q)Ωm(dp)Ωm(dq)

=
∫

χΓ(Λ−1 p + Λ−1q)Ωm(dp)Ωm(dq)

=
∫

χΓ(p + q)Ωm(dp)Ωm(dq)

= μ(Γ),

(47)

for all Λ ∈ O(1, 3)+↑, Γ ∈ B0(R
4). Thus μ is a Lorentz invariant measure.

We will now show that μ is concentrated in the set

C2m = {p ∈ R4 : p2 ≥ 4m2, p0 > 0}, (48)

and therefore, that μ is causal. Let U ⊂ R4 be open. Then

μ(U) =
∫

R3

∫
R3

χU(ωm(
⇀
p ) + ωm(

⇀
q ),

⇀
p +

⇀
q )

d
⇀
p

ωm(
⇀
p )

d
⇀
q

ωm(
⇀
q )

. (49)

Therefore, using continuity, it follows that

μ(U) > 0 ⇔ (∃
⇀
q 1,

⇀
q 2 ∈ R3) (ωm(

⇀
q 1) + ωm(

⇀
q 2),

⇀
q 1 +

⇀
q 2) ∈ U.

Suppose that p ∈ supp(μ) (the support of the measure μ) i.e., p is such that μ(U) > 0 for all open
neighborhoods U of p. Let U be an open neighborhood of p. Then, as μ(U) > 0, there exists

q ∈ U,
⇀
q 1,

⇀
q 2 ∈ R3 such that q = (ωm(

⇀
q 1) + ωm(

⇀
q 2),

⇀
q 1 +

⇀
q 2). Clearly q0 ≥ 2m. As this is true for

all neighborhoods U of p it follows that p0 ≥ 2m. By Lorentz invariance we may assume without loss

of generality that
⇀
p = 0. Therefore p2 ≥ 4m2. Thus supp(μ) ⊂ C2m.

For the converse, let p = (ωm(
⇀
p ),

⇀
p ), q = (ωm(

⇀
p ),−

⇀
p ) ∈ H+

m for
⇀
p ∈ R3. As

⇀
p ranges over

R3, p + q = (2ωm(
⇀
p ),

⇀
0 ) ranges over {(m′,

⇀
0 ) : m′ ≥ 2m}. It follows using Lorentz invariance that

supp(μ) ⊃ C2m.
Therefore the support supp(μ) of μ is C2m. Therefore by the spectral theorem μ has a spectral

representation of the form

μ(Γ) =
∫ ∞

m′=2m
Ωm′(Γ) σ(dm′), (50)

for some Borel measure σ : B0([2m, ∞)) → C.

5.2. Computation of the Spectrum of Ωm ∗ Ωm Using the Spectral Calculus

Let a, b ∈ R with 0 < a < b. Let

ga(b, ε) = μ(Γ(a, b, ε)) for ε > 0. (51)

We would like to calculate
ga(b) = lim

ε→0
ε−3ga(b, ε), (52)

and then retreive the spectral function as

σ(b) =
3

4π
bg′(b). (53)
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To this effect we calculate

g(a, b, ε) = μ(Γ(a, b, ε))

=
∫

χΓ(a,b,ε)(p + q)Ωm(dp)Ωm(dq)

≈
∫

χ
(a,b)×Bε(

⇀
0 )

(p + q)Ωm(dp)Ωm(dq)

=
∫

χ(a,b)(ωm(
⇀
p ) + ωm(

⇀
q ))χ

Bε(
⇀
0 )

(
⇀
p +

⇀
q )

d
⇀
p

ωm(
⇀
p )

d
⇀
q

ωm(
⇀
q )

=
∫

χ(a,b)(ωm(
⇀
p ) + ωm(

⇀
q ))χ

Bε(
⇀
0 )−

⇀
q
(
⇀
p )

d
⇀
p

ωm(
⇀
p )

d
⇀
q

ωm(
⇀
q )

≈
∫

χ(a,b)(2ωm(
⇀
q ))

4
3 πε3

ωm(
⇀
q )2

d
⇀
q .

We will call this argument Argument 1. This argument is intuitively reasonable but it needs to be
justified rigorously. It is proved in the proof of Theorem 4 of the next section.

Given that Argument 1 is valid we now proceed to compute the spectrum of μ. We have

a < 2ωm(
⇀
q ) < b ⇔

( a
2

)2
− m2 <

⇀
q

2
<

(
b
2

)2
− m2

⇔ mZ(a) < |
⇀
q | < mZ(b),

where

Z(m′) = (
m′2

4m2 − 1)
1
2 , for m′ ≥ 2m. (54)

Thus

g(a, b, ε) ≈ 16π2

3
ε3

∫ mZ(b)

r=mZ(a)

r2

m2 + r2 dr. (55)

Hence

ga(b) =
16π2

3

∫ mZ(b)

r=mZ(a)

r2

m2 + r2 dr. (56)

Therefore ga is continuously differentiable and so Theorem 3 applies. Using the Leibniz integral rule

g′a(b) =
16π2

3
m2Z2(b)

m2 + m2Z2(b)
mZ′(b) =

16π2

3
mZ(b)

b
. (57)

Therefore we compute the spectrum σ of μ as

σ(b) =

{
4πmZ(b) for b ≥ 2m
0 otherwise.

(58)

6. Proof of the Validity of Argument 1

The following theorem establishes that Argument 1 is justified.
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Theorem 4. Let g(a, b, ε) be defined by g(a, b, ε) = μ(Γ(a, b, ε)) for a, b ∈ R, a < b, ε > 0, where μ =

Ωm ∗ Ωm. Then the following formal argument (Argument 1)

g(a, b, ε) = μ(Γ(a, b, ε))

=
∫

χΓ(a,b,ε)(p + q)Ωm(dp)Ωm(dq)

≈
∫

χ(a,b)×Bε(0)(p + q)Ωm(dp)Ωm(dq)

=
∫

χ(a,b)(ωm(
⇀
p ) + ωm(

⇀
q ))χBε(0)(

⇀
p +

⇀
q )

d
⇀
p

ωm(
⇀
p )

d
⇀
q

ωm(
⇀
q )

=
∫

χ(a,b)(ωm(
⇀
p ) + ωm(

⇀
q ))χ

Bε(0)−
⇀
q
(
⇀
p )

d
⇀
p

ωm(
⇀
p )

d
⇀
q

ωm(
⇀
q )

≈
∫

χ(a,b)(2ωm(
⇀
q ))

4
3 πε3

ωm(
⇀
q )2

d
⇀
q ,

is justified in the sense that

lim
ε→0

ε−3g(a, b, ε) =
4
3

π
∫

χ(a,b)(2ωm(
⇀
q ))

1

ωm(
⇀
q )2

d
⇀
q . (59)

Proof. There are 2 ≈ signs that we have to consider. The first is in line 3 and arises because we are
approximating the hyperbolic cylinder of radius ε between a and b with an ordinary cylinder of radius
ε. We will show that the error is of order greater than ε3. Let Γ = Γ(a, b, ε) be the aforementioned
hyperbolic cylinder. Then

Γ =
⋃

m′∈(a,b)

S(m′, ε). (60)

Let

Γ′ =
⋃

m′∈(a,b)

{m′} × Bε(
⇀
0 ) = (a, b)× Bε(

⇀
0 )

Γ′− =
⋃

m′∈(a,a+)

{(m′,
⇀
p ) :

⇀
p

2
> m′2 − a2}

⊂
⋃

m′∈(a,a+)

({m′} × Bε(
⇀
0 )) = (a, a+)× Bε(

⇀
0 )

Γ′+ =
⋃

m′∈(b,b+)

{(m′,
⇀
p ) :

⇀
p

2
> m′2 − b2}

⊂
⋃

m′∈(b,b+)

({m′} × Bε(
⇀
0 )) = (b, b+)× Bε(

⇀
0 ),

in which
a+ = (a2 + ε2)

1
2 , b+ = (b2 + ε2)

1
2 . (61)

Then Γ differs from (Γ′ ∼ Γ′−) ∪ Γ′+ on a set of measure zero,
It is straightforward to show that if Γ1, Γ2 ∈ B0(R

4), Γ1 ∩ Γ2 = ∅ then∫
χΓ1∪Γ2(p + q)Ωm(dp)Ωm(dq) =

∫
χΓ1(p + q)Ωm(dp)Ωm(dq) +∫
χΓ2(p + q)Ωm(dp)Ωm(dq).
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Therefore

|
∫

χΓ(p + q)Ωm(dp)Ωm(dq)−
∫

χΓ′(p + q)Ωm(dp)Ωm(dq)| ≤∫
χΓ′−(p + q)Ωm(dp)Ωm(dq) +

∫
χΓ′+(p + q)Ωm(dp)Ωm(dq).

We will show that
lim
ε→0

(ε−3
∫

χΓ′±(p + q)Ωm(dp)Ωm(dq)) = 0. (62)

It suffices to consider the − case. We have∫
χΓ′−(p + q)Ωm(dp)Ωm(dq) ≤

∫
χ(a,a+)×Bε(0)(p + q)Ωm(dp)Ωm(dq)

=
∫

χ(a,a+)(ωm(
⇀
p ) + ωm(

⇀
q ))χ

Bε(0)−
⇀
q
(
⇀
p )

d
⇀
p

ωm(
⇀
p )

d
⇀
q

ωm(
⇀
q )

.

(63)

We will come back to this equation later but will now return to the general argument Argument 1 and

consider the second and final ≈. This ≈ arises because we are approximating
⇀
p by −

⇀
q since

⇀
p ranges

over a ball of radius ε centred on −
⇀
q .

Suppose that
⇀
p and

⇀
q are such that χ

Bε(0)−
⇀
q
(
⇀
p ) = 1. Then |

⇀
p +

⇀
q | < ε. Thus ||

⇀
p | − |

⇀
q || < ε.

Hence

|ωm(
⇀
p )− ωm(

⇀
q )| = |(

⇀
p

2
+ m2)

1
2 − (

⇀
q

2
+ m2)

1
2 )|

=

∣∣∣∣∣∣
⇀
p

2
−

⇀
q

2

(
⇀
p

2
+ m2)

1
2 + (

⇀
q

2
+ m2)

1
2 )

∣∣∣∣∣∣
≤ |

⇀
p

2
−

⇀
q

2
|

2m

=
||
⇀
p | − |

⇀
q ||(|

⇀
p |+ |

⇀
q |)

2m

<
ε

2m
(|
⇀
p |+ |

⇀
q |).

We have |
⇀
p | ∈ (|

⇀
q | − ε, |

⇀
q |+ ε). Therefore |

⇀
p |+ |

⇀
q | < 2|

⇀
q |+ ε. Thus

|ωm(
⇀
p )− ωm(

⇀
q )| < ε

2m
(2|

⇀
q |+ ε).

Therefore
ωm(

⇀
p ) + ωm(

⇀
q ) = ωm(

⇀
p )− ωm(

⇀
q ) + ωm(

⇀
q ) + ωm(

⇀
q )

≤ |ωm(
⇀
p )− ωm(

⇀
q )|+ 2ωm(

⇀
q )

< 2ωm(
⇀
q ) +

ε

2m
(2|

⇀
q |+ ε).

(64)
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Now let

I(ε) =
∫

χ(a,b)(ωm(
⇀
p ) + ωm(

⇀
q ))χ

Bε(
⇀
0 )−

⇀
q
(
⇀
p )

d
⇀
p

ωm(
⇀
p )

d
⇀
q

ωm(
⇀
q )

J(ε) =
∫

χ(a,b)(2ωm(
⇀
q ))χ

Bε(
⇀
0 )−

⇀
q
(
⇀
p )

d
⇀
p

ωm(
⇀
p )

d
⇀
q

ωm(
⇀
q )

K(ε) =
∫

χ(a,b)(2ωm(
⇀
q ))

4
3 πε3

ωm(
⇀
q )2

d
⇀
q .

We will show that

lim
ε→0

ε−3(I(ε)− J(ε)) = 0, and lim
ε→0

ε−3(J(ε)− K(ε)) = 0. (65)

Concerning the first limit we note that χ(a,b)(ωm(
⇀
p ) + ωm(

⇀
q )) differs from χ(a,b)(2ωm(

⇀
q )) if and

only if

1. ωm(
⇀
p ) + ωm(

⇀
q ) ∈ (a, b) but 2ωm(

⇀
q ) ≤ a or

2. ωm(
⇀
p ) + ωm(

⇀
q ) ∈ (a, b) but 2ωm(

⇀
q ) ≥ b or

3. 2ωm(
⇀
q ) ∈ (a, b) but ωm(

⇀
p ) + ωm(

⇀
q ) ≤ a or

4. 2ωm(
⇀
q ) ∈ (a, b) but ωm(

⇀
p ) + ωm(

⇀
q ) ≥ b.

Thus
|I(ε)− J(ε)| = I1(ε) + I2(ε) + I3(ε) + I4(ε), (66)

where
I1(ε) =

∫
χ(a,b)(ωm(

⇀
p ) + ωm(

⇀
q ))χ(−∞,a](2ωm(

⇀
q ))χ

Bε(
⇀
0 )−

⇀
q
(
⇀
p )

d
⇀
p

ωm(
⇀
p )

d
⇀
q

ωm(
⇀
q )

,
(67)

and I2, I3, I4 are defined similarly. We will show that

lim
ε→0

ε−3 I1(ε) = 0. (68)

I2, I3 and I4 can be dealt with similarly.
Using Equation (64)

ωm(
⇀
p ) + ωm(

⇀
q ) ∈ (a, b) and 2ωm(

⇀
q ) ≤ a ⇒ a − ε

2m
(2|

⇀
q |+ ε) < 2ωm(

⇀
q ) ≤ a.

Therefore

I1(ε) ≤
∫

χ
(a−(2|

⇀
q |+ε)ε/(2m),a]

(2ωm(
⇀
q ))χ

Bε(
⇀
0 )−

⇀
q
(
⇀
p )

1
m2 d

⇀
p d

⇀
q

=
4
3

πε3
∫

χ
(a−(2|

⇀
q |+ε)ε/(2m),a]

(2ωm(
⇀
q ))

1
m2 d

⇀
q .

Hence

ε−3 I1(ε) ≤ 4
3

π
∫

χ
(a−(2|

⇀
q |+ε)ε/(2m),a]

(2ωm(
⇀
q ))

1
m2 d

⇀
q . (69)

139



Symmetry 2020, 12, 1696

The integrand is integrable for all ε > 0, vanishes outside the compact set

C = {
⇀
q ∈ R3 : 2ωm(

⇀
q ) ≤ a},

is dominated by the integrable function

g(
⇀
q ) =

1
m2 χ[0,a](2ωm(

⇀
q )),

and converges pointwise to 0 everywhere on R3 as ε → 0 except on the set ∂C = {
⇀
q ∈ R3 : 2ωm(

⇀
q ) = a}

which is a set of measure 0. Therefore by the dominated convergence theeorem

lim
ε→0

ε−3 I1(ε) = 0, (70)

as required.
Now regarding the second limit in Equation (65) consider the function f : [0, ∞) → (0, m−1]

defined by
f (p) = (m2 + p2)−

1
2 . (71)

f is analytic. Therefore by Taylor’s theorem for all q, p ≥ 0

f (p) = f (q) + f ′(q)(p − q) +
1
2

f ′′(ξ)(p − q)2, (72)

for some ξ between q and p. Now

f ′(p) = −p(m2 + p2)−
3
2

f ′′(p) = (m2 + p2)−
5
2 (2p2 − m2).

Therefore

| f ′′(ξ)| = (m2 + ξ2)−
5
2 |2ξ2 − m2|

≤ m−5(2(q + ε)2 + m2),

as long as |p − q| < ε. Thus

| f (p)− f (q)| = | f ′(q)(p − q) +
1
2

f ′′(ξ)(p − q)2|

< q(m2 + q2)−
3
2 ε +

1
2

m−5(2(q + ε)2 + m2)ε2

< m−1ε +
1
2

m−5(2(q + ε)2 + m2)ε2,

as long as |p − q| < ε. Hence
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|J(ε)− K(ε)| = |
∫

χ(a,b)(2ωm(
⇀
q ))(

∫
χ

Bε(
⇀
0 )−

⇀
q
(
⇀
p )(

1

ωm(
⇀
p )

− 1

ωm(
⇀
q )

) d
⇀
p )

d
⇀
q

ωm(
⇀
q )

|

≤
∫

χ(a,b)(2ωm(
⇀
q ))(

∫
χ

Bε(
⇀
0 )−

⇀
q
(
⇀
p )(| f (|

⇀
p |)− f (|

⇀
q |)|) d

⇀
p )

d
⇀
q

ωm(
⇀
q )

≤
∫

χ(a,b)(2ωm(
⇀
q ))

∫
χ

Bε(
⇀
0 )−

⇀
q
(
⇀
p )(m−1ε +

1
2

m−5(2(|
⇀
q |+ ε)2 + m2)ε2)

d
⇀
p d

⇀
q

ωm(
⇀
q )

=
4
3

πε3
∫

χ(a,b)(2ωm(
⇀
q ))(m−1ε +

1
2

m−5(2(|
⇀
q |+ ε)2 + m2)ε2)

d
⇀
q

ωm(
⇀
q )

.

Therefore

lim
ε→0

ε−3|J(ε)− K(ε)| = lim
ε→0

4
3

π
∫

χ(a, b)(2ωm(
⇀
q ))(m−1ε +

1
2

m−5(2(|
⇀
q |+ ε)2 + m2)ε2)

d
⇀
q

ωm(
⇀
q )

= 0,

as required. We have therefore dealt with the second ≈ in Argument 1.
To finish dealing with the first ≈ suppose that ε1 > 0 is given. Choose c ∈ (a, b) such that

16
3

π2(Z(c)− Z(a)) <
ε1

2
. (73)

Now choose δ1 > 0 such that if 0 < ε < δ1 then

|ε−3
∫

χ(a,c)(ωm(
⇀
p ) + ωm(

⇀
q ))χ

Bε(
⇀
0 )−

⇀
q
(
⇀
p )

d
⇀
p

ωm(
⇀
p )

d
⇀
q

ωm(
⇀
q )

−

4
3

π
∫

χ(a,c)(2ωm(
⇀
q ))

d
⇀
q

ωm(
⇀
q )2

| < ε1

2
.

(We can do this because of the validity of the second ≈.) Choose δ2 > 0 such that if 0 < ε < δ2 then
a+ = a+(ε) < c. Let δ = min(δ1, δ2).
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Then if ε < δ then

|ε−3
∫

χ(a,a+)(ωm(
⇀
p ) + ωm(

⇀
q ))χ

Bε(
⇀
0 )−

⇀
q
(
⇀
p )

d
⇀
p

ωm(
⇀
p )

d
⇀
q

ωm(
⇀
q )

|

≤ |ε−3
∫

χ(a,c)(ωm(
⇀
p ) + ωm(

⇀
q ))χ

Bε(
⇀
0 )−

⇀
q
(
⇀
p )

d
⇀
p

ωm(
⇀
p )

d
⇀
q

ωm(
⇀
q )

|

≤ |ε−3
∫

χ(a,c)(ωm(
⇀
p ) + ωm(

⇀
q ))χ

Bε(
⇀
0 )−

⇀
q
(
⇀
p )

d
⇀
p

ωm(
⇀
p )

d
⇀
q

ωm(
⇀
q )

−

4
3

π
∫

χ(a,c)(2ωm(
⇀
q ))

d
⇀
q

ωm(
⇀
q )2

|+ |4
3

π
∫

χ(a,c)(2ωm(
⇀
q ))

d
⇀
q

ωm(
⇀
q )2

|

<
ε1

2
+

4
3

π
∫

χ(a,c)(2ωm(
⇀
q ))

d
⇀
q

ωm(
⇀
q )2

=
ε1

2
+

4
3

π
∫ Z(c)

Z(a)

4πr2

m2 + r2 dr

≤ ε1

2
+

16
3

π2(Z(c)− Z(a))

<
ε1

2
+

ε1

2
= ε1.

Thus

lim
ε→0

ε−3
∫

χ(a,a+)(ωm(
⇀
p ) + ωm(

⇀
q ))χ

Bε(
⇀
0 )−

⇀
q
(
⇀
p )

d
⇀
p

ωm(
⇀
p )

d
⇀
q

ωm(
⇀
q )

= 0, (74)

thereby completing the proof of the validity of the first ≈ and therefore the validity of Argument 1.

7. Investigation of the Measure Defined by the Convolution Ωim ∗ Ωim

The measure Ω+
im is defined by

Ω+
im(Γ) =

∫
π(Γ∩H+

im)

d
⇀
p

ωim(
⇀
p )

for Γ ∈ B0(R
4), (75)

where
H+

im = {p ∈ R4 : p2 = −m2, p0 ≥ 0}. (76)

Ω+
im is a measure concentrated on the positive time imaginary mass hyperboloid H+

im corresponding to
mass im. There is also a measure Ω−

im on H−
im and we may define Ωim = Ω+

im + Ω−
im, for m > 0. Ωim is

a Lorentz invariant measure on Him = {p ∈ R4 : p2 = −m2}.
Define, for m ∈ C

J+m = {p ∈ C4 : p2 = m2, Re(p0) ≥ 0, Im(p0) ≥ 0}, (77)

where p2 = ημν pμ pν (in which ημν is the Minkowski space metric tensor). Then, for m > 0,

J+m ∩R4 = {p ∈ R4 : p2 = m2, p0 ≥ 0} = H+
m , (78)
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J+m ∩ (iR4) = {p ∈ iR4 : p2 = m2, Re(p0) ≥ 0, Im(p0) ≥ 0}
= {iq : q ∈ R4, q2 = −m2, q0 ≥ 0}
= iH+

im. (79)

Now if
⇀
p ∈ R3, m > 0, we may write

ωim(
⇀
p ) = ((im)2 +

⇀
p

2
)

1
2 = (−m2 +

⇀
p

2
)

1
2 = (−(m2 + (i

⇀
p )2))

1
2 = i(m2 + (i

⇀
p )2)

1
2 = iωm(i

⇀
p ).

One may consider the measure Ω+
m to be defined on iR4 as well as R4 and for all m ∈ R or m ∈ iR

according to

Ω+
m(Γ) =

∫
π(Γ∩J+m )

d
⇀
p

ωm(
⇀
p )

. (80)

Then from Equation (79)

Ω+
m(iΓ) =

∫
iπ(Γ∩H+

im)

d
⇀
p

ωm(
⇀
p )

. (81)

Now make the substitution
⇀
p = i

⇀
q . Then d

⇀
p = −id

⇀
q . Thus

Ω+
m(iΓ) =

∫
π(Γ∩H+

im)

−id
⇀
q

−iωim(
⇀
q )

= Ω+
im(Γ). (82)

Now suppose that
ψ = ∑

k
ckχEk , (83)

where ci ∈ C and Ek ∈ B0(R
4), is a simple function. Then∫
R4

ψ(p)Ω+
im(dp) = ∑

k
ckΩ+

im(Ek)

= ∑
k

ckΩ+
m(iEk)

= ∑
k

ck

∫
iR4

χiEk (p)Ω+
m(dp)

= ∑
k

ck

∫
iR4

χEk (
p
i
)Ω+

m(dp)

=
∫

iR4
ψ(

p
i
)Ω+

m(dp).

(84)

As this is true for every such simple function ψ it follows that∫
R4

ψ(p)Ω+
im(dp) =

∫
iR4

ψ(
p
i
)Ω+

m(dp), (85)

for every function ψ which is integrable with respect to Ω+
im. Therefore

(Ω+
im ∗ Ω+

im)(Γ) =
∫
(R4)2

χΓ(p + q)Ω+
im(dp)Ω+

im(dq)

=
∫
(iR4)2

χΓ

(
p + q

i

)
Ω+

m(dp)Ω+
m(dq)

=
∫
(iR4)2

χiΓ(p + q)Ω+
m(dp)Ω+

m(dq)

= (Ω+
m ∗ Ω+

m)(iΓ),

(86)
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for all Γ ∈ B0(R
4).

Now in general, suppose that a measure μ has a causal spectral representation of the form

μ(Γ) =
∫ ∞

m′=0
Ω+

m′(Γ) σ(m′), (87)

for some Borel spectral measure σ : B0([0, ∞)) → C. Then μ extends to a measure defined on iR4 by

μ(iΓ) =
∫ ∞

m′=0
Ω+

m′(iΓ) σ(dm′) =
∫ ∞

m′=0
Ω+

im′(Γ) σ(dm′), (88)

for Γ ∈ B0(R
4). Therefore since, as we have determined above, Ω+

m ∗ Ω+
m is a causal spectral measure

with spectrum

σ(m′) =

{
4πmZ(m′) for m′ ≥ 2m
0 otherwise,

(89)

it follows that
(Ω+

m ∗ Ω+
m)(iΓ) =

∫ ∞

m′=0
Ω+

im′(Γ) σ(dm′). (90)

Therefore using Equation (86) Ω+
im ∗ Ω+

im is a measure with spectral representation

(Ω+
im ∗ Ω+

im)(Γ) =
∫ ∞

m′=0
Ω+

im′(Γ) σ(m′) dm′, (91)

where σ is the spectral function given by Equation (89). Note that Ω+
im ∗ Ω+

im is not causal, it is a type
III measure, and

supp(Ω+
im ∗ Ω+

im) = {p ∈ R4 : p2 ≤ −4m2, p0 ≥ 0}. (92)

8. Determination of the Density Defining a Causal Lorentz Invariant Borel Measure from
Its Spectrum

Suppose that μ is of the form of Equation (30) where σ is a well behaved (e.g., locally integrable)
function. We would like to see if μ can be defined by a density with respect to the Lebesgue measure,
i.e., if there exists a function g : R4 → C such that

μ(Γ) =
∫

Γ
g(p) dp. (93)

Well we have that

μ(Γ) =
∫ ∞

m=0
σ(m)Ω+

m(Γ) dm =
∫ ∞

m=0
σ(m)

∫
π(Γ∩H+

m )

d
⇀
p

ωm(
⇀
p )

dm. (94)

Now

⇀
p ∈ π(Γ ∩ H+

m ) ⇔ (∃p ∈ R4)
⇀
p = π(p), p ∈ H+

m , p ∈ Γ

⇔ (ωm(
⇀
p ),

⇀
p ) ∈ Γ

⇔ χΓ(ωm(
⇀
p ),

⇀
p ) = 1.

Therefore
μ(Γ) =

∫ ∞

m=0
σ(m)

∫
R3

χΓ(ωm(
⇀
p ),

⇀
p )

1

ωm(
⇀
p )

d
⇀
p dm. (95)
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Now consider the transformation defined by the function h : (0, ∞)× R3 → R4 given by

h(m,
⇀
p ) = (ωm(

⇀
p ),

⇀
p ). (96)

Let

q = h(m,
⇀
p ) = (ωm(

⇀
p ),

⇀
p ) = ((m2 +

⇀
p

2
)

1
2 ,

⇀
p ). (97)

Then
∂q0

∂m
= mωm(

⇀
p )−1,

∂q0

∂pj = pjωm(
⇀
p )−1,

∂qi

∂m
= 0,

∂qi

∂pj = δij, (98)

for i, j = 1, 2, 3. Thus the Jacobian of the transformation is

J(m,
⇀
p ) = mωm(

⇀
p )−1. (99)

Now q = (ωm(
⇀
p ),

⇀
p ). Therefore q2 = ωm(

⇀
p )2 −

⇀
p

2
= m2. So m = (q2)

1
2 , q2 > 0. Thus

μ(Γ) =
∫

q∈R4,q2>0,q0>0
χΓ(q)

σ(m)

ωm(
⇀
p )

dq

J(m,
⇀
p )

=
∫

q2>0,q0>0
χΓ(q)

σ(m)

m
dq.

(100)

Hence

μ(Γ) =
∫

q2>0,q0>0
χΓ(q)

σ((q2)
1
2 )

(q2)
1
2

dq

=
∫

Γ
g(q) dq,

where g : R4 → C is defined by

g(q) =

{
(q2)−

1
2 σ((q2)

1
2 ) if q2 > 0, q0 > 0

0 otherwise.
(101)

We have therefore shown how, given a spectral representation of a causal Lorentz invariant Borel
complex measure in which the spectrum is a complex function, one can obtain and equivalent
representation of the measure in terms of a density with respect to Lebesgue measure.

9. Convolutions and Products of Causal Lorentz Invariant Borel Measures

9.1. Convolution of Measures

Let μ and ν be causal Lorentz invariant Borel complex measures. Then (up to possible atoms
at the origin which can be dealt with in a straightforward way) there exist Borel spectral measures
σ, ρ : B0([0, ∞)) → C such that

μ =
∫ ∞

m=0
Ωm σ(dm),

ν =
∫ ∞

m=0
Ωm ρ(dm).

(102)

We will assume, without loss of generality, that σ and ρ are complex measures, i.e. σ, ρ : B([0, ∞)) → C

and are countably additive. The convolution of μ and ν, if it exists, is given by

(μ ∗ ν)(Γ) =
∫

χΓ(p + q) μ(dp) ν(dq). (103)
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Now let ψ = ∑i ciχEi with ci ∈ C, Ei ∈ B0(R
4) be a simple function. Then∫

ψ(p) μ(dp) =
∫

∑
i

ciχEi μ(dp)

= ∑
i

ciμ(Ei)

= ∑
i

ci

∫ ∞

m=0
Ωm(Ei) σ(dm)

= ∑
i

ci

∫ ∞

m=0

∫
R4

χEi (p)Ωm(dp) σ(dm)

=
∫ ∞

m=0

∫
R4

ψ(p)Ωm(dp) σ(dm).

Therefore for any sufficiently well behaved measurable function ψ : R4 → C (e.g. bounded measurable
functions of compact support) ∫

ψ(p)μ(dp) =
∫

ψ(p)Ωm(dp) σ(dm). (104)

(Note that the integral exists because σ is a Borel measure.) Hence for all Γ ∈ B0(R
4)

(μ ∗ ν)(Γ) =
∫

χΓ(p + q) μ(dp) ν(dq)

=
∫

χΓ(p + q)Ωm(dp) σ(dm)Ωm′(dq) ρ(dm′)

=
∫

χΓ(p + q)Ωm(dp)Ωm′(dq)σ(dm) ρ(dm′),

(105)

by Fubini’s theorem, as long as∫
χΓ(p + q)Ωm(dp)Ωm′(dq)|σ|(dm) < ∞, ∀m′ ∈ [0, ∞), (106)

where |σ| is the total variations of the measure σ.

Suppose that Γ ∈ B0(R
4). Then there exists a, R ∈ (0, ∞) such that Γ ⊂ (−a, a) × BR(

⇀
0 ),

where BR(
⇀
0 ) = {

⇀
p ∈ R3 : |

⇀
p | < R}. Now∫

χΓ(p + q)Ωm(dp) =
∫

Γ−q
Ωm(dp) = Ωm(Γ − q) < ∞, (107)

for all q ∈ R4 because Ωm is Borel and Γ is compact.
Now suppose that m, m′ > a. Then

p ∈ H+
m , q ∈ H+

m′ ⇒ (p + q)0 = p0 + q0 ≥ m + m′ > 2a ⇒ (p + q)/∈Γ. (108)

Thus ∫
χΓ(p + q)Ωm(dp)Ωm′(dq) = 0. (109)

Therefore since σ and ρ are Borel, (μ ∗ ν)(Γ) exists, is finite and is given by Equation (105).
Now let Λ ∈ O(1, 3)+↑, ψ : R4 → C be a measurable function of compact support. Then

< μ ∗ ν, Λψ > =
∫

ψ(Λ−1(p + q))Ωm(dp)Ωm′(dq) σ(dm) ρ(dm′)

=
∫

ψ(p + q)Ωm(dp)Ωm′(dq) σ(dm) ρ(dm′).

= < μ ∗ ν, ψ >
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Therefore μ ∗ ν is Lorentz invariant. It can be shown, by an argument similar to that used for the case
Ωm ∗ Ωm that μ ∗ ν is causal.

We have therefore shown that the convolution of two causal Lorentz invariant Borel complex
measures exists and is a causal Lorentz invariant Borel complex measure.

9.2. Product of measures

We now turn to the problem of computing the product of two causal Lorentz invariant Borel
complex measures. The problem of computing the product of measures or distributions is difficult in
general and has attracted a large amount of research [10,19,20]. In such work one generally seeks a
definition of the product of measures or distributions which agrees with the ordinary product when
the measures or distributions are functions (i.e., densities with respect to Lebesgue measure). The most
common approach is to use the fact that, for Schwartz functions f , g ∈ S(R4) multiplication in the
spatial domain corresponds to convolution in the frequency domain, i.e., ( f g)∧ = f∧ ∗ g∧ (where ∧
denotes the Fourier transform operator). Thus one defines the product of measures or distributions
μ, ν as

μν = (μ∧ ∗ ν∧)∨. (110)

However, this definition is only successful when the convolution that it involves exists which may not
be the case in general. If μ, ν are tempered measures then μ∧ and ν∧ exist as tempered distributions,
however, they are generally not causal, even if μ, ν are causal.

We will therefore not use the “frequency space" approach to define the product of measures but
will use a different approach. Our approach is just as valid as the frequency space approach because
our product will coincide with the usual function product when the measures are defined by densities.
Furthermore, our approach is useful for the requirements of QFT because measures and distributions
in QFT are frequently Lorentz invariant and causal.

Let int(C) = {p ∈ R4 : p2 > 0, p0 > 0}. Suppose that f : int(C) → C is a Lorentz invariant locally
integrable function. Then it defines a causal Lorentz invariant Borel measure μ f which, by the spectral
theorem, must have a representation of the form

μ f (Γ) =
∫

Γ
f (p) dp =

∫ ∞

m=0
Ωm(Γ) σ(dm), (111)

for some spectral measure σ : B0([0, ∞)) → C. As μ f is absolutely continuous with respect to Lebesgue
measure it follows that σ must be non-singular, i.e., a function. By the result of the previous section a

density defining μ f is
∼
f : int(C) → C defined by

∼
f (p) = (p2)−

1
2 σ((p2)

1
2 ), p ∈ int(C). (112)

We must have that
∼
f = f (almost everywhere). Therefore (almost everywhere on int(C))

f (p) = (p2)−
1
2 σ((p2)

1
2 ). (113)

Without loss of generality, it can be assumed that equality holds everywhere in Equation (113).
f (p) depends only on p2. Therefore for all m > 0, σ(m) = m f (p) for all p ∈ int(C) such that
p2 = m2. In particular

σ(m) = m f ((m,
⇀
0 )T), ∀m > 0. (114)

Now we are seeking a definition of product which has useful properties. Two such properties would be
that it is distributive with respect to generalized sums such as integrals and also that it agrees with the
ordinary product when the measures are defined by functions. Suppose that we had such a product.
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Let f , g : int(C) → C be Lorentz invariant locallly integrable functions. Let μ, ν : B0(int(C)) → C be
the associated measures with spectra σ, ρ. Then

μν =
∫ ∞

m=0
Ωm σ(dm)

∫ ∞

m′=0
Ωm′ ρ(dm′)

=
∫ ∞

m=0
Ωm m f ((m,

⇀
0 )T) dm

∫ ∞

m′=0
Ωm′ m′g((m′,

⇀
0 )T) dm′

=
∫ ∞

m=0

∫ ∞

m′=0
ΩmΩm′m f ((m,

⇀
0 )T)m′g((m′,

⇀
0 )T) dm dm′.

Now we want this to be equal to ∫ ∞

m=0
Ωmm( f g)((m,

⇀
0 )T) dm (115)

This will be the case (formally) if we have

ΩmΩm′ =
1
m

δ(m − m′)Ωm, ∀m, m′ > 0. (116)

Physicists will be familiar with such a formula (e.g., the equal time commutation relations). Rather
than attempting to define its meaning in a rigorous way, we will simply carry out the following formal
computation for general Lorentz invariant Borel measures μ, ν with spectra σ, ρ

μν =
∫ ∞

m=0
Ωm σ(dm)

∫ ∞

m′=0
Ωm′ ρ(dm′)

=
∫ ∞

m=0

∫ ∞

m′=0
ΩmΩm′σ(m)ρ(m′) dm dm′

=
∫ ∞

m=0

∫ ∞

m′=0

1
m

Ωmδ(m − m′)σ(m)ρ(m′) dm′ dm

=
∫ ∞

m=0

1
m

Ωmσ(m)ρ(m) dm.

Therefore we can simply define the product μν in general by

μν =
∫ ∞

m=0

1
m

Ωm (σρ)(dm), (117)

i.e.,

(μν)(Γ) =
∫ ∞

m=0

1
m

Ωm(Γ) (σρ)(dm), (118)

for Γ ∈ B0(R
4).

We have therefore reduced the problem of computing the product of measures on int(C) to the
problem of computing the product of their 1D spectral measures. The problem of multiplying 1D
measures is somewhat less problematic than the problem of multiplying 4D measures. A large class
of 1D measures is made up of measures which are of the form of a function plus a finite number of
“atoms” (singularities of the form cδa where c ∈ C\{0}, a ∈ [0, ∞), where δa is the Dirac delta function
(measure) concentrated at a). There are other pathological types of the 1D measure but these may not
be of interest for physical applications.

In the general non-pathological case, if μ, ν are causal Lorentz invariant Borel measures with
spectra σ(m) = ξ(m) + ∑k

i=1 ciδ(m − ai), ρ(m) = ζ(m) + ∑l
j=1 djδ(m − bj) where ξ, ζ : [0, ∞) → C are

locally integrable functions, ci, dj ∈ C\{0}, k, l ≥ 0, ai, bj ∈ [0, ∞) are such that ai �= bj, ∀i, j then we
may define the product of μ and ν to be the causal Lorentz invariant measure μν given by

μν =
∫ ∞

m=0
Ωmτ(dm), (119)
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where

τ(m) =
1
m
(ξ(m)ζ(m) + ζ(m)

k

∑
i=1

ciδ(m − ai) + ξ(m)
l

∑
j=1

djδ(m − bj))

=
1
m
(ξ(m)ζ(m) +

k

∑
i=1

ζ(aj)ciδ(m − ai) +
l

∑
j=1

ξ(bj)djδ(m − bj)),

for m > 0.

10. Conclusions

We have defined a spectral calculus that enables one to compute the spectrum of any causal
Lorentz invariant Borel complex measure on Minkowski space whose spectrum is a continuous
function. This calculus can be used in many applications in QFT and leads to a method called spectral
regularization [21].

We have computed the spectra associated with certain elementary convolutions involving
Feynman propagators of mass m scalar particles. It has been shown how one can compute the
density associated with a causal Lorentz invariant Borel complex measure from its spectrum.

We have shown that the convolution of arbitrary measures of the prescribed type exists and how
their product exists in a wide class of cases of physical interest. Methods for the computation of these
objects from the spectra of their components have been presented.

The spectral calculus can be used to compute the spectrum, and hence density, associated with the
contraction of the vacuum polarization tensor [21]. A generalization of the spectral calculus to Lorentz
invariant tensor valued measures on Minkowski space can be used to compute the form of the vacuum
polarization tensor and therefore to compute the vacuum polarization function. This function is
shown to have a close agreement, up to finite renormalization, with the vacuum polarization function
obtained using dimensional regularization /renormalization. This can be used to compute the Uehling
potential function without using renormalization from which the Uehling contribution to the Lamb
shift for the H atom can be computed exactly.
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1. Introduction and Definitions

The calculus without the notion of limits is called quantum calculus; it is usually called q-calculus
or q-analysis. By applying q-calculus, univalent functions theory can be extended. Moreover,
the q-derivative, such as the q-calculus operators (or the q-difference) operator, are used to developed
a number of subclasses of analytic functions (see, for details, the survey-cum-expository review article
by Srivastava [1]; see also a recent article [2] which appeared in this journal, Symmetry).

Ismail et al. [3] instigated the generalization of starlike functions by defining the class of q-starilke
functions. A firm footing of the usage of the q-calculus in the context of Geometric Functions Theory
was actually provided and the basic (or q-) hypergeometric functions were first used in Geometric
Function Theory by Srivastava (see, for details [4]). Raghavendar and Swaminathan [5] studied
certain basic concepts of close-to-convex functions. Janteng et al. [6] published a paper in which the
(q) generalization of some subclasses of analytic functions have studied. Further, q-hypergeometric
functions, the q-operators were studied in many recent works (see, for example, [7–9]). The q-calculus
applications in operator theory could be found in [4,10]. The coefficient inequality for q-starlike and
q-close-to-convex functions with respect to Janowski functions were studied by Srivastava et al. [8,11]
recently, (see also [12]). Further development on this subject could be seen in [7,9,13,14]. For a

Symmetry 2020, 12, 1043; doi:10.3390/sym12061043 www.mdpi.com/journal/symmetry
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comprehensive review of the theory and applications of the q-derivative (or the q-difference) operator
and related literature, we refer the reader to the above-mentioned work [1].

We denote by A the class of functions which are analytic and having the form:

f (z) = z +
∞

∑
n=2

anzn (1)

in the open unit disk U given by

U = {z : z ∈ C and |z| < 1}

and normalized by the following conditions:

f (0) = 0 = f ′ (0)− 1.

The subordinate between two functions f and g in U, given by:

f ≺ g or f (z) ≺ g (z) ,

if an analytic Schwarz function w exists in such way that

w (0) = 0 and |w (z)| < 1,

so that
f (z) = g

(
w (z)

)
.

In particular, the following equivalence also holds for the univalent function g

f (z) ≺ g(z) (z ∈ U) =⇒ f (0) = g(0) and f (U) ⊂ g(U).

Next by the P class of analytic functions, p(z) in U is denoted, in which normalization conditions
are given as follow:

p (z) = 1 +
∞

∑
n=1

cnzn (2)

such that
� (p (z)) > 0 (∀ z ∈ U) .

Let k be any positive real number, then we define the k-Fibonacci number sequence {Fk,n}∞
n=0

recursively by

Fk,0 = 0, Fk,1 = 1 and Fk,n+1 = kFk,n + Fk,n−1 for n � 1. (3)

The nth k-Fibonacci number is given by

Fk,n =
(k − Tk)

n − T n
k√

k2 + 4
,

where

Tk =
k −

√
k2 + 4
2

. (4)

If

p̃k (z) = 1 +
∞

∑
n=1

p̃k,nzn,
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then we have (see also [15])

p̃k,n = (Fk,n−1 + Fk,n+1)T n
k (n ∈ N; N := {1, 2, 3, · · · }). (5)

Definition 1. Let q ∈ (0, 1) then the q-number [λ]q is given by

[λ]q =

⎧⎪⎪⎨⎪⎪⎩
1− qλ

1− q
(λ ∈ C)

n−1
∑

k=0
qk = 1 + q + q2 + · · ·+ qn−1 (λ = n ∈ N) .

Definition 2. The q-difference (or the q-derivative) Dq operator of any given function f is defined, in a given
subset of C, of complex numbers by

(
Dq f

)
(z) =

⎧⎨⎩
f (z)− f (qz)
(1− q) z

(z �= 0)

f ′ (0) (z = 0),

led to the existence of the derivative f ′ (0).

From Definitions 1 and 2, we have

lim
q→1−

(
Dq f

)
(z) = lim

q→1−
f (z)− f (qz)
(1− q) z

= f ′ (z)

for a differentiable function f . In addition, from (1) and (2), we observe that

(
Dq f

)
(z) = 1 +

∞

∑
n=2

[n]q anzn−1. (6)

In the year 1976, it was Noonan and Thomas [16] who concentrated on the function f given in (1)
and gave the qth Hankel determinant as follows.

Let n � 0 and q ∈ N. Than the qth Hankel determinant is defined by

Hq (n) =

∣∣∣∣∣∣∣∣∣∣∣∣

an an+1 . . . an+q−1
an+1 . .
. . .
. . .
. . .
an+q−1 . . . . an+2(q−1)

∣∣∣∣∣∣∣∣∣∣∣∣
Several authors studied the determinant Hq (n). In particular, sharp upper bounds on H2 (2)

were obtained in such earlier works as, for example, in [17,18] for various subclasses of the normalized
analytic function class A. It is well-known for the Fekete-Szegö functional

∣∣a3 − a2
2

∣∣ that∣∣∣a3 − a2
2

∣∣∣ = H2 (1) .

Its worth mentioning that, for a parameter μ which is real or complex, the generalization the
functional

∣∣a3 − μa2
2

∣∣ is given in aspects. In particular, Babalola [19] studied the Hankel determinant
H3 (1) for some subclasses of A.

In 2017, Güney et al. [20] explored the third Hankel determinant in some subclasses of A
connected with the above-defined k-Fibonacci numbers. A derivation of the sharp coefficient bound
for the third Hankel determinant and the conjecture for the sharp upper bound of the second Hankel
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determinant is also derived by them, which is employed to solve the related problems to the third
Hankel determinant and to present an upper bound for this determinant.

Motivated and inspired by the above-mentioned work and also by the recent works of
Güney et al. [20] and Uçar [12], we will now define a new subclass SL(k, q) of starlike functions
associated with the k-Fibonacci numbers. We will then find the Hankel determinant H3 (1) for the
newly-defined functions class SL(k, q).

Definition 3. Let P (β) (0 � β < 1) denote the class of analytic functions p in U with

p(0) = 1 and �
(

p (z)
)
> β.

Definition 4. Let the function p be said to belong to the class k-P̃q (z) and let k be any positive real number if

p (z) ≺ 2p̃k (z)
(1 + q) + (1− q) p̃k (z)

, (7)

where p̃k (z) is given by

p̃k (z) =
1 + T 2

k z2

1− kTkz − T 2
k z2

, (8)

and Tk is given in (4).

Remark 1. For q = 1, it is easily seen that

p (z) ≺ p̃k (z) .

Definition 5. Let k be any positive real number. Then the function f be in the functions class SL(k, q) if and
only if

z
f (z)

(
Dq f

)
z ≺ 2p̃k (z)

(1 + q) + (1− q) p̃k (z)
, (9)

where p̃k (z) is given in (8).

Remark 2. For q = 1, we have
z f ′(z)

f (z)
≺ p̃k (z) .

We recall that when the f belongs to the class A of analytic function then it is invariant
(or symmetric) under rotations if and only if the function fς(z) given by

fς(z) = e−iς f (zeiς) (ς ∈ R)

is also in A. A functional I( f ) defined for functions f is in A is called invariant under rotations in A if
fς ∈ A and I( f ) = I( fς) for all ς ∈ R. It can be easily checked that the functionals |a2a3 − a4|, |H2,1|
and |H3,1| considered for the class SL(k, q) satisfy the above definitions.

Lemma 1 (see [21]). Let
p(z) = 1 + c1z + c2z2 + . . .

be in the class P of functions with positive real part in U. Then

|ck| � 2 (k ∈ N) . (10)
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If |c1| = 2, then

p(z) ∼= p1(z) ∼=
1 + xz
1− xz

(
x =

c1

2

)
.

Conversely, if p(z) ∼= p1(z) for some |x| = 1, then c1 = 2x and∣∣∣∣∣c2 −
c2

1
2

∣∣∣∣∣ � 2−
∣∣c2

1

∣∣
2

. (11)

Lemma 2 (see [22]). Let p ∈ P with its coefficients ck as in Lemma 1, then∣∣∣c3 − 2c1c2 + c3
1

∣∣∣ � 2. (12)

Lemma 3 (see [23]). Let p ∈ P with its coefficients ck as in Lemma 1, then

|c1c2 − c3| � 2. (13)

Lemma 4 (see [20]). If the function f given in the form (1) belongs to class SLk, then

|an| � |Tk|n−1 Fk,n, (14)

where Tk is given in (4). Equality holds true in (14) for the function g given by

gk (z) =
z

1− kTkz − T 2
k z

=
∞

∑
n=1

T n−1
k Fk,nzn,

which can be written as follows:

gk (z) = z + Tkz2 +
(

k2 + 1
)
(Tkk + 1) z3 + · · · . (15)

2. Main Results

Here, we investigate the sharp bounds for the second Hankel determinant and the third Hankel
determinant. We also find sharp bounds for the Fekete-Szegö functional

∣∣a3 − λa2
2

∣∣ for a real number
λ. Throughout our discussion, we will assume that q ∈ (0, 1).

Theorem 1. Let the function f ∈ A given in (1) belong to the class SL(k, q). Then∣∣∣a2a4 − a2
3

∣∣∣ � 1

q3 (q + 1)2 Q

{
Q (q + 1)2 +

(
|Bq|k2 + |Cq|

)
16k2

}
T 2

k , (16)

where

Q =
(

q + q2 + q3
)

(17)

Bq =
1
64

(q + 1)4

{
1

(q + 1)2Q
(

q2 + 6q − 3
)
− 1

4
q2 (q − 1) (2q − 3)

}
(18)

Cq =
1
16

(q + 1)2
[
(2q − 1)−Q

(
3 +

1
2

q2(q − 1)
)
(q + 1)2

]
(19)

and Tk is given in (4).
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Proof. If f ∈ SL(k, q), then it follows from the definition that

z
(
Dq f

)
(z)

f (z)
≺ q̃ (z) ,

where

q̃ (z) =
2p̆k (z)

(1 + q) + (1− q) p̆ (z)
.

For a given f ∈ SL(k, q), we find for the function p(z), where

p (z) = 1 + p1z + p2z2 + · · · ,

that
z
(
Dq f

)
(z)

f (z)
= p (z) := 1 + p1z + p2z2 + · · · ,

where
p ≺ q̃ (z) .

If
p(z) ≺ q̃ (z) ,

then there is an analytic function w such that

|w (z)| � |z| in U

and
p (z) = q̃

(
w(z)

)
.

Therefore, the function g(z), given by

g (z) =
1 + w (z)
1− w (z)

= 1 + c1z + c2z + · · · (∀ z ∈ U) , (20)

is in the class P . It follows that

w (z) =
( c1

2

)
z +

(
c2 −

c2
1

2

)
z2

2
+ · · ·

and
q̃ (w (z)) = 1 +

1
4
(q + 1) p̃k,1c1z

+

[
1
4
(q + 1) p̃k,1

(
c2 −

c2
1

2

)
z2 +

c2
1

16
(q + 1)

[
(q − 1) p̃2

k,1 + 2p̃k,2

]]
z2

+

[
1
4
(q + 1) p̃k,1

(
c3 − c1c2 +

c3
1

4

)
+

1
8
(q + 1)

{
(q − 1) p̃2

k,1 + 2p̃k,2

}
c1

·
(

c2 −
c2

1
2

)
+

1
64

(q + 1)
{
(q − 1)2 p̃3

k,1 +4p̃k,2 p̃k,1 (q − 1) + 4p̃k,3
}

c3
1]z

3 + · · ·

= p (z) .

(21)

From (5), we find the coefficient p̃k,n of the function q̃ given by

p̃k,n = (Fk,n−1 + Fk,n+1)T n
k .

This shows the following relevant connection q̃ with the sequence of k-Fibonacci numbers:
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q̃
(
w(z)

)
= 1 +

1
4
(q + 1) kTkc1z +

[
1
4
(q + 1) kTk

(
c2 −

c2
1

2

)
+

c2
1

16
(q + 1)

·
(
(q − 1)k2 + 2

(
2 + k2

))
T 2

k

]
z2 +

[
1
4
(q + 1) kTk

(
c3 − c1c2 +

c3
1

4

)

+
1
8
(q + 1)

{
(q − 1)k2 + 2

(
2 + k2

)}
T 2

k c1

(
c2 −

c2
1

2

)
+

1
64

(q + 1)

·
{
(q − 1)2 k2 + 4

(
2 + k2

)
(q − 1) + 4

(
k2 + 3

)}
kT 3

k c3
1

]
z3 + · · ·

(22)

If
p (z) = 1 + p1z + p2z2 + · · · ,

then, by (21) and (22), we find that

p1 =

(
q + 1

2

)
kTkc1

2
(23)

p2 =
1
4
(q + 1)

(
kTk

(
c2 −

c2
1

2

)
+

c4
1

4

){
(q − 1) k2 + 2(2 + k2)

}
T 2

k (24)

p3 = (q + 1)

[
kTk
2

(
c3 − c1c2 +

c3
1

4

)
+

{
(q − 1) k2T 2

k + 2
(

2 + k2
)
T 2

k

}
·
(

c2 −
c2

1
2

)
c1

8
+

c3
1

64

{
(q − 1)2 k2 + 4

(
2 + k2

)
(q − 1)

+4
(

k2 + 3
)}

kT 3
k

]
.

(25)

Moreover, we have

z
(
Dq f

)
(z)

f (z)
= 1 + qa2z + q

{
(1 + q) a3 − a2

2

}
z2

+
{
Qa4 − q (2 + q) a2a3 + qa3

2

}
z3 + · · ·

= 1 + p1z + p2z2 + · · ·

and

a2 =
p1

q

a3 =
qp2 + p2

1
q2 (q + 1)

,

a4 =
q2 (q + 1) p3 − p3

1(q + 1) + (2 + q)
(

p1 p2q + p3
1
)

q3 (q + 1)Q

Therefore, we obtain
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∣∣∣a2a4 − a2
3

∣∣∣ = ∣∣∣∣∣ T 2
k

q3 (q + 1)Q

∣∣∣∣∣
∣∣∣∣∣
(
(q + 1) c1

2

)2
{
Qc2

1
16

(q + 1)2

+
{
Q− q2 (q + 1)2

}(
c2 −

c2
1

4

)
(2 + k2)

4

}
k T n

k
Fk,n

−
(
(q + 1) c1

2

)2
{
Qc2

1
16

(q + 1)2
{
Q− q2 (q + 1)2

}
·
(

c2 −
c2

1
4

)
(2 + k2)

4

}
xk,n +

(
(q + 1) k

2

)2

·

⎧⎨⎩q2
(

q + 1
2

)2
c1(c1c2 − c3) +

Q
4

(
c2 −

c2
1

2

)2
⎫⎬⎭

+

{Q
8
(q + 1)− 1

4
q2k2

}(
q + 1

2

)
c4

1

+

{
Eqk3 c2

1
2

(
c2 −

c2
1

2

)
+ Bqk5c4

1 + Cqk3c4
1

}
T n

k
Fk,n

−
{
Eqk3 c2

1
2

(
c2 −

c2
1

2

)
+ Bqk5c4

1 + Cqk3c4
1

}
xk,n + Bqk4c4

1 + Cqk2c4
1

∣∣∣∣∣ ,

where
Eq =

1
16

(q + 1)2 (q − 1)
{
Q− q2 (q + 1)2

}
.

This can be written as follows:

∣∣∣a2a4 − a2
3

∣∣∣ = ∣∣∣∣∣ T 2
k

q2 (q + 1)2 Q

∣∣∣∣∣
∣∣∣∣∣
{
Q

(
q + 1

2

)4 c4
1

4
+

(
q + 1

2

)2

·
{
Q− q2 (q + 1)2

}
c2

1

(
c2 −

c2
1

4

)
(2 + k2)

4

}
kT n

k
Fk,n

+ q2
(

q + 1
2

)4
k2c1(c1c2 − c3)−

q2

64
(q + 1)4 k2c4

1 +
Q
16

(q + 1)2 c4
1

−Q
(

q + 1
2

)4 c4
1

4
kxk,n +

Qk2

4

(
q + 1

2

)2
c2

(
c2 −

c2
1

2

)

+
3
8
(q + 1)2

{
1
6

(
k2 + 2

) {
Q− q2 (q + 1)2

}
kxk,n −

k2

4

}
· c2

1

(
c2 −

c2
1

2

)
+

{
Eqk3 c2

1
2

(
c2 −

c2
1

2

)
+ Bqk5c4

1 + Cqk3c4
1

}
T n

k
Fk,n

−
{
Eqk3 c2

1
2

(
c2 −

c2
1

2

)
+ Bqk5c4

1 + Cqk3c4
1

}
xk,n + Bqk4c4

1 + Cqk2c4
1

∣∣∣∣∣ .

(26)

It is known that

∀ n ∈ N, Tk =
T n

k
Fk,n

− xk,n, xk,n =
Fk,n−1

Fk,n
, lim

n→∞

Fk,n−1

Fk,n
= |Tk| . (27)

Applying (27) together with (11)–(13), we get
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∣∣∣a2a4 − a2
3

∣∣∣ � ∣∣∣∣∣ T 2
k

q2 (q + 1)2 Q

∣∣∣∣∣
∣∣∣∣∣
{
Q

(
q + 1

2

)4 c4
1

4
+

(
q + 1

2

)2

·{Q − q2 (q + 1)2}c2
1

(
c2 −

c2
1

4

)
(2 + k2)

4

}∣∣∣∣∣ kT n
k

Fk,n

+

∣∣∣∣∣q2
(

q + 1
2

)4
k2

∣∣∣∣∣ |c1| |c1c2 − c3| −
∣∣∣∣1
4

q2
(

q + 1
2

)
k2
∣∣∣∣ ∣∣∣c4

1

∣∣∣
+
Q
4

(
q + 1

2

)2 ∣∣∣c4
1

∣∣∣−Q
(

q + 1
2

)4 |c4
1|

4
kxk,n

+

∣∣∣∣∣Qk2

4

(
q + 1

2

)2
∣∣∣∣∣ |c2|

∣∣∣∣∣c2 −
c2

1
2

∣∣∣∣∣+
∣∣∣∣∣3
8

{
2
(

q + 1
2

)2

·{Q − q2 (q + 1)2}kxk,n −
(

q + 1
2

)2
k2

}∣∣∣∣∣ |c1|2

·
∣∣∣∣∣c2 −

c2
1

2

∣∣∣∣∣+
{
Eqk3 c2

1
2

(
c2 −

c2
1

2

)
+ Bqk5c4

1 + Cqk3c4
1

}
T n

k
Fk,n

− Eqk3 |c2
1|

2

∣∣∣∣∣2− c2
1

2

∣∣∣∣∣ xk,n −Bqk5|c1|4xk,n − Cqk3|c1|4xk,n + Bqk4|c4
1|+ Cqk2|c4

1|.

From (27), we obtain(
q + 1

8

){
Q

(
q + 1

2

)
−Q

(
q + 1

2

)3
kxk,n − q2k2

}
|c4

1| > 0

and (
q + 1

2

)2 {2
3

(
k2 + 2

) {
Q− q2 (q + 1)2

}
kxk,n − k2

}
> 0,

which, for sufficiently large n, yields
|c1| =: y ∈ [0, 2] .

After some computations, we can find that

max
y∈[0,2]

{
q2

8
(q + 1)4 k2y +

∣∣∣∣∣− q2

8
(q + 1) k2 +Q (q + 1)2

16

− 1
64
Q (q + 1)4 kxk,n

∣∣∣∣ y4 +

∣∣∣∣∣Qk2 (q + 1)2

8

∣∣∣∣∣
(

2− y2

2

)

+

∣∣∣∣∣3
8

{(
q + 1

2

)2 (2
3
(k2 + 2){Q− q2 (q + 1)2}kxk,n − k2

)}
y2

(
2− y2

2

)

−|Eq|k3 y2

2

(
2− y2

2

)
xk,n − |Bq|k5y4xk,n − |Cq|k3y4xk,n + |Bq|k4y4 + |Cq|k2y4

∣∣∣∣
= 4Q

(
q + 1

2

)2
{1− kxk,n}+

(
16|Bq|k4 + 16|Cq|k2

)
{1− kxk,n}.

As a result of the following limit formula:
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lim
n→∞

[∣∣∣∣∣
(

q + 1
2

)2 c2
1

4

{(
q + 1

2

)2
Qc2

1 +
{
Q− q2 (q + 1)2

}(
c2 −

c2
1

4

)
(2 + k2)

}∣∣∣∣∣
+

∣∣∣∣∣Eqk3 c2
1

2

(
c2 −

c2
1

2

)
+ Bqk5c4

1 + Cqk3c4
1

∣∣∣∣∣
]
|T n

k |
Fk,n

= 0,

and by using (27), we get

lim
n→∞

[
max

y∈[0,2]

{
q2

(
q + 1

2

)4
2k2y +

∣∣∣∣−1
8

q2 (q + 1) k2 +
Q
16

(q + 1)2

− 1
64
Q (q + 1)4 kxk,n

∣∣∣∣ y4 +Qk2 (q + 1)2

8

(
2− y2

2

)2

+
3
32

(q + 1)2

·
{

2
3
(k2 + 2){Q− q2 (q + 1)2}kxk,n − k2

}
y2

(
2− y2

2

)
− |A|k3 y2

2

·
(

2− y2

2

)
xk,n − |Bq|k5y4xk,n − |Cq|k3y4xk,n +|Bq|k4y4 + |Cq|k2y4

]
= Q (q + 1)2 T 2

k + (|Bq|k2 + |Cq|)16k2T 2
k

We thus find that∣∣∣a2a4 − a2
3

∣∣∣ � T 2
k

q2 (q + 1)2 Q

{
Q (q + 1)2 + (|Bq|k2 + |Cq|)16k2

}
T 2

k .

If, in (20), we set

g (z) =
1 + z
1− z

= 1 + 2z + 2z2 + · · · ,

then, by putting c1 = c2 = c3 = 2 in (26), we obtain

∣∣∣a2a4 − a2
3

∣∣∣ = T 2
k

q2 (q + 1)2 Q

{
Q (q + 1)2 + (|Bq|k2 + |Cq|)16k2

}
T 2

k

This completes the proof of Theorem 1.

Remark 3. In the next result, for simplicity, we take the values of Sq, Lq and Mq as given by

Sq = q3(1 + q)Q,

Lq = {q (1 + q)− q (2 + q) +Q}
(

q + 1
2

)3
(

k3c3
1

8

)
− q3

(
q + 1

2

)2
k3c3

1

+
c3

1k
16

[
{qQ− q2 (2 + q)}

(
q + 1

2

)2 {
(q − 1) k2 + 2

(
2 + k2

)}]

− c3
1

32
q3

(
q + 1

2

)2 {
(q − 1) k3 − (q − 1)

(
2 + k2

)
k
}

and

Mq =

[
{qQ− q2 (2 + q)}

(
q + 1

2

)2
− q3

(
q + 1

2

)3

(q − 1) k2

]
c1

2

(
c2 −

c2
1

2

)
.
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Theorem 2. Let the function f ∈ A given in (1) belong to the class SL(k, q). Then

|a2a3 − a4| =
2
Sq

(
3
4

kq3 (q + 1)2 |T 3
k |+

1
2

∣∣∣{Mq +
(

1 + k2
)
Lq

}∣∣∣ kxk,n +
1
2

k
∣∣Lq

∣∣) . (28)

Proof. Let f ∈ SL(k, q) and let p ∈ P be given in (2). Then, from (23)–(25) and

zDq f (z)
f (z)

= 1 + qa2z +
{(

q + q2
)

a3 − qa2
2

}
z2

+
{
Qa4 −

(
2q + q2

)
a2a3 + qa3

2

}
z3 + · · ·

= 1 + p1z + p2z2 + · · · ,

we have

a2a3 − a4 =
1
Sq

[{
qQ− q2 (2 + q)

}
p1 p2

+ {q (1 + q)− q (2 + q) +Q} p3
1 − q3 (1 + q) p3

]
,

which, together with (27), yields

|a2a3 − a4| =
2
Sq

∣∣∣∣∣ q3

4
(q + 1)2

[
1
4

(
c2 −

c3
1

2

)
c1k2 +

1
2
(c1c2 − c3)

−
(

3k2 + 4
4

)
c1c2

]
k T k
fk,n

+
1
8

q3 (q + 1)2
(

c3 − 2c1c2 + c3
1

)
kxk,n

+
q3

8
(q + 1)2

{
1
2

(
4− k2

)(
c2 −

c2
1

2

)
+

(
3k2 + 2

)
c2

}
kc1xk,n

+
q3

16
(q + 1)2

{(
4− k2

)(
c2 −

c2
1

2

)
− 3k2c2

}
c1 −

q3

32
(q + 1)3

· (q − 1)

(
c2 −

c2
1

2

)
c1k2 +

1
2

{
Mq +

(
1 + k2

)
Lq

} kTk
fk,n

−1
2

{
Mq +

(
1 + k2

)
Lq

}
kxk,n +

1
2

kLq

∣∣∣∣ .

(29)

Now, applying the triangle inequality in (10)–(13), we get

|a2a3 − a4| ≤
2
Sq

∣∣∣∣∣ q3

16
(q + 1)2

(
c2 −

c3
1

2

)
c1k2 +

q3

8
(q + 1)2 (c1c2 − c3)

− q3

16
(q + 1)2

(
3k2 + 4

)
c1c2

∣∣∣∣ kTk
fk,n

+
q3

4
(q + 1)2 kxk,n

+
q3

4
(q + 1)2 kxk,n +

q3

8
(q + 1)2

∣∣∣k (4− k2
)

xk,n −
(

4− k2
)∣∣∣ |c1|

− q3

32
(q + 1)2

∣∣∣k (4− k2
)

xk,n −
(

4− k2
)∣∣∣ ∣∣∣c3

1

∣∣∣+ q3

4
(q + 1)2

.
∣∣∣(3k2 + 2k

)
xk,n − 3k2

∣∣∣− q3

32
(q + 1)3 (q − 1)

(
2− |c1|

2

2
)

k2 |c1|

+
1
2

∣∣∣{Mq +
(

1 + k2
)
Lq

}∣∣∣ kTk
fk,n

− 1
2

∣∣∣{Mq +
(

1 + k2
)
Lq

}∣∣∣ kxk,n +
1
2

k
∣∣Lq

∣∣ .
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In addition, by using (27), we have

q3

4
(q + 1)2

(
4− k2

)
kxk,n −

(
4− k2

)
< 0 (0 < k < 2)

and
q3

4
(q + 1)2 (3k + 2) kxk,n − 3k2 > 0

for 0 < k � 1 and sufficiently large n. Therefore, we have got a function of the variable |c1| =: y ∈ [0, 2]
and, after some computations, we can find that

max
y∈[0,2]

{
q3

4
(q + 1)2

{
kxk,n +

1
2

(
k
(

4− k2
)

xk,n −
(

4− k2
))

y
}
− q3

32
(q + 1)2

·
(

k
(

4− k2
)

xk,n −
(

4− k2
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∣∣∣∣1
2

{
Mq +

(
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)
Lq

}∣∣∣∣ kxk,n +

∣∣∣∣1
2

kLq

∣∣∣∣}
=

q3

4
(q + 1)2

(
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)
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∣∣∣∣1
2

{
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(
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)
Lq
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2

kLq

∣∣∣∣ .

As a result of the following limit relation:

lim
n→∞

[
q3

16
(q + 1)2

(
c2 −

c3
1

2

)
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q3

8
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16
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.
(

3k2 + 4
)
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1
2

{
Mq +

(
1 + k2
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Lq

}] kTk
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= 0

and, by means of (27), we have

lim
n→∞

[
max

y∈[0,2]
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1
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(
k
(

4− k2
)

xk,n −
(
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(
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(
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+

1
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1
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∣∣
= q3
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2
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= q3

(
q + 1

2

)2 (
−3kT 3

k ) +
1
2
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1
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2
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∣∣Lq

∣∣
If, in the formula (20) , we set

g (z) =
1 + z
1− z

= 1 + 2z + 2z2 + · · · ,

then, by putting c1 = c2 = c3 = 2 in (26), we obtain

|a2a3 − a4| =
k
2

{
3q3

Sq
(q + 1)2 |T 3

k |+ 1
∣∣∣{Mq +

(
1 + k2

)
Lq

}∣∣∣ xk,n +
∣∣Lq

∣∣}
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This completes the proof of Theorem 2.

Theorem 3. Let the function f ∈ A given in (1) belong to the class SL(k, q). Then

∣∣∣a3 − λa2
2

∣∣∣ � T 2
k

q2(q + 1)

[{∣∣∣∣∣G
(

1 + q
2

)2
∣∣∣∣∣+

∣∣∣∣ q
4

(
q2 − 1

)
+ q

(
q + 1

2

)∣∣∣∣
}

k2 + q (q + 1)

]
(30)

Proof. Let f ∈ SL(k, q) and let p ∈ P given in (2). Then, from (23)–(25) and

zDq f (z)
f (z)

= 1 + qa2z +
{(

q + q2
)

a3 − qa2
2

}
z2

+
{
Qa4 −

(
2q + q2

)
a2a3 + qa3

2

}
z3 + · · ·

= 1 + p1z + p2z2 + · · · ,

we have ∣∣∣a3 − λa2
2

∣∣∣ = 1
q2 (1 + q)

∣∣∣[1 +
∣∣∣λ2

∣∣∣ (1 + q)
]

p2
1 + qp2

∣∣∣ .

Therefore, we obtain

∣∣∣a3 − λa2
2

∣∣∣ = 1
q2 (1 + q)

∣∣∣∣∣(1− λ2 (1 + q))

[(
1 + q

2

)2 (κc1T
2

)2
]

+q

{
q + 1

4
κTk(c2 −

c2
1

2
)c2

1(
q + 1

16
)

}{
(q − 1)κ2 + 2(2 + k2)T 2

k

}∣∣∣∣∣
=

Tk
q2 (1 + q)

∣∣∣∣∣(1 + ∣∣∣λ2
∣∣∣ (1 + q) (

1 + q
2

)2 k2c2
1

4
Tk + q

[
q + 1

4
κ

(
c2 −

c2
1

2

)

+
q(q + 1)c2

1
16

(q − 1)k2Tk + 2(2 + k2)T 2
k

]∣∣∣∣∣ .

Thus, by applying (27), we have

∣∣∣a3 − λa2
2

∣∣∣ = Tk
q2 (1 + q)

∣∣∣∣∣G
(

1 + q
2

)2 k2c2
1

4
Tk + q(

q + 1
4

)
c2

1
4

·
[
(q − 1)k2 + 2(2 + k2)

T n
k

fk,n

]
−

(
G
(

1 + q
2

)2 k2c2
1

4
+ q

(q + 1)
4

c2
1

4

)

·
[
(q − 1)k2 + 2(2 + k2)

]
xk,n + q

(
q + 1

4

)
k

(
c2 −

c2
1

2

)∣∣∣∣∣ ,

where
G = 1 +

∣∣∣λ2
∣∣∣ (1 + q) .

Now, by applying the triangle inequality in (10)–(13), we have
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∣∣∣∣ Tk
q2 (1 + q)

∣∣∣∣
∣∣∣∣∣G

(
1 + q

2

)2 k2c2
1

4
+ q

(
q + 1

4

)
c2

1
4

[
(q − 1)k2 + 2(2 + k2)

]∣∣∣∣∣
· T

n
k

fk,n
−

[∣∣∣∣∣G
(

1 + q
2

)2 k2

4

∣∣∣∣∣ |c1|2xk,n
+ q

(
q2 − 1

4

)
k2 |c1|2xk,n

+ q
(

q + 1
4

)

·
∣∣∣∣∣ c2

1
2
(2 + k2)xk,n

∣∣∣∣∣+ q
(

q + 1
4

)
k

∣∣∣∣∣c2 −
c2

1
2

∣∣∣∣∣
]

=

∣∣∣∣ Tk
q2 (1 + q)

∣∣∣∣ ∣∣∣∣ G16
(1 + q)2 k2c2

1 +
q

16
(q + 1) c2

1

[
(q − 1)k2 + 2(2 + k2)

]∣∣∣∣
· T

n
k

fk,n
−

[∣∣∣∣∣G
(

1 + q
2

)2 k2

4

∣∣∣∣∣ |c1|2xk,n
+ q

(
q + 1

4

)
(q − 1)k2 |c1|2xk,n

+
q (q + 1)

4

∣∣∣∣∣ c2
1

2
(2 + k2)xk,n

∣∣∣∣∣+
∣∣∣∣q (

q + 1
4

)
k
∣∣∣∣
∣∣∣∣∣c2 −

c2
1

2

∣∣∣∣∣
]

,

which, after some computations, yields

max
yε[0,2]

∣∣∣∣∣G
(

1 + q
2

)2 k2

4

∣∣∣∣∣ y2xk,n +

∣∣∣∣q (
q + 1

4

)
(q − 1)k2

∣∣∣∣ xk,n +

∣∣∣∣q (
q + 1

4

)
(2 + k2)

∣∣∣∣ 2xk,n

=

[∣∣∣∣∣G
(

1 + q
2

)2
∣∣∣∣∣+

∣∣∣∣q (
q2 − 1

4

)∣∣∣∣+ ∣∣∣∣q (
q + 1

2

)∣∣∣∣
]

k2xk,n + q(q + 1)xk,n,

in which we have set y = 2. As a result of the following limit formula:

lim
n→∞

∣∣∣∣∣G
(

1 + q
2

)2 k2c2
1

4
+ q

(
q + 1

2

)
c2

1
4

{
(q − 1) k2 + 2(2 + k2)

}∣∣∣∣∣ T n
k

fxk,n

= 0,

which, by applying (27), yields

∣∣∣a3 − λa2
2

∣∣∣ � T 2
k

q2(q + 1)

[{
1
4

∣∣∣G (1 + q)2
∣∣∣+ ∣∣∣ q

4

(
q2 − 1

)
+

q
2
(q + 1)

∣∣∣} k2

+q (q + 1)] .

This completes the proof of Theorem 3.

Theorem 4. Let the function f ∈ A given in (1) belong to the class SL(k, q). Then

|H3(1)| �
T 6

k
q4(1 + q)3Q [(2q + (q + 1)k2]{16

∣∣Bq
∣∣ k4 + 16

∣∣Cq
∣∣ k2}

+
T 3

k 2(2 + q)k3 + (5q + 7)k
2q2(1 + q)Q

∣∣∣{Mq + (1 + k2)Lq}kxk,n + kLq

∣∣∣ .

Proof. Let f ∈ SL(k, q). Then as we know that

H3(1) =

∣∣∣∣∣∣∣
a1 a2 a3

a2 a3 a4

a3 a4 a5

∣∣∣∣∣∣∣ = a3(a2a4 − a2
3)− a4(a4 − a2a3) + a5(a3 − a2

2),

where a1 = 1 so, we have

|H3(1)| � |a3|
∣∣∣a2a4 − a2

3

∣∣∣+ |a4| |a4 − a2a3|+ |a5|
∣∣∣a3 − a2

2

∣∣∣ (31)
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Thus, by using Lemma 4, Theorems 1–3, as well as the formula (31), we find that

|H3(1)| � 2(�qk6 + 4Ψqk4 + 4Υqk2 + Γq)T 6
k , (32)

where

�q =
κq,λ

2q2Q

{
1 +

χq(2 + q)
Qq2 − (q + 3)(q + 1)2

4q2 +

(
q + 1

q3

)
+

(q + 1)4

16q3

}

Ψq =
3(2 + q)

q3(1 + q)2Q +
κq,λ

2q2(Q+ 1)

{
4 +

(5q + 7)χq

2q2Q − (q + 3)(q + 1)
2q

+
4
q2

}
+

(q + 1)
2q(Q+ 1)

{
1 +

χq(2 + q)
q2Q − (q + 3)(q + 1)2

4q2 +
q + 1

q3 + q
(

q + 1
2q

)4
}

Υq =
1
q2 +

1
(Q+ 1)

(
4 +

χq(5q + 7)
2q2Q

)
− q + 1

2q

(
(q + 1)(q + 3)

2q
+

4
q2

)
+

3(5q + 7)
2q2Q +

κq,λ

2q2(Q+ 1)

(
2 +

4
q(1 + q

)

Γq =
1

q4(1 + q)3Q
(

2q + (q + 1)k2
) (

16
∣∣Bq

∣∣ k4 + 16
∣∣Cq

∣∣ k2
)

+
2(2 + q)k3 + (5q + 7)k

2q2(1 + q)Q
∣∣∣{Mq + (1 + k2)Lq}kxk,n + kLq

∣∣∣ ,

and

χq = q2 + q + 2.

This completes the proof of Theorem 4.

3. Conclusions

A new subclass of analytic functions associated with k-Fibonacci numbers has been introduced by
means of quantum (or q-) calculus. Upper bound of the third Hankel determinant has been derived for
this functions class. We have stated and proved our main results as Theorems 1–4 in this article.

Further developments based upon the the q-calculus can be motivated by several recent
works which are reported in (for example) [24,25], which dealt essentially with the second and
the third Hankel determinants, as well as [26–29], which studied many different aspects of the
Fekete-Szegö problem.
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Abstract: In the present paper, we deal with some general estimates for the difference of operators
which are associated with different fundamental functions. In order to exemplify the theoretical
results presented in (for example) Theorem 2, we provide the estimates of the differences between
some of the most representative operators used in Approximation Theory in especially the difference
between the Baskakov and the Szász–Mirakyan operators, the difference between the Baskakov and
the Szász–Mirakyan–Baskakov operators, the difference of two genuine-Durrmeyer type operators,
and the difference of the Durrmeyer operators and the Lupaş–Durrmeyer operators. By means of
illustrative numerical examples, we show that, for particular cases, our result improves the estimates
obtained by using the classical result of Shisha and Mond. We also provide the symmetry aspects of
some of these approximations operators which we have studied in this paper.

Keywords: approximation operators; differences of operators; Szász–Mirakyan–Baskakov operators;
Durrmeyer type operators; Bernstein polynomials; modulus of continuity

1. Introduction, Definitions and Preliminary Results

Approximation by positive linear operators is a classical and important topic of research in
Approximation Theory and Computer-Aided Geometric Design (CAGD). The basis of the familiar
Bernstein operators is an important tool in Computer-Aided Geometric Design. This basis is used in
order to construct Bézier curves, which have applications for designing curves for the cars industry and
problems involving animations. In addition, the Bézier curves are used in order to control the velocity
over time. A class of symmetric Beta-type distributions involving the symmetric Bernstein-type basis
function was introduced and studied in [1]. In recent years, the quantum (or the q-) calculus and
its variation, the so-called post-quantum or the (p, q)-calculus, which have many applications in
quantum physics, attracted the attention of many researchers. For example, some variations of positive
linear operators by using the (p, q)-calculus instead of their known forms involving the traditional
q-calculus were, in fact, published recently in Symmetry itself (see [2]). In this connection, the readers
are referred also to a subsequent survey-cum-expository review article by Srivastava [3] in which the
above-mentioned variation aspect of the (p, q)-calculus was exposed. Several other applications of the
positive linear operators in learning theory can also be found in the literature. For more details about

Symmetry 2020, 12, 915; doi:10.3390/sym12060915 www.mdpi.com/journal/symmetry
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this topic, the reader is referred to the applications of the Bernstein operators and the iterated Boolean
sums of operators (see [4]) and the applications of the Durrmeyer operators (see [5]).

The attention of many researchers in the study of the differences of positive linear operators
began with the question raised by Lupaş in regard with the possibility to give an estimate for the
following commutator:

[Bn,Bn] := Bn ◦Bn −Bn ◦ Bn,

where Bn are the Bernstein operators and Bn are the Beta operators (see, for details, [6]).
In [7], an algebraic structure of positive linear operators, which map C[0, 1] into itself,

was considered in order to give an inequality for the commutators of certain positive linear operators.
In several sequels to this study, Gonska et al. (see, for example, [8–10]) considered an algebraic
structure (S,+, ◦, 0, I) which satisfies each of the following conditions:

(i) It is closed under both “+” and “◦”;
(ii) Both “+” and “◦” are associative;
(iii) 0 is the identity for + and I is the identity for “◦”;
(iv) 0 is an annihilator for “◦”, that is, A ◦ 0 = 0 ◦ A = 0;
(v) “+” is commutative;
(vi) “◦” distributes over “+”, that is, both of the distributive laws hold true.

The set
PLO = {L : C[0, 1] → C[0, 1] and L is linear and positive} ,

which is equipped with the canonical operations of addition and operator composition, is an algebraic
structure defined above. The commutator given by

[A, B] := AB − BA (A, B ∈ PLO)

was studied from a quantitative point of view in [7].
A solution of the Lupaş problem was given by Gonska et al. [7] by using the Taylor

expansion. The estimates for the differences of two positive linear operators, which have the same
moments up to a certain order, were derived in [8–10]. In [11], the differences of certain positive
linear operators, which have the same fundamental functions, were studied. These studies of the
positive linear operators, which are defined on unbounded interval, become an interesting area of
research in Approximation Theory (see [12–15]). Estimates for the differences of these operators
in terms of weighted modulus of smoothness were obtained by Aral et al. [16]. The Bernstein
polynomials are, by all means, the most investigated polynomials in Approximation Theory and
were introduced by Bernstein in order to prove the Weierstrass Theorem. Various new generalizations
of these operators were considered in, for example, [17,18]. In [19], estimates of the differences of the
Bernstein operators and their derivatives were obtained. Recently, some interesting results on this
topic were published in [20–25]. In the present paper, our approach involves positive linear operators
which have substantially different fundamental functions. In fact, the results presented in this paper
extend the earlier studies in [11] for more general classes of positive linear operators.

We denote by E(I) the space of real-valued continuous functions defined on an interval I ⊆ R,
which contains the polynomials. Let

|| f || = sup {| f (x)| : x ∈ I}

and
EB(I) := { f ∈ E(I) and ‖ f ‖ < ∞}.

Let ej(t) := tj (j = 0, 1, 2, · · · . We consider the linear positive functional F : E(I) → R preserving
constant function, namely, F(e0) = 1. We also put
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μF
r = F

(
(e1 − φFe0)

r) :=
r

∑
i=0

(
r
i

)
(−1)i F(er−i)[φ

F]i (r ∈ N),

where φF := F(e1). For the functional F, the following basic result was obtained in [11].

Lemma 1 (see [11]). Let f ∈ E(I) with f (4) ∈ EB(I). Then∣∣∣∣∣F( f )− f (φF)− μF
2

2!
f (2)(φF)− μF

3
3!

f (3)(φF)

∣∣∣∣∣ ≤ μF
4

4!
‖ f (4)‖.

Let us now consider the fundamental functions pm,k, bm,k ≥ 0, k ∈ K, and pm,k, bm,k ∈ C(I)
such that

∑
k∈K

pm,k(x) = ∑
k∈K

bm,k(x) = e0,

where K is a set of non-negative integers, that is,

K = N0 := N∪ {0}.

Suppose also that Fm,k, Gm,k : E(I) → R are the linear positive functionals such that

Fm,k(e0) = Gm,k(e0) = 1

and denote

D(I) :=

{
f ∈ E(I)

∣∣∣∣∣∑k∈K
pm,kFm,k( f ) ∈ C(I) and ∑

k∈K
bm,kGm,k( f ) ∈ C(I)

}
.

Define the positive linear operators Um, Vm : D(I) → C(I) as follows:

Um( f , x) := ∑
k∈K

pm,k(x)Fm,k( f ) and Vm( f , x) := ∑
k∈K

bm,k(x)Gm,k( f ).

In [11], the following result concerning the difference of the operators Um and Vm was proved.

Theorem 1 (see [11]). Suppose that

pm,k = bm,k and φFm,k = φGm,k k ∈ K; m ∈ N.

Let f ∈ D(I) with f (i) ∈ EB(I) (i = 2, 3, 4). Then

|(Um − Vm)( f , x)| ≤ ‖ f (2)‖γ(x) + ‖ f (3)‖β(x) + ‖ f (4)‖α(x) (x ∈ I),

where

γ(x) := ∑
k∈K

|μFm,k
2 − μ

Gm,k
2 |pm,k(x),

β(x) := ∑
k∈K

|μFm,k
3 − μ

Gm,k
3 |pm,k(x)
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and

α(x) := ∑
k∈K

(μ
Fm,k
4 + μ

Gm,k
4 )pm,k(x).

In the series of papers [8–10], the results concerning the estimations of the differences of certain
positive linear operators were based upon the fact that the positive linear operators have the same
moments up to a certain order. In the recent paper [11], the approach involved the positive linear
operators which have the same fundamental functions. The main goal of this paper is to extend the
above result for the positive linear operators that have different fundamental functions. Furthermore,
the condition φFm,k = φGm,k of ([11], Theorem 4) is shown to be not necessary in order to obtain an
estimate of the differences of the positive linear operators Vm and Um.

Theorem 2. Let f ∈ D(I). If f (i) ∈ EB(I) (i = 2, 3, 4), then

|(Um − Vm)( f , x)| ≤ A(x)‖ f (4)‖+ B(x)‖ f (3)‖+ C(x)‖ f (2)‖
+ 2ω1( f , δ1(x)) + 2ω1

(
f , δ2(x)

)
(x ∈ I),

where ω1( f , ·) is the usual modulus of continuity,

A(x) =
1
4! ∑

k∈K
(pm,k(x)μFm,k

4 + bm,k(x)μGm,k
4 ),

B(x) =
1
3!

∣∣∣∣∣∑k∈K
pm,k(x)μFm,k

3 − ∑
k∈K

bm,k(x)μGm,k
3

∣∣∣∣∣ ,

C(x) =
1
2!

∣∣∣∣∣∑k∈K
pm,k(x)μFm,k

2 − ∑
k∈K

bm,k(x)μGm,k
2

∣∣∣∣∣ ,

δ1(x) =

(
∑
k∈K

pm,k(x)
(

φFm,k − x
)2

)1/2

and

δ2(x) =

(
∑
k∈K

bm,k(x)
(

φGm,k − x
)2

)1/2

.

Proof. First of all, by using Lemma 1, we get

|(Um − Vm)( f , x)| ≤
∣∣∣∣∣∑k∈K

pm,k(x)Fm,k( f )− ∑
k∈K

bm,k(x)Gm,k( f )

∣∣∣∣∣
≤ ∑

k∈K
pm,k(x)

∣∣∣∣∣Fm,k( f )− f (φFm,k )− μ
Fm,k
2
2!

f ′′(φFm,k )− μ
Fm,k
3
3!

f ′′′(φFm,k )

∣∣∣∣∣
+ ∑

k∈K
bm,k(x)

∣∣∣∣∣Gm,k( f )− f (φGm,k )− μ
Gm,k
2
2!

f ′′(φGm,k )− μ
Gm,k
3
3!

f ′′′(φGm,k )

∣∣∣∣∣
+

∣∣∣∣∣∑k∈K
pm,k(x)

μ
Fm,k
2
2!

− ∑
k∈K

bm,k(x)
μ

Gm,k
2
2!

∣∣∣∣∣ · || f ′′||
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+

∣∣∣∣∣∑k∈K
pm,k(x)

μ
Fm,k
3
3!

− ∑
k∈K

bm,k(x)
μ

Gm,k
3
3!

∣∣∣∣∣ · || f ′′′||
+ ∑

k∈K
pm,k(x)| f (φFm,k )− f (x)|+ ∑

k∈K
bm,k(x)| f (φGm,k )− f (x)|

≤ 1
4!

(
∑
k∈K

pm,k(x)μFm,k
4 + ∑

k∈K
bm,k(x)μGm,k

4

)
‖ f (iv)‖

+

∣∣∣∣∣∑k∈K
pm,k(x)

μ
Fm,k
2
2!

− ∑
k∈K

bm,k(x)
μ

Gm,k
2
2!

∣∣∣∣∣ · || f ′′||
+

∣∣∣∣∣∑k∈K
pm,k(x)

μ
Fm,k
3
3!

− ∑
k∈K

bm,k(x)
μ

Gm,k
3
3!

∣∣∣∣∣ · || f ′′′||
+ ∑

k∈K
pm,k(x)| f (φFm,k )− f (x)|+ ∑

k∈K
bm,k(x)| f (φGm,k )− f (x)|

= A(x)‖ f (4)‖+ B(x)‖ f (3)‖+ C(x)‖ f (2)‖

+

(
1 +

∑k∈K pm,k(x)
(
φFm,k − x

)2

δ2
1(x)

)
ω1( f , δ1(x))

+

(
1 +

∑k∈K bm,k(x)
(
φGm,k − x

)2

δ2
2(x)

)
ω1( f , δ2(x))

= A(x)‖ f (4)‖+ B(x)‖ f (3)‖+ C(x)‖ f (2)‖+ 2ω1( f , δ1(x)) + 2ω1( f , δ2(x)).

This completes the proof of Theorem 2.

Remark 1. Let

ν1(x) =
(

Um

(
(e1 − x)2; x

)) 1
2

and

ν2(x) =
(

Vm

(
(e1 − x)2; x

)) 1
2 .

Then, by using the result of Shisha and Mond [26], we find that

|(Um − Vm)( f ; x)| ≤ |Um( f ; x)− f (x)|+ |Vm( f ; x)− f (x)|
≤ 2ω1( f , ν1(x)) + 2ω1( f , ν2(x)).

Since
F2

m,k(e1) ≤ Fm,k(e2
1)

and
G2

m,k(e1) ≤ Gm,k(e2
1),

it follows that
δi(x) ≤ νi(x) (i = 1, 2).

2. Applications of Theorem 2

As applications of the Theorem 2, in this section, we give estimates of the differences between some
of the most used positive linear operators in Approximation Theory. The considered examples involve
the Baskakov type operators, the Szász–Mirakyan type operators, and the Durrmeyer type operators.
We also show for the Durrmeyer type operators that, in some particular cases, our result improves the
estimates obtained by using the classical result of Shisha and Mond [26].
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2.1. Difference Between the Baskakov and the Szász–Mirakyan Operators

The Szász–Mirakyan operators are defined by

Sm( f , x) =
∞

∑
k=0

pm,k(x)Fm,k( f ), (1)

where

pm,k(x) = e−mx (mx)k

k!
and Fm,k( f ) = f

(
k
m

)
.

Lemma 2. The moments of Sm satisfy the following relation:

Sm(en+1, x) =
x
m

S′m(en, x) + xSm(en, x).

In particular,

Sm(e0, x) = 1, Sm(e1, x) = x and Sm(e2, x) = x2 +
x
m

and

Sm(e3, x) = x3 +
3x2

m
+

x
m2 and Sm(e4, x) = x4 +

6x3

m
+

7x2

m2 +
x

m3 .

Remark 2. We have
φFm,k = Fm,k(e1) =

k
m

and, for r ∈ N, we get

μ
Fm,k
r := Fm,k(e1 − φFm,k e0)

r = 0.

The Baskakov operators are defined by

Vm( f ; x) =
∞

∑
k=0

vm,k(x)Gm,k( f ), (2)

where

vm,k(x) =
(

m + k − 1
k

)
xk

(1 + x)m+k and Gm,k( f ) = f
(

k
m

)
.

Lemma 3. The moments satisfy the following relation:

Vm(en+1, x) =
x(1 + x)

m
V′

m(en, x) + xVm(en, x).

The moments of the Baskakov operators up to order 4 are listed below:

Vm(e0, x) = 1

Vm(e1, x) = x

Vm(e2, x) =
x2(m + 1) + x

m

Vm(e3, x) =
x3(m + 1)(m + 2) + 3x2(m + 1) + x

m2

Vm(e4, x) =
x4(m + 1)(m + 2)(m + 3) + 6x3(m + 1)(m + 2) + 7x2(m + 1) + x

m3 .

174



Symmetry 2020, 12, 915

Remark 3. We have
φGm,k = Gm,k(e1) =

k
m

,

and, for r ∈ N, we get

μ
Gm,k
r := Gm,k(e1 − φGm,k e0)

r = 0.

Now, as an application of Theorem 2, the difference of Vm and Sm defined, respectively, by
Equations (1) and (2), can be given as Proposition 1 below.

Proposition 1. Let I = [0, ∞), f ∈ D(I) and f (s) ∈ EB(I) (s = 1, 2, 3, 4). Then, for each x ∈ [0, ∞), it is
asserted that

|(Vm − Sm)( f , x)| ≤ 2ω1

(
f ,

√
x(1 + x)

m

)
+ 2ω1

(
f ,
√

x
m

)
.

The proof of Proposition 1 follows from Remarks 2 and 3, Lemmas 2 and 3, and Theorem 2. We,
therefore, omit the details involved.

2.2. Difference Between the Baskakov and the Szász–Mirakyan–Baskakov Operators

In the year 1983, Prasad et al. [27] introduced a class of the Szász–Mirakyan–Baskakov
type operators. These operators were subsequently improved by Gupta [28] as follows:

Mm( f , x) =
∞

∑
k=0

pm,k(x)Hm,k( f ), (3)

where
Hm,k( f ) = (m − 1)

∫ ∞

0
vm,k(t) f (t)dt.

Here pm,k and vm,k are defined in Equations (1) and (2), respectively.

Remark 4. Since

Hm,k(er) = (m − 1)
∫ ∞

0

(
m + k − 1

k

)
tk

(1 + t)m+k trdt =
(k + r)!(m − r − 2)!

k!(m − 2)!
,

we get

φHm,k = Hm,k(e1) =
k + 1
m − 2

and

μ
Hm,k
2 = Hm,k(e1 − φHm,k e0)

2

= Hm,k(e2) +

(
k + 1
m − 2

)2
− 2Hm,k(e1)

(
k + 1
m − 2

)
=

(k + 2)(k + 1)
(m − 2)(m − 3)

−
(

k + 1
m − 2

)2

=
k2 + mk + m − 1
(m − 2)2(m − 3)

,
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μ
Hm,k
3 = Hm,k(e1 − φHm,k e0)

3

= Hm,k(e3)− 3Hm,k(e2)

(
k + 1
m − 2

)
+ 3Hm,k(e1)

(
k + 1
m − 2

)2
− Hm,k(e0)

(
k + 1
m − 2

)3

=
4k3 + 6mk2 + (2m2 + 4m − 4)k + 2m(m − 1)

(m − 2)3(m − 3)(m − 4)

and

μ
Hm,k
4 = Hm,k(e1 − φHm,k e0)

4

= Hm,k(e4)− 4Hm,k(e3)

(
k + 1
m − 2

)
+ 6Hm,k(e2)

(
k + 1
m − 2

)2

− 4Hm,k(e1)

(
k + 1
m − 2

)3
+ Hm,k(e0)

(
k + 1
m − 2

)4

=
(k + 1)(k + 2)(k + 3)(k + 4)

(m − 5)(m − 4)(m − 3)(m − 2)
− 4

(k + 1)(k + 2)(k + 3)
(m − 4)(m − 3)(m − 2)

(
k + 1
m − 2

)
+ 6

(k + 1)(k + 2)
(m − 3)(m − 2)

(
k + 1
m − 2

)2
− 4

(k + 1)
(m − 2)

(
k + 1
m − 2

)3
+

(
k + 1
m − 2

)4
.

In Proposition 2 below, a quantitative result concerning the estimate of the difference between
Mm and Vm is proved.

Proposition 2. If f ∈ D
(
[0, ∞)

)
with f (i) ∈ CB[0, ∞) (i = 2, 3, 4), then, for each x ∈ [0, ∞), it is

asserted that

|(Mm − Vm)( f , x)| ≤ A(x)‖ f (4)‖+ B(x)‖ f (3)‖+ C(x)‖ f (2)‖+ 2ω1( f , δ1(x)) + 2ω1( f , δ2(x)),

where

A(x) =
1

8(m − 5)(m − 4)(m − 3)(m − 2)4

{
x2(x + 1)2m5

+ x(4x3 + 14x2 + 14x + 5)m4

+ (x + 1)(24x2 + 5x + 3)m3 + 28x2 + 7x − 8)m2
}

,

B(x) =
x(x + 1)(2x + 1)m3 + (2x + 1)(3x + 1)m2 − m

3(m − 2)2(m − 3)(m − 4)
,

C(x) =
x(1 + x)m2 + (x + 1)m − 1

2(m − 2)2(m − 3)
,

δ1(x) =

√
x(1 + x)

m

and

δ2(x) =
√

4x2 + (4 + m)x + 1
(m − 2)

.
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Proof. Applying Remarks 3 and 4, together with Lemma 2, we find that

A(x) =
1
4! ∑

k∈K
(pm,k(x)μHm,k

4 + vm,k(x)μGm,k
4 )

=
1
4!

∞

∑
k=0

pm,k(x)
[

(k + 1)(k + 2)(k + 3)(k + 4)
(m − 5)(m − 4)(m − 3)(m − 2)

− 4
(k + 1)(k + 2)(k + 3)
(m − 4)(m − 3)(m − 2)

(
k + 1
m − 2

)
+ 6

(k + 1)(k + 2)
(m − 3)(m − 2)

(
k + 1
m − 2

)2
− 4

(k + 1)
(m − 2)

(
k + 1
m − 2

)3
+

(
k + 1
m − 2

)4]
=

1
8(m − 5)(m − 4)(m − 3)(m − 2)4

{
x2(x + 1)2m5

+ x(4x3 + 14x2 + 14x + 5)m4

+ (x + 1)(24x2 + 5x + 3)m3 + 28x2 + 7x − 8)m2
}

and

B(x) =
1
3!

∣∣∣∣∣ ∞

∑
k=0

pm,k(x)μHm,k
3

−
∞

∑
k=0

vm,k(x)μGm,k
3 =

x(x + 1)(2x + 1)m3 + (2x + 1)(3x + 1)m2 − m
3(m − 2)2(m − 3)(m − 4)

.

Furthermore, we have

C(x) =
1
2

∣∣∣∣∣ ∞

∑
k=0

pm,k(x)μHm,k
2 −

∞

∑
k=0

vm,k(x)μGm,k
2

∣∣∣∣∣
=

x(1 + x)m2 + (x + 1)m − 1
2(m − 2)2(m − 3)

,

δ1(x) =

(
∞

∑
k=0

vm,k(x)(φGm,k − x)2

)1/2

=

(
∞

∑
k=0

vm,k(x)
(

k
m
− x

)2
)1/2

=

√
x(1 + x)

m

and

δ2(x) =

(
∞

∑
k=0

pm,k(x)(φHm,k − x)2

)1/2

=

(
∞

∑
k=0

pm,k(x)
(

k + 1
m − 2

− x
)2

)1/2

=

√
4x2 + (4 + m)x + 1

(m − 2)
.

Now, by using Theorem 2, Proposition 2 is proved.
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2.3. Difference Between the Baskakov and the Szász–Mirakyan–Kantorovich Operators

Let pm,k be the Szász–Mirakyan basis function defined in Equation (1). In addition, let

Jm,k( f ) = m
∫ (k+1)/m

k/m
f (t)dt.

The Szász–Mirakyan–Kantorovich operators are defined by

Km( f ; x) =
∞

∑
k=0

pm,k(x)Jm,k( f ). (4)

Remark 5. The following result can be obtained by simple computation:

φJm,k = Jm,k(e1) =
k
m

+
1

2m
.

Moreover, we have

μ
Jm,k
2 = Jm,k(e1 − φJm,k e0)

2

= Jm,k(e2)− 2
(

k
m

+
1

2m

)2 ( k
m

+
1

2m

)2

=
1

12m2 ,

μ
Jm,k
3 := Jm,k(e1 − φJm,k e0)

3

= Jm,k(e3)− 3Jm,k(e2)

(
k
m

+
1

2m

)
+ 3Jm,k(e1)

(
k
m

+
1

2m

)2
− Jm,k(e0)

(
k
m

+
1

2m

)3

= 0

and

μ
Jm,k
4 := Jm,k(e1 − φJm,k e0)

4

= Jm,k(e4)− 4Jm,k(e3)

(
k
m

+
1

2m

)
+ 6Jm,k(e2)

(
k
m

+
1

2m

)2

− 4Jm,k(e1)

(
k
m

+
1

2m

)3
+ Jm,k(e0)

(
k
m

+
1

2m

)4

=
1

80m4 .

The following quantitative result concerning the difference between Km and Vm is proved next.

Proposition 3. Let I = [0, ∞). If f ∈ D(I) with f (i) ∈ EB(I) (i = 2, 3, 4), then, for each x ∈ [0, ∞), it is
asserted that

|(Km − Vm)( f , x)| ≤ A(x)‖ f (4)‖+ C(x)‖ f (2)‖+ 2ω1( f , δ1) + 2ω1( f , δ2),

where

A(x) =
1

1920m4 and C(x) =
1

24m2
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and

δ1(x) =

√
x(1 + x)

m
and δ2(x) =

√
4mx + 1

2m
.

Proof. Applying Remarks 3 to 5 and Lemma 2, we get

A(x) :=
1
4!

∞

∑
k=0

(pm,k(x)μJm,k
4 + vm,k(x)μGm,k

4 )

=
1
4!

∞

∑
k=0

pm,k(x)
1

80m4

=
1

1920m4

and

B(x) =
1
3!

∣∣∣∣∣ ∞

∑
k=0

pm,k(x)μJm,k
3 −

∞

∑
k=0

vm,k(x)μGm,k
3

∣∣∣∣∣
= 0.

Furthermore, we have

C(x) =
1
2!

∣∣∣∣∣ ∞

∑
k=0

pm,k(x)μJm,k
2 −

∞

∑
k=0

vm,k(x)μGm,k
2

∣∣∣∣∣
=

1
24m2 ,

δ1(x) =

(
∞

∑
k=0

vm,k(x)(φGm,k − x)2

)1/2

=

(
∞

∑
k=0

vm,k(x)
(

k
m
− x

)2
)1/2

=

√
x(1 + x)

m

and

δ2(x) =

(
∞

∑
k=0

pm,k(x)(φJm,k − x)2

)1/2

=

(
∞

∑
k=0

pm,k(x)
(

k
m

+
1

2m
− x

)2
)1/2

=

√
4mx + 1

2m
.

Upon collecting the above estimates and by using Theorem 2, the proof of Proposition 3
is completed.
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2.4. Difference of Two Genuine-Durrmeyer Type Operators

Let ρ > 0 and f ∈ C[0, 1]. Suppose also that

Fρ
m,k( f ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

f (0) (k = 0)

∫ 1

0

tkρ−1(1− t)(m−k)ρ−1

B(kρ, (m − k)ρ)
f (t)dt (k �= 0, 1)

f (1) (k = 1).

Păltănea and Gonska (see [29–31]) introduced and studied a new class of the Bernstein–Durrmeyer
type operators defined by

Uρ
m : C[0, 1] → Πm and Uρ

m( f ; x) :=
m

∑
k=0

Fρ
m,k( f )pm,k(x),

where

pm,k(x) =
(

m
k

)
xk(1− x)m−k.

Neer and Agrawal [32] introduced a class of the genuine-Durrmeyer type operators as follows:

Ũρ
m( f ; x) =

m

∑
k=0

Fρ
m,k( f )p<

1
m >

m,k (x),

where

p<
1
m >

m (x) =
2 · m!
(2m)!

(
m
k

)
(mx)k(m − mx)m−k.

Proposition 4 below provides an estimate of the difference between Uρ
m and Ũρ

m.

Proposition 4. Let f ∈ C4[0, 1]. Then the following inequality holds true:∣∣∣(Uρ
m − Ũρ

m

)
( f ; x)

∣∣∣ ≤ A(x)‖ f (4)‖+ B(x)‖ f (3)‖+ C(x)‖ f (2)‖

+ 2ω1 ( f , δ1(x)) + 2ω1 ( f , δ2(x)) ,

where

A(x) :=
x(1− x)(n − 1)

8m3(mρ + 1)(mρ + 2)(mρ + 3)(m + 1)(m + 2)(m + 3)

·
{

mρ(3m4 + 5m3 + 7m2 − 5m − 6) + 4m5 + 4m4 + 4m3 − 30m2 + 30m

+ 36 + x(1− x)(m − 2)(m − 3)(mρ − 6)(2m3 + 6m2 + 11m + 6),

B(x) :=
x(1− x)|1− 2x|(m − 2)(m − 1)(3m + 2)

3(mρ + 1)(mρ + 2)m2(m + 1)(m + 2)
,

C(x) :=
x(1− x)(m − 1)

2(mρ + 1)m(m + 1)
,

δ1(x) :=

√
x(1− x)

m
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and

δ2(x) :=

√
2x(1− x)

m + 1
.

Proof. In Theorem 2, we set

Fm,k( f ) = Gm,k( f ) = Fρ
m,k( f ),

so that we have

φFm,k = φGm,k =
k
m

;

μ
Fm,k
2 = μ

Gm,k
2 = Fm,k

(
e1 − φFm,k

)2
=

k(m − k)
m2(mρ + 1)

;

μ
Fm,k
3 = μ

Gm,k
3 = Fm,k

(
e1 − φFm,k

)3

=
2k(2k2 − 3km + m2)

m3(mρ + 1)(mρ + 2)

and

μ
Fm,k
4 = μ

Gm,k
4 = Fm,k

(
e1 − φFm,k

)4

=
3k(k3mρ − 2k2m2ρ + km3ρ − 6k3 + 12k2m − 8km2 + 2m3)

m4(mρ + 1)(mρ + 2)(mρ + 3)
.

Now, by considering the following relations:

n

∑
k=0

pm,k(x) = 1,

n

∑
k=0

k
m

pm,k(x) = x,

m

∑
k=0

(
k
m

)2
pm,k(x) =

x(mx − x + 1)
m

,

m

∑
k=0

(
k
m

)3
pm,k(x) =

x(m2x2 − 3mx2 + 3mx + 2x2 − 3x + 1)
m2 ,

m

∑
k=0

(
k
m

)4
pm,k(x) =

x
m3

(
m3x3 − 6m2x3 + 6m2x2 + 11mx3

−18mx2 − 6x3 + 7mx + 12x2 − 7x + 1
)

,

m

∑
k=0

p<
1
m >

m,k (x) = 1,

m

∑
k=0

(
k
m

)
p<

1
m >

m,k (x) = x,
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m

∑
k=0

(
k
m

)2
p<

1
m >

m,k (x) = x2 +
2x(1− x)

m + 1
,

m

∑
k=0

(
k
m

)3
p<

1
m >

m,k (x) = x3 +
6mx2(1− x)

(m + 1)(m + 2)
+

6x(1− x)
(m + 1)(m + 2)

and

m

∑
k=0

(
k
m

)4
p<

1
m >

m,k (x) = x4 +
12(m2 + 1)x3(1− x)

(m + 1)(m + 2)(m + 3)
+

12(3m − 1)x2(1− x)
(m + 1)(m + 2)(m + 3)

+
2(13m − 1)x(1− x)

m(m + 1)(m + 2)(m + 3)
,

the proof of Proposition 4 is completed.

Example 1. Applying Proposition 2 for f (x) = x
x2+1 , x ∈ [0, 1] and ρ = 2, we get the following estimate:

|(Uρ
m − Ũρ

m)( f ; x)| ≤ Em( f ), (5)

where
Em( f ) = K1‖ f (4)‖+ K2‖ f (3)‖+ K3‖ f (2)‖+ 2(δ1 + δ2)‖ f ′‖ and f ∈ C4[0, 1]

and

K1 :=
(m − 1)

64m3(2m + 1)(m + 1)2(2m + 3)(m + 2)(m + 3)

·
(

1
2
(m − 2)(m − 3)2(2m3 + 6m2 + 11m + 6) +10m5 + 14m4 + 18m3 − 40m2 + 18m + 36

)
,

K2 :=
(m − 2)(m − 1)(3m + 2)

24(2m + 1)(m + 1)2m2(m + 2)
,

K3 :=
m − 1

8(2m + 1)m(m + 1)
,

δ1 :=
1

2
√

m

and
δ2 :=

1√
2(m + 1)

.

Now, by using the result of Shisha and Mond (see [26]; see also Remark 1), we get the following estimate:

|(Uρ
m − Ũρ

m)( f ; x)| ≤ E(SM)
m ( f ), (6)

where

E(SM)
m ( f ) =

(√
3

2m + 1
+

√
5m + 1

(m + 1)(2m + 1)

)
‖ f ′‖, f ∈ C1[0, 1].

Table 1 below contains the values of Em( f ) and E(SM)
m ( f ) for certain given values of n. We note

here that, for this particular case, the estimate in Equation (5) is better than the estimate given by the
Shisha–Mond result in Equation (6).
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Table 1. Estimates for the difference of Uρ
m f and Ũρ

m f .

m Em( f ) E(SM)
m ( f )

10 0.74402776700 0.84783596730
102 0.24073382150 0.27926364330
103 0.07632064786 0.08868768037
104 0.02414170100 0.02805750320
105 0.00763444237 0.00887294116
106 0.00241421554 0.00280588236
107 0.00076343666 0.00088729829
108 0.00024142458 0.00028058836

2.5. Difference of the Durrmeyer Operators and the Lupaş–Durrmeyer Operators

Durrmeyer [33] and, independently, Lupaş [34] defined the Durrmeyer operators by

Mm( f , x) = (m + 1)
m

∑
k=0

pm,k(x)
1∫

0

pm,k(t) f (t) dt (x ∈ [0, 1]). (7)

Gupta et al. [35] introduced a modification of the operator in Equation (7) as follows:

D< 1
m >

m ( f ; x) = (m + 1)
m

∑
k=0

p<
1
m >

m,k

∫ 1

0
pm,k(t) f (t)dt ( f ∈ C[0, 1]). (8)

Finally, the difference between Mm and D< 1
m >

m is provided in the estimate asserted by
Proposition 5 below.

Proposition 5. Let f ∈ C4[0, 1]. Then the following inequality holds true:∣∣∣∣(Mm − D< 1
m >

m

)
( f ; x)

∣∣∣∣ ≤ A(x)‖ f (4)‖+ B(x)‖ f (3)‖+ C(x)‖ f (2)‖

+ 2ω1 ( f , δ1(x)) + 2ω1 ( f , δ2(x)) ,

where

A(x) :=
1

8(m + 1)(m + 2)5(m + 3)2(m + 4)(m + 5)

· {x(1− x)m(m − 1) [x(1− x)(m − 2)(m − 3)(m − 4)

· (2m3 + 6m2 + 11m + 6) + 11m5 + 41m4 + 77m3 + 25m2 + 26m + 24
]

+(m + 1)2(m + 2)(m + 3)(3m2 + 5m + 4)
}

,

B(x) :=
m|x(1− x)(1− 2x)(m − 1)(m − 2)(3m + 2) + m3 + 4m2 + 5m + 2|

3(m + 1)(m + 2)3(m + 3)(m + 4)
,

C(x) :=
m(m − 1)x(1− x) + (m + 1)2

2(m + 1)(m + 2)2(m + 3)
,

δ1(x) :=

√
x(1− x)m + (2x − 1)2

m + 2

and

δ2(x) :=

√
2x(1− x)m2 + (1− 2x)2(m + 1)

(m + 2)
√

m + 1
.
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Proof. In Theorem 2, we let

Fm,k( f ) = Gm,k( f ) = (m + 1)
∫ 1

0
pm,k(t) f (t)dt,

so that we have
φFm,k = φGm,k =

k + 1
m + 2

,

μ
Fm,k
2 = μ

Gm,k
2 = Fm,k

(
e1 − φFm,k

)2

=
(k + 1)(m − k + 1)
(m + 2)2(m + 3)

,

μ
Fm,k
3 = μ

Gm,k
3 = Fm,k

(
e1 − φFm,k

)3

=
2(k + 1)(2k2 − 3km + m2 − 2k + m)

(m + 2)3(m + 3)(m + 4)

and

μ
Fm,k
4 = μ

Gm,k
4 = Fm,k

(
e1 − φFm,k

)4

=
3(k + 1)(k − m − 1)(k2m − km2 − 4k2 + 4km − 3m2 − 5m − 4)

(m + 2)4(m + 3)(m + 4)(m + 5)
.

Now, by applying the relations from the proof of Proposition 2, the resulting estimate of
the difference of the Durrmeyer operator and the Lupaş–Durrmeyer operator is as asserted by
Proposition 5.

Example 2. By pplying Proposition 5 for f (x) = cos(2πx) for x ∈ [0, 1], we get the following estimate:∣∣∣∣(Mm − D< 1
m >

m

)
( f ; x)

∣∣∣∣ ≤ Em( f ), (9)

where
Em( f ) = K1‖ f (4)‖+ K2‖ f (3)‖+ K3‖ f (2)‖+ 2(δ1 + δ2)‖ f ′‖, f ∈ C4[0, 1]

and

K1 :=
1

8(m + 1)(m + 2)5(m + 3)2(m + 4)(m + 5)

·
{

1
4

m(m − 1)
[

1
4
(m − 2)(m − 3)(m − 4)(2m3 + 6m2 + 11m + 6)

+ 11m5 + 41m4 + 77m3 + 25m2 + 26m + 24
]

+(m + 1)2(m + 2)(m + 3)(3m2 + 5m + 4)
}

,

K2 :=
m

3(m + 1)(m + 2)3(m + 3)(m + 4)

·
{

1
4
(m − 1)(m − 2)(3m + 2) + m3 + 4m2 + 5m + 2

}
,
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K3 :=
1

2(m + 2)2(m + 3)(m + 1)

[
1
4

m(m − 1) + (m + 1)2
]

,

δ1 :=
√

m + 4
2(m + 2)

and

δ2 :=

√
m2 + 2(m + 1)

(m + 2)
√

2(m + 1)
.

Thus, by using the result of Shisha and Mond (see [26]; see also Remark 1), we get the following estimate:∣∣∣∣(Mm − D< 1
m >

m

)
( f ; x)

∣∣∣∣ ≤ E(SM)
m ( f ), (10)

where

E(SM)
m ( f ) = 2

(√
m + 1

2(m + 2)(m + 3)
+

√
3m2 + 3m + 2

4(m + 1)(m + 2)(m + 3)

)
‖ f ′‖, f ∈ C1[0, 1].

Table 2 below gives the values of Em( f ) and E(SM)
m ( f ) for certain specific values of m. We also

note that, for this particular case, the estimate in Equation (9) is better than the estimate given by the
Shisha–Mond result in Equation (10).

Table 2. Estimates for the difference of Mm f and D< 1
m >

m f .

m Em( f ) E(SM)
m ( f )

102 1.5210054310 1.9330219770
103 0.4794548855 0.6237181803
104 0.1516781199 0.1976406539
105 0.0479680333 0.0625122598
106 0.0151689380 0.0197685170
107 0.0047968431 0.0062513668
108 0.0015168951 0.0019768561

Remark 6. The earlier works [36,37] proposed certain general families of positive linear operators which
reproduce only constant functions. Recently, as a continuation of these works, in [38] some positive linear
operators reproducing linear functions were introduced and studied. Analogous further researches for this class
of operators are possible.

3. Conclusions

The studies of the differences of positive linear operators has become an interesting area of
research in Approximation Theory. The present paper deals with the estimates of the differences of
various positive linear operators, which are defined on bounded or unbounded intervals, in terms of the
modulus of continuity. In several earlier papers, the results of the type which we have presented here
were obtained for a class of positive linear operators constructed with the same fundamental functions.
The novelty of this paper is that the fundamental functions of the positive linear operators can chosen
to be different. Our present study makes use of the Baskakov type operators, the Szász–Mirakyan
type operators, and the Durrmeyer type operators. In some illustrative numerical examples, we have
shown that the estimates obtained in this study are better than the estimates given by the classical
Shisha–Mond result. For a future work, we propose to obtain estimates for these operators involving
some suitably weighted modulus of smoothness.
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10. Gonska, H.; Raşa, I.; Rusu, M. Applications of an Ostrowski-type inequality. J. Comput. Anal. Appl. 2012, 14,

19–31.
11. Acu, A.M.; Rasa, I. New estimates for the differences of positive linear operators. Numer. Algorithms 2016, 73,

775–789. [CrossRef]
12. Garg, T.; Acu, A.M.; Agrawal, P.N. Weighted approximation and GBS of Chlodowsky-Szász-Kantorovich

type operators. Anal. Math. Phys. 2019, 9, 1429–1448. [CrossRef]
13. Srivastava, H.M.; Finta, Z.; Gupta, V. Direct results for a certain family of summation-integral type operators.

Appl. Math. Comput. 2007, 190, 449–457. [CrossRef]
14. Srivastava, H.M.; Zeng, X.-M. Approximation by means of the Szász-Bézier integral operators. Int. J. Pure

Appl. Math. 2004, 14, 283–294.
15. Srivastava, H.M.; Ícoz, G.; Çekim, B. Approximation properties of an extended family of the Szász-Mirakjan

Beta-type operators. Axioms 2019, 8, 111. [CrossRef]
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35. Gupta, V.; Rassias, T.M. Lupaş-Durrmeyer operators based on Pólya distribution. Banach J. Math. Anal. 2014,

8, 146–155. [CrossRef]
36. Gupta, V. A large family of linear positive operators. Rend. Circ. Mat. Palermo (Ser. II) 2019. [CrossRef]
37. Srivastava, H.M.; Gupta, V. A certain family of summation-integral type operators. Math. Comput. Model.

2003, 37, 1307–1315. [CrossRef]
38. Gupta, V.; Srivastava, H.M. A general family of the Srivastava-Gupta operators preserving linear functions.

Eur. J. Pure Appl. Math. 2018, 11, 575–579. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

187





MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Symmetry Editorial Office
E-mail: symmetry@mdpi.com

www.mdpi.com/journal/symmetry





ISBN 978-3-0365-5482-2 

MDPI  

St. Alban-Anlage 66 

4052 Basel 

Switzerland

Tel: +41 61 683 77 34

www.mdpi.com


	A9R17slneu_13r4ay4_csg.pdf
	Integral Transformation, Operational Calculus and Their Applications.pdf
	A9R17slneu_13r4ay4_csg

