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Information and Public Knowledge of the Potential of
Alternative Energies
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Abstract: The objective of this research project is to study the economic development model of the
Angolan economy in order to analyze the adoption of an alternative strategy capable of leveraging
the economy, based essentially on alternative energies, and therefore, to demonstrate and prove
the need to diversify Angola’s economic model, highlighting the benefits of a diversified versus a
non-diversified economy with respect to sustainability. The first stage of the design of this empirical
study involved establishing a focus group in order to construct and adjust a data collection instrument
in the form of a questionnaire to be applied to a broader set of managers and informed professionals
with a critical view of the country’s future and the models and alternatives to economic development
and diversification of the economy on a sustainable basis. Energy plays a fundamental role in
Angola’s economic and social development. Excessive dependency on the oil sector and inefficient
production due to high costs, combined with changes in global environmental and energy policies,
make it essential to reflect on the evolution of the country’s energy sector, equating a different
economic development model, the diversification of the economy, and the exploration of other
sources of energy, such as biofuels. Renewable energies emerge as a safe, healthy, environmentally
friendly and economically viable energy alternative that could bring the Angolan economy closer
to that of developed countries. Biofuels have become popular and have begun to be seen as a valid
alternative to fossil fuels because they have lower production costs and they cause less impact on
nature. Furthermore, since they are biodegradable, they can be commercialized at a lower cost from
renewable sources. According to the respondents, the research results show that the best energy
alternatives to reduce oil dependency are solar energy, biodiesel, hydraulic energy, and bioethanol. An
assessment of the attractiveness and potential of biofuels show that the best alternative is bioethanol,
followed by biodiesel.

Keywords: Angolan economy; diversification; strategic alternative; biofuels

1. Introduction

The primary source of revenue for Angola’s GDP is oil, thus, defining Angola’s
economic model as practically monolithic. Since oil is a commodity, a change in market
value is predictable and can be positive or negative for Angolan interests. If the change in
market value is negative, the Angolan government would be forced, as it has been in the
past, to adjust its general budget to reflect updated oil prices. Oil is the country’s largest
generator of revenue, which could mean that many of the actions planned for a given year
would not be carried out. This situation could force expenditure restraint or restriction
situations and could even generate serious social and political pressures.

Energies 2022, 15, 4928. https://doi.org/10.3390/en15134928 https://www.mdpi.com/journal/energies1
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The World Bank’s Report No. AUS6794, clearly stated that “an effective economic
diversification strategy could increase Angola’s long-term GDP growth trajectory”. In the
report, there is an obvious association between economic growth and the need to diversify
domestic production, and therefore, create a more balanced fiscal balance. Based on the
above, we justify the need to address this topic, since it is clear that strategic alternatives
for Angola are necessary and mandatory to concretely change their economic model,
generating greater sustainability and economic growth in the long term.

According to the Central Intelligence Agency, the Angolan economy is driven by
the oil sector, representing around 50% of the GDP, accounting for more than 70% of the
government’s revenues, and corresponding to more than 90% of the country’s exports,
which confirm Angola’s flagrant dependency on the oil sector. Oil prices are defined
on the international markets with daily price oscillations, which become an economic
instability factor and a problem for managing an economy that depends essentially on the
oil industry. On the one hand, the problem of the Angolan economy lies precisely in the fact
that oil is a non-renewable natural resource that could compromise the country’s economic
position in the long term. On the other hand, as we have seen, oil is a commodity and the
Angolan government has no control over its price since it depends on the international
markets. This reality already occurred in 2008, 2009, 2015, 2016, and 2017, when the
Angolan government’s general budget had to be revised due to a drop in the price of oil
on the international markets. Between July and December of 2008, oil prices fell by about
70%, and since then, have fluctuated constantly. According to the International Monetary
Fund Report No. 18/157, Angola, although it is the second largest oil producer in Africa,
suffers severely when the price of oil is between USD 50 and 55, which involves reducing
oil production because it is unprofitable, thus, creating severe budgetary problems because
of the gigantic investment needs in infrastructure and social spending. The ideas presented
in the abovementioned report justify the need for this research on energy alternatives.
Therefore, we aim to analyze strategic alternatives for diversification of the Angolan
economy and to evaluate the attractiveness of biofuels.

To better frame the knowledge problem and objective, this research was conducted in
three phases:

1. In the exploratory phase, we conducted a bibliographical review to obtain greater
familiarity with the theme’s problem, to clarify the understanding and focus of the
research on alternative energies and, to facilitate the construction of the research
hypotheses [1].

2. In a second phase, we collected the opinions of Angolan economic experts on the sus-
tainability of strategic alternative energies for diversification of the Angolan economy.
To support the analysis, the Delphi technique was adopted to obtain a specialized
understanding regarding the sustainability of ethanol or other energy possibilities, as
possible strategic alternatives for diversification of the Angolan economy.

3. In the third phase, we applied a debugged and validated survey to understand,
from the point of view of managers and specialists from various activity sectors, the
possible energy alternatives as a means of diversifying the Angolan economy.

This is an exploratory study with a descriptive design in which, in the first phase,
we established a “focus group” to construct and adjust a data collection instrument in
the form of a questionnaire to be subsequently applied to a broader set of managers and
specialists [2,3].

Despite the vast literature that addresses the phenomenon of economic development,
and the related areas of knowledge, the approaches have been focused on territorial scales.
Thus, it is important to address the exogenous and endogenous economic development
models that are relevant to the configuration of an intended analysis. According to [4]
endogenous economic growth is long-term growth determined by internal forces in the
economic system. Development is based, though not exclusively, on locally available
resources, local knowledge, culture, and leadership. It has mechanisms for local learning
and experimentation, building local economies, and retaining benefits in the local area [5,6].
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2. Literature Review

2.1. Models of Endogenous Development of an Economy

Endogenous development is a paradigm based on the basic idea that the productive
system of a country grows and is transformed using the development potential existing
in the territories, that is, regions and cities, through investments made by companies and
public entities, under the control of local communities, with the ultimate goal of improving
the standard of living of the populations in these territories [7,8]. In this sense, it is clear that
the concept of endogenous development integrates the social and economic dimensions.
The protagonism claimed for the territorial dimension, in turn, is suggested not only as
an expression of the spatial anchorage of organizational and technological processes but,
equally, of the circumstance that any locality or region offers itself as the result of a history
that has been shaping its economic, cultural, and institutional environment.

Endogenous development is linked to the dynamics of a country, its cities and regions
and the network of agents and interests that give them substance. This is to underline, in
line with what [9–11] have stated, among others, that the processes of growth and structural
transformation that take place arise as a consequence of the transfer of resources from
traditional to modern activities, the exploitation of external economies, and the introduction
of innovations, which are aimed at increasing the well-being of the population of the city,
locality, or region that generated a change. In other words, growth is organized around the
expansion and transformation of pre-existing activities, using the resources and innovation
potential available in a territory, conditioned by the social and cultural structure and codes
of conduct of human communities based in particular spaces, which favour or limit it and,
in any case, give it its unique shape.

From a policy point of view, starting from the framework described above, the actions
to be developed should take into consideration the availability of the country’s resources
and promote their economic enhancement, whether natural resources or others. The solidity
of the economic affirmation processes and the capacity to internalize the wealth generated
is due to political initiatives that should take advantage of the network of local solidarities
and the existing or developed concertation capacity, involving all the economic operators’
social agents and political decision-makers. The emphasis on a country’s potential, which
is the starting point for this approach to development, takes the form of a policy to enhance
the resources and capacities of a region or country, which, as we shall see below, must be at
the root of regional or even national policymaking.

2.2. Models of Exogenous Development of an Economy

An exogenous model studies the growth of a country’s economy over a long period of
time. The model presents the source of economic growth: capital accumulation, labor force
growth, and technological change [12]. was concerned with demonstrating that product
per capita was an increasing function of the relationship between capital and labor. Labor
force grows at a natural rate (exogenous to a model). In this sense, an amount of savings
per capita is necessary, which must be used to equip new workers with capital per capita
equal to that of other workers. The other part of the savings should be used to guarantee
non-depreciation of the capital. The first part of the savings quoted above to equip new
workers is called “capital enlargement” (expansion of the labor force), and the savings used
to increase the capital/labor ratio is called “capital deepening”. To reach a steady-state
situation, the savings per capita must equal capital enlargement. The capital per worker
has a decreasing income, therefore, when this equilibrium point is reached, there is no point
in investing more in a worker who has per capita savings equal to the capital expansion
because this worker’s productivity will not be maximized. Thus, the conditioning factor of
economic growth is the growth rate of the labor force.

For [7], exogenous economic growth is long-term growth determined by forces that are
external to the economic system. Exogenous development restricts the use of endogenous
resources. It seeks opportunities for economic development abroad, considering the supply
of raw materials, as well as knowledge, financing, skilled labor, and markets [5,13]. In the
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case of the Angolan economy, it is necessary to analyze the conditions and potentialities that
the country possesses and to evaluate which economic development model best adapts to
its reality. However, determining the optimal size of the public sector is difficult. The state’s
concern with maximizing long-term growth must weigh the effects of public intervention
policy and the growth-retarding effects of higher taxes and regulations.

Regarding higher taxes and regulations, economic growth theory that takes consid-
eraiton public sector functions such as correcting market failures, investments in infras-
tructure, and taxes, may neglect the state’s role in redistributing income and how policy
behavior is determined by sometimes conflicting interests. This is a situation that occurs
in many countries, and we believe that sometimes political decision-makers are not in a
position to make strategic decisions for the development of their countries.

2.3. Oil

Brazil’s National Electrical Energy Agency [14] defines oil as a flammable oil formed,
over millions of years, from the decomposition of organic matter such as plants, marine
animals, and vegetation typical of flooded regions and found only in sedimentary terrain.
Oil is composed of hydrocarbons, made up of carbon and hydrogen, to which atoms of
oxygen, nitrogen, and sulphur can be added, as well as metallic ions, mainly nickel and
vanadium. According to BP, world oil production in 2014 was around 4226.60 million
tons per day, while daily consumption was around 4211.10 million tons. From the figures
presented at the time, one can see that oil is a resource in high demand on the international
markets [15]. Oil is a primary source resource on the stock exchange and its price is
determined by supply and demand. Therefore, this explains the importance of oil when
analyzing some of its derivatives, such as petrol, paraffin, diesel, asphalt, synthetic rubber,
lubricants, and plastics, among others. The BP report published in June 2015 illustrated
the importance of oil in the Angolan economy, as the second largest oil producer on the
African continent, with the ranking led by Nigeria [16].

The Economic Report of Angola 2016, prepared by the Catholic University of Angola,
outlined the importance and impact of oil, evidencing the clear dependency on oil in
relation to the economy. Oil is undoubtedly of paramount importance to the Angolan
economy because it leverages a good part of other sectors of national activity such as
agriculture, fisheries, manufacturing, and transport. Thus, economic sustainability involves
a greater balance in the sources that generate the gross domestic product to generate
new opportunities and reduce costs by reducing the need to import and leverage new
possibilities and opportunities for internal capacity building and investments in new forms
of energy production. When nearly 30% of the state budget is dependent on oil and gas
revenues, the country is in a weak position to make reforms and strategic investments for
the integral and ongoing development of the Angolan economy and society [17].

2.4. Biofuels

According to [18], biofuels are obtained from renewable organic matter, also called
biomass, which can be products of animal or vegetable origin, as is the case of sugar cane,
corn, soya, sunflower seeds, wood, and cellulose. Therefore, it is possible to produce fuels
such as alcohol, ethanol, or biodiesel from these products. Biofuels are popular because they
are a valid alternative to fossil fuels such as oil in specific sectors. In addition, they have
lower production costs because they cause less impact on nature since they are biodegrad-
able, they are marketed at a lower cost, and they are the result of renewable sources.

Brazil is an example of one country that have been looking at biofuels since very early
on. According to the Ministry of Mines and Energy (MME), the pioneer tests were carried
out between 1905 and 1925. In 1931, the Brazilian government established a decree that
made mixing 5% alcohol in imported gasoline compulsory. However, with the discovery of
extensive oil reserves in the Middle East, interest in biofuels declined globally. However,
with the first world oil crisis in 1973, the search for new energy sources re-emerged.
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In 2015, Paris, France hosted the 21st United Nations Conference on Climate Change
(COP 21), whose objective was to bring countries to an agreement on global warming
by reducing the emission of greenhouse gases [19]. Unfortunately, that same year, there
was a drastic fall in oil prices, generating considerable constraints in the economies of
the producing countries, which had to review their budgets and were forced to reflect on
alternatives. However, even before the great discussions on climate, greenhouse effect, and
oil crisis, several countries were already producing biofuels in considerable quantities, such
as the United States of America, Brazil, Germany, and Indonesia.

2.5. Ethanol

Ethanol is obtained from sugar cane as a biofuel, since the term biofuel is generic and
may encompass several types and several origins. Nevertheless, we identified different
energy alternatives in the questionnaire, such as biodiesel, algae biodiesel, H-BIO, geother-
mal, hydraulic, solar, wind, and tidal energy alternatives. According to Petrobras, ethanol
is alcohol with an oxygenated organic compound, also called ethyl alcohol, and its chemical
formula is C2H5OH. Ethanol is obtained from various raw materials such as sugarcane,
corn, manioc, and sugar beet [18].

According to the Ethanol Industry Association (IEA), and in terms of applications and
uses of ethanol, it can be used as a raw material in three areas, i.e., beverages, fuels, and
industry, the latter being the final use in: the manufacture of pharmaceuticals, cosmetics,
toiletries, detergents and cleaning products, printer ink cartridges, paints, and coatings. The
ethanol industry will always depend, in a first analysis, on the existence of the minimum
conditions for the generation of raw material, and the potential that this raw material has in
terms of quantities and respective renewal conditions [20]. According to [21], implementing
biofuel projects in Angola require about two years of research related to product tests and
choices of best species. In addition to expenses and direct costs required to implement
an ethanol industry, there are other important areas to take into consideration, such as
legislation, equipment, and human capital that always vary, and therefore, require a feasi-
bility study involving experts in the most distinct areas, who can determine with proven
evidence the probability of success or otherwise in implementing an ethanol industry.

Concerning the ethanol industry, the approach taken in this study is not focused on the
details of the feasibility or otherwise of implementing an industry. Rather, the focus is on an
analysis that seeks to understand the capacity these industries can offer to Angola’s GDP in
terms of economic and social impact, based on existing successful experiences with already
implemented industries. An economic development model of the Angolan economy is
highly dependent on its endogenous characteristics, namely its oil production capacity, but
it is also totally dependent on exogenous characteristics, namely the international fixing of
oil barrel prices. This circumstance leaves the country’s real economic growth dependent
on finite natural resources and the impossibility of intervening in the fixation of the price of
a barrel of oil. In this sense, there is a possibility that alternative energies may be a solution
to the abovementioned dependency on oil, namely through ethanol production.

3. Methodology

The definition of the research problem, the research questions, and the objectives were
crucial to the definition of the methodological and operational framework since the aim was
to analyze the perception of specialists on alternatives for diversifying the economy and
the viability of biofuels as a way of breaking the dependency on the Angolan oil industry.
This empirical study was developed, in the first stage, by setting up a focus group in order
to construct and adjust a data collection instrument in the form of a questionnaire to be
applied to a broader set of managers and specialists. The methodology used in this study
is described in detail below.

Given that the nature of the research problem focuses on understanding the social and
economic phenomena relative to Angola’s development strategies and economic diversifica-
tion, as well as the evaluation of energy alternatives that seek to reduce dependency on the

5



Energies 2022, 15, 4928

oil industry, equating the potential of biofuels, in this study, we began by considering the
spatial, cultural, and organizational context in which the phenomena occurred within the
framework of the naturalistic, exploratory, and descriptive nature of the study [2,3]. Thus,
the previous literature review provided information that allowed us to know the “state
of the art” and to support the empirical research model, contributing to the development
of the methodological path. Furthermore, the process of constructin the data collection
models and instruments took place in close inter-relation and cooperation with the per-
spectives of expert actors since they knew the terrain and the socio-cultural, economic,
technological, and political realities where the phenomena occurred [22,23]. Thus, first,
it was deemed appropriate to conduct an exploratory approach through a focus group
(qualitative analysis) with some experts of different nationalities (Angolan, Portuguese,
and Brazilian) in order to identify practices, models, strategies, interests, and problems that
could serve as a basis for the development of a questionnaire (quantitative analysis) to be
applied to a broader and more robust sample of experts.

The research problem was translated into the following initial questions: (1) What
are the strategic alternatives for diversification of the Angolan economy? (2) What is the
potential/attractiveness of biofuels to reduce dependency on the oil sector? Based on these
starting questions, many other questions arose, namely:

- What are the experts’ perceptions of the strategic goals for sustainable development
and competitiveness?

- What are Angola’s main economic, social, and environmental vulnerabilities?
- What is the impact of clusters on the development of the economy and business

competitiveness?
- What are the priority goals for Angola’s economic development?
- What is the time frame for the development of an alternative diversification model?
- What are the priority sectors to develop in Angola?
- What are the best government measures to diversify the Angolan economy?
- What are the strategic alternatives for diversification of the economy?
- What are the reasons for the lack of competitiveness in the oil sector in Angola?
- What are the energy alternatives to oil to be explored in Angola?
- What is the potential/attractiveness of biofuels?

The methodology adopted in this research required the identification of specialists
to be involved in the study in order to generate qualified information and to participate
interactively in the various phases, and then to explore the information obtained, generating
consensus or guidelines, either by validating the information produced or by the experience
developed in the form of benchmarking. Thus, the principles inherent to Delphi techniques
were followed, following [24–28].

As previously mentioned, the first phase of the questionnaire required the interpreta-
tion of the models and theoretical concepts for the identification and classification of the
dimensions and explanatory variables; 11 dimensions and 56 variables were identified
(Table 1):

Table 1. Identification of dimensions and variables.

Dimension Most Important Variables

Strategic goals for
sustainable development
and competitiveness

Diversification of Angola’s economy
Reducing external dependency
Decrease in dependency on the oil sector
Development and empowerment of human resources (science,
education and training)
Development of infrastructures (communications and
transportation)
Creation of a local environment that promotes private investment
and the attraction of foreign investment
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Table 1. Cont.

Dimension Most Important Variables

Angola’s economic, social,
and environmental
vulnerabilities

Bureaucracy
Corruption
The informality of the economy
Excessive weight of the state in the economy
Transport and communication infrastructure costs
External dependency
Dependency on the oil sector

Clusters in economic
development and business
competitiveness

Promotion and development of different sectors (agriculture,
industry, and new services) can make the country more
competitive

Priority targets for Angola’s
economic development

Valorization of human capital (education, capacity building, and
training)
Valorization of “endogenous” resources
Reduction in external dependency
Increase in internal productivity
Promotion of exports

Time horizon

From 5 to 10 years
From 10 to 20 years
From 20 to 30 years
From 30 to 40 years

Priority sectors to be
developed in Angola

Primary sector (agriculture, fisheries, and forestry)
Secondary sector (development of industry)
Tourism
Energy
Commerce
Construction
Services
Education

Government measures to
diversify the Angolan
economy

Economic policies
Fiscal policies
Education policies
Support for innovation, science, and technology.

Strategic alternatives for
diversification of the
economy

Valorization of human resources
Valorization and exploitation of endogenous resources Science,
innovation, and technology
Reduction in imports
Increase in exports

Lack of competitiveness in
the oil sector

The complexity of the sector
Price dependency on international markets
Lack of seriousness and delays in accountability

Energy alternatives to oil Clean energies to consider: solar, biodiesel, bioethanol,
geothermal, hydro, wind, marine, algae biodiesel, H-bio

Potential and attractiveness
of biofuels

Evaluation criteria: technology costs, gas emissions, productivity,
natural resources, contribution to competitiveness, energy
potential, and systemic innovation

After identifying the concepts associated (dimensions and variables) with the diver-
sification of the economy and the evaluation of strategic alternatives for growth, these
were assessed by a group of specialists connected to the economic and energy sector and
with knowledge of the Angolan reality. Each participant was given a summary of the
concepts and a pre-questionnaire for evaluation during the focus group. The session and
group discussion took place in a conference room equipped with multimedia support
and recorded on video and audio support [29]. The focus group discussions included the
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following: (1) participants expressed their ideas in a free “open-minded” way; (2) partici-
pants expressed their opinions about certain keywords associated with the concepts under
study; (3) participants evaluated the research questionnaire proposal. The focus group
was composed of eight members with complementary skills: two economists (both were
university professors), two petroleum engineers, two public managers, and two consultants
in economic development with experience and work carried out at the UN.

The focus group participants generally considered it urgent that Angola diversify its
economy and invest in a new model of economic development based on the potential of
its endogenous resources, therefore, leading to reduced imports (reduce dependency on
foreigners) and increased exports. They considered the importance of a new dynamic of
private business activity (to reduce the weight of the state) based on entrepreneurship,
knowledge (education and training of human resources), and innovation and technology
(infrastructure, transportation, and communications). This activity would industrialize the
country, and the state should create the conditions and policies (economic, financial/fiscal,
social, and technological) necessary for its development.

The specialists and professionals involved in this phase also contributed by selecting
or adding variables corresponding to the dimensions defined in the initial questionnaire.
For each dimension, the experts expressed their opinions, suggesting the elimination or
addition of concepts and/or variables. The focus group participants were unanimous
in affirming that the “strategic goals for sustainable economic development”, conceived
for the medium and long term, should include diversification of Angola’s economy and
a reduction in foreign dependency and the oil sector. They also indicated the need for
the development and training of human resources (science, education, and training), the
development of infrastructure (communications and transportation), and the creation of a
local environment that promotes private investment and attracts foreign investment.

Concerning the vulnerability dimension, the professionals recognized the bureaucracy,
corruption, and informality in the Angolan economy. They also noted the excessive weight
of the state in the economy, the costs of transport and communications infrastructures,
Angola’s foreign dependency, and the oil sector. The creation of several clusters could
promote and develop different sectors in Angola related to agriculture, industry, and
new services, making the country more competitive. The following priority goals were
noted: the “valorization of human capital” (education, capacity building, and training)
and of “endogenous resources”; reduction in external dependency; and increased internal
productivity to promote exports. The speakers were not unanimous as to the period
needed to implement policies and programs to diversify the Angolan economy, with time
indications ranging from 5 to 40 years, above all, because they considered that there were
medium-term initiatives (economic and fiscal programs) and other long-term innitiatives
(science and technology).

Regarding the priority sectors, the specialists considered it relevant to focus on the
primary sectors (agriculture, fishing, and forestry) and the secondary sector (development
of industry) to valorize the country’s immense exogenous resources, and thus, reduce
economic dependency on the exterior. However, they also indicated tourism, energy, com-
merce, civil construction, services, and education. In terms of government policies, they
pointed to fiscal and educational economic policies as priorities and support for innovation,
science, and technology. In terms of strategic alternatives, the participants referred to
“valorization of human resources”, “valorization and use of endogenous resources”, “sci-
ence, innovation, and technology”, and “reduction in imports and an increase in exports”.
The specialists stated that they believed the lack of competitiveness in Angola’s oil sector
was due to the complexity of the sector, the dependency on oil prices in the international
market, and a lack of seriousness and delays in accountability. In terms of alternatives, the
professionals indicated the feasibility of several alternatives considered to be sustainable
and environmentally friendly, such as solar, biodiesel, bioethanol, geothermal, hydro, wind,
tides, biodiesel from algae, and H-bio. Their choice should result from evaluating some
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criteria, such as technology costs, gas emission, productivity, natural resources, contribution
to competitiveness, energy potential, and systemic innovation.

The third phase of the process consisted of creating the questionnaire, which formu-
lated statements or prepositions based on the research objectives, taking into consideration
the dimensions and variables identified in the literature and the contributions identified
through the focus group. A 5-point Likert-type ordinal scale was associated with each
statement in the questionnaire, selected at random, ranging from “1 (I strongly disagree)” to
“5 (I strongly agree)”. In addition, some sociodemographic questions were also included to
characterize the respondents, such as gender, age, education, marital status, activity sector,
and nationality. This phase included validation of the questionnaire, which functioned as a
pretest of the research instrument [3].

3.1. Sample

Given the theme to be explored in this dissertation, it was essential to obtain infor-
mation from specialists and informed professionals with a critical view of the country’s
future and the models and alternatives to economic development and diversification of
the economy on a sustainable basis. Furthermore, given the impossibility of investigating
the entire population, using a sample was the most effective way to study and understand
the phenomenon, generating empirical material for analysis [3]. Thus, a set of national
and international experts was identified, and, after obtaining their e-mail addresses, the
questionnaire was sent to each of the respondents in the set. Therefore, this was a non-
probability convenience sample [30]. A total of 160 questionnaires were sent out, and
120 questionnaires were returned and validated by the deadline of 30 September 2020.
In addition to the essential inclusion criterion that the respondent must be a specialist or
professional in the areas of economics, management, politics, education, or engineering,
the opportunity and availability criteria were also taken into consideration in order to
participate in the production of information for a period of time, limited to two months, by
completing and returning a questionnaire distributed via email.

3.2. Data Collection Tools

After the data collection instrument administration, the next stage of the research
process was data analysis and interpretation to find answers to the research problem and
objectives [31]. Given the exploratory nature and design, a univariate data analysis was
performed using descriptive statistics (frequency, means, and standard deviation) [31,32].
The Statistical Package for Social Science (SPSS) version 25 [33] was used for data analysis.

The first part of the questionnaire contained questions for characterizing the respon-
dents (gender, age, education, marital status, activity sector, and nationality), thus, con-
stituting independent variables (pre-existing characteristics). In the second part of the
questionnaire, explanatory variables were included referring to the dimensions subject to
measurement in the form of variables, alternatives, and criteria (see Table 2).

Table 2. Dimensions and items used in the questionnaire.

Dimension Number of Items

Strategic goals for sustainable development and competitiveness 14 variables

Economic, social, and environmental vulnerabilities of Angola 20 variables

Clusters in the development of the economy and business
competitiveness 7 variables

Priority goals for Angola’s economic development 6 variables

Time horizon 4 alternatives

Priority sectors to be developed 8 variables

Government measures to diversify the economy 9 variables
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Table 2. Cont.

Dimension Number of Items

Strategic alternatives for diversifying the economy 10 variables

Lack of competitiveness in the oil sector 5 variables

Energy alternatives to oil 9 alternatives

Potential and attractiveness of biofuels 8 criteria
Source: Authors.

Considering the research problem and objectives, the construction of the question-
naire was based on the studies and works identified in the literature, as well as on the
contributions obtained in the focus group.

To assess the “strategic goals for sustainable development”, the work of [34] was taken
into consideration, as well as endogenous development models [35–37] and the philosophy
of sustainable development [38] that seek to integrate in a balanced way the economy,
society, and natural environment [5,38]. Thus, taking into consideration the priority goals
for sustainable development, the respondents expressed their degree of agreement with
the statements presented (14 statements) on a 5-point Likert-type scale [30], ranging from
“totally disagree” to “totally agree”. The variables included were:

V1 Improve the local business investment environment;
V2 Invest in tangible strategic infrastructure;
V3 Invest in business parks and facilities;
V4 Invest in intangible strategic infrastructure;
V5 Promote local business growth;
V6 Promote the creation of new enterprises;
V7 Attract foreign investment;
V8 Develop business sectors and clusters;
V9 Integrate unproductive or hard-to-employ workers;
V10 Establish an adequate system of environmental protection, natural disaster prevention,
and air and maritime safety;
V11 Develop, train, and empower human resources;
V12 Develop transportation and communications;
V13 Promote science, technology, innovation, and entrepreneurship;
V14 Diversify the economy.

Regarding the “economic, social and environmental vulnerabilities of Angola”, the
indications of the [38] were used as a reference, subsequently adapted by [5,39]. Respon-
dents expressed their degree of agreement with the statements presented (20 prepositions)
on a 5-point Likert-type scale [30], ranging from “totally disagree” to “totally agree”. The
selected statements were as follows:

V1 A narrow resource base and little or no opportunity to create economies of scale;
V2 Small domestic markets, heavy dependency on some external markets, and long dis-
tances from export and import markets for resources;
V3 High energy, infrastructure, transport, communication, and maintenance costs;
V4 Low and irregular international traffic volumes;
V5 Fragile natural environments and vulnerability to natural disasters;
V6 Small but growing population;
V7 High volatility of economic growth;
V8 Limited opportunities for the private sector;
V9 A proportionately large dependency of the economy on its public sector;
V10 A disproportionately costly public administration;
V11 Corruption and informality of the economy;
V12 Restricted access to credit;
V13 Deficient energy distribution systems;
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V14 High inflation;
V15 Excessive bureaucracy;
V16 Inefficient judicial system;
V17 Unskilled labor force;
V18 Dependency on oil;
V19 Weak currency;
V20 Literacy/education of the population.

In order to assess the impact of “clusters on the development of the economy and
business competitiveness” [40,41], works were used as a reference, which contemplates
7 statements on which respondents expressed their degree of agreement on a 5-point
Likert-type scale [30] ranging from “strongly disagree” to “strongly agree”:

V1 Promote competitiveness of enterprises and locations;
V2 Promote increased productivity of enterprises;
V3 Facilitate complementarities between the activities of the different actors;
V4 Facilitate access to institutions and benefits;
V5 Help measure the performance of domestic activities and limit;
V6 Opportunistic behavior;
V7 Facilitate the implementation of innovations;
V8 Facilitate the formation of new companies.

To assess the “priority goals for the economic development of Angola”, the works
of [5,39] were taken into consideration. After the specialists’ contributions to the “focus
group”, six variables were selected on which the respondents expressed their degree of
agreement. Namely:

V1 Give sufficient focus to technological, innovation, and creativity systems as part of a
sustainable development strategy;
V2 Emphasize building of human capital through investments in education and training;
V3 Give sufficient attention to the development or adoption of climate change resilience
systems;
V4 Address Angola’s most critical issues, such as high debt levels, inadequate access to
technology, difficulties with business transactions, and inadequate access to sources of
finance;
V5 Present energy alternatives to break the dependency on oil, namely in terms of biofuels;
V6 Increase the rate of independency and reduce the imbalances of all factors.

In as much as the time horizon (period of time) that respondents deemed accept-
able/realistic to develop an alternative model for the diversification strategy of Angola’s
economic development is concerned, the alternatives suggested by the professionals who
participated in the focus group were taken into consideration:

- From 5 to 10 years;
- From 10 to 20 years;
- From 20 to 30 years;
- From 30 to 40 years.

To identify the priority sectors for Angola’s development, the recommendations of
the professionals involved in the focus group and the works of [42,43] were considered.
The respondents put the recommendations in order of priority/importance according
to “1” represents the highest priority” and “8” represents the least priority/importance.
The sectors considered were: agriculture, livestock and forestry; tourism; oil and gas;
manufacturing; diamonds and precious stones; construction; trade and distribution and
the services, with the chance for respondents to include and indicate “other sectors”.
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In order to assess the “government measures to diversify the economy”, the work
of [39] was taken into consideration. After the “focus group”, 9 statements/positions were
contemplated by the respondents who indicated their degree of agreement:

V1 Tax reduction;
V2 Subsidized interest rates;
V3 Economic policies;
V4 Actions to enhance human capital;
V5 Export subsidies;
V6 Creation of agendas for diversification and national agencies with responsibility for
stimulating and coordinating the process of structural change;
V7 Organize meetings, lectures, seminars, workshops, etc., to inculcate a new spirit of
greater openness to international competition;
V8 Technological innovation;
V9 Tax systems and financial incentives that encourage diversification and stimulate private
investment.

Regarding the evaluation of strategic alternatives for diversification of the economy,
the works of [39,44] were considered, as well as the suggestions of the professionals who
participated in the focus group:

V1 Import substitution (through efficiency and not through administrative protection
mechanisms, which only generate bureaucracy and corruption);
V2 Production of intermediate products;
V3 Valorization of national human resources (reducing dependency on expatriates);
V4 Technological innovation;
V5 Use of national raw materials;
V6 Diversify export destinations;
V7 Definition of long-term industrial and investment policies to promote the sustained
growth of the Angolan economy;
V8 Strengthening the role of the national investment system and development of the
financial and banking sector;
V9 Enhancing human potential and innovation;
V10 The emergence of specializations around the strengthening of supply based on new
producers and new services.

In order to assess the lack of competitiveness in the oil sector, the works of [45,46], and
the report of the [47] were taken into consideration:

V1 The revenues Sonangol receives from taxes and joint ventures and other sources of
income do not appear in government accounts;
V2 The price of oil is undervalued in the state budget, and any revenue above this estimate
is never declared;
V3 Government expenditure declarations are inaccurate;
V4 The share of taxes and royalties that Sonangol pays to the government is transferred
with significant delay and in local currency;
V5 The network of financial arrangements created by oil-backed loans is complicated.

In terms of identifying and assessing energy alternatives to explore in Angola in order
to reduce dependency on the oil industry [46], the suggestions raised by [48,49], and inputs
from practitioners were followed. Thus, the following alternatives were included: biodiesel,
bioethanol, biodiesel from algae, H-BIO, geothermal, hydraulic, solar, wind, and tidal.

Finally, and in order to evaluate the attractiveness of biofuels, we considered the works
of [48,49] that, as considered by several experts [50,51], consider it pertinent to weight
several criteria, through the use of the MACBETH method (decision support method that
allows evaluating options taking into account multiple criteria) namely:
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Criterion 1 Cost of technology developed for production;
Criterion 2 Emission of pollutant gases due to burning in engine combustion;
Criterion 3 Job creation;
Criterion 4 Productivity of raw materials;
Criterion 5 Existence of natural resources;
Criterion 6 Contribution to country’s competitiveness;
Criterion 7 Energy potential;
Criterion 8 Innovation and systemic change.

Four biofuels were selected, and respondents were asked to rate each criterion based
on the following scale: (1) extreme, (2) very strong, (3) strong, (4) moderate, (5) weak, (6)
very weak, (7) null. The questionnaire was sent by e-mail to the specialists/professionals
identified in the network of contacts which, after being completed, was returned for
subsequent data analysis. This process took place in August and September 2020.

4. Analysis of Results

The sample was then characterized, followed by data analysis using descriptive
statistics (absolute and relative frequencies, mean, and standard deviation), the assessment
of the scale’s reliability (Cronbach’s alpha), and bivariate analysis of the data.

As can be seen in the following table, there is a gender imbalance among the respon-
dents, with a higher percentage of females (86) than males (34).

The sample ranged in age from 30 to 65 years (Table 3). For operational reasons, three
age groups were created. It is noted that the age group “up to 35 years old” consisted of 56
respondents (46.7%), followed by the age group “36–50 years old” (42 respondents), and
then the age group “over 50 years old” with 22 respondents (9.4%).

Table 3. Sample.

Title Title F %

Gender
Male 34 28.3
Female 86 71.7

Age groups
Up to 35 years old 56 46.7
From 36 to 50 years old 42 35.0
Over 50 years old 22 18.3

Marital status

Single 30 25.0
Married/living with a partner 86 71.7
Divorced 2 1.7
Widowed 2 1.7

Qualifications

Bachelor 4 3.3
Graduate 74 61.7
Master’s degree 26 21.7
Doctorate 16 13.3

Sector of activity

Public sector (central government, local
government, public administration) 54 45.0

Private sector 62 51.7
Social and non-profit sector (local NGO, youth
group, religious organization, voluntary
movement)

2 1.7

International organization 2 1.7

Nationality
Angolan 94 78.3
Portuguese 22 18.3
Brazilian 4 3.4
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The vast majority of respondents are married/cohabiting (71.7%), with 30 single
respondents (25%) and only two divorced and widowed respondents (1.7%), as can be seen
in Table 3.

Concerning academic qualifications, as shown in the following table, the majority of
the respondents have a Bachelor’s degree (61.7%), 26 respondents have a Master’s degree
(21.7%), 16 respondents have a PhD (13.3%), and 4 respondents have a Bachelor’s degree
(3.3%).

Most of the respondents (see Table 3) work in the private sector (51.7%), followed very
closely by those who work in the public sector (45%).

In terms of nationality (see Table 3), the majority of respondents are Angolan (78.3%),
Portuguese (18.3%), and Brazilian (3.4%).

4.1. Analysis of the Results Obtained

A univariate data analysis was first performed using descriptive statistics (absolute
and relative frequencies, mean, and standard deviation) for data analysis. Then, the internal
consistency of the research instrument was assessed through Cronbach’s alpha values. In
the analysis of the reliability for all items making up the scale used, a Cronbach’s alpha
value of 0.882 (good internal consistency) was obtained, which could be considered to be a
good result [30].

4.1.1. Evaluation of Strategic Goals for Sustainable Development and Competitiveness

To assess the strategic goals considered to be a priority for development and com-
petitiveness, 14 items were used [38], with scores above the arithmetic mean in all the
alternatives presented (see Table 4). As can be seen in this table, respondents considered di-
versification of the economy to be the most important, with 83 total concordances (M = 4.59,
SD = 0.670), followed by the training of human resources, with 72 total concordances
(M = 4.58, SD = 0.561); the development of transport and communications with 70 total
concordances (M = 4.58, SD = 0.496); and the promotion of science, technology, innovation,
and entrepreneurship with 66 total concordances (M = 4.46, SD = 0.675). The lowest val-
ues were obtained on the items “integrate unproductive or difficult to employ workers
(M = 3.03, SD = 1.132), “invest in business parks and facilities” (M = 3.63, SD = 0.959), and
“establish an adequate system of environmental protection, natural disaster prevention,
and air and maritime safety” (M = 3.69, SD = 1.034).

Table 4. Priority strategic goals for sustainable development and competitiveness.

Cronbach’s Alpha
0.745

Totally
Disagree

Disagree
Neither Agree
Nor Disagree

Agree
Totally
Agree M SD

F % F % F % F % F %

Improving the local
business investment
environment

8 6.7 54 45.0 56 46.7 4.41 0.617

Investing in tangible
strategic infrastructure 6 5.0 68 56.7 46 38.3 4.32 0.568

Investing in business parks
and facilities 2 1.7 14 11.7 30 25.0 52 43.3 20 16.7 3.63 0.959

Investing in intangible
strategic infrastructure 12 10.0 34 28.3 48 40.0 24 20.0 3.71 0.907

Promoting local business
growth 6 5.0 6 5.0 50 41.7 58 48.3 4.32 0.794

Promoting the creation of
new companies 2 1.7 8 6.7 22 18.3 52 43.3 36 30.0 3.92 0.948
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Table 4. Cont.

Cronbach’s Alpha
0.745

Totally
Disagree

Disagree
Neither Agree
Nor Disagree

Agree
Totally
Agree M SD

F % F % F % F % F %

Attracting foreign
investment 2 1.7 10 8.3 60 50.0 46 38.3 4.27 0.688

Developing business
sectors and clusters 10 8.3 20 16.7 74 61.7 14 11.7 3.78 0.764

Integrating unproductive
or hard-to-employ workers 16 13.3 18 15.0 40 33.3 36 30.0 8 6.7 3.02 1.132

Establishing an adequate
system of environmental
protection, natural disaster
prevention, and air and
maritime safety

4 3.3 12 10.0 26 21.7 50 41.7 28 23.3 3.69 1.034

Develop, train, and
empower human resources 4 3.3 42 35.0 72 60.0 4.58 0.561

Develop transportation
and communications 50 41.7 70 58.3 4.58 0.496

Promote science,
technology, innovation,
and entrepreneurship

2 1.7 6 5.0 46 38.3 66 55.0 4.46 0.675

Diversify the economy 2 1.7 6 5.0 30 25.0 82 68.3 4.59 0.670

KMO test and Bartlett’s test

Kaiser–Meyer–Olkin (KMO) of sampling adequacy 0.527

Bartlett’s test of sphericity
Chi-square 508.056

gl 91
Sig. 0.000

The reliability analysis for all items that make up the “priority goals” scale obtained
a Cronbach’s alpha of 0.745, which is considered to be a scale with good internal consis-
tency [30]. In addition, the Kaiser–Meyer–Olkin (KMO) measure of sampling adequacy
was positive and significant (KMO = 0.527, Bartlett’s with sig = 0.000), causing no problems
with data analysis, revealing positive correlations among the variables.

4.1.2. Analysis of Angola’s Key Economic, Social, and Environmental Vulnerabilities

The assessment of Angola’s main economic, social, and environmental vulnerabilities
was based on previous works by the [38,39]. As shown in the Table 5, the majority of
respondents (55%) consider that the main vulnerabilities are “corruption and informality
of the economy” (M = 4.37, SD = 0.865), followed by bureaucracy (M = 4.27, SD = 0.940);
oil dependency M = 4.27, SD = 0.993); and high costs of energy, infrastructure, transporta-
tion, and maintenance (M = 4.24, SD = 0.967). The results also show that the least valued
economic, social, and environmental vulnerabilities were “fragile environments and vul-
nerabilities to natural disasters” (M = 3.02, SD = 1.132) and “a narrow resource base and
little or no opportunity to create economies of scale” (M = 3.27, SD = 0.993). The internal
reliability obtained on this dimension was good (Cronbach’s Alpha = 0.899), and positive
and significant results were obtained on the Kaiser–Meyer–Olkin (KMO) measure and
Bartlett’s test of sphericity (KMO = 0.527, Bartlett’s sig = 0.000).
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Table 5. Major economic, social, and environmental vulnerabilities in Angola.

Cronbach’s Alpha
0.899

Totally
Disagree

Disagree
Neither Agree
Nor Disagree

Agree
Totally
Agree M SD

F % F % F % F % F %

Narrow resource base and
little or no opportunity to
create economies of scale

10 8.3 18 15.0 30 25.0 58 48.3 4 3.3 3.27 0.993

Small domestic markets,
strong dependency on
some foreign markets,
distances to export, and
resource import markets

8 6.7 6 5.0 2 1.7 54 45.0 50 41.7 4.15 1.043

High energy, infrastructure,
transport, communication,
and maintenance costs

4 3.3 4 3.3 8 6.7 46 38.3 56 46.7 4.24 0.967

Low and irregular
international traffic
volumes

2 1.7 10 8.3 40 33.3 42 35.0 26 21.7 3.68 0.969

Fragile natural
environments and
vulnerability to natural
disasters

12 10, 34 28.3 22 18.3 46 38.3 6 5.0 3.02 1.132

Small but growing
population 8 6.7 20 16.7 28 23.3 60 50.0 4 3.3 3.31 0.965

High economic growth
volatility 2 1.7 22 18.3 36 30.0 52 43.3 8 6.7 3.37 0.904

Limited opportunities for
the private sector 6 5.0 18 15.0 10 8.3 58 48.3 28 23.3 3.75 1.088

A proportionately large
dependency of the
economy on its public
sector

4 3.3 6 5.0 12 10.0 60 50.0 38 31.7 4.07 0.884

A disproportionately costly
public administration 2 1.7 10 8.3 14 11.7 52 43.3 42 35.0 4.07 0.903

Corruption and informality
of the economy 4 3.3 2 1.7 12 10.0 36 30.0 66 55.0 4.37 0.865

Restricted access to credit 2 1.7 10 8.3 10 8.3 46 38.3 52 43.3 4.19 0.915

Weak energy distribution
systems 4 3.3 8 6.7 10 8.3 58 48.3 40 33.3 4.07 0.922

High inflation 4 3.3 10 8.3 6 5.0 42 35.0 58 48.3 4.22 0.997

Excessive bureaucracy 6 5.0 4 3.3 4 3.3 50 41.7 56 46.7 4.27 0.940

Inefficient judicial system 2 1.7 12 10.0 14 11.7 48 40.0 44 36.7 4.05 0.950

Unskilled labor force 4 3.3 16 13.3 22 18.3 44 36.7 34 28.3 3.78 1.063

Dependency on oil 2 1.7 12 10.0 4 3.3 40 33.3 62 51.7 4.27 0.993

Weak currency 4 3.3 8 6.7 8 6.7 48 40.0 52 43.3 4.19 0.951

Literacy/education of the
pop. 4 3.3 12 10.0 10 8.3 54 45.0 40 33.3 3.98 1.038

KMO test and Bartlett’s test

Kaiser–Meyer–Olkin (KMO) of sampling adequacy 0.527

Bartlett’s test of sphericity
Chi-square 1651.767

gl 190
Sig. 0.000
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4.1.3. Impact of Clusters on the Development of the Economy and
Business Competitiveness

The specialists questioned generally consider that the creation and development of
clusters (for example, energy, agriculture, and livestock, etc.) influence the development
of the Angolan economy [40] and promote the competitiveness of businesses and loca-
tions (see Table 6). Thus, the main impacts recognized are related to the promotion of
business productivity (M = 4.07, SD = 0.560), the implementation of innovations (M = 4.04,
SD = 0.797), and the formation of new businesses (M = 4.02, SD = 0.809).

Table 6. Influence of clusters on the development of the economy and business competitiveness.

Cronbach’s Alpha
0.816

Totally
Disagree

Disagree
Neither Agree
Nor Disagree

Agree
Totally
Agree M SD

F % F % F % F % F %

Promote business and local
competitiveness 2 1.7 6 5.0 8 6.7 76 63.3 24 20.0 3.96 0.797

Promote an increase in
company productivity 4 3.3 2 1.7 90 75.0 20 16.7 4.07 0.560

Facilitate
complementarities between
the activities of the
different actors

4 3.3 28 23.3 64 53.3 20 16.7 3.84 0.724

Facilitate access to
institutions and benefits 4 3.3 30 25.0 70 58.3 12 10.0 3.75 0.659

Help measure the
performance of domestic
activities and limit
opportunistic behavior

14 11.7 46 38.3 44 36.7 10 8.3 3.44 0.820

Facilitate the
implementation of
innovations

8 6.7 10 8.3 66 55.0 30 25.0 4.04 0.797

Facilitate the formation of
new enterprises 8 6.7 12 10.0 64 53.3 30 25.0 4.02 0.809

KMO test and Bartlett’s test

Kaiser–Meyer–Olkin (KMO) of sampling adequacy. 0.745

Bartlett’s test of sphericity
Chi-square 277.846

gl 21
Sig. 0.000

The items making up the scale obtained good reliability (alpha = 0.816), as did the
Kaiser–Meyer–Olkin measure of sampling adequacy (KMO = 0.745) with a significant
Bartlett’s sphericity (p = 0.000).

4.1.4. Assessment of Priority Goals for Angola’s Economic Development

Concerning the priority goals for Angola’s economic development (see Table 7), re-
spondents consider that they emphasize the building of human capital through investments
in education and training (M = 3.92, SD = 0.958) and address solutions to Angola’s most
critical issues, such as high levels of indebtedness, inadequate access to technology, difficul-
ties with commercial transactions, and inadequate access to sources of financing (M = 3.55,
SD = 0.887).
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Table 7. Assessment of priority targets for Angola’s economic development.

Cronbach’s Alpha
0.782

Totally
Disagree

Disagree
Neither Agree
Nor Disagree

Agree
Totally
Agree M SD

F % F % F % F % F %

Give sufficient focus on
innovation, creativity, and
technological systems as
part of a sustainable
development strategy

30 25.0 32 26.7 50 41.7 8 6.7 3.30 0.922

Emphasis the building of
human capital through
investments in education
and training

16 13.3 12 10.0 58 48.3 34 28.3 3.92 0.958

Give sufficient attention to
the development or
adoption of climate change
resilience systems

6 5.0 50 41.7 42 35.0 22 18.3 2.67 0.833

Address Angola’s most
critical issues such as high
debt levels, inadequate
access to technology,
difficulties with
commercial transactions,
and inadequate access to
sources of finance

2 1.7 16 13.3 26 21.7 66 55.0 10 8.3 3.55 0.887

Present energy alternatives
to break the dependency
on oil, namely at the level
of biofuels

8 6.7 24 20.0 30 25.0 48 40.0 10 8.3 3.23 1.075

Increase the rate of
dependency and
imbalances in all factors

22 18.3 60 50.0 30 25.0 8 6.7 3.20 0.816

KMO test and Bartlett’s test

Kaiser–Meyer–Olkin (KMO) of sampling adequacy 0.812

Bartlett’s test of sphericity
Chi-square 170.754

gl 15
Sig. 0.000

The least valued item was “pay sufficient attention to the development or adoption of
climate resilience systems” (M = 2.67, SD = 0.833), which may mean that policymakers (and
even Angolan citizens) are more concerned with short-term measures to mitigate current
problems, to reduce the economic and social vulnerability of populations, and to protect
their livelihoods. The reliability analysis for all items that make up the scale used obtain
a Cronbach’s alpha value of 0.782, which can be considered to be a good result (Pestana
& Gageiro, 2005). Similarly, the KMO and Bartlett’s test show high and significant values
(KMO = 0.812, Bartlett’s with sig = 0.000), showing that the variables are related.

4.1.5. Time Horizon for the Development of an Alternative Diversification Model

The period of time that respondents consider acceptable/realistic to develop an al-
ternative model for a diversification strategy for Angola’s economic development (see
Table 8) is 10–20 years (48.3%). However, 36 respondents (30%) consider that developing
an alternative model will take between 5 and 10 years, 16 specialists (13.3%) consider that
between 20 and 30 years will be necessary, and 10 specialists (8.3%) consider that between
30 and 40 years will be necessary.
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Table 8. Time frame for the development of an alternative diversification model.

Time Period F %

5–10 years 36 30.0
10–20 years 58 48.3
20–30 years 16 13.3
30–40 years 10 8.3

4.1.6. Priority Sectors to Be Developed in Angola

The priority sectors (Francisco Miguel Paulo—CEIC) that the respondents consider a
priority to develop in Angola (see Table 9) are agriculture, livestock, and forestry (74); man-
ufacturing (16); and tourism (10). Oil and gas (2), trade and distribution, and construction
appear in an intermediate position. Diamonds and precious stones and services are in the
last positions.

Table 9. Priority activity sectors to be developed in Angola.

Sorting Priority
Mean

F %

Agriculture, livestock, and forestry 74 61.7 1.52
Manufacturing industry 16 13.3 3.04
Tourism 10 8.3 4.39
Oil and gas 2 1.7 5.00
Trade and distribution 5.34
Building and construction 2 1.7 5.70
Diamonds and precious stones 6.11
Services 2 1.7 6.23

4.1.7. Government Measures to Diversify the Angolan Economy

To assess government measures for diversifying the Angolan economy, the work
of [39] was considered. In the reliability analysis for all items, a Cronbach’s alpha value of
0.728 was obtained, thus, revealing good internal consistency. Bartlett’s test of sphericity
evidences that the variables are correlated in the population (KMO = 0.670, Bartlett’s
sig = 0.000). As shown in the Table 10, respondents consider that the main measures are
technological innovation (M = 4.47, SD = 0.593), actions to enhance human capital (M = 4.38,
SD = 0.780), tax regimes and financial incentive systems friendly to diversification and
stimulating private investment (M = 4.38, SD = 0.663), and economic policies (M = 4.37,
SD = 0.634). The least valued, although positive, measures were export subsidies (M = 3.60,
SD = 0.956) and tax cuts (M = 3.67, SD = 0.892).

Table 10. Measures that the government should take to diversify the Angolan economy.

Cronbach’s Alpha
0.728

Totally
Disagree

Disagree
Neither Agree
Nor Disagree

Agree
Totally
Agree M DP

F % F % F % F % F %

Tax reduction 14 11.7 32 26.7 54 45.0 20 16.7 3.67 0.892

Subsidised interest rates 12 10.0 26 21.7 56 46.7 26 21.7 3.80 0.894

Economic policies 10 8.3 56 46.7 54 45.0 4.37 0.634

Human capital
development measures 4 3.3 10 8.3 42 35.0 64 53.3 4.38 0.780

Export subsidies 18 15.0 34 28.3 46 38.3 22 18.3 3.60 0.956
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Table 10. Cont.

Cronbach’s Alpha
0.728

Totally
Disagree

Disagree
Neither Agree
Nor Disagree

Agree
Totally
Agree M DP

F % F % F % F % F %

Creation of agendas for
diversification and national
agencies with the
responsibility of
stimulating and
coordinating the process of
structural changes

2 1.7 4 3.3 20 16.7 72 60.0 22 18.3 3.90 0.793

Organizing meetings,
lectures, seminars,
workshops, etc., to
inculcate a new spirit of
greater openness to
international competition

6 5.0 18 15.0 80 66.7 16 13.3 3.88 0.688

Technological innovation 6 5.0 52 43.3 62 51.7 4.47 0.593

Tax regimes and systems of
financial incentives that are
friendly to diversification
and stimulate private
investment

12 10.0 50 41.7 58 48.3 4.38 0.663

KMO test and Bartlett’s test

Kaiser–Meyer–Olkin (KMO) of sampling adequacy 0.670

Bartlett’s test of sphericity
Chi-square 271.550

gl 36
Sig. 0.000

4.1.8. Strategic Alternatives for Diversifying the Economy

In order to evaluate the strategic alternatives for diversification of the Angolan econ-
omy, based on the works identified in the literature [39,44], and as presented in the Table 11,
the specialists surveyed considered the most relevant strategies to be “harnessing of na-
tional raw materials”, with 58.3% of total concordances (M = 4.55, SD = 0.563), “valorization
of national human resources”, with 60% of total concordances (M = 4.45, SD = 0.787), and
“valorization of human potential and innovation”, with 51.7% of concordances (M = 4.42,
SD = 0.693).

Table 11. Strategic alternatives for diversifying the economy.

Cronbach’s Alpha
0.801

Totally
Disagree

Disagree
Neither Agree
Nor Disagree

Agree
Totally
Agree M SD

F % F % F % F % F %

Import substitution
(through efficiency and not
through administrative
protection mechanisms,
which only generate
bureaucracy and
corruption),

2 1.7 6 5.0 12 10.0 62 51.7 38 31.7 4.07 0.877

Production of intermediate
products 2 1.7 12 10.0 78 65.0 28 23.3 4.10 0.627
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Table 11. Cont.

Cronbach’s Alpha
0.801

Totally
Disagree

Disagree
Neither Agree
Nor Disagree

Agree
Totally
Agree M SD

F % F % F % F % F %

Valorization of national
human resources (reducing
dependence on
expatriates),

4 3.3 10 8.3 34 28.3 72 60.0 4.45 0.787

Technological innovation 6 5.0 2 1.7 58 48.3 54 45.0 4.33 0.748

Use of national raw
materials 4 3.3 46 38.3 70 58.3 4.55 0.563

Diversify the destination of
exports. 2 1.7 2 1.7 18 15.0 56 46.7 42 35.0 4.12 0.842

Definition of long-term
industrial and investment
policies

2 1.7 20 16.7 68 56.7 30 25.0 4.05 0.696

Accentuation of the role of
financing the national
investment system and the
development of the
financial and banking
sector

2 1.7 26 21.7 62 51.7 30 25.0 4.00 0.733

The valorization of human
potential and innovation 2 1.7 8 6.7 48 40.0 62 51.7 4.42 0.693

The emergence of
specializations around the
reinforcement of supply
based on new producers
and new products

2 1.7 18 15.0 74 61.7 26 21.7 4.03 0.660

KMO test and Bartlett’s test

Kaiser-Meyer-Olkin (KMO) of sampling adequacy 0.764

Bartlett’s test of sphericity
Chi-square 465.523

gl 55
Sig. 0.000

Reliability analysis on the totality of the items revealed a good internal consistency
(α = 0.801), and the Kaiser–Meyer–Olkin measure and sampling adequacy (KMO = 0.764)
revealed positive and significant correlations among the variables (Bartlett with sig = 0.000).

4.1.9. Reasons for a Lack of Competitiveness in Angola’s Oil Sector

Respondents point to the lack of competitiveness in Angola’s oil sector, based on the
Economist Intelligence Unit (EIU), as being mainly due to “the complicated web of financial
arrangements created by oil-backed loans” (M = 3.97, SD = 0.777) and “the inaccuracy of
government expenditure declarations” (M = 3.92, SD = 0.922) (Table 12).
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Table 12. Reasons for the lack of competitiveness of Angola’s oil sector.

Cronbach’s Alpha
0.825

Totally
Disagree

Disagree
Neither Agree
Nor Disagree

Agree
Totally
Agree M SD

F % F % F % F % F %

Revenues Sonangol
receives from taxes, joint
ventures, and other sources
of income do not appear in
government accounts

4 3.3 18 15.0 46 38.3 38 31.7 14 11.7 3.33 0.982

Oil prices are undervalued
in the government budget,
and any revenue above this
estimate is never declared

6 5.0 10 8.3 20 16.7 54 45.0 30 25.0 3.77 1.075

Government expenditure
declarations are not
accurate

4 3.3 4 3.3 20 16.7 62 51.7 30 25.0 3.92 0.922

The share of taxes and
royalties that Sonangol
actually pays to the
government is transferred
with significant delay and
in local currency

10 8.3 48 40.0 36 30.0 26 21.7 3.65 0.913

The web of financial
arrangements created by
oil-backed loans is
complicated

4 3.3 26 21.7 60 50 30 25.0 3.97 0.777

KMO test and Bartlett’s test

Kaiser–Meyer–Olkin (KMO) of sampling adequacy 0.732

Bartlett’s test of sphericity
Chi-square 237.865

gl 10
Sig. 0.000

The reliability analysis through Cronbach’s alpha revealed good internal consistency
(α = 0.825), also verifying that there are correlations among the different items (KMO = 0.732,
Bartlett’s with sig = 0.000).

4.1.10. Energy Alternatives

When asked to evaluate the best energy alternatives to reduce dependency on oil,
most of the respondents (see Table 13) put solar energy as the priority (48), followed by
biodiesel (22), hydraulic energy (14), and bioethanol (8).

Table 13. The best alternatives to oil to be explored in Angola.

Energy Alternatives Ranking of Alternatives

Solar 1st priority (48)

Biodiesel 2nd priority (22)

Hydro 3rd priority (14)

Bioethanol 4th priority (8)

Wind 5th priority (2)

Geothermal Priority 6th (2)

Offshore Priority 7th (2)

Biodiesel from algae 8th priority (2)

H-BIO 9th priority (0)
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The least valued alternatives were H-bio, biodiesel from algae, and geothermal and
wind energy.

4.1.11. Assessing the Attractiveness of Biofuels

In order to assess the attractiveness of biofuels, we considered works developed
by [50,51] and, in particular, four alternatives: bioethanol, biodiesel, H-bio, and algae. The
analysis of Cronbach’s alpha allows us to conclude that there is good reliability of the
scale (α = 0.711), and the Kaiser–Meyer–Olkin measure of sampling adequacy attests to the
correlations among the variables (KMO = 0.615, Bartlett with sig = 0.000). Thus, regarding
bioethanol, in general, respondents rated this biofuel as attractive (M = 3.274), having
obtained a value below 3.5 (arithmetic mean) in most criteria (Table 14).

Table 14. Assessing the attractiveness of biofuels.

Cronbach Alpha
0.711

Extreme
Very

Strong
Strong Moderate Weak

Very
Weak

Nil
M SD

F % F % F % F % F % F % F %

Criterion 1:
Cost of technology 8 6.7 4 3.3 26 21.7 28 23.3 6 5.0 4 3.3 76 63.3 3.65 1.033

Criterion 2:
Emission of pollutant gases 4 3.3 22 18.3 16 13.3 8 6.7 12 10.0 4 3.3 4 3.3 3.35 1.581

Criterion 3:
Employment generation 14 11.7 18 15.0 26 21.7 14 11.7 2 1.7 4 3.3 2.82 1.281

Criterion 4: Productivity 10 8.3 14 11.7 32 26.7 6 5.0 4 3.3 6 5.0 2 1.7 3.18 1.455

Criterion 5: Natural resources 10 8.3 20 16.7 22 18.3 10 8.3 10 8.3 2 1.7 2.88 1.264

Criterion 6:
Contribution to
competitiveness

14 11.7 8 6.7 14 11.7 30 25.0 4 3.3 2 1.7 3.26 1.512

Criterion 7:
Energy potential 16 13.3 10 8.3 10 8.3 22 18.3 8 6.7 2 1.7 4 3.3 3.35 1.691

Criterion 8:
Innovation and change 10 8.3 12 10.0 10 8.3 20 16.7 12 10.0 2 1.7 4 3.3 3.53 1.643

KMO test and Bartlett’s test

Kaiser-Meyer-Olkin (KMO) of sampling adequacy 0.615

Bartlett’s test of sphericity
Chi-square 161.223

gl 28
Sig. 0.000

As can be seen in the Table 14, the most valued criteria were Criterion 3 (generation
of jobs) (11.7% of respondents rated it as “strong”, 15% as “very strong”, and 21.7% as
“strong” (M = 2.82, SD = 1.281)), and Criterion 5 (existence of natural resources) (rated
as “strong” by 18.3% of respondents, as “very strong” by 16.7% of respondents, and as
“extreme” by 8.3% of respondents (M = 2.88, SD = 1.264)). However, two criteria were rated
slightly higher than the arithmetic mean (3.5): Criterion 1 (cost of technology developed
for production (M = 3.65, SD = 1.033)) and Criterion 8 (innovation and systemic change
(M = 3.53, SD = 1.643)), and therefore, were considered to be the least attractive factors for
this biofuel by the experts surveyed.

Regarding biodiesel, the respondents evaluate this biofuel as attractive (M = 3.356)
(Table 15).

The reliability analysis on the totality of the items revealed good internal consistency
(α = 0.747). Similarly, significant correlations were found among the items that make
up the scale (KMO = 0.550, Bartlett’s with sig = 0.000). As presented in the Table 15,
the best-ranked criteria were Criterion 3 (generation of jobs), which was rated as “very
strong” by 20% of the respondents, as “strong” by 15% of the respondents, and as “extreme”
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by 10% of the respondents (M = 3.00, SD = 1.509) and Criterion 7, (energy potential),
which was rated as “very strong” by 20% of the respondents and as “extreme” by 10%
of the respondents (M = 3.18, SD = 1.578). Criteria 2 (gas emissions) and 5 (existence
of natural resources) were similar in terms of average (M = 3.24), Criterion 1 (cost of
technology developed for production (M = 3.70; SD = 1.176)), Criterion 6 (contribution
to the country’s competitiveness (M = 3.70, SD = 1.617)), and Criterion 8 (innovation and
systemic change (M = 3.52; SD = 1.491)) were rated as less attractive with a result higher
than the arithmetic mean.

Table 15. Biodiesel attractiveness assessment.

Cronbach’s Alpha
0.747

Extreme
Very

Strong
Strong Moderate Weak

Very
Weak

Nil
M SD

F % F % F % F % F % F % F %

Criterion 1:
Cost of technology 4 3.3 8 6.7 14 11.7 28 23.3 14 11.7 2 1.7 3.70 1.176

Criterion 2:
Emission of pollutant gases 8 6.7 28 23.3 6 5.0 10 8.3 14 11.7 4 3.3 4 3.3 3.24 1.665

Criterion 3:
Employment generation 12 10.0 24 20.0 18 15.0 14 11.7 2 1.7 4 3.3 2 1.7 3.00 1.509

Criterion 4:
Productivity 6 5.0 14 11.7 26 21.7 10 8.3 8 6.7 6 5.0 3.27 1.387

Criterion 5:
Natural resources 12 10.0 16 13.3 8 6.7 22 18.3 4 3.3 8 6.7 3.24 1.570

Criterion 6:
Contribution to
competitiveness

10 8.3 10 8.3 8 6.7 24 20.0 14 11.7 6 5.0 2 1.7 3.70 1.617

Criterion 7: Energy potential 12 10.0 24 20.0 8 6.7 16 13.3 14 11.7 2 1.7 3.18 1.578

Criterion 8:
Innovation and change 8 6.7 12 10.0 10 8.3 32 26.7 6 5.0 4 3.3 2 1.7 3.52 1.491

KMO test and Bartlett’s test

Kaiser–Meyer–Olkin (KMO) of sampling adequacy 0.550

Bartlett’s test of sphericity
Chi-square 236.730

gl 28
Sig. 0.000

The evaluation of attractiveness of H-bio was assessed as uninteresting with a result
higher than the arithmetic mean (M = 3.782) (Table 16).

The scale showed good internal consistency, with a Cronbach’s alpha value of 0.835.
There were also correlations among items (KMO = 0.760, Bartlett test sig = 0.000), and
only two criteria were considered to be attractive, i.e., Criterion 7 (energy potential), rated
as “strong” by 16.7% of respondents, as “very strong” by 11.7% of respondents, and as
“extreme” by 5% of respondents (M = 3.35, SD = 1.631) and Criterion 8 (innovation and
systemic change), rated as “strong” by 18.3% of respondents, as “extreme” by 10% of
respondents, and as “very strong” by 6.7% of respondents (M = 3.39, SD = 1.653). Among
the remaining criteria with less attractive evaluations, Criterion 2 (emission of pollutant
gases (M = 4.81, SD = 1.502)) and Criterion 6 (contribution to the country’s competitiveness
(M = 3.81, SD = 1.458)) stand out.

Finally, the assessment of the attractiveness of the biofuel from algae was considered
to be unattractive or not attractive (M = 4.133), with all criteria scoring higher than the
arithmetic mean. The worst score was obtained on Criterion 2 (emission of pollutant gases)
(M = 4.78, SD = 1.777) and on Criterion 6 (contribution to the country’s competitiveness
(M = 4.28, SD = 1.804)). The best scores were obtained in Criterion 4 (productivity (M = 3.81,
SD = 1.859)) and Criterion 5 (existence of natural resources (M = 3.91, SD = 1.892)). The
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scale revealed good internal consistency, obtaining a Cronbach’s alpha value of 0.798. The
Kaiser–Meyer–Olkin (KMO) measure of sampling adequacy and Bartlett’s test of sphericity
showed that the variables were correlated in the population (KMO = 0.683, Bartlett’s test
sig. 0.000) (Table 17).

Table 16. Evaluation of the attractiveness of H-Bio.

Cronbach’s Alpha
0.835

Extreme
Very

Strong
Strong Moderate Weak

Very
Weak

Nil
M SD

F % F % F % F % F % F % F %

Criterion 1:
Cost of technology 4 3.3 10 8.3 14 11.7 14 11.7 6 5.0 10 8.3 6 5.0 3.94 1.754

Criterion 2:
Emission of pollutant gases 4 3.3 4 3.3 6 5.0 14 11.7 14 11.7 18 15.0 6 5.0 4.81 1.502

Criterion 3:
Employment generation 4 3.3 2 1.7 22 18.3 24 20.0 4 3.3 6 5.0 2 1.7 3.74 1.330

Criterion 4:
Productivity 8 6.7 8 6.7 20 16.7 16 13.3 4 3.3 6 5.0 6 5.0 3.58 1.713

Criterion 5:
Natural resources 10 8.3 4 3.3 18 15.0 18 15.0 4 3.3 8 6.7 4 3.3 3.65 1.631

Criterion 6:
Contribution to
competitiveness

6 5.0 6 5.0 18 15.0 24 20.0 2 1.7 6 5.0 4 3.3 3.81 1.458

Criterion 7:
Energy potential 6 5.0 14 11.7 20 16.7 8 6.7 8 6.7 4 3.3 4 3.3 3.35 1.631

Criterion 8:
Innovation and change 12 10.0 8 6.7 22 18.3 10 8.3 10 8.3 2 1.7 6 5.0 3.39 1.653

KMO test and Bartlett’s test

Kaiser–Meyer–Olkin (KMO) of sampling adequacy 0.760

Bartlett’s test of sphericity
Chi-square 279.155

gl 28
Sig. 0.000

Table 17. Algae attractiveness assessment.

Cronbach’s Alpha
0.798

Extreme
Very

Strong
Strong Moderate Weak

Very
Weak

Nil
M SD

F % F % F % F % F % F % F %

Criterion 1:
Cost of technology 6 5.0 16 13.3 16 13.3 14 11.7 2 1.7 12 10.0 8 6.7 4.00 1.764

Criterion 2:
Emission of pollutant gases 4 3.3 10 8.3 4 3.3 4 3.3 22 18.3 14 11.7 12 10.0 4.78 1.777

Criterion 3:
Employment generation 6 5.0 8 6.7 20 16.7 14 11.7 6 5.0 8 6.7 8 6.7 3.97 1.699

Criterion 4:
Productivity 10 8.3 10 8.3 14 11.7 10 8.3 10 8.3 10 8.3 6 5.0 3.81 1.859

Criterion 5:
Natural resources 14 11.7 6 5.0 12 10.0 22 18.3 4 3.3 6 5.0 12 10.0 3.91 1.892

Criterion 6:
Contribution to
competitiveness

8 6.7 4 3.3 4 3.3 20 16.7 14 11.7 10 8.3 8 6.7 4.28 1.804
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Table 17. Cont.

Cronbach’s Alpha
0.798

Extreme
Very

Strong
Strong Moderate Weak

Very
Weak

Nil
M SD

F % F % F % F % F % F % F %

Criterion 7:
Energy potential 12 10.0 4 3.3 8 6.7 10 8.3 22 18.3 4 3.3 8 6.7 4.06 1.851

Criterion 8:
Innovation and change 6 5.0 4 3.3 10 8.3 22 18.3 12 10.0 10 8.3 4 3.3 4.09 1.498

KMO test and Bartlett’s test

Kaiser–Meyer–Olkin (KMO) of sampling adequacy 0.683

Bartlett’s test of sphericity
Chi-square 204.586

gl 28
Sig. 0.000

In comparative terms, and as presented in the Table 18, the best alternatives are
bioethanol (M = 3.254), followed by biodiesel (M = 3.356).

Table 18. Comparison between alternatives (average values).

Criteria
Bioethanol

M
Biodiesel

M
H-BIO

M
Algae

M

Criterion 1: Cost of technology developed for production 3.65 3.70 3.94 4.00

Criterion 2: Emission of pollutant gases due to combustion in engine 3.35 3.24 4.81 4.78

Criterion 3: Job creation 2.82 3.00 3.74 3.97

Criterion 4: Productivity of raw material 3.18 3.27 3.58 3.81

Criterion 5: Existence of natural resources 2.88 3.24 3.65 3.91

Criterion 6: Contribution to country’s competitiveness 3.26 3.70 3.81 4.28

Criterion 7: Energy potential 3.35 3.18 3.35 4.06

Criterion 8: Innovation and systemic change 3.53 3.52 3.39 4.09

TOTAL 26.02 26.85 30.27 32.9

Item mean 3.254 3.356 3.782 4.113

Correlation between items 0.235 0.269 0.388 0.331

H-bio (M = 3.782) and biofuel from algae (M = 4.113) are considered to be unattractive
(values higher than the average), the latter having the worst classification among all criteria
(all higher than the arithmetic average).

5. Discussion of Results and Conclusions

The results obtained in the empirical research, in general, coincide with the observa-
tions, evaluations, suggestions, and recommendations presented by the professionals who
participated in the focus group. Thus, the strategies considered to be priorities for develop-
ment and competitiveness include diversification of the economy; training and education
of human resources; development of transportation and communications; and promotion
of science, technology, innovation, and entrepreneurship, as pointed out by the specialists
and by the [38]. Angola’s main economic, social, and environmental vulnerabilities are
related to corruption and the informality of the economy; bureaucracy; dependency on oil;
and the high costs of energy, infrastructure, transportation and maintenance, which are
factors that have been already highlighted in the work of [39]. As suggested by [40], the
specialists consider that the creation and development of regional clusters influence the
development of Angola’s economy and promote the competitiveness of companies and
locals since they contribute to the productivity of companies and the implementation of
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innovations and the formation of new companies. Regarding the priority goals for Angola’s
economic development, the professionals surveyed consider that they value the building of
human capital through investments in education and training and contemplate solutions
for Angola’s most critical issues such as high levels of indebtedness, inadequate access to
technology, difficulties with commercial transactions, and inadequate access to sources of
financing. Most respondents consider it acceptable/realistic that between “10 and 20 years”
will be required to develop an alternative model for Angola’s diversification strategy for
economic development. This time frame is aligned with the recommendations made by the
professionals who participated in the focus group. However, this time horizon is shorter
than the scenarios projected by international organizations [38] and studies identified in
the literature [52]. The priority sectors that the respondents consider a priority to develop
in Angola are agriculture, livestock and forestry, manufacturing, and tourism, corroborated
by the specialists who participated in the focus group. The main government measures to
diversify the Angolan economy target technological innovation, actions to enhance human
capital, tax regimes, and financial incentive systems that are friendly to diversification
and stimulate private investment and economic policies, similar to what was already
pointed out in the work of [39]. The professionals consider that the strategic alternatives for
diversification of the Angolan economy include the use of national raw materials (devel-
opment of endogenous resources), the valorization of national human resources, and the
valorization of human potential and innovation, as already considered in studies by [39,44].
As noted by the Economist Intelligence Unit (2018), respondents point out that the lack
of competitiveness of Angola’s oil sector is related to the ”complicated web of financial
arrangements created by oil-backed loans and the inaccuracy of government expenditure
declarations. The best energy alternatives [48] to reduce oil dependence are, according
to respondents, solar energy, biodiesel, hydropower, and bioethanol. In assessing the
attractiveness and potential of biofuels [48,49], the best alternatives have been bioethanol,
followed by biodiesel. In summary, the specialists and professionals who participated in
this research consider it a priority, and an urgent priority, to diversify the Angolan economy
based on a sustainable development model, supported by the valorization of endogenous
resources (primary sector and industrialization of the country) through the promotion of
education, a reduction in external dependency (potentialize the immense existing resources,
i.e., internal production), the leveraging of exports, as well as a reduction in dependency
on oil, through the exploitation of biofuels.

The results show that the strategies considered to be priorities for development and
competitiveness include diversification of the economy; training and education of human
resources; the development of transportation and communications; and the promotion of
science, technology, innovation, and entrepreneurship. On the one hand, the professionals
consulted consider that Angola’s main economic, social, and environmental vulnerabilities
are related to corruption and the informality of the economy; bureaucracy; dependency
on oil and high energy; and infrastructure, transport, and maintenance costs. On the
other hand, the research participants positively evaluate the creation and development of
regional clusters, considering their influence on the development of Angola’s economy
and the promotion of business and territorial competitiveness. In line with the studies and
works identified in the literature, the specialists consider that the priority goals for Angola’s
economic development must prioritize the valorization of human capital (investments
in education, training, and capacity building) and that policies should be developed to
solve the high levels of indebtedness, inadequate access to technology, difficulties with
commercial transactions, and inadequate access to sources of financing. The sectors that
respondents consider to be a priority to develop in Angola are agriculture, livestock and
forestry, manufacturing, and tourism. The main government measures to diversify the
Angolan economy should focus on technological innovation, actions to enhance human
capital, tax regimes, and systems of financial incentives that are friendly to diversification
and stimulate private investment and economic policies.
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The professionals consider that the strategic alternatives for diversification of the
Angolan economy include taking advantage of national raw materials (development of
endogenous resources), valuing national human resources, and valuing human potential
and innovation. The lack of competitiveness of the oil sector in Angola is related to the
complicated network of financial arrangements created by loans guaranteed with oil and
the inaccuracy of government spending declarations. According to the respondents, the best
energy alternatives for reducing dependency on oil are solar energy, biodiesel, hydroelectric
power, and bioethanol. When assessing the attractiveness and potential of biofuels, the
best alternative is bioethanol, followed by biodiesel.

In summary, the specialists and professionals who participated in this research con-
sider it a priority, and an urgent priority, to diversify the Angolan economy based on a
sustainable development model, supported by the valorization of endogenous resources
(primary sector and industrialization of the country) through the promotion of education, a
reduction in external dependency (potentialize the immense existing resources, i.e., internal
production), leveraging of exports, as well as a reduction in oil dependency through the
exploitation of biofuels.

6. Limitations and Future Research

It is important to draw attention to two limitations associated with this research. One
limitation is the methodological nature, more precisely the depth and scope of the research
technique used. The other limitation is associated with the detailed analysis of the strategic
alternative proposed by the theme for diversification of the Angolan economy.

Concerning the methodological limitation, the “Delphi” technique used for the re-
search has advantages. It brings together specialists in the field of knowledge who can
present precise and coherent points with scientific support, experience, and research on
the subject matter. However, at the same time, their opinions, despite being valid and well
supported, always carry some subjectivity and/or personal bias that must be compared,
analyzed, and proven.
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Abstract: Many islands around the world present considerable energy supply problems, while their
energy mixture is controlled by oil products. Meanwhile, several of these isolated islands enjoy
excellent RES potential that support actions to maximize RES integration. In order to ameliorate
energy supply security and energy autonomy of the Aegean Archipelagos Greek islands, an integrated
solution is deployed based on the exploitation of the existing RES potential in conjunction with the
application of an appropriate energy storage scheme, as well as complementary smart-grid elements.
The proposed solution has been applied for the Greek Tilos island in the framework of the Tilos-
Horizon 2020 program. In this context, the implementation of the integrated Tilos energy solution
under the current local legislative frame is a great success story introducing several important
innovative characteristics in the European market, like the combined operation of a wind turbine
and a PV installation, the application of new technology battery energy storage, the installation of a
DSM network/platform and the development of a large number of reliable forecasting algorithms.
The innovative integrated solution is a real-world working operating example offering knowledge
and proving that the solution deployed could be equally well applied in various other remote islands
throughout the European territory with very promising results.

Keywords: hybrid power station; green island; energy storage; remote community

1. Introduction

1.1. The Current Situation of Greek Remote Islands Electricity System

Many islands around the world present considerable energy supply problems, while
their energy mixture is controlled by oil products [1,2]. Actually, energy supply security
is related to both the dependence on oil imports as well as to the fact that the majority of
these islands are subject to even greater challenges in the occasion of critical damage to
local thermal power generation stations or a power network failure [3]. In this context,
improving energy security would dictate to not only reduce the energy dependence on
imported fuels [4], but also to establish a diversified energy mix [5], considering the
increasing contribution of high percentages of Renewable Energy Sources (RES) power
generation. Unfortunately, introducing high RES percentages normally entails a price,
since the risk that has to be addressed by the local operator of isolated weak electrical grids,
either through the employment of adequate reserve capacity [6] or the implementation
of RES curtailments [7,8], is proportional to the relevant RES contribution in such grids.
To face this challenge, local grid operators impose certain constraints that are related to
the strongly variable penetration of RES and the compliance with the technical limitations
(technical minima) that characterize the currently operating oil-based power generation
units [9,10]. The result of all these restrictions normally limits the maximum contribution
of RES concerning the local load fulfillment, in the range of 15–20% on an annual basis
(Figure 1). More specifically, according to the data of Figure 1, the RES production during
the last years is presented on a monthly basis (taking values from 60 GWhe up to 150 GWhe
per month), while the RES percentage (penetration) on monthly electricity demand varies
between 12% and 22%.
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Figure 1. The Renewable Energy Sources (RES) contribution on the Non-Interconnected Islands’ (NIIs) electricity consumption.

Actually, during the last fifty years, the Non-Interconnected Islands’ (NIIs) electricity
requirements have been almost exclusively covered by autonomous power generation sta-
tions (APS) comprised of internal combustion engines and gas turbines. More specifically,
the electricity demand of the aforementioned islands is mainly covered by almost thirty
(30) APSs [4,11], based on permanent as well as portable units of a broad nominal capacity
range. The total capacity of all these APSs is approximately 700 MW (excluding the elec-
trical systems of Crete and Rhodes islands, including, however, the ones of the Cyclades’
complex just recently interconnected to the Greek mainland electricity grid). Moreover, the
significant increase encountered in the local electricity demand of NIIs during the tourism
season results in a limited utilization of thermal power units during the rest of the year,
particularly if the latter are oversized with regards to the average autonomous network
electricity requirements. This is exactly the case for the very small to medium scale Aegean
Archipelagos islands.

The direct result of this situation is the low capacity factors for all these APS, combined
also with excessive specific fuel consumption (SFC) values, in the range of 200–300 gr/kWhe,
which, in turn, results in quite elevated electricity generation cost for most of the local elec-
trical systems. In this context, the combined effect of high SFC values in conjunction with
extensive maintenance requirements and APS assets’ amortization results in a continuous
increase of the total electricity generation cost. More specifically, during the last years, the
annual electricity generation cost of all the NIIs has exceeded 300 M€ (electrical systems of
Crete and Rhodes not included) and is strongly affected by the imported oil quantities and
their price volatility.

1.2. RES Power Generation in NIIs of the Aegean Archipelagos

According to long-term measurements, most of these isolated islands possess excellent
RES potential that supports actions to maximize RES integration. Albeit the very high-
quality wind potential that characterizes most of the NIIs as well as the excellent solar
potential of the entire Aegean Archipelagos (Figure 2), the progress noted in RES power
applications has not met the expectations. Based on available official data [12,13], wind
power has presented a stagnation at ~75 MW, distributed on approximately 100 wind
parks, dispersed mainly across the biggest and medium-scale Aegean Archipelagos islands,
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while PV capacity slightly exceeds 40 MWp, also gathered in the biggest islands of the
aforementioned area (see also Figure 3).

Figure 2. Wind & Solar Potential in Aegean Sea.

Figure 3. Cont.
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Figure 3. (a) Installed wind power capacity; (b) PV power capacity in NIIs of the Aegean Archipelagos.

Besides, stagnation encountered in new RES power plants implementation is further
reflected in Figure 1, where one may find the RES contribution in the local load demand
coverage for all NIIs, on a monthly basis. From the data presented, it can be concluded
that RES share presents an almost constant pattern, despite the small increase starting
from 15% in 2011 to attain 18% in 2017. As already mentioned, this specific penetration
upper limit is the outcome of local electricity grids’ restrictions (thermal power units’
technical minima and local grid dynamic penetration margins) that discourage new RES
power stations’ implementation, due to the expected high values of curtailments. Such
curtailments for already operating wind parks are already apparent in saturated insular
electrical networks, such as the relatively big one configured by Kos and Kalymnos islands,
to where Tilos island’s electricity grid is connected. In the abovementioned electrical
network, the curtailments that local wind parks (with an installed capacity approximately
equal to 15 MW) face could even approach the value of 30% of the pertinent annual wind
energy yield [13]. Consequently, the imposed grid and thermal power units’ constraints
challenge the effective capacity factor of the existing wind parks, strongly hindering the
maximum exploitation of the available wind potential [7–10].

To improve the limited share of RES power generation in all these remote islands,
pilot projects being characterized by state-of-the-art, integrated solutions which combine
intelligent and sophisticated management features (forecasting and DSM) as also energy
storage, could pave the way. To this end, the pioneering TILOS Horizon 2020 project [14],
deployed on the Greek Tilos island that belongs as already mentioned to the saturated—
with regards to RES applications—Kos and Kalymnos electrical network, indicates the
way community-scale battery storage can optimally cooperate with locally developed RES
power generation and advanced techniques such as DSM.

2. Proposed Integrated Electricity Solution for Remote Islands

To improve energy autonomy and energy supply security of the several existing
islands, an integrated solution has been developed (Figure 4) based on the available wind
and solar potential exploitation along with an appropriate energy storage infrastructure,
introducing also some extra smart-grid elements. This solution is quite promising for
various Greek islands belonging to the Aegean Archipelagos area, and particularly the
most distant and small-scale ones.
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Figure 4. The RES-based energy solution for NIIs. The case of Tilos island.

More specifically, for every island, one should estimate the available RES (i.e.,
wind/solar/biomass and geothermal) potential. In this context, real-world operational
data are necessary (see, for example, Figures 5 and 6), originated—if possible—from long-
term in situ measurements. Actually, for a period of three years (2015–2017), detailed
measurements were carried out concerning the wind speed and the solar irradiance data as
well as the main meteorological parameters by our research team (Soft Energy Applications
and Environmental Protection Lab of UNIWA) [14]. To this end, the expected RES-based
annual electricity generation “Etot” can be estimated by defining the maximum rated
power “PRES” for several configurations consisted of wind “Pw” and photovoltaic parks
“PPV”, i.e.,:

Etot = 8760.(CFw.Pw + CFPV.PPV) (1)

where “CFw” and “CFPV” are the capacity factor values of the selected wind turbines and
PV panels according to the available wind and solar potential, correspondingly.

Figure 5. Wind speed time series for Tilos island.
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Figure 6. Solar irradiance time series at horizontal plane for Tilos island.

On the basis of existing licensing procedure in Greece, the maximum RES power to be
installed on an autonomous island grid cannot exceed the local consumption peak load
demand (e.g., 960 kW), hence:

Pres = Pw + PPV ≤ Max Load Demand (2)

Considering that the rated power of the smallest contemporary commercial wind
turbine in the market is 900 kW, a similar machine has been selected and has been down-
rated at 800 kW, in order to install also a small PV power station of 160 kWp. In the near
future, additional PV panels may be added if the peak power of the island increases also,
since the PV installations have the option of modularity.

Subsequently, using accurate measurements (Figure 7), even on a sec-time-interval
basis, stemming from official recordings, the pertinent load demand time-evolution is
investigated to ensure the local electricity grid stability as well as the uninterruptible power
supply of high priority loads. Furthermore, both deferrable loads as well as loads of
secondary priority have been pinpointed (Figure 8). Actually, in Figure 8, one may find
the electricity consumption needs for water pumping (including also water transferring
between water tanks), which is maximum during the summer due to the increased tourist
activities. In the same Figure 8, one may find the monthly public lighting electricity
consumption for the four villages of the island (Megalo Chorio, Livadia, Agios Antonios,
Eristos). As can be revealed from the existing data, the relevant electricity consumption is
also increased during the summer period since all the local tourist facilities are in operation.
Finally, the technical specifications of the “in-operation” thermal power units and the
actual interconnections deployed until now to satisfy the local load demand have been
scrutinized as well.

36



Energies 2021, 14, 1336

Figure 7. Load demand data for Tilos island. The 4.5 year average 10 min load.

Figure 8. Public lighting-water pumping electricity consumption breakdown.

Consequently, a thoroughly designed and sized energy storage system has been
installed [15–18], to improve the electricity system power (active and reactive) balance
and reduce the dependence on fossil fuels. The corresponding energy storage technology
and its main operational parameters (i.e., input–output power, charging/discharging rate,
round-trip efficiency, depth of discharge, energy capacity, etc.) are determined by the
island’s peak load demand, its inherent characteristics (e.g., land availability, topography,
etc.) as well as the degree of energy autonomy to be attained (or the intended maximum
oil contribution in the island energy mix).

The introduction of DSM techniques in conjunction with smart meters for the major
deferrable loads stands out as another crucial parameter for obtaining enhanced electrical
grid power balance [13,19]. Moreover, load management may also be applied in the
residential and hotel sectors as well as for other principal consumers of the island (Figure 9).
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One of the most promising cases is the application of load management strategies at the
existing eight (8) water pumping installations with maximum power of 70 kW, representing
a considerable part (e.g., 15%) of the island’s average load. In this context, the local load
demand can be adjusted to better match the available RES production without jeopardizing
the local population living standards. Additionally, penetration of electric vehicles in the
transportation sector of the island (Figure 10) could also assist in this direction, with the
local, relatively restricted (maximum distance 15 km), road networks suggesting the ideal
ground for electro-mobility applications.

Figure 9. DSM panels—overall and at village centre @ Livadia (a,b) and @ M. Chorio (c,d).

Figure 10. Photos of the charging area and EV charger at TILOS info-kiosk in Livadia.

Furthermore, forecasting methods and associated systems can also be taken into ac-
count under the scope of upgrading the operation and ameliorating the flexibility of the
complete electricity production system (EPS), while in parallel maximizing RES contribu-
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tion. Such an example is the deployment of an innovative Forecasting Platform (FP) that is
capable of providing reliable predictions of load demand, solar power and wind power
generation several hours ahead [20,21]. The aforementioned features comprise the core of
a High-Level Energy Management System (EMS) and Centre, in charge of coordinating
the programming and optimum operation of the various subsystems of such an integrated
solution. In this context, based on forecasting signals, the operation and dispatch strategy of
energy storage can be improved, while also keeping end users informed on the potential for
demand response, hence favoring RES contribution maximization and cost-effectiveness.

As a final point, it is important also to mention that all the aforementioned steps
impose continuous education and interaction with the local community [22]. To that
end, close collaboration with the local authorities should be established, respecting their
priorities, while at the same time the potential project developer should disseminate to
the local people the information for the new infrastructure introduction and the benefits
anticipated.

3. The Application Paradigm of Tilos Island

Tilos is a unique, small-scale “S”-shaped island found at the SE side of the Aegean
Sea in Greece, a region of great symbolism and major geopolitical interest for Europe as
a whole. Part of the Dodecanese group of islands, Tilos lies mid-sea between Kos and
Rhodes (Figure 11). Northwest to south-east, the island is ~14.5 km long, with a maximum
stretch of 8 km and an overall area of approximately 64 km2. Standing at a distance of
240 n. miles from the Greek mainland (Piraeus, Attica), Tilos belongs to the very special
group of remote and small-scale European islands.

Figure 11. Tilos island location.

The island counts four main (populated) settlements/villages, namely, Megalo Chorio,
which is the capital; Livadia, which is the biggest village and where the island’s port and
main center of economic activities are found; Agios Antonios and Eristos.

The climate of Tilos is typical of the Mediterranean region, with mild winters and hot,
sunny summers. Concerning the local RES potential, Tilos appreciates an excellent-quality
solar potential, determined by ~1800 kWh/(m2.a) at the horizontal plane (Figure 6). On
the other hand, the local wind potential is of medium quality, with the average wind speed
ranging between 6 and 8 m/sec in the largest part of the island (see also Figure 5).

According to the most recent census, Tilos has a total of 829 registered inhabitants. The
actual population of the island during the winter months, however, is estimated to narrow
down to ~400–500, as most of the residents move to the more populated, vicinal islands
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of Rhodes and Crete. The rest of the permanent residents gradually return to the island
(between April and May each year), on time for the tourist season, with tourism suggesting
the main economic activity on Tilos. In this context, and as already implied, the local
population increases dramatically during the tourist season of the year, which normally
lasts for a full 6 months (mid-April to mid-October). The island can host ~1200 visitors, with
the number of tourists normally exceeding the hosting capacity of hotels and apartments
by far, especially during the peak summer period of August.

3.1. Tilos Electricity Grid

Tilos belongs to the electrical complex of the Kos and Kalymnos islands, forming
an electricity system of nine (9) islands in total, with Tilos located at the very southern
tip of the complex. In more detail, Tilos is connected to the island of Kos via the R-44
feeder line (see relevant configuration in Figure 12). The R-44 feeder (in light blue) departs
from the central bus bar at the Kos thermal power station, has three underwater sections
between four islands and serves—via overhead lines—a few MV consumers on the Kos
and Gyali island, as well as the entire electricity demand of the Nisyros and Tilos islands.
Moreover, and for redundancy reasons, there are two undersea cables, each corresponding
to a different cable link on Kos, with only one being typically operated, which means that
the switch from one side of the second link remains open.

Figure 12. The R-44 Interconnector from Kos.

The feed-in point from Kos stands also as a point of common coupling between the
broader electricity system of Kos and Kalymnos and the electrical grid of Tilos. This
means that Tilos can be isolated from the R-44 line and thus be operated as a completely
independent, geographical island microgrid, relying exclusively on its own power genera-
tion sources.

The Kos and Kalymnos island complex, to which Tilos belongs, comprises, as already
mentioned, an electrical system of nine (9) islands, with an installed capacity of ~145 MW
(mainly thermal, oil-fired units), an annual peak load demand of more than 90 MW and
an annual electricity demand in the order of 365 GWhe. The system relies mainly on the
thermal power station of Kos island (capacity of ~102 MW), employing heavy-oil fired
engines of 87.3 MW and diesel-fired units of 14.6 MW, and secondarily on the thermal
power station of Kalymnos (capacity of 18.15 MW), employing heavy-oil units alone.
At the same time, RES units across the complex (excluding Tilos) include four wind
parks of total installed capacity equal to 15.2 MW and 92 PV parks of ~8.8 MWp in total.
The annual energy yield of the latter is estimated in the order of 16.6 GWh (capacity
factor of ~19%), while for the existing wind parks, the estimated annual energy yield
reaches almost 46 GWh (capacity factor of 34.5%) (see also Figure 6), with 1/3 of this
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number, however, being curtailed. This reflects the saturation levels of the Kos and
Kalymnos electricity system in terms of RES capacity. More specifically, due to the dynamic
penetration limit for RES on the one hand (e.g., RES contribution should be no more than
30% of instantaneous load demand) and the technical minima of the in-operation thermal
units on the other, the residual load available for the absorption of considerable RES power
generation is significantly reduced. The specific shortcoming is critical for the further
increase of renewables in the system, which, if not supported by energy storage and/or
new interconnections, does not seem to suggest an economically viable option.

The average load demand profile of Tilos currently adopted (Figure 7) is configured
on the basis of a long-term measurement campaign carried out within the context of TILOS
project, covering a period of almost 4.5 full years, i.e., from mid-2015 to autumn 2019 on
the basis of 10 min measurements. To this end, the total electricity consumption of the
island is found (Figure 13) to marginally exceed 3 GWhe (3.035 GWhe), while the average
peak demand of the year exceeds 800 kW, although, if looking at individual years, summer
peak demand is actually in the order of 900 kW.

Figure 13. The 4.5 year average monthly consumption profiles of Tilos island.

3.2. Tilos Hybrid Power Station

In view of the successful implementation of the TILOS project, the first-ever battery-
based, wind and PV Hybrid Power Station (HPS) in Greece has been developed. At the
same time, an integrated microgrid has also been developed on the island and several
innovative elements have been introduced, altogether transforming Tilos into an exemplary
island case in terms of local-scale clean energy production and management.

This comprised a major breakthrough, not only for Tilos, but also for the Greek energy
market as a whole, disrupting the norms of the past and presenting a new energy paradigm
and solution for the electrification of island regions. Acknowledging the above, the main
assets and elements of the power generation side are first presented.

Concerning the electricity generation sector, the main power generation assets that
are currently in operation on Tilos include:

• the Tilos HPS, comprising:

� an 800 kW, medium scale wind turbine
� an 160 kWp PV station
� an 800 kW/2.88 MWh integrated Battery Energy Storage System (BESS)

• the back-up diesel genset of 1.45 MW, located in the village of M. Chorio
• distributed, small-scale PV installations supporting early prosumer schemes and in-

cluding:
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� two monitored PV installations in M. Chorio & Livadia (capacity of 3.36 kWp
at local residence and 4.93 kWp at the TILOS info-kiosk/EV charging station
respectively)

� four non-monitored PV installations (operational capacity of ~10 kWp in total).

The above assets, together with the rest of the innovative elements that will also
be analysed in the following paragraphs, comprise the integrated Tilos energy solution.
As also reflected in Figure 14, the integrated Tilos energy solution suggests an energy
microgrid that is normally found to interact with the host electricity system of Kos and
Kalymnos (mainly the HPS), or, in rare cases, operated in isolation (such as in cases of
emergency or microgrid testing).

Figure 14. Description of Tilos island microgrid and geographical location of main assets.

3.2.1. HPS-Wind Turbine

The Tilos HPS wind turbine was installed in June 2017 by the Greek energy company,
Eunice, which acted both as a private investor and a major partner of the TILOS project.
As can also be seen from Figure 14, the wind turbine is co-located with the HPS battery
storage system, at the northwestern tip of Tilos (area of Pachy), next to the undersea cable
junction (Figure 15). To this end, the main technical features of the Enercon E-53 wind
turbine are provided in Table 1.

Figure 15. Photo of the Tilos HPS wind turbine, installed in the northwestern part of the island.
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Table 1. Main characteristics of installed wind turbine.

Wind Turbine Type: ENERCON E-53

Nominal capacity: 800 kW
Rotor diameter: 52.9 m

Hub height: 60 m
Tower type: Tubular steel tower

Wind Class/IEC 61400-1: S
Electrical configuration: Grid Performance FT

Location: Pachy

3.2.2. HPS-PV Plant

The Tilos HPS PV plant was also installed in June 2017 by Eunice, and is located at
the central part of the island (Figures 14 and 16), sharing the distance between the villages
of M. Chorio and Livadia. The PV plant is comprised of 592 polycrystalline PV panels of
270 Wp maximum capacity each, manufactured by JA Solar. Every 74 panels form an array
with a maximum capacity of 19.98 kWp and are connected to the respective array inverter
of 20 kW nominal capacity, manufactured by FRONIUS. The produced energy is collected
from each string inverter and directed to the MV transformer and consequently to the local
grid overhead lines. To this end, the main technical features of the PV panels employed are
provided in Table 2 on the upper right, together with additional information, such as the
exact location of the installation.

Figure 16. Photo of the Tilos HPS PV plant, installed at the central part of the island.

Table 2. Main characteristics of installed PV park.

Type: JAP6(K)-60-270/4BB

Maximum Power: 270 Wp
Max Power Current (lmp): 8.67 A
Max Power Voltage (Vmp): 31.13 V
Short Circuit Current (lsc): 9.18 A
Open Circuit Voltage (Voc): 38.17 V

Temperature Coefficient of Voc: −0.330%/◦C
Operating Temperature: −40 ◦C ~ +85 ◦C

Maximum System Voltage: 1000 V DC
Dimensions: 1650 × 991 × 35 mm

Total surface/tilt angle: 1635.2 m2/30◦
Location/orientation Agios Konstantinos/South

3.2.3. HPS-BESS

The integrated battery system of Tilos was fully installed on the island in January
2018, following the earlier installation of two battery containers and the introduction
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of individual battery modules right after. It comprises a fully containerized solution
based on the high-temperature NaNiCl2 technology, standing as a fully recyclable storage
configuration. The battery modules, which are manufactured by the Italian FZSonick, i.e.,
one of the lead partners of TILOS, under the type FZSonick ST523, are containerized into
two 20 ft containers (Figure 17). Each of the containers comprises an energy storage system
of 64 FZSonick ST523 modules that are connected in parallel. The technical specifications
of the battery module and of the standard energy storage application are provided in
Table 3. Concerning the AC side, each of the battery containers is connected to a dedicated
battery inverter (PCS) manufactured by the Swiss Indrivetec (IDT). The two employed
inverters are of 500 kVA each under the type SOLO S and are combined with two 630 kVA,
20/0.3 kV MV transformers, altogether forming the battery AC side. The inverters’ main
specifications are given in Table 4.

Figure 17. Photo of the Tilos HPS BESS, installed at the northwestern part of the island.

Table 3. Main characteristics of installed BESS.

Nominal Energy Capacity 1.4 MWh-100% DOD @C/10

Nominal energy (nom. voltage-capacity) 1.44 MWh
Nominal current capacity 2432 Ah (100% DOD)
Constant power discharge 400 kW for 3 h
Standard charge/discharge 8 h/3 h

Max heating power 64 kW
Heater av. consumption@ floating 10 kW

Max charge current 960 A
Max discharge current 1920 A

Max charge power for controlled charge 216 kW
No. of FIAMM gateway 1

Table 4. Main technical characteristics of the Indrivetec SOLO S inverter.

Nominal AC Power (PAC) 450 kW At Power Factor cosϕ = 1

Maximum apparent power 500 kVA
Power factor cosϕ ±0.9

AC Nominal operating voltage (UAC) 300 V UACmax = 330 V
AC Nominal current (IAC) 875 A 970 APEAK RMS

Grid Frequency 50 Hz ±10%
Harmonic Distortion (% THD IAC) <3%

Efficiency 98.2% Charging and discharging
Control Modes P/Q—U/f

In contract with the two RES units, the integrated BESS was commissioned in April–
May 2018. This enabled the energization and warm-up of the battery modules and allowed
for the execution of a series of Site Acceptance Tests (SAT). The SAT lasted for a total of
2 weeks and included communication tests, software integration, emergency tests, battery
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warm-up, power exchange between containers, cycling, grid perturbation and internal
black start, as well as a set of set-point profile tests.

3.3. Tilos Island Demand Side Management

Following the detailed presentation of the generation side and energy management
aspects, the demand side of the island is next presented, with the focus given on the Smart
Metering and DSM platform of Tilos, bringing together a pool of almost 100 end consumers
and community loads. Note that the remote electricity grid of Tilos comprises a vulnerable
system often faced with power cuts, which affects living conditions on the island in an
adverse manner, hindering also economic activities, especially during the summer period.

Concerning consumers, there are no MV customers on the island, neither large-scale
consumers, which is attributed to the lack of local industrial activities. Essentially, it is the
local residential and tertiary sector that carry the biggest share of electricity consumption,
with local hotels and summer apartments increasing the local demand during the sum-
mer period, altogether belonging to the broader category of the building sector analysed
accordingly.

Apart from the local building sector, other important sources of electricity consump-
tion correspond to community-scale loads, such as water pumping (a total of 8 water
pumping systems of ~62 kW and several smaller scale borehole pumps for irrigation) and
public lighting (see also the respective monthly consumption profile in Figure 8), while
grid-connected is also the telecommunication infrastructure of the island.

As already seen, the Smart Metering and DSM platform, developed by Eurosol (also
partner of TILOS) and currently owned by local end users and the Municipality of Tilos,
comprises one of the main components of the integrated energy solution of Tilos, bringing
together a pool of ~100 Smart Meter and DSM panels (Figure 9). The prototype DSM panels
can be used both directly by local end users (mainly for electricity consumption monitoring)
and offer a pool of controllable loads. In this context, the DSM platform can in aggregate
serve different purposes in order to improve the operation of the Tilos microgrid (e.g., load
shifting in favour of increased RES shares or control of loads during recovery from black-
out events / stand-alone island operation of Tilos in support of the local HPS operation,
etc.), comprising at the same time the end-nodes of the integrated Smart Metering and DSM
platform. The latter is also responsible for the monitoring, data collection, classification and
remote, centralized control of all active DSM loads, acting at the same time as an integrated
element of the developed High-Level Energy Management Centre (HL-EMC). DSM panels
were gradually installed during the implementation of TILOS, distributed across local
residences, hotels, commercial stores and the public sector, as well as in eight (8) water
pumping stations of the island standing as community-level loads. Their distribution
over the two main villages of Livadia and M. Chorio is given in Figure 9, followed by the
distribution of controlled community loads across the entire island.

Apart from the monitoring and control of loads at the end-user level, the entire pool
of loads can also be centrally monitored at the DSM server, co-located with the HL-EMS
server at the old power station of the island. Following the commissioning of the HL-
EMC/EMS, the Smart Metering and DSM solution acquired a twofold role, acting as an
independent system branch (aggregate pool of DSM loads that can support different types
of grid services) on the one hand, and supporting interoperability with the rest of the
system components as part of the HL-EMC on the other. In this context, load demand
monitoring is also active in aggregate fashion, supported by an advanced UI and relevant
dashboards that group together DSM loads per type of end user.

In the meantime, further classification, based on the type and elasticity/flexibility of
loads has been carried out. What should be stressed at this point is that the total DSM loads’
installed capacity rises to more than 700 kW, which is expected to ensure a minimum DSM
pool of 15–20% in comparison to the appearing load demand of the island at all times.
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4. Evaluation of Tilos Island Solution

After the completion of the commissioning phase for the RES units, the HPS of Tilos
became fully functional and, as such, it entered the “prosumer” stage of operation. To this
end, consecutive, 20 day duration time windows of trial operation were exploited in order
to test the HPS performance, first under a certain daily profile/schedule of max-permitted
power output per hour of the day. The specific profile (provided by the local network
manager-Kos APS) is depicted in Figure 18 (with the max-permitted power output of the
entire HPS set to vary between the fixed values of 0 kW, 400 kW and 800 kW) and it is the
one governing the operation of the HPS from mid-September until early in January, i.e.,
when a second round of trial operation started for the testing of different set-point profiles
for the HPS.

Figure 18. The standard profile of max set-point for the Tilos island HPS.

More specifically, following the issuance of all the necessary permits in 2018, the
wind turbine was commissioned in mid-September and was fully activated on September
19, 2018, i.e., when it started generating power as part of the integrated HPS of Tilos.
With regards to its anticipated energy performance, the medium quality wind potential
of the area (long-term average wind speed of ~6.5 m/sec at 30 m height, based on on-site
measurements from a dedicated wind mast) produces an annual capacity factor of 27.5–30%
concerning the theoretical output of the machine, which is equivalent to an annual power
generation between 1.9 GWhe and 2.1 GWhe. However, during the examined period,
the actual wind energy production falls below these numbers, owing primarily to the
saturation levels of the overall Kos and Kalymnos system noted earlier, with the ex-post
capacity factor estimated in the area of 20%. In addition, and during the demonstration
stage of the TILOS project, that coincided also with the very early period of HPS operation,
trial tests for the HPS dictated the application of certain set-point profiles, which further
compromised the exploitation of local wind energy production. The combined impact of
the two is better reflected in the figures (Figure 19a,b), comparing the actual and theoretical
production of the wind turbine till the end of January 2019 (end-month of TILOS project).
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Figure 19. (a) Actual vs theoretical; (b) absorbed vs curtailed wind energy over the period of TILOS
demonstration.

To this end, the levels of wind energy curtailments encountered are better illustrated in
Figure 19b, while another way to express and quantify the difference between the potential
and the actual wind power generation is given in the results of Figure 20a,b, where the
actual and theoretical capacity factors are compared. In this context, the resulting average
difference is in the order of 10%, i.e., the expected capacity factor on the basis of the
available wind potential and operational curve of the wind turbine used is almost 30%,
while the finally absorbed wind power by the local grid corresponds to capacity factor
value equal to 20%. This real-world situation means that 1/3 of the energy yield of the
wind turbine during the given period was curtailed by the local network operator due to
limited electricity demand and the restrictions imposed by the local grid stability and the
existing thermal units technical minima.
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Figure 20. (a) Theoretical; (b) actual wind capacity factor over TILOS demonstration stage.

Similar to the case of the wind turbine installation, commissioning of the PV station
was also successfully completed in September 2018, enabling power generation on the
14th of September 2018. To this end, and as far as the expected energy performance of
the PV station is concerned, the excellent solar potential of the area (~1800 kWh/(m2.a)
at the horizontal plane) produces an annual capacity factor of ~18–19% concerning the
theoretical output of the station, which is equivalent to an annual power generation
between 250 and 270 MWhe. Although subject to considerable curtailments as well, the
PV station is considered to be less vulnerable in comparison to the wind turbine, mainly
owing to its more dispatchable character as a renewable energy source. In this context,
energy generation results from the operation of the PV station during the period examined
are shown in the following Figure 21. As one may see in this figure, the maximum power
output is limited in the order of 130 kW, owing to the winter season encountered during the
reference period. On the other hand, it is for almost 80% of the time (including night-time
periods) that the PV generation output falls below 40 kW, which compares unfavorably
with the local load demand and also challenges the predictability of the RES resource,
especially with regards to the obligation of the HPS to provide day-ahead guaranteed
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energy offers. Concerning the capacity factor of the PV station over the demonstration
period of TILOS, it was estimated at 12%, which for the specific (September to January)
season of the year is considered satisfactory.

Figure 21. (a) PV station power generation; (b) relevant duration curve.

Recapitulating, in Figure 22, we demonstrate the daily energy balance between the
HPS production and the local island electricity consumption, together with a breakdown
of the HPS production to its main components (i.e., wind turbine, PV station and battery
operation). Note that during the first two weeks of September the HPS had not received
the energy production licence, thus electrical energy was consumed (imported by the local
grid) in order to keep in operation (at desired temperature) and test the two battery banks.
As one may see, for the first two months of operation, the HPS contribution was moderate,
directly dependent on both the performance of the wind turbine and the hourly cap on the
basis of the adopted schedule (Figure 18). Following the end of that initial period, which
coincides also with a considerable reduction of the load demand and an improvement of
the wind turbine performance, contribution of the HPS to the local consumption was found
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to increase remarkably, especially during December 2018, even under these sub-optimal
conditions of operation imposed by the local network management.

Figure 22. The daily energy balance analysis for Tilos island.

What is worth noticing is that for December, local-only RES shares exceeded 70%,
which, impressively enough, even reach 90% of the local consumption if RES imports and
exports are also taken into account. On the other hand, RES shares during the summer
period drop in the order of 25–30%, which is due to both the lower wind energy yield and
the higher electricity demand appearing during that period (see also Figure 23). Note that
even these extremely low RES participation values are quite higher than the ones appearing
in Figure 1, not exceeding 22% in any occasion. As one may see from Figure 22, the inclusion
of RES exports makes little difference, which reflects on the increased curtailments faced
over the period of study. On an annual basis, the energy provided of the Tilos island HPS
is slightly less than 1500 MWhe, mainly due to the local network curtailments and the
poor exploitation profile dictated by the local network manager, completely neglecting the
values provided by the existing forecasting algorithms.

Figure 23. Actual, monthly energy output (absorbed) of Tilos HPS vs. Tilos island electricity
consumption, as recorded from HEDNO.
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5. Conclusions and Proposals

The implementation of the integrated TILOS energy solution under the current local
legislative frame is a great success story introducing several important innovative char-
acteristics in the European market. More specifically, the combined operation of a wind
turbine and a PV installation (hybrid power station), the application of new technology
battery energy storage, the installation of DSM network/platform and the development
of a large number of reliable forecasting algorithms are among the main results of the
proposed strategy.

Undoubtedly, the core component of the integrated TILOS solution, i.e., the local HPS,
carries a bundle of innovative features synopsized below:

• The HPS of Tilos comprises the first-ever, fully licensed, MW-scale, battery-based HPS
in Greece. As such, it disrupted the local energy market and introduced new aspects
in the Greek energy agenda, especially with regards to non-interconnected island
electricity systems.

• Although rather sophisticated, the Greek regulation for HPSs was tailored to the
operation of pumped hydro, concerning the storage technologies employed. A series
of advancements were introduced to this end to the local regulations within the context
of TILOS in order to accommodate the operation of battery-based HPSs, positively
affecting the early-stage storage market of Greece as well.

• The HPS of Tilos has been the first to comply with the requirements of a day-ahead
dispatch operation that is based on the declaration of guaranteed energy (power)
offers and which entails the need for the exploitation of forecasting means as well.

• The integrated BESS is able to offer a bundle of services including RES balancing and
ancillary services to the local grid, like frequency and voltage regulation, while, under
a set of conditions, it can also support black-starting of Tilos; thus standing as a novel,
multiple-service storage system.

To our knowledge, the microgrid of Tilos is one of the most advanced island microgrids
in Europe with smart aspects and many novel technologies and components. All these
novel elements, following the TILOS project demonstration stage, are gradually evolving
in order to support the operation of a mature energy ecosystem, fostering in the course
of time the addition of new agents and actors such as the envisaged pool of prosumers,
towards the full-scale decarbonisation of the island of Tilos.

As far as the energy performance is concerned, evidence of operations that are drawn
from the core period of TILOS project demonstration stage (i.e., May 2018 to January 2019)
is provided. The specific period is exploited in order to give a preliminary performance
assessment of individual assets comprising the overall Tilos energy solution, which, al-
though determined by sub-optimal operational conditions during the examined span, does
provide a first set of indications on the potential of the system to provide increased shares
of RES for the island of Tilos.

According to the results obtained, the innovative integrated Tilos island solution can
be definitely improved by adopting already existing forecasting techniques in order to
improve the energy balance between the local HPS and the main grid of Kos-Kalimnos,
ameliorating also the battery bank energy management. Moreover, remarkable RES-
based energy production curtailments should be minimized, introducing the opportunities
of clean electromobility. In any case, the real-world operating example of Tilos island
may be equally well applied in several other remote islands all over Europe with very
promising results.
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Abstract: The dynamic dimensioning of frequency restoration reserves based on probabilistic criteria
is becoming increasingly relevant in European power grid operations, following the guidelines of
European legislation. This article compares dynamic dimensioning based on k-means clustering
to static dimensioning on a case study of the Greek electricity market. It presents a model of
system imbalances which aims to capture various realistic features of the stochastic behavior of
imbalances, including skewed distributions, the dependencies of the imbalance distribution on
various imbalance drivers, and the contributions of idiosyncratic noise to system imbalances. The
imbalance model was calibrated in order to be consistent with historical reserve requirements in the
Greek electricity market. The imbalance model was then employed in order to compare dynamic
dimensioning based on probabilistic criteria to static dimensioning. The analysis revealed potential
benefits of dynamic dimensioning for the Greek electricity market, which include a reduction in
average reserve requirements and the preservation of a constant risk profile due to the adaptive
nature of probabilistic dimensioning.

Keywords: reserves; k-means; probabilistic dimensioning; dynamic dimensioning; balancing

1. Introduction

1.1. Context

The increasing integration of renewable energy sources and other industry drivers
is increasing the uncertainty that system operators face in the daily operation of power
grids [1]. Reserves are a key resource for responding to the uncertainty of system operations.
Two types of uncertainty are typically faced in system operations: component failures, also
referred to as contingencies, and “normal” disturbances related to forecast errors (of wind
production, solar production, load, and so on), rapid variations (dispatch ramps related to
market interval changes), or other “smooth” disturbances to system operations that are not
related to contingencies.

Reserves can be classified into three main categories in European system operations,
as a function of how fast these reserves can respond to system conditions. Frequency
containment reserves (FCR) provide instantaneous responses based on variations in system
frequency, and correspond to the highest-quality reserves in the system. Frequency restora-
tion reserves correspond to resources with a full activation time of a few seconds to a few
minutes. Automatic frequency restoration reserves (aFRR) respond to automatic control
signals, whereas manual frequency restoration reserves (mFRR) are activated manually
and are typically slower than aFRR resources. Replacement reserves (RR) have the longest
full activation time in the system, and are therefore the lowest-grade reserve in European
system operation. All of these reserve types respond to both contingencies and normal
imbalances. The present paper is concerned with frequency restoration reserves.

The sizing of reserves is an increasingly challenging and relevant problem in system
operations. This is due to the fact that system conditions vary significantly from day to day,
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and these system conditions can be important indicators of the risk that the system may
face for the following day of system operation. Reserves are costly, but they secure and
determine the reliability of system operations; therefore, adapting the sizes of such reserves
in accordance with anticipated risk is desirable. One can expect to cope during days with
lower risk with fewer reserves, and during days with higher risk with more reserves.
The goal of this dynamic adaptation of reserve requirements is meant to ensure a target
reliability level with fewer reserves on average, compared to a non-adaptive reserve dimen-
sioning method. Moreover, such dynamic adaptation of reserve requirements is expected
to achieve a more constant exposure of the system to risk. Thus, the adaptive dimensioning
of reserve requirements to observable system conditions is becoming increasingly relevant,
both in the scientific literature and among practitioners [2].

1.2. Reserve Dimensioning Methods

Having made the case for adaptive dimensioning of reserves in power system oper-
ations, the question becomes how one can quantify these requirements in a disciplined
fashion. The methods proposed in the literature can be classified into the following three
levels of complexity: heuristic methods, probabilistic methods, and bottom-up unit com-
mitment and economic dispatch models.

1.2.1. Heuristic Reserve Sizing

Heuristic sizing methods refer to sizing methods that determine the amount of reserves
that a system should carry on the basis of simple system statistics. These methods have
been widely employed in practice, due to their attractive simplicity. Indeed, it is the
current method of choice in the Greek system. However, these methods are currently under
scrutiny on account of not being able to adapt accurately to system conditions that can
vary significantly as a function of renewable energy supply and other system indicators on
which one can perform advanced analytics.

An example of a heuristic sizing method is in [3]. Section B-D5.1 on page 14 of [3]
prescribes secondary reserves (formerly the term used for aFRR) as a function of the
maximum consumer load for the control area. Similarly, section B-D5.3 of [3] recommends
a reserve sizing criterion that can cover a large number of failure incidents.

In [4], the authors presented a number of heuristic approaches for computing addi-
tional reserve requirements due to wind integration. One such sizing approach depends
on the standard deviation of hourly load and net load, and prescribe reserves that are four
times the difference between the standard deviation of load and net load.

In [5], the authors predicted balancing power requirements from a set of features that
included wind, photovoltaic (PV) production, load, and the day of the week. The k-nearest
neighbors algorithm was then used to detect observations whose features were closest
to those characterizing the real-time operation. The authors then computed a weighted
sum of these k observations in order to determine reserve requirements for the following
interval. In [6], the authors extended the method of [5] by considering alternative weighting
methods for the k-nearest neighbors.

Another example of a heuristic sizing method based on statistical parameters is the
so-called “3 + 5 rule” of the US National Renewable Energy Laboratory [7,8], which
dictates that the system should carry reserves equal to 3% of the forecast load plus 5% of
forecast renewable supply. The rationale of such a rule is that higher demand forecasts
or higher load forecasts expose the system to greater uncertainty, and should therefore be
accompanied by more reserves in the system.

1.2.2. Probabilistic Methods

Probabilistic dimensioning is intrinsically linked to loss of load probability, and is
thus aligned with EU legislation—in particular, the Electricity Balancing Guideline [9] and
the System Operation Guideline [10]. Since probabilistic dimensioning responds to the
requirements of recent EU legislation, it is currently being implemented or considered in a
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number of European markets. Belgium is an interesting case in point, where the measure
is advancing towards implementation [2]. The paper therefore focuses on probabilistic
dimensioning, and specifically on frequency restoration reserves.

Probabilistic methods depend largely on the assumed imbalance drivers, i.e., the
factors that are assumed to influence the distribution of imbalances in the system. A wide
variety of drivers can be considered [11], including load forecast errors, load noise errors,
scheduling step errors (i.e., imbalances caused by transitions from one market clearing
dispatch interval to the next), outages, wind forecasts, and PV forecast errors.

Another dimension in which these methods are differentiated is whether or not they
can be used for the joint sizing of aFRR and mFRR (also referred to as secondary and tertiary
reserves in the literature). In order to arrive at such a split, it is common to assume that
specific types of imbalances should be handled by specific types of reserves. For example,
secondary reserves can be sized in order to handle load noise [12]. Alternatively, tertiary
reserves can be sized so as to balance 15-min-average deviations, whereas secondary
reserves can be used for balancing fluctuations within a 15-min interval [13]. In [14], the
authors classified sources of uncertainty as relating to 15-min intervals (and therefore
resulting in the need for secondary reserves), as opposed to hourly intervals (and therefore
resulting in the need for tertiary reserves).

Note that probabilistic methods can be used for sizing both upward and downward
reserve capacities. In [15], tertiary reserves were sized based on the distribution of load
forecast errors, wind forecast errors, PV forecast errors, and power plant outages. Upward
secondary reserves were sized for plant outages and load noise, and downward secondary
reserves were sized for load noise.

1.2.3. Bottom-Up Unit Commitment/Economic Dispatch Models

An alternative to heuristic and probabilistic methods is sizing based on unit commitment
—economic dispatch models that endogenously represent uncertainty. Such models attempt
to develop a bottom-up description of the system and trade off explicitly the increased
costs of running the system more securely (e.g., due to startup and minimum load costs,
or the higher fuel costs of reserve) with the increased security that the system enjoys when
it carries more reserves [16]. Such models are typically not employed in practice, due to the
complexity of the underlying stochastic formulation and the ensuing difficulty of solving
the resulting model. They are nevertheless widely studied in the academic literature.

There are various paradigms for representing uncertainty in such bottom-up formula-
tions. Stochastic programming formulations [8,17] represent reserve commitment decisions
as first-stages decision, followed by the revelation of system uncertainty in the second stage,
and an adaptive dispatch in response to the realization of uncertainty, given the revealed
uncertainty. For certain stochastic programming formulations, reserves are represented
explicitly [17]. Other formulations [18] do not model reserves explicitly; nevertheless, since
these models are determining commitment decisions, they are implicitly endogenizing
reserve commitment decisions.

In adaptive robust optimization formulations [19], the realization of uncertainty is
chosen in an adversarial fashion from an uncertainty set, and the goal of the decision maker
is to arrive to first-stage commitment decisions that are adapted to this worst-case pattern
of uncertainty.

Certain bottom-up models are restricted to normal imbalances, and neglect compo-
nent outages [20,21]. More advanced bottom-up models typically represent composite
uncertainty (contingencies and normal imbalances) either explicitly or implicitly. Explicit
modeling of uncertainty involves sampling the Cartesian products of component failures
and forecast errors, often supplemented by an appropriate scenario selection method-
ology [22]. The implicit modeling of uncertainty involves a convolution of the outage
probability of committed units with a discretization of load forecast errors [23].
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1.3. The Taxonomy of Reserve Dimensioning

Based on the aforementioned discussion, one can derive a taxonomy of reserve dimen-
sioning methods on the basis of three principal axes:

• Sizing methodology: The sizing methodology refers to how the decision-making
problem of sizing reserves is quantified. The three predominant approaches in this
respect that were listed in Section 1.2 are heuristic methods, probabilistic methods,
and bottom-up unit commitment and economic dispatch models.

• Adaptiveness: Adaptiveness refers to whether the sizing methodology is adaptive
to the forecast conditions of the system or not. Two options in this respect are static
sizing and dynamic sizing.

• Stochastic models: This dimension refers to the way in which uncertainty is modeled.
Two options are possible among stochastic models: parametric or non-parametric.

This classification is summarized in Table 1 with respect to the literature that was
covered in the introduction of the present publication. The goal of the table is to provide
a convenient lookup that can be useful for practitioners navigating among the range of
options that can be considered for implementation in system operations. For instance,
a probabilistic dynamic dimensioning methodology based on parametric uncertainty
models has been considered for implementation in the Belgian electricity market [2].
The performance of this reserve dimensioning method is assessed in the context of the
Greek electricity market in the present paper.

1.4. Contributions and Outline of the Paper

The taxonomy that is presented in Table 1 presents a wide range of options for
dimensioning reserves, with a delicate tradeoff between simplicity of implementation
and benefits derived from adaptive dimensioning. This tradeoff is discussed abstractly
in Section 1.2 and it is investigated in the context of the Greek electricity market in the
remainder of the present publication.

An important consideration in the quantitative investigation of this tradeoff is the
absence of imbalance data. Concretely, system imbalances exhibits a number of features
that drive the relevance of dynamic dimensioning. These features include (i) the simulta-
neous influences of normal imbalances and contingencies on total system imbalance, (ii)
the important contribution of idiosyncratic noise to total system imbalance, (iii) the depen-
dence of system imbalance on observable system conditions such as load and renewable
energy forecasts with specific empirical patterns (e.g., high load forecasts often imply large
imbalances), and (iv) the skewed distribution of forecast errors when forecasts are near the
nominal rating of a certain resource. In lieu of system imbalance data, the present paper
proposes a stochastic model that meets the aforementioned set of requirements.

To summarize, therefore, the contributions of the paper are as follows: (i) A stochastic
model of system imbalances is proposed which can be employed in the absence of available
historical data for system imbalances. The model can be calibrated against historical data of
reserve requirements. (ii) The added value of dynamic probabilistic reserve dimensioning
relative to static dimensioning was established for the Greek electricity market based on an
out-of-sample simulation. This added value was exhibited both in terms of lower average
reserve requirements and a more constant risk profile for the system throughout the year.

The paper is structured as follows. Section 2 summarizes certain relevant features of
the reserve dimensioning methodology employed in the Greek electricity market before
and after the implementation of the November 2020 reforms pertaining to the implemen-
tation of the target model. Section 3 proposes an imbalance model that captures salient
features of system imbalances that can be used in lieu of available system imbalance data.
Section 4 summarizes the application of k-means clustering to the dynamic probabilistic
dimensioning of reserves, which was employed in the case study of Section 5.
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Table 1. A classification of reserve sizing literature.

Heuristic Probabilistic UC/ED Static Dynamic Parametric pdfs Non-Parametric pdfs

[24] X

[25] X

[19] X X

[26] X X

[12] X X

[18] X X

[16] X X

[7] X X X

[3] X X

[27] X X

[23] X X X X

[4] X X

[28] X X

[11] X X X

[29] X X X

[30] X

[15] X X

[14] X X X

[31] X X X

[32] X X X

[13] X X X

[17] X X

[33] X

[20] X X X X

[5] X X

[6] X X

[1] X X

[22] X X

[34] X X

[2] X X X

[35] X X

[36] X X

[21] X X X

[37] X

2. Sizing Methodology in the Greek Electricity Market

The present publication is focused on a case study of the Greek electricity market.
In November 2020, the target model methodology was implemented in the Greek electricity
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market. The present section provides an overview of the evolution of reserve requirements
in the Greek electricity market before and after November 2020.

2.1. Sizing before the Target Model

Figure 1 describes representative reserve requirements of the Greek electricity market for
January 2018–October 2020. The data were sourced from the following website of the Hellenic
Energy Exchange, which was accessed on 20 August 2021: https://www.enexgroup.gr/el/day-
ahead-scheduling-archive of the Hellenic Energy Exchange. In addition to reserve requirement
data, the website includes the day-ahead schedules of individual units; hourly energy produc-
tion schedules; and commitments of FCR, aFRR, and mFRR for individual units in the Greek
system. The figure concentrates on FRR, i.e., the sum of mFRR and aFRR, since the sizing
of FCR follows a separate procedure and is out of scope for the present analysis. Note that
the mFRR requirements on the aforementioned website are assumed to correspond to both
upward and downward reserves.

Figure 1. Representative reserve sizing values for upward/downward capacity in the Greek electric-
ity market in 2018–2020.

The splitting of FRR between mFRR and aFRR was considered as being out of scope for
the present analysis, although a number of publications [11–13,15,29,34,38] have considered
this important design question. On the other hand, downward sizing was considered in
the analysis, and representative values are presented in Figure 1.

It is worth noting that the FCR, upward aFRR, and mFRR requirements have remained
fairly constant in Greece throughout January 2018–October 2020. In the figure, there is a
slight change in the requirement of 2020 for downward aFRR, which increases slightly (by
50 MW) in hours 1–8 and 14–18. Furthermore, note that the downward aFRR requirements
are notably lower than the upward aFRR requirements, which is typically due to the
asymmetric exposure of the system to contingencies.

2.2. Target Model Methodology

The existing reserve sizing procedure that is employed by the Greek Transmission
System Operator (TSO), ADMIE, was approved by decision 1092/2020 of the Regulatory
Authority for Energy and corresponds to the Target Model of the Greek electricity market.
The procedure is laid out by ADMIE in [39], which can be accessed in the following link,
which was accessed on 20 August 2021: https://perso.uclouvain.be/anthony.papavasilio
u/public_html/ADMIE2020V2.pdf. As discussed previously, the methodology became
effective in November 2020.

ADMIE, like other European TSOs, distinguishes between “normal imbalances” (e.g.,
forecast errors) which need to be dealt with by aFRR and mFRR, and contingencies, which
need to be dealt with by FCR and FRR. Thus, ADMIE follows a dynamic sizing procedure
based on heuristics related to the statistical parameters of system characteristics.
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The existing sizing procedure adopted in the Greek electricity market for upward/
downward aFRR is driven by

• The minimum FRR requirement (which in itself is a function of maximum load in
the system);

• A constant corresponding to the technical minimum of a typical thermal unit (meant
to capture the possibility that a unit is asked to turn on but fails to do so);

• The scheduled interchange;
• The scheduled demand.

The way in which one distinguishes the sizing for upward and downward aFRR in
these cases is driven by the differences between the coefficients that are used for how each
of these factors is assumed to contribute to the total aFRR requirement [39].

Similarly (but not identically) to aFRR, the existing sizing procedure for upward/
downward mFRR is driven by:

• Upward/downward aFRR;
• Renewable forecasts;
• Demand ramps;
• Scheduled interchanges;
• An indicator for extreme conditions (indicatively, unfavorable weather, large re-

newable forecast deviations, reduced adequacy, contingencies, strikes, reduced fuel
reserves for thermal units, low hydro energy levels, or a combination of the above).

3. Model of Imbalances in the Greek System

Due to the absence of publicly accessible real-time imbalance data for the Greek
market, in this section a simplified model is proposed, which aims to serve as the basis for
the case study of the probabilistic dimensioning methodology. Note that this imbalance
model is not meant to be realistic, but rather to convey certain first principles. On the other
hand, the probabilistic dimensioning methodology does not depend on this imbalance
model, and can be applied directly to historical data.

3.1. Modeling Imbalances

The following data have been provided by the Regulatory Authority for Energy:

• Load data with hourly resolution from 1 January 2018 until 31 October 2020, thereby
spanning 2 years and 10 months (namely, 1035 days).

• Renewable energy supply data with the same characteristics.
• Import/export data with the same characteristics.

Additionally, the day-ahead commitments of individual units is accessible at the
following link of the Hellenic Energy Exchange, which was accessed on 20 August 2021:
https://www.enexgroup.gr/el/day-ahead-scheduling-archive. Notably, however, histori-
cal real-time imbalance data for the Greek system is not publicly available. As an alternative,
an imbalance model is proposed here.

When developing the imbalance model, a number of features that affect reserve
dimensioning were targeted:

• Imbalances are driven by both contingencies and “normal” imbalance drivers, such as
forecast errors.

• Imbalances can be explained by a number of factors in the system, such as renewable
energy forecasts, load forecasts, and scheduled imports. These factors are referred
to as imbalance drivers. Other imbalance drivers may include the change of the hour
(due to market ramps), temperature, and so on. Higher forecasts tend to result in
higher imbalances.

• On the other hand, a significant portion of the system imbalance signal may not be
possible to explain based on imbalance drivers. Past analyses of the Belgian system [2]
have shown that approximately half of the imbalance signal may not be attributable to
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imbalance drivers. It is assumed that this portion of the imbalances can be represented
by white noise.

• Imbalance drivers do not have symmetric distributions in the upward and down-
ward directions. For example, high renewable supply forecasts are more likely to
lead to significant negative imbalances (under-supply) and low positive imbalances
(over-supply) since the renewable supply will mostly decrease during periods of
high output.

The imbalance model is thus based on the following methodology. The proposed
methodology attempts to strike a balance between data availability and a desire to capture
empirically relevant effects that drive reserve dimensioning decisions [2]:

• Use representative “day types” to model contingency risk in the system. The idea is
presented in Section 3.2.

• Use imbalance drivers (load, RES and imports) to model factors that contribute to the
system imbalance based on skewed distributions, the variance of which depends on
the imbalance drivers. The idea is presented in Section 3.3.

• Use “white noise” to model the part of the imbalance signal that cannot be explained
by imbalance drivers. The idea is presented in Section 3.4.

• Tune the parameters of the model so that the resulting imbalance is consistent with
the reliability achieved by the reserve dimensioning that is employed in the Greek
market. The idea is presented in Section 3.5.

• The baseline dimensioning methodology is then compared to the probabilistic dimen-
sioning methods that are described in Section 4.

In the sequel, “normal imbalances” refer to the sum of imbalances related to imbalance
drivers and idiosyncratic imbalances. These should be contrasted to imbalances resulting
from contingencies.

3.2. Contingencies

In order to represent the risks of generator failure, eight representative day types (one
for each season, and weekdays versus weekends) were considered. For each of these day
types, generator schedules were fixed to historically observed data. The following day
types were considered for 2018:

• Winter weekday: 15 January 2018
• Winter weekend: 7 January 2018
• Spring weekday: 8 March 2018
• Spring weekend: 11 March 2018
• Summer weekday: 7 June 2018
• Summer weekend: 10 June 2018
• Fall weekday: 6 September 2018
• Fall weekend: 9 September 2018

Alternatively, one could have considered a clustering method for determining different
day types, or one could have worked directly with each day of the dataset. The latter
option was not possible for us, due to IT difficulties, given the format in which the data
became available by RAE, and could be investigated further in future work.

A failure probability of one incident per year was considered. It was further assumed
that each failure corresponded to four imbalance intervals (i.e., the time to clear the fault
by repairing the unit or bringing online another unit was assumed to be one hour). This
assumption is an intermediate choice between the values that were assumed in previous
analyses of the Belgian and Swedish systems.

Contingencies are assumed to occur independently of normal imbalances and idiosyn-
cratic imbalances. This allows sampling contingencies independently from one period to the
next. Concretely, since there are no inter-temporal constraints in the model, one can assume
that the contingencies are sampled for each balanced market time unit, without worrying that
a failure will last for four consecutive 15-min imbalance intervals.
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There are 28 thermal units and 18 hydro units in the system, and 4 pumping units.
Failures between these components were assumed to be independent of each other.

3.3. Imbalance Drivers

Regarding the modeling of normal imbalances, the goal is to specifically capture
two effects: higher forecasts are correlated with higher forecast errors, and the support
of the probability density function depends on the imbalance driver. The latter effect
introduces skewness to the probability density functions of imbalances for reasons that are
explained below.

Regarding modeling the first effect, a simple assumption is adopted. Imbalances are
specifically assumed to follow a normal distribution with a mean of 0 MW and a standard
deviation of C·|L| (for load forecast errors), C·|R| (for renewable supply forecast errors),
and C·|I| (for import forecast errors), where L is the system load, R is the renewable energy
supply, and I represents the imports. The idea is to adapt the constant C such that the aver-
age sizing value of Figure 1 achieves the target unreliability of 3 h per year. Note that this
simple modeling assumption captures the effect whereby higher load forecasts/renewable
supply forecasts/import forecasts imply larger imbalances.

Regarding skewness, the chosen modeling assumption is driven by the fact that load,
renewable supply, and imports are lower and upper bounded. Concretely, based on the
data provided by RAE, it is possible to estimate the following values:

• The minimum load in the dataset is 2840 MW; the maximum load is 9529 MW.
• The minimum renewable supply within the dataset is 103 MW; the maximum renew-

able supply is 4245 MW.
• The minimum amount imported was −1428 MW (i.e., the maximum amount that has

been exported historically is 1428 MW); the maximum amount imported was 2041 MW
(i.e., the maximum amount that has been imported historically is 2041 MW).

These bounds imply a skewness in the distribution of the imbalances caused by
these drivers. This idea is explained concretely in Figure 2. The left panel of this figure
presents the probability distribution function of an imbalance driven by renewable supply,
which is symmetrical. The vertical line in the left panel corresponds to the installed
capacity of renewable generation. Since the total renewable supply, which is the sum of
the day-ahead forecast supply and the renewable supply imbalance, cannot exceed the
installed renewable capacity, a model that captures this physical feature is proposed. When
simulating imbalances driven by renewable supply forecast errors, it was assumed that
the supply “bounced back”/was reflected on the wall of the vertical line of the left panel
of Figure 2. As a result, we arrived at the probability density function of the right panel
of Figure 2. Note that, whereas we commenced with a probability density function with
zero skewness in the left panel, a skewed probability density function was derived in the
right panel.

Figure 2. Left panel: Hypothetical probability distribution function of renewable supply (RES-
driven imbalance plus the underlying imbalance driver) which exceeds installed RES capacity.
Right panel: Probability distribution function of renewable supply which reflects on the installed
capacity boundary.
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The effect of Figure 2 was modeled by drawing the original imbalance from a normal
distribution, as indicated in the beginning of this section. This process was then “reflected”
against the lower and upper bounds of the load/renewable supply/imports to derive the
final simulated imbalance value.

This modeling feature attempts to capture an effect that has been observed to be
empirically relevant in the sizing of reserves, e.g., in Belgium [2]: upward and downward
imbalances are skewed, and depend on imbalance drivers. As a concrete example, large
renewable forecasts pose a significant threat for negative imbalances, and a minor threat
for positive imbalances.

To summarize, imbalances that are driven by imbalance drivers are generated as follows:

Imb =

⎧⎨
⎩

2 · X− − X − C · |X| · N, C · |X| · N + X < X−
C · |X| · N, X− ≤ C · |X| · N + X ≤ X+

2 · X+ − X − C · |X| · N, C · |X| · N + X > X+

where X denotes the value of the imbalance driver, X− and X+ correspond to its minimum
and maximum possible values, respectively; C is a tunable parameter that is used in
Section 3.5 in order to tune the level of uncertainty in the system; and N is a standard
normal random variable. Note that C·|X|·N + X corresponds to the signal before reflection
on the barrier. The three cases above correspond to this signal landing below the lower
barrier, within the lower and upper barrier, and above the upper barrier, respectively.
The above formulas for the first and third case can then be derived by exploiting the fact
that the reflected signal is equidistant to the barrier as the signal before reflection, but on
the opposite side of the barrier.

Note that the imbalances that can be attributed to imbalance drivers are assumed to
be independent of each other and of the imbalances related to contingencies. Thus, random
variables N are drawn independently for each of the imbalance drivers.

3.4. Idiosyncratic Noise

Our motivation for introducing an idiosyncratic component to the total imbalance
signal was based on the implementation of dynamic dimensioning in Belgium [2]. In that
work, it was observed that a significant portion of the imbalance signal could not be
explained by imbalance drivers, such as renewable supply, load, import, and market ramps.
This can be interpreted as a “white noise” component to the imbalance signal which cannot
be specifically attributed to observable information in the system.

Concretely, idiosyncratic noise is modeled as normal random variables that are drawn
independently of the imbalances related to imbalance drivers:

Imb = C · D · N (1)

where C is the tunable parameter introduced in Section 3.3 and D is a parameter that must
be estimated so as to ensure that the idiosyncratic imbalances represent a realistic fraction
of the normal imbalance signal.

In order to decide on the variance of the idiosyncratic noise, i.e., on the parameter D,
note that the goal was for the idiosyncratic noise to represent 40% of the normal imbal-
ance signal. The choice of 40% was based on empirical observations of the contribution
of idiosyncratic noise on total system imbalance in the Belgian system [2]. Concretely,
the variance of idiosyncratic imbalances should correspond to approximately 40% of
the variance of normal imbalances. This can be expressed mathematically as follows,
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where T is the number of periods that are considered in the data set of available im-
port/load/renewable forecasts:

T · C2 · D2 = 0.4 · (
T

∑
t=1

C2 · (|I|2t + |L|2t + |R|2t ) + T · C2 · D2) (2)

⇒ D =

√
0.4 · ∑T

t=1(|I|2t + |L|2t + |R|2t )
0.6 · T

(3)

Equation (2) is a consequence of the fact that the variance of the sum of independent
random variables is equal to the sum of the variance of the variables. Equation (3) then
provides the appropriate value of parameter D that results in idiosyncratic imbalances
contributing to 40% of the normal imbalances in the system.

3.5. Matching the Model to a Static Sizing Methodology

The next step in the proposed methodology is to tune the parameter C which was
introduced in Section 3 such that the sizing indicated in Figure 1 matches the reliability
target of 3 h per year. The idea is to scale the normal imbalances according to the parameter
C, and to perform a bisection until one finds a level of imbalance for which 3 h of failures
occur per year. Note that these 3 h include failures from imbalances in both upward and
downward directions.

The appropriate value of C given the available data was found to be 0.0384. Note
that Figure 1 presents a best-case scenario, since the observed reliability is exactly matched
with that of the target level of 3 h per year. Hence, there is no redundant capacity (the
observed reliability is not below 3 h per year), and the reliability target is also respected
(the observed reliability is not above 3 h per year).

Further, note that this “training” data have been generated with a fixed seed. It is then
possible to generate test data from the same imbalance drivers but different realizations of
the imbalances themselves, which was the methodology that adopted for Section 5.

It is interesting to note that among the 34 incidents that are recorded in the training
dataset, 4 are related to shortages in upward balancing capacity, and 30 to shortages in
downward balancing capacity. Moreover, note that none of the incidents were caused by a
contingency. Among these, 11 incidents correspond to 2018 (2 upward and 9 downward),
18 incidents correspond to 2019 (2 upward and 16 downward), and 5 incidents correspond
to 2020. Thus, the reliability target was upheld over the 2 years and 10 months of the
simulation, even if reliability in certain years may have been higher than the target and in
other years lower than the target. By contrast, a probabilistic dimensioning methodology
can achieve a relatively constant risk profile, as described in Section 5.

4. Probabilistic Dimensioning Methodology

This section presents a methodology that has been considered for the implementation
of probabilistic dimensioning in the Belgian system [2]. This method is then compared to
the dimensioning of Figure 1 in Section 5.

4.1. Overview of k-Means Clustering Applied to Probabilistic Dimensioning

The k-means approach for probabilistic dimensioning is based on [38] and is also one
of the methods that was proposed for implementation in the Belgian system [2]. The k-
means problem is a clustering problem which aims to cluster a dataset into k groups, such
that the sums of the distances of the original data from the means of the nearest clusters
are minimized. The problem is computationally hard, since one in principle needs to
consider all possible ways in which the original dataset can be clustered, and select the
configuration that minimizes the sum of distances of cluster elements from the cluster
means. The intuition of the clustering method is that the distance of a cluster element
from the mean is a measure of similarity of the data points. Thus, minimizing the sum of
distances implies grouping the data such that each group contains maximally similar data.
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In the context of the application considered in the present paper, the data points that
were clustered were the imbalance drivers, namely, day-ahead load forecasts, day-ahead
scheduled imports, and day-ahead renewable supply forecasts. The idea is that each
cluster corresponds to the same day type which, when observed one day in advance of
operations, can provide refined information about the distribution of normal imbalances.
Thus, if the imbalance drivers indicate a risky day of operations (e.g., due to high load
forecasts which imply high load forecast errors), then the reserve sizing can adapt to this
information by committing fewer reserves for the following day. Conversely, if a low-risk
day is anticipated, then the system can resort to fewer reserves without compromising
system reliability, which implies economic savings for the TSO.

4.2. Implementation of Probabilistic Dimensioning Based on k-Means

In order to implement the k-means probabilistic dimensioning method with contin-
gencies, the following steps are required:

• Step 1: Cluster imbalance drivers in order to determine the day types.
• Step 2: Approximate imbalances, e.g., using kernel density estimation or the empirical

distribution of the data.
• Step 3: Determine the reserve requirement of each day type from the appropriate

quantile of the distribution computed in step 2.

Step 1: determination of day types.

In the analysis, clustering was performed in three dimensions, namely, forecast load,
forecast renewable supply, and forecast imports. Each of these data inputs was clustered
into two values. This gave eight types of days: (high load, high wind, high solar), . . ., (low
load, low wind, low solar). Regarding the interactions of the method with contingencies,
note that the preliminary analysis of Section 3.5 indicates that observed incidents are ones
in which the system experiences a large normal imbalance, even if there is no contingency.
We therefore chose to work with 8 day types, as determined by imbalance drivers, instead
of further differentiating day types as a function of how generators are committed in the
system on the day ahead.

It is interesting to note that the most commonly used k-means algorithms are inherently
non-deterministic. For example, Loyd’s algorithm [40] is initialized with a random selection
of points which act as centroids. Initializing with kmeans++ [41] also involves a random
selection of points at the first step of the initialization procedure. The clustering was
therefore replicated ten times, and the solution with the best performance was kept. The
consistency of the result was validated in the present analysis by repeating the sizing three
times. The reserve dimensioning decisions in each run were identical, and are presented in
Table 2.

Step 2: estimation of imbalance distribution.

Once clusters of imbalance drivers have been defined, it is possible to observe the im-
balance that materializes in the corresponding imbalance period. Kernel density estimation
(KDE) can be used for the estimation of the distribution within each cluster, or simply the
empirical probability density function obtained from the observations within each cluster,
assuming that a sufficient number of points within the cluster are observed. For each
cluster, a different reserve target was estimated, based on the target reliability level. This
produced the results of Table 2.

Step 3: probabilistic reserve requirement.

In this step, the appropriate quantiles of the distributions obtained in step 2 were used
in order to determine upward and downward reserve requirements. The same procedure
was followed, in order to make the results consistent with the sizing of Figure 1:

• The upward capacity requirement of Figure 1 served all but 4/99,360 incidents, as
noted in Section 3.5.
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• The downward capacity requirement of Figure 1 served all but 30/99,360 incidents,
as noted in Section 3.5.

The results are presented in Table 2. A number of effects that are consistent with
intuition can be observed: (i) Downward reserve requirements are lower than upward
reserve requirements for a given day type, due to the asymmetric risk of contingencies in
upward requirements. (ii) Higher load implies higher reserve requirements. (iii) Higher
renewable supply implies higher reserve requirements. (iv) Higher imports imply higher
reserve requirements. (v) The effect of load on reserve requirements is the strongest;
the effect of imports on reserve requirements is the least strong.

Table 2. Reserve requirement for each type of day. All quantities are in MW.

Load Renewables Imports Reserve Up Reserve Down

6810 (H) 2091 (H) 1331 (H) 1383 1085
6810 (H) 2091 (H) 471 (L) 1282 1043
6810 (H) 782 (L) 1331 (H) 1119 1028
6810 (H) 782 (L) 471 (L) 1187 919
4886 (L) 2091 (H) 1331 (H) 981 855
4886 (L) 2091 (H) 471 (L) 912 845
4886 (L) 782 (L) 1331 (H) 991 802
4886 (L) 782 (L) 471 (L) 970 737

5. Case Study of Probabilistic Dimensioning

This section compares the dimensioning of Figure 1 to the probabilistic dimensioning
method based on k-means.

5.1. Case Study Description

As indicated previously in the article, system imbalance data have not been made
available for this study. Instead, we employed other data that are publicly available at the
websites of the Greek market operator and the Greek transmission system operator, and
data provided by the Greek regulatory authority for energy, in order to calibrate a model of
system imbalances which captures salient system characteristics, as indicated in Section 3.
The specific input data used for the analysis are briefly recalled below.

Reserve requirement data for the Greek system for 2018–2020 were sourced from the
following link of the Hellenic Energy Exchange, which was accessed on 20 August 2021:
https://www.enexgroup.gr/el/day-ahead-scheduling-archive. In addition to reserve
requirement data, the website includes the day-ahead schedules of individual units, and a
number of other scheduling results related to dispatch and reserve provision.

Additionally, the following data have been provided by the Regulatory Authority
for Energy:

• Load data with hourly resolution from 1 January 2018 until 31 October 2020, thus
spanning 2 years and 10 months (namely, 1035 days).

• Renewable energy supply data with the same characteristics.
• Import/export data with the same characteristics.

The results are presented in Tables 3 and 4. For each sizing policy, the following
metrics are reported for both the upward and downward direction in Table 3:

• Average reserves committed, measured in MW.
• Unreliability: a measure of how many incidents of oversupply or undersupply occur

per year, measured in hours per year. This corresponds to the loss of load expectation
(LOLE) measure in reliability studies, but is here measured in both the case of upward
and downward imbalances.

65



Energies 2021, 14, 5719

• Shortage or oversupply, measured in MWh/year. This corresponds to expected energy
not served in adequacy studies, but is also measured in the downward direction (in
the sense of quantity of energy oversupplied).

Moreover, Table 4 reports the relative contribution of each day type to the overall
failure profile of each reserve sizing policy. This is explained further in Section 5.3.

Table 3. Comparative results of the probabilistic dimensioning against the sizing of Figure 1.

Figure 1 Probabilistic

Res-Up (MW) 1392 1111
Unrel.-Up (hours/y) 0.3 0.4
Shortage (MWh/y) 40.2 21.5

Res-Down (MW) 993 950
Unrel.-Down (hours/y) 2.8 1.9
Oversupply (MWh/y) 208.4 159.1

Table 4. Number of intervals belonging to each cluster of the probabilistic dimensioning method and
corresponding number of incidents within each cluster.

Interval Type No. Occurrences Fails Prob. (h/yr) Fails Figure 1 (h/yr)

LoH-ReH-ImH 13,292 (13.4%) 0.44 (18.5%) 0.44 (14.3%)
LoH-ReH-ImL 9644 (9.7%) 0.09 (3.7%) 0.09 (2.9%)
LoH-ReL-ImH 12,144 (12.2%) 0.09 (3.7%) 0.26 (8.6%)
LoH-ReL-ImL 10,812 (10.9%) 0.53 (22.2%) 0.09 (2.9%)
LoL-ReH-ImH 7960 (8.0%) 0.26 (11.1%) 0.18 (5.7%)
LoL-ReH-ImL 6952 (7.0%) 0.09 (3.7%) 0.09 (2.9%)
LoL-ReL-ImH 26,296 (26.5%) 0.53 (22.2%) 1.59 (51.4%)
LoL-ReL-ImL 12,260 (12.3%) 0.35 (14.8%) 0.35 (11.4%)

5.2. Reserve Requirements

With respect to the reserves committed by the compared sizing methods, one can
observe that the probabilistic dimensioning approach achieved a significant improvement
in the upward dimensioning requirement, with average upward reserves being reduced by
281 MW, or 20.2% of the average upward requirement of Figure 1. Similarly, the downward
dimensioning decreased by 43 MW, or 4.3%, which is less than the savings of the upward
dimensioning, but still notable.

In terms of reliability performance, it can be observed that the sizing of Figure 1
remained close to the failure target of 3 h/year. The probabilistic dimensioning resulted
in total failures of 2.3 h/year, thereby staying below the reliability target of 3 h/year. The
MWh of shortage and oversupply were correspondingly lower values in the case of the
probabilistic dimensioning method. Thus, the probabilistic dimensioning method was
more reliable, while also relying on less reserves.

The results presented in Table 3 are based on an out-of-sample simulation, in the
sense that an entirely new sample of 99,360 imbalance intervals (2 years and 10 months)
was generated, based on the imbalance driver data that were provided by the regulatory
authority, and based on the imbalance model that was developed in Section 3.

5.3. Risk Profile

Table 4 presents the numbers of intervals that belong to the clusters of the probabilistic
dimensioning method. These are equal in both the training and the testing phase, since
the same day-ahead data were used for both training and testing. The table additionally
presents the number of failures that occurred in each day type in the testing phase, for both
the sizing of Figure 1 and the probabilistic dimensioning. This serves as a measure of the
risk assumed by each of the methods.
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An indication of the extent to which a sizing method is able to maintain a constant
level of risk is how well the observed out-of-sample risk of the method is able to track
the frequency of each interval type. This assessment is shown in Figure 3. The horizontal
axis of the figure represents the eight day types/clusters that were considered in the
analysis. The blue curve corresponds to the empirical frequencies of occurrence of the
eight day types in the out-of-sample simulation. For instance, for day type “HHH” (the
first day type), the blue curve demonstrates that it occurred 13.4% of the time. The orange
curve then depicts the relative contributions of failures in these day types to the total
failures for the probabilistic sizing method. For day type “HHH”, reading off of the orange
curve implies that failures in this day type contributed to 18.5% of the total failures of the
probabilistic sizing method. Similarly, the gray curve provides the corresponding figure
for the sizing method of Figure 1. Reading again off of the figure for day type “HHH”, it
can be observed that failures in this day type correspond to 14.3% of the total failures of
this reserve sizing method.

Figure 3. Frequency of each interval type, and frequency of failures for the probabilistic dimensioning
method and the sizing of Figure 1.

One can observe in Table 4 that, although interval type 7 (low load, low renewable
supply, large amount imported) corresponds to 26.5% of the intervals in the data sample,
the sizing method of Figure 1 exhibits a frequency of failures in the seventh interval type,
which is twice as high as the frequency of this interval type. This indicates that a fixed
reserve requirement corresponding to Figure 1 tends to be undersized for this specific
interval type (which corresponds to a quarter of the time).

Figure 3 represents the percentages of Table 3 visually. The closer the curves remain
to the blue curve, the more consistent they are in terms of maintaining a constant risk.
Deviating too far above the blue curve indicates an exposure to a disproportionately high
risk (i.e., undersizing), and deviating too far below the blue curve indicates an exposure to
a disproportionately low risk (i.e., oversizing). It is clear that the probabilistic dimensioning
method was able to remain closer to the blue curve, thereby indicating an improved risk
profile relative to the sizing of Figure 1. Similar results emerged with the probabilistic
dimensioning method that was employed in Belgium [2].

5.4. Integration with System Operations

An alternative way to approach the simulation could be to implement it in a rolling
fashion, in the sense of training a sizing model once a year, based on the data of the
past year. One would then use the trained clustering algorithm one day in advance of
operations in order to determine the cluster in which the following day belongs, so as to
then decide on the reserve capacity that should be procured for the day ahead. This is
the approach that has been proposed and considered for implementation in the Belgian
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system [2]. The timeline of this rolling procedure is depicted in Figure 4, which is similar
in spirit to [2].

The figure outlines a rolling procedure, where training takes place once a year, six
months in advance of the beginning of the relevant year of operation. The clustering of days
into day types takes place in the “k-means clustering” box. These clusters are then used for
deriving reserve requirements for different day types according to probabilistic criteria in
the “Probabilistic reserve sizing” box. This allows the system operator to have at hand a
mapping of day types to upward and downward reserve requirements. On the day ahead
of operation (indicated in the figure as the gray “Day ahead” box), the system operator
can identify the day type that is anticipated for the following day based on the observable
day-ahead explanatory factors (renewable supply forecasts, load forecasts, and import
forecasts in the case of the present publication). Once the day type of the coming day is
identified, the pre-computed mapping of the day type to the corresponding probability
distribution and thus the appropriate quantile which implies the reserve requirement for
the following day can be determined. The sizing result can then be used as input for the
day-ahead procurement of reserve capacity, which may take place before, simultaneously
with, or after the day-ahead procurement of energy. The Greek market specifically operates
an integrated scheduling process (ISP), where reserves are committed on a daily basis (with
three runs of ISP, on the day ahead and two intraday adjustment runs). The proposed
probabilistic dimensioning procedure would then generate input for this ISP procedure.

Figure 4. Timeline of a probabilistic dimensioning procedure, where the training of the probabilistic
dimensioning algorithm takes place once a year based on the data of the previous year.

An important attribute of this process relates to regulatory approval. Reserve require-
ments proposed by the TSO are typically approved by the competent national regulatory
authority on an annual basis. Since reserve requirements vary on a daily basis according
to the above procedure, what would be required in the proposed implementation would
be the regulatory approval of the proposed methodology, instead of the MW requirement
itself [2].

Note that the procedure described above and investigated in this paper can be im-
proved in a number of ways. The analysis would clearly benefit from the presence of real
system imbalance data. The levels of detail of the analysis could have been improved by
considering the generator availability of each day of the year, instead of the eight days
indicated in Section 3.2. Alternative probabilistic methods are also worth considering in
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future work, with common alternatives considered in the literature including k-nearest
neighbors clustering [2] and quantile regression based on artificial neural networks [28],
although the latter has been found to perform poorly in small systems where contingencies
dominate sizing decisions. An crucial extension from a practical standpoint is the careful
analysis of various alternatives for joint dimensioning of aFRR and mFRR capacity, and
the consideration of transmission constraints which pertain to reserve deliverability [42].
The author is currently working on those two extensions, and preliminary results have
been presented in [43].

6. Conclusions

Probabilistic dimensioning is becoming increasingly relevant in European systems,
due to the spirit of EU law—in particular, the System Operation Guideline [10] and the Elec-
tricity Balancing Guideline [44]—which places loss of load probability as the cornerstone
criterion of reserve sizing. This paper specifically considered the reserve dimensioning
method that is advancing towards implementation in the Belgian electricity market, and ex-
amined its possible application in the Greek electricity system.

The initial investigation presented in this paper suggests that probabilistic dimension-
ing may merit further investigation for the Greek electricity system. Significant potential
savings were uncovered in the sizing of upward frequency restoration capacity, and notable
savings in the sizing of downward balancing capacity. These savings resulted from the
fact that the system can adapt its sizing to the anticipated day type: days with higher risk
can be planned with more reserves at hand, but days with lower risk can be planned with
less reserves, with the end result being that the average reserves are reduced throughout
the year. The adaptive nature of the sizing of the reserve requirement also allows the
system to operate at a more constant level of risk. This should be contrasted with a static
sizing method, where days with less favorable conditions expose the system to greater risk,
and during days with more favorable conditions the system is over-protected and carries
unnecessarily high reserves.

In order to conduct the analysis, and in the absence of system imbalance data, the paper
proposed a stochastic model of imbalances which captures a number of salient features
which render dynamic dimensioning relevant. These features include skewed distributions,
the dependencies of the imbalance distribution on the levels of various imbalance drivers,
and the contribution of idiosyncratic noise to system imbalances.

Additionally, the literature review provides a lookup table that can be useful for prac-
titioners navigating among the range of options that can be considered for implementation
in system operations. The classification of the literature was performed using three axes,
including the analytical method that can be used for dimensioning (heuristics, probabilistic
dimensioning, or bottom-up models), static versus dynamic dimensioning, and whether
the proposed method relies on a parametric or non-parametric model of uncertainty.

The procedure described in the paper can be improved in a number of way. An ex-
tension that is crucial from a practical standpoint is the application of probabilistic di-
mensioning to the joint dimensioning of aFRR and mFRR capacity, which goes beyond
the current state of the art [11–13,15,29,34,38]. Transmission constraints which pertain to
reserve deliverability will also need to be considered [42].
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Abstract: In recent years, demand for electric energy has steadily increased; therefore, the integration
of renewable energy sources (RES) at a large scale into power systems is a major concern. Wind
and solar energy are among the most widely used alternative sources of energy. However, there is
intense variability both in solar irradiation and even more in windspeed, which causes solar and wind
power generation to fluctuate highly. As a result, the penetration of RES technologies into electricity
networks is a difficult task. Therefore, more accurate solar irradiation and windspeed one-day-ahead
forecasting is crucial for safe and reliable operation of electrical systems, the management of RES
power plants, and the supply of high-quality electric power at the lowest possible cost. Clouds’
influence on solar irradiation forecasting, data categorization per month for successive years due
to the similarity of patterns of solar irradiation per month during the year, and relative seasonal
similarity of windspeed patterns have not been taken into consideration in previous work. In this
study, three deep learning techniques, i.e., multi-head CNN, multi-channel CNN, and encoder–
decoder LSTM, were adopted for medium-term windspeed and solar irradiance forecasting based on
a real-time measurement dataset and were compared with two well-known conventional methods,
i.e., RegARMA and NARX. Utilization of a walk-forward validation forecast strategy was combined,
firstly with a recursive multistep forecast strategy and secondly with a multiple-output forecast
strategy, using a specific cloud index introduced for the first time. Moreover, the similarity of patterns
of solar irradiation per month during the year and the relative seasonal similarity of windspeed
patterns in a timeseries measurements dataset for several successive years demonstrates that they
contribute to very high one-day-ahead windspeed and solar irradiation forecasting performance.

Keywords: artificial intelligence; data mining; machine learning; advanced deep learning; windspeed
forecasting; solar irradiation forecasting; increased RES penetration

1. Introduction

A significant amount of global and domestic energy requirements are covered by fossil
fuel consumption. It is widely accepted that consuming fossil fuels such as oil, coal, and
natural gas releases a large amount of greenhouse gasses into the atmosphere, leading
to extremely negative effects on the environment. The production of “cleaner”, carbon-
free energy can be achieved by utilizing renewable energy sources such as the wind and
sun, which have begun to be used to cover the globe’s increasing energy needs. Electric
energy market liberalization in conjunction with the increasing need for sustainable energy
has turned political and investing interests into further utilizing RES to cover electricity
needs [1,2].

Energy produced from the wind and the sun depends largely on local weather con-
ditions, such as temperature, windspeed, air pressure, humidity, sunlight, etc., and their
fluctuations. Thus, wind and solar power generation is often difficult to control and predict,
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as weather conditions constantly change. This makes integration of wind and solar energy
into power grids, especially isolated grids, a significant challenge [3,4].

To tackle the aforementioned challenge, it is essential to improve the performance of
windspeed and solar irradiation one-day-ahead forecasting in order to minimize uncer-
tainty about the amount of renewable power that can be generated in any electric grid
operational situation. Given the inherent relationship between solar irradiation and the
electric power produced from photovoltaics, and between windspeed and wind turbine
power generation, it is necessary to create computational models that will accurately predict
solar irradiation and windspeed in medium- and/or short-term time scales [5–11].

Windspeed forecasting can be separated into four temporal ranges: very short-term
(from a few seconds to 30 min), short-term (from 30 min to 6 h ahead), medium-term (from
6 h to 1 day ahead), and long-term (more than 1 day ahead) [6]. Solar irradiation forecasting
can also be divided into four temporal ranges: very short-term (a few minutes to 1 h),
short-term (1–4 h), medium-term (1 day ahead), and long-term (more than 1 day ahead) [7].

Over the last few years, various tools have been established to predict windspeed
and solar irradiation. These tools can be separated into three main groups: (1) data-
driven models, such as statistical models and machine learning models, which are the
most prevalent tools used for predicting such timeseries; (2) physical models that use
meteorological and topographical data; and (3) hybrid algorithms, which have found great
success in a number of research areas [3,6,8].

Regarding data-driven models, statistical methods consist of autoregressive inte-
grated moving average (ARIMA) [9–11], auto-regressive moving average (ARMA) [12–14],
Lasso [15], and Markov models [16–18]. The most common machine learning methods
are support vector machines (SVM) [19–21], feed forward neural networks (FFNN) [22],
recurrent neural networks (RNN) [23–25], convolutional neural networks (CNN) [26,27],
long short-term memory networks (LSTM) [28–31], bidirectional long short-term memory
neural networks (BiLSTM) [32], deep belief networks (DBN) [33], and artificial neural
networks in general (ANN) [34–36].

Physical methods include numerical weather prediction (NWP) forecasting mod-
els [37,38], total sky imagery (TSI) [39], cloud-moving-based satellite imagery models [40],
and weather research and forecasting (WRF) models [41].

Hybrid methods found in the literature include variational mode decomposition with
Gram–Schmidt orthogonal and extreme learning machines, which are enhanced at the
same time by a gravitational search algorithm [42], nonlinear neural network architec-
tural models combined with a modified firefly algorithm and particle swarm optimization
(PSO) [43], the hybrid model decomposition (HMD) method and online sequential outlier
robust extreme learning machine (OSORELM) [44], empirical mode decomposition and
Elman neural networks (EMD-ENN) [45], wavelet transform (WT-ARIMA) [46], empirical
wavelet transform (EWT) and least-square support vector machines (LSSVM) improved by
coupled simulated annealing [47], and variational mode decomposition (VMD) combined
with several ML methods, including SVM and back propagation neural networks (BPNN).
Moreover, ELMs and ENNs were implemented to perform advanced data preprocessing
based on complementary ensemble empirical mode decomposition (CEEMD) [48], while
sample entropy and VMD forecasting methods based on ENNs and on a multi-objective
“satin bowerbird” optimization algorithm have been introduced [49]. Bidirectional long
short-term memory neural networks with an effective hierarchical evolutionary decompo-
sition technique and an improved generalized normal distribution optimization algorithm
for hyperparameter tuning, a combined model system including an improved hybrid time-
series decomposition strategy (HTD), a novel multi-objective binary backtracking search
algorithm (MOBBSA), and an advanced sequence-to-sequence (Seq2Seq) predictor for
windspeed forecasting have been presented in [50,51], respectively. Further, recurrent neu-
ral network prediction algorithms combined with error decomposition correction methods
have also been presented in [52].
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The purpose of this paper is to develop models for high-performance, medium-term
forecasting (i.e., for the next 24 h) of windspeed and solar irradiation, which will be based on
hourly data recorded on Dia Island, which is located north of Heraklion city in Crete, Greece.
In order to achieve this, the efficacies of three deep learning techniques, i.e., multi-channel
CNN, multi-head CNN, and encoder–decoder LSTM, are investigated and compared with
two conventional methods, i.e., RegARMA and NARX, in order, among other things, to
demonstrate the improved forecasting performance of the deep learning techniques and to
highlight the most effective among them. All the presented methodologies were tested on a
benchmarked dataset of real measurements for the purpose of predicting with the highest
possible statistical accuracy the windspeed and solar irradiation for a forecasting period of
24 h, i.e., of one day ahead.

The main contributions of this paper are:

• A series of experiments applying advanced deep-learning-based forecasting tech-
niques were conducted, achieving high statistical accuracy forecasts.

• A thorough comparison is conducted successfully among advanced deep learning
techniques and well-known conventional techniques for medium-term solar irradiance
and windspeed forecasting to highlight the most effective among them.

• A cloud index per hour (NDD(h,d)) was introduced and used for the first time in order
to improve medium-term solar irradiance forecasting.

• Data were categorized by each month for successive years, firstly due to the similarity
of patterns of solar irradiation by month during the year, and secondly because of
the relative seasonal similarity of the windspeed patterns, resulting in a monthly
timeseries dataset, which is more significant for high-performance forecasting.

• A walk-forward validation forecast strategy in combination first with a recursive
multistep forecast strategy and secondly with a multiple-output forecast strategy was
successfully implemented in order to significantly improve medium-term windspeed
and solar irradiation forecasts.

• The recursive multistep forecast strategy was compared to the multiple-output fore-
cast strategy.

The paper is organized as follows: In Section 2, we present the theory behind the pro-
posed deep learning forecasting methods and the real measurements categorized by each
months’ dataset, model configurations, the methodology followed, and the algorithms for
the medium-term windspeed and solar irradiation forecasting. In Section 3, the simulation
results and the discussion of these results are presented, while in Section 4, the conclusions
of the paper are summarized.

2. The Proposed Deep Learning Model Framework

2.1. Dataset Presentation

The dataset used in this research is derived from measurements carried out on Dia
Island, Crete, Greece. Table 1 includes the required parameters given in hourly values for
every day for years 2005–2016 at a height of 10 m from the ground. All these parameters
were recorded except for the beam/direct irradiance on a plane always normal to the sun’s
rays and the diffuse irradiance on the horizontal plane, which were estimated from the
global irradiance on the horizontal plane using the anisotropic model described in [53]. The
beam/direct irradiance on a plane always normal to the sun rays was considered for two
main reasons: (1) it improves the forecasting performance of the examined models, and
(2) it is an essential parameter for the estimation of a photovoltaic system’s performance
in a specific location. Moreover, extraterrestrial irradiation is calculated using the typical
solar geometry equations presented in [54]. Table 2 includes some statistical data for solar
irradiation and windspeed, including maximum and minimum mean values and standard
deviations (Std).
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Table 1. Dataset parameters measured.

Parameter Unit

Air temperature ◦C
Relative humidity %

Windspeed m/s
Wind direction ◦

Surface (air) pressure Pa
Global irradiance on the horizontal plane W/m2

Beam/direct irradiance on a plane always normal to the sun rays W/m2

Diffuse irradiance on the horizontal plane W/m2

Surface infrared (thermal) irradiance on a horizontal plane W/m2

Extraterrestrial irradiation W/m2

Table 2. 2005–2016 dataset, Max, Min, Mean, Std values.

Max Min Mean Std

Solar Irradiation (W/m2) 1032 0 208 305
Windspeed (m/s) 17.88 0 5.84 3.05

Air temperature (◦C) 29.73 5 19.11 4.86
Relative humidity (%) 99.88 48.55 77.23 7.82

Wind direction (◦) 360 0 253.2 118.9
Surface (air) pressure (Pa) 103,845 97,349 100,306 576

Beam/direct irradiance on a plane always normal to
the suns’ rays (W/m2) 986 0 143 246

Diffuse irradiance on the horizontal plane (W/m2) 646 0 65 85
Extraterrestrial irradiation (W/m2) 1294 0 344 429

For solar irradiation forecasting, due to the lack of a cloud index, the normalized dis-
crete index for each day (NDD(d)) and for each hour of the day (NDD(h,d)) were introduced
and calculated by Equations (1) and (2) below, provided the extraterrestrial solar irradiation
for Dia Island and the solar irradiation in the horizontal plane [36]. Due to the periodicity
of solar irradiation, we constructed two columns: (1) the number of days in the month
(31, 30 or 28); and (2) the hour of the day for every observation (1–24). For solar irradiation
forecasting, the following parameters were used as inputs from the initial measurements’
dataset: air temperature, NDD(d), NDD(h,d), the number of days in the month, and the
hour of the day. From the initial dataset of measurements, the nighttime values (zero
solar irradiation) were removed due to the fact that night hours do not contribute to solar
irradiation forecasting.

The parameters NDD(d) and NDD(h,d) are calculated as follows:

NDD(d) =

√√√√ 1
24

24

∑
i=1

(Gon,d(i)− Gsn,d(i))
2 (1)

NDD(h, d) = Gon,h,d − Gsn,h,d (2)

where “d” is the day of the year (1 to 365), “i” is the hour number of each day (1 to 24), “h”
is the specific hour of the day for which the cloud index NDD(h, d) is calculated, Gon is the
normalized extraterrestrial irradiance, and Gsn is the normalized surface irradiance. Global
irradiance data on the horizontal plane are presented in Table 1, where extraterrestrial
irradiance data were calculated from well-known solar geometry equations, using as
parameters the solar constant (1367 W/m2), day of the year, latitude and longitude of the
location, solar hour angle, and declination angle of the Sun [54]. For normalization of
Gon and Gsn, their corresponding maximum values for each year of the dataset were used.
Even if the value of extraterrestrial or surface irradiance exceeds its historical maximum
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(so the normalized maximum irradiance could slightly exceed 1), this does not affect the
performance of the forecasting.

In addition, statistical parameters such as the maxima, minima, means, and standard
deviations for windspeed and solar irradiation data are shown in Table 2.

For windspeed forecasting, the following parameters were used as inputs from the
initial dataset: air temperature (◦C), relative humidity (%), and global irradiance on the
horizontal plane (W/m2) [5].

2.2. Presentation of the Proposed Deep Learning Models
2.2.1. Multi-Channel and Multi-Head CNNs

Convolutional neural networks (CNNs) are a category of artificial deep neural net-
works that are mainly used for image and video recognition, recommender systems, image
and text classification, image analysis, facial recognition, document analysis, natural lan-
guage processing, financial timeseries data, etc. [27–29].

A typical CNN consists of at least one convolutional layer, fully connected layers,
flattened layers, pooling layers, and dropout layers. The purpose of the convolutional layer
is to convolve the input image and generate the feature maps. Input image convolving
is carried out by sliding a group of small-sized filters (kernels)—each of which contain
a sufficient number of learnable weights—over the input image, implementing element-
wise multiplication at each possible position. A completely new layer is generated from
each kernel, which contains the application results of the particular kernel in the input
image. The number of generated feature maps (convolutional layer depth) is defined by
the number of kernels and constitutes the CNN hyperparameters, which must be chosen
correctly based on available data. Then, this resulting group of layers undergoes a pooling
process. Pooling involves a down-sampling operation in which sets of elements in the
feature maps are integrated and restricted to a single value based on some criterion or
calculation (e.g., maximum value or average of all values). As a result, noise data are
eliminated, and better performance is achieved. Repeating the two aforementioned layers
multiple times by applying different kernels of different sizes and depths, successive
extraction of higher-level features improves, which constitutes one of the assets of CNNs.
Dropout layers can be used after convolutional layers and pooling layers to protect neural
networks from overfitting.

Finally, the last pooled layer can be converted into a single vector that includes all of
its weights and which is connected to a fully connected layer, which is further connected
to the output layer that contains a summation of every possible class, thus providing the
classification success estimation for the given input [55–58].

The multi-channel approach applied in this paper is based on the aforementioned
typical CNN architecture and extends it by adding a further embedding layer into the model
in order to raise the number of channels matching the degree of semantic enrichment of the
present paper’s data. Multi-channel CNNs use each of the solar irradiation inputs and the
windspeed forecasting timeseries variables to predict the windspeed and solar irradiation
of the next day. This is implemented by entering each one-dimensional timeseries into the
model as a separate input channel. A distinct kernel is then used by the CNN, which will
read each input sequence onto a separate set of filter maps, essentially learning features
from each input timeseries variable. This is useful for situations where the output sequence
is some function of the observations at prior timesteps derived from their multiple different
features, and also when the output sequence does not contain only the feature to be
forecasted [57,59].

Another extension of the CNN model is to obtain a separate sub-CNN model, or, in
other words, a head for each input variable, whose structure can be referred to as a multi-
headed CNN model. This extension requires transformation of the model preparation,
and, in turn, modification of the preparation of the training and test datasets. Regarding
the model, a separate CNN model must be defined for each of the input variables: solar
irradiation and windspeed. Inserting each input into an independent CNN has a number
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of advantages, such as feature extraction that is improved by focusing only on one input,
and each convolutional head can be controlled for the specific nature of each input. The
configuration of the model, taking into consideration the number of layers and their
hyperparameters, was also modified to better suit the new approach presented above [57].

2.2.2. Encoder–Decoder LSTM

Long short-term memory (LSTM) is a modified version of artificial recurrent neural
network (RNN) architecture mainly used in deep learning algorithms. LSTMs use feedback
connections, in contrast to standard feed forward neural networks, which enhances the
memory recovery of a given network. LSTMs can process single data points (such as images)
and entire sequences of data (such as speech or video); therefore, LSTMs are suitable for
applications such as unsegmented, connected handwriting recognition, speech recognition,
anomaly detection in network traffic or intrusion detection systems (IDSs), etc. [60].

A common LSTM unit consists of a cell, an input gate (to investigate which information
should be used for memory modification), an output gate, and a forget gate (to decide the
information to be dismissed). The cell remembers values over arbitrary time intervals, and
the three gates adjust the information flow into and out of the cell.

LSTM networks are appropriate for forecasting, classifying, and processing based on
timeseries data, since unknown duration lags may exist between important events when
dealing with timeseries problems. LSTMs are able to cope with the vanishing gradient
problem that can arise during training of traditional RNNs. Their relative insensitivity
to gap lengths is an advantage of LSTMs over RNNs, hidden Markov models, and other
sequence learning methods in numerous applications [61].

Encoder–decoder LSTM is a recurrent neural network designed to cope with sequence-
to-sequence (seq2seq) problems (text translation, learning program execution, etc.). Due
to variations in the number of items in the inputs and outputs, sequence-to-sequence
prediction problems have been worth studying. One advantage of an encoder–decoder
LSTM is its use of fixed-sized internal representation in the core of the model [59].

The encoder and the decoder are usually LSTM units or gated recurrent units. The
purpose of the encoder is to read the input sequence and to summarize the information in
the internal state vectors (the hidden state and cell state vectors in the case of LSTMs). The
outputs of the encoder can be discarded; only the internal states need to be retained. The
decoder is an LSTM whose initial states are initialized to the final states of the encoder LSTM.
Using these initial states, the decoder starts to generate the output sequence (see Figure 1).

Figure 1. Encoder–decoder LSTM basic architecture.

The decoder operates slightly differently during training and inference. During
training, teacher forcing is used, which accelerates decoder training. The input to the
decoder at each timestep is the output from the previous timestep.

The encoder transforms the input sequence into state vectors (known as thought vec-
tors), which are then inserted into the decoder in order to start output sequence generation
according to the thought vectors. The decoder is just a language model conditioned by the
initial states [61].
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2.3. Solar and Wind Data Preprocessing and Forecasting Model Configurations

To appropriately train the model, two data preprocessing procedures were carried out.
The first procedure normalized the data and the latter procedure accommodated for missing
data. As for the latter, the average of nearby values during the same week was calculated
to fill missing data values. Furthermore, it is worth noting that data normalization before
inserting the input data into the network is a good practice, since inserting variables
with both large and small magnitudes will have negative effects on learning algorithm
performance. For data normalization, the well-known formula of Equation (3) was used:

y =
xi − xmin

xmax − xmin
(3)

where y is the normalized value, xi is the current value, and xmin and xmax are the minimum
and the maximum of the original parameters, respectively.

These data were categorized by month, resulting in a monthly timeseries for years
2005–2016, which was then followed by model training and medium-term forecasting. Data
were separated by month mainly because of the similarity of solar irradiation patterns, and
secondly because of the relative similarity of windspeed patterns.

The most commonly used strategies for making multistep forecasts are [6,28,30,62]:

1. Direct Multistep Forecast Strategy.

For every timestep forecast, a new model is developed. This strategy demands large
computational time since there are as many models to learn as the size of the forecast-
ing horizon.

2. Recursive Multistep Forecast Strategy.

The recursive multistep strategy first trains a one-step model and then uses this single
model for each horizon, but the prediction of the prior timestep is used as an input in
place of the original dataset value for making a prediction at the following timestep. The
recursive approach is not so computationally intensive in comparison with the direct
strategy, as only one model is fitted. This type of strategy strengthens error accumulation
because the predictions of prior steps are inserted into the model instead of the real
values. This phenomenon results in poor algorithm performance as the prediction time
horizon increases.

3. Direct–Recursive Hybrid Multistep Forecast Strategy.

In this strategy, a combination of direct and recursive strategies is used in order to take
advantage of both methods. This method computes the forecasts with different models for
every forecasting horizon (direct strategy), and at each timestep it enlarges the set of inputs
by adding variables corresponding to the forecasts of the previous step (recursive strategy).

4. Multiple Output Forecast Strategy.

For the multiple output strategy, one model is developed in order to predict the whole
forecast sequence in a one-shot manner.

In this study, the walk-forward validation forecast strategy is introduced, with an
adaptive training window that expands after the desired forecast horizon (of 24 h) to include
each time’s recent actual (measured) values, and was applied with improved success for
a prediction horizon of 24 h. The walk-forward validation forecast strategy splits the
monthly timeseries dataset into preconcerted sub-fragments. Walk-forward validation is
based on the sliding window method, where the data are used in ascending order of time
rather than randomly shuffling training–test datasets. This validation approach is essential
for time-series analysis methods in general, where observations with future timestamp
information cannot be used to predict past (old) values. Thus, it is crucial to assess model
forecasting performance by recursively augmenting training data with recent observations
and reevaluating the model over the extended horizon [62]. The recursive multistep forecast
strategy and the multiple-output forecast strategy are applied over expanded timeseries
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fragments with a fixed sliding window of 24 h. The recursive multistep forecast strategy
computes one-step-ahead forecasts (i.e., 1 h ahead) recursively until the desired forecast
horizon (24 h) is achieved, while the multiple-output forecast strategy predicts the whole
forecast horizon (i.e., 24 h ahead) in a one-shot manner. Then, the training set is expanded
to incorporate recent actual (measured) values. Especially for solar irradiation forecasting,
the sliding window magnitude is smaller than 24 h due to the subtraction of zero solar
irradiation for every day, and it depends on the variable length of night during the year.
Although the sliding window is smaller than 24 h (because of the excluded night hours),
it represents, for the forecasting procedure, the window of the previous 24 h. For the
training set, the months from the 2005–2014 monthly timeseries dataset were used in order
to forecast the values for the corresponding months of 2015 and 2016. For instance, in
order to forecast the windspeed and solar irradiation for January of 2015 and January of
2016, the measurements (dataset) for January in the years 2005–2014 were used to train
the forecasting model. For every 24 h ahead forecasting, the real measurements (training
dataset) available until midnight of the previous day were used to train the forecasting
models [59].

The methodologies presented above for solar irradiation and windspeed medium-term
forecasting with the recursive multistep forecast strategy and the multiple-output forecast
strategy are described formally by the following equations, respectively:

ŷ (h, d) = f (ŷ(h − 1, d), . . . , ŷ(h − k + 1, d), y(h − k, d − 1), . . . , y(h − 24, d − 1), ui(h
− 1, d − 1), ui(h − k + 1, d − 1), ui(h − k, d − 1), . . . , ui(h − 24, d − 1))

(4a)

ŷ (h, d) = f (y(h − 1, d − 1), . . . , y(h − k + 1, d − 1), y(h − k, d − 1), . . . , y(h − 24, d −
1), ui(h − 1, d − 1), ui(h − k + 1, d − 1), ui(h − k, d − 1), . . . , ui(h − 24, d − 1))

(4b)

where: “ŷ” is the predicted value for hour “h”, . . . .,“h − (k − 1) i.e., h − k + 1” of day “d”;
. . . y(h − k, d − 1), . . . . y(h − 24, d − 1) are the historical measured values, “ui” represents
the other external inputs (i.e., air temperature, relative humidity, global irradiance on the
horizontal plane for windspeed forecasting, and air temperature), NDD(d), NDD(h,d) are
the number of days in the month and the hour of the day, respectively, for solar irradiation
forecasting, and k is the time instant sliding index.

In Table 3, the configuration of each layer for each model used is presented.

Table 3. Model configurations for windspeed and solar irradiation forecasting.

Windspeed and Solar Irradiation Forecasting

Multi-Head CNN Multi-Channel CNN Encoder–Decoder LSTM

Layer Configuration Layer Configuration Layer Configuration

Convolution 1 Filters = 32 Kernel
size = 3 Convolution 1 Filters = 32 Kernel

size = 3 LSTM 1 Units = 200

Convolution 2 Filters = 32 Kernel
size = 3 Convolution 2 Filters = 32 Kernel

size = 3 Repeat vector -

Max-pooling 1 Filters = 32 Max-pooling 1 Filters = 32 LSTM 2 Units = 200

Flatten - Convolution 3 Filters = 16 Kernel
size = 3 Dense 1 Units = 100

Concatenetion - Max-pooling 2 Filters = 16 Dense 2 Units = 1
Dense 1 Neurons = 200 Flatten - - -
Dense 2 Neurons = 100 Dense 1 Neurons = 100 - -
Dense 3 Neurons = 24 Dense 2 Neurons = 24 - -

Concerning the data shapes of encoder–decoder LSTM, multi-channel CNN, and
multi-head CNN, one sample consists of 24 timesteps (i.e., 24 h ahead), with three features
for windspeed forecasting and five features for solar irradiation. The training dataset has
300 days (7200 h) or 310 days (7440 h) of data, so the shape of the training dataset would
be: [7200/7440, 24, 3/5].
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The encoder–decoder LSTM model consists of two sub-models, the encoder and the
decoder. The purpose of the encoder is to read and encode the input sequence, and then
the decoder reads the encoded input sequence and makes a one-step prediction for each
element in the output sequence. After the input sequence reading by the encoder, a 200-
element vector output is constructed (one output per unit) that captures features from
the input sequence. At first, the internal representation of the input sequence is iterated
multiple times, once for each timestep in the output sequence. This sequence of vectors is
carried forward to the LSTM decoder. Then, the decoder is defined as an LSTM hidden
layer with 200 units. It is worth mentioning that the decoder will output the entire sequence,
not just the output at the end of the sequence, as was done with the encoder. This means
that each of the 200 units will output a value for each of the 24 h, representing the basis
of what to predict for each hour in the output sequence. Then, a fully connected layer to
interpret each timestep in the output sequence is used before the final output layer. It is
important to note that the output layer predicts a single step in the output sequence, not all
of the 24 h at a time.

In multi-head CNN, a different CNN sub-model reads each input with two convo-
lutional layers with 32 filters with a kernel size of 3, a max pooling layer, and a flattened
layer. The internal representations come together before them to be interpreted by two fully
connected layers of 200 and 100 nodes, respectively, and used to make a prediction.

In multi-channel CNN, a separate channel is linked to each input, similar to different
image channels (e.g., red, green, and blue). A model that shows excellent performance
consists of two convolutional layers with 32 filter maps with a kernel size of 3 followed
by pooling, then another convolutional layer with 16 feature maps and pooling. The fully
connected layer that interprets the features consists of 100 nodes.

The choice of hyperparameter values is of great importance [63–66]; for this reason,
the well-known grid search method was adopted [49,67,68]. In this study, a grid search
took place for the number of prior inputs, training epochs, and samples to include in each
mini-batch, optimizer type, type of activation function, and learning rate. In more detail,
for number of prior inputs, a set of {6, 12, 24, 48} was examined; for number of training
epochs, a set of {5–100} was examined; for mini-batch size, a set of {8–512} was examined;
optimizer types {RMSProp, ADAM, SGD, AdaGrad, AdaDelta, AdaMax, NADAM} were
applied; activation functions {Relu, Elu, Tanh, Sigmoid} were applied; the learning rate
takes values within {10−5–10−1}; see refs [49,67,68]. The grid search ended up with the
optimal hyperparameters shown in Table 4.

Table 4. Optimal hyperparameters of the models.

Multi-Channel CNN/Multi-Head CNN
Encoder–Decoder LSTM

Optimizer: Adam
Activation function: Tanh

Mini-batch size: 16
Learning Rate: 10−4

Epochs for windspeed forecasting: 15
Epochs for solar irradiation forecasting: 50

Prior inputs: 24

In this research, 12 monthly models were applied for each deep learning technique
for solar irradiation and windspeed one-day-ahead forecasting, and were developed with
their corresponding optimal parameter configurations. Each model was run 20 times by
performing several experiments in order to reduce the forecasting error statistics, which
was found to be sufficient for the present work’s case studies. Then, the findings were
recorded according to the mean values of the forecasting performance statistical metrics.
Computations were carried out on a desktop computer with the following characteristics:
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64 bit OS, CPU i5 2.30 GHz, and 8.00 GB of RAM. The forecasting run time for each test set
was about 8 min.

3. Deep Learning and Conventional Forecasting Model Performance and Discussion

3.1. Deep Learning Forecasting Performance Evaluation Using Well-Established Error Metrics

Having arrived at the optimal hyperparameters of the forecasting models, evaluation
of the results of windspeed and solar irradiation forecasting was based on well-known
relationships to calculate the deviation (error) between predicted and real (measured)
values, i.e., the well-known forecasting error statistical metrics [1]. These well-known
relationships that are used extensively to evaluate forecasting methods in such prediction
problems are shown in Table 5, where Y is the actual value and Ŷ is the forecasted value.

Table 5. The performance metrics used.

Mean Squared Error (MSE) MSE = 1
N ∑

(
Y − Ŷ

)2
Root Mean Squared Error (RMSE) RMSE =

√
MSE

Mean Absolute Percentage Error (MAPE) MAPE = 100%
N ∑

∣∣∣Y−Ŷ
Y

∣∣∣
Mean Absolute Error (MAE) MAE = 1

N ∑
∣∣Y − Ŷ

∣∣
Normalized Root Mean Squared Error (nRMSE) nRMSE = RMSE

Y
Coefficient of Determination (r2) 1 − Var(Y−Ŷ)

Var(Ŷ)

In Figures 2–5, solar irradiation hourly predictions and windspeed hourly predictions
are presented for July and November of 2016 for all the deep learning models that were
applied in this survey. The figures followed with the letter ‘a’ (e.g., Figure 2a) refer to the
recursive multistep forecast strategy, while the figures followed with the letter ‘b’ refer to
the multiple-output forecast strategy. It is clarified that in Figures 2–5 in the horizontal
axes the time unit is ‘hour’, but obviously this is not possible to show graphically; thus,
the time interval appearing is ‘day’, so within each interval of ‘one day’, 24 hourly values
are depicted. The fluctuations in solar irradiation observed in Figure 3a,b are due to the
cloudy weather during November, in contrast with Figure 2a,b, where the clear sky during
July gives an almost periodical curve. In both Figure 4a,b and Figure 5a,b, small and high
variations in the windspeed were observed.

The average daily performance metrics for each of the three deep learning algorithms
applied for each month of 2015 and 2016 for solar irradiation forecasting and windspeed
forecasting are presented in Tables 6 and 7, respectively, in order to determine which method
is more appropriate for solar irradiation and windspeed forecasting. In Tables 6 and 7,
CNN1 and CNN2 refer to multi-head CNN and multi-channel CNN, respectively.

Concerning the three deep learning techniques, the encoder–decoder LSTM method
showed improved forecasting performance for solar irradiation forecasting, while multi-
head CNN (CNN1) gave higher success rates for windspeed forecasting according to the
performance metrics shown above for both strategies. Comparing the recursive multistep
forecast strategy with the multiple-output forecast strategy, the latter outperformed the
former in all cases studied. Moreover, Table 6 clearly shows that for the summer months
the deep learning models had better forecasting rates than for the remaining months of
the year for solar irradiation forecasting due to the absence of clouds, which is somewhat
expected. Encoder–decoder LSTM presents a strong competitive advantage, especially in
summer months, while in the remaining months encoder–decoder LSTM performs slightly
better in comparison with CNN1 and CNN2. In Table 7, CNN1 performs a little better
in all the months of the year in comparison with the encoder–decoder LSTM and CNN2
for windspeed forecasting. Taking into account the increased variability of windspeed in
contrast to solar irradiation and the 24 h forecasting horizon, the MAPE index values are
justified (see similar results in refs [69–71]). Moreover, April and March are the windiest
months of the year, which justifies the high MAPE index values of these months compared
to the other months of the year.
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(a) 

 
(b) 

Figure 2. Solar irradiation forecasting during July 2016. (a) recursive multistep forecast strategy;
(b) multiple-output forecast strategy.
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(a) 

 
(b) 

Figure 3. Solar irradiation forecasting during November 2016. (a) recursive multistep forecast
strategy; (b) multiple-output forecast strategy.

84



Energies 2022, 15, 4361

 
(a) 

 
(b) 

Figure 4. Windspeed forecasting during July 2016. (a) recursive multistep forecast strategy;
(b) multiple-output forecast strategy.
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(a) 

(b) 

Figure 5. Windspeed forecasting during November 2016. (a) recursive multistep forecast strategy;
(b) multiple-output forecast strategy.
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Table 6. Solar irradiation forecasting results: (a) average daily forecasting results for 2015 and 2016
with the recursive multistep forecast strategy. (b) average daily forecasting results for 2015 and 2016
with the multiple-output forecast strategy.

(a)
MAPE (%) RMSE (W/m2) MAE (W/m2) nRMSE

CNN1 CNN2 LSTM CNN1 CNN2 LSTM CNN1 CNN2 LSTM CNN1 CNN2 LSTM

January 114.35 93.35 91.57 195.09 186.68 180.37 140.01 133.16 125.55 0.79 0.74 0.72
February 81.93 64.95 58.33 208.35 187.78 185.58 157.42 136.27 128.82 0.61 0.54 0.51

March 144.02 132.22 129.16 282.32 265.99 251.70 186.67 179.94 176.40 0.69 0.68 0.64
April 48.67 42.16 41.49 153.18 145.49 141.83 117.96 102.00 98.78 0.31 0.28 0.29
May 88.36 75.90 73.99 216.97 206.20 201.86 138.29 126.18 122.88 0.40 0.37 0.35
June 24.70 19.06 17.09 88.48 84.92 79.83 35.41 31.94 27.71 0.14 0.14 0.12
July 16.19 17.10 12.26 50.08 47.75 43.84 25.56 27.32 22.31 0.07 0.05 0.05

August 8.61 8.21 5.86 25.25 25.12 22.30 18.23 19.55 15.82 0.05 0.05 0.04
September 44.29 40.34 23.99 100.33 95.60 85.73 74.04 57.74 53.77 0.24 0.25 0.17

October 69.65 59.54 49.40 146.39 141.26 116.15 113.15 105.63 93.00 0.49 0.46 0.43
November 79.15 68.20 65.89 155.85 145.30 137.58 119.54 106.59 104.28 0.51 0.48 0.43
December 77.23 72.54 63.77 156.00 149.17 133.44 124.83 109.38 103.32 0.65 0.60 0.58
Average 66.43 57.80 52.73 148.19 140.11 131.69 104.26 94.64 89.39 0.41 0.39 0.36

(b)
MAPE (%) RMSE (W/m2) MAE (W/m2) nRMSE

CNN1 CNN2 LSTM CNN1 CNN2 LSTM CNN1 CNN2 LSTM CNN1 CNN2 LSTM

January 84.47 66.10 66.14 139.15 130.41 129.63 102.31 93.96 89.80 0.58 0.54 0.54
February 50.36 44.98 42.23 148.53 133.71 132.86 99.92 97.15 93.55 0.40 0.39 0.37

March 96.12 91.10 90.16 188.46 182.16 171.50 126.69 124.85 120.74 0.47 0.47 0.45
April 36.18 32.10 32.32 122.56 109.86 112.59 88.81 80.30 78.78 0.23 0.22 0.23
May 71.72 57.89 59.36 177.83 153.57 155.56 109.37 96.98 99.07 0.34 0.31 0.29
June 20.21 15.51 13.99 72.53 71.31 65.64 28.64 26.65 23.40 0.11 0.12 0.11
July 12.39 13.25 9.74 38.53 37.25 35.57 19.90 21.16 17.78 0.06 0.04 0.04

August 6.42 6.59 4.72 19.05 19.97 17.74 14.30 15.50 12.64 0.04 0.04 0.03
September 31.20 33.23 20.03 81.23 80.80 72.77 53.05 47.50 44.61 0.17 0.21 0.15

October 48.21 41.27 37.98 98.56 98.01 90.85 76.27 72.40 71.21 0.35 0.33 0.31
November 57.30 54.29 51.37 116.36 116.39 109.34 82.57 83.54 84.39 0.37 0.38 0.33
December 58.40 51.00 45.59 107.10 107.95 96.64 84.88 77.35 76.35 0.46 0.44 0.42
Average 47.75 42.28 39.47 109.16 103.45 99.23 73.89 69.78 67.69 0.30 0.29 0.27

Table 7. Windspeed forecasting results: (a) average daily forecasting results for 2015 and 2016 with
the recursive multistep forecast strategy. (b) average daily forecasting results for 2015 and 2016 with
the multiple-output forecast strategy.

(a)
MAPE (%) RMSE (m/s) MAE (m/s) nRMSE

CNN1 CNN2 LSTM CNN1 CNN2 LSTM CNN1 CNN2 LSTM CNN1 CNN2 LSTM

January 30.3 34.06 31.56 2.9 3.04 3.04 2.05 2.28 2.16 0.33 0.35 0.35
February 31.68 38.11 32.79 2.74 2.92 2.83 1.99 2.22 2.02 0.35 0.37 0.36

March 39.31 41.83 41.67 2.87 3.10 3.10 1.98 2.19 2.19 0.39 0.40 0.40
April 44.63 63.19 48.27 1.21 1.63 1.33 1.00 1.38 1.00 0.22 0.31 0.24
May 37.50 40.8 39.9 2.16 2.39 2.29 1.64 1.85 1.79 0.35 0.39 0.38
June 35.59 36.23 38.72 1.83 2.05 2.06 1.45 1.53 1.55 0.26 0.28 0.30
July 13.02 13.53 14.11 1.69 1.75 1.76 1.09 1.14 1.14 0.18 0.19 0.19

August 17.36 18.87 18.74 1.75 2.13 2.00 1.14 1.32 1.28 0.25 0.29 0.26
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Table 7. Cont.

(a)
MAPE (%) RMSE (m/s) MAE (m/s) nRMSE

CNN1 CNN2 LSTM CNN1 CNN2 LSTM CNN1 CNN2 LSTM CNN1 CNN2 LSTM

September 17.67 20.37 19.81 1.78 2.07 1.83 1.12 1.36 1.31 0.23 0.27 0.24
October 31.35 41.98 41.27 2.26 2.68 2.55 1.41 1.76 1.73 0.31 0.37 0.36

November 36.45 40.96 39.73 2.33 2.77 2.69 1.63 2.00 1.82 0.36 0.44 0.42
December 25.86 27.8 29.16 2.59 2.65 2.63 1.92 2.09 2.04 0.29 0.30 0.30
Average 30.06 34.81 32.98 2.18 2.43 2.34 1.54 1.76 1.67 0.29 0.33 0.32

(b)
MAPE (%) RMSE (m/s) MAE (m/s) nRMSE

CNN1 CNN2 LSTM CNN1 CNN2 LSTM CNN1 CNN2 LSTM CNN1 CNN2 LSTM

January 24.98 26.23 25.94 2.48 2.40 2.49 1.78 1.78 1.77 0.29 0.28 0.29
February 26.47 27.44 27.19 2.32 2.33 2.33 1.71 1.77 1.68 0.31 0.31 0.31

March 34.78 34.91 37.85 2.55 2.58 2.61 1.79 1.88 1.86 0.33 0.33 0.35
April 37.48 48.03 36.88 1.03 1.28 1.07 0.88 1.08 0.80 0.19 0.24 0.19
May 33.70 34.92 34.30 1.93 2.06 1.97 1.44 1.56 1.59 0.33 0.33 0.33
June 31.20 34.11 35.01 1.46 1.65 1.65 1.07 1.20 1.21 0.23 0.26 0.27
July 11.02 10.47 11.52 1.44 1.41 1.44 0.95 0.90 0.93 0.16 0.16 0.16

August 13.14 13.37 13.20 1.35 1.52 1.43 0.91 0.94 0.93 0.19 0.21 0.20
September 13.41 15.01 14.62 1.40 1.56 1.37 0.88 0.98 0.97 0.18 0.21 0.18

October 27.58 35.36 35.26 2.00 2.26 2.20 1.28 1.48 1.49 0.27 0.31 0.30
November 30.67 33.39 31.43 1.93 2.24 2.15 1.38 1.58 1.53 0.30 0.35 0.33
December 25.11 25.83 27.25 2.42 2.49 2.44 1.78 1.91 1.91 0.29 0.29 0.28
Average 25.79 28.26 27.54 1.86 1.98 1.93 1.32 1.42 1.39 0.26 0.27 0.27

3.2. Evaluation of Conventional Forecasting Performance Methods Using Error Metrics

In Tables 8 and 9, respectively, the average daily performance metrics for the two well-
proven conventional methods examined (RegARMA and NARX) and the deep learning
technique with the more accurate forecasting performance for solar irradiation (i.e., encoder–
decoder LSTM) and windspeed (i.e., CNN1) are presented [72–77].

Table 8. Solar irradiation forecasting results: (a) average daily forecasting results for 2015 and 2016
with the conventional methods and the best deep learning technique via the recursive multistep
forecast strategy. (b) average daily forecasting results for 2015 and 2016 with the conventional
methods and the best deep learning technique via the multiple-output forecast strategy.

(a)
Solar irradiation results

MAPE (%) RMSE (W/m2) MAE (W/m2) nRMSE

Reg
ARMA

NARX LSTM
Reg

ARMA
NARX LSTM

Reg
ARMA

NARX LSTM
Reg

ARMA
NARX LSTM

January 146.08 127.72 91.57 221.53 206.23 180.37 154.25 149.91 125.55 0.91 0.82 0.72
February 83.38 73.79 58.33 242.46 209.54 185.58 175.77 154.48 128.82 0.77 0.61 0.51

March 176.89 160.73 129.16 291.50 280.21 251.70 200.03 195.26 176.40 0.76 0.73 0.64
April 50.63 48.47 41.49 177.97 160.80 141.83 145.95 131.45 98.78 0.37 0.33 0.29
May 88.58 84.86 73.99 231.43 224.74 201.86 140.49 136.35 122.88 0.46 0.41 0.35
June 26.40 22.31 17.09 84.96 85.76 79.83 36.84 34.23 27.71 0.17 0.15 0.12
July 18.57 15.84 12.26 49.12 48.01 43.84 30.54 27.95 22.31 0.11 0.08 0.05

August 12.30 9.42 5.86 28.85 23.18 22.30 21.55 19.05 15.82 0.09 0.07 0.04
September 51.03 42.04 23.99 111.34 98.45 85.73 77.06 65.22 53.77 0.32 0.28 0.17
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Table 8. Cont.

(a)
Solar irradiation results

MAPE (%) RMSE (W/m2) MAE (W/m2) nRMSE

Reg
ARMA

NARX LSTM
Reg

ARMA
NARX LSTM

Reg
ARMA

NARX LSTM
Reg

ARMA
NARX LSTM

October 81.09 73.79 49.40 156.65 144.43 116.15 125.53 115.67 93.00 0.55 0.51 0.43
November 87.39 74.39 65.89 177.22 158.83 137.58 123.56 107.99 104.28 0.61 0.55 0.43
December 87.00 82.15 63.77 174.47 159.71 133.44 136.24 123.61 103.32 0.80 0.75 0.58
Average 75.78 67.96 52.73 162.29 149.99 131.69 113.98 105.10 89.39 0.49 0.44 0.36

(b)
Solar irradiation results

MAPE (%) RMSE (W/m2) MAE (W/m2) nRMSE

Reg
ARMA

NARX LSTM
Reg

ARMA
NARX LSTM

Reg
ARMA

NARX LSTM
Reg

ARMA
NARX LSTM

January 105.26 95.25 66.14 158.32 151.70 129.63 113.13 110.70 89.80 0.69 0.63 0.54
February 55.12 54.17 42.23 162.22 160.52 132.86 118.01 114.86 93.55 0.54 0.46 0.37

March 124.37 115.31 90.16 204.58 202.59 171.50 144.22 140.60 120.74 0.55 0.55 0.45
April 39.78 39.55 32.32 140.35 130.17 112.59 115.05 108.27 78.78 0.30 0.27 0.23
May 74.63 68.87 59.36 194.54 179.89 155.56 120.10 111.14 99.07 0.40 0.36 0.29
June 22.45 19.08 13.99 72.48 74.46 65.64 31.38 29.93 23.40 0.14 0.13 0.11
July 14.75 13.01 9.74 39.57 39.80 35.57 24.54 23.02 17.78 0.09 0.07 0.04

August 9.85 7.89 4.72 23.42 19.14 17.74 17.56 16.01 12.64 0.07 0.06 0.03
September 38.19 35.88 20.03 84.49 85.88 72.77 58.86 56.80 44.61 0.25 0.23 0.15

October 57.16 53.87 37.98 112.32 106.36 90.85 90.22 84.26 71.21 0.40 0.39 0.31
November 63.49 62.14 51.37 132.11 133.82 109.34 90.94 90.33 84.39 0.46 0.45 0.33
December 63.62 61.68 45.59 126.60 120.25 96.64 99.81 93.75 76.35 0.60 0.57 0.42
Average 55.72 52.23 39.47 120.92 117.05 99.22 85.32 81.64 67.69 0.37 0.35 0.27

Table 9. Windspeed forecasting results: (a) average daily forecasting results for 2015 and 2016 with
the conventional methods and the best deep learning technique via the recursive multistep forecast
strategy. (b) average daily forecasting results for 2015 and 2016 with the conventional methods and
the best deep learning technique via the multiple-output forecast strategy.

(a)
Windspeed results

MAPE(%) RMSE (m/s) MAE (m/s) nRMSE

Reg
ARMA

NARX CNN1
Reg

ARMA
NARX CNN1

Reg
ARMA

NARX CNN1
Reg

ARMA
NARX CNN1

January 48.81 40.09 30.30 3.41 3.23 2.90 2.71 2.40 2.05 0.39 0.37 0.33
February 45.27 37.52 31.68 2.99 2.94 2.74 2.28 2.37 1.99 0.39 0.40 0.35

March 49.48 47.56 39.31 3.27 3.26 2.87 2.30 2.30 1.98 0.43 0.42 0.39
April 72.15 66.14 44.63 1.92 1.69 1.21 1.55 1.40 1.00 0.36 0.32 0.22
May 44.37 42.37 37.50 2.61 2.48 2.16 1.96 1.89 1.64 0.43 0.41 0.35
June 38.20 36.10 35.59 1.95 1.84 1.83 1.55 1.52 1.45 0.29 0.27 0.26
July 19.06 15.21 13.02 2.44 2.05 1.69 1.71 1.32 1.09 0.27 0.23 0.18

August 25.03 22.05 17.36 2.22 2.16 1.75 1.62 1.41 1.14 0.30 0.29 0.25
September 25.83 22.43 17.67 2.23 2.22 1.78 1.70 1.58 1.12 0.30 0.29 0.23

October 56.67 50.04 31.35 2.87 2.82 2.26 1.95 1.90 1.41 0.39 0.39 0.31
November 52.14 49.50 36.45 2.88 2.88 2.33 2.10 2.07 1.63 0.45 0.44 0.36
December 33.75 31.12 25.86 2.78 2.74 2.59 2.17 2.15 1.92 0.31 0.32 0.29
Average 42.56 38.34 30.06 2.63 2.53 2.18 1.97 1.86 1.54 0.36 0.35 0.29
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Table 9. Cont.

(b)
Windspeed results

MAPE(%) RMSE (m/s) MAE (m/s) nRMSE

Reg
ARMA

NARX CNN1
Reg

ARMA
NARX CNN1

Reg
ARMA

NARX CNN1
Reg

ARMA
NARX CNN1

January 38.58 33.92 24.98 2.78 2.76 2.48 2.15 2.06 1.78 0.32 0.33 0.29
February 34.02 31.14 26.47 2.51 2.58 2.32 1.87 2.04 1.71 0.34 0.35 0.31

March 42.18 40.96 34.78 2.82 2.82 2.55 2.02 2.13 1.79 0.37 0.37 0.33
April 58.19 52.33 37.48 1.59 1.39 1.03 1.24 1.16 0.88 0.29 0.27 0.19
May 40.05 38.17 33.70 2.33 2.22 1.93 1.73 1.70 1.44 0.38 0.37 0.33
June 43.96 38.94 31.20 1.90 1.82 1.46 1.44 1.34 1.07 0.30 0.29 0.23
July 15.47 12.73 11.02 1.99 1.73 1.44 1.41 1.11 0.95 0.22 0.20 0.16

August 18.23 15.99 13.14 1.60 1.62 1.35 1.19 1.05 0.91 0.22 0.23 0.19
September 19.42 16.87 13.41 1.70 1.74 1.40 1.31 1.21 0.88 0.23 0.24 0.18

October 48.86 45.15 27.58 2.51 2.50 2.00 1.71 1.69 1.28 0.34 0.34 0.27
November 43.60 40.93 30.67 2.36 2.40 1.93 1.73 1.87 1.38 0.37 0.37 0.30
December 32.36 30.44 25.11 2.69 2.68 2.42 2.07 2.04 1.78 0.31 0.30 0.29
Average 36.24 33.13 25.80 2.23 2.19 1.86 1.66 1.62 1.32 0.31 0.30 0.26

NARX is a nonlinear autoregressive exogenous model that has become popular in the
last few years for its performance in timeseries forecasting problems, and RegARMA is
a model that is based on regression with autoregressive-moving average (ARMA) time-
series errors.

The architecture that was developed based on NARX is series–parallel. This archi-
tecture is used when the output of the NARX network is considered to be an estimate of
the output of a nonlinear dynamic system. Specifically, the model was created with the
following parameters: input delays (1:24), feedback delays (1:24), hidden layer size: 20, and
training learning algorithm (Levenberg–Marquardt).

The parameters used in RegARMA are: autoregressive order: 10, moving average
order: 24, autoregressive lags (1:10), and moving average lags: 24.

The inputs used for NARX and RegARMA were the same as those used in the deep
learning techniques. Regarding the comparison of the conventional methods (Tables 8 and 9),
NARX had slightly better performance than RegARMA for the majority of cases.

The comparison between these two categories of forecasting methods (conventional
vs. deep learning, as presented in Tables 8 and 9) clearly showed the improved forecasting
performance of the deep learning techniques in all of the cases presented and for both
forecasting strategies (i.e., recursive multistep forecast strategy and multiple-output forecast
strategy). Tables 10 and 11 compare the MAPE performance of these methods with the
best performance in each category with respect to turbulence intensity (TI) and clearness
index (CI). TI is defined as the ratio of standard deviation of fluctuating wind velocity to
the mean windspeed, and it represents the intensity of wind velocity fluctuation [78]. CI is
defined as the ratio of the monthly average daily irradiation on a horizontal surface to the
monthly average daily extraterrestrial irradiation, and its value (which lies between 0 and
1) represents a measure of the clearness of the atmosphere: higher CI values appear under
clear and sunny conditions, and lower CI values appear under cloudy conditions [54].
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Table 10. CNN1 and NARX forecasting performance comparison: (a) windspeed average daily
forecasting MAPE with respect to the turbulence intensity (TI) monthly average for years 2015–2016
via the recursive multistep forecast strategy. (b) windspeed average daily forecasting MAPE with
respect to the turbulence intensity (TI) monthly average for years 2015–2016 via the multiple-output
forecast strategy.

(a)

January February March April May June July August September October November December

CNN1
MAPE 30.3 31.68 39.31 44.63 37.5 35.59 13.02 17.36 17.67 31.35 36.45 25.86

CNN1
MAPE im-
provement
over NARX

24.42% 15.57% 17.35% 32.52% 11.49% 1.41% 14.40% 21.27% 21.22% 37.35% 26.36% 16.90%

Average TI 0.402 0.459 0.429 0.592 0.388 0.434 0.226 0.303 0.333 0.519 0.461 0.408

(b)

January February March April May June July August September October November December

CNN1
MAPE 24.98 26.47 34.78 37.48 33.7 31.2 11.02 13.14 13.41 27.58 30.67 25.11

CNN1
MAPE im-
provement
over NARX

26.36% 15.00% 15.09% 28.38% 11.71% 19.88% 13.43% 17.82% 20.51% 38.91% 25.07% 17.51%

Average TI 0.402 0.459 0.429 0.592 0.388 0.434 0.226 0.303 0.333 0.519 0.461 0.408

Table 11. LSTM and NARX forecasting performance comparison: (a) solar irradiation average daily
forecasting MAPE with respect to the clearness index (CI) monthly average for years 2015–2016
via the recursive multistep forecast strategy. (b) solar irradiation average daily forecasting MAPE
with respect to the clearness index (CI) monthly average for years 2015–2016 via the multiple-output
forecast strategy.

(a)

January February March April May June July August September October November December

LSTM
MAPE 91.57 58.33 129.16 41.49 73.99 17.09 12.26 5.86 23.99 49.4 65.89 63.77

LSTM
MAPE im-
provement
over NARX

28.30% 20.95% 19.64% 14.40% 12.81% 23.40% 22.60% 37.79% 42.94% 33.05% 11.43% 22.37%

Average CI 0.42 0.45 0.49 0.56 0.60 0.64 0.65 0.64 0.62 0.55 0.50 0.43

(b)

January February March April May June July August September October November December

LSTM
MAPE 66.14 42.23 90.16 32.32 59.36 13.99 9.74 4.72 20.03 37.98 51.37 45.59

LSTM
MAPE im-
provement
over NARX

30.56% 22.04% 21.81% 18.28% 13.81% 26.68% 25.13% 40.18% 44.18% 29.50% 17.33% 26.09%

Average CI 0.42 0.45 0.49 0.56 0.60 0.64 0.65 0.64 0.62 0.55 0.50 0.43

More specifically, Table 10 compare the performance improvement of CNN1 over
NARX (i.e., the conventional method with the best average forecasting performance) with
respect to the TI value for the windspeed data of 2015–2016. From Table 10, it can be seen
that CNN1 tends to have lower MAPE values with slight MAPE index improvement com-
pared to NARX for the months with lower TI (i.e., July to September) and high MAPE index
improvement for the months with higher TI (i.e., April and October). Table 11 compares the
performance improvement of encoder–decoder LSTM over NARX (i.e., the conventional
method with the best average forecasting performance) with respect to the CI value for
solar irradiation data of 2015–2016. Regarding Table 11, it can be seen that for months with
higher CI (i.e., summer months), MAPE index improvement is significantly lower.
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As a result, the modified deep learning methods presented above perform much
better than the conventional methods for the months with higher windspeed fluctuation.
Moreover, comparing multi-head CNN for windspeed forecasting and encoder–decoder
LSTM for solar irradiation forecasting with other popular deep learning techniques with the
same one-day-ahead forecasting horizon (see the results of refs [69–71,79] has demonstrated
that the presented modified deep learning models in this paper perform better.

Finally, Table 12 shows the efficiency of the forecasting models applied based on the
coefficient of determination (r2).

Table 12. Coefficient of determination (r2): (a) for deep learning techniques with the best average daily
forecasting performance via recursive multistep forecast strategy. (b) for deep learning techniques
with the best average daily forecasting performance via the multiple-output forecast strategy.

(a)

Method January February March April May June July August September October November December

Windspeed
forecasting CNN1 0.74 0.72 0.71 0.68 0.7 0.72 0.8 0.78 0.78 0.73 0.7 0.74

Solar
irradiation
forecasting

LSTM 0.64 0.71 0.59 0.75 0.68 0.86 0.87 0.92 0.85 0.76 0.72 0.72

(b)

Method January February March April May June July August September October November December

Windspeed
forecasting CNN1 0.80 0.78 0.77 0.75 0.78 0.79 0.87 0.85 0.85 0.81 0.78 0.81

Solar
irradiation
forecasting

LSTM 0.71 0.78 0.67 0.84 0.74 0.95 0.95 0.97 0.93 0.85 0.80 0.79

4. Conclusions

In this paper, a multi-channel CNN, a multi-head CNN, and an encoder–decoder
LSTM were implemented for one-day-ahead windspeed and solar irradiation forecasting
for an isolated site on Dia Island, Crete, Greece. For the optimal sizing of a microgrid based
mainly on RES, advancements in medium-term windspeed and solar irradiation forecasting
will play a crucial role in the development of power systems. Moreover, they can be easily
integrated into power system design and control, especially for isolated ones, as in the
case study above. Increasingly accurate one-day-ahead solar irradiation and windspeed
forecasting opens up opportunities for grid operators to predict and optimally balance
energy generation and consumption, especially in isolated grids.

From the results of the one-day-ahead windspeed forecasts presented in this paper, it is
clear that the worst forecast accuracy was observed during the winter months, as expected
due to the increased variability of the windspeed, whereas during the summer months,
there was a considerable improvement in forecasting accuracy, as the prediction errors
were smaller. The multi-head CNN (CNN1) model gave better forecasting results than the
other deep learning methods examined in this paper for windspeed forecasting. For solar
irradiation forecasting, all models gave much better results during the summer months
due to the absence of clouds relative to the other months, which was somewhat expected.
Moreover, it was shown that the encoder–decoder LSTM network outperforms multi-head
CNN (CNN1) and multi-channel CNN (CNN2) for solar irradiation forecasting, in contrast
with windspeed forecasting, where multi-head CNN gave more accurate results. Addition-
ally, the superiority of the multiple-output forecast strategy versus the recursive multistep
forecast strategy is apparent in all cases of windspeed and solar irradiation forecasting.

Concerning the two well-proven conventional forecasting methodologies examined,
NARX had slightly better performance than RegARMA in the majority of cases.

This study has also clearly demonstrated based on long historical data (i.e., 2005–2016)
and extended comparative simulations the more accurate forecasting performance of the
deep learning techniques in all the cases examined compared with the two well-proven
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conventional forecasting methods also examined. However, given the extremely large
differences in the number of parameters and in the use of information between deep
learning and conventional forecasting techniques, this result was somewhat expected.
Finally, comparison of the recursive multistep forecast strategy versus the multiple-output
forecast strategy was thoroughly performed.

The improved, with the slight modifications proposed above, deep learning forecast-
ing models presented in this paper were shown to perform better than conventional deep
learning and autoregressive methods [69–73]. Moreover, they can also be applied to photo-
voltaic panel- and wind turbine-generated electric power forecasting. It must be noted that
errors of the measuring equipment were not taken into account. If their measurements are
available, additional meteorological and site determination factors such as the amount of
rain, azimuth for solar irradiation, wind direction, and the terrain’s form and roughness for
windspeed forecasting could also be considered for further improvement of forecasting
performance. Accurate solar irradiation and windspeed one-day-ahead forecasting consti-
tutes the first indispensable module, together with the energy storage and management
module, to form smart energy management system (SEMS) to optimize the operation of a
microgrid incorporating RES.
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Abbreviations and Nomenclature

Variable Definition

ANN Artificial neural networks
ARIMA Autoregressive integrated moving average model
ARMA Autoregressive moving average model
BiLSTM Bidirectional long short-term memory neural network
BPNN Back propagation neural network
CEEMD Complementary ensemble empirical mode decomposition
CI Clearness index
CNN Convolutional neural network
DBN Deep belief network
EMD-ENN Empirical mode decomposition and Elman neural network
EWT Empirical wavelet transform
FFNN Feed forward neural networks
Gon Normalized extraterrestrial irradiance
Gsn Normalized surface irradiance
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HTD Hybrid timeseries decomposition strategy
GSRT General Secretariat for Research and Technology
HFRI Hellenic Foundation for Research and Innovation
HMD Hybrid model decomposition method
K Number of hours of each day
LSSVM Least-square support vector machine
LSTM Long short-term memory
MAE Mean absolute error
MAPE Mean absolute percentage error
ML Machine learning
MOBBSA Multi-objective binary backtracking search algorithm
MSE Mean squared error
NARX Nonlinear autoregressive exogenous model
NDD(d) Normalized discrete difference per day
NDD(h) Normalized discrete difference per hour
nMAE Normalized mean absolute error
nRMSE Normalized root mean squared error
NWP Numerical weather prediction forecasting model
obs Observation
OSORELM Online sequential outlier robust extreme learning machine method
RegARMA Regression model with autoregressive moving average errors
RES Renewable energy sources
RMSE Root mean squared error
RNN Recurrent neural networks
seq2seq Sequence-to-sequence
SEMS smart energy management system
SVM Support vector machine
TI Turbulence intensity
VMD Variational mode decomposition
WRF Weather research and forecasting model
WT-ARIMA Wavelet transform-autoregressive integrated moving average model
xi Current value
xmax Maximum original value
xmin Minimum original value
y Normalized value
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Abstract: In this paper, detailed scalability and replicability plans have been developed to facilitate
the adoption of innovation technologies in the pan-EU market. Smart grid development must enable
both information and power exchange between suppliers and customers, thanks to the enormous
innovation in intelligent communication, monitoring, and management systems. Implementing
physical infrastructure alone is not enough, but a smart grid must include new business models
and new regulations. In recent years, the number, participants, and scope of smart grid initiatives
have increased, with different goals and results. FLEXITRANSTORE project integrates hardware
and software solutions in all areas of the transmission system and wholesale markets, unleashing
the potential for full flexibility of power systems and promoting the penetration of renewable
energy sources and pan-EU markets. Full deployment of these demonstrated solutions requires a
reasonable level of scalability and replicability to prevent project demonstrators from continuing
local experimental exercises. Scalability and replicability are fundamental requirements for successful
scaling-up and replication. Therefore, scalability and replicability enable or at least reduce barriers to
the growth and reuse of project demonstrator results.

Keywords: smart grid; scalability; replicability; FLEXITRANSTORE

1. Introduction

1.1. Smart Grids and Renewable Energy Sources

Smart grid technology is enabling the effective distribution and management of Re-
newable Energy Sources (RES) such as wind, solar, and hydrogen. Renewable energy
integration aims to improve the electric grid’s system design, planning, and operation in or-
der to reduce carbon emissions and other air pollutants by increasing the use of renewable
energy, storage systems, and other clean distributed generation.

A great variety of distributed energy resource assets are connected to the power grid
via the smart grids. Utilities can rapidly detect and manage service issues by leveraging the
Internet of Things (IoT) to collect data on the smart grid [1–3]. This self-healing capability
is critical to the smart grid because utilities no longer rely on customers to report problems.
Wind farms, for example, rely on mechanical gears with several sensors in each connection.
Every sensor can record current weather and ambient conditions. These data are then
promptly routed through the grid to alert the utility of any problems, improving both
service quality and safety.

Electric vehicles, storage systems, and distributed generation of RES are transforming
distribution grid characteristics around the world [4,5]. Under certain operational settings,
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these novel components could create bidirectional energy flows. This has an impact on
grid planning since they are optimized for one direction flows. In these conditions, even
if the existing processes for organizing distribution networks on radial layouts are very
straightforward and extensively verified, they cannot be implemented holistically.

FLEXITRANSTORE (An Integrated Platform for Increased FLEXIbility in smart TRANS-
mission grids with STORage Entities and large penetration of Renewable Energy Sources)
contributes to the development of a pan-European transmission grid with high flexibility
and high interconnection [6]. This will accelerate the transformation of the current energy
production mix by increasing the share of renewable energy sources. In order to bring
flexibility to the European power system, new control and storage methods, smart grid
technologies, and new market approaches will be developed, installed, and demonstrated.

1.2. Smart Grids and FLEXITRANSTORE

Currently, most smart grid projects are still in the phase of Research and Development
(R&D) or demonstration. In [7], it is confirmed that regardless of how quickly various
utilities embrace smart grid concepts, technologies, and systems, this massive transforma-
tion is inevitable, and at the same time, many researchers across the globe are working to
make this transition by developing the next-generation technologies required to realize
the smart grid easier. Working on this direction in March 2011, the European Commission
and the European Free Trade Association (EFTA) issued the Smart Grid Mandate M/490
which requested CEN, CENELEC, and ETSI to develop a framework to enable ESOs to
perform continuous standard enhancement and development in the smart grid field [8].
Research work in [9] analyses the state-of-the-art of smart grids, in their technical, manage-
ment, security, and optimization aspects, providing also a brief overview of the regulatory
aspects involved in the development of a smart grid, mainly from the viewpoint of the
European Union.

In [10], the smart grid development in Brazil is performed, presenting the policy
and regulation efforts beyond investments, taking into account a pattern for smart grid
development, since the smart grid implementation is very high. Moreover, in [11] a review
of the current research on smart grids is carried out, shedding light on the development of
smart grids in China, which is then analyzed to identify the obstacles and barriers in the
development process. Reference [12] presents a survey of smart grid projects in Europe
bringing together input and feedback from a variety of stakeholders through a cooperative
and transparent process. D. Novosel makes clear in [13] that smart grid technologies
are required to manage grid complexity, addressing a holistic smart grid approach and
experiences with deploying smart grid projects. Research work in [14] indicates that
demand response services or vehicle-to-grid and grid-to-vehicle services will be offered in
conjunction with the supply of RES.

The work in [15] deals with the assessment of the flexibility benefits coming from
smart grid innovations, developed in the H2020 project FLEXITRANSTORE. The project
includes pilots in various sites across the Europe, where appropriate technologies have
been developed in an effort to enhance the flexibility of the systems examined in the context
of the project. Research work in [16] demonstrates the trading and flexibility of services
amongst TSOs, DSOs, and Prosumers in a transparent, secure, and cost-effective manner
using Blockchain-based TSO-DSO flexibility marketplace. In [17] a flexibility adequacy
assessment of the countries of South-East Europe is presented, and in [18,19] a novel
technology integration is considered in order to provide more flexibility resources to the
power system to absorb more renewable energy.

In [20] a flexibility-oriented day-ahead market model that accounts for renewable
sources and storage units where no incentive is provided to the renewable sources is
developed, and its results demonstrate how a system can cope with renewable sources
with no incentive in the presence of storage. Moreover, in [21] a detailed survey conducted
during FLEXITRANSTORE on identifying stakeholders’ opinion on electricity networks’

100



Energies 2022, 15, 4519

challenges is presented and commented and in [22] grid flexibility solutions for transmission
networks with increased RES penetration are examined.

The operational flexibility potential of individual power system assets and their
aggregation at the system level is examined in [23] and a similar work in [24] present
a methodology to assess the flexibility of a power system while explicitly considering
the limitations of the transmission network. Researchers in [25] evaluate the operational
flexibility for power system with energy storage, while in [26] a framework to efficiently
characterize the available operational flexibility in a multi-area power system is presented
and in [27] the flexibility of a test system with increasing penetrations of variable generation
is assessed.

Electricity, natural gas, water, and district heating/cooling systems are predominantly
planned and operated independently. The work presented in [28] centers on residential
city districts as source of flexible electrical energy demand and generation, while [29]
presents an integrated optimization and control of such systems at multiple spatiotemporal
scales that can bring significant socioeconomic, operational efficiency, and environmental
benefits. In [30], an in-depth review of the modeling and implementation of flexible
ramping products that have been proposed in the industry to improve the availability of
ramp capacity is presented.

The European Commission in its effort to speed the clean energy transition supports
the development of flexible energy efficiency and renewable financing platforms at national
or regional level [31]. In [32], the Smart Grids Task Force reviews the value which demand
side flexibility could be able to bring to the energy system and its possible impact to the
future market development in Europe.

Due to a lack of practical experience, the outcome of implementing smart grids on a
large scale remains questionable. Many projects have been launched around the world to
evaluate various smart grid solutions in real-world systems [33–36]. These projects provide
extremely significant information, but the findings obtained are dependent on the precise
setting in which the tests are carried out. As a result, the testing conclusions may not be
immediately applicable to the deployment of the same solutions on a bigger scale or in
other regions. To understand the impact of the context on the outcomes of deploying a
smart grid solution, a thorough investigation must be undertaken. It is required to assess
the effects of various smart grid systems on existing networks in greater scale for various
DEMOs, and this is the main goal of the current work.

FLEXITRANSTORE develops a next-generation Flexible Energy Grid (FEG) that will
be integrated into the European Internal Energy Market (IEM) through the flexibility ser-
vices [15–32]. The project includes pilots in various sites across Europe, where appropriate
technologies have been developed in an effort to enhance the flexibility of the systems
examined in the context of the project. The work presented here takes both national and
regional approaches and recognizes the need to seamlessly integrate the national markets.
Networks in Southeast Europe, in particular, do not yet have the high levels of interconnec-
tivity that other European networks have. Full deployment of the tested solutions requires
a reasonable level of scalability and replicability to prevent the project demonstrator from
continuing local experimental exercises. This paper focuses on analyzing the scalability,
replicability, and implementation conditions of the FLEXITRANSTORE concept.

This FEG supports the capabilities of power systems to maintain continuous operation
in the face of rapid and large fluctuations in supply or demand. Therefore, as shown
in Figure 1, within this integrated FEG, new business models and a wholesale market
infrastructure must be upgraded to network players, providing incentives to new ones to
participate. Moreover, it will demonstrate new energy trading and business perspectives
for cross-border resources management.
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Figure 1. How the European Power System will be transformed by FLEXITRANSTORE through
interventions targeting the whole Energy Value Chain [6].

The ability of a process, network, or system to respond to the growth in demand by
increasing respectively its scope range or size is called scalability [33–35,37,38]. For FLEX-
ITRANSTORE scalability is crucial, since in different demonstration sites, with different
technical requirements development, implementation and validation of several demos
have been carried out. The first step to deploy the technological innovation on a large-
scale of the FLEXITRANSTORE project in order to meet growing volumes of demand is
the scalability analysis. The ability of a process, network, or system to be duplicated in
another time or location is called replicability [33–35,37,38]. The replication ability of the
FLEXITRANSTORE technological innovations has been studied due to the application of
different technologies and costs for different countries.

The focus of this work is to evaluate the experience and the demonstration results,
gathered during the period of research, implementation, and testing in order to develop at
EU level a detailed scalability and replicability plan. In order to find the practical problems
and major benefits of the proposed actual field technical innovations, the results need to be
evaluated. Moreover, it is extremely important to find how these innovations meet both the
challenges of the variable integration of renewable energy sources and the interconnection
of production capacity by increasing the awareness of the grid’s flexibility. Two sets of
questionnaires one for scalability and the other for replicability have been developed. The
project partners are the responders of this survey, who have been involved as a team leader
or contributors in the development of functionalities.

FLEXITRANSTORE provides technical innovations that are weighed against the EU
energy targets and specific scalability and replicability factors. These factors affect the
following four common areas of interest: regulatory, economic, technical, stakeholder accep-
tance. Replicability factors are: Network configuration, Standardization, Macroeconomics,
Interoperability, Market design, Business model (economic factors), Regulation, and Ac-
ceptance. Scalability factors are: Modularity, Technology evolution, Software integration,
Existing infrastructure (technical factors), Interface design, Economy of scale, Profitability
(economic factors), Regulation, and Acceptance.

2. The European Commission Bridge—Scalability and Replicability Analysis (SRA)

BRIDGE is a European Commission initiative that integrates the Horizon 2020 Smart
Grid and Energy Storage Projects to structure cross-cutting issues that arise in demonstra-
tion projects and can be barriers to innovation [39]. The BRIDGE process facilitates ongoing
knowledge exchange between projects and draws conclusions and recommendations re-
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garding future use of project results through four different Working Groups representing
the main areas of interest: Business Models, Data Management, Consumer Engagement,
and Regulations.

In BRIDGE, several Task Forces (TF) were created to address topics that could be
horizontal to more than one of the above-mentioned working groups. A specific TF was
created to investigate how different projects approached the Scalability and Replicability
Analysis (SRA) of different project results.

The first objective of the TF was the development of common guidelines for perform-
ing SRAs, and the second one the development of ideas on the definition of the scope
and implementation of a toolbox/repository of necessary data, best-practices, and past
experiences. The steps to perform an SRA of a smart grid project are depicted in Figure 2
and have been followed in the analysis of this work and for each DEMO. The overall
approach has five stages, with each stage having several steps. The definition of the SRA
methodology and how to carry out the SRA are the most complex stages. These five stages
are briefly described below.

Figure 2. SRA guidelines [39].

103



Energies 2022, 15, 4519

Step 1 Definition scope of the SRA: Selection of the SRA dimension or dimensions
that will be assessed in the Smart Grid Architecture Models (SGAM) layers and within each
SGAM layer.

Step 2 Selection of the SRA dimensions: After the definition of the methodology,
SRA developers perform the corresponding qualitative/quantitative analyses for the pre-
viously defined scenarios and collect the required input data. During this stage pro-
gression it may be necessary to go back and re-assess some aspects of the methodology
initial described.

Step 3 Definition of the methodology for each SRA dimension selected: this third
stage requires the definition of the methodology for each of the dimensions previously
selected. It is recommended to rely on best practices from previous projects, in order to
make informed decisions at each one of these steps. SRA developers have to take this into
consideration, during the development of quantitative analyses. The proper definition of
the relevant Key Performance Indicators (KPIs) and simulation scenarios focusing on the
most critical parameters affecting the scalability and replicability is extremely important.
In order to avoid delays in the execution of the SRA, an early definition of the input data
is required.

Step 4 Performance of the SRA for each dimension: This stage consists of, first,
analyzing the results obtained in the SRA for each dimension individually and, then, trying
to correlate the results for the various dimensions if relevant.

Step 5 Conclusions and SRA rules/roadmap: The derivation of a set of SRA rules
is allowed by this analysis. This can be defined as a conclusion on the most important
aspects that affect the scalability and replicability of the technology or solution under
investigation. SRA can also be used to provide an implementation roadmap. This can
include timelines and milestones for the implementation and/or use of the technology or
solution being evaluated.

It must be mentioned that H2020 projects, even if they all address new solutions related
to smart grids and storage, are very diverse and consider a wide range of functionalities
and technologies at different Technology Readiness Levels (TRLs). Consequently, in this
work, the proposed common SRA methodology was applied ensuring that the proposed
set of steps can support and speed up the delivery of a high-quality SRA. These steps were
as a checklist to ensure that any aspect included or not in the SRA methodology selected by
a project has been carefully considered. In any case, there is much room for those in charge
of performing the SRA to implement and adapt the proposed guidelines as required by the
characteristics of their project.

3. Scalability and Replicability Analysis Approach

Scalability of a system is understood as a set of elements interacting with each other,
with similar boundary conditions. In a more restrictive formulation, scalability works
to maintain system performance and function, retaining all its required properties when
scaling up without correspondingly increasing system complexity [33,40].

Scalability analysis is extremely important for the FLEXITRANSTORE project to do
the following:

i. Apply the technical innovations on smart storage and transmission on a large-scale
deployment.

ii. Provide the appropriate business models and market strategies.
iii. Integrate flexibility assessment into system planning and power system research.

Replicability refers to the ability of a system to be replicated at another point in
time [30]. Due to the difference in proposed technology and cost, replicability of FLEX-
ITRANSTORE (the ability to duplicate the technical innovations in another location) is
investigated. Each demo has been implemented, installed, and tested in different locations
in the Southeast European (SEE) region, and typically has different technical requirements
related to national regulations.
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Scalability and replicability are fundamental to successful scaling and replication.
Therefore, scalability and replicability enable or at least reduce barriers to growth and reuse
of R & D and demonstration project results. This is important for businesses and utilities
because scaling and replication offer significant benefits such as cost-effective deployment
to a larger customer base and cost-effective reuse of proven solutions.

By examining the scalability and replicability factors that affect the scalability and
replicability of FLEXITRANSTORE, scalability and replicability are analyzed, and potential
barriers to large-scale deployments are identified.

Specifically, the factors extracted from the literature review were categorized into four
main categories.

• Technical factors that determine whether the developed solution in a specific project is
inherently scalable and/or replicable, i.e., whether it is feasible for scaling up and/or
to replicate.

• Economic factors that reflect whether scaling or replication is feasible. This important
step in investing analysis (internal rate of return, net present value, etc.) and ensuring
that the business model applies on a larger scale or in different settings than in the
original case is often ignored and poses a major barrier.

• Factors related to acceptance and regulation of stakeholders such as authorities, regu-
lators, end users, etc., reflect the extent to which the social environment and current
regulatory is willing to respond to an expanded version of the project or whether a
new environment is suitable for receiving a project.

According to [33,35], in Tables 1 and 2, the scalability and replicability factors are
summarized, relating to the economic, technical, regulatory, and stakeholder acceptance
categories. Each of these are further categorized in order to identify the remaining/potential
issues and to capture specific project achievements that can limit scalability and replica-
tion. Moreover, the main limitations and barriers that have an impact on scalability and
replicability are identified. The identified issues already describe necessary conditions
for scaling-up and replication, and they represent somehow rules to be contemplated for
scalability and replicability.

Table 1. Scalability factors.

Area Sub-Areas Factors Limitation Issues

T
e

ch
n

ic
a

l

Technology Modularity Communication capacities
Computation memory

Technology Evolution

Expected equipment costs
IT/data security

Missing standardization of control signal and
information flow from/to distributed generation

Big data

Control and
communications

Interface
Interface design Depends on nature of the project and focus

Infrastructure Software tools
integration Big data

E
co

n
o

m
ic Economy of scale Economies of Scale No detailed cost-benefit analysis

Profitability Uncertainty remuneration
Focus on feasibility

R
e

g
u

la
to

ry
a

n
d

S
ta

k
e

h
o

ld
e

r

Regulation Regulatory Issues
Data confidentiality

Lack of rules to provide service
Lack of rules for interaction

Consent by users, local
authorities and public Acceptance Change customer behaviour

Stakeholder opposition or hesitancy
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Table 2. Replicability factors.

Area Sub-Areas Factors Limitation Issues

T
e

ch
n

ic
a

l

Technology Standardization
New non-standardized services

Proprietary standards
Ability for standard-conform implementation

Interoperability

Customized (project/equipment)
implementation

Provider-specific applications
New non-standardized services

Control and
communications

Interface
Standardization Depends on nature of the project and focus

Interoperability

Infrastructure Network Configuration

Focus/dependency on resource
Load/generation mix and situation

Infrastructure need
Demographics

E
co

n
o

m
ic

Business Model Business model Uncertainty remuneration
Lack of rules to provide service

Profitability Analysis Macro-economic factors
Lack of analysis on

macro-economic factors
Lack of plans to export solution

Market Design

R
e

g
u

la
to

ry
a

n
d

S
ta

k
e

h
o

ld
e

r Regulation Regulatory Issues Non-existing or strongly varying regulatory and
legal framework

Acceptance Acceptance Change customer and operator behaviour

4. Scalability Factors

The different scalability factors are analyzed in the following subsections
below [33–35,38–40].

4.1. Technical Factors

Modularity is a necessary requirement for scaling up. It refers to whether a configura-
tion can be divided into forbidden components or not. A solid layout will be appropriate
for larger-scale execution. On the other hand, well specified (and isolated) constituent ele-
ments provide the flexibility needed in ordering the setup to be transferred to a larger scale.
Consequently, this factor investigates to what extent a solution is modular (e.g., how simple
it is to include new components or whether there are limits on including components).

The number of interactions between components is addressed via interface design.
If they grow more than linearly, the scaled-up solution may become overly complex and
redundant at the target scale, limiting the scaled-up solution’s performance. The extent to
which interactions between components are managed locally or centrally is investigated
through interface design.

Except for the solution’s complexity, the software tools required to deploy it (such as
simulation models, databases, and so on) must be able to handle the increased size. Note
that a favorable technical progress can offset this impact. When the solution size grows,
this factor influences how much the performance of software tools is affected.

The solution’s compatibility with the technological environment in which it will be
implemented, as well as the interaction between its components and the outside world, is
taken into account during the compatibility analysis.
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4.2. Economic Factors

A project can only be expanded up if it is viable at the required scale. This implies
that both costs and income must be improved. This effectively means that the marginal
cost and revenue functions of a solution will determine whether scaling-up is possible or
not. The variation of the marginal cost curve according to the number of deployed units
is particularly noteworthy in this situation, since the most obvious patterns influencing
scalability are rise, drop, or stepwise development.

The percentage increase in costs equals at most the percentage increase of the project
size. The significance of project size varies greatly depending on the undertaking (e.g., the
number of meters, the amount of managed active power, the number of customers, the
number of distributed generation units, etc.) This factor then specifies how much costs
increase as the solution size grows.

Similarly, the rise in benefits should be proportional to the increase in project size.
This is reflected in the profitability factor. This component asks and defines how much
advantages grow as the solution size grows.

4.3. Regulatory and Stakeholder

Regulation establishes the framework for transmission, distribution, generation, and
supply activities, outlining how the various agents involved (investors, consumers, etc.)
behave and interact. The roles and responsibilities of agents, the rules, and requirements
for providing services, the rules for remunerating regulated activities, and the rules for
agent interaction are all defined by regulation. Regulation is understood in terms of its
impact on the size and scope of the project when it comes to scalability. Scalability is usually
influenced by the regulations and requirements for providing specific services. The factor
regulation then evaluates whether there are any regulatory constraints to the solution’s size
and scope.

Acceptance refers to the willingness of stakeholders such as regulators, policymak-
ers, and end users to accept an expanded project. It is vital to examine if the concerned
stakeholders will accept the proposed changes. Although a project’s solution may have
overcome regulatory and legal constraints (for example, by changing the regulatory frame-
work), it is critical that other stakeholders accept the solution. This element decides if
stakeholder acceptance has been explored and if any challenges are anticipated.

5. Replicability Factors

The different replicability factors are analyzed in the following subsections
below [33–35,38–40].

5.1. Technical Factors

The standardization process and the proper collection of standards by projects are
complicated by the large number of players, the required speed, the numerous worldwide
activities, and the constantly changing solutions. The standardization factor investigates
and determines how standard-compliant the solution is and/or how readily it can be made
standard-compliant.

Solutions must also be interoperable. Given the numerous standards available, it is
theoretically feasible to have anything standardized that is incompatible with a specific sys-
tem or environment (that operates according to a different standard). The ability of two or
more networks, systems, devices, applications, or components to communicate, exchange,
and use information to accomplish essential functions is referred to as interoperability. The
factor interoperability determines how interoperable or plug-and-play solutions and their
components/functions are.

Within the scope of a project, network configuration refers to aspects that are predeter-
mined and cannot be changed (e.g., climate conditions such as temperature, wind, precipi-
tation levels, terrain conditions, demographics, local generation mix, etc.) This component
investigates how dependent the solution is on available resources and infrastructures.
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5.2. Economic Factors

The project’s solution must be tested in the context of a distinct business model. The
original project’s business model is unlikely to stand up in a new setting—at least not
without modification. However, not all European countries have policies that promote loss
reduction, thus a solution that is viable due to loss reduction in one host area may not be
desirable in another. The factor business model determines how thoroughly the solution’s
viability has been investigated and/or whether the solution is viable in various scenarios
(e.g., another EU member state).

In addition, a macroeconomic analysis is required to determine whether the proposed
solution is (still) profitable in other European countries. This is usually accomplished
by doing a brief scenario study on a few key target countries. Inflation carbon cost and
interest rates all affect project costs and viability. The factor macroeconomics examines how
dependent the answer is on specific macroeconomic factors (e.g., discount rate, inflation
rate, etc.)

Additionally, another determining factor is the market design. The definition of
products and services, bid or offer requirements, and pricing and financial settlement
regulations are all part of market design. It also refers to the responsibilities and roles of
various market actors, as well as the interactions among them. This includes questions
about the market model utilized, the tariff structure in place, who the players are, how
they interact, and whether there are any additional restraints such as taxes or subsidy
schemes. The factor market design then indicates how dependent the solution is on a
certain market design.

5.3. Regulatory and Stakeholder

It is critical for successful replication that regulation in the intended host area allows
the project’s deployment to be replicated. Regulation is defined broadly in terms of agent
roles, rules for providing services, rules for remunerating regulated agents, and rules
for agent interaction. Because the project demonstrator works under various regulatory
frameworks, the definition is intentionally kept generic and does not focus on a specific
regulatory framework. The factor regulation investigates how much the solution depends
on current national or local regulation to be feasible and viable, and whether barriers arise
because of this dependency.

Furthermore, the solution must be accepted by key stakeholders. This could imply
a more fundamental agreement than is required for scalability. After all, stakeholders
must be willing to accept something completely new, which may be more challenging
than accepting a larger version of what already exists. The factor acceptance inquires
and investigates the extent to which acceptance issues are to be expected when exporting
solutions to other countries.

6. Scalability and Replicability Analysis

In the following subsections, the key points from each demonstration’s scalability and
replicability analysis are highlighted. The various factors were quantified into numbers
ranging from zero to three in order to conclude how scalable or replicable each solution is,
with zero representing the lowest score and three representing the highest [33–35,38–40].

6.1. DEMO 1: Active Substation Controller—Demand/Response and Storage Integration
(ADN-BESS)

The Battery Energy Storage System (BESS) unit power rating (1 MW) meets the
requirements for a simple grid connection. However, the increase in BESS unitary size is
limited in order to avoid large power cable sizes that would make grid connection difficult.
To achieve larger plant sizes, several BESS units can be combined to achieve the desired
plant size. On the other hand, technological conditions may lead to smaller rack sizes, but
system redesign may be required due to technological advances in the short to medium
term [41,42].
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The standard sizes of the containers that house the batteries limit the size of the
BESS. Furthermore, as the total BESS plant size increases, so does the external plant
substation, requiring more layout space. To add a new utility, modifications will be required;
therefore, some architecture simplification is recommended to facilitate integration in the
substations and systems of the Distribution System Operators (DSO) and Transmission
System Operators (TSO).

In terms of the cost-benefit ratio, it is expected that short to medium-term changes
will be beneficial. However, in order to accommodate the development of BESS, additional
mandatory standard compliance should be completed. Adaptation to specific standards
in each country must be considered, and BESS grid services must specifically meet the
requirements of the country’s Grid Code.

In recent years, the Energy Storage market has accelerated along with a significant
increase in the production of electric vehicles, potentially affecting the availability of
batteries for BESS applications. It is recommended to encourage agreements between BESS
developers and battery suppliers, as well as battery recycling policies, to reduce the risk of
shortages and reliance on imports. Finally, there are regulatory barriers to replicability that
could affect the solution, specifically compliance with country grid code in each project.

The following Figure 3 shows the overall scalability and replicability assessment.
Moreover, in Tables 3 and 4, the main remarks regarding the scalability and replicability
analysis, respectively, for DEMO 1 are presented in detail.

Figure 3. Scalability and replicability assessment DEMO 1: Active Substation Controller.

It can be concluded that DEMO 1: “Active Substation Controller” receives a medium
overall score, with strong points for stakeholder acceptance as a key technology for future
power grids, as well as the positive impact of technology evolution. The regulatory barriers
and market design that do not adequately remunerate the services provided by the Active
Substation Controller appear to be the weakest points at this stage.
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6.2. DEMO 2: Wind Power Plant Connected to Active Substation

The regulatory and institutional environments have a significant impact on the es-
timation of BESS’s potential replicability and scalability. Some countries that have not
developed the network codes for the regulation of the integration of BESS systems in their
networks are now starting to adapt their regulatory frameworks to the new system needs
and generation paradigm.

If the BESS is small in comparison to the size of the grid into which it discharges,
detailed power system and production cost models are not required. Large-scale systems,
on the other hand, have more data to consider, and the control processes and algorithms
include more variables, making the control systems more complex. The task of preparing
a BESS economic analysis for appraisal faces two major challenges: (a) the scale of the
investment project under consideration influences this; (b) it is necessary to have a sufficient
understanding of the unique technical aspects of BESS (technical aspects of battery design,
sizing, performance etc.) Overall, there is still a lack of economic experience.

Concerning interoperability, the European Commission (EC) is enabled to develop
interoperability standards for communication and control, between different distributed
resources. This is in accordance with the delegated act on interoperability published by the
EC, in application of the provisions of Directive (EU) 2019/944 [43].

BESS are typically capital-intensive projects, and their viability may necessitate addi-
tional assistance. As a result, the existence of financing instruments, both at the European
and national levels, aimed entirely or partially at promoting the development of projects
and technologies, will play a critical role in scalability.

The following Figure 4 shows the overall scalability and replicability assessment.
Moreover, in Tables 5 and 6 the main remarks regarding the scalability and replicability
analysis, respectively, for DEMO 2 are presented in detail.

 
Figure 4. Scalability and replicability assessment DEMO 2: Wind Power Plant connected to Active
Substation.
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Table 5. Scalability factors analysis for DEMO 2.

Area Sub-Areas Factors Achievements Issues

T
e

ch
n

ic
a

l

Technology

Modularity Independent functional
units clearly defined.

Some changes would be
needed to add components
to the solution to increase

its size.

Technology Evolution
Technological conditions

allow increasing the
solution size.

Redesign in the system
may be needed due to

technological advances in
the short to medium term.

Control and
communications

Interface

Interface design Centralized and
decentralized.

Modification will be
needed for a new utility

system to be added.

Software tools
integration

The design of software
permits the integration of

more elements

Integration to different
operational and market
platforms to be further

analyzed.

Infrastructure Compatibility analysis Limited physical size
limitations.

Some compatibility issues
exist.

E
co

n
o

m
ic

Economy of scale

Economies of Scale

Evolutions in the short to
medium term will have a
positive influence on the

cost-benefit ratio.

If the size of the solution
increases cost and benefit

would increase.

Profitability

The economic indicators of
the demo case show that

the business model is
viable enough to scale up.

Further analysis in
business models could be

carried out.

R
e

g
u

la
to

ry
a

n
d

S
ta

k
e

h
o

ld
e

r Regulation Regulatory Issues Regulation changes under
development.

Regulation barriers
currently in place.

Consent by users, local
authorities and public Acceptance Increasing consent.

Suggested to become more
familiar.

As with DEMO 1, DEMO 2: “Wind Power Plant Connected to Active Substation”
receives a medium score, with strong points for stakeholder acceptance as a key technology
for future power grids, as well as the positive impact of technology evolution. The regula-
tory barriers and market design that do not adequately remunerate the services provided
by the BESS connected to active substation with wind power plant appear to be the weakest
points at this stage.

6.3. DEMO 3: Increase Resilience of the Cross-Border Lines with Sensors for De-Icing Solutions

The Dynamic Line Rating (DLR) [44,45] expert system has several subsystems, in-
cluding line rating calculation, ice forecasting, sag simulation, and conductor temperature
tracking. With model fine-tuning, fractional implementation of the various subsystems
is possible. Each subsystem has its own display tab, and each power line necessitates
new expert system implementation and adaptation. Furthermore, the incorporation of
new sensors into the system increases the number of data records, resulting in increased
computational capacity.
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Table 6. Replicability factors analysis for DEMO 2.

Area Sub-Areas Factors Achievements Issues

T
e

ch
n

ic
a

l

Technology

Standardization The solution is partially
standard compliant.

Further mandatory
standard compliant should

be done.

Interoperability
There is the ability to share

data via software and
hardware.

-

Control and
communications

Interface

Standardization The solution is partially
standard compliant.

Further mandatory
standard compliant should

be done.

Interoperability
There is the ability to share

data via software and
hardware.

-

Infrastructure Network Configuration The solution is partially
standard compliant.

Further mandatory
standard compliant should

be done.

E
co

n
o

m
ic

Business Model Business model
Business model exist that

could be deployed in
different environment.

Some investment would be
needed to deploy it in
different environment.

Profitability Analysis

Macro-economic
factors

Different options (locations,
network topology etc) have
been evaluated before the

implementation.

Further analysis to study
the influence of economic
factors on the replicability

capacity needed.

Market Design

Solution can be easily
(economically and

technically) compliant with
a defined different set of

standards.

Markets for ADN-BESS
currently not existing in

many countries.

R
e

g
u

la
to

ry
a

n
d

S
ta

k
e

h
o

ld
e

r

Regulation Regulatory Issues

Regulation is expected to
change that will make the

solution feasible and
viable.

There exist regulatory
barriers with respect to
replicability that could

affect the solution.

Acceptance Acceptance Stakeholders have shown
great interest.

The stakeholder acceptance
is important regarding
replicability potential.

The cost–benefit ratio is determined by the number of integrated sensors and the extra
transmission capacity gained. Furthermore, the achieved surplus transmission capacity
is dependent on the technical parameters of the line, substation elements, and weather
conditions along the line. The demo demonstrated the viability of each subsystem, and the
system could be more profitable if used on more power lines.

The technology is widely accepted, and there are no regulatory barriers to scalability
or replicability that could jeopardize the solution. However, the TSO’s internal regulatory
regarding capacity management should be adjusted to the system’s dynamic output. The
expert system promotes the implementation of the EU’s internal electricity market on a
market basis.

Finally, sensor communications are standardized, and sensor manufacturers provide
standard compliant Supervisory Control and Data Acquisition (SCADA) integration solu-
tions. The interface and overall system communication, however, are dependent on the
customers’ requests and the system’s adaptation to the given TSO’s IT security requests for
each demonstration.
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The following Figure 5 shows the overall scalability and replicability assessment.
Moreover, in Tables 7 and 8 the main remarks regarding the scalability and replicability
analysis, respectively, for DEMO 3 are presented in detail.

Figure 5. Scalability and replicability assessment DEMO 3: Increase resilience of the cross-border
lines with sensors for de-icing solutions.

DEMO 3: “Increase resilience of the cross-border lines with sensors for de-icing
solutions” achieves a good score in most of the scalability and replicability factors. There are
no significant regulatory barriers, and the expert system can be adapted to any transmission
line by knowing its technical parameters, which are both positive aspects of this technology.
On the other hand, standardization could be improved further, particularly in terms of TSO
security standards.

6.4. DEMO 4: Improve Transfer Capacities and Clean Electricity Flows through Power Flow
Control Solutions

The solution can be scaled up or down in response to future changes in system needs.
When need is driven by new generation, the solution can be scaled up as more generation
connects to the network. As a result, if more generation applies to connect than was
originally intended, it is still possible to use the assets and simply increase the impedance
as needed. The modularity of this technology is a strong point, with individual units per
phase and the ability to scale up and down the number of devices to meet the needs of the
network. The ability to control the number of devices connected while in operation is also
advantageous because it allows the TSO to scale up and down the functioning deployment
as real-time demands change.
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Table 7. Scalability factors analysis for DEMO 3.

Area Sub-Areas Factors Achievements Issues

T
e

ch
n

ic
a

l

Technology

Modularity

The DLR-based expert system
includes different subsystems
such as line rating calculation,

conductor temperature tracking,
sag simulation, and ice
forecasting subsystems.

-

Technology Evolution

Fractional implementation
possibility for the different

subsystems with fine-tuning of
the models.

-

Control and
communications

Interface

Interface design Each subsystem has its own
display tab. -

Software tools
integration

The software is implemented on
Matlab basis with MS SQL

connection.

Each power line requires
new implementation of the

expert system.

Infrastructure Compatibility
analysis

The expert system can be
adapted to any transmission line

by knowing its technical
parameters.

Each power line requires
new implementation of the

expert system.

E
co

n
o

m
ic

Economy of scale
Economies of Scale

Cost-benefit ratio depends on
the number of integrated sensors

and the gained surplus
transmission capacity.

The achieved surplus
transmission capacity

depends on the technical
parameters of the line,

substation elements, and
prevailing weather

conditions along the line.

Profitability
Quantifiable by the achieved

capacity gain/congestion
management.

-

R
e

g
u

la
to

ry
a

n
d

S
ta

k
e

h
o

ld
e

r

Regulation Regulatory Issues

Internal regulatory of the TSO
regarding the capacity

management should be adjusted
to the dynamic output of the

system.

-

Consent by users,
local authorities,

and public
Acceptance The technology is generally

accepted. -

If the original need is reduced or eliminated, the Power Flow Control (PFC) devices
can be easily redeployed to another part of the grid. Because the solution is not tied to the
original location, this flexibility allows for a no-regrets investment decision. Because these
devices are voltage agnostic, they can be redeployed onto different voltage lines without
requiring any changes to the device hardware.

By moving the devices and redeploying them onto the Bulgarian network, the demo
demonstrated the replicability of the project deployed in Greece. This could be redeployed
to another network with a different voltage level without requiring any changes to the PFC
devices. This also demonstrated the deployment’s communication interface’s ability to
integrate into different countries’ systems.

The following Figure 6 shows the overall scalability and replicability assessment.
Moreover, in Tables 9 and 10, the main remarks regarding the scalability and replicability
analysis, respectively, for DEMO 4 are presented in detail.
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Table 8. Replicability factors analysis for DEMO 3.

Area Sub-Areas Factors Achievements

T
e

ch
n

ic
a

l

Technology
Standardization A DLR sensor testing protocol is

standardized in the framework of the project.

Interoperability The measured field data and the calculated
results are stored in the same database.

Control and
communications Interface

Standardization

The sensor communications are
standardized; sensor manufacturer offers

standard compliant solution regarding
SCADA integration.

Interoperability The measured field data and the calculated
results are stored in the same database.

Infrastructure Network Configuration The system adopted to the given TSO’s IT
security requests.

E
co

n
o

m
ic

Business Model Business model The demo proves the viability of each
subsystem.

Profitability Analysis

Macro-economic factors
The expert system implemented on the most
critical power line (from icing and congestion

point of view).

Market Design
The expert system promotes the

implementation of internal electricity market
at EU level.

R
e

g
u

la
to

ry
a

n
d

S
ta

k
e

h
o

ld
e

r Regulation Regulatory Issues No regulatory barriers with respect to
replicability that could affect the solution.

Acceptance Acceptance The technology is generally accepted.

It is clear that the highest score is obtained in terms of modularity. Technology
evolution ranked high as well, as Smart Wires has evolved this technology further with
higher capacity devices with greater controllability, being able to push and pull power from
the line by increasing or decreasing the effective impedance rather than simply increasing
as was the case with this demo. Because the solution design is determined by the type of
transmission lines and towers, compatibility receives a lower score. The business model
is viable, but it will vary by network, so individual cases must be investigated. Finally,
acceptance could be improved by raising awareness of the devices and their benefit to
the network.

6.5. DEMO 5: New Wholesale Market Approach with Flexibility Services

The delivered solution is a new market structure that makes it easier to integrate new
flexibility providers. Although the rules of the platform are strict, as is typical of European
intraday market platforms, it does not impose any restrictions on national markets to follow
other models. The matching algorithm developed for the demonstration has a significant
impact on scalability. These algorithms were tested on two markets (Bulgaria and Cyprus)
with varying levels of maturity, but not on several coupled markets.

In terms of scaling up the proposed approach, because the matching algorithm is
solving a mathematical problem continuously, the required computational capacity grows
linearly with the size of the problem. The demonstration, on the other hand, can be repli-
cated in other countries if the necessary data are shared by the relevant market operators.
Only the interfaces should be changed; the main components can remain unchanged. It
should also be noted that this market is separate from the system operators. Finally, inte-
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grating the new order types necessitates a change in the matching algorithm used across
Europe, but the solution fits within the overall European market structure.

Figure 6. Scalability and replicability assessment DEMO 4: Improve transfer capacities and clean
electricity flows through Power Flow Control Solutions.

Concerning the delivered solution’s business aspect, the economic impact should be
evaluated by taking into account number of trades, market participants, and number of
participating flexibility providers.

The following Figure 7 shows the overall scalability and replicability assessment.
Moreover, in Tables 11 and 12, the main remarks regarding the scalability and replicability
analysis, respectively, for DEMO 5 are presented in detail.

DEMO 5 receives high marks in both scalability and replicability. However, develop-
ments on the European markets have taken a turn since the project’s inception, and other
solutions appear to be emerging. This severely limits the rationale for considering adapting
the developed solution to other markets; however, the solution is scalable and replicable.

6.6. DEMO 6: Flexible Substations Advanced Control and Services Demonstration

Demo 6 “Flexible substations advanced control and services demonstration” includes
clearly defined independent functional units. However, some modifications would be
required to add components to the solution in order to increase its size. Technological
conditions permit increasing the size of the solution, but system redesign may be required
due to short to medium term technological advance. Finally, the design of software allows
for the incorporation of more elements, and there are no physical size constraints.

On the economic side, no economic barriers to scalability and replicability have been
identified, and no regulatory barriers that could affect the solution are currently in place.
The solution is partially standard compliant, but more standardization is required. Finally,
stakeholder acceptance is unimportant in terms of the developed solution’s scalability
and replicability.

The following Figure 8 shows the overall scalability and replicability assessment.
Moreover, in Tables 13 and 14, the main remarks regarding the scalability and replicability
analysis, respectively, for DEMO 6 are presented in detail.
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Table 9. Scalability factors analysis for DEMO 4.

Area Sub-Areas Factors Achievements Issues

T
e

ch
n

ic
a

l

Technology

Modularity

The solution can be divided into
interdependent

components/independent
functional units.

If a large impudence is required, design
considerations need to be taken to

substation space availability. However, as
the devices are modular, there is flexibility

around how they are deployed on the
system.

Technology
Evolution

Technological conditions allow
increasing the solution size.

Development of technology means more
advanced and capable units now available

based on learnings from innovation
installations.

Control and
communications

Interface

Interface design Centralized and decentralized. Modification will be needed for a new
utility system to be added.

Software tools
integration

The design of software permits the
integration of more elements.

Integration to different operational and
market platforms to be further analyzed.

Infrastructure Compatibility
analysis Physical size limitations exist. Solution design depends on the type of

transmission lines and towers.

E
co

n
o

m
ic

Economy of scale

Economies of
Scale

Evolutions in the short to medium
term will have a positive influence

on the cost-benefit ratio.

If the size of the solution increases cost and
benefit would increase.

Profitability The business model should be
viable enough to scale up.

This will vary from network to network, so
individual cases would need to be

investigated.

R
e

g
u

la
to

ry
a

n
d

S
ta

k
e

h
o

ld
e

r Regulation Regulatory Issues
No regulatory barriers with

respect to scalability that could
affect the solution.

-

Consent by users,
local authorities,

and public
Acceptance

Stakeholder acceptance is of some
important regarding scalability

potential for your solution.

Being a newer technology preference can
sometime lean towards more established
technology where concerns around issues
such as noise and visual impact are better

understood.

Figure 7. Scalability and replicability assessment DEMO 5: New wholesale market approach with
flexibility services.
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Table 10. Replicability factors analysis for DEMO 4.

Area Sub-Areas Factors Achievements Issues

T
e

ch
n

ic
a

l

Technology

Standardization The solution is standard compliant. Will still require studies on individual
networks to ensure optimal performance

Interoperability There is the ability to share data via
software and hardware. -

Control and
communications

Interface

Standardization The solution is partially standard
compliant.

Communication with the devices uses
radio frequency to ensure ease of

installation. Some sites may require the
speed of fiber optic as provided by the

later models of the technology.

Interoperability There is the ability to share data via
software and hardware. -

Infrastructure Network
Configuration

The solution is partially standard
compliant. -

E
co

n
o

m
ic

Business Model Business model The demo case demonstrates that it is viable
enough to replicate.

Further analysis on business model exist
that could be deployed in different

environment.

Profitability Analysis

Macro-economic
factors

Different options (locations, network
topology, etc.) have been evaluated before

the implementation.
-

Market Design
Solution can be (economically and

technically) compliant with a defined
different set of standards.

Further analysis on the use in market
environment.

R
e

g
u

la
to

ry
a

n
d

S
ta

k
e

h
o

ld
e

r Regulation Regulatory Issues No regulatory barriers with respect to
replicability that could affect the solution. -

Acceptance Acceptance
The stakeholder acceptance is of some

important regarding replicability potential
for your solution.

Being a newer technology preference can
sometime lean towards more establish

technology.

Table 11. Scalability factors analysis for DEMO 5.

Area Sub-Areas Factors Achievements Issues

T
e

ch
n

ic
a

l

Technology

Modularity Independent functional units
clearly defined.

Not clear if the solution
could be divided.

Technology
Evolution

Technological advances in the
short to medium term have

positive impact.
-

Control and
communications

Interface

Interface design Centralized and decentralized.
Modification will be needed
for a new utility system to be

added

Software tools
integration

The design of software permits
the integration of more elements.

Integration to different
operational and market
platforms to be further

analyzed.

Infrastructure Combability
analysis No physical size limitations. -

E
co

n
o

m
ic

Economy of scale

Economies of Scale
No economic barriers with

respect to scalability that could
affect the solution.

-

Profitability The business model is viable
enough to scale up. -

R
e

g
u

la
to

ry
a

n
d

S
ta

k
e

h
o

ld
e

r

Regulation Regulatory Issues
No regulatory barriers with

respect to scalability that could
affect the solution.

-

Consent by users,
local authorities,

and public
Acceptance Major importance -
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Table 12. Replicability factors analysis for DEMO 5.

Area Sub-Areas Factors Achievements Issues

T
e

ch
n

ic
a

l

Technology

Standardization The solution is partially standard
compliant.

Further standardization to be
further developed.

Interoperability There is the ability to share data via
software and hardware. -

Control and
communications

Interface

Standardization The solution is partially standard
compliant. -

Interoperability There is the ability to share data via
software and hardware. -

Infrastructure Network
Configuration

The solution is partially standard
compliant. -

E
co

n
o

m
ic

Business Model Business model The demo case demonstrates that it
is viable enough to replicate.

Further analysis on business
model exist that could be deployed

in different environment.

Profitability Analysis

Macro-economic
factors

With some effort the solution would
be profitable in different countries. -

Market Design
Solution can be (economically and

technically) compliant with a defined
different set of standards.

Further analysis on the use in
market environment.

R
e

g
u

la
to

ry
a

n
d

S
ta

k
e

h
o

ld
e

r

Regulation Regulatory Issues
No regulatory barriers with respect
to replicability that could affect the

solution.
-

Acceptance Acceptance
The stakeholder acceptance is

important regarding replicability
potential for your solution.

-

 
Figure 8. Scalability and replicability assessment DEMO 6: Flexible substations advanced control
and services demonstration.
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Table 13. Scalability factors analysis for DEMO 6.

Area Sub-Areas Factors Achievements Issues

T
e

ch
n

ic
a

l

Technology

Modularity Independent functional units
clearly defined.

Some changes would be needed to
add components to the solution to

increase its size.

Technology Evolution Technological conditions allow
increasing the solution size.

Redesign in the system may be
needed due to technological

advances in the short to medium
term.

Control and
communications

Interface

Interface design Centralized and decentralized. Modification will be needed for a
new utility system to be added.

Software tools
integration

The design of software permits the
integration of more elements. -

Infrastructure Combatibility analysis No physical size limitations. -

E
co

n
o

m
ic

Economy of scale

Economies of Scale No economic barriers with respect
to scalability. -

Profitability The business model is viable
enough to scale up. -

R
e

g
u

la
to

ry
a

n
d

S
ta

k
e

h
o

ld
e

r

Regulation Regulatory Issues
No regulatory barriers with

respect to scalability that could
affect the solution.

-

Consent by users,
local authorities, and

public
Acceptance Not of importance. -

Table 14. Replicability factors analysis for DEMO 6.

Area Sub-Areas Factors Achievements Issues

T
e

ch
n

ic
a

l

Technology
Standardization The solution is partially

standard compliant.
Further standardization to be

further developed.

Interoperability There is the ability to share data
via software and hardware. -

Control and
communications

Interface

Standardization The solution is partially
standard compliant. -

Interoperability There is the ability to share data
via software and hardware. -

Infrastructure Network Configuration The solution is partially
standard compliant. -

E
co

n
o

m
ic

Business Model Business model
The demo case demonstrates

that it is viable enough to
replicate.

-

Profitability Analysis

Macro-economic factors
With some effort the solution

would be profitable in different
countries.

-

Market Design

Solution can be (economically
and technically) compliant with

a defined different set of
standards.

Further analysis in different
market environment.

R
e

g
u

la
to

ry
a

n
d

S
ta

k
e

h
o

ld
e

r Regulation Regulatory Issues -
Regulatory barriers with respect
to replicability that could affect

the solution.

Acceptance Acceptance

The stakeholder acceptance is of
minor importance regarding

replicability potential for your
solution.

-

Overall, Demo 6 “Flexible substations advanced control and services demonstration”
receives high marks in the various scalability and replicability factors, indicating that
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there is no specific barrier to scaling up and replicating the developed technology. Further
standardization is recommended, as is the smooth integration of changes brought about by
technological evolution.

6.7. DEMO 7: Large Scale Storage System for Combined Cycle Plant

The standard container sizes that include the batteries limit the size of the BESS.
Furthermore, an increase in total BESS plant size implies an increase in external space in
the power plant. This is usually not a problem because power plants are located in more
isolated areas with plenty of open space. To add a new utility, modifications will be required;
therefore, some architecture simplification is recommended to facilitate integration in the
power plant.

In terms of the cost-benefit analysis, it has yet to be demonstrated that the benefit out-
weighs the additional cost. Additionally, mandatory standard compliance is recommended.
Adaptation to specific standards in each country must be considered, and power plant grid
services must specifically meet the requirements of the country grid code.

The following Figure 9 shows the overall scalability and replicability assessment.
Moreover, in Tables 15 and 16, the main remarks regarding the scalability and replicability
analysis, respectively, for DEMO 7 are presented in detail.

Figure 9. Scalability and replicability assessment DEMO 7: Large Scale Storage System for Combined
Cycle Plant.

Even though the developed technology appears to have the potential to be scalable
and replicable, GEF has received very few bids for this product/service in the last two
years, none of which have been converted into reality. Furthermore, the increased benefits
are not currently visible or significant. As a result, one could conclude that this technology
is still in its early stages and does not have the potential to be scaled up and replicated.

6.8. DEMO 8: Advanced Control for Flexible Synchronous Generation

The developed system could be used for installations with several generators or larger
generators, without increasing computational requirements. However, new computational
resources would be required for large plants or when the system is deployed in new plants.
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Furthermore, adding new controllers to the system and modelling new generators in the
algorithms would be required to scale up the system in other plants.

It would be necessary to analyze the new system to be operated, model it, and appro-
priately train the control algorithms in order to replicate the demonstration activities. The
controller would also have to work with the new Power System Stabilizers (PSS) and area
of influence measurements.

PSS technology is well-established and has been in use for many years. The approach
to installing a new PSS should be same across all TSOs (PSS is meaningless for DSOs since
the plant’s capacity must be high to have an influence, and such facilities are normally only
found at the TSO level). Beyond what has been indicated, adding the solution to the PSS
has no influence on replicability and scalability. Finally, there is currently no compensation
available for providing damping.

The following Figure 10 shows the overall scalability and replicability assessment.
Moreover, in Tables 17 and 18 the main remarks regarding the scalability and replicability
analysis, respectively, for DEMO 8 are presented in detail.

Table 15. Scalability factors analysis for DEMO 7.

Area Sub-Areas Factors Achievements Issues

T
e

ch
n

ic
a

l

Technology
Modularity Independent functional units

clearly defined. -

Technology
Evolution

Technological conditions allow
increasing the solution size. -

Control and
communications

Interface

Interface design Centralized and decentralized.
Modification will be needed
for a new utility system to be

added.

Software tools
integration

The design of software permits
the integration of more

elements.

Integration to different
operational and market
platforms to be further

analyzed.

Infrastructure Combability
analysis

Limited physical size
limitations. -

E
co

n
o

m
ic

Economy of scale

Economies of
Scale

Evolutions in the short to
medium term will have a
positive influence on the

cost-benefit ratio.

If the size of the solution
increases cost and benefit

would increase.

Profitability

The economic indicators of the
demo case show that the
business model is viable

enough to scale up.

-

R
e

g
u

la
to

ry
a

n
d

S
ta

k
e

h
o

ld
e

r Regulation Regulatory Issues Regulation changes under
development.

Regulation barriers currently
in place.

Consent by users, local
authorities, and public Acceptance Increasing consent. -
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Table 16. Replicability factors analysis for DEMO 7.

Area Sub-Areas Factors Achievements Issues

T
e

ch
n

ic
a

l

Technology
Standardization The solution is partially standard

compliant.
Further mandatory standard
compliant should be done.

Interoperability There is the ability to share data
via software and hardware. -

Control and
communications

Interface

Standardization The solution is partially standard
compliant.

Further mandatory standard
compliant should be done.

Interoperability There is the ability to share data
via software and hardware. -

Infrastructure Network
Configuration

The solution is partially standard
compliant.

Further mandatory standard
compliant should be done.

E
co

n
o

m
ic

Business Model Business model
Business model exist that could be

deployed in different
environment.

-

Profitability
Analysis

Macro-economic
factors

Different options (locations,
network topology, etc.) have been

evaluated before the
implementation.

-

Market Design

Solution can be easily
(economically and technically)

compliant with a defined different
set of standards.

-

R
e

g
u

la
to

ry
a

n
d

S
ta

k
e

h
o

ld
e

r

Regulation Regulatory Issues
Regulation is expected to change

that will make the solution feasible
and viable.

There exist regulatory barriers
with respect to replicability

that could affect the solution.

Acceptance Acceptance Stakeholders have shown great
interest. -

Figure 10. Scalability and replicability assessment DEMO 8: Advanced Control for flexible syn-
chronous generation.
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Table 17. Scalability factors analysis for DEMO 8.

Area Sub-Areas Factors Achievements Issues

T
e

ch
n

ic
a

l

Technology

Modularity Independent functional units
clearly defined.

Replication in a different location
would require a new installation.

Retraining of prediction models is
needed if inputs are changed.

Technology
Evolution

Technological conditions allow
increasing the solution size. -

Control and
communications

Interface

Interface design Centralized
Modification will be needed for new
systems under the same location to

be added.

Software tools
integration

The design of software permits the
integration of more elements.

Integration to different operational
and market platforms to be further

analyzed.

Infrastructure Combability
analysis No physical size limitations. -

E
co

n
o

m
ic

Economy of scale

Economies of
Scale

No economic barriers with respect
to scalability. -

Profitability

Yet to be determined (by
increasing the damping more

power can be transferred along the
lines which can reduce costs).

No compensation for this kind of
service (Damping Oscillations).

R
e

g
u

la
to

ry
a

n
d

S
ta

k
e

h
o

ld
e

r

Regulation Regulatory Issues
No regulatory barriers are known

with respect to scalability that
could affect the solution.

Consent by users, local
authorities, and public Acceptance Not of importance.

Table 18. Replicability factors analysis for DEMO 8.

Area Sub-Areas Factors Achievements Issues

T
e

ch
n

ic
a

l

Technology
Standardization The solution is partially standard compliant. -

Interoperability There is the ability to share data via software
and hardware. -

Control and
communications

Interface

Standardization The solution is partially standard compliant
(standard communication protocols are used). -

Interoperability
There is the ability to share data via software

and hardware (standard communication
protocols are used).

-

Infrastructure Network
Configuration

The network configuration is standard
compliant, by using standard networking

devices.
-

E
co

n
o

m
ic

Business Model Business model The demo case demonstrates that it is viable
enough to replicate.

Profitability Analysis

Macro-economic
factors Yet to be determined. -

Market Design
Solution can be (economically and

technically) compliant with a defined
different set of standards.

-

R
e

g
u

la
to

ry
a

n
d

S
ta

k
e

h
o

ld
e

r

Regulation Regulatory Issues
No regulatory barriers are known with

respect to replicability that could affect the
solution.

Acceptance Acceptance Minor importance regarding replicability
potential for your solution.
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Overall DEMO 8: “Advanced Control for flexible synchronous generation” in the
different scalability and replicability factors achieves good score. However, there are
significant barriers such as market design and profitability, since currently there is not
compensation for providing damping.

7. Results Discussion

The scalability and replicability of FLEXITRANSTORE technology improvements were
investigated in this study. Factors that influence the project’s scalability and replicability
have been researched and identified for this purpose. These criteria include characteristics
of technical, economic, regulatory, and stakeholder approval.

The following are the main conclusions for each demonstration:
DEMO 1: “Active Substation Controller” receives a medium overall score, with strong

points being the acceptance of stakeholders as a crucial technology for future power grids
and the positive impact of technology evolution. The regulatory barriers and the market
design that do not satisfactory remunerate the services provided by the Active Substation
Controller appear to be the weakest points at this time.

DEMO 2: “Wind Power Plant Connected to Active Substation” receives a medium
score, with strong points being the acceptance of stakeholders as a crucial technology for
future power grids and the positive impact of technology evolution. Regulatory barriers
and market design that do not satisfactory remunerate the services offered by the BESS
connected to an active substation with wind power plant appear to be the weakest points
at this moment.

DEMO 3: “Increase resilience of the cross-border lines with sensors for de-icing
solutions” in most of the scalability and replicability factors achieves a good score. Positive
characteristics of this technology include the lack of significant regulatory barriers and
the fact that the expert system can be customized to any transmission line by knowing
its technical parameters. Standardization, on the other hand, could be further improved,
particularly in terms of TSO security standards.

DEMO 4: “Improve transfer capacities and clean electricity flows through Power Flow
Control Solutions” in terms of modularity achieves the highest score. Smart Wires has
advanced this technology further with higher capacity devices with more controllability,
allowing them to push and pull power from the line by increasing or decreasing the effective
impedance rather than just increasing it, as was the case with this demo. Compatibility
receives a lower grade since the solution design is dependent on the type of transmission
lines and towers. The business model is viable, but it will differ from network to network,
necessitating further investigation in individual cases. Finally, increasing awareness of the
devices and their benefits to the network could help to improve acceptability.

DEMO 5: “New wholesale market approach with flexibility services” achieves high
scores in both scalability and replicability. However, since the start of the project, develop-
ments on the European markets have taken a turn, and other options appear to be emerging.
This severely limits the rationale for considering adapting the developed solution to other
markets, yet the approach itself is scalable and reproducible.

DEMO 6: “Flexible substations advanced control and services demonstration” gets
high scores on all the scalability and replicability factors, leading to the conclusion that
there is no special obstacle to scaling up and replicating the developed technology. Further
standardization, as well as the smooth integration of technological developments, would
be beneficial.

DEMO 7: “Large Scale Storage System for Combined Cycle Plant” appears to have the
potential to be scalable and reproducible; however, GEF has received relatively few bids for
this product/service in the last two years, and none have been realized. Furthermore, the
increased benefits are not observable or significant now. As a result, one could conclude
that this technology is immature and does not have the potential to be scaled up and
replicated at this time.
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DEMO 8: “Advanced Control for flexible synchronous generation” in the different
scalability and replicability factors achieves a good score. However, market design and
profitability seem to be significant barriers because there is not compensation for providing
damping currently.

8. Conclusions

The scalability and replicability of FLEXITRANSTORE technology innovations were
investigated in this study. Factors that influence the project’s scalability and replicabil-
ity have been explored and identified for this purpose. These parameters were chosen
based on a thorough literature assessment and include technological, economic, regulatory,
and stakeholder acceptance considerations. In a nutshell, technical variables assess if a
project’s solution is naturally scalable and/or reproducible, whereas economic factors de-
cide whether scaling up or replication is economically viable. Regulation and stakeholder
acceptability factors indicate if the current environment is ready to accept a scaled-up
version of a project or whether a new environment is appropriate for receiving a project.
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Abstract: Renewable Energy Sources provide a viable solution to the problem of ever-increasing
climate change. For this reason, several countries focus on electricity production using alternative
sources. In this paper, the optimal positioning of the installation of wave energy converters is
examined taking into account geospatial and technical limitations. Geospatial constraints depend on
Land Use classes and seagrass of the coastal areas, while technical limitations include meteorological
conditions and the morphology of the seabed. Suitable installation areas are selected after the
exclusion of points that do not meet the aforementioned restrictions. We implemented a Deep Neural
Network that operates based on heterogeneous data fusion, in this case satellite images and time
series of meteorological data. This fact implies the definition of a two-branches architecture. The
branch that is trained with image data provides for the localization of dynamic geospatial classes
in the potential installation area, whereas the second one is responsible for the classification of
the region according to the potential wave energy using wave height and period time series. In
making the final decision on the suitability of the potential area, a large number of static land use
data play an important role. These data are combined with neural network predictions for the
optimizing positioning of the Wave Energy Converters. For the sake of completeness and flexibility,
a Multi-Task Neural Network is developed. This model, in addition to predicting the suitability of
an area depending on seagrass patterns and wave energy, also predicts land use classes through
Multi-Label classification process. The proposed methodology is applied in the marine area of the
city of Sines, Portugal. The first neural network achieves 98.7% Binary Classification accuracy, while
the Multi-Task Neural Network 97.5% in the same metric and 93.5% in the F1 score of the Multi-Label
classification output.

Keywords: wave energy converters; deep neural networks; renewable energy sources; spatial
planning; sentinel satellite imagery

1. Introduction

Currently, the multifaceted phenomenon of climate change is a matter of increasing
concern. Despite the fact that the rapid technological progress leads to the improvement of
human well-being, some of the industrial sectors are responsible for a significant part of
greenhouse gas emissions. More specifically, industry emits 37% of the total gas emissions
and a significant part of this percentage represents the environmental cost of producing the
required electrical energy for the operation of industrial activities [1]. The need to meet the
growing energy demand combined with the least possible environmental consequences,
leads to the emergence of renewable energy plants [2]. A challenge for Europe is the
ability to generate electricity from renewable sources at high and increasing, over time,
levels. Particularly, the objective of EU is to cover the 32% of the total European energy
demand from renewable sources by 2030 and to reduce the greenhouse gas emissions
by 40% compared to 1999 [3]. It is necessary for various renewable energy plants to be
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developed in order to achieve the aforementioned objectives. Many countries are looking
for an efficient way to use the ocean as a renewable energy source. Wave energy systems
are characterized by high efficiency and their contribution to Europe’s energy demand is
estimated to be 15% by 2050 [4]. Towards this end, Wave Energy Converters (WEC) are
systems that exploit the wave energy, converting it into electricity and they can be installed
either independently or in combination with Offshore Wind Generators [5].

Optimal positioning of WECs, is a crucial issue for the marine environment, human
activities and the wave energy potential. Suitable areas for WEC installation are selected
after the exclusion of points that do not meet certain restrictions. WEC planning limitations
are determined by a specific set of rules included in the Marine Spatial Planning (MSP) [6].
In this way, the negative aspect of these systems on the marine activities and the natural
environment (i.e., algae, beaches, protected areas and coastal agriculture activities) is
prevented. In addition, it is necessary to exclude regions in which the operation of WEC
is not efficient (i.e., weather conditions and seabed morphology). Thus, WEC positioning
constitutes a decision-making problem in which multiple constraints should be taken
into account.

The first step for the optimal positioning of WEC devices is the assessment of the
wave energy resource. The most recent research in potential wave energy characteriza-
tion is based on in situ, satellite and reanalysis data or wave model simulations. Farkas
et al. [7], used the third-generation wave model (WAM) combined with altimetry data and
characterised the annual, monthly and seasonal wave energy for two specific devices. Au-
thors compared Wave Energy Potential at seven different locations. Additionally, Nilsson
et al. [8] utilized WAM evaluated by bouy data and calculated the wave energy potential of
the Exclusive Economic Zone (EEZ). They performed wave energy classification in five cat-
egories comparing the energy resource of selected locations to the mean wave energy and
standard deviation of other sites at similar distance to the shoreline. An additional wave
model is the Simulating Waves Nearshore (SWAN) which is developed at Delft University
of Technology. Veigas et al. [9] utilized SWAN to find out the offshore wave conditions
near the shoreline. Wave energy resource characterization is carried out according to the
wave power matrix of the Sea Slot-cone Generator (SSG) data [10] of an offshore bouy
and the calculation of the mean annual energy values. Amarouche et al. [11] developed a
historical dataset using the SWAN model. Authors classified the potential wave energy
flux through the calculation of different temporal variations of wave energy, the probability
of distribution, the wave energy development index and the yearly wave energy. Fairley
et al. [12] presented a novel method for the wave energy resource characterization. One of
the main results of this study are the consequences of the different temporal variability at
wave power time series of two locations. Despite the fact that these time series have the
same mean value, the standard deviation is different. Thus, the traditional methods for the
wave energy resource assessment (i.e., Annual Wave Energy Flux) lead to inefficient results
because they cannot handle temporal variability differences. The authors proposed a novel
clustering-based method to evaluate wave height and period time series.

Additional to the aforementioned analysis, optimal locations for WEC installation
are carried out through geospatial analysis. Researchers and practitioners use Geographic
Information Systems (GIS), Multiple-criteria, or a combination of them to deal with optimal
positioning of Renewable Energy Systems. Aydin et al. [13], used a GIS-based method in
order to find optimal locations for hybrid renewable energy plants in Turkey. Regarding the
WEC positioning, Castro-Santos et al. [14], proposed a GIS-based approach under which
data were collected for the corresponding geospatial limitations, the seabed morphology, as
well as the meteorological conditions and developed four GIS tools. After the combination
of corresponding GIS layers, the final decision is made by identifying the available areas
on the resulting map. Galparsoro Iza et al. [15], developed a decision making system
that combines the MSP approach and GIS. Authors calculated Suitability Index in order
to find optimal locations for WEC installation. Apart from the aforementioned methods,
some researchers have used Multiple-criteria decision-making (MCDM) systems. Vasileiou
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et al. [16] developed a combined GIS-MCDM system to select cites for a hybrid offshore
wind-wave farm in Greece. Ghosh et al. [17] proposed a system for WEC positioning.
Limitations of WEC planning are defined with the corresponding weights and the MCDM
System derives the Feasibility Index (FI) for each of the potential installation regions.
An Artificial Neural Network (ANN) is also used to predict the FI value according to
the criteria.

The state-of-the-art methods for wave energy resource assessment and for optimal
positioning of WEC including geospatial analysis are summarized on Tables 1 and 2, re-
spectively. As a rule, both geospatial and technical limitations criteria for WEC positioning
can be modeled using the traditional GIS-based methods. However, in some cases it is
essential to examine restrictions related to dynamically changing patterns in marine areas.
This is the major limitation of the state of the art methods for WEC positioning, including
geospatial analysis (Table 2). For instance, algae are important for the environmental
balance and cannot be identified using a GIS database. Geographic datasets entail only
historical algae presence records for specific dates. Towards this end, Effrosynidis et al. [18]
proposed a Machine Learning (ML) based method to identify seagrass presence according
to environmental variables. In addition, satellite imagery is an efficient method for seagrass
mapping [19] and Deep Neural Networks (DNN) are used to automate this process. More
precisely, Li et al. [20] trained a Convolutional Neural Network (CNN) for the seagrass
segmentation of satellite images. Thus, in our study we use Deep Learning methods and
remote sensing data in order to identify dynamically changing patterns such as algae in
marine areas. Last but not least, relying on Fairley’s et al. [12] study, one may highlight the
major limitation of the state of the art methods for wave energy resource characterization.
According to their results, traditional studies lead to inefficient results due to the difference
in time variability of separated locations. In order to deal with this limitation, we expand
Fairley’s et al. [12] method for the assessment of wave energy potential through the genera-
tion of a wave energy dataset with the corresponding suitability labels of wave height and
period time series, in order to implement a Deep Learning based algorithm for time series
classification. Using this method, we handle differences of temporal variability and we are
able to use the proposed model for other case studies.

Based on the above information, in the present study we address the optimal po-
sitioning of WEC establishments using a DNN approach. Machine learning techniques
are widely used in Renewable Energy Systems in order to estimate the maximum energy
production [21], to predict production and load time series [22–24] or to identify potential
space for new installations such as photovoltaic systems [25,26]. The heterogeneity and
dynamic nature of data and the desire for automation are the main driving forces to un-
dertake the proposed methodology. Thus, we divide the necessary data into static (i.e.,
land use classes) and dynamic (i.e., algae and wave energy potential). We propose a Deep
Learning-based decision system that detects dynamic geospatial limitations, while it evalu-
ates the wave energy potential with respect to time variability. Particularly, we developed a
DNN that operates on heterogeneous data fusion [27], in this case satellite images and time
series of meteorological data. This fact implies the definition of a two-branches architecture.
The branch that is trained with image data provides the localization of dynamic geospatial
classes in the potential installation area, whereas the second one is responsible for the
classification of the region according to the potential wave energy. The proposed Neural
Network is the core of the system that we implemented to automate the process of WEC
optimal positioning. Our system operates in two modes: in Mode I, the image recognition
branch of DNN only detects algae. The land use classes are received from a land use
database and are combined with DNN predictions for the WEC optimizing positioning.
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Table 1. Related work for the assessment of wave energy resource.

Authors Method
Wave Energy Resource

Assessment
Results

Farkas et al. Numerical Method and
Wave Model

Annual, Monthly and Seasonal
Wave Energy. Comparison with
Offshore Wind Energy potential.

Authors compared Wave Energy
Potential at seven different locations.
Highest values are obtained during

winter and lowest at summer.

Nilsson et al. Numerical Method and
Wave Model

Wave energy resource
classification through the

comparison of mean wave energy
potential and its standard

deviation of sites at similar
distance to the shoreline.

Areas with the highest Wave Energy
potential located within the Exclusive

Economic Zone of Sweden.

Veigas et al.
Numerical Method, Wave

Model and SSG Wave
Power Matrix

Comparison with offshore buoy
data and SSD Wave Power Matrix.

Authors selected the three best
locations. In addition, they calculated

the WEC capacity factor (33% or
2628 equivalent hours).

Amarouche et al. Numerical Method and
Wave Model

Temporal variations of different
scales, probability of distribution,
wave energy development index

and annual wave energy.

Authors characterized Eastern
Algerian coast as one of the highest

energy potential locations in
the Mediterranean.

Fairley et al. Multivariate Clustering K-means for wave energy
resource clustering.

Traditional methods for the wave
energy resource assessment (i.e.,

Annual Wave Energy Flux) lead to
inefficient results because they cannot

handle temporal variability.

Table 2. Related work for WEC positioning assuming geospatial analysis.

Authors Plant Method Geospatial Analysis
Renewable Energy

Resource Assessment

Aydin et al. Hybrid Solar and
Wind Farms GIS and MCDM

Data Collection,
Objectives as fuzzy sets,

Environmental
performance index

Energy
Performance Index

Castro-Santos et al. Hybrid Offshore Wind
and Wave Farms GIS Data Collection and

GIS techniques
Annual Energy

Production

Vasileiou et al. Hybrid Offshore Wind
and Wave Farms GIS and MCDM

Data Collection,
Exclusion of unsuitable

areas, AHP for site
selection

Average Power

Ghosh et al. Wave Farm
MCDM and ANN that

predicts index for
decision-making.

Historical Data
Significant Wave
Height and Wind

Speed Average

Galparsoro Iza et al. Wave Farm
Marine Spatial

Planning and GIS.
Suitability Index.

Data Collection and
GIS techniques Local Wave Atlas

On the other hand, in Mode II, the image recognition branch classifies land use as well
as the algae patterns. Thus, the potential regions classified as suitable or as not suitable
for WEC installation are exclusively processed via DNN predictions. In both cases, final
classification is based upon feature extraction from both image and time series datasets.
Overall, the main contributions of this paper include:

• Automation of WEC optimal positioning through Deep Learning algorithms.
• Recognition of dynamically changing patterns—geospatial WEC planning constraints.
• Wave energy potential assessment using time series classification.
• Recognition of dynamic spatial constrains and characterization of wave height and

period time series simultaneously via Data Fusion DNN.

134



Energies 2021, 14, 6773

In the next section, the methodology and architecture of both implementation modes
are described, along with the data used. Section 3 presents the results of both methodolog-
ical modes and concludes with a real-life case study paradigm. Section 4 discusses the
findings of the proposed work and suggests further development paths.

2. Methodology

In this section, we present the proposed methodology for WEC positioning. At first,
we describe how we developed our heterogeneous dataset. More precisely, we created
a Geographic Information Tool with the usage of which we receive satellite imagery
and time series data. In addition, we present the labeling method, in order to develop
the training, validation and test dataset for Deep Learning models. The Deep Learning
algorithm consists of two modes and for each of them two different DNN architectures
are shown. In conclusion, we can use this algorithm after the training process to develop
a decision-making system for WEC positioning. All procedure was carried out with the
use of our code written in Python programming language and GeoPandas, GDAL and
Tensorflow libraries.

2.1. Dataset Generation—Geographic Information Tool

The extraction of specific geographic datasets is necessary in order to implement the
proposed method. We developed a Geographic Information Tool, which is necessary to
generate the training dataset and apply the methodology to the selected area of interest. In
its general form, this tool uses bounding box coordinates of the area of interest as an input
and defines the grid of the potential WEC installation points, as well as it incorporates
the necessary data. The flowchart of this tool is shown in Figure 1. Initially, we acquire
the Sentinel-2 Tile [28] for the corresponding geographical coordinate using the Open
Access Hub API. Then, we define the grid of the potential points for WEC installation and
we create the georeferenced patch of Sentinel-2 images for each of the patches using the
geometric buffer operation. We receive bathymetric data from GEBCO [29] and 12-year
Wave Height and Period time series using 3 h time-step from ERA-5 dataset [30] via the
Climate Data Store (CDS) API. In addition, we interpolate bathymetric and time series
data to our grid, via the CDS Toolbox. For nearshore potential regions we extract land use
classes and their polygons from Corine Land Cover (CLC) dataset [31].

The output of our Geographic Information Tool is two databases connected via an
information file. The first database contains the georeferenced image patches and the other
one the historical wave height and period time series. In Figure 2, an example of a potential
WEC installation point is shown. In time series plot the x-axis represents the 3-h time step
for the past 12 years and y-axis represents the values of Significant Wave Height (meters)
and Peak Wave Period (seconds). Despite the fact that image patches and time series are
stored to the corresponding database, the water depth and land use classes are stored in
the information file.

Generation of training dataset involves the labeling process of both satellite images
and time series. More precisely, we must assign labels to image patches according to
algae presence or absence. For this purpose, we use the algae presence observations from
UNEP-WCMC dataset [32,33]. By extracting the potential WEC installation points with the
aforementioned tool, the event dates from UNEP-WCMC records are used for the region
of South Italy to acquire the corresponding Sentinel images. In this way, we used spatial
intersection operation between seagrass and patches polygons to assign labels to potential
WEC installation regions. On the other hand, time series labeling process is crucial for
the assessment of the wave energy potential. In this paper, the novel method of Fairley
et al. [12] is used to assign labels about the wave energy. Particularly we implemented
the W-based approach. Considering the Significant Wave Height (Hs) and Peak Wave
Period (Tp) we calculate the Coefficient of Variation (CV) of H2

s , Tp. Precise, CV is the ratio
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of standard deviation of a variable and its mean value. For each of the time series the
following variables are calculated:

H2
s , Tp

CVH2
s
=

σH2
s

H2
s

(1)

CVTp =
σTp

Tp
(2)

• 
• 
• 

Figure 1. Flowchart of Geographic Information Tool.

Figure 2. Example of a potential WEC installation point.
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The aforementioned variables are used to cluster time series using K-Means (K = 6).
According to Significant Wave Height cluster-mean we can sort clusters from 1 to 6 or low
wave energy to high wave energy potential, respectively. Thus, we define the clusters 1 to
3 as unsuitable for WEC installation and the clusters from 4 to 6 as suitable. Finally, we
can combine the above information in order to assign labels to potential WEC installation
points as follows:

• High Wave energy potential and Algae Absence means Suitable Area;
• High Wave energy potential and Algae Presence means Unsuitable Area;
• Low Wave energy potential and Algae Absence means Unsuitable Area;
• Low Wave energy potential and Algae Presence means Unsuitable Area.

2.2. Deep Learning Algorithm

The proposed Deep Learning algorithm is the core of the system that we implemented
to automate the process of WEC optimal positioning. As mentioned above, our system
operates in two modes: In Mode I, we developed a Data Fusion based Neural Network.
The image recognition branch only detects algae. The land use classes are received from a
land use dataset. On the other hand, in Mode II, the image recognition branch classifies
land use as well as the algae patterns. Thus, the potential regions classified as suitable
or as not suitable for WEC installation is performed exclusively via DNN predictions. In
this mode, we have implemented a Multitask Data Fusion based Neural Network. In
both modes, we used heterogeneous data fusion techniques because the second branch of
proposed architecture classifies wave height and period time series.

The Deep Learning model that we implemented is a Convolutional Neural Network
(CNN), which is widely used for image recognition and is trained using the Backpropaga-
tion algorithm like the traditional ANN [34–37]. Besides this, CNN are efficient for time
series classification [38,39]. Consequently, we developed a Convolutional architecture for
each of two branches.

2.2.1. Data Fusion Based Neural Network

Consequently, we developed a Convolutional architecture for each of two branches. In
order to create Multimodal DNN, its two branches are developed as individual Neural Net-
works. The reason leading to the specific implementation is to find the optimal architecture
for each branch. One of the popular neural networks that work efficiently in the process of
identifying marine algae in satellite imagery is the U-Net [20]. This architecture is used for
the Semantic Segmentation of an image. However, since we aim to classify images on the
presence or absence of algae, an architecture inspired by the Encoder of U-Net is created,
due to its efficiency in extracting features from images.

According to Figure 3, the image recognition branch of the Neural Network has three
convolutional blocks, in each of which two consecutive Convolutional Layers with the
Relu activation function followed by Max Pooling are placed. The number of feature Maps
defined per block is 32–64–128, respectively with a 3 × 3 filter. The Max Pooling process
runs in 2 × 2 regions. At the final step, a Global Average Pooling (GAP) layer is used
instead of the flatten operation. In this way, the average value is extracted from each
feature map of the last convolutional node. GAP can replace the Fully Connected Layer,
while helping to avoid overfitting because it reduces the number of training parameters.
The time series branch of DNN consists of 1-D Convolutional and Pooling Layers. As it
is shown in Figure 3, this branch has one Convolution of 32 feature maps with a kernel
size 5, followed by Max Pooling and then another Convolutional Layer with Filter size
7 from which 64 Feature Maps are extracted, followed again by Max Pooling of size 2.
GAP Layer is used instead of Dense Layer too. The extracted features of the two branches
are merged via the Concatenation Layer and this layer is fed to a Fully Connected Layer
of 256 neurons which are activated via ReLU. Because the task is a Binary Classification
problem, the Activation Function that is defined for the final neuron is the Sigmoid. The
DNN is implemented on the Tensorflow and Keras Python libraries.

137



Energies 2021, 14, 6773

Figure 3. Data fusion Neural Network Architecture—Mode I.

During the training process we need a heterogeneous-data fetching tool, which is
developed using the Custom Data Generator of Keras and its input is the information file
that connects the two databases (Section 2.1). Satellite images are normalized, dividing
each pixel value with 255. The secondary input of Neural Network is a multivariate time
series, in particular with two variables, for wave height and period, respectively. Thus,
time series are modeled as a 2-D matrix, which consists of two columns, while the number
of rows corresponds to the time-steps. Before starting the training process, we split the
dataset using 60% for training, 20% for validation and 20% for testing. The validation
dataset is fed to the Neural Network at the end of each epoch and when the value of the
loss function during the prediction of the data does not improve further, Early Stopping
occurs. The Dataset Test is used after the end of the training in order to verify the ability of
Neural Network to be generalized. Finally, we use the Adam optimizer [40], 16 batch size,
Binary Cross Entropy (BCE) loss function and we estimate model performance according
to Accuracy, Precession, Recall and F1 metrics. This Neural Network represents Mode I.

2.2.2. Multitask Data Fusion Based Neural Network

In this section, we present the Neural Network that constitutes the core of Mode
II. Particularly, the process of land use classification via the image recognition branch
is integrated. This implementation requires the adaptation of both the Neural Network
architecture and the training dataset. At the first stage, we determined a One-Hot label for
each of the potential WEC installation points. The first four cells of the corresponding table
describe the geospatial constraints (Agriculture Activities, Beaches/Dunes, Forest Pattern
and Algae) and the last cell is the suitability label of wave energy potential. We provide an
example of One-Hot label in Figure 4.
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Figure 4. Example of One-Hot vector for unsuitable region.

When the table has the value 1, then the corresponding class exists in the area. The
last cell of the table concerns the wave energy assessment, and values 0 or 1 correspond to
low or high wave energy, respectively. Based on the One-Hot table, each point is labelled
as suitable or not for WEC installation. In this case, the encoding that implies a suitable
point (Label equal to 1) is [0,0,0,0,1]. In any other case, the potential region is not suitable
and the final label is equal to 0. In Figure 4, an example of an unsuitable region for WEC
installation is shown. In this case, we need to build a Neural Network for the solution of
two tasks: Multi-label classification and Binary Classification.

When a neural network consists of two outputs, during backpropagation, the common
weights are modified in order to optimize two loss functions in parallel. In other words, the
model learns to recognize the suitability of a region based on which classes are recognized.

The architecture of Multimodal DNN is modified, initially, as the to the depth of the
satellite image recognition branch. In particular, one more Convolution Block is added, and
as a result, the number of Feature Maps defined per block are 32–64–128–256, respectively.
The time series classification branch remains unchanged. After combining the extracted
features from two branches through the Concatenation Layer, a Fully Connected Layer of
256 neurons is used. The first output is for the Binary Classification problem (suitable or
not suitable WEC installation point), while the second is used to predict the above One-Hot
table. We use BCE loss function on both outputs and we define the Accuracy metric and
F1 score in order to estimate the performance of the Binary Classification and Multi-Label
classification, respectively. Figure 5 shows the Neural Network Mode II architecture.

2.3. Optimal Positioning of WECs Using Deep Learning—System Implementation

As mentioned before, the decision-making system for WEC positioning, is imple-
mented through two modes, which differ in how the information related to the land use of
coastal areas is obtained. In Mode I, the satellite imagery branch recognizes exclusively
algae patterns which constitutes the dynamic component. Therefore, the prediction of the
suitability of each potential point is based on both the presence or absence of algae and the
energy availability of the region, which is classified through the time series branch. The
output of the Multimodal DNN is combined with the CLC data in order to avoid additional
geographic limitations. The variant in Mode II, is the recognition of land use/cover classes
by the satellite image branch. In this case, the suitability of each potential WEC installation
point is predicted via the DNN.

Common processes for both modes are the definition of potential installation points
and the integration of the corresponding data (Section 2.1). In addition, points that are not
in the depth range between 10 and 200 m are excluded.
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Figure 5. Multitask Data Fusion based Neural Network Architecture.

2.3.1. Mode I

The first implementation of the WEC installation positioning system is modeled
according to the flowchart in Figure 6. The Data Fusion based DNN of Section 2.2.1 takes
the georeferenced Sentinel patch and time series as input and predicts the corresponding
binary label. If the latter is zero, then the point is considered as not suitable for WEC
installation. In contrast, prediction of suitable points implies both the absence of algae and
high wave energy potential. In this case, the system further processes some information in
order to make the final decision. In particular, if the potential region is offshore, then it is
considered suitable for WEC installation, while if it is a nearshore point, it is required to
avoid additional spatial restrictions related to the use/coverage of the closest coastal land.
If in the latter beaches, swimming zones, dunes, woodland or agricultural facilities are
located, then the point is automatically rejected. Finally, decisions of each of the potential
WEC installation sites are combined, in order to construct the suitability map of the overall
area of interest.

2.3.2. Mode II

The second mode of the WEC optimal positioning methodology contains the Multitask
data fusion based Neural Network analyzed in Section 2.2.2 as a core unit. In this way, the
decision for each point is taken directly through the corresponding output of DNN, that is,
the one that implements the Binary Classification problem. In addition, the output of the
Multi-label Classification process is used to monitor how the final decision is formed, since
as a result, the land use classes identified, including algae, as well as the energy suitability
results are given. The flowchart of this process is in Figure 7.

140



Energies 2021, 14, 6773

Figure 6. Decision-making system flowchart in Mode I.

Figure 7. Decision-making system flowchart in Mode II.

3. Results

In this section, we present the results of our approach. At first, we analyze the training
diagrams and the performance of Deep Learning models. Then, we showcase the proposed
methodology to the selected geographical area. We trained our models using the NVDIA
GTX 1650 GPU and we used TensorBoard for training process monitoring.

3.1. Performance Metrics

In Binary Classification problems, we can estimate the performance of our classifier
calculating the number of samples that are classified correctly or incorrectly. If the value of
the final neuron output is greater than 0.5, our sample belongs to positive class, whereas our
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sample belongs to the negative one. Regions that are suitable for the installation of WEC
device correspond to class one, whereas the unsuitable locations are marked as samples of
negative class. Thus, we calculate True Positive (TP), True Negative (TN), False Positive
(FP) and False Negative (FN) classified samples. Using these statistical variables, we can
see how many of testing samples are classified correctly or not. In order to visualize the
aforementioned statistical approach, we define the Confusion Matrix as follows:

Con f usion Matrix =

[
TP FP
FN TN

]
(3)

Far from these, we examine effectiveness of the proposed model using Recall and
Precision. Recall is the ratio of actual positive predictions divided by the number of actual
positive samples. In other words, is a metric that shows the effectiveness of our model to
accomplish true predictions of positive labels. On the other hand, Precision is the ratio of
actual positive samples divided by the number of all positive predictions. Thus, Precision
is the proportion of actually correct positive predictions [41].

Recall =
TP

TP + FN
(4)

Precission =
TP

TP + FP
(5)

Precision and Recall combined in a single performance metric. F1 score is the harmonic
mean of both. We defined F1 as the actual model performance metric during training
process. F1 is using in Binary Classification problems [42].

F1 = 2 ∗ Precision ∗ Recall
Precission + Recall

(6)

3.2. Data Fusion Based Neural Network

Searching about the optimal architecture of the Data Fusion-Based Neural Network,
we implemented each branch of it as an individual DNN. Particularly, we added a sigmoid
neuron after the GAP layer. Thus, two binary classifiers have developed, for algae and time
series classification, respectively. Compared to other methods for algae classification and
detection based on remote sensing data [18,20,43], our approach achieves 98.5% (Table 3).
F1 score on test dataset according to the Confusion Matrix. The equivalent percentage for
testing samples of time series classification CNN is 98.8% (Table 4).

Table 3. Confusion Matrix for algae detection problem.

Predicted—Class 0 Predicted—Class 1

Actual—Class 0 TN: 2071 FP: 14
Actual—Class 1 FN: 30 TP: 1959

Table 4. Confusion Matrix for time series classification problem.

Predicted—Class 0 Predicted—Class 1

Actual—Class 0 TN: 1053 FP: 6
Actual—Class 1 FN: 18 TP: 1023

The combination of the above Deep Learning implementations leads to the develop-
ment of the Data Fusion based Neural Network, which is shown in Figure 3. Training
curves are presented in Figure 8. Training process ends in the 19th Epoch due to the Early
Stopping condition, because there is no improvement of the loss function, while in the 16th
the minimum value of BCE is observed. The F1 metric performance results in test Dataset
are 98.7%, while Table 5 presents the confusion matrix on test dataset. Therefore, the DNN
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can be used to classify the potential regions as suitable or not for WEC installation. The
final decision depends upon the combination of the presence or absence of algae and wave
energy assessment. According to Figure 9, the Binary Classifier works efficiently because
it identifies the potential regions of the test dataset with high accuracy. In particular, it
correctly classifies both suitable sites, and non-suitable ones that they are points with algae
presence or with low wave energy. Both the prediction of DNN and the actual labels are
shown in order to understand the final decision.
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Figure 8. Data Fusion based Neural Network performance during training process. (a) Binary Cross Entropy Loss for both
training (orange) and validation (blue) datasets; (b) F1 score for both training and validation datasets.

Table 5. Confusion Matrix of Neural Network that classifies the suitability of potential WEC installa-
tion regions.

Predicted—Class 0 Predicted—Class 1

Actual—Class 0 TN: 799 FP: 10
Actual—Class 1 FN: 7 TP: 847

 
Figure 9. Data Fusion based Neural Network predictions on test dataset.
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3.3. Multitask Data Fusion Based Neural Network

Proceeding to the development of Multitask Data Fusion based Neural Network
(Figure 5), we integrate the land cover classification task to our model. The architecture
consists of two outputs. The first output is for the binary prediction of the potential region
as suitable or not suitable for the WEC system installation and the second for the prediction
of One-Hot vector of limitations, in this case land use classes, algae detection and the wave
energy class. Regarding Figure 10, in the 24th Epoch the training ends, while in the 15th
the lower value of the BCE is observed. We defined as the loss function and metric for both
outputs BCE-F1 Score. The overall F1 Score is 94%.
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Figure 10. Total training and validation losses for Multitask Data Fusion based Neural Network.

For potential WEC installation points classified as True Positive or True Negative, the
corresponding One-Hot Label is predicted correctly as well. Figure 11 shows the results on
test data. As observed, for each region, both the Multilabel vector containing the detected
classes is predicted, as well as the designation as suitable or not. As the two loss functions
are optimized at the same time, there is an interdependence between the outputs, which
is the objective of our approach. The difference between the F1 score of the two Neural
Networks arises because in Mode II we have larger prediction complexity due to the
dependence of the two outputs and the recognition of land use classes.

3.4. Expreriments of Methodology Application
Case Study

We applied the proposed methodology to the geographical area of Figure 12a. By
defining the geographical coordinates of the selected bounding box on the map, data
extraction and preprocessing is performed, as shown in Section 2.1. In particular, we
receive the Sentinel-2 images and we define the Grid of the potential WEC installation
points. For each point, the Patch of the image is extracted and the wave height and period
time series are obtained from the Era-5 dataset. In Figure 12b, the gaps observed, are regions
that were automatically excluded because they are out of the desired water depth range.
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Figure 11. Multitask Data Fusion based Neural Network predictions on test dataset.
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(a) (b) 

Figure 12. (a) Case study; Sines, Portugal; (b) potential WEC installation points of interest.

In Mode I, the suitability map is first derived based on the algae detection and wave
energy assessment. Neural Network predictions are presented in Figures 13a and 14a. Then,
the available land use/land cover data are fetched from the CLC dataset and depending on
the geographical constraints that arise, the final decision is formed, as Figures 13b and 14b
show. The areas highlighted in red color are excluded, while in green the suitable for WEC
system sites are shown.

 
(a) (b) 

Figure 13. (a) Neural Network Prediction; (b) final decision considering land use data.
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(a) (b) 

Figure 14. (a) Neural Network Prediction; (b) final decision considering land use data.

Utilizing the Multitask Data Fusion based Neural Network in Mode II, the suitability
map is generated directly from the DNN predictions and specially the output of Binary
Classification task (Figures 15a and 16a). In addition, One-Hot label, which results from
the second output of the Neural Network, appears for each of the potential regions. In
this way, the cause for which the area was excluded from the study becomes known. In
Figures 15b and 16b there is a sample of predictions of the second task.

 
(a) (b) 

Figure 15. (a) Suitability map—Neural Network Predictions; (b) zoom to observe Multilabel Classification results.
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(a) (b) 

Figure 16. (a) Suitability map—Neural Network Predictions; (b) zoom to observe Multilabel Classification results.

Both Modes make common predictions of offshore points of interest with algae pres-
ence. In Figures 13a and 15a our models classify differently the wave energy potential
in some offshore points of interest due to FN predictions of Neural Network in Mode II,
because the Binary Classification task depends on the Multilabel Classification task. In
the majority of nearshore regions, which are affected by land use, there is an agreement
between the two approaches. Nevertheless, we notice in Figures 14a and 16a that the Mul-
titask DNN does not properly classify coastal areas in the southern part, because in order
to identify a land use class in the satellite image, the latter must correspond to a significant
percentage of the coast and be clearly visible. When using Mode I, land use classes are
found using the spatial intersection operation, which always implies their correct detection.
Nobre et al. [44] focus in this geographical area during their study. Comparison of the
results with the proposed approach can only be done for offshore points, because the
authors reject the areas near the coast. Although the estimate of the potential wave energy
is made in a different way and in the present paper we detect seagrass in marine areas,
there is an agreement of the results to a very large extent.

4. Conclusions and Discussion

This paper presents a new, Deep Learning-based methodology to automate the process
of WEC optimal positioning. The presented models work with freely available satellite
images, as well as Climate Reanalysis data. The methodology is applied through two
different approaches. In Mode I, land use data are received from CLC dataset, while in the
second method they are extracted from the satellite images in order to avoid additional
geographic limitations. At the end of the training process, the model being developed is
capable of identifying the spatial restrictions in satellite images, including algae patterns
that are dynamically changing features. At the same time, the system estimates the wave
energy potential by treating it as a dynamic phenomenon, which is characterized by
non-predictable temporal variability. In addition, our model can identify the differences
in temporal variability of multiple locations. In this way, it is confirmed that merging
heterogeneous data works efficiently in solving complex problems. Thus, it turns out that
CNNs are efficient in both image and time series recognition.

In this paper, we initiate a new method for the spatial positioning of WEC that is
based in recognition of geospatial constraints which are dynamically changing patterns in
marine areas. Thus, the main limitation of this study is the fact that additional dynamic
classes can be added to satellite image recognition task. Under this rationale, the proposed
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model can be generalized to include several image-related dynamic phenomena. In marine
areas there are characteristics that change in time, so their identification is difficult without
Machine Learning or costly monitoring. In addition, the main technical challenge of this
study is the fact that the examination of dynamic geospatial and technical restrictions
should be combined in terms of Levelized Cost of Energy (LCOE) of wave energy and
GIS methods [45]. Regarding land use, the interconnection of the proposed system with
an API such as Google Maps/Places or Open Street Map could be efficient because these
platforms contain data that are frequently updated. Finally, in addition to assessing
climatic conditions, a third branch can be added to the proposed Neural Network for time
series forecasting.
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Abstract: Hybridizing a lead–acid battery energy storage system (ESS) with supercapacitors is a promis-
ing solution to cope with the increased battery degradation in standalone microgrids that suffer from
irregular electricity profiles. There are many studies in the literature on such hybrid energy storage
systems (HESS), usually examining the various hybridization aspects separately. This paper provides a
holistic look at the design of an HESS. A new control scheme is proposed that applies power filtering to
smooth out the battery profile, while strictly adhering to the supercapacitors’ voltage limits. A new lead–
acid battery model is introduced, which accounts for the combined effects of a microcycle’s depth of
discharge (DoD) and battery temperature, usually considered separately in the literature. Further-
more, a sensitivity analysis on the thermal parameters and an economic analysis were performed
using a 90-day electricity profile from an actual DC microgrid in India to infer the hybridization
benefit. The results show that the hybridization is beneficial mainly at poor thermal conditions and
highlight the need for a battery degradation model that considers both the DoD effect with microcycle
resolution and temperate impact to accurately assess the gain from such a hybridization.

Keywords: hybrid energy storage system; supercapacitor; lead–acid battery; energy management
system; battery degradation; depth of discharge; techno-economic analysis

1. Introduction

Among the Sustainable Development Goals (SDGs) established by the United Nations
General Assembly in 2015 [1], SDG 7 aims at affordable, reliable, sustainable and modern
energy access for all. Microgrids are a key technology to this end, and have seen recently
remarkable expansion in isolated rural areas around the world with limited or no access to
the main electric grid. The typical standalone microgrid utilizes renewable or other local
energy sources to provide electricity in places where long-distance power transmission
and substantial grid investments are deemed uneconomical [2]. An irreplaceable com-
ponent of these miniature power grids is the energy storage system (ESS), whose main
role is to ensure power quality and energy balance between the intermittent supply and
demand [3,4]. Batteries are the most widely used energy storage technology in microgrids,
mainly due to their scalability, modularity and limited maintenance needs. Lead–acid
batteries, in particular, remain to this day the most commonly found battery technology
in operating microgrids, being the most commercially mature. A big challenge in these
ESS, however, is battery degradation due to deep discharge and surge currents often found
in standalone microgrids supplied by intermittent renewables supply, such as solar [5].
For example, lead–acid batteries under high charge/discharge rates suffer from the for-
mation of smaller sulphate crystals that lead to inhomogeneous current distribution and
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increased internal resistance, all of which have a negative impact on battery life [6]. To this
day, the longevity and associated replacement costs of batteries remain one of the most
critical factors for the economic viability of an off-grid microgrid investment.

To overcome these challenges, the scientific community has explored in the last decade
how to hybridize a battery ESS with other storage technologies, such as supercapaci-
tors [7–14], fuel cells [15,16] and flywheels [17], to come up with a more reliable hybrid
energy storage system (HESS) that features longer lifespan and higher resistance to degra-
dation. Supercapacitors (or ultracapacitors) are deemed among the most suitable coupling
candidates, as they exhibit high power density (though low energy density) and comple-
mentary characteristics to electrochemical batteries [18,19]. They can readily support high
charge/discharge rates as often as required with negligible impact to their life, which typi-
cally exceeds a decade [20]. For this reason, they couple nicely with batteries in absorbing
the sudden changes in power demand that allows for a smoother power profile to the
batteries and reduced deterioration. Furthermore, the two energy storage technologies
exhibit relatively similar operating principles as they are both electrochemical devices,
which translates to similar low set-up costs [2]. Furthermore, the long-term operation
and maintenance (O&M) costs of supercapacitors are lower than those of batteries [21].
This paper takes a deep look on how to hybridize an ESS with lead–acid batteries and
supercapacitors, providing recommendations for the topology selection, the design of
the control scheme, the battery degradation modeling and economic viability analysis of
the investment.

The state of the art in HESS topologies involves mainly three different configurations
of batteries and supercapacitors: passive, semi-active and fully active [2,7]. The most
appropriate topology for an application is selected based on factors such as the set-up cost,
efficiency, controllability, system complexity and utilization rate. The passive HESS is the
simplest and cheapest topology, according to which the batteries and supercapacitors are
directly coupled in parallel at the DC link without any power electronics or control [8,9];
this approach is widely applied in high voltage ESS, benefiting from low internal losses
and reduced system complexity. However, this way the supercapacitors voltage varies
little and their capacity is severely underutilized, which entails only limited extension of
the battery life. Furthermore, this approach faces also challenges related to impedance
matching between the batteries and supercapacitors. The semi-active configuration, on the
other hand, employs power electronics in either batteries or supercapacitors—not both—to
expand the operating region of the latter [10,11]. With this approach, one of the two storage
devices is effectively isolated, thus allowing for more flexible power allocation between
the two. Nonetheless, the passive element may suffer from surge currents—if it is the
battery—or cause bus voltage fluctuation and negatively impact the power quality—if it is
the supercapacitors. The third option of fully active configuration tackles all these issues.
Usually a parallel connection is adopted [5,12–14], but cascade implementations are also
reported [22]. The big gain with this topology is effective decoupling of the two components
permitting independent control during operation and separate sizing at the design phase.
Especially for DC standalone microgrids, this is a viable option for getting the energy storage
mix right and extending the HESS lifespan as much as possible. It is worth noting that there
are some recent alternatives that involve distributed hybridization combined with active
balancing, achieved by incorporating supercapacitors into the balancing bus in order to
enable cell-level hybridization [23]. However, this is still a new and more complex solution,
so far targeted only at Li-ion batteries in e-mobility applications. Therefore, this paper
adopts the fully active HESS method as the most appropriate for isolated DC microgrids.

Various philosophies exist in the literature regarding the control strategy of fully active
HESS to allocate the power flows between the batteries and supercapacitors and maintain
the system stability. These control strategies, commonly referred to as energy management
systems (EMS), may involve power filtering [5,14,24–26], deterministic rule-based con-
trol [13,27], fuzzy logic [10,28] and optimization-based control [29–31]. In [28], a fuzzy logic
rule-based control is applied to a HESS to ensure that the ESS elements operate in the safe
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region. Alternatives employing neural networks [29] and model predictive control [30,31]
are based on multi-objective or cost functions that aim to optimize the power allocation.
A combination of the rule-based concept with optimization algorithms is proposed in [27].
However, the aforementioned approaches employ sophisticated algorithms that require
large amounts of input data and complex mathematical calculations, which have acted as
barriers towards wider adoption. By contrast, the power filtering approach has proven
quite popular, as it is both effective and easy to implement. It has been also shown that a
simple filter-based control is effective in off-line sizing applications as well, yielding very
similar results to more complex, non-causal, optimization control approaches as long as
battery model accounts for sufficiently complex dynamics [32]. Given these considerations,
this paper focuses on the power filtering method.

There are many studies on power filtering in the literature. Somayajula et al. in [33]
demonstrated an active supercapacitor control scheme to achieve smoothing of intermittent
renewables generation; the adopted cascade control comprising an outer voltage loop and
an inner current loop has been also applied to battery-supercapacitor hybrid systems to
ensure power quality. Decoupling the high frequency part of the power control using a first-
order low-pass filter (LPF) is proposed in [5,14,24,25]. However, these studies do not properly
consider the safe operating region of the ESS components. Especially for the supercapacitors,
their low energy density and high charge/discharge rates lead to highly volatile voltage;
if not properly contained within the safety limits, this may result in irreversible damage if
overcharged (e.g., voltage exceeding the structural limits) or power converter malfunction if
left uncharged (e.g., power converter not managing to step-up the low input voltage). To this
end, State of Charge (SoC) controllers are proposed in [26,34], which however aim to maintain
the energy of the supercapacitors around the reference level and do not directly control the
voltage. This may occasionally result in voltage out of limits due to SoC miscalculation
caused by various factors, such as parasitic resistances or capacitance deviation due to aging
and deterioration. To this day, a complete control scheme for hybrid batteries-supercapacitors
systems based on power filtering that strictly adheres to the supercapacitor voltage limits is
missing from the literature.

To evaluate the contribution of the hybridization to the battery lifespan, the battery
degradation needs to be captured and modeled. There are three different degradation
modeling philosophies in the literature: physical-mechanistic models, empirical models
and data-driven models [35–37]. Physical-mechanistic models are generally based on elec-
trochemical aging processes inside the battery and involve physics-inspired differential
equations. For example, Dufo-López et al. in [35] consider the phenomena of internal
corrosion of the battery and aging of the active material to quantify the capacity loss. Al-
though very well-aligned with the physics, these models require many unknown parameters
and laborious computations that limit their applicability only to research purposes. The em-
pirical models, on the other hand, entail simpler mathematical functions and coefficients
extracted from fitting to experimental results. This makes this approach more effective
and practical, except that it requires lots of experimental data to capture a wide range of
operating conditions and degradation factors. Making assumptions for untested conditions,
to make up for missing data, may introduce uncertainty in the results [36]. A popular
extension of this category are the cycle-counting models [38]; by adopting the principle
of fatigue damage, these models measure the degradation for each cycle of use assuming
that the aging factors are independent and cumulative. This allows for a more abstract and
universal model structure that relies on limited empirical information usually available in
the manufacturer datasheet. Examples of such quantitative cycle-counting models may
be found in [6,14,22,39–42]. The third category of data-driven degradation models apply
statistical analysis and machine learning on a large database to predict the battery status
and extract patterns to quantify the lifespan [37,43]. These methods are not yet widely
used due to their dependence on large datasets and sophisticated implementation. This
paper, therefore, adopts the cycle-counting empirical approach due to practicality and wide
acceptance in the field.
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The battery ages and degrades over time mainly due to (i) calendar aging, i.e., capacity
decrease under idle conditions, and (ii) cycle life aging, i.e., degradation during usage [44].
In standalone microgrids, the ESS is in continuous operation and the latter type of aging
prevails; this is why the degradation model of this paper focuses on cycle life aging,
as generally done in HESS studies. This type of deterioration can be manifested as corrosion
of positive grid, hard/irreversible sulfation and shedding [45]. The most prevalent failure
mode for lead–acid batteries in standalone stationary systems is the former, also known
as anodic corrosion [46], which used to be a major problem in early design, thereafter
overcome by the adoption of improved grid alloys. The corrosion rate is accelerated
by high temperatures, extreme voltages and cycling operation (versus constant current
operation) [46]. Primary factors of this degradation are the depth of discharge (DoD)
(i.e., how deeply the battery is discharged), the charge/discharge rates and the battery’s
operating temperature [6]. Most relevant models take into account only the DoD factor and
employ a cycle-counting method, such as the rainflow counting method [6,40], to capture
the number and depth of the cycles [42,47]. However, these models are designed for
moderate and deep discharge cycles (e.g., more than 10%) and may fail to accurately
capture the effect of smaller cycles, i.e., microcycles, often found in off-grid microgrids
with irregular power flows due to intermittent supply and demand [14,22]. The case study
of this paper show that it is imperative to employ a microcycles DoD model when there is
access to high time-resolution electricity data (e.g., second resolution) in order to accurately
capture the DoD degradation. Furthermore, battery temperature is also an important
stress factor to battery degradation, usually studied separately from the DoD effect [48].
The investigation in this paper demonstrates that the two factors are strongly related in the
presence of microcycles and rapidly changing battery currents. Narayan et al. [38] have
proposed a model that combines both DoD and temperature effects, albeit following an
alternative dynamic capacity fading approach that is too complicated for classical cycle
counting and fundamentally differs from the aforementioned mainstream DoD models.
There is still a need in the literature for a lead–acid battery degradation model that accounts
for the combined effect of microcycles DoD and temperature.

In applications of lead–acid battery and supercapacitor hybrid systems, the selection
of energy storage components mainly depends on the availability, system size and cost.
Lead–acid batteries are the industry standard for small-scale standalone photovoltaic (PV)
systems, both in valve-regulated and flooded deep-cycle designs [49]. The batteries are
usually connected in series to meet the system voltage requirements, and then several
strings are added in parallel to meet the required capacity. Twelve-volt batteries are
considered the most cost-effective solution for systems comprising up to 4–6 parallel
strings, and two-volt batteries are usually preferred for larger systems. Suggestions on the
selection of lead–acid battery types in different scenarios are given in [49], where there is a
need to strike a balance between lifespan, cost and energy density. The supercapacitors
are commercially available in modules, consisting of several cells connected in series;
the maximum voltage of a single cell is usually 2.7 V. For the selection of supercapacitors,
the capacity is determined by the maximum energy variation required by the system and its
operating voltage range [26]. As supercapacitors are much more expensive than batteries,
a thorough cost-benefit analysis should take place to come up with the appropriate size of
the two components.

The aim of this paper is to propose a complete methodology to hybridize a lead–acid
battery ESS with supercapacitors for standalone DC microgrids. A new power allocation
control scheme and battery degradation model are proposed to accurately capture and
maximize the battery life extension due to hybridization. A thorough techno-economic
analysis takes place based on a 90-day electricity dataset from a real-life 4.8 kW standalone
microgrid installed in rural India, to determine the viability of the hybridization at six
different scenarios. The main novel points of this study are as follows:
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• A complete ESS hybridization methodology is developed, including the control design,
battery degradation and economic viability analysis, while the results are based on
data from a real-life DC microgrid.

• A new power allocation control scheme is proposed, based on power filtering that
strictly abides by the supercapacitors’ voltage operating limits.

• A new degradation mechanism model for lead–acid batteries (or simply "battery
degradation model") is introduced that accounts for the combined effect of microcycles
DoD and battery temperature, appropriate for high time-resolution profiles.

The structure of the paper is as follows. Section 2 presents the control scheme and
power filtering method that respects the supercapacitors’ voltage limits, while the new
battery degradation model that accounts for both DoD and temperature impact is given
in Section 3. In Section 4, the real-life case study of this paper is detailed, followed by a
sensitivity analysis on the thermal parameters. Section 5 discusses the economic benefit
from the hybridization at six different scenarios and Section 6 concludes this study.

2. Topology and Control Strategy of the HESS

The HESS under consideration corresponds to the case-study 24 V DC microgrid
described in Section 4. Figure 1 shows a simplified diagram with aggregated PV generation
and load that involves the proposed parallel, fully-active HESS. Both the battery bank and
supercapacitors bank have their own bidirectional DC/DC converter to allow separate
power flows according to the controller. The objective of the controller is multi-fold: to
regulate the DC link voltage and maintain the power balance in the microgrid, whilst
cleverly allocating the power demand between the two storage components to smooth out
the battery power profile but respecting the supercapacitor voltage limits. The details of
the topology and control strategy follow.

Figure 1. Selected system topology: DC microgrid with a parallel, fully-active hybrid energy storage
system (HESS).

2.1. The Fully Active Topology

Among various HESS configurations, the parallel, fully-active topology allows for
maximum flexibility when designing and operating the system. This flexibility, however,
comes at the cost of an additional DC/DC converter for the supercapacitors on top of the
one used for the batteries. Nonetheless, given the low DC bus voltage of 24 V, a simple
bidirectional two-quadrant converter is sufficient to step-up the supercapacitors’ voltage
(8–16 V in this paper), which is an effective and economical solution [5]. It is also worth
noting that the power rating of the supercapacitor converter is lower than the batteries’
one, here sized at about 30% of the ESS rated power for the case study of Section 4. At any
time, the HESS maintains the power balance in the microgrid by supporting any deviation
between PV generation PPV and load PLoad with power PHESS, the latter consisting of the
batteries PB and supercapacitors PSC contribution. The level of these contributions at any
time is determined by the controller detailed in the following section.
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2.2. Control Strategy

Figure 2 depicts the overall control strategy designed for the HESS. It comprises three
main parts: the outer voltage control loop, the power allocation mechanism and the inner
current control loop. The outer voltage control loop regulates the DC bus voltage Vo to
the reference Vo∗ by calculating the total reference power Ptot∗ that the HESS needs to
inject (if positive) or consume (if negative) to maintain the power balance in the microgrid.
The power allocation scheme then splits Ptot∗ to the two components fed into the battery
Pb∗ and supercapacitor Psc∗; the battery undertakes a low-pass-filtered version of Ptot∗,
possibly adjusted by ΔPsc when the supercapacitors operate close to their limits, and the
remaining goes to the supercapacitors. Finally, these reference power values are converted
to reference currents Ib∗ and Isc∗ that drive the inner loop current controllers in adjusting
the duty cycle Db and Dsc of the separate DC/DC converters. The power filtering and
supercapacitor voltage limitation scheme are described in more detail below.

Figure 2. Proposed HESS control scheme.

2.2.1. Power Filtering

Supercapacitors have several features, such as fast dynamics, long cycle life and low
internal resistance, which make them ideal to deal with the high-frequency power compo-
nents of the load. Although some studies indicate capacitance drop for high frequencies of
operation [50], they remain very useful in absorbing the high charge/discharge rates to
protect the batteries. To this end, a low pass filter (LPF) is employed here to disaggregate
Ptot∗ to the slow-changing Pb∗ and fast-changing Psc∗. The simplest approach for the LPF
would be a first-order continuous time filter, with a transfer function

H(s) =
1

1 + T · s
(1)

where T is the time constant. The higher the time constant, the better the filtering, albeit
requiring larger capacity from the supercapacitors; if it is too high, their capacity may be
quickly outspent, effectively disabling them for large periods of time. A discussion on the
selection of the time constant follows in Section 2.3.

High-order filters generally perform better in cutting high-frequency signals and have
been employed in power filtering of energy storage systems in the literature [24,51]. There
are two broad categories of digital filters: finite impulse response (FIR) filters and infinite
impulse response (IIR) filters, based on the time domain characteristics of their impulse
response functions. Generally, high-order IIR filters are seen to exhibit convergence and
stability issues, which is in contrast to FIR filters that feature low phase distortion and
are always stable without feedback loops [51–53]. Therefore, the second filter alternative
considered in this study is an FIR filter, expressed in the z-domain as
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H(z) =
N−1

∑
n=0

h[n]z−n (2)

and in the discrete time domain as

h[n] = hd[n]ω[n] =
sin(nωc)

nπ
ω[n] (3)

where ω[n] represents a window function. The window function (e.g., Hamming win-
dow [54], Kaiser window [55]) is used in cutting of the low-pass infinite pulse to obtain
the FIR coefficients. The design parameters of an FIR filter are the filter length N and the
cut-off frequency ωc.

A important feature of a high-order FIR filter is the group delay, directly related to
the length of the window N [52]. High-length windows yield better low-pass filtering
performance, albeit with a larger group delay. However, such delays lead to power lags that
need to be accommodated by the supercapacitors, which may lead to power oscillations
and suboptimal performance in some cases, as shown in Section 2.3. Selection of the FIR
filter length and cutoff frequency is a delicate procedure that needs to strike a balance
between the filtering effect and group delay.

2.2.2. Supercapacitor Voltage Limitation

The supercapacitors’ voltage varies substantially during normal operation due to their
strong coupling with the stored energy: to fully charge, the voltage needs to get to the
nominal value; to fully discharge, the voltage should decrease as low as possible. This
variation, however, must abide by certain safety limits VSC,min ≤ VSC ≤ VSC,max to account
for structural characteristics of the supercapacitors and input voltage limitations of the
power converter.

Take the supercapacitor module used in this case study (see Section 4) as an exam-
ple [56]. The maximum voltage VSC,max is set to the nominal value of 16 V (6 cells in
series—about 2.7 V per cell), while the minimum value VSC,min is selected as 8 V, so that the
DC/DC converter is required to boost the voltage up to three times to reach the target 24 V.
Past experience has shown that the conduction and switching losses of such converters
skyrocket for conversion ratios of higher than three [57], which entails inefficient operation
or even inability of the power converter to step-up the voltage. Within this voltage range,
the usable energy capacity portion of the supercapacitor ESC would be

ESC =
1
2 CV2

SC,max − 1
2 CV2

SC,min
1
2 CV2

SC,max
=

162 − 82

162 = 75% (4)

Utilizing 75% of the available energy is quite reasonable, especially given the simple
and economical power converter employed.

To enforce adherence of these limits, the supercapacitor limitation scheme of Figure 2
is used. The main idea is to compensate for any voltage violation by adjusting the battery
power Pb∗ by a signal ΔPSC. ΔPSC will be zero while operating within limits, but it will
get positive values when the supercapacitors voltage exceed the upper bound (need to
discharge) or negative values when it goes below the lower bound (need to charge). To this
end, two PI controllers are employed with appropriate saturation limits and anti-windup
mechanisms, each undertaking regulation around one of the two voltage limits. While
voltage is in the safe region, both PI controllers are driven to their zero saturation bound,
thus exporting zero ΔPSC; when VSC > VSC,max, the upper PI controller gets activated while
the lower controller remains stuck at zero, which brings the voltage back to VSC,max; when
VSC < VSC,min, the opposite happens and the lower PI controller regulates the voltage back
into the safe region. Notably, the anti-windup mechanism is crucial for this control scheme,
so that the controllers can "unstick" from saturation immediately after the voltage gets
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out of bounds. Here, the clamping anti-windup method has been employed, but other
anti-windup alternatives will work equally as well.

2.3. Energy Management System Results

This section evaluates the proposed control scheme on a 10,000-s electricity profile
from the study-case system detailed in Section 4. The following results have been produced
through simulations in MATLAB/Simulink. As a benchmark, the conventional battery-
alone ESS is considered first, as shown in Figure 3. The entire power demand PESS is
taken care of solely by the batteries PB, resulting in high-frequency power fluctuation that
accelerates the battery degradation. Please note that positive and negative power values
indicate discharging and charging respectively, while small deviations between PESS and
PB are due to power losses.
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Figure 3. Power profile in the battery-alone ESS system.

The same power profile is applied to a HESS employing different power filters, as shown
in Figures 4–6. A simple first-order LPF with a small time constant of 50 s yields a smoother
battery power profile PB in Figure 4a, as the supercapacitors absorb the fast-changing compo-
nent PSC. It is worth noting that the mean value of PSC is not far from zero, which leads to
limited supercapacitor voltage variation in Figure 4b, well within the safe operating region.
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Figure 4. Power filtering and voltage results for the HESS with a first-order low-pass filter (LPF) (T = 50 s).

When increasing the time constant to 300 s, the power profile of the battery becomes
clearly smoother in Figure 5a, albeit at the cost of risking voltage going out of limits in
Figure 5b. As explained by Equation (4), there is strong relation between the energy stored in
the supercapacitors and their terminal voltage. For the selected supercapacitor module [56],
the absolute maximum voltage is 17 V, which creates a safety margin of 1 V above the 16 V
nominal voltage. In addition, the lower voltage bound of 8 V set is not really a strict limit; the
power converter can readily operate slightly lower, e.g., at 7 V, for a short time, temporarily
resulting in more losses that will not however risk the system integrity for a few seconds.
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This safety margin of 1 V from the upper and lower voltage limits provide the space for the
proposed supercapacitor voltage limitation scheme to detect any deviation and act upon in
by nullifying PSC whenever VSC is exceeding the limits. In fact, the designed control is very
fast in responding to these events, recording an imperceptible voltage overshoot of less than
0.01 V in the example of Figure 5b, well below the 1 V margin.
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Figure 5. Power filtering and voltage results for the HESS with a first-order LPF (T = 300 s).

A similar smoothing effect is achieved by the high-order FIR filter except for a no-
ticeable group delay, as shown in Figure 6 (N = 420, ωc = 0.0005π rad/sample). This
results in a phase delay between PB and PHESS, seen more clearly by comparing the zoom
boxes in Figures 5a and 6a. This group delay may trigger power oscillations and pose
control and stability challenges, and use the supercapacitors’ capacity in a suboptimal
manner. The conclusion from this investigation is that "too much" filtering may lead to the
opposite result, with power spikes and oscillations that do not resemble a smooth profile
for the battery. There is no golden rule on the selection of the filter parameters, as they
strongly depend on the electricity profile and the supercapacitors’ capacity. The parameters
selection for the case study of this paper is discussed in Section 4.
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(b) Supercapacitor voltage

Figure 6. Power filtering and voltage results for the HESS with a finite impulse response (FIR) filter (N = 420 and
ωc = 0.0005π rad/sample).

3. Battery Degradation Model

This section presents a new degradation model for lead–acid batteries used to evaluate
the contribution of the hybridization to the battery life. This is a cycle-counting model
that accounts for the cumulative fatigue from the most prevalent stress factors: the DoD
and battery temperature. Most conventional models explore these effects separately and
focus on medium and deep discharge cycles, i.e., DoD higher than 10%, thus neglecting
smaller changes in the SoC, i.e., microcycles. However, the ESS in small-scale PV microgrids
often experiences irregular charging/discharging patterns that involve lots of microcycles
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and rapidly changing currents that have increased DoD-related and temperature-related
impact on the battery life. This paper shows that it is important in these cases to use high-
resolution time series that allow for accurate approximation of both effects and thus the
battery degradation. The objective of the following paragraphs is to describe a methodology
for such a degradation model, which can be easily adapted to any lead–acid battery given
the appropriate coefficients and inputs.

3.1. Depth of Discharge (DoD) Model

To evaluate the DoD degradation, one needs first to extract the number of cycles and
their depth of discharge as explained in Section 3.1.1, to be used afterwards in a cycle life
model to quantify their impact on the battery life in Section 3.1.2.

3.1.1. Rainflow Counting Method

The most widely adopted method to capture the DoD profile is the rainflow counting
method. Using the SoC variation as an input, this method extracts the number of cycles,
their depth and length. An example is given in Figure 7: the plot of SoC over time is
rotated 90◦ clockwise and treated as a roof upon which raindrops fall. Starting from a
local maximum point “a”, the rainflow reaches the next local minimum point “b” and then
drops. The portion of the profile (b-c-b’) forms a whole cycle, denoted as “whole-cycle
1”. Then, the flow continues dropping till point “d” when it meets the minimum SoC
value. The transition (a-b-d) is counted as a half-cycle. Thereafter, “d” is set as the new
initial point for the next raindrop and these steps are repeated to identify the remaining
whole and half cycles, as illustrated in Figure 7. More details on the implementation of the
Rainflow counting method may be found in [6,40].

Figure 7. Example application of the rainflow counting algorithm based on a SoC profile.

3.1.2. Cycle Life Model—CL(DoD)

Given the extracted cycles pattern, the next step is to evaluate their effect on the battery
life. This is done by calculating the cycle life CL(d), i.e., the number of cycles that the battery
will last if the DoD of all cycles is d. Usually, CL(d) is a mathematical expression that is unique
for every battery and is derived based on information from the manufacturer datasheet.

An example of such datasheet information is given with the purple star markers in
Figure 8a for Trojan’s deep-cycle gel lead–acid battery [58]: the cycle life heavily depends
on the DoD, with higher DoD resulting in shorter cycle life. Since only a few such data
points are typically provided in the datasheet, there is a need for a mathematical model to
capture the cycle life for all possible DoDs. One commonly used such model, thereafter
referred to as the conventional model, is given by [40–42]

CL(d) = a5d5 + a4d4 + a3d3 + a2d2 + a1d + a0 (5)
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where ai are coefficients extracted by fitting Equation (5) on the given data points. For the
study-case battery, the fitted model is shown with a blue line in Figure 8a in regular scale
and in Figure 8b in logarithmic scale, while the ai coefficients are given in Table 1.

However, a major limitation of this method is that it does not accurately capture
the effect of microcycles with DoD less than 10%. Since the datasheet rarely includes
information for so low DoD, the Conventional model may overestimate the impact of the
microcycles, projecting low cycle life even for near-zero DoD (see how to blue line meets the
y-axis in Figure 8a). This proves to be problematic when there is access to high resolution
time series that permits visibility on the numerous existing microcycles. For these cases,
a microcycles model is required, such as [14,22]

CL(d) = b4d−4 + b3d−3 + b2d−2 + b1d−1 + b0 (6)

where bi are again coefficients extracted from the datasheet. Accurate identification of
these coefficients would normally require data points for smaller DoD; in absence of this
information, this paper assumes additional extrapolated points using a linear relationship
in the logarithmic scale, as shown with green markers in Figure 8b (coefficients in Table 1).
This way, the cycle life is very high for small DoD, providing a more realistic approximation
of the limited microcycles effect.

In fact, without sufficient input data at low DoD, both models are approximations of
the microcycles impact: a pessimistic one with the Conventional model and an optimistic
one with the microcycle model. However, the case study of Section 4 shows that the former
is clearly unsuitable in presence of microcycles, while the latter yields reasonable results.
In addition, with the microcycle model the supercapacitor’s contribution to the battery life
extension is more limited, which makes it a conservative benchmark when evaluating the
economic viability of the hybridization. Therefore, this paper recommends adoption of the
microcycle model as the safest approach in the design of a HESS.

Table 1. Coefficients of conventional and microcycle models.

Model Coefficients

Conventional model a5 = −46,573 a4 = 187,495 a3 = −288,854
a2 = 212,925 a1 = −76,291 a0 = 11,761

Microcycle model b4 = −1.345 × 10−12 b3 = 1.495 × 10−7 b2 = −1.507 × 10−3

b1 = 601.5 b0 = −122.5
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Figure 8. Battery cycle life vs. depth of discharge (DoD) curve.
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3.2. Temperature Model

The battery’s operating temperature is also an important factor to the battery life.
In the following, Section 3.2.1 explains how to calculate the battery temperature and
Section 3.2.3 how to evaluate its effect on the cycle life.

3.2.1. Battery Temperature Calculation

The battery temperature T depends mainly on the ambient temperature Ta and the
power losses Ploss. Taking into account the thermal inertia of the system, their combined
effect can be expressed in the Laplace domain by the transfer function of a first-order low
pass filter

T(s) =
Ploss · Rth + Ta

1 + tc · s
(7)

where Rth is the thermal resistance and tc is the thermal time constant. Equation (7) reflects
the fact that any change in Ta or Ploss will not be transferred to the battery temperature
immediately. Ta is an input to the model, while Ploss is the aggregate power losses on the
battery Ploss_battery and on the power converter Ploss_converter (assuming they are both placed
in the same cabinet):

Ploss = Ploss_battery + Ploss_converter (8)

The converter power losses are found directly from the DC/DC converter efficiency.
Typical efficiencies vary around 95% [59], thus Ploss_converter is assumed here to be 5% of the
actual power output at any time. The internal losses of the battery is described in detail in
Section 3.2.2 below.

3.2.2. Battery Electrical Equivalent Circuit Model

The battery internal losses Ploss_battery are calculated using the equivalent circuit of
the battery shown in Figure 9. This circuit involves the following parasitic elements [60]:
(i) an internal series resistance Rserial that reflects losses due to ohmic polarization of
instantaneous nature; (ii) a pair of resistance/capacitance Rt_ f ast, Ct_ f ast that accounts for
activation polarization (or charge-transfer) phenomena with fast dynamics; and (iii) another
pair Rt_slow, Ct_slow that models slower concentration polarization effects. The parameter
values used in this paper are listed in Table 2, taken from [61]. The power losses were
found by solving the algebraic and differential equations of this circuit for the given input
battery current Ibat:

Ploss_battery = I2
batRserial +

V2
t_ f ast

Rt_ f ast
+

V2
t_slow

Rt_slow
(9)

Ibat = Ct_ f ast
dVt_ f ast

dt
+

Vt_ f ast

Rt_ f ast
(10)

Ibat = Ct_slow
dVt_slow

dt
+

Vt_slow
Rt_slow

(11)

Table 2. Parameters of lead–acid battery equivalent circuit [61].

Parameter Value

Rserial 0.0401 × e0.0908×SoC + 0.0366 Ω
Rt_ f ast 3.041 × 10−10 × e0.1874×SoC + 0.0344 Ω
Rt_slow 0.101 × e0.0203·SoC + 0.0219 Ω
Ct_ f ast 1200 F
Ct_slow 5000 F

It is worth noting that the relation between Ploss_battery and Ibat is non-linear; there
is a quadratic dependence of the I2R losses on the current, which means that the charg-
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ing/discharging pattern matters for the losses. For example, charging the battery with a
constant current yields lower power losses than with a fluctuating current with the same
mean value. However, the equivalent model of Figure 9 does not consider any dependence
of the parasitic elements on the operating frequency, which some experimental studies
have shown to be apparent.

Figure 9. Equivalent electrical model of the lead–acid battery [61,62].

3.2.3. Temperature’s Effect on Cycle Life

The temperature mainly affects the corrosion of the lead–acid battery’s positive elec-
trode [6]: the higher the temperature, the faster the corrosion process. An investigation
in [38] has shown that there is a linear relationship between the battery temperature and
the cycle life for the same DoD, as shown in Figure 10. This means that the cycle life of the
battery CL(d) calculated in Section 3.1 is only valid at 20 ◦C and needs to be translated to
the actual operating temperature T by multiplying with a coefficient nCL(T) given here by

nCL(T) = −0.0225 · T + 1.45 (12)
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Figure 10. Normalized cycle life with temperature in a lead–acid battery [38].

This equation taken from [38] refers to a flooded lead–acid battery, but it is assumed
here that it applies more or less to deep-cycle gel-type lead–acid batteries as well. The typi-
cal gel battery datasheet does not provide any information on the cycle life-temperature
relationship, but it includes data on the dependence of the battery capacity loss on the tem-
perature, which is also linear [58,63]. Therefore, in absence of datasheet information or other
relevant knowledge on the battery, this paper deems it better to use Equation (12) to model
the temperature effect rather than to ignore it completely, as often done in the literature.

3.3. The Complete Battery Degradation Model

Given the cycles profile and operating temperature calculated in the previous para-
graphs, the battery fatigue damage D is given by the Palmgren-Miner rule [64]:

D =
d=100%

∑
d=0%

count(d)
CL(d) · nCL(T)

(13)

where count(d) is the number of cycles with a DoD equal to d, and CL(d) · nCL(T) the
respective battery cycle life at battery temperature T. Equation (13) reflects that D comes
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essentially from the weighted average of the various cycles depending on their frequency
in the profile. It is worth noting that during a particular cycle, the temperature T is not
constant and may vary; here the maximum temperature recorded during each cycle is
selected for T.

The fatigue damage D gives by how much the battery has degraded for the particular
charging/discharging profile, e.g., 5%. To get an estimate of the life expectancy Lbat assuming
that the battery will operate under that profile, one needs to simply divide the duration of
the study-case profile Ndays by D:

Lbat =
Ndays

D
(14)

For example, if a 90-day profile is used that yields 5% aging, the estimated lifespan of
the battery will be 1800 days or equivalently 4.9 years. The full picture of the proposed
battery degradation model is given in Figure 11.

• First, the input SoC profile is analyzed using the rainflow counting method to identify
the various cycles, which are then grouped together based on their DoD.

• Then, the microcycle model (Equation (6)) is applied to every DoD captured to deter-
mine the respective cycle life CL(d).

• Next, the battery temperature variation is calculated from Equations (7)–(11) for the
entire profile.

• For every cycle, the temperature coefficient nCL(T) is determined based on the re-
spective temperature through Equation (12).

• Finally, applying Equations (13) and (14) yields the fatigue damage D and lifespan of
the battery Lbat.

Figure 11. Flowchart of the proposed battery life estimation method.

4. Case Study and Analysis

This section outlines the case study adopted in this paper to evaluate the proposed
hybridization methodology. The electricity profile from a real-life standalone DC microgrid
is used, followed by a sensitivity analysis on the impact of various thermal factors. It
is worth noting that many parameters related to the ESS are assumed or taken from the
literature and do not necessarily correspond to the case-study microgrid. The purpose of
this section is to extract general conclusions on how different factors influence the battery
life and hybridization benefit, rather than to be contained to a specific system.

4.1. The Case Study

The system under consideration is a DC microgrid installed in rural India (Bahraich
district, Uttar Pradesh) that supplies electricity to 43 households. The microgrid comprises
a total of 4.6 kWp of solar PV generation, 24 lead–acid batteries of 12 V/100 Ah each, and a
24 V distribution network over 1 km distance. The household loads are LED bulbs (1 W or
4 W), fans (15 W) and mobile phone chargers (max 5 W). Two profiles were provided over
a period of 2 days and 90 days that include information on generation, load and ambient
temperature at 1 s time resolution. It is worth noting that the acquired profiles refer to a
subset only of the entire system.
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Figure 12a depicts the PV generation and load profiles for two days in April 2019,
extracted from the 90-day dataset. Solar generation expectedly varies slowly during the day,
although it occasionally features high-frequency oscillations due to intermittent clouding.
The domestic load profile exhibits its peak in the evening hours, when the people finish
their agricultural activities and return back to their home. This deviation between supply
and demand is the net power profile seen by the ESS. Figure 12b shows the ambient
temperature profile during that period.
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Figure 12. Two-day electricity and temperature profiles.

Figure 13 depicts the 90-day profile referring to 20 February to 20 May in 2019. The elec-
tricity and ambient temperature variation is given in Figure 13a,b, both featuring the antici-
pated daily fluctuation; the temperature also exhibits an interseasonal variation, increasing
from about 20 ◦C to 35 ◦C on average. The power distribution is further studied in the
histogram of Figure 13c: the load varies usually from 0 to 200 W, while solar generation is
often zero or very low during the the night-time and low-light hours. The mismatch between
the two is the net power accommodated by the ESS, varying here from −311 W to 993 W.
To investigate how quickly the net power changes, the distribution of the rate of change of
net power (RoCoP) is given in Figure 13d. It is apparent that rates of ±50–200 W/s are not
rare at all; such high power rates for the scale of the system have a negative impact on the
battery life both in terms of DoD and battery temperature.

The following sections explore how the supercapacitors can mitigate these power
fluctuations, and how this improvement relates to the thermal parameters. The default
parameters of the system used as a benchmark below are given in Table 3. The battery-
alone ESS is assumed to comprise 6 batteries, while the HESS has also 1 supercapacitor
module. The rest of the parameters are based on reasonable assumptions taken from the
literature [61,65,66] and do not necessarily reflect the case study system. For the remainder
of the analysis, the 90-day profile is used.

Table 3. Default HESS parameters.

Parameter Value

Number of lead–acid batteries 6 (2 × 3 strings; 100 Ah; 12 V)
Number of supercapacitor modules 1 (BMOD0500 P016: 500 F; 16 V)
HESS LPF time constant 45 s (1st order LPF)
Cycle life model of DoD Microcycle model
Thermal resistance Rth 0.6 ◦C/W
Thermal time constant tc 18,000 s (5 h)
Internal series resistance Rserial 0.0401 × e0.0908×SoC + 0.0366 Ω
Converter power losses Ploss_converter 5%
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Figure 13. Ninety-day electricity and temperature profiles.

4.2. Power Filtering Results and Analysis

Based on the given 90-day profile and design specifications of Table 3, the optimal
parameters for the two power filter alternatives are extracted through exhaustive search
(testing wide ranges for each of the parameters, and select the ones that deliver the most
favorable performance) and are appended in Table 4. Apparently, both filters increase
the expected battery lifespan by almost the same amount. The first-order filter effectively
smooths out the power profile resulting in much lower standard deviation in battery RoCoP
and number of microcycles compared to the battery-alone system. The FIR filter yields
approximately the same life extension but by squeezing more the number of microcycles
while allowing for more deep cycles with higher DoD compared to the first-order LPF.
Given that the FIR filter comes also with some stability and control issues related to the
group delay, the first-order LPF is selected as more preferable and used in the remainder of
the paper.

Table 4. Hybridization benefit with the two power filters.

Parameter Battery-Alone 1st Order LPF FIR Filter

LPF parameters N/A T = 45 s N = 350; ωc = 0.007π rad/sample
Expected battery life 1858 days 2009 days 2003 days
Standard deviation of the PB RoCoP 1.7 W/s 0.3 W/s 1.3 W/s
Number of microcycles (<10% DoD) 1675 499 212
Number of deep cycles (≥10% DoD) 89 89 91

For a closer look at the filtering effect on the battery life, Figure 14 compares the
battery RoCoP and DoD distribution between the battery-alone and HESS cases. Clearly,
the hybridized batteries are exposed to a much more narrow RoCoP spectrum with sub-
stantially smaller power rates in Figure 14a, which translates to much fewer microcycles in
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Figure 14b (logarithmic scale). Please note also the large proportion of microcycles over the
total number of cycles in each case in Table 4. This analysis consolidates the importance
of an accurate battery degradation model with microcycles DoD resolution in order to
properly assess the hybridization benefit.

(a) Histogram of the rate of change of battery power (b) Histogram of the microcycles distribution

Figure 14. Hybridization effect on the battery operation.

4.3. Sensitivity Analysis of Thermal Parameters

Although the importance of the battery temperature on the battery life is a well-known
fact, it is still somewhat unclear how the supercapacitors can influence this phenomenon
and therefore the hybridization benefit. For this reason, the following paragraphs present a
sensitivity analysis, in which some of the most prevalent thermal parameters, i.e., thermal
resistance Rth, thermal time constant tc and converter power losses Ploss_converter, are varied
over a wide range to capture their effect on the temperature and battery life with and
without the hybridization. The default parameters of Table 3 are used as a benchmark.

4.3.1. The Effect of Thermal Resistance

The thermal resistance Rth reflects how the power losses from the battery and power
converter translate to battery temperature. Figure 15a shows the resulting HESS battery
temperature for Rth varying from 0 to 1 ◦C/W in the form of sorted curves (i.e., the
temperature values of the entire profile are sorted from high to low). Clearly, Rth is a crucial
factor, which may lead to very high temperatures for large values.

Figure 15b illustrates how this relates to the battery life with and without the hy-
bridization. The Rth impact is indeed negative, but the HESS seems to be much more
resilient compared to the battery-alone ESS. This is because the hybridization effectively
reduces the battery internal power losses Ploss_battery due to a smoother battery current Ibat,
as explained in Section 3.2.2; this entails lower battery temperature, and fewer number of
cycles in total. As a result, the life extension from hybridization in Figure 15c increases
in an exponential manner with Rth. The conclusion from this investigation is that the
supercapacitors not only alleviate some of the DoD degradation, but they also bring a
thermal benefit which proves to be substantial when the thermal resistance is high.
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Figure 15. Thermal resistance’s effect on battery life.

4.3.2. The Effect of the Thermal Time Constant

The thermal time constant tc plays essentially the role of inertia for the battery temper-
ature (see Equation (7)), typically few hours [66,67]. Small values entail steep temperature
rise during short-term power peaks, whereas large values effectively flatten out the tem-
perature distribution. This is why a tc = 1 h in Figure 16a results in occasional very high
temperatures, but most of the time the temperature is slightly lower than the tc = 10 h case.
This effect is reflected to the battery life and hybridization benefit as Figure 16b,c show; the
trend is somewhat similar to the Rth effect but with a reversed x-axis. Again, the superca-
pacitors may prove of little or major importance depending on the time constant value.

4.3.3. The Effect of Converter Power Losses

The converter power losses Ploss_converter have a rather limited impact on the battery
temperature as shown in Figure 17a: higher losses lead to higher temperatures, but the
difference is not as significant as with the previous factors. This translates to a more limited
effect on the battery life in Figure 17b and to a linear life extension from the hybridization
in Figure 17c. The general conclusion from this sensitivity analysis is: the more severe
the thermal conditions of the ESS, the more useful the supercapacitors are. This gives
an additional perspective on the hybridization benefits, apart from the most commonly
considered DoD impact.
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Figure 16. The thermal time constant’s effect on battery life.
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Figure 17. Converter power losses’ effect on battery life.
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5. Economic Analysis and Discussion

Although the previous section shows that hybridization is more or less beneficial to
the battery’s life, it is not clear when it makes sense in terms of economic viability. Here,
the benefit of more long-lived batteries is weighted against the additional investment
burden of the supercapacitors and their power converter to evaluate the overall economic
benefit of the hybridization. The case study of the previous section is used as an example,
assessed in six different scenarios to understand when the investment is viable and when it
is not.

The net present cost (NPC) metric is adopted in this paper to evaluate the total
investment required for the two alternative ESS over the entire project life. NPC involves
the initial one-time investment I0, any replacement costs R and operation and maintenance
(O&M) costs OM during the lifetime of the project [22,68]:

NPC = I0 + R + OM (15)

In the battery-alone system, I0 comprises the costs for the batteries CbatEbat and
their converter CconvEbat

conv, while the HESS involves additionally the supercapacitors costs
CsupEsup and their own converter costs CconvEsup

conv. Equation (16) shows the full picture for
the HESS case.

I0 = CbatEbat + CsupEsup + Cconv(Ebat
conv + Esup

conv) (16)

The parameters used in this paper are given in Table 5. The capital cost accounts for
the main investment. According to [21], the capital cost of lead–acid batteries in 2018 was
approximately 260 $/kWh and it was predicted to drop to 220 $/kWh by 2025. Assuming
that this project starts in 2020, a battery capital cost of 250 $/kWh is considered, with a
discount rate of 2.4%. The capital cost of supercapacitors is typically 10,000 $/kWh [69],
as adopted for example in the case study of [70]. The O&M costs of supercapacitors are
generally lower than that of batteries, selecting here 0.1% and 0.45% of the investment,
respectively, based on [21]. The cost of the power converters is taken from [21,68].

Assuming a project lifetime of 15 years, the replacement costs R in both battery-
alone ESS and HESS refer only to the batteries, since the supercapacitors and converters
lifespan typically reaches or exceeds 15 years [21,68]. Given the battery lifespan Lbat
calculated in years by the proposed degradation model in Section 3, the batteries need to
be replaced r = 15/Lbat − 1 times during the project lifetime; every replacement will cost
CbatEbat adjusted by the annual market discount rate dr that reflects the fact that technology
becomes cheaper over time. As r may not be an integer, the equation below involves the
cost of full replacements �r	 (rounded down) plus the cost of the final replacement that
accounts only for the remaining years and is adjusted by r − �r	. The latter intervention is
a simple way to account for capital recovery after the project life.

R =
�r	
∑
n=1

CbatEbat

(1 + dr)
nLbat

+ (r − �r	) CbatEbat

(1 + dr)

r�Lbat

(17)

Finally, the O&M costs increase every year due to aging of the equipment, reflected in
the actual discount rate d. During the first battery lifetime, the annual maintenance costs
will be an adjusted version of OMbat

0 based on d, where OMbat
0 is a percentage of the initial

investment (see Table 5). When the batteries are replaced, the maintenance costs will be a
discounted value of OMbat

1 , which is again a percentage but of the respective replacement
cost (see Equation (17)). The final O&M expression is given below for the HESS.

OM =
15/Lbat

∑
n=1

Lbat

∑
t=1

OMbat
n−1

(1 + d)t +
15

∑
t=1

OMsup
0

(1 + d)t +
15

∑
t=1

OMconv
0

(1 + d)t (18)
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Table 5. Economic parameters [21,68,69].

Parameter Lead Acid Battery Supercapacitor Power Converters

Capital cost Cbat, Csup, Cconv 250 $/kWh 10,000 $/kWh 0.25 $/W
Capacity Ebat, Esup, Ebat

conv/Esup
conv 7200 Wh 18 Wh 1000 W/ 300 W

Initial O&M costs OMbat
0 , OMsup

0 , OMconv
0 0.45% of invest. 0.11% of invest. 1 $/kW

Other Economic Parameters

Market discount rate dr 2.4%
O&M actual discount rate d −5%

It is worth noting that the O&M costs of the hybridized system will not fundamentally
differ from the battery-alone ESS. Being both electrochemical storage devices, the bat-
tery and supercapacitor require simple and straightforward maintenance, i.e., keeping
the surface clean and the connectors sealed etc. [71]. The skillset required by the local
technicians for installation, operation and maintenance is practically the same in the two
systems, which does not create any additional barriers in adopting the HESS in isolated
rural communities. However, it should be noted that supercapacitors consumables are not
as readily available as lead–acid batteries in local markets in rural India, although currently
the market size of Indian supercapacitor manufacturing industry grows steadily every
year [72].

5.1. Base Scenario

The base scenario refers to the default HESS parameters of Table 3 and the economic
considerations of Table 5. This includes a set of reasonable assumptions corresponding to a
realistic system, used thereafter as a benchmark for the remaining scenarios. The results of
the techno-economic analysis are given in Table 6. The battery life in the basic scenario is
estimated to be 5–5.5 years, which is well-aligned with industry’s expectations for real-life
microgrids [71]. The supercapacitors’ contribution reduces the total number of cycles by
2/3, mainly the microcycles, which translates to about 8% longer lifespan for the batter-
ies. However, given the additional investment costs in the HESS, the economic benefit is
much more limited at 1.9%. This makes the hybridization economically viable, albeit very
marginally. The following scenarios explore how these numbers change for different thermal
and economic considerations.

Table 6. Results of the base scenario.

Parameters Battery-Alone HESS

Total number of cycles 1754 579
Life estimation 1858 days 2009 days
Life estimation 5.09 years 5.50 years
Number of battery replacements 1.95 1.73
Invest. on Supercapacitor 0 184 $
Invest. on Battery 4734 $ 4386 $
Invest. on Converters 250 $ 325 $
O&M 140 $ 132 $
Total invest. 5124 $ 5027 $

Life extension 8.1%
Economic benefit 1.9%

5.2. Scenario 2: Conventional Cycle Life DoD Model

The discussion in Section 3.1.2 outlines two cycle life models that evaluate the DoD
degradation effect: the conventional model designed for cycles with substantial DoD,
and the microcycle model that accounts also for the cycles with very little DoD. Given that
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the case-study electricity profile is of high time-resolution and the numerous microcycles
are visible, it is of paramount importance to use the latter model in all analyses, as has been
done throughout this paper. To support this claim, scenario 2 employs the conventional
model instead, with the results given in Table 7. Clearly, the battery degradation is severely
overestimated, yielding about 1 year lifespan for the battery-alone and 3 years for the
HESS. Although, hybridization seems very beneficial indeed in this case, the results of
1-3 years are not realistic [71], highlighting that this type of model can not reflect reality
and should not be used to inform an investment. In fact, the main conclusion from this
scenario is how important is to use a microcycles life model when the SoC profile is of high
time-resolution and the microcycles are visible. In cases that a microcycle model is not
available, it is preferable to completely disregard the microcycles from the profile when
evaluating the DoD degradation.

Table 7. Results of scenario 2.

Parameters Battery-Alone HESS

Life estimation 1.05 years 3.04 years
Number of battery replacements 13.33 3.93
Total invest. 22,346 $ 8382 $

Life extension 190.6%
Economic benefit 62.5%

5.3. Scenario 3: Poor Thermal Characteristics

The thermal parameters of Table 3 are indicative and strongly depend on the specific
system and environment. Their influence on the battery life is discussed in Section 4.3; here,
the respective economic impact is assessed in a scenario with worse thermal characteristics
(e.g., poor ventilation and thermal management system): thermal resistance 0.8 ◦C/W,
thermal time constant 14,400 s (4 h) and converter losses 8%. For example, [66] shows that
the thermal resistance can be in some cases as high as 1.1 ◦C/W and the thermal constant
around 3–4 h. The results of Table 8 show a lifespan reduction of more than a year in
both systems compared to the base scenario due to the higher battery temperature. These
severe thermal conditions result in a battery life falling short of the industrial targets [71],
but hybridization manages to mitigate this impact to a large extent. The contribution of the
hybridization is considerable indeed, extending the battery longevity by more than 20%,
which translates to about 12% economic benefit. Clearly, hybridization is highly beneficial
in this case, which indicates that a HESS is a good solution under poor thermal conditions.

Table 8. Results of different scenarios of thermal characteristics.

Parameters
Scenario 3 (Poor Thermal Char.) Scenario 4 (Good Thermal Char.)

Battery-Alone HESS Battery-Alone HESS

Life estimation 3.80 years 4.59 years 5.72 years 5.93 years
Number of battery replacements 2.95 2.27 1.62 1.53
Total invest. 6627 $ 5840 $ 4605 $ 4716 $

Life extension 20.7% 3.7%
Economic benefit 11.9% −2.4%

5.4. Scenario 4: Good Thermal Characteristics

On the other hand, improved thermal characteristics should affect the results in the
opposite way. Here, the thermal parameters are: thermal resistance 0.4 ◦C/W; thermal
time constant 21,600 s (6 h); [67,73] and converter losses remain at 5%. For example, [73]
shows that with a properly designed cooling system, the thermal resistance will almost
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be lower than 0.4 ◦C/W, or even be reduced to 0.2 ◦C/W. Table 8 shows that the battery
life of the only-battery system meets and exceeds the industry expectations, which entails
marginal only life improvement from hybridization and a negative economic benefit indeed.
In other words, the hybridization contribution is too little to overcome the relevant financial
overhead. This highlights once again the importance to consider both temperature and
DoD factors in a battery degradation model to yield reliable conclusions.

5.5. Scenario 5: Economic Parameters in Favor of Hybridization

In order to assess the influence of the economic parameters on the viability of the
hybridization, this section repeats the analysis assuming conditions more favorable to
the supercapacitors. Specifically, the supercapacitors’ capital cost is reduced by 20% to
8000 $/kWh, the batteries are priced 12% higher at 280 $/kWh, the market discount rate
dr drops to 0.4% and the O&M discount rate d is assumed to be −1% (see Table 5 for
comparison). The resulting Table 9 differs from the base case Table 6 only in the financial
figures, now increasing the economic benefit of the hybridization to 3.6%. Apparently,
this is not fundamentally different from the 1.9% in the base case, which entails that
the hybridization viability is more sensitive on the thermal parameters, rather than the
economic ones.

Table 9. Results of different scenarios of economic parameters.

Parameters
Scenario 5 (In Favor of Hybr.) Scenario 6 (Against Hybr.)

Battery-Alone HESS Battery-Alone HESS

Life estimation 5.09 years 5.50 years 5.09 years 5.50 years
Number of battery replacements 1.95 1.73 1.95 1.73
Invest. on Supercapacitor 0 147 $ 0 224 $
Invest. on Battery 5824 $ 5388 $ 3732 $ 3467 $
O&M 150 $ 140 $ 139 $ 132 $
Total invest. 6224 $ 5999 $ 4122 $ 4148 $

Life extension 8.1% 8.1%
Economic benefit 3.6% −0.6%

5.6. Scenario 6: Economic Parameters against Hybridization

By contrast, this scenario explores economic parameters that stand against the hy-
bridization: supercapacitors cost $12,000/kWh, battery costs $220/kWh, 5% battery market
discount rate and −10% O&M discount rate. Table 9 shows a slightly negative economic
benefit which renders the hybridization marginally inviable. Still, a drop from 1.9% in
the base case to −0.6% here is very limited considering the substantial variations in the
capital costs, which essentially confirms the relative insensitivity of the hybridization to
the economic parameters.

In fact, the main conclusion from this investigation is that the main factors to assess
whether a lead–acid battery ESS should be hybridized with supercapacitors are the thermal
parameters, rather than the economic ones. The poorest the thermal conditions, the more
likely the hybridization to be beneficial.

6. Conclusions

This paper describes a methodology to hybridize a battery-based energy storage sys-
tem using supercapacitors for a smoother power profile, presenting a new control scheme,
a new battery degradation mechanism model and an economic viability analysis. Com-
pared to a system with only lead–acid batteries, the hybrid system features longer battery
life. The results showed that a simple first-order low-pass filter is an effective and reliable
solution for the power filtering, performing more favorably than higher order FIR filters
given the limited supercapacitors capacity and strict voltage limits. Apparently, the su-
percapacitors result in fewer microcycles, but also in lower average battery temperature
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due to the smoother current profile that yields less power losses compared to a fluctuating
current in the battery-alone case. This also highlights the importance in capturing both
DoD and temperature effects in a battery degradation model, such as in the one proposed.

Especially when there is access to second-resolution time series that allows visibility
to numerous microcycles, an appropriate microcycles cycle life DoD model should be
used; if not available, the microcycles should instead be completely disregarded from the
profile to avoid erroneous battery life estimation. A sensitivity analysis showed that the
thermal parameters of the system not only affect the battery life, but play a major role in the
hybridization benefit: poorer or better thermal conditions render the hybridization more or
less useful respectively. This is confirmed by the economic analysis, which concludes that
the financial benefit of the hybridization depends more on the thermal conditions rather
than the economic parameters of the investment.

The methodology and findings of this study may be useful when exploring hybridiza-
tion options for battery ESS in standalone microgrids. In addition, this type of hybrid ESS
has great grid-connected potential as well, mainly in facilitating high levels of renewables
integration. It is nowadays seen as a credible way to absorb generation and load intermit-
tency and provide ancillary services to the power system, such as frequency response and
inertia emulation, functions that again result in irregular charge/discharge battery profiles
that hint towards a hybrid ESS.

Furthermore, it is worth noting that the core of the proposed methodology applies to
Li-ion battery systems as well, which is increasingly gaining popularity due to longer life,
smaller size and less weight. Most steps of this paper’s methodology will be common in
this case, but with substantially different characteristics and parameters that do not allow
for straightforward extrapolation of this study findings to Li-ion battery systems.
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Abstract: In this paper, a module-level photovoltaic (PV) architecture in parallel configuration is
introduced for maximum power extraction, under partial shading (PS) conditions. For the first
time, a non-regulated switched capacitor (SC) nX converter is a used at the PV-side conversion
stage, whose purpose is just to multiply the PV voltage by a fixed ratio and accordingly reduce
the input current. All the control functions, including the maximum power point tracking, are
transferred to the grid-side inverter. The voltage-multiplied PV modules (VMPVs) are connected
in parallel to a common DC-bus, which offers expandability to the system and eliminates the PS
issues of a typical string architecture. The advantage of the proposed approach is that the PV-side
converter is relieved of bulky capacitors, filters, controllers and voltage/current sensors, allowing
for a more compact and efficient conversion stage, compared to conventional per-module systems,
such as microinverters. The proposed configuration was initially simulated in a 5 kW residential PV
system and compared against conventional PV arrangements. For the experimental validation, a
10X Gallium Nitride (GaN) converter prototype was developed with a flat conversion efficiency of
96.3% throughout the power range. This is particularly advantageous, given the power production
variability of PV generators. Subsequently, the VMPV architecture was tested on a two-module 500
WP prototype, exhibiting an excellent power extraction efficiency of over 99.7% under PS conditions
and minimal DC-bus voltage variation of 3%, leading to a higher total system efficiency compared to
most state-of-the-art configurations.

Keywords: gallium nitride; magnetic-free converters; module-level converters; parallel architecture;
partial shading; photovoltaic systems; switched capacitor converters

1. Introduction

Low-power residential rooftop and façade photovoltaic (PV) systems (in the range
of a few kW) are expected to dominate in future distributed energy resources (DERs) and
smart grid applications [1]. However, partial shading (PS) in such low-power PV systems,
caused by moving clouds, neighboring buildings, trees and other objects, hinders their
maximum energy production, especially in urban areas with low installation height [2,3].
In these conditions, the highly shaded panels are bypassed by the integrated antiparallel
diodes that protect the panels against hotspot formation and degradation, as described
in [4]. According to [5–7], PS is responsible for a reduction of the annual energy yield by
10–20% (depending on the installation type) in building-integrated PVs (BIPVs).

To increase the PV energy production under PS conditions, various software and
hardware solutions have been proposed over recent decades. More specifically, building-
integrated PV enhanced maximum power point tracking (MPPT) algorithms have been
developed, such as particle swarm optimization [8] and artificial bee colony [9], which are
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able to distinguish global from local optima of the P-V characteristic. Alternative software
techniques presented in [10–12] propose power peak estimation through analytical PV
models and parameter extraction via electrical measurements. Although economical and
easily applicable, software solutions can only have a limited impact since the shaded
modules will still be bypassed or will operate at sub-optimum power point.

On the contrary, hardware solutions can offer a significant improvement in PV genera-
tion during PS. Various PV array interconnection schemes have been proposed, namely
total-cross-tied (TCT), bridge-link (BL) and honey-comb (HC), that reduce the PS losses
in comparison to the conventional series-parallel (SP) architecture [11]. Other studies in-
vestigated the physical relocation of individual panels, for applications where the shading
pattern is easily predictable [13], or real-time array rearrangement for addressing dynamic
changes of the shading conditions [14,15]. These solutions exhibit better performance than
the aforementioned static interconnection schemes but require a large number of switching
devices and a complex network of voltage/current or irradiance sensors, while local optima
will still exist in non-uniform insolation conditions.

The most effective hardware solution for PS loss mitigation relies on module-level
power electronics (MLPEs), which aim to maximize the power yield of each individual
panel through dedicated MPPT. In this field, micro-inverter topologies have proven com-
mercially successful, since they offer the flexibility to connect any number of PV modules
directly to the AC grid [16]. However, they exhibit low power density, due to the large com-
ponent count and filter requirements imposed by the strict grid-interface regulation [17],
and limited capability to provide ancillary services, which is a prerequisite for future
DERs [18]. Another popular MLPE alternative uses PV power optimizers (PVPOs), which
are buck-boost DC-DC converters, integrated with the solar panels of a typical string
arrangement [19]. According to the study performed in [5], PVPOs have lower long-term
efficiency compared to micro-inverters and reduced expandability, due to the minimum
required string length [20]. The same limitations hold true for the distributed power
processors [21] and voltage equalizers [22], that are connected between two panels in a
string configuration.

To overcome the aforementioned limitations of the conventional MLPE approaches, an
alternative promotes micro-converters that allow parallel connection of the PV modules in
a single DC-bus, through high step-up DC-DC converters [23]. This solution aims to exploit
the clear advantages of parallel configuration for addressing PS effects [24]. Converter
topologies with a large voltage boost ratio have been proposed for the interface between
the low-voltage PV module and the high-voltage DC-bus, including cascade boost [23],
coupled inductors [25], switching capacitors [26] and combinations of the above [27–29].
However, these topologies are known to require complicated control algorithms [15] and,
most importantly, employ electrolytic capacitors and magnetic components that limit the
power density and the lifetime of the system, as found in [16,17]. They also exhibit a
significant efficiency drop in low loading conditions, which is a drawback, given that a PV
generator operates within 30–80% of its nominal power for 80% of the time [30].

Therefore, there is a clear need for a new MLPE system that addresses PS effects in
rooftop PV systems and façade BIPVs, with a high boost ratio, high efficiency throughout
the power range and simple structure and controllability. In this paper, we aim to satisfy
these requirements by introducing a new PV architecture, based on the parallel connection
of fixed-step, per-panel micro-converters. To the best of the authors’ knowledge, it is the
first time that a magnetic-free switched capacitor (SC) “voltage amplifier” has been used
as a front-end conversion stage of a parallel PV configuration. It is a hybrid solution that
combines the expandability of micro-inverters and the control simplicity of a single-stage
grid-side inverter. The new approach exhibits (a) a high conversion efficiency of 96.3% even
at low loading, (b) an excellent extraction efficiency of 99.7% under severe partial shading,
(c) a high power density due to the omission of magnetic components and electrolytic
capacitors and (d) limited DC-bus voltage variation with the operating conditions.
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The operating principles of the novel PV architecture are explained in Section 2,
followed by simulation results on a 5 kW grid-connected residential PV system in Section 3.
The design, development and experimental validation of a 500 W prototype are presented
in Section 4. The main conclusions of this work are summarized in Section 5.

2. Proposed Module-Level PV Architecture

The foundation of the new approach relies on the combinations of a non-regulated high
step-up micro-converter with each PV panel, to form a high-voltage/low-current building
block. All the voltage-multiplied PV (VMPV) modules are connected in parallel at the
input of the grid-side inverter, which simultaneously regulates the operating point of all PV
panels with a central MPPT. A simplified block diagram of the proposed VMPV architecture
against the centralized and conventional MLPE configurations, such as microinverters
and PVPOs, is presented in Figure 1a. For every architecture, the converter responsible
for the MPPT is highlighted with a yellow background. This reveals a unique feature of
the proposed system: that the MPPT is not performed by the DC-side converter, but is
shifted to the grid-side inverter, as will be explained in Section 2.2. The schematic of the
SC converter, which will be described in detail in the following subsection, is shown in
Figure 1b.
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Figure 1. (a) PV architectures, including (i) central inverter, (ii) PVPOs (iii) micro-inverters and (iv) the proposed VMPV
architecture. (b) Schematic diagram of the magnetic-free SC voltage amplifier.

The effect of the PV module voltage amplification can be viewed as “stretching” the
output I-V characteristic to higher voltages and lower currents, while keeping the produced
power constant, as shown in Figure 2. The multiplication factor, n, should be higher than the
VDC/VMP ratio, where VDC is the required DC-link voltage for grid integration (e.g., 400 V)
and VMP is the nominal PV panel voltage at MPP (e.g., 40 V). Each module contributes
additively to the total system output by injecting the power that corresponds to the common
DC-voltage, i.e., PPV-j(VPV-j = VDC/n), where PPV-j and VPV-j are the output power and
voltage, respectively, of the j panel.

Figure 2. Modified I-V characteristic at the output of the voltage-multiplied PV module.
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The operating principles of the two stages are presented in the following subsections,
along with a short discussion on the advantageous features of the new layout.

2.1. PV-Side Voltage Multiplier

The voltage amplification function can theoretically be performed by any topology
from the high step-up converter family mentioned in the Introduction. However, these
solutions would add unnecessary complexity to the system and increase its size and weight,
given that no voltage regulation is required. As an alternative, we propose the use of the
nX converter, first introduced in [31], which combines high power density with high
conversion efficiency and a fixed voltage ratio. This feature come with the omission of all
magnetic components and the modular structure. The fixed boost ratio is not a limitation
for this application, given the inherently small voltage variation of the MPP with the
environmental conditions, as will be shown in the simulation and experimental results.

An example of a six-times boost nX converter (n = 6) is depicted in Figure 1b. The
power devices constituting the nX converter can be grouped in two sets: the QP and QN
that are always connected to the input and form a bridge leg configuration, and the ones at
the top and bottom rail, Qa and Qb, that form a series connection between the different cells.
The transistors are driven by a complementary switching pattern with a fixed 50% duty
cycle, as indicated in Figure 1b, corresponding to the two operating modes: transistors in
black conduct in the first operating mode, while the ones depicted in red conduct in the
second operating mode. The same pattern holds for any number of cells.

The different current paths during the first operating mode are indicated with blue
lines in Figure 1b. More specifically, when transistors QP 1,3, Qb 1,3, QN 2 and Qa 2 are
conducting, three current paths are formed simultaneously:

1. the input voltage source is directly connected across Cb1 (dashed blue line),
2. the source is connected in series with Ca1 to charge capacitor Ca2 (dash–dot blue line), and
3. the source is connected in series with Cb2 to charge capacitor Cb3 (dotted blue line).

In general, the output capacitors of each cell, Ca(i) and Cb(i), are charged by connecting
the capacitor of the previous cell (i − 1) in series with the input voltage, VPV, as described
in (1).

VC(i) = VC(i − 1) + VPV, 1 < i ≤ n/2 (1)

Applying (1) to successive cells, the voltage stress across the top and bottom rail power
devices can be deduced and is equal to 2·VPV. The only exception to this rule holds for the
first cell, in which VDS-a,b(1) = VPV. On the other hand, transistors QP and QN are always
connected to the input power source, hence VDS-P,N(i) = VPV. Provided that the current
flowing through each path is equal to the output current, IOUT, it can be easily observed
that the current stress of the top and bottom rail transistors is ID-a,b(i) = IOUT = IPV/n and
for transistors QP and QN it is ID-P,N(i) = 2·IOUT = 2·IPV/n. An exception to this rule is the
last cell, where ID-P,N(n/2) = IOUT. These equations give an indication of the devices’ stress
and help select the components for the experimental validation in Section 4.1.

An advantage of the nX converter topology is that there is no need for a feedback
control loop and, thus, no requirements for voltage/current sensors, micro-controllers and
communication links. Additionally, the simplicity of the pulse width modulation (PWM)
strategy allows for a cost-effective PWM integrated circuit (IC) generator, as opposed to
a costly microprocessor. Further, the converter inherently operates under soft switching
conditions, resulting in low switching losses, as explained in [32,33].

In its current form, the presented nX converter has a high transistor count (2·n). How-
ever, state-of-the-art Gallium Nitride (GaN) technology offers a unique potential for the
monolithic integration of multiple devices on a single power chip [34]. In addition to that,
the high switching frequency capability of the high electron mobility transistors (HEMTs)
allows for the replacement of electrolytic capacitors, which is the most common point of
failure [16,17], with robust and efficient ceramic capacitors. This technology migration
improves the lifetime of the micro-converter to match that of the solar panels (more than
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25 years), an important requirement for rooftop and BIPV systems. The small footprint and
low driving requirements of GaN devices further contribute to the miniaturization of the
micro-converter, as presented in [35].

By adopting the GaN transistor technology in a magnetic-free converter topology, an
ideal platform for future VMPV modules can be developed.

2.2. Grid-Side Inverter

Regulation of the operating point of a PV module, string or system is traditionally
performed by the front-end converter, as indicated by the highlighted area in Figure 1a.
In this study, the fixed voltage ratio at the PV-side requires that the MPPT function is
performed by the grid-side inverter, much like a single-stage system. Therefore, although
the proposed topology is fundamentally a two-stage system, it operates like a single-stage
centralized system in terms of MPPT function, but with higher MPP tracking efficiency.
Specifically, the merits of this new architecture are:

1. The entire PV system always has a single MPP, even under mismatched irradiance
and temperature conditions, due to the parallel connection of the VMPVs. As a result,
no PV module is bypassed and the MPP is always successfully tracked, as opposed to
the multi-peak P-V curves in centralized architectures, leading to almost 100% power
extraction efficiency under any partial shading conditions.

2. The DC-link voltage variation is limited due to the inherently small deviation of VMP
with the environmental conditions. This makes it easy for the inverter to extract
the maximum power while meeting the input voltage requirements, in contrast to
single-stage systems under PS.

3. Having a single grid-side inverter permits the implementation of sophisticated control
functions, such as ancillary services to the grid (e.g., fault ride through, reactive power
injection, frequency regulation), as opposed to the micro-inverters that cannot afford
such complexity.

3. Modeling and Simulation

In this section, the power extraction efficiency of the proposed architecture under
PS conditions is assessed against conventional PV configurations, through simulations
in Matlab/Simulink. First, it is important to define the total system efficiency, ηsys, as
the product of conversion efficiency, ηc, and extraction efficiency, ηext (also found in the
literature as tracking or MPPT efficiency):

ηsys = ηc · ηext. (2)

ηext = PPV/PTOT = PPV/
(

ΣN
1 PMPj

)
(3)

ηc represents the hardware’s efficiency to convert the power from the PV-side to the
grid-side and will be discussed in Section 4. ηext is given as the ratio of the average output
power of the PV system, PPV, to the total available power from all individual modules,
PTOT, as shown in (3), for N panels. This efficiency factor represents the ability of the
architecture to extract as much of the available power as possible, regardless of the convert-
ers/electronics used. The reduction of ηext is usually attributed to three factors: (a) shaded
modules operating at a sub-optimal operating point or completely bypassed, (b) MPPT
locked on a local maximum and (c) MPPT oscillating around the normal operating point.
For a fair comparison of the VMPV with other conventional architectures, only component
(a) of ηext should be considered. Thus, for the rest of the paper, it is assumed that the MPPT
algorithm can always find the global maximum, even in the case of multiple power peaks
at PS, with negligible oscillation around the MPP.

To extract ηext for any PV configuration in real time, the PV model described in [10] is
used, that expresses the module voltage and current in explicit form.
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3.1. PV Generator Configuration Comparison

The focus of this sub-section is to study the extraction efficiency of the parallel-
connected VMPV architecture under PS conditions against the conventional SP and TCT
interconnection schemes, the TCT configuration with dynamic rearrangement capabil-
ity [14] and the ideal MLPE architecture. A 5 kWP residential (rooftop or façade) PV system
of 20 panels is considered. Each PV module consists of 72 cells and has VOC(STC) = 53 V
and VMP(STC) = 44.3 V, to match the characteristics of the commercial VBHN245SJ25 panel.
A 10X step-up conversion ratio for the VMPV architecture is adequate for integration to
the single-phase grid.

Two realistic shading patterns are examined, inspired by [14] and depicted in Figure 3. Solid
lines show the SP configuration and dashed lines represent the TCT interconnection scheme.

Figure 3. Indicative PS scenarios. (a) Long–narrow shading pattern A and (b) short–wide shading pattern B.

3.1.1. Shading Pattern A: Long–Narrow

In this case, the shadow covers the majority of one string of a rooftop PV structure,
giving rise to three irradiance intensity levels, G1 = 900 W/m2, G2 = 600 W/m2 and G3
= 300 W/m2, as shown in Figure 3a. An ambient temperature of 20 ◦C and wind speed
of 1 m/s are considered, according to the international standard IEC-61215. The nominal
operation cell temperature (NOCT) has been extracted from [36], considering both the
photoelectrical and photothermal conversion effect, and is included in Figure 3. Solid lines
show the SP configuration and dashed lines represent the TCT interconnection scheme.

The simulation results for this case study are presented in Figure 4. The gray dashed
line in Figure 4b corresponds to the total PV system available power, PTOT, calculated by
adding the maximum available power of all modules, PMPj, j = 1, . . . , 20, as in (4) and
(5) for the shading patterns A and B, respectively. PTOT is used as a benchmark in the
architecture comparison.

PTOT−A = Σ20
1 PMPj = 10·PMP(0.9) + 5·PMP(0.6) + 5·PMP(0.3) = 3.17 kW (4)

PTOT−B = Σ20
1 PMPj = 8·PMP(0.9) + 7·PMP(0.6) + 5·PMP(0.3) = 3.04 kW (5)

It is evident that both SP and TCT configurations exhibit poor extraction efficiencies
of 73.59% and 74.94%, respectively, due to the bypassing of the shaded modules. On the
other hand, the dynamic rearrangement of the panels significantly improves the efficiency
to 93.12% and reduces the number of local maxima to two. However, it is the proposed
VMPV architecture that achieves the best extraction efficiency of 99.86% with just a single
global MPP.
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Figure 4. I-V and P-V curves of the examined PV architectures under (a,b) the shading pattern A and (c,d) the shading
pattern B.

3.1.2. Shading Pattern B: Short–Wide

This scenario concerns a façade PV system, partially shaded by the pattern illustrated
in Figure 3b. In contrast to an open rack rooftop structure, the BIPVs are characterized by a
higher temperature (included in Figure 3b), since only one side of the panel is in contact
with the air. The output I-V and P-V characteristics for the shading pattern B are presented
in Figure 4c,d. Even under these highly non-uniform irradiance and temperature conditions,
the VMPV architecture still exhibits a near-perfect efficiency of 99.8%. As a comparison,
the SP and TCT interconnection schemes have ηext(SP) = 69.4% and ηext(TCT) = 68.3%,
respectively, while the electrically rearranged TCT array has ηext(TCTR) = 95.5%.

3.2. Grid-Connected VMPV System

To evaluate the time response of the whole system under variation of the atmo-
spheric conditions, the proposed PV architecture is connected to a single-phase grid-side
inverter. Two scenarios are simulated, where the PV structure is initially uniformly in-
solated (G1 = 900 W/m2) and gradually shaded to match shading pattern A or shading
pattern B. A linear drop of the irradiance is considered (see Figure 5), at a rate of 25 W/m2

per second, which is a representative value for rapidly changing environmental condi-
tions [18]. The temperature variation of the individual PV groups is shown in Figure 5b,
for both investigated shading patterns A (continuous lines) and B (dashed lines).
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Figure 5. (a) Irradiance and (b) temperature variation with time for the three PV groups of the
VMPV architecture.

The inverter control is structured in three nested control loops, as outlined in Figure 6, [37].
The outer control loop is a perturb and observe (P&O) MPPT that is applied at the common
high-voltage DC-bus and produces the reference DC-voltage, VDC*. In the middle control
loop, a PI controller regulates the active and reactive power reference to be injected to the
grid, P* and Q*, respectively. A proportional resonant (PR) current controller is imple-
mented in the inner control loop and the grid frequency is extracted by a second-order
generalized integrator phase locked loop (SOGI-PLL).

Figure 6. Complete control scheme of the proposed grid-connected PV system, consisting of three
nested control loops.

Figure 7a shows the active power fed to the grid, POUT, with respect to the total avail-
able PV power, PTOT. The new VMPV architecture follows closely the benchmark curve,
even when all the shaded panels have reached their steady state conditions (Time > 27 s).
For comparison purposes, the output power of the conventional SP interconnection is also
included in the same figure. Notably, the DC-link voltage variation is limited to a range of
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just 4 V (from 420 V to 424 V) in the VMPV case, as can be seen in Figure 7b, despite the
significant variation of the produced power. In contrast, the voltage variation of the SP
configuration is 33 V for the same shading pattern.

Figure 7. (a) Active power fed to the grid and (b) DC-bus voltage variation with time for the proposed VMPV under
shading pattern A.

Similarly, Figure 8 shows the power and voltage variation of the proposed VMPV
and standard SP architectures when the shading evolves towards shading pattern B. This
scenario better highlights the merits of a single MPP in the proposed parallel connection
against the multiple peak formation in conventional SP configurations and the challenges
in identifying the global one. Even if a sophisticated MPPT algorithm is employed that
always converges to the global MPP (yellow dashed curves), the respective DC-link voltage
(300 V in Figure 8b) may be outside the inverter limits, thus not allowing operation at the
MPP, leading to even lower extraction efficiency.

Figure 8. (a) Active power fed to the grid and (b) DC-bus voltage variation with time for the proposed VMPV under
shading pattern B.
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The simulation results show that the proposed VMPV architecture combines the best
of MLPE and centralized topologies: it yields near-optimal power extraction (like MLPE,
in contrast to centralized) while allowing for sophisticated control functions in the inverter
(like centralized, as opposed to micro-inverters).

4. Experimental Validation

In this section, the favorable operation of the VMPV architecture under uniform
and PS conditions is experimentally validated and compared to a conventional string
configuration.

4.1. Experimental Setup

Two 245 WP PV modules of the same type, VBHN245SJ25, are used as inputs to two
nX converters that are connected in parallel at the high-voltage side, as depicted in Figure 9.
Throughout the experiment, both PV panels are placed close to each other on a structure of
fixed inclination with respect to the horizon. Semi-transparent fabric is used to cover one
PV module completely and uniformly to emulate PS conditions.

 

2nd Stage Converter
(MPPT function)

nX 1

nX 2

Parallel connection at 
High Voltage DC bus

PV Module 2

PV Module 1

Output

Figure 9. Experimental setup consisting of two VMPV modules.

The objective of these experiments is to study the first stage of the system indepen-
dently from the topology of the second stage. To this end, a DC-DC converter that performs
all control functions, including scanning of the PV curves and MPPT, feeding a resistive
load, was used as a simple substitute of the grid-tied inverter. This setup allows for safe
and repetitive testing of the new architecture, while the results are also valid for the grid-
connected system. The switching frequency of the buck converter was set to 20 kHz and
the MPPT period to 250 ms. All voltage and current measurements were continuously mon-
itored with a sampling rate of 4 k samples/s and then filtered via a digital low-pass filter
(LPF) with a cutoff frequency of 100 Hz to reject the switching noise. The key components
and parameters of the experimental setup are summarized in Table 1.

4.2. PV-Side nX Converter

The backbone of the new architecture is the GaN-based magnetic-free nX converter,
depicted in Figure 10. It has a 10-times step-up ratio to match the simulation conditions in
Section 3. The developed prototype consists of two separate printed circuit boards (PCBs):
the drive board, shown in Figure 10a, and the power board, in Figure 10b. One side of the
power PCB is reserved only for the GaN HEMTs, a design aspect that provides flexibility
to mount the board on any flat surface, such as a heat sink or the backside of the PV panel.
Four parallel-connected multilayer ceramic capacitors (MLCCs) of 2.2 μF each, with low
internal series resistance (ESR), constitute the output capacitance of each cell.
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Table 1. List of components of the experimental setup.

Component Parameter Value

PV modules

Part Type VBHN245SJ25
VMP 44.3 V
IMP 5.53 A
VOC 53 V
ISC 5.86 A

Module-level nX converter

Transistors in QP/N position GS61008T
Transistors in Qa/b position GS66508T

Switching capacitors 4 × 2.2 μF, X6S
Gate driver LM5114

Digital/Power isolator ISOW7842F

2nd-stage DC-DC converter

Series diodes S10KC
LDC-DC 1.5 mH
CDC-DC 50 μF

Transistor IPB65R190CFD
Switching diode C3D08065E
Micro-controller TMS320F28379D

Switching frequency (FSW-B) 20 kHz
MPPT period (TMPPT) 250 ms

Voltage/Current sampling
rate 4 k samples/s

LPF cutoff frequency (F0) 100 Hz

Output Resistor Rout 0–240 Ω
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Figure 10. (a) Front side—drive board, (b) back side—power board and (c) side view of the magnetic-
free nX converter prototype.

The switching frequency is tuned to match the circuit resonant frequency, FSW-nX = 200 kHz,
to achieve zero current switching (ZCS) operation and, thus, minimize the switching losses.
The entire converter occupies just 100 mL of volume (100 mm × 100 mm × 10 mm) and has
a fixed conversion efficiency of 96.3%, throughout the power range, as shown in Figure 11a.
This is a strong point of this converter that ensures a high energy yield, even under low irra-
diance conditions. In contrast, other high step-up micro-converters exhibit efficiencies that
peak from 94–98% [25,27,29], but drop significantly (below 90%) in low loading conditions,
due to higher switching losses from entering discontinuous conduction mode or exiting
the soft switching window. On the other hand, the magnetic-free nX converter is always
operating at a fixed 50% duty cycle, and is inherently operating under soft switching, as
explained in [32]. Please note that the calculated conversion efficiency does not account for
any losses from the grid-side inverter or the output filter, which is expected to introduce
a non-linearity to the total system efficiency curve at light loads. It should be mentioned
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that the conversion efficiency can be further improved by choosing GaN HEMTs with even
lower on-resistance and faster switching transients.
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Figure 11. Experimental results of the developed 10X converter. (a) Efficiency curve over operating
power and (b) voltage and power waveforms during operation at 250 W.

Voltage and power waveforms of the system operating at 250 W are illustrated in
Figure 11b. Under these conditions, the temperature increase in the transistors was main-
tained below 15 ◦C, avoiding the use of bulky heat sinks. More design details and consid-
erations regarding the component selection and test conditions can be found in [35]. The
high power density (greater than 11 kW/l) and the low cooling requirements are both key
factors that enable the integration of the nX converter with the solar panel.

4.3. Output Characteristics of the VMPV System

The I-V and P-V characteristics of the proposed PV system were recorded in two
shading patterns: (A) uniform irradiance and temperature conditions and (B) partial
shading, where one panel is uniformly shaded while the other one remains unshaded. The
curves are captured by slowly changing the operating point within 5 s (scanning), which
guarantees that the measurements are not affected by transient phenomena attributed to
the second-stage inductance and output capacitance.

Figure 12a,b show the characteristic curves of the two individual PV modules (dashed
and dash–dot lines) and the combined curve of the proposed VMPV architecture (solid
red line), under uniform irradiance and temperature conditions. It should be noted that,
although the parallel connection takes place at the high-voltage side of the nX converters,
the I-V and P-V characteristics are translated to the PV-side for consistency with the string
topology (blue line).

As shown in Table 2, the two modules are not identical and their MPPs differ by 3.4 W
and are spaced by 1.17 V. However, the power loss of the VMPV approach is just 0.4 W,
resulting in an excellent extraction efficiency of 99.9%. In fact, both modules operate at
99.9% of their respective MPPs. In this scenario, the string arrangement also has near-
perfect extraction efficiency but no conversion losses. It should be noted that the total
available PV power PTOT = PMP1 + PMP2 and the actual extracted power PPV are measured
in successive experiments within a short time duration to ensure equal irradiance and
temperature conditions; it is impossible to measure the maximum available power of the
individual modules when they form a PV string that operates at a different operating point.
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Figure 12. Experimentally extracted I-V and P-V characteristics of the PV modules under (a,b) the shading pattern A:
uniform irradiance and (c,d) the shading pattern B: PS conditions.

Table 2. MPP data from the experimentally extracted characteristics.

Test Conditions PV Module/PV System VPV (V) IPV (A) PPV (W)
Extraction

eff. (%)

Pattern A:
Uniform

Conditions

Module 1 (MPP1) 41.25 4.705 194.1 -
Module 2 (MPP2) 40.08 4.757 190.7 -

VMPV Architecture (MPPVMPV) 40.52 9.475 384.4 99.9
Module 1 (@MPPVMPV) 40.52 4.785 193.9 99.9
Module 2 (@MPPVMPV) 40.52 4.702 190.5 99.9

Pattern B:
PS Conditions

Module 1 (MPP1) 42.5 1.145 48.7 -
Module 2 (MPP2) 41.05 4.26 174.9 -

VMPV Architecture (MPPVMPV) 41.6 5.36 223 99.74
Module 1 (@MPPVMPV) 41.6 1.161 48.3 99.18
Module 2 (@MPPVMPV) 41.6 4.20 174.7 99.89

Series Connection (GMPPS) 39.65 4.38 174 77.8
Series Connection (LMPPS) 91.3 1.255 113 50.5

Figure 12c,d show the experimentally extracted I-V and P-V traces under the shading
pattern B: Module 1 is entirely shaded, while Module 2 remains unshaded. Although

193



Energies 2021, 14, 456

PPV(MPP1) = 48.7 W is more than 3.5 times smaller than PPV(MPP2) = 174.9 W, their
respective voltage difference is just 1.45 V, leading to an almost perfect ηext = 99.74%
for the VMPV system. Taking the effect of ηc into account, the total system efficiency is
ηsys = 96.05%. On the other hand, the global MPP of the series connection is PPV(GMPPS)
= 174 W, equal to MPP2 minus the power dissipated at the bypass diode of Module 1,
resulting in an extraction efficiency of just 77.8%. Still, it is highly possible that a simple
MPPT algorithm would converge at a local MPP (LMPP), in which case half of the PV
power would be lost (ηext(LMPPS) = 50.5%).

4.4. Real-Time MPPT of the VMPV Architecture

For this experiment, a P&O algorithm was executed by the second-stage converter,
with a period of 250 ms and an MPPT duty cycle step of 1%. The two PV modules
were subjected to the two shading patterns of the previous subsection (uniform and
PS conditions).

Figure 13 shows the output power and DC-bus voltage variation under real-time
tracking of the MPP. The MPPT algorithm always converges to the single MPP, guaranteeing
near-perfect extraction efficiency in any conditions and effectively addressing the tracking
challenges of SP configurations. In addition, the DC-link voltage is insignificantly affected
by PS (only a 3% deviation), which allows for a narrow predetermined input voltage range
for the grid-side inverter, in contrast to the single-stage PV systems.

Figure 13. Response of the new VMPV architecture during real-time MPPT, under uniform and PS
conditions. Output power (in red) and DC-bus voltage (in blue) variation with time.

The experimental results show that the proposed VMPV architecture combines the
near-perfect extraction efficiency of MLPE with a flat conversion efficiency in any condi-
tions; this leads to a higher total system efficiency than most state-of-the-art configurations,
including other MLPE architectures.

5. Conclusions

In this paper, a new highly efficient architecture for residential grid-connected PV
systems has been demonstrated and experimentally verified. The PV modules are con-
nected in parallel through fixed-step high step-up nX converters (voltage multipliers), thus
eliminating the partial shading challenges of typical series connections and delivering
almost 100% extraction efficiency. At the same time, the nX converter features a high
flat conversion efficiency of more than 96.3% irrespective of the power level, leading to
better total system efficiency at partial shading than most centralized and distributed
PV architectures.

The developed magnetic-free nX converters use GaN HEMTs that are switching at
high frequency which, in turn, allow for longer lifetime ceramic capacitors in place of the
conventional bulky electrolytic capacitors. This, along with the omissions of all magnetic
components and the low cooling requirements, lead to a very compact solution that can be
integrated with the backside of the PV panel, forming a new voltage-multiplied PV module.
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All control functions, including MPPT, are transferred to the inverter, simplifying the
DC-DC micro-converter requirements for micro-controllers and voltage/current sensors.
The high-voltage parallel connection results in a small variation of the DC-link voltage with
the environmental conditions which, in turn, simplifies the requirements for the grid-side
inverter, as in two-stage string inverters.
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Abbreviations

BIPV Building-integrated photovoltaic
BL Bridge-link interconnection scheme
DER Distributed energy resources
ESR Capacitor’s internal series resistance
GMPP Global maximum power point
HC Honey-comb interconnection scheme
HEMT High electron mobility transistor
IC Integrated circuit
LMPP Local maximum power point
LPF Low-pass filter
MLCC Multi-layer ceramic capacitors
MLPE Module-level power electronics
MPPT Maximum power point
NOCT Nominal operation cell temperature
P&O Perturb and observe algorithm
PCB Printed circuit board
PLL Phase locked loop
PR Proportional resonant controller
PS Partial shading
PV Photovoltaic
PVPO Photovoltaic power optimizer
PWM Pulse width modulation
SC Switched capacitor
SOGI Second order generalized integrator
SP Series-parallel interconnection scheme
STC Standard test conditions
TCT Total-cross-tied interconnection scheme
TCTR Electrically rearranged TCT array
VMPV Voltage-multiplied photovoltaic system
ZCS Zero current switching
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Abstract: A new method for detecting demagnetization faults in axial flux permanent magnet
synchronous wind generators is presented in this study. Demagnetization faults occur in the case of
total or partial loss of the magnetic properties of one or more permanent magnets of the machine.
Fault signatures appearing in the current or voltage signal due to a demagnetization fault can often
be confused with those produced by eccentricity faults, making the discrimination between the
two types of faults difficult. The proposed methodology is based on the analysis of the instant power
spectrum of the generator, combined with an estimator to derive the permanent magnet flux, based
on the machine equations. Short-Time Fourier Transform is proposed as the means for spectrum
analysis to ensure performance during variations of the generator speed. Results derived from the
experimental tests are presented, which show that the proposed methodology is capable of detecting
demagnetization faults and distinguishing them from eccentricity ones under a wide variety of
operating conditions.

Keywords: permanent magnet synchronous machines; generators; fault detection; demagnetization

1. Introduction

Permanent magnet synchronous machines are widely used both as motors in a variety
of industrial applications and as generators in many areas, including wind power systems.
The reasons for their widespread use are their advantages over other types of machines;
these advantages include high efficiency, high power density, very good dynamic response,
and compact design. However, these machines are affected by demagnetization faults
that come from high temperatures and short-circuiting from the coils of the stator. The
demagnetization can be partial or total and reduce the electromagnetic force that can be
produced by the machine, affecting its performance. Thus, it is very crucial to detect this
kind of fault.

Research activity is extensive in this area [1,2] and has been moving towards two
directions: (a) modelling the machine, using software tools such as Finite Element Method
(FEM), helps to export with accuracy the voltage and current waveforms of the machine,
whose spectra will be used subsequently for fault diagnosis purposes, using tools as FFT
analysis, etc.; (b) developing methods to detect the fault and its severity in Permanent
Magnet Synchronous Machines (PMSM). The latter can be categorized as time-domain
methods, frequency-analysis methods such as machine current or back-emf voltage signa-
ture analysis, while others use methodologies such as deep learning to enable detection.

Machine current or voltage signature analysis is one of the most common methods
for fault detection since it does not require prior knowledge of the characteristics and
parameters of the machine. It is based on the current–voltage signals of the machine and
simple mathematical time–frequency algorithms such as Fast Fourier Transform (FFT) for
stationary conditions or wavelet analysis, Short-Time Fourier Transform (STFT), Hilbert–
Huang Transform (HHT), and Empirical Mode Decomposition (EMD) for non-stationary
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conditions. This kind of method compares the signals between the healthy and faulty case
and detects the fault. Also, a very significant advantage of signal analysis is the small
requirement of processing and memory, while in other methods e.g., deep learning or
neural networks the requirements for processing and memory are extremely great.

Studies that investigate faults in radial flux permanent magnet synchronous machines
are presented in [3–15]. In [3,4] Finite Element Method (FEM) is used to offer cognitive
background about the stator currents and back-emf voltages spectrum, which is often
extracted using Fast Fourier Transform (FFT), at demagnetization condition.

Referring to methodologies used for demagnetization faults detection, in [5,6] Lin-
ear Discriminant Analysis is used to determine which harmonic has the most detailed
information for fault classification, distinguishing between eccentricity, inter-turn short
circuit and demagnetization. In [7,8], wavelet analysis by implementing wavelet transforms
(WT) of stator currents is used for demagnetization fault detection. In [9], an Extended
Kalman Filter combined with the FFT algorithm is used to estimate the stator currents
of a PMSG. In [10], a comparison between Extended Kalman Filter (EKF) and unscented
Kalman Filter for fault diagnosis is presented. In [11], Hilbert–Huang Transform is used
for demagnetization fault analysis at stationary and non-stationary conditions of a PMSM.
In [12], a convolutional neural network (CNN), which is based on deep learning, has been
trained for fault diagnosis. The common drawback of these methods [5–12] is that they
require relatively high computational power and memory for implementation.

On the other hand, in [13], a method based on Least Square Method and Structure
Analysis of the PMSM inductance is used as demagnetisation fault index. It is known
that a demagnetized machine produces lower flux magnet than the normal one, which
leads to higher inductances, as proven experimentally by the authors of [13]. In [14], a
slightly different method for Ld inductance estimation is presented, which produces good
results, but, as the authors conclude, it cannot be used continuously for detection of the
demagnetization fault. In [15], a magnet flux estimator based on a synchronously rotating
d-q reference frame in combination with FFT is used to detect rotor faults.

However, in all the aforementioned studies, the demagnetization fault in Radial
Flux Permanent Magnet (RFPM) synchronous machines is investigated. On the other
hand, studies related to demagnetization faults in Axial Flux Permanent Magnet (AFPM)
synchronous machines are less in number. In [16–26], the most significant contributions
in this area are summarized. In [16], the demagnetization fault in an AFPM synchronous
machine, with one stator and two rotors is investigated, using search coils and an analytical
model. In [17], both eccentricity and demagnetization faults are studied, using an analytic
time harmonic model, in a single stator–double rotor topology too. In [18], the static,
dynamic eccentricity and the demagnetization fault are investigated using the 3D field-
reconstruction method. In [19], the stator current, output torque, and zero sequence
component of the voltage are used for fault-detection purposes. In [20], the flux density
and the mean torque are used as diagnostic means, when demagnetization exists in the
magnets of the AFPM synchronous machine, due a to short circuit fault. In [21–23], the
demagnetization and the combined demagnetization–eccentricity faults are investigated
using the voltage and current spectra for fault-diagnosis purposes. In [24], a controller is
proposed for the compensation of demagnetization fault in an AFPM synchronous machine
with two rotors. In [25], the partial demagnetization fault is detected by monitoring the
speed and the induced voltage in a supplementary winding. Finally, in [26], the texture-
based analysis is used as a fault diagnosis means.

This paper presents a new method for demagnetization-fault detection in an AFPM
synchronous generator, based on the instantaneous power of the machine and the cal-
culation of permanent magnets flux. More specifically, the flux magnitude is calculated
using a stationary reference frame, while signatures in the instant power of the generator
are investigated to achieve reliable detection of demagnetization faults. The proposed
method does not need initial angle calculation, resulting to a very simple algorithm. The
signatures in the spectrum of instant power of the machine are evaluated for demagne-
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tization diagnosis in both stationary and non-stationary conditions using FFT and STFT
analysis respectively, as wind generators are in general variable speed machines. Therefore,
the proposed method can provide information about the presence of the demagnetisation
fault even under non-stationary conditions, while the majority of the existing articles use
methods that can give accurate results only when stationary conditions exist.

2. Theoretical Analysis of the Proposed Fault Detection Method

The equations of the Permanent Magnet Synchronous Generator (PMSG), expressed
in the stationary α-β reference frame, are shown in Equations (1)–(6):

uα(t) = RSiα(t) +
dλα(t)

dt
(1)

uβ(t) = RSiβ(t) +
dλβ(t)

dt
(2)

λα(t) = LSiα(t) + λmα(t) (3)

λβ(t) = LSiβ(t) + λmβ(t) (4)

Te(t) = p
(
λα(t)iα(t)− λβ(t)iβ(t)

)
(5)

Te(t)− Tm(t) = J
dωm(t)

dt
− βCωm(t) (6)

where uα, uβ, iα, iβ are the machine voltage and current components expressed in the
α-β reference frame, ωr is the reference frame angular frequency, ωm is the rotating shaft
angular frequency, Te is the electromagnetic torque produced by the machine, Tm is the
torque applied to the shaft of the machine, λm is the magnetic flux established by the
permanent magnets, p is the number of pole pairs, and βC is the damping coefficient.

2.1. PMSG Faults and Diagnosis Means

The faults that appear most frequently in PMSG are:

(a) inter-turn short circuit faults (ISC);
(b) static eccentricity (SE);
(c) dynamic eccentricity (DE);
(d) mixed eccentricity (ME);
(e) partial or complete demagnetization of the rotor (DM).

Amongst them, inter-turn short circuit fault is a fast-evolving situation, while the
other four fault situations occur either due to manufacturing deficiencies or excessive strain
conditions and are generally progressing more slowly.

All the mentioned fault types affect the operation of the generator, deteriorating its
operation, so they can be detected using signal-processing techniques for analyzing their
influence in the corresponding mechanical or electrical quantities. One of the most common
ways to achieve this is to exploit the mechanical vibration signals, which means that a
mechanical vibration sensor should be installed at the generator. This solution has been
proven to be quite reliable, however it implies relatively high installation costs.

A well-proven alternative is the Machine Current Signature Analysis (MCSA), where
the machine terminal electrical quantities are exploited to detect the fault indicative signa-
tures. Most commonly, these signatures are characteristic frequencies that occur in the case
of the corresponding fault.

Indicative signatures for the ISC fault lay in the frequencies given by the general
formula fisc = (2k + 1) fs (k = 1, 2, 3, . . . ) [9]. The main assumption to detect eccentricity
faults (ME) is that, in practice, mixed faults occur; therefore, sideband components at
frequencies of fme =

(
1 ± k

p

)
fs, (k = 1, 2, 3, . . . ) [27] can be utilized to detect eccentricity
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faults. Moreover, the fault-indicative frequencies for the DM fault are fdm =
(

1 ± k
p

)
fs (k = 1, 2, 3, . . . ) [3,7,11]. Table 1 shows the harmonics used for the detection of each fault:

Table 1. Fault types and the frequencies proposed for their detection.

Fault Type Indicative Frequency

Inter-turn short circuit faults (ISC) fisc = (2k + 1) fs, (k = 1, 2, 3, . . . )
Mixed eccentricity (ME) fme =

(
1 ± k

p

)
fs, (k = 1, 2, 3, . . . )

Demagnetization of the rotor (DM) fdm =
(

1 ± k
p

)
fs, (k = 1, 2, 3, . . . )

From the previous table, it is obvious that the ME and DM fault signatures are the
same, so to discriminate an eccentricity fault from a demagnetization condition, additional
criteria should be considered.

2.2. Detection of Demagnetization Faults Using the Instataneous Power

According to the analysis in the literature (e.g., [8]), in the presence of a demagneti-
zation fault, harmonic frequencies

(
1 ± k

p

)
ωst, where k = 1, 2, 3, . . . appear in the motor

terminal quantities. So, the voltage in the terminals of the generator can be written in the
presence of this fault as in Equation (7). The same frequencies are expected to appear in the
terminal currents, expressed as in Equation (8):

Vabc =

⎡
⎣ Va

Vb
Vc

⎤
⎦ =

⎡
⎢⎢⎢⎣

V
{

cos(ωst + ϕ) + ∑ avk cos
[(

1 ± k
p

)
ωst + ϕvk

]}
V
{

cos
(
ωst − 2π

3 + ϕ
)
+ ∑ avk cos

[(
1 ± k

p

)
ωst + ϕvk − 2π

3

]}
V
{

cos
(
ωst + 2π

3 + ϕ
)
+ ∑ avk cos

[(
1 ± k

p

)
ωst + ϕvk +

2π
3

]}
⎤
⎥⎥⎥⎦
(7)

Iabc =

⎡
⎣ Ia

Ib
Ic

⎤
⎦ =

⎡
⎢⎢⎢⎣

I
{

cos ωst + ∑ aik cos
[(

1 ± k
p

)
ωst + ϕik

]}
I
{

cos
(
ωst − 2π

3
)
+ ∑ aik cos

[(
1 ± k

p

)
ωst + ϕik − 2π

3

]}
I
{

cos
(
ωst + 2π

3
)
+ ∑ aik cos

[(
1 ± k

p

)
ωst + ϕik +

2π
3

]}
⎤
⎥⎥⎥⎦, (8)

where ωs is the fundamental electrical frequency and avi, aii are the relative amplitudes of
the voltage and current harmonics corresponding to the fault, respectively.

Multiplying with the Clarke transformation matrix, we have the voltage coordinates in
a stationary reference frame, denoted with indexes α and β, as calculated from Equation (9):

Vαβ =
2
3
·
[

1 − 1
2 − 1

2

0
√

3
2 −

√
3

2

]
·
⎡
⎣ Va

Vb
Vc

⎤
⎦ (9)

which results to Equation (10):

Vαβ =

[
uα

uβ

]
=

⎡
⎣ V
{

cos(ωst + ϕ) + ∑ avk cos
[(

1 ± k
p

)
ωst + ϕvk

]}
V
{

sin(ωst + ϕ) + ∑ avk sin
[(

1 ± k
p

)
ωst + ϕvk

]}
⎤
⎦, (10)

The current coordinates are extracted from (8) in a similar way:

Iαβ =

[
iα
iβ

]
=

⎡
⎣ I
{

cos ωst + ∑ aik cos
[(

1 ± k
p

)
ωst + ϕik

]}
I
{

sin ωst + ∑ aik sin
[(

1 ± k
p

)
ωst + ϕik

]}
⎤
⎦, (11)

The instantaneous power, as measured in the generator terminals is given by Equation (12):

Pi = Va Ia + Vb Ib + Vc Ic = uαiα + uβiβ (12)
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Substituting values from (10), (11) to (12), results to Equation (10):

Pi = VI
{

cos(ωst + ϕ) + ∑ αvk cos
[(

1 ± k
p

)
ωst + ϕvk

]}
·
{

cos ωst + ∑ αik cos
[(

1 ± k
p

)
ωst + ϕik

]}
+VI

{
sin(ωst + ϕ) + ∑ αvk sin

[(
1 ± k

p

)
ωst + ϕvk

]}
·
{

sin ωst + ∑ αik sin
[(

1 ± k
p

)
ωst + ϕik

]} (13)

As the coefficients αvk, αik represent the amplitudes of the fault-indicative frequencies,
it is well-known that each of them will be much lower that unit. So, we can safely make the
approximation that αvk·αik � 1 and omit the products that include the expression, as their
influence in the equation is negligible. This way, we conclude to Equation (14):

Pi = VI
{

1 + ∑ Akcos
[(

± k
p

)
ωst + ϕk

]}
, (14)

where:

Ak = sign[αvk cos ϕvk + αik cos(ϕik − ϕ)]
√

α2
vk + α2

ik + 2αvkαik cos(ϕ + ϕvk−ϕik) (15)

ϕk = tan−1
(
− αvk sin ϕvk + αik sin(ϕik − ϕ)

αvk cos ϕvk + αik cos(ϕik − ϕ)

)
(16)

From (14), it is obvious that the fault-indicative frequencies are also present in the
instant power signal, making it the ideal signal for the detection of the fault. The presence
of these frequencies is indicative of the ME and DM faults, however they do not give
sufficient information to discriminate between them. Therefore, a unique fault-indicative
condition should be supplied.

In the case of a partial or total loss of a permanent magnet in the rotor, a decrease in
the magnetic flux produced by the permanent magnets, as calculated using the machine
equations, is expected. This decrease is not expected in the ME fault, as eccentricity
causes the airgap to variate around a constant or rotating center, without affecting its
average value.

To calculate the magnet-produced flux, a simplified algorithm is presented in this
paper. Equations (1) and (2) can be written as:

dλα(t)
dt = uα(t)− RSiα(t)

dλβ(t)
dt = uβ(t)− RSiβ(t)

(17)

Especially in the steady-state condition, electrical quantities in (17) are sinusoidal, so

the components of
→
λ can be given by Equations (18) and (19). Considering relatively slow

transient conditions where the rotor speed, and therefore the electrical frequency, is subject
to slow variations, deviations from the steady state are not expected to introduce critically
high errors to the flux components estimation.

λα(t) =
uα(t)− RSiα(t)

pωm
(18)

λβ(t) =
uβ(t)− RSiβ(t)

pωm
(19)

From the α-β components of the flux vector, the magnets’ flux magnitude can be
calculated as:

λm(t) =
√
(λα(t)− Lsiα(t))

2 +
(
λβ(t)− Lsiβ(t)

)2 (20)
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One of the main conditions that the Clarke transformation should comply with, is
that the machine must be symmetrical. It is straightforward that this condition should
also be valid in (20). As demagnetization faults often introduce asymmetries, deviations
are expected at the flux magnitude, which could be expressed as ripple and a reduced
flux average value. The concept behind this work is to compare this average value of the
flux with the respective value of the healthy machine to deduce the fault condition. For
example, if one of the 32 magnets is lost, it can be estimated that the calculated average flux
will decrease by a ratio of 1/32, which means 3% of its initial (healthy) value. In addition,
for Equations (18) and (19) to be valid, it is essential the generator to operate at steady-state
or quasi-steady-state condition. This can be assumed in our case, as it is expected that the
wind generator will be operating with variating speed over time, however:

• Speed variations are assumed to be slow compared to the electric quantities period;
• Small deviations of the estimated flux from its actual value do not affect the proposed

method.

However, to ensure the proposed strategy performance, the estimated flux value is
filtered using a moving average filter with exponential forgetting. In addition, the filter
has a variable forgetting factor, starting from a maximum value which decreases over time
with a predefined factor to a minimum. This way, the filter can be reset when required (e.g.,
in a detected steady-state condition). The flow chart of the proposed methodology for DM
fault detection is illustrated in Figure 1.

Measure Currents, 
Voltages and Rotor Speed

Store values

Calculate instant power (9)

Calculate base frequency and 
fault indicative components fi

Perform STFT analysis

Are fi 
components 

present?

Calculate flux 

< nominal ?

 

Figure 1. Flow chart of the proposed methodology for DM fault detection.

3. Experimental Setup

For the experimental investigation of the proposed technique, an Axial Flux Permanent
Magnet Synchronous Generator (AFPMSG) is used. The machine has a double-sided rotor
and one resin-embedded, coreless stator. Each rotor has 16 NdFeB magnets. Table 2
summarizes the most important of the generator parameters.
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Table 2. Parameters of the double-rotor PMSG under study.

Parameter Value

Nominal Power 350 W
Nominal Voltage 80 V

Nominal frequency (fs) 50 Hz
Nominal speed (ns) 375 rpm

Number of poles for each rotor 16
Stator Phase Resistance 5.89 Ohm
Stator Phase Inductance 17 mH

The AFPMSG is driven by a three-phase induction motor. Three current and three
voltage hall-effect transducers were used to perform the stator voltages and currents
measurement. Acquisition of the measurement values is performed using a LabView data
acquisition card. The sampling frequency was set to 10 kHz. The measured data is collected
in an ASCII file and the fault analysis is performed offline. To obtain the DM fault behavior
without introducing eccentricity, one of the rotor magnets is removed and replaced by a
part of equal weight.

In Figure 2. the laboratory test bench is shown, while in Figure 3. the block diagram of
the whole test system structure is illustrated.

Induction 
motor

Current and voltage 
measuring devices

Data acquisition 
system AFPMSG

 

Figure 2. Laboratory setup used for the experimental tests.

M GInverter

Ia

Ic
Ib

Va

Vb
Vc

Data Acquisition 
card

Fault Detection 
Algorithm

 

Figure 3. Block diagram of the system structure.

The synchronous generator was studied both in healthy situation and in demagnetiza-
tion fault situation. The demagnetization fault was created by removing a magnet from
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one of the two rotors. One of the two rotors with the magnets and the stator of the machine
are illustrated in Figure 4a,b respectively.

  
(a) (b) 

Figure 4. (a) One of the two rotors with 16 permanent magnets, (b) the resin-immersed coils of the
stator [2].

3.1. Operation under Steady-State Condition

To evaluate the operation of the proposed DM fault-detection methodology, various
tests have been performed under different steady-state operating conditions, from which
characteristic results are shown in Figures 5–10. In these figures, the output voltage, es-
timated flux and power FFT are depicted under healthy and operations under fault for
nominal voltage and frequency with a load of 225 W and 290 W, respectively, connected
at the generator output. Multiple frequency components ( 11 fs

p , 12 fs
p , 13 fs

p , 14 fs
p ) are chosen

as fault-indicative to ensure reliability, considering the rule that if elevated magnitudes
are detected at half or more of these frequencies, an error is signaled. The authors of this
paper decided to choose these frequency components because it has been observed that
their detection was easier under any operating condition at the laboratory experiments.
The flux produced by the magnets in the healthy case is λ = 0.46T. If a level below 0.45 T
is detected, a DM fault is signaled, otherwise the fault is considered as eccentricity. In
this case, where a magnet is totally lost, it is also evident that the expected 3% decrease
in the estimated flux value can be verified in both Figures 7 and 10. More specifically, in
Figures 6 and 9, the instantaneous power frequency components (68.75 Hz, 75 Hz, 81.25 Hz,
87.5 Hz), produced for p = 8 and fs = 50 Hz, can be detected at the demagnetization case
both for the load of 225 W and for the load of 290 W. In both cases, a significant increase
in the amplitude of these frequencies is observed in the faulty case, as shown from the
measured values in Tables 3 and 4. More specifically, for a load of 225 W, it can be noticed
that: at fDM1 = 68.75 Hz the power magnitude has changed from −81 dB (healthy machine)
to −66.4 dB (demagnetized machine); at fDM2 = 75 Hz the magnitude has changed from
−49.5 dB to −29.4 dB; at fDM3 = 81.25 Hz the magnitude has changed from −79.5 dB to
−65 dB; and at fDM4 = 87.5 Hz the magnitude has changed from −81 dB to −67.3 dB.
Respectively, for a load at 290 W, it can be noticed that: at fDM1 = 68.75 Hz the power mag-
nitude has changed from −77 dB (healthy machine) to −59.5 dB(demagnetized machine);
at fDM2 = 75 Hz the magnitude has changed from −47 dB to −29 dB; at fDM3 = 81.25 Hz the
magnitude has changed from −73.5 dB to −65 dB; and at fDM4 = 87.5 Hz the magnitude
has changed from −80 dB to −63.5 dB. In both cases, a detectable difference between
the healthy and the faulty machine in the magnitude of these characteristic harmonics,
combined with the estimated permanent magnet flux is providing a reliable means for the
demagnetisation fault detection.
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(a) (b) 

Figure 5. Experimental results: (a) three phase stator currents waveform for healthy generator and
for DM fault, (b) focused stator currents waveform at healthy case (blue) and demagnetized case
(red). (Generator operating under nominal voltage and frequency, with a load of 225 W.)

Figure 6. Experimental results: power spectrum for healthy generator and for DM fault (generator
operating under nominal voltage and frequency, with a load of 225 W).

Table 3. Experimental results: instantaneous power frequency components at 225 W load.

Number of Harmonic f(Hz)
Healthy Machine

(dB)
Demagnetized Machine

(dB)

(11 fs/p) 68.75 −81.0 −66.4

(12 fs/p) 75.00 −49.5 −28.4

(13 fs/p) 81.25 −79.5 −65.0

(14 fs/p) 87.50 −81.0 −67.3
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Figure 7. Experimental results: estimated flux magnitude for healthy generator and for DM fault
(generator operating under nominal voltage and frequency, with a load of 225 W).

 

(a) (b) 

Figure 8. Experimental results: (a) three phase stator currents waveform for healthy generator and
for DM fault,;(b) focused stator currents waveform at healthy case (blue) and demagnetized case
(red). (Generator operating under nominal voltage and frequency, with a load of 290 W.)

Figure 9. Experimental results: power spectrum for healthy generator and for DM fault (generator
operating under nominal voltage and frequency, with a load of 290 W).
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Figure 10. Experimental results: estimated flux magnitude for healthy generator and for DM fault
(generator operating under nominal voltage and frequency, with a load of 290 W).

Table 4. Experimental results: instantaneous power frequency components at 290 W load.

Number of Harmonic f(Hz)
Healthy Machine

(dB)
Demagnetized Machine

(dB)

(11 fs/p) 68.75 −77.0 −59.5

(12 fs/p) 75.00 −47.0 −29.0

(13 fs/p) 81.25 −73.5 −65.0

(14 fs/p) 87.50 −80.0 −63.8

From the experimental results, it is obvious that by using both harmonics and flux
criteria the DM fault can be reliably detected and discriminated from eccentricity faults.
To obtain the frequency spectrum, FFT is adequate. However, in general, wind generators
are not expected to operate in steady state, so STFT analysis should be used to extract the
power spectra.

3.2. Transient Operation

Finally, experimental tests have been performed to test the validity of the proposed
fault-detection methodology during transient operation of the generator. These tests in-
cluded operation of the machine considering variable load and rotating speed. Hereafter,
characteristic results from a fast speed change of the generator, when the rotor speed
doubles within a time interval of 0.4 s. As the FFT algorithm fails to perform due to the
variable frequency, STFT analysis is used, as described. Results shown in Figures 11–14
prove that the fault can also be reliably detected at variable speed, combining the infor-
mation obtained by the STFT and the flux estimation. More specifically, in Figure 11 the
currents of the healthy and demagnetized machine are presented for a speed change. In
Figures 12 and 13, the results of the STFT algorithm are presented for both the healthy
machine and the demagnetized case, respectively. The instantaneous power frequency
components (34.38 Hz, 37.5 Hz, 40.62 Hz, 43.75 Hz), produced for fs = 25 Hz and k = 11, 12,
13, 14, can be detected at a time interval of 0–6 s at Figure 13 (demagnetized case), while
they are not shown at Figure 12 (healthy). Additionally, when electrical frequency becomes
50 Hz at the time interval of about 6–10 s, it can be noticed that frequency components
shift to the new values corresponding to fs = 50 Hz (68.75 Hz, 75 Hz, 81.25 Hz, 87.5 Hz)
at Figure 13, while these components do not show in Figure 12. It is worthy to refer that
the frequency component of 75 Hz is present both in the healthy and demagnetized case
for fs = 50 Hz and the frequency component of 37.5 Hz for fs = 25 Hz, but with a bigger
amplitude in the demagnetized machine. The arrows depict the four frequency components
for operation frequencies fs = 25 Hz, 50 Hz both at healthy and demagnetization condition.
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In Figure 14, the estimated flux amplitude is presented for speed change from 25 Hz to
50 Hz.

 

(a) (b) 

Figure 11. (a) Experimental results: stator currents for healthy generator and for DM fault (frequency
changes from 25 Hz to 50 Hz); (b) focused results for stator currents at healthy case (blue) and
demagnetized case (red).

Figure 12. Power spectrum for healthy generator (frequency changes from 25 Hz to 50 Hz—examined
fault indicative frequencies are shown with the blue arrows).
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Figure 13. Power spectrum for DM fault (frequency changes from 25 Hz to 50 Hz—examined fault
indicative frequencies are shown with the blue arrows).

Figure 14. Experimental results: Estimated flux magnitude for healthy generator and for DM fault
(frequency changes from 25 Hz to 50 Hz).

4. Conclusions

A new methodology for detecting demagnetization faults in axial flux permanent
magnet synchronous wind generators is presented in this study. Demagnetization faults
occur when a partial or total loss of the magnetic properties of the permanent magnet
material appears and could concern only one of the machine magnets or all of them. In
particular, when it comes to signature analysis and the demagnetization fault affecting
only part of the magnets, DM fault signatures are almost identical to the ones of ME faults,
making discrimination between the two fault types very difficult.

The proposed methodology consists of the analysis of the instant power spectrum
of the generator, combined with an estimator to derive the permanent magnet flux based
on the machine equations. To this purpose, the fault indicative signatures contained in
the power spectrum are analyzed. STFT is proposed as a method to derive the power
spectrum, so that the method can perform during variations of the generator shaft speed.
A permanent magnet flux estimator based on the machine model has been developed, to
detect whether the fault indicative signatures reveal a DM or an eccentricity fault.

Experimental laboratory tests have been performed under a wide range of operating
conditions and characteristic results are presented. Experimental results show that the
proposed methodology is capable of detecting demagnetization faults and distinguish them
from eccentricity ones under a wide variety of operating conditions.
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Abstract: In the entrained flow coal gasification process, the gas production is critically affected by
the operating temperature (OT) and coal ash melting point (AMP), and the AMP is one of key factors
for the determinations of OT. Considering the fact that coal is a typical nonhomogeneous substance
and the coal ash composition varies from batch to batch, this paper proposes the application of the
Markov Chain (MC) method in simulation of the random AMP series and the stochastic optimization
of OT based on MC simulation for entrained flow coal gasification. The purpose of this paper is to
provide a more accurate optimal OT decision method for entrained flow coal gasification practice. In
this paper, the AMP was regarded as a random variable, and the random process method, Markov
Chain, was used to describe the random AMP series of feed coal. Firstly, the MC simulation model
about AMP was founded according to an actual sample data, 200 sets of AMP data from an industrial
gasification plant under three simulation schemes (the sample data were individually divided into 16,
eight and four state groups,). The comparisons between the simulation results and the actual values
show that the founded MC simulation model descries the AMP series very well. Then, a stochastic
programming model based on MC simulation for OT optimization was developed. Finally, this
stochastic programming optimization model was optimized by genetic algorithm (GA). Comparing
with the conventional OT optimization method, the proposed stochastic OT optimization model
integrated MC simulation can ascertain a more accurate OT for guiding the coal gasification practice.

Keywords: entrained flow coal gasification; ash melting point; operation temperature; Markov
process; stochastic optimization model; genetic algorithm

1. Introduction

Coal is the most wildly used natural energy resource with the largest reserves. Compared with
other energy sources, the utilization of coal has attracted wider attention in view of the advantages
of wide distribution and easy exploitation of coal. In recent years, the increasing environmental and
health concerns in utilization of coal promote the emergence of clean coal technologies [1–4]. Among
the clean coal technologies, coal gasification is regard as a promising utilization of coal because of its
low technology cost and high conversion rate [5]. In the coal gasification practice, the basic equipment
can be grouped into three main categories: fixed bed gasifiers, fluidized bed gasifiers and entrained
flow gasifiers [6,7]. Differ from fixed bed and fluidized bed gasification, entrained flow gasification
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operates at a higher temperature (above the melting temperature of ash) with smaller particles and
produces high quality syngas with low methane and free tar content. In addition, this type of coal
gasification has some advantages such as high carbon conversion, large production capacity, high
thermal efficiency and a low environmental pollution [8,9]. On the contrary, there are also some
disadvantages to be improved in entrained flow gasification such as slagging and fouling.

Because the ash discharging mode for entrained-flow bed gasifiers is liquid slagging, the melting
characteristics of coal ash is a key factor influencing the gasifier operation [10]. Thus, the ash melting
point (AMP) of the feed coal is an important reference index for the determination of operational
temperature (OT), which is a critical parameter for the stable and efficient operation of the gasifier.
When the temperature in a gasifier is lower than the AMP of the feed coal, the gasification reaction
as well as coal conversion rate will be greatly reduced [11]. On the contrary, when the gasification
temperature is far higher than the AMP, the ash in the coal may agglomerate, resulting in a reduction
of the reaction contact between the gasifying agent and coal and an uneven air flow in the gasifier,
which is not conducive to good gasification reactions [12]. Thus, the OT of the gasifier should usually
be moderately higher than the AMP of the feed coal so as to facilitate the melting and flow of coal ash
and maintain the gasification reaction [13]. Therefore, the AMP of feed coal is always paid special
attention to in practice due to the important role it plays in the determination of the optimum OT for
the gasification process.

Over the past years, in order to study the melting behavior of coal ash in gasifiers, many studies
about the AMP of coal have been reported. Current studies on AMP of coal can be roughly divided
into two categories: (i) the mechanism models that are based on the mechanism of chemical reactions;
(ii) the empirical models that are based on data statistics. A large number of researchers have developed
mechanism models in their studies on AMP of coal, for example, Chakravarty et al. [14], Dai et al. [15],
Weber et al. [16], Kim et al. [17]. However, the mechanism models are very theoretical, with many
assumptions, so the reaction process expressed by these formulas may deviate from the actual reaction
process due to these assumptions. As for the empirical models for coal AMP, studies on this subject
have developed rapidly and a great deal of literature on this subject has been published in recent years.
Some statistic method such as linear and non-linear regression methods, as well as some advanced
intelligent algorithms [18] such as artificial neural network(ANN), support vector machine (SVM),
etc. were employed in these models. For instance, Ozbayoglu et al. [19] applied linear regression and
non-linear regression, respectively, to the chemical composition of coal ash and the temperature of
AMP for Turkish lignite. In [10,20–22], the authors took a large number of parameters of coal ash
as training samples and used ANN to predict the AMP of different coals. In [23–25], the authors all
took ash composition as input and AMP as output to build prediction models of AMP using SVM.
Compared with the mechanism model, the advantage of the empirical models is that they avoid
complex mechanism process analysis, and they can just extract information from historical data to
predict the AMP of coal. Both the mechanism models and the empirical models have contributed to
the study of ash problems (such as slagging and fouling), however, these models are static models, that
is, the foundations for modelling are based on a point in time rather than a time series perspective.
More importantly, these studies focus on the prediction of AMP based on the characteristics of coal
rather than OT optimization based on dynamic AMP.

As one of the critical factors influencing the stable and efficient operation of a gasifier as well as
the quality of gasification product, OT has always been one of the key parameters discussed in many
entrained flow coal gasification studies, and its optimization is usually an important topic in a large
number of published studies. For instance, Chen et al. [26] carried out some orthogonal designs to
optimize some operating parameters of an entrained flow gasifier for coal-biomass co-gasification. As an
important operating parameter, OT was optimized according to Taguchi’s philosophy. Vejahati et al. [27]
optimized three operating variables, including OT, for a coal-coke gasification in an entrained flow
gasifier using response surface methodology (RSM). In addition to the experiment-based studies,
many researchers also discussed the temperature optimization in their simulation-based researches.
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Emun et al. [28] used Aspen Plus to study the effect of different operating variables on thermal efficiency.
As a result, the optimal OT was 1550 ◦C with the highest thermal efficiency. Biagini et al. [29] developed
an entrained-flow gasifier model in Aspen Plus, and obtained the optimal operating conditions
including temperature through parametric analysis. Chen et al. [30] applied a computational fluid
dynamics (CFD) simulation method to develop an optimization analysis procedure of the gasification
process in an entrained-flow gasifier, and obtained a best temperature of 1227 ◦C. Shastri et al. [31]
developed a CFD model for a single-stage coal gasifier. Eleven parameters including OT were
stochastically optimized by using the parameter space investigation method. Wei et al. [32] used the
iterative adaptive dynamic programming (IADP) method to establish a nonlinear optimization control
scheme for the coal gasification system. They concluded that the optimal OT should be controlled
at around 1320 ◦C. Actually, the composition of pulverized feed coal varies from batch to batch, and
even in the same batch of pulverized coal, there may be fluctuations in composition depending on the
feeding time. In turn, the AMP of feed coal usually manifests as a dynamic series over a period of time.
Thus the target of OT optimization is actually to seek an optimal OT that is best adapted to the dynamic
changes in coal composition from batch to batch and extending to the dynamic changes in AMP.
However, in reviewing the current studies on OT optimization, a lot of the reported studies involve
static optimization because they are mainly based on static small-scale experiments or simulation
experiments and the dynamic changes in coal composition as well as in AMP series of feeding coal are
not taken into account.

In this paper, the AMP of feed coal over a period of time is treated as a group of random data
series based on random perspective. A stochastic process theory, Markov Chain (MC), is used to
simulate and describe the AMP series. A Markov process is a stochastic process model describing a
sequence of possible events that satisfies the Markov property. In the philosophy of MC, the probability
of each event depends solely on the state attained in the previous event, and this dependence obeys
a certain probability distribution [33]. MC models can express the dynamic changes of a random
series and predict the future changes of the system through the transition probability of state change
among different variables. Because of the clear mathematical meaning of the MC model, it is widely
used in modelling or simulation for different applications. For example, Afzal et al. [34] established a
hidden Markov model that solves the problem of information prediction in industrial process control.
Reference [35] provided a general approximation framework for (path-dependent) option evaluation
under time-varying Markov processes. Reference [36] applied the Markov decision process to the
control of the hybrid energy storage system, increasing the self-consumption of photovoltaics by 5%.
In [37], a semi-Markov process was used to describe the machine degradation process, and a fault
detection scheme based on Bayesian estimation was proposed to achieve more effective early fault
detection. Others similar reports can be found in [38–41]. Recently, there have been a few reports about
the application of MC in coal gasification. References [42,43] introduced a residence time distribution
model of the granular phase in a gasifier based on MC. The results showed that the simulation results
are basically in agreement with the measured data, which can be used to predict the residence time
distribution of granular phase in the gasifier. However, to our best knowledge, there no studies on the
utilization of MC in the simulation of AMP of coal, especially studies on OT optimization based on
MC simulation for entrained flow coal gasification process have been reported so far.

The purpose of this paper is to describe our study on: (i) using MC to simulate the AMP series of
feed coal for an entrained flow gasification process, (ii) stochastic program modelling based on MC
simulation of AMP for OT optimization, and (iii) solving OT optimization with a genetic algorithm
(GA). In this study, the AMP series of a feed coal was regarded as a random series, and the simulation
for the AMP series with MC was carried out based on 200 sets of actual AMP data collected from an
industrial gasification plant. Then a stochastic programming model with the target of optimizing
OT based on MC simulation was proposed. Finally, the optimal OT was ascertained by solving the
stochastic programing model using GA.
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2. Simulation Approach for AMP Series

2.1. Marckov Chain

The Markov chain is a modeling and prediction method that works based on a stochastic process
in order to describe a series of uncertain events [33]. In this type of stochastic process, the Markov
property that the future prediction of a process variable could be made independent of the process
history should be satisfied. For a stochastic process {Xt, t = 0, 1, 2, . . .} with a finite number of possible
values, the statement that Xt being equal to i expresses that the process is in state i when the time is at
t. Figure 1 shows the state transition of a MC process. For a given past state X0, X1, . . . , Xt−1 and the
present state Xt, the condition distribution of the future state Xt+1 is independent of the past state and
depends only on the present state. As shown in Figure 1, state set S =

{
1, 2, . . . , i, j, . . . n

}
, and the state

transition with non-aftereffect property can be achieved by a fixed possibility of Pij [44]:

P
{
Xt+1 = j

∣∣∣Xt = it, . . . , X1 = i1, X0 = i0
}

= P
{
Xt+1 = j

∣∣∣Xt = it
}

= Pij

(1)

where Pij indicates the probability of a process being transferred to state Xt+1 at the time of state Xt.

S1 S2 S3 Sn

P1,j

Pi,1 P3,1

P1,3 Pi,n

Pn,j

Figure 1. Markov probability transition diagrammatic sketch.

Pij should satisfy the following conditions:

∑n
j=1 Pij = 1

Pij ≥ 0,
i, j = 1, 2, . . . , n

(2)

where n is the total number of states. Then the Markov characteristic of a data series could be expressed
by a matrix of transition probability P:

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P11 P12 · · · P1n
P21 P22 · · · P2n
...

...
. . .

...
Pn1 Pn2 · · · Pnn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3)

Matrix P (Equation (3)) is the first order one-step transition matrix. In matrix P, the ith row, vector
V , represents the one-step transition probability of state i. Then the n-step transition probability vector
of state i could be expressed by the following formula:

Vn
i = ViPn−1 (4)
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As the embedded Markov chain is assumed ergodic, the stationary distribution, described by an
k-element vector π [45], can be obtained solving the following system of linear equations:

{
πP = 0∑n

i=1 πi = 1
(5)

where the last equation specifies the normalization of the probability distribution.

2.2. MC Simulation Procedure for AMP

The state transition probability matrix P is the core of Markov theory. The n-dimensional state
transition probability matrix can be used to describe the change rule of any state in the stochastic
system, which greatly simplifies the complexity of the stochastic model. Thus, Markov theory has
been widely used in stochastic modelling.

In this paper, a MC simulation for 200 sets of AMP data (see Appendix A Table A1) collected from
a fertilizer plant in Xinxiang, Henan Province, China was carried out. Among them, 160 sets of data
were used as training samples, and the remaining 40 sets were used as test samples. The dynamic
changes in the AMP series of feeding coal were regarded as state changes, and then the MC process
was used to stochastically simulate the AMP series. The specific steps [44] are as shown in Figure 2.

Input Samdata = []    %   Get sample data

Input StateNum = n    %   Set the number of states

MinData  = min(Samdata)    %   Minimum value of sample data

MaxData  = max(Samdata)    %   Maximum value of sample data

IntSize = (Maxdata - Mindata) \ n    %   Calculate interval size

State(i) = [MinData + (i-1)*IntSize, MinData + i*IntSize]    %   Range of state i

Fre(i,j) = Count(i,j) / (n-1)     %   Calculate the frequency of state i to j

 State transition 
probability matrix

Input S(t) = i    %  S indicates that the state at time t is i

Input r = rand(1)    %  r is a random number of 0~1

If
                                                     % Get the state at time t+1 according to P
         S(t+1) = m
End 

 
Figure 2. Steps of Markov simulation for the AMP series of feeding coal.
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Step 1: Partitioning the state. In order to convert the AMP data into state variables for the Markov
process, the data should be divided into several regions and each region could be regarded as states
S1, S2, S3, . . . , Sn. The number of states depends on the capacity of the original AMP data. The interval
length of each state depends on the upper and lower bounds of the original AMP data and the error
range of the final simulation data.
Step 2: Constructing the probability matrix of state transition. The AMP sample data is regarded
as time series, and the change of data in time series is regarded as state transition. By counting the
frequency of each state transition, the probability matrix of state transition could be constructed.
Step 3: Simulating the Markov sequences. It is assumed that the state transition probability vector

of the initial state is V1 =
[
Pi11, Pi12, . . . , Pi1m, . . . , Pi1n

]
and r is a random number of [0, 1]. If m is

satisfied with:
m∑

j=1

Pi1,( j−1) ≤ r ≤
m∑

j=1

Pi1, j (6)

The state Sm would be the second state of the sequence. By analogy, the remaining part of the
state sequence could be simulated. Then, according to the rules of state partition, the state sequence is
transformed into the sequence of AMP. That is, the simulation data are obtained. In this study, we
carried out the MC simulation programming (see Appendix B) in the Matlab2015 platform.

3. Markov Chain Simulation for AMP Series

3.1. MC Simulation for AMP

In a MC simulation, the partition of the state intervals determines the simulation result. The
common state partition methods include empirical-based partition, sample mean-variance-based
partition and ordered clustering. Among these three methods, the empirical-based partition method is
the simplest one and thus is mostly used. For instance, in [44], a wind speed series was divided into 28
states with the length of each state being 0.5 m/s using the empirical-based division method when
it was simulated by MC method. References [44,46,47] also present the application of this method
in dividing some data series for MC simulation in some practical problems. Similarly, in this paper,
the empirical method was adopted to divide the states of the collected AMP series. In addition, in
order to evaluate the simulation results, we proposed three portioning schemes and compared the
simulation accurate in these three schemes so as to achieve a more precise simulation model for further
OT optimization. The three portioning schemes are as follows:

Case I: dividing the original AMP data into 16 states.
Case II: dividing the original AMP data into 8 states.
Case III: dividing the original AMP data into 4 states.

For Case I, the original AMP data were divided into 16 intervals: [1310, 1315], [1315, 1320], . . . ,
[1385, 1390], and each interval corresponds to one state of {S1, S2, . . . , S16}. Then the state transition
probability matrix PCaseI could be obtained by counting the frequency of various states transition:
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Pcasel =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0.143 0.143 0.286 0 0 0.286 0.143 0 0 0 0
0 0 0 0 0.286 0.143 0 0 0.286 0 0 0 0.286 0 0 0
0 0 0 0 0.067 0.267 0.133 0.200 0.200 0.067 0.067 0 0 0 0 0
0 0 0 0.053 0.105 0.211 0.053 0.263 0.105 0 0.105 0 0 0.105 0 0
0 0.036 0.107 0.107 0.036 0.143 0.179 0.143 0 0.071 0.107 0.036 0.036 0 0 0
0.003 0.01 0.036 0.066 0.171 0 0.086 0.143 0.257 0.057 0.057 0.029 0.076 0.025 0.01 0.013
0 0 0 0 0.031 0.063 0.156 0.250 0.219 0.094 0.063 0.031 0.031 0.031 0.031 0
0 0 0 0 0 0.067 0.133 0.133 0.133 0.267 0.067 0.067 0.133 0 0 0
0.077 0 0 0 0 0 0.385 0.077 0.154 0.077 0.077 0.077 0 0.077 0 0
0 0 0 0.1 0 0 0.2 0.2 0.2 0.1 0 0.2 0 0 0 0
0 0 0 0.111 0 0.222 0 0.111 0.222 0 0 0.222 0.111 0 0 0
0 0 0 0 0.25 0 0.5 0.25 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0.5 0.5 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
πcaseI =

[
0.005 0.005 0.035 0.035 0.07 0.095 0.14 0.175 0.15 0.075 0.07 0.06 0.05 0.02 0.01 0.005

]

(7)

Figure 3 shows a graphical representation of the state transition probability matrix PCaseI, which
highlights the peculiarities of its structure. As can be seen from Figure 3, the greater probabilities
are almost all distributed near the diagonal, and their values identify the probabilities that the AMP
data from one moment to the next remains in the initial state. Furthermore, the non-zero transition
probabilities are concentrated around the diagonal, making transitions from an initial state to another
far away much less probable.

Figure 3. Graphical representation of the Markov transition matrix.

Then the simulation of AMP series was carried out. In simulation, S8 was set as the initial state,
which was the same as the initial state in the sample data, and let r be a random number with uniform
distribution X ∼ [0, 1]. For a state to simulated Sm, if m satisfies:

∑m
j=1 P8,( j−1) ≤ r ≤ ∑m

j=1 P8, j

Pij = 0 i f i× j = 0
1 ≤ m ≤ n

(8)
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Sm could be simulated according to random transformation principle. Similar to Equation (8),
Figure 4 shows the schematic principle of the state transition chain in the simulation. As shown in
Figure 4, the random number r is 0.04 and it falls into the third interval, so the second state is S3.
Then, taking S3 as the starting state, the next state could be predicted according to the corresponding
state transition probability vector. By analogy, a random state sequence with Markov property can
be obtained.

 S S S SS S

P P P P P P

r

Figure 4. The schematic principle of the state transition chain in the simulation.

Furthermore, data reconstruction was carried out so as to get the simulated AMP series. In this
step, the obtained random state sequence were transformed into the concrete simulation data of AMP
according to the following equation:

X(t) = 1310 + j(t) × 5− r× 5 (9)

where, X(t) is the final simulation data of AMP, r is a random number with uniform distribution
X ∼ U[0, 1], j(t) is the state at t.

After completing the steps described above, the simulated AMP series could been obtained by
using Equation (9) (as shown in Figure 5 and provided in Appendix A Table A1).

Similar to Case I, the state transition probability matrices of the original AMP series in Case II and
Case III, PCaseII and PCaseIII, can be ascertained, individually:

PcaseII =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.5 0.5 0 0 0 0 0
0 0 0.286 0.214 0.143 0.214 0.143 0
0 0.026 0.325 0.325 0.186 0.086 0.053 0
0.018 0.164 0.175 0.275 0.193 0.114 0.046 0.014
0 0 0.08 0.336 0.356 0.114 0.098 0.016
0.038 0.05 0 0.431 0.265 0.177 0.038 0
0 0.056 0.236 0.431 0.111 0.111 0.056 0
0 0 0 0.5 0.5 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
πcaseII = =

[
0.01 0.07 0.165 0.315 0.225 0.13 0.07 0.015

]

(10)

PcaseIII = =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.25 0.5 0.179 0.071
0.104 0.55 0.29 0.057
0.044 0.424 0.456 0.076
0.028 0.583 0.361 0.028

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
πcaseIII = =

[
0.08 0.48 0.355 0.085

]
(11)

The simulated AMP series in Case II and Case III are also shown in Figure 5 and provided in
Appendix A Table A1.
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Figure 5. Original and simulated series of AMP in (a) Case I, (b) Case II and (c) Case III.

3.2. Accuracy Test

In order to evaluate the simulation accuracy by the MC approach, the goodness of fit between the
simulated and the original AMP series was measured. Figure 6 shows the probability distribution
of the original and simulated data in three cases, which correspond to the stationary distribution
probability vector π. It is obvious that the probability distribution of Case I is the most similar to that
of the sample data. Its main characteristics are being high in the middle and low on both sides, which
indicates that the AMP data are concentrated at about 1350 ◦C. In the other two cases, the probability
distribution curves are relatively flat and the data are scattered.

Figure 6. Comparison of probability density of the simulated and original AMP series in three cases.

Figure 7 shows the comparisons of the simulated and the original AMP series in three cases.
As can be seen from this figure, the data points in Case I are closest to the diagonal. In addition, the
error between simulation data and original data in Case I is within 13 ◦C, while the error in Case II and
Case III are 18 ◦C and 26 ◦C, respectively. It can also be seen that there no simulated data locates on the
diagonal line for Case III. This means that the simulated data is always inaccurate in this case. The
reason may lie in the fact that the state range of Case III is too large. Although each state is simulated
accurately, the simulation data of AMP that is randomly generated in a large state range will deviate
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the sample data greatly. Therefore, the range of the state interval determines the accuracy of the data
simulation. Some further statistical indexes i.e., Mean Absolute Deviation (MAD), Root Mean Square
Error (RMSE) and Absolute Average Relative Error (AARE) were employed to measure the deviation
between the simulated and the actual AMP values:

MAD =
1
n

n∑
i=1

∣∣∣ŷi − yi
∣∣∣ (12)

RMSE =

√√
1
n

n∑
1

(ŷi − yi)
2 (13)

AARE =

∑n
i=1

∣∣∣∣ ŷi−yi
yi

∣∣∣∣
n

× 100 (14)

where, yi is the actual value of AMP and ŷi is the simulated value of AMP by the MC simulation approach.

Figure 7. Comparisons of the simulated data and the sample data of AMP in three cases.

Table 1 presents the deviation statistics between the simulated and the original AMP series in
three cases. As shown in Table 1, AARE in Case I and Case II are 0.42% and 0.52%, respectively, which
are smaller than 1%; while the AARE in Case III is 1.04%, which is also a small deviation although it is
larger than 1%. This indicates the simulation accuracy of the three cases are all acceptable. However,
in comparing the three cases, the deviation indexes of MAD, RMSE and AARE in Case I are obviously
smaller than those in Case II and Case III. This indicates that the simulation scheme of Case I that
dividing the original AMP data into 16 states can provide better prediction accuracy.

224



Energies 2019, 12, 4245

Table 1. Deviation statistics in three cases.

Statistical Indexes Case I Case II Case III

MAD 5.67 7.01 14.06
RMSE 6.98 7.63 15.21
AARE 0.42% 0.52% 1.04%

3.3. Further Discussion on the Selection of State Number

Based on the above discussion, it seems to be that the more states there are, the more accurate
the simulation will be. However, there are still problems. According to [48], if the number of states is
small, the probability the state changing will be significantly reduced, and searching for this other state
is, after all, a goal of prediction. If on the other hand the AMP data is divided into a large number of
states, the number of events per state will be smaller. This may be insufficient to estimate the actual
distribution of the probability of state changes. By comparing Equations (7), (10) and (11), it could be
found that the probability of transition between states is decreasing with the increase of the number of
states. If the number of states is too large, a large number of state transition probability will be small,
and the simulated data will be irregular. Such a Markov model with a large number of states obviously
cannot reflect the characteristics of AMP data. Therefore, it is necessary to discuss the selection of a
suitable state number.

In order to determine the optimal states number of Markov model, the MC models with state
number from 4 to 16 were compared. The simulation results are shown in Table 2. As shown in Table 2,
the simulation model with 16 states is not the best one, although the state number of this model is the
largest. However, the most accuracy model with lower evaluation indexes among these simulation
models is the one with 13 states. Then the simulation accuracy gradually decreases with the increase of
the number of states when the state number is larger than 13. This is because too many states lead
the probability of state transition to be very small, and further lead the simulation data to lose the
distribution characteristics of the original data. Thus, the simulation scheme with 13 states would be
employed in the latter optimization modelling for gasifier OT.

Table 2. Simulation results of MC model with four states to 16 states.

State Number
Evaluation Index of Simulation Results

MAD RMSE AARE

4 14.06 15.21 1.04%
5 11.53 12.49 0.86%
6 9.78 10.31 0.72%
7 8.23 8.58 0.59%
8 7.01 7.63 0.52%
9 6.24 6.42 0.45%
10 5.68 6.13 0.41%
11 5.10 5.89 0.38%
12 4.69 4.77 0.36%
13 4.38 4.52 0.35%
14 4.79 5.01 0.36%
15 5.46 5.98 0.38%
16 5.67 6.98 0.42%

4. Stochastic Optimization of OT

4.1. Stochastic Programing Modelling Based on MC Simulation

In coal gasification practice, the gas production will generally reach a maximum when the OT
is 50~100 ◦C higher than the AMP of the feed coal [49,50]. Traditional determination of OT is just
done according to a fixed AMP value and simply adding a temperature increment to this fixed AMP
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value. This fixed AMP value is usually the AMP mean of the feed coal over a period of time or
several successive batches. This traditional method is simple, but often results in inaccuracy in OT
determination because the possible great changes in AMP of feed coal from batch to batch are not taken
into account. This may greatly affect the gasification reaction and the stability of gasification production.
In order to ascertain a more feasible OT for gasifier operation, it is necessary to take the fluctuations
in the AMP of the pulverized feed coal into account when determining the OT. For these reasons, we
proposed a stochastic programing model based on MC simulation for OT optimization in this paper.

Considering the random fluctuation in the AMP series of feed coal and treating the AMP series
as a dynamic random series, the principle of this stochastic model is to gain an optimal OT that
compromises the ideal OT series according to each data of the AMP series. In this model, a random
increment (denotes as Δ(t)) within the interval [50, 100] was added to each data of the simulated AMP
series (denotes as X(t)) to represent the ideal value of OT (denotes as Y(t)), then the optimization
target is to minimize the gap between the optimal OT (denotes as T) and each ideal OT Y(t). The
stochastic programing model based on MC simulation for OT optimization was proposed as follows:

minZ =
∑n

t=1(T −Y(t))2

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y(t) = X(t) + Δ(t)
Δ(t) = 50(rand1(t) + 1)
X(t) = 1300 + 5S(t) − 5rand2(t)∑S(t)−1

j=1 PCaseI(S(t− 1), j) ≤ rand3(t) ≤ ∑S(t)
j=1 PCaseI(S(t− 1), j)

S(1) = 8
1350 ≤ T ≤ 1450

(15)

where T is the decision variable; Z is the objective function, represented by the sum of squares of the
difference between T and Y(t); Δ(t) is obeyed the uniform distribution Δ(t) ∼ U(50, 100); rand(t) is a
random number of [0, 1]; S(t) is the state of AMP at t, and its initial value is set as S(1) = 8.

The most prominent feature of this stochastic programing optimization model is the integration
of the MC simulation in it. In order to gain a more accurate optimal OT to provide more valuable
guidance for gasifier operation practice, the simulated AMP data series were expanded to 10,000 data
sets according to the change law of the original AMP data series using the found simulation program.
Then the stochastic programing would be optimized based on the newly acquired large data sets.

The found mathematical model for OT optimization is a stochastic programming model due
to the hybridization of MC random simulation in the constraints. These random, non-linear and
non-quadratic constraints present multiple challenges in regard to solution methodology using
traditional mathematical programming methods. However, these shortcomings can be easily handled
using some artificial intelligence algorithms such as genetic algorithm (GA), simulated annealing
algorithm (SAA), particle swarm optimization (PSO) and so on. Different from the traditional
mathematical optimization methods, these artificial intelligence algorithms are evolutionary heuristics
that are population-based search methods [50–52]. In an optimization procedure with these algorithms,
the iterations move from a set of points (population) to another set of points with likely improvement
using a combination of deterministic and probabilistic rules. Among these evolutionary algorithms, the
GA employs the principal of “survival of the fittest” in its search process, and achieves evolution through
crossover and mutation operations to explore new areas of solution space using best characteristics
of previous population generations. Thus, it is well suited to and has been extensively applied to
solve complex optimization problems such as nonlinear objectives and constrained functions without
requiring gradient information. Therefore, we used GA to optimize the found stochastic optimization
model of OT in this study.
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4.2. Parameter Optimization Using GA

GA is an intelligent algorithm based on artificial population evolution [51]. The main idea is to
screen individuals according to a series of genetic operations such as fitness function and cross-mutation,
so that individuals with high fitness can be retained to form a new population. In this way, the fitness
of each individual in the population continues to improve until certain limit conditions are met. At this
time, the individual with the highest fitness in the population is the optimal solution of the parameters
to be optimized.

In order to realize the programming of GA, the Sheffield GA optimizer coded in MATLAB is
preferable due the operational convenience of this platform. Many optimization problems in various
fields have been solved with it [53–55]. Similar to ordinary genetic algorithm programs, the Sheffield
GA optimizer also contains standard crossover and mutation operators. Crossover is achieved by
cloning pairs of parent solutions drawn randomly from the population and performing gene-swap
between two gene positions selected at random. Similarly, mutation is achieved by cloning a parent
solution drawn randomly from the population and then switching select genes in the cloned solution
to new states randomly. Gene selection for mutation is done randomly with a 1% probability [56].
Figure 8 illustrates examples for crossover and mutation operators on solution candidates.

 
Figure 8. GA operators. (a) Crossover; (b) Mutation.

In this paper, the value of OT is regarded as different individuals. After substituting it into
the objective function, the individual is evaluated according to the size of the objective value, and
the individuals with good quality are selected for cross and variation to produce better individuals.
Finally, after a certain number of iteration, we can get the best individual, that is, the best operation
temperature. The GA procedure is shown in Figure 9.

In solving our stochastic optimization model (Equation (15)) by GA, the population size is set as
N = 30 [57,58]. Besides, the roulette method [50] is used for selection, which is obey the rule that the
higher the fitness, the greater the probability of being selected. Moreover, the crossover probability
and the variation probability are usually set as Pc = 0.8 and Pm = 0.01 [58]. The iteration process of
optimal solution is presented in Figure 10. It could be seen from Figure 10 that the convergence speed
of the optimal solution is very fast, and the optimal solution has gradually stabilized at T = 1424.80 ◦C.

In order to verify this optimization result, we also optimized the found stochastic optimization
model using SAA and PSO. Figure 11 shows the iterations of the optimal solution by SAA and PSO,
and the optimal solutions by the these two algorithms are 1424.77 ◦C and 1424.75 ◦C, respectively.
These two optimal results are almost consistent with that by GA algorithm. This indicates that the
optimization result using GA is valid. However, the convergence speed of GA is the fastest comparing
with SAA and PSO, which can be confirmed by their iterations.
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Figure 9. Flow chart of the genetic algorithm.

Figure 10. Iteration of optimization by GA.

4.3. Optimization Results Comparison between Stochastic Model and Conventional Model

As stated in Section 4.1, the traditional determination of OT is just according to the AMP mean of
feed coal over a period of time or several successive batches. The determined OT with this method is
usually inaccurate because the dynamic changes in AMP series are neglected. To verify whether our
proposed stochastic programing model based on MC simulation can obtain a more accurate optimal
OT or not for gasification practice, we compared the optimization results obtained from our model and
those of the conventional method.

According to the conventional method, a random temperature increment with uniform distribution
Δ(t) ∼ U(50, 100) was added to the mean of the 200 AMP series (X = 1348 ◦C), then the optimal
OT obtained is 1398 ∼ 1448 ◦C. Figure 12 shows the range of optimal solutions obtained by the
conventional method and by our stochastic optimization model. Compared the optimal result
ascertained by the conventional model as shown in Figure 12, the optimal solution obtained by our
proposed stochastic optimization model based on MC simulation converges to a narrower interval,
which indicates that our proposed model can provide a more accurate optimal OT than that obtained
from the conventional method.

228



Energies 2019, 12, 4245

Figure 11. Iterations of optimization by (a) SAA and (b) PSO.

Figure 12. Comparison of the range of optimal solutions obtained by the conventional method and our
stochastic optimization model.

5. Conclusions

Based on a stochastic process perspective, this paper focuses on the random simulation of AMP of
feed coal for an entrained flow coal gasification process and the stochastic optimization of OT so as to
provide more precise operational guidance for gasification operations. In this study, the AMP of coal
was regarded as a random variable, and the MC method was used to simulate the dynamic changes
in AMP. Then based on the MC simulation, a stochastic programing model for OT optimization was
proposed. After a series of simulation with MC and optimization with GA, the optimal OT was gained.
Some conclusions are as follows:

(1) MC is an effective simulation method to describe the dynamic changes in the AMP series when
considering the characteristic variations of the feed coal from batch to batch. The MC simulation
method can be further used in OT optimization.

(2) In the application of MC to simulate the collected original AMP data, the simulation result is best
when the original AMP series is divided into 13 states. Under this partition scheme, the average
relative deviation between the simulated and the original AMP is only 0.35%, which is very small.
This indicates that founded MC simulation model under this scheme can accurately describe the
dynamic change of AMP.

(3) Compared to the conventional OT determination method that just according to the AMP mean
of the feed coal over a period of time or several successive batches, the proposed stochastic
programing model that integrating MC simulation for OT optimization has obvious advantages,
because the dynamic changes in AMP series are taken into account. Moreover, the final optimal
OT value is T = 1424.80 ◦C, which is more accurate than the result T ∈ [1398, 1448] obtained
with the conventional method.

(4) The proposed stochastic programing model for OT optimization is a co-integration dynamic
optimization problem, which can be optimized by some intelligent algorithms. The final optimal
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OT ascertained from the proposed stochastic programing model is more accurate than that
obtained using the conventional method, which has been verified by comparing the results. Thesr
show that the proposed OT optimization model based on MC simulation can provide more
accurate and reliable references for actual production.
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Nomenclature

The following nomenclature is used in this manuscript:

Abbreviation Meaning

AMP Ash melting point
OT Operating temperature
MC Markov chain
GA Genetic algorithm
ANN Artificial neural network
SVM Support vector machine
RSM Response surface methodology
CFD Computational fluid dynamics
IADP Iterative adaptive dynamic programming
MAD Mean absolute deviation
RMSE Root mean square error
AARE Absolute average relative error
SAA Simulated annealing algorithm
PSO Particle swarm optimization
Symbols
Xt State at time t
S State set
Pij Transition probability from state i to state j
P State transition probability matrix
n Number of States
Vn

i n-step transition probability of state i
π Stationary distribution vector
r A random number of [0, 1]
ŷi The i-th simulated data
yi The i-th sample data
T Actual operating temperature
Y(t) Ideal operating temperature at time t
X(t) Ash melting point at time t
Δ(t) The uniform distribution Δ(t) ∼ U(50, 100)
rand(t) A random number of [0, 1] at time t
S(t) State of ash melting point at time t
N Population size
Pc Crossover probability
Pm Variation probability
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Appendix A

Table A1. Simulation data and sample data deviation in three cases (the sample data of coal is from
Hebi lean coal).

SerialNumber
Sample
Data/◦C

Simulated Data/◦C Absolute Deviation/◦C Relative Deviation

Case I Case II Case III Case I Case II Case III Case I Case II Case III

Training set

1 1386.73 1389.71 1382.70 1369.38 2.98 4.03 17.35 0.21% 0.29% 1.25%
2 1348.07 1354.56 1335.43 1353.52 6.49 12.64 5.45 0.48% 0.94% 0.40%
3 1358.40 1351.29 1368.33 1332.41 7.11 9.93 25.99 0.52% 0.73% 1.91%
4 1351.90 1359.78 1341.63 1339.37 7.88 10.27 12.53 0.58% 0.76% 0.93%
5 1341.64 1355.24 1340.72 1358.78 13.60 0.92 17.14 1.01% 0.07% 1.28%
6 1339.47 1339.87 1348.71 1320.35 0.40 9.24 19.12 0.03% 0.69% 1.43%
7 1337.02 1327.97 1343.08 1319.99 9.05 6.06 17.03 0.68% 0.45% 1.26%
8 1363.06 1358.19 1354.76 1344.43 4.87 8.30 18.63 0.36% 0.61% 1.38%
9 1342.80 1345.99 1338.90 1332.40 3.19 3.90 10.40 0.24% 0.29% 0.77%

10 1337.50 1334.19 1324.86 1322.72 3.31 12.64 14.78 0.25% 0.94% 1.09%
11 1347.74 1339.69 1357.57 1357.87 8.05 9.83 10.13 0.60% 0.73% 0.75%
12 1341.27 1342.88 1331.90 1356.87 1.61 9.37 15.60 0.12% 0.69% 1.16%
13 1348.54 1356.14 1344.16 1363.90 7.60 4.38 15.36 0.56% 0.32% 1.14%
14 1325.90 1329.68 1333.87 1345.15 3.78 7.97 19.25 0.29% 0.59% 1.43%
15 1334.57 1340.74 1329.23 1316.11 6.17 5.34 18.46 0.46% 0.40% 1.37%
16 1350.79 1350.08 1356.87 1367.46 0.71 6.08 16.67 0.05% 0.45% 1.24%
17 1340.03 1352.85 1345.33 1352.07 12.82 5.30 12.04 0.96% 0.39% 0.89%
18 1341.68 1347.05 1337.75 1353.84 5.37 3.93 12.16 0.40% 0.29% 0.90%
19 1373.85 1369.05 1369.57 1379.70 4.80 4.28 5.85 0.35% 0.32% 0.43%
20 1366.54 1352.19 1360.16 1378.81 14.35 6.38 12.27 1.05% 0.47% 0.91%
21 1347.12 1353.11 1345.21 1354.98 5.99 1.91 7.86 0.44% 0.14% 0.58%
22 1334.47 1330.38 1343.30 1316.69 4.09 8.83 17.78 0.31% 0.65% 1.32%
23 1337.85 1344.44 1331.19 1355.52 6.59 6.66 17.67 0.49% 0.49% 1.31%
24 1378.56 1367.74 1369.45 1393.17 10.82 9.11 14.61 0.78% 0.67% 1.08%
25 1348.31 1349.75 1340.49 1335.76 1.44 7.82 12.55 0.11% 0.58% 0.93%
26 1353.46 1356.85 1344.97 1338.83 3.39 8.49 14.63 0.25% 0.63% 1.08%
27 1350.38 1343.74 1347.82 1370.86 6.64 2.56 20.48 0.49% 0.19% 1.52%
28 1364.58 1370.52 1368.53 1384.04 5.94 3.95 19.46 0.44% 0.29% 1.44%
29 1340.07 1339.51 1334.40 1352.34 0.56 5.67 12.27 0.04% 0.42% 0.91%
30 1340.46 1339.14 1347.80 1355.19 1.32 7.34 14.73 0.10% 0.54% 1.09%
31 1326.93 1325.98 1316.53 1317.35 0.95 10.40 9.58 0.07% 0.77% 0.71%
32 1330.30 1338.52 1336.44 1345.96 8.22 6.14 15.66 0.62% 0.45% 1.16%
33 1353.48 1348.41 1364.27 1336.46 5.07 10.79 17.02 0.37% 0.80% 1.26%
34 1348.87 1343.86 1357.31 1331.21 5.01 8.44 17.66 0.37% 0.62% 1.31%
35 1359.93 1351.68 1370.46 1367.87 8.25 10.53 7.94 0.61% 0.78% 0.59%
36 1343.38 1336.63 1335.99 1359.46 6.75 7.39 16.08 0.50% 0.55% 1.19%
37 1355.89 1345.46 1350.85 1366.49 10.43 5.04 10.60 0.77% 0.37% 0.79%
38 1359.67 1353.25 1362.24 1372.22 6.41 2.57 12.55 0.47% 0.19% 0.93%
39 1374.85 1381.48 1367.37 1392.06 6.63 7.48 17.21 0.48% 0.55% 1.27%
40 1348.89 1356.08 1358.36 1333.64 7.19 9.47 15.25 0.53% 0.70% 1.13%
41 1347.63 1351.04 1353.76 1361.04 3.41 6.13 13.41 0.25% 0.45% 0.99%
42 1351.14 1364.14 1356.53 1367.63 13.00 5.39 16.49 0.96% 0.40% 1.22%
43 1350.96 1345.71 1344.88 1330.36 5.25 6.08 20.60 0.39% 0.45% 1.53%
44 1347.80 1363.86 1344.08 1359.37 16.06 3.72 11.57 1.19% 0.28% 0.86%
45 1374.19 1377.24 1379.72 1365.53 3.05 5.53 8.66 0.22% 0.41% 0.64%
46 1365.98 1356.92 1372.45 1356.57 9.06 6.47 9.41 0.66% 0.48% 0.70%
47 1343.31 1355.47 1350.46 1353.59 12.16 7.15 10.28 0.91% 0.53% 0.76%
48 1360.68 1361.70 1353.86 1349.30 1.03 6.82 11.38 0.08% 0.51% 0.84%
49 1366.05 1362.88 1357.21 1382.42 3.17 8.84 16.37 0.23% 0.66% 1.21%
50 1337.96 1344.97 1330.62 1343.68 7.01 7.34 5.72 0.52% 0.54% 0.42%
51 1336.16 1342.94 1348.61 1321.16 6.77 12.45 15.00 0.51% 0.92% 1.11%
52 1345.54 1348.27 1337.59 1334.59 2.72 7.95 10.95 0.20% 0.59% 0.81%
53 1352.97 1344.34 1340.55 1334.51 8.63 12.42 18.46 0.64% 0.92% 1.37%
54 1351.54 1355.40 1356.38 1362.18 3.86 4.84 10.64 0.29% 0.36% 0.79%
55 1348.66 1335.77 1357.25 1362.75 12.89 8.59 14.09 0.96% 0.64% 1.04%
56 1352.53 1352.86 1358.76 1342.22 0.32 6.23 10.31 0.02% 0.46% 0.76%
57 1337.70 1336.94 1328.89 1326.37 0.76 8.81 11.33 0.06% 0.65% 0.84%
58 1338.66 1351.89 1347.45 1351.68 13.23 8.79 13.02 0.99% 0.65% 0.96%
59 1354.47 1352.95 1354.02 1367.61 1.52 0.45 13.14 0.11% 0.03% 0.97%
60 1347.44 1341.09 1350.47 1335.48 6.35 3.03 11.96 0.47% 0.22% 0.89%
61 1344.64 1347.91 1341.95 1363.21 3.27 2.69 18.57 0.24% 0.20% 1.38%
62 1327.90 1342.77 1336.12 1311.64 14.87 8.22 16.26 1.12% 0.61% 1.20%
63 1352.71 1353.57 1341.29 1331.23 0.87 11.42 21.48 0.06% 0.85% 1.59%
64 1354.91 1349.64 1348.88 1341.96 5.27 6.03 12.95 0.39% 0.45% 0.96%
65 1332.03 1337.47 1322.58 1350.36 5.44 9.45 18.33 0.41% 0.70% 1.36%
66 1347.41 1359.71 1338.76 1353.07 12.31 8.65 5.66 0.91% 0.64% 0.42%
67 1349.66 1355.90 1345.80 1366.27 6.24 3.86 16.61 0.46% 0.29% 1.23%
68 1360.46 1354.14 1368.66 1344.91 6.32 8.20 15.55 0.46% 0.61% 1.15%
69 1340.45 1338.66 1345.20 1353.01 1.78 4.75 12.56 0.13% 0.35% 0.93%
70 1341.74 1351.11 1353.30 1324.90 9.37 11.56 16.84 0.70% 0.86% 1.25%
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Table A1. Cont.

SerialNumber
Sample
Data/◦C

Simulated Data/◦C Absolute Deviation/◦C Relative Deviation

Case I Case II Case III Case I Case II Case III Case I Case II Case III

71 1339.48 1352.09 1332.57 1357.05 12.61 6.91 17.57 0.94% 0.51% 1.30%
72 1327.03 1331.12 1338.95 1308.84 4.09 11.92 18.19 0.31% 0.88% 1.35%
73 1350.83 1351.57 1345.10 1366.57 0.73 5.73 15.74 0.05% 0.42% 1.17%
74 1354.03 1351.31 1362.81 1337.57 2.72 8.78 16.46 0.20% 0.65% 1.22%
75 1339.63 1345.42 1332.81 1328.27 5.79 6.82 11.36 0.43% 0.51% 0.84%
76 1337.69 1325.01 1338.63 1328.01 12.68 0.94 9.68 0.95% 0.07% 0.72%
77 1334.78 1341.37 1338.84 1321.79 6.60 4.06 12.99 0.49% 0.30% 0.96%
78 1347.45 1338.16 1356.30 1362.26 9.29 8.85 14.81 0.69% 0.66% 1.10%
79 1363.75 1350.05 1356.90 1345.89 13.70 6.85 17.86 1.00% 0.51% 1.32%
80 1313.52 1310.03 1317.17 1324.42 3.49 3.65 10.90 0.27% 0.27% 0.81%
81 1320.76 1315.98 1325.89 1332.86 4.77 5.13 12.10 0.36% 0.38% 0.90%
82 1363.40 1358.01 1355.64 1337.44 5.39 7.76 25.96 0.40% 0.57% 1.92%
83 1340.73 1351.84 1336.70 1329.16 11.10 4.03 11.57 0.83% 0.30% 0.86%
84 1349.17 1352.50 1339.24 1370.91 3.33 9.93 21.74 0.25% 0.74% 1.61%
85 1365.20 1359.60 1360.11 1347.30 5.60 5.09 17.90 0.41% 0.38% 1.33%
86 1369.65 1363.96 1382.09 1357.82 5.69 12.44 11.83 0.42% 0.92% 0.88%
87 1350.39 1346.00 1346.62 1336.76 4.39 3.77 13.63 0.32% 0.28% 1.01%
88 1358.48 1361.27 1350.87 1345.28 2.79 7.61 13.20 0.21% 0.56% 0.98%
89 1352.43 1357.78 1354.88 1336.48 5.34 2.45 15.95 0.40% 0.18% 1.18%
90 1356.11 1351.59 1351.27 1336.59 4.52 4.84 19.52 0.33% 0.36% 1.45%
91 1345.23 1334.22 1350.46 1352.74 11.01 5.23 7.51 0.82% 0.39% 0.56%
92 1330.57 1330.46 1338.78 1352.72 0.11 8.21 22.15 0.01% 0.61% 1.64%
93 1357.34 1357.05 1347.50 1340.17 0.28 9.84 17.17 0.02% 0.73% 1.27%
94 1358.07 1347.44 1350.16 1369.93 10.63 7.91 11.86 0.78% 0.59% 0.88%
95 1344.80 1341.04 1338.91 1358.36 3.76 5.89 13.56 0.28% 0.44% 1.00%
96 1342.66 1338.62 1352.12 1357.92 4.05 9.46 15.26 0.30% 0.70% 1.13%
97 1331.24 1333.67 1321.83 1316.00 2.43 9.41 15.24 0.18% 0.70% 1.13%
98 1343.07 1331.82 1350.44 1324.21 11.26 7.37 18.86 0.84% 0.55% 1.40%
99 1342.28 1339.84 1351.00 1323.86 2.44 8.72 18.42 0.18% 0.65% 1.36%
100 1345.14 1344.47 1353.39 1357.77 0.67 8.25 12.63 0.05% 0.61% 0.94%
101 1348.86 1345.30 1352.91 1362.40 3.55 4.05 13.54 0.26% 0.30% 1.00%
102 1349.97 1350.20 1340.68 1332.98 0.23 9.29 16.99 0.02% 0.69% 1.26%
103 1331.63 1343.49 1336.67 1346.17 11.86 5.04 14.54 0.89% 0.37% 1.08%
104 1338.13 1338.67 1332.93 1356.74 0.54 5.20 18.61 0.04% 0.39% 1.38%
105 1375.26 1374.54 1382.80 1363.95 0.72 7.54 11.31 0.05% 0.56% 0.84%
106 1344.16 1342.38 1338.07 1360.11 1.78 6.09 15.95 0.13% 0.45% 1.18%
107 1321.02 1320.90 1327.63 1336.23 0.12 6.61 15.21 0.01% 0.49% 1.13%
108 1346.84 1344.96 1338.04 1327.21 1.88 8.80 19.63 0.14% 0.65% 1.45%
109 1334.22 1349.67 1324.07 1325.54 15.45 10.15 8.68 1.16% 0.75% 0.64%
110 1340.50 1343.81 1334.08 1354.56 3.31 6.42 14.06 0.25% 0.48% 1.04%
111 1355.88 1350.83 1363.87 1341.61 5.05 7.99 14.27 0.37% 0.59% 1.06%
112 1368.10 1352.21 1374.40 1363.41 15.89 6.30 4.69 1.16% 0.47% 0.35%
113 1365.28 1367.24 1372.98 1346.23 1.96 7.70 19.05 0.14% 0.57% 1.41%
114 1328.10 1322.52 1319.77 1302.80 5.58 8.33 25.30 0.42% 0.62% 1.87%
115 1372.65 1375.14 1377.81 1359.52 2.49 5.16 13.13 0.18% 0.38% 0.97%
116 1328.56 1331.64 1320.73 1343.77 3.08 7.83 15.21 0.23% 0.58% 1.13%
117 1372.20 1365.77 1363.39 1384.40 6.42 8.81 12.20 0.47% 0.65% 0.90%
118 1338.50 1355.56 1331.21 1322.90 17.06 7.29 15.60 1.27% 0.54% 1.16%
119 1346.74 1354.33 1358.94 1359.28 7.59 12.20 12.54 0.56% 0.90% 0.93%
120 1384.66 1385.74 1389.84 1398.31 1.08 5.18 13.65 0.08% 0.38% 1.01%
121 1358.05 1361.48 1362.85 1378.58 3.44 4.80 20.53 0.25% 0.36% 1.52%
122 1374.22 1368.69 1372.46 1384.89 5.53 1.76 10.67 0.40% 0.13% 0.79%
123 1353.48 1348.76 1363.22 1341.72 4.72 9.74 11.76 0.35% 0.72% 0.87%
124 1381.55 1385.28 1371.94 1367.79 3.73 9.61 13.76 0.27% 0.71% 1.02%
125 1353.16 1358.33 1346.39 1366.69 5.17 6.77 13.53 0.38% 0.50% 1.00%
126 1345.60 1347.33 1335.89 1365.42 1.74 9.71 19.82 0.13% 0.72% 1.47%
127 1322.46 1326.85 1330.02 1344.65 4.38 7.56 22.19 0.33% 0.56% 1.64%
128 1367.18 1370.83 1375.06 1377.33 3.65 7.88 10.15 0.27% 0.58% 0.75%
129 1356.45 1359.37 1363.80 1344.95 2.91 7.35 11.50 0.21% 0.54% 0.85%
130 1346.80 1336.37 1338.47 1330.66 10.43 8.33 16.14 0.77% 0.62% 1.20%
131 1371.95 1370.92 1379.26 1384.49 1.03 7.31 12.54 0.07% 0.54% 0.93%
132 1372.25 1374.51 1356.88 1394.28 2.26 15.37 22.03 0.16% 1.14% 1.63%
133 1337.22 1336.79 1340.73 1357.82 0.44 3.51 20.60 0.03% 0.26% 1.53%
134 1346.18 1347.23 1347.63 1329.88 1.05 1.45 16.30 0.08% 0.11% 1.21%
135 1333.10 1341.81 1336.69 1349.41 8.70 3.59 16.31 0.65% 0.27% 1.21%
136 1362.21 1363.98 1365.94 1374.92 1.76 3.73 12.71 0.13% 0.28% 0.94%
137 1346.47 1336.83 1340.76 1363.58 9.64 5.71 17.11 0.72% 0.42% 1.27%
138 1354.52 1354.09 1348.02 1373.09 0.42 6.50 18.57 0.03% 0.48% 1.38%
139 1344.18 1332.21 1337.83 1358.81 11.97 6.35 14.63 0.89% 0.47% 1.08%
140 1362.00 1355.51 1370.63 1383.77 6.49 8.63 21.77 0.48% 0.64% 1.61%
141 1353.16 1348.27 1344.98 1336.42 4.88 8.18 16.74 0.36% 0.61% 1.24%
142 1354.90 1357.30 1345.64 1341.28 2.40 9.26 13.62 0.18% 0.69% 1.01%
143 1367.08 1355.35 1379.42 1382.62 11.74 12.34 15.54 0.86% 0.91% 1.15%
144 1347.93 1333.99 1337.25 1329.48 13.94 10.68 18.45 1.03% 0.79% 1.37%
145 1320.76 1331.25 1323.92 1333.23 10.49 3.16 12.47 0.79% 0.23% 0.92%
146 1362.00 1348.15 1362.02 1375.72 13.86 0.02 13.72 1.02% 0.00% 1.02%

232



Energies 2019, 12, 4245

Table A1. Cont.

SerialNumber
Sample
Data/◦C

Simulated Data/◦C Absolute Deviation/◦C Relative Deviation

Case I Case II Case III Case I Case II Case III Case I Case II Case III

147 1356.05 1365.03 1365.77 1332.50 8.98 9.72 23.55 0.66% 0.72% 1.74%
148 1356.70 1349.51 1358.20 1344.54 7.18 1.50 12.16 0.53% 0.11% 0.90%
149 1356.92 1351.13 1364.13 1374.77 5.79 7.21 17.85 0.43% 0.53% 1.32%
150 1360.67 1361.51 1367.79 1343.34 0.83 7.12 17.33 0.06% 0.53% 1.28%
151 1365.73 1360.14 1379.42 1386.15 5.60 13.69 20.42 0.41% 1.01% 1.51%
152 1351.39 1345.53 1358.19 1335.23 5.86 6.80 16.16 0.43% 0.50% 1.20%
153 1341.11 1356.04 1335.62 1336.91 14.93 5.49 4.20 1.11% 0.41% 0.31%
154 1366.60 1370.32 1358.88 1355.95 3.72 7.72 10.65 0.27% 0.57% 0.79%
155 1344.35 1345.94 1352.10 1328.24 1.59 7.75 16.11 0.12% 0.57% 1.19%
156 1338.34 1331.92 1345.56 1323.25 6.42 7.22 15.09 0.48% 0.53% 1.12%
157 1361.52 1349.03 1366.70 1383.43 12.50 5.18 21.91 0.92% 0.38% 1.62%
158 1362.76 1367.41 1359.42 1382.45 4.65 3.34 19.69 0.34% 0.25% 1.46%
159 1343.63 1344.88 1351.59 1327.58 1.25 7.96 16.05 0.09% 0.59% 1.19%
160 1364.30 1350.40 1367.28 1378.69 13.90 2.98 14.39 1.02% 0.22% 1.07%

Average — — — — 5.93 7.00 14.94 0.44% 0.52% 1.11%

Testing set

161 1354.05 1354.20 1350.14 1361.92 0.15 3.91 7.87 0.01% 0.29% 0.58%
162 1374.49 1368.33 1385.49 1352.98 6.16 11.00 21.51 0.45% 0.82% 1.59%
163 1350.13 1352.84 1355.88 1335.53 2.71 5.75 14.60 0.20% 0.43% 1.08%
164 1349.69 1348.67 1356.28 1341.81 1.02 6.59 7.88 0.08% 0.49% 0.58%
165 1350.97 1345.98 1360.68 1366.76 4.98 9.71 15.79 0.37% 0.72% 1.17%
166 1378.59 1375.78 1384.70 1393.06 2.81 6.11 14.47 0.20% 0.45% 1.07%
167 1343.81 1338.89 1333.71 1355.59 4.92 10.10 11.78 0.37% 0.75% 0.87%
168 1346.99 1351.28 1341.02 1330.96 4.28 5.97 16.03 0.32% 0.44% 1.19%
169 1354.18 1352.49 1344.13 1365.41 1.69 10.05 11.23 0.12% 0.74% 0.83%
170 1356.40 1342.92 1365.30 1347.73 13.49 8.90 8.67 0.99% 0.66% 0.64%
171 1335.90 1339.09 1342.27 1328.86 3.19 6.37 7.04 0.24% 0.47% 0.52%
172 1343.18 1334.27 1347.59 1355.78 8.91 4.41 12.60 0.66% 0.33% 0.93%
173 1329.18 1327.50 1325.30 1340.73 1.69 3.88 11.55 0.13% 0.29% 0.86%
174 1339.83 1340.50 1346.03 1355.65 0.67 6.20 15.82 0.05% 0.46% 1.17%
175 1348.02 1342.93 1353.72 1356.07 5.09 5.70 8.05 0.38% 0.42% 0.60%
176 1342.70 1347.59 1348.48 1355.93 4.89 5.78 13.23 0.36% 0.43% 0.98%
177 1321.68 1329.50 1311.72 1313.64 7.81 9.96 8.04 0.59% 0.74% 0.60%
178 1346.92 1343.46 1340.80 1368.22 3.46 6.12 21.30 0.26% 0.45% 1.58%
179 1334.86 1339.25 1324.42 1348.45 4.39 10.44 13.59 0.33% 0.77% 1.01%
180 1336.79 1337.33 1342.21 1317.83 0.55 5.42 18.96 0.04% 0.40% 1.40%
181 1350.31 1356.17 1340.38 1366.35 5.86 9.93 16.04 0.43% 0.74% 1.19%
182 1347.10 1345.93 1352.54 1364.79 1.17 5.44 17.69 0.09% 0.40% 1.31%
183 1348.67 1350.40 1341.13 1339.23 1.73 7.54 9.44 0.13% 0.56% 0.70%
184 1352.02 1357.13 1361.94 1371.11 5.11 9.92 19.09 0.38% 0.73% 1.41%
185 1352.23 1347.39 1346.46 1332.36 4.84 5.77 19.87 0.36% 0.43% 1.47%
186 1342.50 1351.54 1348.20 1336.75 9.04 5.70 5.75 0.67% 0.42% 0.43%
187 1364.00 1354.88 1377.02 1350.65 9.12 13.02 13.35 0.67% 0.96% 0.99%
188 1375.80 1365.70 1365.94 1387.25 10.09 9.86 11.45 0.73% 0.73% 0.85%
189 1333.28 1338.41 1327.57 1318.59 5.13 5.71 14.69 0.38% 0.42% 1.09%
190 1334.23 1335.92 1343.19 1344.89 1.70 8.96 10.66 0.13% 0.66% 0.79%
191 1347.61 1345.71 1341.68 1332.43 1.90 5.93 15.18 0.14% 0.44% 1.12%
192 1322.17 1325.41 1313.04 1305.72 3.24 9.13 16.45 0.24% 0.68% 1.22%
193 1342.65 1350.87 1353.91 1327.61 8.21 11.26 15.04 0.61% 0.83% 1.11%
194 1320.65 1327.58 1322.85 1334.24 6.92 2.20 13.59 0.52% 0.16% 1.01%
195 1337.95 1337.95 1348.05 1329.05 0.00 10.10 8.90 0.00% 0.75% 0.66%
196 1333.07 1341.68 1344.45 1347.36 8.61 11.38 14.29 0.65% 0.84% 1.06%
197 1353.43 1346.88 1346.28 1365.41 6.55 7.15 11.98 0.48% 0.53% 0.89%
198 1373.85 1369.05 1369.84 1392.12 4.80 4.01 18.27 0.35% 0.29% 1.33%
199 1366.54 1362.19 1358.02 1383.25 4.35 8.52 16.71 0.32% 0.62% 1.22%
200 1347.12 1353.11 1339.85 1353.64 5.99 7.27 6.52 0.44% 0.54% 0.48%

Average — — — — 4.68 7.53 13.37 0.35% 0.56% 0.99%

Appendix B

# Constructing State Transition Probability Matrix
clear
A = xlsread(‘200sample’, ‘A1:A200′);
t = length(A);
B = unique(A);
tt = length(B);
E = sort(B,’ascend’);
T = zeros(16,16);
TR = zeros(16,16);
a = 0;
b = 0;
c = 0;
d = 0;
e = 0;
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f = 0;
g = 0;
h = 0;
k = 0;
l = 0;
m = 0;
n = 0;
o = 0;
p = 0;
q = 0;
r = 0;
for j=1:1:tt
Localization=find(A==E(j));
for i=1:1:length(Localization)
if Localization(i)+1>t
break;
elseif A(Localization(i)+1)==E(1)
a = a+1;
elseif A(Localization(i)+1)==E(2)
b = b+1;
elseif A(Localization(i)+1)==E(3)
c = c+1;
elseif A(Localization(i)+1)==E(4)
d = d+1;
elseif A(Localization(i)+1)==E(5)
e = e+1;
elseif A(Localization(i)+1)==E(6)
f = f+1;
elseif A(Localization(i)+1)==E(7)
g = g+1;
elseif A(Localization(i)+1)==E(8)
h = h+1;
elseif A(Localization(i)+1)==E(9)
k = k+1;
elseif A(Localization(i)+1)==E(10)
l = l+1;
elseif A(Localization(i)+1)==E(11)
m =m+1;
elseif A(Localization(i)+1)==E(12)
n = n+1;
elseif A(Localization(i)+1)==E(13)
o = o+1;
elseif A(Localization(i)+1)==E(14)
p = p+1;
elseif A(Localization(i)+1)==E(15)
q = q+1;
elseif A(Localization(i)+1)==E(16)
r = r+1;
end
end
T(j,1:tt) = [a,b,c,d,e,f,g,h,k,l,m,n,o,p,q,r];
end
TT = T;
for u=2:1:tt
TT(u,:)=T(u,:)-T(u-1,:);
end
TT;
Y = sum(TT,2);
for uu = 1:1:tt
TR(uu,:) = TT(uu,:)./Y(uu,1);
end
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TR
# Simulating 100000 AMP data
clear
A = xlsread(‘200sample’, ‘W1:AL16′);#A is the state transition probability matrix TR
B = zeros(1,100000);
B(1) = 16;
i = 16;
s = zeros(1,16);
n = 2;
for n = 2:100000
r = rand(1);
i = B(n-1);
s(1) = A(i,1);
for j = 2:16
s(j) = s(j-1)+A(i,j);
if r >= 0&&r <= s(1)
B(n) = 1;
elseif r >= s(j-1)&&r <= s(j)
B(n) = j;
end
end
end
B
for i = 1:100000
r = rand(1);
B(i) = 1310+B(i)*5-5*r;
end
B’
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