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The availability of new culture-independent techniques to study microbes led to the
explosion of the gut microbiota revolution in recent decades. Thanks to the information
deriving from 16-RNA and metagenomics, we have begun to gain insight into a previously
unexplored organ: the microbiome. Thus, we changed our ontological perspective of the
human body, considering it as the result of the interaction between eukaryotic cells—the
body as traditionally intended—and prokaryotic cells, consisting in the multiple microor-
ganisms living in different body niches, which constitute the “mammalian holobiont” [1].
In fact, even if the gut microbiome is the first and most studied one, multiple microbiomes
have been evaluated. Previously considered sterile districts have been questioned and
new possible unexpected niches have been postulated. Beyond the biological interest, the
knowledge on the microbiome offers a unique opportunity for personalized medicine as it
constitutes the variable part of our genome, contributing to more than 90% of the variability
among the individuals, whereas our traditionally intended genome shows a more than
90% identity among individuals [2]. Furthermore, beyond the mere characterization of
microorganisms constituting the microbiome, thanks to proteomics and metabolomics,
we can characterize the possible function that they have in physiologic and pathologic
processes [3].

Considering these characteristics, the study of the microbiome will provide new op-
portunities to understand the pathogenesis of many non-communicable diseases, and it
may be used for diagnosis, staging and tailoring different therapies on individual specific
characteristics. Aiming at exploring the potential applications of microbiome in the per-
sonalization of medicine, we propose this Special Issue to collect new original data on the
study of the microbiome and to offer the reader the main novelties in the landscape of the
microbiome in the perspective of personalized medicine.

In such a context, the gut microbiome plays an undoubtedly pivotal role, not only in
gastrointestinal but also extra-gastrointestinal disorders.

In gastrointestinal diseases, the contribution of the gut microbiota in the pathophysi-
ology of both organic and functional disorders is now largely recognized. The review by
Piccioni et al. underlined how dysbiosis, causing imbalance between pro-inflammatory and
anti-inflammatory bacterial species, can trigger mucosal and peri-visceral inflammation
leading to acute diverticulitis, and hypothesized a possible therapeutic role of probiotics
in this setting, which is still to be confirmed by further evidence [4]. Grigor’eva et al.
analysed fecal microbiota in patients affected by gallbladder stones and described how
cholecystectomy can modify bacterial abundance [5]. Moreover, Barandouzi et al. showed
that the microbiome composition was different in patients with irritable bowel syndrome
and healthy controls and revealed the association between bacterial diversity and the
consumption of specific foods such as caffeine, thus highlighting the interaction between
microbiota and the environment [6]. This relationship has also been confirmed by data
concerning non-gastrointestinal settings, as it is described in the study by Lin et al., which
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focused on a population of patients undergoing hemodialysis and analysed the impact of
beta-blockers on the gut microbiome [7].

The potential link between the gut microbiome and apparently disconnected diseases
has been investigated in multiple different contexts. Some districts, notably the urinary tract,
can be more easily colonized by gut bacteria due to their intestinal contiguity. On this basis,
our group examined how gut microbiome and intestinal barrier disruption can impact on
the pathogenesis of urinary tract infections, particularly recurrent cystitis [8]. Nonetheless,
the role of the gut microbiome is not limited to contiguous segments. As Cornejo-Pareja et al.
showed in their pilot study about autoimmune-based thyroid diseases, gut microbiome
alterations may contribute to the impairment of the immune system and subsequent onset of
autoimmune disorders [9]. Furthermore, the pilot study by Chernevskaya et al. underlined
the possible role of gut microbiota in identifying patients with a high risk of postoperative
complications after cardiac surgery [10]. Similarly, Yamamura et al. demonstrated that
the characteristics of lipid and energy metabolism of gut microbiota were able to predict a
response to probiotic therapy in patients with schizophrenia [11].

However, the gut microbiome is not the unique target for diagnosis and therapy, and
growing interest is rising around other microbiomes. In this context, it is worth noting
that recent findings have also revealed the presence of bacterial species in some niches
which were traditionally considered sterile, questioning an old paradigm and providing
new potential therapeutic targets.

Indeed, Bellando-Randone et al. summarized current evidence about the contribution
of oral microbiomes in the pathogenesis of different rheumatic diseases and propose to ap-
ply artificial intelligence, especially machine learning, to understand the link between oral
microbiota and rheumatic diseases [12]. Chuang et al. observed that the tonsil microbiota
composition was associated with chronic tonsillitis and oxygen desaturation in children
affected by obstructive sleep apnea syndrome [13]. Moreover, in two different studies,
Higuchi et al. evaluated the microbiome of two previously unexplored districts. They
analysed in particular mesothelioma-specific [14] and thymoma-specific [15] microbiota,
using resected or biopsied mesothelioma samples and resected thymoma samples, respec-
tively, suggesting a possible microbial role in cancerogenesis. Similarly, based on emerging
evidence that the uterus is not sterile, Boutriq et al. presented in their review the most
recent data concerning the potential role of the endometrial microbiome in endometrial
cancer and its possible interplay with the gut microbiome [16].

From diagnosis, research is now moving towards therapeutic objectives. Microbiome
modulation through pre-biotics, pro-biotics and non-absorbable oral antibiotics (e.g., ri-
faximin) is an already a diffuse practice, especially but not only in gastrointestinal disor-
ders, but further investigation is needed to identify more personalized treatments [17,18].
Di Leo et al. administered rifaximin to mice models for IgA nephropathy and observed
symptom improvement, suggesting an unexplored therapeutic direction [19]. Fecal mi-
crobiota transplantion (FMT) usefulness in re-establishing intestinal eubiosis is widely
recognized and recommended for specific indications, notably recurrent Clostridioides diffi-
cile colitis, but its role seems not to be limited to this setting, and it has been explored in
multiple diseases, as Pession et al. showed in their review addressing the role of FMT in
allogenic hematopoietic stem-cell recipients [20]. Not only Clostridioides infections, but also
the treatment of gut graft-versus-host disease and prevention of gut dysbiosis or decolo-
nization from antibiotic-resistant bacteria could be the main applications. Furthermore, in
order to promote research and novel therapeutic strategies, Liang et al. developed a rabbit
model of cystic fibrosis that, as well as cystic fibrosis human patients, was characterized by
a dysbiotic microbiota compared to wild-type rabbits [21].

Giant steps have been made so far on microbiome investigation from the perspective
of personalized medicine. However, certain aspects remain unclear. For example, as
Basson et al. highlighted, poor study reproducibility is one of the current concerns [22].
They speculated on the possible causes of study irreproducibility and proposed some
solutions, thus indicating lights and shadows on our current knowledge on this complex
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and challenging topic that the microbiome represents. As this Special Issue pointed out,
actual data are very promising, but research should keep on exploring the various unsolved
issues to perfect the use of microbiome data for the personalization of medicine.
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Abstract: Recurrent cystitis (RC) is a common disease, especially in females. Anatomical, behavioral
and genetic predisposing factors are associated with the ascending retrograde route, which often
causes bladder infections. RC seems to be mainly caused by agents derived from the intestinal micro-
biota, and most frequently by Escherichia coli. Intestinal contiguity contributes to the etiopathogenesis
of RC and an alteration in intestinal permeability could have a major role in RC. The aim of this
pilot study is to assess gut microbiome dysbiosis and intestinal permeability in female patients with
RC. Patients with RC (n = 16) were enrolled and compared with healthy female subjects (n = 15)
and patients with chronic gastrointestinal (GI) disorders (n = 238). We calculated the Acute Cystitis
Symptom Score/Urinary Tract Infection Symptom Assessment (ACSS/UTISA) and Gastrointestinal
Symptom Rating Scale (GSRS) scores and evaluated intestinal permeability and the fecal microbiome
in the first two cohorts. Patients with RC showed an increased prevalence of gastrointestinal symp-
toms compared with healthy controls. Of the patients with RC, 88% showed an increased intestinal
permeability with reduced biodiversity of gut microbiota compared to healthy controls, and 68% of
the RC patients had a final diagnosis of gastrointestinal disease. Similarly, GI patients reported a
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higher incidence of urinary symptoms with a diagnosis of RC in 20%. Gut barrier impairment seems
to play a major role in the pathogenesis of RC. Further studies are necessary to elucidate the role of
microbiota and intestinal permeability in urinary tract infections.

Keywords: intestinal permeability; gut microbiome; recurrent cystitis; dysbiosis

1. Introduction

Recurrent cystitis (RC) is defined as more than two episodes of bladder infection
in a 6-month period or more than three episodes in a year. Generally, urinary tract in-
fections (UTIs) are much more common in women than in men, involving over 50% of
the female population, of which at least 20–30% develop a recurrence [1]. This increased
incidence in women can be partially explained by the presence of anatomical, behav-
ioral and genetic predisposing factors [2–4]. Most urinary tract pathogens consist of
facultative Gram-negative anaerobic bacilli, common microorganisms of the intestinal
microbiota, mainly Escherichia coli, but they also belong to other Enterobacteriaceae (such
as Klebsiella spp. and Proteus spp.). However, even Gram-positive microorganisms, such
as Staphylococcus saprophyticus and Enterococcus faecalis, can act as pathogens [5].

The main route of infection is the fecal–perineal–urethral route, also known as the
ascending retrograde route, which consists of the colonization of the vaginal introitus
and/or the urethral meatus by fecal microbiota-derived bacteria, and the consequent colo-
nization of the bladder through the urethra [6]. Thus, the intestine could act as a reservoir
of uropathogens and the cross-talk between the intestinal and urogenital microbiome, the
“gut–bladder axis”, could play a major role in UTIs’ pathogenesis [7].

Changes in epithelial permeability may represent a novel mechanism for visceral
organ crosstalk and it may explain the overlapping symptomology of painful bladder
syndrome and irritable bowel syndrome (IBS) [8].

The pathophysiology of painful bladder syndrome (PBS) is poorly understood. How-
ever, there is evidence of female predominance and a high incidence of IBS in these patients:
up to 30–50% of patients diagnosed with IBS show symptoms of PBS, while up to 40%
of patients diagnosed with PBS show symptoms that meet the criteria for IBS. The hy-
pothesis is that the cross-sensitization between the bladder and colon is due to altered
permeability in one organ, which affects the other organ, but we do not know which one
is the first. [9,10]. However, there is limited knowledge of the mechanisms that link these
conditions. According to this hypothesis of cross-organ visceral communication between
the colon and bladder, previous experiments in rodent models have shown that colonic irri-
tation is capable of producing irregular urination patterns, such as early onset of urination
and increased urethral sphincter activity in rats [11]. Furthermore, there is evidence that
active colonic inflammation induces abnormalities in the detrusor-muscular contractility of
the bladder [12], and can increase vascular permeability in the bladder of female rats [13].
Conversely, bladder irritation results in increased visceral sensitivity to colonic stimulation.
The induction of permeability in the bladder induces increased permeability in the colon,
and, on the other side, inflammation of the colon likewise induces permeability in the
urinary bladder. These findings suggest that altered permeability has a key role in the
visceral organ cross-talk [8].

Based on this rationale, it is possible to hypothesize a further route of colonization of
the bladder by an anterograde route in RC, possibly by the transmigration of bacteria or
bacterial fragments from the intestine, particularly in the presence of impaired permeability,
as demonstrated in murine models [14]. However, little is known about the contribution of
intestinal permeability in the pathogenesis of recurrent cystitis.

Intestinal homeostasis depends on the good health of the gut barrier, a complex de-
fensive system capable of separating the intestinal contents from the host tissues, which
regulates nutrient absorption and allows interactions between the resident microbiota and
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the local immune system [15]. The gut barrier is constituted and regulated by many factors,
including, first of all, the intestinal microbiota itself, which could also influence the micro-
biota of nearby organs, the mucus layer, the integrity of epithelial cells and intercellular
junctions, and the innate and adaptive immune system associated with the mucosa [16]. In
this context, an important measure of barrier integrity is intestinal permeability, the prop-
erty that allows the exchange of solutes and fluids between the lumen and the intestinal
mucosa. The increase in intestinal permeability as a marker of gut barrier dysfunction has
been implicated in the pathogenesis of many gastrointestinal and extra-gastrointestinal
diseases [17]. However, little or nothing is known about the relationship between RC,
dysbiosis and increased intestinal permeability.

Therefore, the aim of this pilot study is to evaluate the possible relationship between
impaired gut barrier function and RC, through the investigation of the prevalence of
increased intestinal permeability and dysbiosis in a cohort of female patients with RC
(primary endpoint) compared to healthy women. To explore the possible crosstalk between
the gut and the urinary tract and to support the rationale of a bi-directional gut–bladder
dysfunction, we also evaluated the prevalence of RC in a cohort of patients with chronic
gastrointestinal disorders.

2. Materials and Methods
2.1. Study Design and Patients

We recruited three cohorts of patients: the first cohort (cohort I) consisted of female
patients, aged 18 and over, who reported at least two episodes of acute uncomplicated
cystitis in the last 6 months or three episodes in the last year, and came to our attention
at the Gynecology Unit of the Fondazione Policlinico Universitario “A. Gemelli” IRCCS
Hospital. The exclusion criteria for this cohort were the presence of morpho-functional
alterations of the genitourinary tract, the diagnosis of complicated acute or chronic cystitis,
pregnancy and lactation. The second cohort (control group, cohort II) was composed of
healthy female subjects from the age of 18, followed up by the Gynecology Unit of the
Fondazione Policlinico Universitario “A. Gemelli” IRCCS Hospital for routine controls,
without a history of recurrent cystitis or any gastroenterological symptoms/disorders,
and in the same age range. The third cohort (cohort III) was composed of female patients
who attended the General Gastroenterology and Breath Test Clinics of the Fondazione
Policlinico Universitario “A. Gemelli” IRCCS Hospital for GI disorders. Enrolled patients
did not undergo any therapy at the time of enrollment and execution of examinations and
tests. In addition, patients were required not to change their eating habits.

The subjects in cohort I and II performed the Intestinal Permeability Test, based
on the lactulose/mannitol ratio and, at the same time, on the measurement of exhaled
H2 (the Lactulose Breath Test) for the assessment of oro-cecal transit time and Small
Intestinal Bacterial Overgrowth (SIBO). On the same day, they provided a fecal sample for
metagenomic 16S ribosomal RNA (rRNA) analysis of the intestinal microbiome.

Subjects belonging to all three study cohorts were administered validated questionnaires
for self-evaluation of urological symptoms—the Acute Cystitis Symptom Score (ACSS) ques-
tionnaire [18] and the UTI Symptom Assessment (UTISA) questionnaire [19]—and for gastroin-
testinal symptoms, the structured Gastrointestinal Symptom Rating Scale (GSRS) questionnaire
was administered [20].

Enrolled patients and controls had no history of alcohol or drug abuse and they were
not current smokers. Subjects participating in the study did not refer to any particular
restricted dietary regimen (i.e., vegetarian or a low FODMAP diet) and they were asked
not to change their dietary habits and to avoid the use of antibiotics 15 days before their
enrollment in the study and microbiota analysis. Patients with RC were also required to
provide the results of the last urine culture, in order to collect data about the causative
agent of the urinary infection.
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The study was approved by the Ethical Committee of Fondazione Policlinico Universi-
tario “A. Gemelli” IRCCS Hospital and all the subjects participating in the study provided
written informed consent to the study (Protocol Number 0011046/21 of 03/24/2021).

2.2. Intestinal Permeability Test

We developed a new method to evaluate the intestinal permeability index, according to
our preliminary results (unpublished data). It showed the comparability of data on exhaled
gas obtained from a standard H2 Lactulose Breath Test compared to data obtained after the
concomitant administration of lactulose and mannitol to perform a Lactulose/Mannitol
urinary test. Thus, we developed a contemporary breath and urinary test that was able
to provide combined information: the H2 Lactulose/Mannitol Breath Test (L/M BT),
thanks to the administration of two sugars, instead of lactulose alone. This method also
allows the simultaneous determination of both H2 and CH4 measurements, providing
information on oro-cecal transit time and SIBO, and at the same time, the determination
of urinary lactulose/mannitol urinary ratio, for the estimation of intestinal permeability.
This test has already been demonstrated to provide reliable information on the alteration
of intestinal permeability [16,21–25] and it is currently part of the clinical practice in our
center. In this way, by performing a single, simple, non-invasive, sensitive, reliable and
repeatable test, it is possible to not only obtain information relating to the functionality of
the intestinal epithelium, but also relating to any alterations in intestinal transit time or to
the presence of SIBO. The L/M BT is performed through serial sampling of gases exhaled
by the patient, such as hydrogen, carbon dioxide and methane, and the subsequent analysis
of their concentrations, measured in parts per million (ppm) by means of a dedicated
gas chromatograph. After the appropriate preparation the day before the test and an
overnight fast, 17 samples of exhaled gas were obtained at time 0 (T0) and after taking 5 gr
of mannitol (powder) dissolved in 200 mL of water and 10 gr of pure lactulose (15 mL of
syrup), at intervals of 15 min in the following 4 h. An increase of ≥20 ppm in hydrogen
within 90 min was considered the cut-off value for the determination of SIBO, according
to the North American consensus criteria [26]. Patients also provided a urine sample at
baseline (T0), before taking lactulose and mannitol. Then, they collected urine samples in
the following 6 h to allow the measurement of the two sugars. The lactulose/mannitol ratio
was considered increased and therefore indicative of increased intestinal permeability, for
values ≥0.030 [27].

2.2.1. Chemicals and Reagents

Water and acetonitrile (LC-MS grade) was purchased from Merck (Merck KGaA, Darm-
stadt, Germany). Formic acid (98%, LC-MS grade) was purchased from Baker (Mallinckrodt
Baker Italia, Milano, Italia) and D-Mannitol-1 13C, 1-1-d2, Lactulose 13C12 and ammonium
formate was purchased from Sigma-Aldrich (Merck KGaA, Darmstadt, Germany). Lactu-
lose, mannitol and chlorhexidine were purchased from BioChemica (AppliChem GmbH,
Darmstadt, Germany). Stock solutions of mannitol (4 g/L) and lactulose (4 g/L) were
prepared in water and stored at −80 ◦C. Internal standards (IS) stock solutions containing
500 µg/mL D-mannitol-1 13C.1, 1-d2 and lactulose 13C12 were prepared in water and stored
at −80 ◦C. Working solutions were prepared in water/acetonitrile (20/80, v/v) at concen-
trations of 1600 µg/mL for mannitol and 640 µg/mL for lactulose. Serial dilutions from
working solutions were used to prepare seven-point calibration curves for both mannitol
and lactulose (10, 40, 80, 160, 320, 640 µg/mL; 2.5, 10, 20, 40, 80.,160 µg/mL, respectively)
and kept at −20 ◦C until use. The calibration curve included a zero (only solvent) and
a blank (solvent plus IS), which were not used for the construction of calibration curves.
D-Mannitol-1 13C, 1-1-d2 and lactulose 13C12 stock solutions were diluted with acetonitrile
to achieve a final concentration of 5 µg/mL and 2.5 µg/mL for D-Mannitol-1 13C, 1-1-d2
and lactulose 13C12, respectively.
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2.2.2. Sample Collection and Treatment

Urine samples were collected at two time points: T0 (at the start of the Lactulose/Mannitol
Breath Test when the patient had fasted from solids and liquids for at least 8 h, before the
assumption of the two sugars) and at T6 (for 6 hours after the consumption of the two sugar
solutions: 10 gr of lactulose and 5 gr of mannitol). An aliquot of the urine sample collected at
6 h was taken for analysis. Then, 150 µL of chlorhexidine (1.9 gr/100 mL) was added to the
urine samples as a preservative. Samples were stored at −80 ◦C until analysis.

Before the analysis for the L/M ratio, urine samples were left to thaw at room tem-
perature, then stirred for 1 min using a vortex mixer and centrifuged at 5000× g for 4 min
to remove the sediment according to the laboratory procedure. IS solution (240 µL) was
added to 10 µL of the urine samples, controls and standards, and after mixing, 200 µL was
transferred into a glass vial for injection into the UPLC-MS/MS (Ultra Performance Liquid
Chromatography Mass Spectrometry).

2.2.3. Instrumentation

The LC-MS/MS (Liquid Chromatography Mass Spectrometry) system consisted of
an Acquity UPLC system interfaced with a triple quadrupole mass spectrometer (Xevo
TQS-Micro, Waters, Milford, MA, USA) equipped with an electrospray ion source.

2.2.4. Chromatographic Conditions

The UPLC separation was performed using an ACQUITY UPLC BEH Amide 1.7 µm,
2.1 × 50 mm column (Waters Corporation, Milford, MA, USA) operating at a flow rate of
200 µL/min, and eluted with a 4 min linear gradient from 90 to 40% acetonitrile in water
(2 mM ammonium formate). The oven temperature was set at 40 ◦C. The injection volume
was 5 µL, and the total analysis time, including 1 min for equilibration of column, was 5 min.

2.2.5. Mass Spectrometer Conditions

The ESI (Electrospray Ionization) source operates in negative mode, with a capillary
voltage of 2.0 kV and a desolvation temperature of 300 ◦C. The source of the gas was
set as follows: desolvation at 200 L/h and cone at 0 L/h. The collision cell pressure
was 3.50 × 10−3 mbar. The cone voltage and collision energy settings were established
individually for each compound for Selected Reaction Monitoring (SRM) detection. The
conditions for the detection of lactulose, mannitol and their internal standards obtained
by direct infusion of a standard solution (1 µg/mL) were in line with the UPLC at initial
mobile phase conditions [27].

2.3. Fecal Microbiome Analysis

For cohort I and II, stool samples were collected at a single timepoint, immediately
before the L/M BT, and were stored at −80◦ until DNA extraction. Frozen stool samples
were thawed at room temperature, and the DNA was manually extracted using the QIAmp
Fast DNA Stool mini kit (Qiagen, Germany) according to the manufacturer’s instructions.
DNA was quantified using the NanoDrop ND-1000.

Targeted-Metagenomics

For each sample, the amplification of the V3-V4 region of the 16S rRNA gene was per-
formed by polymerase chain reaction (PCR) to obtain bacterial amplicon libraries (630 bp),
using primers reported in the MiSeq rRNA Amplicon Sequencing protocol (Illumina, San
Diego, CA, USA) [28]. Internal PCR contaminations were excluded by using negative
controls (no template). Moreover, a defined mixture of microbial standard DNA was used
as a positive control for sequencing. The sequencing was performed on an Illumina MiSe-
qTM platform (Illumina, San Diego, CA, USA), where paired-end reads of 300 base-length
were generated.

Trimmomatic v. 0.36 software was used to filter raw sequences for their quality and
read length [29], and the ChimeraSlayer tool in QIIME 1.9.1 software was employed to filter
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chimera sequences [30]. Reads were clustered into Operational Taxonomic Units (OTUs)
at 97% identity by UCLUST [31] against the Greengenes 13.8 database [32]. QIIME was
used to calculate α- and β-diversity and statistical tests (Mann–Whitney U, Kruskal–Wallis,
Benjamini–Hochberg tests) were applied on the OTUs’ relative abundances.

2.4. Self-Evaluation of Urological Symptoms (ACSS/UTISA) Questionnaire

Generally, the diagnosis of acute uncomplicated cystitis is made based on a history of
lower urinary tract symptoms in the absence of vaginal discharge; urine dipstick testing
and urine cultures can be used only in particular situations [33]. Considering that the
diagnosis of acute uncomplicated cystitis is mainly clinical, several dedicated question-
naires, in particular the Acute Cystitis Symptom Score (ACSS) and the UTI Symptom
Assessment (UTISA), have been created and validated as diagnostic methods in many
clinical settings [34–36]. Given the absence in the literature of a dedicated questionnaire
for patients suffering from uncomplicated RC, we used a combined ACSS/UTISA ques-
tionnaire for this study. The combined ACSS/UTISA questionnaire (questionnaire N◦

2 and 3 in the Supplementary Materials) consists of 13 questions. These questionnaires
analyze three aspects of the urological manifestations. First, the “typical symptoms”, which
consist of urgency and increased voiding frequency, dysuria, incomplete emptying of the
bladder, pelvic pain/discomfort, and lumbar pain. Second, the “atypical symptoms”,
and third, the subjective perception of how these symptoms have affected the patient’s
quality of life in the last year. For each response, a sub-sheet from 0 to 3 was assigned,
according to increasing severity. The patients were considered to have a previous acute
uncomplicated cystitis if they exceeded the cutoff value of ≥6 in the “typical symptoms”
section. In the cohort of patients with GI symptoms, we tried to evaluate the prevalence
of lower urinary tract symptoms. Therefore, we administered a combined ACSS/UTISA
questionnaire to all patients in the three cohorts, to ascertain the presence or absence of
recurrent urinary pathology.

2.5. Self-Evaluation of GI Symptoms (GSRS) Questionnaire

The GSRS questionnaire contains 15 questions related to five areas of interest in
regard to gastroenterological symptoms such as diarrhea, constipation, abdominal pain,
reflux, dyspepsia. In this case, each answer was scored from 0 to 3, representing increased
severity [20]. All patients from the three cohorts were given this questionnaire. Furthermore,
they were asked to qualify their most frequent stool consistency based on the Bristol
stool scale.

2.6. Statistical Analyses

The demographic and clinical characteristics of the sample were described through
descriptive statistical techniques. The qualitative variables were presented through tables
containing absolute values and percentage frequencies. Quantitative variables were sum-
marized through the following measures: minimum, maximum, range, mean and standard
deviation. The normality of continuous variables was verified with the Kolmogorov–
Smirnov test. The primary objective was evaluated by comparing the values of the lactu-
lose/mannitol urinary excretion ratio in two groups of subjects (cohort I and II). The com-
parison was calculated with the Student’s T-test if the variables were normally distributed
and with the Mann–Whitney test in case of the absence of normality. The prevalence of RC
in the gastrointestinal cohort (cohort III) was calculated as the percentage of patients who
were reported to suffer from recurrent cystitis.

3. Results

We enrolled 16 patients in the RC cohort (cohort I) and 15 healthy controls (cohort
II), whose characteristics are summarized in Table 1. Furthermore, we enrolled 238 female
patients with gastrointestinal symptoms (III cohort) attending the General Gastroenterology
and Breath Test Outpatient Clinic.
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Table 1. The demographic characteristics and medical history of patients in the RC and gastrointesti-
nal cohort and of healthy controls are summarized.

Patient Affected by
Recurrent Cystitis (RC,

Cohort I)

Healthy Controls
(Cohort II)

Patients Attending GI
Outpatient Clinic

(Cohort III)

Subjects number (f) 16 15 238
Mean age 44 (+/− 8 years) 42 (+/− 6 years) 42 (+/− 15 years)

Recurrent cystitis prevalence 100% 0% 20.2%

Gastrointestinal diseases prevalence 68%
(11/16) 0% 48.7%

(116/238)

IBD 18.75%
(3/16) 0% 5.04%

(122/238)
IBS and chronic functional bowel

disorders
37.5%
(6/16) 0% 16.4%

(39/238)

Dyspepsia/GERD 43.75%
(7/16) 0% 8%

(19/238)

Lactose intolerance 37.5%
(6/16) 0% 19.3%

(49/238)

Diverticular disease 0% 0% 2.1%
(5/238)

The prevalence of recurrent cystitis was 100% in cohort I, 0% in cohort II and 20% in
cohort III (Table 1). Among the 16 patients in cohort I, 11 patients (68%) had a final diagnosis
of GI disease, in particular IBS, inflammatory bowel disease (IBD), gastroesophageal reflux
disease (GERD) and lactose intolerance. No GI disease was observed in healthy controls.

Finally, among 238 patients enrolled in cohort III, including patients seeking gastroen-
terological advice for GI symptoms, 116 patients (48.7%) had an established GI diagnosis,
in particular IBD, diverticular disease, IBS and lactose intolerance.

No significant differences were found between patients affected by RC in cohort I
compared to patients affected by RC in cohort III.

3.1. Self-Evaluation of Urological Symptoms (ACSS/UTISA) Questionnaire

All patients from cohort I with RC showed a significantly increased median score for
the urological symptomatology questionnaire compared to controls (cohort II), for both
typical and atypical symptoms (p < 0.005). Furthermore, significant differences were also
found in 3 items of the ACSS/UTISA questionnaire, which dealt with daily discomfort,
daily activity impairment and impairment of social activities (p < 0.05) (Figure 1A,B,
respectively).

3.2. Self-Evaluation of GI Symptoms (GSRS) Questionnaire

Overall, 68% of patients from cohort I reported GI symptoms, as shown by an increase
in the median values of all the items of the GSRS questionnaire (Figure 2A–C). On average,
patients with RC showed more intense symptoms, such as diarrhea, constipation and
abdominal pain, than controls. Patients with RC also showed great variability in their stool
consistency compared to controls, who reported a more homogeneous consistency of type
3 or 4 on the Bristol Stool Scale (data not shown).

3.3. Intestinal Permeability Test

Eighty-eight percent of patients with RC from cohort I showed an increased intestinal
permeability, with an average value of 0.05 (p < 0.05) compared to controls, who did not
exceed the established cut-off of 0.03 (Figure 3A,B).

3.4. Alteration at Breath Testing

No statistically significant alterations among RC (cohort I) and controls (group II) were
found at breath test analysis. In fact, the AUC of hydrogen and methane did not show any
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statistical significance. However, a clear trend towards an increased prevalence of SIBO and
alterations in oro-cecal transit time were found in patients with recurrent cystitis compared
to controls (p = ns, Figure 4A,B).

3.5. Gut Microbiota Profiling

Microbiota typing showed a trend toward a reduction in biodiversity, which was
greater in patients than in controls, as seen from the graphs of α-diversity (i.e., observed
species, CHAO 1 and Shannon indexes) (Figure 5A). The patients tended to cluster in a
different way compared to controls (Figure 5B) (p = 0.02).

Furthermore, the phyla that was most represented in this distribution was Firmicutes,
followed by Verrucomicrobia (Figure 5C, left side). At the genera level, potential markers of
dysbiosis in RC seem to belong mainly to the phylum of Firmicutes, such as Ruminococcus,
Blautia, Veillonella and Streptococcus spp. (Figure 5C, right side), while in terms of species,
Acinetobacter showed particular abundance.

3.6. UTIs Etiology

Urinary tract infections appear to be mainly caused by agents derived from the
intestinal microflora. The main representative was E. coli, but other widely present species
include Streptococcus agalactiae, Enterococcus faecalis, and to a lesser extent, Shigella and
Proteus mirabilis (Figure 6).
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Figure 1. Symptoms and quality of life impairment in patients affected by RC (cohort I): ACSS/UTISA
scores. (A) ACUTE CYSTITIS SYMPTOM SCORE (ACSS) AND UTI SYMPTOM ASSESSMENT
(UTISA); (B) SELECTED ITEMS FROM ACSS/UTISA QUESTIONNAIRE. Patients with recurrent
cystitis showed higher scores for the questionnaires compared to controls, both in the area of typical
and atypical symptoms (A) Similarly, they scored significantly higher in items evaluating the per-
ceived impact on quality of life. Selected items are reported in (B). All the differences were statistically
significant (p < 0.05).
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Figure 2. Gastroenterological complaints in RC patients (cohort I): Gastrointestinal Symptoms Rating
Scale (GSRS) score. This questionnaire contains 15 questions related to five areas of interest in the
gastroenterological clinic, concerning symptoms such as diarrhea, constipation, abdominal pain,
reflux, dyspepsia. Among the enrolled patients, most showed an increased prevalence of all the
items in the GSRS questionnaire. (A) Full GSRS score. (B) GSRS SCORE divided per gastrointestinal
symptoms area score: reflux, diarrhea, constipation, abdominal pain, indigestion. (C) Intensity
of symptoms according at GSRS for each single area: percentage of patients indicating a score
of 3 (higher) or 2 or 1 or 0 (lower), respectively. Higher scores are consistent with increased severity
of symptoms.
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Figure 3. Intestinal permeability modification in patients with RC (cohort I). (A) Intestinal 
permeability. Patients affected by recurrent cystitis showed a statistically significant increase in 
intestinal permeability, measured as L/M ratio (lactulose/mannitol) with an average urinary ratio of 
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Figure 3. Intestinal permeability modification in patients with RC (cohort I). (A) Intestinal perme-
ability. Patients affected by recurrent cystitis showed a statistically significant increase in intestinal
permeability, measured as L/M ratio (lactulose/mannitol) with an average urinary ratio of lactu-
lose/mannitol equal to 0.050 compared to 0.02 of controls. (p < 0.05). (B) Prevalence of altered
L/M ratio. Of patients affected by recurrent cystitis, 88% displayed an altered L/M ratio compared
to controls.
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Figure 4. Increased prevalence of alteration at breath testing in RC (cohort I). Prevalence of SIBO
(A) and prevalence of oro-cecal transit time alterations (B). The Breath Test showed that patients
with recurrent cystitis showed a trend towards an increased prevalence of SIBO and alterations
of the oro-cecal transit time, compared to the control population (differences were not statistically
significant, p > 0.05).
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Figure 5. Gut microbiota alteration in RC patient (cohort I). (A) Boxplots representing α-diversity
indices. The interquartile range is represented by the box and the line in the box is the median.
The whiskers indicate the largest and the lowest data points, respectively, while the dots symbolize
samples. The analysis of the gut microbiota showed a certain degree of reduction in the observed
species and of the CHAO 1 and of Shannon indexes between the two groups. Furthermore, a greater
degree of reduction in biodiversity seems more evident in the group of patients (cohort I) versus
controls (cohort II). (B) β diversity analysis performed by Bray Curtis distance matrix and plotted by
PCoA plot. Patients affected by RC (green, PTS, cohort I) tend to cluster differently than controls (red,
ctr, cohort I). PERMANOVA p value = 0.02. (C) Phylum distribution (left side) and species distribution
between RC patients (cohort I) and controls (cohort II) (right side). Firmicutes and Verrucomicrobia
were the most represented phylum of gut microbiota (left side). In terms of prevalent microbial
species, some species seem more abundant than others species. In the controls, particular abundance
was found for Acinetobacter, while the most candidate species as potential markers of dysbiosis in the
course of recurrent cystitis seem to belong above all to the phylum of Firmicutes, such as Ruminococcus,
Blautia, Veillonella, Streptococcus spp. Mann–Whitney U test p values ≤ 0.05 (right side).
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Figure 6. UTIs etiology. Urinary tract infections appear to be mainly caused by agents derived from
the intestinal microflora. The main representative was E. coli, but other widely present species in-
cluded Streptococcus agalactiae, Enterococcus faecalis, and to a lesser extent, Shigella and Proteus mirabilis.

4. Discussion

In this pilot study, patients with recurrent UTIs described a wide range of negative
emotions related to the burden of experienced symptoms and to their impact on the
quality of daily life, as well-described in the ACSS/UTISA questionnaire. We found some
correlation with previous research on the experiences of patients with UTIs. A recent
qualitative, interview-based study by Grigoryan et al. of German and US participants who
experienced uncomplicated UTIs, showed a range of negative effects of UTI symptoms
on the daily lives, sleep and relationships of the women involved, along with a feeling
of helplessness and dread in the context of recurring infections and treatment failure [37].
Similar to this study and to a previous qualitative interview study by Eriksson et al. [38], our
patients described a significant impact of urinary symptoms, such as pollakiuria, urgency,
suprapubic pain/discomfort, small involuntary urine leakage or sensation of incomplete
emptying of the bladder on their daily-life activities. In particular, they complained about
daily discomfort and the consequent compromise and impairment of daily activities and
social relationships.

As this pilot study has shown, patients with a previous diagnosis of RC not only
experienced a significant increase in the incidence of urinary symptoms, but also, they
frequently reported GI symptoms, such as dyspepsia, abdominal pain, bloating, flatulence,
diarrhea or constipation (or mixed bowel habits), much more than controls, as evidenced by
the scores of the GSRS questionnaire. For example, up to 20% of enrolled patients reported
significant diarrheal symptoms. However, in most cases, patients with RC showed only
mild to moderate symptom intensity.

The pathogenesis of urinary infections typically starts with contamination of the
periurethral region by pathogen microorganisms of the gut, followed by colonization of the

17



J. Pers. Med. 2022, 12, 1005

urethra and ascending migration to the bladder [39]. Dysbiosis and increased intestinal
permeability could contribute to the onset of extra-intestinal disorders, such as RC. In
order to better explore the potential role of gut barrier dysfunction in the pathogenesis
of RC, we performed an evaluation of intestinal permeability with the H2 Breath Test
Lactulose/Mannitol, and subsequently, the metagenomic analysis of gut microbiota in
the patient and control groups. These evaluations showed a higher incidence of impaired
intestinal permeability. At the same time, breath test results showed a trend towards an
increased prevalence of SIBO and alterations in the intestinal transit time in patients
compared to controls, suggesting the presence of a certain degree of dysbiosis, even
considering that urinary infections are mainly caused by components of the intestinal
microbial flora, as emerged from our study.

In regard to a possible underlying pathogenetic explanation to our data, it can be
assumed that the impaired intestinal permeability observed in the RC cohort, as well as the
presence of a pro-inflammatory gut microbiota, could contribute to the dysregulation of
enterocytes, with a reduction in the expression of tight junctions, increase in mucosal per-
meability and dysregulation of immune cells finally leading to an abnormal inflammatory
state, which causes mucosal damage and subsequent translocation of microbial fragments
in the inner layers of intestinal barrier. Then, the extraintestinal spaces and the areas next to
the intestinal tract, such as the urogenital system, may be colonized by gut-derived bacteria,
which finally cause the recurrence of cystitis once they reach the bladder [40,41]. Further
studies will be required to test the validity of this hypothesis. Unfortunately, probably
due to the relatively low number of enrolled patients, we were not able to identify specific
bacteria associated with gut barrier dysfunction in this cohort of patients (data not shown).

Conversely, a significant number of patients with GI symptoms reported lower urinary
tract symptoms, when investigated with ACSS/UTISA questionnaire. Approximately
20% of GI patients could be diagnosed with RC, based on the symptoms reported in the
questionnaires, with a significant impact on quality of life. However, in our population with
RC, we cannot exclude that the alterations of intestinal permeability and gut microbiota
may be secondary to concomitant gastrointestinal pathologies. In fact, when patients with
RC were investigated by gastroenterologists in our outpatient clinic, most of them could
be diagnosed with a definite GI disease: IBD (one patient even had the first diagnosis of
Crohn’s disease), IBS, lactose intolerance or functional dyspepsia. This would indicate that
a significant number of patients with RC might have a misunderstood gastroenterological
disease that would predispose them to infection and colonization of bladder. Unfortunately,
due to the low number of enrolled patients, our study did not show a significant correlation
between RC and specific gastroenterological disease, but the increased prevalence of
gastrointestinal diseases in RC patients could highlight a possible common etiology based
on dysbiosis and increased gut permeability. However, further studies with a larger cohort
of patients are needed to analyze in more depth the specific gut microbiota signature, which
could contribute to both RC and different gastrointestinal diseases.

Furthermore, we should take into account that the increasingly massive use of sys-
temic antibiotics for the occurrence of UTIs contributes to the development and spread of
antibiotic-resistant pathogens. This also results in the elimination of protective, beneficial
microbial species, causing gut and urinary tract dysbiosis, and finally, the recurrence of
cystitis itself, which also predisposes patients to other functional gastrointestinal diseases.
In this scenario, it is difficult to understand if gastrointestinal disorders in RC patients are
primary disorders or they are triggered from antibiotic-induced dysbiosis. Therefore, it
is essential to prevent the occurrence of cystitis rather than to just treat it with repeated
antibiotic treatment. Several strategies have been suggested in order to prevent the re-
currence of cystitis; however, until now, guidelines do not concur on recommendations
regarding this topic. Non-antibiotic preventative strategies include the use of cranberry
products, despite the low compliance rate among patients, probiotics, phytotherapeutics, or
immunotherapies, such as OM-89, which is a bacterial extract from E. coli that stimulates the
host immune system to produce cytokines and antibodies against several bacteria species
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due to sharing similar antigenic structures. Vaginal estrogen, methenamine hippurate and
replenishment of the glycosaminoglycan (GAG) layers within the bladder urothelium to re-
duce bacterial adherence, have also been recommended in order to reduce UTIs recurrence
but with variable results [42].

Our study showed a strong association between altered intestinal permeability, in-
testinal dysbiosis, SIBO or other gastroenterological pathologies and the development of
recurrent cystitis; this should steer our attention towards new therapeutic strategies for
the prevention of RC, such as the reconstitution of the intestinal mucosa integrity or the
modulation of gut and urinary microbiota with the use of probiotics or even with fecal
microbiota transplantation (FMT). Both these therapeutic strategies should determine the
displacement of pathogens by probiotics colonization. Supporting these therapeutic strate-
gies, a pilot study including 11 women with RC compared the incidence of symptomatic,
culture-proven, antibiotic-treated UTIs in six months pre-fecal microbiota transplantation
with six months post-transplantation. The study showed a decrease in symptomatic UTIs
after FMT, though not in a statistically significant way [43]. By modulating the microbiome
profiles of recipients, FMT could be an innovative therapeutic strategy for refractory re-
current UTI patients, particularly those with antibiotic resistance. Moreover, lactic acid
bacteria seem to interfere with the growth and adhesion of urinary pathogens. Therefore, it
is necessary to design new dedicated clinical trials to evaluate, in a deeper way, the efficacy
of both probiotics - particularly the most effective candidates L. crispatus [44], L. rhamnosus
GR1 or reuteri RC14 [45]-and FMT for the treatment and prevention of RC.

Together with the relatively limited number of patients in this trial, our work has
another significant limitation: we have limited information about the nutritional charac-
teristics of the enrolled patients. Given the importance of nutrition in modulating gut
microbiota and intestinal permeability, its role in causing urinary infections or improving
them should be considered with dedicated trials.

5. Conclusions

Patients with RC showed a high prevalence of gastro-intestinal disorders, increased
permeability and associated dysbiosis in the microbiota analysis. These results constitute
the rationale for further studies to evaluate the potential clinical effects of active gut
microbiota modulation on the recurrence of cystitis.

This pilot study laid the foundations for further investigations, and aimed to under-
stand the role of intestinal barrier integrity in greater depth, as its altered permeability
appears to be associated with not only intestinal, but also extra-intestinal diseases. Finally,
it should be pointed out that various drugs, such as antibiotics, probiotics, prebiotics, a
specific diet and numerous pathological conditions could influence the permeability of the
intestine through the modulation of the microbial composition. In this context, the study of
the degree of intestinal permeability and the potential role of microbiota modulation using
new, reliable, reproducible, non-invasive methods could become a valid diagnostic and
therapeutic tool for the clinician, thus allowing the development of new and increasingly
personalized therapies.
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Abstract: Cardiac surgery remains a field of medicine with a high percentage of postoperative
complications, including infectious ones. Modern data indicate a close relationship of infectious
disorders with pathological changes in the composition of the gut microbiome; however, the extent
of such changes in cardiac surgery patients is not fully clarified. In this prospective, observational,
single center, pilot study, 72 patients were included, 12 among them with the infectious complications.
We analyzed the features of the fecal microbiota before and in the early postoperative period, as one
of the markers for predicting the occurrence of bacterial infection. We also discovered the significant
change in microbial composition in the group of patients with infectious complications compared
to the non-infectious group before and after cardiac surgery, despite the intra-individual variation
in composition of gut microbiome. Our study demonstrated that the group of patients that had a
bacterial infection in the early postoperative period already had an altered microbial composition
even before the surgery. Further studies will evaluate the clinical significance of the identified
proportions of individual taxa of the intestinal microbiota and consider the microbiota as a novel
target for reducing the risk of infectious complications.

Keywords: cardiovascular diseases; 16S RNA sequencing; microbiome; biomarkers; critically ill

1. Introduction

Infections are frequent complications of cardiac surgery [1]. Despite the success in
the development of surgical practices, this percentage does not decrease, and ranges from
12.6 to 21%. Among them, a significant portion is postoperative pneumonia and surgical
site infections [2–5]. Risk factors include age, chronic lung disease, heart failure, duration
of surgery, cardiopulmonary bypass, and others. The state of the microbiota is not taken
into the account, although it may be a therapeutic target [6]. Metabolism-dependent and
-independent processes are the link between the «gut–heart axis». On the one hand, the
gut microbiota acts as an endocrine organ producing bioactive metabolites, including
Trimethylamine/trimethylamine N-oxide (TMAO), short chain fatty acids and others.
On the other hand, impaired cardiac activity contributes to bowel wall edema, resulting
in bacterial translocation with the subsequent pro-inflammatory condition, which also
impaired heart function [7,8]. The growing scientific evidence supports the role of the gut
microbiota in the pathogenesis of heart failure [9–14]. However, only a very few studies
are devoted to the composition of the gut microbiota of elective surgery patients in the
intensive care unit [15].

Several studies of gut microbiota dynamics in ICU patients using 16S rRNA gene
sequencing indicate a rapid disruption of gut microbiota during ICU stay, and this is
associated with a loss of diversity and overgrowth of potentially pathogenic microorgan-
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isms [16–19]. The microbial disbalance in the gut may have a clinical relevance and can lead
to inflammation and infection [20], also playing a potential role in neurological deficits [21].

More common in cardiac surgery, research is aimed at clarifying and early detection of
compromised patients in order to provide customized management strategies that match
the patient’s molecular and biochemical profile. Along with traditional biomarkers, NT-
proBNP, hight-sensitive Troponine T, the use of novel biomarkers, such as microRNAs,
mitochondrial peptides, inflammatory cytokines and adhesion molecules are discussed [22].

The aim of the study was to identify the features of changes in the gut microbiota
and biomarkers in patients after cardiac surgery and to assess their relationship with
postoperative complications. We observed that, despite the large interindividual variability
of the microbial composition, the composition of the gut microbiota in patients with
infectious complications showed a consistent pattern with the relative predominance of
potentially pathogenic species.

2. Materials and Methods
2.1. Study Design

This prospective observational pilot study was performed in the N. Pirogov National
Medical Surgical Center, Moscow, Russian Federation. The local Ethics Committee ap-
proved the study (no. 04 22.05.2018), which was conducted in accordance with the ethical
standards of the Declaration of Helsinki. A formal consent for participation in this study
was also obtained from each patient or his/her legal representative.

2.2. Patients and Samples

All patients have received perioperative antibiotic prophylaxis: cefazolin 3 times
within 24 h for CABG or vancomycin 4 times within 48 h for valve surgery. The inclusion
criteria are as follows: age over 18 years old, planned surgical intervention, patients with the
following types of cardiac surgery—heart valve surgery, off-Pump CABG, CABG (Coronary
artery bypass grafting), combination surgery—and signed informed consent to participate
in the study. Exclusion criteria are as follows: active infectious endocarditis, emergency
surgery, previous bacterial infectious diseases in the last three months, antibiotic intake in
the last three months, inflammatory bowel disease, and patients refusing to participate in
the study.

All stool samples and venous blood samples were collected from each patient before
and after 1, 3 and 7 days of cardiac surgery. All samples before surgery were collected
prior starting antibiotic prophylaxis. Blood was collected from a venous catheter into an
anticoagulant-free test tube. Serum samples were obtained by centrifuging the blood at
1500× g for 10 min. Serum aliquots (500 µL) were poured into disposable Eppendorf tubes,
frozen and stored at −20 ◦C until further use. Stool samples were obtained by collecting a
small amount of feces as a rectal swab and dissolving it in 1 mL of sterile saline solution;
after thorough mixing, it was divided into two Eppendorf tubes and were frozen and
stored at −30 ◦C prior to analysis.

2.3. Analysis of Serum Biomarkers

Neurological (S100), inflammatory (IL6), cardio (NT-proBNP, hight-sensitive Tropo-
nine T (hs-TnT)), “stress” (ACTH, cortisol) and bacterial infection (procalcitonin (PCT))
biomarkers were measured in 200 µL serum samples using reagent kits on automated
electrochemiluminescence analyzer Cobas e411 (Roche; Basel, Switzerland). Biomarkers
of gut microbiota metabolic activity (Taurine, Trimethylamine N-oxide (TMAO)) were
measured using reagent kits by Cloud Clone, Katy, USA, on automated microplate pho-
tometer Multiscan (Thermo Scientific; Waltham, MA, USA) which relies on the linked
immunosorbent assay.
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2.4. Microbiome Sample Preparation

Defrozen fecal solution (200 mL) was placed in the 2.0 mL tube containing 3:1 mix of
0.1 mm and 0.5 mm pre-sterilized glass beads (Sigma, St. Louis, MO, USA). Then 1 mL of a
warm 60 ◦C lysis buffer (500 mM NaCl, 50 mM Tris-HCl, pH 8.0, 50 mM EDTA, 4% SDS)
was added. The mixture was vortexed and homogenized with MiniLys (Bertin Technologies
S.A.S., Montigny Le Bretonneux, France) for 3 min. The lysate was incubated at 70 ◦C for
15 min and centrifuged for 20 min at 14,000 rpm. The supernatant (1 mL) was transferred
to the sterile tube and put on the ice. The pellet was added to a 1 mL of lysis buffer and
the homogenization process was repeated. The supernatants were combined in the 15 mL
tubes with the addition of 4 mL of 96% ethanol and 200 µL of 3 M sodium acetate. The
mixture was incubated at −20 ◦C for not less than 1 h. Then the mixture was centrifuged for
15 min at 14,000 rpm at +4 ◦C, the supernatant was discarded, the DNA pellet was washed
twice with 80% ethanol. The pellet was dried at 53 ◦C for 30–60 min and resuspended in
200 µL of sterilized milliQ water. The mixture was centrifuged and transferred into new
tubes. Resulting DNA solution was treated with 10 µL of RNAse A (5 mg/mL) for 1 h at
37 ◦C, followed by an additional round of chloroform purification. Chloroform was added
to the solution in 1:1 ratio, tube was vortexed for 1 min and centrifuged at 5000× g for
5 min. Aqueous phase was transferred to new sterile tube and used for PCR dilutions. The
obtained DNA solution was stored at −20 ◦C. Amplicon sequencing of V4 variable region
of microbial 16S rRNA gene was performed on a MiSeq sequencer (Illumina, San Diego,
CA, USA) as described before [23].

2.5. Microbiome Data Processing

Raw microbiome data is available in the Sequence Read Archive (SRA) by the accession
number PRJNA688839. The reads were processed using the Knomics-Biota system [23,24]
(“16S dada2 Greengenes V4”) pipeline based on the DADA2 algorithm and Greengenes
database [25,26] as previously described [27]. In the pipeline, the Greengenes database was
preprocessed using TaxMan [27,28] based on the F515-R806 primers for V4 region of the
16S rRNA gene. The sequences were clustered with 97% identity using cd-hit software
version 4.8.1 [27–29]. The slash (“/”) character was used (example: (Blautia/Dorea)),
for ambiguous sequences, for which taxonomy could not be resolved based on the used
primers. When the sequence could not be resolved at a particular taxonomic rank, the “_u”
sign was used (referring to the term “unclassified”, example: “Lactobacillus_u”). There
were minor changes to the original Knomics-Biota pipeline: the Chao1 index calculated on
the level of ASVs (amplicon sequencing variants) after rarefaction to 3000 reads per sample
was used to assess the alpha diversity; the beta diversity was estimated using Euclidean
distance in Aitchison space [30,31].

2.6. Statistical Analysis

This statistical analysis of microbiome composition was done in R [32]. Only genera
that were presented by more than 10 counts in ≥50% of samples were included in the
analysis (in total 40 genera). The abundance table was obtained with cmultRepl function
from zCompositions library [33,34]. The Aitchison distance was used to estimate beta
diversity between samples. Comparison of general proportions in two groups of samples
was done in the following way: the independent balances containing 2 or 3 taxa were
obtained with DBA-distal method [33], the statistical significance of association between
these balances and infectious complications was assessed by linear regression analysis. The
Benjamini-Hochberg correction was used to adjust for multiple testing. The adonis function
from the vegan library was used for beta-diversity analysis [35]. Changes of microbiome
in time were treated separately for subjects with and without complications. Time points
were compared pairwise. For each pair of time points, all patients that provided samples
in these two days were included in the analysis; patients that did not provide a sample
in any of these timepoints were excluded. The analysis of taxa proportions and beta
diversity was performed in a similar way. It was done for comparison of samples collected
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before the surgery, with several changes: subject identifier was included as the “strata”
parameter in the adonis function, and as a random effect in a mixed effect model in balances
analysis (instead of the linear regression). The lmerTest library was used to fit mixed effect
models and estimate significance of its coefficients [36]. The analysis of association between
microbiome composition and blood parameters was performed with selbal [37] for the
samples collected before the surgery. Only associations that were repeated in at least 50% of
iteration of the cross-validation procedure are presented in the Results section. Association
of beta-diversity between samples with the difference in blood parameters was analyzed
with adonis.

3. Results
3.1. Patients Characteristics

The inclusion of patients and sample collections are shown in Figure 1. Of the 72 pa-
tients included in the study, complications developed in 12 cases. For further analysis of
the gut microbiota and biomarkers, a group of patients without infectious complications
was selected, comparable to infectious group.
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Figure 1. The study design. Of the 72 patients included in the study, complications developed in 12 cases. For comparison,
a group of patients without complications was selected, comparable in the number of patients, age, severity of surgery and
duration of the extracorporeal circulation.

Patients in both groups were comparable in terms of baseline, risks of surgery, age
and duration of the extracorporeal circulation (Table 1).

We revealed significant differences between infectious and non-infectious groups on
the SOFA scale and in lactate level on the first day after surgery, on the SOFA scale and
WBC—on the 3rd and 7th day after surgery.
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Table 1. Patients’ baseline characteristics.

Characteristic Infectious Group Non-Infectious Group p

Age 66 (63; 71) 65 (62; 68) 0.378

Ejection Fraction 58 (43; 64) 60 (50; 66) 0.630

EuroScore 2 1.2 (0.7; 1.6) 0.9(0.7; 1.27) 0.318

The total duration of the
extracorporeal circulation 90 (83; 107) 85 (66; 138) 0.630

1st day

WBC (at the end of the 1st day) 17.3 (14.3; 24.8) 14.6 (11.7; 16.3) 0.178

Lactate max, during the 1st day,
including EC 7.4 (3.5; 9.4) 4.5 (2.7; 5.9) 0.03

SOFA 6 (5; 9) 5 (2; 6) 0.03

3rd day

WBC (at the end of the 3rd day) 16.5 (13.3; 22.5) 10.5 (8.7; 13.8) 0.01

SOFA 8 (6; 10) 1 (1; 3) 0.0001

7th day

WBC (at the end of the 7st day) 11.9 (8.1; 16.3) 7.1 (5.9; 9.7) 0.01

SOFA 3 (1; 6) 0 (0; 0) 0.00001

Length of hospital stay, days 20 (15; 35) 13 (13; 14) 0.001

3.2. The Microbiota Composition

As a first step, we looked for microbiome predictors for the complications. The data
obtained by 16S rRNA gene sequencing is known to be compositional [38], which means
that ratios between taxa abundances, rather than themselves, should be explored. We
used the Aitchison distance to measure the beta-diversity, and the DBA-distal method
combined with linear regression analysis to find balances between groups of taxa that
differed between subjects with and without complications before the surgery. Analysis
of beta-diversity did not show significant difference in microbiome composition between
infectious and non-infectious groups (adonis, p = 0.295, Figure 2).

The groups differed in individual taxa proportions: the log-ratio of Staphylococcus
to Anaerococcus and Ruminococcus to [Eubacterium] (p = 0.038 for each ratio) and Shannon
index were higher in the infectious group (Figure 3) (p = 0.009, Welch test).

Beta-diversity analysis shows that for patients without infectious complications, sam-
ples (collected in the same time points) were not more similar than samples collected in
different time points (adonis, p = 0.188). For the subjects with complications, they were
more similar (p = 0.003). The post hoc pairwise comparison of time points showed that
the most significant changes were observed in the period after the surgery (between 3 and
7 days, p = 0.03125). Changes (beta-diversity) in case and control groups did not differ
significantly. The Shannon index did not change significantly in any of the groups.

Changes in individual taxa proportions are summarized in Table 2. All balances in
Table 2 increased with time. An increase in the balance may indicate (1) an increase in
the number of bacteria in the numerator, (2) a decrease in the number of bacteria in the
denominator, or (3) an increase in the number of bacteria in both the numerator and the
denominator, but much more in the numerator.
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Table 2. Significant changes in individual taxa proportions after the surgery. The preliminary balances list was obtained by
the discriminative balance analysis (DBA). The statistical significance of each balance change was tested by a linear mixed
effect model with subject identifier as a random effect. Benjamini-Hochberg method was used to adjust for multiple testing.

Day 1,
Balance (p. adj)

Day 3,
Balance (p. adj)

Day 7,
Balance (p. adj)

Infectious

Day 0 Prevotella/Actinomyces
(0.043)

Porphyromonas/Streptococcus (0.039)
u_Clostrideacea/Blautia (0.039)

Bacteroides/Faecalibacterium (0.039)
Corynebacterium/Peptococcus (0.039)

Parabacteroides/u_Lachnospiraceae (0.039)

u_Lachnospiraceae/[Eubacterium] (0.013)
Bacteroides/Ruminococcus (0.013)

Day 1 - - -

Day 3 - - -

Non-Infectious

Day 0 - u_Lachnospiraceae/Faecalibacterium (0.04)
Dorea/[Ruminococcus] (0.032)

Clostridium/Oscillospira (0.049)
Bacteroides/u_Mogibacteriaceae (0.049)

[Ruminococcus]/Dialister (0.049)

Day 1 -

Lactobacillus/u_[Mogibacteriaceae] (0.045)
Finegoldia/Peptoniphilus (0.045)

Porphyromonas/Campylobacter (0.045)
Faecalibacterium/Sutterella (0.009)

u_Clostridiaceae/Oscillospira (0.029)
Bacteroides/u_[Mogibacteriaceae] (0.04)

Collinsella/Dialister (0.029)
[Ruminococcus]/Sutterella (0.018)

Day 3 - - -

We also analyzed association of microbiome composition with biomarkers before the
surgery (Figure 4).
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collected day before the surgery. Reproducibility of balances and their components is measured
as the proportion of cross-validation iterations in which they were observed. The balances with
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Higher cortisol values were associated with increased log-ratio of Actinomyces to
Dialister, higher ACTH—with higher Campylobacter to ph2 log-ratio (genus from family
[Tissierellaceae]). Significant associations between Aitchison distance and blood parameters
were found for cortisol and TMAO (p = 0.044 for each of them).
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3.3. Biomarkers

The study carried out a comparative assessment of the level of some laboratory
markers between groups of patients with infectious complications and without infectious
complications (Table A1).

3.3.1. Pro-BNP, HS-Troponin T Levels

Cardiac function was assessed by measuring NT-proBNP and hs-TnT. ProBNP and hs-
TnT levels were higher in the group of patients with infectious complications compared to
the group without infectious complications, but statistically significant differences between
the two groups were found only for proBNP (p = 0.024). The pro-BNP level reached its
maximum values three days after surgery in both groups (Figure 5a,b).
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3.3.2. S100 Level

The degree of involvement in the pathological process of the central nervous system
was assessed by the level of S100 in plasma. The maximum values were found on day
1 after surgery and amounted to 0.149 µg/L, with a gradual decrease in the following
days (Figure 5c). The S100 level was higher in the infectious group. Clinical neurological
features were observed in only four patients and were manifested by short-term delirium.
There were no other signs of CNS damage. No association was found between delirium
and change in S100 level.

3.3.3. Interleukin—6 (IL), Procalcitonin (PCT) Level

As part of the assessment of the level of inflammation, PCT and IL-6 were investi-
gated. In the group of patients with infectious complications, PCT levels were statistically
significantly higher than in patients without infection (Figure 5d). The maximum values
were observed on day one after surgery and reached 6.5 ng/mL and 1.54 ng/mL, with a
further decrease to 1 ng/mL and 0.09 ng/mL in the infectious and non-infectious groups,
respectively. IL-6 levels were also higher in the infectious group, but with no statistical
difference (Figure 5e). The IL-6 level in both groups before surgery did not exceed the
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reference values (no more than 7 pg/mL). The IL-6 level in the non-infectious group did
not exceed 35 pg/mL and decreased to 13 pg/mL by the seventh day after surgery. The
level of IL-6 in the infectious group remained high, especially on the first and seventh days
after surgery, 81.8 pg/mL and 73.4 pg/mL, respectively.

3.3.4. Adrenocorticotropic Hormone (ACTH), Cortisol Level

Stress levels were studied by assessing Cortisol and ACTH levels. Values of Cortisol
exceeding the norm were found only in the group of patients with infectious complications
on the first day after surgery and amounted to 806.1 nmol/L. They were statistically
significantly different from the group of patients with non-infectious complication, median
value 197.3 nmol/L at the first day after surgery (Figure 6).
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ACTH levels were within the normal range in both groups. In the group with
infectious complications, the median values were lower than in the group with non-
infectious complications.

3.3.5. Taurine, TMAO Level

The level of intestinal metabolic activity was studied by assessing the levels of Taurine
and TMAO. The TMAO values were lower in the infectious group compared with the
non-infectious group (Appendix A. Table A1). The level of TMAO in the infectious group
decreased on the first and seventh days and reached a maximum on the third day. The
TMAO level in the non-infectious group tended to decrease by day three and slightly
increase by day seven (Figure 7). This dynamic is similar to the change in the level
of Proteobacteria.

We found a positive correlation between Proteobacteria and TMAO in the non-
infectious group (r = −0.38, p < 0.05), and a negative correlation between Firmicutes
and Proteobacteria in the infectious group (r = −0.46, p < 0.05). Taurine levels were not
statistically significant between two groups; however, the level of taurine in the group of
patients with infectious complications was higher compared to the non-infectious group.
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3.4. Clinical Cases with Microbiological Confirmation of Infection

The dynamics of the gut microbiota composition in groups of patients is shown in
Figure 8 and Appendix A. Figure A1. In five patients from the infectious group, micro-
biological confirmation was obtained with the identification of the pathogen. All these
patients needed prolonged treatment with several classes of antibiotics and its correction,
based on the obtained microbiological data.
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Patient 4 was admitted after CABG—early postoperative period without complications
and with early extubation. He was discharged from the ICU on the second day. However,
from the sixth day, leukocytosis, inflammation of the surgical wound (osteomyelitis) with
the growth of Enterobacter cloacae, was revealed. In this patient, noticeable overgrowth
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of Corynebacteriaceae (52%) and [Tissierellaceae] (36.7%) was detected at d3. Anaerobic
Gram-negative microorganisms predominated on day seven, belonging to the genera
Succinivibrio and Prevotella (11.5 and 11.3, respectively), most of which are pathogenic
species. The patient received successful antibiotic therapy and was then discharged home.

Patient 6 was admitted after CABG, extubated in the early hours. Acute postoperative
myocardial infarction was developed on the second day. The patient was intubated due
to pulmonary edema and unstable hemodynamics. From the third day, signs of lung
infection appeared: low P/F, Xray picture, leukocytosis, increased PCT, with the growth of
Staphylococcus aureus, Serratia marcescens and Candida albicans in BAL. In this patient, the
relative abundance of Corynebacteriaceae was 53% at d0 decreasing to 3% by day 3, while
at d3 the prevalence of [Tissierellaceae] (34%) and Enterobacteriaceae (19%) were detected.
Clinical improvement was observed after resolution of heart failure and initiation of
antibiotic therapy.

Patient 8 was admitted after CABG on pump and suffered an intraoperative my-
ocardial infarction and cardiogenic shock. The multiple organs failure progressed on the
second day. Clinical signs of systemic infection were detected as confirmed by positive
blood culture on day three with Enterococcus faecalis. The gut features are characterized
by a relatively high abundance of Lactobacillaceae (25%) at d0 up to 90% to d7. The patient
received massive antibiotic therapy and was transferred from the ICU in 12 days after
stabilization. Length of hospital stay was 21 days.

Patient 9 was admitted after mitral valve replacement. Signs of organ failure were
observed on the second day, which required prolonged mechanical ventilation. A pic-
ture of exacerbation of COPD, acute purulent bronchitis with the growth of Haemophilus
parainfluenzae biotype I, Paenibacillus lactis and Streptococcus salivarius in BAL at d3. This
patient, before and after surgery (d7), was prevalently closer to core of gut microbiota
genera, such as Lachnospiraceae, Ruminococcaceae, Bifidobacteriaceae, Bacteroidaceae. At the
same time, on the first day after the surgery, the number of Pasteurellaceae (including the
genus Haemophilus) in the gut was 96%. The relative abundance of this family decreased to
19.5% in d3, with an increase of Prevotellaceae (54%) and Staphylococcaceae (23%). On the
third day, antibacterial therapy was prescribed. Within seven days, the patient’s condition
stabilized, after which he was discharged from the ICU.

Patient 11 also had nosocomial pneumonia with the growth of Pseudomonas aerug-
inosa in BAL at d6. The patient was admitted after CABG + aortic valve replacement.
On the second day, multiple organ failure (kidneys, lungs, brain) was observed due to
postoperative heart failure. Lung infection joined at 4–5 days. In this patient, noticeable
overgrowth of [Tissierellaceae] (58%) and Corynebacteriaceae (14%) was detected at d0.
The relative abundance of [Tissierellaceae] decreased, 22%, 12% and 8% at d1, d3, d7,
respectively, with simultaneous growth of Enterobacteriaceae at d3 - 60% and 38% at d7.
The patient spent 21 days in the ICU. His condition stabilized, then he was discharged
from the hospital after 16 days.

4. Discussion

The high percentage of postoperative infectious complications in cardiac surgery
poses a problem for the search for new markers that allow to identify high-risk patients.
One of these markers may be the gut microbiota. In this prospective observational pilot
study, we observed that, despite the large interindividual variability of the microbial
composition, in patients with infectious complications, it characterized patterns with the
relative predominance of potentially pathogenic species.

One of the main findings of our study was that markers of infectious complications
can be found in the proportions of individual taxa of the gut microbiota prior to surgery,
in particular, by the log-ratio of the Staphylococcus to Anaerococcus and Ruminococcus to
[Eubacterium]. Among them, Staphylococcus is the genus of facultative anaerobic bacteria
which frequently colonizes the nares and skin in the healthy population, but in preop-
erative cardiac patients, carriage is associated with an elevated risk for post-operative
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surgical site infection and bacteremia [39,40]. Anaerococcus have the potential to metab-
olize peptones and amino acids and to produce short-chain fatty acids (SCFAs), such
as butyric acid, but can be associated with skin and soft tissue infections and chronic
wounds [41]. Ruminococcus and [Eubacterium] are usually the part of the resident microflora
and also produce SCFAs; in some case, they may be players in the development of in-
flammation and bloodstream infection [42,43]. The balance on 1st day in infectious group
is Prevotella/Actinomyces. Several members of [Eubacterium], Actinomyces, Prevotella, are
anaerobic flora of the oral cavity and are the cause of infections, including purulent bac-
terial pericarditis [44]. Moreover, coaggregation was found between Prevotella intermedia
strains and individual Actinomyces species via a protein or glycoprotein on the Prevotella
strain, which can interact with carbohydrates or carbohydrate-containing molecules on
the surface of the Actinomyces strain [45]. The predominance of representatives of the oral
microbiota as part of the gut microbiota in the infectious group is highlighted by additional
studies documenting the effect of patient participation in reducing the risk of postoperative
infection by adhering to preoperative oral hygiene regimens [46].

The Shannon Index was low in all patients, which was consistent with previously
obtained data on its level, correlating with the heart failure class [47]. Nevertheless, before
the surgery, the Shannon Index was higher in the group of infectious complications, but
after the surgery this value decreased. While in patients without infectious complications,
it increased. This phenomenon can be explained by an increase in the proportion of taxa
from the Proteobacteria phylum in the patients with infection (Appendix A. Figure A2).

A review of studies showed that changes in taxonomic composition in the infectious
group are consistent with earlier studies, where Streptococcus, Blautia, Peptococcus, Porphy-
romonas were associated with infective endocarditis, coronary heart disease, inflammation,
sepsis, complications after stroke (Supplementary Table S1).

Assessing the metabolic activity of the microbiota, we compared of the results the
study of taurine with the composition of the microbiota of patients using the 16S-sequencing
method. This suggests that higher values of taurine in the infectious group may be
associated with dysbiotic disorders, towards an increase in species metabolizing taurine,
such as Clostradiales [48]. It is known that taurine decomposes to hydrogen sulphide under
the influence of the intestinal microbiota. High concentrations of hydrogen sulfide can
suppress the activity of cytochrome oxidases [49] and, consequently, aerobic respiration,
one of the common factors of virulence of microorganisms [50]. Thus, taurine can be not
only a nutrient for microbes; it can also stimulate the antimicrobial defense of the body [51]
and have positive effects in cardiovascular diseases [52–54].

We found lower serum TMAO levels in patients with infectious complications com-
pared to the group of patients without infectious complications. Serum TMAO levels are
genetically determined and also depend on diet [55] and the composition of the intestinal
microbiota [56]. Recent studies have reported that several families of bacteria belonging to
the type Firmicutes and Proteobacteria are potential producers of TMA [57,58]. We compared
the dynamics of changes in TMAO levels with the levels of Proteobacteria and Firmicutes
in patients in both groups, using the ratio of Proteobacteria and Firmicutes. We found that
increasing the ratio of Proteobacteria and Firmicutes associated with elevated levels of TMAO
(Figure 7). Previous data indicate that this ratio was a predictor of adverse outcomes in
cardiovascular disease [59].

At the same time, biomarker identification to personalize therapy in clinics is more
common than microbiota research. Among them, markers of infectious, neurological
and cardiac complications are distinguished. Inflammatory biomarkers IL6, PCT, cortisol,
ACTH are not always specific for assessing the severity of the infectious process in cardiac
surgery patients. Cardiac surgery causes an increase in the PCT level even in the absence
of complications, and its level usually does not exceed 5 ng/mL [60,61]. At the same time,
in the infectious group, the average value of serum PCT on the first day after surgery
was 6.5 ng/mL, which is one of the reliable laboratory criteria for predicting the presence
of a bacterial infection. IL-6 levels were also higher in the infectious group, but not
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statistical different. IL-6 is rarely used in the clinical practice of cardiac surgery due
to its lower specificity than PCT [62]. ACTH levels were within the normal range in
both groups. There is a direct relationship between an increase in cortisol levels and an
increase in ACTH levels, which indicates a central regulation of the level of inflammation
despite the administration of exogenous glucocorticosteroids (dexamethasone 80 mg) in
high doses before surgery (Figure 6). Only four patients in this case had cortisol values
below 149 nmol/L, which may be a sign of adrenal insufficiency, but all four either had
no complications after surgery or had minimal complications that did not lengthen the
number of days of treatment. Remarkably, among biomarkers and individual taxa, only for
high cortisol values and ACTH were found significant association, with increased log-ratio
of Actinomyces to Dialister and with high Campylobacter to ph2 log-ratio (genus from family
[Tissierellaceae]), respectively.

Endogenous intoxication due to infection can worsen the function of the heart, which
can manifest itself both clinically and in a laboratory. In our study, we found higher NT-
proBNP values in patients with infectious complications. (Figure 5) NT-proBNP is used
in the diagnosis of heart failure. Its values always increase during the first few days after
open heart surgery with a further gradual decrease if there are no complications. Typically,
NT-proBNP values are higher in more severe patients receiving inotropic therapy. Another
promising biomarker to evaluate postoperative complication is high-sensitive Troponin
T levels, the release of which should be expected after all CABG procedures. It depends
on the procedure, the nature of the cardioplegia and many other factors. According to
the Fourth Universal Definition of Myocardial Infarction, CABG-related MI is arbitrarily
defined as elevation of troponin values more 10 times the 99th percentile upper-reference
limit in patients with normal baseline troponin values in combination with other objective
signs of myocardial ischemia [63]. The peak hs-TnT usually occurs within 24 to 48 h after
operation [64]. In this study, the level of troponin in the group of infectious complications
was significantly higher than in the group of patients without infections. This can be
explained by the fact that infectious complications developed more in those patients who
had primary cardiac complications in the intraoperative or early postoperative period:
myocardial infarction, myocardial injury, severe heart failure. Patients with primary cardiac
complications have a greater risk of bacterial infection [65]. However, our findings correlate
with data from the study that includes 1318 patients after CABG surgery, with a peak high-
sensitivity troponin T level, greater than 400 ng/L measured within 24 h associated with
a major adverse cardiac or cerebrovascular event, 30-day mortality, myocardial infection
and ICU stay >48 h [66]. Prospectively designed trials may provide further insight into the
prognostic value of high-sensitivity troponin T after cardiac surgery.

The S100 as an early marker for damage to the blood–brain barrier and neurons [67]
could be used for a risk stratification of cardiac surgical patients for cognitive dysfunc-
tion [68] and postoperative delirium [69]. We did not reveal an association between
delirium and S100 serum level; at the same time, this marker was higher in the infectious
group on the first day after surgery followed by a decline. Studies have shown that the
level of serum S100 protein in bacterial infection is significantly higher than that in vi-
ral infection [70,71], so it can also be used in combination with other markers to predict
infectious complications.

This study has several limitations: a relatively small sample size, due to the impossibil-
ity of obtaining stool samples; the widespread use of antibiotics in different combinations
in patients with infectious complications and intraoperative complications, which could sig-
nificantly affect the composition of the microbiota and biomarker levels; and the inclusion
multiple valve operations per study group. To exclude bias due to the inclusion of valvular
surgeries, we additionally conducted a comparative analysis of patients with valvular
surgeries and CABG with each other. Patient groups were similar in all parameters, except
for antibiotic prophylaxis and blood loss, but the volume of blood loss during CABG was
greater than during valvular procedures (1400 mL vs. 950 mL, respectively, p = 0.04). For
this reason, the addition of valve surgery in this case is not a significant factor influencing
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the outcome and the possibility to develop infection, despite the fact that some valve
operations are more difficult and time consuming. However, despite these limitations, our
project makes it possible to assess the contribution of the taxonomic composition of the
microbiota before and in the first days after surgery in dynamics.

5. Conclusions

The adaptation of treatment to the individual characteristics of each patient is the goal
of personalized medicine. Clinical signs are faster but are nonspecific tools for this. Specific
biomarkers are rapid and make it possible to identify groups of patients compromised
with various types of complications. The gut microbiota is a major contributor to the
pathophysiological process and may be a potential early biomarker. Predictably, patients
with cardiovascular diseases have pronounced imbalances in the taxonomic composition
of their gut microbiota. However, even before surgery, markers of subsequent infectious
complications can be identified.

Further research is needed to confirm the role of the gut microbiota in the pathogenesis
of development of infectious complications in surgical patients. Potentially, microbiota-
targeted therapies could significantly improve the effectiveness of cardiac surgery.
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Appendix A

Table A1. Levels of biomarkers in groups of patients with infectious complications and without infectious complications.
Data are presented as median and interquartile range (IQR).

Biomarkers
Patients (Median [IQR 25–75%])

Infectious Group Non-Infectious Group p-Level

ACTH, pg/mL 2.59 (1.26–8.7) 3.47 (1.4–7.3) 1

* Cortisol, nmol/L 473.2 (344.1–805.5) 384.25 (209.8–482.6) 0.037

IL-6, pg/mL 41.84 (7.7–83.03) 19.57 (7.04–37.7) 0.127

* PCT, ng/mL 0.924 (0.27–5.76) 0.183 (0.025–0.65) 0.002

* pro-BNP, pg/mL 1679 (674.25–4315.5) 908 (462.5–1378) 0.024

Troponin T-HS, pg/mL 279.4 (18.87–628.5) 126.9 (19.69–253) 0.369

S100, µg/L 0.084 (0.036–0.1375) 0.053 (0.031–0.136) 0.657

TMAO, pg/mL 9764 (1675–19,300) 15,848 (11,127–19,844) 0.052

Taurine, pg/mL 694 (379–769) 455 (325–720) 0.101

* Statistically significant differences.
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Simple Summary: In this study, we evaluated the microbiota in resected thymoma samples and
identified Sphingomonas and Phenylobacterium as the dominant genera in thymomas. This is the
first study that evaluated the microbiota in thymoma and that identified bacterial genera specific to
thymoma. Furthermore, our study indicates a potential approach for preventing the development of
thymoma as a new “precision medicine”.

Abstract: The microbiota has been reported to be closely associated with carcinogenesis and cancer
progression. However, its involvement in the pathology of thymoma remains unknown. In this
study, we aimed to identify thymoma-specific microbiota using resected thymoma samples. Nineteen
thymoma tissue samples were analyzed through polymerase chain reaction amplification and 16S
rRNA gene sequencing. The subjects were grouped according to histology, driver mutation status in
the GTF2I gene, PD-L1 status, and smoking habits. To identify the taxa composition of each sample,
the operational taxonomic units (OTUs) were classified on the effective tags with 97% identity. The
Shannon Index of the 97% identity OTUs was calculated to evaluate the alpha diversity. The linear
discriminant analysis effect size (LEfSe) method was used to compare the relative abundances of all
the bacterial taxa. We identified 107 OTUs in the tumor tissues, which were classified into 26 genera.
Sphingomonas and Phenylobacterium were identified as abundant genera in almost all the samples.
No significant difference was determined in the alpha diversity within these groups; however,
type A thymoma tended to exhibit a higher bacterial diversity than type B thymoma. Through
the LEfSe analysis, we identified the following differentially abundant taxa: Bacilli, Firmicutes,
and Lactobacillales in type A thymoma; Proteobacteria in type B thymoma; Gammaproteobacteria
in tumors harboring the GTF2I mutation; and Alphaproteobacteria in tumors without the GTF2I
mutation. In conclusion, Sphingomonas and Phenylobacterium were identified as dominant genera in
thymic epithelial tumors. These genera appear to comprise the thymoma-specific microbiota.

Keywords: thymoma; microbiome; 16S RNA sequencing; genera; driver mutation

1. Introduction

Early microbiome research focused primarily on gastrointestinal diseases, such as
pseudomembranous enterocolitis, inflammatory bowel disease, and irritable colitis [1].
Recently, the human intestinal microbiota has been reported to be involved in carcinogen-
esis and cancer progression, and this phenomenon has been attracting attention [2,3]. In
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addition, the microbiota has been identified in tissues of the pancreatic, lung, and breast
cancers through advanced sequencing technology [4–8].

Thymoma is a relatively rare mediastinal tumor with malignant potential that is
difficult to treat [9,10]. According to the histological classification by the World Health
Organization, thymomas can be categorized into types A, AB, B1, B2, and B3, depending
on the tumor cell morphology and proportion of coexisting lymphocytes [11]. Type A
thymomas are the least aggressive with the best prognosis; the extent of the aggressiveness
increases and the prognosis worsens according to the following order: type A, AB, B1,
B2, and B3 [12,13]. Thymoma has been reported to commonly occur in people aged
40–60 years [14]. The development of thymoma is not associated with smoking habits or
sex; its causes are unknown [15]. However, thymoma coexists in approximately 20% of
patients with myasthenia gravis [16,17]. Owing to the absence of an effective treatment
other than surgical resection, there is an urgent need to elucidate the pathology and
establish preventive measures and new treatment strategies for thymoma [18–21].

Although recent reports have indicated an association between the microbiome and
colorectal, oral, pancreatic, lung, and other cancers [22–27], there is no report on the
microbiome in thymoma. Unlike oral, gastrointestinal, and respiratory cancers, which have
been previously reported, thymoma is anatomically located in the anterior mediastinum,
and it does not communicate with the outer environment. Since the tumor environment
of thymoma has been theoretically assumed to be sterile, microbiome research has not
been conducted in the past. Consequently, little progress has been made in research on the
involvement of the microbiota in the pathology of thymoma.

In this study, we performed a polymerase chain reaction (PCR) to amplify the 16S
ribosomal RNA (rRNA) region in the bacterial genome in resected thymoma samples.
Subsequently, we performed 16S rRNA sequencing and metagenomic analyses using next-
generation sequencing to investigate the composition and diversity of the microbiota and
to identify thymoma-specific microbiota. On the basis of the results from these analyses, we
presented a predictive model of pathogenesis and evaluated its potential for the prevention
and control of the development of thymoma.

2. Results
2.1. Patient Characteristics

Nineteen consecutive patients with thymomas who underwent surgery at our hospital
between January 2014 and August 2020 were enrolled without bias. In three patients
with type AB thymomas, the type A and B portions were microdissected and examined
separately. Thus, in total, 22 tissue samples were analyzed for microbiota. The clinico-
pathologic characteristics of the patients are summarized in Table 1. The 19 patients were
divided into groups by the following characteristics: 11 males, 8 females; 12 smokers,
7 nonsmokers; histological type A (five), AB (three), B1 (five), B2 (four), or B3 (two); and
Masaoka stage I (seven), II (nine), III (two), or IV (one). The diameter of the tumor was
between 20 and 95 mm, with a mean tumor diameter of 43.6 ± 22.8 mm. Patients’ ages at
the time of surgery were between 42 and 81 years (68.2 ± 12.9 years). One patient with
type B2 thymoma (Case 20; Figure 1) had a comorbidity of myasthenia gravis.
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Table 1. Patient characteristics.

Parameter Number of Patients Overall Percentage

Total number 19
Age, median (range) 68 (42–81)

Sex
Male 11 57.9%

Female 8 42.1%
Histology

Type A 5 26.3%
Type AB 3 15.8%
Type B1 5 26.3%
Type B2 4 21.1%
Type B3 2 10.5%

Tumor size (cm)
≤3 7 36.8%

3 < size ≤ 5 8 42.1%
>5 4 21.1%

Masaoka Stage
I 7 36.8%
II 9 47.4%
III 2 10.5%
IV 1 5.3%

Smoking Status (Pack year)
0 7 36.8%

0 < PY ≤ 30 8 42.1%
>30 4 21.1%

Myasthenia gravis
present 1 5.3%
absent 18 94.7%

J. Pers. Med. 2021, 11, x FOR PEER REVIEW 3 of 13 
 

 

Histology    
Type A 5 26.3% 

 Type AB 3 15.8% 
 Type B1 5 26.3% 
 Type B2 4 21.1% 
 Type B3 2 10.5% 
Tumor size (cm)   

 ≤3 7 36.8% 
 3 < size ≤ 5 8 42.1% 
 >5 4 21.1% 

Masaoka Stage   
 I 7 36.8% 
 II 9 47.4% 
 III 2 10.5% 
 IV 1 5.3% 

Smoking Status (Pack year)   
 0 7 36.8% 
 0 < PY ≤ 30 8 42.1% 
 >30 4 21.1% 
Myasthenia gravis   
 present 1 5.3% 
 absent 18 94.7% 

 
Figure 1. Composition and abundance of the dominant genera in all the samples. In total, 26 genera were identified. The 
heatmap visualizes the abundance of the detected genera. PY (pack-year) 0 represents nonsmokers; PY1, smokers with >0 
to ≤30 packs/year history; and PY2, smokers with >30 packs/year history. 

2.2. OTU Analyses 
A total of 136 OTUs were identified in the 22 samples, while no OTU was found in 

the negative control samples (without any tissue). The dominant (>1% average relative 

Figure 1. Composition and abundance of the dominant genera in all the samples. In total, 26 genera were identified. The
heatmap visualizes the abundance of the detected genera. PY (pack-year) 0 represents nonsmokers; PY1, smokers with >0
to ≤30 packs/year history; and PY2, smokers with >30 packs/year history.

43



J. Pers. Med. 2021, 11, 1092

2.2. OTU Analyses

A total of 136 OTUs were identified in the 22 samples, while no OTU was found in
the negative control samples (without any tissue). The dominant (>1% average relative
abundance) classifiable OTUs belonged to four families: namely, Sphingomonadaceae
(abundance: 62.0 ± 12.2%), Caulobacteraceae (abundance: 23.9 ± 7.6%), Bradyrhizobiaceae
(abundance: 6.7% ± 5.3%), and Phyllobacteriaceae (abundance: 2.0% ± 1.4%) (Supplemen-
tary Materials Figure S1). We identified 107 genera (>1% average relative abundance); the
predominant genera are presented in Figure 1. The top two genera with a high abundance
and composition were Sphingomonas (abundance: 66.9± 10.8%) and Phenylobacterium (abun-
dance: 26.0 ± 8.7%). Sphingomonas was detected in all the samples, and Phenylobacterium
was detected in all the samples except in case 18. Both bacterial genera were significantly
more abundant than the others (Supplementary Materials Figure S2).

2.3. Differences in Microbiota between Thymomas and Pancreatic Cancers

To identify the thymoma-specific microbiota, we compared the microbiota between
thymoma and pancreatic cancer (Supplementary Materials Table S1). In the thymoma
samples, compared with the pancreatic cancer samples, Phenylobacterium, Phyllobacterium,
and Sphingomonas were significantly more abundant (Figure 2). Since Phenylobacterium,
Phyllobacterium, and Sphingomonas were detected only in four, three, and eight of the 30
pancreatic cancer samples, respectively, the composition of these genera in the 22 thymoma
samples (detected in 21, 18, and 22 samples, respectively) was significantly higher.

J. Pers. Med. 2021, 11, x FOR PEER REVIEW 4 of 13 
 

 

abundance) classifiable OTUs belonged to four families: namely, Sphingomonadaceae 
(abundance: 62.0 ± 12.2%), Caulobacteraceae (abundance: 23.9 ± 7.6%), Bradyrhizobiaceae 
(abundance: 6.7% ± 5.3%), and Phyllobacteriaceae (abundance: 2.0% ± 1.4%) (Supplemen-
tary Materials Figure S1). We identified 107 genera (>1% average relative abundance); the 
predominant genera are presented in Figure 1. The top two genera with a high abundance 
and composition were Sphingomonas (abundance: 66.9 ± 10.8%) and Phenylobacterium 
(abundance: 26.0 ± 8.7%). Sphingomonas was detected in all the samples, and Phenylobacte-
rium was detected in all the samples except in case 18. Both bacterial genera were signifi-
cantly more abundant than the others (Supplementary Materials Figure S2). 

2.3. Differences in Microbiota between Thymomas and Pancreatic Cancers 
To identify the thymoma-specific microbiota, we compared the microbiota between 

thymoma and pancreatic cancer (Supplementary Materials Table S1). In the thymoma 
samples, compared with the pancreatic cancer samples, Phenylobacterium, Phyllobacterium, 
and Sphingomonas were significantly more abundant (Figure 2). Since Phenylobacterium, 
Phyllobacterium, and Sphingomonas were detected only in four, three, and eight of the 30 
pancreatic cancer samples, respectively, the composition of these genera in the 22 thy-
moma samples (detected in 21, 18, and 22 samples, respectively) was significantly higher. 

 
Figure 2. Microbiome differences between thymoma and pancreatic cancer samples. * p < 0.05. 

2.4. Analysis of Microbial Diversity within Groups 
The Shannon Index was calculated to evaluate the bacterial diversity within the dif-

ferent groups. No significant differences were observed in terms of the histology, presence 
or absence of the GTF2I mutation, PD-L1 expression, and smoking habits (Figure 3). How-
ever, the type A samples exhibited a tendency toward increased microbiome diversity 
compared with the type B samples (p = 0.059, Figure 3A). 

Acinetobacter 0.176

Anoxybacillus 0.24

Bacillus 0.766

Bifidobacterium 0.476

Bradyrhizobium 0.628

Burkholderia ＜0.001*

Cloacibacterium 0.914

Corynebacterium 0.097

Enterococcus 0.277

Finegoldia 0.001

Gemella 0.001

Geobacillus 0.898

Haemophilus ＜0.001*

Thymoma Pancreas Ca

Methylobacterium 0.71

Phenylobacterium ＜0.001*

y ＜

Phyllobacterium ＜0.001*

y

Sphingomonas ＜0.001*

Staphylococcus ＜0.001*

p y

Streptococcus ＜0.001*
p

Tepidimonas 0.181

p

Thermicanus 0.995

M ean s in  T h ym om a vs Pan creas C arcin om a

0 0.25 0.50 0.75 1

Figure 2. Microbiome differences between thymoma and pancreatic cancer samples. * p < 0.05.

2.4. Analysis of Microbial Diversity within Groups

The Shannon Index was calculated to evaluate the bacterial diversity within the differ-
ent groups. No significant differences were observed in terms of the histology, presence or
absence of the GTF2I mutation, PD-L1 expression, and smoking habits (Figure 3). However,
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the type A samples exhibited a tendency toward increased microbiome diversity compared
with the type B samples (p = 0.059, Figure 3A).
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Figure 3. Taxonomic alpha diversity of thymoma microbiomes within samples in different groups.
(A) Comparison of the Shannon Index between type A and B histology groups. (B) Comparison
of the Shannon Index between tumors exhibiting the presence and those exhibiting an absence of
the GTF2I driver mutation. (C) Comparison of the Shannon Index between tumors exhibiting the
presence and those exhibiting an absence of PD-L1 expression on tumor cells. (D) Comparison of the
Shannon Index among nonsmokers, light smokers, and heavy smokers. No significant difference
was found among these groups.

2.5. Analysis of Differentially Abundant Taxa

To further identify the specific species in every group, we used the LEfSe method to
identify the differentially abundant taxa at each level. First, in the type A and B histological
groups, we identified four differential bacterial taxa, including two phyla, Firmicutes
and Proteobacteria; one class, Bacilli; and one order, Lactobacillales (Figure 4A). The dif-
ferential features were Firmicutes, Bacilli, and Lactobacillales in type A thymomas and
Proteobacteria in type B thymomas (Figure 4B). Alphaproteobacteria was dominant in
thymomas without the GTF2I mutation, while Gammaproteobacteria was dominant in
thymomas harboring the GTF2I mutation (Figure 4C,D). No differential bacterial compo-
sition and abundance were observed in association with the stage, PD-L1 expression, or
smoking habits.
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and B histology. Dominant taxa are indicated in red for the type A group and in green for the type B group. (B) Kruskal–
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and those exhibiting the absence of the GTF2I driver mutation. (D) Kruskal–Wallis test results for the relative abundance
between tumors exhibiting the presence and those exhibiting the absence of the GTF2I driver mutation. * p < 0.05.

3. Discussion

In this study, the sequencing of microbiota in resected thymoma samples identified
two genera, Sphingomonas and Phenylobacterium, in almost all the thymoma samples; the
bacterial composition and abundance of these genera were markedly high. We separately
analyzed type AB thymoma for type A and type B components and detected Sphingomonas
and Phenylobacterium in both components. Although the oral microbiome is likely to affect
and contaminate the lung microbiome, thymoma is anatomically unlikely to be affected
by the oral microbiome [28,29]. The composition and abundance of these two genera
were significantly higher in the microbiota of thymoma tissues than in the microbiota of
pancreatic cancer tissues. Our results suggest that these two genera are thymoma-specific
microbiota. In addition, we chose pancreatic cancer as control because the pancreatic
cancer and thymoma tissue samples were analyzed in the same process at the genome
analysis center of our hospital during the same period. There is also a factor common
to both the pancreatic cancer and thymoma: they do not communicate directly with
outer environment. This analysis suggested that the presence of the two genera was
not a result of contamination during the analysis process. In contrast, Sphingomonas and
Phenylobacterium have not been detected in lung cancer tissues according to recent reviews
on the microbiota in patients with lung cancer [4,30–32]. In this study, because these
two genera were detected in almost all the thymoma samples, it was suggested that
Sphingomonas and Phenylobacterium may represent differential microbiome functions in
thymoma development.

Sphingomonas is a bacterial genus that was subclassified from Pseudomonas approxi-
mately 30 years ago. Members of the former are Gram-negative bacteria; however, they
do not contain lipopolysaccharides specific to Gram-negative bacteria [33]. Instead, these
bacteria contain glycosphingolipids, which are found in eukaryotic cells [33]. They are com-
mon microorganisms inhabiting various environments, such as water environments (e.g.,
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freshwater and seawater), soil, and plant root systems. The wide ecological distribution
of these bacteria is attributed to their ability to use diverse organic compounds and their
strong vitality, allowing them to survive in nutrient-poor environments [34]. Although
several bacteria in the genus Sphingomonas were isolated in relatively clean environments,
certain bacterial species were isolated in contaminated environments containing toxic or-
ganic compounds, such as polychlorinated biphenyl, creosote, and pentachlorophenol [35].
Subsequent studies revealed that these bacteria take up certain organic contaminants and
use them as energy sources [36]. On the basis of these findings, progress has been made in
elucidating the mechanism through which Sphingomonas metabolizes organic contaminants.
Furthermore, several attempts have been made worldwide for applying this mechanism
in environmental cleanup (bioremediation). Meanwhile, with respect to the microbiome,
Sphingomonas has been reported to be enriched as blood microbiota in the serum of healthy
patients and patients with breast cancer who exhibit a favorable prognosis [37,38].

Species within the genus Phenylobacterium are capable of degrading xenobiotic com-
pounds with a phenyl moiety such as chloridazon, antipyrine, pyramidon, or their analogs [39].
Additionally, these bacteria can degrade polycyclic aromatic hydrocarbons [40]. Phenylobac-
terium has now been used in the bioremediation of a petroleum-contaminated soil to
degrade polycyclic aromatic hydrocarbons and their analogs [41]. Unlike Sphingomonas,
there has been no report of the detection of Phenylobacterium as blood microbiota. Fu-
ture studies are expected to elucidate how Sphingomonas and Phenylobacterium, which are
two genera of environmentally indigenous bacteria used for bioremediation, coexist in
thymoma and how they are involved in the carcinogenic mechanism of thymoma.

Several indigenous microorganisms exist in the epithelium of the whole human body
(e.g., the mouth, ear, nasal cavity, respiratory organs, digestive tract, skin, and reproductive
organs); form microbiota; play various roles in the body; and form a symbiotic relationship
with humans [1,2]. In recent years, it has been considered that disturbance in the microbiota
composition (dysbiosis) may alter the risk of disease development, and there is a growing
number of reports on the association between intestinal microbiota and several diseases,
such as allergy, cancer, multiple sclerosis, Parkinson’s disease, depression, inflammatory
bowel disease, and rheumatism [30]. Furthermore, sterilization and specific pathogen-free
breeding have been reported to alleviate or cure these diseases in pathological mouse
models [42]. Improvement of the microbiota may additionally prevent the development
of diseases in humans [43]. If one or several species of bacteria cause a disease, they can
be potential therapeutic targets. For example, the eradication of Helicobacter pylori is the
standard of care for the prevention of gastric cancer in infected patients at present [44].
This study indicates that the microbiota may be associated with thymoma. The clinical
application of this finding may pave the way for the prevention of thymoma through
controlling the growth of the bacterial genera Sphingomonas and Phenylobacterium. Patients
with myasthenia gravis are at a high risk of developing thymoma [16,17], and the preven-
tion of thymoma is important for their long-term survival. In this study, case 20 involved
a patient with thymoma complicated by myasthenia gravis (Figure 1); this patient was
positive for Sphingomonas and Phenylobacterium, which were abundant. The development
of probiotic models for antibiotics, vaccines, and other therapies targeting these genera
identified in this study may be important for the prevention of thymoma.

The bacterial diversity tends to be higher in type A thymoma (less aggressive type)
than in type B (more aggressive type). A study comparing the microbiota between tumor
and normal peritumoral tissues in lung cancer demonstrated that the bacterial diversity
was significantly higher in normal peritumoral tissues [6]. According to these data, cancer
aggressiveness and alpha diversity are negatively correlated. Since the cancer microen-
vironment is more perturbed, dysbiosis might be enhanced; consequently, the bacterial
diversity might decrease. In addition, because the lymphocyte counts in the tissues are
higher in type B thymoma than in type A thymoma, the immunity against these bacteria
may fundamentally differ between these types.

47



J. Pers. Med. 2021, 11, 1092

Using a LEfSe analysis, we identified variations in specific species between type
A and B tumors and between tumors with and without the GTF2I mutation, indicating
the differential microbiome functions in the development of each type of tumor [45].
We determined that Firmicutes, Bacilli, and Lactobacillales were common Gram-positive
bacteria in type A thymoma, and Proteobacteria were common Gram-negative bacteria in
type B thymoma. When the p-value based on the Kruskal–Wallis test was increased from
0.05 to 0.1 (Supplementary Materials Figure S3), 15 out of 20 bacteria that were significantly
detected in the microbiota of type A thymoma were Gram-positive bacteria, and all four
bacteria significantly detected in the microbiota of type B thymoma were Gram-negative
bacteria. Although these findings indicated a correlation between the histological types
(types A and B) and Gram-staining results for the microbiota, the biological significance of
this correlation is unknown. Since Gram-negative bacteria are generally more pathogenic
than Gram-positive bacteria, the former may be involved in carcinogenesis in type B
thymoma, which is the more aggressive phenotype. Additionally, it is unclear from our
observational study whether the identified bacterial differences are causally related to
carcinogenesis or merely reflective of the disease process in thymoma. It is also difficult to
practically prove how the microbiota colonized the thymoma tissue, which has no direct
communication with the outside. In the future, detailed studies with a larger sample size
may be needed.

We previously reported that the GTF2I mutation is a driver mutation in thymoma [46].
In the present study, specific species were identified between tumors with and without a
GTF2I mutation. While Alphaproteobacteria were detected in a significantly high number
of cases without the driver mutation in the GTF2I gene, a clear pathway involved in the
oncological development of thymoma without a driver mutation remains to be demon-
strated. Additionally, the mechanisms through which the microbiota in general contributes
to carcinogenesis need to be examined in detail using a large sample size in the future.

This study is associated with some limitations. First, the patient cohort was relatively
small owing to the rarity of the tumor. Second, patient survival could not be analyzed, as no
patients have shown recurrence in the cohort. Third, no blood samples were analyzed for
the microbiota containing the two genera, Sphingomonas and Phenylobacterium. An analysis
of blood samples might have elucidated the reasons for the presence of the microbiota in
the sterile anterior mediastinal environment [47]. In addition, the higher abundance of
Sphingomonas and Phenylobacterium may be related to the impaired immunity of the tumor
microenvironment, which may cause proliferation of these bacteria in the blood. Thus, they
may be clinically applicable as serum biomarkers for thymoma. Fourth, a control thymus
tissue should have been obtained to show that Sphingomonas and Phenylobacterium are
microbiota associated with cancer progression. However, normal thymic tissue is known
to rapidly atrophy and to be replaced with adipose tissue after puberty in the teens, and
thymoma is presumed to be derived from atrophied residual thymic tissue. Therefore,
even if a surgical specimen of adipose tissue in the anterior mediastinal of an age-matched
population was obtained, thymic tissue is usually not left behind and cannot be analyzed.
In addition, surgical specimens of the anterior mediastinal tissue of young individuals
are extremely difficult to obtain, and it is ethically problematic to collect the functional
thymic tissue of young individuals. Thus, it was not possible to compare microbiota
between thymoma and normal thymic tissue in this study. In this context, a larger series of
studies needs to be performed for evaluating the microbiome landscape of thymomas more
comprehensively and elucidate the associations with clinical parameters through a more
exhaustive multivariate analysis. Nevertheless, since the major aim of this preliminary
analysis was identification of the thymoma-specific microbiota that should be prioritized
for clinical development, the modestly sized samples provided useful insight.
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4. Methods
4.1. Patients and Sample Preparation

In this study, we enrolled 19 patients in an unbiased manner who underwent surgical
resection for thymoma at our hospital between January 2014 and August 2020. Since antibi-
otics would affect the microbiome, patients who had used oral or systematic antibiotics in
the past 3 months were not included in this study. We obtained written informed consent for
genetic research from all the patients in accordance with the protocols approved by the In-
stitutional Review Board at Yamanashi Central Hospital. The specimens were categorized
histologically according to the classification guidelines by the World Health Organiza-
tion [48,49] and staged according to the Masaoka Staging System [19,50,51]. Sections of
formalin-fixed and paraffin-embedded (FFPE) tissues were stained with hematoxylin–eosin
and microdissected using the ArcturusXT laser-capture microdissection system (Thermo
Fisher Scientific, Waltham, MA, USA), as previously reported [52–57]. For type AB thymo-
mas, the type A and B portions were microdissected and examined separately. A thymoma
is an encapsulated tumor, and the tumor tissue and surrounding fat are clearly separated
by a fibrous capsule. In this study, DNA was extracted from the tumor tissue of the FFPE
specimen of thymoma with laser-capture microdissection, so contamination of the adipose
tissue around the tumor was unlikely.

We analyzed 22 samples obtained from all 19 patients, including three patients with
type AB thymomas. The GeneRead DNA FFPE Kit (Qiagen, Hilden, Germany) was used
according to the manufacturer’s instructions, and the DNA quality was evaluated using
primers against ribonuclease P, as previously reported [58]. In the same manner, tumor
DNA was extracted from FFPE samples obtained from patients with pancreatic cancer
in our hospital (n = 30) and used as a control. As the preliminary experiment, PCR
amplification of the 16S rDNA V4 region was attempted using distilled water, and a DNA
elution buffer was used in the experiment for the samples, but DNA amplification was not
obtained (below the detection sensitivity).

4.2. 16S rRNA Amplification and Targeted Sequencing

Although there is no hypervariable region of the 16S gene that allows an accurate
classification of all bacterial strains at the domain to the species level, there is a known
region that allows the near-perfect prediction at a specific taxonomic level [59]. In many
studies on microbiome analyses, a commonly selected region is the V4 hypervariable
region that allows a strain analysis at the phylum level with accuracy similar to that of the
analysis of the complete 16S rRNA gene. The 16S rDNA V4 region was amplified using
PCR and sequenced as described previously with minor modifications [7]. FFPE DNA was
amplified using Platinum PCR SuperMix High Fidelity (Thermo Fisher Scientific) with the
forward primer 5′-GTGYCAGCMGCCGCGGTAA-3′ (16S_rRNA_V4_515F) and reverse
primer 5′-GGACTACNVGGGTWTCTAAT-3′ (16S_rRNA_V4_806R). The PCR products
were confirmed using agarose gel electrophoresis and purified using Agencourt AMPure
XP reagents (Beckman Coulter, Brea, CA, USA). End repair and barcode adaptors were
ligated with the Ion Plus Fragment Library Kit (Thermo Fisher Scientific), in accordance
with the manufacturer’s instructions, to construct the libraries. The library concentration
was determined using an Ion Library Quantitation Kit (Thermo Fisher Scientific), and
the same number of libraries was pooled for one sequence. Emulsion PCR and chip
loading was performed on Ion Chef with the Ion PGM Hi-Q View Chef Kit; sequencing
was performed on an Ion PGM Sequencer (Thermo Fisher Scientific). Sequence data were
transferred to the IonReporter local server using the IonReporterUploader plugin. The
coverage of the sequencing was 329.2 (Supplementary Table S2). Data was analyzed
using the Metagenomics Research application using a custom primer set. The analytical
parameters were set as the default. The control paraffin block without any tissue was
processed similarly.
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4.3. Data Analysis

The original raw tags were obtained through splicing the reads using FLASH (v
1.2.7) and subsequently filtered to acquire clean tags using QIIME (Version 1.9.1). To
identify the taxa composition of each sample, the operational taxonomic units (OTUs) were
classified on the effective tags with 97% identity using Usearch (Uparse v 7.0.1001) software.
The presentative sequence of each OTU was annotated using the RDP classifier against
the SILVA (SSU123)16S rRNA database using a confidence threshold of 80%, obtaining
taxonomic classification at the phylum, class, order, family, genus, and species levels.
Multiple sequence alignment was performed using MUSCLE3.6 (Version 3.8.31) to further
explore the phylogenetic relationships among the different OTUs. The Shannon Index was
performed using QIIME to determine the alpha diversity. Linear discriminant analysis
(LDA) effect size (LEfSe) analyses were performed using the online LEfSe tool (http:
//huttenhower.sph.harvard.edu/lefse/ (accessed on 12 October 2020)). The LDA (linear
discriminant analysis) threshold score was set at 2.

4.4. Targeted Deep Sequencing of GTF2I Mutation

In this study, the presence of a point mutation in the GTF2I gene was investigated in
thymomas using targeted sequencing coupled with molecular barcoding, as we previously
reported [47].

4.5. Immunohistochemistry for PD-L1

Specimens from the 19 patients were fixed using 10% buffered formalin. The formalin-
fixed paraffin-embedded tissues were cut into 5-µm sections, deparaffinized, rehydrated,
and stained in an automated system (Ventana Benchmark ULTRA system; Roche, Tuc-
son, AZ, USA) using commercially available detection kits and antibodies against PD-L1
(28–8, ab205921; Abcam, Cambridge, MA, USA). PD-L1 was primarily localized to the
cell membranes of the tumor cells, and its expression was determined quantitatively by
two pathologists on the basis of the proportion of PD-L1-positive tumor cells. Cells were
considered PD-L1-positive based on ≥1% PD-L1 expression.

4.6. Statistics

Continuous variables were presented as the mean ± standard deviation (SD) and
compared using unpaired Student’s t-tests. One-way analysis of variance and the Tukey–
Kramer multiple comparison test were used to detect significant differences between
groups. p-values less than 0.05 in the two-tailed analyses were considered to denote
statistical significance.

5. Conclusions

This is the first study that examined the microbiota in thymomas and revealed two
genera specific to thymomas: Sphingomonas and Phenylobacterium.
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Abstract: A recent meta-analysis found that probiotics have moderate-to-large beneficial effects on
depressive symptoms in patients with psychiatric disorders. However, it remains unclear how the
baseline gut microbiota before probiotic administration influences the host’s response to probiotics.
Therefore, we aimed to determine whether the predicted functional profile of the gut microbiota in-
fluences the effectiveness of probiotic treatment in patients with schizophrenia. A total of 29 patients
with schizophrenia consumed Bifidobacterium breve A-1 (synonym B. breve MCC1274) for 4 weeks. We
considered patients who showed a 25% or more reduction in the Hospital Anxiety and Depression
Scale total score at 4 weeks from baseline to be “responders” and those who did not to be “non-
responders”. We predicted the gut microbial functional genes based on 16S rRNA gene sequences
and applied the linear discriminant analysis effect size method to determine the gut microbial
functional genes most likely to explain the differences between responders and non-responders at
baseline. The results showed that lipid and energy metabolism was elevated at baseline in responders
(n = 12) compared to non-responders (n = 17). These findings highlight the importance of assessing
the gut microbial functional genes at baseline before probiotic therapy initiation in patients with
psychiatric disorders.

Keywords: gut microbiota; schizophrenia; depression; anxiety; probiotics; functional genes

1. Introduction

The close relationship between the gut and the brain, termed the gut–brain axis, is
supported by numerous basic and clinical studies showing that the gut microbiota influ-
ences the host’s mental state [1]. Probiotics, defined as “live microorganisms which when
administered in adequate amounts confer a health benefit on the host”, have been attracting
attention as a novel treatment for mental disorders. Probiotics such as Bifidobacterium and
Lactobacillus were determined in a recent meta-analysis to have mild beneficial effects on
depressive symptoms in patients with mental disorders [2]. In line with the results of this
meta-analysis, we also reported the beneficial effects of Bifidobacterium breve A-1 on anxiety
and depressive symptoms in patients with schizophrenia [3].

While probiotics are attracting attention, some researchers have focused on the influ-
ence of the gut microbiota on the host response to pharmacotherapy [4]. For example, the
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efficacy of immune checkpoint inhibitors for cancer depends on the patient’s gut micro-
biota [5]. Their anticancer effects are related to the relative abundance of Bifidobacterium,
acting via augmented immune activity [6] and the amounts of metabolites produced by
gut microbiota [7]. However, to our knowledge, it remains unclear how the baseline gut
microbiota before probiotic administration influences the host’s response to probiotic ther-
apy. In this context, using data from our previous interventional study [3], we sought
to determine which predicted functional profiles of the gut microbiota at baseline are
associated with improvement of anxiety and depressive symptoms. This functional gene
profiling approach allowed us to clarify the function of the gut microbiota as a whole.

2. Materials and Methods
2.1. Study Design and Procedure

Our previous interventional study was conducted from November 2017 to May
2018 [3]. We recruited participants among consecutive outpatients with schizophrenia
based on the following inclusion and exclusion criteria. The inclusion criteria were as
follows: outpatients, aged 20 years or older, not hospitalized for at least 6 months since last
discharge, and anxiety and depressive symptoms rated by doctors as ≥10 points on the
Brief Psychiatric Rating Scale anxiety and depressive subscale (items 1, 2, 5 and 9).

The exclusion criteria were as follows: uncontrolled disease or untreatable malignancy;
cognitive impairment or disorientation; severe suicidal ideation or symptoms requiring
urgent treatment; desire to take medication for anxiety or depressive symptoms; antidepres-
sant medication in the past month; daily consumption of foods or supplements containing
Bifidobacterium; heavy alcohol consumption (>500 mL of beer/day); psychiatric disorders
other than schizophrenia, mood disorders, or anxiety disorders; any other conditions
deemed inappropriate by the physician in charge.

For the first 4 weeks, the participants consumed two 2-g sachets of freeze-dried
Bifidobacterium breve A-1 (synonym B. breve MCC1274) per day, each containing 5.0 × 1010

colony-forming units. Fecal samples were collected from each patient prior to probiotic
administration, and subjective anxiety and depressive symptoms were assessed using
the self-administered Hospital Anxiety and Depression Scale (HADS) [8] every 4 weeks.
Participants showing a 25% or more reduction in the HADS total score at 4 weeks from
baseline were regarded as displaying a clinical response. Participants showing a clinical
response were defined as “responders” and those not showing a response were defined as
“non-responders”.

2.2. Bacterial DNA Extraction and Sequencing

Fecal bacterial DNA was extracted and purified as described previously [9]. We then
amplified the V3–V4 region of bacterial 16S rRNA and sequenced it using the Illumina MiSeq
platform (Illumina, San Diego, CA, USA) according to a previously described method [10].

2.3. Bioinformatics and Statistical Analysis

From trimming of the paired-end read FASTQ files obtained by 16S rRNA amplicon
sequencing to analysis of gut microbiota diversity, all steps were carried out using QIIME 2.
First, we demultiplexed the raw sequence results and used the Deblur algorithm to identify
microbial operational taxonomic units (OTUs). The output feature table was diluted to
9000 sequences per sample. We then taxonomically classified the OTUs into 5 taxonomic
rank categories—phylum, order, class, family, and genus—by using the SILVA 132 reference
database at 99% similarity.

Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 2
(PICRUSt2) was used to predict the gut microbial functional genes based on the 16S rRNA
gene sequences with default settings. We then applied the linear discriminant analysis
effect size (LEfSe) method with default settings to determine the gut microbial functional
genes most likely to explain the differences between responders and non-responders at
baseline. All statistical analyses were performed using R version 4.0.3 (R Core Team,
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Vienna, Austria) [11], the ggplot2 [12] and the dplyr [13] packages. p-values less than 0.05
were considered statistically significant.

3. Results
3.1. Characteristics of the Study Participants

There were 12 responders and 17 non-responders. All were prescribed anti-psychotic
medication, and none had their antipsychotic dosage changed during the study period.
In addition, none of the participants used antibiotics, took diets or supplements contain-
ing Bifidobacterium, or consumed a high amount of alcohol during the study period. The
median age of the responders was 46 years (interquartile range, 16 years) and that of the
non-responders was 41 years (interquartile range, 16 years). There were no significant
differences in age between the groups (p = 0.49). There were 8 women (66.7%) among
the 12 responders and 9 women (52.9%) among the 17 non-responders (p = 0.290; data not
shown). The proportion of the responders and the non-responders with comorbidity of
physical disease was 41.7% and 29.4%, respectively (p = 0.490; data not shown). Further-
more, the mean (standard deviation (SD)) of the body mass index (BMI) of the responders
and the non-responders was 26.5 (6.4) and 23.6 (5.1), respectively (p = 0.240; data not
shown). Finally, the proportion of smokers among the responders and the non-responders
was 41.7% and 35.3%, respectively (p = 0.730; data not shown).

3.2. Functional Gene Compositions of the Gut Microbiota at Baseline

The gut microbial functional genes whose relative abundances were significantly dif-
ferent between responders and non-responders at baseline in LEfSe analysis are shown in
Figure 1. Compared with non-responders, responders showed higher relative abundances
of 5 functional genes included in the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway “Metabolism” (Energy metabolism, glycosyltransferases, lipid metabolism, retinol
metabolism, and penicillin and cephalosporin biosynthesis), one in “Genetic Informa-
tion Processing” (Protein processing in endoplasmic reticulum), and one in “Organis-
mal Systems” (Insulin signaling pathway) (Figure 1A,B). In contrast, non-responders
showed higher relative abundances of 2 functional genes included in the KEGG pathway
“Metabolism” (Nucleotide metabolism and glycerophospholipid metabolism) and 2 in
“Genetic Information Processing” (RNA transport and base excision repair) (Figure 1). In
addition, as shown in Figure 2, we compared 14 functional genes at the same level (KEGG
pathway Level 2) included in “Metabolism”. The relative abundances of the functional
genes related to energy metabolism and lipid metabolism were higher in responders than
in non-responders. In contrast, the relative abundances of the functional genes related to
nucleotide metabolism were higher in non-responders than in responders.
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4. Discussion

This is the first study examining the impact of the predicted functional profile of the
gut microbiota at baseline on the therapeutic effects of probiotics using an interventional
study in patients with mental disorder. Our results suggest that an elevated lipid and
energy metabolism at baseline might be associated with the effects of probiotics on anxiety
and depressive symptoms. As one potential mechanism, the end-products of lipid and
energy metabolism by the gut microbiota may contribute to the maintenance of a healthy
gut environment and influence anxiety and depressive symptoms associated with systemic
inflammation in the host. These findings highlight the importance of assessing functional
genes in the gut microbiota at baseline before probiotic therapy initiation for patients with
mental disorders.
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Among 11 bacterial functional genes found to have significantly different levels be-
tween responders and non-responders, “Lipid metabolism” and “Energy metabolism”
are known to affect host metabolism and immune activity through their metabolites [14].
On the other hand, the other 9 bacterial functional genes play unknown roles in host
metabolism and immune activity or are known to be housekeeping genes that are essential
for maintaining functions in bacteria according to the KEGG. For example, glycerophos-
pholipids are a major component of the bilayer envelope of Gram-negative bacteria and
glycosyltransferases are involved in the biosynthesis of bacterial cell walls [15]. “Protein
processing in endoplasmic reticulum” refers to the processing pathway in which proteins
are glycosylated and folded in the endoplasmic reticulum within the bacteria, whereas
“Insulin signaling pathway” is also involved in the insulin signaling pathway within bac-
teria. “RNA transport” is the pathway responsible for RNA transport from the bacterial
nucleus to the cytoplasm, and “Base excision repair” is the major DNA damage repair
pathway for processing small base lesions produced by oxidative and alkylation damage.
These pathways are thus important for the maintenance of bacterial, not host, function.
Therefore, of the pathways whose expression levels differed between the two groups in this
study, all but Energy and Lipid metabolism are unlikely to be related to host homeostasis.
Further in vitro and in vivo studies are needed to determine how these functional genes
that play unknown roles in host metabolism and immune activity or that are known to be
housekeeping genes influence the therapeutic response to probiotics.

The relative abundances of the functional pathways of “Lipid metabolism” and “En-
ergy metabolism” of the gut microbiota at baseline were significantly higher in responders
than in non-responders. These results might imply that the effects of B. breve A-1 on anxiety
and depressive symptoms require sufficient lipid and energy metabolic function of the gut
microbiota at baseline, although additional animal experiments and detailed mechanistic
analysis are needed. The lipid and energy metabolic function of the gut microbiota has
been linked to its ability to produce short-chain fatty acids (SCFAs). Gut bacteria consume
and metabolize indigestible foods such as dietary fiber and mainly synthesize SCFAs as
the final metabolites [16]. Gut bacteria also produce gases (CO2, CH4, H2) and heat, but
the gross energy of SCFAs is considerably higher than that of gases and heat [17]. High
production of SCFAs prevents host obesity and maintains a healthy gut environment,
which could affect anxiety-depression symptoms related to systemic inflammation in the
host. SCFAs are sensed by G protein-coupled receptors expressed in adipose tissue as
an indicator of energy status, preventing excessive fat deposition in adipose tissue and
promoting fat utilization in other tissues [18]. SCFAs have are also a major energy source
for intestinal epithelial cells and to play a key role in inhibiting the growth of bad bacteria
and promoting the establishment of good bacteria by lowering intestinal pH [16].

Interestingly, Bifidobacterium has been reported to influence the metabolism of lipids
with anti-inflammatory properties, such as SCFAs and polyunsaturated fatty acids (PU-
FAs). Administration of Bifidobacterium increases the production of the SCFA butyrate
by altering the relative abundance of other microbiota involved in lipid metabolism [19].
Elevated butyrate in the gut has been reported to activate regulatory T cells and thereby
reduce the host’s systemic inflammation [20]. Furthermore, a higher relative abundance of
Bifidobacterium is associated with higher levels of the PUFA docosahexaenoic acid, which
is known to have anti-inflammatory properties [21]. Taken together, our results and
those of these studies suggest that lipid metabolism could play an important role in
the anti-inflammatory effects underlying the impact of Bifidobacterium on anxiety and
depressive symptoms.

Evaluation and modification of the bacterial species and functional gene composition
of the microbiota prior to therapy initiation may become an essential step in clinical practice
to achieve maximum therapeutic efficacy. Indeed, technology for modifying the microbiota
using the CRISPR-Cas system has already been established [22], and the application of
this technology to clinical practice will be one of the cornerstones in the development of
personalized medicine. In the field of psychiatry, where the response to treatment varies
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greatly from patient to patient, there are growing expectations for the evaluation of gut
microbiota before therapeutic interventions and its modification.

We acknowledge that this study is subject to several important limitations. First, the
functional gene analysis was performed not with shotgun metagenomic sequences, but
with 16S rRNA gene sequences. One of the limitations of PICRUSt2 is that it predicts genes
at the genomic level, not the transcriptional level. Therefore, what PICRUSt2 builds is not a
profile of predicted functional activity, but rather a “potential” for predicted function, which
needs to be interpreted with care. However, PICRUSt2, which we used to predict functional
genes in the microbiota, can rigorously predict the abundance of pathways present based on
a huge database of reference genomes and gene families, and the accuracy of metagenomic
inference is sufficiently high [23]. Second, we did not conduct a detailed analysis of the
differences in lipid and energy in particular. In the future, we would like to use metabolome
analysis to measure SCFAs and lipid levels in the intestine gut and further investigate the
role of SCFAs and lipid metabolism in the effects of probiotics. Third, it is unclear whether
the present results can be extrapolated to depressive symptoms in patients with depression
or to psychological distress in individuals without mental disorders because the study was
focused on anxiety and depression in patients with schizophrenia. However, studies of gut
bacteria in mental disorders have reported differences by symptom domain, regardless of
differences by disease [24]. There may be a cross-disease relationship between gut bacteria
and anxiety and depression, and further studies focusing on this aspect are needed.

5. Conclusions

In conclusion, our results indicate that elevated lipid and energy metabolism at
baseline might be associated with the effects of probiotic treatment with B. breve A-1 on
anxiety and depressive symptoms. The effect of probiotics on anxiety and depressive
symptoms may require sufficient metabolic function of the gut microbiota at baseline.
These findings highlight the importance of assessing functional genes in the gut microbiota
at baseline before the initiation of probiotic therapy in patients with mental disorders.
We believe that clinical application of the results of this study will lead to the realization
of personalized medicine that maximizes the therapeutic effect on patients with mental
disorders through gut microbiota analysis in the future.

Author Contributions: R.O., N.K., N.H., I.K., J.X. and Y.J.M. significantly contributed to making
the protocol of this study. N.K., T.O. and J.X., who are the employee of Morinaga Milk Industry
Co., Ltd., provided the test samples (Bifidobacterium breve A-1) and conducted analyses of the gut
microbiome. R.O., N.H. and I.K. significantly contributed to the data collection. R.O. and R.Y.
significantly contributed to the interpretation of our data and writing the manuscript. All authors
have read and agreed to the published version of the manuscript.

Funding: Morinaga Milk Industry Co., Ltd. provided the test samples (Bifidobacterium breve A-1) and
conducted analyses of the gut microbiome. A Japan Society for the Promotion of Science KAKENHI
Grant-in-Aid for Young Scientists (Grant No. 19K20171), which Okubo has received, was used for
manuscript writing and editing. Kusumi has received honoraria from Daiichi Sankyo, Dainippon
Sumitomo Pharma, Eisai, Eli Lilly, Janssen Pharmaceutical, Lundbeck, Meiji Seika Pharma, Mochida
Pharmaceutical, MSD, Mylan, Novartis Pharma, Ono Pharmaceutical, Otsuka Pharmaceutical, Pfizer,
Shionogi, Shire, Taisho Toyama Pharmaceutical, Takeda Pharmaceutical, Tsumura, and Yoshito-
miyakuhin outside the submitted work, and has received research/grant support from Asahi Kasei
Pharma, Astellas, Daiichi Sankyo, Dainippon Sumitomo Pharma, Eisai, Eli Lilly, Mochida Pharmaceu-
tical, Novartis Pharma, Otsuka Pharmaceutical, Pfizer, Shionogi, Takeda Pharmaceutical and Tanabe
Mitsubishi Pharma outside the submitted work. Hashimoto received personal fees from Janssen
Pharmaceutical, Yoshitomiyakuhin, Otsuka Pharmaceutical, Dainippon Sumitomo Pharma, Novartis
Pharma, and Meiji Seika Pharma, outside the submitted work. Matsuoka has received speaker fees
from Suntory Wellness, Pfizer, Mochida, Eli Lilly, Morinaga Milk outside the submitted work, and
Cimic and is conducting collaborative research with SUSMED outside the submitted work.

Institutional Review Board Statement: The study was conducted according to the Declaration of
Helsinki and approved by the Ethics Committee of Hokkaido University Hospital.

60



J. Pers. Med. 2021, 11, 987

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: This study was registered in the University Hospital Medical Information
Network Clinical Trials Registry (A study examining the effect of consuming foods containing probiotics
on anxiety and depressive symptoms: a non-randomized and open trial, https://upload.umin.ac.jp/
cgi-open-bin/ctr/ctr_view.cgi?recptno=R000029257 (accessed 29 September 2021), UMIN000025417).

Acknowledgments: We thank Asami Wada for managing the data collection schedule, and Koki Ito,
Yuki Kako, Rie Kameyama, and Kuniyoshi Toyoshima for data collection.

Conflicts of Interest: Yamamura has nothing to disclose. Okubo reports grants from A Japan
Society for the Promotion of Science, during the conduct of the study. Katsumata and Odamaki
has nothing to disclose and are employees of Morinaga Milk Industry Co., Ltd. Hashimoto reports
personal fees from Janssen Pharmaceutical, personal fees from Yoshitomiyakuhin, personal fees
from Otsuka Pharmaceutical, personal fees from Dainippon Sumitomo Pharma, personal fees from
Novartis Pharma, personal fees from Meiji Seika Pharma, outside the submitted work. Kusumi
reports personal fees from Janssen Pharmaceutical, personal fees from Yoshitomiyakuhin, personal
fees from Otsuka Pharmaceutical, personal fees from Dainippon Sumitomo Pharma, personal fees
from Novartis Pharma, personal fees from Meiji Seika Pharma, personal fees from Daiichi Sankyo,
personal fees from Eisai, personal fees from Eli Lilly, personal fees from Lundbeck, personal fees
from Mochida Pharmaceutical, personal fees from MSD, personal fees from Mylan, personal fees
from Ono Pharmaceutical, personal fees from Pfizer, personal fees from Shionogi, personal fees from
Shire, personal fees from Taisho Toyama Pharmaceutical, personal fees from Takeda Pharmaceutical,
personal fees from Tsumura, grants from Asahi Kasei Pharma, grants from Astellas, grants from
Daiichi Sankyo, grants from Dainippon Sumitomo Pharma, grants from Eisai, grants from Eli
Lilly, grants from Mochida Pharmaceutica, grants from Novartis Pharma, grants from Otsuka
Pharmaceutical, grants from Pfizer, grants from Shionogi, grants from Takeda Pharmaceutical, grants
from Tanabe Mitsubishi Pharma, outside the submitted work. Xiao has nothing to disclose and is
an employee of Morinaga Milk Industry Co., Ltd. Matsuoka reports personal fees from Suntory
Wellness, personal fees from Pfizer, personal fees from Mochida, personal fees from Eli Lilly, personal
fees from Morinaga Milk, personal fees from Cimic, other from SUSMED, outside the submitted
work. The funders had no role in the design of the study; in the collection, analyses, or interpreting
of data; in the writing of the manuscript, or in the decision to publish the results.

References
1. Carabotti, M.; Scirocco, A.; Maselli, M.A.; Severi, C. The gut-brain axis: Interactions between enteric microbiota, central and

enteric nervous systems. Ann. Gastroenterol. 2015, 28, 203–209. [PubMed]
2. Liu, R.T.; Walsh, R.F.L.; Sheehan, A.E. Prebiotics and probiotics for depression and anxiety: A systematic review and meta-analysis

of controlled clinical trials. Neurosci. Biobehav. Rev. 2019, 102, 13–23. [CrossRef] [PubMed]
3. Okubo, R.; Koga, M.; Katsumata, N.; Odamaki, T.; Matsuyama, S.; Oka, M.; Narita, H.; Hashimoto, N.; Kusumi, I.; Xiao, J. Effect

of bifidobacterium breve A-1 on anxiety and depressive symptoms in schizophrenia: A proof-of-concept study. J. Affect. Disord.
2019, 245, 377–385. [CrossRef] [PubMed]

4. Flowers, S.A.; Ward, K.M.; Clark, C.T. The Gut Microbiome in Bipolar Disorder and Pharmacotherapy Management. Neuropsy-
chobiology 2020, 79, 43–49. [CrossRef]

5. Yan, X.; Zhang, S.; Deng, Y.; Wang, P.; Hou, Q.; Xu, H. Prognostic Factors for Checkpoint Inhibitor Based Immunotherapy: An
Update With New Evidences. Front. Pharmacol. 2018, 9, 1050. [CrossRef]

6. Sivan, A.; Corrales, L.; Hubert, N.; Williams, J.B.; Aquino-Michaels, K.; Earley, Z.M.; Benyamin, F.W.; Lei, Y.M.; Jabri, B.;
Alegre, M.-L. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti–PD-L1 efficacy. Science 2015, 350,
1084–1089. [CrossRef]

7. Frankel, A.E.; Coughlin, L.A.; Kim, J.; Froehlich, T.W.; Xie, Y.; Frenkel, E.P.; Koh, A.Y. Metagenomic shotgun sequencing and
unbiased metabolomic profiling identify specific human gut microbiota and metabolites associated with immune checkpoint
therapy efficacy in melanoma patients. Neoplasia 2017, 19, 848–855. [CrossRef]

8. Kugaya, A.; Akechi, T.; Okuyama, T.; Okamura, H.; Uchitomi, Y. Screening for psychological distress in Japanese cancer patients.
Jpn. J. Clin. Oncol. 1998, 28, 333–338. [CrossRef]

9. Odamaki, T.; Kato, K.; Sugahara, H.; Hashikura, N.; Takahashi, S.; Xiao, J.Z.; Abe, F.; Osawa, R. Age-related changes in gut
icrobiota composition from newborn to centenarian: A cross-sectional study. BMC Microbiol. 2016, 16, 90. [CrossRef]

10. Kato, K.; Ishida, S.; Tanaka, M.; Mitsuyama, E.; Xiao, J.-Z.; Odamaki, T. Association between functional lactase variants and a
high abundance of Bifidobacterium in the gut of healthy Japanese people. PLoS ONE 2018, 13, e0206189. [CrossRef]

11. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna,
Austria, 2017.

61



J. Pers. Med. 2021, 11, 987

12. Villanueva, R.A.M.; Chen, Z.J. ggplot2: Elegant Graphics for Data Analysis (2nd ed.). Meas. Interdiscip. Res. Perspect. 2019, 17,
160–167. [CrossRef]

13. Wickham, H.; François, R. Dplyr: A Grammar of Data Manipulation. Available online: https://CRAN.R-project.org/package=
dplyr (accessed on 29 September 2021).

14. Heiss, C.N.; Olofsson, L.E. Gut Microbiota-Dependent Modulation of Energy Metabolism. J. Innate Immun. 2018, 10, 163–171.
[CrossRef] [PubMed]

15. Dalebroux, Z.D. Cues from the Membrane: Bacterial Glycerophospholipids. J. Bacteriol. 2017, 199, e00136-17. [CrossRef] [PubMed]
16. Yamamura, R.; Nakamura, K.; Kitada, N.; Aizawa, T.; Shimizu, Y.; Nakamura, K.; Ayabe, T.; Kimura, T.; Tamakoshi, A.

Associations of gut microbiota, dietary intake, and serum short-chain fatty acids with fecal short-chain fatty acids. Biosci.
Microbiota Food Health 2020, 39, 11–17. [CrossRef] [PubMed]

17. Wong, J.M.; de Souza, R.; Kendall, C.W.; Emam, A.; Jenkins, D.J. Colonic health: Fermentation and short chain fatty acids. J. Clin.
Gastroenterol. 2006, 40, 235–243. [CrossRef] [PubMed]

18. Kimura, I.; Inoue, D.; Maeda, T.; Hara, T.; Ichimura, A.; Miyauchi, S.; Kobayashi, M.; Hirasawa, A.; Tsujimoto, G. Short-chain fatty
acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc. Natl. Acad. Sci.
USA 2011, 108, 8030–8035. [CrossRef] [PubMed]

19. Sugahara, H.; Odamaki, T.; Fukuda, S.; Kato, T.; Xiao, J.-Z.; Abe, F.; Kikuchi, J.; Ohno, H. Probiotic Bifidobacterium longum alters
gut luminal metabolism through modification of the gut microbial community. Sci. Rep. 2015, 5, 13548. [CrossRef] [PubMed]

20. Furusawa, Y.; Obata, Y.; Fukuda, S.; Endo, T.A.; Nakato, G.; Takahashi, D.; Nakanishi, Y.; Uetake, C.; Kato, K.; Kato, T.; et al. Com-
mensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013, 504, 446–450. [CrossRef]

21. Horigome, A.; Okubo, R.; Hamazaki, K.; Kinoshita, T.; Katsumata, N.; Uezono, Y.; Xiao, J.Z.; Matsuoka, Y.J. Association between
blood omega-3 polyunsaturated fatty acids and the gut microbiota among breast cancer survivors. Benef Microbes 2019, 10,
751–758. [CrossRef]

22. Ramachandran, G.; Bikard, D. Editing the microbiome the CRISPR way. Philos. Trans. R. Soc. B 2019, 374, 20180103. [CrossRef]
23. Douglas, G.M.; Maffei, V.J.; Zaneveld, J.R.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M.G.I. PICRUSt2 for

prediction of metagenome functions. Nat. Biotechnol. 2020, 38, 685–688. [CrossRef] [PubMed]
24. Nguyen, T.T.; Kosciolek, T.; Maldonado, Y.; Daly, R.E.; Martin, A.S.; McDonald, D.; Knight, R.; Jeste, D.V. Differences in gut

microbiome composition between persons with chronic schizophrenia and healthy comparison subjects. Schizophr. Res. 2019, 204,
23–29. [CrossRef] [PubMed]

62



Journal of

Personalized 

Medicine

Review

Gut and Endometrial Microbiome Dysbiosis: A New Emergent
Risk Factor for Endometrial Cancer

Soukaina Boutriq 1,2,3, Alicia González-González 1,2 , Isaac Plaza-Andrades 1,2, Aurora Laborda-Illanes 1,2,3,
Lidia Sánchez-Alcoholado 1,2,3, Jesús Peralta-Linero 1,2, María Emilia Domínguez-Recio 1,
María José Bermejo-Pérez 1, Rocío Lavado-Valenzuela 2,*, Emilio Alba 1,4,* and María Isabel Queipo-Ortuño 1,2,4

Citation: Boutriq, S.;

González-González, A.;

Plaza-Andrades, I.; Laborda-Illanes,

A.; Sánchez-Alcoholado, L.;

Peralta-Linero, J.; Domínguez-Recio,

M.E.; Bermejo-Pérez, M.J.;

Lavado-Valenzuela, R.; Alba, E.; et al.

Gut and Endometrial Microbiome

Dysbiosis: A New Emergent Risk

Factor for Endometrial Cancer. J. Pers.

Med. 2021, 11, 659. https://doi.org/

10.3390/jpm11070659

Academic Editor: Lucrezia Laterza

Received: 27 May 2021

Accepted: 12 July 2021

Published: 14 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de
la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-CIMES-UMA, 29010 Málaga, Spain;
soukaina@ibima.eu (S.B.); alicia.gonzalez@ibima.eu (A.G.-G.); isaac.plaza.andrades@ibima.eu (I.P.-A.);
aurora.laborda@ibima.eu (A.L.-I.); l.sanchez.alcoholado@ibima.eu (L.S.-A.); jesus.peralta@ibima.eu (J.P.-L.);
emilia.dominguez@ibima.eu (M.E.D.-R.); cheberpe@gmail.com (M.J.B.-P.);
maribel.queipo@ibima.eu (M.I.Q.-O.)

2 Instituto de Investigación Biomédica de Málaga (IBIMA), Campus de Teatinos s/n, 29071 Málaga, Spain
3 Facultad de Medicina, Universidad de Málaga, 29071 Málaga, Spain
4 Centro de Investigación Biomédica en Red de Cáncer (Ciberonc CB16/12/00481), 28029 Madrid, Spain
* Correspondence: rocio.lavado@ibima.eu (R.L.-V.); ealbac@uma.es (E.A.)

Abstract: Endometrial cancer is one of the most common gynaecological malignancies worldwide.
Histologically, two types of endometrial cancer with morphological and molecular differences and
also therapeutic implications have been identified. Type I endometrial cancer has an endometrioid
morphology and is estrogen-dependent, while Type II appears with non-endometrioid differentiation
and follows an estrogen-unrelated pathway. Understanding the molecular biology and genetics
of endometrial cancer is crucial for its prognosis and the development of novel therapies for its
treatment. However, until now, scant attention has been paid to environmental components like the
microbiome. Recently, due to emerging evidence that the uterus is not a sterile cavity, some studies
have begun to investigate the composition of the endometrial microbiome and its role in endometrial
cancer. In this review, we summarize the current state of this line of investigation, focusing on the
relationship between gut and endometrial microbiome and inflammation, estrogen metabolism, and
different endometrial cancer therapies.

Keywords: endometrial cancer; endometrial microbiome; gut microbiome; dysbiosis; estrogen
metabolism; estrobolome; inflammation; antitumour treatment; prebiotics; probiotics

1. Introduction

The endometrium is a very dynamic tissue that undergoes proliferation and differenti-
ation processes during the menstrual cycle in response to variations in the levels of steroid
sex hormones (estrogen and progesterone) produced in the ovaries, and the release of local
factors [1].

Endometrial cancer is the sixth most common malignancy in women, and the fifteenth
most common cancer [2]. It accounts for nearly 5% of total cancer cases and more than 2%
of cancer deaths among women worldwide [3]. In the United States and some European
countries, the incidence of endometrial cancer is higher than in other developed countries,
being the fourth most common cancer in women, accounting for approximately 6% of new
cancer cases and 3% of cancer deaths each year [4].

This high incidence in the United States and Europe compared to other countries may
be due to high rates of obesity, as well as other important risk factors such as advanced age,
early menarche, late menopause, nulliparity, and post-menopausal estrogen therapy [5].
Endometrial cancer occurs more frequently after menopause and is generally associated
with a good prognosis [6].
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Whereas high parity, late age at last birth, physical activity, the use of combined
oral contraceptives and tabacco consumption are considered factors with a protective role
against endometrial cancer [7], there are other several factors that increase the risk of
endometrial cancer, such as obesity, the use of hormone replacement therapy (HRT) to
treat menopausal symptoms, and a family history of cancers such as Lynch syndrome (an
autosomal dominant disorder characterized by juvenile onset of malignant tumours and
colorectal cancer). Women with Lynch syndrome have an increased endometrial cancer
risk as well as an increased risk for other types of cancer such us colorectal cancer [8].
This syndrome is caused by a loss-of-function germline mutation in one of four genes
(human mutL homolog 1 (MLH1), MSH2, MSH6, and PMS1 Homolog 2 (PMS2)) involved
in mismatch-pair recognition and initiation of repair [9]. MLH1 and MSH2 mutations
are more frequent (60–80%) in patients with lynch syndrome comparated to MSH6 and
PMS2 mutations. Mutation in epithelial cellular adhesion molecule (EPCAM) (gene located
in MSH2 gene promoter and that lead to its epigenetic inactivation) is also identificated
in lynch syndrome. The mismatch repair genes inactivation induces accumulation of
different gene mutations, leading to cancer development with microsatellite instability
phenotype [10].

Bokhman was the first to classify endometrial cancer into two different histological
types in 1983 [11]. This classification, into Type I and Type II endometrial cancer, has
revealed the existence of differences in molecular characteristics, which consequently trans-
late into differences in prognosis and treatment [12]. In Bokhman’s study, the frequency
of the first pathological type (Type I) in the group of women studied was 65%, while the
frequency of the second type (Type II) was 35% [13].

Endometrioid, or Type I endometrial cancer generally originates in a hyperplastic
endometrial context [14], expressing estrogen and progesterone receptors, and is therefore
typically associated with hormonal disorders [15]. In addition to phosphatase and tensin
homolog (PTEN) and phosphatidylinositol 3-kinase (PIK3CA) mutations, which are the
most common in Type I endometrial cancer, other mutations have been identified in KRAS
and cadherin associated protein (β-catenin) genes [16]. In some Type I endometrial cancers,
mutations that inactivate MSH6 have been identified as being associated with microsatellite
instability [17] (Figure 1).

Non-endometrioid, or Type II endometrial cancer, is less common, accounting for ap-
proximately 10–20% of endometrial cancer cases [18]. Type II endometrial cancer develops
in an atrophic endometrial context, histologically poorly differentiated, with a tendency
towards a deep invasion into the myometrium, and a high frequency of metastasis [19].
Type II endometrial cancer is characterized by a high number of tumour suppressor p53
mutations [20], and other low-frequency genomic alterations such as tumour suppressor
cyclin-dependent kinase inhibitor 2A (p16) inactivation and Erb-B2 receptor tyrosine kinase
2 (HER-2/neu) over-activation [17]. Type II endometrial carcinoma includes carcinosarco-
mas, serous and clear cell carcinomas, and mixed Mullerian tumours [21] (Figure 1).

However, genetic alterations alone are not enough to explain the origins of endome-
trial cancer; other environmental factors such as hormones, obesity, and diabetes also
have an influence, as does the microbiome, which comprises an important part of the
uterine microenvironment [22]. Nevertheless, the molecular mechanisms involved in the
interaction between microbiome and endometrial cancer still need further elucidation.
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Figure 1. Commonly altered genes in endometrial carcinogenesis. Endometrioid carcinoma is estrogen dependent, and
obesity is associated with an elevated endometrioid cancer risk and mortality. Several mutations can lead to initiation
and development of endometrioid carcinoma, such as PTEN, KRAS and β-catenin mutations, wheras non-endometrioid
carcinoma more often harbours mutations in TP53. PTEN: phosphatase and tensin homolog. MLH1: human mutL homolog
1, involved in DNA mismatch repair. MSH6: human mutS homolog 6, involvedd in DNA mismatch repair. KRAS: KRAS
proto-oncogene, GTPase. β-catenin: CTNNB gene (cadherin associated protein) a signaling molecule involved in the control
of cell growth and differentiation. TP53: tumour protein p53, tumour supressor. HER2/neu: Erb-B2 receptor tyrosine kinase
2, proto-oncogen. PI3K: phosphatidylinositol 3-kinase, proto-oncogen. P16: cyclin-dependent kinase inhibitor 2A gene,
tumour supressor. Glut1: glucose transporter 1.

2. Endometrial Microbiome

Previously, it had long been thought that the human uterus was a sterile environ-
ment free of microorganisms. However, recent studies using molecular techniques have
confirmed the existence of microbiota in the endometrium, playing an important role in
the proper functioning of the endometrium and in the development of pregnancy under
normal conditions [23].

In the vagina, the microbiota has an important preventive role against various urogen-
ital diseases, such as bacterial vaginosis, fungal infections, sexually transmitted infections,
urinary tract infections, and HIV. This protective role is mainly due to the production of
lactic acid by Lactobacillus species (spp.), which are commonly associated with a healthy
vagina, and which produce several bacteriostatic and bactericidal components that help to
lower the pH of the vaginal microenvironment and promote competitive exclusion [24].
However, the composition of vaginal microbiota varies between the different phases of
menopause (pre-, peri-, and post-menopause) and also in pathological conditions such
as vaginal atrophy in which the abundance of Lactobacillus decreases while Anaerococcus,
Peptoniphilus, and Prevotella levels increase [25].

Until now, few studies have been devoted to investigating the composition of endome-
trial microbiota, so it is a subject that remains quite obscure today.

Many of the studies done have confirmed that, as in the vagina, Lactobacillus is the
dominant genus in the endometrium. In fact, Mitchell et al. compared vaginal microbiota
with uterine microbiota and found that the endometrium is characterized by the presence of
Lactobacillus, being the most abundant genus, followed by Gardnerella, Prevotella, Atopobium,
and Sneathia [26]. Fang et al. compared the bacterial composition of the vagina with that
of the endometrium, and also compared endometrial microbiome composition between
patients in different situations including healthy women, patients with endometrial polyps,
and patients with chronic endometritis. They found that Proteobacteria, Firmicutes, and
Actinobacteria dominated the intrauterine microbiome in all the studied groups. Further-
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more, although they found significant differences between the vaginal and the endometrial
microbiome, at the genus level, Lactobacillus, Gardnerella, Bifidobacterium, Streptococcus,
and Alteromonas were significantly higher in the healthy group when compared with the
others [27].

However, in contrast to these studies, others have suggested that non-Lactobacillus
species are more common in the endometrium. In 2016, Verstraelen et al. found that 90%
of the women included in their study had an endometrial microbiota profile dominated
by Bacteroides (Bacteroides xylanisolvens, Bacteroides thetaiotaomicron, and Bacteroides fragilis)
and Pelomonas [28]. Chen et al. confirmed the existence of different bacterial communities
throughout the female reproductive system, with a continuous change from the vagina to
the ovaries, with Pseudomonas, Acinetobacter, Vagococcus, and Sphingobium being the most
abundant in the endometrium [29]. Winters et al. also sequenced endometrial samples
from 25 women who underwent total hysterectomy for fibroids or endometrial hyper-
plasia, and found that the most abundant genera in their endometria were Acinetobacter,
Pseudomonas, Comamonadaceae, and Cloacibacterium [30]. Finally, in a more recent study, Lu
et al. also suggested that Lactobacillus is not the predominant genus in the endometrium,
observing a greater abundance of Rhodococcus, Phyllobacterium, Sphingomonas, Bacteroides,
and Bifidobacterium [31] (Table 1).

Table 1. Endometrial microbiome characterization studies.

Author Year Sample Size Sample Type Methods Finding

Mitchell et al. 2018

Women underwent
hysteroctomy for benign
disease without cancer
indications (n = 58).

Vaginal and
endometrial
swabs.

Bacterial 16S rRNA
sequencing.

↑Lactobacillus iners (45%),
Lactobacillus crispatus
(33%), Gardnerella vaginalis,
Prevotella spp., Atopobium
vaginae, and Sneathia.

Fang et al. 2016

-Patients with only
endometrial polyps
(n = 10).
-Patients with both
endometrial polyps and
chronic endometritis
(n = 10).
-Healthy women (n = 10).

Vaginal and
endometrial
swabs.

Bacterial 16S rRNA
genes sequencing.

↑Lactobacillus, Gardnerella,
Bifidobacterium,
Streptococcus, and
Alteromonas in healthy
group compared to
endometrial polyps and
chronic endometriosis
group.

Verstraelen
et al. 2016

Women with various
reproductive conditions,
without uterine anomalies
(n = 90).

Endometrial
biopsy: tissue and
mucus.

16S rRNA gene
V1–2 region

Uterine microbiome
dominated by Bacteroides
(B. xylanisolvens, B.
thetaiotaomicron, and B.
fragilis) and Pelomonas.

Chen et al. 2017

Reproductive age women
operated for conditions
not known to involve
infection (n = 95).

Endometrial swab
and tissue.

16S rRNA
amplicon
sequencing

↑Pseudomonas,
Acinetobacter, Vagococcus,
and Sphingobium in the
endometrium

Winters et al. 2019

Women (n = 25)
underwent a hysterectomy
for fibroids (23) and
endometrial
hyperplasia (2).

Endometrial swab. Sequencing of the
16S rRNA gene.

↑Acinetobacter,
Pseudomonas,
Comamonadaceae, and
Cloacibacterium in
endometrium.

Lu et al. 2020

Women undergone a
hysterectomy for benign
disease and any stage of
endometrial cancer
(n = 50).

Endometrial tissue.

16S rRNA gene
sequencing for
bacterial
communities.

↑Rhodococcus,
Phyllobacterium,
Sphingomonas, Bacteroides,
and Bifidobacterium.
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3. Microbiome and Endometrial Cancer

Currently, there is abundant evidence demonstrating the involvement of bacteria
in the development and expansion of various pathologies, including different types of
cancers [32]. Many of the bacteria that colonize the human body establish beneficial
relationships with their host. Notwithstanding, dysbiosis promotes the development of
various diseases [33].

For example, in the stomach, Helicobacter pylori is one of the most common human
infectious agents that produces several virulence factors linked to significant disorders
in the host’s intracellular signalling pathways, favouring the appearance of neoplastic
transformations. Consequently, infection by this bacterium is considered to be an important
risk factor for gastrointestinal cancer [34]. Furthermore, in cervical (cervix) cancer, human
papillomavirus is a known cause of the disease [35].

It is known that the pathogenesis of endometrial cancer involves mainly an excess of
estrogen levels, and there is also evidence that the composition of the microbiota may be
an important risk factor, given the inflammatory profile in endometrial cancer. However,
the composition of endometrial microbiota in endometrial cancer remains poorly studied.

Accordingly, Walther-António et al. identified the differences in the composition
of endometrial microbiota in different diseases. In women with abnormal bleeding and
endometritis they found Shigella and Barnesiella to be the most dominant genera in their
endometria. They also observed that there is a difference in the composition of the endome-
trial microbiota under normal conditions as compared with hyperplasia, which suggests a
role for microbiota in the early phases of cell transformation, since hyperplasia is considered
to be a precancerous transformation of the endometrium. To test this hypothesis, they com-
pared the microbiota of patients with endometrial hyperplasia and those with endometrial
cancer, and found no significant differences. Furthermore, as a result of sequencing sam-
ples from endometrial cancer patients, they saw that the taxa Firmicutes (Anaerostipes, ph2,
Dialister, Peptoniphilus, 1–68, Ruminococcus, and Anaerotruncus), Spirochaetes (Treponema),
Actinobacteria (Atopobium), Bacteroidetes (Bacteroides and Porphyromonas), and Proteobacte-
ria (Arthrospira) were enriched. However, the most prevalent result they obtained is the
close correlation between the species Atopobium vaginae and Porphyromonas sp. and endome-
trial cancer, especially when the vaginal pH is high (>4.5) [22]. Porphyromonas gingivalis
is considered to be a biomarker of death risk from aerodigestive cancer, independent of
periodontal diseases [36]. Based on the relationship between this bacteria and various
pathologies, Walther-António et al. predicted the possible involvement of Porphyromonas
spp. in the progression of the processes leading to the development of endometrial can-
cer. Furthermore, knowing that Atopobium vaginae is associated with bacterial vaginosis,
they hypothesized that it may be involved in creating chronic inflammation that leads
to local immune dysregulation, thus facilitating intracellular infection by Porphyromonas
species [22]. Moreover, Porphyromonas spp. combined with high pH in the vagina could be
a promising biomarker for endometrial cancer [37].

Lu et al. demonstrated that there is a difference in the composition of endometrial
microbiota between patients with endometrial cancer and patients with benign uterine
lesions. In the results they obtained, a decrease in the local diversity of the microbiota
was observed in the group of patients with endometrial cancer compared to patients
with benign uterine lesions. This decrease in the diversity of microorganisms led to the
overgrowth of the few remaining species and a decrease in resilience. Furthermore, in this
study, Pseudomoramibacter_Eubacterium, Rhodobacter, Vogesella, Bilophila, Rheinheimera, and
Megamonas were enriched in patients with benign uterine lesions, while Micrococcus was
associated with an inflammatory profile in endometrial cancer [31].

With the aim of studying the possible differences in bacterial, archaea, and viral tran-
script (BAVT) in different gynaecological cancers and in normal fallopian tubes, Gonzalez-
Bosquet et al. carried out a metagenomic analysis of high-grade serous carcinoma (HGSC)
and endometrioid endometrial carcinoma (EEC), and compared them with normal fallop-
ian tubes. They found that there were 93 BAVTs differentially expressed between HGSC
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and EEC. However, 12 BAVT species were independently expressed in all the samples, and
6 of them were also significantly expressed (Pusillimonas sp. ye3, Riemerella anatipestifer,
Salinibacter ruber, Bacillus tropicus, Nostocales cyanobacterium HT-58-2, and Corynebacterium
pseudotuberculosis). Nevertheless, in normal samples these BAVT species were the highest,
while they were decreased in EEC, and even more so in HGSC samples.

Gonzalez-Bosquet et al. also investigated the origins of these BAVTs, and they saw
some human loci that harbour genetic material from these microorganisms; more exactly
BAVTs were located within or close to genes or lncRNAS [38].

Walsh et al., like Walther et al., identified Porphyromonas somerae as the most abundant
organism in patients with endometrial cancer. They also found that in addition to obesity
and postmenopause, a high vaginal pH is considered an additional risk factor for endome-
trial cancer. In that study, they confirmed that Porphyromonas somerae is not associated with
postmenopause; it is, however, related to four other microorganisms (Anaerococcus tetra-
dius, Anaerococcus lactolyticus, Peptoniphilus coxii, and Campylobacter ureolyticus) which are
associated with postmenopause, suggesting that they could be first-colonizers to facilitate
the subsequent colonization by Porphyromonas somerae and others. Porphyromonas somerae
was found in 100% of samples from patients with Type II endometrial cancer and in 57% of
patients with endometrial hyperplasia. Therefore, Porphyromonas somerae is considered to
be a biomarker of the disease.

In contrast to the results obtained by Lu et al. which affirm that the diversity of the local
microbiota decreases in endometrial cancer, Walsh et al. observed that the risk factors for
endometrial cancer (postmenopause, obesity, and high vaginal pH) increase the diversity
of endometrial microbiota. Walsh et al. identified seventeen enriched taxa in patients
with endometrial cancer, eight of which were enriched by menopause. Because of the
prominence of postmenopause as a risk factor for endometrial cancer, it could be considered
as one of the main conditions that favour the disease state [39]. In postmenopausal women,
the production of ovarian estrogens ceases, leading to a decrease in glycogen levels, which
induces a decrease in colonization by Lactobacillus, basifying the pH of the medium. Under
normal conditions, Lactobacillus produces lactic acid that contributes to the maintenance of
the low pH of the vagina, so it can act as a selective barrier to the rest of the reproductive
system, avoiding its colonization by pathogens and helping to maintain the microbiota
specific to each part of the reproductive system [40].

According to circumstances, species favoured by menopause are not directly involved
in endometrial cancer, but they are probably facilitating colonization by other species
associated with endometrial cancer [39]. Atopobium vaginae is a characteristic pathogen
of bacterial vaginosis [41]. It is conceivable that some women with endometrial cancer
may have been previously diagnosed with bacterial vaginosis, which could explain the
association of this bacteria with endometrial cancer [39] (Table 2).
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4. Estrogen Metabolism, Gut Microbiota, and Endometrial Cancer

Estrogens play a major role in modulating the growth of the endometrium by inducing
proliferation at the end of the proliferative phase of the menstrual cycle [42]. However,
after ovulation, in the luteal phase, the increase in estrogen levels induces the production
of progesterone which inhibits the proliferation of the endometrium, and promotes its
transition to a receptive state, preparing it for the implantation of a blastocyst. An in-
crease in estrogen levels leads to an imbalance between the production of estrogens and
progesterone, favouring the appearance and development of endometrial cancer [43].

Endometrioid carcinoma accounts for 80% of all endometrial cancer cases. This type of
endometrial cancer is fundamentally caused by excessive exposure to estrogens which, in
the absence of the counteractive effects of progesterone, induces endometrial proliferation
and therefore endometrial hyperplasia and ultimately cancer [44].

Estrogens are produced in the ovaries and are then transported to the organs, including
the uterus and breasts, where they have different functions. Later, they are transported
to the liver where they are metabolized to facilitate their elimination from the body. The
estrogenic hormones, estrone (E1) and estradiol (E2), undergo irreversible hydroxylation at
the C-2, C-4, or C-16 carbon of the steroid ring. Estrogen metabolites are conjugated by
sulfonation or glucuronidation, producing changes in their structure and bioavailability.
Conjugated estrogens are excreted in urine or bile. Finally, the inactive conjugated estrogens
excreted in the bile are transported to the distal part of the intestine to be eliminated through
faeces [45].

However, inactive estrogens in the intestine are occasionally activated by deconju-
gation and are reabsorbed through the intestinal mucosa and enter the bloodstream via
the portal vein (Figure 2). It has been established that the intestinal microbiota is involved
in the reactivation of estrogens and, therefore, in the regulation of estrogen levels [46].
Estrobolome was defined for the first time in 2011 as an aggregate of genes from enteric
bacteria, whose products are capable of metabolizing estrogens, specifically, bacteria with
β-glucuronidase activity, an enzyme involved in the deconjugation of estrogens [47].

J. Pers. Med. 2021, 11, x FOR PEER REVIEW 8 of 29 
 

 

4. Estrogen Metabolism, Gut Microbiota, and Endometrial Cancer 
Estrogens play a major role in modulating the growth of the endometrium by indu-

cing proliferation at the end of the proliferative phase of the menstrual cycle [42]. Howe-
ver, after ovulation, in the luteal phase, the increase in estrogen levels induces the produc-
tion of progesterone which inhibits the proliferation of the endometrium, and promotes 
its transition to a receptive state, preparing it for the implantation of a blastocyst. An in-
crease in estrogen levels leads to an imbalance between the production of estrogens and 
progesterone, favouring the appearance and development of endometrial cancer [43]. 

Endometrioid carcinoma accounts for 80% of all endometrial cancer cases. This type 
of endometrial cancer is fundamentally caused by excessive exposure to estrogens which, 
in the absence of the counteractive effects of progesterone, induces endometrial prolife-
ration and therefore endometrial hyperplasia and ultimately cancer [44]. 

Estrogens are produced in the ovaries and are then transported to the organs, inclu-
ding the uterus and breasts, where they have different functions. Later, they are trans-
ported to the liver where they are metabolized to facilitate their elimination from the body. 
The estrogenic hormones, estrone (E1) and estradiol (E2), undergo irreversible hydroxy-
lation at the C-2, C-4, or C-16 carbon of the steroid ring. Estrogen metabolites are conju-
gated by sulfonation or glucuronidation, producing changes in their structure and bioa-
vailability. Conjugated estrogens are excreted in urine or bile. Finally, the inactive conju-
gated estrogens excreted in the bile are transported to the distal part of the intestine to be 
eliminated through faeces [45]. 

However, inactive estrogens in the intestine are occasionally activated by deconjuga-
tion and are reabsorbed through the intestinal mucosa and enter the bloodstream via the 
portal vein (Figure 2). It has been established that the intestinal microbiota is involved in 
the reactivation of estrogens and, therefore, in the regulation of estrogen levels [46]. Es-
trobolome was defined for the first time in 2011 as an aggregate of genes from enteric 
bacteria, whose products are capable of metabolizing estrogens, specifically, bacteria with 
β-glucuronidase activity, an enzyme involved in the deconjugation of estrogens [47]. 

 
Figure 2. Estrogen metabolism involving gut microbiota (estrobolome). Estrogens are inactivated in liver through conju-
gation for further excretion. However, some of inactivated estrogens are reabsorbed into the bloodstream across activation 
in intestines by estrobolome. E: estrogen; C: conjugation with glucuronide acid binding. 

β-glucuronidase activity plays a significant role in the generation of toxic and car-
cinogenic metabolites in the intestine, and also in the reabsorption of various compounds 
into the circulatory system, such as estrogens [48]. β-glucuronidase facilitates binding to 

Figure 2. Estrogen metabolism involving gut microbiota (estrobolome). Estrogens are inactivated in liver through conjuga-
tion for further excretion. However, some of inactivated estrogens are reabsorbed into the bloodstream across activation in
intestines by estrobolome. E: estrogen; C: conjugation with glucuronide acid binding.

70



J. Pers. Med. 2021, 11, 659

β-glucuronidase activity plays a significant role in the generation of toxic and car-
cinogenic metabolites in the intestine, and also in the reabsorption of various compounds
into the circulatory system, such as estrogens [48]. β-glucuronidase facilitates binding to
estrogen receptors, and the activation of these receptors increases the number of cells in the
G0/G1 phase of the cell cycle, promoting proliferation, a process well described in breast
cancer, highlighting the relationship existing between gut microbiota and estrogen levels
in breast cancer.

Like breast cancer, endometrial cancer is also considered to be hormone-dependent,
in which the intestinal microbiota is involved, especially in obese patients. There is a
possibility that the composition and diversity of the microbiota favours bacteria capable
of metabolizing estrogens, which allows greater reabsorption of estrogens and increased
binding to receptors, contributing to the development of endometrial hyperplasia and
endometrial cancer [49].

An active estrobolome is capable of modulating endogenous estrogen metabolism by
β-glucuronidase and β-glucosidase enzymatic activity, thereby controlling circulating and
excreted estrogen levels. In the gastrointestinal tract, the most important genes encoding
β-glucuronidase enzyme activity are the β-glucuronidase (GUS) genes (Figure 2). Recently,
an atlas for the characterization of the β-glucuronidase of the human intestinal microbiota
was compiled. Approximately 112 new GUS genes were identified and grouped into
six classes expressed in four bacterial phyla, denominated as Bacteroidetes, Firmicutes,
Verrucomicrobia, and Proteobacteria. Within them, the phylum Bacteroidetes presents
a greater abundance and diversity of GUS enzymes [50]. β-glucuronidase activity is
modulated by diet and the microbiota. A diet rich in fat or protein has been associated
with high faecal levels of β-glucuronidase, while a fibre-based diet decreases the activity
of this enzyme. Furthermore, the β-glucuronidase activity of Escherichia coli cultures is
controlled by population density, suggesting the involvement of quorum sensing in the
control of enzyme activity. Although it remains to be determined how β-glucuronidase
and β-glucosidase contribute to breast and endometrial cancer, there is ample evidence
which suggests that both play an important role [51].

In one of their studies, Flores et al. found that in postmenopausal women and in
men, non-ovarian estrogen levels were closely associated with the amount and diversity
of faecal microbiota, with the taxa Clostridia within Firmicutes being the most related,
in addition to three genera of the Ruminococcaceae family. Furthermore, the activity of
β-glucuronidase has been associated with the levels of estrone, but not estrogen, in urine,
whereas in pre-menopausal women, estrogen levels are not influenced by the microbiota
or by β-glucuronidase activity [46].

Therefore, estrobolome can modulate circulating estrogen levels, which can alter
vaginal microbial communities. In accordance with this concept, previous studies have es-
tablished that gut microbiome is indirectly involved in endometrial carcinogenesis through
its altering of genital microbial communities [52]. Thus, more attention is being paid to
the study of gut microbiome modulation methods to treat estrogen-dependent diseases,
including endometrial cancer, through bariatric surgery, faecal bacteria transfer, the use
of pharmaceutical (Metformin) and nutraceutical (Genistein) methods, which in several
studies have shown favourable results in treating the metabolic aspects of the disease [49].

5. Microbiome, Inflammation, and Endometrial Cancer

In 1863, Rudolf Virchow discovered the existence of leukocytes in neoplastic tissues,
and established a correlation between inflammation and cancer. Since then, many stud-
ies have relied on Virchow’s hypothesis to investigate cancer prevention and treatment
methods [53]. There are many examples that support this hypothesis, such as hepatitis
and liver cancer, or colitis and colorectal cancer. In addition, the use of non-steroidal
anti-inflammatory drugs has been shown to reduce the risk of various cancers.
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Even though the mechanisms by which local inflammation facilitates cancer develop-
ment are unknown, the production of cytokines, such as tumour necrosis factor α (TNF-α)
by local tissue and infiltrated inflammatory cells, seems to play a key role [54]. Chronic
inflammation promotes angiogenesis, cell proliferation, and the production of free radicals
that cause DNA damage and facilitate tumour initiation and development [55].

After menopause, when estrogen production comes to an end, most of the circulating
estrogens are produced in adipose tissue through the conversion of androgens by the
enzyme Aromatase [56]. IL-6 has been shown to stimulate aromatase activity in adipose
tissue and in endometrial cancer stromal cells, which then increases estrogen levels [57].
Patients with endometrial cancer have high levels of IL-6 and nuclear factor-kB (NF-kB),
a cellular transcription factor that activates several genes involved in the inflammatory
and immune response [55]. The activation of NF-kB leads to the expression of COX-2,
which induces the production of prostaglandin E2, a protein which is able to transform
endometrial cells into neoplastic tissue [58].

The microbiome could be involved in the initiation of inflammation (Figure 3), in-
ducing the immunopathological changes which ultimately lead to the development of
cancer [59]. The activation of immune receptors induces the cellular response, by activating
the mitogen-activated protein kinase (MAPK), NF-κB, or PI3K/AKT signalling pathways.
Activation of these signalling pathways induces the expression of pro-inflammatory cy-
tokines (e.g., TNF-α, IL-6, and IL-8) and/or antimicrobial peptides, which are involved in
the development of the inflammatory response [31].
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which are involved in endometrial carcinogenesis and other endometrial diseases.

As previously mentioned, the composition of the uterine microbiome is linked to
several gynaecological pathologies, such as endometriosis, dysfunctional menstrual bleed-
ing, and cancer [60] (Figure 3). Endometrial cancer is characterized by the simultaneous
presence of two species, Atopobium vaginae and Porphyromonas [22]. In 2019, Caselli et al.
performed an in-vitro analysis of the effect of Atopobium vaginae and Porphyromonas somerae
on the expression of pro-inflammatory cytokines in endometrial cells using HEC-1A cells
(human endometrial adenocarcinoma cells). The results of this study demonstrated that 24
h was sufficient to induce production of pro-inflammatory cytokines in endometrial cells
cultured with Atopobium vaginae and Porphyromonas somerae. These cytokines produced in
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cells cultured with Atopobium vaginae and Porphyromonas somerae are not the same as those
produced in cells cultured with Lactobacillus vaginalis. Thus, while Lactobacillus vaginalis
induces the production of IL-8, Atopobium vaginae and Porphyromonas somerae induce the
production of IL-1α, IL-1β, IL-17α, and TNFα, but not IL-8. This cytokine production was
maintained over time without significant changes, suggesting a specific kinetic of cytokine
induction, or a very gradual decrease in the ability of these bacteria to induce cytokine
production. In the control group used with dead bacteria, it was observed that there was
no production of cytokines, highlighting the need for the presence of Atopobium vaginae and
Porphyromonas somerae to stimulate cytokine production in endometrial cells [61]. Several
studies have demonstrated that IL1α and IL1β are overexpressed in various tumours
including endometrial cancer, and promote cell proliferation, adhesion, invasion, and
angiogenesis [62]. IL-17α, in turn, induces the production of other inflammatory proteins
such as IL-8 and TNFα, stimulating the proliferation of endometrial cells, contributing to
endometriosis and angiogenesis [63]. TNFα has been implicated in endometrial hyperpla-
sia and, therefore, in endometrial cancer, evidencing an important role in metastasis and
resistance to chemotherapy [64]. In addition to stimulating the production of the previously
mentioned cytokines, Caselli et al. found that Atopobium vaginae and Porphyromonas somerae
alter the transcription of other proteins, including CCL13, CCL8, CXCL2, IL22, and IL9.
However, CCL13 production was also stimulated in the presence of Lactobacillus vaginalis.
This implies the absence of a specific relationship between the production of CCL13 and
the presence of Atopobium vaginae and Porphyromonas somerae. CCL8 and CXCL2 promote
tumour invasion in various types of cancers, including endometrial cancer. Chemokine
CXCL2 expression is induced by TNFα [61]. Interleukin IL-9 plays an important role in the
immune response and cancer pathogenesis [65]. IL-22 induces breast cancer progression
and endometrial cell proliferation through the production of CCL2 and IL-8 [61].

In another study, Lu et al. found that IL-6 and IL-17 mRNA levels are positively
correlated with a relative abundance of Micrococcus, another Gram-positive bacterium
belonging to the Phylum Actinobacteria related to endometrial cancer [31].

6. Modulation of Antitumoural Therapies Efficacy and Toxicity by Gut Microbiota

Endometrial cancer is mainly treated with surgery, to determine the stage of the
tumour as an initial step to identify patients who could benefit from chemotherapy or
radiation therapy. Immunotherapy is increasingly being investigated and seems to have
favourable results in patients with microsatellite instability (MSI). In addition, recent
studies have been conducted to establish whether the inhibition of immune checkpoints
could be considered as a possible antitumour treatment method [66].

However, these treatments, particularly chemotherapy and radiotherapy, are very
aggressive and can cause various side effects, especially at the intestinal level. Thus, up to
80% of patients exhibit intestinal symptoms such as abdominal pain and diarrhoea, among
others, during treatment [67].

Consequently, recent studies have investigated the possibility of exploiting the micro-
biome to reduce the toxicity induced by antitumour therapies and improve the response
to these therapies, incorporating, for example, probiotics as an adjuvant treatment, or
designing microbial enzyme target molecules [68].

6.1. Immunotherapy

Recently, immunotherapy has emerged as an effective therapy with favourable results
in killing tumour cells [69]. For some patients with recurrent or persistent metastatic
gynaecological cancer, programmed cell death-1/programmed cell death-ligand 1 (PD-
1/PD-L1) inhibitors are a possible option to enhance clinical outcomes [70].
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The identification and elimination of tumour cells depends on cellular immunity
mediated by T cells, which, through receptors (TCRs), bind with the specific antigen of the
major histocompatibility complex (MHC) on the surface of tumour cells. The interaction
of TCRs and MHC is regulated by a series of immune checkpoints, serving to activate or
inhibit T cells. Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), PD-1, and PD-L1
are co-inhibitors which stop the immune response to prevent autoimmune diseases. In the
tumour microenvironment, tumour and stromal cells overexpress co-inhibitory ligands
and receptors. Thus, the binding of the PD-1 receptor with its PD-L1 ligand transmits
inhibitory signals, blocking the immune activity of T cells, thus allowing tumour cells to
escape the immune system [71]. Monoclonal antibodies against PD-1 (nivolumab), PD-L1
(pembrolizumab), and CTLA-4 (ipilimumab), reactivate the immune response of patients
against cancer [72].

Recent studies have described the role of the microbiome in regulating tumour re-
sponses to immunotherapies targeting PD-L1 or cytotoxic T-lymphocyte-associated protein
4 (CTLA-4). Sivan et al. conducted studies on two groups of mice with subcutaneous
melanomas and different intestinal microbiota, since the two groups were bred and raised
in different laboratories. They obtained evidence that one of the two groups of mice in-
cluded in the trial developed immune responses through induction and infiltration of
antitumour CD8+ T cells, while the other group did not. After analysing the faecal micro-
biota of both groups, differences in composition were observed, where a greater amount of
Bifidobacterium was found in the group that developed an antitumour immune response.
This bacterium is capable of mediating dendritic cell reactivation by itself, which promotes
the CD8+ T cells’ response to eliminate tumour cells. The transfer of faecal Bifidobacterium in
combination with the use of anti PD-L1 antibodies greatly improved the immune response,
stimulating greater T cell production and helping to control the tumour [73].

In 2018, Routy et al., in a study comparing the faecal microbiota of a group of mice
with non-small-cell lung cancer and renal carcinoma which responded positively to block-
ing immune checkpoints, and another group that did not respond, observed that in the
group of mice that best responded to treatment with anti-PD-1, there was an enrichment
in the groups of Firmicutes (Clostridiales), in addition to a significant increase in Alistipes,
Ruminococcus, and Eubacterium species, and especially Akkermansia muciniphila species.
In this last study, and unlike Sivan et al., Routy et al. found that the enrichment in the
aforementioned species was accompanied by a relative decrease in other species, including
Bifidobacterium adolescentis, Bifidobacterium longum, and Parabacteroides distasonis. Addi-
tionally, it was observed that the presence of Enterococcus hirae together with Akkermansia
muciniphila enhanced the anti-PD-1 antitumour response in mice that best respond to
anti-PD-1 antibodies. These two bacteria induce the production of IL-12, a Th1-type cy-
tokine, in dendritic cells, stimulating the production of intestinal CD4+ T cells that express
CCR9 receptors for chymosins in tumour beds, lymph nodes that drain the tumour, and
in the mesenteric lymph nodes, exerting an adjuvant effect on the anti-PD-1 response.
Conversely, it was observed that the group of mice that did not respond to anti-PD-1 had
more Corynebacterium aurimucosum and Staphylococcus haemolyticus [74].

Gopalakrishnan et al. also investigated how gut microbiota can modulate the re-
sponse to anti-PD-1. They saw that patients with metastatic melanoma, whose intestinal
microbiome presented greater diversity and abundance in the Ruminococcaceae and Fae-
calibacterium families, developed a better systemic and antitumour immune response,
showing greater antigen presentation, and an increase in the function of effector T cells
in the periphery and the tumour microenvironment. Whereas the group of patients with
metastatic melanoma, but whose intestinal microbiomes presented little diversity and
a greater relative abundance in Bacteroidales, showed some alterations in the systemic
and antitumour immune response due to limited intratumoural and myeloid lymphoid
infiltration and low antigen presentation [75].
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In summary, an abundance of Clostridiales in gut microbiome correlated to patients
who respond positively to PD-1 blockade therapy, while the nonresponders’ microbiomes
were enriched with Bacteroidale [76]. In addition, the previously mentioned studies have
demonstrated that there are three species (Bifidobacterium, Akkermansia muciniphila, and
Faecalibacterium) that could be considered to be immune adjuvants in PD-1/PD-L1 im-
munotherapy. However, these species do not act by themselves, as they also influence
the ecology and metabolism of the intestinal microbiota in response to immunotherapy.
Furthermore, to support this hypothesis, the efficacy of inhibiting immune checkpoints
has been shown to be reduced in patients who have received antibiotic treatment before or
after immunotherapy [77].

In 2017, Chaput et al., analysing the gut microbiome of patients affected by metastatic
melanoma treated with ipilimumab, revealed that enrichment with Bacteroidetes had a
protective role against colitis, but also a poor tumour response, while enrichment with
Faecalibacterium genus and other Firmicutes enhanced progression-free survival [78]. In
another study, Cramer et al. reported that Bacteroides fragilis can be considered an immuno-
genic bacterium that acts as an anticancer probiotic, as its polysaccharide capsule induces
IL-12-dependent TH1 immune responses. This bacterium enhances the effect of immuno-
logical treatment with anti-CTLA-4 [79]. In another study, Vétizou et al. also concluded
that the composition of the microbiota, specifically the abundance of Bacteroides fragilis
and/or Bacteroides thetaiotaomicron and Burkholderiales, modulates the response to a CTLA-4
blockade. The distribution of Bacteroides fragilis in the intestinal mucosa and its association
with Burkholderiales stimulates pyrine-caspase1 inflammasome formation and activates the
TLR2/TLR4 signalling pathway, which could explain the immunomodulatory effects that
these bacteria have on CTLA-4. Although Ipilimumab, a monoclonal antibody to CTLA-4,
is highly effective in immunotherapy, it can sometimes cause colitis. To counteract this, it
has been observed that oral administration of Bacteroides fragilis and Burkholderia cepacia
in mice can restore the response to anti-CTLA-4 and significantly reduce colitis. The effi-
cacy of Ipilimumab is highly dependent on intestinal microbiota, so that enrichment with
Bacteroides fragilis is necessary for the activation of CD4+ cells and obtaining favourable
treatment results [80] (Table 3).
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However, whether endometrial microbiota can actually influence the efficacy of im-
munotherapy in endometrial cancers still needs to be investigated.

6.2. Chemotherapy

In patients with advanced cancers, cytotoxic drugs are used as the main therapy.
However, these drugs often have strong adverse effects. Gut microbiota is considered a
key element in enhancing the efficacy and reducing the toxicity of chemotherapy drugs,
as well as improving the sensitivity to chemotherapy. Immunomodulation is one of the
key mechanisms by which the microbiota intervenes in the response to different types of
treatments.

The efficacy of cyclophosphamide, a cytotoxic alkylating agent used in chemotherapy,
is modulated by the presence of Gram-positive bacteria such as Enterococcus hirae, Lacto-
bacillus johnsonii, Lactobacillus murinus, and segmented filamentous bacteria. Furthermore,
translocation of Enterococcus hirae improves the intratumoural CD8/Treg ratio. At the same
time, Barnesiella intestinihominis, a Gram-negative bacterium, has been shown to enhance
the infiltration of interferon-c-producing T cells into tumour tissue to enhance the effect of
cyclophosphamide [77].

Gemcitabine is a chemotherapeutic agent belonging to the group of nucleoside (cyti-
dine) analogues approved by the FDA to be used as a treatment for various solid tumours,
including advanced endometrial cancer. This drug has the ability to kill cells in the S phase
of DNA synthesis and blocks the progression of cells through the G1/S phase. Gemcitabine
is metabolized into gemcitabine diphosphate and triphosphate, which, once incorporated
into DNA, inhibits polymerase activity. Furthermore, apoptosis is induced through the
recognition of incorporated gemcitabine by p53 and DNA-dependent kinases [81]. Chen
et al. conducted a study on transgenic mice with pancreatic cancer treated with gemcitabine
supplemented with Lactobacillus. In that study, Lactobacillus paracasei, a Gram-positive facul-
tative heterofermentative lactic acid bacterium which is part of human and animal intestinal
microbiota was used. Lactobacillus paracasei has been shown to inhibit Th2 cytokine produc-
tion and modulate the Th1/Th2 balance by increasing IFN-γ levels. It was subsequently
observed that the Th2 response produces tumourigenesis-promoting effects in patients
with pancreatic cancer. Chen et al. used another probiotic, Lactobacillus reuteri, due to
its antioxidant activity and ability to reduce levels of IL6 interleukin with tumorigenic
activity. Gemcitabine treatment is known to cause increased levels of liver enzymes. After
combining the treatment with probiotics, a decrease in the level of these enzymes was
observed [82].

Irinotecan, another chemotherapeutic agent used for endometrial cancer, acts as a
Topoisomerase I inhibitor [83]. Although its effectiveness as an anti-tumour treatment in
various cancers is quite significant, this agent has several side effects at the gastrointestinal
level, causing mucositis and diarrhoea on several occasions. Irinotecan is activated in-vivo
on SN38, a potent inhibitor of Topoisomerase I, which delays the growth and proliferation
of tumour and intestinal cells. SN38 is marked by glucuronic acid binding to form SN38-
G, for subsequent elimination from the gastrointestinal tract. β-glucuronidase enzyme,
produced by some intestinal bacteria, is capable of eliminating glucuronic acid from
SN38-G, reactivating it to SN38, thus causing epithelial damage, shedding, diarrhoea,
and weight loss in animal models. Bhatt et al., based on the relationship between SN38-
G activation, β-glucuronidase activity, and intestinal toxicity produced by Irinotecan
treatment, decided to investigate the effect of inhibiting this enzyme’s activity to alleviate
toxicity. In that study, it was observed that the use of amoxapine and pyrazolo 4-3-c
quinoline, inhibitors of β-glucuronidase activity, protects the gastrointestinal epithelium
by reducing the production of pro-inflammatory cytokines, and improves the response to
treatment with Irinotecan. In addition, Irinotecan induces changes in the composition of the
intestinal microbiota, increasing, above all, the levels of Proteobacteria (Enterobacteriaceae), in
addition to Verrucomicrobia and Akkermansia muciniphila. The use of GUS gene (a gene that
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encodes the enzyme β-glucuronidase) inhibitors has been shown to reduce Proteobacteria
levels [84].

Doxorubicin is a chemotherapeutic anticancer drug belonging to the anthracycline
family, used to treat various types of cancers, including endometrial cancer. It is charac-
terized by its ability to inhibit the growth of both cancer cells and bacteria through the
generation of free radicals, DNA intercalation, alkylation and cross-linking of proteins,
interference with DNA unwinding and Topoisimerase II, and direct membrane damage.
However, the use of drugs belonging to the anthracycline family leads to the accumula-
tion of toxic metabolites in healthy tissue [85]. In addition to the heart, the gut is also
affected by the toxicity associated with the use of Doxorubicin. This drug causes damage
to the intestinal epithelium by inducing apoptosis in the epithelial cells of the jejunum
and damage to the mucosa, reducing the proliferation of crypts, so that fewer crypts
are formed, and with smaller villi [86]. Oral mucositis, another reaction associated with
doxorubicin-induced toxicity, produces an increase in salivary flow, gum inflammation,
and sore formation. Oral mucositis produces dysbiosis, decreasing the levels of the Strep-
tococcus, Actinomyces, Gemella, Granulicatella, and Veillonella genera, and increasing the
levels of other Gram-negative bacteria such as Fusobacterium nucleatum and Prevotella oris.
Fusobacterium nucleatum have pro-inflammatory and pro-apoptotic activity, contributing to
the damage produced in the mucosa [87]. Conversely, bacteria of the intestinal microbiota
have been implicated in the inactivation of some drugs, including doxorubicin. Yan et al.
identified Raoultella planticola as a powerful inactivator of doxorubicin under anaerobic
conditions, and demonstrated that this bacterium deglycosylates doxorubicin into the
metabolites 7-deoxydoxorubicinol and 7-deoxydoxorubicinolone by the reductive deglyco-
sylation mechanism. Subsequently, doxorubicin was anaerobically degraded by Klebsiella
pneumoniae and Escherichia coli [85].

Paclitaxel, another chemotherapeutic agent used in the treatment of endometrial
cancer, has neurological side effects, producing peripheral neuropathies. Ramakrishna et al.
proposed that Paclitaxel lowers beneficial bacteria levels such as Akkermansia muciniphila
which promotes barrier function. In addition, they observed that the Porphyromonadaceae
family is involved in the dysbiosis produced by Paclitaxel, which, in turn, has been
implicated in neurological damage produced in glial cells [88] (Table 3).

6.3. Radiotherapy

Radiation therapy is an effective method of antitumour treatment, based on the geno-
toxic effect on tumour cells, and through which cell death is induced by local irradiation,
accompanied by systemic immunity and inflammation [89]. However, irradiation-mediated
intestinal toxicity was observed in several cases, which involves an alteration in the compo-
sition of the microbiota, and leads to dysfunction of the intestinal barrier and apoptosis in
intestinal crypts [90]. Yan et al. identified two soluble proteins produced by Lactobacillus
rhamnosus, p75 and p40, which induce the activation of the AKT signalling pathway by
stimulating cell proliferation, and inhibit the apoptosis induced by tumour necrosis factor,
in epithelial cells. In addition to Lactobacillus rhamnosus, Lactobacillus casei and Lactobacillus
acidophilus have also been shown to have protective roles in minimizing the damage caused
by radiation therapy [91]. Ciorba et al. also found that administration of Lactobacillus
rhamnosus before radiotherapy decreases epithelial apoptosis and stimulates crypt survival
in mice guts. The cell wall of this bacterium, like all Gram-positive bacteria, is composed of
peptidoglycan and lipoteichoic acids which act as Toll-like receptor-2 (TLR-2) ligands. The
activation of TLR-2 leads to COX-2 expression and reactive oxygen species (ROS) produc-
tion to activate the cytoprotective system NRF-2, a transcription factor that regulates the
expression of detoxifying and antioxidant enzymes, thereby contributing to the protection
of intestinal cells from damage caused by radiotherapy [92].

While Ciorba et al. did not find any radioprotective effect of Bifidobacterium [92], Delia
et al., in a previous study, proved that VSL3, a mixture comprised of Lactobacillus (Lactobacil-
lus casei, Lactobacillus plantarum, Lactobacillus acidophilus, and Lactobacillus delbrueckii subsp.
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bulgaricus), Bifidobacteria (Bifidobacterium longum, Bifidobacterium breve, and Bifidobacterium
infantis), and a species of Streptococcus salivarius subsp. Thermophilus, reduced the toxicity
(diarrhoea) produced by radiotherapy [93] (Table 3).

6.4. Targeted Therapy

Recently, in addition to the previously mentioned traditional therapies, targeted
molecular therapies have proven to be of essential importance in improving the long-term
survival of cancer patients with specific biomarkers [94]. Trastuzumab, an FDA-approved
drug which contains monoclonal antibodies targeting the HER-2 receptor extracellular
domain, is being tested for endometrial cancer, because in serous endometrial carcinoma
the HER-2 gene, which is responsible for the increase of cell proliferation, differentiation,
and migration, is overexpressed [11]. Recently, Di Modica et al. analysed the gut microbiota
composition of a group of breast cancer patients who responded favourably to adjuvant
treatment with Trastuzumab. They found that in those patients with favourable results
in response to treatment, Clostridiales (Lachnospiraceae), Bifidobacteriaceae, Turicibacteraceae,
and Bacteroidales (Prevotellaceae) predominated, while in the other group of patients who
did not respond to treatment, an enrichment in the phylum Bacteroidetes (Bacteroidia) was
observed [95].

Erlotinib and gefitinib, two epidermal growth factor receptor (EGFR) and tyrosine
kinase inhibitors, have also been tested in patients with endometrial cancer, as EGFR is
overexpressed in 40–46% of Type I endometrial carcinoma cases, and in 34% of Type II
endometrial carcinomas [11]. Flórez el al. demonstrated that 34 species of lactic acid
bacteria, Bifidobacteria, and other intestinal bacteria are resistant to treatment with erlotinib
and gefitinib, so that the abundance of these species was not altered after treatment [96].

Letrozole, an aromatase inhibitor that inhibits the production of local and circulating
estrogens, has also been used in clinical trials as a treatment for endometrial cancer [97].
Cao et al., in a study with mice, found that Letrozole treatment produces a decrease in the
Firmicutes/Bacteroidetes ratio, contributing to a decrease in inflammation. Furthermore,
in the same study, it was observed that Letrozole altered the diversity of the intestinal
microbiota in mice, significantly decreasing Ruminococcaceae levels [98] (Table 3).

6.5. Toxicity

It is evident that the intestinal microbiota can modulate the response to different
antitumour treatments. However, in turn, the microbiota is itself altered in response to
treatment [99]. Treatment of endometrial cancer can cause several symptoms in patients,
one of which is vaginal atrophy, caused by cell damage as a result of radiation therapy.
Patients with vaginal atrophy have less Lactobacillus, the first line of defense in the female
urogenital tract. Damage to the vaginal epithelium caused by radiation therapy allows
pathogens to penetrate the epithelium and causes inflammation that ultimately contributes
to vaginal atrophy [100].

Chemotherapy, in turn, causes several side effects in patients, including gastrointesti-
nal mucositis, which results in several symptoms in patients, such as nausea, diarrhoea,
vomiting, and abdominal pain. Gastrointestinal mucositis is a lesion characterized by
atrophy of the villi and the loss of enterocytes, which leads to epithelium deterioration and
gut-barrier alteration [101]. Gut microbiota has been implicated in many of the pathological
aspects of gastrointestinal mucositis caused by chemotherapy. After chemotherapy, the per-
meability of the intestinal mucosa increases due to the atrophy of the villi as a consequence
of gastrointestinal mucositis. However, intestinal microbiota, especially Bifidobacteria and
Lactobacillus, improves the functioning of the epithelial barrier, reducing its permeability
by binding to TLR-2 receptors, which leads to protein kinase C phosphorylation and the
production of proteins that form tight junctions. The levels of these bacteria and others
involved in maintaining the normal permeability of the epithelial barrier (Faecalibacterium,
Ruminococcus, Coprococcus, Dorea, Lachnospira, Roseburia, Clostridium and Bifidobacterium)
decrease after chemotherapy, which explains the increased permeability of the intesti-
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nal mucosa as a result of mucositis [101,102]. Additionally, in another study, Montassier
et al. noticed a decrease in both the number and diversity of intestinal microbiota after
chemotherapy, which is associated with an increase in Bacteroides, Enterococci, and En-
terobacteriaceae, and a decrease in Firmicutes (Ruminococcaceae, Lachnospiraceae) and
Actinobacteria (Bifidobacterium). In the same study, they showed that bacteria that modulate
the NF B signalling pathway to decrease the inflammatory response, such as Faecalibac-
terium, Ruminococcus, Coprococcus, Dorea, Lachnospira, Roseburia and Clostridium, decreased
after chemotherapy, as did Bifidobacterium, whose function under normal conditions is to
inhibit the inflammatory response. The decrease in these bacteria, which are also butyrate
producers, implies a decrease in the production of short-chain fatty acids, and consequently
the inflammatory response is not inhibited. Intestinal mucosa composition is also altered
after chemotherapy. As a result of the reduction of butyrate-producing bacteria, butyrate is
not produced, and therefore, mucin synthesis via MUC2 is not stimulated, which leads to
tissue damage and translocation of bacteria due to alterations in the composition of the
intestinal mucosa.

Conversely, an increase in Citrobacter was observed after chemotherapy. This bac-
terium stimulates NFB production and therefore stimulates the inflammatory response.
In addition, it also participates in intestinal barrier degradation, using mucinases and
glucosidases to digest mucin [101] (Table 3).

7. Modulation of Endometrial Microbiota

Commensal bacteria can protect their host from pathogen infections due to their
ability to better adapt to the environment than pathogens, which allows them to compete
successfully. In addition, they make better use of the available nutrients, leaving the
pathogens without an energy source [103]. Consequently, there is a growing interest in
modulating the endometrial microbiome composition and environment to break dysbiosis
and prevent endometrial diseases.

Probiotics are live microorganisms that confer health benefits to their host. These
bacteria can produce bioactive molecules that act on the body, promoting good health, with
low toxicity and few side effects. Most of the studies carried out selected the Lactobacillus
rhamnosus BPL005 strain as the best candidate to improve the female reproductive tract,
due to its capacity in-vitro to reduce pH levels and produce organic acids such as lactate,
which promotes the reduction of pathogenic bacteria [104]. Chenoll et al., with the aim of
investigating whether strain Lactobacillus rhamnosus BPL005 could have beneficial effects
against endometrial infections caused by pathogens, used human endometrial epithelial
cells (HEEC) co-cultured with pathogenic bacteria (Atopobium vaginae, Gardnerella vaginalis,
Propionibacterium acnes, and Streptococcus agalactiae) alone, and in combination with the
strain Lactobacillus rhamnosus BPL005. The study showed that in the HEEC cells cultured
with the strain Lactobacillus rhamnosus BPL005, there was a reduction of the pH, being
less than 5. This low pH limits the growth of pathogens and inhibits their adhesion to
endometrial cells. Another finding confirmed that Lactobacillus rhamnosus BPL005 decreased
the levels of some metabolites like propionic acid produced by Propionibacterium acnes
(linked to symptomatic bacterial vaginosis profiles) in endometrial cell cultures, leading
to a drift towards a healthy organic acid profile. Furthermore, lactic acid produced by
Lactobacillus rhamnosus BPL005 had a bactericidal effect against pathogen colonization
in HEEC cells. These effects on pH and organic acid production were considered to
be pathogen inhibition pathways to decrease pathogen colonization. Additionally, the
Lactobacillus rhamnosus BPL005 strain produced bacteriocins, further protecting against
vaginal pathogens [105].

Female genital microbiota modulation could also be used to protect against infection.
Bacterial vaginosis is linked to endometrial microbial colonization, and a recent study
found a polymicrobial Gardnerella vaginalis biofilm in the uterus of women with bacterial
vaginosis [106]. The addition of the Lactobacillus rhamnosus BPL005 strain to HEEC cells
colonized by pathogens increased proinflammatory cytokines such as IL-1RA and IL-
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1β, and decreased the proinflammatory IL-6, IL-8, and MCP-1 cytokines, which were
previously increased due to the pathogens’ presence [105].

Recent studies have also shown that probiotic lactobacilli (Lactobacillus reuteri RC-14
and Lactobacillus rhamnosus GR-1) can improve endometrial epithelial cells’ barrier- function
in response to the human immunodeficiency virus-1 (HIV-1). These bacterial strains are
able to modulate the immune profile, indicating that female reproductive tract microbiota
could be an important factor in the acquisition of resistance to viruses [107].

Prebiotics are compounds that serve as nutrients and promote the growth and activity
of beneficial microorganisms with the aim of enhancing health. Lactoferrin is a prebiotic
agent used to modify the endometrial microbiome. Lactoferrin, orally administrated
during and after antibiotics treatment in women undergoing infertility treatment, can
increase Lactobacillus levels in the endometria of non-Lactobacillus dominant patients after
three months of use [108]. In addition, Lactoferrin administration showed effective results
against bacterial vaginosis, preventing endometrial infections [104].

The use of prebiotics and probiotics can provide greater benefits than the use of
antibiotics alone, which produces short-term results but which aggravates dysbiosis and
promotes resistance over the long-term.

Finally, vaginal microbiota transplants (VMTs) (the transfer of cervicovaginal fluid
from a healthy donor to a patient to restore their microenvironment) to patients suffering
from symptomatic and recurrent vaginosis as a therapeutic alternative has shown positive
treatment outcomes [109]. Currently, two Phase I/II clinical trials in the USA (NCT03769688
and NCT04046900) and one in Israel (NCT02236429) are recruiting participants to analyse
the efficacy and safety of VMTs in women with bacterial vaginosis.

VMTs could be an effective tool for managing endometrial dysbiosis, as uterine
colonization by microorganisms through vaginal-cervical ascension has been described
previously [110,111].

VMTs could be used to modulate the vaginal microbiome by restoring the microenvi-
ronment for the prevention of endometrial cancer. Nevertheless, future studies with larger
cohorts and randomized, placebo-controlled studies will be necessary to determine the
efficacy and durability of VMTs for endometrial cancer prevention.

8. Conclusions

Due to the importance of the microbiome in many human physiological processes and
recent advances in highly sensitive molecular techniques which facilitate the identification
of microorganisms, several emergent studies have shown interest in investigating the rela-
tionship between gut and endometrial microbiome in endometrial cancer, one of the most
common cancers in women worldwide, which occurs more frequently after menopause.
There is evidence that the presence of both Atopobium vaginae and Porphyromonas somerae
in the gynaecological tract is statistically related to endometrial cancer, particularly when
vaginal pH is high. In endometrial cells, these two bacteria can also induce the production
of IL-1α, IL-1β, IL-17α, and TNFα, pro-inflammatory cytokines which are involved in the
carcinogenesis of various tumours. Because endometrial cancer is estrogen-dependent, an
excess of estrogen in the body is considered to be an important risk factor for endometrial
cancer. In this context, estrobolome (an aggregate of enteric bacterial genes whose products
are capable of metabolizing estrogens) plays a fundamental role. These bacteria with
β-glucuronidase activity can activate conjugated estrogens, transported from the liver to
the intestine, though deconjugation. Consequently, estrobolome dysbiosis can lead to an
estrogen increase, contributing to carcinogenesis. The microbiome is also involved in the
body’s response to treatment, so it can alleviate some of the side effects of various antitu-
mour therapies and reduce their toxicity. However, the microbiome can also be altered
in response to treatment. Due to the implication of the microbiome in various processes
such as inflammation, estrogen metabolism, carcinogenesis, and antitumour treatments,
we can conclude that modulating gut and endometrial microbiome in combination with
traditional endometrial cancer treatments may provide an alternative method to achieve
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better antitumour therapy results and improve patient living conditions. Further research
into metagenomic analysis in endometrial cancer is needed to improve our knowledge of
this topic and to discover novel markers with therapeutic implications.
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Abstract: The oral microbiome is receiving growing interest from the scientific community, as the
mouth is the gateway for numerous potential etiopathogenetic factors in different diseases. In
addition, the progression of niches from the mouth to the gut, defined as “oral–gut microbiome
axis”, affects several pathologies, as rheumatic diseases. Notably, rheumatic disorders (RDs) are
conditions causing chronic, often intermittent pain affecting the joints or connective tissue. In this
review, we examine evidence which supports a role for the oral microbiome in the etiology and
progression of various RDs, including rheumatoid arthritis (RA), Sjogren’s syndrome (SS), and
systemic lupus erythematosus (SLE). In addition, we address the most recent studies endorsing the
oral microbiome as promising diagnostic biomarkers for RDs. Lastly, we introduce the concepts
of artificial intelligence (AI), in particular, machine learning (ML) and their general application for
understanding the link between oral microbiota and rheumatic diseases, speculating the application
of a possible AI approach-based that can be applied to personalized medicine in the future.

Keywords: oral microbiota; microbiome; rheumatology diseases; biomarkers; artificial intelligence;
machine learning; rheumatoid arthritis; Sjogren’s syndrome; systemic lupus erythematosus

1. Introduction

The human body is a symbiotic ecosystem containing trillions of microorganisms
classified into the domains of the Eukarya (and their viruses), Bacteria, Archaea. These
communities have been named as microbiota, while the term microbiome describes either
the collective genome of the microorganisms that reside in an environmental niche. The
microbiota is on all surfaces of our body exposed to the external environment, from the
respiratory to the gastrointestinal and urogenital tract.

A balanced composition of the microbiome is of paramount significance, influencing
healthy and pathological states through many biological activities as regulation of metabolic
processes, energy extraction, defense from pathogenic microorganisms, production of
vitamins, and modulation of the immune system [1–4]. A healthy microbiome is described
by high diversity, while the loss of variety may lead to “dysbiosis”, a crucial condition of
disequilibrium between pathogenic and commensal bacteria. Human microbiota has been
studied in several tissue sites as skin, oral, subgingival, nasal, lung, and vessels.
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Currently, the oral microbiome is receiving growing interest from the scientific com-
munity, as the mouth is the gateway for different potential etiopathogenetic factors in
numerous diseases. Thus, also the commensal oral microbiome has an important role in the
maintenance of oral and systemic health. Due to the abundance of nutrients, the human
oral cavity represents an ideal habitat for the most varied and distinctive communities of
microorganism in the human body, however, to date, these communities remain relatively
understudied as compared to the gut ones [3,5]. The ecological oral niche consists of
five distinct areas: saliva, teeth, tongue, gingival sulcus and periodontal pocket, and the
remaining oral mucosa. Concerning the microbiota composition of the oral niches, it has
been observed that the mouth bacterial microflora is organized as a highly interconnected
chain of microbiomes across the human body, creating a kind of micro-biosphere, com-
posed of small multiple ecological niches with different groups of microorganisms [6]. The
progression of niches from the mouth to the intestine is defined as “oral–gut microbiome
axis”, rather that the oral microbiome alone, it is the complexity of the interrelationships
between the different microbiomes through this axis that affects the healthy status. How-
ever, transfer of oral bacteria to the gut is therefore common. Members of the oral and
oropharyngeal microbiota reach the gut through swallowed saliva, nutrients, and drinks.

Multiple reports on the composition of the microflora within the oral niches show
higher levels of the genus Corynebacterium in gingival plaques [7] and higher levels of
the phylum Firmicutes in buccal mucosa and saliva [8]. In addition, fungi have also been
detected as members of the healthy oral microbiota (belonging to the oral Mycobiota) [9].

It has been observed that several factors are the main causes for oral microflora
dysbiosis, including poor oral hygiene, dietary habits, gingival inflammation, dysfunction
of the salivary glands, smoking, genetic difference [10,11]. In addition, changes in the
salivary concentration of nutrients, oxygen, and pH can induce the selection of different
microorganisms involved in the formation of their own niche via biofilm development or
nutrient metabolism [12]. However, a dysbiotic oral microbiome is involved in a number of
oral infectious diseases, such as periodontitis, dental caries, alveolar bone loss, endodontic
infection, and tonsillitis [13], and finally seem to be involved in pathogenesis of more
systemic diseases [14–16]. It has been speculated that the dysbiosis in the oral cavity is
guided by “keystone pathogens”, which can regulate community microbiome variations.
Due to the high vascularity of the mouth and the manipulation of a host response, the
dysbiotic oral microflora can influence the activities at other body districts. As previously
cited, this condition suggests potential implications of the oral microbiome not only in oral
diseases but also in a number of systemic pathologies [17–19] and notably, several cancer
types [20]. Recently, many scientists have focused on the potential role of the commensal
bacteria in the pathogenesis of systemic autoimmune diseases as rheumatic diseases (RDs).

2. The Oral Microbiome in Rheumatic Diseases

The etiopathogenesis of systemic autoimmune diseases is still almost unknown, but
a complex interplay of environmental and genetic factors associated at stochastic events
lead to loss of immunological tolerance and autoimmunity [21]. Numerous advances in
understanding RDs pathogenesis have provided a mechanistic framework for studying
host–microbiota interactions and candidate pathobionts. The gut microbiome is the most
deeply evaluated also in RDs but several studies of the human skin, oral, subgingival, nasal,
lung, and vascular microbiota suggest that dysbiosis is a common feature across rheumatic
diseases, in particular, rheumatoid arthritis (RA), connective tissue diseases, and primary
vasculitides and it might impact their symptoms and disease course [22] (Figure 1).

The introduction of high-throughput methods in microbiome analysis like sequencing
of 16S rRNA, NGS (Next Generation Sequencing), and metabolomics gave the possibilities
for large cohort studies which showed that microbiota may have a protective, neutral, or
provocative role in the context of autoimmunity as Yurkovetskiy et al. pointed out [23].
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Figure 1. The dysbiosis of oral microbiome in rheumatic diseases.

For example, commensals may have direct effects as the well established molecular
mimicry that may be a potential ligand to autoimmunity through the existence of non-
selective T cell receptors with cross-reactivity to self-antigens [23–25].

Moreover, in recent years, saliva analysis has also played a central role in the defini-
tions of biomarkers for the diagnosis, prognosis, and treatment of oral and systemic disease.
Recent advances in salivary biomarker diagnostics have broadened the discovery of mi-
crobial pathogens associated with systemic and oral diseases [26]. While host biomarkers
are subjected to individual biological variation, oral microbiome is relatively conserved
among unrelated individuals. Indeed, the analysis of the oral microbial changes could be
considered in the future as a screening biomarker also for rheumatic diseases, leading to a
personalized medicine approach. In this review, we will focus on the oral–gut microbiota
axis and we will evaluate the most recent studies endorsing it as a promising diagnostic
biomarker for RDs; in addition, we will explore new perspectives in microbiome research
trough a machine learning approach.

3. Oral Microbiome and Rheumatoid Arthritis

Rheumatoid arthritis (RA) is a systemic chronic autoimmune inflammatory disease
characterized by destruction of bone in multiple joints and auto-antibody production such
as rheumatoid factor and in particular, anticitrullinated protein antibodies (ACPAs), the
most powerful and earlier diagnostic biomarkers [27–29]. Periodontal disease (PD) and
tobacco use seem to be related to ACPA production, RA etiopathogenesis still remains
unclear. The idea that oral microbiota is involved in inducing or driving of RA progression
is supported by the high frequency of periodontal inflammatory disorders in RA patients
and its association with anti-CCP antibody levels [30] (Figure 2).

In addition, animal models have reported that RA alters, qualitatively and quantita-
tively, the oral microbiome, highlighting the bidirectional link between host and micro-
biota [31]. The discovery that post-translational protein citrullination primarily determines
autoantibody reactivity in RA has clarified microbial contributions to its pathogenesis [32].

Periodontitis is characterized by a chronic inflammation caused by oral bacteria and
leucocyte infiltration with progressive destruction of the alveolar bone and it seems to
share the same pathogenetic mechanisms with RA: accumulation of leucocyte infiltration,
release of inflammatory cytokines, and mediators such as prostaglandin E2 (PGE2), tumour
necrosis factor (TNF)-α, and several other citokines, such as interleukin (IL)-1b, IL-6, IL-17,
IL-33, IL-12, IL-18r [33]. In a recent study, salivary cytokine analysis showed that IL-17
was markedly increased in RA patients with periodontitis, but not periodontitis without
RA [34].
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Figure 2. Genetic and environmental factors involved in the pathogenesis of rheumatoid arthritis.

P. gingivalis is considered the keystone pathogen in periodontitis and the most ex-
tensively studied in RA and it was found to deregulate local immune responses and to
promote dysbiosis. The clinical association of P. gingivalis and RA has been investigated by
many studies, most commonly by molecular detection of bacterial DNA from plaque or
gingival crevicular fluid, or by bacterial culture, by measuring serum antibody reactivity
and its role in the development of experimental arthritis, has been explored in animal
models [35,36]. P. gingivalis was first proposed as a crucial agent in RA onset, expressing
a bacterial protein arginine deiminase (PPAD) that can citrullinate free L-arginine and
C-terminal arginine residues in cleaved peptides [37]. C-terminal citrullination of both
bacterial and host protein has been hypothesized to break immunological tolerance and
initiate the ACPA response in RA [38]. Sato et al. [39] also showed that P. gingivalis exacer-
bate arthritis by modulating the gut microbiota and increasing the proportion of Th17 (T
helper 17) cells in mesenteric lymph nodes. Another proof of the link between RA and oral
inflammation is the evidence that the treatment of periodontal disease may improve RA
symptoms [40].

Furthermore, microbiome of periodontally healthy individuals with and without
RA has been evaluated. The subgingival microbiota differed significantly between RA
and healthy individuals. In the absence of periodontitis, Porphyromonas gingivalis and
A. actinomycetemcomitans did not differ significantly between groups [41]. In contrast, Cryp-
tobacterium curtum was increased in RA patients [35]. Aggregatibacter actinomycetemcomitans,
a periodontal bacterium, was recently proposed to connect periodontitis to RA for its ability
to induce citrullinated autoantigens through the bacterial pore-forming toxin leukotoxin
A (LtxA), which is its primary virulence factor [42]. LtxA induces the citrullination of a
wide range of RA autoantigens which are subsequently released by the dying neutrophil
in a process that is reminiscent of NETosis but is biologically distinct. Exposure to A. actino-
mycetemcomitans by anti-LtxA antibody reactivity was observed in a large RA subset [42],
a finding that has been replicated in an independent Dutch cohort [43,44]. HLA-DRB1
shared epitope risk alleles associated with ACPAs only in RA patients with evidence of
A. actinomycetemcomitans exposure, suggesting that LtxA-induced protein citrullination
may play a role in ACPA production in genetically susceptible subjects [42].

Several other bacteria have been implicated in RA pathogenesis. Recently, Brusca
et al. [45] found that there were more organisms besides P. gingivalis which cause periodon-
tal disease (i.e., Anaerglobus geminatus and Prevotella/Leptotrichia) and were linked to the
ACPA presence.

In the oral flora, bacteria such as P. intermedia/Tannerella forsythia were found and
high titers of antibodies against these microorganisms have been detected in the serum
and synovial fluids of RA patients [46]. Otherwise, IgG antibodies to P. intermedia and
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C. ochracea were found to be associated with a lower RF prevalence [47,48]. Oral microbiota
seems to have a crucial role not only in RA pathogenesis but also in exacerbation of
joint involvement and in treatment response. In fact, it has been shown that dysbiosis
may exacerbate arthritis through the oral inoculation of P. gingvalis using animal models,
even if the mechanism underlying the exacerbation is not entirely elucidated [49]. In a
collagen-type II experimental arthritis in mice, periodontitis caused by P. gingivalis and
Provotellanigrescens exacerbated arthritis through TLR2-dependent antigen-specific Th17
immune response [49].

Regarding oral microbiota in early RA patients compared to those with advanced
phases, Wolff et al. showed that patients with early RA showed a high PD prevalence
at disease onset [50] and that microbiota of their subgingival biofilm was similar to that
of patients with chronic RA. Scher JU et al. reported that the subgingival microbiota in
patients with new-onset RA was distinct from healthy controls [51].

Prevotella and Leptotrichia were found in subgingival microbiota from new-onset RA
patients but not from healthy controls and this was unrelated to periodontal disease. The
abundance of P. gingivalis was directly associated with periodontitis severity but it did
not correlate with ACPAs, while Anaeroglobus geminatus correlated with ACPAs and the
rheumatoid factor [52]. Zhang et al., in a large Chinese study, demonstrated that changes
in the dental, saliva, or gut microbiome identified RA patients from healthy controls. In
particular, treatment-naive RA patients had an increased abundance of Lactobacillus salivar-
ius in the microbiota of all three sites, in particular those with high disease activity [53],
while Haemophilus species were depleted in RA patients and negatively correlated with
serum levels of autoantibodies.

Mikules et al. showed that dysbiosis was partially resolved following treatment with
disease modifying anti-rheumatic drugs [54], further stressing the bidirectional crosstalk
between the microbiota and their hosts. Interestingly, Ceccarelli et al. demonstrated a
significant association between the percentage of P. gingivalis on the total tongue biofilm
and RA disease activity (DAS28) [55].

Furthermore, studies have shown that RA patients have altered gut and mouth
microbiomes that are partly normalized after disease modifying antirheumatic drugs
(DMARDs) and could predict response to treatment [56]. Zhang, X. et al. showed that
patients that responded well to treatment were characterized by a greater number of
virulence factors before treatment and also by the reduction in Holdemania filiformis and
Bacteroides sp. after treatment. They also reported that the effect on the gut microbiome
was moderate compared to the oral microbiome [53].

4. Link between Oral Microbiome and Sjogren’s Syndrome

Sjogren’s syndrome (SS) is an autoimmune disease characterized by autoantibody
production (frequently directed against ribonucleoproteins TRIM21/Ro52/SS-A, Ro60,
and La/SS-B), destruction of exocrine glands (in particular, salivary and lacrimal) by
lymphocytes, and of extraglandular epithelial tissues [57]. SS can co-exist or pre-exist
with other RD and then, it is known as secondary Sjogren’s syndrome. Exocrine glands
infiltration causes a reduction of production of saliva and tear film, leading to an alteration
of mucosal barrier function and favoring dysbiosis and colonization with pathobionts [58].
From a clinical point of view, the most frequent symptoms are dryness of mouth and eyes
while extraglandular manifestations include arthritis, peripheral neuropathy, cutaneous
vasculitis, respiratory dysfunction, and tubulointerstitial nephritis [59]. The condition of
dry mouth imposes a very significant burden on many oral functions, such as speaking
and eating, reducing greatly the life quality of patients but also making patients at a
considerable risk for severe oral and dental diseases. However, SS is considered benign,
even patients have an increased risk of developing lymphoma. Genetic predisposition
and environmental factors are the most important etiopathogenetic SS factors [60], but, as
recently suggested, also the dysbiosis may play a significant role in SS pathogenesis. Oral
and gut microbiome in SS have been explored to evaluate a possible interplay between
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human microbiome and SS clinical manifestations and disease severity. In fact, SS alters
the saliva composition, which in turn induces alterations in the oral microbiome, certain
organisms e.g., Capnocytophaga, Dialister, Fusobacterium, Helicobacter, Streptococcus, and
Veilonella were found in abundance in SS, while Porphyromona sgingivalis and Actinobacillus
actinomycetemcomitans were not detected in any SS patient [61]. On the other hand, it has
been hypothesized that dysbiosis and bacterial translocation propagate local and systemic
inflammation, modulating SS severity (Figure 3).

Figure 3. Oral dysbiosis in Sjogren’s syndrome.

In recent years, there have been five studies focused on SS microbiome and exploring
different oral niches: one each from saliva [62], tongue [63], and oral washings [64] and
two from buccal mucosa [65]. Interesting results have been reported on oral microbiota
composition in primary SS (pSS). Van der Meulen et al. [14] examined the bacterial compo-
sition by 16S rRNA sequencing of the oral microbiome in 37 pSS patients, 86 non-SS sicca
patients, and 24 healthy controls. They found that buccal mucosa microbiome of pSS and
non-SS sicca patients differed from healthy controls, with a higher Firmicutes/Proteobacteria
ratio observed in both SS and non-SS sicca patients. These data highlight how oral dryness
may favor dysbiosis. In a similar study, evaluating chewing-stimulated whole saliva Por-
phyromonas endodontalis, Prevotella intermedia, Fusobacterium nucleatum vincentii, Streptococcus
intermedius, Tannerella spp., and Treponema spp. were only detected in the context of oral
dryness (SS and non-SS sicca patients), while Porphyromonas pasteri showed increased
abundance in healthy controls [66]. De Pavia et al. found that patients with primary
SS had increased levels of Lactobacillus spp., S. mutans, and Candida albicans within their
supragingival plaque samples. Samples from the oral mucosa and tongue also showed
increased prevalence of Staphylococcus aureus and Candida albicans. The greatest shift in
microbial differences was observed in patients who had a saliva reduction [63]. Further-
more, increasing evidence suggests a role for cross-reactivity of commensal oral and gut
bacteria with SSA/Ro60 in the SS etiopathogenesis [67]. The key role of activated B cells has
been established in the pathogenesis of Sjogren’s syndrome. Their activation leads to the
production of autoantibodies and hypergammaglobulinemia seen in some SS patients [68].
Moreover, it has been demonstrated that the von Willebrand factor type A, a microbial
protein shared by different commensal oral/gut bacteria, could activate Ro60 reactive T
cells, promoting autoantibody responses against Ro60. In fact, Corynebacterium amycolatum
has been shown to colonize the lacrimal duct, making C. amycolatum Ro60 a candidate
ortholog for the development of anti-Ro60 antibodies in SS [69].
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It is possible that a dysregulated immune response against the normal microbiome
can be one of the potential pathways starting the autoimmune responses in SS. Considering
that oral infections are a common problem in SS patients, this pathway might also be
involved in amplification of autoimmune responses in this disease [70]. However, whether
oral dysbiosis is merely a consequence of oral dryness and decreased antimicrobial prop-
erties of saliva or an active driver of systemic and target tissue inflammation in patients
with SS is still unknown. The microbiome of the buccal mucosa is not specific enough
for pSS and therefore not useful for characterizing SS patients in clinical practice. It is
unlikely that one specific bacterial taxon in the buccal mucosa microbiome is involved in
SS etiology. Regarding the gut microbiota, Moon J et al. showed that gut dysbiosis was
partly correlated to dry eye severity [71]. Furthermore, SS showed significant gut dysbiosis
compared to controls and environmental dry eye syndrome, while dry eye patients showed
compositional changes of gut microbiome somewhere in between Sjögren’s syndrome and
controls. Cano Ortiz et al. demonstrated that the SS patients had gut dysbiosis associated
with increased serum levels of proinflammatory cytokines including IL-6, IL-12, IL-17, and
TNF-alpha (systemic inflammation) and zonulin (intestinal permeability) that resulted in
increased systemic microbial exposure [72].

5. Oral Microbiome on Systemic Lupus Erythematosus

Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease affecting
multiple organs, particularly in females of childbearing age. SLE is characterized by
loss of tolerance to various self-antigens with autoantibody production to nuclear and
cytoplasmic antigens and immune complex deposition, reflecting dysregulation of both the
innate and adaptive immune systems [73]. Among clinical features, oral manifestations are
common (in 5–40% of cases) and often are the first SLE manifestation [74]. A recent study
suggested that the local oral microenvironment is involved in the development of oral
SLE lesions and/or systemic lesions [70]. Among environmental factors implicated in SLE
pathogenesis, the role of the microbiome has gained increasing interest in the last years.
Gut microbiota has been shown to be associated with an imbalance in the proportions of
Th17 and Treg cells [75] in SLE patients while the potential participation of oral microbiome
remains elusive.

Moreover, intestinal dysbiosis has been demonstrated, consisting of an imbalance
of specific gut flora in SLE patients compared with healthy controls (with a significantly
lower Firmicutes/Bacteroidetes ratio and an associated over representation of oxidative
phosphorylation and glycan utilization pathways) [76].

Furthermore, it has been recently shown that a mechanism through which the bacteria
may drive autoimmunity in SLE is by the production of amyloid–DNA complexes, which
can trigger an immune cascade involving TLR9 stimulation, IFNs type 1 transcription, and
antinuclear antibody production [77].

Nonetheless, the frequent and early involvement of the oral mucosa in SLE suggests
that the local oral microenvironment may participate in the development of oral SLE
lesions and/or may contribute to systemic involvement through the generation of circu-
lating autoantibodies against oral microbial products. In addition, the viral infections
(i.e., EBV and CMV) that have been implicated in SLE pathogenesis may also arise in
the oral cavity. Li et al. found that in SLE patients, the oral microbiota was inbalanced
and diversity was reduced but no difference was found between new-onset and treated
SLE patients. The abundances of Lactobacillaceae, Veillonellaceae, and Moraxellaceae were
increased in patients with systemic lupus erythematosus, whereas those of families were
decreased, such as Corynebacteriaceae, Micrococcaceae, Sphingomonadaceae, Halomonadaceae,
Xanthomonadaceae [78].

Finally, the genus Veillonella was found to be increased in SLE patients with oral
ulcers. A recent study showed that the genera Haemophilus and Veillonella were among
the main members of the oral microbiota in healthy adults [79]. Additionally, Haemophilus
parainfluenzae was abundant in patients with Behçet’s disease [80]. The expression of
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oral ulcers in these autoimmune diseases may be related to overabundance of the genera
Veillonella and Haemophilus in the oral environment.

SLE is also associated with alterations of gut microbiota. Fecal microbiome from SLE
mice can induce the production of anti-dsDNA antibodies in germ free mice and stimulate
the inflammatory response, and alter the expression of SLE susceptibility genes in these
mice. The Firmicutes-to-Bacteroidetes ratio has been demonstrated to be consistently reduced
in SLE patients, regardless of ethnicity. The relative abundance of Lactobacillus differs
from the animal model used (MRL/lpr mice or NZB/W F1 mice). This may indicate that
interactions between gut microbes and the host, rather than the enrichment of some gut
microbes, are especially relevant for the SLE development. Enterococcus gallinarum and
Lactobacillus reuteri, both of which are possible gut pathobionts, become translocated into
systemic tissue if the gut epithelial barrier is impaired. The microbes then interact with
the host immune systems, activating the type I IFN pathway and inducing autoantibody
production. In addition, molecular mimicry may critically link the gut microbiome to
systemic lupus erythematosus. Gut commensals of SLE patients share protein epitopes
with the Ro60 autoantigen. Ruminococcus gnavus strain cross-reacted with native DNA,
triggering an anti-double-stranded DNA antibody response [81]. Expansion of R. gnavus
in SLE patients is paralleled to an increase in disease activity and lupus nephritis. Such
insights into the link between the gut microbiota and SLE enhance our understanding of
SLE pathogenesis and will identify biomarkers predicting active disease.

6. Oral Microbiota as Promising Diagnostic Biomarkers for Rheumatology Diseases

With the improvement in NGS tools available to investigators, we have a greater
understanding of the dysbiotic oral microbiome diversity and its effect on a number of
systemic pathologies, indicating the potential of oral microbiota as a non-invasive diag-
nostic tool. In general, the oral cavity would be an ideal site for analyzing biomarkers
because samples are comparatively easy to obtain. Indeed, saliva is a non-invasive col-
lection method that does not cause discomfort and pain to patients. To analyze the oral
microbiome, each oral micro-habitat has to be sampled with an adequate methodology.
For oral mucosa, the use of nylon sterile microbrushes [20,82] and sterile brushes [83]
have been reported. Sterile Gracey curettes are used for teeth hard tissues [84] or plaque
sampling on endodontics paper cones [85], sterile toothpicks [86], sterile microbrushes,
and floss [86]. For saliva sampling, non-stimulated saliva [87] has been used, but other
studies rather used oral rinse (saliva after rinsing), to obtain a higher fraction of microbes
possibly adhered to oral surfaces [88].

Previous studies reported the possibility of clinical use of oral bacteria in various kinds
of tumors such as pancreatic cancer, lung cancer, esophageal [89], and oral cancers [90,91].
Regarding rheumatology diseases, [53] as previously reported, recent studies suggest that
RA has a correlation with oral microbiome and may be affected by its dynamic variations.
A new research study of 2018 may provide the impetus for a RA diagnostic testing via
biomarkers identified in the oral microbiome [92]. The investigators compared the oral
microbiota profiles of RA patients, osteoarthritis (OA) patients, and healthy subjects,
which showed significant differences between RA patients, OA patients, and the healthy
controls. Using the information on the structural changes in the oral microbiota, eight
oral bacterial biomarkers were identified to differentiate RA from osteoarthritis, notably
Actinomyces, Neisseria, Neisseria subflava, Haemophilus parainfluenzae, Haemophilus, Veillonella
dispar, Prevotella, and Veillonella. This report provides proof of oral microbiota as an
informative source for discovering non-invasive biomarkers for arthritis screening.

In a very recent study, saliva samples were collected from RA high-risk individuals,
who were positive for ACPA and have no clinical arthritis, from RA patients and healthy
controls [93]. In the “pre-clinical” stages, salivary microbial diversity was significantly
reduced compared to RA patients and healthy controls. Individuals at high-risk for RA
showed a reduction in the abundance of genus Defluviitaleaceae_UCG-011 and the species
Neisseria oralis, but an expansion of Prevotella_6. Interestingly, the authors observed a
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characteristic compositional change of salivary microbes in individuals at high-risk for RA,
suggesting that oral microbiota dysbiosis occurs in the “pre-clinical” stage of RA and are
correlated with systemic autoimmune features. These findings support the hypothesis that
microbiome changes occurring in mucosal sites such as the oral cavity might contribute to
disease pathogenesis in the initial RA stages. For this reason, manipulating the microbes
by traditional dietary modifications, probiotics, and antibiotics and by currently employed
disease-modifying agents seems to modulate the disease process and its “progression” [94].

Future studies should explore the use of oral microbiota dysbiosis as a biomarker of dis-
ease and the manipulation of oral microbiota therapeutically to change RA disease progression.

7. Future Direction: Artificial Intelligence (AI) and Its Application in the Prediction of
the Link between Oral Microbiome and Rheumatic Diseases

Despite current failures in analysis and research design, advances in high-throughput
sequencing techniques have created a significant quantity of sequencing data, bringing
fresh insights into the oral microbiota and rheumatic diseases relationship. The next step
would be to use AI techniques like machine learning (ML) and deep learning (DL) to
predict rheumatic disease states from the oral microbiota. Consistent collection of host
information across research is required to employ AI-based techniques for predicting oral
microbiome–rheumatic diseases connections.

ML is a subset of AI that relies on mathematical models to discern trends and patterns
from data without the use of explicit instructions [95]. ML-based methods that integrate
multiple omics (for instance genomics, metabolomics, imaging, microbiome, etc.) and
clinical data enable the definition of robust and sensitive multidimensional biomarkers
related to complex diseases. In microbiome research, ML algorithms find important
features from the given feature set (phylogeny, relative abundance, or functional profiles
from the microbiome data) for more accurate prediction of the phenotype of interest, e.g.,
disease state.

In rheumatology, ML can represent a step towards precision medicine, leading to the
improvement of patient profiling and treatment personalization [96,97]. Notably, ML can
be split into two parts: supervised and unsupervised learning [95]. Supervised learning
leads algorithms to solve a pre-defined problem. To provide a forecast, the ML software
must be trained per acceptably large amount of data that had been previously labeled by
humans [95]. It is also possible to identify the most relevant features for classification. On
the other hand, supervised methods include decision tree algorithm, logistic regression, as
well as more complex algorithms like random forest and artificial neural networks.

In recent years, both supervised and unsupervised methods were incrementally used
in microbiome research. A glimpse of how precision microbiome medicine can become
a reality was provided by Zeevi et al. who used a decision-tree with a gradient boosting
model integrating 800 people’s blood parameters, dietary habits, anthropometrics, physical
activity, and microbiome profile to predict postprandial glycemic response [98]. Similarly,
in the oncology setting, supervised ML methods on microbiota data were used to predict
chemotherapy effectiveness and tolerability [99]. ML had also been used to analyze how
bacteria contribute to drug metabolism [100]. In oral microbiome research, ML has proven
useful to predict atherosclerotic cardiovascular disease (ACVD). In a study including
43 patients with ACVD and 86 age- and sex-matched non-ACVD individuals, a random
forest algorithm based on 43 unique operational taxonomic units (OTUs) was able to predict
ACVD with area under the curve (AUC) of 0.93 [101]

In rheumatology, the use of ML in microbiome research remains largely unexplored.
In this regard, although promising, the results seem less consistent than in other areas as
of few studies with a limited sample size have been carried out only on fecal samples. In
particular, in a cohort of 39 patients with juvenile idiopathic arthritis, a random forest algo-
rithm was used to discriminate patients from healthy controls (AUC 0.80) by integrating
information of 12 genera including Anaerostipes, Dialister, Lachnospira, and Roseburia from
fecal samples [102]. Size and quality of datasets are of utmost importance in ML.
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The future of oral microbiome-systemic link studies relies on the development of
larger datasets, meaning more consistent validation and testing performance. This is to say,
in deploying any ML approach to microbiome in rheumatology, researchers actually face
issues consisting in the scarcity of data sharing of rheumatic patient datasets. In contrast
with other research areas such as oncology and dermatology [103,104], there is a lack of
dedicated open repositories integrating either labeled clinical features, histopathologic
visual contents, and/or microbiome data from patients with rheumatic diseases [97]. In
the absence of large annotated datasets, the potential of ML methods involving oral
microbiome data in predicting therapy response remains largely unexploited. For being
finally adopted in real-life clinical settings and making microbiome-led precision medicine
comes true in rheumatology, data and code sharing must be strongly advocated. The use
of proper study designs and the gathering of detailed host personal data in future oral
microbiome analysis could help to improve AI-based oral healthcare research, which could
have significant clinical benefits such as the ability to predict systemic disease condition
from the oral microbiota.

8. Conclusions

Microbiome research in rheumatic diseases is expanding significantly, offering unique
opportunities to better understand aspects of pathogenesis, the potential for patient stratifi-
cation, and its application towards personalized therapeutic strategies. Oral microbiota
seems to be a promising diagnostic and prognostic biomarker and a useful tool that may
help to guide the disease comprehension. Today, new perspectives in microbiome biomark-
ers research are represented by artificial intelligence approaches such as machine learning
(ML). In rheumatology, AI can represent a step towards precision medicine, leading to the
improvement of patient profiling and treatment personalization (Tables 1 and 2).

Table 1. Literature data linking the oral microbiota with the pathogenesis of progression of rheumatic diseases.

Authors Journal Finding

Gomez-Banuelos, E.; et al.
[35] J. Clin. Med. 2019 The subgingival microbiota differes significantly between RA and

healthy individuals

Rosenstein, E.D.; et al. [37] Inflammation 2004
P. gingivalis expresses a bacterial protein arginine deiminase (PPAD)

that can citrullinate free L-
arginine and C-terminal arginine residues in cleaved peptides

Sato; et al. [39] Sci. Rep. 2017
P. gingivalis exacerbate arthritis by modulating the gut microbiota and

increasing the
proportion of Th17 (T helper 17) cells in mesenteric lymph nodes

Brusca, S.B.; et al. [45] Curr. Opin. Rheumatol.
2014

Several organisms, besides P. Gingivalis, cause periodontal disease (i.e.,
Anaerglobus geminatus

and Prevotella/Leptotrichia) and are linked to the ACPA presence

Scher, J.U.; et al. [51] Arthritis Res. Ther. 2013

An alteration in the bacterial taxa of several mucosal sites (including
oral, lung, and intestinal

microbiomes) is required for the transition from a pre-clinical,
autoimmune phase of RA into
clinically classifiable disease

Ceccarelli, F.; et al. [55] Clin. Exp. Immunol. 2018
A significant association between the percentage of P. Gingivalis on the

total tongue biofilm and
RA disease activity (DAS28) was found

Szymula, A.; et al. [67] Clin. Immunol. 2014
A role for cross-reactivity of commensal oral and gut bacteria with

SSA/Ro60 in the Sjogren
Syndrome aetiopathogenesis
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Table 1. Cont.

Authors Journal Finding

Horta-Baas, G.; et al. [86] J. Immunol. Res. 2017
Both gut and oral microbiota differ in early stages of RA from healthy

controls, with a
reduction of Bifidobacterium and Bacteroides and an increase in Prevotella

van der Meulen, T.A.; et al.
[14] Rheumatology (Oxford) 2018

Buccal mucosa microbiome of primary Sjogren Syndrome (pSS) and
non-SS sicca patients differ

from healthy controls, with a higher Firmicutes/Proteobacteria ratio
observed in both SS and non-SS sicca patients.

Greiling, T.M.; et al. [69] Sci. Transl. Med. 2018

Corynebacterium amycolatum has been shown to colonize the lacrimal
duct, making

C. amycolatum Ro60, a candidate ortholog for the development of
anti-Ro60 antibodies in SS

Li, B.Z. et al. [78] Arch. Oral Biol. 2020
In SLE patients, the oral microbiota was imbalanced and diversity was

reduced but no
difference was found between new-onset and treated SLE patients

Table 2. Literature data in which AI tools is used to study the oral-gut microbiota axis of rheumatic diseases.

Authors Disease Number of Patients Algorithm Outcome

Qian, X.; et al. [102] Juvenile Idiopathic
Arthritis 39 Random Forest Discrimination between

patients and healthy controls
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Abstract: The tonsil microbiome is associated with chronic tonsillitis and obstructive sleep apnea
(OSA) in children, and the gut microbiome is associated with host weight status. In this study, we
hypothesized that weight status may be associated with clinical profiles and the tonsil microbiome in
children with OSA. We prospectively enrolled 33 non-healthy-weight (cases) and 33 healthy-weight
(controls) pediatric OSA patients matched by the proportion of chronic tonsillitis. Differences in
the tonsil microbiome between the non-healthy-weight and healthy-weight subgroups and relation-
ships between the tonsil microbiome and clinical variables were investigated. Non-healthy weight
was associated with significant intermittent hypoxemia (oxygen desaturation index, mean blood
saturation (SpO2), and minimal SpO2) and higher systolic blood pressure percentile, but was not
related to the tonsil microbiome. However, chronic tonsillitis was related to Acidobacteria in the
non-healthy-weight subgroup, and oxygen desaturation index was associated with Bacteroidetes
in the healthy-weight subgroup. In post hoc analysis, the children with mean SpO2 ≤ 97% had
reduced α and β diversities and a higher abundance of Bacteroidetes than those with mean SpO2 >
97%. These preliminary findings are novel and provide insights into future research to understand
the pathogenesis of the disease and develop personalized treatments for pediatric OSA.

Keywords: children; intermittent hypoxemia; microbiome; obstructive sleep apnea; tonsil; weight status
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1. Introduction

Obstructive sleep apnea (OSA) is a chronic disorder characterized by intermittent
partial or complete upper airway obstruction during sleep. The prevalence of pediatric OSA
is estimated to be 1–4%, with adenotonsillar hypertrophy and overweight/obesity being
the two most important risk factors [1–3]. Pediatric OSA is of great clinical significance
since evidence has shown a wide range of detrimental long-term effects associated with
the condition [1]. For example, children with OSA show higher risks of neurobehavioral
impairment [4], metabolic alterations [5], and cardiovascular dysfunction [6].

The role of microbiota in the development and aggravation of OSA has gained in-
creasing attention. Previous studies have reported that the gut microbiota is involved in
the pathogenesis of OSA [7,8], obesity [9,10], and hypertension [11,12]. For example, the
transplant of fecal microbiota has been shown to elicit sleep disturbance [8], obesity [13],
and hypertension [12] in animal models. The gut microbiota has also been associated with
intermittent hypoxia and systemic inflammation [7,10], which are both well-documented
manifestations of OSA [14–16]. More recent studies have suggested that, in addition to the
gut microbiota, OSA is linked to alterations in various other microbiomes in the human
body such as the nasal cavity [17], adenoids [18], tonsils [19], oropharynx [20], oral cav-
ity [21], lungs [22], and urine [21]. In children who snore, the adenotonsillar microbiome
has been shown to interact with the regional mucosal immune system such as interleukin-8
and heat shock protein 27 [23].

Tonsil size is one of the most important predictors for apnea-hypopnea index (AHI) in
preschoolers and school-age children [24]. Therefore, the influence of the tonsil microbiome
may be significant on OSA in young children. Two main methods are used to detect
bacterial communities on tonsils: swab cultures and culture-free molecular tests based on
16S ribosomal RNA or ribosomal DNA sequencing [25]. Notably, molecular tests enable
metagenomic studies to better detect slow-growing, uncultivable, and rare bacteria [26].
The advent of metagenomics has led to an increase in investigations on human microbiota.
However, studies on the tonsil microbiomes in pediatric OSA patients and their relation-
ships with patient characteristics, disease severity, and hypertension are still lacking. To
the best of our knowledge, the clinical significance of tonsil microbiota in children with
OSA has not been comprehensively elucidated.

We hypothesized that the tonsil microbiome may be associated with the weight status
and anthropometrics of pediatric OSA patients. Furthermore, the relationships between
the tonsil microbiome, OSA severity, intermittent hypoxemia, and hypertension may differ
across patients with various demographic and clinical parameters. Therefore, among a
cohort of children with OSA, the first aim of this study was to investigate differences in
the tonsil microbiome between non-healthy-weight and healthy-weight subgroups. The
second aim was to perform post hoc analysis to understand the correlations between the
tonsil microbiome and other variables of interest, including OSA severity, intermittent
hypoxemia, and hypertension.

2. Materials and Methods
2.1. Ethical Considerations

This was a prospective case-control study. Consecutive pediatric patients referred
to the Department of Otolaryngology at Chang Gung Memorial Hospital (Linkou Main
Branch, Taoyuan, Taiwan) for adenotonsillectomy between 1 March 2017 and 31 January
2019 were recruited. The Institutional Review Board of Chang Gung Medical Foundation
approved this study (201507279A3), and all procedures were conducted in compliance
with the Declaration of Helsinki 1975. Written informed consent was obtained from all
parents and participants ≥6 years of age.

2.2. Patient Selection and Grouping

All of the participants underwent comprehensive history-taking, physical examina-
tions, and standard in-lab polysomnography (PSG). The protocol was previously pub-
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lished [15]. The inclusion criteria were: (1) age 5–12 years, and (2) AHI ≥ 5.0 events/h
or AHI ≥ 2.0 events/h plus at least one morbidity (such as elevated blood pressure (BP),
daytime sleepiness, learning problems, growth failure, or enuresis) [14,27,28]. Patients
with craniofacial, neuromuscular, or chronic inflammatory disorders (such as atopic der-
matitis, asthma, or autoimmune disease) were excluded [14,15]. The subjects were further
divided into two subgroups according to body mass index (BMI) z-score: “non-healthy-
weight” (≤−2.0 kg/m2 and ≥1.0 kg/m2) group, and “healthy-weight” (>−2.0 kg/m2 and
<1.0 kg/m2) group [29]. Both groups were matched by the proportion of chronic tonsilli-
tis. Chronic tonsillitis was defined as symptoms of tonsillitis that persisted for a period
longer than three months [30]. Patients with acute inflammation, such as rhinosinusitis,
tonsillitis, gastrointestinal infection, or other conditions that needed antibiotic treatment
did not undergo surgery after the diseases diminished for at least 2 weeks [15]. Subjective
OSA symptoms (evaluated using the Chinese version of the OSA-18 questionnaire [31,32]),
tonsil size (rated using the Brodsky grading scale [33]), the adenoidal-nasopharyngeal ratio
(ANR) (measured using lateral radiography of the nasopharynx [34]), and allergic rhinitis
were recorded. Figure 1 shows the flow diagram of the study.
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Figure 1. Flow diagram of the study. Seventy-six children with obstructive sleep apnea were assessed
for eligibility. However, three did not meet the inclusion criteria, three met the exclusion criteria, and
four withdrew consent. Therefore, a total of 66 children were recruited. The non-healthy-weight
group included 33 children, and the healthy-weight group included 33 children. Both groups were
matched by the proportion of chronic tonsillitis. All participants underwent adenotonsillectomy.
Therefore, 66 participants were included in the primary analysis.

2.3. Polysomnography Variables

We assessed OSA severity variables (AHI, respiratory disturbance index (RDI), oxygen
desaturation index (ODI), mean pulse oxygen saturation (SpO2), and minimal SpO2) by
standard full-night, in-lab PSG, according to the 2012 American Academy of Sleep Medicine
Manual [35]. Briefly, the AHI was defined as the sum of all apneas (≥90% decrease in
airflow for a duration of ≥2 breaths) plus hypopneas (≥50% decrease in airflow and
either ≥ 3% desaturation or electroencephalographic arousal, for a duration of ≥2 breaths)
divided by the number of hours of total sleep time. The patients were then categorized
as having either severe (obstructive AHI ≥ 10.0 events/h) or non-severe (obstructive
AHI ≥ 2.0 events/h to < 10.0 events/h) OSA [36]. The RDI was defined as the average
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number of respiratory disturbances (obstructive apneas, hypopneas, and respiratory-event-
related arousals) per hour. The ODI was calculated as the average number of respiratory
events with a 3% drop in SpO2 per hour. Furthermore, sleep stages were scored from
electroencephalography records according to conventional criteria. PSG scoring was
performed by a technician blinded to the clinical status of the children. Details of the PSG
protocol were described previously [15,37].

2.4. Nocturnal Blood Pressure

Before the PSG exam, nocturnal BP was measured three times with a standard sphyg-
momanometer between 10:00 and 11:00 PM. The detailed procedure of measuring BP is
described elsewhere [38]. Age, sex, and height-corrected percentiles of systolic BP (SBP)
and diastolic BP (DBP) were recorded for each child [39]. Pediatric hypertension was
defined as an average clinic SBP and/or DBP ≥ 95th percentile [39].

2.5. Tonsil Microbiota

The current study chose tonsil as the primary site for investigation since previous
research suggested that the adenoidal microbiome was compatible with the tonsillar
microbiome at the phylum level [23]. Also, since bacterial colonies were mainly observed
in the tonsil crypts rather than in the tonsil follicles, the superficial tonsils with crypts were
used for molecular examinations.

Tonsils with crypts were excised using sterile scissors during adenotonsillectomy. The
specimens were rinsed with normal saline to remove superficial debris several times after
harvesting. Genomic DNA was immediately extracted from the superficially biopsied speci-
mens (3 mm × 3 mm × 3 mm) using an EasyPrep Genomic DNA Extraction Kit (Biotools
Co., Ltd., New Taipei, Taiwan). Tonsil tissue was treated with 4 µL of RNase A (100 mg/mL)
for 5 min at room temperature followed by 20 µL of Proteinase K at 56 ◦C until completely
lysed, and then 200 µL ethanol (96–100%) for 15 s [40]. The quality and quantity of genomic
DNA were measured using a NanoPhotometer P360 system (Implen, Westlake Village, CA,
USA). Polymerase chain reaction (PCR) was used to amplify the V3–V4 regions of the gene
encoding for 16S rRNA in bacteria using composite primers, including the forward primer 5′-
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTAYGGGRBGCASCAG-3′ and the
reverse primer 5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGACTACNNGGG
TATCTAAT-3′ [41]. Amplicons were purified using a QiaQuick PCR Purification Kit (Qia-
gen, Hilden, Germany). PCR amplicons were sequenced using the Illumina HiSeq 2500
platform (Illumina, Inc., San Diego, CA, USA) following the manufacturer’s instructions to
generate 250 bp paired-end reads.

All of the paired-end reads were assembled using FLASH software (version 1.2.7;
http://ccb.jhu.edu/software/FLASH/ (accessed on 5 February 2019)) [42], and reads with
a quality score < 20 were removed using QIIME software (version 1.7; http://qiime.org/
(accessed on 5 February 2019)) [43]. Sequences were chimera-checked using UCHIME soft-
ware (http://drive5.com/uchime/ (accessed on 5 February 2019)) [44] and filtered from
the dataset before the operational taxonomic unit (OTU) picking of 97% sequence identity
using USEARCH (version 7) [45]. Taxonomy classification was annotated according to the
Greengenes database (version 13.8; http://greengenes.secondgenome.com/ (accessed on 5
February 2019)) [46]. Multiple sequences were aligned using PyNAST software (version 1.2;
https://pypi.org/project/pynast/ (accessed on 5 February 2019)) against the Greengenes
core set database to identify the relationships between different OTUs [47]. We used Graph-
ical Phylogenetic Analysis to visualize microbial genomes and metagenomes [48]. Detailed
protocols of bioinformatics were described previously [41,49]. During data collection and
analysis, the investigators were blinded to group allocation.

2.6. Sample Size Estimation

The sample size was estimated using primary outcome effects (BMI z-score) based on
a priori study criteria [15] (healthy-weight group = 0.52 ± 1.12 and non-healthy-weight
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group = 1.53 ± 1.05). We used a two-tailed Wilcoxon–Mann–Whitney test to calculate the
sample size (effect size = 0.93; type I error = 0.05; power = 0.95), which generated a sample
size of 33 in each group.

2.7. Statistical Analysis

The D’Agostino and Pearson normality test showed that most variables had non-
normal distribution. Therefore, descriptive statistics were expressed as the median, in-
terquartile range (IQR), or frequency. Differences in variables of interest between specific
(weight, OSA severity, BP) subgroups were determined using the Mann–Whitney U test,
Kruskal–Wallis test, or chi-square test as appropriate. Analysis of similarity was performed
to compare bacterial communities [50]. The α diversity (the diversity within each sample)
of the tonsil sample was calculated using the observed richness based on the frequency of
OTUs and genera in the sequence collections [51]. The β diversity (the number of species
shared between two groups) was calculated using the weighted UniFrac measure [52].
Spearman’s correlation test was used to determine associations among major (>0.1% abun-
dance and present in >90% of samples [49]) or minor phyla with the patient characteristics.
Overall taxonomic or phylum-level abundances were included when determining the most
discriminatory taxa between the two groups. Statistical significance was established at
p < 0.05. p-values were corrected for multiple comparisons using the Benjamini–Hochberg
method at 0.1 and reported as q-values when appropriate [53]. All statistical analyses were
conducted using R software (versions 2.15.3 and 3.6.1, R Foundation for Statistical Com-
puting, Vienna, Austria; http://www.r-project.org/ (accessed on 26 February 2021)) and
Graph Pad Prism software (version 9.00; Graph Pad Software Inc., San Diego, CA, USA).

3. Results
3.1. Participants’ Characteristics

Figure 1 demonstrates the study flow diagram. Seventy-six Taiwanese children of Han
ancestry with OSA were assessed for eligibility, 10 of whom were excluded from this study.
Therefore, a total of 66 children with OSA (16 girls and 50 boys; median age, 6.5 years (IQR,
6.0–9.0); median BMI, 17.1 kg/m2 (IQR, 15.2–22.7); median AHI, 8.5 events/hour (IQR,
4.1–19.5); median SBP, 103 mmHg (IQR, 95–114); median DBP, 64 mmHg (IQR, 58–71))
were enrolled.

The children were further divided into two subgroups according to BMI z-score:
non-healthy-weight subgroup (cases; n = 33), and healthy-weight subgroup (controls;
n = 33). In the non-healthy-weight subgroup, 30 (91%) children had a BMI z-score ≥
1.0 kg/m2 and three (9%) had a BMI z-score ≤ −2.0 kg/m2. All participants underwent
adenotonsillectomy and were included for primary statistical analysis. The median time
interval between PSG and adenotonsillectomy was 1 week (IQR: 6–19 weeks).

3.2. Differences in Participants’ Characteristics, PSG Variables, BP, and Tonsil Microbiome
between the Different Weight Status Subgroups
3.2.1. Differences in Participants’ Characteristics, PSG Variables, and BP between the
Different Weight Status Subgroups

As expected, there was no significant difference in the proportion of chronic tonsillitis
between the two subgroups (Table 1). Furthermore, there were no statistically significant
differences in the proportions of male sex, allergic rhinitis, tonsil size, ANR, OSA-18 score,
AHI, RDI, N1 stage, N2 stage, N3 stage, rapid eye movement (REM) stage, and DBP
percentile. Notably, the non-healthy-weight group had significantly higher age, BMI z-
score, ODI, SBP, DBP, and SBP percentile, and lower mean SpO2 and minimal SpO2 than
the healthy-weight group. The difference in the tonsil size between children with chronic
tonsillitis (3 (IQR, 3–3)) and children without chronic tonsillitis (3 (IQR, 3–4)) did not reach
a statistical significance (p = 0.13).
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Table 1. Patient characteristics, polysomnography variables, and blood pressures of the different
weight status subgroups.

Variables Non-Healthy-Weight
Subgroup

Healthy-Weight
Subgroup p-Value 1

Patient Characteristics
Age (years) 7.0 (6.0–8.0) 6.0 (5.0–7.5) 0.015 *

Male sex, n (%) 28 (85) 22 (67) 0.150
Chronic tonsillitis 6 (18) 10 (30) 0.389

Allergic rhinitis, n (%) 22 (67%) 25 (76%) 0.587
BMI (kg/m2) z-score 2.01 (1.46–2.38) −0.36 (−1.16–0.18) <0.001 *

Tonsil size 3 (3–4) 2 (3–4) 0.461
ANR 0.73 (0.62–0.83) 0.81 (0.72–0.87) 0.053

OSA-18 score 80 (69–92) 81 (70–91) 0.928

Polysomnography variables
AHI (events/h) 9.6 (5.0–25.2) 5.4 (3.9–16.5) 0.074
RDI (events/h) 12.1 (5.3–27.6) 6.1 (4.9–17.9) 0.158
ODI (events/h) 7.3 (3.6–22.3) 3.2 (1.6–9.3) 0.006 *
Mean SpO2 (%) 97 (96–98) 98 (97–98) 0.030 *

Minimal SpO2 (%) 89 (83–91) 91 (88–93) 0.022 *
N1 stage 13 (6–21) 9 (6–13) 0.142
N2 stage 38 (33–46) 41 (36–44) 0.807
N3 stage 28 (23–30) 28 (22–36) 0.663

REM stage 18 (13–22) 21 (16–25) 0.221

Blood pressure variables
Systolic BP, mmHg 111 (100–121) 98 (87–107) 0.001 *
Diastolic BP, mmHg 67 (61–76) 60 (58–68) 0.011 *

Systolic BP percentile (%) 84 (55–91) 48 (25–89) 0.018 *
Diastolic BP percentile (%) 75 (55–87) 68 (50–77) 0.174

Note: Data are summarized as median (interquartile range) or n (%) as appropriate. Abbreviations: AHI, apnea–
hypopnea index; ANR, adenoid–nasopharyngeal ratio; BMI, body mass index; BP, blood pressure; ODI, oxygen
desaturation index; OSA, obstructive sleep apnea; RDI, respiratory disturbance index; REM, rapid eye movement;
SpO2, pulse oxygen saturation. 1 Data were compared using the Mann–Whitney U test for continuous variables,
and the chi-square test for categorical variables. * Significant differences p < 0.05.

Furthermore, the differences in participants’ characteristics, PSG variables, and BP
between the overweight and underweight subgroups were not statistically significant
(Supplementary Table S1). These variables were also comparable across the overweight,
underweight, and healthy-weight subgroups (all p > 0.05).

3.2.2. Differences in Tonsil Microbiome between the Different Weight Status Subgroups

After quality assessment, a total of 4,207,400 16S rRNA paired-end reads with an aver-
age of 105,185 ± 19,957 paired-end reads per sample passed the filters. Figure 2A,B show
OTU trees of the non-healthy-weight subgroup (OTU = 9318) and healthy-weight sub-
group (OTU = 9886). Figure 2C shows that both subgroups shared 6539 OTUs; otherwise,
there were 2779 and 3347 deferential OTUs in the non-healthy-weight and healthy-weight
subgroups, respectively. However, there were no significant differences in α diversity, β
diversity, and relative abundances of the top 10 tonsil families between the non-healthy-
weight and healthy-weight subgroups (Figure 2D–F; all p > 0.05). Furthermore, the α
diversity, β diversity, and relative abundance of the top 10 tonsil families of the over-weight
were comparable with those of the underweight subgroups (p = 0.064, 0.106, 0.492, respec-
tively). Moreover, the differences in α diversity, β diversity, and relative abundances of the
top 10 tonsil families across the overweight, underweight, and healthy-weight subgroups
(p = 0.088, 0.119, 0.700, respectively).
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included 9886 OTUs. (C) A Venn diagram demonstrated that both subgroups shared 6539 OTUs; 
otherwise, the non-healthy-weight subgroup had 2779 deferential OTUs and the healthy-weight 
subgroup had 3347 deferential OTUs. (D) The α diversities of both subgroups were equal (p = 
0.300; Mann–Whitney U test). (E) Furthermore, the β diversity of the non-healthy-weight subgroup 
was comparable to that of the healthy-weight group (p = 0.147; Mann–Whitney U test). (F) The 
relative abundances of the top 10 tonsil families in the non-healthy-weight subgroup were similar 
to those in the healthy-weight subgroup (p = 0.651; analysis of similarity test). 

Figure 2. Tonsil microbiome in children with obstructive sleep apnea. (A) The operational taxonomic
unit (OTU) tree of the non-healthy-weight subgroup (n = 33) included 9318 OTUs, assessed by
Graphical Phylogenetic Analysis. (B) The OTU tree of the healthy-weight subgroup (n = 33) included
9886 OTUs. (C) A Venn diagram demonstrated that both subgroups shared 6539 OTUs; otherwise,
the non-healthy-weight subgroup had 2779 deferential OTUs and the healthy-weight subgroup had
3347 deferential OTUs. (D) The α diversities of both subgroups were equal (p = 0.300; Mann–Whitney
U test). (E) Furthermore, the β diversity of the non-healthy-weight subgroup was comparable to that
of the healthy-weight group (p = 0.147; Mann–Whitney U test). (F) The relative abundances of the
top 10 tonsil families in the non-healthy-weight subgroup were similar to those in the healthy-weight
subgroup (p = 0.651; analysis of similarity test).

Fifty-five phyla were identified from the tonsil samples. There were six major phyla
(>0.1% abundance and present in >90% of the samples [49]), including Proteobacteria,
Firmicutes, Bacteroidetes, Fusobacteria, Actinobacteria, and Epsilonbacteraeota, and 49 minor
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phyla. In descending order of median relative abundance, the 10 most common phyla
were Proteobacteria, Firmicutes, Bacteroidetes, Fusobacteria, Actinobacteria, Epsilonbacteraeota,
Patescibacteria, Cyanobacteria, Tenericutes, and Acidobacteria.

Figure 3A,B demonstrate the similar distributions of the relative abundances of these
phyla in the non-healthy-weight and healthy-weight subgroups (p > 0.05). Furthermore,
the relative abundances of these phyla in the overweight and underweight subgroups
were comparable (p = 0.536). Additionally, the differences in the 10 most common phyla
across the overweight, underweight, and healthy-weight subgroups were not statistically
significant (p = 0.814).
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Figure 3. The top 10 tonsil phyla in both weight status subgroups. The relative abundances of
the top 10 tonsil phyla in the non-healthy-weight subgroup (A) and the healthy-weight subgroup
(B) (p = 0.651; analysis of similarity test). Chronic tonsillitis was significantly associated with a
relative abundance of Acidobacteria in the non-healthy-weight subgroup (r = 0.53, q = 0.015) (C),
whereas the oxygen desaturation index (ODI) was significantly associated with Bacteroidetes in
the healthy-weight subgroup (r = 0.52, q = 0.020) (D). Abbreviations: AHI, apnea–hypopnea index;
BMI, body mass index; RDI, respiratory disturbance index; REM, rapid eye movement; SpO2, pulse
oxygen saturation.

3.2.3. Associations of Tonsil Phyla, Participants’ Characteristics, PSG Variables, and BPs in
the Different Weight Status Subgroups

In the non-healthy-weight group, age was related to Cyanobacteria and Acidobacteria,
chronic tonsillitis was correlated with Acidobacteria, and SBP percentile was associated
with Firmicutes (Figure 3C). The positive relationship between chronic tonsillitis and Aci-
dobacteria remained significant after applying the Benjamini–Hochberg method (r = 0.53,
q = 0.015).

Although there were several weak associations between the PSG variables (AHI, RDI,
ODI, mean SpO2, minimal SpO2), DBP percentile, and Bacteroidetes, ODI and Actinobac-
teria, stage 1 sleep and Firmicutes, stage 3 sleep and Tenericutes, and REM stage and
Proteobacteria, only the significant positive association between ODI and Bacteroidetes
persisted after applying the Benjamini–Hochberg method (r = 0.52, q = 0.020) (Figure 3D).
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3.3. Post Hoc Analysis

After studying the differences between the two weight subgroups, we wondered
whether other classifications may be associated with the tonsil microbiome. We performed
median splits of the participants’ characteristics, PSG variables, and BPs. The α diversities
of the tonsil microbiome were not associated with age ≥ 6 years, male sex, chronic tonsil-
litis, BMI z-score ≥ 1.00, AHI ≥ 9.0 events/h, RDI ≥ 9.0 events/h, ODI ≥ 5.0 events/h,
minimal SpO2 ≤ 90%, N1 stage ≥ 10%, N2 stage ≥ 40%, N3 stage ≤ 26%, REM stage
≥ 19%, SBP percentile ≥ 70%, and DSBP percentile ≥ 70%. In addition, differences in
the tonsil microbiome between various (moderate-to-severe OSA and mild OSA; severe
OSA, and non-severe OSA; hypertension and non-hypertension) subgroups did not reach
statistical significance.

Interestingly, both α (Figure 4A) and β (Figure 4B) diversity indices of the mean
SpO2 ≤ 97% subgroup were significantly lower than those of the mean SpO2 > 97%
subgroup (p = 0.030 and 0.0005, respectively). The relative abundances of the top 10 tonsil
phyla in the mean SpO2 ≤ 97% subgroup were significantly different from those in the
mean SpO2 > 97% subgroup (p = 0.014; analysis of similarity test) (Figure 4C). Notably, the
relative abundance of Bacteroidetes in the mean SpO2 ≤ 97% subgroup was significantly
higher than that in the mean SpO2 > 97% subgroup (q = 0.026) (Figure 4D).

J. Pers. Med. 2021, 11, x FOR PEER REVIEW 10 of 16 
 

 

OSA, and non-severe OSA; hypertension and non-hypertension) subgroups did not reach 
statistical significance. 

Interestingly, both α (Figure 4A) and β (Figure 4B) diversity indices of the mean SpO2 
≤ 97% subgroup were significantly lower than those of the mean SpO2 > 97% subgroup (p 
= 0.030 and 0.0005, respectively). The relative abundances of the top 10 tonsil phyla in the 
mean SpO2 ≤ 97% subgroup were significantly different from those in the mean SpO2 > 
97% subgroup (p = 0.014; analysis of similarity test) (Figure 4C). Notably, the relative 
abundance of Bacteroidetes in the mean SpO2 ≤ 97% subgroup was significantly higher 
than that in the mean SpO2 > 97% subgroup (q = 0.026) (Figure 4D). 

 
Figure 4. Comparison of the tonsil microbiome between the mean oxygen saturation (SpO2) ≤ 97% 
and > 97% subgroups. (A) The α diversity of the mean SpO2 ≤ 97% subgroup was significantly 
lower than that of the mean SpO2 > 97% subgroup (p = 0.030; Mann–Whitney U test). (B) The β 
diversity of the mean SpO2 ≤ 97% subgroup was significantly lower than that of the SpO2 > 97% 
subgroup (p = 0.0005; Mann–Whitney U test). (C) The relative abundances of the top 10 tonsil 
phyla in the mean SpO2 ≤ 97% subgroup were significantly different from those in the mean SpO2 
> 97% subgroup (p = 0.014; analysis of similarity test). (D) Furthermore, the relative abundance of 
Bacteroidetes in the mean SpO2 ≤ 97% subgroup was significantly higher than that in the mean 
SpO2 > 97% subgroup (q = 0.026; Mann–Whitney U test). 

  

Figure 4. Comparison of the tonsil microbiome between the mean oxygen saturation (SpO2) ≤ 97%
and > 97% subgroups. (A) The α diversity of the mean SpO2 ≤ 97% subgroup was significantly lower
than that of the mean SpO2 > 97% subgroup (p = 0.030; Mann–Whitney U test). (B) The β diversity
of the mean SpO2 ≤ 97% subgroup was significantly lower than that of the SpO2 > 97% subgroup
(p = 0.0005; Mann–Whitney U test). (C) The relative abundances of the top 10 tonsil phyla in the mean
SpO2 ≤ 97% subgroup were significantly different from those in the mean SpO2 > 97% subgroup
(p = 0.014; analysis of similarity test). (D) Furthermore, the relative abundance of Bacteroidetes in the
mean SpO2 ≤ 97% subgroup was significantly higher than that in the mean SpO2 > 97% subgroup
(q = 0.026; Mann–Whitney U test).
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4. Discussion

In the following paragraphs, we address several novel and interesting findings of
this study regarding the relationships of the tonsil microbiome with weight status, OSA
severity, and hypoxemia among a sample of pediatric OSA patients.

Some clinical parameters were significantly different between the non-healthy-weight
and healthy-weight subgroups. The non-healthy-weight subgroup had more profound
intermittent hypoxemia (ODI, mean SpO2, and minimal SpO2) and a higher SBP percentile,
which is consistent with the well-known connections between obesity and manifestations
of OSA. However, no significant association was observed between the tonsil microbiome
and weight status. The data did not support our primary hypothesis. Notably, although
weight status was not directly associated with the tonsil microbiome in the overall cohort,
relationships between the tonsil microbiome and other clinical parameters differed between
the patients with different weight statuses. Chronic tonsillitis was related to Acidobacteria
in the non-healthy-weight subgroup, while ODI was associated with Bacteroidetes in the
healthy-weight subgroup. In post hoc analysis, we found that the children with or without
a mean SpO2 ≤ 97% had significantly different microbial profiles, especially with regards
to Bacteroidetes. It seemed that, instead of weight status, hypoxemia status was the key
differentiating factor for the tonsil microbiota among pediatric OSA patients.

Previous studies have suggested that the presence and severity of OSA are associated
with microbial profiles [19,20,23]. Yang et al. used 16S ribosomal DNA sequencing to
investigate the oropharyngeal microbiome and demonstrated that adults with OSA had
less oropharyngeal species diversity and altered abundance compared with non-OSA
controls, and that the relative abundance of Neisseria (a genus of Proteobacteria) increased
with higher OSA severity [20]. In our results, neither Proteobacteria nor Neisseria was
related to AHI (p = 0.905 and 0.246, respectively). However, the children with a mean SpO2
≤ 97% had less tonsillar species diversity and altered abundance compared to those with a
mean SpO2 > 97%. Again, this suggested that the degree of intermittent hypoxemia may
be more influential on the tonsil microbiome than OSA severity.

Johnston et al. investigated the tonsillar crypt microbiota in children with recurrent
tonsillitis [54] and OSA [19], and found that Fusobacteria, Proteobacteria, Bacteroidetes,
and Firmicutes were major phyla of the tonsil specimens in both groups (α diversity:
p = 0.66; β diversity: p = 0.52) [19]. In another study on the adenotonsillar microbiome of
children who snored [23], Kim and colleagues also reported similar major phyla, namely
Proteobacteria, Actinobacteria, Firmicutes, Fusobacteria, Bacteroidetes, and Tenericutes.
They further demonstrated that α diversity indices were related to some patient charac-
teristics such as sex, emotional stress, and interleukin-8, and that β diversity indices were
related to heat shock protein 70. These findings suggest possible connections between
demographic characteristics, clinical symptoms, regional mucosal immune environment,
and tonsil microbiome.

Our data are compatible with the results of the previous studies concerning the general
picture of the tonsil microbiome. Moreover, we found a positive correlation between
chronic tonsillitis and Acidobacteria in the non-healthy-weight subgroup. To the best of
our knowledge, this is the first study to suggest that Acidobacteria may be implicated
in tonsillar infections among pediatric OSA patients. Acidobacteria are Gram-negative
rod-shaped bacteria. The majority of Acidobacteria strains have been described as aerobes,
and they are ubiquitous in soil [55]. An increasing number of studies have investigated
Acidobacteria in humans. For example, Acidobacteria are reported to be the fifth most
dominant phyla in the bronchoalveolar lavage of adults with OSA [22]. In addition, both
Acidobacteria and obesity are associated with an increase in the fecal levels of valeric
acid [56,57]. Furthermore, Acidobacteria are shown to be significantly enriched in patients
with chronic endodontic infection [58]. These observations provide indirect evidence for
possible connections between tonsillar Acidobacteria infection, OSA, and obesity, and
future investigations are warranted to confirm the causality.
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The other novel finding of our study is the significant association between intermittent
hypoxemia and Bacteroidetes in the healthy-weight subgroup. Members of the phylum
Bacteroidetes are Gram-negative, rod-shaped, anaerobic or aerobic bacteria, and they
are commonly found in the oral cavity and gastrointestinal tract. The abundance of
Bacteroidetes and the Bacteroidetes–Firmicutes ratio are reported to be decreased in obese
individuals compared to lean individuals [59]. However, our data suggested that it was
the healthy-weight pediatric OSA patients in whom ODI significantly interacted with
Bacteroidetes. Bacteroidetes of the tonsils may thus be implicated in the pathophysiology
of OSA.

Previous studies have suggested associations between OSA and alterations in the
composition and diversity of fecal microbiota. In a murine model, intermittent hypoxia
exposure led to a lower abundance of Bacteroidetes in the feces [60], and reintroduction of
a normoxic environment did not reverse the negative alterations of the gut microbiota [61].
In a sample of adults with OSA, Ko et al. found that fecal Bacteroides (a major genus of
Bacteroidetes) were not associated with AHI or intermittent hypoxemia [62]. However,
the results were very different for the oral microbiome. Xu et al. reported a higher
abundance of oral Bacteroidetes in children with OSA [21]. Consistent with this finding,
we also found a higher abundance of Bacteroidetes in pediatric OSA patients with a lower
mean SpO2. The discrepancy between fecal and oral microbiota as well as the differences
between patients with and without profound hypoxia are very interesting and may be
explained by the oxygen concentration level at different sites and the aerotolerant abilities
of different bacteria.

The environments of sites in the human body impact which microorganisms can in-
habit these sites. Unlike the environment of the intestine, which is extremely low in oxygen
concentration [63], to survive in the oral cavity, bacteria need to overcome the challenge of
atmospheric oxygen exposure. Moreover, mouth breathing is very common in children
with OSA [64] and positively associated with AHI [65]. OSA-related mouth breathing
further increases exposure of the tonsil microbiome to atmospheric oxygen. Bacteroides
species are among the most aerotolerant anaerobes and are able to tolerate oxygen in room
air for up to 3 days [66]. On the other hand, Fusobacterium species (a genus of Fusobacteria)
and Clostridium species (a genus of Firmicutes) are less aerotolerant anaerobes. Intermittent
hypoxemia (in terms of mean SpO2 ≤ 97%) further enhances the survival advantage of
Bacteroidetes relative to other aerobes of the tonsils. Mouse models of chronic intermittent
hypoxia would be helpful to further validate these inferences [60].

Several limitations should be addressed in this study. First, the patient number of the
underweight subgroup was too small and insufficient to make a conclusion. Future studies
with a larger sample size of each weight status subgroup are warranted to further under-
stand how obesity or underweight may impact the tonsil microbiome and its interaction
with OSA. Second, the study cohort was predominantly male and mostly Han in ethnicity,
which may limit the generalizability of the results. Third, some of the children may have
had co-existing chronic tonsillitis, which would interfere with the analysis of the tonsil mi-
crobiome. However, the proportions of sex and chronic tonsillitis were comparable in both
weight subgroups to minimize confounding effects from baseline characteristics. Forth,
the study was cross-sectional and thus unable to conclude the direction of associations
or causal effects. The relationships between the microbiota and OSA need to be further
explored. Also, future prospective investigations on the effects of OSA treatment on the
tonsil microbiome with a larger sample size will be of interest.

5. Conclusions

The advent of metagenomics has led to an increase in investigations on human micro-
biota. The tonsil microbiome plays a role in pediatric OSA, and it seems to have different
effects depending on weight status. We preliminarily found that chronic tonsillitis was
related to Acidobacteria in children with OSA and non-healthy weight, and that ODI
was associated with Bacteroidetes in the children with OSA and healthy weight. In ad-
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dition, children with OSA with or without mean SpO2 ≤ 97% had significantly different
microbial profiles, particularly with regards to Bacteroidetes. Future studies to investigate
associations among alterations of the tonsil microbiome and exacerbations or reductions
of OSA severity are warranted. Furthermore, this study also suggests the possibility of
personalized treatment of pediatric OSA based on the tonsil microbiome.
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Abstract: Abstract: BackgroundIgA Nephropathy (IgAN) is the most common glomerulonephritis
worldwide, characterized by the mesangial deposition of abnormally glycosylated IgA1 (Gd-IgA).
The production of Gd-IgA occurs in mucose-associated lymphoid tissue (MALT). The microbiota
plays a role in MALT modulation. Rifaximin (NORMIX®), a non-absorbable oral antibiotic, induces
positive modulation of the gut microbiota, favoring the growth of bacteria beneficial to the host. Here,
we evaluate the effect of rifaximin on a humanized mice model of IgAN (α1KI-CD89Tg). Methods:
The α1KI-CD89Tg mice were treated by the vehicle (olive oil) or rifaximin (NORMIX®). Serum levels
of hIgA, hIgA1–sCD89, and mIgG–hIgA1 immune complexes were determined. Glomerular hIgA1
deposit and CD11b+ cells recruitment were revealed using confocal microscopy. Furthermore, the
mRNA of the B-Cell Activating Factor (BAFF), polymeric immunoglobulin receptor (pIgR), and
Tumor Necrosing Factor-α (TNF-α) in gut samples were detected by qPCR. Results: Rifaximin
treatment decreased the urinary protein-to-creatinine ratio, serum levels of hIgA1–sCD89 and mIgG–
hIgA1 complexes, hIgA1 glomerular deposition, and CD11b+ cell infiltration. Moreover, rifaximin
treatment decreased significantly BAFF, pIgR, and TNF-α mRNA expression. Conclusions: Rifaximin
decreased the IgAN symptoms observed in α1KI-CD89Tg mice, suggesting a possible role for it in the
treatment of the disease.

Keywords: IgA Nephropathy; rifaximin; microbiota; α1KI-CD89Tg mice

1. Introduction

IgA Nephropathy (IgAN) is a frequent cause of end-stage renal failure (about 20–40%
of cases) [1] and it is characterized by dominant mesangial IgA deposition [2]. Microscopic
hematuria and proteinuria are the most common clinical presentations [3]. Abnormally
glycosylated IgA1 (Gd-IgA1) has a central role in the multi-hit process in IgAN patients [4].
Moreover, it has been demonstrated that there are two IgA receptors involved in IgAN
pathogenicity: the FcαRI (CD89), expressed by blood myeloid cells and the transferrin
receptor (CD71), expressed by mesangial cells [5]. Gd-IgA1-CD89 interaction induces the
release of the extracellular portion of CD89 (soluble form of CD89) leading to the formation
of circulating CD89-IgA immune complexes, which bind to CD71 leading to IgA1 deposits
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and mesangial cells proliferation in IgAN patients [6]. In patients with progressive disease,
the IgA-CD89 complex has a role in the pathogenesis of IgAN and it seems to be positively
correlated with proteinuria, microalbuminuria, and with some features of the Oxford score
(endocapillary and extracapillary proliferation) [7].

Moreover, genetic variants, lifestyle, diet, and environmental factors contribute to
disease onset [8]. The mucose-associated lymphoid tissue (MALT) is largely involved in the
pathogenesis of the disease and, considering that it is influenced by antigenic stimulation
from the commensal microflora, in recent years, scientific efforts have focused on the
possible role of the microbiota and its modulation on the development and progression of
IgAN [9]. Using antibiotics to manipulate the gut microbiota may represent a potentially
effective treatment option for IgAN. A previous study by Chemouny et al. [10] has demon-
strated that antibiotic treatment (ampicillin, vancomycin, neomycin, and metronidazole) of
an IgAN mice model (α1KI-CD89Tg mice) reverses the IgAN phenotype without affecting
serum IgA levels.

Rifaximin is a non-absorbable oral antibiotic that inhibits the synthesis of bacte-
rial RNA by binding the β subunit of bacterial DNA-dependent RNA polymerase. It
demonstrates bactericidal and bacteriostatic activity against both Gram-positive and Gram-
negative aerobic and anaerobic bacteria. It has been proven to be safe and well-tolerated.
Previous studies have shown that rifaximin can alter intestinal flora, inhibit bacterial at-
tachment, prevent intestinal inflammation, and modulate gut barrier function [11]. This
special feature distinguishes rifaximin from other systemic antibiotics. However, it is not
clear whether orally administered rifaximin can prevent the development of IgAN by
down-regulation of the inflammatory response triggered by gut microbes.

In this study, we investigated the effect of rifaximin on the IgAN progression, using
a humanized mouse model of IgAN (α1KI-CD89Tg mice). Rifaximin decreased the IgAN
phenotype in a humanized mouse model of IgAN opening new therapeutic avenues for
this disease.

2. Materials and Methods
2.1. In Vivo Experiments

Twelve-week-old α1KI-CD89Tg mice (n = 24) were raised and maintained in a specific
pathogen-free mouse facility at the Centre for Research on Inflammation, Paris, France.
All experiments were performed in accordance with the National Ethics Guidelines and
with the approval of the Local Ethics Committee. These 12-week-old mice were divided
into two groups to receive, by oral gavage, olive oil (n = 12) or rifaximin (NORMIX®)
100 mg/kg/die dissolved in olive oil (n = 12) [APAFIS number: #14265] for two weeks. We
used olive oil because rifaximin is water-insoluble.

Urine was collected before starting, every four days, and at the end of the treatment
experiment. Blood was collected by retro-orbital bleeding and the mice were sacrificed
by cervical dislocation; the blood samples were centrifugated at 1500× g rpm for 10 min
at room temperature. The serum was collected and kept frozen at −80 ◦C until use.
Kidneys and part of the ileum (2 cm above the ileocecal valve) were collected. Organs were
conserved in OCT (CellPath Ltd., Newtown, Powys, UK).

2.2. Histopathology Procedures

For immunohistochemistry, 4 µm sections of cryostat frozen kidney were fixed in
acetone for 30 min. Immunofluorescence staining was performed with goat anti-hIgA
FITC (1/50, Southern Biotech, Birmingham, AL, USA) and Phalloidin (1/100, Invitrogen,
Carlsbad, CA, USA) or anti-mouse CD11b antibody (M1/70) FITC (1/100, Abcam, Cam-
bridge, UK) and Phalloidin (1/100, Invitrogen). Slides were mounted with Immuno-mount
(Thermo Scientific, Waltham, MA, USA) and read with an immunofluorescent microscope
(Zeiss, Oberkochen, Germany, LSM 780). Mean fluorescence intensity area positive for
hIgA1 or for CD11b was measured using ImageJ and it was normalized for the total
glomerular area.
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2.3. Enzyme-Linked Immunosorbent Assay

Serum levels of hIgA were determined with a sandwich enzyme-linked immunosor-
bent assay (ELISA). Goat anti-hIgA (Bethyl Laboratories, Montgomery, TX, USA, A80–120A,
1:500 dilution) was used for coating. Sera (1:3000 diluted) were then added and revealed
with goat anti-hIgA antibody HRP conjugated (Bethyl Laboratories, A80–120P, 1:50,000
dilution). The optic density (OD) was measured at 450 nm.

The hIgA1–sCD89 and mIgG–hIgA1 complexes were determined with ELISA [12]. A3
mAb anti-human CD89 (5 µg/mL, homemade [13]) or goat anti-hIgA (Bethyl Laboratories,
1:500 diluted) were used for coating.

Sera (1:10 diluted) were then added and revealed with goat anti-hIgA (Southern
Biotech, 1:2000 dilution) or goat anti-mouse IgG (Southern Biotech, 1:5000 dilution) coupled
with alkaline phosphatase (Southern Biotech, Birmingham, AL, USA). The OD at 405 nm
was measured after 4 h from the addition of alkaline phosphatase substrate (Sigma-Aldrich,
St. Louis, MO, USA). The complex levels were expressed as OD.

2.4. Real-Time PCR

Total RNA from mouse small intestine (four mice for each group) was isolated with
RNABle (Eurobio laboratories, Les Ulis, France), according to the manufacturer’s in-
structions, and complementary DNA was synthesized using Moloney-Murine Leukemia
Virus reverse transcriptase (M-MLV RT, Invitrogen). cDNA was subjected to quantitative
real-time PCR using a Chromo4 Real-Time PCR Detection System (Bio-Rad Laboratories,
Marnes-la-Coquette, France). The mouse TNF-α, pIgR, BAFF, and ß-actin primers used
and the corresponding Taqman probes are listed in Table S1 (Supplementary data 1).

The data from the qPCR were converted to 2-Ct, where Ct represents the threshold
cycle. The mean Ct value of the duplicate PCRs was determined, and the mean 2-∆∆Ct
was calculated from the duplicate cDNAs. PCR data were reported as the relative increase
in mRNA transcripts versus that found in the pool of RNA of olive-oil-treated mice and
corrected using the respective levels of ß-actin mRNA.

2.5. Statistical Analysis

Statistical analyses were performed with GraphPad Prism 6.0 (GraphPad Software,
Inc., San Diego, CA, USA). We compared the results of the treatment and control group
using the Mann–Whitney U test. The qPCR data were reported as the relative increase
in mRNA transcripts versus that found in respective tissues from vehicle mice, corrected
by the respective levels of β-actin mRNA, used as an internal standard. All the values of
olive-oil-tested mice are 1. Statistical analyses were performed using the Wilcoxon test.
Differences between groups were considered to be significant at a p-value of <0.05.

3. Results
3.1. Rifaximin Reduces the Disease Phenotype in IgAN Mice Model

Twelve-week-old α1KI-CD89Tg mice spontaneously present mesangial hIgA1 deposi-
tion, associated with proteinuria, mimicking IgAN in humans as described previously [13].
Mice treated with rifaximin for two weeks had a reduction in proteinuria (initial and final
uPCR mean: 3.09 g/mmol and 2.39 g/mmol, respectively) compared to the mice treated
with just the vehicle (olive oil) which showed an increase in proteinuria (initial and final
uPCR mean in the oil group: 2.72 g/mmol and 2.87 g/mmol, respectively). There was no
statistically significant difference in uPCR between the groups at T0 (p > 0,05; Figure 1B),
while we found a significant difference between uPCR at T0 and uPCR after 14 days [delta
T4–T0 (p* = 0.0172; Figure 1C)]. Moreover, anti-hIgA immunostaining of mouse kidneys
revealed that hIgA1 deposition was significantly reduced in antibiotic mice compared to
the olive oil group (p** = 0.0014, Figure 1D). To explore whether rifaximin affects the level
of the total circulating hIgA1, we measured the serum IgA1 level by ELISA. Serum levels
of hIgA1 were similar in the rifaximin group and the vehicle group (p > 0.05, Figure 1E).
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In contrast, mice in the antibiotic group showed less hIgA1-CD89 (Figure 2A, p* = 0.0145)
and mIgG-hIgA1 complexes (Figure 2B, p* = 0.0447) than the control group. To evaluate
the effect of rifaximin on kidney inflammation in the IgAN mice model, we assessed the
immunofluorescence to analyze whether rifaximin affects CD11b+ renal infiltration. The
antibiotic reduced the development of glomerular inflammation as illustrated by less CD11b-
positive area normalized for the total glomerular area (Figure 2C, p* = 0.0317).

3.2. Rifaximin Group Showed Less TNF-α, BAFF, and pIgR mRNA Gut Expression Levels

It has been shown that epithelial-derived BAFF is the major modulator of B cell
development and it has a key role in IgA class switching and plasma cell survival in the
MALT [14,15]. Consistent with the effect of rifaximin on renal inflammation, mice treated
with this antibiotic present a significant decrease of TNF-α, BAFF, and pIgR mRNA gut
expression when compared to the control group (respectively p* = 0.0369, p* = 0.0490,
p* = 0.0271). TNF-α, BAFF, and pIgR mRNA expression levels are illustrated in Figure 3.
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4. Discussion

Although IgAN seems to be a final common endpoint of different pathological pro-
cesses, numerous studies indicate that it is closely associated with perturbed homeostasis
of intestinal-activated B cells and intestinal IgA class switch and, at the same time, with
alterations of the gut microbiota and of intestinal-barrier, in humans and animal mod-
els [9,16,17].

The intestinal-activated B cells play a central role in pathogens and mucosal inflam-
matory diseases [18,19]. Epithelium-derived BAFF is the major modulator of B cell devel-
opment and it has a key role in IgA class switching and plasma cell survival in the MALT.
Moreover, the gut microbiota, through toll-like receptor (TLR) ligation on mucosal dendritic
cells, can induce inflammation and production of proinflammatory cytokines, inducing
the overexpression of BAFF mRNA in mucosal epithelial cells [20]. The upregulation of
BAFF is associated with hyper-IgA syndrome in the gut and the deposition of IgA immune
complexes in the glomerular mesangium [16]. Given these findings, over the last few years,
the need to test new interventions in IgAN patients and new therapeutic strategies, such as
the administration of antibiotics or dietary implementation with prebiotics and/or probi-
otics, or through fecal microbiota transplantation (FMT) [21,22], has earned high demand,
especially following the latest results from trials of gut-targeted corticosteroids [23,24].

Here we investigated the effects of rifaximin, a broad-spectrum, non-absorbable, oral
antibiotic, on α1KI-CD89Tg mice. Rifaximin inhibits microbe-induced immune response,
acts on intestinal barrier integrity, and has a direct anti-inflammatory property through
binding to the Pregnane X Receptor (PXR) and modulating gut microbiota [11,25–27]. In
particular, it is already demonstrated that rifaximin increases the relative abundance of
beneficial intestinal bacteria, such as Lactobacillus and Bifidobacterium [28], reduces activation
of T helper 17 cells [29], and attenuates TLR-4/NF-kB pathway activation in the gut [30].

However, the therapeutic effect of rifaximin has not yet been studied in IgAN. In this
study, through a combination of ELISAs, confocal microscopy, and qPCR, we analyzed the
characteristic features of α1KI-CD89Tg mice and the impact of rifaximin.

Our hypothesis is that, in IgAN, the leaky gut syndrome and the dysbiosis can lead,
through the production of pro-inflammatory cytokines and an increased bacterial translo-
cation, to gut inflammation, activation of dendritic cells (DCs) and, via T-cell-independent
pathway (BAFF mediated), overproduction of Gd-IgA1 [14]. These are secreted, in the
form of IgA1 dimers, across intestinal epithelial cells by transcytosis, in which pIgR facili-
tates the release of secretory IgA (sIgA) into the gut lumen. Rifaximin, through restoring
symbiosis (including increased Bacteroidetes/Firmicutes ratio, as well as selective promotion
of probiotic populations) and by binding PXR, is able to restore intestinal barrier function
and inhibit the TLR-4/NF-kB signaling pathway in the small intestine [30], leading to
decreased TNF-α synthesis [26]. Since the expression of BAFF and pIgR genes is regu-
lated by TNF-α [31,32], the reduction of the latter causes the down-regulation of pIgR,
BAFF and, consequently, of Gd-IgA1 (the proposal mechanism of rifaximin action in IgAN
is represented in Supplementary data 2). Indeed, under gene expression profiling, our
findings support reduced gut inflammation following rifaximin treatment, showed by a
downregulation of TNF-α and BAFF gene transcription. Moreover, although we did not
find any difference in IgA serum levels between the two groups, we found a reduction of
hIgA1–mIgG, hIgA1–sCD89 complexes serum levels (the main serum markers of disease in
this animal model), and of IgA mesangial deposition that could be explained by a greater
availability and ability of IgA to bind CD89 or mIgG or mesangial cells in the control group
compared to the treated group.

Although the “eubiotic” effect of rifaximin on gut microbiota is established [27], the
exact mechanism of action in IgAN requires further investigations. Indeed, there were
some limitations to this study, particularly the lack of the analysis of microbiota, that
did not allow us to state whether our results are due to the modulation of the intestinal
microbiota or if they are due to other effects of rifaximin on the gut.
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In conclusion, the present study demonstrated that rifaximin reduces the progression
and the severity of IgAN observed in humanized mice (α1KI-CD89Tg) and showed that
rifaximin might open a new therapeutic avenue for IgAN. However, more detailed research
is required to establish the precise molecular mechanism involved and the exact role of
microbiota in this pathway.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jpm11040309/s1, Supplementary data 1 Table S1; Supplementary data 2 Proposal mechanism.
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Abstract: How can the knowledge of probiotics and their mechanisms of action be translated into
clinical practice when treating patients with diverticular disease and acute diverticulitis? Changes in
microbiota composition have been observed in patients who were developing acute diverticulitis,
with a reduction of taxa with anti-inflammatory activity, such as Clostridium cluster IV, Lactobacilli
and Bacteroides. Recent observations supported that a dysbiosis characterised by decreased presence
of anti-inflammatory bacterial species might be linked to mucosal inflammation, and a vicious
cycle results from a mucosal inflammation driving dysbiosis at the same time. An alteration in gut
microbiota can lead to an altered activation of nerve fibres, and subsequent neuronal and muscular
dysfunction, thus favoring abdominal symptoms’ development. The possible role of dysbiosis
and mucosal inflammation in leading to dysmotility is linked, in turn, to bacterial translocation
from the lumen of the diverticulum to perivisceral area. There, a possible activation of Toll-like
receptors has been described, with a subsequent inflammatory reaction at the level of the perivisceral
tissues. Being aware that bacterial colonisation of diverticula is involved in the pathogenesis of acute
diverticulitis, the rationale for the potential role of probiotics in the treatment of this disease becomes
clearer. For this review, articles were identified using the electronic PubMed database through a
comprehensive search conducted by combining key terms such as “gut microbiota”, “probiotics and
gut disease”, “probiotics and acute diverticulitis”, “probiotics and diverticular disease”, “probiotics
mechanism of action”. However, the amount of data present on this matter is not sufficient to draw
robust conclusions on the efficacy of probiotics for symptoms’ management in diverticular disease.

Keywords: gut microbiota; probiotics and gut disease; probiotics and acute diverticulitis; probiotics
and diverticular disease; probiotics mechanism of action

1. Introduction—Microbiota in Health and Disease

Over the last three decades, the importance of gut microbiota in determining health
and disease has become increasingly clear.

Already in the late 1800s, researchers were warning the public that the bacteria living
in our intestine could be “pathological” [1] even though the concept of dysbiosis had yet to
be formulated.

Microbiota has proven to be an important player in the pathogenesis of many different
diseases, ranging from more “obvious” disorders, for instance small intestine bacterial
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overgrowth (SIBO) [2], to more complicated diseases, such as immune deficits, thyroid dis-
orders, neurodegenerative diseases [3–5], and have also been linked to mood disorders [6].

In this review, our aim was to discuss the potential role of probiotics for the treatment
of diverticular disease and acute diverticulitis, with particular attention to their possible
mechanisms of action.

The most important mechanisms through which microbiota can influence systemic
health is through immune/inflammatory mechanisms [7,8]. The presence of certain bacte-
rial strains can exert regulatory functions, improving immune-tolerance and stimulating
regulatory T-cell (T-reg) expression [9]. This activity was observed, for instance, in Bac-
teroides fragilis [10] and in some Clostridium species [11].

Immune modulation also takes place through the production of short-chain fatty acids
(SCFAs). Indeed, when digesting fibre, bacteria produce a vast array of SCFAs. Butyrate
is particularly important among them, as it directly modulates the expression of histone
deacetylase (HDAC), consequently increasing the expression of T-regs. Moreover, its role
in obesity and metabolic control is not yet clear [12].

Additionally, a “healthy” microbiota works as a physical barrier against pathogens,
stopping them from overcoming the gut mucosa and spreading systemically [13]. Indeed,
beneficial species compete for nutrients and can produce antimicrobial substances which
do not allow the growth of other microorganisms. Yet, it is worth noting that a certain
microbial population can shift from protective to harmful even in the same individual
based on circumstance.

In Table 1 there is a short summary of the relevant literature we discussed.

2. Materials and Methods

For this review, articles were identified using the electronic PubMed database through
a comprehensive search conducted by combining key terms such as “probiotics”, “gut
microbiota”, “probiotics and gut disease”, “probiotics and acute diverticulitis”, “probi-
otics and diverticular disease”, “probiotics mechanism of action”, “gut immunology and
probiotics”. English-language articles were screened for relevance. A full review of pub-
lications for the relevant studies was conducted, including additional publications that
were identified from individual article reference lists. At first, the literature search was
conducted individually by the single authors, who then compared their results, to include
in the review only the most recent and relevant papers.

3. What Is a Healthy Microbiota?

As discussed above, the role of microbiota in determining health and disease, via im-
mune modulation, is becoming increasingly clear. Some microbes have been identified as
definitely pathogenic, for instance Clostridium difficile, yet there still are some grey areas,
in particular when it comes to determine what defines a healthy microbiota [14].

An example of this comes from studies on microbiota and cancer: Helicobacter pylori
is a known risk factor for the development of gastric cancer, but it has a protective effect
against oesophageal cancer [15]. Similarly, Escherichia coli protects against pancreatic cancer,
but favours colorectal and liver tumours [16]. In these cases, the ambivalent role of these
bacteria was determined by the site of colonisation.

It is, indeed, important to underline that, even though it is common to refer to “gut
microbiota”, this does change widely throughout the gastrointestinal tract. In the oral
cavity, for instance, it is common to find Neisseria spp., which is instead difficult to find in
other sites [17]. The stomach has a completely different microbiota than all the other parts
of the gastrointestinal tract in healthy patients, but resembles oesophageal or intestinal
microbiota in those with gastric cancer [18]. The small intestine even has a different
composition based on which tract is being studied, and its composition is different from
that of the colon.

Even considering specific parts of the gastrointestinal tract, microbiota changes with
age [19], and even depending on geographic localisation, diet and ethnicity [20].
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Yet, even though it is not possible to precisely define what species compose a healthy
microbiota, it is worth noting that some general characteristics have been observed: a
healthy microbiota is made up of a dynamic and diverse community of microbes, which is
able to self-regulate [21].

While these do seem to be vague concepts, it is interesting to notice that the modern,
western diet directly affects microbiota diversity, reducing its capacity to bounce back when
frankly pathogenic species start colonising the gut [22].

4. Gut Disease and Microbiota

While gut microbiota influences all aspects of human health, its action on the gastroin-
testinal system is particularly important.

Indeed, gut microbiota directly modulates gastrointestinal homeostasis, through a
variety of mechanisms. The presence of pathogens at the intestinal barrier, for instance,
can directly damage the gastrointestinal mucosa and determine inflammation. This is the
mechanism through which C. difficile, Salmonella spp and others can create direct intestinal
damage [23].

Direct damage also activates immunologic pathways, particularly through the acti-
vation of the inflammasome. IL-1β and IL-18 are a direct consequence of its activation,
causing pyroptosis, a particular form of immune-mediated cellular death [24]. Meanwhile,
the activation of the inflammasome is important to maintain gut homeostasis, as it helps
restore microbiota eubiosis, and it can also lead to chronic gut inflammation, which in turn
promotes an inflammatory gut microbiota, in a difficult-to-break vicious circle.

It was observed that Bifidobacterium adolescentis, Lactobacillus, Phascolarctobacterium,
Akkermansia muciniphila are all reduced in patients with intestinal inflammation. Interest-
ingly, when present, they are capable of reducing inflammation, particularly acting on
C-reactive protein (CRP), IL-6, and tumour necrosis factor (TNF)-α [25]. The action on these
inflammatory mediators partly explains how gut microbiota can influence systemic health.

In the gut, the action of these mediators has direct consequences in terms of per-
meability and inflammation, both extremely important in the pathogenesis of different
gastrointestinal disorders [26]. The presence of dysbiosis can trigger the development of in-
flammatory bowel disease (IBD) and irritable bowel syndrome (IBS). The role of microbiota
has been particularly underlined in the pathogenesis of IBDs, in which dysbiosis is marked
by the presence of Mycobacterium avium subsp. paratuberculosis, Fusobacterium nucleatum,
adherent–invasive E. coli [27].

Inflammation caused by microbiota dysbiosis is also responsible of liver disorders,
particularly non-alcoholic liver steatosis. In this case, there is a direct colonisation of the
bile ducts, which adds up to the action of bacterial metabolic products. Interestingly,
the capacity of bacteria to metabolise biliary salts is also linked to dysbiosis [28].

Inflammation is also a well-known risk factor for the development of cancer, and it
is no different in the intestine; the impact of microbiota composition in modulating the
intestinal immunologic niche has proven essential in different forms of cancer [16].

5. Microbiota Modulation: The Case for Probiotics

Given the importance of microbiota in human health, the possibility of modulating it
to obtain benefits is an interesting potential therapeutic target.

Microbiota modulation can take place in two different ways, either through the use of
antibiotics or through the use of probiotics.

Antibiotic use can target specific pathological bacteria in the gut, eliminating it, as in
the case of vancomycin in C. difficile infection [29]. Some antibiotics, such as rifaximin,
can instead be used to target a larger number of pathogens, improving conditions such
as IBS, SIBO and preventing encephalopathy in patients suffering from liver disease [30].
Ozone, for instance, also seems to have a similar capacity to reduce inflammation in the
gut, also through microbiota modulation [31,32].
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Yet the use of antibiotics can be tricky. The use of antibiotics can reduce taxonomic
diversity of gut microbiota and induce resistance mechanisms in pathogenic species, while
also favouring the development of C. difficile infection and other dangerous pathogens [33].

Using probiotics can provide similar positive effects to antibiotics, in reducing pathogens,
but at the same time avoiding many of the side effects [34]. Probiotics have been used
with different degrees of success in patients suffering from IBS, gastroenteritis and even in
C. difficile-associated diarrhoea [35]. Probiotics have also been used in neonatal sepsis and
necrotising enterocolitis [36].

Probiotic use has also been discussed in extra-gut conditions, such as autism and acute
respiratory infections [37,38].

Some authors even suggest that microbiota modulation through probiotics could be
beneficial in preventing cancer [39] and improving response to chemotherapy, reducing
gastrointestinal side effects [40].

6. Microbiota and Acute Diverticulitis: What We Know, What We Can Do

Diverticulitis is usually merely considered an inflammation of a herniation of colonic
mucosa and submucosa, through the muscle layer. While it is obvious that the inflamma-
tory process is driven by the resident microbiota, it is not as clear whether the microbial
population may play a role in promoting the herniation in the first place [41].

It is known that dietary factors are key in determining the onset of diverticular disorder
and they also determine changes in microbiota composition. It is difficult to determine
whether the changes in the composition of the microbiota may act as an enhancing factor in
the development of diverticulitis, but it is worth noting that the microbial species associated
with diverticular disease are Enterobacteriaceae, Streptococcus and Bacteroides, while reducing
the expression of “good” bacteria, such Bifidobacteria and Lactobacilli [42].

The role of microbiota in determining diverticular inflammation is instead far clearer.
Recurring diverticulitis not susceptible to surgery has, indeed, been treated with faecal
transplant, leading to complete remission [43]. Additionally, it has been reported that a
patient, with moderate diverticular disease, who underwent faecal transplant for C. difficile
infection, developed her first ever episode of diverticulitis after the procedure, further
proving that, while it may not take part in the first, more mechanical stages of the disease,
microbiota is not a bystander during the inflammatory phase [44].

Changes in microbiota composition have been observed in patients who were devel-
oping acute diverticulitis, with a reduction of taxa with anti-inflammatory activity, such as
Clostridium cluster IV, Lactobacilli and Bacteroides. At the same time, overgrowth of Bi-
fidobacteria, Enterobacteriaceae and Akkermansia have been reported [41]. This diversity,
also characterised by an increase in Proteobacteria, has proven significant and could be
used for an early diagnosis of the disease [45].

Overall, the importance of microbiota in diverticular disease has been demonstrated
indirectly by the therapies used to treat the disorder. Indeed, the use of rifaximin and
probiotics has proven interesting, even though mostly through clinical trials.

Rifaximin has been used to treat Symptomatic Uncomplicated Diverticular Disease in a
clinical trial and results were encouraging, not only in terms of symptom control but also as
far as faecal microbiota composition, with a reduction of Roseburia, Veillonella, Streptococcus
and Haemophilus [46]. In another study, there was also a reduction in Akkermansia [47].

Lactobacilli have been demonstrated to reduce Symptomatic Uncomplicated Divertic-
ular Disease, particularly in reducing bloating and abdominal pain [48], while Lactobacillus
salivarius, Lactobacillus acidophilus and Bifidobacterium lactis have proven effective in manag-
ing acute diverticulitis [49]. A double-blind randomised control trial was recently published
by Ojetti et al., in which the authors tested the efficacy of L. reuteri 4659 in treating pa-
tients affected by acute uncomplicated diverticular diseases (AUD). Supplementation of
the standard AUD therapy with this specific probiotic with an anti-inflammatory effect
significantly reduced abdominal pain and inflammatory markers compared to those who
were not taking the same supplementation [50]. These data were also observed in another
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paper, published in 2019, in which the authors demonstrated that in patients affected by
AUD supplementation with a mix of probiotics B. lactis LA 304, L. salivarius LA302 and L.
acidophilus LA 201, with a well-known capacity for reducing TNF levels, in combination
with the standard antibiotic therapy reduced PCR level and the abdominal pain compared
to patients with the disease who did not receive the supplementation [51].

Table 1. Summary of the most relevant research.

Title Topic Reference Number

Belkaid Y, Hand TW. “Role of the microbiota in
immunity and inflammation”. Cell. 2014 Microbiota-driven immune responses [8]

Iebba V, Totino V, Gagliardi A, Santangelo F, Cacciotti
F, Trancassini M, et al. “Eubiosis and dysbiosis: the
two sides of the microbiota”. New Microbiol. 2016

Dysbiosis and eubiosis in defining a “healthy”
gut microbiota [14]

Cianci R, Franza L. “The Interplay between Immunity
and Microbiota at Intestinal Immunological Niche:

The Case of Cancer”. 2019
The intestinal niche in health and disease [16]

Lange K, Buerger M, Stallmach A, Bruns T. “Effects of
Antibiotics on Gut Microbiota”. Dig Dis. 2016 The role of antibiotics in shaping the microbiota [33]

Suez J, Zmora N, Segal E. “The pros, cons, and many
unknowns of probiotics”. 2019 The role of probiotics in shaping the microbiota [35]

Kim SK, Guevarra RB, Kim YT, Kwon J, Kim H,
Cho JH, et al. “Role of Probiotics in Human Gut
Microbiome-Associated Diseases”. J Microbiol

Biotechnol. 2019

Probiotics in gut-microbiota associated diseases [38]

Ticinesi A, Nouvenne A, Corrente V, Tana C, Di Mario
F, Meschi T. “Diverticular Disease: a Gut Microbiota

Perspective. Journal of gastrointestinal and liver
diseases”. JGLD. 2019

The role of microbiota in diverticular disease [41]

Ojetti V, Petruzziello C, Cardone S, Saviano L,
Migneco A, Santarelli L, et al. “The Use of Probiotics
in Different Phases of Diverticular Disease. Reviews

on recent clinical trials”. 2018

Action of probiotics in diverticular disease [49]

Petruzziello C, Migneco A, Cardone S, Covino M,
Saviano A, Franceschi F, et al. Supplementation with

Lactobacillus reuteri ATCC PTA 4659 in patients
affected by acute uncomplicated diverticulitis: a

randomised double-blind placebo controlled trial. 2019

Action of probiotics in diverticular disease [50]

Petruzziello C, Marannino M, Migneco A, Brigida M,
Saviano A, Piccioni A, et al. The efficacy of a mix of

three probiotic strains in reducing abdominal pain and
inflammatory biomarkers in acute uncomplicated
diverticulitis. European review for medical and

pharmacological sciences. 2019

Action of probiotics in diverticular disease [51]

135



J. Pers. Med. 2021, 11, 298

In Figure 1, the described mechanisms are shown.

Figure 1. The immunomodulatory properties of probiotics.

The immunomodulatory properties of probiotics are also associated with cytokine
release, in particular tumour necrosis factors (TNF), transforming growth factor (TGF), in-
terleukins (IL), interferons (IFN) and chemokines derived from immune cells that regulate
the innate and adaptive compartments of the immune system. Some cell wall components
of Lactobacilli and Bifidobacteria, such as lipoteichoic acid, stimulate nitric oxide (NO) syn-
thesis, which is key in pathogen-infected cell death mechanisms, induced by macrophages
via TNF-α secretion. Furthermore, two surface receptors involved in phagocytosis, namely
FcγRIII and toll-like receptors (TLR), are also upregulated by NO.

Probiotics have been proven to interact with enterocytes, Th1, Th2, Treg cells and
dendritic cells in the gut and also regulate the adaptive immunity.

7. Probiotics in Diverticulitis: Mechanisms of Action

To better understand how probiotics exert an impact on diverticular disease and
diverticulitis, attention should be focused on some aspects of pathophysiology linked
to microbiota.

Recent observations support that a dysbiosis characterised by decreased presence
of anti-inflammatory bacterial species might be linked to mucosal inflammation, and a
vicious cycle results from a mucosal inflammation driving dysbiosis at the same time [51].

Another key element is the possible role of dysbiosis and mucosal inflammation in
leading to dysmotility: an alteration in gut microbiota, indeed, can lead to altered nerve
fibre activation and subsequent neuronal and muscular dysfunction, thus favouring the
development of diverticulosis, while also possibly inducing abdominal symptoms [52].
Altered motility is linked, in turn, to bacterial translocation from the lumen of the divertic-
ulum to perivisceral area. There, a possible activation of Toll-like receptors (TLR) [53] has
been described, with a subsequent inflammatory reaction at the level of the perivisceral
tissues [54].

Moreover, Foligne and colleagues [55] have studied, in the context of IBD, thirteen
strains of probiotics in terms of anti-inflammatory properties and, among these, L. aci-
dophilus and L. salivarius Ls33 seemed to be the best-performing concerning increased
induction of IL-10 and decreased induction of IL-12.

Data coming from in vitro and in vivo studies, concerning L. salivarius Ls33, suggest
that its administration is linked to an improved recovery of inflamed tissue in a rat colitis
model [56].

This evidence has led researchers to consider changes in peri-diverticular bacterial
flora as a critical element in acute diverticulitis pathogenesis, and a similar model was
applied to explain acute appendicitis pathogenesis. Basically, stasis of faecal material within
diverticula can be favoured by a prolonged colonic transit, which in turn predisposes to
altered microflora and bacterial overgrowth. Mucosal barrier function can be consequently
impaired and provoke an inflammatory reaction by means of cytokine release; a low-grade,
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localised microscopic colitis may result, which can evolve towards microperforation and
show the clinical features of acute diverticulitis [57].

Being aware that bacterial colonisation of diverticula is involved in the pathogenesis
of acute diverticulitis, the rationale for the potential role of probiotics in the treatment of
this disease becomes clearer. As Quigley reports, probiotics may be able to modify the
localised and persistent inflammation, present in some patients who are between acute
bouts of diverticulitis. Acting on inflammation they may also act on symptom development,
in individuals affected by uncomplicated diverticular disease [58].

In addition, the intestinal bacterial flora produces the outer membrane vesicles which
play an important role in microbiota-host communication, the interaction of which takes
place thanks to the action of adhesins, sulfatases and proteases and pathways such as
micropinocytosis, clathrin- and lipid raft-dependent endocytosis [59].

These outer membrane vesicles have a positive impact on mucosal immunity and its
signaling pathways. This would therefore seem to be another mechanism of action that can
be exploited through the administration of probiotics in the context of various intestinal
diseases, including diverticulitis. However, there is still scarcity of literature on the exact
mechanisms of vesicles secreted by various species of microbiota and probiotics [57,60].

In a paper published by Brandimarte et al. [61], the pros and cons were discussed
regarding evidence of probiotic action in diverticular disease. Recognising that overgrowth
and alteration of gut microbiota can play a role in the development of inflammation related
to diverticular disease, there is a clear rationale for administering probiotics with the
aim to restore a healthy microenvironment in the colon. Different mechanisms have been
discussed, such as a decrease in bacterial translocation, competitive inhibition of pathogenic
and proinflammatory bacterial strains overgrowth, down-regulation of inflammatory
cytokines, together with an improvement in mucosal defence, due to enhanced tight
junction integrity [48,62,63].

However, the amount of data present on this matter is not sufficient to draw robust
conclusions on the efficacy of probiotics for symptom management in diverticular dis-
ease, and this was confirmed by a recent expert consensus with a submaximal level of
agreement [64].

Indeed, concerning therapy with probiotics, there are no established protocols defining
which strain, what dosage and for how long to use them, and this reflects the absence of
reliable meta-analyses in this regard [61].

Literature should be broadened as new mechanisms of action come to light from the
many investigations being currently conducted in numerous centres around the globe,
and new protocols should be established in order to study how exactly probiotic admin-
istration could make the difference in the management of diverticular disease and acute
diverticulitis.
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Abstract: The microbiota has been reported to be correlated with carcinogenesis and cancer progres-
sion. However, its involvement in the pathology of mesothelioma remains unknown. In this study,
we aimed to identify mesothelioma-specific microbiota using resected or biopsied mesothelioma
samples. Eight mesothelioma tissue samples were analyzed via polymerase chain reaction (PCR)
amplification and 16S rRNA gene sequencing. The operational taxonomic units (OTUs) of the effec-
tive tags were analyzed in order to determine the taxon composition of each sample. For the three
patients who underwent extra pleural pneumonectomy, normal peripheral lung tissues adjacent
to the tumor were also included, and the same analysis was performed. In total, 61 OTUs were
identified in the tumor and lung tissues, which were classified into 36 species. Streptococcus australis
and Ralstonia pickettii were identified as abundant species in almost all tumor and lung samples.
Streptococcus australis and Ralstonia pickettii were found to comprise mesothelioma-specific microbiota
involved in tumor progression; thus, they could serve as targets for the prevention of mesothelioma.

Keywords: mesothelioma; microbiome; 16S RNA sequencing; species

1. Introduction

The field of microbiome research was primarily initiated to study gastrointestinal
diseases, such as pseudomembranous enteritis and irritable bowel syndrome; however,
as the human intestinal microbiota is involved in carcinogenesis and cancer progression,
it has also begun to focus on this area [1–3]. Moreover, new sequencing technologies
have revealed bacterial flora in the pancreatic, lung, and breast tissues, in addition to the
intestinal tissue [4–8].

Described as “the worst type of malignancy”, mesothelioma is a disease associated
with extremely poor treatment outcomes and a 5-year overall survival of 3.4% [9]. Epi-
demiologically, mesothelioma is strongly correlated with asbestos inhalation and, since its
onset, is usually observed approximately 40 years after asbestos inhalation. As of 2020, it is
being increasingly reported worldwide [10]. Therefore, there is an urgent need to clarify its
pathophysiology and establish methods for preventing its onset, as well as to introduce
new treatments [11,12].

Several recent studies have reported the relationship between microbiota and car-
cinogenesis in colorectal cancer, oral cancer, pancreatic cancer, and lung cancer [13–17];
however, the significance of the microbiota in mesothelioma remains to be elucidated.
Unlike previously studied oral, gastrointestinal and respiratory cancers, mesothelioma
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occurs in the thoracic cavity, and undergoes no direct interaction with external areas. Since
the tumor environment of mesothelioma is presumably sterile, and since it is a rare disease,
microbiome research on the involvement of the microbiota in the pathophysiology of this
disease is lacking.

Here, the 16S rRNA of the bacterial genome of resected or biopsied mesothelioma
specimens was amplified via polymerase chain reaction (PCR), followed by 16S sequence
analysis via next-generation sequencing, to determine the composition of the microbiota
and identify mesothelioma-specific bacterial flora. Furthermore, a predictive model for
the onset of disease was developed based on these results, and the possibility of the
prevention/control of mesothelioma onset was discussed.

2. Methods
2.1. Patients and Sample Preparation

In this study, eight patients who underwent surgical resection for mesothelioma at
our hospital between January 2016 and August 2020 were enrolled unbiasedly. Since an-
tibiotics treatment might modify bacterial composition, patients who had taken antibiotics
orally or intravenously before surgery were excluded from this study. Written informed
consent for genetic research was obtained from all the enrolled patients in compliance
with the protocols of the Institutional Review Board at our hospital. The resected speci-
mens were classified and staged according to WHO histological guidelines and the TNM
(Tumor-Node-Metastasis) staging system, respectively [18]. Sections of formalin-fixed and
paraffin-embedded tissues were stained with hematoxylin–eosin, followed by microdissec-
tion with the ArcturusXT laser-capture microdissection system (Thermo Fisher Scientific,
Waltham, MA, USA), as previously reported [19–24]. For patients who underwent extra
pleural pneumonectomy (EPP) and surgical resection of the lung, normal lung tissues,
just under the visceral pleura, were also microdissected and examined. Since there were
three surgical patients, eight patients and 11 specimens were analyzed. The GeneRead
DNA FFPE Kit (Qiagen, Hilden, Germany) was utilized following the manufacturer’s
instructions, and the DNA quality was examined by the use of primers for ribonuclease
P [25]. In the same manner, tumor DNA was extracted from the FFPE (formalin-fixed paraf-
fin embedded) samples obtained from patients with thymoma, the other rare malignant
neoplasm in the thorax, and used as a control (n = 19).

2.2. 16S rRNA Amplification and Targeted Sequencing

The 16S rDNA V4 region was amplified by PCR and sequencing as previously de-
scribed with minor modifications [7]. FFPE DNA was amplified with the Platinum PCR
SuperMix High Fidelity (Thermo Fisher Scientific, Waltham, MA, USA) with forward
primer 5′-GTGYCAGCMGCCGCGGTAA-3′ (16S_rRNA_V4_515F) and reverse primer
5′-GGACTACNVGGGTWTCTAAT-3′ (16S_rRNA_V4_806R). PCR products were confirmed
by agarose gel electrophoresis and purified with Agencourt AMPure XP reagents (Beckman
Coulter, Brea, CA, USA). End repair and barcode adaptors were ligated with an Ion Plus
Fragment Library Kit (Thermo Fisher Scientific, Waltham, MA, USA) in compliance with
the manufacturer’s instructions, and libraries were constructed. The library concentration
was determined with an Ion Library Quantitation Kit (Thermo Fisher Scientific, Waltham,
MA, USA), and the same quantity of libraries was set for each sequence. Emulsion PCR
and chip loading were performed on the Ion Chef with an Ion PGM Hi-Q View Chef
Kit, and sequencing was performed on the Ion PGM Sequencer (Thermo Fisher Scien-
tific, Waltham, MA, USA). The sequence data were transferred to the IonReporter local
server with the IonReporterUploader plugin. Data were analyzed with the Metagenomics
Research Application using a custom primer set. The analytical parameter was set as
the default.
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2.3. Data Analysis

The original raw tags were obtained by merging paired-end reads using FLASH
(v1.2.7), then they were filtered to obtain clean tags via Qiime (Version 1.9.1). The oper-
ational taxonomic units (OTUs) of the effective tags were classified and PCR chimeras
were removed via Usearch (Uparse v7.0.1001) to identify the taxa composition of each
sample with 97% identity. To obtain taxonomic assignments from phylum to species, the
presentative sequence of each OTU was classified by taxonomy via the RDP (Ribosomal
Database Project) classifier, with reference to the Silva (SSU123) 16S rRNA database, with
confidence estimates of 80%.

2.4. Statistics

Continuous variables are described as the mean ± SD. One-way ANOVA (analysis
of variance) and the Tukey–Kramer multiple comparison test were utilized to identify
significant differences among groups. Statistical significance was defined as p-values below
0.05 in the two-tailed analyses.

3. Results
3.1. Patient Characteristics

In total, we analyzed 11 resected specimens from eight patients with mesotheliomas
who had undergone surgery at our institution between January 2014 and August 2020.
The clinicopathologic characteristics of the patients, including age, sex, histology, stage,
smoking status, and performance of chemotherapy or extrapleural pneumonectomy (EPP),
are shown in Table 1. Among the eight patients, all were males, seven were smokers
and one was a non-smoker. According to the histological classification, there were six
epithelioid, one sarcomatoid, and one biphasic mesotheliomas (Table 1). The eight patients
enrolled in this study were classified according to TNM stage: stage IA (n = 1), IB (n = 4)
and II (n = 3). The patients’ ages ranged between 53 and 78 years (68.1 ± 8.5 years). Seven
patients underwent chemotherapy, and three patients underwent EPP.

Table 1. Patient characteristics.

Parameter Number of Patients Overall Percentage

Total number 8
Age (years), median (range) 71 (53–78)
Sex

Male 8 100.0%
Female 0 0.0%

Histology
Epithelioid

mesothelioma 6 75.0%

Sarcomatoid
mesothelioma 1 12.5%

Biphasic
mesothelioma 1 12.5%

Stage
IA 1 12.5%
IB 4 50.0%
II 3 37.5%

Smoking Status (Pack year)
0 1 12.5%

0 < PY 5 30 4 50.0%
> 30 3 37.5%

Chemotherapy
Performed 7 87.5%

Not performed 1 12.5%
EPP

Performed 3 37.5%
Not performed 5 62.5%
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3.2. OTU Analyses

Via OTU analysis, 61 OTUs were detected in 11 samples. The predominant (> 1%
average relative abundance) classifiable OTUs involved two species, Streptococcus australis
(abundance: 32.2 ± 29.6%) and Ralstonia pickettii (abundance: 24.4 ± 21.1%) (Figure 1).
Both Streptococcus australis and Ralstonia pickettii were detected in the tumor tissues of
six patients and in the lung tissues of all three patients who underwent EPP (Figure 1,
Supplementary Figure S1), and both species were identified in all mesothelioma tissues
(Figure 1).
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3.3. Differences in Microbiota between Mesotheliomas and Thymomas

To identify mesothelioma-specific microbiota, we compared the microbiota between
mesothelioma and thymoma samples (Figure 2). The thymoma specimens showed no
specific distribution of microbiota, and Streptococcus australis and Ralstonia pickettii were
not detected either, suggesting that these species are specific to mesothelioma.
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4. Discussion

The microbiota has recently been identified in some cancer tissues, including pan-
creatic and lung cancers, and its significance is attracting attention [4–8]; however, micro-
biome research focusing on mesothelioma is lacking. In this study, microbiome analysis
was performed using resected mesothelioma specimens, and Streptococcus australis and
Ralstonia pickettii were identified in almost all mesothelioma patients, with high levels
of bacterial composition and abundance. Peripheral normal lung tissues adjacent to the
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tumor were also analyzed in patients who underwent EPP. Streptococcus australis and
Ralstonia pickettii were detected in abundance in both the tumor and the adjacent lung
tissues. Mesothelioma specimens and thymoma tissues (control) were analyzed simultane-
ously via the same process at the Genome Analysis Center in our institution, which deter-
mined that the specimens were not contaminated with these two bacterial species during
the analysis process. By contrast, neither Streptococcus australis nor Ralstonia pickettii were
detected in lung cancer tissues in recently published reviews of the microbiota [4,26–28].
Furthermore, the involvement of these two genera in the carcinogenesis of any organs has
not been investigated. Since these two genera were detected in almost all mesothelioma
patients, Streptococcus australis and Ralstonia pickettii may represent differential microbiome-
related mechanisms in mesothelioma development.

Basic research on the lung microbiome has revealed that certain symbiotic bacteria
form numerous micropores on the surface layer (visceral pleura) of the lungs of healthy
individuals [29]. These micropores are formed by the secretion of cholesterol-dependent
cytolysin (CDC), and there are five main types of CDC: pneumolysin, streptolysin, in-
termedilysin, mitilysin, and lectinolysin [30]. CDC, a pore-forming toxin, binds to the
cholesterol on the cell surface and then polymerizes on the cell membrane to form trans-
membrane pores [29,31]. Furthermore, Streptococcus pneumoniae, Streptococcus pyogenes,
Streptococcus intermedius and Streptococcus mitis are the major cause of CDC [30].

The Streptococcus australis identified in this study was first isolated from the saliva of
children in Sydney, Australia, in 1991 [32]. During microbiological analyses of the saliva of
children, Willcox et al. isolated strains of streptococci that could grow in media containing
high concentrations of NaCl or KCl (up to 500 mM) [32]. These strains were initially
identified as Streptococcus mitis, but were subsequently determined to be a separate species,
according to DNA–DNA hybridization and biochemical analysis (Willcox, 1996) [33].
Nevertheless, based on 16S rRNA sequences, Streptococcus australis was shown to be
clustered in the group corresponding to the Streptococcus mitis [32,34]. Based on the above
information, it is likely that Streptococcus australis is present in the lung, particularly in the
peripheral lung adjacent to the visceral pleura, in patients who develop mesothelioma,
and it produces CDC in order to form numerous micropores in the visceral pleura on the
lung surface. Furthermore, the pathophysiological hypothesis that asbestos microfibers
pass through these micropores and reach the parietal pleura should also be considered.
This hypothesis is consistent with the observation that ultra-thin fibers (about 0.02 µm in
diameter) were the only asbestos fibers detected in the parietal pleura and mesothelioma
tissues, and that the diameter of the micropores formed in the visceral pleura was estimated
to be 250 Å (0.025 µm) [30]. However, there are many instances wherein mesothelioma
does not occur even after asbestos inhalation. Differences in the composition of bacterial
flora may contribute to individual differences in the occurrence of mesothelioma. This
is a new hypothesis concerning the pathogenesis of mesothelioma, and further detailed
investigation is urgently needed.

On the other hand, Ralstonia pickettii is a Gram-negative, rod-shaped bacterium [35].
Ralstonia pickettii, a Betaproteobacteria species, is a common microorganism inhabiting
various environments, such as soils, rivers, and lakes. It is an oligotrophic organism,
making it capable of surviving in nutrient-poor environments. The ability to use diverse
organic compounds and survive in these harsh conditions makes R. pickettii useful for
bioremediation [36]. Ralstonia pickettii is an emerging pathogen in clinical settings [37].
R. pickettii has come to be severely pathogenic in immunocompromised or fragile patients.
Several medical institutions have reported outbreaks—patients with Crohn’s disease and
cystic fibrosis in particular were found to be infected with R. picketti. Among the 55 reported
cases of R. picketti. infection, most were due to contaminated saline solutions and sterile
drugs [38]. These solutions are supposed to be contaminated during the manufacturing
procedure, because R. pickettii is theoretically able to pass through the 0.2 µm filters that
are generally used to sterilize medicinal products.
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There are many indigenous microorganisms in the epithelia of several human organs
(oral and auricular cavities, respiratory organs, gastrointestinal tract, skin, and reproductive
organs), which play various roles in the body and have symbiotic relationships [1,3]. Distur-
bances in the bacterial flora (dysbiosis) change the risk of disease onset. Moreover, intestinal
bacterial flora are relevant to numerous diseases, such as allergies, cancer, multiple scle-
rosis, Parkinson’s disease, depression, inflammatory bowel disease, and rheumatism [26].
Furthermore, the onset of these diseases has been alleviated and prevented via aseptic
and specific pathogen-free processing in pathophysiological mouse models of the afore-
mentioned diseases, and disease onset may also be prevented by improving the bacterial
flora in humans [39]. If one or several organisms are the cause of disease, they may be a
potential therapeutic target. In clinical practice for gastric cancer, carcinogenesis can be
prevented by eradicating Helicobacter pylori, which is currently the standard treatment for
the prevention of disease onset in infected patients [40]. Therefore, since the bacterial flora
involved in the onset of mesothelioma has been identified, it may be possible to prevent
the onset of mesothelioma in future clinical applications by controlling these two species.
In particular, asbestos inhalation is a known cause of mesothelioma, and the prevention of
mesothelioma is particularly important in high-risk populations exposed to asbestos [10].
The establishment of a probiosis model, with antimicrobial or vaccine therapy targeting
the two target species identified in this study, may serve as a treatment regime for the
prevention of the onset of mesothelioma.

This study has some limitations. First, the number of patients was small, owing to
the extreme rarity of the tumor type, and the patients enrolled in this study were only
Japanese. Second, no blood samples were analyzed for microbiota containing the two
species Streptococcus australis and Ralstonia pickettii. The greater abundance of these two
species in the tumor tissue may be associated with the impaired immunity of the tumor
microenvironment, which may help these bacteria to proliferate in the blood, and thus they
may be clinically applicable as serum biomarkers for mesothelioma. Third, it is unclear from
our observational design whether the identified bacterial profiles are causally associated
with oncogenesis, or are merely reflective of pathological processes in the mesothelioma.
In this context, a larger series will be required to analyze the microbiome landscape of
mesotheliomas more extensively, and to more clearly interpret the relevance of clinical
variables via comprehensive multivariate analysis. However, since the major objective of
this exploratory analysis was to identify the mesothelioma-specific microbiota that could
be useful for clinical development, the modest sample size can still offer much insight.

5. Conclusions

This is the first study to examine the microbiota involved in mesothelioma, revealing
two mesothelioma-specific species, Streptococcus australis and Ralstonia pickettii. Further
research is required to reveal how the two species coexist with mesothelioma and how
they are involved in the mechanism of carcinogenesis. In addition, by establishing probio-
sis models that can control these species, “precision medicine” can be developed for the
prevention of the onset of mesothelioma. The results of this study might have clinical appli-
cability, such as in preventing the onset of mesothelioma by controlling and enhancing the
symbiotic bacterial flora through antibiotic or vaccine therapy, or in establishing a regular
screening system in patients presumed to be at high risk for developing mesothelioma.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jpm11040297/s1. Figure S1: Composition of detected species in all samples.
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Abstract: The last decade saw extensive studies of the human gut microbiome and its relationship to
specific diseases, including gallstone disease (GSD). The information about the gut microbiome in
GSD-afflicted Russian patients is scarce, despite the increasing GSD incidence worldwide. Although
the gut microbiota was described in some GSD cohorts, little is known regarding the gut microbiome
before and after cholecystectomy (CCE). By using Illumina MiSeq sequencing of 16S rRNA gene
amplicons, we inventoried the fecal bacteriobiome composition and structure in GSD-afflicted
females, seeking to reveal associations with age, BMI and some blood biochemistry. Overall, 11
bacterial phyla were identified, containing 916 operational taxonomic units (OTUs). The fecal
bacteriobiome was dominated by Firmicutes (66% relative abundance), followed by Bacteroidetes
(19%), Actinobacteria (8%) and Proteobacteria (4%) phyla. Most (97%) of the OTUs were minor or rare
species with ≤1% relative abundance. Prevotella and Enterocossus were linked to blood bilirubin.
Some taxa had differential pre- and post-CCE abundance, despite the very short time (1–3 days)
elapsed after CCE. The detailed description of the bacteriobiome in pre-CCE female patients suggests
bacterial foci for further research to elucidate the gut microbiota and GSD relationship and has
potentially important biological and medical implications regarding gut bacteria involvement in the
increased GSD incidence rate in females.

Keywords: gallstone disease; 16S rDNA gene diversity; gut microbiota; blood biochemical character-
istics

1. Introduction

Gallstone disease (GSD) has been, for many years, a significant public health problem
worldwide, and its prevalence rate is expected to increase due to the ongoing changes in
lifestyle and dietary habits. Gallstones are highly prevalent in Russia, with 100,000–200,000
cholecystectomies performed annually [1,2].

By now, there is little doubt about the multifaceted relationship between GSD and
the microbiota [3], as some intestinal bacteria can promote gallstone formation [4–6],
particularly by modifying the bile acid profile [7]. However, laparoscopic cholecystectomy
(CCE), albeit currently a radical gold standard treatment, is not a neutral event and may
increase the risk of some serious disorders and diseases, including metabolic syndrome,
cardiovascular disease and cancers [4,8–10]. Post-cholecystectomy constant inflow of bile
into the intestine and its metabolites can directly affect the intestinal microbiota [11], causing
shifts in the gut–brain and gut–muscle axes and thus indirectly affecting the etiology and
course of many related diseases and disorders. Although it is not yet possible to predict how
particular perturbations will modify the microbiota, it is possible that different microbiome
configurations might allow stratified treatment and diet recommendations in the future,
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becoming a novel and powerful candidate for personalized treatment of human diseases [4].
Among more than 500 oral drugs tested, 13% were discovered to be metabolized by the
microbiome [12]. Another study identified 30 human gut microbiome-encoded enzymes
responsible for the biotransformation of 20 drugs to 59 candidate metabolites [13]. Such
findings strongly suggest the importance of including microbiomes into the framework of
precision medicine. Although the pathogenesis of cholesterol gallstones is still not fully
understood, gut microbiota dysbiosis plays an important role in their formation [14]. There
is a paucity of studies describing fecal/gut bacteriobiome profiles in GSD-afflicted patients,
both before and after surgery. The aim of our study was to inventory the fecal microbiota
composition, as assessed by 16S rRNA gene sequencing, in a cohort of female patients with
GSD and compare bacterial diversity before and after CCE.

2. Materials and Methods
2.1. Participants

Twenty-eight female patients with gallstone disease diagnosed by abdominal ultra-
sonography were recruited for the study (Table 1). The older patients had a higher BMI
(Pearson’s correlation coefficient 0.66, p < 0.001). All patients underwent clinical exami-
nation to assess their gastrointestinal and gallbladder status and severity of their clinical
condition; 21 patients had chronic disease, and the rest had acute disease. The patients had
no history of treatment with antibiotics and proton pump inhibitors at least for 1 month
prior to feces sampling, as well as no probiotics and/or prebiotics as special supplementa-
tion. Half of the patients had arterial hypertension, associated with increased BMI. The
patients fasted for at least 12 h before the surgery. After the surgery, the patients received
the antibiotic ceftriaxone. No specific diet was prescribed after the surgery.

Table 1. Demographics of the study cohort (N = 28, females).

Mean Median Min Max

Age, years 51.6 55.0 18.0 73.0
BMI $, kg/m2 25.7 24.8 17.6 34.5

$ BMI stands for body mass index.

All patients were duly informed, gave their consent to the study and signed the
informed consent form. The study observed all the relevant institutional and governmental
regulations. The protocol of the study was approved by the Ethic Committee of the Research
Institute of Internal and Preventive Medicine-Branch of the Institute of Cytology and
Genetics, SB RAS. All clinical aspects of the study were supervised by a gastroenterologist.

2.2. Fecal and Blood Sample Collection

Fecal samples were collected 1 day prior to the CCE and 1–3 days after the surgery,
i.e., as soon as patients had stool, into 10 mL sterile fecal specimen containers and stored at
−80 ◦C until use for DNA extraction. Blood samples were taken twice on the same day as
stool samples.

2.3. Blood Analyses

Collected blood samples were used to determine aspartate aminotransferase (AST, EC
2.6.1.1) and alanine aminotransferase (ALT, EC 2.6.1.2) by the kinetic method, as recom-
mended by the International Federation of Clinical Chemistry and Laboratory Medicine
(IFCC2), using a biochemical analyzer, “Konelab Prime 30i” (Thermo Fisher Scientific,
Vantaa, Finland).

2.4. Extraction of Total Nucleic Acid from Feces

Total DNA was extracted from 50 to 100 mg of thawed patient fecal samples using
the MetaHIT protocol [15]. The bead beating was performed using TissueLyser II (Qiagen,
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Hilden, Germany), for 10 min at 30 Hz. No further purification of the DNA was needed. The
quality of the DNA was assessed using agarose gel electrophoresis. No further purification
of the DNA was needed.

2.5. 16S rRNA Gene Amplification and Sequencing

The 16S rRNA genes were amplified with the primer pair V3/V4, combined with
Illumina adapter sequences [16]. PCR amplification was performed as described earlier [17].
A total of 200 ng of PCR product from each sample was pooled together and purified
through MinElute Gel Extraction Kit (Qiagen, Hilden, Germany). The obtained amplicon
libraries were sequenced with 2 × 300 bp paired-end reagents on MiSeq (Illumina, San
Diego, USA) in the SB RAS Genomics Core Facility (ICBFM SB RAS, Novosibirsk, Russia).
The read data reported in this study were submitted to GenBank under the study accession
number PRJNA687360.

2.6. Bioinformatic and Statistical Analyses

Raw sequences were analyzed with the UPARSE pipeline [18] using Usearch v.11.0.667. The
UPARSE pipeline included merging of paired reads; read quality filtering (-fastq_maxee_rate
0.005); length trimming (remove less than 350 nt); merging of identical reads (dereplication);
discarding singleton reads; removing chimeras and OTU clustering using the UPARSE-
OTU algorithm. The OTU sequences were assigned a taxonomy using SINTAX [19] on
the RDP database. As a reference for bacteria, we used the 16S RDP training set v.16 [20].
Statistical analyses (descriptive statistics, Wilcoxon’s test for dependent variables, prin-
cipal component analysis, multiple regression and general linear model, GLM, analysis
with repeated measures) were performed by using Statistica v.13.3. Principle coordinate
analysis (PCoA) was performed by PAST software v.3.17 [21]. The individual rarefaction
showed that the sampling effort reached saturation for all samples (Figure S1); therefore, α-
biodiversity indices were calculated for complete datasets using PAST software v.3.17 [21].
Statistical significance was defined as p < 0.05.

3. Results
3.1. Overall Bacteriobiome Diversity

After quality filtering and chimera and non-bacterial sequence removal, a total of
916 OTUs were identified at the 97% sequence identity level. All these OTUs could not
be ascribed to a species level. Overall, they clustered into 11 phyla, 24 classes (with 18
explicitly classified at the class level), 59 orders (with 50 explicitly classified at the order
level), 72 families (with 54 explicitly classified at the family level) and 172 genera (with
132 explicitly classified at the genus level). Sixty-one OTUs, i.e., ca. 7% of the species
richness and ca. 0.1% of the relative abundance, could not be ascribed below the domain
level. Firmicutes with 635 OTUs was, by far, the most species-rich phylum, accounting
for 69% of the total number of OTUs. Bacteroidetes ranked second richest with 96 OTUs
(10.5%), followed by Actinobacteria (64 OTUs, 7%) and Proteobacteria with 45 (5%). Such
phyla as Synergistetes, Tenericutes and Verrucomicrobia were represented by 3–5 OTUs each,
whereas the rest of the identified phyla, i.e., Spirochaetes, Fusobacteria, Lentisphaerae and
cand. Saccharibacteria, were represented by one OTU each. The Firmicutes phylum was also
the ultimate dominant phylum, accounting, on average, for ca. 66% of the total number of
sequence reads. The Firmicutes/Bacteroidetes ratio varied widely: from 0.4 to 6837 (median
5.0) before CCE and from 0.4 to 2918 (median 3.8) after CCE (Table S1), showing no CCE-
related difference (p = 0.39, Wilcoxon’s test) and no correlation with blood biochemistry
(Spearman’s, p > 0.05).

The dominant bacterial OTUs, i.e., OTUs contributing ≥ 1% (mean abundance) to
the total number of sequence reads obtained for a sample, amounted to 27, with 18 OTUs
representing Firmicutes, and Bacteroidetes and Actinobacteria contributing four and three
OTUs, respectively, whereas Veruccomicrobia and Synergestetes each contributed one OTU to
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the dominants’ pool. Thus, the overwhelming majority (ca. 97%) of the OTUs in the study
were minor or rare species.

3.2. Fecal Bacteriobiome Composition in GSD Patients before the CCE Surgery

The fecal microbiota of GSD patients was dominated by the Firmicutes phylum (66%
relative abundance), followed by Bacteroidetes (19%), Actinobacteria (8%) and Proteobacteria
(4%) phyla (Figure 1a). At the class level, the ultimate dominance of Firmicutes translated
into the dominance of its classes Clostridia (47%), Bacilli (11%), Negativicutes (5%) and
Erysipelotrichia (1.4%). Bacteroidetes was represented by the Bacteroidia class (19%), whereas
Actinobacteria was represented solely by the Actinobacteria class. Proteobacteria was present
mostly as Gammaproteobacteria, with Alpha-, Beta-, Delta- and Epsilonproteobacteria summarily
contributing less than 1%. As for orders, Clostridiales, Lactobacillales, Selenomonadales and
Erysipelotrichales (Firmicutes), Bacteroidales (Bacteroidetes), Bifidobacteriales and Coriobacteriales
(Actinobacteria) and Enterobacteriales (Gammaproteobacteria) were found to prevail. Just
three Firmicutes families, namely, Ruminococcaceae, Lachnospiraceae and Enterococcaceae,
together accounted for half of the bacteriobiome abundance (Figure 1b). Most of the
dominant OTUs (Figure 1c) belonged to the genera of the abovementioned families, i.e.,
Enerococcus, Gemmiger, Faecalibacterium, Ruminococcus, Blautia, Roseburia and Streptococcus.
Other dominant OTUs represented Bacteroidetes/Bacteroidia/Bacteroidales (Prevotella sp. and
Bacteroides sp.) and Bifidobacteriaceae/Bifidobacteriales/Actinobacteria (Bifidobacterium sp.).

Overall, fecal bacterial assemblages of GSD-afflicted subjects were characterized by
high inter-individual variability of relative abundance and many outliers or extreme values
at all taxonomic levels (Figure 1). Since we could not reasonably explain the outliers by
errors in sampling collection and handling, nor by patients’ characteristics and analytical
procedures, we performed principal component (PC) analysis (based on covariance) of the
data matrix with bacterial relative abundances as variables for analysis and patients as
subjects in order to (a) obtain a better insight into the variance structure throughout the
cohort, (b) find an association of the major PCs with patients’ demographics and blood
characteristics and then (c) implicate some bacterial taxa that contributed the most to the
major PCs, as major players in such associations.

PC and multiple regression analyses showed that the core phyla, accounting for most
of the data variance, showed a tendency for some association (PC2) with age, whereas
some minor dominants (PC3, PC4) showed a correlation with blood glucose and bilirubin
(Table 2).
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Table 2. Statistical analyses’ results: contribution of bacterial phyla to the principal components ex-
tracted from the matrix with relative abundance in feces of females with GSD before CCE (percentage
of the total data variance in brackets) and p-values for multiple regression with age, BMI and blood
biochemistry.

Phyla: PCA 1

Main PC 1 PC 2 PC 3 PC 4

contributors (65%) (18%) (11%) (5%)
Bacteroidetes 0.49 2 [−0.96] 3 0.29 [−0.23] 0.04 0.01
Firmicutes 0.48 [0.91] 0.29 [−0.39] 0.00 0.06

Proteobacteria 0.01 0.14 0.25 [0.03] 0.14 [0.98]
Actinobacteria 0.01 0.23 [0.97] 0.59 [−0.18] 0.00

Verrucomicrobia 0.00 0.05 0.04 0.78 [−0.13]
Phyla: Multiple regression

R/R2 0.54/0.29 0.53/0.28 0.61/0.37 0.57/0.33
Age 0.70 0.09 4 0.38 0.16
BMI 0.39 0.21 0.37 0.21

Glucose 0.13 1.00 0.07 0.70
ALT 0.84 0.68 0.11 0.12
AST 0.51 0.61 0.80 0.17

Bilirubin 0.13 0.20 0.70 0.10

1 PCA stands for principle component analysis (based on covariance). Only those principal components that (a)
account for the bigger fraction of the total data variance and/or (b) displayed a statistically significant correlation
with patients’ characteristics are shown. 2 The values in bold show the two topmost contributions. 3 Factor
loadings for variables (taxon relative abundance) are given in square brackets. 4 The values in bold italics and
underlined italics are at p ≤ 0.05 and p ≤ 0.10, respectively.
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Figure 1. Relative abundance of the dominant bacterial taxa in females with gallstone disease (GSD) before cholecystectomy (CCE): (a)
phyla, (b) families, (c) operational taxonomic units (OTUs).

As for the classes, the balance between the two core ones, i.e., Clostridia and Bacteroidia
(PC2), was correlated with blood glucose, whereas the balance between two minor dominants,
i.e., Actinobacteria and Gammaproteobacteria (PC4), was correlated with age (Table S2).

The core orders, i.e., Clostridiales and Lactobacillales, both belonging to the different
classes of the Firmicutes phylum, accounted for half of the data variance at this taxonomical
level, showing some age correlation tendency (Table S3).

At the family level, the balance between Ruminococcaceae and Enterococcaceae (PC1), both
representing the ultimately dominating Firmicutes phylum, correlated strongly with the age
and BMI of the studied cohort, whereas a tiny portion of the data variance (PC10), structured
by the balance between Veillonellaceae and Erysipelotrichaceae, both also belonging to Firmicutes,
was found to be associated with age, glucose and transaminase activity (Table S4).

At the genus level, the relative abundance was structured mainly by the balance
between Prevotella (Bacteroidetes) and Enterococcus (Firmicutes), PC1 showing a correlation
with blood bilirubin (Table 3). The balance between Faecalibacterium and Bifidobacterium
showed some association with glucose, whereas the relationship between Blautia and
some unclassified genus of the Ruminococcaceae family (PC6) had a statistically significant
correlation with blood bilirubin and transaminase activity (Table 3).

As for the species level, the major part of the relative abundance variance was ac-
counted for by the relationship between Enterococcus sp. (Firmicutes) and Prevotella copri
(Bacteroidetes), correlating with age, BMI and, possibly, blood glucose (Table 4), whereas
small portions of the data variance, attributed to the balance between Blautia luti (Firmicutes)
and Akkermansia muciniphila (PC6) and between two Bifidobacterium OTUs (PC8), could be
partially ascribed to blood bilirubin and transaminase activity (Table 4).
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Table 3. Statistical analyses’ results: contribution of bacterial genera to the principal components
extracted from the matrix with relative abundance in feces of females with gallstone disease before
CCE (percentage of total variance in brackets) and p-values for multiple regression with blood
biochemistry (coefficients of determination in brackets).

Genera: PCA 1

Main PC 1 PC 2 PC 5 PC 6

contributors (35%) (21%) (5%) (5%)
Prevotella 0.10 2 [0.41] 3 0.79 [−0.90] 0.00 0.00

Enterococcus 0.84 [−0.97] 0.07 [0.22] 0.01 0.00
Faecalibacterium 0.02 0.00 0.17 [−0.37] 0.02

Blautia 0.00 0.03 0.01 0.21 [0.50]
Bifidobacterium 0.01 0.04 0.30 [−0.49] 0.00

Gemmiger 0.00 0.02 0.15 [0.45] 0.00
Ruminococcus 0.00 0.01 0.01 0.07 [−0.39]

un. Ruminococcaceae 0.00 0.01 0.01 0.21 [−0.57]
Genera: Multiple regression

R/R2 0.72/0.51 0.56/0.32 0.64/0.41 0.71/0.50
Age 0.16 0.92 0.13 0.12
BMI 0.29 0.72 0.09 3 0.42

Glucose 0.71 0.25 0.03 4 0.76
ALT 0.55 0.22 0.12 0.03
AST 0.73 0.48 0.10 0.03

Bilirubin 0.04 0.55 0.17 0.04
1 PCA stands for principle component analysis (based on covariance). Only those principal components that (a)
account for the bigger fraction of the total data variance and/or (b) displayed a statistically significant correlation
with patients’ characteristics are shown. 2 The values in bold show the two topmost contributions. 3 Factor
loadings for variables (taxon relative abundance) are given in square brackets. 4 The values in bold italics and
underlined italics are at p ≤ 0.05 and p ≤ 0.10, respectively.

Table 4. Statistical analyses’ results: contribution of bacterial OTUs into the principal components extracted from the matrix
with relative abundance in feces of females with gallstone disease before CCE (percentage of total variance in brackets) and
p-values for multiple regression with age, BMI and blood biochemistry (coefficients of determination in brackets).

OTUs: PCA 1

Main PC 1 PC 3 PC 4 PC 6 PC 8

contributors (40%) (9%) (7%) (3%) (2%)
Enterococcus sp. 0.86 2 [0.96] 3 0.00 0.00 0.00 0.00

Escherichia/Shigella sp. 0.00 0.25
[−0.65] 0.25 [−0.57] 0.07 0.01

Gemmiger 0.00 0.01 0.28 [0.67] 0.00 0.00
Faecalibacterium prausnitzii 0.01 0.63 [0.86] 0.16 [−0.38] 0.06 0.02

Akkermansia muciniphila 0.00 0.02 0.09 [0.41] 0.22 [−0.45] 0.09
Blautia luti 0.00 0.01 0.05 0.26 [−0.56] 0.02

Bifidobacterium sp. 0.00 0.03 0.02 0.07 [−0.30] 0.35 [−0.49]
Bifidobacterium sp. 0.00 0.00 0.00 0.19 [0.60] 0.27 [−0.52]
Streptococcus sp. 0.00 0.00 0.00 0.02 0.13 [0.48]
Prevotella copri 0.12 [−0.42] 0.00 0.00 0.01 0.00

OTUs: Multiple regression
R/R2 0.71/0.50 0.39/0.15 0.40/0.16 0.73/0.53 0.54/0.29
Age 0.05 4 0.16 0.34 0.55 0.11
BMI 0.03 0.10 0.92 0.09 0.35

Glucose 0.07 3 0.58 0.07 0.39 0.76
ALT 0.52 0.65 0.92 0.00 0.03
AST 0.68 0.74 0.98 0.00 0.03

Bilirubin 0.16 0.95 0.64 0.02 0.05
1 PCA stands for principle component analysis (based on covariance). Only those principal components that (a) account for the bigger
fraction of the total data variance and/or (b) displayed a statistically significant correlation with patients’ characteristics are shown. 2 The
values in bold show the two topmost contributions. 3 Factor loadings for variables (taxon relative abundance) are given in square brackets.
4 The values in bold italics and underlined italics are at p ≤ 0.05 and p ≤ 0.10, respectively.
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3.3. Changes in Fecal Bacteriobiome Composition in GSD Patients after the CCE Surgery

At the phylum level, CCE did not show any effect, whereas an effect was revealed
for the Clostridia class and the Clostridiales and Coriobacteriales orders (Table 5). Further
down the taxonomical hierarchy, the effect was displayed by the differential surgery-
related abundance of the Clostridiaceae_1, Lachnospiraceae and Peptoniphilaceae families (all
belonging to Clostridiales) and Coriobacteriaceae of the namesake order of the Actinobacteria
phylum (Table 6). Lachnospiraceae, being the predominating family with 129 OTUs in the
studied cohort, accounted for 20% of the total number of Firmicutes OTUs and ranked the
top family in abundance (with ca. 20%); its decreased post-CCE abundance was manifested
by Blautia, Roseburia and some unclassified representatives of the family at the genus level
(Table 6).

Table 5. The relative abundance of some higher bacterial taxa in patients’ feces before and after CCE.

Before CCE After CCE
p-Value

Median Mean ± SD Median Mean ±
SD

Phyla (dominant)
Firmicutes 66.7 65.7 ± 19.6 64.7 65.4 ± 21.4 0.34

Bacteroidetes 12.2 18.6 ± 19.8 11.0 19.2 ± 21.4 0.53
Actinobacteria 3.8 7.7 ± 10.6 4.0 7.2 ± 9.8 0.96
Proteobacteria 0.5 4.4 ± 8.4 0.8 2.8 ± 4.9 0.55

Verrucomicrobia 0.0 2.4 ± 6.6 0.0 3.8 ± 9.4 0.09
un. 1 Bacteria 0.1 0.14 ± 0.27 0.1 0.12 ± 0.23 0.20

Classes (dominant)
Clostridia 2 49.3 46.8 ± 23.1 42.9 40.7 ± 23.1 0.01
Bacteroidia 12.2 18.6 ± 19.8 10.9 19.2 ± 21.4 0.47

Bacilli 1.2 11.1 ± 23.0 0.5 16.8 ± 30.0 0.51
Actinobacteria 3.8 7.7 ± 10.6 4.0 7.2 ± 9.8 0.97
Negativicutes 4.5 4.9 ± 3.9 3.0 5.2 ± 6.3 0.84

Verrucomicrobiae 0.0 2.4 ± 6.6 0.0 3.8 ± 9.4 0.09
Gammaproteobacteria 0.0 3.5 ± 8.2 0.0 2.1 ± 5.0 0.43

un. Firmicutes 0.3 1.5 ± 3.2 0.5 1.4 ± 1.9 0.70
Erysipelotrichia 0.5 1.4 ± 3.5 0.4 1.4 ± 2.6 0.29

Orders (dominant)
Clostridiales 43.3 44.8 ± 23.5 40.5 39.0 ± 23.2 0.01
Bacteroidales 12.5 20.4 ± 20.4 14.6 21.3 ± 22.2 0.47

Lactobacillales 1.2 12.0 ± 22.5 0.9 16.9 ± 28.9 0.50
Selenomonadales 4.5 5.2 ± 4.5 3.2 5.7 ± 6.7 0.84
Bifidobacteriales 0.7 4.9 ± 9.6 0.0 4.4 ± 8.8 0.53

Verrucomicrobiales 0.0 2.3 ± 6.4 0.0 3.5 ± 9.1 0.09
Enterobacteriales 0.0 3.3 ± 7.7 0.0 1.9 ± 4.7 0.39
Coriobacteriales 0.8 1.9 ± 2.2 1.0 2.4 ± 2.7 0.03

Erysipelotrichales 0.5 1.4 ± 3.4 0.4 1.3 ± 2.5 0.25
1 un. stands for unclassified. 2 Gray-shadowed lines have p-values ≤ 0.05.

159



J. Pers. Med. 2021, 11, 294

Table 6. The relative abundance of some bacterial families, genera and OTUs in patients’ feces before
and after CCE.

Taxon
Before CCE After CCE

p-Value
Median Mean ± SD Median Mean ± SD

Families
Clostridiaceae_1 4 0.2 ± 0.4 0.3 ± 0.5 0.010
Lachnospiraceae 20.3 ± 14.8 16.6 ± 14.0 0.032
Coriobacteriaceae 1.9 ± 2.3 2.4 ± 2.8 0.033
Peptoniphilaceae 0.005 ± 0.013 0.002 ± 0.007 0.036

Peptostreptococcaceae 0.4 ± 0.6 0.6 ± 1.0 0.054
Ruminococcaceae 22.9 ± 15.9 19.5 ± 13.8 0.056
Rhodospirillaceae 0.1 ± 0.4 0.01 ± 0.05 0.059
Enterococcaceae 7.4 ± 20.8 13.6 ± 26.4 0.080

Genera
Clostridium s.s. 0.2 ± 0.4 0.3 ± 0.5 0.010
Gordonibacter 0.01 ± 0.04 0.01 ± 0.07 0.036
Peptoniphilus 0.005 ± 0.013 0.002 ± 0.007 0.036

un 1.
Rhodospirillaceae

0.08 ± 0.36 0.01 ± 0.05 0.059

Gemmiger 4.3 ± 7.4 3.2 ± 4.8 0.065
Collinsella 1.0 ± 1.8 1.3 ± 2.1 0.066

Blautia 6.4 ± 8.8 4.9 ± 7.3 0.067
Enterococcus 7.4 ± 20.8 13.6 ± 26.4 0.080

Faecalibacterium 7.7 ± 9.8 6.1 ± 8.6 0.089
Roseburia 2.8 ± 4.9 1.6 ± 2.5 0.089
Dialister 1.5 ± 2.5 1.0 ± 2.1 0.093

Peptostreptococcus 0.018 ± 0.063 0.024 ± 0.077 0.093
Lachnospiracea i.s. 2.1 ± 2.0 1.5 ± 1.6 0.094

OTUs
un.Lachnospiraceae 0.09 ± 0.17 0.04 ± 0.11 0.003

un.Clostridium s.s. 2 0.14 ± 0.43 0.3 ± 0.5 0.005
un.Clostridium XlVa 0.01 ± 0.03 0.03 ± 0.05 0.021

un.Clostridiales 0.02 ± 0.06 0.09 ± 0.19 0.023
Clostridium leptum 0.05 ± 0.10 0.03 ± 0.07 0.025

un.Blautia 0.02 ± 0.06 0.03 ± 0.08 0.029
Ruminococcus faecis 0.4 ± 1.4 0.6 ± 1.5 0.030

un.Bacteroides 2.1 ± 3.4 1.0 ± 2.0 0.033
Dialister invisus 1.0 ± 2.1 0.4 ± 1.0 0.035

un.Ruminococcus 0.15 ± 0.37 0.07 ± 0.24 0.036
un.Ruminococcus 0.2 ± 0.6 0.07 ± 0.29 0.042
un.Lachnospiracea

i.s. 3 0.5 ± 0.8 0.2 ± 0.4 0.050

un.Coriobacteriaceae 0.04 ± 0.09 0.14 ± 0.40 0.059
un.Ruminococcaceae 0.09 ± 0.16 0.18 ± 0.30 0.068

un.Ruminococcaceae 0.0008 ±
0.0017

0.0002 ±
0.001 0.076

un.Enterococcus 7.4 ± 20.8 13.6 ± 26.4 0.080
un.Lachnospiraceae 0.01 ± 0.02 0.002 ± 0.007 0.080

un.Clostridiales 0.01 ± 0.03 0.03 ± 0.08 0.083
un.Collinsella 1.0 ± 1.8 1.3 ± 2.1 0.093

Peptostreptococcus
stomatis 0.02 ± 0.06 0.02 ± 0.08 0.093

1 un. stands for unclassified; 2 s.s. stands for sensu stricto; 3 i.s. stands for incertae sedis. 4 Gray-shadowed lines
have p-values ≤ 0.05.

As for other genera, Clostridium sensu stricto increased, whereas Peptoniphilus decreased
their presence in the fecal bacteriobiome of the studied cohort. Although Coriobacteriaceae
increased their post-CCE abundance and were among the predominating families, at the
genus level, they were represented by eight genera, only one of which (Gordonibacter) had a
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differential CCE-related abundance (p ≤ 0.05), albeit at the very low level, and Collinsella
with its post-CCE increased abundance at the p ≤ 0.10 level (Table 6). At the species
level, 20 OTUs manifested surgery-related differences in their relative abundance at the
p ≤ 0.10 level of statistical significance, with 17 OTUs attributed to Firmicutes, two OTUs to
Actinobacteria and one OTU to the Bacteroidetes phylum. Enterococcus sp. of Firmicutes was
the leading dominant, increasing its abundance almost two-fold after the surgery (Table 6).
Bacteroides sp. and Collinsella sp. were minor dominants with relative abundance around
1%. The rest of the OTUs with differential CCE-related abundance were minor or rare
species.

The results of GLM analysis with repeated measures (before and after CCE) and age
and BMI as continuous factors (covariates) show that residuals complied with a normal
distribution only for the Firmicutes taxa; nevertheless, this statistical approach revealed no
CCE-associated effect on the phylum and its lower taxa abundance.

3.4. Fecal Bacteriobiome α-Diversity before and after the CCE Surgery

No differences in α-diversity indices at the p ≤ 0.05 level were found in the studied
cohort before and after CCE (Table 7). However, at the p ≤ 0.10 level, evenness slightly
decreased, whereas the maximal relative abundance (as shown by the Berger–Parker index)
slightly increased. The location of samples in the plane of the first two principal coordinates
(based on Bray–Curtis distance) did not reveal any distinct CCE-related pattern (Figure 2).

Table 7. Alpha-diversity indices estimated for patients’ fecal bacterial assemblages before and after
CCE.

Index
Before CCE After CCE

p-Value
Median Mean ± SD Median Mean ± SD

OTUs’ richness 90 93 ± 41 78 92 ± 46 0.89
Chao-1 100 104 ± 51 85 104 ± 55 0.75

Berger–Parker 0.24 0.29 ± 0.19 0.27 0.33 ± 0.21 0.07
Dominance (D) 0.12 0.16 ± 0.16 0.12 0.19 ± 0.17 0.11
Simpson (1-D) 0.88 0.84 ± 0.16 0.88 0.81 ± 0.17 0.11

Shannon 2.8 2.8 ± 0.8 2.7 2.7 ± 0.9 0.21
Evenness 0.23 0.22 ± 0.08 0.20 0.20 ± 0.09 0.09

Equitability 0.67 0.63 ± 0.13 0.62 0.60 ± 0.15 0.13
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3.5. Blood Biochemical Characteristics before and after the CCE Surgery

After CCE, both aspartate and alanine transaminase activity mean values increased 1.7
and 1.6 times, with bilirubin levels being unaffected (Table 8). Age and BMI as continuous
predictors in GLM analysis with repeated measures decreased the p-value for glucose
content comparison (p = 0.06) while increasing it for direct bilirubin content (p = 0.80)
(residuals for only these two dependent variables showed a normal distribution).

Table 8. Blood biochemical test results before and after CCE.

Property
Before CCE After CCE

p-Value
Median Mean ± SD Median Mean ± SD

Glucose, mmol/L 5.25 5.24 ± 0.88 5.45 5.51 ± 0.82 0.107
Alanine

transaminase, U/L 20.2 36.0 ± 68.5 29.0 57.4 ± 75.7 0.001

Aspartate
transaminase, U/L 19.9 34.4 ± 47.9 32.3 56.8 ± 68.4 0.001

Bilirubin total,
mcmol/L 15.1 18.8 ± 21.1 16.3 18.4 ± 7.0 0.168

Bilirubin direct,
mcmol/L 11.8 12.4 ± 6.0 13.3 12.7 ± 5.7 0.186

Bilirubin indirect,
mcmol/L 3.5 6.4 ± 16.7 3.6 3.7 ± 1.7 0.190

4. Discussion
4.1. Fecal Bacteriobiome Composition in GSD Patients before the CCE Surgery

In the studied cohort of GSD-afflicted female patients, the Firmicutes phylum was the
ultimate dominant in the fecal bacteriobiome, with Bacteroidetes and Actinobacteria being
second and third in the ranking of abundance. In this aspect, our cohort differed from
a Chinese one, where Proteobacteria, instead of Actinobacteria, were found to be third in
abundance, and Bacteroidetes were almost twice as abundant as in our cohort [22]. Moreover,
in our cohort, the Firmicutes relative abundance was markedly higher, as compared with
the Chinese cohorts [5,21]. The apparent discrepancy is most likely due to the fact that one
third of the Chinese cohort were males, whereas ours was a purely female one; and to the
difference in diet [23]. As for the biodiversity indices, however, the ones calculated in our
study agree well with the indices describing the fecal bacteriobiome of a Chinese cohort of
GSD patients [21].

High inter-individual variation in bacterial sequence reads is quite common in fecal
bacteriobiome studies in cohorts of healthy human subjects and of those afflicted by various
diseases, including GSD [21]. Even in cases when the authors [21] claimed that their results
“showed that the individual differences within the group were small”, the huge standard
deviations for the OTUs’ relative abundance in their study proved the opposite. Therefore,
by structuring down the data variance in our study by principal component analysis, we
identified some age- and BMI-related taxa within the studied cohort, as well as some taxa
that showed a correlation with blood glucose, bilirubin and transaminase activity.

Some genera of Lachnospiraceae are known to be important for bile acid metabolism,
having 7α-dehydroxylation activity: in the pre-CCE bacteriobiome of the studied cohort,
the family accounted for one fifth of the total number of sequence reads, along with
Ruminocccaceae ultimately prevailing at the family level and together accounting for almost
half of the abundance; in a Chinese cohort, however, the family with less than 0.3% was
not even close to any dominating position [21]. The latter study also found the relative
abundance of Clostridium to be 0.01%, whereas in our study, the presence of Clostridium
sensu stricto was an order of magnitude more pronounced (Table 6). The differences are
plentiful and most likely attributable to racial, dietary, sex and other characteristics of the
cohorts.
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Principal component analysis based on covariance allows dealing with the original
variance of the data, without standardizing them, easily structuring the variance by ex-
tracted principal components, featuring the contribution of the original variables to the
new ones (PCs) and reducing the original plethora of variables to fewer ones (PCs), but
accounting for most of the original variance in the data. Subjection of the extracted PCs as
dependent variables in multiple regression analysis allowed finding links with patients’
demographics and blood biochemical properties and bacterially interpreting them on
the basis of a taxon contribution in the respective PC. We believe this approach to be
informative for such kind of descriptive study.

The balance between two Firmicutes classes, namely, Clostridia and Bacilli, accounted
for almost half of the abundance variance at this taxonomic level, being positively correlated
with age at the p ≤ 0.10 level; the situation was translated in a similar manner at the order
level, i.e., Clostridiales and Lactobacillales. Then, at the family level, the balance between
Ruminococcaceae (Clostridiales) and Enterococcaceae (Lactobacillales), accounting for one third
of the total data variance (PC1), displayed a statistically significant positive correlation with
age. This finding complies with the knowledge that the gut microbiota diversity changes
with age [24,25], with Firmicutes taxa increasing. Thus, the increased abundance of the core
gut bacterial taxa with age in GSD-compromised subjects seems quite a natural occurrence,
not overshadowed by changed bile acid metabolism and other factors. Interestingly, at the
genus level, the structure of the data variance shifted, with the Prevotella (Bacteroidetes) and
Enterococcus (Firmicutes) relationship accounting for half of the total data variance at this
taxonomic level; the finding underscores the importance of these two core taxa relationships
in structuring the gut bacteriome in general and GSD-compromised female patients in
particular. As increased plasma levels of bilirubin (secondary to the breakdown of free
hemoglobin) were shown to be associated with an increased risk of gallstone disease [26],
the statistically significant positive correlation of the Prevotella–Enterococcus balance with
blood bilirubin, found in our study, necessitates further investigation of the role of the
genera in gallstone formation, both pigmented and cholesterol ones [27].

The finding that the balance between Faecalibacterium, Bifidobacterium and Gemminer
determined 10% of the total data variance and was correlated with blood glucose (p ≤ 0.05)
and BMI (p ≤ 0.10) may be indicative of the indirect association of the genera with glucose
metabolism and insulin sensitivity in overweight patients [28], but we cannot currently
suggest the putative cause–effect mechanism. The joint variation in Blautia, Ruminococcus
and some unclassified Ruminococcaceae correlated with blood ALT, AST and bilirubin, and
the mechanism of the involvement of these genera has to be comprehensively examined.

Further down the hierarchy at the species level, the Prevotella–Enterococcus relationship
was manifested by the balance between Prevotella copri and Enterococcus sp. (with 40% of
the total data variance), which was positively correlated with the cohort’s demographics,
i.e., age and BMI (p ≤ 0.05), and glucose (p ≤ 0.10) and therefore may be related to glucose
metabolism in overweight patients. Interestingly, Akkermansia muciniphila was found to
contribute a small portion of the data variance associated with blood biochemistry (at
p ≤ 0.05) and, hence, generally with the disease-compromised status of the subjects. The
increased relative abundance of this mucin-degrading bacterium is often found to be
associated with disease [29,30]; however, as a propionogenic bacterium, A. muciniphila is
also believed to have several health benefits in humans [31].

However, as the blood characteristics are far from being specific for gallstone disease
diagnostics, it is not possible to implicate the taxa in the changed bile acid metabolism
and gallstone formation based on the results of multiple regression analysis, despite the
comprehensive outline of the GSD bacteriobiome variation as related to the common blood
biochemical properties. The bile acid profiles of the studied patients, if they had been
determined, might have been more suggestive in this respect, and we acknowledge this as
a drawback in the study.
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4.2. Changes in Fecal Bacteriobiome Composition in GSD Patients after the CCE Surgery

In the studied cohort of GSD-afflicted female patients, mainly members of the Firmi-
cutes phylum displayed CCE-related differential abundance.

As for the Bacteroidetes phylum, its relative abundance did not change after CCE; the
result does not agree with the finding of Israeli researchers, for example, when the phylum
abundance was shown to be increased in the post-CCE cohort of subjects [32]. However,
the time factor, i.e., the duration of the time span elapsed between CCE and feces sampling,
is a critical factor affecting bacterial composition [33] and may, at least partially, explain the
discrepancy between results.

The decreased abundance of Clostridia (by 7%) and Clostridiales (by 3–5%), found after
CCE in our study, was not reported before. As these taxa are the most species-rich and
physiologically diverse components of the fecal bacteriobiome, the CCE-associated shifts in
their relative abundance cannot be unequivocally regarded as beneficial or not for human
health. Lachnospiraceae, the most predominant family in the human gut, displayed de-
creased abundance in the post-CCE bacteriobiome, which is, however, difficult to interpret
as (a) most of the OTU-level clusters (69), ascribed to the family in our study (129), could
not be taxonomically attributed below the family level, and (b) some genera and species
of this family might support/contribute to healthy functions, whereas other genera and
species were found to be increased in diseases [34]. For example, Blautia and Roseburia
species, often associated with a healthy state, are some of the main short-chain fatty acid
producers [35,36]; therefore, their post-CCE decreased abundance (p ≤ 0.10) may hardly be
indicative of the better state of the gut bacteriobiome after surgery.

We could not find any information about the effect of CCE on Actinobacteria/
Coriobacteriales/Coriobacteriaceae representatives, the latter known as pathobionts. As for
Collinsella, the dominant genus in the Coriobacteriaceae family and the minor dominant in
the studied cohort, its increased abundance after CCE (albeit at the p ≤ 0.10 level) suggests
negative implications after such shift [37–40]. As for another representative of the family
with differential pre- and post-CCE abundance, i.e., the Gordonibacter genus with just ca.
0.01% of the total number of sequence reads, it is difficult to suggest any ecophysiological
significance at such abundance rate, although some genus representatives are known to
participate in primary bile acid transformation [41] or be involved in dietary polyphenol
transformations generating more bioactive metabolites [42].

Interestingly, although specific bacterial species such as Helicobacter and Salmonella
were shown to be involved in the pathogenesis of cholesterol gallstones [43], we did not
find Helicobacter at all, and found only one Salmonella OTU with 0.3 and 0.6% abundance in
pre- and post-CCE subcohorts, respectively; the finding infers potentially different bacterial
involvement in GSD etiology in cohorts of different sex and ethnicity.

The actual number of OTUs per sample observed in our study was practically the
same as the number obtained by the same methodology for post-CCE patients in Korea [44].
However, as the latter study did not report whether the control group, i.e., non-CCE control
patients, was also diagnosed with GSD, it is not possible to compare our results about
the CCE effect on the fecal bacteriobiome with those results in their entirety, only for the
post-CCE subcohort. For instance, in our study, CCE did not affect the gut bacteriobiome
species richness, whereas compared with the independent control group, CCE decreased
it [43]. Notably, the α-biodiversity index (Shannon) reported in the aforementioned study
was much higher than the one reported here (4.9 vs. 2.8): in our view, the discrepancy
may be attributed to both the sex composition of the Korean cohort and the dietary habits,
etc. At the same time, for the Israeli cohort of GDS patients, the pre- and post-CCE values
of the Shannon index did not differ [31], being close to, but slightly lower than, those in
our study (2.1 vs. 2.8, respectively). We cannot help but emphasize that often the studies
claiming to reveal the effect of CCE on the gut microbiota performed comparisons between
the post-CCE patients with GSD and the healthy subjects without a GSD history [33,43,44].
We believe such approach does not seem to be adequate for aiming to examine the effect of
CCE per se, as only a direct comparison between pre- and post-CCE conditions of one and
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the same cohort of GSD-affected subjects is pertinent for the goal of revealing microbiome
shifts associated with the surgery and potential biomarkers of the latter.

It was shown that CCE did not markedly affect the bile acid profile in the GSD pa-
tients [31], leading the authors to conclude that the modified fecal bile acid composition
results from inherently aberrant bile acid metabolism, leading, in turn, to gallstone forma-
tion. In general, our finding that the pre- and post-CCE fecal bacteriobiome profiles were
not overall differentially distinct (as revealed by principal coordinate analysis) apparently
complies with this conclusion. It should be emphasized that the repeated collection of
feces samples was performed 1–3 days after the surgery, i.e., quite soon. Therefore, we
are inclined to believe that it was a very short time to interpret the observed differential
abundance of some bacterial taxa as solely resultant from the changed inflow of bile acids;
the overall post-surgery condition most likely contributed significantly, if not primarily and
predominantly, to the observed short-term CCE-related shifts in fecal bacterial assemblages.
It should be noted that the overall post-surgery condition included ceftriaxone treatment
of all patients. This beta-lactam antibiotic is able to kill a broad spectrum of bacteria [45],
thus potentially shaping the gut bacteriobiome [46], especially when administered orally.
Therefore, despite the very short time between the surgery and stool collection in this
study, and hence the short time of antibiotic treatment, the revealed changes in the fecal
bacteriobiome might have resulted, in part, due to the antibiotic per se. However, we
should also emphasize that our study did not aim at discriminating between the effects
of post-CCE altered bile profiles and antibiotic therapy; we aimed at profiling the gut
bacteriobiome, referring to post-CCE as a single factor, as such embracing many factors,
aspects, nuances, etc. We described the fecal bacteriobiome just at the starting point of
patients embarking on the rest of life without a gallbladder. Whether the longer-term shifts
in the gut microbiota after CCE will occur and to what degree and at what rate remain to
be determined in future studies, which, hopefully, will also elucidate if gut microbes can
act as the main character in the broad scenery of liver diseases [47].

5. Conclusions

Our study provides the first detailed inventory of the fecal bacteriobiome in a Russian
cohort of female patients with gallstone disease. It will help to construct a global picture of
the disease-related bacteriobiome and eventually focus on specific bacterial taxa involved in
gallstone formation, thus facilitating the development of non-invasive therapeutic tools for
preventing and treating gallstone disease. The shifts found in the fecal microbiota just a few
days after CCE did not distinctly discriminate between the pre- and post-surgery bacterial
diversity profiles. Therefore, the shifts can be mostly attributed to the surgery effect on
the entire status of the patients, including the initial stages of the changing bile inflow
and metabolism, as well as cellular and molecular modifications in the gut. The presented
pre- and post-cholecystectomy microbiota profiles in one and the same cohort of patients
may improve the insight into the relationship between the fecal, gut and bile microbiota,
contributing to future larger-scale studies of altered human bile metabolism/profiles and
associated disorders.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jpm11040294/s1, Figure S1: Rarefaction curves based on bacterial OTUs for the patients
with gallstone disease before (a) and after (b) the cholecystectomy. The numbers in blue indicate
patients’ codes; Table S1: The ratio of Firmicutes/Bacteroidetes relative abundance in patients’ feces
before and after CCE.: Table S2: Statistical analyses’ results: contribution of bacterial classes into
the principal components extracted from the matrix with relative abundance in feces of females
with gallstone disease before the CCE (percentage of total variance in brackets) and p-values for
multiple regression with age, BMI and blood biochemistry; Table S3: Statistical analyses’ results:
contribution of bacterial orders into the principal components extracted from the matrix with relative
abundance in feces of females with gallstone disease before the CCE (percentage of total variance
in brackets) and p-values for multiple regression with age, BMI and blood biochemistry; Table S4:
Statistical analyses’ results: contribution of bacterial families into the principal components extracted
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Abstract: Poor study reproducibility is a concern in translational research. As a solution, it is
recommended to increase sample size (N), i.e., add more subjects to experiments. The goal of
this study was to examine/visualize data multimodality (data with >1 data peak/mode) as cause
of study irreproducibility. To emulate the repetition of studies and random sampling of study
subjects, we first used various simulation methods of random number generation based on preclinical
published disease outcome data from human gut microbiota-transplantation rodent studies (e.g.,
intestinal inflammation and univariate/continuous). We first used unimodal distributions (one-
mode, Gaussian, and binomial) to generate random numbers. We showed that increasing N does
not reproducibly identify statistical differences when group comparisons are repeatedly simulated.
We then used multimodal distributions (>1-modes and Markov chain Monte Carlo methods of
random sampling) to simulate similar multimodal datasets A and B (t-test-p = 0.95; N = 100,000), and
confirmed that increasing N does not improve the ‘reproducibility of statistical results or direction of
the effects’. Data visualization with violin plots of categorical random data simulations with five-
integer categories/five-groups illustrated how multimodality leads to irreproducibility. Re-analysis
of data from a human clinical trial that used maltodextrin as dietary placebo illustrated multimodal
responses between human groups, and after placebo consumption. In conclusion, increasing N
does not necessarily ensure reproducible statistical findings across repeated simulations due to
randomness and multimodality. Herein, we clarify how to quantify, visualize and address disease
data multimodality in research. Data visualization could facilitate study designs focused on disease
subtypes/modes to help understand person–person differences and personalized medicine.

Keywords: violin plots; random sampling; analytical reproducibility; microbiome; fecal matter
transplantation; data disease subtypes; personalized medicine; maltodextrin; dip test

1. Introduction

Multimodal diseases are those in which affected subjects can be divided into subtypes;
for instance, “mild” vs. “severe” disease, based on (known/unknown) modifiers of disease
severity. Data subtypes, also known as “data modes”, can be visualized as “peaks” and
“valleys” within a violin or Kernel plot. There is emerging interest in understanding dataset
multimodality and identifying strategies to address such source of variability in disease
and medical research (brain [1,2], biobanking [3], genomics [4,5], and orthopedics [6]).
In animals, for example those that receive human gut/fecal microbiota transplantations
(hGM-FMT) or animals administered special diets or treatments may also exhibit “high”,
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“middle”, or “low reactivity” (e.g., gut inflammation) in response to the intervention.
Although high/low ranging responses often appear in study datasets (biological and
nonbiological) as multimodal distributions, little is known about how these could affect
rodent research reproducibility or how to address such multimodal and random variance.
Herein, we illustrate how multimodality via random sampling affects study reproducibility
in research using, as an example, fecal microbiota transplantation studies in rodents as a
way to exemplify variability and randomness resulting from data multimodality

To establish the causal connection between human diseases and the microbiome, ani-
mal models, primarily germ-free models transplanted with hGM, have been widely used
as tools in translational research. Unfortunately, despite efforts to help scientists improve
their studies (e.g., ARRIVE guidelines), there are still concerns on poor study reproducibil-
ity, in part owing to microbiome variability [7,8]. Novel sources of artificial microbiome
heterogeneity that could explain variable hGM study results have been described [8–12].
Recently, we also illustrated how scientists often lack appropriate methods for the analysis
of cage-clustered data, and with examples, we showed how to use study power (p = 1 − β)
to help investigators monitor their study validity and sample size (N) [8].

With respect to N, published recommendations often include to increase N, i.e., adding
more subjects (e.g., human, mice, cells) to improve research reproducibility. The objective of
our study was to illustrate via simulations (using as an example hGM rodent disease data
dispersion/variability) the impact of repeated random sampling from a population of sub-
jects (at various N) on (i) the data distribution, (ii) the shape of said data distribution, and
(iii) the cumulative probability of generating a statistically significant result for simulated
repeated hGM-transplanted group comparisons for a hypothetical disease outcome. By
using various methods of random number generation, encompassing unimodal and multi-
modal distributions, we illustrate that randomness alone introduces large-scale ‘random
analytical–statistical irreproducibility’ patterns, regardless of number type (continuous or
integer/categorical), especially for multimodal data distributions.

After examining the statistical content of 38 high-quality studies [13–50] assessed in a
recent systematic review [51], herein, we found that scientists who increased N, concur-
rently reduced the number of mice/donor (MxD), indicating that statistically, scientists
replace the disease variance in mice by the disease variance in humans in their hGM-FMT
studies. Furthermore, supporting our previous report [8,52], studies lacked proper statistics
methods to control for animal density, and most importantly with respect to data modality,
we found that none of the studies considered data multimodality/violin plots. Herein, we
clarify how to visualize, quantify and address disease data multimodality in human and
animal research.

2. Materials and Methods
2.1. Overall Approach

To verify our hypothesis using, as an example, the context of hGM rodent studies
and N, we used published (observed) preclinical rodent univariate data (e.g., intestinal
inflammation) to make simulations with randomly generated numbers to then conduct
repeated standard statistical and visualization analyses. Simulations were conducted using
(i) integer data that could represent, for instance, categories of disease severity varying
on scoring scale systems made of positive whole numbers categories (categorical), names
(nominal), or orders (ordinal data), and (ii) continuous data that could represent, for in-
stance, body weight or inflammation severity outcomes given in positive decimal numbers,
or transmembrane electric resistance which oscillate around zero between negative and
positive decimal numbers. Across multiple scenarios (details below), we used various
number generator software and methods encompassing at least three major statistical
probability distribution classes. The first, having no data modes with equal probability of
sampling numbers across a min and max range bounds (uniform, rectangle shape); the
second, having one data mode where the probability of sampling a number is higher when
it is closer to the center of the data set (mean) and decreases away from the center (Gaus-
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sian unimodal and bell shape); and the third, having at least two data modes where the
probability of sampling a number resulted from the combined joint probabilities of at least
two Gaussian probability distributions interconnected using Markov chain principles of
sampling dependency (mixed Gaussian Markov chain, multimodal, and partly overlapping
bell shapes). In doing so, we generated a wide array of dataset possibilities, with varying
N (from 3 to 100,000/group), which we then compared statistically as treatment/subject
groups using standard tests (t-test, or ANOVA; see Methods and sections below for justifi-
cation and nonparametric alternatives). Therein, we monitored and quantified the extent
to which data analysis reproducibility was influenced by randomness alone during the
sampling of subjects from hypothetical populations within varying N, as well as dataset
shapes numerically restricted nonarbitrarily around published means ± SD, or upper and
lower values. Lastly, we used random arbitrary range parameters for additional validation.

2.2. Published Preclinical hGM-FMT Rodent Data Used for Simulations

To facilitate the visualization of how random sampling and disease variability influ-
ence study conclusions (significant vs. nonsignificant p-values) in the context of N, we
conducted a series of simulations based on existing statistical methods (see simulations
described below), using, as an example, preclinical hGM-FMT disease phenotyping data
estimates from our own IBD studies (Basson et al.) [52] and that of Baxter et al. [21] (a study
listed in a recent systematic review [7]). In brief, by transplanting feces from inflammatory
bowel disease (IBD), namely Crohn’s disease (“Dis1”) and ulcerative colitis (“Dis2”), and
“Healthy” donors (n = 3 donors for each “disease/healthy” state) into a germ-free sponta-
neous mouse model of cobblestone/ileal Crohn’s disease (SAMP1/YitFc) [52,53], Basson
et al. [52] observed with ~90% engraftment of human microbial taxa after 60 days, that the
hGM-FMT effect on mouse IBD-phenotype was independent of the disease state of the
donor. Specifically, samples from some IBD patients and some healthy donors did not affect
the severity of intestinal inflammation in mice, while the remaining donors exacerbated
inflammation, indicating the presence of disease data multimodality in animal models.
Comparably, Baxter et al. [17] found that differences in the number of tumors resulting in a
hGM-FMT mouse model of chemically induced colorectal cancer (CRC) were independent
of the cancer status of the human donors (n = 3 colorectal cancer, n = 3 healthy individuals).

In addition to published parameters, actual data points inferred from published
plots, or the dataset itself were used to define the data distribution using histograms and
normality density plots using Wessa.net [54]. Inspection of the distribution of observed
experimental data was performed using Excel or R software, as described in [55], which
uses R code, as described in [56]. To further assist in the examination of which distribution
fit the data best, the R-interface implementation of the Tukey Lambda PPCC plot was used
to distinguish normal, u shape, uniform, Cauchy, and logistic distributions, as described
in [54,57], using R code based on [58]. To identify the best fitting distribution function
that the observed data has, we used the Excel functions (TRENDLINE and Equation) and
examined the R2 for the linear, exponential, and logarithm function (unimodal distributions)
or used polynomial functions with two or more terms to describe the shape of the data
distribution. Each term approximately corresponds to a mode/peak in the dataset. Model
fitting used the same interface as that used for model fitting of a normal distribution to
observed data, as described by [59], which used R code as described in [56].

For clarity, the purpose of this study was to illustrate the effect of randomness as an
analytical component in preclinical research datasets and not to examine the validity of
rodents as models of human diseases. As such, we used simulated data generated within
the data distribution parameters of published data or used completely random number
sets drawn from various distributions within arbitrary number ranges, e.g., common to
gut inflammation scores in rodents. Factors such as batch effect, gender, and cage density,
among others, were not considered in the simulations, because the main objective was
to examine ‘random sampling’ and because such factors are not often reported in rodent
publications or are inherently part of the data distribution of the published datasets [8].
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2.3. Simulation of Hypothetical Disease Outcome Sets Using Random Numbers

Iteration of random number generation [60] was conducted to illustrate the effect of
random sampling on the reproducibility of analysis of mouse preclinical datasets generated
using established software. In sequence, we first defined and used the published (observed)
rodent disease outcome parameters when available (e.g., mean and SD, or the min and max
data ranges, for at least two “subject/treatment groups”). We then used such parameters
as input for random generation software (Excel, GraphPad, R software, wessa.net, and
random.org), which for each iteration, generated sets of “randomly sampled treatment
groups” of random numbers, which were then statistically compared using standard
methods and software to determine (i) to what extent the differences were significant, (ii)
the difference in magnitude between the compared groups (treatment effect difference),
and (iii) which group was higher mean (direction of the effect). Each set of random
numbers (a subject/treatment group) used for statistical analysis was generated at various
sample sizes N to examine the effect of N on statistical reproducibility for the simulated
published datasets. Results were monitored manually for each iteration and plotted to
illustrate effects in manuscript figures, recorded using Excel functions by creating an
analysis template simulator for readers use, or used Monte Carlo simulations in statistical
software (GraphPad, or R) to compute thousands of iterations and summarize the statistical
results for cumulative reproducibility and compute Monte Carlo adjusted p-values.

2.4. Group Simulations Using Pseudorandom Integer and Continuous Numbers

To enable the visualization of the simulation strategy and analytical comparisons
across integers and continuous data over various Ns, and to visualize the impact of
adding three subjects to each group for each statistical simulation, we used Excel with
the embedded formulas and functions (see Supplementary File 1). The supplementary
file contains two spreadsheets. One sheet shows the layout for the generation of random
integer numbers in increments of 3, as well as the cumulative statistics using t-test functions
to compare pairs of data with N ranging from 3 to 63, expandable to ~1 million rows, and
for uniform and Gaussian (based on inverse Gaussian functions as described below).
The other sheet follows the same format, based on the same distributions, but it generates
continuous random numbers, instead of integers. Pre-set bar plots with standard deviations
and line plots with the cumulative summary of statistical results illustrate there is no
difference between uniform or Gaussian distribution-based simulations. To allow for
reproducibility, statistical analyses were completed with a suited two-group parametric (t
test) statistical functions available in Excel, because corresponding nonparametric tests are
not available in the software, and their performance is similar to parametric in numerous
scenarios, especially with large N. Nonparametric statistical functions are available for
Excel using third-party open-access macros and extensions that vary in implementation
across platforms (e.g., Real Statistics Using Excel [61]).

As laid out in Supplementary File 1, random numbers were generated using uniform
distributions, which is the standard function for Excel RAND (continuous) and RANDBE-
TWEEN (integer) functions. However, for the generation of numbers, based on a Gaussian
distribution (not readily available in Excel), we nested the RAND formula inside of the
NORMINV formula for the probability input, which, in turn, returns the inverse of the
normal cumulative distribution for the specified mean and standard deviation. Additional
options available in Excel were not used in this study. To constrain the data range within
positive numbers, since inflammation scores are not negative, we used the formula = MIN
(MAX(NORM.INV(RAND(), C$16, C$17), 0),80) to limit numbers between 0 and 80, which
is beyond the absolute probability of 1 of having the maximum possible inflammatory
score within the expectations of the published parameters (i.e., maximum inflammation is
unlikely to be 80) [62,63].
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2.5. Visualization of Randomly Generated Numbers

In all depicted illustrations, the randomly generated numbers used computer-software/
automated-pseudorandom (seeded and unseeded) methods [64,65]. Unless described oth-
erwise, the numbers generated (generated using uniform and Gaussian distributions)
were restricted to be confined within biologically meaningful data boundaries based on
published data (for example, 0 as minimum for normal histological score or intestinal
inflammation and 80 as arbitrary ~3-fold the maximum possible histological score) as
described. For illustration purposes, the x- or y-axes in plots were generically labeled as
outcome disease severity. Simulating a situation where a scientist would recruit a trio of
donors (three donors) per group at a time and was interested in conducting interim statisti-
cal analysis following the addition of every trio of donors to the study, we summarized
the pairwise group analysis for the simulated disease comparisons, for various N, and for
consecutively added donors as an aggregate “cumulative probability of being a significant
simulation” statistic. Comparisons were deemed significant if at least one p-value was
<0.05 across simulations.

2.6. Parametric vs. Nonparametric Group Statistics and Monte Carlo p-Value Estimates

Because parametric and nonparametric statistical methods often produce interchange-
ably/similar p-values, especially when data have normal distribution, and also as the
group sample size N increases, as previously described, herein, for illustrative purposes,
we used, unless otherwise described, primarily parametric tests to conduct the statistical
analysis because in most cases N was larger than 3–6, with simulations conducted with N =
6, 9, 18, 21, and additional increments of 3 up to 63, or with N = 100, 200, 600, 1000, 10,000,
or 100,000. When applicable for further validation of the data generation and specific
simulations datasets in Excel, the data was exported to GraphPad, a statistical software
widely used in the literature, to conduct Student’s unpaired t-test and/or one-way ANOVA
with Tukey statistical comparisons (or the nonparametric in some scenarios with low N < 6,
or as needed see below) to calculate adjusted p-values using Monte Carlo simulations for
decimal numbers with Gaussian distribution, and to determine the % of simulations that
were significant or not. For post hoc analysis, nonseeded Monte Carlo simulation function
was used.

2.7. Markov Chain Monte Carlo Multimodal Simulations of Continuous Data

To illustrate the major role of random sampling across multiple N from multimodal
data distributions, we used Markov chain Monte Carlo multimodal simulation functions
and R software to obtain groups of numbers from such distributions for statistical com-
parisons using two-group statistics. The scripts are available in Supplementary Figure
S5. Specifically, to illustrate the effect of random sampling from data simulations from
multimodal distribution functions, unconstrained-parameter simulations of two mixed,
yet separate, normal distributions were performed using the random walk Metropolis–
Hastings algorithm [66,67], a form of dependent sampling from a proposed posterior
distribution, as a well-established method of Markov chain Monte Carlo (MCMC) sim-
ulations [68], using R and STATA (v15.1). In the latter, the MCMC sampling of a new
individual is dependent on the prior probability of being part of a mode within a multi-
modal distribution, instead of being completely random from a unimodal distribution,
using a log-likelihood correction to prevent negative sigma values and also allow for
asymmetrical distributions. This method is beneficial as it asymptotically converges to
the true proposal distribution and so represents a more robust method of data simulation
compared to other alternatives of simulating sampling from multimodal distributions (i.e.,
binomial and mixed normal distributions).

2.8. Multimodality Tests and Variability of Statistical Results

The test of multimodality was conducted using the dip test (which measures the
departure of a sample from unimodality, using the uniform distribution as the worst
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case as a reference) and STATA [69], with packages available in R [70]. The tabulation of
modes from a variable in a dataset was computed using the modes and hsmode function in
STATA [71,72]. Statistical and simulation analyses were conducted or plotted with Excel, R,
Stata, and GraphPad.

To determine the sources of statistical methods variability in hGM-FMT rodent studies,
we reviewed the content of 38 studies listed in ref [51]. For computation purposes, we
searched each article for the following keywords: “cage,” “stat*”, “housed”, “multiple”,
“multivariable”, “cluster”, “mixed”, “individual*”, and “random*”, and appropriately
extracted details to additional inserted columns of an excel file. Detailed statistical tests and
software used, focused on assessing the effect of the hGM in the rodent phenotypes, were
extracted to determine if studies used proper cluster statistical analysis and/or controlled
for random effects introduced by caging, when needed, that is, if more than one mouse was
housed per cage. Data including descriptions of animal density (numbers, e.g., 1–5) were
assigned to the sourced keywords to allow for statistical analysis. If a range was provided
for N or animal density, estimations were computed using the median value within the
range, as well as the minimum and maximum values. The average of estimated center
values was used for analysis and graphical summaries

3. Results
3.1. “. Disease Data Subtypes” (Modes) Occur with Uniform and Gaussian Random Sampling

In microbiome rodent studies, the selection of a sufficient number of human donors,
as well as the number of mice/group which required the testing of each human donor
(MxD), is critical to account for the effects of random sampling, which exist when the hGM
induces variable disease severity in humans and rodents. Thus, to visualize the variability
of disease severity (data subtypes/modes) in hGM-FMT rodents and the effect of N on
the reproducibility of said pairwise statistical comparisons from, hypothetically, randomly
selected human donors, we first conducted a series of simulations using as input, the mean
± SD (disease outcome, continuous data) from hGM-FMT mice in Basson et al. [52] to
generate random numbers (Figure 1a; note dispersed overlapping data). We also generated
separate random datasets of integer and decimal numbers using functions designed to
draw numbers from a uniform and Gaussian distribution (see details in Methods, and
formulas and visualization strategy in Supplementary File 1 and Supplementary Figure
S1). We showed that under the conditions simulated, the integer-uniform dataset is
statistically similar to the one generated using decimal-Gaussian methods (Figure 1b),
and we demonstrated how the random selection of N (sampled as groups for each of
three iterative datasets) influences the direction and significance in pairwise comparative
statistics.

Simulations showed that the number of MxD is important because mice have various
response patterns to the hGM (i.e., disease severity and disease data subtypes/modes),
which can be consistently detected depending on the MxD and thus the variability in-
troduced by random sampling. Simulations showed that for the three hGM-FMT group
datasets (plotted as Dis1, Dis2, and Healthy), it was possible to reproducibly identify from
two to three unique donor disease severity subtypes (data modes) in mice induced by the
hGM (“high”, “middle”, and “low” disease severity).

Simulation plots made it visually evident that testing <4–5 MxD yielded mean values
more likely to be affected by intrinsic variability of random sampling, thus making studies
with >6 MxD more stable and preferable. Conversely, studies with 1–2 MxD are at risk
of being strongly dependent on randomness. Iterative simulations showed that the mean
effect (e.g., ileal histology) in transplanted mice varies minimally (i.e., stabilizes) after 7 ±
2 MxD, depending on the random dataset iterated. Beyond that, increasing MxD becomes
less cost-effective/unnecessary if the focus is the human donors (Figure 1c).
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integer numbers datasets generated based on 3 donors/group for Disease 1 (“Dis1”), Disease 2 (“Dis2”), and “Healthy” 
groups. Bar plot of N = 21 mice/donor, notice no differences between integer and decimal datasets group pattern, or abso-
lute differences, superscript letter “a”, paired-t p > 0.05. (c) Simulation of human gut/fecal microbiota transplantations 
(hGM-FMT) mice data yields reproducible simulated “disease data subtypes” from 6 mice/group. (d) Cumulative line 
plots depicting patterns of statistical irreproducibility and pairwise statistical directions of effect estimates (n.s.:signif., 
signif.:signif., signif.:n.s., and n.s:n.s.). Representative simulations comparing two groups of donors, with N ranging from 
three (trio) donors/group to 63, in multiples of three (cumulative addition of new trios per group). Note Y-axis, p-value of 
differences using two-group Student’s t-test. Notice as N increases, the cumulative significance (red line) exhibit different 
linear patterns due to variance introduced by random sampling. (e) Percentage of simulated analysis with significant or 
nonsignificant pairwise difference (blue; significant, black; non-significant; and parentheses, SD). Comparison deemed 
significant, if at least one p-value < 0.05 across simulations with N between 3 and 63 donors/group. (f) Visualization of 
simulated outcome using observed data from Baxter et al. [21]. No differences between integer and decimal datasets, 
superscript letter “a”, paired-t p > 0.05. (g) Random simulations illustrate “erratic” statistical patterns. Notice as N in-
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Figure 1. Random sampling from overlapping datasets yield unexpected “linear patterns of cumulative statistical irre-
producibility”. Simulations on observed data from Basson et al. [52] to visualize disease vs. healthy datasets. (a) Method
overview to generate pseudorandom numbers and simulations from published (observed) data (see details/formulas in
Supplementary File 1 and Supplementary Figure S1). (b) Visualization of simulated outcomes using random decimal and
integer numbers datasets generated based on 3 donors/group for Disease 1 (“Dis1”), Disease 2 (“Dis2”), and “Healthy”
groups. Bar plot of N = 21 mice/donor, notice no differences between integer and decimal datasets group pattern, or
absolute differences, superscript letter “a”, paired-t p > 0.05. (c) Simulation of human gut/fecal microbiota transplantations
(hGM-FMT) mice data yields reproducible simulated “disease data subtypes” from 6 mice/group. (d) Cumulative line
plots depicting patterns of statistical irreproducibility and pairwise statistical directions of effect estimates (n.s.:signif.,
signif.:signif., signif.:n.s., and n.s:n.s.). Representative simulations comparing two groups of donors, with N ranging from
three (trio) donors/group to 63, in multiples of three (cumulative addition of new trios per group). Note Y-axis, p-value of
differences using two-group Student’s t-test. Notice as N increases, the cumulative significance (red line) exhibit different
linear patterns due to variance introduced by random sampling. (e) Percentage of simulated analysis with significant or
nonsignificant pairwise difference (blue; significant, black; non-significant; and parentheses, SD). Comparison deemed
significant, if at least one p-value < 0.05 across simulations with N between 3 and 63 donors/group. (f) Visualization
of simulated outcome using observed data from Baxter et al. [21]. No differences between integer and decimal datasets,
superscript letter “a”, paired-t p > 0.05. (g) Random simulations illustrate “erratic” statistical patterns. Notice as N increases,
group differences become more significant, until an inflection point, where adding more donors makes the significance
disappear. See Supplementary Figure S2 for additional examples and computed R2 value to illustrate the linearity of the
correlation between N and statistical significance.
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3.2. Random Sampling from Overlapping Datasets Yield “Linear Patterns of Statistical
Irreproducibility”

Often, published literature contains figures and statistical analysis conducted with
three donors per disease group. Thus, to mimic this scenario and to examine the role of
random sampling of subjects on the reproducibility of pairwise statistical results (significant
vs. nonsignificant) in the context of hGM-FMT rodent studies, we compared two groups of
donors, each having three donors/group (donor “trio”), with N increasing in multiples of
three (ranging from 3 to 62 donors/group). We conducted (i) multiple donor/group (“trio–
trio”) pairwise comparisons and (ii) a simultaneous overall analysis for the cumulative sum
of all the donor trios (i.e., the cumulative addition of new trios per group) simulated for
each disease group. That is, we monitored and quantified whether results for each random
iteration (simulation event) were significant (using univariate Student’s t-statistics p < 0.05)
or nonsignificant (p > 0.05) for groups of simulated donor datasets (Dis1, Dis2, or Healthy).
Assessing the effect of random sampling at various N and also as N accumulated, we
were able to illustrate that pairwise “trio–trio” comparisons between the simulated rodent
disease outcome datasets almost always produced nonsignificant results when iterative
trios were compared (due to large SD overlapping; see bars in Figure 1d representing 21
sets of pairwise trio–trio p-values). However, as N increases by the cumulative addition
of all (mostly nonsignificant) donor trios (i.e., N increases in multiples of three, for a
range of N between 3 and 63 donors/group; (3, 6, 9, 12, . . . ,63)), pairwise statistical
comparisons between the simulated datasets did not produce consistent results (see line
plots in Figure 1d representing p-value for cumulative addition of donors when sampling
iterations were simulated).

Results are clinically relevant because the simulated N, being much larger (63 donors/
group) than the largest N tested by one of the hGM-FMT studies examined in a recent
systematic review [51] (21 donors/group) [45] demonstrates that the analysis of randomly
selected subjects would not always yield reproducible results due to the chance of sampling
aleatory sets of individuals with varying degrees of disease severity, regardless of how
many donors are recruited in an study. To provide a specific example, using Dis1 as a
referent, cumulative pairwise comparisons (vs. Dis2 and vs. Healthy) revealed at least
five different patterns of irreproducible statistical results (rodent disease outcome) as
N increased between 3 and 63 per group. Figure 1d illustrates four of these variable
cumulative linear patterns of statistical irreproducibility in which, remarkably, (i) Dis1
becomes significantly different vs. Dis2, and vs. Healthy, as N increases, (ii) Dis1 becomes
significantly different from Dis2 but not vs. Healthy, (iii) Dis1 was significantly different
from healthy but not vs. Dis2, and (iv) Dis1 never becomes significantly different despite
sampling up to 63 donors/group. See Supplementary Figure S2 for complementary plots
illustrating linearity of patterns (R2, mean 0.51 ± 0.23, 21 simulations).

Hence, the results clearly illustrate that seeking funds to recruit more donors as
recently suggested is not a prudent statistical solution to the problem of understanding
disease causality of widely variable conditions in both humans and animals. By statistical
irreproducibility, herein, we refer to the inability to reproduce the direction and statistical
significance of a test effect when analyses are conducted between groups created by the
random selection of subjects from distributions defined using observed data.

To investigate the cumulative probability of generating a statistically significant simu-
lation that collectively would lead to the inconsistent patterns (statistical irreproducibility)
observed via random sampling, we computed an aggregate “cumulative probability of
being a significant simulation” for 50 pairwise statistical simulation sets fulfilling the four
linear patterns described above. Emphasizing the concept that increasing N is not a repro-
ducible solution, Figure 1e shows that only 35.3 ± 4.0% of comparisons between Dis1 and
Dis2, and 58.8 ± 3.3% for Dis1 and Healthy, were significant.
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3.3. “Erratic Patterns” of Statistical Irreproducibility as N Increases

To increase the external validity of our observations, we next simulated the data
published from a hGM-FMT study on colorectal cancer conducted by Baxter et al. [21]. In
agreement with Basson et al. [52], Baxter et al. revealed comparably bimodal colorectal
cancer phenotypes in mice resulting from both the diseased (colorectal cancer) patients and
healthy human donors (Figure 1f).

Unexpectedly, we observed for both Basson et al. [52] and Baxter et al. [21], as simu-
lations were conducted, an “erratic” shift on the significance of the cumulative analysis
occurred as N increased (Figure 1g). In some cases, the increasing addition of donor
trios/group (as simulations proceeded for increasing values of N) made it possible to
identify simulations where erratic changes in the statistical significance for group com-
parisons switched randomly, yet gradually, from being significant to nonsignificant as
more donor trios were “recruited” into the simulations (Figure 1g). Clinically relevant
simulations indicated that adding extra subjects could at times actually invert the overall
cumulative effect of the p-value, possibly due to the variable distribution and multimodal
nature of the host responses to experimental interventions. As such, simulations indicate
that it is advisable to conduct several a priori determined interim data analysis in clinical
trials to ensure that significance is numerically stable (p < 0.05), as well as the relevance
of personalized analysis to examine disease variance in populations. Unfortunately, there
are no guidelines or examples available to assist in determining how many donors would
be sufficient, and to visualize the effect of random sampling of individuals from a vastly
heterogeneous population of healthy and diseased subjects.

3.4. Monte Carlo Simulations and Probability of Statistical Reproducibility

Expanding the reproducibility of these uniform and Gaussian distributions, we then
made simulations using solely Gaussian distributions for N = 63 donors/group and con-
ducted (i) Monte Carlo adjusted Student’s unpaired t-tests and (ii) Monte Carlo adjusted
one-way ANOVA with Tukey correction for family errors and multiple comparisons. Monte
Carlo simulations were used to indicate how many tests will yield a significant result and
the direction of effect. Monte Carlo simulations with normal Gaussian distribution around
the group means and a pooled SD of ± 4 were also computed. See Supplementary Figure
S3 and Supplementary File 2 for methods employed in GraphPad for this Monte Carlo
simulation and the corresponding dataset. Supporting the observations above, Monte Carlo
Gaussian simulations showed that, using pairwise comparison, Dis1 would be significantly
different from Dis 2 (adjusted t-test p < 0.05) only 57.7% of the time (95% CI = 58–57.4), with
1540 simulations producing negative (contradictory) mean differences between the groups.
Compared to Healthy, Dis1, and Dis2 were significant only 9.1% (95% CI = 9.2–8.9) and
78.3% (95% CI = 78.6–78.1) of the time, respectively. Statistical analyses were compared,
for p-values computed by parametric t-tests and nonparametric Mann–Whitney statistics,
findings were comparable, yet distinct, with borderline significant p-values.

Under the “Weak Law of Large Numbers” [73–75] and randomization principles, it is
almost always possible to detect some level of statistical significance(s) and mean group
differences when asymptotic mathematical methods based on numerous simulations are
used. For example, when simulations are used as a surrogate for multiple experiments
which are not possible in real research settings. However, in this case, the mean simulated
differences yielding from 100,000 simulations were minuscule (Dis1-Dis2 = 1.6; Healthy-
Dis2 = −1.97; and Healthy-Dis1 = 0.42). Compared to the range of disease variance
for each disease, such minuscule differences may not be clinically relevant to explain
disease variance at the individual level. Note that the SD was 4; therefore, it is intuitive to
visualize in a numerical context such small differences across greatly overlapping unimodal
simulations.

Correcting for family errors, one-way ANOVA corrected with 10,000 Monte Carlo
simulations with N = 63/group showed that at least one of the three groups would be
statistically different in approximately only 67.2% of the simulations (95% CI = 64.2–

177



J. Pers. Med. 2021, 11, 234

70.0), whereas in 32.8% (95% CI = 64.2–70.0) of simulations, the groups would appear
as statistically similar (see Supplementary Table S1 for estimations after 100,000 Monte
Carlo simulations (R software); note narrower CI as simulations increase, Supplementary
Figure S4). The comparison of Dis1 vs. Dis2 in supplementary Table S1 demonstrates that
the percentage of cases in which a simulation could be significant, depending on the degree
of data dispersion. For example, simulations with SD of 4, compared to SD of 10, produce
significant results less often, illustrating how data with larger dispersions contribute to
poor statistical reproducibility, which cannot necessarily be corrected by increasing N.

3.5. Violin Plots to Visualize, and Tests to Quantify, Multimodal “Disease Data Subtypes”

To visualize and to illustrate how to address the underlying mechanisms that could
explain the “linear and erratic patterns of statistical irreproducibility” that is introduced by
random sampling, we first used dot plots based on observed and simulated data, followed
by kernel-based statistics and plots (violin, box, bar). Plot appearance and one-way ANOVA
statistics showed that when N is increased, significant results, when present for largely
overlapping phenotypes, are primarily due to small differences between sample means
(Figure 2a,b).

Simulations that compared three groups of 65 donors/group almost always yielded
a significantly different group; however, dot plots show that the significant differences
between means are just a small fraction of the total disease variability as verified with
Monte Carlo simulations. That is, as N increases, comparisons can become significant (see
plot with 65 donors in Figure 2c). In this context, a significant difference of such a narrow
magnitude may not be clinically relevant, or generalizable, to explain the presence of a
disease phenotype in a population, especially for subjects at the extreme ranges of the
disease distribution.

Mechanistically, the detection of significant comparisons can be attributed to the effect
that increasing N has on the data mean and variance, which increases at a higher rate for the
variance as shown in Figure 2d. Instead of increasing N as a general solution, we suggest
that scientists use violin plots over other plots commonly encouraged by publishers [76]
(e.g., bar, boxplot, and dot plots), because violin plots provide an informative approach
to make inferences about “disease data subtypes” in the population (see subtypes shown
with arrows in Figure 2e,f).

Violin plots are similar to a box plot, as they show a marker for the data median,
interquartile ranges, and the individual data points [77]. However, as a unique feature,
violin plots show the probability density of the data at different values, usually smoothed
by a kernel density estimator. The idea of a kernel average smoother is that within a range
of aligned data points, for each data point to be smoothed (X0), there is a constant distance
size (λ) of choice for the kernel window (radius or width), around which a weighted
average for nearby data points are estimated. Weighted analysis gives data points that are
closer to X0 higher weights within the kernel window, thus identifying areas with higher
data densities (which correspond to the disease data modes). As an example of the benefits
of using violin plots, Figure 2g shows that as N increases, as does the ability of scientists to
subjectively infer the presence of disease subtypes.

To strengthen the reproducibility of “subtype” mode identification, herein, we also
suggest the use of statistical methods to identify disease data modes (e.g., see the statistical
function modes in Methods and Discussion), because as N increases, the visual detection of
modes becomes increasingly more subjective as shown in Figure 2g.
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simulated data (3 and 6 donors/group; panel B). Note that differences are not significant because of the variability between 
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became significant with 65 donors/group. However, the mean difference is small compared to the variance of the groups 
and the difference is not biologically different because it is a function of the total variance (23%). (d) Kernel density simu-
lations (10,000) based on observed (n = 3) and simulated data. Note that as N increases the mean becomes narrower while 
the variance widens. See 100,000 Monte Carlo simulations in Supplementary Table S1. (e) Comparison of visual appear-
ance and data display for violin, dot, bar, and box plots of simulated data to illustrate “disease data subtypes” (arrows). 
(f) Plot illustrates cumulative proportion of simulation runs that generated a significant (green, p < 0.05) or nonsignificant 
value (black, p > 0.05). Analysis illustrates how Monte Carlo adjusted analysis could be reported with observed findings. 
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Figure 2. Violin plots enable visualization of data subtypes in simulations of random sampling for various N sample
size. Observed raw data derived from Basson et al. (a,b) Dot plots (mean, range) of observed (1 “trio”; 3 donors/group),
and simulated data (3 and 6 donors/group; panel B). Note that differences are not significant because of the variability
between diseases. (c) Dot plots (mean, range) of simulated data for 9, 21, and 65 donors per group. Note that simulated
mean effects became significant with 65 donors/group. However, the mean difference is small compared to the variance of
the groups and the difference is not biologically different because it is a function of the total variance (23%). (d) Kernel
density simulations (10,000) based on observed (n = 3) and simulated data. Note that as N increases the mean becomes
narrower while the variance widens. See 100,000 Monte Carlo simulations in Supplementary Table S1. (e) Comparison of
visual appearance and data display for violin, dot, bar, and box plots of simulated data to illustrate “disease data subtypes”
(arrows). (f) Plot illustrates cumulative proportion of simulation runs that generated a significant (green, p < 0.05) or
nonsignificant value (black, p > 0.05). Analysis illustrates how Monte Carlo adjusted analysis could be reported with
observed findings. See Supplementary Figure S4 for 100,000 Monte Carlo simulations of random numbers generated in R.
(g) Violin plots allow visualization of data subtypes as N increases (arrows, subtypes).
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3.6. Violin Plots Guide Subtype Analysis to Identify Biologically Significant Results

Violin plots and kernel density distribution curves in Figure 3 illustrate why com-
paring groups of randomly sampled individuals may not yield biologically relevant in-
formation, even though statistical analysis identifies that the mean values differ between
compared groups. Figure 3a illustrates the different patterns of potential donor subtypes
(i.e., data modes visualized in violin plots as disease data/curve “peaks”) that would yield
significant results in a single experiment depending on the donors sampled.
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Figure 3. Violin plots illustrate that statistical differences with large N may not have clinical predictive value at individual
level. Violin and kernel plots illustrate statistical vs. biologically relevant differences and thresholds. (a) Violin plots of
four simulated random number sets illustrate that each set of donors may have unique subtypes of disease illustrated with
arrowheads (disease severity scores with higher number of simulated donors). Arrows indicate “disease data subtypes”
vary with every simulation of 63 donors/group. (b) Kernel density curves illustrate large overlap of sample population
from simulated data (see panel 3a). Significant differences are highlighted by shaded area. Note the threshold does not have
distinctive separation for the plots indicating that it is not biologically useful as a predictor of outcome. (c) Violin plots
illustrate meaningful statistical difference for population (compared to panel 3b). “Fake disease X” (“DisX”) was generated
as a “mock” disease following Gaussian distribution around the mean. Monte Carlo simulations were significant 96.5%
(upper limit 97.6, lower limit 95.4%). (d) Kernel density curves of panel 3c illustrate example of distribution separation with
both statistical difference and biological relevance.
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However, the kernel density plots in Figure 3b show that significant findings do
not necessarily indicate/yield clinically relevant thresholds or parameters to differentiate
between the populations (due to the overlapping and inflation of data “peaks” in some
subjects within the samples). To contrast the data simulated from Basson et al., we replaced
data from Dis1 dataset with a Gaussian distributed (R software) sample of random numbers
(within 13.5 ± 3.5, labeled as “fake disease X”; vs. 6.4 ± 4.3, and 4.5 ± 2.5 for Dis2
and Healthy, respectively) to illustrate how a kernel plot would appear when significant
differences have a clinically relevant impact in differentiating subtypes (Figure 3c,d).

Collectively, simulations indicate that the uneven random sampling of subtypes across
a disease group would be an important factor in determining the direction of significance
if studies were repeated, owing primarily to the probability of sampling data “modes” or
“peaks/valleys” in both healthy and diseased populations.

3.7. Multimodal Datasets Illustrate How Statistical Irreproducibility Occurs

Thus far, we have used unimodal distributions to show how random sampling affects
statistical results. However, there has been an increased interest in understanding data
multimodality in various biological processes [78,79] for which new statistical approaches
have been proposed. Methods to simulate multimodal distributions are however not trivial,
in part due to the unknown nature of multimodality in biological processes.

To facilitate the understanding of the conceptual mechanisms that influence the ef-
fect of data multimodality and random sampling on statistical significance, Figure 4a–e
schematically contextualizes the statistical and data distribution principles that can interfere
with reproducibility of statistical results when simulations are repeated.

Random simulations from unimodal distributions work on the assumption that num-
bers (e.g., donors’ disease severity) are drawn from a population, independently from one
another. That is, the probability of sampling or drawing a number from a population is not
influenced by the number that was selected prior. While this form of random sampling
is very useful in deterministic mathematics, it does not capture the dependence of events
that occur in multimodal biology. That is, in biology, the probability of an event to occur
depends on the nature of the preceding events. To increase the external validity of our
report, we thus conducted simulations based on three strategies to draw density curves
resembling multimodal distributions.

To simulate the statistical comparison of two hypothetical multimodal data distribu-
tion, we (i) ran Markov chain Monte Carlo (MCMC) simulations for two datasets (“drug
A” vs. “drug B”) each with two data modes (Figure 5a,b), (ii) used the statistical dip test
(STATA) to determine if the simulated data were statistically multimodal, and (iii) used the
Student’s t-test to determine the statistical significance, the mean differences, and directions
for the simulated distributions (“drug A” vs. “drug B”), using various N (Figure 5c). The
MCMC simulations clearly illustrate how random sampling of two multimodal hypotheti-
cal datasets lead to inconsistent patterns of statistical results when compared, indicating
that biological data are multimodal, have multiple peaks/modes, and that two groups
intended for comparison may have different or mismatching shapes and thus real data may
not have Gaussian distribution. Notice that the data dispersion increases as N increases;
see summary statistics in Figure 5c.

Collectively, Figure 5 underscores the notion that randomness alone elicits effect
on irreproducible results, and that mean-SD are imperfect to visualize data shape. See
Supplementary Figure S5 for wider range of N and the scripts for the dip test and modes
analysis using STATA and R commands.

Figure 5d,e depicts distributions derived from both “truncated beta”, and the combi-
nation of two “mixed unimodal” distribution functions (e.g., two independent Gaussian
curves in one plot), which are illustrative of multimodality, but not necessarily reliable
methods to examine the effects from dependent random sampling in multimodality. Thus,
we used “Random walk Markov chain Metropolis–Hastings algorithms” using R software
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to simulate random sampling, accounting for the hypothetical dependence between two
different disease subtypes.
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Figure 4. Conceptual overview of the effect of random sampling and analysis of multimodal data. (a) Schematic conceptual-
ization of random sampling from a population of heterogeneous individuals. (b) Representation of various unidimensional
data distributions. Notice that mean and SD do not represent the shape of the distribution. (c). Examples of probability den-
sity functions of unimodal distributions. Wolfram language [80]. (d) Example of a random sampling of numbers generated
in this study using decimal Gaussian distribution generates a non-Gaussian distribution (bimodal; two peaks/modes, as in
disease distribution subtypes). This illustrates that even under seemingly unbiased circumstances (randomness), a set of
random subjects from a population may be of two subtypes and not represent the population in its “universe” of disease
possibilities. (e) Multimodal distributions. Use of violin and kernel plots to visualize subtypes.

Conclusively, MCMC illustrations emphasize that increasing N in the study of mul-
timodal diseases in a single study should not be assumed to provide results that can be
directly extrapolated to the population, but rather, MCMC emphasizes that the target study
of data subtypes could lead to the identification of mechanisms which could explain why
diseases vary within biological systems (e.g., humans and mice).

3.8. Categorical Data Exhibit Multimodality

Until this point, the majority of data simulations reported herein were based on
continuous data, using various methods computer pseudorandom number algorithms.
Statistical comparisons were then made between two and three groups per simulation
using t-tests or one-way ANOVAs, or their nonparametric equivalent, as it is common in
rodent literature. To further understand the effect of randomness on preclinical datasets,
we further simulated categorical outcomes [81,82]. We simulated five categories of gut
inflammation, with changing severity in steps of 1, between 1-(category “normal”) to
6-(category “most inflamed”). To illustrate how randomness affects the reproducibility
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of statistical analysis in studies with >3 treatments, we simulated five treatment groups
(untreated, placebo, and treatments X, Y and Z).
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Figure 5. Comparison of two statistically similar multimodal datasets yields highly irreproducible results due to random
sampling at various N. Markov chain Monte Carlo (MCMC) simulations emphasize the need to identify disease subtypes
for the study of multimodal diseases. MCMC are random-number-generating strategies to simulate two multimodal
distributions, wherein a random walk MCMC Metropolis–Hastings’ algorithm simulates random sampling accounting
for inter-/within-mode dependence of two “data disease subtypes”. (a) MCMC simulations of two statistically similar
multimodal datasets (hypothetical effect of “drug A”; red dash line vs. “drug B”; blue solid line), “real” distributions set
at N = 100,000; grey reference line at x = 0, downward arrows; data modes. (b) Random sampling of multimodal dataset
(from panel 5a) at N = 100 yields varying dataset distributions and a different mean, SD. (c) Effect of random sampling
dataset (from panel 5a) on increasing N on t-test significance and direction of effect for “drug A” vs. “drug B” (arrow),
including dip test for MCMC simulations (set.seed 101). See Supplementary Figure S5 for wider range of N and the STATA
and R command scripts for the dip test and modes analyses. (d) Example of other multimodal distributions derived from
“truncated beta” and the combination of two “mixed unimodal” distribution functions. (e) Example of a Hartigan–Hartigan
(Hartigans’) unimodality dip test and a modes test [69,83,84] showing a multimodal data distribution (black dotted line)
compared to normal univariate density plot (red line). To identify data subtypes (modes), the dip test [69] computes a
p-value to help determine unimodal or multimodal; does not require a priori knowledge of potential multimodality; it is
interpreted from test statistics (if p < 0.05 data is not unimodal, if p > 0.05–1.0 at least one data mode in dataset). Asterisks
indicate significance p < 0.05.

Using an integer generator which draws true random numbers from atmospheric
noise (random.org), we set the algorithm to draw random numbers between 1 and 6
(representing the six categories), creating equal group sets of N = 6, 12, 100, and 1000
integers/group, with no differences between the five groups.

One-way ANOVA (and Kruskal–Wallis) statistics with post hoc pairwise comparisons
across groups for >250 study dataset simulations, illustrated that increasing N from 6 to
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1000/group do not prevent the occurrence of expected false significant findings (i.e., Ho = at
least one group is different) with p-value < 0.05. Random groups with N = 1000 expected to
be similar, showed statistical significances in 3 of 50 iterations, which is expectedly similar
to the expected five false discoveries for 100 if p = 0.05 (3/50 vs. 5/100; Fisher exact p = 1);
however, the directions of the effects changed drastically within treatment groups, across
the significantly different simulations.

Supporting our hypothesis, increasing N does not necessarily prevent false discoveries,
as we did not see more false discoveries than linearly expected [51] when N decreased from
“optimal” 1000 to “less optimal” 100, 12 and 6 (3/50 vs. 2/40, 4/40 and 1/40, respectively;
Fisher exact p < 0.6261; Figure 6a–c).
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mouse/cage), which our group showed contributes to “artificial heterogeneity”, “cyclical 
microbiome bias”, and false-positive/false-negative conclusions [8,86]. 
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Figure 6. Categorical data simulations and violin plots illustrate that integer data exhibit multimodality and affect statistical
reproducibility as simulations are performed randomly with various N. (a) N = 1000/group, simulation #1, violin plot and
correspondent box plot for nonsignificant expected similarity across five groups (one-way K-W p > 0.05). See p-values and
violin plots for >40 consecutive simulations in Supplementary Figure S7. (a,b) N = 12/group, violin plots for simulations
#27 (non-significant), and #1, #14, and #40 (significant) illustrate comparisons due to randomness, result in irreproducible
“treatment effects” and “direction of effects”. Arrows, data points with statistical influence (see boxplots in Supplementary
Figure S7). (c) Screenshots of time-lapse videos to show dynamically how statistical irreproducibility occurs at random for
various N. Arrows indicate direction of effect. See Supplementary Video S1 doi:10.6084/m9.figshare.13377407. Asterisks
indicate significance p < 0.05.

Visualization of these integer datasets with violin plots, illustrates that in all cases,
categorical data follow multimodal distribution principles that accentuate the random
irreproducibility of statistical analysis, and more importantly, the irreproducibility of the
direction of effect as simulations are repeated. Violin plots illustrate how with lower
N, there is the risk that investigators misperceive a data point as an outlier, when it
is not, and proceed to exclude such points, consciously or unconsciously favoring the
appearance of significant findings, especially when using small N for categorical data. As
an alternative to categorical data, we have proposed the use of decimal scoring systems,
instead of univariate integers, where decimals further carry information relevant to disease
severity, making the system intrinsically more multivariable (see validated examples from
Rodriguez-Palacios et al. for colonoscopy scores, and pathological scores for intestinal
pathologies in [53,85]). To appreciate the advantages of violin plots in understanding
integer multimodality for integers, simulations at various N are available as time-lapse
videos at doi:10.6084/m9.figshare.13377407 (https://figshare.com/s/dcf154ce73c5bc086e80).

3.9. “Data Disease Subtyping” and “Cage-Cluster” Statistics

One important caveat to consider across animal studies is that increasing N alone is
unhelpful if clustered-data statistics are not used to control for animal cage-density (>1
mouse/cage), which our group showed contributes to “artificial heterogeneity”, “cyclical
microbiome bias”, and false-positive/false-negative conclusions [8,86].

184



J. Pers. Med. 2021, 11, 234

To infer the role of scientific decision on the need for particular statistical methods,
we examined the published studies [51] for “animal density” and “statistical” content (see
Methods). Supporting the need for “modernizing” data analysis, we found that only one of
the 38 studies (2.6%, 95% CI = 0.1–13.8%) used proper statistical methods (mixed models)
to control for cage-clustering [23].

Although on average, studies tested 6.6 patients and 6.4 controls/group (range =
1–21), most studies were below the average (65.7%, 25/38, 95% CI = 48.6–80.4%), with 14
having <4 donors/group (Figure 7a). However, of interest, the number of human donors
included in a study was inversely correlated with the number of mice/per donor used in
the FMT experiments Figure 7b.
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Figure 7. Study design and statistical methods among 38 hGM-FMT studies reveal lack of cage-clustered analysis and
dominance of univariate analysis. Analysis of 38 studies reviewed in ref [51]. (a) Average and correlation of human
donors with disease vs. healthy controls hN (left) and number of mice mN per human donor across studies (right
plot). (b) Correlation plot with exponential, logarithmic and linear fits shows that scientists tend to use less mice when
more donors are tested, creating a “trade-off” between data uncertainty due to variance in human disease with that of
variance in animal models for disease of interest. (c) Pie chart, distribution of studies reporting mice/cage (MxCg), which
indicates cage-clustered effects (search within study text keywords cage/cluster*, individual/house*, mice per*, density*,
mixed/random/fix/methods/stat*, p = *). Most studies do not report MxCg (animal density). (d) Heatmap, overall
statistical methods (M), statistical software (S), and study design (D) used across 38 studies. Only “study 6” [23] used linear
mixed methods to control for the random effects of cage clustering. *Asterisk indicate variables examined in ref. [51]. Most
statistical software reported in studies appear to be used for univariate statistics.

Unfortunately, the majority of studies (25/38, 65.8%, 95% CI = 48.6–80.4%) did not
report animal density, consistent with previous analyses [8]; while 10.5% of the studies
(4/38, 95% CI = 2.9–24.8%) housed their mice individually, which is advantageous because
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study designs are free of intraclass correlation coefficient, eliminating the need for cage-
cluster statistics (Figure 7c).

Our review of the statistical methods used across the 38 studies also revealed that
most scientists used GraphPad chiefly for graphics and univariate analysis of mouse
phenotype data. This finding suggests an underutilization of the available functions in
statistical software, for example, Monte Carlo simulations, to help understand the effect of
random sampling on the reproducibility and significance of observed study results, and
the likelihood of repeatability by others (Monte Carlo adjusted 95% confidence intervals)
(Figure 7d). Of note, none of the studies considered multimodality or used violin plots (0%,
0/38, 95% CI = 6.9e−18, 9.1).

3.10. Multimodality in Human Outcome Data

To expand our analysis from that of microbiome hGM-FMT studies to that of other
multifactorial diseases, we then examined published data from a double-blind, randomized,
placebo-controlled, crossover design study in which the efficacy of a prebiotic dietary fiber
(polydextrose) in improving cognitive performance an acute stress response in healthy
individuals was investigated [87]. Using pre- and post-intervention data extrapolated
from a figure in the publication, herein, we show that multimodality is present in human-
derived outcomes. (Figure 8a–e). In the context of the simulations herein presented,
this analysis represents the complexity of biomedical research and illustrate means to
visualize disease subtypes. In this example, we show the “high”, “middle”, or “low”
responders to cold stress regardless of the treatment (placebo vs. prebiotic fiber). Note
that at baseline, two samples of individuals have two different distributions (normality
tests and multimodality). In the figure, panels 8B and D illustrate that two different groups
of individuals sampled for the study have different degrees of susceptibility. It is also
important to note that at baseline, the two samples of individuals have two different
distributions (normality tests and multimodality; Figure 8b,d). In conclusion, re-analysis
of data from this human clinical trial that used maltodextrin as dietary placebo illustrates
multimodal variability/differences in the stress responses between the two human groups
and after the placebo consumption.
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4. Discussion

Understanding dataset multimodality and identifying strategies to address such
source of variability in statistics is an emerging field in applied statistics to help address
the complexity of multipeak data sets to improve study inferences and reproducibility
in various fields of science, including biomedical research. Despite the inclusion of large
numbers of human subjects in microbiome studies, the causal role of the human microbiome
in disease remains uncertain. Exemplifying that a large N is not necessarily informative
with complex human diseases, a large metanalysis [88] of raw hGM data from obese and
IBD patients showed that human disease phenotypes do not always yield reproducible
interlaboratory predictive biological signatures. Even when hundreds of individuals are
studied, especially, if the “effect size for the disease of interest” is narrow (i.e., in obesity;
larger in IBD) relative to the variability of the disease. For the human IBD subtypes (i.e.,
ulcerative colitis and Crohn’s disease), the metanalysis [88] concluded that only the ileal
form of Crohn’s disease showed consistent hGM signatures compared to both healthy
control donors and patients with either colonic Crohn’s disease or ulcerative colitis [89],
but no consistent signatures were observed for obesity.

Using a simple strategy of assuming random numbers drawn from an observed sample
distribution, we have analytically illustrated that increasing N yields aberrant and/or
conflicting statistical predictions, which depend on the patterns of disease variability and
presence of disease subtypes (data modes). Specifically, our simulations revealed that
the number of discernable data subtypes may wax and wane as N increases, and that
increasing N does not uniformly enable the identification of statistical differences between
groups. Furthermore, subjects randomly selected from a multimodal diseased population
may create groups with statistical differences that do not always have the same direction.
Especially, (i) if the human disease of interest exhibits variable phenotypes (e.g., cancer,
obesity, or asthma) and (ii) if multivariable cage-clustered data analyses are not used to
account for intraclass correlation coefficient of phenotypes within/between animal cages.

Under the “weak law of large numbers” principle in mathematics (Bernoulli’s theo-
rem [73–75]; see references for further illustration [90]), as N increases, the distribution of
the study/sample means approximates the mean of the actual population, which facilitates
the identification of statistically significant (but not biologically meaningful) differences
between otherwise overlapping sample datasets. Commonly used statistical methods (e.g.,
t-tests; parametric vs. nonparametric) are designed to quantify differences around the
sample centers (mean, median) and range of dispersion (standard errors or deviation) of
two groups. However, these methods do not account for the distribution shape (unimodal
vs. bi/multimodal) of the compared datasets. With arbitrary increases in N, what is in-
significant becomes significant, thus increasing the tendency for the null hypothesis to be
rejected despite clinically subtle differences [91,92].

To guide the selection of sufficient N (cases) or disease data subtype, herein we
highlight the use of two simple statistical steps: (i) to first determine if the shape of the
dataset is unimodal (e.g., dip test), and if not unimodal, then (ii) to use statistical simulations
and tests to determine the number of modes/data values of interest, and finally, to (iii)
perform Monte Carlo simulations using the statistical analysis conducted by scientists
on their experimental data to quantify the frequency by which random sampling could
interfere with the p-value computed. Such forms of Monte Carlo adjusted p-values can
easily be performed using GraphPad or similar software (R, STATA), which are widely used
in the literature. Doing so facilitates the objective design of personalized/disease subtyping
experiments. Although comparisons between group means is important because some
diseases are truly different, findings from our own hGM-FMT study [52] and others [21,23]
highlight the relevance of studying disease subtypes and the sources of variability by
personalizing the functional analysis of the hGM in mice (i.e., that both “pathological”
and “beneficial” effects can be seen in hGM-FMT mice independent of donor disease
status). For example, in our own work, the functional characterization of “beneficial”
or “nonbeneficial” disease microbiome subtypes in IBD patients at times of remission
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could lead to the identification of an ideal patient fecal sample for future autologous
transplantation during times of active disease. Therefore, personalized research has the
potential to identify different functional microbiome subtypes (on a given outcome, e.g.,
assay or hGM-FMT mice) for one individual.

One pitfall of traditional statistics that are based either on mean and SD, or on non-
parametric median and ranking methods, is that only central and dispersion parameters
are used for analysis, which does not represent the data distribution shape. With mean and
SD consistent with the observed data, there is no guarantee that the simulated data would
match the whole distribution of the observed data.

With respect to determining unimodality, easily implementable tests to quantify data
modality are available in STATA (statistical functions diptest and mode; proprietary and
community contributed) and R (Package multimode, community contributed) [93]. The dip
test [69] quantifies departures from unimodality and does not require a priori knowledge
of potential multimodality, and thus, information can be easily interpreted from the test
statistics and the p-value [83,94]. Although reports and comparative analysis of statistical
performance have been described for various multimodality tests (e.g., dip test, bimodality
test, Silverman’s test, and likelihood ratio test [95], and kernel methods), including simpler
alternatives that use benchmarks to determine the influence of data outliers [78,79,83,96], it
is important to emphasize that every method depends on its intended application and data
set/shape [84], and thus must be accompanied by the inspection of the data distributions
modes.

5. Conclusions

In conclusion, by conducting a series of simulations and a review of statistical methods
in current hGM-FMT literature, we extensively illustrate the constraints of increasing
N as a main solution to identify causal links between the hGM and disease. We also
highlight the integral role of multivariable cage-clustered data analyses, as previously
described by our group [8]. Herein, we provided a conceptual framework that integrates
the dynamics of sample center means and range of dispersion from the compared datasets
with kernel and violin plots to identify “data disease subtypes” to address sample size and
data multimodality. Biological insights from well-controlled, analyzed, and personalized
analyses will lead to precise “person-specific” principles of disease, or identification of anti-
inflammatory hGM, that could explain clinical/treatment outcomes in patients with certain
disease subtypes and self-correct, guide, and promote the personalized investigation of
disease subtype mechanisms.
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S3: GraphPad Methods for Monte Carlo simulation, Figure S4: Monte Carlo Gaussian 100,000
simulations, Figure S5: Markov chain Monte Carlo (MCMC) simulations and examples of dip test,
Figure S6: 16S microbiome profiles of hGM-SAMP fed an AD or AD-modified diet for 24 weeks, S7:
Categorical data simulations and violin plots illustrate that categorical data exhibit multimodality and
affects statistical reproducibility of random data. Table S1: Comparative percentages of simulations
that yielded significant results for two statistical approaches, Video S1: Time-Lapse Examples
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Abstract: β-blockers are commonly prescribed to treat cardiovascular disease in hemodialysis pa-
tients. Beyond the pharmacological effects, β-blockers have potential impacts on gut microbiota,
but no study has investigated the effect in hemodialysis patients. Hence, we aim to investigate
the gut microbiota composition difference between β-blocker users and nonusers in hemodialysis
patients. Fecal samples collected from hemodialysis patients (83 β-blocker users and 110 nonusers)
were determined by 16S ribosomal RNA amplification sequencing. Propensity score (PS) matching
was performed to control confounders. The microbial composition differences were analyzed by the
linear discriminant analysis effect size, random forest, and zero-inflated Gaussian fit model. The
α-diversity (Simpson index) was greater in β-blocker users with a distinct β-diversity (Bray–Curtis
Index) compared to nonusers in both full and PS-matched cohorts. There was a significant enrichment
in the genus Flavonifractor in β-blocker users compared to nonusers in full and PS-matched cohorts.
A similar finding was demonstrated in random forest analysis. In conclusion, hemodialysis patients
using β-blockers had a different gut microbiota composition compared to nonusers. In particular, the
Flavonifractor genus was increased with β-blocker treatment. Our findings highlight the impact of
β-blockers on the gut microbiota in hemodialysis patients.

Keywords: microbiome; beta-blocker; hemodialysis; next-generation sequencing; propensity score
matching methods
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1. Introduction

The gut microbiota has a crucial role in metabolic, nutritional, physiological, defensive,
and immunological processes in the human body, with its composition linked to human
health and the development of diseases [1,2]. Human-microbiome association can be
considered as integration in evolution. The microbiome can modulate and restore human
health [3]. Changes in this microbial equilibrium, that is, dysbiosis, promotes and influences
the course of many intestinal and extra-intestinal diseases [4–6]. In addition to genetic
and environmental factors, several common medications (e.g., proton pump inhibitors,
nonsteroidal anti-inflammatory drugs, atypical antipsychotics, selective serotonin reuptake
inhibitors, antibiotics, statins, and antidiabetic drugs) are associated with the specific gut
microbiota composition [7–13]. Indeed, drug-microbiome-host interactions are complex
and multifactorial, impacting host metabolism [14,15]. Hence, they should be part of the
core phenotype set for human gut microbiota research [16].

Patients with chronic kidney disease (CKD) have altered gut microbiota, with a bidi-
rectional causal effect relationship [17,18]. Among the cardiovascular preventive drugs
for patients with end-stage renal disease (ESRD), β-blockers are commonly prescribed in
higher cardiovascular risk patients to prevent sudden cardiac death [19,20]. Beyond the
clinical effect of β-blockers in ESRD patients, they also have a potential impact on gut
microbiota [7,16]. Besides, the benefit of beta-blockers may be attributed to preventing
the activity of the gut microbe-generated metabolite, such as phenylacetylglutamine [21].
However, limited study has investigated the impact on ESRD patients. Herein, we evaluate
the gut microbiota composition of β-blocker users and nonusers in Taiwanese hemodialy-
sis patients.

2. Materials and Methods
2.1. Study Participants

The Ethics Committee approved the study protocols of Kaohsiung Medical University
Hospital (KMUHIRB-E(I)-20160095 and KMUHIRB-E(I)-20180118) and Taipei Tzu Chi
Hospital (07-X01-002). All participants provided written informed consent. Hemodialysis
patients were recruited from the dialysis unit of Taipei Tzu Chi Hospital and Kaohsiung
Medical University Hospital in Taiwan from August 2017 to February 2018. The inclusion
criteria were patients with age more than 18 years old and received regular hemodialysis
three times per week, 3.5–4 h with high-flux dialyzers. The exclusion criteria included
patients with partial or total colectomy, inflammatory bowel diseases, active malignancies,
or patients who were prescribed antibiotics within three months before enrollment. Fecal
samples were collected from 193 stable hemodialysis patients and analyzed by high-
throughput 16S ribosomal RNA gene sequencing to compared participants with and
without β-blocker treatment. All β-blocker users were prescribed for at least one month.

2.2. Comorbidity, Laboratory, and Clinical Variables

All baseline characteristics of sociodemographic data, age, sex, body mass index,
dialysis vintage, arteriovenous shunt type, comorbidities, medications, and biochemical
data were collected in the built-in electronic health care system. Blood samples were
collected after overnight fasting through the arteriovenous fistula or graft before scheduled
hemodialysis sessions. The biochemical data included serum values for hemoglobin,
albumin, high sensitivity C reactive protein, total cholesterol, low-density lipoprotein,
triglycerides, ion calcium, and phosphate from routine blood samples obtained within
30 days before stool sample collection. Diet was evaluated by a licensed dietitian using a
modified short-form food frequency questionnaire. No specific antioxidant supplements
(i.e., tea, cocoa products, or wine) were recorded because of strict dietary restrictions in
hemodialysis patients. Participants have followed the nutrition guideline of the National
Kidney Foundation’s Kidney Disease Outcomes Quality Initiative (KDOQI™) [22], which
recommends a high-protein intake (1.1–1.4 g/kg/day) and reduced consumption of fruits,
vegetables, and dietary fiber to avoid potassium overload. Diabetes was defined as HbA1C
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6.5% or higher or use of oral antidiabetic agents or insulin. Hypertension was defined as
140/90 mmHg or higher or taking blood pressure-lowering drugs. A history of myocardial
infarction or documented by coronary angiography, class III or IV congestive heart failure,
or a cerebrovascular accident were defined as cardiovascular disease.

2.3. Fecal Sample Collection and Bacterial 16S rRNA Amplicon Sequencing and Processing

All stool samples were frozen immediately after collection by each participant, then
delivered in cooler bags to the laboratory (Germark Biotechnology, Taichung, Taiwan)
within 24 h. A QIAamp DNA Stool Mini Kit (Qiagen, MD, USA) was used to extract
DNA from fecal samples. Barcode-indexed PCR primers (341F and 805R) were used to
create an amplicon library by amplifying the variable regions 3 and 4 (V3–V4) of the 16S
rRNA gene [23]. The amplicons were sequenced (300 bp paired-end) using an Illumina
MiSeq sequencer at the same time in the same laboratory to avoid batch effects (Germark
Biotechnology, Taichung, Taiwan). The 16S-amplicon pipeline was adapted from 16S
Bacteria/Archaea SOP v1 of Microbiome Helper workflows [24]. Paired-End reAd mergeR
(PEAR; version 0.9.8) [25] was used to merge paired-end reads to raw reads, then filtered
low-quality reads by thresholds of sequence length ≥400 bp and quality score of 90%
bases of reads ≥20. Quantitative Insight Into Microbial Ecology (QIIME; version 1.9.1)
software was used to select operational taxonomic units (OTU) [26]. The SILVA (version
123) 16S database [27,28] was applied to cluster OTUs and assign taxonomy using the
UCLUST algorithm (version v1.2.22q) [29] with a 97% sequence identity threshold. Reads
were dereplicated, and singletons were discarded. The final OTU table was rarefied into
minimum sequencing depth in the data set.

2.4. Propensity Score Matching

Propensity score (PS) matching [30,31] was performed to balance confounders be-
tween the comparisons of interest (i.e., β-blocker users versus nonusers) and minimize
the confounding by indication resulting from nonrandom treatment study. Using a logis-
tic regression model, β-blocker use was accessed to estimate the propensity to receive a
β-blocker for each participant based on potential confounders, including age, sex, body
mass index, dialysis vintage, smoking history, vascular access type, Bristol stool scale,
dietary intake, comorbidities (diabetes mellitus, hypertension, dyslipidemia, coronary
artery disease, heart failure, cerebrovascular disease, and parathyroidectomy history),
concomitant drugs used (including ACEI (angiotensin converting enzyme inhibitors)/ARB
(angiotensin-receptor blockers), glucose-lowering drugs (such as sulfonylurea, dipeptidyl
peptidase-4 inhibitors, insulin), statin, calcium carbonate, and proton pump inhibitors), and
clinical laboratory data (hemoglobin, albumin, total cholesterol, triglyceride, high sensitiv-
ity C reactive protein (hsCRP), sodium, potassium, total calcium, phosphate, parathyroid
hormone, serum iron, ferritin, normalized protein catabolic rate (nPCR), and single pool
Kt/V). In this study, 193 hemodialysis patients were enrolled, including 83 β-blocker users
and 110 nonusers (full cohort). PS-matched (1:1) analysis was used to match participants
with β-blocker treatment (N = 62) to participants without β-blocker treatment (N = 62)
(PS-matched cohort, Figure 1).
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Figure 1. Study design.

2.5. Statistical and Bioinformatics Analyses of Microbiota

The study design is presented in Figure 1. Demographic characteristics are shown as
the mean, median, or frequency, with differences between β-blocker users and nonusers
determined using an independent T-test or chi-squared test, as appropriate. A rarefac-
tion curve was built to prevent methodological artifacts originating from variations in
sequencing depth. The α-diversity indices (Shannon and Simpson’s indices) estimated the
evenness of taxa within each sample and were generated using the R “vegan” package and
calculated the p-value by the Kruskal–Wallis test. The β-diversity provides a comparison
of the taxonomic profiles’ differences between pairs of individual samples. The β-diversity
was calculated based on the Bray–Curtis distance matrices and was visualized using prin-
cipal coordinates analysis (PCoA) and calculated using homogeneity of group dispersions
by Permutational Analysis of Multivariate Dispersions (PERMDISP) [32].

Co-occurrence analysis was used to determine the relationships within communities,
with core microbiome analysis performed at the genus level using MicrobiomeAnalyst [33],
in which sample prevalence and relative abundance cut-off values were set at 20 and
0.2%, respectively. For visualization of the internal interactions and further measurement
of the microbial community, Sparse Correlations for Compositional data (SparCC) was
used to calculate the Spearman correlation coefficient with the corresponding p-value
between every two taxa. Microbiota community structure was assessed by co-occurrence
networks built by the SparCC algorithm [34]. The p-values were estimated by 100 random
permutations and iterations for each SparCC calculation, and correlation matrices were
computed from the resampled data matrices. Only OTUs with correlation scores greater
than 0.4 and p-value less than 0.05 were categorized into co-abundance groups (CAGs);
these coefficients were also used to assess the length of edges on the network. An undirected
network, weighted by SparCC correlation magnitude, was generated using bioinformatics
tools in MicrobiomeAnalyst [33].

The bacterial OTU difference between β-blocker users and nonusers was analyzed
by the linear discriminant analysis (LDA) of effect size (LEfSe) analysis with samples
presenting more than 0.1% relative abundance and found >30% of all samples. The LEfSe
analysis employed the nonparametric factorial Kruskal–Wallis test or Wilcoxon rank-sum
test and LDA to identify differentially abundant taxa between the groups. Only taxa with
LDA score greater than two or less than two at a p-value < 0.05 were considered significantly
enriched. All statistical tests are two-tailed, and a p-value < 0.05 was considered statistically
significant. The random forest method [35] was performed to determine a ranked list of
all bacterial taxa to identify the most predictive bacterial community to classify β-blocker
users and nonusers. The random forest is a supervised learning algorithm ranking OTUs
based on their ability to discriminate among the groups, while accounting for the complex
interrelationships in high dimensional data. The MetagenomeSeq method was also used to
evaluate differential abundance in sparse marker-gene survey data using a zero-inflated
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Gaussian (ZIG) fit model to account for undersampling and sparsity in OTU count data
after normalizing the data through cumulative sum scaling (CSS) [36]. Finally, the log-
transformed read counts difference of the top selected genera from the ZIG fit model
between β-blocker users and nonusers was analyzed in the full and PS-matched cohorts.

Co-occurrence and random forest analyses were performed by MicrobiomeAnalyst [33].
The other statistical analyses were performed using R statistical software (version 3.5.1) and
STATA statistical software (version 14; StataCorp LLC, College Station, TX, USA).

2.6. Functional Prediction Analysis

Phylogenetic Investigation of Communities by Reconstruction of Unobserved States
(PICRUSt2) [37] was used to predict the metagenome, which was based on Integrated
Microbial Genomes (IMG) database [38] to evaluate the functions of gut microbiota among
β blocker users and nonusers in the full cohort and PS-matched cohort. An OTU table was
used for predicting metagenome based on Kyoto Encyclopedia of Genes and Genomes
(KEGG) Orthology (KO) annotations. Metabolic module enrichment analysis was done
with functional sets enrichment analysis (FSEA) described by Liu et al. [39]. The ‘FSEA’
function in the MARco R package based on the Liu et al. paper was applied in this
study [39]. The ‘FSEA’ was embedded with the ‘gage’ R-package [40]. Enrichment scores
were scored based on the GSEA algorithm of the Database for Annotation, Visualization,
and Integrated Discovery (DAVID) bioinformatics resources [41,42].

3. Results
3.1. Patient Characteristics

Patient characteristics are shown in Table 1, with those receiving β-blockers having a
higher proportion of diabetes, hypertension, dyslipidemia, coronary artery disease, heart
failure, cerebrovascular disease, and more commonly used ACEI/ARB, glucose-lowering
drugs (such as dipeptidyl peptidase-4 inhibitors or insulin) and statin. PS matching resulted
in 62 matched pairs with balanced baseline characteristics (Table 1).

3.2. Gut Microbiota Profile Differs in Hemodialysis Patients with and without β Blocker Treatment

The rarefaction curves were close to asymptotic based on the number of OTUs ob-
served. To represent the microbiome community with enough coverage, the rarefaction
curves reached saturation at a cutoff point of 45,000 sequences per sample (Supplementary
Figure S1). Compared to the gut microbiota composition and structure between β-blocker
users and nonusers, no substantial differences were observed in the relative abundance
proportion in the full and PS-matched cohorts (Supplementary Figure S2). Hemodialysis
patients taking β-blockers had a higher α-diversity and a distinct β-diversity compared
to nonusers in the full and PS-matched cohorts (Figure 2). The core microbiome was
Bacteroides in hemodialysis patients (Supplementary Figure S3A), with a similar core
microbiome in β-blocker users and nonusers (Supplementary Figure S3B).

197



J.
Pe

rs
.M

ed
.2

02
1,

11
,1

98

Ta
bl

e
1.

Ba
se

lin
e

ch
ar

ac
te

ri
st

ic
s

of
he

m
od

ia
ly

si
s

pa
ti

en
ts

w
it

h
an

d
w

it
ho

ut
β

bl
oc

ke
r

tr
ea

tm
en

t.

B
as

el
in

e
C

ha
ra

ct
er

is
ti

cs
B

ef
or

e
Pr

op
en

si
ty

Sc
or

e
M

at
ch

in
g

A
ft

er
Pr

op
en

si
ty

Sc
or

e
M

at
ch

in
g

β
-B

lo
ck

er
U

se
rs

(N
=

83
)

β
-B

lo
ck

er
N

on
us

er
s

(N
=

11
0)

p-
V

al
ue

β
-B

lo
ck

er
U

se
rs

(N
=

62
)

β
-B

lo
ck

er
N

on
us

er
s

(N
=

62
)

p-
V

al
ue

A
ge

(y
ea

rs
)

64
.3
±

11
.4

65
.4
±

11
.2

0.
51

1
64

.7
±

11
.6

66
.3
±

11
.8

0.
44

6
M

al
e

49
(5

9.
0%

)
57

(5
1.

8%
)

0.
31

8
37

(5
9.

7%
)

28
(4

5.
2%

0.
10

6
Bo

dy
m

as
s

in
de

x
23

.4
±

3.
25

23
.6
±

3.
91

0.
70

8
23

.5
±

3.
34

23
.5
±

3.
93

0.
98

8
D

ia
ly

si
s

vi
nt

ag
e

(m
on

th
s)

86
.2

4
±

56
.5

3
96

.5
4
±

63
.2

1
0.

24
3

93
.2

2
±

57
.6

1
85

.4
±

55
.6

7
0.

44
4

Sm
ok

in
g

hi
st

or
y

15
(1

8.
1%

)
12

(1
0.

9%
)

0.
15

6
9

(1
4.

5%
)

6
(9

.7
%

)
0.

40
9

A
rt

er
io

ve
no

us
fis

tu
la

75
(9

0.
4%

)
99

(9
0.

0%
)

0.
93

4
57

(9
1.

9%
)

57
(9

1.
9%

)
>0

.9
99

C
om

or
bi

di
ti

es
D

ia
be

te
s

m
el

lit
us

45
(5

4.
2%

)
34

(3
0.

9%
)

0.
00

1
24

(3
8.

7%
)

30
(4

8.
4%

)
0.

27
7

H
yp

er
te

ns
io

n
80

(9
6.

4%
)

87
(7

9.
1%

)
<0

.0
01

59
(9

5.
2%

)
59

(9
5.

2%
)

>0
.9

99
D

ys
lip

id
em

ia
31

(3
7.

3%
)

24
(2

1.
8%

)
0.

01
8

16
(2

5.
8%

)
15

(2
4.

2%
)

0.
83

6
C

or
on

ar
y

ar
te

ry
di

se
as

e
34

(4
1.

0%
)

22
(2

0.
0%

)
0.

00
1

21
(3

3.
9%

)
18

(2
9.

0%
)

0.
56

2
H

ea
rt

fa
ilu

re
22

(2
6.

5%
)

15
(1

3.
6%

)
0.

02
5

14
(2

2.
6%

)
11

(1
7.

7%
)

0.
50

2
C

er
eb

ro
va

sc
ul

ar
di

se
as

e
31

(3
7.

3%
)

24
(2

1.
8%

)
0.

01
8

5
(8

.1
%

)
8

(1
2.

9%
)

0.
37

9
Pa

ra
th

yr
oi

de
ct

om
y

hi
st

or
y

7
(8

.4
%

)
18

(1
6.

4%
)

0.
10

4
6

(9
.7

%
)

6
(9

.7
%

)
>0

.9
99

M
ed

ic
at

io
ns

A
C

EI
/A

R
B

29
(3

4.
9%

)
24

(2
1.

8%
)

0.
04

3
23

(3
7.

1%
)

15
(2

4.
2%

)
0.

11
9

G
lu

co
se

lo
w

er
in

g
dr

ug
s

34
(4

1.
0%

)
23

(2
0.

9%
)

0.
00

3
20

(3
2.

3%
)

19
(3

0.
6%

)
0.

84
7

Su
lf

on
yl

ur
ea

14
(1

6.
9%

)
13

(1
1.

8%
)

0.
31

7
6

(9
.7

%
)

11
(1

7.
7%

)
0.

19
2

D
ip

ep
ti

dy
lp

ep
ti

da
se

4
in

hi
bi

to
rs

28
(3

3.
7%

)
13

(1
1.

8%
)

<0
.0

01
17

(2
7.

4%
)

11
(1

7.
7%

)
0.

19
8

In
su

lin
17

(2
0.

5%
)

10
(9

.1
%

)
0.

02
4

9
(1

4.
5%

)
8

(1
2.

9%
)

0.
79

4
St

at
in

29
(3

4.
9%

)
17

(1
5.

5%
)

0.
00

2
17

(2
7.

4%
)

12
(1

9.
4%

)
0.

28
9

C
al

ci
um

ca
rb

on
at

e
67

(8
0.

7%
)

94
(8

5.
5%

)
0.

38
2

51
(8

2.
3%

)
50

(8
0.

6%
)

0.
81

7
Pr

ot
on

pu
m

p
in

hi
bi

to
rs

13
(1

5.
7%

)
10

(9
.1

%
)

0.
16

3
9

(1
4.

5%
)

7
(1

1.
3%

)
0.

59
2

C
lin

ic
al

la
bo

ra
to

ry
da

ta
H

em
og

lo
bi

n
(g

/d
L)

10
.6

2
±

1.
14

10
.7

1
±

1.
41

0.
65

0
10

.6
±

1.
05

10
.7

4
±

1.
49

0.
55

5
A

lb
um

in
(g

/d
L)

3.
52

±
0.

51
3.

56
±

0.
46

0.
53

8
3.

53
±

0.
46

3.
54

±
0.

47
0.

90
2

198



J.
Pe

rs
.M

ed
.2

02
1,

11
,1

98

Ta
bl

e
1.

C
on

t.

B
as

el
in

e
C

ha
ra

ct
er

is
ti

cs
B

ef
or

e
Pr

op
en

si
ty

Sc
or

e
M

at
ch

in
g

A
ft

er
Pr

op
en

si
ty

Sc
or

e
M

at
ch

in
g

β
-B

lo
ck

er
U

se
rs

(N
=

83
)

β
-B

lo
ck

er
N

on
us

er
s

(N
=

11
0)

p-
V

al
ue

β
-B

lo
ck

er
U

se
rs

(N
=

62
)

β
-B

lo
ck

er
N

on
us

er
s

(N
=

62
)

p-
V

al
ue

To
ta

lc
ho

le
st

er
ol

(m
g/

dL
)

15
4.

01
±

33
.7

5
16

1.
89

±
33

.6
2

0.
10

9
15

1.
94

±
33

.5
7

16
3.

51
±

35
.3

0
0.

06
4

Tr
ig

ly
ce

ri
de

(m
g/

dL
)

14
0.

52
±

10
3.

77
12

9.
61

±
90

.3
5

0.
43

7
13

6.
21

±
10

5.
99

13
1.

14
±

95
.5

1
0.

78
0

H
ig

h
se

ns
it

iv
it

y
C

R
P

(m
g/

dL
)

2.
15

±
4.

65
2.

5
±

4.
21

0.
58

9
2.

45
±

5.
23

2.
21

±
3.

95
0.

77
9

So
di

um
(m

m
ol

/L
)

13
6.

92
±

2.
68

13
7.

07
±

2.
62

0.
70

0
13

7.
19

±
2.

80
13

6.
64

±
2.

44
0.

24
1

Po
ta

ss
iu

m
(m

m
ol

/L
)

4.
73

±
0.

68
4.

61
±

0.
62

0.
19

5
4.

77
±

0.
66

4.
65

±
0.

65
0.

29
4

To
ta

lc
al

ci
um

(m
g/

dL
)

9.
15

±
0.

86
9.

29
±

0.
94

0.
27

7
9.

19
±

0.
92

9.
25

±
0.

86
0.

68
3

Ph
os

ph
at

e
(m

g/
dL

)
5.

08
±

1.
21

4.
95

±
1.

24
0.

45
3

5.
16

±
1.

15
5.

09
±

1.
35

0.
76

8
Pa

ra
th

yr
oi

d
ho

rm
on

e
(p

g/
m

L)
37

6.
53

±
33

8.
79

38
3.

5
±

27
8.

13
0.

87
6

39
4.

16
±

37
0.

62
35

7.
29

±
24

5.
84

0.
51

5
Se

ru
m

ir
on

(µ
g/

dL
)

63
.5

7
±

26
.7

3
65

.8
5
±

21
.1

6
0.

50
8

63
.9

4
±

26
.6

1
67

.5
2
±

22
.9

3
0.

42
4

Fe
rr

it
in

(n
g/

m
L)

56
7.

53
±

54
9.

64
49

6.
67

±
37

7.
33

0.
29

1
53

4.
93

±
33

0.
67

53
8.

54
±

41
3.

54
0.

95
7

nP
C

R
(g

/k
g/

da
y)

1.
12

±
0.

21
1.

16
±

0.
27

0.
32

6
1.

12
±

0.
20

1.
18

±
0.

28
0.

18
0

Si
ng

le
po

ol
K

t/
V

1.
67

±
0.

27
1.

65
±

0.
27

0.
59

1
1.

67
±

0.
28

1.
68

±
0.

27
0.

81
7

D
ie

ta
ry

in
ta

ke
(s

er
vi

ng
/d

ay
)

M
ea

t
0.

86
±

0.
57

0.
82

±
0.

53
0.

65
2

0.
86

±
0.

57
0.

74
±

0.
52

0.
24

1
Ve

ge
ta

bl
e

2.
01

±
1.

09
1.

86
±

1.
11

0.
26

5
2.

05
±

1.
06

1.
91

±
1.

18
0.

49
9

Fr
ui

t
0.

93
±

0.
72

0.
95

±
0.

72
0.

58
3

0.
86

±
0.

63
0.

89
±

0.
75

0.
83

7
Br

is
to

ls
to

ol
sc

al
e

3.
94

±
1.

86
3.

74
±

1.
76

0.
44

8
4
±

1.
78

3.
71

±
1.

67
0.

35
2

A
bb

re
vi

at
io

n:
A

C
EI

/A
R

B,
an

gi
ot

en
si

n-
co

nv
er

ti
ng

en
zy

m
e

in
hi

bi
to

rs
/a

ng
io

te
ns

in
-r

ec
ep

to
r

bl
oc

ke
rs

;C
R

P,
C

re
ac

ti
ve

pr
ot

ei
n;

nP
C

R
,n

or
m

al
iz

ed
pr

ot
ei

n
ca

ta
bo

lic
ra

te
.

199



J. Pers. Med. 2021, 11, 198

1 

 

 

 

Figure 2 

 

 

Figure 2. The α-diversity and β-diversity in hemodialysis patients with and without β blocker
used in full cohort (A,B) and propensity score matching cohort (C,D). β blocker users had a higher
α-diversity than β blocker nonusers in full cohort (A) and propensity score matching cohort (C)
β blocker users had a different β-diversity (Bray–Curtis index) compared to β blocker nonusers in full
cohort (B) and propensity score matching cohort (D). The β-diversity p-value was calculated using
the homogeneity of group dispersions by the Permutational Analysis of Multivariate Dispersions
(PERMDISP) test.

3.3. Specific Microbial Taxa Differences between β-Blocker Users and Nonusers

Discriminant analysis using LEfSe identified the significant differentiating taxa be-
tween study groups. In the full cohort, the genera Ruminococcus 2, Collinsella, Ruminococ-
caceae UCG-004, Ruminiclostridium 5, Anaerotruncus, Eisenbergiella, and Flavonifractor were en-
riched in β-blocker users compared to nonusers (Figure 3A). In the PS-matched cohort, the
enriched genera were Faecalibacterium, Subdoligranulum, Tyzzerella, Pantoea, Lachnospiraceae
UCG-004, and Flavonifractor were found (Figure 3B). Using random forest models for taxon-
omy prediction, the top three ranked genera to discriminate between β-blocker users and
nonusers were Parabacteroides, Flavonifractor, and Ruminococcaceae UCG-004 in the full cohort
(Figure 4A), Prevotella 9, Flavonifractor, and Tyzzerella in the PS-matched cohort (Figure 4B).

To reduce the effect of zero-inflation in the microbiome data, we performed the
MetagenomeSeq algorithm integrating the CSS method and a statistical model based on
the ZIG distribution. Evaluating the significant difference in genus taxonomy between
β-blocker users and nonusers, we found eight genera differences in the full cohort and
PS-matched cohort (Supplementary Table S1). There were three different genera (Flavonifrac-
tor, Tyzzerella, and Prevotellaceae NK3B31 group) in both the full and PS-matched cohorts
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(Figure 5A). Focusing on the ZIG fit model to predict specific genera, there was an in-
creased Flavonifractor genus in β-blocker users compared to nonusers using a classical
univariate test (Kruskal–Wallis test) in the full (p = 0.023) and PS-matched cohorts (p = 0.01)
(Figure 5B). However, no differences were found in Tyzzerella or Prevotellaceae NK3B31
group (Figure 5B).

 

2 

 

Figure 3 

 
Figure 3. Taxonomic differences were detected between β blocker users and nonusers in the full
cohort (A) and propensity score matching cohort (B). Linear discriminative analysis (LDA) effect size
(LEfSe) analysis between β blocker users (red) and nonusers (blue) with an LDA score > 2.0 or < −2
with p-value > 0.1 among β blocker users and nonusers.

Figure 4. Determination of specific bacteria for discriminatory across hemodialysis patients with and
without β blocker treatment in full cohort (A) and propensity score matching cohort (B). The discrim-
inatory taxa were determined by applying Random Forest analysis using the genus-level abundance.
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Figure 5 

 

Figure 5. The genera difference between β blocker users and nonusers in the full cohort and
propensity score matching cohort using zero-inflated Gaussian fit model. (A) The Venn diagram
showed the different significant genera in the full cohort and propensity score-matched cohort. (B)
Univariate test between selected genera from zero-inflated Gaussian fit model. Significance was
considered for p < 0.05.

Using PICRUSt2 as a metagenome predictive exploratory tool, genes were categorized
into KEGG Orthology metabolic pathways. All predicted KEGG Orthology (KOs) were
mapped to KEGG metabolic pathways. Each pathway was tested with gene-set enrichment
by comparing expected gene abundance between β blocker users and nonusers in full and
PS-matched cohorts. However, no significant KEGG enriched pathways were observed
(Figures S4 and S5).

4. Discussion

In the present study, hemodialysis patients treated with β-blockers had a higher α-
diversity and a distinct β-diversity compared to nonusers. The microbial communities
contained higher levels of Bacteroidetes and lower levels of Firmicutes in all hemodialysis
patients, which is similar to CKD rat microbial communities [43] and in a human CKD
microbiota study [44]. Co-occurrence analysis revealed no difference in keystone taxa
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Bacteroides between β-blocker users and nonusers. Overall, there was an enriched genus
Flavonifractor in β-blocker users in the full and PS-matched cohorts. Furthermore, LEfSe
analysis, random forest algorithm, ZIG fit model, and univariate test all confirmed this
difference between groups. However, we did not determine KEGG metabolic pathways
between β blocker users and nonusers using PICRUSt2 functional prediction analysis.

β-blocker use was associated with a higher α-diversity than nonusers in hemodialysis
patients, which was linked to a favorable healthy state [45]. Increased α-diversity has
been associated with foods generally considered healthy, such as plant consumption or
red wine [46–48]. Furthermore, commonly used medications such as antibiotics or proton
pump inhibitors can decrease gut α-diversity [49]. Regarding the specific taxonomy of
the gut microbiome, the genus Flavonifractor was enriched in β-blocker users in both the
full and PS-matched cohorts. Flavonifractor is associated with several diseases, such as
obesity [50], atrial fibrillation [51], coronary artery disease [52], and medications (antidi-
abetic drugs, such as Metformin and Glucagon-like peptide 1 Receptor agonist [53]). It
can convert quercetin or other flavonoids into acetic acid and butyric acid [54] and is
also correlated with oxidative stress and inflammation [55]. The presence of Flavonifrac-
tor was found in association with circulating inflammatory markers (i.e., interleukin-6,
interleukin-8, interleukin-1β) [56], which were linked to cardiovascular disease. Besides,
oral administration of Flavonifractor plautii was involved in the inhibition of tumor necrosis
factor-α expression in obese adipose tissue inflammatory environments [57]. Thus, the
increased abundance of Flavonifractor by β-blocker treatment may have a potential benefit
in cardiovascular disease via gut microbiota regulation.

We also identified a potential link between β-blocker use and the genus Tyzzerella in the
PS-matched cohort. Importantly, Tyzzerella was enriched in those with a high cardiovascular
risk profile [58]. However, the small sample size limited the potential association between
β-blocker use and Tyzzerella in univariate analysis, so more extensive studies are needed to
confirm this association. Regarding the link between β-blocker and microbiota changes; a
chimera mouse model suggested bone marrow beta1/2 adrenergic receptor signaling can
regulate host-microbiota interactions, leading to the generation of novel anti-inflammatory
treatments for gut dysbiosis [59]. Therefore, depletion of this sympathetic regulation in
bone marrow promotes beneficial shifts in gut microbiota associated with gut immune
suppression [59]. It is proposed that beta-blockers may provide a beneficial microbiome in
such conditions.

We compared the microbiota differences between β-blocker users and nonusers using
PS matching analysis in the present study. Since β-blocker intake is highly correlated with
age, cardiovascular risk, comorbidities, and concurrent medication, each factor represents
a relevant confounder for microbiome analyses [16,60]. Most observational studies have
controlled for possible confounding variables, but even rigorous data adjustment cannot
eliminate the risk of bias. PS matching is an alternative to reduce the effect of influencing
factors on gut microbiota analysis [30,31]; thus, we selected variables of interest as potential
confounders and then performed PS matching to reduce these effects deviations and
confounding variables to conduct a reasonable comparison between groups. The intestinal
microbiota was affected by various factors, including demographic data, comorbidities,
concomitant medications, and clinical laboratory data, and the application of PS matching
eliminated confounding factors. Using PS analysis, there was still a higher α-diversity
and different β-diversity in β-blocker users compared to nonusers. We also identified six
genera associated explicitly with the β-blocker user in the LEfSe analysis, four top-ranked
genera in random forest analysis, and eight genera in ZIG fit model analysis. Although
there were some differences in bacterial associations with β-blocker use in our full (before
PS matching) and PS-matched cohorts, we investigated the taxa represented in both the
full and PS-matched cohorts. Importantly, three genera (Flavonifractor, Tyzzerella, and
Prevotellaceae NK3B31 group) were both significant differences in ZIG fit model among
the full and PS-matched cohorts. The genera abundance differences between β-blocker
users and nonusers were changed in the PS matching procedure. The genera abundance
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significant differences in Ruminiclostridium 9, Ruminococcaceae UCG-004, Anaerotruncus,
and Ruminiclostridium 5 were attenuated after PS matching, suggesting that these genera
abundances may be more strongly associated with other confounding variables, such as
comorbidities or concomitant medications, which was accounted for in the PS models.
In specific, genus Anaerotruncus was reported related to hypertension [61–63], diabetes
mellitus [64], and dipeptidyl peptidase 4 inhibitors used [65], which were unbalance in the
pre-matched cohort. The genus Ruminiclostridium and Ruminococcaceae were correlated to
hypertension in the previous study [66–68]. Thus, the change of gut microbiome difference
in β-blockers users and nonusers before and after PS matching reflected confounders’
influence. Since many factors influencing gut microbiota, we performed PS matching as an
alternative technique to account for multiple confounders in this study.

In addition, there were more zeros than expected under the assumption of Poisson or
negative binomial distributions for microbiome OTU counts, known as zero-inflation. One
popular strategy to circumvent the zero-inflation problem is to add a pseudo-count [69];
however, this assumption may not be appropriate due to the large extent of structural
zeros due to physical absence. Moreover, the pseudo-count choice is arbitrary, and the
clustering results can be highly dependent upon the choice [70]. Thus, CSS was developed
for microbiome sequencing data, and a zero-inflated model was used to model read counts
that have an excess of zeros [36,71,72]. In CSS, raw counts are divided by the cumulative
sum of counts up to a percentile determined using a data-driven approach to capture the
relatively invariant count distribution for a dataset. To solve the zero-inflation issue, we
applied the ZIG fit model and calculated the CSS. Interestingly, the four genera in the
full (Ruminococcaceae UCG-004, Ruminiclostridium 5, Anaerotruncus, and Flavonifractor) and
PS-matched cohorts (Flavonifractor, Tyzzerella, Faecalibacterium, Subdoligranulum) overlapped
in the LEfSe analysis and ZIG fit model analysis.

Several limitations should be mentioned. First, cross-sectional studies only provide
an impression of the relative abundance of bacterial taxa at a single time point, so causal
inference cannot be addressed. Besides, the observational study only demonstrates the
association rather than the causality. Second, the microbiota was assessed with a fecal
sample, which may differ from microbiota from other parts of the intestine. Besides, 16S
rRNA sequencing is limited as it cannot differentiate viable from non-viable bacteria. A
significant portion of the taxa identified by sequencing may not be metabolically active.
Thus, further study is needed to investigate various samples, such as small intestine or
colon mucosal bacteria. Third, PS matching might not fully balance the overall effects of
medications or disease severity, such as the dose of medications or the status between
controlled and uncontrolled DM. Finally, the study was performed in Asia hemodialysis
patients whose diet is different from other populations, so dietary effects on the gut
microbiome should be interpreted with caution.

5. Conclusions

This study demonstrated that the composition of the gut microbiota was different in
hemodialysis patients treated with β-blockers, with a higher level of α-diversity and genus
Flavonifractor. These findings support the additional benefits of β-blocker treatment, which
may mediate the microbiota in hemodialysis patients. However, the functional relevance of
the β-blocker induced microbial differences is unclear. Hence, larger prospective treatment
naïve studies are warranted to understand the impact of β-blockers on the gut microbiome
of CKD patients and their implications for health and disease.

Supplementary Materials: The following are available online at https://www.mdpi.com/2075-4
426/11/3/198/s1, Figure S1: Rarefaction curves of the number of OTUs versus the sequencing
effort per sample in the full cohort. Figure S2: The relative abundance percentage of intestinal
microbiota between β-blocker users and nonusers in the full cohort and propensity score matching
cohort. (A) Phylum level (B) Class level (C) Order level. Figure S3: Core microbiome analysis in
hemodialysis patients with and without β-blocker used. (A) SparCC correlation analysis (genus
level using 100 SparCC permutations, 0.35 correlation threshold, and 0.05 p-value threshold) in
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all hemodialysis patients with and without β-blocker used (B) Relative abundance and sample
prevalence of bacterial genus in β-blocker users and nonusers. Figure S4: Enrichment analysis
for predictive Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic modules between
β-blocker users and nonusers in full (before propensity score matching) cohort. No significant KEGG
enriched pathways were observed (all p-value > 0.05). Figure S5: Enrichment analysis for predictive
Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic modules between β-blocker users
and nonusers in propensity score-matched cohort. No significant KEGG enriched pathways were
observed (all p-value > 0.05). Table S1: Summary table of significant genus difference in hemodialysis
patients with and without β-blocker treatment in zero-inflated Gaussian fit model.
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Abstract: Individuals with cystic fibrosis (CF) often experience gastrointestinal (GI) abnormalities.
In recent years, the intestinal microbiome has been postulated as a contributor to the development
of CF-associated GI complications, hence representing a potential therapeutic target for treatment.
We recently developed a rabbit model of CF, which is shown to manifest many human patient-like
pathological changes, including intestinal obstruction. Here, we investigated the feces microbiome in
young CF rabbits in the absence of antibiotics treatment. Stool samples were collected from seven-
to nine-week-old CF rabbits (n = 7) and age-matched wild-type (WT) rabbits (n = 6). Microbiomes
were investigated by iTag sequencing of 16S rRNA genes, and functional profiles were predicted
using PICRUSt. Consistent with reports of those in pediatric CF patients, the fecal microbiomes of
CF rabbits are of lower richness and diversity than that of WT rabbits, with a marked taxonomic and
inferred functional dysbiosis. Our work identified a new CF animal model with the manifestation of
intestinal dysbiosis phenotype. This model system may facilitate the research and development of
novel treatments for CF-associated gastrointestinal diseases.

Keywords: cystic fibrosis; rabbits; intestinal dysbiosis; feces microbiome

1. Introduction

Cystic fibrosis (CF) is an autosomal recessive disorder with a disease frequency of 1
in 2000 live births and a carrier rate of approximately 5% in the Caucasian population [1].
Mutations in the CF transmembrane conductance regulator (CFTR) gene lead to CF [2]. In
2019, the community celebrated the FDA’s approval of Trikafta, which provides benefits to
greater than 90% of CF patients [3]. However, CF is not cured yet; continuous research is
needed for the development of novel therapeutics for this disease.

Clinically, CF is a progressive, chronic, and debilitating disease, affecting the lungs,
sinuses, gastrointestinal (GI) tract, liver, pancreas, and others [4]. GI disease develops
early and continues through adulthood in CF patients. Meconium ileus (MI) presents in
up to 20% of neonates with CF, which may need surgical interventions to resolve [5]. In
infancy and childhood, CF patients must be treated for pancreatic insufficiency, a condition
that adversely affects intestinal nutrient absorption and subsequently weight gain and
growth [6]. Constipation or distal intestinal obstruction syndrome (DIOS) often cause
bloating and abdominal pain in CF patients throughout their life [7]. Furthermore, CF
patients are predisposed with a 5–10 times greater risk of colorectal cancer than the general
population [8].
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Accumulating evidences show that the gut microbiome in CF patients is altered. In
both pediatric and adult CF patients, their gut microbiome is of lower richness and diversity
compared to those of healthy controls [9–11]. Such reduction of microbial diversity in CF
patients is often associated with species alteration, implicating functional contributions
of microbial species to CF GI diseases. However, the clinical relevance of the change in
gut microorganisms is not well-established. Understanding the CF gut microbiome thus
will shed light on the pathogenesis of CF GI diseases, and potentially provide hints to
microbiome-based drug development.

We recently produced CF rabbits by knocking out the CFTR gene using CRISPR/
Cas9 [12]. These CF rabbits manifest many typical CF pathologies, including growth
retardation, airway inflammation, and metabolic disorders, among others. Comparing to
other CF animal models, CF rabbits have several advantages, for example, compared to
other non-rodent models (e.g., sheep and pigs), CF rabbits are relatively cost effective to
house and maintain. On the other hand, compared to the mouse model, CF rabbits are
large, making many experimental procedures more practical. Importantly, rabbit airway
epithelial cells responded to CFTR modulator drug VX770 in a similar manner as human
airway epithelial cells do, supporting the use of these animals in preclinical studies for
CF [12].

Of note, almost all CF rabbits suffer from the intestinal obstruction. In this study, we
investigate the composition of feces bacteria as a proxy of gut microbiome of young CF
rabbits (Figure 1). We hypothesize that the composition of bacterial communities in the
CF rabbit intestine is different from that in the wild-type (WT) rabbits. In support of this
hypothesis, the results revealed a marked taxonomic and inferred functional dysbiosis in
the CF samples when compared to WT samples. This CF rabbit model of gut dysbiosis
may facilitate the research and development of novel treatments for CF GI diseases.
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2. Results 
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Intestinal obstruction is the primary cause of mortality in CF rabbits [12], as exam-
pled in Figure 2. The proximal colon of CF rabbits is often dilated, and the distal colon 
presents a paucity of stool pellets (Figure 2A), which are not observed in WT animals 
(Figure 2B). Interestingly, unlike CF pigs and ferrets, who need immediate surgical pro-
cedures to resolve the MI condition, many CF rabbits do not develop severe obstruction 
until they reach four to six weeks of age. The relatively large size of the cecum may have 
allowed it to accumulate feces, and hence delay the onset of the obstruction in this species.  

Alcian Blue-Periodic Acid Schiff (AB-PAS) stain of cross sections of CF rabbit colon 
illustrates the massive mucus plugging in the lumen (Figure 2C), but not in that of WT 
(Figure 2D). In longitudinal sections, the CF rabbit colon exhibits obvious intestinal wall 
thickening, inflammation accompanied by interstitial fibrosis, and visible goblet cell hy-
perplasia (Figure 2E) compared to the WT control (Figure 2F). 
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2. Results
2.1. CF Rabbits Exhibit Intestinal Obstruction

Intestinal obstruction is the primary cause of mortality in CF rabbits [12], as exampled
in Figure 2. The proximal colon of CF rabbits is often dilated, and the distal colon presents
a paucity of stool pellets (Figure 2A), which are not observed in WT animals (Figure 2B).
Interestingly, unlike CF pigs and ferrets, who need immediate surgical procedures to
resolve the MI condition, many CF rabbits do not develop severe obstruction until they
reach four to six weeks of age. The relatively large size of the cecum may have allowed it
to accumulate feces, and hence delay the onset of the obstruction in this species.

Alcian Blue-Periodic Acid Schiff (AB-PAS) stain of cross sections of CF rabbit colon
illustrates the massive mucus plugging in the lumen (Figure 2C), but not in that of WT
(Figure 2D). In longitudinal sections, the CF rabbit colon exhibits obvious intestinal wall
thickening, inflammation accompanied by interstitial fibrosis, and visible goblet cell hyper-
plasia (Figure 2E) compared to the WT control (Figure 2F).
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Figure 2. Intestinal obstruction is a common phenotype in CF rabbits. (A) Gross images of the GI 
tracks of a CF rabbit. The proximal colon (highlighted in blue) was dilated. Red arrow indicates 
the point of blockage. (B) Gross images of the GI tracks of a WT rabbit. Blue arrow indicates feces 
pellets, which are missing in the CF rabbit. (C) AB-PAS staining of the cross section of a CF rabbit 
colon. (D) AB-PAS staining of the cross section of a WT rabbit colon. (E) AB-PAS staining of the 
longitudinal sections of a CF rabbit colon. Region within the box is a representative area of inter-
stitial fibrosis. Arrows indicate inflammatory infiltration; asterisks indicate goblet cell hyperplasia. 
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Figure 2. Intestinal obstruction is a common phenotype in CF rabbits. (A) Gross images of the GI tracks of a CF rabbit. The
proximal colon (highlighted in blue) was dilated. Red arrow indicates the point of blockage. (B) Gross images of the GI
tracks of a WT rabbit. Blue arrow indicates feces pellets, which are missing in the CF rabbit. (C) AB-PAS staining of the
cross section of a CF rabbit colon. (D) AB-PAS staining of the cross section of a WT rabbit colon. (E) AB-PAS staining of the
longitudinal sections of a CF rabbit colon. Region within the box is a representative area of interstitial fibrosis. Arrows
indicate inflammatory infiltration; asterisks indicate goblet cell hyperplasia. (F) AB-PAS staining of the longitudinal sections
of a WT rabbit colon. S: stomach. R: rectum. -/-: CFTR-/-. +/+: CFTR+/+.

2.2. Study Sample Characteristics

We investigated the gut microbiome, surrogated by fecal samples, of CF rabbits
carrying homozygous 9 base pair (bp) deletions (∆9/∆9) on the CFTR gene (n = 7) and WT
rabbits (n = 6) by iTag sequencing of the 16S rRNA gene (Figure 1). After pre-processing
of the sequencing data, an average of 20.7 million base pairs (Mbp) was generated to
characterize the bacteria community per sample, with an average data utilization ratio of
97.6% (Supplementary Table S1). Read pairs that passed quality control (QC) were merged
into consensus sequences (i.e., tags), resulting an average of 40,889 tags of good quality
per sample with a mean size of 252 bp (Supplementary Table S2). The tags were clustered
and mapped to 473 operational taxonomic units (OTUs). On average, each sample had
32,885 tags assigned to 220 OTUs (Table 1). The diversity of bacteria communities in fecal
samples from both CF and WT rabbits was adequately captured by the sequencing effort,
which is reflected by the rarefaction curves of the observed number of OTUs and Shannon
Index (Supplementary Figure S1).
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Table 1. Study sample description.

Sample ID Genotype Age (days) Sex # Tags/sample # OTUs/sample

CF01 CF 61 F 33230 217
CF02 CF 61 F 33029 144
CF03 CF 53 F 35122 176
CF04 CF 59 F 34490 139
CF05 CF 55 M 33458 160
CF06 CF 53 M 34617 118
CF07 CF 55 F 35189 299
WT01 WT 51 M 31635 269
WT02 WT 51 F 29621 281
WT03 WT 54 M 32713 275
WT04 WT 54 M 30499 306
WT05 WT 53 F 29410 313
WT06 WT 51 M 34495 170

2.3. Alpha Diversity

We first compared the alpha diversity between the CF and WT rabbits in terms of
richness, measured by the observed number of OTUs and evenness measured by the
Shannon index. The CF rabbits had significantly lower bacteria richness (mean difference:
−90; p = 0.017 in a Wilcoxon one-sided test) and Shannon index (mean difference: −0.45;
p = 0.037 in a Wilcoxon one-sided test) (Figure 3), suggesting attenuated bacteria diversity
(richness and evenness) in the fecal samples of the CF rabbit model.
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Figure 3. Sample alpha diversity in CF and WT groups. (A) Richness measured by the observed number of OTUs.
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bottom to top is the minimum value, first quartile, median, third quartile, and maximum value, and the outlier value is
shown as individual points. On top of the boxplots, the individual data points were super imposed; p-values were calculated
by a one-sided Wilcoxon rank sum test.

2.4. Beta Diversity

Phylogeny-based beta diversity calculated by weighted and unweighted UniFrac
distances [13] was visualized by non-metric multidimensional scaling (NMDS) [14] and
compared between CF and WT rabbits. Figure 4 shows a clear distinction of bacteria
communities in CF rabbits from those in WT rabbits. A significant difference between
the CF and WT bacteria communities was also present by PERMANOVA (permutational
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multivariate analysis of variance) tests (weighted UniFrac distance R2 = 0.38, p = 0.007;
unweighted UniFrac distance R2 = 0.33, p = 0.016), further highlighting the difference in
the composition of bacteria between CF and WT rabbits (Figure 4).
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Figure 4. Beta diversity comparison between CF and WT groups based on OTU abundance. Beta diversity was calculated
by phylogeny-based (A) weighted and (B) unweighted UniFrac distances based on relative abundances of identified OTUs,
and visualized by non-metric multidimensional scaling (NMDS).

2.5. Relative Abundance of Bacterial Genera in CF and WT Rabbits

We further looked into the composition of bacteria communities at different taxonom-
ical ranks, and compared them between CF and WT groups. Among the top abundant
genera in rabbits (Figure 5), Bacteroides, Ruminococcus, Blautia, and Parabacteroides also
appeared highly abundant in humans, while other genera, such as Akkermansia, Clostridium,
Coprococcus, and Oscillospira, were present uniquely in rabbits (11). Bacteria taxa at the
phylum and genus level with a significantly differential abundance (at FDR <= 0.1) between
CF and WT groups are reported in Table 2. More results of differentially abundant taxa
at other ranks are reported in Supplementary Table S3. In the fecal samples, CF rabbits
had more Bacteroidetes and less Firmicutes, Saccharibacteria, and Cyanobacteria at the rank
of phylum than WT rabbits. At the genus level, Bacteroides, Blautia, and Holdemania were
more abundant, whereas Oscillospira, Roseburia, Ruminococcus, and Dehalobacterium were
less abundant in the CF rabbit model.
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Table 2. Differentially abundant phyla and genera between CF and WT groups.

Taxon
CF Relative Abundance

(%)
(mean ± SD)

WT
Relative Abundance (%)

(mean ± SD)

Mean Difference
(%) (CF −WT) p-Value FDR

Phylum
Firmicutes 24.234 ± 3.975 41.307 ± 11.565 −17.073 0.002 0.023

Saccharibacteria 0.001 ± 0.003 0.081 ± 0.075 −0.08 0.010 0.035
Bacteroidetes 45.023 ± 10.483 27.355 ± 11.337 17.669 0.035 0.087
Cyanobacteria 0.008 ± 0.012 0.071 ± 0.076 −0.063 0.047 0.095

Genus
Bacteroides 37.115 ± 12.404 17.673 ± 12.282 19.442 0.008 0.060

Blautia 2.997 ± 1.147 0.67 ± 1.118 2.327 0.008 0.060
Oscillospira 1.392 ± 0.718 3.517 ± 1.347 −2.125 0.005 0.060
Roseburia 0 ± 0 0.02 ± 0.023 −0.02 0.006 0.060

Ruminococcus 2.384 ± 1.836 7.777 ± 3.881 −5.392 0.008 0.060
Holdemania 0.06 ± 0.04 0.015 ± 0.015 0.045 0.014 0.086

Dehalobacterium 0.012 ± 0.029 0.08 ± 0.063 −0.069 0.017 0.089

2.6. Predicted Functional Analysis by PICRUSt

We used PICRUSt [15] to predict the functional profiles of bacteria communities in the
fecal samples of the rabbits based on 16S rRNA data, and compared the relative abundance
of predicted KEGG orthology (KO) terms between the CF and WT groups (see details in
Section 4.7). In total, relative abundances (in percentages) of 76 KO terms were predicted,
and 18 of them had differential abundances between CF and WT rabbits at FDR <= 0.1
(Table 3). In particular, biological functions, such as short chain fatty acid (SCFAs; e.g.,
propanoate and butanoate) metabolism, lipid biosynthesis, bacterial motility, and chemo-
taxis were downregulated, while amino acid metabolism, lipopolysaccharide biosynthesis,
and glycan degradation were upregulated in CF rabbits compared to WT rabbits.
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Table 3. Predicted KEGG orthology terms with a significantly different abundance between CF and WT groups.

KEGG Orthology
CF Relative Abundance

(%)
(mean ± SD)

WT
Relative Abundance (%)

(mean ± SD)

Mean Difference
(%) (CF −WT) p-Value FDR

Aminoacyl-tRNA
biosynthesis 1.065 ± 0.032 1.117 ± 0.029 −0.053 0.002 0.056

Arginine and proline
metabolism 1.361 ± 0.007 1.321 ± 0.041 0.041 0.005 0.056

Bacterial chemotaxis 0.304 ± 0.053 0.427 ± 0.102 −0.123 0.008 0.056
Chaperones and folding

catalysts 1.05 ± 0.015 0.989 ± 0.042 0.061 0.005 0.056

Glycine, serine and
threonine metabolism 0.873 ± 0.013 0.832 ± 0.025 0.041 0.005 0.056

Lipid biosynthesis
proteins 0.634 ± 0.018 0.68 ± 0.025 −0.046 0.008 0.056

Membrane and
intracellular structural

molecules
0.712 ± 0.051 0.573 ± 0.088 0.14 0.008 0.056

Other glycan degradation 0.487 ± 0.052 0.356 ± 0.078 0.131 0.008 0.056
Propanoate metabolism 0.495 ± 0.017 0.568 ± 0.048 −0.073 0.008 0.056

Purine metabolism 2.062 ± 0.033 1.976 ± 0.028 0.086 0.001 0.056
Sporulation 0.439 ± 0.051 0.639 ± 0.159 −0.2 0.008 0.056

Bacterial motility proteins 0.728 ± 0.148 1.016 ± 0.198 −0.287 0.014 0.071
Butanoate metabolism 0.588 ± 0.022 0.661 ± 0.067 −0.074 0.014 0.071

Lipopolysaccharide
biosynthesis proteins 0.549 ± 0.036 0.43 ± 0.099 0.119 0.014 0.071

RNA degradation 0.496 ± 0.01 0.456 ± 0.032 0.041 0.014 0.071
Flagellar assembly 0.224 ± 0.083 0.374 ± 0.13 −0.15 0.022 0.093
Mismatch repair 0.748 ± 0.017 0.781 ± 0.032 −0.033 0.022 0.093

Transcription factors 1.46 ± 0.049 1.609 ± 0.144 −0.149 0.022 0.093

3. Discussion

Recent studies have demonstrated altered intestinal microbiomes in CF patients across
different age groups compared to those in healthy individuals. In infant CF patients,
Antosca et al. reported reduced levels of Bacterioides, a bacterial genus associated with
immune modulation, in their fecal microbiome [10]. In juvenile and young adult CF
subjects aged 10–22 years, Miragoli et al. reported a lower frequency of sulfate-reducing
bacteria in their fecal samples, which may have contributed to the abdominal bloating in
CF patients [9]. In another study on CF children aged between 0.8 to 18 years, CF fecal
samples exhibited marked taxonomic and functional changes of the gut microbiome [11].
These findings suggest that the gut microbiome plays an important role in CF-associated
GI disease development, likely in an age-dependent manner.

In the present work, we report a novel CF animal model (i.e., the CF rabbits) that
manifests intestinal dysbiosis. Preclinical animal models are a prerequisite to test therapeu-
tic strategies targeting the gut microbiomes of CF patients. To date, almost all CF animal
gut microbiome studies have used mice [16–18]. Interestingly, loss of functional CFTR
in CF mice is associated with significant decreases in GI bacterial community richness,
evenness, and diversity, and reduced relative abundance of putative protective species in
some reports [16], but not in others [17]. In the other study utilizing a nonmurine model
ferrets, Streptococcus and Escherichia coli were more abundant in the CF animals than in
the non-CF controls; however, it is not known whether there is a reduction of bacterial
diversity due to the CF condition in these animals [19]. There are no reports from other CF
animals, such as rats, pigs, and sheep. The addition of CF rabbits to the gut microbiome
toolbox therefore provides a new system to the research community, and is expected to
facilitate study on the pathogenesis of CF-associated GI disease and accelerate the develop-
ment of novel treatments for CF gastrointestinal diseases. For example, taurine conjugate
ursodeoxycholic acid (TUDCA) is being tested to treat CF-related liver disease (CFLD)
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(Available online: ClinicalTrials.gov ID#: NCT00004441 (accessed on 15 February 2021)).
Whether TIDCA treatment alters the CF intestinal microbiome is an intriguing question,
which can be tested in the CF rabbits.

Consistent with reports of those in pediatric CF patients, the fecal microbiome of
CF rabbits, in comparison to that of WT rabbits, is of lower richness and diversity, with
marked taxonomic and functional alterations. At the phylum level in the fecal microbiome,
Firmicutes (↓17%) and Bacteroidetes (↑17%) are the two most changed in CF conditions, albeit
at different directions (Table 2). The Firmicutes/Bacteroidetes (F/B) ratio is postulated as
an indicator of nutritional intake status [20]. In obese individuals, this ratio is reported
to be higher than that of healthy control individuals, whereas dietary restriction led to a
reduction of this ratio [20]. In the young rabbits of the current study, the F/B ratio was
greatly reduced in the CF fecal microbiome in comparison to that of WT, which indicates
a nutritional insufficiency due to CFTR deficiency. Future studies should test whether
modulating the F/B ratio can improve the nutritional status of CF individuals.

At the genus level, Bacteroides were increased by 19% in the CF rabbit fecal microbiome,
representing the most changed species (Table 2). At the time of sample collection, rabbits
were 7–9 weeks old, comparable to ~6–7 years old in human age. This observation is
similar to that observed in pediatric CF individuals (aged 0.8–18 years) [11]. However, in
a study of CF infants (six weeks to 12 months), the relative abundance of Bacteroides was
consistently higher in the fecal microbiome of healthy individuals than that of the CF [10].
Our work and these studies suggest that the relative abundance of intestinal Bacteroides in
CF subjects is age-related.

Predicted functional analysis reveals several notable changes in biological functions
(BFs) associated with the intestinal microbiome in CF rabbits (Table 3). (i) The increased
abundance of microbiomes that are functionally implicated in “chaperones and folding
catalysts” suggests an alteration in the endoplasmic reticulum (ER) protein folding capacity
and potential activation of an ER stress response in CF rabbits. (ii) There is an upregulation
of BFs of lipopolysaccharide (LPS) biosynthesis in CF rabbits compared to WT rabbits. LPS
is the major component of the outer membrane of Gram-negative bacteria, and is known
to induce strong innate immune responses [21]. It has been previously demonstrated that
challenging the airway epithelial cells with P. Aeruginosa decreased the CFTR function and
induced an increase in pro-inflammatory cytokines [22–24].In this regard, this alteration of
gut microbiomes in CF individuals may have contributed to the inflammation phenotypes.
(iii) Glycans are sequences of carbohydrates that are added to proteins or lipids to modulate
their structure and function. Glycans modify proteins required for regulation of immune
cells, and alterations have been associated with inflammatory conditions [25]. The altered
microbiome abundance involved in glycan degradation also implicates the likeness of liver
disease in CF rabbits, as the alteration of protein glycosylation has been observed in GI and
liver diseases [25,26]. (iv) Furthermore, decreased microbiome abundance implicated in
Butanoate metabolism may also be responsible for the metabolic phenotype in CF rabbits.
Hepatic mitochondria are known to be the main target of the beneficial effect of butyrate-
based compounds in reverting insulin resistance and fat accumulation in diet-induced
obese animal models. Butyrate, produced by fermentation in the large intestine by gut
microbiota, and its synthetic derivative have been demonstrated to be protective against
insulin resistance and fatty livers [27]. (v) Short chain fatty acids (SCFAs) produced by gut
bacteria widely participate in energy, lipid, glucose, and cholesterol metabolism in host
various tissues. The Bacteroidetes mainly produce acetate and propionate, whereas butyrate
is the primary metabolic end product of Firmicutes [28]. Notably, in CF subjects, BFs of
short chain fatty acid metabolism and lipid biosynthesis were downregulated, but those
of amino acid metabolism and glycan degradation were upregulated. These changes may
have reflected the preference for different energy sources in CF rabbits at this age.

Lastly, we should point out several limitations of the present study. First, we used
fecal samples as a proxy for the intestinal microbiome. While fecal sampling is easy and
non-invasive, this method has inherit disadvantages [29]; for example, it cannot provide
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accurate information on the spatial distribution of the microbiota along the intestine.
Second, CF rabbits in this study did not receive any antibiotics, whereas antibiotics are
routinely used in human patients. This factor should be considered when CF rabbits
and patients’ intestinal microbiomes are compared. Third, as a routine care procedure,
CF rabbits (but not the WT ones) received Golytely in the present work. A strict control
using WT rabbits that also receive Golytely treatment should be included in a future study.
Fourth, it should be noted that rabbits are coprophagic. While this does not affect the
comparison between CF and WT rabbits, caution should be taken when comparing the
rabbit data with a species that is not coprophagic.

In summary, we investigated the intestinal microbiome in young CF rabbits. In com-
parison to that of WT rabbits, the CF rabbit intestinal microbiome is of lower richness and
diversity, with a marked taxonomic and inferred functional dysbiosis. This model system
may facilitate the research and development of novel treatments for CF gastrointestinal
diseases.

4. Materials and Methods
4.1. Animals and Fecal Sample Collection

The animal maintenance, care, and use procedures were reviewed and approved
by the Institutional Animal Care and Use Committee (protocol #PRO00008218) of the
University of Michigan, an AAALAC International accredited facility. All procedures were
carried out in accordance with the approved guidelines.

Heterozygous CFTR∆9/WT (HT CF) rabbits were produced as described previ-
ously [12]. Male and female HT CF rabbits were bred to produce homozygous CFTR∆9/∆9,
and WT rabbits were used in the present study.

Both CF and WT rabbits were fed with Laboratory Rabbit Diet #5321 (LabDiet,
St. Louis, MO, USA). At two weeks of age, the CF kits were given Golytely (an osmotic
laxative, Braintree Labs, Braintree, MA, USA) by oral syringe feeding daily. The CF rabbits
consumed this laxative for their entire life.

Night fecal samples were collected on a morning when animals were at the corre-
sponding age (Table 1) using sterile forceps into a sterile test tube. The samples were
immediately put into a −80 ◦C freezer.

Approximately 300 mg fecal samples/rabbit were submitted to BGI Americas Cor-
poration (Cambridge, MA, USA) (BGI) for sample extraction, 16S/18S/ITS amplicon
sequencing, and bioinformatics.

4.2. Histology Staining

Tissues were fixed in 10% formalin for about 24 h. Fixed specimens were embedded
into paraffin blocks, cut into 5 µM sections, and stained with Alcian Blue-Periodic Acid
Schiff (AB-PAS). In brief, the deparaffinized tissue sections were stained with AB solution
(1 g of Alcian blue, pH = 2.5, 3 mL/L of acetic acid, and 97 mL of distilled water) for 30 min,
followed by rinsing in water for 10 min, oxidizing in periodic acid (5 g/L) for 5 min, and
staining with Schiff reagent as a counter stain for 10 min.

4.3. 16S rRNA Sequencing Data Processing

16S rRNA sequencing was conducted at BGI. Briefly, paired-end reads of 250 bp
were generated with the Illumina HiSeq platform, and then were subject to the following
pre-processing procedures [30]: (i) truncation of sequence reads with an average quality
below 20 (on the Phred scale) over a 30 bp sliding window and removal of trimmed reads
with less than 75% of their original size, as well as their paired reads; (ii) removal of reads
contaminated by the adapter (15 bases overlapped by the adapter with maximal mismatch
of 3 bp); and (iii) removal of reads with ambiguous bases (N base), as well as their paired
reads; (iv) removal of reads with low complexity (reads with 10 consecutive repeated
bases). The clean reads were de-multiplexed and assigned to corresponding samples
(0 base mismatch in barcode sequences). Summary statistics for raw and processed reads
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are shown in Supplementary Table S1. An average of 42,460 read pairs were generated
from each sample, amounting to 21.2 million bps. After cleaning with the above procedure,
an average of 41,502 read pairs remained for each sample, with an average read utilization
rate of 97.8%.

After removal of cleaned paired-end reads without overlaps, overlapped paired-
end reads were merged into consensus sequences (i.e., tags) by FLASH [31] with the
parameters: (i) overlapping length >= 15 bp; and (ii) mismatching ratio of overlapped
region <= 0.1. Furthermore, primer sequences were removed from the generated tags,
where the forward and reverse amplification primers were mapped to the two ends of tags,
with four consecutive bases at the 3’ end of the primers being completely matched with
the tags, and the mismatch bases of the remaining primer being no more than two. On
average, 40,889 tags were generated per sample after removal of primer sequences, and the
average length was 252 bp (Supplementary Table S2).

The generated tags were further clustered to operational taxonomic units (OTUs)
by USEARCH (v7.0.1090) [32], detailed as follows: (i) the tags were clustered into OTUs
with a 97% threshold using UPARSE [33], and the representative sequence for each OTU
was derived; (ii) chimeras were identified and filtered by UCHIME (v4.2.40) [34], with
the 16S rRNA sequences being screened against the “Gold” database (v20110519); (iii) the
tags were mapped to OTU representative sequences using USEARCH (usearch_global
command), and the number of tags mapped to each OTU in each sample was quantified
as the abundance of OTUs; and (iv) OTU representative sequences were taxonomically
classified by the Ribosomal Database Project (RDP) Classifier (v.2.2) [35] trained on the
Greengenes database (version gg_13_5) [36] using a 0.6 confidence cutoff. OTUs that were
not assigned to a bacteria taxonomical term were excluded from downstream analysis. A
total of 427,508 tags from the 13 samples were clustered and mapped to 473 OTUs, none of
which was singleton.

4.4. Alpha Diversity Analysis

The alpha diversity indices, including the observed number of OTUs and Shannon
index, were calculated by Mothur (v1.31.2) [37]. The corresponding rarefaction curves were
calculated based on OTUs derived from randomly extracted tags in an incremental step of
500 (Supplementary Figure S1).

4.5. Beta Diversity Analysis

Beta diversity was evaluated by phylogeny-based weighted and unweighted UniFrac
distances, which take into account the distance of evolution between species to compare the
composition of the bacteria community between samples [13]. Beta diversity analysis was
performed by QIIME (v1.80) [38]. In the analysis, sequences (tags) were randomly sampled
according to the minimum sequence number across all samples in order to account for the
differences in the sequencing depth of different samples, and the abundance of OTUs was
then adjusted accordingly. Weighted and unweighted UniFrac distances between samples
were visualized by non-metric multidimensional scaling (NMDS), implemented by the R
function isoMDS [14]. Permutational multivariate analysis of variance (PERMANOVA)
tests were used to derive the significance level of the difference in beta diversity measure-
ments between CF and WT groups, which was implemented by the function adonis in the
R package vegan (v2.5-6) [39].

4.6. Differential Abundance Analysis

Metastats [40] was employed to identify differentially abundant taxa between CF
and WT groups at various taxonomical ranks (phylum, class, order, family, genus, and
species). The p-values generated at each taxonomical rank were, respectively, adjusted by
a Benjamini–Hochberg false discovery rate (FDR) correction [41]. Significant differences
were defined at FDR <= 0.1.

218



J. Pers. Med. 2021, 11, 132

4.7. Functional Analysis

We used PICRUSt [15] to predict the functional profiles of the fecal bacteria communi-
ties in the CF and WT rabbit models based on 16S rRNA data. PICRUSt uses phylogenetic
modeling to predict the metagenome of a microbiome community based on 16S rRNA data
and reference microbiome genome databases, including Greengenes [36] and IMG [42]. The
metagenome prediction results in an annotated table of predicted gene family abundance
for each sample, where gene families can be functionally classified as orthologous groups in
terms of KEGG orthology (KO) [43]. The relative abundances (in percentages) of predicted
KO terms were compared between the CF and WT groups using a Wilcoxon rank sum
test. The nominal p-values were adjusted by a Benjamini−Hochberg FDR correction [41].
Significant differences were defined at FDR <= 0.1.

Supplementary Materials: The following are available online at https://www.mdpi.com/2075-4
426/11/2/132/s1, Figure S1: Rarefaction curves for the CF and WT rabbits, Table S1: Summary
statistics of processing pair-end 16S rRNA sequencing data, Table S2: Summary statistics of merged
tags from pre-processed read pairs, Table S3: Differentially abundant taxa between CF and WT
groups at various taxonomic ranks.
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Abstract: The disruption of gut microbiota eubiosis has been linked to major complications in
allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipients. Various strategies have
been developed to reduce dysbiosis and related complications. Fecal microbiota transplantation
(FMT) consists of the infusion of fecal matter from a healthy donor to restore impaired intestinal
homeostasis, and could be applied in the allo-HSCT setting. We conducted a systematic review
of studies addressing the use of FMT in allo-HSCT patients. In the 23 papers included in the
qualitative synthesis, FMT was used for the treatment of recurrent Clostridioides difficile infections or
as a therapeutic strategy for steroid-resistant gut aGvHD. FMT was also performed with a preventive
aim (e.g., to decolonize from antibiotic-resistant bacteria). Additional knowledge on the biological
mechanisms underlying clinical findings is needed in order to employ FMT in clinical practice. There
is also concern regarding the administration of microbial consortia in immune-compromised patients
with altered gut permeability. Therefore, the safety profile and efficacy of the procedure must be
determined to better assess the role of FMT in allo-HSCT recipients.

Keywords: hematopoietic stem cell transplantation; fecal microbiota transplantation; gut microbiota;
aGvHD; antibiotic-resistant bacteria

1. Introduction

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potential curative
strategy for many oncological, hematological, metabolic and immunological diseases [1–3].
Despite advances in transplantation technology and supportive care, the procedure is
still associated with marked morbidity and mortality, mainly due to the recurrence of the
primary disease or transplant-related complications [4]. Infections and acute Graft versus
Host Disease (aGvHD) represent two of the main transplant-related complications after
allo-HSCT [5].

Chemo and radiotherapy prior to transplant ablate circulating white blood cells and
damage the gut epithelium, enabling the translocation of microbes through the intestinal
mucosa and eventually into the bloodstream [6]. Therefore, potentially life-threatening
bacterial infections can occur during the early neutropenic post-transplant phase, with the
burden of antibiotic-resistant bacteria (ARB) being a critical issue in the management of
these patients [7].
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aGvHD is characterized by the response of alloreactive donor T cells to host organs
including the skin, gut and liver. Multiple signals interact with lymphocytes and antigen-
presenting cells to regulate the allo-immune response, such as the level of inflammatory
cytokines and the presence of damage- and pathogen-associated molecular patterns [8].
Corticosteroids represent the first line therapy for aGvHD treatment, but their administra-
tion results in complete remission in less than half of the patients [9,10]. Over the last few
years, numerous novel agents have been developed and investigated for the management
of steroid-refractory or steroid-dependent disease, but no definitive consensus has been
reached on the optimal second-line therapy for aGvHD [9,10].

Among the numerous factors known to be involved in the development of these
complications, the recipient gut microbiome (GM) is emerging as a key determinant. The
advent of large-scale genomic sequencing studies has greatly improved our ability to
characterize the complex microbial communities hosted by our organism and enhanced our
comprehension of the relationship between GM, immunity and intestinal epithelium [11,12].
In particular, the GM is recognized as an integral part of the host immune system, capable
of fine-tuning immune responses, thus strongly contributing to homeostasis. Moreover,
through the production of a plethora of bioactive molecules, the GM may also signal to
various extraintestinal organs, having a system-level impact on human health. In this
regard, the increasing use of the so-called omics approaches, including metagenomics,
metatranscriptomics, metaproteomics, metabolomics and not least, culturomics, is starting
to shed some light on the biological processes underpinning the crosstalk between the GM
and the host [7,11].

HSCT and related procedures (i.e., conditioning regimen, antibiotic exposure, diet,
antiacid prophylaxis) represent a combination of upsetting events that profoundly modifies
the GM structure, leading to disruption of the mutualistic asset, with the establishment of
the so-called dysbiosis [13,14]. Lower alpha diversity of the GM at the time of neutrophil
engraftment was associated with higher transplantation-related mortality and lower overall
survival [15]. Moreover, specific GM compositional layouts were associated with clinical
allo-HSCT outcomes. For example, decreased amounts of beneficial bacteria belonging to
the order Clostridiales (e.g., the genus Blautia) and a shift towards an enteropathogenic
community with predominance of Gram-negative Enterobacteriales (Escherichia coli, Kleb-
siella, Enterobacter spp.) along with Gram-positive Lactobacillales (Lactobacillus, Enterococcus
and Streptococcus spp.) were correlated with increased incidence of aGvHD and aGvHD-
related mortality [16,17]. Intestinal dominance by individual taxa, defined as a single
bacterial taxon comprising 30% or more of the GM, often precedes the development of
a corresponding bloodstream infection [18]. However, the main limitation of these stud-
ies is their observational nature, and so they can only demonstrate correlations and not
causative relationships.

This increasing knowledge on the GM role in the pathophysiology of the main allo-
HSCT complications has led to fascinating ideas for modulating the intestinal ecosystem in
order to improve clinical outcomes. Recently, numerous therapeutic strategies have been
proposed in the literature to prevent the damage or restore GM integrity, including the
optimization of antibiotic administration [19], the route of nutritional support [20–22] and
the use of prebiotics [23]. GM can also be modulated using live microorganisms or microbial
consortia, from traditional probiotics or next-generation candidates to fecal microbiota
transplantation (FMT). FMT consists of the infusion of fecal matter from a healthy donor
into the gastrointestinal tract of a recipient harboring a dysbiotic GM. The source of fecal
material could be autologous, with stools collected before the onset of dysbiosis, or from a
related or unrelated healthy donor. Because of genetic similarity and shared environment,
a related FMT donor may have a closer GM composition, which may be inadvisable in
certain cases. Stools can be handled and prepared as fresh fecal material, or frozen and
stored in a stool bank. FMT can be delivered via the upper gastrointestinal tract using
esophagogastroduodenoscopy, nasogastric or nasoduodenal tube and oral capsule, or via
colonoscopy and enema [24]. This procedure directly modifies the host GM composition in
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an attempt to restore GM diversity and gut homeostasis [25]. FMT was first shown to be
successful in the treatment of recurrent Clostridioides difficile infections (rCDI) and is now
recommended in patients with rCDI in whom appropriate antibiotic treatments failed [26].
Thanks to its potential to re-establish an eubiotic GM layout in the recipient, FMT has been
proposed for the treatment of other conditions, including inflammatory bowel disease,
with promising preliminary findings [27].

In this context, there is a growing interest for FMT in allo-HSCT as a potential pre-
ventive or therapeutic strategy, mainly regarding aGvHD and infections [28]. However,
many practical and safety issues arise in this setting, which have limited its application
in recent years. Different FMT protocols could be applied, varying with regards to donor
selection and screening, preparation of recipients and route of infusion [24]. Safety concerns
have been raised regarding its use in immune-compromised patients with impaired gut
permeability [29]. Indeed, a case of bacteremia caused by a multidrug-resistant E. coli
transmitted through FMT has recently been reported, which led to the patient’s death [30].

Numerous publications have reviewed this topic, either as the main focus of the
paper or as a part of a more comprehensive view on the role of GM in transplantation,
but this is the first systematic review on this issue. The aim of this study is to provide
an up-to-date systematic review regarding the evolving evidence on the use of FMT
in allo-HSCT recipients, summarizing the present literature and providing insights for
future investigations.

2. Methods

A systematic review was conducted according to the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines [31]. Electronic databases, in-
cluding PubMed (https://pubmed.ncbi.nlm.nih.gov) and Trip (https://www.tripdatabase.
com) were searched to identify relevant studies published up to October 2020. The fol-
lowing string was used to perform the literature search: (Bone Marrow transplant * OR
BMT OR stem cell transplant * OR SCT OR hematopoietic transplant * OR haematopoietic
transplant * OR hematopoietic stem cell transplant * OR haematopoietic stem cell trans-
plant * OR hematopoietic cell transplant * OR haematopoietic cell transplant * OR HCT OR
HSCT OR blood disorders OR leukemia OR immunocompromised) AND (fecal microbiota
transplant * OR faecal microbiota transplant * OR FMT).

The search was restricted to English-language studies involving human subjects under-
going allo-HSCT receiving FMT for any indication. Two reviewers (EM, DL) independently
identified potentially eligible studies by screening titles and abstracts. The same authors
assessed the full-texts of potentially relevant studies for inclusion and consulted the refer-
ence lists of previously published primary and secondary papers to manually search for
additional relevant papers. Any disagreement regarding eligibility and inclusion in the
systematic review was resolved through discussion and consensus between the two readers.
If consensus was not reached, the opinion of a third author (RM) who acted as a “blind”
final arbiter was requested. Investigators and corresponding authors were contacted for
studies with incomplete data in order to obtain additional information if needed.

3. Results
3.1. Literature Search

The literature search strategy yielded 673 references (301 in PubMed, 371 in Trip and
one identified through manual search).

As shown in Figure 1, the number of potentially relevant papers identified by titles
was 49. Among these 49 studies, 25 were excluded from the systematic review because they
were reviews or did not address the role of FMT in the allo-HSCT setting. One paper was
excluded because the etiology of diarrhea, reported as the reason for FMT, was not clear [32].
Of the 23 studies assessed, 15 were case reports or retrospective case series [30,33–46], seven
were prospective cohorts [47–53], while only one completed randomized controlled trial
was found in the literature [54].
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diagram of the search strategy and included studies. The relevant number of papers at each point
is given.

In the following sections, we will present evidence on the use of FMT in allo-HSCT
recipients. In the papers included in this qualitative synthesis, FMT was performed either
with a therapeutic aim, both in the context of rCDI and as a second-line agent for gut
aGvHD, or as a preventive strategy, in order to reduce dysbiosis or decolonize from ARB.
A brief overview of the risks of FMT reported in the literature in this peculiar population
will also be provided.

3.2. rCDI

Five studies evaluated FMT for the treatment of allo-HSCT recipients with rCDI.
Neeman et al. and De Castro et al. first reported two successful case reports, in which FMT
was performed by injecting fecal material via a nasojejunal tube from a related donor, or
with material from two different donors delivered by means of push enteroscopy [39,40].

Since then, three small series have been published. Webb et al. analyzed seven
allo-HSCT recipients who underwent FMT via nasojejunal tube or colonoscopy from an
unrelated donor, with five of these patients still under immunosuppressive therapy. Six
patients had no relapse, while one needed another FMT to obtain remission [41]. Another
series reported FMT administration in three pediatric patients from related and unrelated
donors via a gastric tube or colonoscopy, with only one achieving rCDI remission [42].
Moss et al. delivered FMT to eight patients as oral encapsulated therapy from unrelated
donors. Resolution from rCDI was achieved in all patients at eight weeks, and only one had
a recurrence at a later time. A metagenomic analysis of the stools showed a modification
of the gut resistome (i.e., the set of genes conferring antibiotic resistance in the GM), with
a reduction in the burden of antibiotic resistance genes by >50% following FMT, which
persisted for more than one year. Conversely, the analysis of the dynamics of microbial
communities highlighted the limited durability of the specific bacterial consortium intro-
duced with FMT, with short-term similarity and long-term dissimilarity between donor
and recipient GM composition [43].
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3.3. Steroid-Resistant Gut aGvHD

Nine papers explored FMT as a potential therapeutic strategy for steroid-resistant
or steroid-dependent gut GvHD (Table 1), defined as progression within 3–5 days or
incomplete response by 7–14 days of treatment (steroid resistance) or recurrence after initial
dose reduction (steroid dependence) [5].

Table 1. Summary of included studies regarding FMT as a therapeutic strategy for steroid-refractory or dependent
gut aGvHD.

First Author Year Number of
Patients

Route of Ad-
ministration Donor CR PR CR/Patients

%
CR +

PR/Patients % Comments

Kakihana 2016 4 Nasoduodenal
tube

Relative or
Spouse 3 1 75% 100%

Response assessed within
7–14 days; in three cases a
second FMT was needed.

Spindelboeck 2017 3 Colonoscopy Unrelated or
Related 2 1 67% 100%

Two patients achieved
complete response with

multiple FMT, one obtained a
partial response after a single

FMT with persistent grade
I GVHD

Qi 2018 8 Nasoduodenal
tube Unrelated 5 1 63% 75%

The FMT recipients exhibited
improved progression-free

survival within 90 days after
the diagnosis, compared
with an historical control

group, but no difference in
overall survival.

Kaito 2018 1 Oral capsules Related - 1 - 100%

Digestive symptoms
improved soon after

initiation of FMT. aGvHD
improved to stage 1 after the
second cycle of FMT with the

improvement of
endoscopic findings.

Shouval 2018 7 Oral capsules Unrelated 2 1 29% 43% -

Zhong 2019 1 child

Jejunal tube
under gastro-

duodenoscopy
guidance

Unrelated 1 - 100% 100% -

Biernat 2020 2 Nasogastric
tube Unrelated 1 1 50% 100%

In one case complete
remission was achieved, but
the patient later died due to

liver aGvHD and
bloodstream infections. In

the second case only
temporary reduction and

death occurred by
multiorgan failure.

Mao 2020 1 Oral capsules Unrelated 1 - 100% 100%

Complete remission after the
first cycle of FMT. Recurrence
11 days later, but remission

achieved with a second cycle.

Von Lier 2020 15 Nasoduodenal
tube Unrelated 10 - 67% 67%

Response assessed at 28 days
after FMT. In six of the

10 complete responders,
immunosuppression was

successfully tapered within
six months. In the other four,
GvHD symptoms returned

upon tapering of
immunosuppressive therapy

Total - 42 - - 25 6 60% 74% -

aGvHD: Graft versus Host Disease; allo-HSCT: allogeneic hematopoietic stem cells transplantation; CR: Complete Response; FMT: Fecal
Microbiota Transplantation; PR: Partial Response.

Kakihana et al. reported for the first time the use of FMT in patients with steroid-
resistant or dependent gut aGvHD [45]. They administered FMT from a related donor by
nasoduodenal tube in four patients. All patients responded, with three complete responses
and one partial response, but in three cases a second FMT was needed. Improvement of the
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gastrointestinal symptoms was observed within several days, combined with an increase
in peripheral effector regulatory T cells [47].

In a subsequent report, three patients received FMT delivered by colonoscopy for
refractory grade IV gut GvHD from related and unrelated donors. A clinical response with
stool volume reduction was observed in all patients. Two achieved complete response with
multiple FMT after 73 and 29 days from the first fecal infusion, while the other obtained a
partial response, still presenting with grade I GvHD after one course of FMT. Based on 16S
rRNA gene analysis of the pre- and post-FMT GM, restoration of microbial diversity and
richness correlated with clinical improvement [44].

Another study involved eight patients with refractory grade IV gut GvHD receiving
one or two courses of FMT from unrelated donors via a nasoduodenal tube. Symptoms
were relieved in all patients, and five of them experienced complete response and no relapse.
One week after FMT, the GM analysis of patients showed improved bacterial diversity and
enrichment in health-promoting taxa, particularly Bacteroides and Ruminococcaceae [48].

Von Lier et al. reported 15 patients who received a single FMT via nasoduodenal
infusion from an unrelated donor. A total of 10 patients showed complete remission within
one month after FMT, without additional interventions to alleviate GvHD symptoms. In
six of them, immunosuppressant drug therapy was successfully tapered within six months.
In the other four individuals undergoing a complete response, GvHD symptoms returned
upon the tapering of immunosuppressive therapy. The positive clinical response was
accompanied by an increase in GM alpha diversity and partial engraftment of donor bacte-
rial species. Moreover, increased relative abundance of short-chain fatty acid-producing
bacteria, including Clostridiales members and particularly Blautia, was observed in the
recipient’s stool [49].

Two other cases of allo-HSCT patients receiving multiple FMT from unrelated healthy
donors via a nasogastric tube were reported. One patient experienced complete remission
of gastrointestinal symptoms, but died more than one month later due to liver aGvHD and
bloodstream infections related to the indwelling catheter. The other had only a temporary
reduction in symptoms; diarrhea recurred one week after the last FMT and the patient died
from multiorgan failure [45].

Kaito et al. reported the first case in which FMT from a related donor was performed
by the administration of oral capsules in a patient with refractory gut GvHD [46]. A subse-
quent case series enrolled seven patients who received one to three FMT from unrelated
donors, administered orally by capsules. After FMT, the introduction of new bacteria and
an increase in microbial diversity was found in the recipient’s stool, with a strong reduction
in the rate of bacterial dominance. Only two patients achieved complete remission, and
one a partial response [50]. In the case report by Mao et al., after two cycles of oral FMT
capsules from unrelated donor, intestinal aGvHD was gradually controlled and did not
recur during the two-month follow-up. The diversity and structure of the GM after FMT
were closer to those of healthy donors. Moreover, the amount of Blautia in the GM increased
after FMT, which may explain the clinical improvement. Consistent with Kaito’s report,
repeated doses of FMT brought continuous improvement of the gastrointestinal aGvHD
symptoms. In this case, the symptoms improved but recurred after the first course of
capsule FMT, while the second dose was effective in achieving complete remission [33].

The first report of FMT for refractory aGvHD in children was provided by Zhong et al.
in 2019.

FMT was performed twice via a nasojejunal tube from an unrelated donor, and
resulted in symptom remission. Taxonomic analysis of GM showed gradual reduction in
Proteobacteria and increase in Firmicutes after FMT, and the restoration of diversity [34].

3.4. FMT as a Preventive Strategy

FMT was used as a preventive strategy in allo-HSCT in seven studies. In five of them,
the aim was to decolonize from ARB strains, while in the other two the aim was to prevent
and reduce GM dysbiosis (Table 2).
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Table 2. Summary of included studies regarding FMT as a preventive strategy in allo-HSCT patients.

First Author Year Indication Number of
Patients Route of Administration Donor Main Results

Bilinski 2017 ARB
decolonization

20 with blood
disorders

(10 neutropenic,
4 aGvHD,

2 chronic GvHD)

Nasoduodenal tube Unrelated

60% of patients achieved
complete ARB

decolonization at one
month after FMT.

Innes 2017 ARB
decolonization

1 before
allo-HSCT Nasogastric tube Unrelated

By day +16 after FMT, no
ARB was detected on

rectal screening swabs.

Taur 2018 Dysbiosis
reduction

25 (14 received
FMT; 11 control
group with no
intervention)

Enema Autologous

FMT patients had boosted
microbial diversity and
reestablishment of the
intestinal microbiota

composition they had
before antibiotic treatment

and allo-HSCT.

DeFililpp 2018 Dysbiosis
reduction 13 Oral capsules Unrelated

Improved intestinal
microbiome diversity

associated with expansion
of stool-donor taxa.

Battipaglia 2019 ARB
decolonization

10 (6 before and
4 after allo-HSCT) Enema or nasogastric tube Unrelated or

Relative

Decolonization was
achieved in 7 out of

10 patients.

Merli 2020 ARB
decolonization

5 children before
allo-HSCT Esophagogastroduodenoscopy Unrelated

Long-term decolonization
was not achieved in four

out of five patients.

Ghani 2020 ARB
decolonization

11 with blood
disorders (8

before allo-HSCT)
Nasogastric tube Unrelated

Decolonization in 41% of
patients. Reduction in

bloodstream infections.

ARB: antibiotic-resistant bacteria; allo-HSCT: allogeneic hematopoietic stem cells transplantation; FMT: Fecal Microbiota Transplantation.

Bilinski at al. examined patients with blood disorders (40% neutropenic patients,
16% patients with aGvHD and 8% with chronic GvHD) colonized with ARB who un-
derwent FMT via a nasoduodenal tube from unrelated donors; 60% of patients achieved
complete decolonization one month after FMT [51]. Innes et al. described a case in which
FMT was performed before HSCT to extensively eradicate drug-resistant organisms [35].
After these two encouraging reports, ten adult patients colonized by multidrug-resistant
strains received FMT after (n = 6) or before (n = 4) HSCT from related or unrelated donors,
delivered via enema or nasogastric tube. Three patients needed a second transplant from
the same donor due to the initial failure of the procedure. Decolonization was achieved
in seven out of ten patients. Interestingly, one case of grade III gut aGvHD still occurred
after FMT performed before HSCT [36]. Ghani et al. delivered FMT from unrelated donors
using a nasogastric tube in eleven patients with an underlying hematologic disorder, col-
onized by multidrug-resistant bacteria, of which eight underwent allo-HSCT after FMT.
Although only 41% of patients were no longer colonized on rectal screening following FMT,
there was a significant reduction in bloodstream infections by resistant and nonresistant
strains compared to the control group. Moreover, shorter inpatient stays and fewer days
of carbapenems administration were observed. Interestingly one patient developed bac-
teremia caused by a multidrug-resistant strain, but different from the previous colonizing
microorganisms, and was treated effectively with a shorter antibiotic course [52].

Merli et al. carried out the only study with this aim in the pediatric population. They
performed one course of FMT via esophagogastroduodenoscopy in five pediatric patients
before allo-HSCT using samples from the same donor, to induce ARB decolonization.
Eighty percent of patients tested negative for ARB strains within one week from FMT, but
long-term decolonization was not achieved in four out of five patients [37].
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Two other studies addressed FMT use to prevent and reduce dysbiosis. Autologous
FMT after allo-HSCT was performed in a randomized controlled clinical trial. Compared
with the control group, 16S rRNA gene sequencing of 14 patients after FMT revealed
boosted microbial diversity and reestablishment of the GM composition they had before
antibiotic treatment and allo-HSCT. In particular, important commensal groups, typi-
cally dominant in a healthy-like adult GM, such as Lachnospiraceae, Ruminococcaceae and
Bacteroidetes members, were successfully re-established. According to a metagenomic
analysis, auto-FMT also appeared to have reversed alterations in the functional content of
the GM, mainly regarding genes involved in microbial virulence and metabolism [54]. In
a subsequent analysis, they observed, during the first 100 days after engraftment, higher
counts of neutrophils, lymphocytes and monocytes in the peripheral blood of auto-FMT
recipients [12].

A similar result was obtained using FMT from unrelated donors, administered orally
in 13 patients in the period immediately after neutrophil engraftment. FMT resulted in im-
proved GM diversity associated with expansion of stool-donor taxa, including Clostridiales,
and increased urinary levels of the tryptophan metabolite 3-indoxyl sulfate, recently pro-
posed as a marker of GM eubiosis, associated with favorable outcome after allo-HSCT [55].
Notably, the subset of patients who received broad-spectrum antibiotics appeared to have
attained the largest gains in terms of GM diversity. Two patients subsequently developed
grade III–IV gut aGvHD, with one of them presenting concurrent bacteremia and subse-
quent multiorgan failure. There were no additional cases of bloodstream infections after
FMT, but one case of CDI was observed [53].

3.5. Safety Issues in Allo-HSCT Recipients

The majority of the included studies report FMT as a generally well tolerated proce-
dure, with no serious adverse events [32–37,39–52,54]. Interestingly, in the case series of
Shouval et al. two patients developed bacteremia after the infusion, but targeted metage-
nomic sequencing demonstrated that the bacterial strains did not originate from the FMT
inoculum [50]. DeFilipp et al. observed only one serious treatment-related adverse event
(grade three abdominal pain) that resolved within 24 h of capsule administration [53].
Two studies specifically addressed the risks of FMT in allo-HSCT recipients. One pa-
tient enrolled in a trial to preemptively administer FMT oral capsules before allo-HSCT
developed febrile neutropenia eight days after the last FMT dose, and died from severe
sepsis two days later. The final results of blood cultures showed an extended-spectrum
beta-lactamase-producing E. coli strain. The same strain was found in the lots of capsules
from the donor, with a similar, but not identical, resistance pattern. Fecal samples of
the recipient before FMT were negative for extended-spectrum beta-lactamase-producing
microorganisms. Genomic relatedness between samples taken from the donor and blood
cultures was calculated by means of whole-genome sequencing and single-nucleotide
polymorphism-based analysis, and revealed that the bacterium was transmitted through
FMT [30]. In another report, FMT was performed to decolonize from ARB before allo-HSCT.
After ten days from allo-HSCT, Norovirus gastroenteritis was diagnosed, and it was later
complicated by aGvHD. The symptoms resolved after a course of steroids and a second
FMT from another donor with Norovirus-free stools. Fecal samples from the first FMT
were analyzed and found to contain genotype II Norovirus, the same type identified in
the patient’s stool. The authors speculated that Norovirus-induced colitis damaged the
intestinal mucosa and “exposed” host antigens. Combined with increased gut permeability
to molecules of a dysbiotic GM and an inflammatory milieu, this led to sensitization of
allo-reactive lymphocytes and triggered aGvHD [38].

4. Discussion

In this systematic review we summarized the present literature on the use of FMT in
the allo-HSCT setting. The role of FMT in the treatment of rCDI is established [24], and
can be considered effective also in patients undergoing allo-HSCT [56]. Numerous studies
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evaluated FMT as a treatment for steroid-resistant gut aGvHD, providing encouraging
preliminary data regarding feasibility and efficacy that need to be confirmed in larger
prospective studies. However, diagnosis of aGvHD was not documented by biopsies
in all cases in five studies [34,45,47,48,50], and this may have led to the inclusion of
patients with other causes of diarrhea. The necessity of histological confirmation should be
carefully taken into account in designing future studies, considering the invasiveness of
the procedure especially in pediatric patients.

Moreover, steroid-resistant aGvHD carries a dismal prognosis, and the role of FMT in
holding down the allo-immune response and improving survival could be less effective
in patients with an already deteriorated clinical status and deeply altered GM and gut
mucosa [28]. For this reason, FMT has been proposed to prevent the unavoidable dysbiosis
occurring after HSCT and potentially reduce the incidence of GM-related complications,
such as aGvHD and infections [57,58]. However, designing a study with the aim of
improving gut eubiosis is challenging because it is difficult to evaluate efficacy while there
are still no clear clinical and GM-related endpoints to assess [14].

The results of FMT in decolonizing patients from ARB are also promising, but the
rates of decolonization vary from 20% to 70%.

Proposed mechanisms by which FMT can mediate clinical benefits include direct
competition of the commensal microbiota delivered by FMT with pathogens, restoration of
secondary bile acid and short-chain fatty acid metabolism, repair of the gut barrier and
modulation of the mucosal and systemic immune system. However, further studies are
needed to fill the gap in the comprehension of the exact mechanisms underlying FMT
action [25,59].

Another primary issue that should be addressed while discussing the results of FMT is
the heterogeneity of key practical aspects that could influence clinical effectiveness, namely
donor type, timing of infusion, delivery mode, stool screening, number of infusions and
antibiotic policy (Figure 2). For example, to date no study exists in the literature comparing
the results of related vs. unrelated donors of fecal material [60]. The use of frozen capsules
from unrelated donors instead of siblings could reduce costs and waiting times, and
consent a broader screening of fecal material, but they may be difficult to administer due
to mucositis in the early phase after allo-HSCT [29,46]. Autologous FMT may also have the
advantage of simple preparation and control during donor procedures, as well as reducing
the risk of potentially transmitting pathogens from a third-party donor GM. However,
a baseline healthy sample may not always be available. [11,54]. Repeated FMTs could
increase the chance of durable modification of the gut ecosystem, thus improving the
long-term achievement of clinical outcomes [37]. Antibiotics practice also influences the
outcome of the procedure. Some studies discontinued them prior to the FMT procedure
for a variable amount of time and routinely administered no specific pre-FMT antibiotic
regimen, while others used oral colistin or vancomycin and neomycin before FMT to
improve decolonization efficacy [35,37]. The use of antibiotics after FMT could also have a
major impact. In the study by Val Lier et al., all the patients with secondary failure after a
complete remission of gut aGvHD received antibiotics shortly after donor FMT, and the
authors speculated that this may have interfered with a lasting response [49]. Bilinski
et al. observed that patients who did not receive antibiotics within seven days after FMT
achieved complete decolonization in a significantly higher proportion compared with those
who did receive antibiotics [51].
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task, and advanced microbial analysis may be necessary [30,50]. The few data on the use 
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UD: Unrelated Donor.

Considering the risk of life-threatening infections in immunocompromised patients,
antimicrobial treatment is pivotal, and the decision to withhold antibiotic therapy for
any period of time to allow successful engraftment of the transplanted GM should be
approached with caution. The relationship between timing of antibiotic course and FMT
outcomes must therefore be a focus of research in the near future.

Despite the strong scientific rationale and the emerging potential clinical utility of
FMT in allo-HSCT patients, the risk of infections resulting from the delivery of living
microbial consortia to an immunocompromised host with impaired gut permeability must
be of utmost concern [29]. While most studies deem FMT as a safe procedure in allo-HSCT
recipients, some reports raised the concern of potentially transmitting pathogens from
the fecal donor to recipients. This must prompt better efforts in extending donor stool
screenings to rule out all potentially transmittable pathogens. Furthermore, correlating
adverse events to FMT in these patients affected by multiple comorbidities is sometimes
a difficult task, and advanced microbial analysis may be necessary [30,50]. The few data
on the use of FMT in pediatric populations could raise specific concerns regarding the
possible transmission of disease-related GM configurations and the long-term effects of
GM manipulation [61,62], such as the occurrence of weight gain [63], irritable bowel
syndrome [64] or long-lasting colonization by ARB [30].

5. Conclusions and Future Directions

FMT is a promising and potentially useful strategy with different purposes in allo-
HSCT recipients. The microbiome could therefore be considered as a target of new individu-
alized therapies, potentially guiding therapeutical decisions in the near future based on the
patient’s GM signature. This fits into the medical model of personalized medicine, which
stratifies people into different groups—with medical decisions, practices, and interventions
being tailored to the individual patient based on the predicted response or risk of disease.

There is still much work to be done to understand if FMT can be implemented in
clinical practice, both in terms of effectiveness and safety. Biological studies should provide
novel insights into the comprehension of the mechanisms underlying the clinical findings.
In particular, metagenomic and metabolomic analysis could help us to understand the
effect of the administration of complex microbial consortia on the damaged gut ecosystem.
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From a practical point of view, FMT should be performed in a selected center equipped
with the required facilities to store, analyze and deliver the fecal material. A committed
multidisciplinary team comprising hematologist, gastroenterologist, microbiologist, infec-
tious disease physician and trained nurse is required to address the clinical complexity of
the procedure.

Larger clinical trials are needed to definitively address the safety and effectiveness
of this procedure for different purposes, and to define the main determinants of clinical
response to FMT, such as the recipient’s basal GM layout and donor GM composition,
antibiotic practice and the immune status of the host [65,66].
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microbiota transplant: A novel biological approach to extensively drug-resistant organism-related non-relapse mortality. Bone
Marrow Transpl. 2017, 52, 1452–1454. [CrossRef]

36. Battipaglia, G.; Malard, F.; Rubio, M.T.; Ruggeri, A.; Mamez, A.C.; Brissot, E.; Giannotti, F.; Dulery, R.; Joly, A.C.; Baylatry, M.T.;
et al. Fecal microbiota transplantation before or after allogeneic hematopoietic transplantation in patients with hematological
malignancies carrying multidrug-resistance bacteria. Haematologica 2019, 104, 1682–1688. [CrossRef] [PubMed]

37. Merli, P.; Putignani, L.; Ruggeri, A.; Del Chierico, F.; Gargiullo, L.; Galaverna, F.; Gaspari, S.; Pagliara, D.; Russo, A.; Pane, S.;
et al. Decolonization of multi-drug resistant bacteria by fecal microbiota transplantation in five pediatric patients before allogeneic
hematopoietic stem cell transplantation: Gut microbiota profiling, infectious and clinical outcomes. Haematologica 2020. [CrossRef]

234



J. Pers. Med. 2021, 11, 100

38. Bilinski, J.; Lis, K.; Tomaszewska, A.; Pechcinska, A.; Grzesiowski, P.; Dzieciatkowski, T.; Walesiak, A.; Gierej, B.; Ziarkiewicz-
Wróblewska, B.; Tyszka, M.; et al. Eosinophilic gastroenteritis and graft-versus-host disease induced by transmission of Norovirus
with fecal microbiota transplant. Transpl. Infect. Dis. 2020. [CrossRef] [PubMed]

39. Neemann, K.; Eichele, D.D.D.; Smith, P.P.W.; Bociek, R.; Akhtari, M.; Freifeld, A. Fecal microbiota transplantation for fulminant
Clostridium difficile infection in an allogeneic stem cell transplant patient. Transpl. Infect. Dis. 2012, 14, 161–165. [CrossRef] [PubMed]

40. De Castro, C.G.; Ganc, A.J.; Ganc, R.L.; Petrolli, M.S.; Hamerschlack, N. Fecal microbiota transplant after hematopoietic SCT:
Report of a successful case. Bone Marrow Transpl. 2015, 50, 145. [CrossRef]

41. Webb, B.J.; Brunner, A.; Ford, C.D.; Gazdik, M.A.; Petersen, F.B.; Hoda, D. Fecal microbiota transplantation for recurrent
Clostridium difficile infection in hematopoietic stem cell transplant recipients. Transpl. Infect. Dis. 2016, 18, 628–633. [CrossRef]

42. Bluestone, H.; Kronman, M.P.; Suskind, D.L. Fecal Microbiota Transplantation for Recurrent Clostridium difficile Infections in
Pediatric Hematopoietic Stem Cell Transplant Recipients. J. Pediatric. Infect. Dis. Soc. 2018, 7, e6–e8. [CrossRef]

43. Moss, E.L.; Falconer, S.B.; Tkachenko, E.; Wang, M.; Systrom, H.; Mahabamunuge, J.; Relman, D.A.; Hohmann, E.L.; Bhatt,
A.S. Long-term taxonomic and functional divergence from donor bacterial strains following fecal microbiota transplantation in
immunocompromised patients. PLoS ONE 2017, 12, e0182585. [CrossRef]

44. Spindelboeck, W.; Schulz, E.; Uhl, B.; Kashofer, K.; Aigelsreiter, A.; Zinke-Cerwenka, W.; Mulabecirovic, A.; Kump, P.K.; Halwachs,
B.; Gorkiewicz, G.; et al. Repeated fecal microbiota transplantations attenuate diarrhea and lead to sustained changes in the fecal
microbiota in acute, refractory gastrointestinal graft- versus -host-disease. Haematologica 2017, 102, e210–e213. [CrossRef]

45. Biernat, M.M.; Urbaniak-Kujda, D.; Dybko, J.; Kapelko-Słowik, K.; Prajs, I.; Wróbel, T. Fecal microbiota transplantation in the
treatment of intestinal steroid-resistant graft-versus-host disease: Two case reports and a review of the literature. J. Int. Med. Res.
2020, 48, 300060520925693. [CrossRef]

46. Kaito, S.; Toya, T.; Yoshifuji, K.; Kurosawa, S.; Inamoto, K.; Takeshita, K.; Suda, W.; Kakihana, K.; Honda, K.; Hattori, M.; et al.
Fecal microbiota transplantation with frozen capsules for a patient with refractory acute gut graft-versus-host disease. Blood Adv.
2018, 2, 3097–3101. [CrossRef] [PubMed]

47. Kakihana, K.; Fujioka, Y.; Suda, W.; Najima, Y.; Kuwata, G.; Sasajima, S.; Mimura, I.; Morita, H.; Sugiyama, D.; Nishikawa, H.;
et al. Fecal microbiota transplantation for patients with steroid-resistant acute graft-versus-host disease of the gut. Blood 2016,
128, 2083–2088. [CrossRef]

48. Qi, X.; Li, X.; Zhao, Y.; Wu, X.; Chen, F.; Ma, X.; Zhang, F.; Wu, D. Treating Steroid Refractory Intestinal Acute Graft-vs.-Host
Disease with Fecal Microbiota Transplantation: A Pilot Study. Front. Immunol. 2018, 9, 2195. [CrossRef] [PubMed]

49. Van Lier, Y.F.; Davids, M.; Haverkate, N.J.E.; De Groot, P.F.; Donker, M.L.; Meijer, E.; Heubel-Moenen, F.C.J.I.; Nur, E.; Zeerleder,
S.; Nieuwdorp, M.; et al. Donor fecal microbiota transplantation ameliorates intestinal graft-versus-host disease in allogeneic
hematopoietic cell transplant recipients. Sci. Transl. Med. 2020, 12. [CrossRef] [PubMed]

50. Shouval, R.; Youngster, I.; Geva, M.; Eshel, A.; Danylesko, I.; Shimoni, A.; Beider, K.; Fein, J.A.; Sharon, I.; Koren, O.; et al.
Repeated Courses of Orally Administered Fecal Microbiota Transplantation for the Treatment of Steroid Resistant and Steroid
Dependent Intestinal Acute Graft Vs. Host Disease: A Pilot Study (NCT 03214289). Blood 2018, 132, 2121. [CrossRef]
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Abstract: The interplay between diet and gut microbiota has gained interest as a potential contributor
in pathophysiology of irritable bowel syndrome (IBS). The purpose of this study was to compare
food components and gut microbiota patterns between IBS patients and healthy controls (HC) as
well as to explore the associations of food components and microbiota profiles. A cross-sectional
study was conducted with 80 young adults with IBS and 21 HC recruited. The food frequency
questionnaire was used to measure food components. Fecal samples were collected and profiled by
16S rRNA Illumina sequencing. Food components were similar in both IBS and HC groups, except in
caffeine consumption. Higher alpha diversity indices and altered gut microbiota were observed in
IBS compared to the HC. A negative correlation existed between total observed species and caffeine
intake in the HC, and a positive correlation between alpha diversity indices and dietary fiber in
the IBS group. Higher alpha diversity and gut microbiota alteration were found in IBS people who
consumed caffeine more than 400 mg/d. Moreover, high microbial diversity and alteration of gut
microbiota composition in IBS people with high caffeine consumption may be a clue toward the
effects of caffeine on the gut microbiome pattern, which warrants further study.

Keywords: irritable bowel syndrome; microbiota; microbiome; food components; nutrients

1. Introduction

Irritable bowel syndrome (IBS) is a chronic functional gastrointestinal disorder with
an estimated prevalence of 10% around the globe [1]. This common functional disorder
has significant impacts on patients’ quality of life as well as increases enormous economic
burdens of on healthcare systems [1,2]. IBS patients suffer from various ranges of symptoms,
including abdominal pain/discomfort, abdominal bloating, and alteration in the bowel
habits [3]. While the pathophysiology of IBS is not well understood, the interplay between
diet and the gut microbiota has gained interest in recent years [4].

Diet is one of the known triggers and/or exacerbators of IBS symptoms [5]. Up to 70%
of IBS patients associate their symptoms to specific foods such as dairy products, caffeine,
raw vegetables, beans, peas, hot spices, fried foods, alcohol, fatty foods, as well as wheat
products [3,6,7]. Although individuals may have selective food choices, dietary patterns,
intake of calories, proteins, carbohydrates, and fats by patients with IBS is comparable to
community controls [6].

The microbial composition in patients with IBS has been reported to be different from
healthy individuals, despite the fact that their dietary patterns were found similar [6].
Studies show lower microbial diversity as well as a decrease in abundance of Ruminococ-
caceae, Bifidobacterium, Faecalibacterium, and Erysipelotrichaceae in IBS patients compared to
healthy individuals. In addition, a higher abundance of Lactobacillus and Ruminococcus was
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reported in IBS patients [8,9]. Although evidence supports that IBS patients have altered
gut microbiota profiles, it is still largely unknown about the microbial signature that can
characterize these patients and their symptoms [6].

Diet as an important environmental factor has a strong impact on the gut micro-
biota enterotypes [5,6]. Diet enriched in protein and animal fat is associated with the
Bacteroides enterotype, whereas a diet enriched in carbohydrate is related to the Prevotella
enterotype [10]. Research also shows that the gut microbiota that belongs to the Firmicutes
and Bacteriodetes phyla have an imperative role in the metabolism of carbohydrates and
proteins by producing health-beneficial short-chain fatty acid (SCFAs) [11,12]. SCFAs are
essential to fuel the intestinal epithelial cells and strengthen the gut barrier function [12].
In recent years, the interplay between diet and microbiota has emerged as an important
pathological basis for IBS, which requires further investigation [4,13,14]. Moreover, the role
of caffeine consumption on microbiome composition has been evaluated in different dis-
eases, but limited studies have assessed the impact of caffeine in the IBS population [15,16].
Thus, in the present study, we aimed to assess the differences in nutrient intake and gut
microbiota patterns between IBS and healthy control (HC) groups; meanwhile, we explored
the associations between gut microbial community and food components in both IBS and
HC groups.

2. Materials and Methods
2.1. Setting and Subjects

The present study was an extension of a randomized clinical trial titled “Precision
Pain Self-Management in Young Adults with IBS” (P20 NR016605-01) [17]. In this trial,
80 people with IBS diagnosed by a gastroenterologist were enrolled in a longitudinal study.
We used the data from the baseline session of this clinical trial and also recruited 21 healthy
participants in the study. A convenience sampling method was used in the parent random-
ized controlled trial (RCT) and recruitment of healthy controls. A retrospective post hoc
power analysis was conducted using the G-power program to examine if the sample size
reached enough power to detect the effect IBS group on the alpha diversity compared to
HC group. The powers of 0.86 for the total observed species (sobs) and 0.91 for Shannon
index were obtained when assuming Laplace distribution of the parent response variables.

The inclusion criteria for the enrollment of IBS people were: (1) Men and women
18–29 years of age, (2) with a diagnosis of IBS from a healthcare provider using the Rome
III or IV criteria, and (3) able to read and speak in English. The exclusion criteria were: (1)
Having other chronic painful conditions including but not limited to fibromyalgia, chronic
pelvic pain or chronic intestinal cystitis, infectious diseases (hepatitis, HIV, MRSA), celiac
disease or inflammatory bowel disease, and diabetes mellitus, (2) serious mental health
conditions (e.g., bipolar disorder, schizophrenia, mania), (3) women who were pregnant or
post-partum 3 months, or (4) regular use of opioids, iron supplements, prebiotics/probiotics
or antibiotics, and/or substance abuse. The criteria for recruitment of HC were the same
as those for the IBS group, except that HC group did not have a history of IBS. The study
was approved by the Institutional Review Board of the University of Connecticut. The
information of the research study was explained to the participants, and all the participants
provided written informed consent.

2.2. Data Collection

Both IBS and HC groups completed demographic and food frequency questionnaires
via a Research Electronic Data Capture (REDCap) software/system. After receiving explicit
instructions from a research team member, the participants were requested to collect their
fecal samples using the OMNIgene GUT tubes (DNA Genotek Inc., Ottawa, ON, Canada)
and delivered the sample to the lab via a drop-box. The fecal samples were aliquoted into
bead tubes and were stored in a −80 ◦C freezer until further analysis.
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2.3. Outcome Meaures
2.3.1. Assessment of Daily Food Components

The food frequency questionnaire (FFQ) [18] was used to assess the participants’
dietary patterns. The questionnaire contained questions indicating the frequency of various
types of foods, e.g., bread and savory biscuits, cereals, potatoes, rice and pasta, meat and
fish, dairy products and fats, sweets and snacks, drinks, soups, sauces and spreads, fruits,
and vegetables. The FFQ data was processed using Diet*Calc software developed by
the National Institutes of Health National Cancer Institute [19] to obtain data of nutrient
and food group intake. The estimation of daily food components based on 24-h dietary
recall were calculated according to the portion size for participants’ food energy (kcal),
protein (g), total fat (g), cholesterol (mg), carbohydrate (g), dietary fiber (g), alcohol (g),
and caffeine (mg).

2.3.2. Fecal Sample DNA Extraction and Microbiome Sequencing

The fecal sample processing, sequencing, and analysis were conducted at the Univer-
sity Center of Microbial Analysis, Resources, and Services using the protocols developed
and tested by our team [20,21]. The bacterial DNA were extracted from 0.25 g of the fecal
sample using the MoBio Power Soil or PowerMag Soil DNA isolation kit (MoBio Laborato-
ries, Inc, Carlsbad, CA, USA) in accordance with the manufacturer’s instruction for the
Eppendorf epMotion 5076 Vac liquid handling robot or manually. Then, the V4 region of
the 16S rRNA gene of the microbial community was sequenced using the Illumina platform.
For the microbiome analysis, we used the Mothur software. Alpha diversity, including
sobs, Simpson, and Shannon indices were used to evaluate the complexity of the whole
microbial community. Beta diversity represented by Bray–Curtis dissimilarity was used to
indicate the inter-subjects’ variation in the bacterial composition. Multidimensional scaling
(MDS) based on Bray–Curtis dissimilarity was used to identify the microbial clustering
patterns and assess the relationships with food component intakes.

2.4. Statistical Analysis

The demographic characteristics of the participants were presented with frequency
and percentage for categorical variables, and mean, standard deviation, and range for
continuous variables. A chi-square test and Fisher’s exact test were conducted to check
the association between the demographic characteristics and the groups, and the Wilcoxon
rank-sum test was conducted to investigate differences of age, number of household
members, and daily food component intakes between the IBS and HC groups using R
3.6.0. For analysis of microbiota composition, we dropped operational taxonomic unit
(OTUs) in which a ratio of zero counts was identified in more than 90% of the samples,
and performed the linear discriminant analysis effect size (LEfSe) method provided at
https://huttenhower.sph.harvard.edu/galaxy. An alpha level for the Kruskal–Wallis test
and a threshold for the effect size were 0.05 and 2, respectively. To compare the alpha
diversity between the IBS and HC groups, a Wilcoxon rank-sum test was used and the
propensity score weighting method was further used to control confounding variables in
weighed regression models. The Kruskal–Wallis test was utilized to identify differences in
alpha diversity among groups and Spearman’s rho correlation to examine the association
between the alpha diversity and daily caffeine and dietary fiber intake. Lastly, based
on Bray–Curtis dissimilarity, non-metric multidimensional scaling (NMDS) ordination
for beta diversity was performed, and we fitted environmental variables related to food
components onto the ordination to investigate the association between the beta diversity
and food components using the ‘vegan’ package in R.

3. Results
3.1. Demographic Characteristics of the IBS and HC Groups

In total, 80 individuals with IBS and 21 HC were included in the study. There were no
significant differences of age, gender, race, ethnicity, education, caregiver type, employment
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status, marital status, and number of household members between the IBS and healthy
control groups (Table 1).

Table 1. Demographic characteristics of the participants.

Demographics N HC
(n = 21)

IBS
(n = 80) p-Value

Gender
Female 72 11 (52.38%) 61 (76.25%) 0.060
Male 29 10 (47.619%) 19 (23.75%)
Race

White 71 9 (42.86%) 62 (77.50%) 0.070
Asian 16 6 (28.57%) 10 (12.50%)

African–American 12 4 (19.05%) 8 (10.00%)
Not reported 2 2 (9.52%) 0 (0.00%)

Ethnicity
Non-Hispanic 84 16 (76.19%) 68 (85.00%) 0.360

Hispanic 11 4 (19.05%) 7 (8.75%)
Not reported 6 1 (4.76%) 5 (6.25%)

Education
High school or lower 8 2 (9.52%) 6 (7.50%) 0.151

Some college 63 16 (76.19%) 47 (58.75%)
Associate degree 3 1 (4.76%) 1 (1.25%)
Bachelor degree 16 2 (9.52%) 14 (17.50%)
Master degree 12 0 (0.00%) 12 (15.00%)

Primary caregiver
Parent/legal guardian 53 14 (66.67%) 39 (48.75%) 0.117

Self 46 6 (28.57%) 40 (50.00%)
Other 2 1 (4.76%) 1 (1.25%)

Employment status 0.269
Student 75 18 (85.71%) 57 (71.25%)

Working now 22 2 (9.52%) 20 (25.00%)
Unemployed 4 1 (4.76%) 3 (3.75%)
Marital status
Never married 98 21 (100.00%) 77 (96.25%) 1

Married 3 0 (0.00%) 3 (3.75%)
IBS subtype

IBS-C 9 N/A 9 (11.00%)
IBS-D 5 N/A 5 (7.00%)
IBS-M 66 N/A 66 (82.00%)

Medical care setting type
Primary 15 N/A 15 (19.00%)

Secondary 6 N/A 6 (7.00%)
Primary + secondary 22 N/A 22 (28.00%)

None 37 N/A 37 (46.00%)

Mean (SD) Range

HC IBS IBS HC p-value

Age (years) 20.14
(1.39)

20.39
(2.57) 18–23 18–28 0.071

Household members 4.19
(1.81) 3.29 (1.48) 1–9 1–7 0.034

Duration of IBS (years) N/A 4.01 (2.67) 1–13 N/A N/A
IBS-C, IBS constipation, IBS-D, IBS diarrhea, IBS-M, IBS-mixed (constipation + diarrhea), N/A, Not applicable.

3.2. Food Componnets in the IBS and HC Groups

Daily food component intakes were calculated for food energy, protein, fat, cholesterol,
carbohydrate, dietary fiber, alcohol, and caffeine. There was no significant difference in
daily intakes of various food components between the IBS and HC groups except in caffeine
consumption (p = 0.024) (Figure 1). The IBS group had higher daily caffeine intake with an
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average of 246.42 mg/d. The details of daily food components intakes in both groups is
shown in Table 2.
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Mean (SD) Median (Range)

HC IBS HC IBS
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Dietary fiber (g) 19.79 (9.06) 18.44 (10.03) 16.97
(5.55–39.52)
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(3.54–66.61)
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3.3. Fecal Microbiota Pattern in the IBS and HC Groups
3.3.1. Total Number of OTUs

A total of 483,740 OTUs were identified and analyzed in the study. Respectively,
381,900 OTUs belonged to the IBS group and 101,840 OTUs belonged to the HC group.

3.3.2. Fecal Microbiota Composition in the IBS Compared to the HC

The linear discriminant analysis effect size (LEfSe) was utilized to identify the key phy-
lotype responsible for the differences between the IBS and HC groups (Figures 2 and 3). At
the phylum level, the IBS group exhibited significantly higher abundance of Verrucomicrobia
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phylum compared to the HC group. At the class level, Verrucomicrobia, Coriobacteriia, Bacilli,
and Erysipelotrichia were more abundant in the IBS group than the HC group. At the order
level, we observed higher abundance of Verrucomicrobiales, Coriobacteriales, Lactobacillales,
and Erysipelotrichales in the IBS group compared to the HC group. At the family level,
there was higher abundance of Coriobacteriaceae, Porphyromonadaceae, Verrucomicrobiaceae,
Lachnospiraceae, and Erysipelotrichaceae in the IBS group, while a higher abundance of
Prevotellaceae was observed in the HC group. Among various genera, Parabacteroides,
Blautia, Lachnospiraceae-unclassified 1, Lachnospiraceae-unclassified 2, Veillonella, Oscillibacter,
Flavonifractor, Ruminococcaceae-unclassified, Odoribacter, Erysipelotrichaceae-unclassified, and
Akkermansia were relatively more abundant in the IBS group compared to the HC. However,
the abundance of Prevotella was more abundant in the HC group compared to the IBS group
(Figures 2 and 3).
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Figure 2. Taxonomic differences of fecal microbiota between IBS and HC groups. (a) Taxonomic cladogram based on
the linear discriminant analysis effect size (LEfSe) analysis. (b) IBS-enriched taxa are indicated with a negative linear
discriminant analysis (LDA) score (red) and taxa enriched in HC have a positive score (green).
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3.3.3. Fecal Microbiota Diversity in the IBS Compared to the HC Group

Among various alpha diversity indices, total observed species (sobs) and the Shannon
index were significantly higher in the IBS group compared to the HC group (Figures 4 and 5).
However, beta-diversity using the Bray–Curtis index was not structurally different between
the two groups. In order to reduce the confounding effects of demographics and food
intakes on gut microbiome between the IBS and HC groups, we further applied propensity
score weighting methods to give weights to all subjects and run a weighted regression
model. The results consistently showed significant difference in alpha diversity indices
(sobs: β = 0.188, t = 2.374, p = 0.020; Shannon: β = 1.918, t = 2.539, p = 0.013).
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3.4. Associations between Fecal Microbiota Diversity and Food Component Intakes

Among different nutrient intakes, we observed a significant correlation between
caffeine intake and sobs in the HC group (Figure 6). Moreover, the dietary fiber intake was
significantly associated with alpha diversity indices including sobs and the Shannon index
in the IBS group (Figure 7).
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Figure 6. Correlation between caffeine intake and alpha diversity in the IBS and HC groups. (a) Correlation between total 
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Figure 6. Correlation between caffeine intake and alpha diversity in the IBS and HC groups. (a) Correlation between total
observed species (sobs) and caffeine intake. (b) Correlation between Shannon index and caffeine intake.
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Figure 7. Correlation between dietary fiber and alpha diversity in the IBS and HC groups. (a) Correlation between total
observed species (sobs) and dietary fiber intake. (b) Correlation between Shannon index and dietary fiber intake.

3.5. Fecal Microbiota Patterns Associated with the Daily Caffeine Intake

Due to the high daily consumption of caffeine in the IBS group, we further explored
the impact of caffeine intake on the fecal microbiota composition and diversity. Thus, we
divided the IBS group into two subgroups including High-IBS and Low-IBS. High-IBS
refers to IBS people who consumed caffeine more than 400 mg/day and Low-IBS indicating
IBS subjects with less than 400 mg/day caffeine consumption. This caffeine consumption
cut-off was based on the US Food and Drug Administration (FDA) recommendation [22,23].

Various genera were more abundant in the High-IBS group compared to the Low-
IBS and also the HC groups. Among different genera, Parabacteroides, Lachnospiraceae-
unclassified, Ruminococcaceae-unclassified, and Oscillibacter had high relative abundance in
IBS people with high consumption of caffeine (Figures 8 and 9).
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The High-IBS group also had a higher alpha diversity profile compared to the Low-IBS
and HC groups using the sobs and Shannon indices. Interestingly, the bacterial diversity
was higher in the Low-IBS group compared to the HC (Figures 10 and 11).

248



J. Pers. Med. 2021, 11, 35
J. Pers. Med. 2021, 11, x FOR PEER REVIEW 13 of 19 
 

 

 

Figure 10. Total observed species (sobs) diversity among High-IBS, Low-IBS and HC groups. 

High-IBS: Caffeine consumption more than 400 mg/day; Low-IBS: Caffeine consumption less than 

400 mg/day;  indicates mean. 

 

Figure 11. Shannon diversity among High-IBS, Low-IBS and HC groups. High-IBS: Caffeine con-

sumption more than 400 mg/day; Low-IBS: Caffeine consumption less than 400 mg/day;  indi-

cates mean. 

3.6. Associations between Fecal Microbiota Diversity and Food Component Intakes in the High-

IBS, Low-IBS, and HC Groups 

In terms of the association between bacterial diversity and food component intakes, 

we observed a negative correlation between sobs and caffeine intake within the HC group. 

However, there was no significant correlation between alpha diversity (sobs and Shannon 

index) and caffeine intake in both High-IBS and Low-IBS groups (Supplementary Materi-

als Figure S1). Similarly, we did not identify any correlation between alpha diversity and 

dietary fiber intake in all three groups (Figure S2). No significant associations were iden-

tified among beta diversity and various food components including caffeine and dietary 

fiber intakes among High-IBS, Low-IBS, and HC groups (Figure S3). 

4. Discussion 

The results of the present study revealed that among various food components, caf-

feine intake was significantly different between IBS participants and the healthy controls 

Figure 10. Total observed species (sobs) diversity among High-IBS, Low-IBS and HC groups.
High-IBS: Caffeine consumption more than 400 mg/day; Low-IBS: Caffeine consumption less than
400 mg/day;

J. Pers. Med. 2021, 11, x FOR PEER REVIEW 5 of 19 
 

 

3.2. Food Componnets in the IBS and HC Groups 

Daily food component intakes were calculated for food energy, protein, fat, choles-

terol, carbohydrate, dietary fiber, alcohol, and caffeine. There was no significant difference 

in daily intakes of various food components between the IBS and HC groups except in 

caffeine consumption (p = 0.024) (Figure 1). The IBS group had higher daily caffeine intake 

with an average of 246.42 mg/d. The details of daily food components intakes in both 

groups is shown in Table 2. 

 

Figure 1. Difference in daily caffeine intake between irritable bowel syndrome (IBS) and healthy 

control (HC) groups;  indicates mean. 

Table 2. Daily food component intakes. 

 Mean (SD) Median (Range) 

 HC IBS HC IBS 

Food energy (kcal) 1965.82 (791.06) 1793.41 (761.95) 
1837.46 (705.94–

3768.59) 

1692.51 (320.12–

4223.59) 

Protein (g) 83.31 (37.13) 73.29 (39.40) 83.05 (21.84–147.22) 60.48 (10.61–216.97) 

Fat (g) 87.80 (41.55) 77.46 (36.56) 96.45 (21.81–182.24) 73.40 (9.90–176.68) 

Cholesterol (mg) 278.76 (84.29) 228.06 (123.41) 291.71 (52.14–507.28) 205.45 (9.02–543.25) 

Carbohydrate (g) 211.73 (84.29) 201.33 (84.90) 194.76 (86.60–398.42) 186.39 (27.94–453.60) 

Dietary fiber (g) 19.79 (9.06) 18.44 (10.03) 16.97 (5.55–39.52) 17.31 (3.54–66.61) 

Alcohol (g) 4.99 (4.56) 5.56 (5.19) 4.06 (0.01–15.60) 4.30 (0.00–19.16) 

Caffeine (mg) * 82.93 (94.67) 246.42 (297.42) 38.24 (0.55–293.77) 129.92 (0.06–1273.84) 

* Significant difference in median of caffeine intake (p < 0.05). 

3.3. Fecal Microbiota Pattern in the IBS and HC Groups 

3.3.1. Total Number of OTUs 

A total of 483,740 OTUs were identified and analyzed in the study. Respectively, 

381,900 OTUs belonged to the IBS group and 101,840 OTUs belonged to the HC group. 

3.3.2. Fecal Microbiota Composition in the IBS Compared to the HC 

The linear discriminant analysis effect size (LEfSe) was utilized to identify the key 

phylotype responsible for the differences between the IBS and HC groups (Figures 2 and 

indicates mean.

J. Pers. Med. 2021, 11, x FOR PEER REVIEW 13 of 19 
 

 

 

Figure 10. Total observed species (sobs) diversity among High-IBS, Low-IBS and HC groups. 

High-IBS: Caffeine consumption more than 400 mg/day; Low-IBS: Caffeine consumption less than 

400 mg/day;  indicates mean. 

 

Figure 11. Shannon diversity among High-IBS, Low-IBS and HC groups. High-IBS: Caffeine con-

sumption more than 400 mg/day; Low-IBS: Caffeine consumption less than 400 mg/day;  indi-

cates mean. 

3.6. Associations between Fecal Microbiota Diversity and Food Component Intakes in the High-

IBS, Low-IBS, and HC Groups 

In terms of the association between bacterial diversity and food component intakes, 

we observed a negative correlation between sobs and caffeine intake within the HC group. 

However, there was no significant correlation between alpha diversity (sobs and Shannon 

index) and caffeine intake in both High-IBS and Low-IBS groups (Supplementary Materi-

als Figure S1). Similarly, we did not identify any correlation between alpha diversity and 

dietary fiber intake in all three groups (Figure S2). No significant associations were iden-

tified among beta diversity and various food components including caffeine and dietary 

fiber intakes among High-IBS, Low-IBS, and HC groups (Figure S3). 

4. Discussion 

The results of the present study revealed that among various food components, caf-

feine intake was significantly different between IBS participants and the healthy controls 

Figure 11. Shannon diversity among High-IBS, Low-IBS and HC groups. High-IBS: Caffeine
consumption more than 400 mg/day; Low-IBS: Caffeine consumption less than 400 mg/day;

J. Pers. Med. 2021, 11, x FOR PEER REVIEW 5 of 19 
 

 

3.2. Food Componnets in the IBS and HC Groups 

Daily food component intakes were calculated for food energy, protein, fat, choles-

terol, carbohydrate, dietary fiber, alcohol, and caffeine. There was no significant difference 

in daily intakes of various food components between the IBS and HC groups except in 

caffeine consumption (p = 0.024) (Figure 1). The IBS group had higher daily caffeine intake 

with an average of 246.42 mg/d. The details of daily food components intakes in both 

groups is shown in Table 2. 

 

Figure 1. Difference in daily caffeine intake between irritable bowel syndrome (IBS) and healthy 

control (HC) groups;  indicates mean. 

Table 2. Daily food component intakes. 

 Mean (SD) Median (Range) 

 HC IBS HC IBS 

Food energy (kcal) 1965.82 (791.06) 1793.41 (761.95) 
1837.46 (705.94–

3768.59) 

1692.51 (320.12–

4223.59) 

Protein (g) 83.31 (37.13) 73.29 (39.40) 83.05 (21.84–147.22) 60.48 (10.61–216.97) 

Fat (g) 87.80 (41.55) 77.46 (36.56) 96.45 (21.81–182.24) 73.40 (9.90–176.68) 

Cholesterol (mg) 278.76 (84.29) 228.06 (123.41) 291.71 (52.14–507.28) 205.45 (9.02–543.25) 

Carbohydrate (g) 211.73 (84.29) 201.33 (84.90) 194.76 (86.60–398.42) 186.39 (27.94–453.60) 

Dietary fiber (g) 19.79 (9.06) 18.44 (10.03) 16.97 (5.55–39.52) 17.31 (3.54–66.61) 

Alcohol (g) 4.99 (4.56) 5.56 (5.19) 4.06 (0.01–15.60) 4.30 (0.00–19.16) 

Caffeine (mg) * 82.93 (94.67) 246.42 (297.42) 38.24 (0.55–293.77) 129.92 (0.06–1273.84) 

* Significant difference in median of caffeine intake (p < 0.05). 

3.3. Fecal Microbiota Pattern in the IBS and HC Groups 

3.3.1. Total Number of OTUs 

A total of 483,740 OTUs were identified and analyzed in the study. Respectively, 

381,900 OTUs belonged to the IBS group and 101,840 OTUs belonged to the HC group. 

3.3.2. Fecal Microbiota Composition in the IBS Compared to the HC 

The linear discriminant analysis effect size (LEfSe) was utilized to identify the key 

phylotype responsible for the differences between the IBS and HC groups (Figures 2 and 

indicates mean.

3.6. Associations between Fecal Microbiota Diversity and Food Component Intakes in the
High-IBS, Low-IBS, and HC Groups

In terms of the association between bacterial diversity and food component intakes,
we observed a negative correlation between sobs and caffeine intake within the HC group.
However, there was no significant correlation between alpha diversity (sobs and Shannon
index) and caffeine intake in both High-IBS and Low-IBS groups (Supplementary Materials
Figure S1). Similarly, we did not identify any correlation between alpha diversity and di-
etary fiber intake in all three groups (Figure S2). No significant associations were identified
among beta diversity and various food components including caffeine and dietary fiber
intakes among High-IBS, Low-IBS, and HC groups (Figure S3).

4. Discussion

The results of the present study revealed that among various food components, caf-
feine intake was significantly different between IBS participants and the healthy controls in
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young adults. Moreover, the microbiome diversity and composition of IBS people were
distinct from healthy controls. Correlation analysis of diet and microbiome showed a sig-
nificant association between caffeine intakes with alpha diversity. Moreover, microbiome
diversity was higher in the IBS group who consumed caffeine more than 400 mg/day
compared to the IBS low caffeine consumption and HC groups.

4.1. Differences in Food Components between IBS and HC

The pathophysiology of IBS from the nutritional aspect is multifaceted and unsettled.
IBS is a term to describe various presentations of a dysfunction and no single process can
be determined as its pathophysiology [24]. There is no evidence to propose that people
who developed IBS in the past had a significantly distinctive diet from healthy people [24].
This study supports evidence from previous research which shows that the intake of main
food components such as carbohydrate, calories, proteins, and fats in people who currently
suffer from IBS is similar to healthy adults [25,26]. While people with IBS traits may
report certain food items associated with their symptoms, the overall food intake pattern is
comparable to a healthy community [6].

The results of the present study showed higher daily consumption of caffeine in IBS
people compared to healthy controls. In contrast to our findings, one study reported
similar caffeine intake with a mean of 1.7 servings/day in people with IBS and healthy
controls [27]. Caffeine’s role as a trigger of IBS symptoms is unknown, but reducing its
intake is recommended to improve reflux symptoms in people with IBS [6]. In addition,
research shows that caffeine influences gut motility in healthy people. However, its role in
people with IBS is not clear, which requires further investigations [27,28].

Current IBS dietary guidelines mainly focus on increasing dietary fiber and reduction
of fat, caffeine, and alcohol intakes [29,30]. The theory behind the dietary restriction is that
caffeine, high-fat food content, and alcohol may play roles in triggering IBS symptoms,
and dietary fiber can help to reduce symptoms [13]. While the association between dietary
restriction and IBS symptoms has been reported in studies, data regarding the manipulation
of a dietary plan in IBS people are still inconsistent [30,31].

4.2. Differences in the Gut Microbiota between IBS and HC

The microbiota is an extremely diverse and metabolically active community that can
play an imperative role in health and disease [32]. The host–microbiota interactions as a
mutualistic ecosystem is beneficial for both host and microbiota [32,33]. A growing body
of evidence is proposing gut microbiota dysbiosis as potential pathogenesis of IBS [1].

Two major phyla, Firmicutes and Bacteroidetes, constitute around 90% of the known
bacteria in the gastrointestinal (GI) tract [34]. While we did not see any difference in
the abundance of these phyla between IBS people and healthy controls, other studies
reported contradictory results. One study found a higher abundance of Bacteroidetes and a
lower abundance of Firmicutes in IBS people [35]. However, other studies reported lower
abundance of Bacteroidetes in people with IBS [11,36]. Among other phyla, we observed
a high abundance of Verrucomicrobia. Other studies also reported an elevated abundance
of Proteobacteria and Actinobacteria in IBS people [36,37]. The variation in abundance of
different phyla in IBS may be a clue toward alteration of gut microbiota that influences
IBS symptoms.

Research suggests that healthy people harbor three types of enterotypes, including
Bacteroides, Prevotella, and Ruminococcus [38]. Consistently, our results showed a higher
abundance of Prevotella in healthy people. However, one study reported high abundance
of Ruminococcus in people with IBS [11]. Among other genera, we observed higher abun-
dance of Blautia in IBS people. Similarly, another study found a higher abundance of
this genus in people with IBS [11]. Previous studies revealed Blautia and its belonged
family, Lachnospiraceae, as a potential marker of imbalance in the gut, are associated with
numerous diseases [39–42]. Reports of various genera in different studies suggest a large
inter-individual variability in microbiota composition, which requires further studies [34].
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Multiple reports have linked IBS pathogenesis with either decreased or unchanged of
microbial diversity and richness [9]. Most of the studies reported lower sobs, Chao 1, and
Shannon diversities in people with IBS [35,36,43]. In addition, some studies showed no dis-
tinction in terms of microbiome diversity between IBS patients and healthy people [44,45].
In contrast to the earlier findings, we observed higher sobs and Shannon diversities in IBS
people compared to healthy controls. Supporting this, a study found higher microbiome
diversity in IBS patients compared to healthy controls [46]. A possible explanation for
these contradictory findings might be related to various techniques of DNA sequencing
in different regions for specifying the diversity of the gut microbiota in studies as well as
difference in the IBS population [47]. Thus, further studies using similar methodologies are
required to help to distinguish IBS people from healthy ones via gut microbiota diversity.

4.3. Correlations between Food Components and the Gut Microbiota in IBS

Diet and it’s macro/micronutrient components may influence the gut microbiome
either directly or indirectly [48]. The majority of the recent studies have focused on the
effects of low fermentable oligo-, di-, and monosaccharides and polyols (FODMAPs) diet
in IBS. A low-FODMAP diet has been linked to a reduced abundance of Bifidobacteria,
with potential health benefits still under debate [49]. Other studies have reported lower
bacterial abundance following the introduction of a low-FODMAP diet compared with a
habitual diet [50,51].

While in the low-FODMAP diet, consumption of fermentable and short-chain carbo-
hydrate is restricted, adequate intakes of fiber is encouraged [52]. Dietary fiber has soluble
and insoluble components. Though the insoluble fiber is utilized less by the gut microbiota,
the soluble components of dietary fiber such as inulin and fructans are mostly used by
the gut microbiota as an energy source and help to develop some beneficial bacteria, such
as Lactobacillus and Bifidobacteria [53]. Research also shows the enrichment of the genus
Prevotella in individuals with higher fiber diets [31]. Prevotella is a genus with a high
abundance in healthy people. Thus, dietary fiber may help to develop beneficial microbiota
in the human gut.

In the current study, we observed a positive correlation between dietary fiber intake
and microbial diversity in people with IBS. Higher diversity and richness of the microbiota
has also been shown in Agrarian vs. Western diet style communities [31,53]. Fermentation
of dietary fiber by microbial fulfills some beneficial influence by production of metabolites.
One of the metabolites is short-chain fatty acids (SCFA), which can reduce colonic pH and
inhibits the growth of pathogens [54]. Butyrate, as another metabolite provides energy
substrate to enterocytes and some bacterial species and enhances the expression of some
epithelial tight junction proteins [11,54]. More research is required to determine the role of
specific gut microbiota in the fermentation of fiber and the specific metabolites produced.

Our results revealed higher bacterial diversity as well as a higher abundance of some
genus, including Parabacteroides, Oscillibacter, Lachnospiraceae-unclassified, and Ruminococcaceae-
unclassified in the IBS group who consumed caffeine more than 400 mg/d compared to the
HC. Studies on the role of caffeine consumption on microbial diversity and composition are
limited. In one study, regular consumption of coffee more than 45 mL/day was associated
with a higher level of Prevotella, Bacteroides, and Porphyromonas in healthy individuals [55].
In another study using a spontaneous mouse model of metabolic syndrome, daily intake of
coffee or its components for 16 weeks changed the abundance of various genera such as
Coprococcus, Blautia, and Prevotella in mice [56]. Caffeine, as the major water-soluble compo-
nent of coffee, influences gut microbiota diversity and patterns. However, its role in the
alteration of the gut microbiota remains unclear and requires further investigation [56,57].

Our study may have several limitations that need to be considered when interpreting
the results. The study population was narrowed to young adults with IBS and HC. The
majority of the young adults recruited in the study were students and their lifestyle may
affect their diet and eventually, their gut microbiota patterns. Moreover, using Rome III or
IV criteria for recruitment of IBS people might make our study population heterogonous.
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The small sample size may affect the generalization of the results. Further studies with a
larger sample size and more homogenous population by considering the history of diet and
medication use are recommended to determine the interplay between diet and microbiota
in IBS symptoms.

5. Conclusions

In summary, our result revealed similar nutrient intake patterns between IBS people
and HC groups except in the daily consumption of caffeine. The gut microbiome commu-
nities were significantly different between the IBS and HC groups in terms of microbial
diversity and compositions. Higher caffeine consumption in the IBS group was also as-
sociated with higher bacterial diversity as well as an alteration in microbial composition.
Taken together, these results suggest the influence of caffeine on gut microbiota patterns.
Further studies are necessary to investigate the interplay between caffeine intake and
gut microbiota.
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tion between total Shannon index and dietary fiber intake. High-IBS: Caffeine consumption more
than 400 mg/day; Low-IBS: Caffeine consumption less than 400 mg/day. Figure S3: Correlation
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feine consumption more than 400 mg/day; Low-IBS: Caffeine consumption less than 400 mg/day;
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Abstract: The interaction between genetic susceptibility, epigenetic, endogenous, and environmental
factors play a key role in the initiation and progression of autoimmune thyroid diseases (AITDs).
Studies have shown that gut microbiota alterations take part in the development of autoimmune
diseases. We have investigated the possible relationship between gut microbiota composition and
the most frequent AITDs. A total of nine Hashimoto’s thyroiditis (HT), nine Graves–Basedow’s
disease (GD), and 11 otherwise healthy donors (HDs) were evaluated. 16S rRNA pyrosequencing
and bioinformatics analysis by Quantitative Insights into Microbial Ecology and Phylogenetic
Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) were used to
analyze the gut microbiota. Beta diversity analysis showed that gut microbiota from our groups
was different. We observed an increase in bacterial richness in HT and a lower evenness in GD in
comparison to the HDs. GD showed a significant increase of Fusobacteriaceae, Fusobacterium and
Sutterella compared to HDs and the core microbiome features showed that Prevotellaceae and Prevotella
characterized this group. Victivallaceae was increased in HT and was part of their core microbiome.
Streptococcaceae, Streptococcus and Rikenellaceae were greater in HT compared to GD. Core microbiome
features of HT were represented by Streptococcus, Alistipes, Anaerostipes, Dorea and Haemophilus.
Faecalibacterium decreased in both AITDs compared to HDs. PICRUSt analysis demonstrated
enrichment in the xenobiotics degradation, metabolism, and the metabolism of cofactors and
vitamins in GD patients compared to HDs. Moreover, correlation studies showed that some bacteria
were widely correlated with autoimmunity parameters. A prediction model evaluated a possible
relationship between predominant concrete bacteria such as an unclassified genus of Ruminococcaceae,
Sutterella and Faecalibacterium in AITDs. AITD patients present altered gut microbiota compared to
HDs. These alterations could be related to the immune system development in AITD patients and the
loss of tolerance to self-antigens.

Keywords: Graves–Basedow’s diseases; Hashimoto’s thyroiditis; autoimmunity; gut microbiota
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1. Introduction

Autoimmune thyroid diseases (AITDs) are the most common organ-specific autoimmune disorders.
Within AITDs, Hashimoto’s thyroiditis and Graves–Basedow’s disease are the most frequent conditions.

Hashimoto’s thyroiditis (HT) is identified by lymphocytes infiltration in the thyroid gland which
leads to the destruction of thyroid follicles, and the production of autoantibodies against thyroid
peroxidase (TPO, 90–95%) and thyroglobulin (TG, 20–50%) [1,2].

On the other hand, Graves’ disease (GD) is identified by the production of autoantibodies of the
immunoglobulin G1 subclass that are directed against the thyrotropin receptor which induces thyroid
hormone overproduction and also causing hypertrophy and hyperplasia of thyroid cells [3].

The etiology of AITDs is thought to be multifactorial, arising from an interaction between genetic
susceptibility, epigenetic, and various endogenous and environmental factors [4].

Several studies have provided evidence for genetic factors, however, the concordance rate for
AITDs among monozygotic twins is in the range of 35–55% compared with 3% in dizygotic twins,
emphasizing that other important factors, such as the environment, are implicated in the pathogenesis
of AITD [5–7].

Gut microbiota takes part in the homeostasis of the host, and especially in the regulation of the
immune system. Gut microbiota is a promising agent for the development of personalized medicine as
it collects information about its host, like diet or environmental factors [8]. Recent evidence suggest
that the alteration of gut microbiota may have connection with autoimmune diseases [9–12].

Notwithstanding, the pathogenic link between gut microbiota and AITDs has not been fully
elucidated, with only a few studies in humans [13–15]. Zhao et al., demonstrated that HT patients had
an altered gut microbiota profile compared with the healthy population and this profile correlated
with clinical parameters [16].

In the present study, we aimed to investigate the gut microbiota profile in patients affected by
AITD, both HT and GD; and its relationship with autoimmunity markers.

2. Materials and Methods

2.1. Participants

A total of 18 AITD patients (nine GD patients and nine HT patients) were recruited at the
Department of Endocrinology and Nutrition of Virgen de la Victoria University Hospital (Málaga,
Spain). Moreover, we included 11 otherwise healthy donors (HDs) with similar anthropometric features
as study groups, without thyroid disease and without family history of thyroid disease. These HDs
were euthyroid and goiter was not evident on physical examination. Individuals were included from
those who were attended at the hospital during the first half of 2018.

All participants with GD were receiving synthetic antithyroid (Neo-tomizol, 5–20 mg of dose) and
HT patients were receiving levothyroxine treatment (Eutirox, 50–175 µg of dose) and presented an
acceptable control of the disease which allowed us to focus on the pathophysiology of autoimmunity
and not on thyroid dysfunction. The exclusion criteria were: pregnancy; type 1 or type 2 diabetes
mellitus; other autoimmune disease; and chronic and/or severe gastrointestinal disorders. We also
excluded patients and HDs with extreme diets, those exposed to antibiotic therapy (current or previous
3 months), chronic drugs different to AITDs medication that alter microbiota profile, those taking
probiotic agents, and the non-acceptance of informed consent.

The study protocol was approved by the Medical Ethics Committee of Virgen de la
Victoria University Hospital and conducted according to principals of the Declaration of Helsinki.
All participants enrolled provided their written informed consent and were also verbally informed of
the characteristics of the study.
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2.2. Anthropometric and Laboratory Measurements

Anthropometric measurements, including body weight, height, and waist and hip circumferences,
were collected. Peripheral venous blood samples were obtained after 8 hours of fasting. The serum
was centrifuged at 4000 rpm for 15 min at 4 ◦C and frozen at −80 ◦C until analysis. Levels of
cholesterol, triglycerides, HDL-cholesterol, and glucose were analyzed by enzymatic methods (Randox
Laboratories Ltd., Crumlin, UK) and glycosylated hemoglobin (HbA1c) was determined by Dimension
Vista autoanalyzer (Siemens Healthcare Diagnostics, Munich, Germany).

Laboratory markers of autoimmunity [thyroid stimulating immunoglobulin (TSI),
anti- thyroperoxidase (Anti-TPO)] and thyroid profile [thyroid-stimulating hormone (TSH),
free thyroxine (FT4), free triiodothyronine (FT3)] were quantified as part of the routine patient
management in the case of AITD patients, with exception of HDs. Reference ranges were
for TSH 0.4–5 µIU/mL; FT4 11–22 pmol/L; and FT3 2–5 pmol/L. TSI was measured by Elecsys
Anti-TSHR test following the manufacturer’s protocols (Roche, Basel, Switzerland) in a Roche
electrochemiluminometric analyzer (Cobas e 801, Roche, Basel, Switzerland). Anti-TPO was detected
by Atellica IM Anti-Thyroid Peroxidase assay (SIEMENS Healthineers, Erlangen, Germany) using
the Atellica IM Analyzer (SIEMENS Healthineers, Erlangen, Germany). Reference ranges were for
TPO-Ab > 60 IU/mL and TSI-Ab > 2 IU/mL.

2.3. DNA Extraction from Faecal Samples

Faecal samples were obtained by the volunteers, immediately refrigerated, and carried to the
laboratory, where they were stored at −80 ◦C for subsequent analysis.

DNA was extracted from 200 mg of stool using the QIAamp DNA stool Mini kit (Qiagen,
Hilden, Germany) according to the manufacturer’s protocols. DNA concentration was measured
by absorbance at 260 nm, and the purity was verified by determining the A260/A280 ratio with a
Nanodrop spectrophotometer (Nanodrop Technologies, Wilmington, DE, USA).

2.4. Sequencing of 16S rRNA and Bioinformatic Analysis

The Ion 16S Metagenomics Kit (Thermo-Fisher Scientific Inc., Waltham, MA, USA) was used to
amplified the ribosomal 16S rRNA gene region from stool DNA, with two primer sets (V2–4–8 and V3–6,
7–9) covering the most of the hypervariable regions of the 16S rRNA region in bacteria. The libraries
were created using the Ion Plus Fragment Library Kit (Thermo Fisher Scientific, Waltham, MA, USA).
Barcodes were added to each sample using the Ion Xpress Barcode Adapters kit (Thermo Fisher
Scientific, Waltham, MA, USA). Emulsion PCR and sequencing of the amplicon libraries were carried
out on an Ion 520 chip (Ion 520TM Chip Kit) using the Ion Chef System and Torrent S5TM system,
respectively, using the Ion 520TM/530TM Kit-Chef (Thermo Fisher Scientific, Waltham, MA, USA)
according to the manufacturer’s instructions. Torrent Suite™ Server software (Thermo Fisher Scientific,
Waltham, MA, USA), version 5.4.0, with default parameters for the 16S Target Sequencing (bead loading
≤30, key signal ≤30, and usable sequences ≤30) was used to base calling and run demultiplexing.
Raw data is stored at the public repository SRA database (NCBI) with the BioProject PRJNA666641.

The open-source Quantitative Insights into Microbial Ecology (QIIME2, version 2019.7) software
was used to analyze the quality sequences [17,18] and also was used for diversity analysis and
subsequent taxonomic analysis through clustering with search [19] and the reference base Greengenes
version 13_8 at 97% of identity.

Metagenome function was predicted by Phylogenetic Investigation of Communities by
Reconstruction of Unobserved States (PICRUSt) analysis through picking operational taxonomic
units (OTUs) from the Greengenes database, as described elsewhere [20]. The resulting OTU table was
employed to predict the metagenome at three different Kyoto Encyclopedia of Genes and Genomes
(KEGG) Orthology (KO) levels (level (L) 1 to L3).
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2.5. Statistical Analysis

The open-source Statistical Analysis of Metagenomic Profiles [STAMP (v 2.1.3)] [21] was used to
compare the differential abundances of taxa, KEGG categories, and subcategories, with the White’s
non-parametric test. α- and β-diversities were analyzed within QIIME2, through the diversity plugin:
β-diversity metrics employed a permutational multivariate analysis of variance (PERMANOVA) with
999 permutations, while α-diversity metrics involved a Kruskal–Wallis test.

Anthropometric and clinical characteristics were analyzed with the IBM SPSS Statistics 25 (IBM,
Armonk, NY, USA). The relationship between gut microbiota and thyroid variables was analyzed using
Spearman´s correlations models. Binary logistic regression models were fitted to assess the relationship
between thyroid profile and autoimmunity markers with particular features as independent predictors.
To control for potential confounding factors, their results were adjusted by age (years), sex (male
or female) and body mass index (BMI, kg/m2). The results were described as mean and dispersion
(standard deviation, SD) for quantitative variables and as a proportion for qualitative variables.
Statistical significance was established at p < 0.05. p values were corrected for multiple comparisons
using the Benjamini–Hochberg method at 0.1, and reported as q-value, when appropriate.

3. Results

3.1. Clinical Data Study

All subjects (n = 29) were of Spanish nationality and born and grown in the Andalusian community.
The study groups showed similar clinical characteristics about age, sex, anthropometric parameters,
or metabolic profile, without finding statistically significant differences (p > 0.05). Our AITD patients
had normalized thyroid function by medical treatment, substitution with levothyroxine in HT patients,
or antithyroid drugs in patients with GD. However, we found significant differences in autoimmunity
between the three study groups. TPO-Ab was significantly increased in HT and TSI-Ab was significantly
increased in GD. HDs values of TPO-Ab resulted in slightly increased levels than expected for healthy
individuals. In addition, according to serum TSH range our HDs were euthyroid. These demographic
and clinical data of the subjects are summarized in Table 1.

Table 1. Clinical and demographic characteristics of patients and healthy donors.

Parameters HT Patients
(n = 9)

GD Patients
(n = 9)

HDs
(n = 11) p-Value

Sex (M/F, % F) (0/10, 100) (2/7, 77.8) (4/7, 63.5) 0.113
Age (years, mean ± SD) 40.3 ± 9.6 46.2 ± 8.6 48.8 ± 6.2 0.062

Smokers (%) 30 44.4 —– 0.515
Family history of Thyroid disease (%) 50 33.3 —– 0.484
Time of evolution of thyroid disease

(months, mean ± SD) 134.4 ± 101.3 16.4 ± 22.6 —– 0.001 *

Anthropometry
Weight (kg, mean ± SD) 63.4 ± 11.7 66.6 ± 13.0 69.5 ± 8.1 0.354
BMI (kg/m2, mean ± SD) 24.9 ± 5.8 25.2 ± 4.7 25.0 ± 2.0 0.831
Waist c. (cm, mean ± SD) 81.4 ± 13.8 86.1 ± 10.9 87.9 ± 8.4 0.321
Hip c. (cm, mean ± SD) 98.3 ± 10.7 101.6 ± 11.3 97.0 ± 4.1 0.391

Blood pressure
Systolic (mmHg, mean ± SD) 121.6 ± 11.3 119.6 ± 16.2 128.8 ± 17.3 0.636
Diastolic (mmHg, mean ± SD) 75.3 ± 5.1 75.0 ± 15.4 78.6 ± 8.7 0.449

Analytical metabolic
Glucose (mg/dL, mean ± SD) 86.6 ± 6.5 93.4 ± 4.1 91.0 ± 8.3 0.078

HbA1c (%, mean ± SD) 5.1 ± 0.3 5.3 ± 0.4 5.3 ± 0.3 0.29
Total-C (mg/dL, mean ± SD) 178.5 ± 44.7 192.2 ± 29.6 192.4 ± 47.8 0.568
LDL-c (mg/dL, mean ± SD) 107.7 ± 39.1 109.4 ± 10.2 110.1 ± 38.1 0.758
HDL-c (mg/dL, mean ± SD) 56.8 ± 11.7 65.6 ± 22.2 60.5 ± 12.9 0.666

TGs (mg/dL, mean ± SD) 70.1 ± 16.6 85.2 ± 31.9 108.8 ± 59.0 0.132
CRP (mg/dL, mean ± SD) 3.1 ± 0.0 3.2 ± 0.4 4.1 ± 1.4 0.116

Thyroid profile
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Table 1. Cont.

Parameters HT Patients
(n = 9)

GD Patients
(n = 9)

HDs
(n = 11) p-Value

TSH (µIU/mL, mean ± SD) 2.6 ± 2.8 3.3 ± 8.5 2.2 ± 1.0 0.030 *
FT4 (pmol/L, mean ± SD) 15.4 ± 2.2 15.2 ± 3.1 15.2 ± 1.3 0.76
FT3 (pmol/L, mean ± SD) 3.8 ± 0.2 5.5 ± 2.3 4.8 ± 0.4 0.002 *

TPO-Ab (IU/mL, mean ± SD) 1186.7 ± 358.4 792.0 ± 621.7 160.3 ± 381.3 0.001 *
TPO-Ab > 60 IU/mL (P/N, % P) (10/0, 100) (6/3, 66.7) (2/9, 18.2) 0.000 *

TSI-Ab (IU/mL, mean ± SD) 3.5 ± 7.2 16.8 ± 34.1 0.8 ± 0.1 0.000 *
TSI-Ab > 2 IU/mL (P/N, % P) (1/9, 10) (9/0, 100) (0/11, 0) 0.000 *

BMI, body mass index; CRP, C-reactive protein; FT3, free triiodothyronine; FT4, free thyroxine; GD, Graves–Basedow’s
disease; HDs, healthy donors; HDL-c, high-density lipoprotein; Hip c. hip circumference; HT, Hashimoto’s thyroiditis;
LDL-c, low-density lipoprotein cholesterol; M/F, male/female; P/N, positive/negative ratio; TGs, triglycerides; Total-C,
total cholesterol; TPO-Ab, thyroperoxidase antibody; TSI-Ab thyroid stimulating immunoglobulin antibody; Waist c.
waist circumference. * Significant differences p < 0.05.

3.2. Gut Microbiota Diversity in AITD Patients

After the quality assessment, a total of 2,785,614 quality 16S rRNA gene sequences with an average
of 26,056 ± 29,024 sequences per sample passed the filters. In order to compare the populations of
the different groups, dimensional Principal Coordinates Analysis plots of UniFrac distances were
used. Qualitative (Unweighted UniFrac distance) and quantitative (Weighted Unifrac distance)
relationships showed differences among the groups (p = 0.003 and p = 0.002, respectively) (Figure 1A,B).
Further analysis showed that our AITD patients did not show significant differences (p > 0.05), but they
showed statistically significant differences with respect to HDs (p < 0.05 in groups, AITD patients
related to HDs) (Figure S1).

Figure 1. Estimation of diversity in healthy donors (HDs), Graves–Basedow’s disease (GD)
patients, and Hashimoto’s thyroiditis (HT) patients. Clustering of fecal bacterial communities
according to the different study groups by PCoA using unweighted and weighted UniFrac distances.
Statistical differences were observed between groups. (A) Unweighted UniFrac distances, p = 0.003;
and (B) Weighted UniFrac distances, p = 0.002. Dots belong to the HDs group; square to GD patients
and cone to HT patients. (C) Shannon Diversity and Evenness indexes and estimated richness among
different groups were compared. All values are mean ± SD. * p < 0.05 GD patients vs. HDs; $ p < 0.05
HT patients vs. HDs. Circles belong to the HDs; squares to GD patients and triangles to HT patients.
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Alpha diversity was assessed using rarefaction curves. Richness, estimated by the observed
features index, demonstrated a significant increase in HT patients versus HDs (p = 0.022), while no
differences were found between the other groups. Evenness, calculated by the Pielou index, showed a
significant decreased in GD patients compared with HDs (p = 0.03) and no significant differences
among the other groups. Finally, biodiversity, estimated by the Shannon index, suggested no significant
differences among the study groups (Figure 1C).

3.3. Gut Microbiota Profile in AITD Patients

Dominant bacterial phyla were Bacteroidetes and Firmicutes, while Proteobacteria, Actinobacteria,
and Tenericutes shared smaller proportions, between 1–10%, in the different study groups.
No differences were observed between our study groups at this taxa level (Figure 2A).

Figure 2. (A) Microbiota profile of faecal samples from the study groups at the phylum level. (B) Families
statistically significant between the study groups. (C) Genera statistically significant between the study
groups. * Indicates significant differences between groups, q < 0.1 (q = p-FDR-corrected).
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At the family level, Fusobacteriaceae was significantly increased in GD patients when compared
with HT patients and HDs (q = 0.01). Furthermore, a significantly higher abundance was found in
HT patients when compared with HDs for Victivallaceae (q = 0.03). In addition, Rikenellaceae was
significantly decreased in GD patients compared with HT patients (q = 0.04) (Figure 2B).

Finally, at the genus level, Fusobacterium was significantly higher in GD patients compared with
HDs and also compared with HT patients (q = 0.02 and q = 0.009, respectively). Faecalibacterium was
significantly lower in GD patients compared to HDs and also compared with HT patients (q = 0.02 and
q = 0.07, respectively). An unclassified genus of the family Rikenellaceae was significantly lower in
GD patients compared to HT patients (q = 0.03). The genus Sutterella was significantly higher in GD
patients compared to HDs (q = 0.10) (Figure 2C).

3.4. Core Microbiome in AITD Patients and HDs

After studying the differences between groups, we wondered if each group was characterized by
a concrete core gut microbiome. We investigated the core microbiome of each group, meaning those
features that were shared among the 85% of the samples of each study group. At the family level,
we observed that a total of 15 identified families were shared by all the volunteers of the study (See
the complete list in Table S1). Interestingly, Pasteurellaceae was only shared between AITD patients.
Victivallaceae and Streptococcaceae were characteristic of the HT group and Prevotellaceae of GD group;
while Christensenellaceae seemed to be characteristic of the HDs group (Figure 3A). On the other
hand, 12 identified genera were shared between the three groups (See the complete list in Table S1).
Collinsella and Roseburia belonged to the core microbiome of both AITDs, while Butyricimonas was
shared by GD patients and HDs. HT patients were the group with a greater number of characteristic
features: Streptococcus, Alistipes, Anaerostipes, Dorea and Haemophilus; while Prevotella was characteristic
of the GD group. No characteristic genus was found in the HDs group (Figure 3B).

Figure 3. (A) Venn diagram of the core microbiome from the study groups at the family level. (B) Venn
diagram of the core microbiome from the study groups at the genus level. (C) Significant differences
in predicted functional composition at level 2 of Kyoto Encyclopedia of Genes and Genomes (KEGG)
Pathways of the gut microbiota among HDs (white) and GD patients (dark grey). Only functional
capacities with p < 0.1 are shown; q = p-value FDR-corrected.
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3.5. Differences in the Metabolic Profiles of Gut Microbiota between AITD Patients and HDs

PICRUSt metagenome predictions were used to identify those microbial functions that were
enriched or degraded in AITD patients and HDs. In tier 2 of the KO categories, we observed no
significant differences between HT patients and HDs or between both pathologies. However, we found
pathways significantly different between GD patients and HDs at this level (Figure 3C).

Moreover, in tier 3 of the KO categories, we have not observed changes between HT patients and
HDs. Nevertheless, we have detected a high number of pathways significantly different between GD
patients and HDs at this level. The 27 pathways can be observed in detail in Figure S2.

3.6. AITDs Could Be Related to Bacterial Profile

Correlation studies were performed to establish a relationship between the thyroid autoimmunity
of the study groups and their gut microbiota. Significant univariate correlations were found between
the number of specific bacteria with thyroid autoimmunity markers like thyroperoxidase antibody
(TPO-ab) (positive correlation with Alistipes; Ruminococcaceae unclassified and Enterobacteriaceae, so
negative correlation with Faecalibacterium) and thyroid stimulating immunoglobulin antibody (TSI-ab)
(positive correlation with Lactobacillus and Pasteurellaceae and negative correlation with Faecalibacterium)
(Table 2).

Table 2. Simple linear correlation relationship of autoimmunity and thyroid profile with gut microbiota
(taxa abundances: samples at phylum, family, and genus levels).

Plylum Level Family or Genus Level TPO-Ab TSI-Ab

Bacteroidetes —– —–
Alistipes r = 0.432; p = 0.019 —–

Firmicutes —– —–
Lactobacillaceae —– r = 0.517; p = 0.006

Lactobacillus —– r = 0.517; p = 0.006
Faecalibacterium r = −0.453; p = 0.014 r = −0.406; p = 0.036
Ruminococcaceae

unclasificated r = 0.408; p = 0.028 —–

Proteobacteria —– —–
Enterobacteriaceae r = 0.416; p = 0.025 —–

Pasteurellaceae —– r = 0.441; p = 0.021

TPO-Ab, thyroperoxidase antibody; TSI-Ab, thyroid stimulating immunoglobulin antibody.

When we evaluated the possible implication of the gut microbial community in global AITDs,
we found that an unclassified genus of Ruminococcaceae was associated with a 49.4% rise in the odds
of the TPO-ab presence in the crude model. This trend was also maintained in the adjusted model
by BMI, age, and sex (Table 3). Likewise, we found that Sutterella could influence in TSI-ab presence,
with a 35.1% increase in either the crude model or the adjusted model. However, Faecalibacterium was
associated with a decrease of 94.1% in the odds of presenting positive TSI autoimmunity in the crude
model, so this relationship is maintained in the adjusted model (Table 4).

Table 3. Adjusted model for autoimmunity thyroid profile (Positive TPO-Ab >60 IU/mL)—Gut
microbiota community.

Positive TPO Autoimmunity (TPO-Ab >60 IU/mL)

Ruminococcaeae unclassified
OR (CI) p

Crude model 1.494 (1.041–2.145) 0.029
Model 1 1.474 (1.026–2.413) 0.038

Binary logistic regression analysis: Odds ratio (OR) and 95% confidence interval (CI) for the association between
positive thyroid autoimmunity and gut microbiota. Positive levels of TPO antibody were defined as a level
>60 IU/mL. Dependent variable: positive TPO autoimmunity—TPO-Ab levels <60 IU/mL (0) vs. TPO-Ab levels
>60 IU/mL (1). Model 1: adjusted for sex, age, and BMI.
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Table 4. Adjusted model for autoimmunity thyroid profile (Positive TSI-Ab >2 IU/mL)—Gut
microbiota community.

Positive TSI Autoimmunity (TSI-Ab >2 IU/mL)

Sutterella Faecalibacterium
OR (CI) p OR (CI) p

Crude model 1.351 (1.053–1.734) 0.018 0.059 (0.004–0.958) 0.047
Model 1 1.499 (1.041–2.158) 0.030 0.025 (0.001–0.900) 0.044

Binary logistic regression analysis: ddds ratio (OR) and 95% confidence interval (CI) for the association between
positive thyroid autoimmunity and gut microbiota. Positive levels of TSI antibody were defined as a level >2 IU/mL.
Dependent variable: positive TSI autoimmunity—TSI-Ab levels <2 IU/mL (0) vs. TSI-Ab levels >2 IU/mL (1).
Model 1: adjusted for sex, age, and BMI.

4. Discussion

Our study has pointed out that the AITDs share common as well as particular gut microbiome
profile features that differ from the stool profile of HDs and those dysbiotic amounts of particular taxa
could be related with the development of the disease.

Autoimmune disease initiation has been linked to gut microbiota dysbiosis by different mechanisms
such as molecular mimicry, the by-stander activation, and the epitope spreading. In recent years,
patients bearing with an already established AITDs have also been reported to show alterations of the
gut microbial composition [22–24].

Gut microbiome profiles from our study groups are different according to beta diversity analysis.
However, further comparisons showed that the main differences belonged to the microbiota populations
of HDs and each one of the AITDs studied. Thus, AITDs could share some patterns of their
microbiota profiles. AITDs microbial changes have been classically attributed to morphological changes.
Interestingly, patients with HT presented ultrastructural morphological changes of distal duodenum
enterocytes, a variation in microvillus thickness, and a leaky gut condition [22]. On the other hand,
GD frequently impacts the hollow organs with lower levels of gastric acid production, increased the
intestinal motility which along with autoimmune gastritis contributing to diarrhea. Thus, GD might
reshape the intestinal microbial composition through intestinal physiological modifications [7].

The increased bacterial richness that we have observed in our HT patients might be related to
the bacterial overgrowth in the intestinal tract of these hypothyroid patients [25,26]. On the other
hand, our GD patients showed a lower evenness in their microbiota populations in comparison to the
HDs, which could indicate that in this population, could be dominant features. However, biodiversity
did not show any significant differences among our study groups, which was aligned with reported
works [15,27,28].

Our core microbiome results have demonstrated that the identified features at family and genus
levels were mainly shared by our three study groups. However, despite this apparent normality,
we have found some specific bacteria characteristic of each particular condition.

Taking together the differences in the feature abundances of each group and their respective
core microbiomes, we have found important trends associated with each study group. About GD
patients, we found a significant increase in the Fusobacteriaceae family and its Fusobacterium genus in GD.
Fusobacterium is a well-recognized pro-inflammatory bacterium [29] and Fusobacterium nucleatum has
been already reported in GD patients [30]. Sutterella was found higher in abundance in GD patients than
in HDs. Sutterella has been positively related to prediabetes and inflammatory bowel disease [31,32]
and it has an immunomodulatory role and pro-inflammatory capacity in the human gastrointestinal
tract [33]. Moreover, we have also found a remarkable relationship between Prevotellaceae family and
Prevotella genus with GD group through the core microbiome analysis. Prevotella has been linked with
GD patients [27] and other autoimmune diseases like rheumatoid arthritis [34]. Thus, Fusobacterium,
Sutterella and Prevotella, features relative to GD disease, have been linked to processes related to
inflammation and autoimmunity.
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In the case of HT patients, the family Victivallaceae is increased and is part of their core microbiome.
Nevertheless, the role of these bacteria is little known, only some reports linking Victivallaceae with diet
and obesity [35]. Another member of the core microbiome is the family Streptococcaceae and its genus
Streptococcus that in combination with Rikenellaceae, which has been found increased in the HT patients
concerning GD, have been reported to take part in the decrease in alpha-diversity in type 1 diabetes,
with the capacity to behave as pathogens [36]. This is also the case of Haemophilus, which most of its
species are considered pathobionts. H. influenzae has been reported to induce autoimmune disease by
molecular mimicry of an epitope [37]. Furthermore, other core microbiome features of HT like Alistipes,
Anaerostipes or Dorea could also be treated as pathobionts that within the disease environment could
develop the capacity to damage the host. Together these results suggest that it could be possible that
with a larger study these pathobionts from the core microbiome of the tested groups could reach a
statistical significance between them.

About HDs related to AITDs, the core microbiome launched that Christensenellaceae was
characteristic of this group. This result is compatible with studies that identify Christensenellaceae family
as an important player in human health, associated with human longevity [38] and with lower levels
of BMI [39]. As in the other groups, maybe a longer study could trigger differences in the abundance
of Christensenellaceae with respect to the AITDs. Moreover, our study showed that Faecalibacterium
genus decreases in autoimmune thyroid conditions compared to HDs, which is aligned with previous
works [16,27]. It is important to remark that, although HDs were appropriate for the comparison with
the other groups attending to their anthropometric and biochemical variables (no differences were
observed with respect to the tested groups), the election of volunteers with a lower BMI could be
beneficial for greater differences with respect to the tested groups. This fact could be also considered
about the election of volunteers without TPO-Ab, although it is known that low levels are not relevant
for the clinical practice if they are not accompanied by other variables [40]. These issues will be
considered in future studies.

According to the PICRUSt analysis, GD disease is characterized by enrichment in xenobiotics
degradation and metabolism as well as the metabolism of cofactors and vitamins in comparison to
HDs. This could be related to the fact that GD patients are characterized by hypermetabolism [41] and
could be translated into their microbiota profiles. Moreover, the enrichment in xenobiotics degradation
could be related to the fact of these patients are medicated. This result could be indicative of some
kind of intervention of the gut microbiota in the medication action, as it has been reported with other
drugs [42].

Further analysis was performed to establish a possible relationship between autoimmunity
parameters and specific features. Our analyses showed a positive correlation of TSI-ab with
Pasteurellaceae family shared by AITDs patients. Pasteurellaceae family has been previously correlated
with GD patients [27]. Thus, our correlation studies showed that some members of the gut microbiota
were widely correlated with autoimmunity parameters, indicating that the gut microbiota might be
closely related to the AITDs. Our findings may support future research on the interaction of the
gut microbiota to the development of the AITDs. Likewise, a prediction model evaluated a possible
relationship between predominant concrete bacteria in the AITDs. An unclassified genus of the
Ruminococcaeae family and Sutterella were related to HT patients and GD patients, increasing the risk of
presenting positive TPO-ab and TSI-ab, respectively. On one hand, Ruminococcaceae has been found
as a part of the shared core microbiome of our volunteers [43]. On the other hand, we have already
shown the implication of Sutterella in inflammatory conditions.

The most promising feature seems to be Faecalibacterium. Faecalibacterium has been related to a
decrease of 94.1% in TSI immunity. In addition, inflammatory processes like inflammatory bowel
diseases and colorectal cancer are favored when Faecalibacterium is decreased [44,45]. Moreover, in our
study, Faecalibacterium has been shown as a protective factor, reducing the probability of presenting
TSI-ab related to GD patients. The decrease of Faecalibacterium could indicate a real dysbiosis in
these patients.
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Although this study has several strengths, as the complete characterization of the microbiota,
several limitations to this research must be acknowledged, like the low number of subjects because of
the pilot study nature of our investigation. In this manner, this fact has been advertized throughout the
document. Although further longitudinal investigations are necessary to evaluate the progression of
the AITDs, these results contribute to the increase in scarce knowledge about the relationship between
the gut microbiota and AITDs.

5. Conclusions

In this pilot study, our observations demonstrated a gut dysbiosis in AITD patients, may be
able to contribute to thyroid disease development. Thus, gut dysbiosis might be related to the
immune system development in AITD patients and the loss of tolerance to self-antigens including
thyroglobulin and the autoimmunity that triggers AITD. Even though the studies of microbiome and
their association to predict disease states are useful for personalized medicine, a deeper understanding
of the microbiome might be necessary for the development of evidence-based microbial therapeutics in
AITDs. Furthermore, studies with a greater number of subjects and longitudinal studies investigations
might be required to evaluate the progression of the AITDs. Nevertheless, our results contribute to the
increase in scarce knowledge about the relationship between the gut microbiota and AITDs.
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