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Editorial

Special Issue “Fuzzy Decision Making and Soft
Computing Applications”

Giuseppe De Pietro and Marco Pota *

Institute for High Performance Computing and Networking–National Research Council of Italy (ICAR-CNR),
80131 Naples, Italy; giuseppe.depietro@icar.cnr.it
* Correspondence: marco.pota@icar.cnr.it

Research on fuzzy logic [1] and soft computing for decision making has a long history.
In many fields of application, rule-based fuzzy systems have been employed [2–4] for
their unique properties in solving modelling problems. In particular, decision-making
systems often deal with uncertain data. Moreover, in some fields of application, such
as differential diagnosis in medicine, a meaningful confidence measure is required to be
associated with the classification result in order to show all possible outcomes with the
relative likelihood. Finally, semantically meaningful systems are often required, providing
clear and logical interpretation of the inference process, in order to encapsulate them in
interactive frameworks of cognitive systems, or to enable validation by domain experts.
These issues can be accomplished, on the one hand, by encoding uncertain numerical data
in terms of interpretable linguistic variables [5]. On the other hand, fuzzy rules show a
clear and logical justification for each conclusion [6,7]. Finally, if desired, fuzzy systems
allow classification results to be presented associated with a confidence measure, such as
the probability of different classes [8].

The remarkable progress made by these approaches in various fields underlines their
benefits and is stimulating further research. In particular, despite the remarkable successes
in different tasks, research on these approaches is a field of increasing interest [9], with
regard to theoretical aspects, which are being deepened [10–12], as well as aspects regarding
procedures for learning fuzzy systems optimizing accuracy and/or interpretability, or for
solving mathematical tasks using fuzzy numbers and soft computing [13–18]. Moreover,
these approaches are prone to easily and proficiently be employed in different new fields
of application [19–21].

This Special Issue collects original research articles discussing cutting-edge work as
well as perspectives on future directions in the whole range of theoretical and practical
aspects in this research area. In particular, there are 12 contributions selected for this Special
Issue, representing progresses in the following areas specifically addressed.

1. Theory of fuzzy systems and soft computing. The authors of [10] consider causal
graphs and propose a procedure to explicitly understand underlying assumptions, the
kind of data and methodology needed to understand a given relationship, and how
to develop explicit assumptions with clear alternatives in order to apply a process
of probabilistic elimination. In [11], the authors unambiguously define the relations
“greater than”, “equal to”, and their combination, in the space of all ordered fuzzy
numbers, to solve optimization tasks. Moreover, in [12], a problem of “acceptance of
an optimal solution” is presented in the form of a vector problem of mathematical
programming. The theory of vector optimization is proposed as a mathematical
apparatus for the acceptance of optimal solutions of such a class of problems, and the
analysis and problem definition of decision making under the conditions of certainty
and uncertainty are presented.

2. Learning procedures. In [13], the authors propose two types (“infimum type” and
“supremum type”) of dual double fuzzy semi-metric, as well as different types of
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triangle inequalities, which are used to investigate the convergence. Another contribu-
tion [14] proposes an adaptive-network-based fuzzy inference system (ANFIS) model
for the accurate estimation of signal propagation. Results on benchmark data show
that the proposed model outperforms nondeterministic models in terms of accuracy
and presents flexibility, ease of use, robustness, generalization capability, and an allevi-
ated training process for propagation prediction in complex scenarios. Some authors
contributed with three different papers. In the first [15], to solve the Cauchy problem,
three fuzzy numerical methods, based on the combination of fuzzy transform with
one-step, two-step, and three-step numerical methods, are introduced. The error anal-
ysis of the new fuzzy methods is discussed, showing more accurate results compared
with other existing methods. The other two papers by the same authors [16,17] report
parts I and II of the same voluminous work, where new approximation methods for
solving systems of ordinary differential equations (SODEs) using fuzzy transform
are introduced and discussed. In particular, different modified numerical schemes
and new representations of basic functions are proposed, the error analysis of the
new approximation methods and the properties of the uniform fuzzy partition are
examined, and numerical examples showing improved accuracy are presented. A
further work [18] assesses how three shaking procedures affect the performance of
a metaheuristic General Variable Neighbourhood Search algorithm. The different
schemes were applied on benchmark instances of the Traveling Salesman Problem to
examine the potential advantage of any of the three metaheuristic schemes, showing
similarities and differences among different methods.

3. Decision-making applications employing fuzzy logic and soft computing. Contri-
butions in this field show a variety of possible applications. In the context of the
characterization of basmati rice product value using an image-based grading process,
the authors in [19] propose a model for quality grade testing and identification, us-
ing a novel digital-image-processing- and knowledge-based ANFIS. This approach
provides capabilities to simulate the behaviour of an expert in the characterization of
rice grains using their physical properties, and compared to other machine learning
techniques, its results are promising in terms of classification accuracy and efficiency.
In the field of electron beam (EB) measurements, the author of [20] presents a novel
method of restoring the EB measurements that are degraded by linear motion blur.
The author’s approach is based on a fuzzy inference system and a Wiener inverse
filter, providing autonomy, reliability, flexibility, and real-time execution, in restoring
highly degraded signals without requiring exact knowledge of EB probe size, and a
demonstration is given by comparing ground truth signals with restorations. Finally,
in [21], the motion control of mobile robots in a cluttered environment with obstacles
is considered. In particular, to control the motion of a mobile robot using an eye gaze
coordinate as inputs to the system, the paper presents an intelligent vision-based
gaze guided robot control, utilizing an overhead camera, an eye-tracking device, a
differential drive mobile robot, vision, and an interval-type-2 fuzzy inference tool.
Experiments and simulation results indicate that the system can successfully perform
operator intention, modulating speed and direction accordingly.

Funding: This research received no external funding.
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Abstract: Determining what constitutes a causal relationship between two or more concepts, and how
to infer causation, are fundamental concepts in statistics and all the sciences. Causation becomes
especially difficult in the social sciences where there is a myriad of different factors that are not
always easily observed or measured that directly or indirectly influence the dynamic relationships
between independent variables and dependent variables. This paper proposes a procedure for helping
researchers explicitly understand what their underlying assumptions are, what kind of data and
methodology are needed to understand a given relationship, and how to develop explicit assumptions
with clear alternatives, such that researchers can then apply a process of probabilistic elimination.
The procedure borrows from Pearl’s concept of “causal diagrams” and concept mapping to create
a repeatable, step-by-step process for systematically researching complex relationships and, more
generally, complex systems. The significance of this methodology is that it can help researchers
determine what is more probably accurate and what is less probably accurate in a comprehensive
fashion for complex phenomena. This can help resolve many of our current and future political
and policy debates by eliminating that which has no evidence in support of it, and that which has
evidence against it, from the pool of what can be permitted in research and debates. By defining
and streamlining a process for inferring truth in a way that is graspable by human cognition, we can
begin to have more productive and effective discussions around political and policy questions.

Keywords: causality; statistics; concept-mapping; causal graph

1. Introduction

Causal inference is a key goal for understanding the relationships among phenomena in the real
world that researchers are attempting to study [1] This becomes a challenging task when possible
causal phenomena are numerous, highly interrelated, complex, and complicated to study with
validity [2,3]. As things currently stand, there is no clear method for either promoting correct facts
and high quality and honestly treated evidence, or for eliminating incorrect facts and inferences of
poor quality, or dishonestly treated evidence from the pool of knowledge that is acceptable in policy
debates. This paper proposes a possible method to clarify researchers’ intentions and work, determine
what data are necessary to collect, guide the selection of the methodology of treating the evidence,
and produce possible counterfactual arguments that can be tested to establish a greater probability that
correct inferences are drawn from the data. The hope of this paper is to clarify what is more probably
true from what is less probably true and to streamline the pool of evidence that is permissible in
policy and political debates. High quality and honestly treated evidence gains precedence over, and is
promoted in discussions and debates, at the expense of poor quality and dishonestly treated evidence.

2. Literature Review

“Causality” is defined as “the relationship between something that happens or exists and the
thing that causes it” [4]. Determining causal relations among variables is a challenging and much
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studied topic [1,5–10]. Much of the literature on causal relations comes from the medical field of
epidemiology [11] and is used to infer causal relationships in disease diagnoses and treatment effects
of medical regimens [12]. Causality is also a much studied subject in the social sciences. Its inference is
typically derived from a statistical method or technique or qualitative analysis [6,13–17]. Testing for
Granger Causality, which is a statistical concept where variables that cause effect variables contain
information that predicts effect variables within them, has used “path diagrams” in the literature [18].
This paper specifically draws upon the concept of the “causal graph” described by Pearl [19] as the
basis of this methodology. The causal graph is used alongside “concept mapping” in order to tease
out the underlying assumptions about the nature and relationships among the variables in question.
Casual graphing and concept mapping promote better understandings of the researchers’ assumptions,
and they develop alternative counterfactual cases with different causal graphs. Causal graphing also
could help design research to test the factual and causal validity of the causal graph and, by extension,
the researchers’ concept map [20]. In summary, the researchers and other stakeholders may make
different concept maps and causal graphs according to existing methodologies. The difference with
this proposed method is that it actively seeks to remove all or parts of concept maps and causal graphs
to infer what is more probably true in the real world itself.

A “causal graph is a directed graph that describes the variable dependencies” [21]. Causal
graphs were first developed in the fields of mathematics, computer science, machine learning,
and statistics [1,22,23] but have since evolved to the study of complex phenomena, such as
epidemiology [9] and planning [21,24,25]. While causal graphs are not new tools in several academic
fields and have been used in statistical analyses for developing causal relations after the data collection,
it does not appear that they have been widely used by researchers to sketch assumptions and
hypotheses before the data has been collected.

The ideas expressed here are not new in the field of economics. One of the first two Nobel
Laureates in Economics in 1969, Jan Tinbergen, collected all proposed macroeconomic models in
the late 1930s and built models of the business cycle with a similar technique ([26] pp. 101–130).
Tinbergen “explained his model building as an iterative process involving both hypotheses and
statistical estimation” ([26], p. 103). Morgan (1990) points out that “Despite their usefulness, few
copied his graphical methods” ([26], footnote 9, p. 111).

While Tinbergen’s methods are similar to the concept of causal graph modeling that is described
here, they are not quite the same. Tinbergen was aiming to understand economies and processes
in economies, not to infer causal relations among different social, economic, ecological variables,
and factual conditions. Indeed, the method that is described in this paper is more applicable in
meta-analyses of existing studies and guiding the direction of future research, not as the centerpiece of
individual topical studies. The intention behind this method is to understand what is true and what is
not as true, and to provide a quantitative method for deriving those truths and assessing the quality of
the evidence behind them.

Another process that is similar to this one is known as “group model building” [27–29]. Group
model building is a process that was created by system dynamics researchers to facilitate diverse
stakeholders sharing information across different fields. This is done to solve problems that are
common to these stakeholders by unifying, standardizing, and connecting the information that is
presented by and for the stakeholders in question [27,29]. While this is a useful technique for helping
groups understand problems from many different angles, it is not a generalized way of inferring
causality and truth. Creating and testing different causal graphs with the evidence that is available is a
separate process that aims to produce general knowledge of empirically inferred reality. The goal with
causal graph analyses is to produce a coherent and accurate map of a given concept or problem that is
more probably true than competing alternative maps. It is the process of weeding out models that are
not supported by evidence, more than it is just the production of different models.

Most people have implicit assumptions about how the world works, in addition to possible
desires about how they would like the world to work [15,30–32]. One method for determining the
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underlying assumptions that are implicit in a research project is to map them out through a process
known as “cognitive mapping” [33–37]. Cognitive mapping has been used to understand the implicit
assumptions and decisions made by policymakers in the past [38]. Cognitive maps give rise to different
concept maps, which then are used to produce different causal graphs. It is logically plausible that the
creation of causal graphs in causal modeling is produced by the conceptual maps people make by the
same cognitive maps used by researchers, policymakers, and stakeholders. Indeed, cognitive mapping
is implicit in some research concerning Bayesian networks, which map out the probabilities that a set
of causal conditions relates to a set of observed variables [39–43]. It also has been linked to modeling
ecological systems by researchers [37].

The hypothesis that underpins this perspective is that implicit cognitive maps of researchers,
policymakers, and stakeholders alike result in the production of different conceptual maps of the world.
The interplay between cognitive maps and conceptual maps gives rise to different causal graphs being
produced through the different perceived factual “nodes” (points) and connecting “edges” (relations
or connections between factual nodes) of the researcher, policymaker, and stakeholder. This is different
from existing methods for making the goals of researchers, policymakers, and stakeholders explicit,
such as the Logic Model. Logic models display the connection between different inputs and activities
with different outputs and outcomes [44], in that this method is more free-form and allows the
cognitive maps and implicit biases to be made more readily apparent instead of confining the maps to
a preset form. Different assumptions, perspectives, levels, and degrees of awareness in the cognition
of researchers, policymakers, and stakeholders result in the perception of different “facts”, different
interpretations of those “facts”, and different edges among the “facts”. This could be done implicitly
and subconsciously by the researcher and policymaker, but it also is hypothetically possible for it to be
done deliberately through conscious choice and selection of facts, interpretations of facts, and edges
among facts [10,32,45,46].

A hypothetical example of this is between people who identify as “conservatives” and “liberals”
looking at the same situation facing their shared nation. The conservative may claim that the moral
integrity of the society is eroding as time passes, while a progressive may have a different outlook on
change and difference in a society from one time to another. The evidence suggests that people on
both sides will look for, perceive, and interpret the situation differently in mutually exclusive way.
For example, the environment cannot both be and not be affected by humans’ economic activities,
and it cannot both be and not be significant for human survival. Different problems are identified,
different choices and preferences are made, and different actions are seen as more or less acceptable
because of those differences between the general psychological phenotypes. The obvious problem
with relying on these subconscious assumptions and biases alone is that the individual person who
is making the policy decisions may not accurately understand, represent, or interpret the meaning
of the world. Without an accurate map of how the world works, policymakers are less able to make
the best possible choices for the people living in the society and for their own benefit as policymakers
making decisions that affect the world they live in. One can think back to the times before navigational
and weather/oceanographic sensory technology had advanced to the point where ships could orient
themselves accurately on Earth. Without the production of these technologies, which aid navigation
and the ability to detect and predict conditions around the ships, sailors’ lives were easily lost on the
tempestuous oceans, and valuable cargo was lost and destroyed in transit around the world more often
than now. The analogy could be carried over to the fate and condition of nations and human societies.

3. The Methodology

The goal of this paper is not to advocate a singular methodology or tool for studying complex
phenomena in our universe. Rather, the goal is to propose a new tool that can be used to help determine
the appropriate tool(s) for studying complex phenomena, and to at least partially overcome the deficits
of human cognition and perception in research and decision-making. By making the assumptions
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explicit rather than implicit in research and policy designs, we can get a firmer grip on what healthy
priorities are, and how to achieve them. Below is an example of a theoretical causal graph (Figure 1).

x1 x2

x3

y1

-

+

?

Error/Unknown
Factors

Figure 1. An example of a theoretical causal graph.

where x factors cause y effect when brought together in this combination. We see that x1 causes x2
which, when combined with x3, produces y1 effect. The plus represents x2 having a positive feedback
effect on y effects (more of x2 leads to more of y1), while x3 has an unknown effect on y1. Notice the
error/unknown factors variable to account for anything else the model misses.

The methodology is simple to describe and works as follows:

1. Draw out the causal graph as the researcher perceives it to be. This is the conceptual mapping
stage, since all causal graphs are ultimately concept maps. Nodes or points in the graph are
facts or conditions, edges between the nodes are interactions and associations among the facts.
The researcher should be free to base this initial step on their own working knowledge, the existing
literature on the subject in question, and any applicable theory;

2. Consult with other researchers, policymakers, and stakeholders to develop alternative facts and
conditions and alternative ways for them to interact with each other through the interaction
edges in the graph;

3. Design research projects to test the validity of the factual nodes and interaction edges that are
produced from Steps 1 and 2:

a It is important to note that this paper is agnostic about the specifics of the designs of the
research, so long as it is logically valid and testable;

b This is where any number of qualitative and quantitative methods can be used;
c It is also a good idea to use multiple methods on the same factual node or interaction edge

to increase the probability of validity. That is often called robustness in research;

4. Out of the population of causal graphs that were created, assign equal probabilities that each one
is valid based on the total number of causal graphs that are explored.

a The probability of the population of causal graphs can never truly equal 1 for complete
validity because there is always an unknown quantity of potential error present in the
population of models, i.e., the unknown unknowns;

b The probabilities can be explicitly Bayesian, empirical Bayesian, or based on flat priors;

5. Consider the quality and source of the evidence that is presented. If quality evidence for a
particular edge or node is present, then that adds to the probability that that edge or node is true
at the expense of other edges and nodes. If there is evidence against a node or edge, it subtracts
from the probability that that edge or node is true without necessarily affecting alternative
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edges and nodes. Poorer quality evidence has less of an effect, or no effect on the probability of
demonstrating truth;

6. Alter the probability of validity for each of the graphs as evidence becomes apparent through
new research. This can be based on Bayesian updating or frequentist testing;

7. Repeat Steps 1 through 6 using a variety of techniques to examine each node and each edge in
the causal graph.

It is important to again note that this procedure is agnostic about the specific research techniques
that are used to infer causality or the truthfulness of factual nodes. Notice how the factual validity
for each of the variables (the nodes in the causal graph) and causal edges (the links in the causal
graph) are not necessarily known, and are rather hypothesized to exist based on past evidence and the
circumspection of the researcher. From this model, we can derive various other models to test for and
identify possible methods for gathering and examining the data. We can see other possible models
below (Figures 2 and 3).

x1 x2

x3

y1

+

-

?

Error/Unknown
Factors

Figure 2. An alternative graph to Figure 1.

x1 x2

x3

y1

+

-

?

Error/Unknown
Factors

Figure 3. An alternative graph to Figure 2.

Notice how parts of the graphs in Figures 2 and 3 changed from Figure 1, representing different
and mutually exclusive hypothetical models that may or may not be more accurate than the
original hypothesis.

These assumptions (that are different from the original causal graph) each then have their own
theoretical and observational bases and their own interpretations of what is present and happening in
the real world outside of the researcher’s perspective and assumptions. With this technique, it is also
possible to model unknown or hypothesized interactions and facts, such as the question mark between
variables x3 and y1. Other models can be constructed using all of the possibilities. For simplicity’s sake,
most of these options in the research design space have been left out. However, if the researcher(s) are
able to get the largest possible collection of causal graphs together while staying relevant to the topic(s)
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at hand, the larger design space should provide a rich environment for testing the factual assumptions
and interactions among the variables. Researchers can then work together across disciplines to
design experiments and determine which data to collect and how in order to “shave away” at the
hypothesis space of the research topic. The surviving causal graphs, which withstand the scrutiny of
the researchers’ efforts, can be said to be more probably true and valid than the other causal graphs that
have aspects that are not valid or which have little to no evidence in support of them. These surviving
causal graphs correspond to Bayesian posteriors or unrejected frequentist hypotheses, in that they are
the end products of analyses.

Figure 4 is an example of a causal graph produced to clarify questions about education policy and
the factors that link in to create academic, social, behavioral, and personal success in students. Using
various data sets and methods of estimation, the most likely causal pathways could be found. Some
researchers will add double-headed causal arrows and reversed arrows.

Level of Parents'
Education

Marital Status of
Parents

Median Income of School
District/Local Government

Territory
Racial Composition

of Family

Age of Parents

Level of Funding
Available for School

Ideological Composition of
the Relevant Territor(ies)

Level of Community
Members' Education

Income of Parents
(Household)

Quality of
Teachers

Quality/Appropriateness
of Academic Curricula

Percevied Relevance of
Academic Curricula by

Students

Academic, Social, Behavioral,
and Personal Outcomes
Achieved by Students

Behavioral Model(s)
Set by Parents

Error/Unknown
Factors

Figure 4. An example causal graph for hypotheses concerning outcomes in education.

There are two ideas that can be deconstructed from taking this holistic approach to education
and educational success. The interrelated subject areas, such as the defined pedagogy, territorial
demographics, the political environment, and parental/familial conditions that the child grows up
in can be broken out from the causal graph into their own interrelated clusters as part of the larger
graph that contains the whole. This would enable collaboration among experts in these various fields
to create a more accurate model of the whole picture of how children develop, learn, and grow into
adults, which can then give us a more accurate map for helping policymakers be better able to see
where and how they might intervene in the given subject area. The second idea is that the whole causal
graph is malleable to the perspective of the researcher in question, and alternatives for hypothesis
testing can easily be developed by simply going through the graphical representation of the problem(s)
at stake to find other possibilities and alternatives. Time stamps can be added to refine the temporal
relationships among the variables.
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4. Implications of this Method for Policy Research

The implications of this method for conducting social science research would allow policy
researchers, policymakers, and stakeholders to better understand not only their own implicit,
subconscious biases and explicit conscious biases, but to move beyond those biases in order to
perceive and study our complex social and environmental worlds accurately. Communication of
divergent beliefs and models would be easier. It is feasible that policymakers, and the researchers
and stakeholders as well, will be able to move beyond disagreements over what may be just different
cognitive maps in order that better choices may be made faster, with less debate, and with greater
efficacy than would ordinarily happen without using this methodology explicitly to understand,
design, and analyze situations and conditions in our social and environmental worlds. At least,
it would be clearer what issues must be resolved and models estimated.

The methodology can also be used as a technique for holding policymakers and researchers more
accountable for their assumptions and their chosen research techniques. Even though the method
itself is agnostic about the methods that are used in research, there are practices for testing validity
and causality that are more or less effective than others. By explicitly drawing the causal graph, it is
easier to tell whether more or less appropriate methods are being used to test the nodes and causal
edges of the graph. By explicitly stating the implicit and explicit biases of the individual through the
process of mapping out their factual and causal assumptions, human societies and organizations that
adopt this method for making choices and understanding the world may be able to more effectively
understand political opponents’ concerns and perspectives, as well as to be more effectively able to
challenge those perspectives and opinions that are not based in evidence both behind closed doors
in negotiations and in front of the fora of the general public. Assumptions totally lacking empirical
verification would stand out.

The most significant benefit of using this methodology is that mutually exclusive opinions on
facts and relations can be more clearly examined. Most of the common controversies in policy debates
stem from competing, mutually exclusive ideas on how the world works, and how it ought to work
for human well-being and survival. From whether to have public sector involvement in the economy,
to the necessity of protecting the environment, the different attitudes, biases, and opinions cannot all
be called of equal value for ensuring human health and well-being. Causal graphs can be used to sort
through those differences in policy preferences and opinions to deliver a clearer picture of common
reality and what is needed for human societies at given times. Those opinions that are supported by
quality evidence can then take priority over those that simply are not, or have evidence against their
empirical validity.

5. Caveats to this Method

The most glaring problem with this methodology is that it does not give instructions on how
to collect data, what data to collect, or how to treat the data when they are collected. It may help
inform research decisions, but it does not give explicit instructions on what to use or when to use it.
This leaves the design of the experiments still open to possible researcher bias and the usual difficulties
with inferring causality with researchers who have underlying assumptions and cognitive biases that
they consciously or subconsciously prefer over other models and methods. Through explicitly stating
the researcher’s hypothesis space and cognitive bias, measures of robustness can be developed for
causal models to see if researchers are truly ruling out other possibilities or whether they are honestly
adhering to sound da identification, collection, and interpreting methods. Ignoring logical possibilities
would be much more difficult.

Another caveat to this research methodology is the possibility for aspects of the causal graphs
to change stochastically during the development of the models and throughout the experiments
and analysis of the data. That is, the structure can change. A policymaker may be in the middle of
developing a causal graph which is presently accurate, but may have dynamic aspects to it which
can change in the near to distant future as aspects of our social world (such as technology and our
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understanding of the world itself) change. In addition to these probable knowledge based changes,
there may also be some aspects of our social world which change due to aesthetic preferences or
changes in relative perspective and attitude. This further complicates the development of these causal
graphs, as the aspects and perspectives of them may change in ways that do not track neatly with
the development and production of our knowledge and awareness. What may be in fashion and
perceived of as desirable now may not be viewed as such in the near to distant future, thus altering the
perspectives on the causal graphs that are developed today or rendering them potentially useless for
achieving the goals of the society in the future. Thus, the dynamic and evolving nature of consciousness
and preferences over time may influence the development of these causal graphs, if not affect the
actual graphs themselves in the content of their facts, interpretations of facts, and interactions among
the variables. In response, more basic social factors related to group dynamics can be added to the
models, such as fundamental psychological processing common to humans. Change itself can become
a part of the model. As different edges and nodes can change over time, and their changing nature can
theoretically be observed, the changes and their effects can be noted and tested. This gives the resulting
models significantly greater empirical validity, and thus enriches our understanding of common reality
to the fullest possible extent that we can achieve.

A third possible problem with this methodology is that there is no method for keeping the model
parsimonious and simple. While this may not be a problem when working with large and complex
topics, it can be said that it is feasible that the models that researchers may make could become too
unwieldy for practical use. A simple method for resolving this while not abandoning the potential
complexity in a subject is for the researcher to narrow their focus initially to a given factual node or a
specific interaction, and then to grow the model from there, limiting it to the practical relevance of
the research in question. The researcher in question, or other researchers can then expand the web of
knowledge in other directions at future times.

6. Conclusions

This paper presents a new tool for researchers and policymakers alike for understanding
complex and interconnected topics of interest and importance to human society as a whole. Through
explicitly stating the assumptions behind the subject, researchers and policymakers can then develop
counterfactual alternative graphs for the subjects of their interest and research, identify data that is
relevant to the subject, develop methods for collecting and analyzing the data, and then systematically
shave away at factual assumptions and hypothetical interactions for which there is little to no quality
evidence. Through this deductive process of elimination, researchers and policymakers alike can
eliminate graphs for which all or parts do not have evidence, and thus, be left with a pool of
possibilities that shrinks in size and increases in the chances of being probably accurate representations
of reality itself.

It is possible that some specific aspects of the graphs may change over time with peoples’ attitudes,
preferences, and perspectives. However, it is assumed explicitly in this paper that the underlying
method of creating causal graphs with fact nodes and interaction edges can be valid throughout time,
space, and context, even if the specific models change over time. The process of shaving away at
conceptual maps with this method can produce a more robust, accurate, and complete representation
of reality that the human mind can comprehend and use for other purposes. By doing so, we can begin
to constructively resolve key policy and political debates as they arise with this common process of
gathering, analyzing, and evaluating evidence from our common reality. The political debates may be
based ultimately in values and opinions. However, not all opinions and values are of equal value for
human society’s health and well-being. This proposed method hopes to help resolve these debates for
that which is factually true and healthful, at the expense of those opinions that are not true, and are
very likely unhealthful for humans in general.
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Abstract: The ordered fuzzy number (OFN) is determined as an ordered pair of fuzzy number (FN)
and its orientation. FN is widely interpreted as imprecise number approximating real number. We
interpret any OFN as an imprecise number equipped with additional information about the location
of the approximated number. This additional information is given as orientation of OFN. The main
goal of this paper is to determine the relation “greater than or equal to” on the space of all OFNs.
This relation is unambiguously defined as an extension of analogous relations on the space of all FN.
All properties of the introduced relation are investigated on the basis of the revised OFNs’ theory.
It is shown here that this relation is a fuzzy one. The relations “greater than” and “equal to” also
are considered. It is proven that the introduced relations are independent on the orientation of the
compared OFNs. This result makes it easier to solve optimization tasks using OFNs.

Keywords: ordered fuzzy number; fuzzy relation; preorder; strict order; equivalence relation

1. Introduction

The concept of ordered fuzzy number (OFN) was intuitively introduced by Kosiński [1–4] as an
extension of the notion of fuzzy number (FN) which is widely interpreted as imprecise approximation
of real number. OFNs’ usefulness follows from the fact that it is interpreted as FN with additional
information about the location of the approximated number. Kosiński [1–4] has determined arithmetic
for OFNs as an extension of results obtained by Goetschel and Voxman [5] for FNs. For formal reasons,
the Kosiński’ theory was revised [6] in such a way that revised OFN definition fully corresponds to the
intuitive Kosiński’s definition of OFN. OFNs are always defined without use of any ordering relation
between FNs. Knowing this fact makes it easier to read the section on ordering relationship between
OFNs. This paper is linked to the revised OFNs’ theory.

In decision analysis, economics and finance, OFNs are frequently employed to evaluate the
alternatives in modelling a real-world problem [7–19]. On the other hand, the OFN theory has
an important disadvantage. This disadvantage is due to the lack of formal mathematical models
associated with OFNs. Therefore, an important goal of further formal research should be to fill these
theoretical gaps.

If any alternatives are evaluated by OFNs then their ranking leads to OFNs’ arrangement which
is pre-given as an ordering relation “greater than or equal to” between OFNs.

Since the notion of OFN is interpreted as an extension of the notion of FN, any formal model
of order between OFNs should be consistent with the fixed ordering relation between FNs. Unlike
in the case of real numbers, FNs have no natural order. A straightforward approach to the ordering
of FNs is to convert each compared FN into a real number. Any procedure of this conversion is
called a “defuzzification method” [20]. Representative examples of FNs’ arrangement using different
defuzzification methods are presented in [20–56]. Each individual defuzzification method, however,
pays attention to a special aspect of an FN. As a consequence, each approach suffers from some defects

Appl. Syst. Innov. 2019, 2, 26; doi:10.3390/asi2030026 www.mdpi.com/journal/asi

15



Appl. Syst. Innov. 2019, 2, 26

that only one real number is associated with each FN. Freeling [57] pointed out that “by reducing the
whole of our analysis to a single number, we are losing much of the information. We have purposely
been keeping throughout our calculations”.

Kosiński and Sztyma [58] introduced defuzzification methods for OFNs. Some applications of
OFN arrangement using defuzzification methods are presented in [8,16,18,19]. On the other side,
in [17], it is shown that the use of defuzzification methods has a significant impact on the ordering of
OFNs. In an extreme case, the use of defuzzification procedures can totally blur the true picture of
arrangement of OFNs. It can lead to results deviating from real ranking of decision alternatives, which
will increase the hazard of making a wrong decision. For this reasons, OFNs arrangement should be
described by a fuzzy relation which compares OFNs pairwise. In this way, we can compare OFNs
without losing information about the imprecision and orientation of evaluated OFNs. This approach is
more realistic.

For FNs, fuzzy order relations can be defined in two ways. First of all, fuzzy order of FNs can be
determined using α-cuts. Representative examples of FNs’ arrangement using α-cuts are presented
in [59–61]. At present, the α-cuts theory dedicated to OFNs is unknown. Therefore, in the current
moment, any formal models of ordering with use of α-cuts cannot be extended to the case of OFNs.
Moreover, Orlovsky [62] defined fuzzy order of FN applying the Zadeh’s Extension Principle [63–65].
This method does not raise any objections.

Therefore, the main goal of presented work is to define such fuzzy order relation between OFN’s
which is consistent with fuzzy order introduced by Orlovsky. Setting such a relationship is needed
to build each quantitative model based on comparison of OFNs. In general, the relation G̃E can be
applied in any such quantitative model of the real world that a comparison of imprecise numbers is
used. The tentative approach to this subject was presented in [66]. Obtained in this way fuzzy order of
OFNs is applied in [12,17]. The results presented here are the final generalized version of such fuzzy
ordering OFNs that it fulfils assumed condition.

The paper is organised in the following way. Section 2 presents considered models of imprecise
quantity. Section 2.1 describes the basic concepts of FNs and arithmetic operations on FNs. The revised
notion of OFN and arithmetic operations on OFNs are presented in Section 2.2. It is pointed out
here that OFNs are always defined without use of any ordering relation between FNs. In Section 2.3,
the disorientation map is introduced. Moreover, some differences between FNs and OFNs are explained
here. In Section 3 the author proves that some simple properties are fulfilled by Orlovsky’s fuzzy order
of FN. In Section 4 the author introduced such relation “greater than or equal to” between OFNs which
is consistent with Orlovsky’s fuzzy order. Section 5 contains some basic problems linked with ordering
of OFNs. In Section 6, all theoretical considerations are illustrated by case study devoted to the subject
of investment decisions. Finally, Section 7 contains the final remarks.

2. Imprecise Quantities—Considered Models

Objects of any considerations may be given as elements of a predefined space X. The basic tool
for imprecise classification of these elements is the notion of fuzzy set introduced by Zadeh [67]. Any
fuzzy setA is unambiguously determined by means of its membership function μA ∈ [0, 1]X, as follows

A =
{
(x,μA(x)); x ∈ X}

. (1)

In all our considerations we use the multivalued logic determined by Łukasiewicz [68]. The truth

value of the sentence will be denoted by the symbol ( ). From the point-view of multi-valued
logic, the value μA(x) is interpreted as the truth value (“x ∈ A”). By the symbol F (X) we denote
the family of all fuzzy sets in the space X. Any fuzzy set A ∈ F (X) may be described using the
following notions:
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For each α ∈ ]0, 1], the α− cuts [A]α determined as follows

[A]α =
{
x ∈ X : μA(x) ≥ α

}
; (2)

The support closure [A]0+ given in the following way

[A]0+ = lim
α→0+

[A]α. (3)

An imprecise quantity is a family of real numbers belongs to it in a different degree. In this section,
the fuzzy set notion is applied for describing imprecise quantities.

2.1. Fuzzy Numbers—Some Basic Notions

A commonly used model of an imprecise number is FN, defined as a fuzzy set in real line R.
The most general definition of FN is given as follows:

The most general definition of fuzzy number is given as follows:

Definition 1 [69]. The fuzzy number (FN) is such a fuzzy subsetL ∈ F (R) with bounded support closure [L]0+
that it is represented by its upper semi-continuous membership function μL ∈ [0; 1]R satisfying the conditions:

∃x∈R μL(x) = 1 (4)

∀(x,y,z)∈R3 x ≤ y ≤ z =⇒ μL(y) ≥ min
{
μL(x);μL(z)

}
. (5)

The set of all FN we denote by the symbol F. Let us consider any arithmetic operation ∗ defined
on R. The symbol � denotes an extension of arithmetic operation ∗ to F. In [70], arithmetic operations
on FN are introduced in such way that they are coherent with the Zadeh’s Extension Principle. In line
with it, for any pair (K ,L) ∈ F2 represented by their membership functions μK,μL ∈ [0, 1]R, the FN

M = K �L (6)

is described by its membership function μM ∈ [0, 1]R determined by means of the identity:

μM(z) = sup
{
min

{
μK(x),μL(y)

}
: z = x ∗ y, (x, y) ∈ R}

. (7)

Thanks to the results obtained in [5], we have that any FN can be equivalently defined as follows:

Theorem 1 [71]. For any FN L there exists such a non-decreasing sequence (a, b, c, d) ⊂ R that
L(a, b, c, d, LL, RL) = L ∈ F (R) is determined by its membership function μL(·|a, b, c, d, LL, RL ) ∈ [0, 1]R

described by the identity

μL(x|a, b, c, d, LL, RL) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x � [a, d],

LL(x), x ∈ [a, b],

1, x ∈ [b, c],

RL(x), x ∈ [c, d],

(8)

where the left reference function LL ∈ [0, 1][a,b] and the right reference function RL ∈ [0, 1][c,d] are upper
semi-continuous monotonic ones meeting the conditions:

LL(b) = RL(c) = 1, (9)

[L]0+ = [a, d]. (10)
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The FN L(a, a, a, a, LL, RL) = �a� represents the real number a ∈ R. Therefore, we can say
R ⊂ F. For any z ∈ [b, c], a FN L(a, b, c, d, LL, RL) is a formal model of linguistic variable “about z”.
Understanding the phrase “about z” depends on the applied pragmatics of the natural language. Let us
note that FN may be replaced by generalized FN [72] which does not meet the condition (4).

In line with the identity (7), the unary minus operator “–” on R is extended to the minus operator
� on F by the identity

�L(a, b, c, d, LL, RL) = L
(
−d,−c,−b,−a, R(−)

L , L(−)
L

)
, (11)

where
R(−)

L (x) = RL(−x), (12)

L(−)
L (x) = LL(−x). (13)

In further considerations, we will use the following concepts.

Definition 2. For any upper semi-continuous non-decreasing function L ∈ [0, 1][u, v], its cut-function
L� ∈ [u, v][0;1] is determined by the identity

L�(α) = min
{
x ∈ [u, v] : L(x) ≥ α}. (14)

Definition 3. For any upper semi-continuous non-increasing function R ∈ [0, 1][u, v] its cut-function
R� ∈ [0, 1][u, v] is determined by the identity

R�(α) = max
{
x ∈ [u, v] : R(x) ≥ α}. (15)

Definition 4. For any bounded continuous and non-decreasing function l ∈ [l(0), l(1)][0,1] its pseudo inverse
l� ∈ [0, 1][l(0), l(1)] is determined by the identity

l�(x) = max
{
α ∈ [0, 1] : l(α) = x

}
. (16)

Definition 5. For any bounded continuous and non-increasing function r ∈ [r(0), r(1)][0,1] its pseudo inverse
r� ∈ [0; 1][r(1), r(0)] of is determined by the identity

r�(x) = min
{
α ∈ [0, 1] : r(α) = x

}
. (17)

In reference [5], it is proved that FNs’ sum ⊕ is given by the identity

L
(
a + e, b + f , c + g, d + h, LJ, RJ

)
= L(a, b, c, d, LK, RK) ⊕L(e, f , g, h, LM, RM), (18)

where
∀α∈[0,1] lJ(α) = L�K(α) + L�M(α) (19)

∀α∈[0,1] rJ(α) = R�K(α) + R�M(α) (20)

∀x∈[a+e,b+ f ] LJ(x) = l�J (x), (21)

∀x∈[c+g,d+h] RJ(x) = r�J (x). (22)
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The difference � between FNs is determined in determined in the following way

L(a, b, c, d, LK, RK) �L(e, f , g, h, LM, RM) = L(a, b, c, d, LK, RK) ⊕ (�L(e, f , g, h, LM, RM)). (23)

Then identities (11)–(13) and (18)–(23) imply that

L(a− h, b− g, c− f , d− e, LW , RW) = L(a, b, c, d, LK, RK) �L(e, f , g, h, LM, RM), (24)

where
∀α∈[0,1] lW(α) = L�K(α) −R�M(α) (25)

∀α∈[0,1] rW(α) = R�K(α) − L�M(α) (26)

∀x∈[a−h,b−g] LW(x) = l�W(x), (27)

∀x∈[c− f ,d−e] RW(x) = r�W(x). (28)

The above arithmetic operators may be generalized to the case of intuitionistic FNs [73]. On the
other hand, the dependencies (18)–(28) are not met for discrete FNs [74]. All above identities show a
high complexity of arithmetic operations on the space F. Due to that, in many practical applications
researchers limit the use of FNs only to their kind distinguished below [75].

Definition 6. For any non-decreasing sequence (a, b, c, d) ⊂ R, a trapezoidal FN (TrFN) is the FN
T = Tr(a, b, c, d) ∈ F defined by its membership functions μT ∈ [0, 1]R in the following way

μT(x) = μTr(x|a, b, c, d) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x � [a, d],
x−a
b−a , x ∈ [a, b[ ,

1, x ∈ [b, c],
x−d
c−d , x ∈ ] c, d].

(29)

The space of all TrFNs is denoted by the symbol FTr. For any TrFN we have

Tr(−d,−c,−b,−a) = � Tr(a, b, c, d) (30)

Tr(a + e, b + f , c + g, d + h) = Tr(a, b, c, d) ⊕ Tr(e, f , g, h), (31)

Tr(a− h, b− g, c− f , d− e) = Tr(a, b, c, d) � Tr(e, f , g, h). (32)

2.2. Ordered Fuzzy Numbers—Some Basic Facts

The notion of OFN is intuitively introduced by Kosiński [1–4], as such model of imprecise number
that subtraction of OFNs is the inverse operator to addition of OFNs. Therefore, OFNs can contribute
to specific problems concerning the solution of fuzzy linear equations of the form or help with the
interpretation of specific improper fuzzy arithmetic results.

An important disadvantage of Kosiński’s theory is that there exist such OFNs which are not linked
to any membership function [4]. For this reason, the Kosiński’s theory is revised in [6] where OFNs are
defined as follows:
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Definition 7 [6]. For any monotonic sequence (a, b, c, d) ⊂ R, the ordered fuzzy number OFN
↔
L(a, b, c, d, SL, EL) =

↔
L is the pair of orientation

→
a, d = (a, d) and fuzzy set L ∈ F (R) described by

membership function μL(·|a, b, c, d, SL, EL) ∈ [0, 1]R given by the identity

μL(x|a, b, c, d, SL, EL) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x � [a, d] ≡ [d, a],

SL(x), x ∈ [a, b] ≡ [b, a],

1, x ∈ [b, c] ≡ [c, b],

EL(x), x ∈ [c, d] ≡ [d, c].

(33)

where the starting function SL ∈ [0, 1][a,b] and the ending function EL ∈ [0, 1][c,d] are upper semi-continuous
monotonic ones meeting the conditions (6) and

SL(b) = EL(c) = 1 (34)

The identity (33) additionally describes such modified notation of numerical intervals which is
applied in this work.

Discussion about the terminology: We see above that the notion of “ordered fuzzy number” is
defined without applying any ordering relation between FNs. In original Kosińki’s works “ordered
fuzzy number” is also defined without use of any ordering relation between FN. In each of these cases,
“ordered fuzzy number” is defined as FN completed by orientation. Therefore, in my opinion term
“ordered fuzzy number” should be replaced by the term “oriented fuzzy number”. The following
premises support such a proposal for change:

• Any discussion about the ordering of “oriented fuzzy numbers” is clearer than a discussion of
ordering of “ordered fuzzy numbers”.

• Professor Kosinski’s mother language is Polish. In Polish OFNs is called “skierowana liczba
rozmyta”. This term was proposed by Professor Kosiński. Against, the quoted Polish term
is translated into English as “oriented fuzzy number” or “directed fuzzy number”. Moreover,
the English term “ordered fuzzy number” is translated into Polish as “uporządkowana liczba
rozmyta”. All this allows us to state that the meanings of the Polish term “skierowana liczba
rozmyta” and the English term “ordered fuzzy number” are different.

“Ordered fuzzy numbers” are the most important work of life for Professor Kosiński. Therefore,
the proposed change to the term OFN should be discussed with him. Because of Professor Kosiński
passed away, this is not possible. Therefore, I agree with other scientists [76,77] that the OFN may be
called the “Kosiński’s number”. Future scientific discussion will allow us to choose a “oriented fuzzy
number” or “Kosiński number” or another term. Today we still use the term “ordered fuzzy number”.
No less in this work, the abbreviation OFN can be read “ordered fuzzy number” or “oriented fuzzy
numbers”. The use of the second term makes easier to read the section on the ordering relationship
between OFNs.

The symbol K denotes the space of all OFNs. Any OFN describes an imprecise number with
additional information about the location of the approximated number. This information is given

as orientation of OFN. If a < d then OFN
↔
L(a, b, c, d, SL, EL) has the positive orientation

−−→
a, d. For any

z ∈ [b, c], the positively oriented OFN
↔
L(a, b, c, d, SL, EL) is a formal model of linguistic variable “about

or slightly above z”. The symbol K+ denotes the space of all positively oriented OFN. If a > d, then OFN
↔
L(a, b, c, d, SL, EL) has the negative orientation

−−→
a, d. For any z ∈ [c, b], the negatively oriented TrOFN

↔
L(a, b, c, d, SL, EL) is a formal model of linguistic variable “about or slightly below z”. The symbol K−

denotes the space of all negatively oriented OFN. Understanding the phrases “about or slightly above
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z” and “about or slightly below z“ depend on the applied pragmatics of the natural language. If a = d,

OFN
↔
L(a, a, a, a, SL, EL) = �a� describes unoriented number a ∈ R. Summing up, we see that

K = K
+ ∪R∪K−. (35)

The minus operator “–” on R is extended by Kosiński [4] to the minus operator � on K by means
of the identity

�
↔
L(a, b, c, d, SL, EL) =

↔
L
(
−a,−b,−c,−d, S(−)

L , E(−)
L

)
, (36)

where
S(−)

L (x) = SL(−x) (37)

E(−)
L (x) = EL(−x) (38)

Kosiński [1] defines the addition operator �K on K as the extension of operator ⊕ from F to K.
This extension is determined by extension the domain identities (18)–(22) from F to K. In this way,
Kosiński defines addition of OFNs as an extension of results obtained by Goetschel and Voxman [5] for
addition of FNs. Moreover, Kosiński [4] have shown that there exist such OFNs that their sum �K does
not exist. For this reason, Kosiński’s operator �K is replaced by addition operator � defined on K by
the identity [6]

↔
L(aK, bK, cK, dK, SK, EK) �

↔
L(aM, bM, cM, dM, SM, EM) =

↔
J =

↔
L
(
aJ, bJ, cJ, dJ, SJ, EJ

)
, (39)

where we have
ǎJ = aK + aM, (40)

bJ = bK + bM, (41)

cJ = cK + cM, (42)

ďJ = dK + dM, (43)

aJ =

⎧⎪⎪⎨⎪⎪⎩min
{
ǎJ, bJ

}
, (bJ < cJ) ∨ (bJ = cJ ∧ ǎJ ≤ ďJ),

max
{
ǎJ, bJ

}
, (bJ > cJ) ∨ (bJ = cJ ∧ ǎJ > ďJ),

(44)

dJ =

⎧⎪⎪⎨⎪⎪⎩max{ďJ, cJ}, (bJ < cJ) ∨ (bJ = cJ ∧ ǎJ ≤ ďJ),

min{ďJ, cJ}, (bJ > cJ) ∨ (bJ = cJ ∧ ǎJ > ďJ),
(45)

∀α∈[0;1] sJ(α) =

⎧⎪⎪⎨⎪⎪⎩S�K(α) + S�M(α), aJ � bJ,

bJ, aJ = bJ.
(46)

∀α∈[0;1] eJ(α) =

⎧⎪⎪⎨⎪⎪⎩E�K(α) + E�M(α), cJ � dJ,

cJ, cJ = dJ.
(47)

∀x∈[aJ ,bJ ] SJ(x) = s�J (x), (48)

∀x∈[cJ ,dJ ] EJ(x) = e�J (x). (49)

In [6], the definition of addition operator � is justified in detail. Then, difference � between OFNs
is given as follows

↔
L(a, b, c, d, SK, EK) �

↔
L(e, f , g, h, SM, EM) =

↔
L(a, b, c, d, LK, RK) �

(
�
↔
L(e, f , g, h, SM, EM)

)
. (50)
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In [1,6], it is shown that for any
↔
L ∈ K we have

↔
L�K (�

↔
L) = �0� =

↔
L�

↔
L. (51)

We see that subtraction is inverse operator for both addition operators �K and �. We can say that
OFNs meet the intuitive postulate put forward by Kosiński.

Due to high complexity of arithmetic operations of OFN, in many practical applications researchers
limit the use of OFNs only to their kind distinguished below.

Definition 8 [6]. For any monotonic sequence (a, b, c, d) ⊂ R, the trapezoidal OFN (TrOFN)
↔
Tr(a, b, c, d) =

↔
T

is the pair of the orientation
→

a, d = (a, d) and fuzzy set T ∈ F (R) determined explicitly by its membership
functions μT ∈ [0, 1]R as follows

μT(x) = μTr(x|a, b, c, d) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0, x � [a, d] ≡ [d, a],

x−a
b−a , x ∈ [a, b[ ≡ ]b, a],
1, x ∈ [b, c] ≡ [c, b],

x−d
c−d , x ∈ ] c, d] ≡ [d, c[ .

(52)

The symbol KTr denotes the space of all TrOFNs. Identity (36) implies that the minus operator �
on KTr is given by the identity

↔
Tr(−a,−b,−c,−d) = �

↔
Tr(a, b, c, d). (53)

In line with (39), the sum of TrOFNs is determined as follows

↔
Tr(a, b, c, d) �

↔
Tr(p− a, q− b, r− c, s− d) =

=

⎧⎪⎪⎨⎪⎪⎩
↔
Tr(min

{
p, q

}
, q, r, max{r, s}), (q < r) ∨ (q = r∧ p ≤ s),

↔
Tr(max

{
p, q

}
, q, r, min{r, s}), (q > r) ∨ (q = r∧ p > s).

(54)

Then the difference � between TrOFNs is the TrOFN given as follows

↔
Tr(a, b, c, d) �

↔
Tr(a− p, b− q, c− r, d− s) =

=

⎧⎪⎪⎨⎪⎪⎩
↔
Tr(min

{
p, q

}
, q, r, max{r, s}) (q < r) ∨ (q = r∧ p ≤ s)

↔
Tr(max

{
p, q

}
, q, r, min{r, s}) (q > r) ∨ (q = r∧ p > s).

(55)

2.3. Ordered Fuzzy Numbers vs. Fuzzy Numbers

For the case a ≥ d the membership function of OFN
↔
L(a, b, c, d, SL, EL) is equal to the membership

function of FN L(a, b, c, d, SL, EL). This fact implies the existence of isomorphism Ψ : (K+ ∪R)→ F

given by the identity

L(a, b, c, d, SL, EL) = Ψ
(↔
L(a, b, c, d, SL, EL)

)
. (56)

This isomorphism may be extended to the space K by disorientation map
=
Ψ : K→ F given

as follows
=
Ψ(
↔
L) =

⎧⎪⎪⎨⎪⎪⎩ Ψ(
↔
L)
↔
L ∈ K+ ∪R,

�Ψ(�
↔
L)
↔
L ∈ K−.

(57)
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Let us note, that the disorientation map
=
Ψ : K→ F may be equivalently defined by the identity

=
Ψ
(↔
L(a, b, c, d, SL, EL)

)
=

⎧⎪⎪⎨⎪⎪⎩ L(a, b, c, d, SL, EL)
↔
L(a, b, c, d, SL, EL) ∈ K+ ∪R,

L(d, c, b, a, EL, SL)
↔
L(a, b, c, d, SL, EL) ∈ K−.

(58)

Example 1. Let us consider the OFN
↔
X =

↔
L(12, 14, 18, 20, SX, EX), where

μX(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0, x � [12, 20],

SX(x), x ∈ [12, 14],
1, x ∈ [14, 18],

EX(x), x ∈ [18, 20],

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x � [12, 20],
2 · x − 24

x − 10 , x ∈ [12, 14],

1, x ∈ [14, 18],
7 · x − 140
2 · x − 50 , x ∈ [18, 20].

(59)

and the OFN
↔
Y =

↔
L(13, 11, 6, 5, SY, EY), where

μY(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0, x � [13, 5],

SY(x), x ∈ [13, 11],
1, x ∈ [11, 6],

EY(x), x ∈ [6, 5],

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0, x � [13, 5],

6 · x − 30
x , x ∈ [13, 11],
1, x ∈ [11, 6],

2 · x − 26
x − 15 , x ∈ [6, 5].

(60)

Since
↔
X ∈ K+, using (57) we get

=
Ψ(
↔
X) =

=
Ψ
(↔
L(12, 14, 18, 20, SX, EX)

)
= L(12, 14, 18, 20, SX, EX) = L(12, 14, 18, 20, LU, RU) = U, (61)

where FNU is explicitly determined by the following membership function

μU(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0, x � [12, 20],

LU(x), x ∈ [12, 14],
1, x ∈ [14, 18],

RU(x), x ∈ [18, 20],

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x � [12, 20],
2 · x − 24

x − 10 , x ∈ [12, 14],

1, x ∈ [14, 18],
7 · x − 140
2 · x − 50 , x ∈ [18, 20].

(62)

Because
↔
Y ∈ K−, using (57) we get

=
Ψ(
↔
Y) =

=
Ψ
(↔
L(13, 11, 6, 5, SY, EY)

)
= L(5, 6, 11, 13, EY, SY) = L(5, 6, 11, 13, LV, RV) = V, (63)

where FNV is described by the membership function

μV(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0, x � [5, 13],

LV(x), x ∈ [5, 6],
1, x ∈ [6, 11],

RV(x), x ∈ [11, 13],

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0, x � [5, 13],

6 · x − 30
x , x ∈ [5, 6],
1, x ∈ [6, 11],

2 · x − 26
x − 15 , x ∈ [11, 13].

(64)

The above example shows that the disorientation map is a simple transformation the space K

on the space F. This simplicity is apparent. It follows from the fact that the arithmetic operations on
F are consistent with the Zadeh’s Extension Principle when the arithmetic operations on K are not
consistent with this principle. The main difficulties arise from the difference between the definition
(11)–(13) of minus operator � on F and the definition (36)–(38) of minus operator � on K.
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Let us compare the semigroups 〈F,⊕〉 and 〈K,�〉. The identities (18)–(22) and (39)–(46) imply that
the number �0� is the identity element in both these semigroups.

In [6], it is shown that addition � is not associative. It implies that semigroup 〈K,�〉 is not group.
Moreover, the identity (51) implies that subtraction � is the inverse operator to addition �.

The identity (18–22) implies that the addition ⊕ is associative. On the other hand, for any TrFN
T = Tr(a, b, c, d) ∈ (FTr\R) ⊂ F we have

T �T = Tr(a− d, b− c, c− b, d− a) � �0�. (65)

It shows that subtraction � is not inverse operator to addition ⊕. It proves that semigroup 〈F,⊕〉
is not group.

All above simple conclusions imply that:

• additive semigroup 〈F,⊕〉 and additive semigroup 〈K,�〉 cannot be considered as homomorphic
algebraic structures;

• any theorems on FNs cannot automatically extended to the case of OFNs.

3. Relation “Greater than or Equal to” for Fuzzy Numbers

We consider the pair (K ,L) ∈ F2 of FNs determined by membership functions μK,μL ∈ [0, 1]R.
On the space F, we can consider the relationK .GE.L, which reads:

“FN K is greater than or equal to FN L.” (66)

Orlovsky [61] shows that in agreement with the Zadeh’s Extension Principle, this relation is a

fuzzy preorder [GE] ∈ F
(
F2

)
described by membership function ν[GE] ∈ [0, 1]F

2
determined as follows

ν[GE](K ,L) = sup
{
min

{
μK(x),μL(y)

}
: x ≥ y

}
. (67)

From the multivalued logic point of view, the value ν[GE](K ,L) is considered as a truth-value of
the sentence (66). It means that we have

ν[GE](K ,L) = (“K .GE.L”). (68)

We prove that the fuzzy preorder [GE] ∈ F
(
F2

)
fulfils the following well-known properties.

Theorem 2. For any pair (K ,L) ∈ F2, we have:

ν[GE](K ,L) = ν[GE](�L,�K), (69)

ν[GE](K ,L) = ν[GE](K �L, �0�). (70)

Proof. Take into account the quadruple (K ,L,M,N) ∈ F4 of FNs represented respectively by their
membership functions μK,μL, μM,μN ∈ [0, 1]R.

Let us assume thatM = �K andN = �L. Using the identities (11), (12), and (13) we obtain:

μM(y) = μK(−y) and μN(x) = μL(−x).

Then the identity (67) implies

ν[GE](�L,�K) = ν[GE](N ,M) = sup
{
min

{
μN(x),μM(y)

}
: x ≥ y

}
=

= sup
{
min

{
μL(−x),μK(−y)

}
: −x ≤ −y

}
= sup

{
min

{
μL(u),μK(v)

}
: u ≤ v

}
= ν[GE](K , L).
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Let us assume now thatM = K �L. Using the identity (7) we obtain:

μM(z) = sup
{
min

{
μK(x),μL(y)

}
: z = x− y, (x, y) ∈ R}

.

Then the identity (67) implies

ν[GE](K �L, �0�) = ν[GE](M, �0�) = sup
{
μM(z) : z ≥ 0

}
=

= sup
{
sup

{
min

{
μK(x),μL(y)

}
: z = x− y, (x, y) ∈ R}

: z ≥ 0
}
=

= sup
{
min

{
μK(x),μL(y)

}
: x− y ≥ 0

}
= ν[GE](K ,L). QED

Theorem 3. For any FNs L(a, b, c, d, LK, RK), L(e, f , g, h, LM, RM) ∈ F we have

ν[GE](L(a, b, c, d, LK, RK), L(e, f , g, h, LM, RM)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 0 < d− e,

RW(0) d− e ≤ 0 < c− f ,
1 0 ≤ c− f ,

(71)

where the function RW : [d− e, c− f ]→ [0, 1] is given by identity (28).

Proof. For e > d, using (67) and (8) we get

ν[GE](L(a, b, c, d, LK, RK), L(e, f , g, h, LM, RM)) = sup
{
min

{
μK(x),μM(y)

}
: x ≥ y

}
=

= max
{
sup

{
min

{
0,μM(x)

}
: x ≥ y ≥ e

}
, sup

{
min

{
μK(x), 0

}
: x ≥ y ∈ ]e,−∞[

}}
= 0.

(72)

For c ≥ f we have

1 ≥ ν[GE](L(a, b, c, d, LK, RK), L(e, f , g, h, LM, RM)) = sup
{
min

{
μK(x),μM(y)

}
: x ≥ y

} ≥
≥ sup

{
min

{
μK(x),μM(y)

}
: c ≥ x ≥ y ≥ f

}
= sup{min{1, 1}} = 1.

(73)

For d ≤ e and f < c we have d− e ≤ 0 < c− f . Then from (24), (67) and (70) we obtain

ν[GE](L(a, b, c, d, LK, RK), L(e, f , g, h, LM, RM)) = ν[GE](L(a− h, b− g, c− f , d− e, LW , RW), �0�) =
= RW(0). QED

(74)

Example 2. Let us take into account the FNsU = L(12, 14, 18, 20, LU, RU) andV = L(5, 6, 11, 13, LV, RV)

respectively determined by identities (62) and (64). We compare these FNs with using of fuzzy preorder
[GE] ∈ F

(
F2

)
. We have here

− 1 = 12− 13 ≤ 0 ≤ 14− 11 = 3.

Therefore, we should establish the variability of the function RW ∈ [0, 1][−1,3] determined by the identity
(28). First, by using identities (14) and (15), we assign functions

L�U(α) = min
{
x ∈ [12, 14] : LU(x) ≥ α

}
= L−1

U (α) =
10α− 24
α− 2

, (75)

R�V(α) = max
{
x ∈ [11, 15] : RV(x) ≥ α

}
= R−1

V (α) =
15α− 26
α− 2

. (76)

In the next step, applying (25) and (27), we obtain

rW(α) = R�V(α) − L�U(α) =
15α− 26
α− 2

− 10α− 24
α− 2

=
5α− 2
α− 2

, (77)

RW(x) = r�W(x) = min
{
α ∈ [0; 1] : lW(α) = x

}
= l−1

W (x) =
2 · (x− 1)

x− 5
. (78)
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Finally, using identity (71), we get

ν[GE](V,U) = RW(0) =
2
5

. (79)

The above example together with Theorem 3 shows that fuzzy preorder [GE] ∈ F
(
F2

)
depends

only on the interaction between the right reference function of the first compared FN and the left
reference function of the second compared FN.

Moreover, Theorem 3 immediately implies that for any TrFNs we have:

Theorem 4. For any TrFNs Tr(a, b, c, d), Tr(e, f , g, h) ∈ FTr we have

ν[GE](Tr(a, b, c, d), Tr(e, f , g, h)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, 0 < d− e,

d − e
d + f − c − e , d− e ≤ 0 < c− f ,

1, 0 ≤ c− f .
(80)

4. Relation “Greater than or Equal to” for Ordered Fuzzy Numbers

Let us consider the pair (
↔
K ,
↔
L) ∈ K2 represented by the pair (μK,μL) ∈ ([0, 1]R)

2
of their

membership functions. On the space K, we introduce the relation
↔
K .G̃E.

↔
L, which reads:

“OFN
↔
K is greater than or equal to OFN

↔
L.” (81)

This relation is a fuzzy preorder G̃E ∈ F (K2) defined by its membership function νGE ∈ [0, 1]K
2
.

From the point view of the multivalued logic, the value νGE(K ,L) is considered as a truth-value of the
sentence (81). It means that we have

νGE(
↔
K ,
↔
L) = (“

↔
K .G̃E.

↔
L”). (82)

The fuzzy preorder G̃E ∈ F (K2) cannot be determined with use of the Zadeh’s Extension Principle
because of this principle is not valid for OFNs. Therefore, we additionally assume that any membership

function νGE ∈ [0, 1]K
2

meets the following well-known conditions:

• for any pair (
↔
K ,
↔
L) ∈ (K+ ∪R)2 the extension principle

νGE(
↔
K ,
↔
L) = ν[GE](Ψ(

↔
K), Ψ(

↔
L)), (83)

• for any pair (
↔
K ,
↔
L) ∈ (K− ∪R)2 the sign exchange law

νGE(
↔
K ,
↔
L) = νGE(�

↔
L,�

↔
K), (84)

• for any pair (
↔
K ,
↔
L) ∈ (K+ ∪R) × (K− ∪R) the law of subtraction of parties

νGE(
↔
K ,
↔
L) = νGE(

↔
K �

↔
L, �0�). (85)

Among other things, we prove here:
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Lemma 1. Any pair (
↔
K ,
↔
L) ∈ (K+ ∪R) × (K− ∪R) satisfies the condition

Ψ(
↔
K �

↔
L) = Ψ(

↔
K) � (� Ψ(�

↔
L)) (86)

Proof. Let
↔
K =

↔
L(a, b, c, d, SK, EK) ∈ K+ ∪ R and

↔
L =

↔
L(e, f , g, h, SL, EL) ∈ K− ∪ R. Then,

we have �
↔
L,

↔
K �

↔
L ∈ K+ because of the sequences (−e,− f ,−g,−h) and (a− e, b− f , c− g, d− h)

are nondecreasing. Then, from (39), (50), and (58) we get

Ψ(
↔
K �

↔
L) = Ψ

(↔
L(a− e, b− f , c− g, d− h, SM, EM)

)
= L(a− e, b− f , c− g, d− h, SM, EM), (87)

where

∀α∈[0;1] sM(α) =

⎧⎪⎪⎨⎪⎪⎩S�L (α) + S�L (α), a− e � b− f ,

b− f , a− e = b− f .
(88)

∀α∈[0;1] eM(α) =

⎧⎪⎪⎨⎪⎪⎩E�K(α) + E�L (α), c− g � d− h,

c− g, c− g = d− h.
(89)

∀x∈[a−e,b− f ] SM(x) = s�M(x), (90)

∀x∈[c−g,d−h] EM(x) = e�M(x). (91)

On the other hand, successively from (36), (57), (11), and (22), we obtain

Ψ(
↔
K) � (� Ψ

(
�
↔
L
)
) = Ψ

(↔
L(a, b, c, d, SK, EK)

)
�

(
� Ψ

(
�
↔
L(e, f , g, h, SL, EL)

))
=

= L(a, b, c, d, SK, EK) �
(
� Ψ

(↔
L(−e,− f ,−g,−h, S(−)

L , E(−)
L )

))
=

= L(a, b, c, d, SK, EK) �
(
� L(−e,− f ,−g,−h, S(−)

L , E(−)
L )

)
=

= L(a, b, c, d, SK, EK) �L(h, g, f , e, E(−)
L , S(−)

L ) = L(a− e, b− f , c− g, d− h, SM, EM). QED

(92)

The conjunction of assumptions (83)–(85) is a sufficient condition for the formulation of the
following theorem:

Theorem 5. For any pair (
↔
K ,
↔
L) ∈ K2 we have

νGE(
↔
K ,
↔
L) = ν[GE](

=
Ψ(
↔
K),

=
Ψ(
↔
L)). (93)

Proof. For any pair (
↔
K ,
↔
L) ∈ (K+ ∪R)2 the identity (93) is obvious.

Let us assume that (
↔
K ,
↔
L) ∈ (K− ∪R)2. Then, (�

↔
K ,�

↔
L) ∈ (K+ ∪R)2 and successively from (84),

(83), (69) and (56), we get

νGE(
↔
K ,
↔
L) = νGE(�

↔
L, �

↔
K) = ν[GE](Ψ(�

↔
L), Ψ(�

↔
K)) = ν[GE](� Ψ(�

↔
K),� Ψ(�

↔
L)) =

= ν[GE](
=
Ψ(
↔
K),

=
Ψ(
↔
L)).

(94)
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Let us assume now that (
↔
K ,
↔
L) ∈ (K+ ∪R)× (K− ∪R). Then

↔
K �

↔
L ∈ K+ and successively from

(85), (83), (86), (70) and (57), we get

νGE(
↔
K ,
↔
L) = νGE(

↔
K �

↔
L, �0�) = ν[GE](Ψ(

↔
K �

↔
L), �0�) = ν[GE](Ψ(

↔
K) � (� Ψ(�

↔
L)), �0�) =

= ν[GE](Ψ(
↔
K),� Ψ(�

↔
L)) = ν[GE](

=
Ψ(
↔
K),

=
Ψ(
↔
L)).

(95)

Let us assume now that (
↔
K ,
↔
L) ∈ (K− ∪R) × (K+ ∪R). Then

↔
L�

↔
K ∈ K+ and successively from

(85), (84), (83), (86), (69), (70), and (57), we get

νGE(
↔
K ,
↔
L) = νGE(

↔
K �

↔
L, �0�) = νGE(�0�,

↔
L�

↔
K) = ν[GE](�0�, Ψ(

↔
L�

↔
K)) =

= ν[GE](�0�, Ψ(
↔
L) � (� Ψ(�

↔
K))) = ν[GE](� Ψ(�

↔
K) � Ψ(

↔
L), �0�) =

ν[GE](� Ψ(�
↔
K), Ψ(

↔
L)) = ν[GE](

=
Ψ(
↔
K),

=
Ψ(
↔
L)). QED

(96)

Example 3. Let us compare the OFN
↔
X =

↔
L(12, 14, 18, 20, SX, EX) determined by (59) and the OFN

↔
Y =

↔
L(13, 11, 6, 5, SY, EY) determined by (60). Using (93), (62), (64), and (41), we get

νGE(
↔
Y,
↔
X) = ν[GE](

=
Ψ(
↔
Y),

=
Ψ(
↔
X)) = ν[GE](L(5, 6, 11, 13, EY, SY), L(12, 14, 18, 20, SX, EX)) =

= ν[GE](L(5, 6, 11, 13, LV, RY),L(12, 14, 18, 20, LU, RU)) = ν[GE](V,U) = 2
5 .

(97)

The simplicity of the calculations in the above example is apparent. In fact, Example 3 together
with Theorem 5 shows that:

• if compared OFNs are both positively oriented then the fuzzy preorder G̃E ∈ F (K2) depends
only on the interaction between the ending function of the first compared OFN and the starting
function of the second compared OFN;

• if the first compared OFN is positively oriented and the second compared OFN is negatively

oriented then the fuzzy preorder G̃E ∈ F (K2) depends only on the interaction between the ending
functions of compared OFN;

• if the first compared OFN is negatively oriented and the second compared OFN is positively

oriented then the fuzzy preorder G̃E ∈ F (K2) depends only on the interaction between the starting
functions of compared OFN;

• if compared OFNs are both negatively oriented, then the fuzzy preorder G̃E ∈ F (K2) depends
only on the interaction between the starting function of the first compared OFN and the ending
function of the second compared OFN.

5. Relations “Greater Than” and “Equal to” for Ordered Fuzzy Numbers

In the last section, we explicitly define the preorder “greater than or equal to” G̃E on the space K

of all OFNs. This relation may be applied as start point for determining other basic relations on K.

Let us consider any pair (
↔
K ,
↔
L) ∈ K2. On the space K we introduce the relation

↔
K .G̃T.

↔
L,

which reads:
“OFN

↔
K is greater than OFN

↔
L.” (98)
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This relation is a fuzzy strict order G̃T ∈ F (K2) defined by its membership function νGT ∈ [0, 1]K
2
.

From the point view of the multivalued logic, the value νGT(
↔
K ,
↔
L) is considered as a truth-value of the

sentence (98) which is equivalent to the sentence:

“OFN
↔
L is not greater than or equal to OFN

↔
K .” (99)

It means that we have

νGT(
↔
K ,
↔
L) = (“

↔
K .G̃T.

↔
L”) = (“¬

↔
L.G̃E.

↔
K”) = 1− (“

↔
L.G̃E.

↔
K”). (100)

Therefore, the membership function νGT ∈ [0, 1]K
2

is determined by the identity

νGT(
↔
K ,
↔
L) = 1− νGE(

↔
L,
↔
K). (101)

Moreover, on the space K we introduce the relation
↔
K .ẼQ.

↔
L, which reads:

“OFN
↔
K is equal to OFN

↔
L.” (102)

The relation ẼQ ∈ F (K2) is fuzzy equivalence determined by membership function νEQ ∈ [0, 1]K
2
.

From the point view of the multivalued logic, the value νEQ(
↔
K ,
↔
L) is considered as a truth-value of the

sentence (102) which is equivalent to the sentence:

“OFN
↔
K is greater than or equal to OFN

↔
L and OFN

↔
L is greater than or equal to OFN

↔
K” (103)

It means that we have

νEQ(
↔
K ,
↔
L) = (“

↔
K .ẼQ.

↔
L”) = (“

↔
K .ẼQ.

↔
L”∧ “

↔
L.G̃E.

↔
K”) =

= min{ (“
↔
K .ẼQ.

↔
L”), (“

↔
L.G̃E.

↔
K”)}.

(104)

Therefore, the membership function νEQ ∈ [0, 1]K
2

is determined by the identity

νEQ(
↔
K ,
↔
L) = min{νGE(

↔
K ,
↔
L), νGE(

↔
L,
↔
K)}. (105)

For any finite set A = {
↔
K1,

↔
K2, . . . ,

↔
Kn} ⊂ KTr we can distinguish set of maximal elements

Max{A} ∈ F (A) which is described by membership function μMax{A} ∈ [0, 1]A determined in the
following way [62]

μMax{A}(
↔
K i) = min{νGE(

↔
K i,

↔
K j ) :

↔
K j ∈ A}. (106)

This set may be applied as solution of optimization tasks using OFNs. Moreover, let us note, that
the set Max{A} of maximal elements may be used as a fuzzy choice function [78].

In [17], the relation G̃E ∈ F (K2
Tr) is applied for ordering negotiation packages [79]. The considered

case study is fully described there. Moreover, let us look on a short case study of applying the relation
G̃E ∈ F (K2) for financial effectivity analysis.

6. Financial Effectivity Determined by Imprecise Return—A Numerical Example

Let any financial securityZ ∈ Z be represented by the pair (Rz, σ2
Z), where Rz ∈ R is an expected

return rate from this security and σ2
Z ∈ R is a variance of its return rate. The symbol Z denotes the

family of all considered securities.
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We introduce the relation P.NLE.Qwhich reads

“The security P ∈ Z is no less e f f ective than the security Q ∈ Z”. (107)

In financial practice, this relation is defined by the equivalence

P.NLE.Q ⇔ (RP ≥ RQ ∨ σ2
P ≤ σ

2
Q). (108)

In [15], it is justified that return rate may be evaluated OFN. In this case, any financial security

Z be represented by the pair (
↔
Rz, σ2

Z), where
↔
Rz ∈ K is an expected return rate evaluated by OFN.

Therefore, the relationP.NLE.Q should be replaced by the relationP.ÑLE.Q defined by the equivalency

P.ÑLE.Q ⇔ (
↔
RP.G̃E.

↔
RQ ∨ σ2

P ≤ σ
2
Q). (109)

The relation P.ÑLE.Q also reads as the sentence (107). The relation ÑLE ∈ F (K2) is fuzzy one

determined by membership function νNLE ∈ [0, 1]Z
2
. From the point view of the multivalued logic,

the value νNLE(P,Q) is considered as a truth-value of the sentence (105). It means that we have

νNLE(P,Q) = (“
↔
RP.G̃E.

↔
RQ ∨ σ2

P ≤ σ
2
Q”) = max

{
(“
↔
RP.G̃E.

↔
RQ”), (“σ2

P ≤ σ
2
Q”)

}
=

=

⎧⎪⎪⎨⎪⎪⎩ (“
↔
RP.G̃E.

↔
RQ”) σ2

P > σ
2
Q,

1 σ2
P ≤ σ

2
Q.

⎫⎪⎪⎬⎪⎪⎭ =

⎧⎪⎪⎨⎪⎪⎩ νGE(
↔
RP,

↔
RQ) σ

2
P > σ

2
Q,

1 σ2
P ≤ σ

2
Q.

.
(110)

In order to increase the transparency of the considerations, we restrict our future considerations
to the case of return rate evaluated by TrOFNs. We consider the securities P, Q and R
respectively represented by the pairs (

↔
RP, σ2

P) = (
↔
Tr(0.010, 0.010, 0.035, 0.040), 0.00023), (

↔
RQ, σ2

Q) =

(
↔
Tr(0.020, 0.025, 0.030, 0.045), 0.00024) and (

↔
RR, σ2

R) = (
↔
Tr(0.065, 0.055, 0.050, 0.035), 0.00012).

The return rates
↔
RP and

↔
RQ are positively oriented TrOFNs. Therefore, we can anticipate an increase

in the rates of return from the securities P and Q. Moreover, we can predict a decrease in the rate

of return from the security R because of the return rate
↔
RR is negatively oriented TrOFN. For these

reasons, we consider two investment decisions:

(A) We sell the security R and for the funds obtained we buy the security P,
(B) We sell the security R and for the funds obtained we buy the security Q.

Let us compare a financial effectivity of considered securities P and R. In line with (108), (93), (58)
and (71), we get

νNLE(P,R) = νGE

(↔
Tr(0.010, 0.010, 0.035, 0.040),

↔
Tr(0.065, 0.055, 0.050, 0.035)

)
=

ν[GE]

(=
Ψ
(↔
Tr(0.010, 0.010, 0.035, 0.040)

)
,
=
Ψ
(↔
Tr(0.065, 0.055, 0.050, 0.035)

))
=

= ν[GE](Tr(0.010, 0.010, 0.035, 0.040), Tr(0.035, 0.050, 0.055, 0.065)) =
= 0.040−0.035

0.040+0.050−0.035−0.035 = 1
4 .

(111)

In the same way, we can compare a financial effectivity of considered securitiesQ andR. We obtain

νNLE(Q,R) = νGE

(↔
Tr(0.020, 0.025, 0.030, 0.045),

↔
Tr(0.065, 0.055, 0.050, 0.035)

)
=

ν[GE]

(=
Ψ
(↔
Tr(0.020, 0.025, 0.030, 0.045)

)
,
=
Ψ
(↔
Tr(0.065, 0.055, 0.050, 0.035)

))
=

= ν[GE](Tr(0.020, 0.025, 0.030, 0.045), Tr(0.035, 0.050, 0.055, 0.065)) =
= 0.045−0.035

0.045+0.050−0.030−0.035 = 1
3 .

(112)
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Therefore, we can say that the investment decisions (A) and (B) are both partially justified. Because
of νNLE(Q,R) > νNLE(P,R), we ultimately recommend the investment decision (B).

7. Final Remarks

Relation “greater than or equal to” G̃E is explicitly defined on the space of all OFNs. In my best
knowledge, it will be the first fuzzy order determined for OFNs. Determined relation G̃E compares
OFNs without losing information about the imprecision and orientation of evaluated OFNs. From the
point-view of application needs, this approach is desirable. Nevertheless, I proved that the relation G̃E
is independent of the orientation of the numbers being compared. This conclusion may be applied for
simplification of many OFN applications.

The first application of relation G̃E is cited in Section 5. The next application is described in
Section 6. Meanwhile, we will employ the proposed relation to model some imprecision decision
making problems from some concrete applied fields, such as medical decision making, behavioural
economic [11], management [15,16], telecommunication, and financial assessment [7,9–14]. Then
these relations may be used for decision making problems with scoring function evaluated by OFNs.
In [15,16], such evaluation of scoring function follows from the fact that partial ratings are evaluated
by OFNs. Moreover, studying multi criterial group decision making problems, we should take into
account some imprecise weights of criteria [80]. Then these weights may be evaluated by OFNs what
implies that also the scoring function is evaluated by OFNs. In general, the relation G̃E can be applied
in any such quantitative model of the real world that a comparison of imprecise numbers is used.

In Section 2.2, I point out some terminology problems connected with the notion of OFN. I believe
that this is a very important problem from an ethical point of view. I invite people of science to discuss
this topic.

For any OFN we can determine the family of oriented α-cuts defined as a pair of usual α-cut and
OFN orientation. An important direction for further development is to propose such fuzzy order of
OFNs which is determined by the family of all α-cuts for FNs. At present, the oriented α-cuts theory
is unknown.
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4. Kosiński, W. On fuzzy number calculus. Int. J. Appl. Math. Comput. Sci. 2006, 16, 51–57.
5. Goetschel, R.; Voxman, W. Elementary fuzzy calculus. Fuzzy Set. Syst. 1986, 18, 31–43. [CrossRef]
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9. Kacprzak, D.; Kosiński, W. Optimizing Firm Inventory Costs as a Fuzzy Problem. Stud. Log. Gramm. Rhetor.
2014, 37, 17. [CrossRef]

31



Appl. Syst. Innov. 2019, 2, 26
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Abstract: We present a problem of “acceptance of an optimal solution” as a mathematical model
in the form of a vector problem of mathematical programming. For the solution of such a class of
problems, we show the theory of vector optimization as a mathematical apparatus of acceptance
of optimal solutions. Methods of solution of vector problems are directed to problem solving with
equivalent criteria and with the given priority of a criterion. Following our research, the analysis
and problem definition of decision making under the conditions of certainty and uncertainty are
presented. We show the transformation of a mathematical model under the conditions of uncertainty
into a model under the conditions of certainty. We present problems of acceptance of an optimal
solution under the conditions of uncertainty with data that are represented by up to four parameters,
and also show geometrical interpretation of results of the decision. Each numerical example includes
input data (requirement specification) for modeling, transformation of a mathematical model under
the conditions of uncertainty into a model under the conditions of certainty, making optimal decisions
with equivalent criteria (solving a numerical model), and, making an optimal decision with a given
priority criterion.

Keywords: modeling; vector optimization; methods of solution of vector problems; optimal
decision-making; numerical realization of decision-making

1. Introduction

The problem of making an optimal decision that meets the modern achievements of science
and technology is connected, firstly, with the release of high-quality products, and, secondly, with
the solution of problems of social and economic human development. The decision making can be
undertaken under the conditions of certainty (when the functional dependence of the purpose of the
parameters of the studied object and systems is known) [1–4], and under the conditions of uncertainty
(when there is not sufficient information on the functional dependence of the purpose of the parameters
of the studied object and systems) [5–8]. The conditions of uncertainty are characterized by the fact
that input data for decision-making, can be presented as random, fuzzy or incomplete data, [1,2,9,10].
Research on this problem of decision-making began with the work of Keeney and Raiffa [11]. Analyses
of modern decision-making approaches (i.e., “simple” methods) are submitted in [6,12]. One of the
areas of decision-making automation is associated with the creation of mathematical models and the
adoption of an optimal solution based on them [12–14]. Currently, the most common mathematical
apparatus for model-based decision making is vector optimization [6,12,14–19]. The purpose of this
work is to build a mathematical model for an object or system of decision making in the form of a
vector problem of mathematical programming. Vector optimization is considered as a mathematical
apparatus of a solution to the problem of acceptance of an optimal solution.

For the realization of the goal of this work, the study considered and solved the following problems.

Appl. Syst. Innov. 2019, 2, 32; doi:10.3390/asi2040032 www.mdpi.com/journal/asi
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The construction of a mathematical model of the problem of finding an optimal solution in the
form of a vector problem of mathematical programming has been shown previously [4,6,15,20]. In the
current paper, the theory and a mathematical apparatus of problem solving using vector optimization
are presented. The theory includes an axiomatic principle of optimality of the solution of vector
problems. The mathematical apparatus of the solution of vector problems is intended for the solution
of vector problems with equivalent criteria [6,13,21] and with the given priority of a criterion [15,20].
The research, analysis and problem definition of decision making under the conditions of certainty
and uncertainty are conducted. The realization of a mathematical apparatus of vector optimization is
presented for numerical problems of decision making with one, two, three and four parameters. The
solution of the problem of decision making includes creation of a numerical model of an object in the
form of a vector problem, the solution of a problem of decision making with equivalent criteria, and,
the solution of a vector problem of decision making with a criterion priority.

2. Statement of a Problem: Creation of the Mathematical Model “Acceptance of an Optimal
Solution”

As an “object for optimal decision-making,” we use a “technical system”. The problem of the choice
of optimum parameters of technical (engineering) systems according to functional characteristics arises
during the study, analysis, and design of technical systems, and is connected with quality production.

The problem includes the solution of the following tasks:

• Creation of a mathematical model, which defines the inter-relation of each functional characteristic
from parameters of the technical system, i.e., it is formed from the vector problem of
mathematical programming;

• Choice of methods of the decision: we suggest using the methods based on normalization of
criteria and the principle of the guaranteed result with equivalent criteria and with the set
criterion priority;

• Development of the software which realizes these methods;
• The statement of a problem is executed according to [4,6,20,22].

The technical system depends on N, a set of design data: X = {x1, x2, . . . , xN}, where N is the
number of parameters, each of which lies in the set limits:

xmin
j ≤ xj ≤ x, j = 1, N, or Xmin ≤ X ≤ Xmax

where xmin
j , xmax

j , ∀j ∈ N are the minimum and maximum limits of change of the vector of parameters
of the technical system.

The result of the functioning of the technical system is defined by a set К of technical characteristics
of fk(X), k = 1, K which functionally depend on design data X = {xj, j = 1, N}, in total these represent a
vector function: F(X) = (f 1(X) f 2(X) . . . fK (X))T.

The set of characteristics (criteria) is subdivided into two subsets K1 and K2: К = K1 ∪ K2.
K1 is a subset of technical characteristics, the numerical values of which are desired to be as high

as possible: fk(X)→max, k = 1, K1.
K2 is a subset of technical characteristics, the numerical values of which are desired to be as low

as possible: fk(X)→min, k = K1 + 1, K, K2 ≡ K1 + 1, K.
The mathematical model should consider, firstly, the purposes of the technical system which

are represented by the characteristics of F(X), and, secondly, the Xmin ≤ X ≤ Xmax restrictions. The
mathematical model of the technical system which solves in general a problem of the choice of the
optimum design decision (a choice of optimum parameters) is presented in the form of a vector problem
of mathematical programming.
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Opt F(X) = {max F1(X) = {max fk(X), k = 1, K1}, (1)

minF2(X) = {min fk(X), k = 1, K2}}, (2)

G(X) ≤ 0, (3)

xmin
j ≤ xj ≤ xmax

j , j = 1, N, (4)

where X is the vector of controlled variables (constructive parameters) in Equation (1), F(X) = {fk(X),
k = 1, K} represents the vector criterion for each component of the characteristics of the technical system
in Equation (2), which functionally depends on the vector of variables X, G(X) = (g1(X) g2(X) . . .
gM(X))T represents a vector of the restrictions imposed on the functioning of the technical system, and
M is a set of restrictions.

Restrictions are defined in terms of technological, physical or similar processes, and can be
presented by functional restrictions, for example, f min

k ≤ fk(X) ≤ f max
k , k = 1, K.

It is supposed that the fk(X), k = 1, K functions are differentiated and convex, gi(X), i = 1, M are
continuous, and Equations (3)–(4) represent a non-empty set of admissible points of S restrictions,
which can be represented as S = {X ∈ RN|G(X) ≤ 0, Xmin ≤ X ≤ Xmax} � ø.

Criteria and restrictions in Equations (1)–(4) form the mathematical model of a technical system. It
is required to find a vector of the X0 ∈ S parameters at which every component of the vector-functions
F1(X) = {fk(X), k = 1, K1} accepts the greatest possible value, and vector-functions F2(X) = {fk(X), k = 1, K2}
are accepted by the minimum value.

For a substantial class of technical systems which can be represented by the vector problem of
Equations (1)–(4), it is possible to refer to their large number of applications in various fields, such as
electro-engineering [23], airspace [10,13], metallurgical (choice of optimal structure of material), and
chemical [24].

In this article, the technical system is considered to be static. However, technical systems can be
considered to be dynamic [23], using differential-difference methods of transformation, conducted for
a small discrete period Δt ∈ T.

3. Theory. Axioms, the Principle of Optimality and Methods for Solving Vector Problems of
Mathematical Programming

The theory of vector optimization includes theoretical foundations (axioms) and methods of the
solution of vector problems with equivalent criteria and with the given criterion priority. The theory
is a basis of mathematical apparatus of modeling of an “object for optimal decision-making”, which
allows selection of any point from a set of points that is Pareto optimal, and shows why the selection
is optimal.

We have presented, first, axioms and methods of the solution of problems of vector optimization
with equivalent criteria (Section 3.1) and, second, the specified priority criteria (Section 3.2).

3.1. Vector Optimization with Equivalent Criteria

3.1.1. Axioms and the Principle of Optimality of Vector Optimization with Equivalent Criteria

Definition 1. (Definition of the relative assessment of criteria).

In the vector problem of Equations (1)–(4), definitions are as follows: λk(X) =
fk(X)− f o

k
f ∗k− f o

k
, ∀k ∈ K is the

relative estimate of a point X ∈ S kth criterion, fk(X) is the kth criterion at the point X ∈ S, f ∗k is the value
of the kth criterion at the point of optimum X∗k, obtained in the vector problem of Equations (1)–(4) of
the individual kth criterion, f 0

k is the worst value of the kth criterion (anti-optimum) at the point X0
k

(superscript 0) on the admissible set S in Equations (1)–(4), at the task at max (3), (5), (6), the value
of f 0

k is the lowest value of the kth criterion, f 0
k =min

X∈S
fk(X) ∀k ∈ K1 and the task min f 0

k is the greatest,
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f 0
k =max

X∈S
f k(X) ∀k ∈ K2. The relative estimate of λk(X), ∀k ∈ K is firstly measured in relative units and,

secondly, the relative assessment of λk(X) ∀k ∈ K on the admissible set is changed from zero at a point
of X0

k : ∀k ∈ K lim
X→Xo

k

λk(X) = 0, to the unit at the point of an optimum of X∗k:∀k ∈ K, lim
X→X∗k

λk(X) = 1, i.e.,:

∀k ∈ K, 0 ≤ λk(X) ≤ 1, X ∈ S. This allows the comparison of the criteria, measured in relative units, by
joint optimization.

Axiom 1. (About equality and equivalence of criteria at an admissible point of vector problems of
mathematical programming)

In vector problems of mathematical programming two criteria with the indexes k ∈ K, q ∈ K shall
be considered as equal at point X ∈ S if relative estimates of the kth and qth criterion are equal at this
point, i.e., λk(X) = λq(X), k, q ∈ K.

We will consider criteria equivalent in vector problems of mathematical programming at a point
X ∈ S if, when comparing the numerical size of relative estimates of λk(X), k = 1, K, for each criterion
of fk(X), k = 1, K, and, respectively, relative estimates of λk(X), conditions are not imposed about the
priorities of criteria.

Definition 2. (Definition of a minimum level among all relative estimates of criteria).
The relative level λ in a vector problem represents the lower assessment of a point of X ∈ S among

all relative estimates of λk(X), k = 1, K:

∀X ∈ S, λ ≤ λk(X), k = 1, K, (5)

The lower level for the performance of the condition of Equation (5) at an admissible point of X ∈ S is
defined as:

∀X ∈ S, λ = min
k∈K
λk(X). (6)

Equations (5) and (6) are interconnected. They serve as a transition from Equation (6) of the
definition of a minimum to the restrictions of Equation (5), and vice versa.

The level λ allows the union of all criteria in a vector problem with one numerical characteristic of
λ, made over certain operations, thereby carrying out these operations over all criteria measured in
relative units. The level λ functionally depends on the X ∈ S variable, by changing X, we can change
the lower level, λ. From here we will formulate the rules of searching for the optimum decision.

Definition 3. (The principle of optimality with equivalent criteria).
The vector problem of mathematical programming with equivalent criteria is solved if the point

of X0 ∈ S and a maximum level of λ0 (the top index optimum) among all relative estimates is found
such that:

λ0 = max
X∈S

min
k∈K
λk(X). (7)

Using the interrelation of Equations (5) and (6), we will transform the maximine problem of
Equation (7) into an extreme problem:

λ0 = max
X∈S
λ, (8)

λ ≤ λk(X), k = 1, K. (9)

We can call the resulting problem of Equations (8) and (9) the λ-problem.
The λ-problem of Equations (8) and (9) has (N + 1) dimensions. As a consequence, the solution of

the λ-problem represents an optimum vector of X◦ ∈ RN+1, where (N + 1) is a component which has
the essence of the value of λ0, i.e., X0 = {xo

1, xo
2, ..., xo

N, xo
N+1}, thus xo

N+1 = λ0, and (N + 1) is a component
of a vector of X0 selected in view of its specificity.
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The obtained pair of {λ0, X0} = X0 characterizes the optimum solution of the λ-problem and
according to the vector problem of mathematical programming in Equations (1)–(4) with equivalent
criteria, can be solved on the basis of normalization of criteria and the principle of the guaranteed
result. In the optimum solution of X0 = {X0, λ0}, X0 is an optimal point and λ0 is a maximum level.

An important result of the algorithm for solving the vector problems of Equations (1)–(4) with
equivalent criteria is the following theorem.

Theorem 1. (The theorem of the two most contradictory criteria in the vector problem of mathematical
programming with equivalent criteria).

In convex vector problems of mathematical programming with equivalent criteria that are solved
on the basis of normalization of criteria and the principle of the guaranteed result, for an optimum
point of X0 = {λ0, X0}, two criteria are denoted by their indexes q ∈ K, p ∈ K (which in a sense are the
most contradictory of the criteria k = 1, K), for which an equality is carried out:

λ0 = λq(X0) = λp(X0), q, p ∈ K, X ∈ S, (10)

and other criteria are defined by inequalities:

λ0 ≤ λk(X0) ∀k ∈ K, q � p � k. (11)

3.1.2. Mathematical Algorithm of the Solution of a Vector Problem with Equivalent Criteria

To solve the vector problems of mathematical programming of Equations (1)–(4), the methods
based on axioms of the normalization of criteria and the principle of the guaranteed result [12,21] are
offered. Methods follow from Axiom 1 and the principle of optimality (Definition 3). We will present
this as a number of steps as follows:

The method of the solution of the vector problem of Equations (1)–(4) with equivalent criteria is
presented in the form of the sequence of steps [25].

Step 1. The problem of Equations (1)–(4) is solved separately for each criterion, i.e., for ∀k ∈ K1 is
solved at the maximum, and for ∀k ∈ K2 is solved at a minimum. As a result of the decision, we obtain
X∗k, an optimum point by the corresponding criterion, k = 1, K; f ∗k = fk(X∗k), the kth criterion size at this

point, k = 1, K.
Step 2. We define the worst value of each criterion on S: f 0

k , k = 1, K. For the problem of Equations

(1)–(4) for each criterion of k = 1, K, a minimum is solved as: f 0
k =min fk(X), G(X) ≤ B, X ≥ 0, k = 1, K.

In addition, for Equations (1)–(4) for each criterion, a maximum is solved as: f 0
k =max fk(X), G(X)

≤ B, X ≥ 0, k = 1, K.
As a result of the decision, we obtain X0

k = {xj, j = 1, N}, an optimum point by the corresponding

criterion, k = 1, K; f 0
k = fk(X0

k), the kth criterion size at the point, X0
k , k = 1, K.

Step 3. For the system analysis of a set of Pareto optimal points, for this purpose optimum points
of X∗ = {X∗k, k = 1, K}, are defined as sizes of criterion functions of F(X*) and relative estimates λ(X∗),

λk(X) =
fk(X)− f o

k
f ∗k− f o

k
, ∀k ∈ K:

F(X∗) = { fq(X∗k), q = 1, K, k = 1, K} =

∣∣∣∣∣∣∣∣∣
f1(X∗1), . . . , fk(X∗1),

. . .
f1(X∗k), . . . , fk(X∗k)

∣∣∣∣∣∣∣∣∣,

λ(X∗) = {λq(X∗k), q = 1, K, k = 1, K} =

∣∣∣∣∣∣∣∣∣
λ1(X∗1), . . . , λk(X∗1),

. . .
λ1(X∗k), . . . , λk(X∗k)

∣∣∣∣∣∣∣∣∣.
(12)
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As a whole, for the problem ∀k ∈ К the relative assessment of λk(X), k = 1, K lies within 0 ≤ λk(X)
≤ 1, ∀k ∈ К.

Step 4. Creation of the λ-problem.
Creation of the λ-problem is carried out in two stages: initially build the maximine problem of

optimization with the normalized criteria, which at the second stage will be transformed into the
standard problem of mathematical programming called the λ-problem.

For the construction of the maximine problem of optimization we use Definition 2, relative level
∀X ∈ S, λ =min

k∈K
λk(X).

The bottom λ level is maximized on X ∈ S, as a result, we obtain a maximine problem of
optimization with the normalized criteria:

λ0 = max
x

min
k
λk(X), G(X) ≤ B, X ≥ 0. (13)

At the second stage we transform the problem of Equation (13) into a standard problem of
mathematical programming:

λ0 =max λ,→ λ0 =max λ, (14)

λ− λk(X) ≤ 0, k = 1, K,→ λ−
fk(X) − f 0

k

f ∗k − f 0
k

, k = 1, K, (15)

G(X) ≤ B, X ≥ 0,→ G(X) ≤ B, X ≥ 0, (16)

where the vector of unknowns of X has the dimension N + 1: X = {λ, x1, . . . , xN}.
Step 5. Solution of the λ-problem.
The λ-problem of Equations (14)–(16) is a standard problem of convex programming for which

decision standard methods are used.
As a result of the solution of the λ-problem, the following are obtained:

X0 = {λ0, X0}, an optimum point,

fk(X0), k = 1, K, values of the criteria at this point,

λk(X0) =
fk(Xo)− f o

k
f ∗k− f o

k
, k = 1, K, sizes of the relative estimates,

λ0, the maximum relative estimates which represent the maximum bottom level for all relative
estimates of λk(X0), or the guaranteed result in relative units. λ0 guarantees that all relative estimates
of λk(X◦) are equal λ0: λk(X0) ≥ λ0, k = 1, K or λ0 ≤ λk(X0), k = 1, K, X0 ∈ S, and according to Theorem
1 [12,21], the point of X0 = {λ0, x1, . . . , xN} is Pareto optimal.

3.1.3. Implementation of the Decision using the Example of a Vector Problem of Linear Programming
with Equivalent Criteria

The use of the vector problem of Equations (1)–(4) for decision making is carried out in four stages:
statement of the problem, construction of the mathematical model, software development for solving
the vector problem, and, solution of the vector problem.

These stages are carried out on the example of a model of an economic system presented by a
vector problem of linear programming with equivalent criteria.

Stage 1. Statement of the problem.
As an economic system, a model of the production schedule of an enterprise is considered.
It is given that the company, which produces heterogeneous products of four types, N = 4, uses

resources of three types, M = 3, in production: labor (various specialties), material (different types of
materials), power (equipment: welding, turning, etc.).

The technological matrix of production is presented in Table 1. It also indicates the potential of
the enterprise for each type of the resource bi, i = 1, 3, as well as income c1

j and profit c2
j from the sale of

a unit of each type of product.
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Table 1. The consumption of resources and operational performance.

Type
Resources

Costs of Resources of One Product Possibilities of Firm
on ResourcesType 1 Type 2 Type 3 Type 4

Labor (people/week) 1 1 1 1 15
Material (in kg) 7 5 3 2 120

Capacity (per hour) 3 5 10 15 100

Income from a unit of
production c1

j
4.0 5.0 9.0 11.0 maximize

Profit c2
j , j = 1,...,4 2 10 6 20 maximize

Output x1 x2 x3 x4 To define

It is required to make the production schedule of the enterprise, which includes indicators
according to the nomenclature (by types of products) and on a volume basis, i.e., how many products
of the corresponding type should be made by the enterprise so that income and profit can be realized
as shown above. Construction and solution of the mathematical model follow.

Stage 2. Construction of a mathematical model.
As variables, we take the volume of products that the company produces: X = {x1, . . . , xN},

N = 4. We express target orientation of the production schedule by means of a vector problem of linear
programming (VPLP) which will take the form:

opt F(X) = {max f 1(X) = (4.0x1 + 5.0x2 + 9.0x3 + 11.0x4),
max f 2(X) = (2x1 + 10x2 + 6x3 + 20x4)},
with restrictions x1 + x2 + x3 + x4 ≤ 15,
7x1 + 5x2 + 3x3 + 2x4 ≤ 120,
3x1 + 5x2 +10x3 +15x4 ≤ 100, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.
In this VPLP the following is formulated: it is required to find the non-negative solution of x1, . . . ,

x4 in the system of inequalities at which the f 1(X) and f 2(X) functions obtain maximum values.
Stage 3. The software engineering of the solution of the VPLP.
The “Solution of a Vector Problem of Linear Programming” program is presented in the annex to

this section.
Stage 4. Solution of a vector problem of linear programming.
We show the solution of a problem of linear programming in the MATLAB system according to

an algorithm of the solution of the VPLP on the basis of normalization of criteria and the principle
of the guaranteed result. At first input data are prepared (the italicized font indicates the text of the
program in the MATLAB system). The vector target function in the form of a matrix is formed:

disp (‘Solution of a vector problem of the linear programming’)
cvec = [ −4.0 −5.0 −9.0 −11.0, % Sales volume
−2. −10. −6. −20.] % profit Volume
a = [1.0 1.0 1.0 1.0,
7.0 5.0 3.0 2.0,
3.0 5.0 10.0 15.0], % matrix of linear restrictions
b= [15. 120. 100] % the vector containing restrictions (bi)
Aeq = [], beq = [] % restriction like equality
X0 = [0. 0. 0. 0.], % a vector of variables
The algorithm of the solution of VPLP is represented as a sequence of steps.
Step 1. A decision on each criterion.
The decision on the first criterion of the VPLP: [x1,f1] = linprog(cvec(1,:),a,b,Aeq,beq,lb,ub)
Decision on the first criterion: X∗1 = x1 = {x1 = 7.14, x2 = x4 = 0, x3 = 7.85}, f ∗1 = f1 = −99.286.
Decision on the second criterion: X∗2 = {x1 = 0, x2 = 12.5, x3 = 0, x4 = 2.5}, f ∗2 = f 2 = 175.
Step 2. The worst point of an optimum is determined for each criterion (anti-optimum) by

multiplication of criterion by a minus unit. For the decisions on the first and second criterion:
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X0
1 = x1min = {x1 = 0, . . . , x4 = 0}, f 0

1 = f1min = 0.
X0

2 = x2min = {x1 = 0, . . . , x4 = 0}, f 0
2 = f2min = 0.

Step 3. The system analysis of the criteria in the VPLP is undertaken (i.e., the system of two criteria
at optimum points is analyzed). For this purpose, optimum points of X∗1, X∗2 are defined sizes of criterion

functions and relative estimates of: F(X*) = ‖ fq(X∗k)‖
q = 1,K

k = 1,K
, λ(X*) = ‖λq(X∗k)‖

q = 1,K

k = 1,K
, λ(X*) =

fk(X∗)− f o
k

f ∗k− f o
k

,

k = 1, K, F(X*) =

∣∣∣∣∣∣∣
f1
(
X∗1) f1

(
X∗1

)
f1
(
X∗2) f2

(
X∗2

)
∣∣∣∣∣∣∣ =

∣∣∣∣∣∣ 99.29 61.43
90.0 175.0

∣∣∣∣∣∣, λ(X*) =

∣∣∣∣∣∣∣
λ1

(
X∗1) λ2

(
X∗1

)
λ1

(
X∗2) λ2

(
X∗2

)
∣∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1.0 0.351
0.907 1.0

∣∣∣∣∣∣.
Step 4. The λ-problem is constructed as: λ0 = max λ,
with restrictions λ − (f 1(X) − f 0

1 )/( f ∗1 − f 0
1 ) ≤ 0, λ − (f 2(X) − f 0

2 )/( f ∗2 − f 0
2 ) ≤ 0, G(X) ≤ B, X ≥ 0.

Substituting numerical data, we obtain:
λ0 =max λ,
with restrictions: λ − (4.0x1 + 5.0x2 + 9.0x3 + 11.0x4 − f 0

1 )/( f ∗1 − f 0
1 ) ≤ 0,

λ − (2x1 +10x2 + 6x3 + 20x4 − f 0
2 )/( f ∗2 − f 0

2 ) ≤ 0,
x1 + x2 + x3 + x4 ≤ 15,
7x1 + 5x2 + 3x3 + 2x4 ≤ 120,
3x1 + 5x2 + 10x3 + 15x4 ≤ 100,
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.
Step 5. Solution of the λ-problem.
Results of the solution of the λ-problem:
X0 = {x1 = 0.9217914, x2 = 0.0, x3 = 11.73964, x4 = 1.520722, x5 = 1.739639} - optimum values

of variables,
λ0 = 0.9218, the optimum value of the criterion function
We execute a check, at an optimum point of X0 we determine sizes of criterion functions of

F(X0) = {fk(X0), k = 1, K}, relative estimates of λ(X0) = {λk(X0), k = 1, K}.
As a result of the decision we obtain: fX0 = [f 1(X0) = 91.52, f 2(X0) = 161.3],
λ1(X0) = 0. 9218, λ2(X0) = 0.9218, i.e., λ0 ≤ λk(X0), k = 1,2.
These results show that at point X0 both criteria in the relative units reached λ0 = 0.92 from the

optimum sizes. Any increase in one of the criteria of this level leads to a decrease in the other criterion,
i.e., the point X0 is Pareto optimal.

Here we present the text of the program in the MATLAB system.
The application.
%Vector linear programming problem, 2 criteria
% Author: Мaшунин Юрий Констaнтинович -Mashunin Yury. K.
%The program is designed for the training and research, for the commercial purposes

please contact:
% Mashunin@mail.ru
disp(Vector linear programming problem - 2 criteria’)
disp(‘ opt F(X) = {max f1(X) = (4.0x1 + 5.0x2 +9.0x3 + 11.0x4), ‘)
disp(‘ max f2(X) = (2x1 + 10x2 + 6x3 + 20x4),’)
disp(‘ x1 + x2 + x3 + x4 <= 15,’)
disp(‘7x1 +5x2 + 3x3 + 2x4 <= 120,’)
disp(‘3x1 +5x2 +10x3 +15x4 <= 100, x1 >= 0,..., x42 >= 0 ’)
cvec = [-4.0 -5.0 -9.0 -11.0.; -2. -10. -6. -20.];
disp(‘‘Step 0. Input data of the vector problem’)
cvec = [-4.0 -5.0 -9.0 -11.0; -2. -10. -6. -20.];
a = [1. 1. 1. 1.; 7. 5. 3. 2.; 3. 5. 10. 15.];
b = [15. 120. 100.]; Aeq = []; beq = []; x0 = [0. 0. 0. 0.];
disp(‘Step 1.The solution for each criterion is the best’)
[x1,f1] = linprog(cvec(1,:),a,b,Aeq,beq,x0)
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[x2,f2] = linprog(cvec(2,:),a,b,Aeq,beq,x0)
disp(‘Step 2. Solution by criterion-best-worst’)
[x1min,f1min] = linprog(-1*cvec(1,:),a,b,Aeq,beq,x0)
[x2min,f2min] = linprog(-1*cvec(2,:),a,b,Aeq,beq,x0)
disp(‘Step 3. System analysis of the results of the decision’)
d1 = -f1- f1min; d2 = -f2- f2min;
f = [cvec(1,:)*x1 cvec(2,:)*x1; cvec(1,:)*x2 cvec(2,:)*x2]
L = [(-f(1,1) - f1min)/d1 (-f(1,2) - f2min)/d2;
(-f(2,1) − f1min)/d1 (-f(2,2) - f2min)/d2]
disp(‘Step 4. Solution of L-problem’);
cvec0 = [-1. 0. 0. 0. 0.];
a0 = [1. -4.0/d1 -5.0/d1 -9.0/d1 -11.0/d1;
1. -2./d2 -10./d2 -6./d2 -20./d2;
0. 1. 1. 1. 1.;
0. 7. 5. 3. 2.;
0. 3. 5. 10. 15.];
b0 = [- f1min/d1 − f2min)/d2 15. 120. 100.]; x00 = [0. 0. 0. 0. 0.];
[X0,L0] = linprog(cvec0,a0,b0,Aeq,beq,x00)
fX0 = [cvec(1,:)*X0(2:5) cvec(2,:)*X0(2:5)]
LX0 = [(-fX0(1)- f1min)/ d1 (-fX0(2) - f2min)/d2]

3.2. Vector Optimization with a Criterion Priority

3.2.1. Axioms and the Principle of Optimality of Vector Optimization with a Criterion Priority

For development of methods of the solution of problems of vector optimization with a priority of
criterion we use definitions as follows:

• priority of one criterion of vector problems, with a criterion priority over other criteria,
• numerical expression of a priority,
• the set priority of a criterion,
• the lower (minimum) level from all criteria with a priority of one of them,
• a subset of points with priority by criterion (Axiom 2),
• the principle of optimality of the solution of problems of vector optimization with the set priority

of one of the criteria, and related theorems. For more details see [7,25].

Definition 4. (About the priority of one criterion over the other).
The criterion of q ∈ K in the vector problem of Equations (12) and (13) in a point of X ∈ S has

priority over other criteria of k = 1, K, and the relative estimate of λq(X) by this criterion is greater than
or equal to relative estimates of λk(X) of other criteria, i.e.:

λq(X) ≥ λk(X), k = 1, K,

and a strict priority for at least one criterion of t∈K,

λq(X) > λt(X), t � q, and for other criteria of λq(X) ≥ λk(X), k = 1, K, k � t � q.

Introduction of the definition of a priority of criterion in the vector problem of Equations (1)–(4)
executed the redefinition of the early concept of a priority. Earlier the intuitive concept of the importance
of this criterion was outlined, now this “importance” is defined as a mathematical concept: the higher
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the relative estimate of the qth criterion compared to others, the more it is important (i.e., more priority),
and the highest priority at a point of an optimum is X∗k, ∀q ∈ K.

From the definition of a priority of criterion of q ∈ K in the vector problem of Equations (1)–(4), it
follows that it is possible to reveal a set of points Sq ⊂ S that is characterized by λq(X) ≥ λk(X), ∀k � q, ∀X
∈ Sq. However, the answer to whether a criterion of q ∈ K at a point of the set Sq has more priority than
others remains open. For clarification of this question, we define a communication coefficient between
a couple of relative estimates of q and k that, in total, represent a vector: Pq(X) = {pq

k(X)|k = 1, K}, q ∈ K
∀X ∈ Sq.

Definition 5. (About numerical expression of a priority of one criterion over another).
In the vector problem of Equations (12) and (13), with priority of the qth criterion over other

criteria of k = 1, K, for ∀X ∈ Sq, and a vector of Pq(X) which shows how many times a relative estimate
of λq(X), q ∈ K, is more than other relative estimates of λk(X), k = 1, K, we define a numerical expression
of the priority of the qth criterion over other criteria of k = 1, K as:

Pq(X) = {pq
k(X) = λq(X)/λk(X), k = 1, K}, pq

k(X) ≥ 1,
∀X ∈ Sq ⊂ S, k = 1, K,∀q ∈ K.

(17)

Definition 6. (About the set numerical expression of a priority of one criterion over another).
In the vector problem of Equations (1)–(4) with a priority of criterion of q ∈ K for ∀X ∈ S, vector

Pq = {pq
k, k = 1, K} is considered to be set by the person making decisions (i.e., decision-maker) if

everyone is set a component of this vector. Set by the decision-maker, component pq
k, from the point of

view of the decision-maker, shows how many times a relative estimate of λk(X), k = 1, K is greater than
other relative estimates of λk(X), k = 1, K. The vector of pq

k, k = 1, K is the numerical expression of the

priority of the qth criterion over other criteria of k = 1, K:

Pq(X) = {pq
k, k = 1, K}, pq

k ≥ 1,∀X ∈ Sq ⊂ S, k = 1, K,∀q ∈ K. (18)

The vector problem of Equations (1)–(4), in which the priority of any criteria is set, is called a
vector problem with the set priority of criterion. The problem of a task of a vector of priorities arises
when it is necessary to determine the point X0 ∈ S by the set vector of priorities. In the comparison of
relative estimates with a priority of criterion of q ∈ K, as well as in a task with equivalent criteria, we
define the additional numerical characteristic of λ which we call the level.

Definition 7. (About the lower level among all relative estimates with a criterion priority).
The λ level is the lowest among all relative estimates with a priority of criterion of q∈ such that:

λ ≤ pq
kλk(X), k = 1, K, q ∈ K,∀X ∈ Sq ⊂ S; (19)

The lower level for the performance of the condition in Equation (19) is defined as:

λ = min
k∈K

pq
kλk(X), q ∈ K,∀X ∈ Sq ⊂ S. (20)

Equations (19) and (20) are interconnected and serve as a further transition from the operation of
the definition of the minimum to restrictions, and vice versa. In Section 3.1, we gave the definition of
a Pareto optimal point X0 ∈ S with equivalent criteria. Considering this definition as an initial one,
we will construct a number of the axioms dividing an admissible set of S into, first, a subset of Pareto
optimal points S0, and, secondly, a subset of points Sq ⊂ S, q ∈ K, with priority for the qth criterion.
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Axiom 2. (About a subset of points, priority by criterion).
In the vector problem of Equations (12)–(13), the subset of points Sq ⊂ S is called the area of

priority of criterion of q ∈ K over other criteria, if ∀X ∈ Sq ∀k∈K λq(X) ≥ λk(X), q � k.

This definition extends to a set of Pareto optimal points S0 that is given by the following definition.

Axiom 2a. (About a subset of points, priority by criterion, on Pareto’s great number in a vector
problem). In a vector problem of mathematical programming the subset of points So

q ⊂ S0 ⊂ S is called
the area of a priority of criterion of q∈K over other criteria, if ∀X ∈ So

q ∀k ∈ K λq(X) ≥ λk(X), q � k.

In the following we provide explanations.
Axiom 2 and 2a allow the breaking of the vector problem in Equations (1)–(4) into an admissible

set of points S, including a subset of Pareto optimal points, S0 ⊂ S, and subsets:
One subset of points S’ ∈ S where criteria are equivalent, and a subset of points of S’ crossed with

a subset of points S◦, allocated to a subset of Pareto optimal points at equivalent criteria S00 = S’ ∩ S0.
As will be shown further, this consists of one point of X0 ∈ S, i.e., X0 = S00 = S’ ∩ S0, S’ ∈ S, S0 ∈ S.

“K” subsets of points where each criterion of q = 1, K has a priority over other criteria of k = 1, K, q
� k, and thus breaks, first, sets of all admissible points S, into subsets Sq ⊂ S, q = 1, K and, second, a set
of Pareto optimal points, S0, into subsets So

q ⊂ S0 ⊂ S, q = 1, K. This yields: S’U( U
q∈K

So
q) = S0, So

q ⊂S0 ⊂ S,

q = 1, K.
We note that the subset of points So

q, on the one hand, is included in the area (a subset of points)
of priority of criterion of q∈K over other criteria: So

q⊂ Sq ⊂ S, and, on the other, in a subset of Pareto
optimal points: So

q ⊂ S0 ⊂ S.
Axiom 2 and the numerical expression of priority of criterion (Definition 5) allow the identification

of each admissible point of X∈S (by means of vector Pq(X) = {pq
k(X) = λq(X)/λk(X), k = 1, K}), to form

and choose:

• a subset of points by priority criterion Sq, which is included in a set of points S, ∀q ∈ K X ∈ Sq ⊂ S,
(such a subset of points can be used in problems of clustering, but is beyond this article);

• a subset of points by priority criterion So
q, which is included in a set of Pareto optimal points S◦,

∀q∈K, X∈So
q ⊂ S0.

Thus, full identification of all points in the vector problem of Equations (12) and (13) is executed
in sequence as:

Set of admissible points
of X∈S→

Subset of points,
optimum across Pareto,

X∈S0 ⊂S→

Subset of points,
optimum across Pareto

X∈So
q ⊂ S0 ⊂ S→

Separate point of a ∀X∈S
X∈So

q ⊂ S0 ⊂ S

This is the most important result which allows the output of the principle of optimality and to
construct methods of a choice of any point of Pareto’s great number.

Definition 8. (Principle of optimality 2. The solution of a vector problem with the set criterion priority).
The vector problem of Equations (12) and (13) with the set priority of the qth criterion of pq

k, k = 1, K
is considered solved if the point X0 and maximum level λ0 among all relative estimates is found such
that:

λ0 = max
X∈S

min
k∈K

pq
kλk(X), q ∈ K. (21)

Using the interrelation of Equations (19) and (20), we can transform the maximine problem of
Equation (33) into an extreme problem of the form:

λ0 = max
X∈S
λ, (22)

λ ≤ pq
kλk(X), k = 1, K. (23)

45



Appl. Syst. Innov. 2019, 2, 32

We call Equations (22) and (23) the λ-problem with a priority of the qth criterion.
The solution of the λ-problem is the point X0 = {X0, λ0} This is also the result of the solution of

the vector problem of Equations (1)–(4) with the set priority of the criterion, solved on the basis of
normalization of criteria and the principle of the guaranteed result.

In the optimum solution X0 = {X0, λ0}, X0, an optimum point, and λ0, the maximum bottom level,
the point of X0 and the λ0 level correspond to restrictions of Equation (15), which can be written as: λ0

≤ pq
kλk(X0), k = 1, K.

These restrictions are the basis of an assessment of the correctness of the results of a decision in
practical vector problems of optimization.

From Definitions 1 and 2, “Principles of optimality”, follows the opportunity to formulate the
concept of the operation “opt”.

Definition 9. (Mathematical operation “opt”).
In the vector problem of Equations (1)–(4), in which “max” and “min” are part of the criteria, the

mathematical operation “opt” consists of the definition of a point X0 and the maximum λ0 bottom
level to which all criteria measured in relative units are lifted:

λ0 ≤ λk
(
X0

)
=

fk(X) − f o
k

f ∗k − f o
k

, k = 1, K, (24)

i.e., all criteria of λk(X0), k = 1, K are equal to or greater than the maximum level of λ0 (therefore λ0 is
also called the guaranteed result).

Theorem 2. (The theorem of the most inconsistent criteria in a vector problem with the set priority).
If in the convex vector problem of mathematical programming of Equations (1)–(4) the priority

of the qth criterion of pq
k, k = 1, K, ∀q ∈ K over other criteria is set, at a point of an optimum X0 ∈ S

obtained on the basis of normalization of criteria and the principle of guaranteed result, there will
always be two criteria with the indexes r ∈ K, t ∈ K, for which the following strict equality holds:

λ0 = pr
kλr

(
X0

)
= pt

kλt
(
X0

)
, r, t,∈ K, (25)

and other criteria are defined by inequalities:

λ0 ≤ pq
k

(
X0

)
, k = 1, K,∀q ∈ K, q � r � t. (26)

Criteria with the indexes r∈K, t∈K for which the equality of Equation (38) holds are called the
most inconsistent.

Proof. Similar to Theorem 2 [25].
We note that in Equations (25) and (26), the indexes of criteria r, t ∈ K can coincide with the q ∈

K index.
Consequence of Theorem 1, about equality of an optimum level and relative estimates in a vector

problem with two criteria with a priority of one of them.
In a convex vector problem of mathematical programming with two equivalent criteria, solved on

the basis of normalization of criteria and the principle of the guaranteed result, at an optimum point
Xo equality is always carried out at a priority of the first criterion over the second:

λ0 = λ1
(
X0

)
= p1

2

(
X0

)
λ2

(
X0

)
, X0 ∈ S, where p1

2

(
X0

)
= λ1

(
X0

)
/λ2

(
X0

)
, (27)

and at a priority of the second criterion over the first:
λ0 = p2

1(X0)λ1(X0) = λ2(X0), X0 ∈ S, where p2
1(X0) = λ2(X0)/λ1(X0).
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3.2.2. Mathematical Method of the Solution of a Vector Problem with Criterion Priority

(Method of the decision in problems of vector optimization with a criterion priority) [25].
Step 1. We solve a vector problem with equivalent criteria. The algorithm of the decision is

presented in Section 3.1.2. As a result of the decision we obtain:

• optimum points by each criterion separately X∗k, k = 1, K and sizes of criterion functions in these

points of f ∗k = fk(X∗k), k = 1, K, which represent the boundary of a set of Pareto optimal points,

• anti-optimum points by each criterion of X0
k = {xj, j = 1, N} and the worst unchangeable part of

each criterion of f 0
k = fk(X0

k), k = 1, K,

• X0 = {λ0, X0}, an optimum point, as a result of the solution of VPMP at equivalent criteria, i.e., the
result of the solution of a maximine problem and the λ-problem constructed on its basis,

• λ0, the maximum relative assessment which is the maximum lower level for all relative estimates
of λk(X0), or the guaranteed result in relative units, λ0 guarantees that all relative estimates of
λk(X0) are equal to or greater than λ0:

λ0 ≤ λk
(
X0

)
, k = 1, K, X0 ∈ S. (28)

The person making the decision carries out the analysis of the results of the solution of the vector
problem with equivalent criteria. If the received results satisfy the decision maker, then the process
concludes, otherwise subsequent calculations are performed.

In addition, we calculate:

• in each point X∗k, k = 1, K we determine sizes of all criteria of q = 1, K: {fq(X∗k), q = 1, K}, k = 1, K,

and relative estimates λ(X∗) = {λq(X∗k), q = 1, K, k = 1, K}, λk(X) =
fk(X)− f o

k
f ∗k− f o

k
, ∀k ∈ K:

F(X∗) =

∣∣∣∣∣∣∣∣∣
f1(X∗1), . . . , fk(X∗1),

. . .
f1(X∗k), . . . , fk(X∗k)

∣∣∣∣∣∣∣∣∣,λ(X
∗) =

∣∣∣∣∣∣∣∣∣
λ1(X∗1), . . . , λk(X∗1),

. . .
λ1(X∗k), . . . , λk(X∗k)

∣∣∣∣∣∣∣∣∣ (29)

Matrices of criteria of F(X*) and relative estimates of λ(X*) show the sizes of each criterion of
k = 1, K upon transition from one optimum point X∗k, k∈K to another X∗q, q∈K, i.e., on the border of a
great number of Pareto.

• at an optimum point at equivalent criteria X0 we calculate sizes of criteria and relative estimates:

fk
(
X0

)
, k = 1, K;λk

(
X0

)
, k = 1, K, (30)

which satisfy the inequality of Equation (28). In other points X∈S0, in relative units the criteria of
λ =min

k∈K
λk(X) are always less than λ0, given the λ-problem of Equations (22) and (23).

This information is also a basis for further study of the structure of a great number of Pareto.
Step 2. Choice of priority criterion of q ∈ K.
From theory (see Theorem 1) it is known that at an optimum point X0 there are always two

most inconsistent criteria, q ∈ K and v ∈ K, for which in relative units an exact equality holds:
λ0 = λq(X0) = λp(X0), q, v ∈ K, X ∈ S. Others are subject to inequalities: λ0 ≤ λk(X0) ∀k ∈ K, q � v � k.

As a rule, the criterion which the decision-maker would like to improve is part of this couple, and
such a criterion is called a priority criterion, which we designate q ∈ K.

Step 3. Numerical limits of the change of the size of a priority of criterion q ∈ K are defined.
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For priority criterion q ∈ K from the matrix of Equation (29) we define the numerical limits of the
change of the size of criterion:

• in physical units of fq
(
X0

)
≤ fq(X) ≤ fq

(
X∗q ), k ∈ K, (31)

where fq(X∗q) derives from the matrix of Equation (29) F(X*), all criteria showing sizes measured in
physical units, fq(X0) from Equation (30), and,

• in relative units of λq
(
X0

)
≤ λq(X) ≤ λq

(
X∗q ), k ∈ K, (32)

where λq(X∗q) derives from the matrix λ(X*), all criteria showing sizes measured in relative units (we
note that λq(X∗q) = 1), λq(X0) from Equation (29).

As a rule, Equations (31) and (32) are given for the display of the analysis.
Step 4. Choice of the size of priority criterion (decision-making).
The person making the decision carries out the analysis of the results of calculations of Equation

(42) and from the inequality of Equation (31) chooses the numerical size fq of the criterion of q∈K:

fq
(
X0

)
≤ fq ≤ fq

(
X∗q ), q ∈ K. (33)

For the chosen size of the criterion of fq it is necessary to define a vector of unknown Xo. For this
purpose, we carry out the subsequent calculations.

Step 5. Calculation of a relative assessment.
For the chosen size of the priority criterion of fq the relative assessment is calculated as:

λq =
fq − f o

q

f ∗q − f o
q

, (34)

which upon transition from point X0 to X∗q, according to Equation (32), lies in the limits: λq(X0) ≤ λq ≤
λq(X∗q) = 1.

Step 6. Calculation of the coefficient of linear approximation.
Assuming a linear nature of the change of criterion of fq(X) in Equation (31) and according to the

relative assessment of λq(X) in Equation (32), using standard methods of linear approximation we
calculate the proportionality coefficient between λq(X◦), λq, which we call ρ:

ρ =
λq − λq(Xo)

λq(X∗q) − λq(Xo)
, q ∈ K (35)

Step 7. Calculation of coordinates of priority criterion with the size fq.
In accordance with Equation (33), the coordinates of the Xq priority criterion point lie within the

following limits: X0 ≤ Xq ≤ X∗q, q ∈ K. Assuming a linear nature of change of the vector Xq = {xq
1, . . . , xq

N}
we determine coordinates of a point of priority criterion with the size fq with the relative assessment of
Equation (32):

Xq = {xq
1 = x0

1 + ρ(x∗q(1) − x0
1),

· · · ,
xq

N = x0
N + ρ(x∗q(N) − x0

N)}.
(36)

where X0 = {xo
1, . . . , xo

N}, X∗q = {x∗q(1), . . . , x∗q(N)}.
Step 8. Calculation of the main indicators of a point xq.
For the obtained point xq, we calculate:

• all criteria in physical units fk(xq) = {fk(xq), k = 1, K},

• all relative estimates of criteria λq = {λq
k, k = 1, K}, λk(xq) =

fk(xq)− f o
k

f ∗k− f o
k

, k = 1, K1,K,
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• the vector of priorities Pq = {pq
k =

λq(xq)

λk(xq)
, k = 1, K},

• the maximum relative assessment λoq =min (pq
kλk(xq), k = 1, K).

Any point from Pareto’s set Xo
t = {λo

t , Xo
t }∈So can be similarly calculated.

Analysis of results. The calculated size of criterion fq(Xo
t ), q∈K is usually not equal to the set fq.

The error of the choice of Δfq = |fq(Xo
t ) − fq| is defined by the error of linear approximation.

4. Research, Analysis, and Formulation of the Problem of Decision-Making with Uncertain Data

4.1. Investigation of the Model of the “Object for Making an Optimal Decision” under Certainty and
Uncertainty

4.1.1. Characteristics of Certainty and Uncertainty

Building a mathematical model of an “object or system for making an optimal decision” (Equations
(1)–(4)) is possible, under conditions of certainty and uncertainty, which happen often. Conditions of
certainty are characterized by the fact that the functional dependence of each criterion fk, k = 1, K (1)
and the constraints G(3) on the system parameters xj, j = 1, N, is known [6,12,22].

To build a mathematical model of a system under certainty, studies of the physical processes
occurring in the system are conducted. At the creation of a mathematical model of such processes,
fundamental laws of physics are used, for example, models of magnetic and temperature profiles,
and laws of conservation of energy and movement. A complete list of all functional characteristics
of technical systems and parameters on which these characteristics depend is formed. Their verbal
description is given. The technical and information interrelationships of all components of a technical
system is established, i.e., the structure is under construction. At this stage, the problem of the choice
of the best structure of a technical system (a problem of structural optimization) is solved [4,23].

As a result of the conducted research, the functional interrelationship of a set of characteristics of
F1(X), F2(X) and restrictions of G(X) from parameters X has to be constructed.

Conditions of uncertainty are characterized by that there is no sufficient information on the
functional dependence of each characteristic and the restrictions on the parameters [8,9,12,20].

At the same time, there are two problems associated with decision making.
The first problem is characterized by the fact that only data for some of the indicators are known

(such a task is presented in the following section, see Equation (37)). The second problem is that data
on some set of parameters, as well as relevant data on some set of characteristics (criteria), of a problem
are known (38).

Both problems arise when carrying out pilot studies based on the principle of “ input-output”. On
the basis of the conducted pilot studies, there is a problem with the adoption of the acceptable decision.
We present the analysis of these problems and decision making on their basis in the following sections.

Thus, under conditions of certainty the function fk(X), k ∈ K is known, for the infinite set of
parameters there is a corresponding infinite set of estimates of the function (criterion). Conversely,
under conditions of uncertainty, only a finite set of parameters and the corresponding set of function
(criterion) estimates are known, the smaller the set of parameters, the higher the uncertainty.

4.1.2. Investigation of Condition of Uncertainty

Conditions of uncertainty are considered in two aspects. The first relates to a lack of sufficient
information. This is the uncertainty associated with the variety of characteristics (criteria) of the object
under study.

This aspect is defined by the fact that there is not sufficient information on the functional
dependence of the characteristic f and restrictions g from parameters X of the studied object. In this
case, input data characterizing the object are presented as:

(a) random data,
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(b) fuzzy data, or
(c) incomplete data, which are usually obtained from experimental data.

For options (a) and (b), input data have to be transformed into option (c), and are presented
in table form: 1 column—parameter size, 2 columns—characteristic size. The methodology of the
transformation of random and fuzzy data into tabular form is presented in the magazine “Fuzzy
Decision Making and Soft Computing Applications”. Tabular (experimental) data, using regression
analysis, will be transformed into the f (X) function, i.e., in terms of certainty.

In the future, only variant c) is considered in this work, and its transformations by regression
methods into certainty conditions, i.e., into the function f (X).

The second aspect of decision-making uncertainty is related to the fact that an object is characterized
by many characteristics: f 1(X), . . . , fK(X). The set of characteristics K is divided into two subsets K1

and K2. The subset of characteristics K1 in a numerical value is desired to be as high as possible
(maximum), and the subset of characteristics K2 is desired to be as low as possible (minimum). Below
it will be shown that the decision-making problem with a set of characteristics is reduced to a vector
problem of mathematical programming, the solution of which is presented in Section 3.

4.2. Conceptual Problem Definition of Decision Making under the Conditions of Uncertainty

Initially, from a general view the conceptual problem definition of decision making was presented
in work of R. L. Keeney and H. Raiffa [11], according to which we denote ai, i = 1, M, for the admissible
decision-making alternatives, and A = (a1 a2 . . . aM) for the vector of the set of admissible alternatives.

We match each alternative a ∈ A to K numerical indices (criteria) f 1(a), . . . , fK(a) that characterize
the system. We can assume that this set of indices maps each alternative onto the point of the
K-dimensional space of outcomes (consequences) of decisions made, F(a) = (f 1(a) f 2(a) . . . fK(a))T. We
use the same symbol fk(a) both for the criterion and for the function that performs the estimation with
respect to this criterion. Note that we cannot directly compare the variables fv(a) and fk(a), v � k at
any point F(a) of the K-dimensional space of consequences since it would most likely have no sense
because these criteria are generally measured in different units. Using these data, we can state the
decision-making problem.

The decision maker is to choose an alternative a ∈ A to obtain the most suitable result, i.e., F(a)
→min.

This definition means that the required estimating function should reduce the vector F(a) to a
scalar preference or “value” criterion. In other words, it is equivalent to setting a scalar function V
given the space of consequences and possessing the following property:

V(F(a)) ≥ V(F(a′)) ⇔ F(a) � F(a′),

where the symbol � means “no less preferable than” [24]. We call the function V(F(a)) the value
function. The name of this function in other publications may vary from an order value function to a
preference function to a value function. Thus, the decision maker is to choose a ∈ A such that V(F(a)) is
maximized. The value function allows an indirect comparison of the importance of certain values of
various criteria of the system. Thus, the matrix F(a) of admissible outcomes of alternatives takes the
form:

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
a1 f 1

1 . . . f K
1

. . .
aM f 1

M . . . f K
M

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦. (37)

where fi j = fi (ai) and all alternatives in it are represented by the vector of indices F(a). For the sake of
definiteness and without loss of generality, we assume that the first criterion (any criterion can be the
first) is arranged in increasing (decreasing) order, with the alternatives re-numbered i = 1, M.

Problem 1 (Equation (37)) implies that the decision maker is to choose the alternative a0 ∈ A such
that it will yield the “most suitable (optimal) result” [24].
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For an engineering system, we can represent each alternative ai by the N-dimensional vector
Xi = {xij, j = 1, N}, i = 1, M} of its parameters, and its outcomes by the K-dimensional vector criterion
{f 1(Xi), . . . , fK(Xi), i = 1, M}. Taking this into account, the matrix of outcomes (Equation (37)) takes the
form:

I =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
X1 f1(X1) ... fK(X1)

. . .
XM f1(XM) . . . fK(XM)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, (38)

Problem 2 (Equation (38)) for decision makers consists of the choice of the set of design data
X0 = {xij, j = 1, N}, i = 1, M} that would allow the optimal result [24].

4.3. The Analysis of Modern Methods of Decision Making to the Experimental Data

At present, the problems of Equations (37) and (38) are solved by a number of “simple” methods
based on special criteria, such as Wald, Savage, Hurwitz, and Bayes–Laplace criteria, which provide
the basis for decision making.

The Wald criterion of maximizing the minimal component helps make the optimal decision that
ensures the maximal gain among minimal ones, max

k = 1,K
min

i = 1,M
f k
i .

The Savage minimal risk criterion chooses the optimal strategy so that the value of the risk rk
i is

minimal among maximal values of risks over the columns, min
i = 1,M

max
k = 1,K

rk
i . The value of the risk rk

i is

chosen from the minimal difference between the decision that yields maximal profit max
i = 1,M

f k
i , k = 1, K,

and the current value f k
i , rk

i = ( max
i = 1,M

f k
i ) − f k

i , with their set being the matrix of risks R = ‖rk
i ‖

k = 1,K
i = 1,M

.

The Hurwitz criterion helps choose the strategy that lies somewhere between absolutely pessimistic
and optimistic (i.e., the most considerable risk):

max
k = 1,K

⎛⎜⎜⎜⎜⎝α min
i = 1,M

f k
i + (1− α) max

i = 1,M
f k
i

⎞⎟⎟⎟⎟⎠,

where α is the pessimistic coefficient chosen in the interval 0 ≤ α ≤ 1.
The Bayes–Laplace criterion takes into account each possible consequence of all decision options,

given their probabilities max
i = 1,M

K∑
k = 1

f k
i pi .

All these and other methods are widely described in publications on decision making [11]. All
have certain drawbacks. For instance, if we analyze the Wald maximin criterion, we can see that by the
problem’s hypothesis all criteria are in different units. Hence, the first step, which is to choose the
minimal component f min

k = min
i = 1,M

f k
i , is quite reasonable. However, all f min

k , k = 1, K, are measured in

different units, therefore the second step, which is to maximize the minimal component max
k = 1,K

f min
k , is

pointless. Although it brings us slightly closer to a solution, the criteria measurement scale fails to
solve the problem since the chosen criteria scales are judgmental.

We believe that to solve the problem of Equations (37) and (38), we need to form a measure that
would allow the evaluation of any decision to be made, including the optimal one. In other words, we
need to construct an axiom that shows, based on the set of K criteria, what makes one alternative better
than the other. In turn, the axiom can help derive a principle that determines whether the chosen
alternative is optimal. The optimality principle should become the basis for the constructive methods of
choosing optimal decisions. We propose such an approach for the vector mathematical programming
problem that is essentially close to the decision-making problem of Equations (37) and (38).
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4.4. Transforming the Decision-Making Problem into Vector Problem

We compare the decision-making problem (DMP) of Equations (37) and (38) with the vector
problem mathematical programming (VPMP). Table 2 shows the comparison.

Table 2. Comparing vector problem mathematical programming (VPMP) to decision-making problems
(DMP).

VPMP—Equations (1)–(4) DMP_1—Equation (37) DMP_2—Equation (38)

2. Common Objective: Making the best decision

3. Find the vector X from the
admissible set, where the vector

criterion F(X) is optimal

Objective: Find the alternative ai,
i = 1, M, such that the set of criteria

f k
i , k = 1, K is optimal

Objective: Find the vector
alternative Xi, i = 1, M, such that
the set of criteria F(X), is optimal

4. The vector of parameters X and
the dependence of criteria F(X) on
it are given completely, the set of
admissible points is finite: G(X)≤

0, Xmin ≤ X ≤ Xmax.

Parameters are not given, the
criteria are represented as the
finite set of values, the set of

admissible alternatives is finite

Parameters are given, the criteria
are represented as separate values
so that the functional dependence
between them is not given, the set

of admissible points is finite

Opt F(X) = {max F1(X) =
{max fk(X), k = 1, K1},

min F2(X) = {min fk(X), k = 1, K2}},
G(X) ≤ 0,

xmin
j ≤ xj ≤ xmax

j , j = 1, N

5. Transforming the Decision Making Problem into VMPP

Using regression analysis, we
transform each k-th k = 1, K set of
values of criteria, f k

i , i = 1, M into
the criterion function fk(x)

Using multiple regression, we
transform each k-th k = 1, K set of
values of criteria fk(Xi), i = 1, M
into the criterion function fk(X)

6.
↑ Problems are
Equivalent→

Opt F(x) = (f 1(x) . . . fK(x))T.
f min
k ≤ fk(x) ≤ f max

k , k = 1, K,
xmin ≤ x ≤ xmax.

Opt F(X) = (f 1(X) . . . fK(X))T.
f min
k ≤ fk(X) ≤ f max

k , k = 1, K,
Xmin ≤ X ≤ Xmax.

The first, second and third rows of Table 2 show that all three problems have the common objective
of “making the best (optimal) decision”. Both types of decision-making problems (row 4) have some
uncertainty, functional dependences of criteria and restrictions on the problem’s parameters are not
known. At present, many mathematical methods of regression analysis are implemented in software
(such as MATLAB) that allow using some set of initial data (as in Equations (37) and (38)) to construct
the functional dependences fk(X), k = 1, K. For this reason, we use regression methods, including
multiple regression, to construct criteria and restrictions in decision-making problems of both types
(row 5) [26]. Combining criteria and restrictions, we represent decision-making problems of both types
as a vector mathematical programming problem (row 6).

We perform these transformations. We use methods of regression analysis for the problem of
Equation (37) and multiple regression for the problem of Equation (38) to transform each kth column
of the matrix Ψ into the criterion function fk(X). We combine them in the vector function F(X): max
F1(X) = {fk(X), k = 1, K} in Equation (1), and, min F2(X) = {fk(X), k = 1, K} in Equation (2). The
inequalities:

f min
k ≤ fk(X) ≤ f max

k , k = 1, K

where f min
k = min

i = 1,M
fk(Xi), f max

k = max
i = 1,M

fk(Xi), are the minimal and maximal values of each function,

and the parameters bounded by minimal and maximal values of each of them serve as functional
restrictions (Equation (3)). The result is a VPMP (Equations (1)–(4)) and uses the same methods based
on normalizing criteria and maximin principles as for the ES model under complete certainty to solve
it for tantamount criteria.
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5. Statement and Optimal Decision Making with Experimental Data in Problems with One
Parameter

We use a particular example to illustrate the decision-making problem of the first type (Equation
(37)) and the choice of the optimal decision. We also show the proposed method is independent of the
form of the sought extremum of partial criteria.

5.1. Problem Definition of Decision Making of the First Type

The problem definition is carried out by the designer of the system on experimental data.
It is given that the system is defined by one parameter X = {x}, a vector of (operated) variables.

The experimental data for the task of decision making are provided in Table 3.

Table 3. Experimental data (matrix I).

x f 1 f 2 f 3 f 4

630 4200 1950 1628 245
1580 6000 2100 1577 230
2662 8850 2090 1377 210
3704 11,000 2050 1200 200
4800 12,900 1950 1100 190
5929 14,730 1750 977 170
7284 16,310 1560 1050 151
9353 19,000 1350 1100 150

14,505 23,250 540 1457 100
18,810 29,970 400 2088 55

The system comprises one parameter {x} and four characteristics (criteria):

f1(x)→ max, f2(x)→ max, f3(x)→ min, f4(x)→ max,

used to make a choice. Taken together, they constitute a decision-making problem of the first type.
The requirement is to make the best (optimal) decision given the experimental data available.

5.2. The Solution of the Problem

We find the optimal solution in two stages.
Stage 1. We transform the decision-making problem into a VPMP.
Step 1. We prepare the initial data in Table 2 in the form of the matrix I (Equation (38)). These

watch points are shown in Figure 1, using MATLAB operators:
xlabel(′X′); ylabel(′Y′); hold on; plot(I(:,1),I(:,2)/10,′k.′);
plot(I(:,1)I(:,3),′go′); plot(I(:,1),I(:,4),′bp′); plot(I(:,1)I(:,5)*10,′r*′).
For the sake of visualization, the order of the first criterion is decreased by one while the order of

the fourth criterion is increased by one.
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Figure 1. Polynomial approximation of four criteria.

Step 2. Using a method of the smallest square deviations [12], we calculate the coefficients of the
approximating polynomial of the second degree:

min
A

f (A, X) ≡
M∑

i = 1

(yj − (a0 + a1x1i + a2x2
1i))

2
. (39)

An approximation is carried out in the MATLAB system using the polyfit function (X, Y, N) where X is
a vector of tabular values (nodes), and Y represents preset values of assessment.

Limits of the change of parameter x of the lower and top scale in Figure 1 are set. In the MATLAB
system, this is presented as x = −600.:100.:19000.

We calculate the first criterion by means of the function: c1=polyfit(I(:,1),I(:,2)/10,2). The result
is c1(1) = –3.1937 × 10−6, c1(2) = 0.1947, c1(3) = 365.1, which corresponds to the polynomial of the
second degree:

f 1(x) = -3.1937 × 10−6 x2 + 0.1947x + 365.1. (40)

We calculate the values of the polynomial y5 = polyval(c1,x) and show it on a graph using
plot(x,y5,′k-′), hold on.

Similarly, the rest of the criteria are:

f 2(x) = 9.467 × 10−10 x3 − 2.7968 × 10−5 x2 + 0.1090 x + 1949.2, (41)

f 3(x) = 1.0174 × 10−5 x2 − 0.1707x + 1737.4, (42)

f 4(x) = 1.6458 × 10−7 x2 − 0.01309x + 247.83. (43)

All the resulting points and functions are also shown in Figure 1.
Step 3. We form and solve the VPMP. Using the results of the previous stage, we represent the

decision making problem as the VPMP of Equations (1)–(4) with the vector criterion F(x) = (−f 1(x) −
f 2(x) f 3(x) − f 4(x))T and restrictions 630 ≤ x ≤ 18,810:

Opt F(X) = {max F1(X) = {max f 1(X), max f 2(X), max f 4(X)}, (44)

min F2(X) = {min f 3X)}, (45)

at restrictions xmin
j ≤ xj ≤ xmax

j , j = 1, N. (46)

Stage 2. We solve the VPMP of Equations (44)–(46) similarly to that shown in Section 2.
Step 1. We solve the problem of Equations (44)–(46) for each criterion separately. Since each is a

unimodal function, we use the function [x,f] = fminbnd(c,a,b) to find its minimum or maximum on
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the segment (Equation (46)). Here, c, a, b are the input parameters, c is the given function, a and b
are the beginning and the end of the interval, respectively, and x and f are the output parameters (the
optimum point and the value of the objective function at the optimum, respectively). It takes the form:

[x1max,f1max]=fminbnd(′−(3.1937 × 10−5×xˆ2+1.9467×x+3651.1)′,I(1,1),I(10,1))

for the first criterion. We thus derive the optimum point with respect to the first criterion xmax
1 = 18,810

and the value of the criterion at this point f ∗1 = f 1(xmax
1 ) = −28,969. Similarly, we have xmax

2 = 2192.8,
f ∗2 = f 2(xmax

2 ) = −2063.7, xmax
4 = 630.0, f ∗4 = f 4(xmax

4 ) = −239.65, xmin
3 = 8389.0, f ∗3 = f 3(xmin

3 ) = 1021.4 for
other criteria.

Step 2. We find the worst part for each criterion. We end up with the optimum point xmin
1 = 630

with respect to the first criterion and the value of the criterion at the optimum f o
1 = f 1(xo

1) = 4864.9 (the
worst constant part with respect to the first criterion). We use the operator plot(x1min, f1min/10,′k×′)
to represent this and other points in Figure 2. Similarly, we have for other criteria xmin

2 = 17,502,
f o
2 = f 2(xmin

2 ) = 365.22, xmin
4 = 18,810, f o

4 = f 4(xmin
4 ) = 59.838, xmax

3 =18,810, f o
3 = f 3(xmax

3 ) = −2126.3.
Step 3. We analyze the set of Pareto optimal points. In points at an optimum X * = {X1*, X2*, X3*,

X4*, X5*}, sizes of criterion functions of F(X*) = ‖ fq(X∗k)‖
k = 1,K
q = 1,K

are determined. We calculate a vector

D = (d1 d2 d3 d4 d5)T of deviations by each criterion on an admissible set S: dk = fk* − fk0, k = 1, 5, and a

matrix of relative estimates λ(X*) = ‖λq(X∗k)‖
k = 1,K
q = 1,K

, where λk(X) = (fk* − fk0)/dk.

 

Figure 2. Approximations of four normalized criteria.

In the problem of Equations (44)–(46), criteria in the normalized form λk(Xo), k = 1, K can be
represented as shown in Table 4. We calculate the coefficients of the approximating polynomial for the
normalized criteria to obtain:

λ1(x) = −1.325 × 10−9 x2 + 8.0762 × 10−5 x × 0.0504,
λ2(x) = 5.5735 × 10−13 x3 − 1.6467 × 10−8 x2 + 6.4179 × 10−5 x + 0.9325,
λ3(x) = −9.2080 × 10−9 x2 + 1.5451 × 10−4 x + 0.3519,
λ4 (x) = 9.1530 × 10−10 x2 − 7.2811 × 10−5 x + 1.0455.
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Table 4. Normalized criteria.

x λ1−max λ2−max λ3−min λ4−max

630 -0.0276 0.933 0.451 1.0298
1580 0.0471 1.0214 0.4971 0.9463
2662 0.1653 1.0155 0.6781 0.8351
3704 0.2545 0.9919 0.8383 0.7795
4800 0.3334 0.933 0.9289 0.7239
5929 0.4093 0.8153 1.0402 0.6127
7284 0.4748 0.7034 0.9741 0.507
9353 0.5864 0.5798 0.9289 0.5014

14,505 0.7627 0.1029 0.6057 0.2234
18,810 1.0415 0.0205 0.0346 −0.0269

Figure 2 shows the optimum points X0 and normalized criteria.
The optimal point X0 in Figure 2 can be chosen manually.
We solve the λ-problem to find the exact value of X0.
Step 4. We construct the λ-problem. Using the obtained function and relative evaluations λ1(x),

λ2(x), λ3(x), λ4(x), we construct the λ-problem:

λ0 =max λ, (47)

λ− (−3.1937 × 10−5x2 + 1.9467x + 3651.1 − f o
1 )/d1 ≤ 0,

λ− (9.467 × 10−10x3 − 2.7968× 10−5x2 + 0.1090x + 1949.2 − f o
2 )/d2 ≤ 0,

λ− (1.0174 × 10−5x2 − 0.1707x + 1737.4 + f o
3 )/d3 ≤ 0,

λ− (1.6458 × 10−7x2 − 0.01309x + 247.83 − f o
4 )/d4 ≤ 0,

(48)

630 ≤ x ≤ 18810 (49)

Step 5. We solve the λ-problem of Equations (47)–(49). We use standard methods, in particular the
MATLAB function fmincon ( . . . ). From the solution we obtain:

• the optimum point X0 = {λ0 = 0.5163, x0 = 8090} (labeled by an asterisk in Figure 2),

• the values of the criteria at this point of fk(X0), k = 1, K: f 1(X0) = 17,310, f 2(X0) = 1501.8,
f 3(X0) = 1022.3, f 4(X0) = 152.7,

• the values of the relative estimates λk(X0), k = 1, K: λ1(X0) = 0.5163, λ2(X0) = 0.6692, λ3(X0) = 0.9992,
λ4(X0) = 0.5165 (Figure 2).

It follows from this result that the first and fourth criteria are equal: λ1(X0) = λ4(X0) = λ0 = 0.5163.
According to Theorem 1, the first and fourth criteria are most contradictory. Other criteria are

greater than or equal to the maximum relative assessment of λo which is the guaranteed result in
relative units.

6. Statement and Optimal Decision Making with Experimental Data in Problems with Two
Parameters

We use a particular example to illustrate the decision-making problem of the second type (Equation
(38)) and the choice of the optimal decision. The solution to the problem of making decisions of
the second type and the choice of the optimal solution will be shown on a concrete example. The
decision-making problem of the second type with two parameters is solved in three stages: problem
statement—the formation of the initial data, transformation of experimental data into the vector
problem of mathematical programming (VPMP), and, the VPMP decision—making the best decision.

6.1. Problem Definition of Decision Making of the Second Type with Two Parameters

The problem setting is performed by the system designer based on experimental data.
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It is given that we have an engineering system functioning according to a vector of controlled
variables X = (x1, x2) with two parameters that take values: x1, x2 ∈{0 2.5 5. 7.5 10}.

Decision-making criteria are represented by five functions f 1(X), . . . , f 5(X). For the first two, it is
desirable to obtain values as high as possible (maximum) while for the other three it is desirable to
obtain values as small as possible (minimum). Experimental data are given in Table 5.

Table 5. Experimental data (matrix I).

x1 x2 f 1 f 2 f 3 f 4 f 5

0 0 −80 −150 232 278.4 500
0 2.5 −102.5 −121.875 215.125 222.15 556.25
0 5 −130 −97.5 204.5 173.4 625
0 7.5 −162.5 −76.875 200.125 132.15 706.25
0 10 −200 −60 202 98.4 800

2.5 0 −102.5 −166.875 185.125 258.15 406.25
2.5 2.5 −125 −138.75 168.25 201.9 462.5
2.5 5 −152.5 −114.375 157.625 153.15 531.25
2.5 7.5 −185 −93.75 153.25 111.9 612.5
2.5 10 −222.5 −76.875 155.125 78.15 706.25
5 0 −130 −187.5 144.5 245.4 325
5 2.5 −152.5 −159.375 127.625 189.15 381.25
5 5 −180 −135 117 140.4 450
5 7.5 −212.5 −114.375 112.625 99.15 531.25
5 10 −250 −97.5 114.5 65.4 625

7.5 0 −162.5 −211.875 110.125 240.15 256.25
7.5 2.5 −185 −183.75 93.25 183.9 312
7.5 5 −212.5 −159.375 82.625 135.15 381.25
7.5 7.5 −245 −138.75 78.25 93.9 462.5
7.5 10 −282.5 −121.875 80.125 60.15 556.25
10 0 −200 −240 82 242.4 200
10 2.5 −222.5 −211.875 65.125 186.15 256.25
10 5 −250 −187.5 54.5 137.4 325
10 7.5 −282.5 −166.875 50.125 96.15 406.25
10 10 −320 −150 52 62.4 500

The requirement is to make the best (optimal) decision given the experimental data available.

6.2. Transformation of Experimental Data into a Vector Problem of Mathematical Programming

We construct a regression model and the regression problem based on it—the decision-making
model of Equation (38)—and solve it. This is done in two stages, each of which consists of a number
of steps.

Stage 1. We represent the decision-making problem as a VPMP.
Step 0. We prepare the initial data in MATLAB, forming the matrix I (Table 5).
Step 1. We approximate the function initial data (the third column) by cubic splines using:

zz=interp2(X,Y,Z,xx,yy,zz,′linear′).
We use the function surf(xx,yy,zz), hold on to represent the piecewise polynomial function f 1(X)

in Figure 3. Similarly, we perform the same approximation of the four other functions that we also
represent (in natural units) in Figure 3 together with their minimal and maximal values. Although it
appears to be difficult to choose the optimal solution visually using Figure 3, it is easier than using the
initial data of the matrix I to do so.
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Figure 3. Approximation of five criteria of f 1(X), . . . , f 5(X).

Step 2. Using a method of the smallest square deviations [12], we calculate the coefficients of the
approximating polynomial of the second degree:

min
A

f (A, X) ≡
M∑

i = 1

(yj − (a0 + a1x1i + a2x2
1i + a3x2i + a4x2

2i + a5x1i ∗ x2i))
2
. (50)

Based on data from columns 3–7 of the matrix I, we calculate the coefficients of the best
approximating polynomial in the sense of minimum quadratic deviation at the nodes. This yields the
polynomials of the second degree with two variables (four factors):

f 1(x) = −0.4x1
2 − 8x1−0.4x2

2 − 8x2 − 80,
f 2(x) = −0.3x1

2 − 6x1 − 0.3x2
2 + 12x2 − 150,

f 3(x) = 0.5x1
2 − 20x1+0.5x2

2 − 8x2 + 232,
f 4(x) = 0.6x1

2 − 9.6 x1 + 0.6x2
2 − 24x2 + 278.4,

f 5(x) = x1
2 − 40x1 + x2

2 +20x2 + 500,

(51)

the restrictions 0 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 10. (52)

Stage 2. We form and solve the VPMP.
Step 0. Using the results of the previous stage, we represent the decision-making problem as the

VPMP of Equations (1)–(4) with the vector criterion F(X) = (−f 1(X) −f 2(X) f 3(X) f 4(X) f 5(X))T for the
stated restrictions:

Opt F(X) = {max F1(X) = {max f 1(X), max f 2(X), (53)

min F2(X) = {min f3X), min f 4(X)}, min f 5(X)}}, (54)

at restrictions 0 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 10. (55)
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6.3. The Solution of a Vector Problem of Mathematical Programming–Decision-Making

For the solution of a vector problem of mathematical programming using the algorithm based on
normalization of criteria, the above is used.

Step 1. We solve the problem of Equations (53)–(55) with respect to each criterion separately using
the function fmincon( . . . ), resulting in the optimum points:

X ∗1 = {x1 = 0, x2 = 0}, X∗2 = {x1 = 0, x2 = 10}, X∗3 = {x1 = 10, x2 = 8},
X∗4 = {x1 = 8, x2 = 10}, X ∗5 = {x1 = 10, x2 = 0}. (56)

and values of the criteria at these points:

(1) f ∗1 = −80, (2) f ∗2 = −60, (3) f ∗3 = 50, (4) f ∗4 = 60, (5) f ∗5 = 200. (57)

Step 2. We find the worst constant part by solving the problem of Equations (53)–(55) with respect
to each criterion separately, i.e., we minimize the first two criteria and maximize the other criteria. The
result is: (1) Xo

1 = (10, 10), f o
1 = −320, (2), Xo

2 = (10, 0), f o
2 = −240, (3) Xo

3 = (0, 0), f o
3 = 232, (4) Xo

4 = (0, 0),
f o

4 = 278.4, (5) Xo
5 = (0, 10), f o

5 = 800.
We represent the domain of admissible points S given by the restrictions of Equation (55) and the

optimum points X∗1, . . . , X∗5 in Figure 4.

 
Figure 4. The solution of the vector problem of Equations (53)–(55).

Step 3. We analyze the set of Pareto optimal points using the matrix of the values of all objective
functions, the column of deviations, and the matrix of the relative estimates at the optimal points:

F(X∗) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

320.0 150.0 52 62.4 500
200.0 240.0 82 242.4 200
289.6 163.2 50 88.8 424
289.6 127.2 74 60.0 544
200.0 240.0 82 242.4 200

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

240
180
−182
−218.4
−600

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Λ(X∗) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0000 0.5000 0.9890 0.9890 0.5000
0.5000 1.0000 0.8242 0.1648 1.0000
0.8733 0.5733 1.0000 0.8681 0.6267
0.8733 0.3733 0.8681 1.0000 0.4267
0.5000 1.0000 0.8242 0.1648 1.0000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We also show the relative estimates in Figure 4.
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Step 4. We construct the λ-problem for the VPMP of Equations (53)–(55)

λ0 =max λ, (58)

λ– (−0.4x1
2 − 8x1 − 0.4x2

2 − 8x2 − 80 − f o
1 )/d1 ≤ 0,

λ– (−0.3x2
1 − 6x1 − 0.3x2

2 + 12x2 − 150− f o
2 )/d2 ≤ 0,

λ– (0.5x2
1 − 20x1 + 0.5x2

2 − 8x2 + 232− f o
3 )/d3 ≤ 0,

λ– (0.6x2
1 − 9.6x1 + 0.6x2

2 − 2x2 + 278.4− f o
4 )/d4 ≤ 0,

λ– (x2
1 − 40x1 + x2

2 + 20x2 + 500 − f o
5 )/d5 ≤ 0,

(59)

0 ≤ λ ≤ 1, 0 ≤ x1 ≤ 10, 0≤ x2 ≤ 10. (60)

Step 5. We solve the λ-problem of Equations (58)–(60) using the same MATLAB function fmincon(
. . . ). This results in:

• the optimum point X0 = {x1 = 5.0, x2 = 5.0, λ0 = 0.5833},
• the values of criteria: f 1(X0) = −180, f 2(X0) = −135, f 3(X0) = 117, f 4(X0) = 140.4, f 4(X0) = 450,

• the values of the relative estimates λk(X0), k = 1, K: λ1(X0) = 0.5833, λ2(X0) = 0.5833, λ3(X0) = 0.6319,
λ4(X0) = 0.6319, λ5(X0) = 0.5833),

• the maximal relative estimate λ0 = 0.5833 that is the maximal lower level for all relative estimates
λ0 =min{λ1(X0), λ2(X0), λ3(X0), λ4(X0), λ5(X0)} = 0.5833.

Figure 5 shows all found points and relative estimates.

 
Figure 5. Solution of the λ-problem of Equations (58)–(60).

From the result of the solution of the λ-problem of Equations (58)–(60), the optimal point X0 and
the maximum relative assessment λ0 represent the results of the decision with equivalent criteria. For
the solution of the VPMP with a priority of criterion coordinate X00 = {x1, x2}, in Figure 4 the area
where the corresponding assessment is higher than other relative estimates is chosen.

For example, if the second criterion has priority, then point X00 = {x1, x2} is chosen where λ2 ≥
λ1, λ3, λ4, λ5. More difficult technology illustrating the choice of a priority of criterion is presented in
problems of decision-making with three and four criteria in the following sections.
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7. Statement and Optimal Decision Making with Experimental Data in Problems with Three
Parameters

The conditional object, namely, the technical system for which data on some set of the functional
characteristics (certainty conditions), the discrete values of characteristics (certainty conditions), and
the restrictions imposed on the functioning of the system [10] are known is considered. The numerical
problem of model operation of the system is considered with equivalent criteria and with the given
priority of criterion and proceeds as:

Statement of the problem of decision making in a system with three parameters,
Construction of a numerical model of a system with three parameters in the form of a

vector problem,
The solution of the vector problem and decision making with equivalent criteria,
Decision making in a system with three parameters with a criterion priority,
Analysis of the results of the final decision.

7.1. Statement of the Problem of Decision Making in a System with Three Parameters

It is given that the technical system is defined by three parameters. (Practical problems of
the simulation of technical systems using this algorithm can be solved with the dimensionality of
parameters X greater than two, N > 2. The structure of the software becomes complicated and geometric
interpretation of N = 3,4 . . . is not possible.) X = {x1, x2, x3} represents a vector of operating variables.
The basic data for the solution of the problem are the characteristics (criterion) of F(X) = {f 1(X),
f 2(X), f 3(X), f 4(X)}, whose size of assessment depends on the vector X. For characteristics f 3(X), f 4(X),
functional dependence on parameters X (a definiteness condition) is known:

f 3(X) = 55.7188 − 0.1187 × x1 + 0.1844 × x2 − 0.0438 × x3 − 0.0002 × x1 × x2 −
0.0023 × x1 × x3 − 0.0011 × x2 × x3 + 0.0032 × x1

2 + 0.0634 × x − 0 × x3
2 (61)

f 4(X) = 25.6484 − 0.2967 × x1 − 0.3384 × x2 + 0.1433 × x3 − 0.0048 × x1 × x2 +

0.0169 × x1 ×x3 + 0.0009 × x2 × x3 + 0.012 × x1
2 + 0.0014 × x2

2 − 0.0018 × x3
2 (62)

Parametrical restrictions: 25 ≤ x1 ≤ 100, 25 ≤ x2 ≤ 100, 25 ≤ x3 ≤ 100. (63)

For the first and second characteristic results of experimental data, sizes of parameters and
corresponding characteristics are known (uncertainty condition).

The numerical values of parameters X and characteristics of y1(X), y2(X) are presented in Table 6.

Table 6. Numerical values of parameters and characteristics of the system.

x1 x2 x3 y1(X)→max y2(X)→min

25 25 25 412.5 1197.2
25 25 50 437.5 1232.8
25 25 75 462.5 1393.3
25 25 100 87.5 1303.8
25 50 25 312.5 2232.3
25 50 50 37.5 2267.7
25 50 75 62.5 2303.2
25 50 100 87.5 2338.8
25 75 25 212.5 3077.2
25 75 50 237.5 2862.8
25 75 75 262.5 3148.3
25 75 100 287.5 3183.7
25 100 25 12.5 3732.3
25 100 50 37.5 3767.7
25 100 75 62.5 3803.2
25 100 100 87.5 3838.8
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Table 6. Cont.

x1 x2 x3 y1(X)→max y2(X)→min

50 25 25 512.5 1245.3
50 25 50 537.5 1303.8
50 25 75 562.5 1374.7
50 25 100 587.5 1445.8
50 50 25 512.5 2267.7
50 50 50 537.5 2338.8
50 50 75 562.5 2409.7
50 50 100 587.5 2480.8
50 75 25 412.5 3112.8
50 75 50 437.5 3183.7
50 75 75 462.5 3379.8
50 75 100 487.5 3325.8
50 100 25 212.5 3767.7
50 100 50 237.5 3838.8
50 100 75 262.5 3909.7
50 100 100 287.5 3980.8
75 25 25 612.5 1268.3
75 25 50 637.5 1374.7
75 25 75 662.5 1481.3
75 25 100 687.5 1587.8
75 50 25 612.5 2303.2
75 50 50 637.5 2409.7
75 50 75 662.5 2516.2
75 50 100 687.5 2622.7
75 75 25 512.5 3148.3
75 75 50 537.5 3254.8
75 75 75 562.5 3361.3
75 75 100 587.5 3467.8
75 100 25 312.5 3803.2
75 100 50 337.5 3909.7
75 100 75 362.5 4016.3
75 100 100 387.5 4122.7
100 25 25 612.5 1303.8
100 25 50 637.5 1445.8
100 25 75 662.5 1587.8
100 25 100 687.5 1729.7
100 50 25 612.5 2338.8
100 50 50 637.5 2480.8
100 50 75 662.5 2622.7
100 50 100 687.5 2764.7
100 75 25 512.5 3183.7
100 75 50 537.5 3325.8
100 75 75 562.5 3467.8
100 75 100 587.5 3609.8
100 100 25 312.5 3838.8
100 100 50 337.5 3980.8
100 100 75 362.5 4122.7
100 100 100 387.5 4264.8

In the decision, in the assessment size of the first and the third characteristic (criterion), it is
possible to obtain: f 1(X)→max y3(X)→max, for the second and fourth characteristic: y2(X)→min

y4(X)→min. Parameters X = {x1, x2, x3} change according to the following limits: x1, x2, x3 ∈ (25. 50.
75. 100.).

The following is required: to construct a model of the technical system in the form of a vector
problem, to solve the vector problem with equivalent criteria, to choose a priority criterion, to establish
a numerical value of the priority criterion, to make the best decision (optimum).
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7.2. Construction of a Numerical Model of a System with Three Parameters in the Form of a Vector Problem

The construction of a numerical model of the system in the form of a vector problem includes
three stages:

• Building a model under the conditions of certainty;
• Building a model under the conditions of uncertainty;
• Construction of a mathematical model of a technical system (i.e., the general part for the conditions

of certainty and uncertainty).

7.2.1. Building a Model under the Conditions of Certainty

Construction under the conditions of definiteness is defined by functional dependence of each
characteristic and restrictions on the parameters of the technical system. In our example, two
characteristics (Equations (61) and (62)) and the restrictions of Equation (63) are known. Uniting these,
we obtain a vector task with two criteria:

opt F(X) = {max F1(X)} = {max f 3(X)} = 55.7188 − 0.1187 × x1 + 0.1844 × x2 − 0.0438 × x3 −
0.0002 × x1 × x2 − 0.0023 × x1 × x3 − 0.0011 × x2 × x3 + 0.0032 × x1

2 + 0.0634 × x − 0 × x3
2 (64)

min F2(X) = {min f 4(X)} = 25.6484 − 0.2967 × x1 − 0.3384 × x2 + 0.1433 × x3 − 0.0048 ×
x1 × x2 + 0.0169 × x1 ×x3 + 0.0009 × x2 × x3 + 0.012 × x1

2 + 0.0014 × x2
2 − 0.0018 × x3

2 (65)

Parametrical restrictions: 25 ≤ x1 ≤ 100, 25 ≤ x2 ≤ 100, 25 ≤ x3 ≤ 100. (66)

These data are used further to create a mathematical model of the technical system.

7.2.2. Building a Model under the Conditions of Uncertainty

Construction under the conditions of uncertainty entails the use of the qualitative and quantitative
descriptions of the technical system obtained by the “input-output” principle in Table 5. Transformation
of information (basic data y3(X), y4(X)) into functional types f 3(X), f 4(X) is carried out by the use of
mathematical methods (i.e., regression analysis).

The basic data of Table 1 are created in the MATLAB system in the form of a matrix:

I = |X, Y| = {yi1 yi2, i = 1, M}. (67)

For each experimental set function yk, k = 1, 2, regression using the method of least squares
min

∑M
i = 1 (yi − yi)

2 in MATLAB is performed. Ak, a polynomial defining the interrelationship of
factors Xi = {y1i, y2i} (67) and functions yki = f(Xi,Ak), k = 1, 2 is constructed. As a result, we obtain a
system of coefficients Ak = {A0k, A1k, . . . , A9k} which define the coefficients of a polynomial (function):

fk(X, A) = A0k + A1kx1 + A2kx2
1 + A3kx2 + A4kx2

2 + A5kx3 + A6kx2
3 + A7kx1 ∗ x2 + A8kx1 ∗ x3+

A9kx2 ∗ x3, k = 1, 2.
(68)

As a result of the calculation of the coefficients Ak, k = 1, we obtain the f 1(X) function:

f1(X) = 50.0 + 11.55 × x1 + 3.55 × x2 + 1.0 × x3

+ 0.0144 × x1 × x2 − 0 × x1 × x3 + 0 × x2 × x3 − 0.07 × x2
1

− 0.07 × x2
2 − 0 × x2

3.
(69)

As a result of the calculations of the coefficients Ak, k =2, we obtain the f 2(X) function:

f2(X) = −53.875 + 0.7359 × x1 + 51.3703 × x2

+ 0.3516 × x3 + 0.0072 × x1 × x2 + 0.0519 × x1 × x3

+ 0.0005 × x2 × x3 − 0.0066× x2
1 − 0.1454 × x2

2 + 0.0003 × x2
3

(70)
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Parametric restrictions are similar to those of Equation (8).

7.2.3. Creation of a Mathematical Model of a Technical System under the Conditions of Definiteness
and Uncertainty

For the creation of a mathematical model of the technical system we used: the functions obtained
from conditions of definiteness (Equations (64) and (65)) and uncertainty (Equations (69) and (70)), and
parametric restrictions (Equation (66)).

Block 4. We consider the functions of Equations (64), (65), (69) and (70) as the criteria defining
the functioning of the technical system. A set of criteria K = 4 includes three criteria of f 1(X), f 3(X)→
max and two of f 2(X), f 4(X)→min. As a result, the model of the functioning of the technical system is
presented as a vector problem of mathematical programming:

opt F(X) = {max F1(X) = {max f1(X) ≡ 50.0 + 11.55 × x1

+ 3.55 × x2 + 1.0 × x3 + 0.0144 × x1 × x2 − 0.0 × x1 × x3

+ 0.0 × x2 × x3 − 0.07× x2
1 − 0.07 × x2

2 − 0.0 × x2
3,

max f3(X) = 55.7188 − 0.1187 × x1 + 0.1844 × x2−
0.0438 × x3 − 0.0002 × x1 × x2 − 0.0023 × x1 × x3−
0.0011 × x2 × x3 + 0.0032× x2

1 + 0.0634 × x− 0 × x2
3},

(71)

min F2(X) = {min f2(X) ≡ −53.875 + 0.7359 × x1

+ 51.3703 × x2 + 0.3516 × x3 + 0.0072 × x1 × x2

+ 0.0519 × x1 × x3 + 0.0005 × x2 × x3 − 0.0066 × x2
1

− 0.1454 × x2
2 + 0.0003 × x2

3,
min f4(X) = 25.6484 − 0.2967 × x1 − 0.3384 × x2

+ 0.1433 × x3 − 0.0048 × x1 × x2 + 0.0169 × x1 × x3

+ 0.0009 × x2 × x3 + 0.012 × x2
1 + 0.0014 × x2

2 − 0.0018 × x2
3}}

(72)

restrictions: 25 ≤ x1 ≤ 100, 25 ≤ x2 ≤ 100, 25 ≤ x3 ≤ 100. (73)

The vector problem of mathematical programming in Equations (71)–(73) represents the model of
optimal decision making under conditions of certainty and uncertainty in the aggregate.

7.3. The Solution of the Vector Problem and Decision Making with Equivalent Criteria

(Algorithm1 of decision making in problems of vector optimization with equivalent criteria).
The solution of the vector problem of Equations (71)–(73) is undertaken as a sequence of steps.
Step 1. Equations (71)–(73) are solved for each criterion separately, using the function fmincon ( . . .

) of the MATLAB system, the use of the function fmincon ( . . . ) is considered in [12].
As a result, we obtain optimum points: X∗k and f ∗k = fk(X∗k), k = 1, K, the sizes of the criteria at this

point, i.e., the best decision for each criterion:
X∗1 = {x1 = 86.02, x2 = 34.2, x3 = 100}, f ∗1 = f 1(X∗1) = −707.47, X∗2 = {x1 = 25, x2 = 25, x3 = 25},

f ∗2 = f 2(X∗2) = 1200.0,
X∗3 = {x1 = 100, x2 = 100, x3 = 25}, f ∗3 = f 3(X∗3) = −724.69, X∗4 = {x1 = 25, x2 = 100, x3 = 25},

f ∗4 = f 4(X∗4) = 9.16.
The restrictions in Equation (73) and points of an optimum of coordinates {x1, x2} are presented in

Figure 6.
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Figure 6. Pareto’s great number, S0 ⊂ S in a two-dimensional system of coordinates.

Step 2. We define the worst unchangeable part of each criterion (anti-optimum):
X0

1 = {x1 = 25, x2 = 100, x3 = 25}, f 0
1 = f 1(X0

1) = 11.0, X0
2 = {x1 = 100, x2 = 100, x3 = 100},

f 0
2 = f 2(X0

2) = −4270.9,
X0

3 = {x1 = 43.5, x2 = 20, x3 = 80}, f 0
3 = f 3(X0

3) = 85.0, X0
4 = {x1 = 100, x2 = 25,

x3 = 100},f 0
4 = f 2(X0

4) = −263.97.
(Top index zero).
Step 3. The system analysis of a set of Pareto optimal points is conducted, (i.e., analysis by each

criterion). At the optimal points X * = {X1*, X2*, X3*, X4*}, the sizes of the criterion functions of

F(X*) = ‖ fq(X∗k)‖
k = 1,K
q = 1,K

are determined. We calculated a vector of D = (d1 d2 d3 d4)T, deviations of each

criterion on an admissible set S: dk = fk* − fk0, k = 1, 4, and a matrix of relative estimates of

λ(X*) = ‖λq(X∗k)‖
k = 1,K
q = 1,K

, where λk(X) = (fk* − fk0)/dk:

F(X∗) =

∣∣∣∣∣∣∣∣∣∣∣
707.5 2055.1 127.1 209.6
374.0 1200.0 96.1 28.7
329.0 3848.7 724.7 95.1

11.0 3704.1 701.9 9.2

∣∣∣∣∣∣∣∣∣∣∣
, D =

∣∣∣∣∣∣∣∣∣∣∣
696.5

−3070.9
639.7
−254.8

∣∣∣∣∣∣∣∣∣∣∣
,

λ(X∗) =

∣∣∣∣∣∣∣∣∣∣∣
1.0000 0.7216 0.0658 0.2132
0.5212 1.0000 0.0174 0.9232
0.4566 0.1375 1.0000 0.6628

0 0.1846 0.9644 1.0000

∣∣∣∣∣∣∣∣∣∣∣
Discussion. The analysis of sizes of criteria in relative estimates shows that at optimal points

X* = {X1*, X2*, X3*, X4*} the relative assessment is equal to unity. Other criteria there are much less
than unity. It is required to find such points (parameters) at which relative estimates are closest to
unity. The following steps 4 and 5 are directed to the solution of this problem.

Step 4. Creation of the λ-problem is carried out in two stages: first, the maximum problem of
optimization with normalized criteria is constructed:

λ0 = max
x

min
k
λk(X), G(X) ≤ 0, X ≥ 0,

65



Appl. Syst. Innov. 2019, 2, 32

Second, this is transformed into a standard problem of mathematical programming (the λ-problem):

λ0 =max λ, (74)

restrictions : λ− 50.0+11.55∗x1 ...+0.014∗x1∗x2 ... −0.07∗x2
1 ... − f o

1
f ∗1− f o

1
≤ 0

λ− 55.71 − 0.118 ∗x1 ... − 0.002 ∗x1∗x2 ...−0.0032 ∗x2
1 ...− f o

3
f ∗3− f o

3
≤ 0

λ− 53.87+0.7359∗x1+ ....−0.0519∗x1∗x2 ...+0.0066∗x2
1 ... − f o

2
f ∗2− f o

2
≤ 0

λ− 25.6484−0.2967×x1 ... −0.0048×x1×x2...+ 0.012×x2
1... − f o

4
f ∗4− f o

4
≤ 0

(75)

25 ≤ x1 ≤ 100, 25 ≤ x2 ≤ 100, 25 ≤ x3 ≤ 100. (76)

where the vector of unknowns has the dimension N + 1: X = {x1, . . . , xN, λ}.
Step 5. The λ-problem solution.
Using the function fmincon( . . . ), [12,15]:
[Xo,Lo] = fmincon(‘Z_TehnSist_4Krit_L’,X0,Ao,bo,Aeq,beq,lbo,ubo,’Z_TehnSist_LConst’,options).
As a result, the solutions of the vector problem of mathematical programming of Equations

(71)–(73) with equivalent criteria and the λ-problem corresponding to Equations (74)–(75) are obtained:
X0 = {X0, λ0} = {X0 = {x1 = 33.027, x2 = 69.54, x3 = 25.0, λ0 = 0.4459}} is an optimum point of the

design data of the technical system. Point X0 is presented in Figure 6. fk(X0), k = 1, K represents sizes
of criteria (characteristics of technical system):

{f 1(X0) = 321.5, f 2(X0) = 2901.7, f 3(X0) = 370.2, f 4(X0) = 19.1}, (77)

and λk(X0), k = 1, K represents sizes of relative estimates:

{λ1(X0) = 0.4459, λ2(X0) = 0.4459, λ3(X0) = 0.4459, λ4(X0) = 0.9609}, (78)

λ0 = 0.4459 is the maximum lower level among all relative estimates measured in relative units:
λ0 = min (λ1(X0), λ2(X0), λ3(X0), λ4(X0)) = 0.4459. A relative assessment, λ0, is called the guaranteed
result in relative units, i.e., λk(X0). According to the characteristics of the technical system fk(X0), it is
impossible to improve, without worsening other characteristics.

Discussion. We note that according to Theorem 1, at point X0 criteria 1, 2, 3 are contradictory.
This contradiction is defined by the equality of λ1(X0) = λ2(X0) = λ3(X0) = λ0 = 0.4459, and for other
criteria an inequality of {λ4(X0) = 0.9609} > λ0.

Thus, Theorem 1 forms a basis for the determination of correctness of the solution of a vector
problem. In a vector problem of mathematical programming, as a rule, for two criteria the equality
holds: λ0 = λq(X0) = λp(X0), q, p ∈ K, X ∈ S, (in our example, three criteria), and for other criteria is
defined as an inequality: λ0 ≤ λk(X0) “k ∈ K, q � p � k.

In an admissible set of points S formed by the restrictions of Equation (76), the optimum points
X1*, X2*, X3*, X4* are united in a contour and presented as a set of Pareto optimal points, S0 ⊂ S. For
specification of the border of a great number of Pareto additional points are calculated: Xo

12, Xo
13, Xo

42,
Xo

34 which lie between the corresponding criteria. For definition of a point Xo
12, the vector problem was

solved with two criteria of Equations (71), (72): λ1X, λ2X, (Equation (76)).
Results of the decision are:
Xo

12 = {80.78 25.0 55.89}, λ0(Xo
12) = 0.9264, F12 = {656.2 1426.0 101.7 142.7},

L12 = {0.9264 0.9264 0.0261 0.4761}.
Other points Xo

13, Xo
42, Xo

43 were similarly defined:
Xo

13 = {93.29 87.49 100.0}, λo(Xo
13) = 0. 7173, F13 = {510.6 3924.4 543.8 206.2},

L13 = (0.7173 0.1128 0.7173 0.2267},
Xo

42 = {25.0 29.92 25.0}, λ0(Xo
42) = 0. 9301, F42 = {374.3 1414.5 114.0 27.0},
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L42 = {0.5217 0.9301 0.0454 0.9301},
Xo

43 = {25.0 100.0 56.02}, λ0(Xo
43) = 0. 8366, F43 = {42.0 3757.6 695.4 25.0},

L43 = {0.0445 0.1672 0.9541 0.9541},
Points: Xo

12, Xo
13, Xo

42, Xo
43 are presented in Figure 6. Coordinates of these points and the

characteristics of the technical system in relative units of λ1(X), λ2(X), λ3(X), λ4(X), λ5(X) are shown in
Figure 7 in three-dimensional measured space {x1, x2, λ}, where the third axis λ is a relative assessment.

The solution of the λ-problem of Equations (74)–(76) is the optimal point Xo and the maximum
relative assessment of λ0 represents the result of the decision with equivalent criteria.

 
Figure 7. The solution of the λ-problem in a three-dimensional system of coordinates of x1, x2 and λ.

7.4. Decision Making in a System with Three Parameters with a Criterion Priority

(Method of decision making in problems of vector optimization with a criterion priority)
Step1. We solve a vector problem with equivalent criteria. The numerical results of the solution of

the vector problem are given above. Pareto’s great number So ⊂ S lies between optimum points:

S0 = {X∗1X0
3X∗3X0

43 X∗4X0
42X∗2X0

12X∗1}.

We carry out the analysis of the great number of Pareto S0 ⊂ S. For this purpose, we will connect
auxiliary points: Xo

12, Xo
13, Xo

43, Xo
42, with a point Xo which conditionally represents the center of a

great number of Pareto. As a result, we obtain four subsets of points X ∈ So
q ⊂ S0 ⊂ S, q = 1, 4. The

subset of So
1⊂ S0 ⊂ S is characterized by the fact that in the relative assessment, λ1 ≥ λ2, λ3, λ45, i.e., in

the field of S the first criterion has priority over the others. This applies similarly for the So
2, So

3, So
4,

subsets of points where the second, third or fourth criterion has a priority over the others, respectively.
We designate the set of Pareto optimal points S0 = So

1 ∪ So
2 ∪ So

3 ∪ So
4. Coordinates of all obtained

points and relative estimates are presented in two-dimensional space in Figure 6. These coordinates
are shown in three-dimensional space {x1, x2, λ} from a point X∗4 in Figure 7, where the third axis λ is a
relative assessment. Restrictions of the set of Pareto optimal points in Figure 7 is lowered to −0.5 (so
that restrictions are visible). This information is also a basis for further research on the structure of a
great number of Pareto. The person making decisions, as a rule, is the designer of the technical system.
If results of the solution of the vector problem with equivalent criteria do not satisfy the person making
the decision, then the choice of the optimal solution is taken from any subset of points So

1, So
2, So

3, So
4.

Step 2. Choice of priority criterion of q∈K. From theory (see Theorem 2) it is known that at an
optimum point X0 there are always two most inconsistent criteria, q ∈ K and v ∈ K, for which in relative
units an equality holds: λ0 = λq(X0) = λp(X0), q, v ∈ K, X ∈ S. Others are subject to inequalities: λ0 ≤
λk(X0) “k ∈ K, q � v � k.
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In the model of the technical system of Equations (71)–(73) and the corresponding λ-problem of
Equations (74)–(76), such criteria are the first, second and third:

λ0 = λ1(X0) = λ2(X0) = λ3(X0) = 0.4459. (79)

These are shown in Figure 8.

 
Figure 8. The solution of the λ-problem (1, 2, 3 criterion) in a three-dimensional system of coordinates
of x1, x2 and λ.

As a rule, the criterion which the decision-maker would like to improve is chosen from a couple
of contradictory criteria. Such a criterion is called the “priority criterion”, which we designate q = 2 ∈
K. This criterion is investigated in interaction with the first criterion of k = 1 ∈ K.

On the display the message is given:
q = input (‘Enter priority criterion (number) of q = ‘), Have entered: q = 2.
Step 3. Numerical limits of the change of the size of a priority of criterion of q = 2∈K are defined.
For priority criterion q = 2, the numerical limits in physical units upon transition from an optimal

point X0 to the point X∗q obtained in the first step are defined. Information about the criteria for q = 2 is
given on the screen:

fq
(
X0

)
= 2901.68 ≤ fq(X) ≤ 1200.0 = fq(X∗q), q ∈ K. (80)

In relative units the criterion of q = 2 changes according to the following limits:
λq(X0) = 0.4459 ≤ λq(X) ≤ 1= λq(X∗q), q = 2∈K.
These data are analyzed.
Step 4. Choice of the size of priority criterion q∈K (decision making). The message is displayed:

“Enter the size of priority criterion fq =“, we enter, for example, fq = 1500.
Step 5. Calculation of relative assessment.
For the chosen size of priority criterion fq = 1600 the relative assessment is calculated:

λq =
fq − f o

q

f ∗q − f o
q

=
1600− 4279.9
1200.0− 4279.9

= 0.8697, (81)

which upon transition from point X0 to X∗q according to Equation (78) lies in the limits:

0.4459 = λ2
(
X0

)
≤ λ2 = 0.8697 ≤ λ2(X∗2) = 1, q ∈ K.
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Step 6. Calculation of the coefficient of linear approximation.
Assuming a linear nature of the change of the criterion fq(X) in Equation (80) and according

to a relative assessment of λq(X), using standard methods of linear approximation we calculate the
proportionality coefficient between λq(X0), λq, which we call ρ:

ρ =
λq − λq(Xo)

λq(X∗q) − λq(Xo)
=

0.8697− 0.4459
1− 0.4459

= 0.7649, q = 2. (82)

Step 7. Calculation of coordinates of the priority criterion with the size fq.
Assuming a linear nature of the change of a vector Xq = {x1 x2}, q = 2 we determine coordinates of

a point of priority criterion with the size fq =1600 with a relative assessment (Equation (81)):
Xq = {x1 = X0(1) + ρ(X∗q(1) − X0(1)) x2 =X0 (2) + ρ(X∗q(2) − X0(2))},
where X0 = {x1 = 33.02, x2 = 69.54}, X∗2 = {x1 = 25, x2 = 25}.
As a result of these calculations we obtain the point coordinates:

Xq = {x1 = 26.88, x2 = 69.54}. (83)

Step 8. Calculation of the main indicators of a point of Xq.
For the obtained Xq point, we calculate:

• all criteria in physical units fk(Xq) = {fk(Xq), k = 1, K}: f (Xq) = {f 1(Xq) = 386.5, f 2(Xq) = 1651.5,
f 3(Xq) = 137.9, f 4(Xq) = 26.1},

• all relative estimates of criteria λq = {λq
k, k = 1, K}, λk(Xq) =

fk(Xq)− f o
k

f ∗k− f o
k

, k = 1, K1,K:

λk(xq) = {λ1(xq) = 0.5392, λ2(xq) = 0.8530, λ3(xq) = 0.0827, λ4(xq) = 0.9334},

• vector of priorities Pq = {pq
k =

λq(Xq)

λk(Xq)
, k = 1, K}: Pq = [p2

1 = 1.5820, p2
2 = 1.0, p2

3 = 10.3123, p2
4 = 0.9139],

• the minimum relative assessment: min LXq =min (LXq): min LXq =min (λk(Xq)) = 0.0827,
• the relative assessment taking into account a criterion priority: λ00 = min (p2

1λ1(Xq) = 0.7564,
p2

2λ2(Xq) = 0.7564, p2
3λ3(Xq) = 0.7564, p2

4λ4(Xq)) = 0.7564.

Any point from Pareto’s set Xo
t = {λo

t , Xo
t }∈So can be similarly calculated.

7.5. Analysis of the Results of the Final Decision

The calculated size of criterion fq(Xo
t ), q∈K is usually not equal to the set fq. The error of the choice

of Δfq = |fq(Xo
t ) − fq| = |1651.5 − 1600| = 51.5 is defined by an error of linear approximation, Δfq% = 3.2%.

In the course of modeling, parametrical restrictions of Equation (73) can be changed, i.e., some set
of optimum decisions is obtained. We can choose a final version, which in our example includes this
set of optimum decisions:

• parameters of the technical system X0 = {x1 = 33.03, x2 = 69.54, x3 = 25.0},
• the parameters of the technical system at a given priority criterion q = 2: Xq = {x1 = 26.88, x2 = 35.47,

x3 = 25.0}.

We represent these parameters in two-dimensional (x1, x2) and three-dimensional (x1, x2and λ)
coordinate systems in Figures 6–8, and also in physical units for each function f 1(X), . . . , f 4(X) in
Figures 9–12, respectively.

The first characteristic f 1(X) in physical units is shown in Figure 9.

69



Appl. Syst. Innov. 2019, 2, 32

 
Figure 9. The first characteristic f 1(X) of the technical system in a natural indicator.

At point X0, Xq of the second characteristic f 2(X) will appear as presented in Figure 10.

 
Figure 10. The second characteristic f 2(X) of the technical system in a natural indicator.

At point X0, Xq of the third characteristic f 3(X) will appear as presented in Figure 11.

 
Figure 11. The third characteristic f 3(X) of the technical system in a natural indicator.
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At point X0, Xq of the fourth characteristic f 4(X) will appear as presented in Figure 12.

 
Figure 12. The fourth characteristic f 4(X) of the technical system in a natural indicator.

Collectively, for the submitted version, at the point X0 there exist characteristics of f 1(X0), f 2(X0),
f 3(X0), f 4(X0), relative estimates of λ1(X0), λ2(X0), λ3(X0), λ4(X0), and maximum λo relative level λ0 ≤
λk(X0) “k ∈ K such that there is an optimal solution with equivalent criteria (characteristics), and the
procedure for obtaining acceptance of the optimal solution with equivalent criteria (characteristics).

At point Xq there exist: characteristics of f 1(Xq), f 2(Xq), f 3(Xq), f 4(Xq), relative estimates of λ1(Xq),
λ2(Xq), λ3(Xq), λ4(Xq), maximum λ0 relative level λ0 ≤ λk(Xq) “k∈K such that there is an optimal solution
at the set priority of the second criterion (characteristic) in relation to other criteria. The procedure of
obtaining a point Xq is the adoption of the optimal solution at the set priority of the second criterion.

Based on the theory of vector optimization, methods of solution of vector problems with equivalent
criteria and a given priority of criterion allow the choice of any point from the set of Pareto optimal
points and demonstration of the optimality of this point.

Conclusions. The problem of adoption of the optimum decision in a difficult technical system
based on some set of functional characteristics is one of the most important problems of system analysis
and design.

8. The Methodology of Making Optimal Decisions with the Functional and Experimental Data
(For Example, a Problem with Four Parameters)

In the studied object, a system is known. Data on the functional characteristics, discrete values of
separate characteristics, and data on restrictions that are imposed on the functioning of a system. The
process of model operation of such a system is presented in the methodology form: “The methodology
of making the optimal decision based on the functional and experimental data”.

The methodology includes a number of stages.
• Formation of the requirement specification (source data) for numerical modeling and choice of

optimum parameters of a system. The initial data is determined by the designer who operates
the system.

• Creation of a mathematical and numerical model of the system under the conditions of definiteness
and indeterminacy.

• The solution of the vector problem of mathematical programming (VPMP), i.e., a model of the
system with equivalent criteria.

• Geometric interpretation of the results of the decision in a three-dimensional coordinate system in
relative units.

• The solution of a vector problem of mathematical programming, i.e., a model of the system at the
given priority of the criterion.

• Geometric interpretation of the results of the decision in a three-dimensional coordinate system in
physical units.
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8.1. Formation of Technical Specifications (Source Data) for the Numerical Simulation of the System

We will consider a problem “Numerical modeling of the system” in which data on some
set of functional characteristics (definiteness conditions), discrete values of characteristics (an
uncertainty condition) and the restrictions imposed on the functioning of the technical system
are known [6–10,13,15,20,22].

It is given that the system function is defined by four parameters X = {x1, x2, x3, x4}, a vector of
(operated) variables. Basic data for the solution of the problem are the four characteristics (criterion) of:

F(X) = {f 1(X), f 2(X), f 3(X), f 4(X)}, whose size of assessment depends on a vector of X.
The definiteness condition. For the first and third characteristics of f 1(X) and f 3(X) functional

dependence on parameters X is known (indexing of formulas within the individual section (methods)):

f1(X) ≡ 269.867 − 1.8746× x1 − 1.7469× x2 + 0.8939× x3

+1.0937× x4 + 0.0484× x1 × x2 − 0.0052× x1 × x3−
0.0141× x1 × x4 + 0.0037× x2 × x3 − 0.0052× x2 × x4−
0.0002 × x3 × x4 + 0.0119× x2

1 + 0.0035 × x2
2 − 0.002× x2

3
− 0.0042× x2

4,

(84)

f4(X) = 19.253 − 0.0081 × x1 − 0.7005 × x2 − 0.3605 × x3

+ 0.9769 × x4 + 0.0126 × x1 × x2 + 0.0644 × x1 × x3 − 0× x1 × x4

+ 0.0396 × x2 × x3 + 0.0002 × x2 × x4 + 0.0004 × x3 × x4−
0.0016 × x2

1 + 0.0027 × x2
2 + 0.0045 × x2

3 − 0.0235 × x2
4,

(85)

restrictions: 22 ≤ x1 ≤ 88, 0 ≤ x2 ≤ 66, 2.2 ≤ x3 ≤ 8.8, 2.2 ≤ x4 ≤ 8.8 (86)

The uncertainty condition. For the second and fourth characteristic results of the experimental data,
the sizes of parameters and corresponding characteristics are known. Numerical values of parameters
X and characteristics of y2(X) and y4(X) are presented in Table 7.

Table 7. Numerical values of parameters and characteristics of the system.

x1 x2 x3 x4 y2(X)→min y3(X)→max

22 0 2.2 2.2 1053.8 47.7
22 0 2.2 5.5 1067 47.3
22 0 2.2 8.8 1078 47.2
22 0 5.5 2.2 1111 50.7
22 0 5.5 5.5 1155 46.8
22 0 5.5 8.8 1152.8 46.3
22 0 8.8 2.2 1151.7 44.2
22 0 8.8 5.5 1148.4 43
22 0 8.8 8.8 1147.3 42.5
22 33 2.2 2.2 1964.6 58.3
22 33 2.2 5.5 1974.5 57.5
22 33 2.2 8.8 1983.3 57.1
22 33 5.5 2.2 1995.4 56.5
22 33 5.5 5.5 2003.1 55.1
22 33 5.5 8.8 2015.2 54.9
22 33 8.8 2.2 2027.3 54.8
22 33 8.8 5.5 2046 52.8
22 33 8.8 8.8 2058.1 53
22 66 2.2 2.2 2708.2 75.9
22 66 2.2 5.5 2585 71.5
22 66 2.2 8.8 2541 68.2
22 66 5.5 2.2 2519 66.4
22 66 5.5 5.5 2596 68.2
22 66 5.5 8.8 2662 70.4
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Table 7. Cont.

x1 x2 x3 x4 y2(X)→min y3(X)→max

22 66 8.8 2.2 2770.9 72.4
22 66 8.8 5.5 2783 71.5
22 66 8.8 8.8 2801.7 70.6
55 0 2.2 2.2 3284.6 100.5
55 0 2.2 5.5 3301.1 100.1
55 0 2.2 8.8 3307.7 99
55 0 5.5 2.2 3315.4 98.8
55 0 5.5 5.5 3320.9 97.9
55 0 5.5 8.8 3334.1 97.6
55 0 8.8 2.2 3347.3 97
55 0 8.8 5.5 3366 95.7
55 0 8.8 8.8 3378.1 95.3
55 33 2.2 2.2 1095.6 54.6
55 33 2.2 5.5 1111 50.6
55 33 2.2 8.8 1133 48.4
55 33 5.5 2.2 1147.3 47.7
55 33 5.5 5.5 1166 46.2
55 33 5.5 8.8 1188 45.1
55 33 8.8 2.2 1208.9 44.2
55 33 8.8 5.5 1232 42.2
55 33 8.8 8.8 1272.7 40.7
55 66 2.2 2.2 1995.4 61.8
55 66 2.2 5.5 2013 60.5
55 66 2.2 8.8 2035 59.4
55 66 5.5 2.2 2058.1 58.3
55 66 5.5 5.5 2095.5 57.2
55 66 5.5 8.8 2103.2 56.1
55 66 8.8 2.2 2120.8 54.8
55 66 8.8 5.5 2145 47.3
55 66 8.8 8.8 2183.5 51.3
88 0 2.2 2.2 2739 79.4
88 0 2.2 5.5 2761 78.1
88 0 2.2 8.8 2783 77
88 0 5.5 2.2 2801.7 75.9
88 0 5.5 5.5 2849 76.1
88 0 5.5 8.8 2893 76.6
88 0 8.8 2.2 2974.4 76.8
88 0 8.8 5.5 2959 715
88 0 8.8 8.8 2927.1 682
88 33 2.2 2.2 3315.4 1041
88 33 2.2 5.5 3336.3 1023
88 33 2.2 8.8 3355 1012
88 33 5.5 2.2 3378.1 1005
88 33 5.5 5.5 3399 990
88 33 5.5 8.8 3421 979
88 33 8.8 2.2 3440.8 970
88 33 8.8 5.5 3366 957
88 33 8.8 8.8 3503.5 935
88 66 2.2 2.2 1116.5 583
88 66 2.2 5.5 1144 561
88 66 2.2 8.8 1166 550
88 66 5.5 2.2 1208.9 530
88 66 5.5 5.5 1232 506
88 66 5.5 8.8 1276 484
88 66 8.8 2.2 1303.5 477
88 66 8.8 5.5 1342 440
88 66 8.8 8.8 1397 425
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In the decision, from the assessment size of the first and third characteristic (criterion), it is
possible to obtain: f 1(X)→max f 3(X)→max, and for the second and fourth characteristic: y2(X)→min
y4(X)→min. Parameters X = {x1, x2, x3, x4} change according to the following limits:

x1 ∈ [22. 55. 88.], x2 ∈ [0. 33. 66.], x3 ∈ [2.2 5.5 8.8], x4 ∈ [2.2 5.5 8.8].

The requirements are as follows: to construct a model of the system in the form of a vector
problem, to solve a vector problem with equivalent criteria, to choose a priority criterion, to establish
the numerical value of the priority criterion, and to make the best decision (optimum) with a specified
priority criterion.

Note that using the MATLAB system, the author developed the software for the decision
making of a vector problem of mathematical programming. The vector problem includes four
variables (parameters of the technical system): X = {x1, x2, x3, x4} and four criteria (characteristics)
of F(X) = {f 1(X), f 2(X), f 3(X), f 4(X)}. However, for each new set of data (new system) the program
is configured individually. In the software criteria F(X) = {f 1(X), f 2(X), . . . f 6(X)} with uncertainty
conditions (provided as a part of y2(X), y4(X) in Table 6) can vary between zero (i.e., all criteria are
constructed under the conditions of determinacy) and six (i.e., all criteria are constructed under the
conditions of uncertainty).

8.2. Creation of a Mathematical and Numerical Model of the System under the Conditions of Definiteness and
Indeterminacy

Creating a numerical model of the system includes the following sections:

• Choosing a mathematical model of the system,
• Building a model under certainty conditions,
• Construction under the conditions of uncertainty,
• Construction of a numerical model of the system under certainty and uncertainty.

8.2.1. Mathematical Model of the System

We will present the model of the system under the conditions of definiteness and uncertainty in
total:

Opt F(X) = {maxF1(X) = {max fk(X), k = 1, Kde f
1 }, (87)

maxI1(X) ≡ {max{ fk(Xi, i = 1, M)}T, k = 1, Kunc
1 }, (88)

minF2(X) = {min fk(X), k = 1, Kde f
2 }, (89)

minI2(X)o{min{ fk(Xi, i = 1, M)}T, k = 1, Kunc
2 }}, (90)

at restrictions f min
k ≤ fk(X) ≤ f max

k , k = 1, K, xmin
j ≤ xj ≤ xmax

j , j = 1, N (91)

where X = {xj, j = 1,N1, N} is a vector of operated variable (design data), F(X) = {F1(X) F2(X) I1(X), I2(X)}
represents the vector criterion of Equations (87)–(91) in which each component represents a vector of
criteria (characteristics) of the system that functionally depend on the discrete values of a vector of

variables X, F1(X) = {fk(X), k = 1, Kde f
1 }, F2(X) = {fk(X), k = 1, Kde f

2 } is a set of the max and min functions,

respectively, I1(X) = {{fk(Xi, i = 1, M)}T, k = 1, Kunc
1 }, I2(X) = {{fk(Xi, i = 1, M)}T, k = 1, Kunc

2 } is a set of

matrices of max and min, respectively, Kde f
1 , Kde f

2 (definiteness), Kunc
1 , Kunc

2 (uncertainty) are the sets of
criteria of max and min created under the conditions of definiteness and uncertainty. In Equation (91),
f min

k ≤ fk(X) ≤ f max
k , k = 1, K is a vector function of the restrictions imposed on the functioning of the

technical system, and xmin
j ≤ xj ≤ xmax

j , j = 1, N represent the parametrical restrictions.
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It is assumed that the functions fk(X), k = 1, K are differentiable and convex, gi(X), i = 1, M are
continuous, and the set of admissible points S given by constraints of Equation (5) is non−empty and
is a compact: S = {X∈RN|G(X) ≤ 0, Xmin ≤ X ≤ Xmax} � ø.

8.2.2. Building a Model under the Conditions of Certainty

Construction under the conditions of definiteness is defined by the functional dependence of each
characteristic and the restrictions on the parameters of the technical system. In our example, three
characteristic (92) and (93) and restrictions (94) are known:

f1(X) ≡ 269.867− 1.8746× x1 − 1.7469× x2 + 0.8939× x3+

1.0937× x4 + 0.0484× x1 × x2 − 0.0052× x1 × x3 − 0.0141× x1 × x4

+0.0037× x2 × x3 − 0.0052× x2 × x4 − 0.0002× x3 × x4 + 0.0119× x2
1

+0.0035× x2
2 − 0.002× x2

3 − 0.0042× x2
4,

(92)

f4(X) = 19.253− 0.0081× x1 − 0.7005× x2 − 0.3605× x3+

0.9769× x4 + 0.0126× x1 × x2 + 0.0644× x1 × x3

−0× x1 × x4 + 0.0396× x2 × x3 + 0.0002× x2 × x4+

0.0004× x3 × x4 − 0.0016× x2
1 + 0.0027× x2

2 + 0.0045× x2
3

−0.0235× x2
4,

(93)

restrictions: 22 ≤ x1 ≤ 88, 0 ≤ x2 ≤ 66, 2.2 ≤ x3 ≤ 8.8, 2.2 ≤ x4 ≤ 8.8 (94)

These data are further used in the creation of the mathematical model of the technical system.

8.2.3. Construction under the Conditions of Uncertainty

Construction under the conditions of uncertainty involves the use of the qualitative and quantitative
descriptions of the technical system obtained by the “input−output” principle shown in Table 6.
Transformation of information (basic data of y2(X), y3(X)) to a functional type of f 2(X), f 3(X) is carried
out by the use of mathematical methods (i.e., regression analysis).

The basic data of Table 1 are created in the MATLAB system in the form of a matrix:

I = |X, Y| = {xi1xi2yi3yi4, i = 1, M}. (95)

For each experimental set function yk, k = 2, 3 regression was performed using the method of
least squares min

∑M
i = 1 (yi − yi)

2 in MATLAB. Ak, a polynomial defining the interrelationship of the
parameters Xi = {x1i, x2i, x3i, x4i} and functions yki = f(Xi,Ak), k = 2, 3, is formed for this purpose.

As a result of the calculations, we obtain the system of coefficients Ak = {A0k, A1k, . . . , A14k} which
define the coefficients of the quadratic polynomial (function):

fk(X, A) = A0k + A1kx1 + A2kx2 + A3kx3 + A4kx4 + A5kx1 ∗ x2 + A6kx1 ∗ x3 + A7kx1 ∗ x4 + A8kx2 ∗ x3

+A9kx2 ∗ x4 + A10kx3 ∗ x4 + A11kx2
1 + A12kx2

2 + A13kx2
3 + A14kx2

4, k = 2, 3.
(96)

As a result of the calculations of the coefficients Ak, k = 2, we obtain the f 2(X) function:

f2(X) = 875.3 + 23.893× x1 − 30.866× x2 − 25.858× x3 − 45× x4

−0.6984× x1 × x2 + 0.4276× x1 × x3 + 0.6793× x1 × x4

−0.1167× x2 × x3 + 0.2969× x2 × x4 − 0.0093× x3 × x4

+0.0362× x2
1 + 0.0331× x2

2 + 2.9158× x2
3 + 2.4052× x2

4

(97)
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As a result of the calculations of coefficients Ak, k =3, we obtain the f 3(X) function:

f3(X) = 43.734 + 0.6598× x1 + 0.4493× x2 − 0.3094× x3−
1.8334× x4 − 0.01× x1 × x2 − 0.0062× x1 × x3 + 0.0146× x1 × x4

−0.013× x2 × x3 + 0.0121× x2 × x4 − 0.0004× x3 × x4 − 0.0003× x2
1

−0.0002× x2
2 + 00.0254× x2

3 + 0.0939× x2
4

. (98)

restrictions 22 ≤ x1 ≤ 88, 0 ≤ x2 ≤ 66, 2.2 ≤ x3 ≤ 8.8, 2.2 ≤ x4 ≤ 8.8 (99)

The minimum and maximum values of experimental data y1(X), y2(X), y4(X) are presented in
the lower part of Table 1. The minimum and maximum values of the functions f 1(X), f 2(X), f 4(X)
slightly differ from experimental data. For comparison, the settlement of these f 4(X) functions at the
specified points of X presented in the right part of the eighth column of Table 7 are given. The index of
correlation and coefficients of determination are presented in the lower lines of Table 7.

Results of the regression analysis of Equations (97)–(99) are further used in the creation of the
mathematical model of the technical system.

8.2.4. Construction of a Numerical Model of the System under Certainty and Uncertainty

For the creation of a numerical model of the system, we use the functions obtained under
conditions of definiteness (Equations (92) and (93)) and uncertainty (Equations (97) and (98)), and
parametric restrictions (Equations (94) and (99)).

We consider the functions of Equations (92), (93), (97) and (98) as the criteria defining the
functioning of the system. A set of criteria K = 4 includes two criteria f 1(X), f 3(X)→ max and two
f 2(X), f 4(X)→ min. As a result, the model of the functioning of the system is presented as a vector
problem of mathematical programming:

opt F(X) = {max F1(X) = {max f1(X) ≡ 269.867− 1.8746× x1

−1.7469× x2 + 0.8939× x3 + 1.0937× x4 + 0.0484× x1 × x2−
0.0052× x1 × x3 − 0.0141× x1 × x4 + 0.0037× x2 × x3 − 0.0052× x2 × x4

− 0.0002× x3 × x4 + 0.0119× x2
1 + 0.0035× x2

2 − 0.002× x2
3 − 0.0042× x2

4,

(100)

max f3(X) ≡ 43.734 + 0.659× x1 + 0.4493× x2 − 0.3094× x3

−1.8334× x4 − 0.01× x1 × x2 − 0.0062× x1 × x3 + 0.0146× x1 × x4

−0.013× x2 × x3 + 0.0121× x2 × x4 − 0.0004× x3 × x4 − 0.0003× x2
1

−0.0002× x2
2 + 0.0254× x2

3 + 0.0939× x2
4

(101)

min F2(X) = {min f2(X) ≡ 875.3 + 23.893× x1 − 30.866× x2−
25.858× x3 − 45× x4 − 0.6984× x1 × x2 + 0.4276× x1 × x3+

0.6793× x1 × x4 − 0.1167× x2 × x3 + 0.2969× x2 × x4−
0.0093× x3 × x4 + 0.0362× x2

1 + 0.0331× x2
2 + 2.9158× x2

3 + 2.4052× x2
4.

(102)

min f4(X) ≡ 19.25− 0.008× x1 − 0.7005× x2 − 0.3605× x3+

0.977× x4 + 0.0126× x1 × x2 + 0.0644× x1 × x3 − 0× x1 × x4+

0.0396× x2 × x3 + 0.0002× x2 × x4 + 0.0004× x3 × x4 − 0.0016× x2
1

+0.0027× x2
2 + 0.0045× x2

3 − 0.0235× x2
4}},

(103)

restrictions: 22 ≤ x1 ≤ 88, 0 ≤ x2 ≤ 66, 2.2 ≤ x3 ≤ 8.8, 2.2 ≤ x4 ≤ 8.8 (104)

The vector problem of mathematical programming of Equations (100)–(104) represents the model
of decision making under certainty and uncertainty in the aggregate.
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8.3. The Solution of the Vector Problem of Mathematical Programming (VPMP)—Model of the System with
Equivalent Criteria

To solve the vector problem of mathematical programming of Equations (14)–(18), methods based
on the axioms of the normalization of criteria and the principle of guaranteed results are presented,
which follow from Axiom 1 and the principle of optimality 1.

The solution of the vector problem of Equations (14)–(18) follows a sequence of steps.
Step 1. Equations (100)–(104) are solved for each criterion separately, using the function fmincon (

. . . ) of the MATLAB system, the use of the function fmincon ( . . . ) is considered in [7–10,20,22].
As a result of the calculation for each criterion we obtain optimum points: X∗k and f ∗k = fk(X∗k),

k = 1, K, the sizes of criteria at this point, i.e., the best decision for each criterion:

X∗1 = {x1 = 88.0, x2 = 66.0, x3=8.8, x4 = 2.2}, f ∗1 = f 1(X∗1) = −535.06,

X∗2 = {x1 = 22.0, x2 = 0.0, x3=2.83, x4 = 6.25}, f ∗2 = f 2(X∗2) = 1301.2,
X∗3 = {x1 = 88.0, x2 = 0.0, x3=2.2, x4 = 8.8}, f ∗3 = f 3(X∗3) = −100.15,

X∗4 = {x1=22.0, x2 = 62.17, x3 = 2.2, x4 = 2.2}, f ∗4 = f 4(X∗4) = 12.247.

The restrictions of Equation (104) and the points of an optimum X∗1, X∗2, X∗3, X∗4 in coordinates {x1,
x2} are presented in Figure 13.

 
Figure 13. Pareto’s great number, So ⊂ S in a two−dimensional system of coordinates {x1, x2}.

Step 2. We define the worst unchangeable part of each criterion (anti-optimum):

X0
1 = {x1 = 22.0, x2 = 66.0, x3 = 2.2, x4 = 2.2}, f 0

1 = f1(X0
2) = 243.25,

X0
2 = {x1 = 88.0, x2 = 0.0, x3 = 8.8, x4 = 8.8}, f 0

2 = f2(X0
2) = −3903.1,

X0
3 = {x1 = 22.0, x2 = 0.0, x3 = 8.8, x4 = 8.07}, f 0

3 = f3(X0
3) = 50.03,

X0
4 = {x1 = 88.0, x2 = 66.0, x3 = 8.8, x4 = 8.8}, f 0

4 = f2(X0
4) = −121.83.

Step 3. We analyze the set of Pareto optimal points. At optimal points X * = {X1*, X2*, X3*, X4*},

the sizes of the criterion functions of F(X*) = ‖ fq(X∗k)‖
k = 1,K
q = 1,K

are determined. We calculate a vector
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D = (d1 d2 d3 d4)T, deviations by each criterion on an admissible set S: dk =fk*−fk0, k = 1, 4, and a matrix

of relative estimates λ(X*) = ‖λq(X∗k)‖
k = 1,K
q = 1,K

, where λk(X) = (fk*−fk0)/dk.

F(X∗) =

∣∣∣∣∣∣∣∣∣∣∣
535.1 1731.9 58.1 117.0
317.6 1301.2 51.3 26.5
192.5 3614.3 100.2 24.6
244.0 2458.2 67.7 12.2

∣∣∣∣∣∣∣∣∣∣∣
, D =

∣∣∣∣∣∣∣∣∣∣∣
291.8
−2602.0

50.12
−109.58

∣∣∣∣∣∣∣∣∣∣∣
,

λ(X∗) =

∣∣∣∣∣∣∣∣∣∣∣
1.0000 0.8345 0.1603 0.0443
0.2548 1.0000 0.0244 0.8697
−0.1740 0.1110 1.0000 0.8870
0.0027 0.5553 0.3532 1.0000

∣∣∣∣∣∣∣∣∣∣∣

(105)

The analysis of the sizes of the criteria in relative estimates shows that at optimal points X*= {X1*,
X2*, X3*, X4*} the relative assessment is equal to unity. Other criteria are much less than unity. It is
required to find such points (parameters) at which the relative estimates are closest to unity. Step 4 is
directed to the solution of this problem.

Step 4. Creation of the λ-problem is carried out in two stages: first, the maximine problem of
optimization with the normalized criteria is constructed:

λ0 = max
x

min
k
λk(X), G(X) ≤ 0, X ≥ 0, (106)

Second, this is transformed into a standard problem of mathematical programming (the λ-problem):

λ0 =max λ, (107)

at restrictions λ− ( f1(X) − f o
1 )/( f ∗1 − f o

1 ) ≤ 0, (108)

λ− ( f2(X) − f o
2 )/( f ∗2 − f o

2 ) ≤ 0 (109)

λ− ( f3(X) − f o
3 )/( f ∗3 − f o

3 ) ≤ 0 (110)

λ− ( f4(X) − f o
4 )/( f ∗4 − f o

4 ) ≤ 0 (111)

0 ≤ λ ≤1, 22 ≤ x1 ≤ 88, 0 ≤ x2 ≤ 66, 2.2 ≤ x3 ≤ 8.8, 2.2 ≤ x4 ≤ 8.8, (112)

where the vector of unknowns had the dimension N + 1: X = {x1, . . . , xN, λ}, the functions f 1(X), f 2(X),
f 3(X), f 4(X) correspond to Equations (100)–(104), respectively. Substituting the numerical values of the
functions f 1(X), f 2(X), f 3(X), f 4(X), we obtain the λ-problem in the following form:

λ0 =max λ, (113)

at restrictions λ−
296.85− 1.875× x1 . . .+0.0734× x1 × x2 . . . −0.0108× x2

1 . . . − f o
1

f ∗1 − f o
1

≤ 0, (114)

λ−
43.73 + 0.659 × x1 . . . − 0.01 × x1 × x2 . . .− 0.0003 × x2

1 . . .− f o
3

f ∗3 − f o
3

≤ 0, (115)

λ−
875.3 + 23.893× x1+ . . . .−0.6984× x1 × x2 . . .+0.036× x2

1 . . . − f o
2

f ∗2 − f o
2

≤ 0, (116)

λ−
19.253− 0.0081× x1 . . .+ 0.0126× x1 × x2 . . .+( − 0.0016× x2

1) . . . − f o
4

f ∗4 − f o
4

≤ 0, (117)

0 ≤ λ ≤ 1, 22 ≤ x1 ≤ 88, 0 ≤ x2 ≤ 66, 2.2 ≤ x3 ≤ 8.8, 2.2 ≤ x4 ≤ 8.8, (118)
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Using function fmincon( . . . ):
[Xo,Lo] = fmincon(‘Z_TehnSist_4Krit_L’,X0,Ao,bo,Aeq,beq,lbo,ubo,’Z_TehnSist_LConst’,options).
As a result of the solution of the vector problem of mathematical programming in Equations

(14)–(18) with equivalent criteria and the λ-problem corresponding to Equations (113)–(118), we obtain:

X0 = {X0, λ0} = {X0 = {x1 = 52.9, x2 = 36.097, x3 = 8.8, x4 = 2.2, λ0 = 0.3179} (119)

i.e., the optimum point of the design data of the system, point X0, which is presented in Figure 8,
fk(X0), k = 1, K, the sizes of criteria (characteristics of technical system):

{f 1(X0) = 336.0, f 2(X0) = 2239.5, f 3(X0) = 65.962, f 4(X0) = 58.435}, (120)

And λk(Xo), k = 1, K, the sizes of the relative estimates:

{λ1(X0) = 0.3179, λ2(X0) = 0.6394, λ3(X0) = 0.3179, λ4(X0) = 0.5785}, (121)

λ0 = 0.3179 is the maximum lower level among all relative estimates measured in relative units:
λ0 = min (λ1(X0), λ2(X0), λ3(X0), λ4(X0), λ5(X0)) = 0.3179. A relative assessment, λ0, is called the
guaranteed result in relative units, i.e., λk(Xo), and according to the characteristics of the technical
fk(X0) system is impossible to improve upon, without worsening thus characteristics.

We note that according to Theorem 1, at point Xo criteria 1 and 3 are contradictory. This
contradiction is defined by the equality of λ1(X0) = λ3(X0) =λ0 = 0.3179, and other criteria are subject
to an inequality of {λ2(X0) = 0.7954, λ4(X0) = 0.5557} > λ0.

Thus, Theorem 1 forms a basis for the determination of the correctness of the solution of a vector
problem. In a vector problem of mathematical programming, as a rule, for two criteria an equality
holds: λ0 = λq(X0) = λp(X0), q, p ∈ K, X ∈ S, and other criteria are subject to an inequality: λ0 ≤ λk(X0)
∀k ∈ K, q � p � k.

8.4. Geometric Interpretation of Results of the Decision in a Three-Dimensional Coordinate System in Relative
Units

In an admissible set of points, S formed by restrictions of Equation (32), the optimum points
X1*, X2*, X3*, X4* are united in a contour and presented as a set of Pareto optimal points S0⊂S in
Figure 13. Coordinates of these points, and the characteristics of the technical system in relative units
of λ1(X), λ2(X), λ3(X), λ4(X) are shown in Figure 14 in three-dimensional space, where the third axis λ
is a relative assessment.
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Figure 14. The solution of the λ-problem in a three-dimensional system of coordinates of x1, x2 and λ.

Discussion. Looking at Figure 9, we can provide changes of all functions of λ1(X), λ2(X), λ3(X),
λ4(X) in four-dimensional space. We consider, for example, an optimum point X∗3. The λ3(X) function
is created from the functions f 3(X) with variable coordinates {x1, x2} and with constant coordinates
{x3 = 8.8, x4 = 2.2}, taken from an optimum point X0 (33). At point X∗3 the relative assessment of
λ3(X∗3) = 0.83 is shown in Figure 9 by a black point. However, we know that the relative assessment
of λ3(X∗3) obtained from the function f 3(X∗3) in the third step is equal to unity, which we designate as
λΔ

3 (X∗3
∗
1)= 1, and is shown in Figure 9 by a red point. The difference between λΔ

3 (X∗3
∗
1)= 1 and λ3(X∗3)= 0.83

is an error Δ = 0.17 due to transitioning from four-dimensional (and generally N-dimensional) to
two-dimensional space.

The point X∗1 and appropriate relative estimates of λ1(X∗1) and λΔ
1 (X∗1) are similarly shown.

Thus, for the first time in domestic and foreign practice, the transition and its geometric illustration
from an N-dimensional to a two-dimensional measurement of function is shown in vector problems of
mathematical programming with the appropriate errors.

8.5. The Solution of a Vector Problem of Mathematical Programming—Model of the System at the Given
Priority of the Criterion

The decision maker is usually the system designer.
Step 1. We solve a vector problem with equivalent criteria. The algorithm of the decision is

presented in Section 8.3. The numerical results of the solution of the vector problem are given above.
Pareto’s great number S0⊂S lies between optimum points X∗1 X0 X∗3 X0 X∗4 X0 X∗2 X0 X∗1. We carry

out the analysis of a great number of Pareto So⊂S. For this purpose, we will connect auxiliary points:
X∗1X∗3X∗4X∗2X∗1 with a point X0 which conditionally represents the center of a great number of Pareto. As
a result, we obtain four subsets of points X∈So

q⊂S0⊂S, q = 1, 4. The subset So
1⊂S0⊂S is characterized by

the fact that the relative assessment λ1 ≥λ2, λ3, λ4, i.e., in the field So
1, the first criterion has priority over

the others. Similarly, So
2, So

3, So
4 are the subsets of points where the second, third and fourth criterion has

a priority over the others, respectively. We designate the set of Pareto optimal points S0=So
1∪So

2∪So
3∪So

4.
Coordinates of all obtained points and relative estimates are presented in two-dimensional space {x1,
x2} in Figure 13. These coordinates are shown in three-dimensional space {x1, x2, λ} in Figure 14 where
the third axis λ is a relative assessment. The restrictions of the set of Pareto optimal points in Figure 14
are lowered to −0.5 (so that restrictions are visible). This information is also a basis for further research
on the structure of a great number of Pareto. The person making decisions, as a rule, is the designer of
the system. If results of the solution of a vector problem with equivalent criteria do not satisfy the
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person making the decision, then the choice of the optimal solution is taken from any subset of points
So

1, So
2, So

3, So
4. These subsets of Pareto points are shown in Figure 8 in the form of functions f 1(X), f

2(X), f 3(X), f 4(X).
Step 2. Choice of priority criterion of q∈K. From the theory (see Theorem 1) it is known that at an

optimum point X0 there are always two most inconsistent criteria, q∈K and v∈K for which in relative
units an equality holds: λ0 =λq(X0) =λp(X0), q, v∈K, X∈S. Others are subject to inequalities: λ0 ≤ λk(X0)
∀k∈K, q � v � k.

In a model of the system in Equations (100)–(104) and the corresponding λ-problem in Equations
(113)–(117), such criteria are the first and third:

λ0 = λ1(X0) = λ3(X0) = 0.3179. (122)

We show the λ1(X) andλ3(X) functions separately in Figure 15 for an optimum point Xo = {Xo, λo}.

 
Figure 15. The solution of the λ-problem (first and third criteria) in a three-dimensional system of
coordinates of x1, x2 and λ.

All points and data are shown in Figure 14.
As a rule, the criterion which the decision-maker would like to improve is taken from a couple of

contradictory criteria. Such a criterion is called the “priority criterion”, which we designate q=3∈K.
This criterion is investigated in interaction with the first criterion of k = 1∈K. We allocate these two
criteria from the set of all criteria K = 4 shown in Figure 15.

On the display the message is given:
q=input (‘Enter priority criterion (number) of q =‘), have entered: q = 3.
Step 3. Numerical limits of the change of the size of a priority of criterion of q = 3∈K are defined.
For priority criterion q = 3, the numerical limits in physical units upon transition from an optimal

point Xo (119) to the point X∗q obtained in the first step are defined.
Information about the criteria for q = 3 are given on the screen:

fq
(
X0

)
= 65.96 ≤ fq(X) ≤ 100.15 = fq(X∗q), q ∈ K. (123)

In relative units the criterion of q = 2 changes according to the following limits:
λq(X0) = 0.3179 ≤ λq(X) ≤ 1 = λq(X∗q), q = 3 ∈ K.
These data are analyzed.
Step 4. Choice of the size of priority criterion q∈K (decision making).
The message is displayed: “Enter the size of priority criterion fq = “, we enter, for example, fq = 80.
Step 5. Calculation of a relative assessment.
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For the chosen size of the priority criterion of fq =80 the relative assessment is calculated:

λq =
fq − f o

q

f ∗q − f o
q

=
80 − 50.03

100.15− 50.03
= 0.5979, (124)

which upon transition from point X0 to X∗q according to Equation (38) lies in the limits:

0.3179 = λ3
(
X0

)
≤ λ3 = 0.5979 ≤ λ3(X) = 1, q ∈ K. (125)

Step 6. Calculation of the coefficient of linear approximation.
Assuming a linear nature of the change of criterion of fq(X) in Equation (123) and according

to a relative assessment of λq(X), using standard methods of linear approximation we calculate the
proportionality coefficient between λq(X0), λq, which we call ρ:

ρ =
λq − λq(Xo)

λq(X∗q) − λq(Xo)
=

0.5979− 0.3179
1− 0.3179

= 0.4106, q = 3 ∈ K. (126)

Step 7. Calculation of the coordinates of priority criterion with the size fq.
Assuming a linear nature of the change of a vector Xq = {x1 x2}, q = 3 we determine coordinates of

a point of priority criterion with the size fq with a relative assessment (95):

Xq = {x1 = X0(1) + ρ(X∗q(1) −X0(1))x2 = X0(2) + ρ(X∗q(2) −X0(2))}. (127)

where X0 = {X0(1) = 80.0, X0 (2) = 69.11}, X∗3 = {X3*(1) = 80.0, X3*(2) = 0.0}.
As a result of the calculations, we obtain point coordinates: Xq = {x1 = 67.31, x2 = 21.27}.
Step 8. Calculation of the main indicators of a point Xq.
For the obtained point Xq, we calculate:

• all criteria in physical units fk(Xq) = {fk(Xq), k = 1, K}: f (Xq) = {f 1(Xq) = 313.45, f 2(xq) = 2575.7,
f 3(xq) = 74.2, f 4(xq) = 60.6},

• all relative estimates of criteria λq = {λq
k, k = 1, K}, λk(Xq) =

fk(Xq)− f o
k

f ∗k− f o
k

, k = 1, K1,K:

λk(Xq) = {λ1(Xq) = 0.2405, λ2(xq) = 0.5102, λ3(xq) = 0.4825, λ4(xq) = 0.5586}1,K,

• the minimum relative assessment: minLXq =min(LXq): minLXq =min(λk(Xq)) = 0.2405,

• the vector of priorities Pq = {pq
k =

λq(Xq)

λk(Xq)
, k = 1, K}: Pq = (p3

1 = 2.0061, p3
2 = 0.9458, p3

3 = 1.0, p3
4 = 0.8637),

• the relative assessment taking into account a criterion priority: LXqPq = λk(Xq).*Pq = {p3
1λ1(Xq),

p3
2λ2(Xq), p3

3λ3(Xq), p3
4λ4(Xq)} λk(Xq).*Pq = {0.7968 0. 7968 0. 7968 0. 7968},

• the the minimum relative assessment taking into account a criterion priority: λ00 = min
(p2

1λ1(Xq) = 0.4825, p2
2λ2(Xq) = 0.4825, p2

3λ3(Xq) = 0.4825, p2
4λ4(Xq)) = 0.4825

Any point from Pareto’s set Xo
t = {λo

t , Xo
t }∈So can be similarly calculated.

Step 9. Analysis of results. The calculated size of criterion fq(Xo
t ), q∈K is usually not equal to the

set fq. The error of the choice of Δfq = |fq(Xo
t ) − fq| = |74.2 − 80|= 5.8 is defined by an error of linear

approximation, Δfq% = 7.25%.
In the course of modeling and simulation, as well as in the previous example, Section 7.5, the

parametric restrictions of Equation (118) can be changed, i.e., some set of optimum decisions is obtained.
We can choose a final version from, in our example, this set of optimum decisions: parameters of
technical system X0 = {x1 = 52.9, x2 = 36.097, x3 = 8.8, x4 = 2.2, λ0 = 0.3179, the parameters of the
technical system at a given priority criterion q = 2: Xq = {x1 = 67.31, x2 = 21.27}.

If the error Δfq = |fq(X00) − fq| = |79.6−80| = 0.4, measured in physical units or as a percentage
Δfq% = Δfq / fq × 100 = 0.5%, is more than set Δf, Δfq > Δf, f, we pass to Step 2, else if Δfq ≤ Δf, calculations
come to an end.
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8.6. Geometric Interpretation of Results of the Decision in a Three-Dimensional Coordinate System in Physical
Units

In the course of modeling, the parametric restrictions of Equation (32) and functions can be
changed, i.e., some set of optimum decisions is obtained. We can choose a final version from, in our
example, this set of optimum decisions:

• parameters of the system X0 = {x1 = 80.0, x2 = 69.11, x3 = 32.58, x4 = 20.0},
• the parameters of the system at a given priority criterion q = 3: Xq = {x1 = 67.313, x2 = 21.276}.

We represent these parameters in a two-dimensional (x1, x2) system in Figure 13, in a
three-dimensional coordinate (x1, x2and λ) system in Figure 14, and, in physical units for each
function f 1(X), . . . , f 4(X) in Figures 16–19, respectively. The first characteristic f 1(X) in physical units is
shown in Figure 16.

 

Figure 16. The first characteristic f 1(X) of the system in a natural indicator.

Indicators of the first f Δ
1 (X∗1), f Δ

1 (X0
1) characteristic of the system (highlighted in red) define the

transition errors from four-dimensional X0 = {x1, x2, x3, x4} to two-dimensional X0 = {x1, x2} systems of
coordinates. The second characteristic f 2(X) in physical units is shown in Figure 17.

 
Figure 17. The second characteristic f 2(X) of the system in a natural indicator.

Indicators of the second f Δ
2 (X∗2), f Δ

2 (X0
2) characteristic of the system (highlighted in red) define the

transition errors from four-dimensional X0 = {x1, x2, x3, x4} to two-dimensional X0 = {x1, x2} systems of
coordinates. The third characteristic f 3(X) in physical units is shown in Figure 18.
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Figure 18. The third characteristic f3(X) of the system in a natural indicator.

Indicators of the third f Δ
3 (X∗3), f Δ

3 (X0
3) characteristic of the system (highlighted in red) define

transition errors from four-dimensional X0 = {x1, x2, x3, x4} to two-dimensional X0 = {x1, x2} systems of
coordinates. The fourth characteristic f 4(X) in physical units is shown in Figure 19.

 
Figure 19. The fourth characteristic f3(X) of the system in a natural indicator.

Indicators of the fourth f Δ
4 (X∗4), f Δ

4 (X0
4) characteristic of the system (highlighted in red) define the

transition errors from four-dimensional Xo = {x1, x2, x3, x4} to two-dimensional Xo = {x1, x2} systems
of coordinates.

Collectively, for the submitted version with:

• point Xo, characteristics of f 1(X0), f 2(X0), f 3(X0), f 4(X0),
• relative estimates of λ1(X0), λ2(X0), λ3(X0), λ4(X0), and
• maximum relative level λ0 such that λ0 ≤ λk(X0) ∀k ∈ K

there is an optimum decision with equivalent criteria (characteristics) and, for the procedure of
obtaining the optimum decision with equivalent criteria (characteristics):

• point Xq, characteristics of f 1(Xq), f 2(Xq), f 3(Xq), f 4(Xq),
• relative estimates of λ1(Xq), λ2(Xq), λ3(Xq), λ4(Xq),

• maximum relative level λo such that λo ≤ pq
kλk(Xq), k = 1, K
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there is an optimal solution at the set priority of the qth criterion (characteristic) in relation to other
criteria. The procedure of obtaining a point Xq is the adoption of the optimal solution at the set priority
of the second criterion.

Based on the theory of vector optimization, methods of solution of vector problems with equivalent
criteria, and a given priority of criterion, we can choose any point from the set of Pareto optimal points,
and show the optimality of this point.

Conclusions. The problem of the development of mathematical methods of vector optimization
and the adoption of the optimal solution in a difficult technical system based on some set of experimental
data and functional characteristics are some of the most important tasks of system analysis and design.

In this work, the methodology of the creation of a mathematical model of a technical system under
the conditions of definiteness and indeterminacy in the form of a vector problem of mathematical
programming is developed. New methods of vector optimization based on normalization of criteria
and the principle of the guaranteed result are developed for the solution of a vector problem. Methods
of vector optimization allow making a decision, first, with equivalent criteria, and second, with a given
priority of criterion. In the creation of the characteristics under conditions of indeterminacy, regression
methods of transformation of information are used. The practice of “making optimal decisions” on
the basis of a mathematical model is shown using a number of numerical examples of solutions of
vector problems of optimization. The solution to the problem of “acceptance of an optimal solution” is
realized with examples of 1, 2, 3 and 4 variables, respectively.

These methods of processing experimental data and vector optimization can be used in the
design of technical systems of various industries: electro-technical, aerospace, metallurgical, etc. This
methodology has system characteristics and can be used when modeling technical, economic and
other systems. The author is ready to contribute to the solutions of vector problems of linear and
nonlinear programming.
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Abstract: Convergence using dual double fuzzy semi-metric is studied in this paper. Two types of
dual double fuzzy semi-metric are proposed in this paper, which are called the infimum type of dual
double fuzzy semi-metric and the supremum type of dual double fuzzy semi-metric. Under these
settings, we also propose different types of triangle inequalities that are used to investigate the
convergence using dual double fuzzy semi-metric.
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1. Introduction

The concept of fuzzy metric space proposed by Kramosil and Michalek [1] was inspired by
the Menger space that is a special kind of probabilistic metric space by referring to Schweizer and
Sklar [2–4], Hadžić and Pap [5], and Chang et al. [6]. Kaleva and Seikkala [7] proposed another
concept of fuzzy metric space by considering the membership degree of the distance between any two
different points. George and Veeramani [8,9] studied some properties of fuzzy metric spaces in the
sense of Kramosil and Michalek [1]. Gregori and Romaguera [10–12] also extended the study of the
properties of fuzzy metric spaces and fuzzy quasi-metric spaces in which the symmetric condition
was not assumed.

The Hausdorff topology induced by the fuzzy metric space was studied in Wu [13]. In this paper,
we shall propose the concept of double fuzzy-semi metric in fuzzy semi-metric space and study its
convergent properties. The potential application for using the convergence of dual double fuzzy
semi-metric is to study the new type of fixed point theorems in fuzzy semi-metric space by considering
the Cauchy sequences, which will be the future research and may refer to the previous work of
Wu [14] for studying the common coincidence points and common fixed points in fuzzy semi-metric
spaces. Wu [15] studied the so-called fuzzy semi-metric space without assuming the symmetric
condition. In the fuzzy semi-metric space (X, M), the symmetric condition M(x, y, t) = M(y, x, t)
for all x, y ∈ X and t > 0 is not assumed to be true. Therefore, four kinds of triangle inequalities
should be considered.

In order to obtain the new type of fixed point theorems in fuzzy semi-metric space, we need to
study the convergence using dual double fuzzy semi-metric. Based on the concept of t-norm ∗, we
shall firstly define the double fuzzy semi-metric by considering the mapping ζ : X4 × [0,+∞) → [0, 1]
that is defined by:

ζ(x, y; u, v, t) = M(x, y, t) ∗ M(u, v, t),

where ζ is called a double fuzzy semi-metric.

Appl. Syst. Innov. 2019, 2, 13; doi:10.3390/asi2020013 www.mdpi.com/journal/asi
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The convergence using fuzzy semi-metric has been studied in Wu [16], where the infimum type
of dual fuzzy semi-metric is the function Γ↓(λ, ·, ·) : X × X → [0,+∞) defined by:

Γ↓(λ, x, y) = inf {t > 0 : M(x, y, t) ≥ 1 − λ} ,

and the supremum type of dual fuzzy semi-metric is the function Γ↑(λ, ·, ·) : X × X →
[0,+∞) defined by:

Γ↑(λ, x, y) = sup {t > 0 : M(x, y, t) ≤ 1 − λ} .

In this paper, we shall consider the double fuzzy semi-metric ζ to define the infimum and
supremum types of dual double fuzzy semi-metric. The infimum type of dual double fuzzy semi-metric
is the function Ψ↓(λ, ·, ·; ·, ·) : X4 → [0,+∞) defined by:

Ψ↓(λ, x, y; u, v) = inf {t > 0 : ζ(x, y; u, v, t) ≥ 1 − λ} ,

and the supremum type of dual double fuzzy semi-metric is the function Ψ↑ : X4 → [0,+∞) defined by:

Ψ↑(λ, x, y; u, v) = sup {t > 0 : ζ(x, y; u, v, t) ≤ 1 − λ} .

Using the infimum and supremum types of dual fuzzy semi-metric Γ↓(λ, x, y) and Γ↑(λ, x, y),
the convergence of sequences in (X, M) and the concept of Cauchy sequence in (X, M) have been
studied in Wu [16]. In this paper, we study the extended convergence of sequences in (X, M)

and the concept of joint Cauchy sequence in (X, M) using the infimum and supremum types of
dual double fuzzy semi-metric Ψ↓(λ, x, y; u, v) and Ψ↑(λ, x, y; u, v). As we mentioned above, these
convergences will be used in the near future to establish the new types of fixed point theorems in fuzzy
semi-metric space (X, M).

In Section 2, we review some basic properties of fuzzy semi-metric space that will be used
for further discussion. In Section 3, we introduce the concept of double fuzzy semi-metric and
derive the related triangle inequalities. In Sections 4 and 5, the concepts of infimum and supremum
types of dual double fuzzy semi-metric are proposed, and their convergent properties and triangle
inequalities are studied.

2. Fuzzy Semi-Metric Space

Let X be a nonempty universal set, and let M be a mapping defined on X × X × [0, ∞) into [0, 1].
Then (X, M) is called a fuzzy semi-metric space if and only if the following conditions are satisfied:

• For any x, y ∈ X, M(x, y, t) = 1 for all t > 0 if and only if x = y;
• M(x, y, 0) = 0 for all x, y ∈ X with x 	= y.

We say that M satisfies the symmetric condition if and only if M(x, y, t) = M(y, x, t) for all x, y ∈ X
and t > 0. We say that M satisfies the strongly symmetric condition if and only if M(x, y, t) = M(y, x, t)
for all x, y ∈ X and t ≥ 0. Since the symmetric condition is not assumed to be true in fuzzy semi-metric
space, four kinds of triangle inequalities called ◦-triangle inequality for ◦ ∈ {��, �, �, �} were proposed
by Wu [15].

Example 1. Let X be a universal set, and let d : X × X → R+ satisfy the following conditions:

• d(x, y) ≥ 0 for any x, y ∈ X;
• d(x, y) = 0 if and only if x = y for any x, y ∈ X;
• d(x, y) + d(y, z) ≥ d(x, z) for any x, y, z ∈ X.
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Note that we do not assume d(x, y) = d(y, x). For example, let X = [0, 1]. We define:

d(x, y) =

{
y − x if y ≥ x
1 otherwise.

Then d(x, y) 	= d(y, x) and the above three conditions are satisfied. Now we take t-norm ∗ as a ∗ b = ab
and define:

M(x, y, t) =

⎧⎪⎪⎨
⎪⎪⎩

t
t + d(x, y)

if t > 0

1 if t = 0 and d(x, y) = 0
0 if t = 0 and d(x, y) > 0

=

⎧⎪⎪⎨
⎪⎪⎩

t
t + d(x, y)

if t > 0

1 if t = 0 and x = y
0 if t = 0 and x 	= y.

It is clear to see that M(x, y, t) 	= M(y, x, t) for t > 0, since d(x, y) 	= d(y, x). It is not hard to check that
(X, M, ∗) is a fuzzy semi-metric space satisfying the ��-triangle inequality.

The following interesting observations will be used in further study.

Remark 1. Let (X, M) be a fuzzy semi-metric space.

• Suppose that M satisfies the ��-triangle inequality. Then:

M(a, b, t1) ∗ M(b, c, t2) ∗ M(c, d, t3) ≤ M(a, c, t1 + t2) ∗ M(c, d, t3) ≤ M(a, d, t1 + t2 + t3).

In general, we have:

M (x1, x2, t1) ∗ M (x2, x3, t2) ∗ · · · ∗ M
(
xp, xp+1, tp

) ≤ M
(

x1, xp+1, t1 + t2 + · · ·+ tp
)

. (1)

• Suppose that M satisfies the �-triangle inequality. Since:

M(a, b, t1) ∗ M(c, b, t2) ≤ min {M(a, c, t1 + t2), M(c, a, t1 + t2)} ,

which implies:

M(a, b, t1) ∗ M(c, b, t2) ∗ M(d, c, t3) ≤ min {M(a, d, t1 + t2 + t3), M(d, a, t1 + t2 + t3)} . (2)

In general, we have:

M (x1, x2, t1) ∗ M (x3, x2, t2) ∗ M (x4, x3, t3) ∗ · · · ∗ M
(
xp+1, xp, tp

)
≤ min

{
M
(

x1, xp+1, t1 + t2 + · · ·+ tp
)

, M
(
xp+1, x1, t1 + t2 + · · ·+ tp

)}
.

• Suppose that M satisfies the �-triangle inequality. Since:

M(b, a, t1) ∗ M(b, c, t2) ≤ min {M(a, c, t1 + t2), M(c, a, t1 + t2)} ,

which implies:

M(b, a, t1) ∗ M(b, c, t2) ∗ M(c, d, t3) ≤ min {M(a, d, t1 + t2 + t3), M(d, a, t1 + t2 + t3)} . (3)

In general, we have:

M (x2, x1, t1) ∗ M (x2, x3, t2) ∗ M (x3, x4, t3) ∗ · · · ∗ M
(
xp, xp+1

)
≤ min

{
M
(

x1, xp+1, t1 + t2 + · · ·+ tp
)

, M
(

xp+1, x1, t1 + t2 + · · ·+ tp
)}

.
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• Suppose that M satisfies the �-triangle inequality. Then:

M(a, b, t1) ∗ M(b, c, t2) ∗ M(d, c, t3) = M(b, c, t1) ∗ M(a, b, t2) ∗ M(d, c, t3)

≤ M(c, a, t1 + t2) ∗ M(d, c, t3) ≤ M(a, d, t1 + t2 + t3) (4)

and:

M(b, a, t1) ∗ M(c, b, t2) ∗ M(c, d, t3) ≤ M(a, c, t1 + t2) ∗ M(c, d, t3)

= M(c, d, t3) ∗ M(a, c, t1 + t2) ≤ M(d, a, t1 + t2 + t3). (5)

From Equation (4), we also have:

M(a, b, t1) ∗ M(c, b, t2) ∗ M(d, c, t3) = M(d, c, t3) ∗ M(c, b, t2) ∗ M(a, b, t1)

≤ M(d, a, t1 + t2 + t3), (6)

which implies:
M(b, a, t1) ∗ M(b, c, t2) ∗ M(c, d, t3) ≥ M(a, d, t1 + t2 + t3) (7)

by referring to Equation (5). In general, we have the following cases:

(a) If p is even, then:

M (x1, x2, t1) ∗ M (x2, x3, t2) ∗ M (x4, x3, t3) ∗ M (x4, x5, t4) ∗ M (x6, x5, t5)

∗ M (x6, x7, t6) ∗ · · · ∗ M
(

xp, xp+1, tp
) ≤ M

(
xp+1, x1, t1 + t2 + · · ·+ tp

)
and:

M (x2, x1, t1) ∗ M (x3, x2, t2) ∗ M (x3, x4, t3) ∗ M (x5, x4, t4) ∗ M (x5, x6, t5)

∗ M (x7, x6, t6) ∗ · · · ∗ M
(
xp, xp+1, tp

) ≤ M
(
x1, xp+1, t1 + t2 + · · ·+ tp

)
.

(b) If p is odd, then:

M (x1, x2, t1) ∗ M (x2, x3, t2) ∗ M (x4, x3, t3) ∗ M (x4, x5, t4) ∗ M (x6, x5, t5)

∗ M (x6, x7, t6) ∗ · · · ∗ M
(
xp, xp+1, tp

) ≤ M
(
x1, xp+1, t1 + t2 + · · ·+ tp

)
and:

M (x2, x1, t1) ∗ M (x3, x2, t2) ∗ M (x3, x4, t3) ∗ M (x5, x4, t4) ∗ M (x5, x6, t5)

∗ M (x7, x6, t6) ∗ · · · ∗ M
(
xp+1, xp tp

) ≤ M
(

xp+1, x1, t1 + t2 + · · ·+ tp
)

.

Let (X, M) be a fuzzy semi-metric space.

• We say that M is nondecreasing if and only if, given any fixed x, y ∈ X, M(x, y, t1) ≥ M(x, y, t2)

for t1 > t2 > 0.
• We say that M is increasing if and only if, given any fixed x, y ∈ X, M(x, y, t1) > M(x, y, t2) for

t1 > t2 > 0.
• We say that M is symmetrically nondecreasing if and only if, given any fixed x, y ∈ X,

M(x, y, t1) ≥ M(y, x, t2) for t1 > t2 > 0.
• We say that M is symmetrically increasing if and only if, given any fixed x, y ∈ X, M(x, y, t1) >

M(y, x, t2) for t1 > t2 > 0.
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The following interesting results were modified from Wu [15] using the similar argument, which
will be used in further discussion.

Proposition 1. (Wu [15]) Let (X, M) be a fuzzy semi-metric space. Then we have the following properties:

(i) If M satisfies the ��-triangle inequality, then M is nondecreasing. If M satisfies the strict ��-triangle
inequality, then M is increasing.

(ii) If M satisfies the �-triangle inequality or the �-triangle inequality, then M is both nondecreasing and
symmetrically nondecreasing. If M satisfies the strict �-triangle inequality or the strict �-triangle
inequality, then M is both increasing and symmetrically increasing.

(iii) If M satisfies the �-triangle inequality, then M is symmetrically nondecreasing. If M satisfies the strict
�-triangle inequality, then M is symmetrically increasing.

3. Double Fuzzy Semi-Metric

Let (X, M) be a fuzzy semi-metric space along with a t-norm ∗. Given any four elements
x, y, u, v ∈ X, recall that the value M(x, y, t) means the membership degree of the distance that
is less than t between x and y, and the value M(u, v, t) means the membership degree of the distance
that is less than t between u and v. In this case, we can define a value:

ζ(x, y; u, v, t) = min {M(x, y, t), M(u, v, t)} ,

which means the membership degree of the distance that is simultaneously less than t between x and
y and between u and v. In general, instead of considering the min function, we shall use the t-norm.
The formal definition is given below.

Definition 1. Let (X, M) be a fuzzy semi-metric space along with a t-norm ∗. We define the mapping
ζ : X4 × [0,+∞) → [0, 1] by:

ζ(x, y; u, v, t) = M(x, y, t) ∗ M(u, v, t).

Then ζ is called a double fuzzy semi-metric.

Example 2. Continued from Example 1, we consider:

M(x, y, t) =

⎧⎪⎪⎨
⎪⎪⎩

t
t + d(x, y)

if t > 0

1 if t = 0 and x = y
0 if t = 0 and x 	= y.

If we take t-norm as a ∗ b = a · b, then the double fuzzy semi-metric can be obtained as:

ζ(x, y; u, v, t) = M(x, y, t) · M(u, v, t)

=

⎧⎪⎪⎨
⎪⎪⎩

t
t + d(x, y)

· t
t + d(u, v)

if t > 0

1 if t = 0 and x = y and u = v
0 if t = 0 and x 	= y or u 	= v.

The potential application for considering the double fuzzy semi-metric is to study the new type
of fixed point theorems in fuzzy semi-metric space.

Proposition 2. (Triangle Inequalities for Dual Fuzzy Semi-Metric) Let (X, M) be a fuzzy semi-metric space
along with a t-norm ∗. Given any x, y, z, u, v, w ∈ X, we have the following properties:
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(i) Suppose that M satisfies the ��-triangle inequality. Then we have the inequality:

ζ(x, z; u, w, t + s) ≥ ζ(x, y; u, v, t) ∗ ζ(y, z; v, w, s)

for s, t > 0.
(ii) Suppose that M satisfies the �-triangle inequality. Then we have the inequality:

ζ(x, z; u, w, t + s) ≥ ζ(x, y; u, v, t) ∗ ζ(z, y; w, v, s)

for s, t > 0.
(iii) Suppose that M satisfies the �-triangle inequality. Then we have the inequality:

ζ(x, z; u, w, t + s) ≥ ζ(y, x; v, u, t) ∗ ζ(y, z; v, w, s)

for s, t > 0.
(iv) Suppose that M satisfies the �-triangle inequality. Then we have the inequality:

ζ(x, z; u, w, t + s) ≥ ζ(y, x; v, u, t) ∗ ζ(z, y; w, v, s)

for s, t > 0.

Proof. It suffices to prove part (i); we have:

ζ(x, z; u, w, t + s) = M(x, z, t + s) ∗ M(u, w, t + s)

≥ (M(x, y, t) ∗ M(y, z, s)) ∗ M(u, w, t + s)

(using the ��-triangle inequality and the increasing property of t-norm)

≥ (M(x, y, t) ∗ M(y, z, s)) ∗ (M(u, v, t) ∗ M(v, w, s))

(using the ��-triangle inequality and the increasing property of t-norm)

= (M(x, y, t) ∗ M(u, v, t)) ∗ (M(y, z, s) ∗ M(v, w, s))

(using the associative and commutative properties of t-norm)

= ζ(x, y; u, v, t) ∗ ζ(y, z; v, w, s).

This completes the proof.

Definition 2. Let (X, M) be a fuzzy semi-metric space along with a t-norm ∗, and let ζ be a double fuzzy
semi-metric given by:

ζ(x, y; u, v, t) = M(x, y, t) ∗ M(u, v, t).

Given any fixed x, y, u, v ∈ X, we define the following concepts of monotonicity:

• The mapping ζ(x, y; u, v, ·) is said to be nondecreasing if and only if ζ(x, y; u, v, t1) ≥ ζ(x, y; u, v, t2) for
t1 > t2. The mapping ζ(x, y; u, v, ·) is said to be increasing if and only if ζ(x, y; u, v, t1) > ζ (x, y; u, v, t2)

for t1 < t2.
• The mapping ζ(x, y; u, v, ·) is is said to be symmetrically nondecreasing if and only if ζ(x, y; u, v, t1) ≥

ζ(y, x; v, u, t2) for t1 > t2. The mapping ζ(x, y; u, v, ·) is said to be symmetrically increasing if and only
if ζ(x, y; u, v, t1) > ζ(y, x; v, u, t2) for t1 < t2.

• The mapping ζ(x, y; u, v, ·) is said to be �-semisymmetrically nondecreasing if and only if ζ(x, y; u, v, t1) ≥
ζ(y, x; u, v, t2) for t1 > t2. The mapping ζ(x, y; u, v, ·) is said to be �-semisymmetrically increasing if and
only if ζ(x, y; u, v, t1) > ζ(y, x; u, v, t2) for t1 < t2.

• The mapping ζ(x, y; u, v, ·) is said to be �-semisymmetrically nondecreasing if and only if ζ(x, y; u, v, t1) ≥
ζ(x, y; v, u, t2) for t1 > t2. The mapping ζ(x, y; u, v, ·) is said to be �-semisymmetrically increasing if and
only if ζ(x, y; u, v, t1) > ζ(x, y; v, u, t2) for t1 < t2.
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Proposition 3. Let (X, M) be a fuzzy semi-metric space along with a t-norm ∗. Given any fixed x, y, u, v ∈ X,
the double fuzzy semi-metric ζ satisfies the following properties:

(i) Suppose that M satisfies the ��-triangle inequality. Then the mapping ζ(x, y; u, v, ·) from [0, ∞) into
[0, 1] is nondecreasing.

(ii) Suppose that M satisfies the �-triangle inequality or the �-triangle inequality. Then the mapping
ζ(x, y; u, v, ·) from [0, ∞) into [0, 1] is simultaneously nondecreasing, symmetrically nondecreasing,
�-semisymmetrically nondecreasing, and �-semisymmetrically nondecreasing.

(iii) Suppose that M satisfies the �-triangle inequality. Then the mapping ζ(x, y; u, v, ·) from [0, ∞) into [0, 1]
is symmetrically nondecreasing.

Proof. Part (i) of Proposition 1 says that the mappings M(x, y, ·) and M(u, v, ·) from [0, ∞) into [0, 1]
are nondecreasing. According to the increasing property of t-norm, we conclude that the mapping
ζ(x, y; u, v, ·) from [0, ∞) into [0, 1] is nondecreasing, which proves part (i).

Part (ii) can be obtained from part (ii) of Proposition 1, and part (iii) can be obtained from part (iii)
of Proposition 1. This completes the proof.

By using the strictly increasing property of t-norm, the proof of Proposition 3 is still valid for
obtaining the following results.

Proposition 4. Let (X, M) be a fuzzy semi-metric space along with a t-norm ∗. Suppose that the t-norm
satisfies the strictly increasing property. Given any fixed x, y, u, v ∈ X, the double fuzzy semi-metric ζ satisfies
the following properties:

(i) Suppose that M satisfies the strict ��-triangle inequality. Then the mapping ζ(x, y; u, v, ·) from [0, ∞)

into [0, 1] is increasing.
(ii) Suppose that M satisfies the strict �-triangle inequality or the strict �-triangle inequality. Then the

mapping ζ(x, y; u, v, ·) from [0, ∞) into [0, 1] is simultaneously increasing, symmetrically increasing,
�-semisymmetrically increasing, and �-semisymmetrically increasing.

(iii) Suppose that M satisfies the strict �-triangle inequality. Then the mapping ζ(x, y; u, v, ·) from [0, ∞)

into [0, 1] is symmetrically increasing.

Let (X, M) be a fuzzy semi-metric space. The motivation for considering the following two
concepts can refer to Wu [16].

• M is said to satisfy the canonical condition if and only if:

lim
t→+∞

M(x, y, t) = 1 for any fixed x, y ∈ X.

• M is said to satisfy the rational condition if and only if:

lim
t→0+

M(x, y, t) = 0 for any fixed x, y ∈ X.

Proposition 5. Let (X, M) be a fuzzy semi-metric space along with a t-norm ∗.

(i) Suppose that M satisfies the canonical condition. If the t-norm ∗ is left-continuous at 1 with respect to the
first or second argument, then we have:

lim
t→+∞

ζ(x, y; u, v, t) = 1. (8)

(ii) Suppose that M satisfies the rational condition. If the t-norm ∗ is right-continuous at 0 with respect to the
first or second argument, then we have:

lim
t→0+

ζ(x, y; u, v, t) = 0. (9)
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Proof. To prove part (i), the canonical condition says that:

lim
t→+∞

M(x, y, t) = 1 = lim
t→+∞

M(u, v, t).

The left-continuity of t-norm ∗ at 1 also says that:

lim
t→+∞

ζ(x, y; u, v, t) =
(

lim
t→+∞

M(x, y, t)
)
∗
(

lim
t→+∞

M(u, v, t)
)
= 1 ∗ 1 = 1.

To prove part (ii), the rational condition says that:

lim
t→0+

M(x, y, t) = 0 = lim
t→0+

M(u, v, t).

The right-continuity of t-norm ∗ at 0 also says that:

lim
t→0+

ζ(x, y; u, v, t) =
(

lim
t→0+

M(x, y, t)
)
∗
(

lim
t→0+

M(u, v, t)
)
= 0 ∗ 0 = 0.

This completes the proof.

Example 3. Continued from Example 1, it is not hard to check that M satisfies both the canonical and rational
conditions. Suppose that we take t-norm as a ∗ b = a · b. Then Proposition 5 says that:

lim
t→+∞

ζ(x, y; u, v, t) = 1 and lim
t→0+

ζ(x, y; u, v, t) = 0.

4. Convergence Based on the Infimum

From Definition 1, we see that the double fuzzy semi-metric ζ is a mapping from X4 × [0, ∞) into
[0, 1]. Here, we shall consider its dual sense by considering the mapping from (0, 1]× X4 into [0, ∞).
The formal definition is given below.

Definition 3. Let (X, M) be a fuzzy semi-metric space along with a t-norm ∗. We also assume that M satisfies
the canonical condition, and that the t-norm ∗ is left-continuous at 1 with respect to the first or second argument.
Given any fixed x, y, u, v ∈ X and any fixed λ ∈ (0, 1], we consider the following set:

Π↓(λ, x, y; u, v) = {t > 0 : ζ(x, y; u, v, t) ≥ 1 − λ} ,

which is used to define a mapping Ψ↓(λ, ·, ·; ·, ·) : X4 → [0,+∞) by:

Ψ↓(λ, x, y; u, v) = inf Π↓(λ, x, y; u, v) = inf {t > 0 : ζ(x, y; u, v, t) ≥ 1 − λ} .

In this case, the mapping Ψ↓ from (0, 1]× X4 into [0, ∞) is called the infimum type of dual double fuzzy
semi-metric.

Example 4. Continued from Example 2, we have:

Π↓(λ, x, y; u, v) =
{

t > 0 :
t

t + d(x, y)
· t

t + d(u, v)
≥ 1 − λ

}
=

{
t > 0 : t ≥ C +

√
C2 + D
2

}
,

where:

C =
(d(x, y) + d(u, v))(1 − λ)

λ
and D =

d(x, y) · d(u, v) · (1 − λ)

λ
.
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We also have:

Ψ↓(λ, x, y; u, v) = inf Π↓(λ, x, y; u, v) =

{
t > 0 : t ≥ C +

√
C2 + D
2

}
=

C +
√

C2 + D
2

.

The potential application of dual double fuzzy semi-metric will be used to study the fixed point
theorems in fuzzy semi-metric space. However, we first need to claim that the set Π↓(λ, x, y; u, v) is
nonempty. Suppose that Π↓(λ, x, y; u, v) = ∅. The definition says that ζ(x, y; u, v, t) < 1 − λ for all
t > 0; that is:

lim
t→+∞

ζ(x, y; u, v, t) ≤ 1 − λ < 1,

which contradicts Equation (8). Therefore, Definition 3 is well-defined and Π↓(λ, x, y; u, v) 	= ∅.

Remark 2. The following observations will be useful for further discussion.

• For any λ ∈ (0, 1], we have:

Ψ↓(1, x, y; u, v) = inf {t > 0 : ζ(x, y; u, v, t) ≥ 0} = inf{t > 0} = 0,

and:

Ψ↓(λ, x, x; u, u) = inf {t > 0 : ζ(x, x; u, u, t) ≥ 1 − λ}
= inf {t > 0 : 1 ≥ 1 − λ} = inf{t > 0} = 0. (10)

• Given any fixed x, y, u, v ∈ X, if λ1 > λ2, then:

Π↓(λ2, x, y; u, v) ⊆ Π↓(λ1, x, y; u, v) and Ψ↓(λ1, x, y; u, v) ≤ Ψ↓(λ2, x, y; u, v). (11)

Proposition 6. Let (X, M) be a fuzzy semi-metric space along with a t-norm ∗. We also assume that M satisfies
the canonical condition, and that the t-norm ∗ is left-continuous at 1 with respect to the first or second argument.
Given any fixed x, y, u, v ∈ X, suppose that the following conditions are satisfied:

Π↓(0+, x, y; u, v) ≡ ⋂
0<λ≤1

Π↓(λ, x, y; u, v) 	= ∅,

and:
{t > 0 : ζ(x, y; u, v, t) = 1} 	= ∅.

Then we have:
Π↓(0+, x, y; u, v) = {t > 0 : ζ(x, y; u, v, t) = 1} . (12)

Moreover, the following limit exists:

lim
λ→0+

Ψ↓(λ, x, y; u, v) = sup
0<λ≤1

Ψ↓(λ, x, y; u, v). (13)

Proof. The assumption Π↓(0+, x, y; u, v) 	= ∅ says that we can consider t ∈ Π↓(0+, x, y; u, v), i.e.,
ζ(x, y; u, v, t) ≥ 1 − λ for all λ ∈ (0, 1]. Then we obtain ζ(x, y; u, v, t) ≥ 1 by taking λ → 0+, which
shows that ζ(x, y; u, v, t) = 1, i.e.,

Π↓(0+, x, y; u, v) =
⋂

0<λ≤1

Π↓(λ, x, y; u, v) ⊆ {t > 0 : ζ(x, y; u, v, t) = 1} .

On the other hand, suppose that ζ(x, y; u, v, t) = 1. Then ζ(x, y; u, v, t) = 1 ≥ 1 − λ for
all λ ∈ (0, 1]. Therefore, we obtain t ∈ Π↓(0+, x, y; u, v), which implies the desired equality
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(Equation (12)). Further, the inequality (Equation (11)) says that the limit (Equation (13)) exists.
This completes the proof.

Proposition 7. Suppose that (X, M) is a fuzzy semi-metric space along with a t-norm ∗. We also assume that M
satisfies the canonical and rational conditions, and that the t-norm ∗ is left-continuous at 1 and right-continuous
at 0 with respect to the first or second argument. If M satisfies the ◦-triangle inequality for ◦ ∈ {��, �, �, �},
then, for any fixed x, y, u, v ∈ X with x 	= y or u 	= v, we have Ψ↓(λ, x, y; u, v) > 0 for λ ∈ (0, 1).

Proof. We first consider the case of M, satisfying the ◦-triangle inequality for ◦ ∈ {��, �, �}. From
Equation (10), we need to consider x 	= y or u 	= v. We want to assume Ψ↓(λ, x, y; u, v) = 0 for
λ ∈ (0, 1) to obtain a contradiction. Using the concept of infimum from Ψ↓(λ, x, y; u, v), given any
ε > 0, there exists tε > 0 such that ζ(x, y; u, v, tε) ≥ 1 − λ and:

tε < Ψ↓(λ, x, y; u, v) + ε = ε.

Parts (i) and (ii) of Proposition 3 say that the mapping ζ(x, y; u, v, ·) from [0, ∞) into [0, 1] is
nondecreasing. Therefore, we obtain:

ζ (x, y; u, v, ε) ≥ ζ (x, y; u, v, tε) ≥ 1 − λ.

Since ε can be any positive real number, using Equation (9), we must have:

0 = lim
ε→0+

ζ (x, y; u, v, ε) ≥ ζ (x, y; u, v, tε) ≥ 1 − λ,

which contradicts 0 < λ < 1.
Now we assume that M satisfies the �-triangle inequality. Suppose that Ψ↓(λ, y, x; v, u) = 0 for

λ ∈ (0, 1). Part (iii) of Proposition 3 says that the mapping ζ(x, y; u, v, ·) is symmetrically nondecreasing.
Therefore, we can similarly obtain:

ζ (x, y; u, v, ε) ≥ ζ (y, x; v, u, tε) ≥ 1 − λ.

This completes the proof.

Proposition 8. Let (X, M) be a fuzzy semi-metric space along with a t-norm ∗. We also assume that M satisfies
the canonical condition, and that the t-norm ∗ is left-continuous at 1 with respect to the first or second argument.
Given any fixed x, y, u, v ∈ X and λ ∈ (0, 1), we have the following properties:

(i) If ε > 0 is sufficiently small satisfying Ψ↓(λ, x, y; u, v) > ε, then we have:

ζ
(

x, y; u, v, Ψ↓(λ, x, y; u, v)− ε
)
< 1 − λ. (14)

(ii) Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {��, �, �}. For any ε > 0, we have:

ζ
(

x, y; u, v, Ψ↓(λ, x, y; u, v) + ε
)
≥ 1 − λ (15)

(iii) Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {�, �}. For any ε > 0, we have:

ζ
(

x, y; u, v, Ψ↓(λ, y, x; u, v) + ε
)
≥ 1 − λ (16)

and:
ζ
(

x, y; u, v, Ψ↓(λ, x, y; v, u) + ε
)
≥ 1 − λ (17)
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(iv) Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {�, �, �}. For any ε > 0, we have:

ζ
(

x, y; u, v, Ψ↓(λ, y, x; v, u) + ε
)
≥ 1 − λ (18)

Proof. To prove part (i), we assume that:

ζ(x, y; u, v, Ψ↓(λ, x, y; u, v)− ε) ≥ 1 − λ.

The definition of Ψ↓ says that Ψ↓(λ, x, y; u, v) ≤ Ψ↓(λ, x, y; u, v)− ε. This contradiction implies
ζ(x, y; u, v, Ψ↓(λ, x, y; u, v)− ε) ≤ 1 − λ.

To prove part (ii), using the concept of infimum from Ψ↓(λ, x, y; u, v), given any ε > 0, there exists
tε > 0 such that ζ(x, y; u, v, tε) ≥ 1 − λ and tε < Ψ↓(λ, x, y; u, v) + ε. Parts (i) and (ii) of Proposition 3
says that the mapping ζ(x, y; u, v, ·) is nondecreasing. Therefore, we obtain:

ζ
(

x, y; u, v, Ψ↓(λ, x, y; u, v) + ε
)
≥ ζ(x, y; u, v, tε) ≥ 1 − λ.

To prove part (iii), using the concept of infimum from Ψ↓(λ, y, x; u, v), given any ε > 0, there
exists tε > 0 such that ζ(y, x; u, v, tε) ≥ 1 − λ and tε < Ψ↓(λ, y, x; u, v) + ε. Part (ii) of Proposition 3
says that the mapping ζ(y, x; u, v, ·) is �-semisymmetrically nondecreasing. Therefore, we obtain:

ζ
(

x, y; u, v, Ψ↓(λ, y, x; u, v) + ε
)
≥ ζ(y, x; u, v, tε) ≥ 1 − λ.

Since the mapping ζ(x, y; u, v, ·) is also �-semisymmetrically nondecreasing, we can similarly obtain
another inequality.

Since the mapping ζ(x, y; u, v, ·) is semisymmetrically nondecreasing, using parts (ii) and (iii) of
Proposition 3, we can similarly obtain part (iv). This completes the proof.

Proposition 9. Let (X, M) be a fuzzy semi-metric space along with a t-norm ∗. We also assume that M satisfies
the canonical condition, and that the t-norm ∗ is left-continuous at 1 with respect to the first or second argument.
Given any fixed x, y, u, v ∈ X and λ ∈ (0, 1), the following statements hold true:

(i) Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {��, �, �, �}. If t > Ψ↓(λ, x, y; u, v), then we
have ζ(x, y; u, v, t) ≥ 1 − λ.

(ii) If 0 < t < Ψ↓(λ, x, y; u, v), then we have the following properties:

• Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {��, �, �}. Then we have ζ(x, y; u, v, t) <
1 − λ.

• Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {�, �}. Then we have ζ(y, x; u, v, t) < 1 − λ

and ζ(x, y; v, u, t) < 1 − λ.
• Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {�, �, �}. Then we have ζ(y, x; v, u, t) <

1 − λ.

Proof. To prove part (i), the inequality t > Ψ↓(λ, x, y; u, v) says that there exists ε > 0, satisfying
t ≥ Ψ↓(λ, x, y; u, v) + ε. Therefore, we consider the following cases:

• Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {��, �, �}. Parts (i) and (ii) of
Proposition 3 say that the mapping ζ(x, y; u, v, ·) is nondecreasing. Therefore, using Equation (15),
we obtain:

ζ(x, y; u, v, t) ≥ ζ
(

x, y; u, v, Ψ↓(λ, x, y; u, v) + ε
)
≥ 1 − λ.
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• Suppose that M satisfies the �-triangle inequality. Part (iii) of Proposition 3 says that the mapping
ζ(x, y; u, v, ·) is symmetrically nondecreasing. Therefore, using Equation (18), we obtain:

ζ(x, y; u, v, t) ≥ ζ
(

y, x; v, u, Ψ↓(λ, x, y; u, v) + ε
)
≥ 1 − λ.

To prove part (ii), the inequality 0 < t < Ψ↓(λ, x, y; u, v) says that there exists ε > 0, satisfying
t ≤ Ψ↓(λ, x, y; u, v)− ε. Therefore, we consider the following cases:

• Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {��, �, �}. Parts (i) and (ii) of
Proposition 3 say that the mapping ζ(x, y; u, v, ·) is nondecreasing. Therefore, using Equation (14),
we obtain:

ζ(x, y; u, v, t) ≤ ζ
(

x, y; u, v, Ψ↓(λ, x, y; u, v)− ε
)
< 1 − λ.

• Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {�, �}. Part (ii) of Proposition 3 says that
the mapping ζ(x, y; u, v, ·) is �-semisymmetrically nondecreasing. Therefore, using Equation (14),
we obtain:

ζ(y, x; u, v, t) ≤ ζ
(

x, y; u, v, Ψ↓(λ, x, y; u, v)− ε
)
< 1 − λ.

We can similarly obtain another inequality using the fact that the mapping ζ(x, y; u, v, ·) is also
�-semisymmetrically nondecreasing.

• Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {�, �, �}. Parts (ii) and (iii) of
Proposition 3 say that the mapping ζ(x, y; u, v, ·) is symmetrically nondecreasing. Therefore,
using Equation (14), we obtain:

ζ(y, x; v, u, t) ≤ ζ
(

x, y; u, v, Ψ↓(λ, x, y; u, v)− ε
)
< 1 − λ.

This completes the proof.

Proposition 10. Let (X, M) be a fuzzy semi-metric space along with a t-norm ∗. We also assume that M
satisfies the canonical condition, and that the t-norm ∗ is left-continuous at 1 with respect to the first or second
argument. Given any fixed x, y, u, v ∈ X and λ ∈ (0, 1), the following statements hold true:

(i) If ζ(x, y; u, v, t) < 1 − λ, then we have the following properties:

• Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {��, �, �, �}. Then we have
t ≤ Ψ ↓(λ, x, y; u, v).

• Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {�, �}. Then we have t ≤ Ψ↓(λ, y, x; u, v)
and t ≤ Ψ↓(λ, x, y; v, u).

• Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {�, �, �}. Then we have
t ≤ Ψ ↓(λ, y, x; v, u).

(ii) Suppose that the t-norm ∗ satisfies the strictly increasing property. If ζ(x, y; u, v, t) = 1 − λ for t > 0,
then we have the following properties.

• Suppose that M satisfies the strict ◦-triangle inequality for ◦ ∈ {��, �, �}. If Ψ↓(λ, x, y; u, v) > 0,
then we have t = Ψ↓(λ, x, y; u, v).

• Suppose that M satisfies the strict ◦-triangle inequality for ◦ ∈ {�, �}. If Ψ↓(λ, y, x; u, v) > 0,
then we have t = Ψ↓(λ, y, x; u, v), and if Ψ↓(λ, x, y; v, u) > 0, then we have t = Ψ↓(λ, x, y; v, u).

• Suppose that M satisfies the strict ◦-triangle inequality for ◦ ∈ {�, �, �}. If Ψ↓(λ, y, x; v, u) > 0,
then we have t = Ψ↓(λ, y, x; v, u).

(iii) If ζ(x, y; u, v, t) ≥ 1 − λ, then we have the following properties:
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• Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {��, �, �}. Then we have
t ≥ Ψ ↓(λ, x, y; u, v).

• Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {�, �}. Then we have t ≥ Ψ↓(λ, y, x; u, v)
and t ≥ Ψ↓(λ, x, y; v, u).

• Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {�, �, �}. Then we have
t ≥ Ψ ↓(λ, y, x; v, u).

Proof. To prove part (i), three cases are separately considered below:

• Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {��, �, �, �}. Using the contrapositive
statement of part (i) of Proposition 9, we can obtain the desired result.

• Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {�, �}. According to the concept
of infimum, given any ε > 0, there exists tε > 0, satisfying ζ(y, x; u, v, tε) ≥ 1 − λ and
tε < Ψ ↓ (λ, y, x; u, v) + ε. Part (ii) of Proposition 3 says that the mapping ζ(x, y; u, v, ·) is
�-semisymmetrically nondecreasing. Therefore, if t > tε then ζ(x, y; u, v, t) ≥ ζ(y, x; u, v, tε),
which contradicts ζ(x, y; u, v, t) < 1 − λ. It says that:

t ≤ tε < Ψ↓(λ, y, x; u, v) + ε.

Since ε can be any positive real number, we must have t ≤ Ψ↓(λ, y, x; u, v). We can similarly
obtain another inequality using the fact of the mapping ζ(x, y; u, v, ·) being �-semisymmetrically
nondecreasing.

• Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {�, �, �}. According to the concept
of infimum, given any ε > 0, there exists tε > 0, satisfying ζ(y, x; v, u, tε) ≥ 1 − λ and
tε < Ψ↓(λ, y, x; v, u) + ε. Parts (ii) and (iii) of Proposition 3 say that if t > tε then ζ(x, y; u, v, t) ≥
ζ(y, x; v, u, tε), which contradicts ζ(x, y; u, v, t) < 1 − λ. It says that:

t ≤ tε < Ψ↓(λ, y, x; v, u) + ε.

Since ε can be any positive real number, we must have t ≤ Ψ↓(λ, y, x; v, u).

To prove part (ii), three cases are separately considered below:

• Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {��, �, �}. According to the concept of infimum,
given any ε > 0, there exists tε > 0, satisfying ζ(x, y; u, v, tε) ≥ 1 − λ and tε < Ψ↓(λ, x, y; u, v) + ε.
Regarding the strict property, parts (i) and (ii) of Proposition 4 say that if t > tε then ζ(x, y; u, v, t) >
ζ(x, y; u, v, tε), which contradicts ζ(x, y; u, v, t) = 1 − λ. It says that:

t ≤ tε < Ψ↓(λ, x, y; u, v) + ε.

Since ε can be any positive real number, we must have t ≤ Ψ↓(λ, x, y; u, v). Now we assume
that t < Ψ↓(λ, x, y; u, v). The first case of part (ii) of Proposition 9 says that ζ(x, y; u, v, t) < 1 − λ,
which also contradicts ζ(x, y; u, v, t) = 1 − λ. Therefore, we must have t = Ψ↓(λ, x, y; u, v).

• Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {�, �}. We can similarly obtain
t ≤ Ψ↓(λ, y, x; u, v). Now we assume that t < Ψ↓(λ, y, x; u, v). The second case of part (ii)
of Proposition 9 says that ζ(x, y; u, v, t) < 1 − λ, which also contradicts ζ(x, y; u, v, t) = 1 − λ.
Therefore, we must have t = Ψ↓(λ, y, x; u, v). Another result can be similarly obtained.

• Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {�, �, �}. We can similarly obtain
t ≤ Ψ↓(λ, y, x; v, u). Now we assume that t < Ψ↓(λ, y, x; v, u). The third case of part (ii) of
Proposition 9 says that ζ(x, y; u, v, t) < 1 − λ, which also contradicts ζ(x, y; u, v, t) = 1 − λ.
Therefore, we must have t = Ψ↓(λ, y, x; v, u).
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Part (iii) can be obtained from the contrapositive statement of part (ii) of Proposition 9. This
completes the proof.

Proposition 11. Let (X, M) be a fuzzy semi-metric space along with a t-norm ∗. We also assume that M
satisfies the canonical condition, and that the t-norm ∗ is left-continuous at 1 with respect to the first or second
argument. Given any fixed x, y, u, v ∈ X and λ ∈ (0, 1), the following statements hold true:

(i) Suppose that the mapping ζ(x, y; u, v, ·) : (0, ∞) → [0, 1] is left-continuous on (0, ∞). If Ψ↓(λ, x, y; u, v) >
0, then we have:

ζ
(

x, y; u, v, Ψ↓(λ, x, y; u, v)
)
≤ 1 − λ. (19)

(ii) Suppose that the mapping ζ(x, y; u, v, ·) : (0, ∞) → [0, 1] is right-continuous on (0, ∞). Then the
following statements hold true:

• Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {��, �, �}. If Ψ↓(λ, x, y; u, v) > 0,
then we have:

ζ
(

x, y; u, v, Ψ↓(λ, x, y; u, v)
)
≥ 1 − λ. (20)

• Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {�, �}. If Ψ↓(λ, y, x; u, v) > 0,
then we have:

ζ
(

x, y; u, v, Ψ↓(λ, y, x; u, v)
)
≥ 1 − λ, (21)

and if Ψ↓(λ, x, y; v, u) > 0, then we have:

ζ
(

x, y; u, v, Ψ↓(λ, x, y; v, u)
)
≥ 1 − λ. (22)

• Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {�, �, �}. If Ψ↓(λ, y, x; v, u) > 0,
then we have:

ζ
(

x, y; u, v, Ψ↓(λ, y, x; v, u)
)
≥ 1 − λ. (23)

Proof. By applying ε → 0+ to the inequality Equation (14), we obtain Equation (19), which proves
part (i). By applying ε → 0+ to the inequality (Equation (15)), we obtain Equation (20), which proves
part (ii). The other inequalities can be similarly obtained by parts (iii) and (iv) of Proposition 8.
This completes the proof.

In order to establish the triangle inequalities for the infimum type of dual double fuzzy
semi-metric, we provide a useful lemma.

Lemma 1. (Wu [16]) Suppose that the t-norm ∗ is left-continuous at 1 with respect to the first or second
argument. For any a ∈ (0, 1) and any p ∈ N, there exists r ∈ (0, 1) such that:

p times︷ ︸︸ ︷
r ∗ r ∗ · · · ∗ r> a.

Theorem 1. (Triangle Inequalities for Dual Double Fuzzy Semi-Metric) Let (X, M) be a fuzzy semi-metric
space along with a t-norm ∗. We also assume that M satisfies the canonical condition, and that the t-norm ∗ is
left-continuous at 1 with respect to the first or second argument. Given any fixed μ ∈ (0, 1] and any fixed and
distinct x1, x2, · · · , xp, y1, y2, · · · , yp ∈ X, we have the following inequalities:
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(i) Suppose that M satisfies the ��-triangle inequality. Then, there exists λ ∈ (0, 1), satisfying:

Ψ↓(μ, x1, xp; y1, yp) ≤ Ψ↓(λ, x1, x2; y1, y2) + Ψ↓(λ, x2, x3; y2, y3) + · · ·
+ Ψ↓(λ, xp−2, xp−1; yp−2, yp−1) + Ψ↓(λ, xp−1, xp; yp−1, yp) (24)

Ψ↓(μ, x1, xp; yp, y1) ≤ Ψ↓(λ, x1, x2; y2, y1) + Ψ↓(λ, x2, x3; y3, y2) + · · ·
+ Ψ↓(λ, xp−2, xp−1; yp−1, yp−2) + Ψ↓(λ, xp−1, xp; yp, yp−1) (25)

Ψ↓(μ, xp, x1; y1, yp) ≤ Ψ↓(λ, xp, xp−1; yp−1, yp) + Ψ↓(λ, xp−1, xp−2; yp−2, yp−1)

+ · · ·+ Ψ↓(λ, x3, x2; y2, y3) + Ψ↓(λ, x2, x1; y1, y2)

Ψ↓(μ, xp, x1; yp, y1) ≤ Ψ↓(λ, xp, xp−1; yp, yp−1) + Ψ↓(λ, xp−1, xp−2; yp−1, yp−2)

+ · · ·+ Ψ↓(λ, x3, x2; y3, y2) + Ψ↓(λ, x2, x1; y2, y1).

(ii) Suppose that M satisfies the �-triangle inequality. Then, there exists λ ∈ (0, 1), satisfying:

max
{

Ψ↓(μ, x1, xp; y1, yp), Ψ↓(μ, x1, xp; yp, y1), Ψ↓(μ, xp, x1; y1, yp), Ψ↓(μ, xp, x1; yp, y1)
}

≤ Ψ↓(λ, x1, x2; y1, y2) + Ψ↓(λ, x3, x2; y3, y2) + Ψ↓(λ, x4, x3; y4, y3)

+ · · ·+ Ψ↓(λ, xp, xp−1; yp, yp−1).

(iii) Suppose that M satisfies the �-triangle inequality. Then, there exists λ ∈ (0, 1), satisfying:

max
{

Ψ↓(μ, x1, xp; y1, yp), Ψ↓(μ, x1, xp; yp, y1), Ψ↓(μ, xp, x1; y1, yp), Ψ↓(μ, xp, x1; yp, y1)
}

≤ Ψ↓(λ, x2, x1; y2, y1) + Ψ↓(λ, x2, x3; y2, y3) + Ψ↓(λ, x3, x4; y3, y4)

+ · · ·+ Ψ↓(λ, xp−1, xp; yp−1, yp).

(iv) Suppose that M satisfies the �-triangle inequality. Then, there exists λ ∈ (0, 1) such that the following
inequalities are satisfied:

• If p is even, then:

Ψ↓(μ, x1, xp; y1, yp) ≤ Ψ↓(λ, x2, x1; y2, y1) + Ψ↓(λ, x3, x2; y3, y2) + Ψ↓(λ, x3, x4; y3, y4)

+ Ψ↓(λ, x5, x4; y5, y4) + Ψ↓(λ, x5, x6; y5, y6) + Ψ↓(λ, x7, x6; y7, y6)

+ · · ·+ Ψ↓(λ, xp−1, xp; yp−1, yp), (26)

Ψ↓(μ, x1, xp; yp, y1) ≤ Ψ↓(λ, x2, x1; y1, y2) + Ψ↓(λ, x3, x2; y2, y3) + Ψ↓(λ, x3, x4; y4, y3)

+ Ψ↓(λ, x5, x4; y4, y5) + Ψ↓(λ, x5, x6; y6, y5) + Ψ↓(λ, x7, x6; y6, y7)

+ · · ·+ Ψ↓(λ, xp−1, xp; yp, yp−1), (27)

Ψ↓(μ, xp, x1; y1, yp) ≤ Ψ↓(λ, x1, x2; y2, y1) + Ψ↓(λ, x2, x3; y3, y2) + Ψ↓(λ, x4, x3; y3, y4)

+ Ψ↓(λ, x4, x5; y5, y4) + Ψ↓(λ, x6, x5; y5, y6) + Ψ↓(λ, x6, x7; y7, y6)

+ · · ·+ Ψ↓(λ, xp, xp−1; yp−1, yp), (28)

Ψ↓(μ, xp, x1; yp, y1) ≤ Ψ↓(λ, x1, x2; y1, y2) + Ψ↓(λ, x2, x3; y2, y3) + Ψ↓(λ, x4, x3; y4, y3)

+ Ψ↓(λ, x4, x5; y4, y5) + Ψ↓(λ, x6, x5; y6, y5) + Ψ↓(λ, x6, x7; y6, y7)

+ · · ·+ Ψ↓(λ, xp, xp−1; yp, yp−1). (29)
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• If p is odd, then:

Ψ↓(μ, x1, xp; y1, yp) ≤ Ψ↓(λ, x1, x2; y1, y2) + Ψ↓(λ, x2, x3; y2, y3) + Ψ↓(λ, x4, x3; y4, y3)

+ Ψ↓(λ, x4, x5; y4, y5) + Ψ↓(λ, x6, x5; y6, y5) + Ψ↓(λ, x6, x7; y6, y7)

+ · · ·+ Ψ↓(λ, xp, xp−1; yp, yp−1), (30)

Ψ↓(μ, x1, xp; yp, y1) ≤ Ψ↓(λ, x1, x2; y2, y1) + Ψ↓(λ, x2, x3; y3, y2) + Ψ↓(λ, x4, x3; y3, y4)

+ Ψ↓(λ, x4, x5; y5, y4) + Ψ↓(λ, x6, x5; y5, y6) + Ψ↓(λ, x6, x7; y7, y6)

+ · · ·+ Ψ↓(λ, xp, xp−1; yp−1, yp), (31)

Ψ↓(μ, xp, x1; y1, yp) ≤ Ψ↓(λ, x2, x1; y1, y2) + Ψ↓(λ, x3, x2; y2, y3) + Ψ↓(λ, x3, x4; y4, y3)

+ Ψ↓(λ, x5, x4; y4, y5) + Ψ↓(λ, x5, x6; y6, y5) + Ψ↓(λ, x7, x6; y6, y7)

+ · · ·+ Ψ↓(λ, xp−1, xp; yp, yp−1), (32)

Ψ↓(μ, xp, x1; yp, y1) ≤ Ψ↓(λ, x2, x1; y2, y1) + Ψ↓(λ, x3, x2; y3, y2) + Ψ↓(λ, x3, x4; y3, y4)

+ Ψ↓(λ, x5, x4; y5, y4) + Ψ↓(λ, x5, x6; y5, y6) + Ψ↓(λ, x7, x6; y7, y6)

+ · · ·+ Ψ↓(λ, xp−1, xp; yp−1, yp). (33)

Proof. To prove part (i), if μ = 1, then Ψ(1, x1, xp; y1, yp) = 0. Therefore, the result is obvious. Now
we assume μ ∈ (0, 1). Using Lemma 1, there exists λ ∈ (0, 1), satisfying:

(1 − λ) ∗ · · · ∗ (1 − λ) > 1 − μ. (34)

Given any ε > 0, the first observation of Remark 1 says that:

M
(

x1, xp, Ψ↓(λ, x1, x2; y1, y2) + Ψ↓(λ, x2, x3; y2, y3) + · · ·+ Ψ↓(λ, xp−1, xp; yp−1, yp) + (p − 1)ε
)

≥ M
(

x1, x2, Ψ↓(λ, x1, x2; y1, y2) + ε
)
∗ · · · ∗ M

(
xp−1, xp, Ψ↓(λ, xp−1, xp; yp−1, yp) + ε

)
, (35)

and:

M
(

y1, yp, Ψ↓(λ, x1, x2; y1, y2) + Ψ↓(λ, x2, x3; y2, y3) + · · ·+ Ψ↓(λ, xp−1, xp; yp−1, yp) + (p − 1)ε
)

≥ M
(

y1, y2, Ψ↓(λ, x1, x2; y1, y2) + ε
)
∗ · · · ∗ M

(
yp−1, yp, Ψ↓(λ, xp−1, xp; yp−1, yp) + ε

)
. (36)

Now applying the increasing property and commutativity of t-norm to Equations (35) and (36),
we obtain:

ζ
(

x1, xp; y1, yp, Ψ↓(λ, x1, x2; y1, y2) + Ψ↓(λ, x2, x3; y2, y3) + · · ·+ Ψ↓(λ, xp−1, xp; yp−1, yp) + (p − 1)ε
)

≥ ζ
(

x1, x2; y1, y2, Ψ↓(λ, x1, x2; y1, y2) + ε
)
∗ · · · ∗ ζ

(
xp−1, xp; yp−1, yp, Ψ↓(λ, xp−1, xp; yp−1, yp) + ε

)
≥ (1 − λ) ∗ · · · ∗ (1 − λ) (by Equation (15) and the increasing property of t-norm)

> 1 − μ (by Equation (34)).

The definition of Ψ↓ says that:

Ψ↓(λ, x1, x2; y1, y2) + Ψ↓(λ, x2, x3; y2, y3) + · · ·+ Ψ↓(λ, xp−1, xp; yp−1, yp) + (p − 1)ε

≥ Ψ↓(μ, x1, xp; y1, yp).

By taking ε → 0+, we obtain the desired inequality (Equation (24)).
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On the other hand, we also have:

M
(

x1, xp, Ψ↓(λ, x1, x2; y2, y1) + Ψ↓(λ, x2, x3; y3, y2) + · · ·+ Ψ↓(λ, xp−1, xp; yp, yp−1) + (p − 1)ε
)

≥ M
(

x1, x2, Ψ↓(λ, x1, x2; y2, y1) + ε
)
∗ · · · ∗ M

(
xp−1, xp, Ψ↓(λ, xp−1, xp; yp, yp−1) + ε

)
, (37)

and:

M
(

yp, y1, Ψ↓(λ, x1, x2; y2, y1) + Ψ↓(λ, x2, x3; y3, y2) + · · ·+ Ψ↓(λ, xp−1, xp; yp, yp−1) + (p − 1)ε
)

≥ M
(

y2, y1, Ψ↓(λ, x1, x2; y2, y1) + ε
)
∗ · · · ∗ M

(
yp, yp−1, Ψ↓(λ, xp−1, xp; yp, yp−1) + ε

)
. (38)

Now applying the increasing property and commutativity of t-norm to Equations (37) and (38),
we also obtain:

ζ
(

x1, xp; yp, y1, Ψ↓(λ, x1, x2; y2, y1) + Ψ↓(λ, x2, x3; y3, y2) + · · ·+ Ψ↓(λ, xp−1, xp; yp, yp−1) + (p − 1)ε
)

≥ ζ
(

x1, x2; y2, y1, Ψ↓(λ, x1, x2; y2, y1) + ε
)
∗ · · · ∗ ζ

(
xp−1, xp; yp, yp−1, Ψ↓(λ, xp−1, xp; yp, yp−1) + ε

)
≥ (1 − λ) ∗ · · · ∗ (1 − λ) (by Equation (15) and the increasing property of t-norm)

> 1 − μ (by Equation (34)).

The definition of Ψ↓ says that:

Ψ↓(λ, x1, x2; y2, y1) + Ψ↓(λ, x2, x3; y3, y2) + · · ·+ Ψ↓(λ, xp−1, xp; yp, yp−1) + (p − 1)ε

≥ Ψ↓(μ, x1, xp; yp, y1).

By taking ε → 0+, we obtain the desired inequality (Equation (25)). Since the other inequalities
can be similarly obtained, we omit the details.

The above argument is still valid to obtain part (ii) by referring the second observation of Remark 1.
Further, we can use the third observation of Remark 1 to obtain part (iii). Finally, part (iv) can be
obtained by referring to the fourth observation of Remark 1. This completes the proof.

Let (X, M) be a fuzzy semi-metric space, and let {xn}∞
n=1 be a sequence in X. We write xn

M�−→ x
as n → ∞ if and only if:

lim
n→∞

M(xn, x, t) = 1 for all t > 0.

We also write xn
M�−→ x as n → ∞ if and only if:

lim
n→∞

M(x, xn, t) = 1 for all t > 0.

The main convergence theorem is presented below. We first provide a useful lemma.

Lemma 2. Let ∗ be a t-norm. If a ∗ b > k then a > k and b > k.

Proof. Since b ≤ 1, the increasing property and boundary condition show that b ∗ k ≤ 1 ∗ k = k.
Suppose that a ≤ k. Then we have a ∗ b ≤ k ∗ b and:

k < a ∗ b ≤ k ∗ b ≤ k.

A contradiction occurs. Therefore, we must have a > k. We can similarly show that b > k. This
completes the proof.
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Theorem 2. Let (X, M) be a fuzzy semi-metric space along with a t-norm ∗. We also assume that M satisfies
the canonical condition, and that the t-norm ∗ is left-continuous at 1 with respect to the first or second argument.
Let {xn}∞

n=1 and {yn}∞
n=1 be two sequences in X. Then we have the following properties:

• xn
M�−→ x and yn

M�−→ y as n → ∞ if and only if Ψ↓(λ, xn, x; yn, y) → 0 as n → ∞ for all λ ∈ (0, 1).

• xn
M�−→ x and yn

M�−→ y as n → ∞ if and only if Ψ↓(λ, xn, x; y, yn) → 0 as n → ∞ for all λ ∈ (0, 1).

• xn
M�−→ x and yn

M�−→ y as n → ∞ if and only if Ψ↓(λ, x, xn; yn, y) → 0 as n → ∞ for all λ ∈ (0, 1).

• xn
M�−→ x and yn

M�−→ y as n → ∞ if and only if Ψ↓(λ, x, xn; y, yn) → 0 as n → ∞ for all λ ∈ (0, 1).

Proof. For any fixed λ ∈ (0, 1), using Lemma 1, it follows that there exists λ0 ∈ (0, 1), satisfying:

(1 − λ0) ∗ (1 − λ0) > 1 − λ. (39)

We just prove the first case, since the other cases can be similarly obtained. Suppose that
M(xn, x, t) → 1 and M(yn, y, t) → 1 as n → ∞ for all t > 0. Then, given any t > 0 and δ > 0,
there exists n(1)

t,δ , n(2)
t,δ ∈ N, satisfying |M(xn, x, t)− 1| < δ for n ≥ n(1)

t,δ and |M(yn, y, t)− 1| < δ for

n ≥ n(2)
t,δ . Therefore, given any ε ∈ (0, 1), there exists nε ∈ N, satisfying:

∣∣∣M (xn, x,
ε

2

)
− 1
∣∣∣ < λ0 and

∣∣∣M (yn, y,
ε

2

)
− 1
∣∣∣ < λ0,

for n ≥ nε. We also have:

M
(

xn, x,
ε

2

)
> 1 − λ0 and M

(
yn, y,

ε

2

)
> 1 − λ0,

for n ≥ nε. The increasing property of t-norm says that:

ζ
(

xn, x; yn, y,
ε

2

)
= M

(
xn, x,

ε

2

)
∗ M

(
yn, y,

ε

2

)
≥ (1 − λ0) ∗ (1 − λ0) > 1 − λ.

The definition of Ψ↓ says that:

Ψ↓(λ, xn, x; yn, y) ≤ ε

2
< ε,

for n ≥ nε. This shows that Ψ↓(λ, xn, x; yn, y) → 0 as n → ∞.
Conversely, assume that Ψ↓(λ, xn, x; yn, y) → 0 as n → ∞ for all λ ∈ (0, 1). Now, given any δ > 0

and λ ∈ (0, 1], there exists nδ,λ ∈ N, satisfying |Ψ↓(λ, xn, x; yn, y)| < δ for all n ≥ nδ,λ. Therefore,
for any fixed t > 0 and given any ε ∈ (0, 1), there exists nε ∈ N, satisfying:

Ψ
( ε

2
, xn, x; yn, y

)
=
∣∣∣Ψ ( ε

2
, xn, x; yn, y

)∣∣∣ < t,

for n ≥ nε, which implies:

ζ(xn, x; yn, y, t) ≥ 1 − ε

2
> 1 − ε,

for n ≥ nε by part (i) of Proposition 9, i.e.,

M (xn, x, t) ∗ M (yn, y, t) > 1 − ε,

for n ≥ nε. Lemma 2 says that:

M (xn, x, t) > 1 − ε and M (yn, y, t) > 1 − ε,

for n ≥ nε. This shows that xn
M�−→ x and yn

M�−→ y as n → ∞, and the proof is complete.
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Example 5. From Example 1, we see that:

xn
M�−→ x if and only if lim

n→∞
d(xn, x) = 0,

and:
xn

M�−→ x if and only if lim
n→∞

d(x, xn) = 0.

From Example 4, we have:

Ψ↓(λ, x, y; u, v) =
C +

√
C2 + D
2

,

where:

C =
(d(x, y) + d(u, v))(1 − λ)

λ
and D =

d(x, y) · d(u, v) · (1 − λ)

λ
.

It is clear to see that xn
M�−→ x and yn

M�−→ y as n → ∞ if and only if Ψ↓(λ, xn, x; yn, y) → 0 as n → ∞
for all λ ∈ (0, 1). The other convergence presented in Theorem 2 can be similarly verified.

Definition 4. Let (X, M) be a fuzzy semi-metric space, and let {xn}∞
n=1 be a sequence in X.

• The sequence {xn}∞
n=1 is said to be a >-Cauchy sequence in a metric sense if and only if, given any pair

(r, t) with t > 0 and 0 < r < 1, there exists nr,t ∈ N, satisfying M(xm, xn, t) > 1 − r for all pairs (m, n)
of integers m and n with m > n ≥ nr,t.

• The sequence {xn}∞
n=1 is said to be a <-Cauchy sequence in a metric sense if and only if, given any pair

(r, t) with t > 0 and 0 < r < 1, there exists nr,t ∈ N, satisfying M(xn, xm, t) > 1 − r for all pairs (m, n)
of integers m and n with m > n ≥ nr,t.

• The sequence {xn}∞
n=1 is said to be a Cauchy sequence in a metric sense if and only if, given any pair (r, t)

with t > 0 and 0 < r < 1, there exists nr,t ∈ N satisfying M(xm, xn, t) > 1− r and M(xn, xm, t) > 1− r
for all pairs (m, n) of integers m and n with m, n ≥ nr,t and m 	= n.

Definition 5. Let (X, M) be a fuzzy semi-metric space such that M satisfies the canonical condition, and let
{xn}∞

n=1 and {yn}∞
n=1 be two sequences in X.

• Given any fixed λ ∈ (0, 1), the sequences {xn}∞
n=1 and {yn}∞

n=1 are said to be the joint
(λ,>,>)-Cauchy sequences with respect to Ψ↓ if and only if, given any ε > 0, there exists nε,λ ∈ N such
that m > n ≥ nε,λ implies Ψ↓(λ, xm, xn; ym, yn) < ε.

• Given any fixed λ ∈ (0, 1), the sequences {xn}∞
n=1 and {yn}∞

n=1 are said to be the joint
(λ,>,<)-Cauchy sequences with respect to Ψ↓ if and only if, given any ε > 0, there exists nε,λ ∈ N such
that m > n ≥ nε,λ implies Ψ↓(λ, xm, xn; yn, ym) < ε.

• Given any fixed λ ∈ (0, 1), the sequences {xn}∞
n=1 and {yn}∞

n=1 are said to be the joint
(λ,<,>)-Cauchy sequences with respect to Ψ↓ if and only if, given any ε > 0, there exists nε,λ ∈ N such
that m > n ≥ nε,λ implies Ψ↓(λ, xn, xm; ym, yn) < ε.

• Given any fixed λ ∈ (0, 1), the sequences {xn}∞
n=1 and {yn}∞

n=1 are said to be the joint
(λ,<,<)-Cauchy sequences with respect to Ψ↓ if and only if, given any ε > 0, there exists nε,λ ∈ N such
that m > n ≥ nε,λ implies Ψ↓(λ, xn, xm; yn, ym) < ε.

Theorem 3. Let (X, M) be a fuzzy semi-metric space along with a t-norm ∗. We also assume that M satisfies
the canonical condition, and that the t-norm ∗ is left-continuous at 1 with respect to the first or second argument.
Let {xn}∞

n=1 and {yn}∞
n=1 be two sequences in X. Then, we have the following properties:

(i) {xn}∞
n=1 and {yn}∞

n=1 are two >-Cauchy sequences in a metric sense if and only if {xn}∞
n=1 and {yn}∞

n=1
are the joint (λ,>,>)-Cauchy sequences with respect to Ψ↓ for any λ ∈ (0, 1).

(ii) {xn}∞
n=1 is a >-Cauchy sequences and {yn}∞

n=1 is a <-Cauchy sequences in a metric sense if and only if
{xn}∞

n=1 and {yn}∞
n=1 are the joint (λ,>,<)-Cauchy sequences with respect to Ψ↓ for any λ ∈ (0, 1).
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(iii) {xn}∞
n=1 is a <-Cauchy sequences and {yn}∞

n=1 is a >-Cauchy sequences in a metric sense if and only if
{xn}∞

n=1 and {yn}∞
n=1 are the joint (λ,<,>)-Cauchy sequences with respect to Ψ↓ for any λ ∈ (0, 1).

(iv) {xn}∞
n=1 and {yn}∞

n=1 are two <-Cauchy sequences if and only if {xn}∞
n=1 and {yn}∞

n=1 are the joint
(λ,<,<)-Cauchy sequences in a metric sense with respect to Ψ↓ for any λ ∈ (0, 1).

Proof. It suffices to just prove part (i), since the other cases can be similarly obtained. Suppose that
{xn}∞

n=1 and {yn}∞
n=1 are >-Cauchy sequences. Then, given any t > 0 and δ > 0, there exists nt,δ ∈ N

such that m > n ≥ nt,δ implies M(xm, xn, t) > 1 − δ and M(ym, yn, t) > 1 − δ. Now, given any
ε ∈ (0, 1), there exists nε ∈ N such that m > n ≥ nε implies:

M
(

xm, xn,
ε

2

)
> 1 − λ0 and M

(
ym, yn,

ε

2

)
> 1 − λ0.

The increasing property of t-norm says that:

ζ
(

xm, xn; ym, yn,
ε

2

)
= M

(
xm, xn,

ε

2

)
∗ M

(
ym, yn,

ε

2

)
≥ (1 − λ0) ∗ (1 − λ0) > 1 − λ (using Equation (39)).

Further, by referring to the definition of Ψ↓, we obtain:

Ψ↓(λ, xm, xn; ym, yn) ≤ ε

2
< ε,

for m > n ≥ nε.
Conversely, using the assumption, for any fixed t > 0 and given any ε ∈ (0, 1), there exists nε ∈ N

such that m > n ≥ nε implies Ψ(ε/2, xm, xn; ym, yn) < t. Using Proposition 9, we obtain:

ζ(xm, xn; ym, yn, t) ≥ 1 − ε

2
> 1 − ε,

for m > n ≥ nε, i.e.,
M (xm, xn, t) ∗ M (ym, yn, t) > 1 − ε,

for m > n ≥ nε. Lemma 2 says that:

M (xm, xn, t) > 1 − ε and M (ym, yn, t) > 1 − ε,

for m > n ≥ nε, which shows that {xn}∞
n=1 and {yn}∞

n=1 are >-Cauchy sequences. This
completes the proof.

5. Convergence Based on the Supremum

Using the infimum and assuming the canonical condition, the infimum type of dual double fuzzy
semi-metric was proposed in the previous section. In this section, we shall consider the supremum to
propose the so-called supremum type of dual double fuzzy semi-metric.

Recall that the purpose for considering the canonical condition is to guarantee the infimum type
of dual fuzzy semi-metric space to be well-defined. Now, we shall consider the rational condition
to guarantee the supremum type of dual fuzzy semi-metric space to be well-defined. The formal
definition is given below.

Definition 6. Let (X, M) be a fuzzy semi-metric space along with a t-norm ∗ such that M satisfies the rational
condition, and that the t-norm ∗ is right-continuous at 0 with respect to the first or second argument. Given any
fixed x, y, u, v ∈ X with x 	= y or u 	= v and any fixed λ ∈ [0, 1), we consider the following set:

Π↑(λ, x, y; u, v) = {t > 0 : ζ(x, y; u, v, t) ≤ 1 − λ} ,
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which will be used to define a function Ψ↑ : X4 → [0,+∞) by:

Ψ↑(λ, x, y; u, v) = sup Π↑(λ, x, y; u, v) = sup {t > 0 : ζ(x, y; u, v, t) ≤ 1 − λ} .

The mapping Π↑ from (0, 1]× X4 into [0, ∞) is called the supremum type of dual double fuzzy semi-metric.

Example 6. Continued from Example 1, we have:

Π↑(λ, x, y; u, v) =
{

t > 0 :
t

t + d(x, y)
· t

t + d(u, v)
≤ 1 − λ

}
=

{
t > 0 : t ≤ C +

√
C2 + D
2

}
,

where:

C =
(d(x, y) + d(u, v))(1 − λ)

λ
and D =

d(x, y) · d(u, v) · (1 − λ)

λ
.

We also have:

Ψ↑(λ, x, y; u, v) = sup Π↑(λ, x, y; u, v) =

{
t > 0 : t ≤ C +

√
C2 + D
2

}
=

C +
√

C2 + D
2

.

For any x 	= y or u 	= v, we need to claim that the set Π↑(λ, x, y; u, v) is nonempty. Suppose that
Π↑(λ, x, y; u, v) = ∅. The definition says that ζ(x, y; u, v, t) > 1 − λ for all t > 0. Therefore, we obtain:

lim
t→0+

ζ(x, y; u, v, t) ≥ 1 − λ,

which contradicts Equation (9). This says that Definition 6 is well-defined, which also says that
Ψ↑(λ, x, y; u, v) > 0. We also have:

Ψ↑(0, x, y; u, v) = sup {t > 0 : ζ(x, y; u, v, t) ≤ 0} = sup{t > 0} = +∞.

Moreover, if λ1 > λ2, then:

Π↑(λ1, x, y; u, v) ⊆ Π↑(λ2, x, y; u, v) and Ψ↑(λ1, x, y; u, v) ≤ Ψ↑(λ2, x, y; u, v). (40)

Proposition 12. Let (X, M) be a fuzzy semi-metric space along with a t-norm ∗. We also assume that M
satisfies the rational condition, and that the t-norm ∗ is right-continuous at 0 with respect to the first or second
argument. Given any fixed x, y, u, v ∈ X with x 	= y or u 	= v, suppose that Ψ↑(λ, x, y; u, v) = +∞. Then,
the following statements hold true:

(i) Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {��, �, �}. Then we have ζ(x, y; u, v, t) ≤ 1− λ

for all t > 0.
(ii) Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {�, �}. Then we have ζ(y, x; u, v, t) ≤ 1 − λ

and ζ(x, y; v, u, t) ≤ 1 − λ for all t > 0.
(iii) Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {�, �, �}. Then we have ζ(y, x; v, u, t) ≤ 1 − λ

for all t > 0.

Proof. The fact Ψ↑(λ, x, y; u, v) = +∞ says that ζ(x, y; u, v, t) ≤ 1 − λ for sufficiently large t > 0 in
the sense of t → ∞. To prove part (i), we assume that there exists t0 > 0, satisfying ζ(x, y; u, v, t0) >

1 − λ. Parts (i) and (ii) of Proposition 3 say that the mapping ζ(x, y; u, v, ·) is nondecreasing. Therefore,
if t1 > t0, then:

ζ(x, y; u, v, t1) ≥ ζ(x, y; u, v, t0) > 1 − λ,

which contradicts ζ(x, y; u, v, t) ≤ 1 − λ for sufficiently large t > 0.
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To prove part (ii), we assume that there exists t0 > 0, satisfying ζ(y, x; u, v, t0) > 1 − λ. Part (ii) of
Proposition 3 says that the mapping ζ(x, y; u, v, ·) is �-semisymmetrically nondecreasing. Therefore, if
t1 > t0, then:

ζ(x, y; u, v, t1) ≥ ζ(y, x; u, v, t0) > 1 − λ,

which contradicts ζ(x, y; u, v, t) ≤ 1 − λ for sufficiently large t > 0. We can similarly obtain another
inequality using the fact of the mapping ζ(x, y; u, v, ·) to be �-semisymmetrically nondecreasing.

To prove part (iii), we assume that there exists t0 > 0, satisfying ζ(y, x; v, u, t0) > 1 − λ. Parts (ii)
and (iii) of Proposition 3 say that the mapping ζ(x, y; u, v, ·) is symmetrically nondecreasing. Therefore,
if t1 > t0, then:

ζ(x, y; u, v, t1) ≥ ζ(y, x; v, u, t0) > 1 − λ,

which contradicts ζ(x, y; u, v, t) ≤ 1 − λ for sufficiently large t > 0. This completes the proof.

Proposition 13. Let (X, M) be a fuzzy semi-metric space along with a t-norm ∗. We also assume that M
satisfies the rational and canonical conditions, and that the t-norm ∗ is right-continuous at 0 and left-continuous
at 1 with respect to the first or second argument. Then, given any fixed x, y, u, v ∈ X with x 	= y or u 	= v,
we have Ψ↑(λ, x, y; u, v) < +∞ for λ ∈ (0, 1).

Proof. We assume that Ψ↑(λ, x, y; u, v) = +∞, which means that ζ(x, y; u, v, t) ≤ 1 − λ for sufficiently
large t in the sense of t → ∞. Using Equation (8), we obtain

1 = lim
t→∞

ζ(x, y; u, v, t) ≤ 1 − λ,

which leads to a contradiction for 0 < λ < 1. This completes the proof.

Proposition 14. Let (X, M) be a fuzzy semi-metric space along with a t-norm ∗. Assume that M satisfies the
canonical and rational conditions. We also assume that the t-norm ∗ is left-continuous at 1 and right-continuous
at 0 with respect to the first or second argument, and that the t-norm ∗ also satisfies the strictly increasing
property. For any fixed x, y, u, v ∈ X with x 	= y or u 	= v, the following statements hold true:

(i) Suppose that M satisfies the strict ◦-triangle inequality for ◦ ∈ {��, �, �}. Then we have:

Ψ↑(λ, x, y; u, v) ≤ Ψ↓(λ, x, y; u, v)

for each λ ∈ (0, 1).
(ii) Suppose that M satisfies the strict ◦-triangle inequality for ◦ ∈ {�, �}. Then we have:

Ψ↑(λ, x, y; u, v) ≤ Ψ↓(λ, y, x; u, v) and Ψ↑(λ, x, y; u, v) ≤ Ψ↓(λ, x, y; v, u)

for each λ ∈ (0, 1).
(iii) Suppose that M satisfies the strict ◦-triangle inequality for ◦ ∈ {�, �, �}. Then we have:

Ψ↑(λ, x, y; u, v) ≤ Ψ↓(λ, y, x; v, u)

for each λ ∈ (0, 1).

Proof. Proposition 13 says that Ψ↑(λ, x, y; u, v) < +∞ for all λ ∈ (0, 1). According to the
concept of supremum, given any ε > 0, there exists tε > 0, satisfying ζ(x, y; u, v, tε) ≤ 1 − λ

and Ψ↑(λ, x, y; u, v) − ε < tε. To prove part (i), parts (i) and (ii) of Proposition 10 say that
tε ≤ Ψ↓(λ, x, y; u, v), which implies Ψ↑(λ, x, y; u, v)− ε < Ψ↓(λ, x, y; u, v). Since ε can be any positive
real number, we obtain the desired inequality.
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To prove part (ii), parts (i) and (ii) of Proposition 10 say that tε ≤ Ψ↓(λ, y, x; u, v), which
implies Ψ↑(λ, x, y; u, v) − ε < Ψ↓(λ, y, x; u, v). Since ε can be any positive real number, we obtain
Ψ↑(λ, x, y; u, v) ≤ Ψ↓(λ, y, x; u, v). Another inequality can be similarly obtained.

To prove part (iii), parts (ii) and (iii) of Proposition 10 say that tε ≤ Ψ↓(λ, y, x; v, u), which implies
Ψ↑(λ, x, y; u, v)− ε < Ψ↓(λ, y, x; v, u). Since ε can be any positive real number, we obtain the desired
inequality. This completes the proof.

Proposition 15. Let (X, M) be a fuzzy semi-metric space along with a t-norm ∗. We also assume that M
satisfies the rational condition, and that the t-norm ∗ is right-continuous at 0 with respect to the first or
second argument. For any fixed x, y, u, v ∈ X with x 	= y or u 	= v, and any fixed λ ∈ (0, 1), we assume
Ψ↑(λ, x, y; u, v) < +∞.

(i) For any ε > 0, we have the following inequality:

ζ
(

x, y; u, v, Ψ↑(λ, x, y; u, v) + ε
)
> 1 − λ (41)

(ii) If ε > 0 is sufficiently small satisfying Ψ↑(λ, x, y; u, v) > ε, then the following statements hold true:

• Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {��, �, �}. Then we have:

ζ
(

x, y; u, v, Ψ↑(λ, x, y; u, v)− ε
)
≤ 1 − λ. (42)

• Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {�, �}. Then we have:

ζ
(

y, x; u, v, Ψ↑(λ, x, y; u, v)− ε
)
≤ 1 − λ and ζ

(
x, y; v, u, Ψ↑(λ, x, y; u, v)− ε

)
≤ 1 − λ. (43)

• Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {�, �, �}. Then we have:

ζ
(

y, x; v, u, Ψ↑(λ, x, y; u, v)− ε
)
≤ 1 − λ. (44)

Proof. To prove part (i), given any ε > 0, we assume that ζ(x, y, Ψ↑(λ, x, y; u, v) + ε) ≤ 1 − λ.
The definition of Ψ↑ says that Ψ↑(λ, x, y; u, v) ≥ Ψ↑(λ, x, y; u, v) + ε. This contradiction shows that
ζ(x, y; u, v, Ψ↑(λ, x, y; u, v) + ε) > 1 − λ.

To prove part (ii), according to the concept of supremum for Ψ↑(λ, x, y; u, v), given any ε > 0 with
Ψ↑(λ, x, y; u, v) > ε, there exists tε > 0, satisfying ζ(x, y; u, v, tε) ≤ 1 − λ and tε > Ψ↑(λ, x, y; u, v)− ε.
Therefore, we consider three cases below:

• Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {��, �, �}. Parts (i) and (ii) of
Proposition 3 say that the mapping ζ(x, y; u, v, ·) is nondecreasing. Therefore, we have:

ζ
(

x, y; u, v, Ψ↑(λ, x, y; u, v)− ε
)
≤ ζ(x, y; u, v, tε) ≤ 1 − λ.

• Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {�, �}. Part (ii) of Proposition 3 says
that the mapping ζ(x, y; u, v, ·) is �-semisymmetrically nondecreasing. Therefore, we have:

ζ
(

y, x; u, v, Ψ↑(λ, x, y; u, v)− ε
)
≤ ζ(x, y; u, v, tε) ≤ 1 − λ.

We can similarly obtain another inequality using the fact of the mapping ζ(x, y; u, v, ·) to be
�-semisymmetrically nondecreasing.
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• Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {�, �, �}. Parts (ii) and
(iii) of Proposition 3 say that the mapping ζ(x, y; u, v, ·) is symmetrically nondecreasing.
Therefore, we have:

ζ
(

y, x; v, u, Ψ↑(λ, x, y; u, v)− ε
)
≤ ζ(x, y; u, v, tε) ≤ 1 − λ.

This completes the proof.

Proposition 16. Let (X, M) be a fuzzy semi-metric space along with a t-norm ∗. We also assume that M
satisfies the rational condition, and that the t-norm ∗ is right-continuous at 0 with respect to the first or second
argument. Given any fixed x, y, u, v ∈ X with x 	= y or u 	= v, and any fixed λ ∈ (0, 1), the following
statements hold true:

(i) Suppose that t > Ψ↑(λ, x, y; u, v). Then, we have the following properties:

• If M satisfies the ◦-triangle inequality for ◦ ∈ {��, �, �}, then ζ(x, y; u, v, t) > 1 − λ.
• If M satisfies the ◦-triangle inequality for ◦ ∈ {�, �}, then ζ(y, x; u, v, t) > 1 − λ and

ζ(x, y; v, u, t) > 1 − λ.
• If M satisfies the ◦-triangle inequality for ◦ ∈ {�, �, �}, then ζ(y, x; v, u, t) > 1 − λ.

(ii) We have the following properties:

• Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {��, �, �}. If 0 < t < Ψ↑(λ, x, y; u, v),
then ζ(x, y; u, v, t) ≤ 1 − λ.

• Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {�, �}. If Ψ↑(λ, y, x; u, v) = +∞ or
Ψ↑(λ, x, y; v, u) = +∞ or 0 < t < Ψ↑(λ, x, y; u, v) < +∞, then ζ(x, y; u, v, t) ≤ 1 − λ.

• Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {�, �, �}. If Ψ↑(λ, y, x; v, u) = +∞ or
0 < t < Ψ↑(λ, x, y; u, v) < +∞, then ζ(x, y; u, v, t) ≤ 1 − λ.

Proof. To prove part (i), the fact t > Ψ↑(λ, x, y; u, v) says that there exists ε > 0, satisfying
t ≥ Ψ ↑(λ, x, y; u, v) + ε. We consider three cases below:

• Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {��, �, �}. Parts (i) and (ii) of
Proposition 3 say that the mapping ζ(x, y; u, v, ·) is nondecreasing. Therefore, using Equation (41),
we obtain:

ζ(x, y; u, v, t) ≥ ζ
(

x, y; u, v, Ψ↑(λ, x, y; u, v) + ε
)
> 1 − λ.

• Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {�, �}. Part (ii) of Proposition 3 says that
the mapping ζ(x, y; u, v, ·) is both �-semisymmetrically nondecreasing and �-semisymmetrically
nondecreasing.Therefore, using Equation (41), we obtain:

ζ(y, x; u, v, t) ≥ ζ
(

x, y; u, v, Ψ↑(λ, x, y; u, v) + ε
)
> 1 − λ,

and:
ζ(x, y; v, u, t) ≥ ζ

(
x, y; u, v, Ψ↑(λ, x, y; u, v) + ε

)
> 1 − λ.

• Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {�, �, �}. Parts (ii) and (iii) of
Proposition 3 say that the mapping ζ(x, y; u, v, ·) is symmetrically nondecreasing. Therefore,
using Equation (41), we obtain:

ζ(y, x; v, u, t) ≥ ζ
(

x, y; u, v, Ψ↑(λ, x, y; u, v) + ε
)
> 1 − λ.

To prove part (ii), we consider three cases below:
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• Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {��, �, �}. Using part (i) of
Proposition 12, if Ψ↑(λ, x, y; u, v) = +∞, then it is done. Now, for Ψ↑(λ, x, y; u, v) < +∞, the fact
t < Ψ ↑(λ, x, y; u, v) says that there exists ε > 0, satisfying 0 < t ≤ Ψ↑(λ, x, y; u, v)− ε. Using
Equation (42), we obtain:

ζ(x, y; u, v, t) ≤ ζ
(

x, y; u, v, Ψ↑(λ, x, y; u, v)− ε
)
≤ 1 − λ.

• Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {�, �}. Using part (ii) of Proposition 12, if
Ψ↑(λ, y, x; u, v) = +∞ or Ψ↑(λ, x, y; v, u) = +∞, then it is done. Now, for Ψ↑(λ, x, y; u, v) < +∞,
using Equation (43), we obtain:

ζ(x, y; u, v, t) ≤ ζ
(

y, x; u, v, Ψ↑(λ, x, y; u, v)− ε
)
≤ 1 − λ,

and:
ζ(x, y; u, v, t) ≤ ζ

(
x, y; v, u, Ψ↑(λ, x, y; u, v)− ε

)
≤ 1 − λ.

• Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {�, �, �}. Using part (iii) of
Proposition 12, if Ψ↑(λ, y, x; v, u) = +∞, then it is done. Now, for Ψ↑(λ, x, y; u, v) < +∞, using
Equation (44), we obtain:

ζ(x, y; u, v, t) ≤ ζ
(

y, x; v, u, Ψ↑(λ, x, y; u, v)− ε
)
≤ 1 − λ.

This completes the proof.

Proposition 17. Let (X, M) be a fuzzy semi-metric space along with a t-norm ∗. We also assume that M
satisfies the rational condition, and that the t-norm ∗ is right-continuous at 0 with respect to the first or second
argument. Given any fixed x, y, u, v ∈ X with x 	= y or u 	= v, and any fixed λ ∈ (0, 1), the following
statements hold true:

(i) Suppose that ζ(x, y; u, v, t) ≤ 1 − λ for t > 0. Then, we have the following properties:

• If M satisfies the ◦-triangle inequality for ◦ ∈ {��, �, �}, then t ≤ Ψ↑(λ, x, y; u, v).
• If M satisfies the ◦-triangle inequality for ◦ ∈ {�, �}, then t ≤ Ψ↑(λ, y, x; u, v) and

t ≤ Ψ ↑(λ, x, y; v, u).
• If M satisfies the ◦-triangle inequality for ◦ ∈ {�, �, �}, then t ≤ Ψ↑(λ, y, x; v, u).

(ii) We have the following properties:

• Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {��, �, �}. If ζ(x, y; u, v, t) > 1 − λ, then
Ψ↑(λ, x, y; u, v) < +∞ and t ≥ Ψ↑(λ, x, y; u, v).

• Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {�, �}. If ζ(x, y; u, v, t) > 1 − λ, then
Ψ↑(λ, y, x; u, v) < +∞, Ψ↑(λ, x, y; v, u) < +∞ and Ψ↑(λ, y, x; v, u) < +∞.

• Suppose that M satisfies the �-triangle inequality:

– If ζ(x, y; u, v, t) > 1 − λ, then Ψ↑(λ, y, x; v, u) < +∞.
– If ζ(x, y; u, v, t) > 1 − λ and Ψ↑(λ, x, y; u, v) < +∞, then t ≥ Ψ↑(λ, x, y; u, v).

Proof. To prove part (i), we consider three cases below:

• Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {��, �, �}. It is clear to see that the fact
Ψ↑(λ, x, y; u, v) = +∞ implies t ≤ Ψ↑(λ, x, y; u, v). Now, for Ψ↑(λ, x, y; u, v) < +∞, using the
contraposition of first property of part (i) of Proposition 16, we see that if ζ(x, y; u, v, t) ≤ 1 − λ,
then t ≤ Ψ↑(λ, x, y; u, v).
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• Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {�, �}. It is clear to see that the fact
Ψ↑(λ, y, x; u, v) = +∞ implies t ≤ Ψ↑(λ, y, x; u, v). Now, for Ψ↑(λ, y, x; u, v) < +∞, using the
contraposition of second property of part (i) of Proposition 16, we see that if ζ(x, y; u, v, t) ≤ 1− λ,
then t ≤ Ψ ↑(λ, y, x; u, v). We can similarly show that if ζ(x, y; u, v, t) ≤ 1 − λ, then
t ≤ Ψ ↑(λ, x, y; v, u)

• Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {�, �, �}. It is clear to see that the fact
Ψ↑(λ, y, x; v, u) = +∞ implies t ≤ Ψ↑(λ, y, x; v, u). Now, for Ψ↑(λ, y, x; v, u) < +∞, using the
contraposition of third property of part (i) of Proposition 16, we see that if ζ(y, x; v, u, t) ≤ 1 − λ,
then t ≤ Ψ↑(λ, y, x; v, u).

To prove part (ii), we consider three cases below:

• Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {��, �, �}. Using the contraposition of
part (i) of Proposition 12 and the contraposition of first property of part (ii) of Proposition 16,
we can obtain the desired result.

• Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {�, �}. Using part (ii) of Proposition 12,
if ζ(x, y; u, v, t) > 1 − λ, then Ψ↑(λ, y, x; u, v) < +∞ and Ψ↑(λ, x, y; v, u) < +∞. Using part (iii)
of Proposition 12, if ζ(x, y; u, v, t) > 1 − λ, then Ψ↑(λ, y, x; v, u) < +∞.

• Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {�, �, �}. Using part (iii) of
Proposition 12, if ζ(x, y; u, v, t) > 1 − λ, then Ψ↑(λ, y, x; v, u) < +∞. Using the contraposition of
third property of part (ii) of Proposition 16, if ζ(x, y; u, v, t) > 1 − λ and Ψ↑(λ, x, y; u, v) < +∞
then t ≥ Ψ↑(λ, x, y; u, v).

This completes the proof.

Proposition 18. Let (X, M) be a fuzzy semi-metric space along with a t-norm ∗. We also assume that M
satisfies the rational condition, and that the t-norm ∗ is right-continuous at 0 with respect to the first or second
argument. Given any fixed x, y, u, v ∈ X with x 	= y or u 	= v, and any fixed λ ∈ (0, 1), the following
statements hold true:

(i) Suppose that Ψ↑(λ, x, y; u, v) < +∞, and that the mapping ζ(x, y; u, v, ·) : (0, ∞) → [0, 1] is
right-continuous on (0, ∞). Then we have:

ζ
(

x, y; u, v, Ψ↑(λ, x, y; u, v)
)
≥ 1 − λ. (45)

(ii) Suppose that the mapping ζ(x, y; u, v, ·) : (0, ∞) → [0, 1] is left-continuous on (0, ∞). Then,
the following statements hold true:

• Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {��, �, �}.

If Ψ↑(λ, x, y; u, v) < +∞, then ζ
(

x, y; u, v, Ψ↑(λ, x, y; u, v)
)
≤ 1 − λ.

• Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {�, �}.

If Ψ↑(λ, y, x; u, v) < +∞, then ζ
(

x, y; u, v, Ψ↑(λ, y, x; u, v)
)
≤ 1 − λ,

and:
if Ψ↑(λ, x, y; v, u) < +∞, then ζ

(
x, y; u, v, Ψ↑(λ, x, y; v, u)

)
≤ 1 − λ.

• Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {�, �, �}.

If Ψ↑(λ, y, x; v, u) < +∞, then ζ
(

x, y; u, v, Ψ↑(λ, y, x; v, u)
)
≤ 1 − λ.
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(iii) Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {��, �, �}, and that the mapping ζ(x, y; u, v, ·) :
(0, ∞) → [0, 1] is continuous on (0, ∞).

If Ψ↑(λ, x, y; u, v) < +∞, then ζ
(

x, y; u, v, Ψ↑(λ, x, y; u, v)
)
= 1 − λ.

Proof. To prove part (i), by taking the limit ε → 0+ to the inequality (Equation (41)), we obtain
Equation (45). To prove part (ii), by taking the limit ε → 0+ to the inequalities (Equations (42)–(44)),
we also obtain the desired results. Part (iii) follows from parts (i) and (ii) immediately. This
completes the proof.

Theorem 4. (Triangle Inequalities for Dual Double Fuzzy Semi-Metric). Let (X, M) be a fuzzy semi-metric
space along with a t-norm ∗. We also assume that M satisfies the rational condition, and that the t-norm ∗ is
right-continuous at 0 and left-continuous at 1 with respect to the first or second argument. Given any distinct
fixed x1, x2, · · · , xp, y1, y2, · · · , yp ∈ X and any fixed μ ∈ (0, 1], we have the following properties:

(i) Suppose that M satisfies the ��-triangle inequality. There exists λ ∈ (0, 1), satisfying:

Ψ↑(μ, x1, xp; y1, yp) ≤ Ψ↑(λ, x1, x2; y1, y2) + Ψ↑(λ, x2, x3; y2, y3) + · · ·
+ Ψ↑(λ, xp−2, xp−1; yp−2, yp−1) + Ψ↑(λ, xp−1, xp; yp−1, yp), (46)

Ψ↑(μ, x1, xp; yp, y1) ≤ Ψ↑(λ, x1, x2; y2, y1) + Ψ↑(λ, x2, x3; y3, y2) + · · ·
+ Ψ↑(λ, xp−2, xp−1; yp−1, yp−2) + Ψ↑(λ, xp−1, xp; yp, yp−1), (47)

Ψ↑(μ, xp, x1; y1, yp) ≤ Ψ↑(λ, xp, xp−1; yp−1, yp) + Ψ↑(λ, xp−1, xp−2; yp−2, yp−1)

+ · · ·+ Ψ↑(λ, x3, x2; y2, y3) + Ψ↑(λ, x2, x1; y1, y2),

Ψ↑(μ, xp, x1; yp, y1) ≤ Ψ↑(λ, xp, xp−1; yp, yp−1) + Ψ↑(λ, xp−1, xp−2; yp−1, yp−2)

+ · · ·+ Ψ↑(λ, x3, x2; y3, y2) + Ψ↑(λ, x2, x1; y2, y1).

(ii) Suppose that M satisfies the �-triangle inequality. There exists λ ∈ (0, 1), satisfying:

max
{

Ψ↑(μ, x1, xp; y1, yp), Ψ↑(μ, x1, xp; yp, y1), Ψ↑(μ, xp, x1; y1, yp), Ψ↑(μ, xp, x1; yp, y1)
}

≤ Ψ↑(λ, x1, x2; y1, y2) + Ψ↑(λ, x3, x2; y3, y2) + Ψ↑(λ, x4, x3; y4, y3)

+ · · ·+ Ψ↑(λ, xp, xp−1; yp, yp−1).

(iii) Suppose that M satisfies the �-triangle inequality. There exists λ ∈ (0, 1), satisfying:

max
{

Ψ↑(μ, x1, xp; y1, yp), Ψ↑(μ, x1, xp; yp, y1), Ψ↑(μ, xp, x1; y1, yp), Ψ↑(μ, xp, x1; yp, y1)
}

≤ Ψ↑(λ, x2, x1; y2, y1) + Ψ↑(λ, x2, x3; y2, y3) + Ψ↑(λ, x3, x4; y3, y4)

+ · · ·+ Ψ↑(λ, xp−1, xp; yp−1, yp).

(iv) Suppose that M satisfies the �-triangle inequality. There exists λ ∈ (0, 1) such that the following
inequalities are satisfied:

• If p is even and Ψ↑(μ, x1, xp; y1, yp) < +∞, then:

Ψ↑(μ, x1, xp; y1, yp) ≤ Ψ↑(λ, x2, x1; y2, y1) + Ψ↑(λ, x3, x2; y3, y2) + Ψ↑(λ, x3, x4; y3, y4)

+ Ψ↑(λ, x5, x4; y5, y4) + Ψ↑(λ, x5, x6; y5, y6) + Ψ↑(λ, x7, x6; y7, y6)

+ · · ·+ Ψ↑(λ, xp−1, xp; yp−1, yp). (48)
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• If p is even and Ψ↑(μ, x1, xp; yp, y1) < +∞, then:

Ψ↓(μ, x1, xp; yp, y1) ≤ Ψ↓(λ, x2, x1; y1, y2) + Ψ↓(λ, x3, x2; y2, y3) + Ψ↓(λ, x3, x4; y4, y3)

+ Ψ↓(λ, x5, x4; y4, y5) + Ψ↓(λ, x5, x6; y6, y5) + Ψ↓(λ, x7, x6; y6, y7)

+ · · ·+ Ψ↓(λ, xp−1, xp; yp, yp−1). (49)

• If p is even and Ψ↑(μ, xp, x1; y1, yp) < +∞, then:

Ψ↓(μ, xp, x1; y1, yp) ≤ Ψ↓(λ, x1, x2; y2, y1) + Ψ↓(λ, x2, x3; y3, y2) + Ψ↓(λ, x4, x3; y3, y4)

+ Ψ↓(λ, x4, x5; y5, y4) + Ψ↓(λ, x6, x5; y5, y6) + Ψ↓(λ, x6, x7; y7, y6)

+ · · ·+ Ψ↓(λ, xp, xp−1; yp−1, yp). (50)

• If p is even and Ψ↑(μ, xp, x1; yp, y1) < +∞, then:

Ψ↑(μ, xp, x1; yp, y1) ≤ Ψ↑(λ, x1, x2; y1, y2) + Ψ↑(λ, x2, x3; y2, y3) + Ψ↑(λ, x4, x3; y4, y3)

+ Ψ↑(λ, x4, x5; y4, y5) + Ψ↑(λ, x6, x5; y6, y5) + Ψ↑(λ, x6, x7; y6, y7)

+ · · ·+ Ψ↑(λ, xp, xp−1; yp, yp−1). (51)

• If p is odd and Ψ↑(μ, x1, xp; y1, yp) < +∞, then:

Ψ↑(μ, x1, xp; y1, yp) ≤ Ψ↑(λ, x1, x2; y1, y2) + Ψ↑(λ, x2, x3; y2, y3) + Ψ↑(λ, x4, x3; y4, y3)

+ Ψ↑(λ, x4, x5; y4, y5) + Ψ↑(λ, x6, x5; y6, y5) + Ψ↑(λ, x6, x7; y6, y7)

+ · · ·+ Ψ↑(λ, xp, xp−1; yp, yp−1). (52)

• If p is odd and Ψ↑(μ, x1, xp; yp, y1) < +∞, then:

Ψ↓(μ, x1, xp; yp, y1) ≤ Ψ↓(λ, x1, x2; y2, y1) + Ψ↓(λ, x2, x3; y3, y2) + Ψ↓(λ, x4, x3; y3, y4)

+ Ψ↓(λ, x4, x5; y5, y4) + Ψ↓(λ, x6, x5; y5, y6) + Ψ↓(λ, x6, x7; y7, y6)

+ · · ·+ Ψ↓(λ, xp, xp−1; yp−1, yp). (53)

• If p is odd and Ψ↑(μ, xp, x1; y1, yp) < +∞, then:

Ψ↓(μ, xp, x1; y1, yp) ≤ Ψ↓(λ, x2, x1; y1, y2) + Ψ↓(λ, x3, x2; y2, y3) + Ψ↓(λ, x3, x4; y4, y3)

+ Ψ↓(λ, x5, x4; y4, y5) + Ψ↓(λ, x5, x6; y6, y5) + Ψ↓(λ, x7, x6; y6, y7)

+ · · ·+ Ψ↓(λ, xp−1, xp; yp, yp−1). (54)

• If p is odd and Ψ↑(μ, xp, x1; yp, y1) < +∞, then:

Ψ↑(μ, xp, x1; yp, y1) ≤ Ψ↑(λ, x2, x1; y2, y1) + Ψ↑(λ, x3, x2; y3, y2) + Ψ↑(λ, x3, x4; y3, y4)

+ Ψ↑(λ, x5, x4; y5, y4) + Ψ↑(λ, x5, x6; y5, y6) + Ψ↑(λ, x7, x6; y7, y6)

+ · · ·+ Ψ↑(λ, xp−1, xp; yp−1, yp). (55)

Proof. Lemma 1 says that there exists λ ∈ (0, 1), satisfying:

(1 − λ) ∗ · · · ∗ (1 − λ) > 1 − μ. (56)
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To prove part (i), we assume that Ψ↑(λ, xi, xi+1; yi, yi+1) < +∞ for all i = 1, · · · , p − 1. Given any
ε > 0, the first observation of Remark 1 says that:

M
(

x1, xp, Ψ↑(λ, x1, x2; y1, y2) + Ψ↑(λ, x2, x3; y2, y3) + · · ·+ Ψ↑(λ, xp−1, xp; yp−1, yp) + (p − 1)ε
)

≥ M
(

x1, x2, Ψ↑(λ, x1, x2; y1, y2) + ε
)
∗ · · · ∗ M

(
xp−1, xp, Ψ↑(λ, xp−1, xp; yp−1, yp) + ε

)
, (57)

and:

M
(

y1, yp, Ψ↑(λ, x1, x2; y1, y2) + Ψ↑(λ, x2, x3; y2, y3) + · · ·+ Ψ↑(λ, xp−1, xp; yp−1, yp) + (p − 1)ε
)

≥ M
(

y1, y2, Ψ↑(λ, x1, x2; y1, y2) + ε
)
∗ · · · ∗ M

(
yp−1, yp, Ψ↑(λ, xp−1, xp; yp−1, yp) + ε

)
. (58)

Now, applying the increasing property and commutativity of t-norm to Equations (57) and (58),
we obtain:

ζ
(

x1, xp; y1, yp, Ψ↑(λ, x1, x2; y1, y2) + Ψ↑(λ, x2, x3; y2, y3) + · · ·+ Ψ↑(λ, xp−1, xp; yp−1, yp) + (p − 1)ε
)

≥ ζ
(

x1, x2; y1, y2, Ψ↑(λ, x1, x2; y1, y2) + ε
)
∗ · · · ∗ ζ

(
xp−1, xp; yp−1, yp, Ψ↑(λ, xp−1, xp; yp−1, yp) + ε

)
≥ (1 − λ) ∗ · · · ∗ (1 − λ) (by Equation (41) and the increasing property of t-norm)

> 1 − μ (by Equation (56)). (59)

Therefore, we consider the following cases:

• Suppose that Ψ↑(μ, x1, xp; y1, yp) = +∞. We want to show that there exists i0, satisfying
Ψ↑(λ, xi0 , xi0+1; yi0 , yi0+1) = +∞. Assume that Ψ↑(λ, xi, xi+1; yi, yi+1) < +∞ for all
i = 1, · · · , p − 1. Using Equation (59) and part (ii) of Proposition 17, it follows
that Ψ↑(μ, x1, xp; y1, yp) < +∞. This contradiction says that there exists i0, satisfying
Ψ↑(λ, xi0 , xi0+1; yi0 , yi0+1) = +∞. In this case, the inequality (Equation (46)) holds true.

• Suppose that Ψ↑(μ, x1, xp; y1, yp) < +∞. We also consider the following cases:

– If there exists i0, satisfying Ψ↑(λ, xi0 , xi0+1; yi0 , yi0+1) = +∞, then the inequality
(Equation (46)) also holds true.

– We assume that Ψ↑(λ, xi, xi+1; yi, yi+1) < +∞ for all i = 1, · · · , p − 1. Using Equation (59)
and part (ii) of Proposition 17 again, it follows that:

Ψ↑(λ, x1, x2; y1, y2) + Ψ↑(λ, x2, x3; y2, y3) + · · ·+ Ψ↑(λ, xp−1, xp; yp−1, yp) + (p − 1)ε

≥ Ψ↑(μ, x1, xp; y1, yp).

By taking the limit ε → 0+, we obtain the desired inequality (Equation (46)).

On the other hand, we also have:

M
(

x1, xp, Ψ↑(λ, x1, x2; y2, y1) + Ψ↑(λ, x2, x3; y3, y2) + · · ·+ Ψ↑(λ, xp−1, xp; yp, yp−1) + (p − 1)ε
)

≥ M
(

x1, x2, Ψ↑(λ, x1, x2; y2, y1) + ε
)
∗ · · · ∗ M

(
xp−1, xp, Ψ↑(λ, xp−1, xp; yp, yp−1) + ε

)
, (60)

and:

M
(

yp, y1, Ψ↑(λ, x1, x2; y2, y1) + Ψ↑(λ, x2, x3; y3, y2) + · · ·+ Ψ↑(λ, xp−1, xp; yp, yp−1) + (p − 1)ε
)

≥ M
(

y2, y1, Ψ↑(λ, x1, x2; y2, y1) + ε
)
∗ · · · ∗ M

(
yp, yp−1, Ψ↑(λ, xp−1, xp; yp, yp−1) + ε

)
. (61)
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Now, applying the increasing property and commutativity of t-norm to Equations (60) and (61),
we obtain:

ζ
(

x1, xp; yp, y1, Ψ↑(λ, x1, x2; y2, y1) + Ψ↑(λ, x2, x3; y3, y2) + · · ·+ Ψ↑(λ, xp−1, xp; yp, yp−1) + (p − 1)ε
)

≥ ζ
(

x1, x2; y2, y1, Ψ↑(λ, x1, x2; y2, y1) + ε
)
∗ · · · ∗ ζ

(
xp−1, xp; yp, yp−1, Ψ↑(λ, xp−1, xp; yp, yp−1) + ε

)
≥ (1 − λ) ∗ · · · ∗ (1 − λ) (by Equation (41) and the increasing property of t-norm)

> 1 − μ (by Equation (56)).

The inequality (Equation (47)) can be similarly obtained using the above argument. Further,
the other inequalities can be similarly obtained.

The above argument is still valid by applying the second observation of Remark 1 to obtain part
(ii). We can also apply the third observation of Remark 1 to obtain part (iii). Finally, part (iv) can be
obtained using the fourth observation of Remark 1. This completes the proof.

Theorem 5. Let (X, M) be a fuzzy semi-metric space along with a t-norm ∗. We also assume that M satisfies
the rational condition, and that the t-norm ∗ is right-continuous at 0 with respect to the first or second argument.
Let {xn}∞

n=1 and {yn}∞
n=1 be two sequences in X. Then we have the following properties:

(i) Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {��, �, �}. Then the following statements hold
true:

• xn
M�−→ x and yn

M�−→ y as n → ∞ if and only if Ψ↑(λ, xn, x; yn, y) → 0 as n → ∞ for all
λ ∈ (0, 1).

• xn
M�−→ x and yn

M�−→ y as n → ∞ if and only if Ψ↑(λ, xn, x; y, yn) → 0 as n → ∞ for all
λ ∈ (0, 1).

• xn
M�−→ x and yn

M�−→ y as n → ∞ if and only if Ψ↑(λ, x, xn; yn, y) → 0 as n → ∞ for all
λ ∈ (0, 1).

• xn
M�−→ x and yn

M�−→ y as n → ∞ if and only if Ψ↑(λ, x, xn; y, yn) → 0 as n → ∞ for all
λ ∈ (0, 1).

(ii) Suppose that M satisfies the �-triangle inequality. Then the following statements hold true:

• If xn
M�−→ x and yn

M�−→ y as n → ∞, given any fixed λ ∈ (0, 1), we have Ψ↑(λ, xn, x; yn, y) < +∞
for all n ∈ N imply Ψ↑(λ, xn, x; yn, y) → 0 as n → ∞.

• If xn
M�−→ x and yn

M�−→ y as n → ∞, given any fixed λ ∈ (0, 1), we have Ψ↑(λ, xn, x; y, yn) < +∞
for all n ∈ N imply Ψ↑(λ, xn, x; y, yn) → 0 as n → ∞.

• If xn
M�−→ x and yn

M�−→ y as n → ∞, given any fixed λ ∈ (0, 1), we have Ψ↑(λ, x, xn; yn, y) < +∞
for all n ∈ N imply Ψ↑(λ, x, xn; yn, y) → 0 as n → ∞.

• If xn
M�−→ x and yn

M�−→ y as n → ∞, given any fixed λ ∈ (0, 1), we have Ψ↑(λ, x, xn; y, yn) < +∞
for all n ∈ N imply Ψ↑(λ, x, xn; y, yn) → 0 as n → ∞.

• If Ψ↑(λ, xn, x; yn, y) → 0 as n → ∞ for all λ ∈ (0, 1), then xn
M�−→ x and yn

M�−→ y as n → ∞.

• If Ψ↑(λ, x, xn; yn, y) → 0 as n → ∞ for all λ ∈ (0, 1), then xn
M�−→ x and yn

M�−→ y as n → ∞.

• If Ψ↑(λ, xn, x; y, yn) → 0 as n → ∞ for all λ ∈ (0, 1), then xn
M�−→ x and yn

M�−→ y as n → ∞.

• If Ψ↑(λ, x, xn; y, yn) → 0 as n → ∞ for all λ ∈ (0, 1), then xn
M�−→ x and yn

M�−→ y as n → ∞.

Proof. For any fixed λ ∈ (0, 1), using Lemma 1, it follows that there exists λ0 ∈ (0, 1), satisfying:

(1 − λ0) ∗ (1 − λ0) > 1 − λ.
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To prove part (i), we just prove the first case, since the other cases can be similarly obtained.
Suppose that M(xn, x, t) → 1 and M(yn, y, t) → 1 as n → ∞ for all t > 0. Then, given any t > 0 and
δ > 0, there exists n(1)

t,δ , n(2)
t,δ ∈ N, satisfying |M(xn, x, t)− 1| < δ for n ≥ n(1)

t,δ and |M(yn, y, t)− 1| < δ

for n ≥ n(2)
t,δ . Given any ε ∈ (0, 1), there exists nε ∈ N, satisfying

∣∣∣M (xn, x,
ε

2

)
− 1
∣∣∣ < λ0 and

∣∣∣M (yn, y,
ε

2

)
− 1
∣∣∣ < λ0,

for n ≥ nε. We also have:

M
(

xn, x,
ε

2

)
> 1 − λ0 and M

(
yn, y,

ε

2

)
> 1 − λ0,

for n ≥ nε. The increasing property of t-norm says that:

ζ
(

xn, x; yn, y,
ε

2

)
= M

(
xn, x,

ε

2

)
∗ M

(
yn, y,

ε

2

)
≥ (1 − λ0) ∗ (1 − λ0) > 1 − λ.

The first result of part (ii) of Proposition 17 says that:

Ψ↑(λ, xn, x; yn, y) ≤ ε

2
< ε,

for n ≥ nε. This shows that Ψ↑(λ, xn, x; yn, y) → 0 as n → ∞.
To prove the converse, suppose that Ψ↑(λ, xn, x; yn, y) → 0 as n → ∞ for all λ ∈ (0, 1). Given any

δ > 0 and λ ∈ (0, 1], there exists nδ,λ ∈ N, satisfying |Ψ↑(λ, xn, x; yn, y)| < δ for all n ≥ nδ,λ. For any
fixed t > 0 and given any ε ∈ (0, 1), there exists nε ∈ N, satisfying:

Ψ↑ (ε, xn, x; yn, y) =
∣∣∣Ψ↑ (ε, xn, x; yn, y)

∣∣∣ < t, (62)

for n ≥ nε, which implies:
ζ(xn, x; yn, y, t) > 1 − ε,

for n ≥ nε by the first result of part (i) of Proposition 16, i.e.,

M (xn, x, t) ∗ M (yn, y, t) > 1 − ε,

for n ≥ nε. Lemma 2 says that:

M (xn, x, t) > 1 − ε and M (yn, y, t) > 1 − ε,

for n ≥ nε. This shows that the sequences {xn}∞
n=1 and {yn}∞

n=1 in X converge to x and y, respectively.
To prove part (ii), the first result to the fourth result can be similarly obtained by the third result

of part (ii) of Proposition 17. For proving the fifth result, the fact Ψ↑(λ, xn, x; yn, y) → 0 implies the
inequality (Equation (62)). The third result of part (i) of Proposition 16 says that ζ(x, xn; y, yn, t) > 1− ε,

which implies M (x, xn, x, t) > 1 − ε and M (y, yn, y, t) > 1 − ε. In other words, we have xn
M�−→ x

and yn
M�−→ y as n → ∞. The remaining three results can be similarly obtained. This completes the

proof.

Example 7. From Example 1, we see that:

xn
M�−→ x if and only if lim

n→∞
d(xn, x) = 0,

and:
xn

M�−→ x if and only if lim
n→∞

d(x, xn) = 0.
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From Example 6, we have:

Ψ↑(λ, x, y; u, v) =
C +

√
C2 + D
2

,

where:

C =
(d(x, y) + d(u, v))(1 − λ)

λ
and D =

d(x, y) · d(u, v) · (1 − λ)

λ
.

It is clear to see that xn
M�−→ x and yn

M�−→ y as n → ∞ if and only if Ψ↑(λ, xn, x; yn, y) → 0 as n → ∞
for all λ ∈ (0, 1). The other convergence presented in Theorem 5 can be similarly verified.

According to Definition 5, we can similarly define the concepts of four types of the joint Cauchy
sequences with respect to Ψ↑. We omit the details.

Theorem 6. Let (X, M) be a fuzzy semi-metric space along with a t-norm ∗. We also assume that M satisfies
the rational condition, and that the t-norm ∗ is right-continuous at 0 with respect to the first or second argument.
Let {xn}∞

n=1 and {yn}∞
n=1 be two sequences in X. Then we have the following properties:

(i) Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {��, �, �}. Then the following statements hold true:

• {xn}∞
n=1 and {yn}∞

n=1 are two >-Cauchy sequences in a metric sense if and only if {xn}∞
n=1 and

{yn}∞
n=1 are the joint (λ,>,>)-Cauchy sequences with respect to Ψ↑ for any λ ∈ (0, 1).

• {xn}∞
n=1 is a >-Cauchy sequences in a metric sense and {yn}∞

n=1 is a <-Cauchy sequences in a
metric sense if and only if {xn}∞

n=1 and {yn}∞
n=1 are the joint (λ,>,<)-Cauchy sequences with

respect to Ψ↑ for any λ ∈ (0, 1).
• {xn}∞

n=1 is a <-Cauchy sequences in a metric sense and {yn}∞
n=1 is a >-Cauchy sequences in a

metric sense if and only if {xn}∞
n=1 and {yn}∞

n=1 are the joint (λ,>,<)-Cauchy sequences with
respect to Ψ↑ for any λ ∈ (0, 1).

• {xn}∞
n=1 and {yn}∞

n=1 are two <-Cauchy sequences in a metric sense if and only if {xn}∞
n=1 and

{yn}∞
n=1 are the joint (λ,<,<)-Cauchy sequences with respect to Ψ↑ for any λ ∈ (0, 1).

(ii) Suppose that M satisfies the �-triangle inequality. Then the following statements hold true:

• Let {xn}∞
n=1 and {yn}∞

n=1 be two >-Cauchy sequences in a metric sense. Given any fixed λ ∈ (0, 1),
if Ψ↑(λ, xm, xn; ym, yn) < +∞ for all m > n, then {xn}∞

n=1 and {yn}∞
n=1 are the joint (λ,>,>

)-Cauchy sequences with respect to Ψ↑ for any λ ∈ (0, 1).
• Let {xn}∞

n=1 be a >-Cauchy sequence in a metric sense and let {yn}∞
n=1 be a <-Cauchy sequence

in a metric sense. Given any fixed λ ∈ (0, 1), if Ψ↑(λ, xm, xn; yn, ym) < +∞ for all m > n,
then {xn}∞

n=1 and {yn}∞
n=1 are the joint (λ,>,<)-Cauchy sequences with respect to Ψ↑ for any

λ ∈ (0, 1).
• Let {xn}∞

n=1 be a <-Cauchy sequence in a metric sense and let {yn}∞
n=1 be a >-Cauchy sequence

in a metric sense. Given any fixed λ ∈ (0, 1), if Ψ↑(λ, xn, xm; ym, yn) < +∞ for all m > n,
then {xn}∞

n=1 and {yn}∞
n=1 are the joint (λ,<,>)-Cauchy sequences with respect to Ψ↑ for any

λ ∈ (0, 1).
• Let {xn}∞

n=1 and {yn}∞
n=1 be two <-Cauchy sequences in a metric sense. Given any fixed λ ∈ (0, 1),

if Ψ↑(λ, xn, xm; yn, ym) < +∞ for all m > n, then {xn}∞
n=1 and {yn}∞

n=1 are the joint (λ,<,<
)-Cauchy sequences with respect to Ψ↑ for any λ ∈ (0, 1).

• Suppose that {xn}∞
n=1 and {yn}∞

n=1 are the joint (λ,>,>)-Cauchy sequences with respect to Ψ↑

for any λ ∈ (0, 1) Then {xn}∞
n=1 and {yn}∞

n=1 are two >-Cauchy sequences in a metric sense.
• Suppose that {xn}∞

n=1 and {yn}∞
n=1 are the joint (λ,>,<)-Cauchy sequences with respect to Ψ↑

for any λ ∈ (0, 1). Then {xn}∞
n=1 is a <-Cauchy sequences in a metric sense and {yn}∞

n=1 is a
<-Cauchy sequences in a metric sense.
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• Suppose that {xn}∞
n=1 and {yn}∞

n=1 are the joint (λ,<,>)-Cauchy sequences with respect to Ψ↑

for any λ ∈ (0, 1) Then {xn}∞
n=1 is a <-Cauchy sequences in a metric sense and {yn}∞

n=1 is a
>-Cauchy sequences in a metric sense.

• Suppose that {xn}∞
n=1 and {yn}∞

n=1 are the joint (λ,<,<)-Cauchy sequences with respect to Ψ↑

for any λ ∈ (0, 1). Then {xn}∞
n=1 and {yn}∞

n=1 are two <-Cauchy sequences in a metric sense.

Proof. For any fixed λ ∈ (0, 1), using Lemma 1, it follows that there exists λ0 ∈ (0, 1), satisfying:

(1 − λ0) ∗ (1 − λ0) > 1 − λ.

To prove part (i), we just prove the first case, since the other cases can be similarly obtained.
Suppose that {xn}∞

n=1 and {yn}∞
n=1 are >-Cauchy sequences in a metric sense. Therefore, given any

t > 0 and δ > 0, there exists nt,δ ∈ N such that m > n ≥ nt,δ implies M(xm, xn, t) > 1 − δ and
M(ym, yn, t) > 1 − δ. Now, given any ε ∈ (0, 1), there exists nε ∈ N such that m > n ≥ nε implies:

M
(

xm, xn,
ε

2

)
> 1 − λ0 and M

(
ym, yn,

ε

2

)
> 1 − λ0.

The increasing property of t-norm says that:

ζ
(

xm, xn; ym, yn,
ε

2

)
= M

(
xm, xn,

ε

2

)
∗ M

(
ym, yn,

ε

2

)
≥ (1 − λ0) ∗ (1 − λ0) > 1 − λ.

Further, the first result of part (ii) of Proposition 17 says that:

Ψ↑(λ, xm, xn; ym, yn) ≤ ε

2
< ε,

for m > n ≥ nε.
To prove the converse, from the assumption, we see that for any fixed t > 0 and given any

ε ∈ (0, 1), there exists nε ∈ N such that m > n ≥ nε implies Ψ↑(ε, xm, xn; ym, yn) < t. Therefore, using
the first result of part (i) of Proposition 16, we obtain ζ(xm, xn; ym, yn, t) > 1 − ε for m > n ≥ nε, i.e.,

M (xm, xn, t) ∗ M (ym, yn, t) > 1 − ε,

for m > n ≥ nε. Lemma 2 says that:

M (xm, xn, t) > 1 − ε and M (ym, yn, t) > 1 − ε,

for m > n ≥ nε. This shows that {xn}∞
n=1 and {yn}∞

n=1 are >-Cauchy sequences in a metric sense.
To prove part (ii), the first result to the fourth result can be similarly obtained by the third

result of part (ii) of Proposition 17. For proving the fifth result, using the assumption, we see
that for any fixed t > 0 and given any ε ∈ (0, 1), there exists nε ∈ N such that m > n ≥ nε

implies Ψ↑(ε, xm, xn; ym, yn) < t. The third result of part (i) of Proposition 16 says that
ζ(xn, xm; yn, ym, t) > 1 − ε for m > n ≥ nε. Therefore, we obtain:

M (xn, xm, t) ∗ M (yn, ym, t) > 1 − ε,

for m > n ≥ nε. This shows that {xn}∞
n=1 and {yn}∞

n=1 are <-Cauchy sequences in a metric sense.
The remaining three results can be similarly obtained. This completes the proof.
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Abstract: This article proposes an adaptive-network-based fuzzy inference system (ANFIS) model for
accurate estimation of signal propagation using LoRaWAN. By using ANFIS, the basic knowledge of
propagation is embedded into the proposed model. This reduces the training complexity of artificial
neural network (ANN)-based models. Therefore, the size of the training dataset is reduced by 70%
compared to an ANN model. The proposed model consists of an efficient clustering method to
identify the optimum number of the fuzzy nodes to avoid overfitting, and a hybrid training algorithm
to train and optimize the ANFIS parameters. Finally, the proposed model is benchmarked with
extensive practical data, where superior accuracy is achieved compared to deterministic models,
and better generalization is attained compared to ANN models. The proposed model outperforms
the nondeterministic models in terms of accuracy, has the flexibility to account for new modeling
parameters, is easier to use as it does not require a model for propagation environment, is resistant to
data collection inaccuracies and uncertain environmental information, has excellent generalization
capability, and features a knowledge-based implementation that alleviates the training process.
This work will facilitate network planning and propagation prediction in complex scenarios.

Keywords: propagation modeling; adaptive-network-based fuzzy system; LoRa & LoRaWAN;
radio wave propagation; artificial neural networks; subtracting clustering

1. Introduction

In recent years, the exponentially increasing number of wireless devices has made the maintenance
and efficient planning of wireless networks crucial. Therefore, it is essential to gain a better
understanding of propagation and be able to readily predict it in various scenarios. The area of radio
propagation has been studied over many decades, during which the physics of the electromagnetic
wave and its propagation has been unchanged. Hence, the same free space path loss (FSPL) formula
holds to this date. However, telecommunication devices, network requirements and the propagation
environment have undergone many developments. Perhaps, adapting to these rapid changes and
lack of efficiency and generalization in current models has been the main research incentive in this
field. It is clear that establishing an adaptive, efficient and accurate modeling of modern wireless
technologies, that is, LoRaWAN, is of great importance. The main contributions of this paper are:

(a) A novel method of propagation modeling is proposed by using an adaptive-network-based
fuzzy inference system (ANFIS). This knowledge-based system enables an adaptive model that
is capable of incorporating new modeling parameters, depending on the wireless technology,
propagation environment and an expert’s knowledge.

(b) A robust method of determining the network size is used to avoid overfitting.

Appl. Syst. Innov. 2019, 2, 10; doi:10.3390/asi2010010 www.mdpi.com/journal/asi
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(c) Results from the models are critically analyzed with real-world measurements using a relatively
new wireless technology.

This novel implementation has several advantages, however, for the purpose of comparison,
firstly, a brief review of current models would be required. The rest of the paper is organized as follows:
Section 2 provides a critical review of the conventional propagation models. Section 3 explains the
implementation details and advantages of the proposed model. In Section 4, the results of the practical
and comparative analysis are demonstrated, and Section 5 provides the findings of this research along
with final conclusions.

2. Brief Review of Common Models

There are numerous practical propagation reports and models for various scenarios, such as
indoor, outdoor, urban, sea, foliage, undergrounds and even tunnels. Reviewing all of these
models would be out of the scope of this research. Instead, only some of the most influential and
well-established models, based on the appearance in published literatures, are reviewed. A more
comprehensive review of the propagation models is provided in [1].

2.1. Okumura and Hata Models

Okumura’s signal propagation investigation has been a cornerstone in this field. Okumura’s
model [2] was built upon a practical data collection in Tokyo, Japan, within the frequency range
of 150–2000 MHz. In his model, the path loss estimation depends on the FSPL, antenna gain
factor, propagation gains due to mobile/base-station antennae heights and collective correction gain.
The latter, collective correction gain, is to compensate for the type of environment, average slope of
terrain and finally land/sea parameters. This model is somewhat a more comprehensive version of the
log-distance model. Like other nondeterministic methods, Okumura’s model lacks the higher accuracy
of deterministic models. In addition, independent parameters of this model, such as frequency,
and mobile and base station antenna heights, were limited in their range. Okumura’s findings then
became the basis of the Hata model [3], also known as the Okumura–Hata model. This model
introduces many more independent parameters, such as reflection, diffraction and scattering factors.
It suggests new correction factors for suburban and rural environments, and extends the range of the
parameters of Okumura’s model, such as mobile and base station antenna heights. The International
Telecommunication Union (ITU) model [4] was inspired by Okumura’s and Hata’s models.

2.2. Walfisch, Ikegami and Ray Tracing Models

Walfisch and Bertoni [5] proposed a semi-deterministic model that added new modeling
parameters into Okumura’s model. These parameters were added to account for the multiple-screen
diffraction, caused by the buildings and structures. Ikegami et al. [6] took a new approach by
using a simplified ray-tracing method. They assumed multiple-reflected/diffracted waves were
highly attenuated and, therefore, only accounted for first-reflected/diffracted rays. The other
compromise of this deterministic model was perhaps due to the limited computational power, since the
reflection/diffraction losses were approximated with constant values. There are several 2D and 3D
ray-tracing algorithms, based on the geometrical optics, uniform theory of diffraction and geometrical
theory of diffraction. These models have complemented Ikegami’s efforts. For instance, it is possible
to consider two- and three-fold reflections/diffraction, and reflection/diffraction factors depend on
the angle of incidence and permittivity of materials. Further detailed summaries of these models with
their implementations are provided in [7–10]. Nevertheless, there are the following drawbacks to these
deterministic models:

(a) Having precise building data is a prerequisite, meaning that, ideally, a 3D topographical model of
the environment and structures is required [6,11]. However, such a database may not be readily
available, especially for outdoor environments.
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(b) Computational complexity of the ray tracing is extremely cumbersome even in a relatively small
indoor environment and the accuracy of the model depends on the accuracy of the structural
model [12]. Therefore, it is not really a practical solution for outdoor large-scale modeling.

(c) Finally, ray tracing incorporates the “small-scale” fading which varies with the order of
wavelength [13], and small-scale fading is not predictable for ranges beyond half-wavelengths [14].

These drawbacks are even more aggravated when the radio frequency is increased.

2.3. COST Action 231 Model

The European Cooperation in Science and Technology (COST) Action 231 [15] proposed a
new propagation model, plus an extension to the previous Hata model. The COST–Hata PCS
Extension simply extended the original Hata model to be applicable to frequencies up to 2 GHz.
The COST–Walfisch–Ikegami (COST W.I.) model, however, provided a revised version of the Walfisch
and Ikegami models, except that it does not require a 2/3D model of the environment. Eliminating
this requirement is perhaps the main advantage of COST W.I., making it the most commonly used
outdoor model. COST W.I. has been recommended by ITU and the European Telecommunication
Standards Institute (ETSI) [16]. The model still requires the height of the buildings, width of the streets
and some other environmental information, and therefore, it is not a fully deterministic model [17].
Although COST W.I. (or models similar to it) may seem to be an acceptable compromise between
accuracy and computational complexity, it is rather a granulated set of formulas which has the
following disadvantages:

(a) Some of the model parameters lack clear physical or practical interpretation. For instance,
the angle of arrival of the beam relative to the axis of the road (φ) and road width (ws) are
vague at a crossroad, junction, riverside or a wide highway with partial line of sight (LoS),
and undefined where there is no road. These conditions and many others that may occur are not
considered in the COST W.I. formulas.

(b) The constant factors that control the loss due to intensity of multiscreen diffraction are
discontinuous, resulting in abrupt changes in the result. For instance, scatter loss Lrts(φ) has sharp
transitions as it has been approximated with only three piecewise linear functions. Therefore,
a small variation in φ can affect the estimation drastically.

(c) There are several different permutations and possibilities to calculate the total path loss.
The model first differentiates between LoS and NLoS (non-line of sight) conditions. Next,
there are two ways of deriving the path loss depending on the dLoS. The NLoS has been further
subdivided to scatter and diffraction losses. Next, there are three different conditional statements
to calculate the scatter loss depending on the φ. Finally, there are another 11 further subdivisions
(depending on BS and MS heights and environment type) to calculate the multiscreen diffraction
loss. However, in reality, even differentiating between LoS and NLoS is difficult, resulting in the
creation of near-LoS or partial-LoS conditions [18].

2.4. Hybrid and Artificial Neural Network-Based Models

The next generation of the propagation models relies on artificial neural networks (ANNs).
These models are based on the training of an ANN with empirically collected data. Usually this
involves training the ANN from scratch, where the ANN has to learn to derive the very basic
mechanisms of radio propagation. For instance, the ANN even needs to learn the trivial fact that
increasing the link distance has a negative impact on the signal strength. It is the ANN’s responsibility
to learn the FSPL from the distance and frequency of transmission or understand the attenuating
impact of obstacles on the LoS. A review of the ANN-based models is provided in [19]. The drawbacks
of this approach include:

(a) the time-consuming and exhaustive data collection process that is required for the training of
ANNs. As an instance, in [20], authors collected 600,000 data samples in a relatively small indoor
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environment and trained the network for several hours. Not only is such data collection in a
small environment tedious but it also defeats the purpose of estimation [19].

(b) ANN requires considerable training time as it contains numerous neurons in each layer;
furthermore, an overly complex ANN may lead to data overfitting and hence failing to reach a
generalized solution [21,22].

To address these challenges, a hybrid model for a simple indoor environment was proposed [19].
The model comprised an optimized multiwall model (MWM), whose estimations were monitored
by an ANN. Therefore, the ANN only had to learn and compensate the deficiencies of the MWM.
This strategy drastically reduced the required training data samples and improved the accuracy of
the estimation. A relatively similar strategy was employed in [23,24] using the COST W.I. There are,
however, two drawbacks of the latter implementations:

(a) Selecting an appropriate and flexible model for a complicated outdoor environment where many
propagation mechanisms are involved is challenging. In fact, Hosseinzadeh et al. [19] had to
slightly adjust the MWM according to their requirement.

(b) Conventional models are not tailored or flexible enough to represent the novel characteristics
of communication devices. For instance, to the best of our knowledge, there is no propagation
model that takes the spreading factor (sm) of a chirp spread spectrum modulation (CSS) [25]
into consideration. Theoretically, a higher sm provides a higher processing gain and, therefore,
improves the range. Including such technology-dependent parameters not only increases the
modeling accuracy and makes the models more compatible with new devices, but it also helps
modeling the signal propagation of the whole system rather than estimation of the path loss only.

3. Proposed Model Description

To address the explained shortfalls and challenges, an adaptive neuro-fuzzy model is proposed.
This allows the user to initiate the system with incorporated linguistic knowledge of propagation
and then train the system further to achieve a higher accuracy. Next, the essential fuzzy/linguistic
input–output parameters of a propagation model are identified. Furthermore, to avoid overfitting and
achieve a better generalization, an efficient clustering method to determine the optimum size of the
nodes is used. Finally, the system is trained with a hybrid algorithm that tunes the input and output
parameters of the fuzzy system. This section explains the implementation details.

3.1. Adaptive Neuro-Fuzzy Inference System for Propagation Estimation

Fuzzy systems are universal approximators of nonlinear dynamic systems [26,27]. The idea of
fuzzy sets, fuzzy logics and consequently fuzzy inference systems was first proposed by Zadeh [28].
As stated by Zadeh, fuzzy systems “provide an approximate and yet effective means of describing
the behavior of systems which are too complex or too ill-defined to admit of precise mathematical
analysis” [29]. The humanistic nature of the fuzzy systems allows us to define a complex system with
fuzzy/linguistic variables using a human-like reasoning instead of using conventional mathematical
tools or precise quantitative analysis. Fuzzy systems provide some degree of resistance to handle
vague, ambiguous, imprecise, noisy, missing and uncertain information [30–33]. This should provide
the level of flexibility required to deal with data that is hard or rather impossible to accurately infuse
into the model, such as the φ and ws. This resistance also relaxes the inevitable inaccuracies in data
collection. This is mainly due to the fuzzification of continuous variables. The fuzzification process
transforms the crisp value of the inputs (x) to degrees of membership μ(x) using a membership
function (μ). Next, these membership functions μ are tuned using the gradient-descent algorithm to
optimize the output. Changes in the μ are therefore affecting the degrees of membership μ(x) of the
inputs (x).

The proposed ANFIS architecture comprises first-order Tagaki-Sugeno (T-S)-type fuzzy
systems [34], where the output membership functions are first-order polynomials. Therefore, a hybrid
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training allows a linear least-squares estimation to be used for the identification of the consequent
parameters, and a gradient descent optimization is used to identify the premise parameters [30,35].
Compared to most neural networks, ANFIS also has fewer parameters, many of which can be tuned
with linear least-squares. These features give ANFIS the advantage of fast training and computational
speed; furthermore, since there are fewer tunable parameters, the pitfall of overfitting the data would
be avoided [36].

The T-S fuzzy implication (if–then rule) is analogous to that of defining a nonlinear input–output
mapping. The process can be interpreted as the decomposition of a system into a finite number of
subsystems and then approximating each subsystem. The output of the T-S is determined by the
aggregation of the implications. Considering a number of implications Ri, with antecedents (premise)
Ai and consequences yi, implication ith (i = 1, . . . , n) is of the format of Equation (1),

Ri : if Ai then yi

Ai : If x1 is μ1 and . . . and xk is μk≡ μ1(x1)Λ . . . Λμk(xk)

yi = p0 + x1 p1 +−→+ xk pk

Ai
= Ai

∑i Ai ,

(1)

where x is the input vector (premise variable), μk contains the membership functions of the kth input,

pk is the consequence parameters vector, and Ai is the normalized firing strength, or truth value, of the
implication Ri.

3.2. Model Input

A relatively similar set of inputs that are defined in the COST231 model was considered, however,
three additional inputs were added based on our knowledge of propagation and common sense.
In addition, three of the COST231 inputs (base station height, mobile station height and their height
difference) were combined into one. Many of these modeling inputs were acquired from Google
maps to further facilitate the modeling. The only output of the system is the received signal strength
indicator (RSSI). These inputs are explained as follows:

(a) spreading factors (sm) of LoRa’s CSS modulation (7 ≤ sm ≤12);
(b) height difference (Δh = hbs − hms) between the base station (hbs) and mobile station (hms),

where hms is the altitude of earth at the location of measurement;
(c) free space path loss (l f s = 20 log λ

4πdlos
) to include the effect of frequency, λ is the wavelength of

transmission and dlos is the LoS distance (regardless of obstruction) between transceivers;
(d) clutter ratio (clos) in the LoS, total number of buildings and structures in LoS, regardless of

their heights;
(e) acute angle between the LoS and the axis of the road (φ);
(f) relative width of the street (ws);
(g) dw defined as the length of LoS that is on the water divided by the dlos;

where hbs, hms, φ, ws and dw are acquired from Google map images and, therefore, may have some
inaccuracies. For certain scenarios, some of these parameters may not be very important, or may not
exist, and therefore, would not apply at all.

3.3. Model Identification

Various membership functions including triangular, trapezoidal and sigmoidal were examined
for the fuzzification; however, a normalized Gaussian membership function, with the general form of
Equation (2), yielded the best result, where σ is the standard deviation and determines the spread of μ,
and τ is the mean, which determines the center of the μ.

μc,σ(x) = e−(x−τ)2/2σ2
(2)
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Two approaches were considered for the identification of the premise structure. The first
approach was to define fuzzy if–then rules using all the possible permutations of all or some of
the fuzzified inputs. For instance, using common sense knowledge of propagation one could define
the following implication:

• “If dlos is short and sm is high and clos is clear then RSSI is good.”

This states that “if the transmission was done over a short distance, with a high spreading factor,
and the LoS was relatively clear of clutter, then reception should be good, regardless of other input
parameters”. However, this approach can be prone to combinatorial explosion of rules, especially
for complex systems. Considering that there was a total of seven inputs, each with two membership
functions, then the total number of rules is 27.

The second approach was to use a clustering method [36]. A subtractive clustering [37] was chosen
for the identification of the rules, since subtractive clustering does not require an initial estimate of the
center or the number of clusters [38]. Other clustering algorithms could be used, where eventually,
each cluster center forms a fuzzy rule.

A first-order T-S model was selected, as it provided a higher accuracy compared to zero-order
T-S. Hence, output membership functions were of the form y in Equation (1), where the output linear
functions (pk) were identified by linear least-squares optimization.

4. Analysis and Results

About 5000 data samples were collected over a relatively large area (4.25 km × 2.7 km) in the
commercial area of Glasgow, Scotland. Data was collected from three base stations at different locations,
with 1931, 1820 and 1256 samples being collected from BS1, BS2 and BS3, respectively. Figure 1 shows
the area of the investigation, where some of the measurement locations are pinpointed with markers,
and gateways are labeled as BS1, BS2 and BS3. Base stations are equipped with the same antennae,
mounted relatively at the same height from the ground. Data was analyzed to provide an insight of
the performance of the proposed model.

To check the goodness of fit and benchmarking with other models, the most commonly used
measures in the literature were reported, RMSE (root mean square error in dB), Eσ (error standard
deviation dB) and Em (mean error dB). Unfortunately, the first two measures depend on the range
or scale of data and Em ignores the error sign. Therefore, to address these issues, the Nash-Sutcliffe
efficiency (NSE) coefficient is used as a measure of the goodness of the fit. Having a universal measure
of performance benchmarking is especially important, as various wireless technologies have different
sensitivities. This difference impacts the dynamic range of measured data and, therefore, its RMSE
scale; however, the NSE is less prone to the dynamic range. NSE ranges from −∞ to 1, where 1 would
indicate a perfect match between the model predictions and measurements [39].

In addition, to investigate the model’s generalization capability, instead of training with one BS
at a time, data from all the three BSs was used to train and validate the model. For the purpose of
comparison, an ANN model was also used to model the propagation. A feedforward ANN was chosen
with three hidden layers of size seven, 14 and four neurons for each layer, respectively. The best ANN
structure was chosen heuristically after trying ANNs with two to five hidden layers of various neuron
sizes. Results in Table 1 demonstrate the average of a 10-fold cross-validation analysis; 90% of data
was used for training.
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Figure 1. Area of practical investigation 4.25 km × 2.7 km, and base station locations (BS1, BS2, BS3).
A few measurement locations are pinpointed with markers.

Table 1. ANFIS and ANN model performance with 10-fold cross-validation.

ANFIS

Base Station RMSE Eσ Em MAE NSE

BS1 5.783 5.788 0.022 4.582 0.58
BS2 6.631 6.621 0.050 5.196 0.56
BS3 6.290 6.285 0.026 5.017 0.38

BS1,2,3 7.060 7.056 0.014 5.495 0.48

ANN

BS1 6. 233 6.231 0.002 4.905 0.51
BS2 8.249 8.257 −0.103 6.457 0.44
BS3 7.045 7.037 0.029 5.617 0.30

BS1,2,3 8.128 8.127 0.167 6.388 0.38

The results of the COST W.I. model are tabulated in Table 2 to make a comparison with other
practical investigations conducted in [15].

Table 2. COST W.I. model performance with optimization.

Base Station RMSE Eσ Em MAE NSE

BS1 12.37 10.61 6.367 10.54 0.039
BS2 18.94 14.12 12.63 16.25 −0.27
BS3 13.33 12.46 4.752 11.04 −0.30

BS1,2,3 18.14 12.02 13.58 15.86 −0.37

Figure 2 compares the measurements and estimation for BS1, and Figure 3 compares the overall
estimation of all base stations with measurements.
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Figure 2. ANFIS estimations vs practical measurements at BS1.

 
Figure 3. ANFIS estimation vs practical measurements at all BSs.

A series of models were benchmarked against similar practical measurements in COST Action
231 [15]. In this comparison, 970, 335 and 1031 samples were collected from three different base stations
in Munich, Germany. Propagation models were then used to estimate the signal strength only for each
individual site. Since the examined models were either deterministic or semi-deterministic, 2D or 3D
building layout and building height information were provided to the models in the study conducted
by COST, whereas the COST231 in this article only used the collected environmental information that
was explained earlier (Section 3.2). In Table 3, only the range of measures (maximum and minimum of
Eσ and Em) of COST performance analysis report are included. A detailed performance of each model
can be found in Table 4.5.2 of COST Action 231 Chapter 4 [15]. Unfortunately, other performance
metrics such and RMSE, NSE and MAE are not stated in this report. Therefore, the RMSE in Table 3
is extracted for instances with Em ≈ 0 (if Em = 0 then RMSE = Eσ). Table 3 is provided as a
measure of overall modelling accuracy that can be achieved given the availability of 2D or 3D
environmental information.

Table 3. Range of standard deviation and mean in COST W.I. measurements [15].

Eσ Em RMSE

min max min max min max

6.0 21.6 −0.1 21.8 7 13.8
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To further observe the generalization capability of the ANFSI model, only 20% of the data was
used for training. These results are tabulated in Table 4.

Table 4. ANFIS model performance with 20% training data.

Base Station RMSE Eσ Em MAE NSE

BS1 6.193 6.191 −0.037 4.887 0.51
BS2 8.035 8.014 −0.017 6.233 0.46
BS3 7.451 7.445 0.153 5.837 0.27

BS1,2,3 8.0917 8.0891 −0.008 6.317 0.38

5. Discussion and Conclusions

The decomposition of a propagation system into smaller subsystems has been the ultimate goal
of the Okumura, Hata and COST models. In fact, the suggestion of the breaking point-distance
phenomenon in ITU recommendation P.1411 [40] follows the same idea. These attempts used crisp or
Boolean logic to differentiate between a limited set of propagation conditions or scenarios. In contrast
to sudden transitions, fuzzy logics make it possible to have smoother transitions, while mitigating the
uncertainties within the data. ANFIS further allowed for the implementation of an expert’s knowledge
into the system, which addressed part of the challenges of the ANN models.

Comparison of the models used in this investigation indicated that the ANFIS and ANN models
resulted in a remarkably better performance in terms of estimation, compared to the COST W.I. model.
The ANFIS model resulted in a better performance compared to the ANN model. Eσ and NSE were
consistently improved by about 1 dB and 10%, respectively. ANFIS was found as a better generalization
candidate. In this study, the performance of ANN in Table 1 was almost identical to the ANFIS results
in Table 4. This is while the ANN was trained with 90% of the data, whereas ANFIS achieved the same
results with only 20% of the data.

Furthermore, two new parameters were added into the model without having to formulate them.
sm was required due to the wireless technology of choice, and dw was added due to the features of
the propagation environment. Inclusion of these parameters in the modeling reduced the RMSE and
NSE of the ANFIS model by 0.55 dB and 7%, respectively. These two parameters, however, did not
make a significant change to the ANN model results. This might be due to the limited number of
measurements (380 samples) that had dw. This is the most likely reason, given that ANFIS, with a
better generalization, could benefit from this parameter.

In this investigation, the proposed ANFIS model was used for outdoor environments. However,
it can be easily adopted for indoor propagation as well. This is as simple as providing the impacting
propagation parameters for the system and roughly describing their effect using fuzzy linguistic
reasoning. For instance, in an indoor environment, the effect of a higher number of walls, windows or
doors on LoS can increase the loss.
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Abstract: In this paper, new fuzzy numerical methods based on the fuzzy transform (F-transform
or FT) for solving the Cauchy problem are introduced and discussed. In accordance with existing
methods such as trapezoidal rule, Adams Moulton methods are improved using FT. We propose three
new fuzzy methods where the technique of FT is combined with one-step, two-step, and three-step
numerical methods. Moreover, the FT with respect to generalized uniform fuzzy partition is able
to reduce error. Thus, new representations formulas for generalized uniform fuzzy partition of FT
are introduced. As an application, all these schemes are used to solve Cauchy problems. Further,
the error analysis of the new fuzzy methods is discussed. Finally, numerical examples are presented
to illustrate these methods and compared with the existing methods. It is observed that the new
fuzzy numerical methods yield more accurate results than the existing methods.

Keywords: fuzzy partition; fuzzy transform; new iterative method; Cauchy problems

1. Introduction

In fact, most mathematical models in engineering and science requires the solution of ordinary
differential equations (ODEs). Generally, it is difficult to obtain the closed form solutions for ODEs,
especially, for nonlinear and nonhomogeneous cases. Many models often lead to ordinary differential
equations which consist of Cauchy problems are an important branch of modern mathematics that
arises naturally in different areas of applied sciences, physics, and engineering. Thus, many researchers
start developing methods for solving Cauchy problems are of particular importance [1–3].

FT was coined by Perfilieva as a new mathematical method was developed [4]. The core idea
of FT is a fuzzy partition of a universe into fuzzy subsets. The technique of FT has been successfully
applied into other mathematical problems as well including image processing, analysis of time series
and elsewhere [5–7]. This idea has been applied to Cauchy problems was first published as well as
other numerical classical methods [8], by proposing generalized Euler and Euler- Cauchy methods, so
that the Mid-point FT method was demonstrated in [9]. The success of these applications is due in
part to the fact that FT is capable to accurately approximate any continuous function. Thus, we will
propose new fuzzy numerical methods for Cauchy problems with help of the FT and new iterative
method.

The motivation of the proposed study comes from the papers [3,8,10]. Numeric Solution to the
Cauchy problem was considered and the authors showed that the error can be reduced by using FT
with uniform fuzzy partitions [8,9]. At the same time, [10,11], the concept of generalized fuzzy partition
was proposed. Besides others, a necessary and sufficient condition making it possible to design easily
the generalized fuzzy partition was provided [12]. This is important for various practical applications
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of FT. Further [3], the authors have proposed modifications trapezoidal rule and Adams-Moulton
methods (2 and 3-step) to solve ODEs based on the new iterative method was introduced [2].

In this paper, we discuss the problem that considered in [8,9]. The triangular and raised cosine
generating function was replaced by new representations formulas for generalized uniform fuzzy
partition of FT such as power of the triangular and raised cosine generating function. We study
approximation properties of the FT based on powers of triangular and raised cosine generalized
uniform fuzzy partition can be constructed in such way that the FT can reduce error. Also, we propose
modifications in the FT introduced by I. Perfilieva [4] with respect to new representations formulas for
generalized uniform fuzzy partition of FT and then the technique of FT is combined with traditional
methods based on the new iterative method [2,3] to solve Cauchy problems. It is observed that the
new methods proposed are more accurate results than the fuzzy approximation method [8,9].

This paper is organized as follows. In Section 2, we introduce the basic concepts and results of the
FT with respect to the generalized uniform fuzzy partition needed throughout this paper. The main
part of this paper is Sections 3 and 4, new representations for basic functions of FT, followed by the
modified one step, 2-step , and 3-step based on new representations formulas for generalized uniform
fuzzy partition of FT. In Section 5, numeric examples are discussed. Concluding remarks are presented
in Section 6.

Throughout the paper, we denote by N, N+, Z, R, and R+ the sets of natural (including zero),
positive natural, integer, real , and positive real numbers, respectively.

2. Basic Concepts

In this section, we give some definitions and introduce the necessary notation in [10], which will
be used throughout the paper. Throughout this section, we deal with an interval [a, b] ⊂ R of
real numbers.

Definition 1. (generalized uniform fuzzy partition) Let xi ∈ [a, b] , i = 1, . . . , n, be fixed nodes such that
a = x1 < . . . < xn = b, n ≥ 2. We say that the fuzzy sets Ai : [a, b] → [0, 1] constitute a generalized fuzzy
partition of [a, b] if for every i = 1, . . . , n there exists h > 0 such that x0 = x1, xn = xn+1, [xi − h, xi + h] ⊆
[a, b] and the following conditions are fulfilled:

1. (positivity and locality) – Ai (x) > 0 if x ∈ (xi−1, xi+1) and Ai (x) = 0 if x ∈ [a, b] \ (xi−1, xi+1);
2. (continuity) – Ai is continuous on [xi−1, xi+1];
3. (covering) – for x ∈ [a, b] , ∑n

i=1 Ai(x) > 0.

Fuzzy sets A1, . . . , An are called basic functions. It is important to remark that by conditions of locality and
continuity,

∫ b
a Ai(x)dx > 0. A generalized of uniform fuzzy partition of [a, b] is defined for equidistant nodes,

i.e., for all i = 1, . . . , n − 1, xi = xi+1 + h, where h = (b − a) / (n − 1) and two additional properties
are satisfied,

4. Ai (xi − x) = Ai (xi + x) for all x ∈ [0, h] , i = 2, . . . , n − 1;
5. Ai (x) = Ai−1 (x − h) and Ai+1 (x) = Ai (x − h) for all x ∈ [xi, xi+1] , i = 2, . . . , n − 1;

then the fuzzy partition is called h-uniform generalized fuzzy partition. Throughout this paper, we will write
generalized uniform fuzzy partition instead of h-uniform generalized fuzzy partition.

Definition 2. (generating function) A function K : [−1, 1] → [0, 1] is called a generating function if it is
assumed to be even, continuous and K (x) > 0 if x ∈ (−1, 1). The function K : [−1, 1] → R is even if for all
x ∈ [0, 1] , K (−x) = K (x).

The following definition recall the concept of generalized fuzzy partition which can be easily
extended to the interval [a, b]. We assume that [a, b] is partitioned by A1, . . . , An, according to
Definition 1.
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Definition 3. A generalized uniform fuzzy partition of interval [a, b], determined by the triplet (K, h, a), can
be defined using generating function K (Definition 2). Then, basic functions of a generalized uniform fuzzy
partition are shifted copies of K defined by

Ai (x) = K
(

x − xi
h

)
, x ∈ [xi − h, xi + h] ,

for all i = 1, . . . , n. The parameter h is called the bandwidth or the shift of the fuzzy partition and the nodes
xi = a + ih are called the central point of the fuzzy sets A1, . . . , An.

Remark 1. A fuzzy partition is called Ruspini if the following condition

Ai (x) + Ai+1 (x) = 1, i = 1, . . . , n − 1, (1)

holds for any x ∈ [xi, xi+1]. This condition is often called Ruspini condition.

3. New Representations of Basic Functions for Particular Cases

In this section, we propose two subsection, new representations of basic functions constitute
a generalized uniform fuzzy partition of interval [a, b] and then FT technique based on new
representations of basic functions.

3.1. Power of the Triangular and Raised Cosine Generalized Uniform Fuzzy Partition

Two types of basic functions, triangular and sinusoidal shaped membership functions, were
proposed by [4,8]. Later [13], the authors considered different shapes for the basic functions of fuzzy
partition. Furthermore, a generalized fuzzy partition appeared in connection with the notion of a
higher-degree F-transform [11]. Its even weaker version was implicitly introduced to satisfy the
requirements of image compression [14]. Recently, the different conditions for generalized uniform
fuzzy partitions was proposed by [10,12]. Table 1 provides the definition two types of generating
function, triangular and raised cosine generating functions [7,10–12,15].

Table 1. Generating functions of strong uniform fuzzy partition.

Triangular Generating Function Raised Cosine Generating Function

max {1 − |x| , 0} 1
2 (1 + cos (πx))|[−1,1]

In the following, we present new representations for generating function. In particular,
we present three new representations, based on the triangular and raised cosine generating functions:
two generating function based on the triangular generating functions and one generating function
based on the raised cosine generating function.

Definition 4. (natural order triangular generating function) Let KTm
i

: R → [0, 1], i = 1, 2, be defined by

1. KTm
1
(x) =

{
(1 − |x|)m , |x| ≤ 1,

0, otherwise
= min

(
(1 − |x|)m , 1

)
, (2)

2. KTm
2
(x) =

{
1 − (|x|)m , |x| ≤ 1,

0, otherwise
= min

(
1 − (|x|)m , 1

)
, (3)

are called power of the triangular (shaped) generating functions, when m ∈ N+.
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Definition 5. (odd natural order raised cosine generating function) Let KCm : R → [0, 1] be defined by

KCm (x) =

{
1
2 (1 + cosm (πx)) , |x| ≤ 1;

0, otherwise.
(4)

is called power of the raised cosine generating function , when m is an odd natural number
(i.e., m = 2k − 1, k ∈ N+).

Remark 2. Particularly, we can check the validity of Equation (4) using the following relation

KCm (x) =

{
1
2 (1 + cosm (πx)) , |x| ≤ 1,

0, otherwise.

=

{
1
2
(
1 + sinm (π

2 (2x + 1)
))

, |x| ≤ 1,

0, otherwise.

Lemma 1. If KTn
i
(x) , i = 1, 2, (KCm (x)) determines power of the triangular (raised cosine) generating

functions, then

1.
∫ 1
−1 KTn

1
(x) dx = 2

n+1 , 2.
∫ 1
−1 KTn

2
(x) dx = 2n

n+1 , 3.
∫ 1
−1 KCm (x) dx = 1,

or equivalent

1.
∫ h
−h KTn

1

( t
h
)

dt = 2h
n+1 , 2.

∫ h
−h KTn

2

( t
h
)

dt = 2nh
n+1 , 3.

∫ h
−h KCm

( t
h
)

dt = h,

where 0 ≤ ∣∣ 2
n+1

∣∣ ≤ 1, 1 ≤ ∣∣ 2n
n+1

∣∣ ≤ 2 , h be positive real numbers, m is an odd natural number and n ∈ N+.

Proof. The proof can be easily obtained by using integration methods within the boundaries and then
substitution x = t/h .

On the basis of Definitions 4 and 5, Lemma 1, and according to Definition 3, we can also be
defined using generating function αK for α > 0 (in general, not necessarily satisfy Ruspini condition).
Thus, basic functions of a generalized uniform fuzzy partition are shifted copies of αK defined by

Ak (x, x0) = αK
(

x − x0

h
− k
)

, x ∈ [xi−1, xi+1] . (5)

In particular, let KTm
1

, KTm
2

, (and KCm) be power of the triangular (and raised cosine) generating
function defined above. We will say that a generalized uniform fuzzy partition is power of a triangular
(or of raised cosine) generalized uniform fuzzy partition if its generating function K belongs to
αKTm

1
, αKTm

2
, (or αKCm) whenever α = 1/

(∫ 1
−1 K(t)dt

)
. Indeed, the equality α immediately follows

from
∫ 1
−1 αKTm

1
(t) dt = 1 ⇒ α = 1/

(∫ 1
−1 KTm

1
(t) dt

)
. In the following, we modified the definition

a triangular and raised cosine generalized uniform fuzzy partition by propose that power of the
triangular and raised cosine generalized uniform fuzzy partitions can be simply using the equality
α = 1/

(∫ 1
−1 K(t)dt

)
.

Definition 6. Let m ∈ N+. A system of fuzzy sets {Ak | k ∈ Z} defined by

1. Ak (x, x0) = αKTm
1

(
x−x0

h − k
)

, α = m+1
2 , (6)

2. Ak (x, x0) = αKTm
2

(
x−x0

h − k
)

, α = m+1
2m , (7)
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is called power of the triangular generalized uniform fuzzy partition of the real line determined by the triplet
(KTm

i
, h, x0), i = 1, 2. Further, let m is an odd natural number. A system of fuzzy sets {Ak | k ∈ Z} defined by

3. Ak (x, x0) = αKCm

(
x−x0

h − k
)

, α = 1, (8)

is called power of the raised cosine generalized uniform fuzzy partition of the real line determined by the triplet
(KCm , h, , x0). The parameter h is bandwidth of the fuzzy partition and x0 + kh = xk.

Definition 7. Let x1 < . . . < xn be fixed nodes within [a, b] ⊂ R, such that x1 = a, xn = b and n ≥ 2.
We consider nodes x1, . . . , xn are equidistant, with distance (shift) h = (b − a) / (n − 1). A system of fuzzy
sets B1, . . . , Bn : [a, b] → [0, 1] be power of a triangular and raised cosine generalized uniform fuzzy partitions
of [a, b] if it is defined by

Bk (x) =

{
Ak(x, a), x ∈ [a, b] ,

0, otherwise.
or equivalent Bk (x) =

⎧⎨
⎩αK

(
x−xk

h

)
, x ∈ [a, b] ,

0, otherwise.
(9)

where xk = a + kh. In the sequel, we denote K for a generating function determined by the Formulas (2)–(4).
Further, α, Ak(x, a), k = 1, . . . , n, are determined by the Formulas (6)–(8).

Lemma 2. If Bk (x) determines power of the raised cosine generalized uniform fuzzy partition of [a, b],
then Bk (x) satisfied Ruspini condition (1) when m (see (4) ) is an odd natural number.

Proof. Indeed, if x ∈ [a, b], there exists k ∈ {1, . . . , n − 1} such that x ∈ [xk, xk+1]. By (4) and (8),
and Remark 1, we get

Bk (x) + Bk+1 (x) = Ak(x, a) + Ak+1(x, a) = αKCm

(
x − xk

h

)
+ αKCm

(
x − xk+1

h

)
,

=
1
2

(
1 + cosm

(
π

(
x − xk

h

)))
+

1
2

(
1 + cosm

(
π

(
x − xk+1

h

)))
,

= 1 +
1
2

(
cosm

(π

h
(x − xk)

)
+ cosm

(π

h
(x − xk+1)

))
.

By the properties of trigonometric functions, notice thatcos (θ + π) = − cos (θ) , it is easy to
see that

cosm
(

π

(
x − xk

h

))
+ cosm

(
π

(
x − xk+1

h

))
= cosm

(
π

(
x − xk+1

h

)
+ π

)
+ cosm

(
π

(
x − xk+1

h

))
.

Thus, if m is an odd natural number, the result is 0.

In the following, if K is a normal generating function (i.e., K(0) = 1, not necessarily satisfy Ruspini
condition), we use generating function αK for α > 0, where (αK) (x) = α · K (x).

Lemma 3. If basic functions Bk, k = 1, . . . , n, of a generalized uniform fuzzy partition are shifted copies
of αK, α > 0, defined by the Formula (5) and moreover, K is normal as an additional condition. Then,
for each k = 1, . . . , n, Bk(xk) = α, xk ∈ [xk − h, xk + h].

Proof. A generating function K is said to be normal if K(0) = 1. By the Formula (5) and a generating
function K is normal, we get Bk (xk) = αK

(
xk−xk

h

)
= αK(0) = α > 0.

Corollary 1. Let the assumptions of Lemma 3 be fulfilled, but fuzzy sets Bk, k = 1, . . . , n, n ≥ 2, determined
by Definition 7. Then, for each k = 1, . . . , n, Bk(xk) = α, xk ∈ [xk − h, xk + h], where α is defined by
Definition 7.

137



Appl. Syst. Innov. 2018, 1, 15

Proof. Indeed, the proof immediately follows from Definition 7 and Lemma 3.

Corollary 2. Let the assumptions of Lemma 3 be fulfilled, but fuzzy sets Bk, k = 1, . . . , n, n ≥ 2, determined
by Definition 3. Then, for each k = 1, . . . , n, Bk(xk) = 1, xk ∈ [xk − h, xk + h].

3.2. New FT Based Power of the Triangular and Raised Cosine Generalized Uniform Fuzzy Partition

In this subsection, we present the main principles of F-transform detailed in [8,10,11] that are
modified with respect to power of the triangular and raised cosine generalized uniform fuzzy partition.
Further, we will show that FT components with respect to power of the triangular and raised cosine
generalized uniform fuzzy partition can be simplified and approximated of an original function, say f .

Definition 8. Let f be a continuous function on [a, b] and Bk(t), k = 1, . . . , n, be power of the triangular
and raised cosine generalized uniform fuzzy partition of [a, b] , n ≥ 2. A vector of real numbers
F[ f ] = (F1, F2, . . . , Fn) given by

Fk =

∫ b
a f (t) Bk(t) dt∫ b

a Bk(t) dt
, (10)

for k = 1, . . . , n is called the direct FT of f with respect to power of the triangular and raised cosine generalized
uniform fuzzy partition Bk.

In the following, we assume a generating function K in the Formulas (2)–(4). We will simplify the
representation (10).

Lemma 4. Let f ∈ C ([a, b]) and according to Definition 7, fuzzy sets Bk, k = 1, . . . , n, n ≥ 2, be power of a
triangular and raised cosine generalized uniform fuzzy partition of [a, b] with a generating function K, then
representation (10) of direct FT can be simplified as follows for k = 1, . . . , n

Fk =

∫ 1
−1 f (th + tk)K(t) dt∫ 1

−1 K(t) dt
=

∫ h
−h f (t + tk)K( t

h ) dt∫ h
−h K( t

h ) dt
.

Proof. In this proof, we will write a generating function K instead of (2)–(4). By Definition 7, we get

Bk (t) = αK
(

t − tk
h

)
, t ∈ [tk − h, tk + h] ,

for k = 1, . . . , n , t0 = t1, tn+1 = tn , and substituting u = t−tk
h and then substituting t = s/h . Thus,

we get ∫ tk+1

tk−1

f (t) Bk(t) dt = αh
∫ 1

−1
f (th + tk)K(t) dt = α

∫ h

−h
f (t + tk)K(

t
h
) dt

∫ tk+1

tk−1

Bk(t) dt = αh
∫ 1

−1
K(t) dt = α

∫ h

−h
K(

t
h
) dt

and its corresponding results with representation (10).

Indeed, the previous lemma holds for every fuzzy partition generated by a kernel. Now, we will
simplify the above given expressions for the coefficients F[ f ] = (F1, F2, . . . , Fn) in the representation
(10) even more. This fact is very important for applications which are more flexible and consequently
easier to use.
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Lemma 5. Let the assumptions of Lemma 4 be fulfilled. Then, the coefficients F[ f ] = (F1, F2, . . . , Fn) in the
expression (10) of the FT component Fk of f as follows:

Fk =
1
h

∫ b

a
f (t) Bk(t) dt =

α

h

∫ b

a
f (t)K

(
t − tk

h

)
dt, (11)

for k = 1, . . . , n, where interval [a, b] is partitioned by power of the triangular and raised cosine generalized
uniform fuzzy partition B1, . . . , Bn and α is defined by Definition 7.

Proof. Let k ∈ {1, . . . , n} and consider set of fuzzy sets Bk(x) from power of the triangular and raised
cosine generalized uniform fuzzy partition of [a, b] in (9). We will prove the equality

∫ tk+1
tk−1

Bk(t) dt = h.
We get by virtue of Lemmas 1 and 4, and (6):

∫ tk+1

tk−1

Bk(t) dt =
∫ tk+1

tk−1

Ak(t, a), dt =
∫ tk+h

tk−h

(
m + 1

2

)
KTm

1

(
t − tk

h

)
dt = h

∫ 1

−1

(
m + 1

2

)
KTm

1
(t) dt = h,

where h is the bandwidth of the fuzzy partition and tk = a + kh. Similarly, the other Formulas (7) and
(8) will be proved and then its corresponding in the expression (10).

Lemma 6. Let f ∈ C [a, b]. Then for any ε > 0 there exist nε ∈ N and B1, . . . , Bnε be basic functions form
power of the triangular and raised cosine generalized uniform fuzzy partition of [a, b]. Let Fk, k = 1 . . . , n,
be the integral FT components of f with respect to B1, . . . , Bnε . Then for each k = 1 . . . , nε − 1 the following
estimations hold: | f (t)− Fi| ≤ ε for each t ∈ [a, b] ∩ [tk, tk+1] and i = k, k + 1.

Proof. see [4].

Corollary 3. Let the conditions of Lemma 6 be fulfilled. Then for each k = 1 . . . , nε − 1 the following
estimations hold: |Fk − Fk+1| < ε.

Proof. According to [4,16], let t ∈ [a, b]∩ [tk, tk+1]. Then by Lemma 6, for any k = 1, . . . , n− 1 we obtain
| f (t)− Fk| < ε/2 and | f (t)− Fk+1| < ε/2. Thus, |Fk − Fk+1| ≤ | f (t)− Fk|+ | f (t)− Fk+1| < ε

2 + ε
2 = ε.

The following theorem estimates the difference between the original function and its direct FT
with respect to power of the triangular and raised cosine generalized uniform fuzzy partition.

Theorem 1. Let f (t) ∈ C2 [a, b] and the conditions of Lemma 5 be fulfilled. Then for k = 1, . . . , n

Fk = α f (tk) +O (h2) , (12)

where α > 0 or α is defined by Definition 7.

Proof. By locality condition for Definition 1, Lemmas 3 and 5, and according to the proof of
Lemma 9.3 [8], using the trapezoid formula with nodes tk−1, tk, tk+1 to the numerical computation of
the integral, we get for α > 0

Fk =
1
h

∫ tk+1

tk−1

f (t) Bk(t) dt,

=
1
h

.
h
2
( f (tk−1) Bk(tk−1) + 2 f (tk) Bk(tk) + f (tk+1) Bk(tk+1)) +O

(
h2
)

,

= f (tk) Bk(tk) +O
(

h2
)
= f (tk) Ak(tk, a) +O

(
h2
)

,

= f (tk) αK (0) +O
(

h2
)

,

= α f (tk) +O
(

h2
)

.
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Definition 9. Let F[ f ] = (F1, F2, . . . , Fn) be direct FT of a function f ∈ C [a, b] with respect to the fuzzy
partition Bk(t), k = 1, . . . , n of [a, b]. Then, the function f̂ defined on [a, b]

f̂ (t) =
∑n

k=1 FkBk(t)
∑n

k=1 Bk(t)
, (13)

is called the inverse FT of f .

Corollary 4. Let the assumptions of Lemma 2 and moreover, Let f̂ (t) be the inverse FT of f with respect to
power of the raised cosine generating function . Then, for all t ∈ [a, b] the following holds: f̂ (t) = ∑n

k=1 FkBk(t).

Proof. This proof immediately follows from Defintion 9, Lemma 2 and then using ∑n
k=1 Bk(t) = 1.

The following lemma estimates the difference between the original function and its inverse FT.

Lemma 7. Let the assumptions of Theorem 1 and let f̂ (t) be the inverse FT of f with respect to the fuzzy
partition of [a, b] is given by Definition 7. Then, for all t ∈ [a, b] the following estimation holds:

f̂ (t) = α f (tk) +O
(

h2
)

. (14)

Proof. Let t ∈ [a, b] so that x ∈ [tk, tk+1] for some k = 1, . . . , n. By Theorem 1,

f̂ (t)− α f (tk) =
∑n

k=1 FkBk(t)
∑n

k=1 Bk(t)
− α f (t) =

∑n
k=1 FkBk(t)

∑n
k=1 Bk(t)

− ∑n
k=1 α f (tk) Bk(t)

∑n
k=1 Bk(t)

=
∑n

k=1 (Fk − α f (tk)) Bk(t)
∑n

k=1 Bk(t)
= O

(
h2
)

.

Corollary 5. Let the assumptions of Lemma 7, then
∣∣∣ f̂ (t)− f (t)

∣∣∣ < ε.

Proof. The proof easily follows from the proof of Lemma 7 and then using Lemma 6 as follows:

∣∣∣ f̂ (t)− f (t)
∣∣∣ = ∑n

k=1 |Fk − f (t)| Bk(t)
∑n

k=1 Bk(t)
< ε.

Remark 3. According to the Definitions 1 and 2, if the normality is considered to be an additional
condition for generating function (i.e., K(0) = 1) and generalized uniform fuzzy partition of [a, b] satisfies
Ak(xk) = α, α > 0, then it is easy to see that the inverse FT f̂ (tk) = Fk for all k = 1, . . . , n. This is true for
Definition 7. Moreover, if orthogonality condition (Ruspini condition (1)) is replaced by covering condition in
Definition 1 and generalized uniform fuzzy partition of [a, b] satisfies Ak(xk) = α = 1, then it is easy to also
see that the inverse FT f̂ (tk) = Fk for all k = 1, . . . , n. This is true for Formula (8) only.

Important property of the direct FT as well as inverse FT is their linearity, namely, given
f , g ∈ C [a, b] and α, β ∈ R, if h = α f + βg, then F [h] = αF [ f ] + βF [g] and ĥ = α f̂ + βĝ. In the
next section, we present new fuzzy numerical methods based on the FT and a new iterative method to
numeric solution of the Cauchy problem.

4. New Fuzzy Numerical Methods for Cauchy Problem

Consider the initial value problem (IVP) for the Cauchy problem:

y′ = f (t, y), y(t1) = y1, a = t1 ≤ t ≤ tn = b. (15)
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where y1 ∈ R and f is continuous function on [a, b] × R and satisfies Lipschitz condition. In fact,
the analytical solution of problem (15) is often difficult and sometimes impossible to obtain. Instead,
numerical analysis is interested with obtaining approximate solutions with errors within reasonable
bounds. Thus, a usage of fuzzy numerical methods seems to be suitable.

In [8,9], the authors have presented Euler method and Mid-point rule, based on FT to numeric
solution of Cauchy problem (15). A new iterative method (NIM) has been proposed for solving linear
(nonlinear) functional equations, ordinary differential equations and delay differential equations [2,3].

In this section, we present three new schemes to solve Cauchy problem (15), that use the FT and
NIM. Our motivation stems from the classical approach, trapezoidal rule (1-step) and Adams Moulton
methods (2 and 3-step). For the rest of this paper, suppose that we are given the Cauchy problem (15),
where the function f on [a, b] are sufficiently smooth and we assume that all necessary requirements
for constructing the FT of the solution of Cauchy problem (15) are fulfilled. Now, we present numerical
Scheme I, II, and III. The first scheme uses 1-step method, while the second one uses 2-step method,
and the third uses 3-step method.

4.1. Numeric Scheme I: Modified Trapezoidal Rule Based on FT and NIM for Cauchy Problem

In the present subsection, we will construct a numeric scheme of the more advanced method
known as the Trapezoidal Rule. Recall that it is a one-step method with second-order accuracy, which
can be considered as a Runge–Kutta method. We propose modification of trapezoidal rule based on
FT and NIM for solving Cauchy problem. Modification of the trapezoidal rule can be improved by
the FT to solve Cauchy problem (15). We contributed to numeric methods of Cauchy problem (15)
by scheme provides formulas for the FT components, Yk, k = 2, . . . , n − 1, of the unknown function
y(t) with respect to choose some power of the triangular (or raised cosine) generalized uniform fuzzy
partition, B1, . . . , Bn, of interval [a, b] with parameter h to approximate solution of Cauchy problem (15).
The first, choose the number n ≥ 2 and compute h = (b − a) / (n − 1), then construct the generalized
uniform fuzzy partition of [a, b] using Definition 7. Note that each function Bk spans over three nodes
tk−1, tk, tk+1, k = 2, . . . , n − 1. Nevertheless, Bk(tk−1) = Bk(tk+1) = 0 and Bk(tk) = 1. Now, we apply
the FT and NIM to Cauchy problem (15) and obtain the numeric Scheme I for k = 1, . . . , n − 1 as
follows (see [3,8] for technical details):

Y1 = y1,

Y∗
k+1 = Yk + hFk/2,

Y∗∗
k+1 = Y∗

k+1 + hF∗
k+1/2,

Yk+1 = Yk + h
(

Fk + F∗∗
k+1
)

/2,

(16)

where

Fk =

∫ b
a f (t, Yk)Bk(t)dt∫ b

a Bk(t)dt
, F∗

k+1 =

∫ b
a f (t, Y∗

k+1)Bk+1(t)dt∫ b
a Bk+1(t)dt

, F∗∗
k+1 =

∫ b
a f (t, Y∗∗

k+1)Bk+1(t)dt∫ b
a Bk+1(t)dt

. (17)

In the sequel, the approximate solution of Cauchy problem (15) can be obtained using the inverse
FT as follows:

yn(t) =
n

∑
k=1

YkBk(t). (18)

4.2. Numeric Scheme II: Modified 2-Step Adams Moulton Method Based on FT and NIM for Cauchy Problem

The Scheme I uses 1-step method for solving Cauchy problem (15). In this subsection, we improve
2-step Adams Moulton method using FT and NIM for solving Cauchy problem (15). The 2-step
Adams Moulton method can be improved to effectively approximate the solution of (15) by the FT
components, Yk, k = 2, . . . , n − 1, of the unknown function y(t) with respect to choose some power of
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the triangular (or raised cosine) generalized uniform fuzzy partition (9). Let Y1 = y1 and Y2 = y2 if
possible; otherwise, we can compute FT component Y2 from numeric Scheme I. Analogously to [3,8],
we apply the FT and NIM to Cauchy problem (15) and obtain the numeric Scheme II in the following
form for k = 2, . . . , n − 1:

Y∗
k+1 = Yk + h (8Fk − Fk−1) /12,

Y∗∗
k+1 = Y∗

k+1 + 5hF∗
k+1/12,

Yk+1 = Yk + h
(
8Fk − Fk−1 + 5F∗∗

k+1
)

/12,

(19)

where

Fk−1 =

∫ b
a f (t, Yk−1)Bk−1(t)dt∫ b

a Bk−1(t)dt
, Fk =

∫ b
a f (t, Yk)Bk(t)dt∫ b

a Bk(t)dt
,

F∗
k+1 =

∫ b
a f (t, Y∗

k+1)Bk+1(t)dt∫ b
a Bk+1(t)dt

, and F∗∗
k+1 =

∫ b
a f (t, Y∗∗

k+1)Bk+1(t)dt∫ b
a Bk+1(t)dt

.

Then, obtain the desired approximation for y by the inverse FT (18) applied to [Y1, . . . , Yn].

4.3. Numeric Scheme III: Modified 3-Step Adams Moulton Method Based on FT and NIM for Cauchy Problem

In this subsection, we improve 3-step Adams Moulton method using FT and NIM for solving
Cauchy problem (15). The 3-step Adams Moulton method can be improved to effectively approximate
the solution of (15) by the FT components, Yk, k = 2, . . . , n − 1, of the unknown function y(t) with
respect to choose some power of the triangular (or raised cosine) generalized uniform fuzzy partition
(see Definition 7), B1, . . . , Bn, of interval [a, b] with parameter h = (b − a) / (n − 1) , n ≥ 2. Let Y1 = y1,
Y2 = y2 and Y3 = y3 if possible; otherwise, we can compute FT components Y2 and Y3 from numeric
Scheme I. Now, we apply the FT and NIM to Cauchy problem (15) and obtain the following numeric
Scheme III for k = 3, . . . , n − 1 (see [3,8] for technical details):

Y∗
k+1 = Yk + h (19Fk − 5Fk−1 + Fk−2) /24,

Y∗∗
k+1 = Y∗

k+1 + 9hF∗
k+1/24,

Yk+1 = Yk + h
(
19Fk − 5Fk−1 + Fk−2 + 9F∗∗

k+1
)

/24,

(20)

where

Fk−2 =

∫ b
a f (t, Yk−2)Ak−2(t)dt∫ b

a Ak−2(t)dt
, Fk−1 =

∫ b
a f (t, Yk−1)Ak−1(t)dt∫ b

a Ak−1(t)dt
, Fk =

∫ b
a f (t, Yk)Ak(t)dt∫ b

a Ak(t)dt
,

F∗
k+1 =

∫ b
a f (t, Y∗

k+1)Ak+1(t)dt∫ b
a Ak+1(t)dt

, and F∗∗
k+1 =

∫ b
a f (t, Y∗∗

k+1)Ak+1(t)dt∫ b
a Ak+1(t)dt

.

In the sequel, the inverse FT (18) approximates the solution y(t) of the Cauchy problem (15).

4.4. Error Analysis of Fuzzy Numeric Method for Cauchy Problem

In this subsection, we present error analysis for numeric scheme I only, because the technique of
error analysis for rest numeric schemes (Schemes II and III) can be obtained analogously. Consider
the Formula (16). If y(tk) = yk and Yk denote the exact solution and the numerical solution and
substituting the exact solution in the Formula (16), we get

y∗k+1 = yk + hFe
k /2,

y∗∗k+1 = y∗k+1 + hFe∗
k+1/2,

yk+1 = yk + h
(

Fe
k + Fe∗∗

k+1
)

/2,

(21)
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where

Fe
k =

∫ b
a f (t, yk)Bk(t)dt∫ b

a Bk(t)dt
, Fe∗

k+1 =

∫ b
a f (t, y∗k+1)Bk+1(t)dt∫ b

a Bk+1(t)dt
, Fe∗∗

k+1 =

∫ b
a f (t, y∗∗k+1)Bk+1(t)dt∫ b

a Bk+1(t)dt
,

(22)
and the truncation error Tk of the Scheme I is given by

Tk =
yk+1 − yk

h
− 1

2
(

Fe
k + Fe∗∗

k+1
)

. (23)

Rearranging (16), we get

0 =
Yk+1 − Yk

h
− 1

2
(

Fk + F∗∗
k+1
)

. (24)

If we denote the error ek+1 = Yk+1 − yk+1 and subtracting (24) from (23), so:

Tkh = ek+1 − ek − h
2
(Fk − Fe

k )−
h
2
(

F∗∗
k+1 − Fe∗∗

k+1
)

. (25)

Lemma 8. Let f is assumed to be sufficiently smooth function of its arguments on [a, b] and satisfies the
Lipschitz condition with the constant L with respect to y, then we get for k = 1, . . . , n,

|ek+1| ≤ |ek| (1 + c) + Th and
∣∣∣Fe

k − Fe∗∗
k+1

∣∣∣ ≤ LhM2

where c = hL + h2L2

2 + h3L3

8 , T = max
1≤k≤n

|Tk|, M2 is upper bound for f , and Fe
k , Fe∗∗

k+1 are determined by

Formula (22).

Proof. By hypothesis, f satisfies the Lipschitz condition and using Lemma 5, Formulas (16), (17), (21)
and (22), we get

|Fk − Fe
k | ≤

1
h

∣∣∣∣∫ b

a
f (t, Yk)Bk(t)dt −

∫ b

a
f (t, yk)Bk(t)dt

∣∣∣∣ ≤ L |ek|
∣∣F∗

k+1 − Fe∗
k+1
∣∣ ≤ 1

h

∣∣∣∣∫ b

a
f (t, Y∗

k+1)Bk+1(t)dt −
∫ b

a
f (t, y∗k+1)Bk+1(t)dt

∣∣∣∣ ≤ L
∣∣Y∗

k+1 − y∗k+1
∣∣

∣∣F∗∗
k+1 − Fe∗∗

k+1
∣∣ ≤ 1

h

∣∣∣∣∫ b

a
f (t, Y∗∗

k+1)Bk+1(t)dt −
∫ b

a
f (t, y∗∗k+1)Bk+1(t)dt

∣∣∣∣ ≤ L
∣∣Y∗∗

k+1 − y∗∗k+1
∣∣

∣∣Y∗
k+1 − y∗k+1

∣∣ ≤ |(Yk + hFk/2)− (yk + hFe
k /2)| ≤ |ek|

(
1 +

hL
2

)
∣∣Y∗∗

k+1 − y∗∗k+1
∣∣ ≤ ∣∣(Y∗

k+1 + hF∗
k+1/2

)− (y∗k+1 + hFe∗
k+1/2

)∣∣ ≤ |ek|
(

1 +
hL
2

)2

|ek+1| ≤ |ek|+ hL
2

|ek|+ hL
2

∣∣y∗∗k+1 − Y∗∗
k+1
∣∣+ Th

≤ |ek|+ hL
2

|ek|+ hL
2

|ek|
(

1 +
hL
2

)2
+ Th

= |ek|
(

1 + hL +
h2L2

2
+

h3L3

8

)
+ Th
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Furthermore, by using | f (t, y(t))| ≤ M2, we get

∣∣Fe
k − Fe∗∗

k+1
∣∣ = ∣∣∣∣1h

(∫ b

a

(
f (t, yk)− f (t + h, y∗∗k+1)

)
Bk(t)dt

)∣∣∣∣
=

∣∣∣∣1h
(∫ b

a

(
f (t, yk)− f (t, y∗∗k+1) + f (t, y∗∗k+1)− f (t + h, y∗∗k+1)

)
Bk(t)dt

)∣∣∣∣
≤ L

∣∣yk − y∗∗k+1
∣∣

=
Lh
2

∣∣−Fe
k − Fe∗

k+1
∣∣

=
Lh
2

∣∣∣∣1h
∫ b

a

(
f (t, yk) + f (t, y∗k+1)

)
Bk(t)dt

∣∣∣∣
≤ LhM2

This completes the proof.

Theorem 2. Consider the the numeric Scheme I (16), where f ∈ C2 [a, b] and satisfies the Lipschitz condition
with the constant L with respect to y. Then, the solution Yk, k = 1, . . . , n, obtained by the numeric scheme I (16)
for solving Cauchy problem (15) satisfies

|ek| = |Yk − yk| ≤ hM
2L

ekc, (26)

where c = hL + h2L2

2 + h3L3

8 , M1, M2 are upper bound for f ′, f , respectively, on [a, b], and M1 + M2L = M.

Proof. By hypothesis, y′′ exists and bounded on [a, b] with max
a≤t≤b

|y′′ (t)| = M1 by assuming that

f ∈ C2 [a, b]. Then, using Lemma 8, (23) and Taylor’s theorem for k = 1, . . . , n − 1, we get

Tk =
yk+1 − yk

h
− 1

2
(

Fe
k + Fe∗∗

k+1
)

=
1
2

hy′′ (ξk) + f (tk, yk)− 1
2
(

Fe
k + Fe∗∗

k+1
)

=
1
2

hy′′ (ξk) + f (tk, yk)− Fe
k +

1
2

Fe
k −

1
2

Fe∗∗
k+1

=
1
2

hy′′ (ξk) +
1
2
(

Fe
k − Fe∗∗

k+1
)

where ξk ∈ [tk, tk+]. Now, using Lemma 8

T = max
1≤k≤n

|Tk| ≤ 1
2

h
∣∣y′′ (ξk)

∣∣+ LhM2

2

≤ h
2
(M1 + LM2) =

hM
2

Now, by virtue of Lemma 8 and we have used e1 = 0, (1 + c)k ≤ ekc, we get for k = 1, . . . , n

|ek| ≤ (1 + c)k − 1
c

Th ≤ (1 + c)k

L + hL2

2 + h2L3

8

T

≤ T
L

ekc ≤ hM
2L

ekc

where c = hL + h2L2

2 + h3L3

8 . Thus, if the step length h → 0, then for all k, the error,|ek| converges to
zero. So the method is convergent. This completes the proof.
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5. Numerical Examples

In this section, we present examples of the Cauchy problem (15).

Example 1. Consider the following initial value problem with initial conditions y (0) = 1 and with a smooth
right-hand function

y′(t) = t2 − y, t ∈ [0, 2] . (27)

Example 2. Consider the Cauchy problem (15) with oscillating right-hand function. We take f (t, y) = 1+
2y cos

(
t2)+ sin

(
2t2) , t(π

2 ) = 2.1951, a = π
2 and b = 3π

2 .

The results are listed in Tables 2–4 by fuzzy numerical methods proposed in this paper with
respect to case KT201

1
and Table 5 by fuzzy numerical methods proposed in this paper with respect

to case KT1
1
, KT3

1
, KT201

1
, KC1 . The Euclidean distance is given by Norm �2 defined as ‖Y − y(t)‖2 =√

∑k (Yk − y(tk))
2 and mean square error (MSE) defined as MSE = 1

n (‖Yk − y(tk)‖2)
2. This is an

easily computable quantity for a particular sample. Concluding remarks are summarized as follows:

• In view of Table 2, a comparison between the Euler method (Euler-FT) [8], the Mid-point rule
(Mid-FT), Scheme I and II [9] and three new schemes (16), (19) and (20) in this paper for Example 1.
We can easily observe from Table 2, the better results (in comparison with the Euler-FT method [8])
are obtained by the three new schemes in this paper and the best result (in comparison with
the Scheme I, II and II) is obtained by the Scheme III. Also, the better results (in comparison
with the Mid-point rule (Mid-FT), Scheme I and II [9]) are obtained by the Scheme II (19) and
Scheme III (20) in this paper where all fuzzy numerical methods used the FT components and the
best approximation is shown by the Scheme III (20) with FT components.

Table 2. Comparison of numeric results for Example 1. The columns contain the exact and seven
approximate solutions of the Cauchy problem (27) with a smooth right-hand function: the first three
approximate solution is obtained by the three new schems ((16), (19) and (20)), the fourth approximate
solution by the Euler-FT [8] with FT components and the last three by the schemes are proposed in [9].
The best approximation is shown by the Scheme III proposed above (20) with FT components.

ti Solution y(t) Proposed
Scheme I

Proposed
Scheme II

Proposed
Scheme III

Euler-FT
in [8]

Mid-FT
in [9]

Scheme I
in [9]

Scheme II
in [9]

0 1 1 1 1 1 1 1 1
0.1 0.905163 0.905350 0.905163 0.905163 0.900166 0.905162 0.904392 0.904297
0.2 0.821269 0.821605 0.821322 0.821269 0.811316 0.8213 0.819722 0.819741
0.3 0.749182 0.749630 0.749274 0.749221 0.734351 0.749235 0.746860 0.747182
0.4 0.689680 0.690208 0.689798 0.689742 0.670083 0.689786 0.686592 0.687391
0.5 0.643469 0.644047 0.643602 0.643546 0.619241 0.643611 0.639629 0.641061
0.6 0.611188 0.611788 0.611324 0.611271 0.582484 0.611397 0.606615 0.608821
0.7 0.593415 0.594012 0.593543 0.593495 0.560402 0.593665 0.588129 0.591239
0.8 0.590671 0.591243 0.590781 0.590741 0.553528 0.590998 0.584697 0.588828
0.9 0.603430 0.603956 0.603513 0.603483 0.562342 0.603799 0.596795 0.602053
1 0.632121 0.632581 0.632168 0.632149 0.587274 0.632571 0.624851 0.631332

1.1 0.677129 0.677507 0.677132 0.677127 0.628714 0.677618 0.669253 0.677045
1.2 0.738806 0.739085 0.738757 0.738768 0.687009 0.739381 0.730353 0.739535
1.3 0.817468 0.817635 0.817360 0.817388 0.762475 0.818075 0.808466 0.819111
1.4 0.913403 0.913443 0.913229 0.913276 0.855394 0.914099 0.903881 0.916053
1.5 1.026870 1.026772 1.026624 1.026692 0.966021 1.027588 1.016856 1.030615
1.6 1.158103 1.157857 1.157779 1.157869 1.094586 1.158915 1.147625 1.163024
1.7 1.307316 1.306911 1.306909 1.307022 1.241294 1.308138 1.296400 1.313489
1.8 1.474701 1.474127 1.474205 1.474343 1.406331 1.47562 1.463372 1.482195
1.9 1.660431 1.659681 1.659842 1.660006 1.589864 1.661347 1.648715 1.669312
2 1.864665 1.863636 1.863899 1.864097 1.779378 1.865684 1.852585 1.874993
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• In Tabel 3, a comparison of MSE and a comparison of Norm �2 for Examples 1 and 2. We can easily
observe, the best results are obtained by the three new schemes in this paper and the better results
(in comparison with the other numerical classical methods) are obtained by all fuzzy numerical
methods used the FT components except Euler-FT [8] for these examples.

Table 3. The values of MSE and Norm �2 for Example 1– 2.

Method
Ex.1 Ex.2

Norm �2 MSE Norm �2 MSE

Proposed Scheme I 2.21945 × 10−03 2.34569 × 10−07 3.42892 × 10−01 5.59882 × 10−03

Proposed Scheme II 1.28684 × 10−03 7.88551 × 10−08 3.76033 × 10−01 6.73336 × 10−03

Proposed Scheme III 9.28253 × 10−04 4.10311 × 10−08 2.15401 × 10−01 2.20942 × 10−03

Euler-FT [8] 2.20790 × 10−01 2.32134 × 10−03 3.74484 × 10+00 6.67801 × 10−01

Mid-FT [9] 2.56525 × 10−03 3.13357 × 10−07 6.73731 × 10−01 2.16149 × 10−02

Scheme I [9] 3.54973 × 10−02 6.00026 × 10−05 8.42893 × 10−01 3.38319 × 10−02

Scheme II [9] 1.90439 × 10−02 1.72701 × 10−05 5.90233 × 10−01 1.65893 × 10−02

Trapezoidal Rule 4.30423 × 10−02 8.82208 × 10−05 1.93095 × 10+00 1.77551 × 10−01

2-Step Adams Moulton 3.49968 × 10−02 5.83228 × 10−05 1.85289 × 10+00 1.63485 × 10−01

3-Step Adams Moulton 3.14968 × 10−02 4.72405 × 10−05 1.57237 × 10+00 1.17732 × 10−01

• In view of Table 4, a comparison between the three new schemes (16), (19) and (20) in this paper
and the Trapezoidal Rule, 2-Step Adams Moulton Method and 3-Step Adams Moulton Method
based on Euler method for Example 2. We can easily observe from Table 4, the better results
are obtained by the three new schemes in this paper and the best result (in comparison with the
Scheme I, II and II) is obtained by the Scheme III.

Table 4. Comparison of numeric results for Example 2. The columns contain the exact and six
approximate solutions of the Cauchy problem (27) with oscillating right-hand function: the first
three approximate solution is obtained by the three new schems ((16), (19), and (20)), the last three
approximate solution by the Trapezoidal Rule, 2-Step Adams Moulton Method and 3-Step Adams
Moulton Method. The best approximation is shown by the Scheme III proposed above (20) with
FT components.

ti Solution y(t) Proposed
Scheme I

Proposed
Scheme II

Proposed
Scheme III

Trap 1 2-Step Adams 2 3-Step Adams 3

1.570796327 2.195062 2.195062 2.195062 2.195062 2.195062 2.195062 2.195062
1.727875959 1.883281 1.894259 1.883281 1.883281 1.860613 1.883281 1.883281
1.884955592 1.485003 1.511046 1.490853 1.485003 1.454428 1.463813 1.485003
2.042035225 1.185605 1.224868 1.191621 1.184830 1.172418 1.163839 1.177378
2.199114858 1.206758 1.256721 1.208147 1.202292 1.205264 1.180648 1.194336
2.35619449 1.688183 1.733796 1.675538 1.676788 1.638071 1.613025 1.638504
2.513274123 2.546629 2.558069 2.508798 2.525411 2.371288 2.370415 2.421052
2.670353756 3.420051 3.381690 3.362740 3.396118 3.110292 3.151241 3.228492
2.827433388 3.817594 3.751660 3.766365 3.802239 3.459038 3.534435 3.617396
2.984513021 3.479187 3.451288 3.463039 3.476930 3.153857 3.226956 3.285059
3.141592654 2.711291 2.760842 2.722280 2.707811 2.480046 2.498676 2.521585
3.298672286 2.305201 2.404556 2.301686 2.280860 2.168197 2.117053 2.127181
3.455751919 2.871345 2.942818 2.810863 2.818639 2.622265 2.558398 2.599754
3.612831552 4.080085 4.035446 3.952587 4.015230 3.555034 3.556356 3.660448
3.769911184 4.767095 4.645081 4.647076 4.733825 4.104830 4.188576 4.317767
3.926990817 4.209785 4.184589 4.183879 4.213375 3.643127 3.728492 3.801548
4.08407045 3.258243 3.383482 3.263962 3.224157 2.935940 2.895967 2.895039
4.241150082 3.481873 3.609332 3.386338 3.370921 3.111499 2.989980 3.008814
4.398229715 4.873146 4.799588 4.642440 4.733200 4.094280 4.055938 4.179701
4.555309348 5.501192 5.331327 5.311775 5.444657 4.561691 4.652699 4.813484
4.71238898 4.498591 4.551357 4.485128 4.493916 3.817903 3.867167 3.912209

1 Trapezoidal Rule; 2 2-Step Adams Moulton Method; 3 3-Step Adams Moulton Method.
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• In Tabel 5, a comparison between computation errors for three schemes based on the FT with
respect to the power of the triangular and raised cosine generalized uniform fuzzy partition
determined by Formula (9), where the advantage of the KTm

1
for Examples 1 and 2 is evident.

Table 5. The values of MSE and Norm �2 for Examples 1 and 2 by the three schemes with respect to
the power of the triangular and raised cosine generalized uniform fuzzy partition are proposed in this
paper. The best approximation is shown by using KT201

1
.

Proposed Scheme Case
Ex.1 Ex.2

Norm �2 MSE Norm �2 MSE

I

KT1
1

7.81857 × 10−03 2.91095 × 10−06 6.38151 × 10−01 1.93922 × 10−02

KT3
1

5.06528 × 10−03 1.22176 × 10−06 4.65538 × 10−01 1.03203 × 10−02

KT201
1

2.21945 × 10−03 2.34569 × 10−07 3.42892 × 10−01 5.59882 × 10−03

KC1 6.96371 × 10−03 2.30920 × 10−06 5.79002 × 10−01 1.59640 × 10−02

II

KT1
1

5.92425 × 10−03 1.67127 × 10−06 5.45616 × 10−01 1.41761 × 10−02

KT3
1

3.58895 × 10−03 6.13360 × 10−07 4.29959 × 10−01 8.80307 × 10−03

KT201
1

1.28684 × 10−03 7.88551 × 10−08 3.76033 × 10−01 6.73336 × 10−03

KC1 5.18129 × 10−03 1.27837 × 10−06 5.01710 × 10−01 1.19864 × 10−02

III

KT1
1

5.31047 × 10−03 1.34291 × 10−06 4.42442 × 10−01 9.32167 × 10−03

KT3
1

3.09350 × 10−03 4.55702 × 10−07 2.88083 × 10−01 3.95199 × 10−03

KT201
1

9.28253 × 10−04 4.10311 × 10−08 2.15401 × 10−01 2.20942 × 10−03

KC1 4.59684 × 10−03 1.00624 × 10−06 3.84860 × 10−01 7.05320 × 10−03

This constitutes an important improvement to previous methods which do not provide such
information except in the methods such as Euler-FT proposed in [8] and Mid-FT , Scheme I,
and Scheme II [9] for Cauchy problems by the more efficient way of computation approximate
solutions. Thus, this study will be of particular importance.

6. Conclusions

We extended applicability of fuzzy numeric methods to the initial value problem (the Cauchy
problem). We proposed three new numeric methods based on the FT and NIM and then analyzed
their suitability. We considered in the case of the generalized uniform fuzzy partition is power of the
triangular (raised cosine) generalized uniform fuzzy partition and showed that the newly proposed
schemes outperform the Euler-FT [8] and Mid-FT , Scheme I, and Scheme II [9] especially on examples
where the generalized uniform fuzzy partition is power of the triangular generalized uniform fuzzy
partition by using generating function (2). Alos, the newly proposed schemes in this paper outperform
the Trapezoidal Rule, 2-Step Adams Moulton Method and 3-Step Adams Moulton Method. Moreover,
we proved that the Scheme I determines an approximate solution which converges to the exact
solution. This constitutes an important improvement to previous results were coined by I. Perfilieva [8].
To conclude previous sections, the proposed schemes are more accurate and stable. In particular, these
schemes can be used for solving initial value problem.
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Abstract: In this paper, new approximation methods for solving systems of ordinary differential
equations (SODEs) by fuzzy transform (FzT) are introduced and discussed. In particular, we propose
two modified numerical schemes to solve SODEs where the technique of FzT is combined with
one-stage and two-stage numerical methods. Moreover, the error analysis of the new approximation
methods is discussed. Finally, numerical examples of the proposed approach are confirmed, and
applications are presented.

Keywords: fuzzy partition; fuzzy transform; numerical methods; systems of ordinary differential
equations

1. Introduction

Differential equations have great potential to model and understand real-world problems in
science and engineering. In many cases, differential equations cannot be solved analytically, so that
numerical methods are required. Therefore, numerical methods have been elaborated frequently
in scientific research for solving differential equations, for example [1–4]. In this connection, fuzzy
approaches successfully cope with solving differential equations. One of fuzzy approaches that has
been proposed in the literature is fuzzy transform (FzT).

FzT is a general mathematical technique coined and developed by Perfilieva [5]. The study of
FzT is rapidly expanding as a new branch of approximation method based on fuzzy sets. The main
idea of FzT is usually forming a fuzzy partition of a universe into fuzzy subsets. Two shapes for the
basic functions of fuzzy partition, triangular- and sinusoidal-shaped membership functions, were
considered by [6]. Applications of the FzT can be used in the construction of approximate models, the
approximation of functions and the solution of differential equations. FzT has been generalized from
the case of constant components to the case of polynomial components [7]. Later, FzT was successfully
used by [8] for a second order initial value problem. From this idea, FzT was proposed for numerical
solutions of two point boundary value problems by the more efficient way in comparison with the
similar ones obtained by the finite difference method [9].

Recently, in [10], a new numerical method based on FzT to solve a class of delay differential
equations by means of the Picard-like numerical scheme was presented. The author demonstrated
the stability of the method, and the obtained results have good agreement with existing methods.
Furthermore, in some cases, a better approximation was achieved through sinusoidal-shaped basic
functions, while the Bernstein basis polynomials allow better results in the other examples. On the
other hand, a new approach to the fuzzy boundary value problem in the form of the fuzzy relation
was investigated by [11]. Another approach for the second order linear differential equation with
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constant coefficients and Dirichlet boundary conditions was introduced by [12], where the ability of
FzT was demonstrated to deal with boundary value problems affected by noise, and the results were
compared with the finite difference method. To confirm again the ability of FzT with respect to noisy
and non-noisy source functions, FzT based on the shooting method was introduced by [13] for solving
a nonlinear second-order ODE, and the obtained results were better than the classical method, namely
the second order Runge–Kutta. Further, in [14], FzT to approximate the solution of boundary value
problems by minimizing the integral squared error in the two-norm was considered. The trigonometric
function based on higher degree FzT and the accuracy of the resulting approximation increase with
the increase in the degree of FzT were presented by [15], while the weighted transform method was
discussed by [16]. The conditions for quasi-consensus in a multi-agent system with sampled data
based on FzT were proposed by [17]. In [18], the dynamical properties of a two-neuron system with
respect to FzT and a single delay have been investigated. Multi-step FzT was first studied by [19] for
solving ODEs. From this perspective, FzT was considered for solving a class of ODEs.

In this regard, many approximation methods have been studied for solving ODEs, for example
using neural networks [20], embedded three and two pairs of nonlinear methods [21], electrical
analogy [22], multi-general purpose graphical processing units [23], the differential transform
method [24] and a Galerkin finite element method [25]. A numerical method based on the trapezoidal
rule for the Cauchy–Smoluchowski problem was discussed by [26]. In [27,28], the authors studied
ODEs with the initial value as the triangular fuzzy number. A new fuzzification of the classical
Euler method and then incorporating an unconstrained optimization technique were proposed by [1].
Furthermore, most real-life problems involve systems of ODEs, for example the Lotka–Volterra prey
predator model based on an autonomous model [29], a non-autonomous model [30,31] and fuzzy
initial populations [4].

In this study, our aim is to extend the applicability of the FzT to general coupled Systems of
ODEs (SODEs) where this method works better than its classical counterpart. The motivation of the
present research stems from the fuzzy approach as follows. The first application of the FzT for solving
ODEs had been proposed by [6] where a generalization of the Euler method for an ordinary Cauchy
problem was developed and its potential in comparison with classical methods (Euler method) was
demonstrated. The same approach has been successfully used by [32] to solve the Cauchy problem for
a more accurate comparison with the classical method (the second-order Runge–Kutta method) and
with the generalization of Euler method based on FzT, as proposed by [6]. Further, in [19], new fuzzy
methods based on FzT for solving the Cauchy problem were presented, and the authors compared the
results with existing numerical results in [6,32] and with classical methods, including one, two and
three steps. All these fuzzy approximation methods performed better than the classical trapezoidal
rule (one step) and the classical Adam–Moulton method (two and three steps) and outperformed the
previous fuzzy methods in [6,32].

In this contribution, two new approximation methods are presented in detail to solve SODEs
where the technique of FzT is combined with one-stage and two-stage numerical methods. The first
approximation method improves the Euler method (one-stage), and the other approximation method
improves trapezoidal rule (two-stage). The primary focus of this contribution is to demonstrate the
applicability of the FzT for functions of two variables based on the uniform fuzzy partition. The error
analysis is discussed in the context of the uniform fuzzy partition. Algorithms inspired by the FzT
are shown for solving SODEs. Two new approximation methods are applied to the Lotka–Volterra
prey-predator model. This contribution is an important modification relative to classical methods, the
Euler method and the trapezoidal rule. Thus, these methods are compared with the Euler method and
trapezoidal rule. Both approximation methods with the help of FzT provide better numerical solutions
than the classical Euler method and the classical trapezoidal rule.

The paper is organized as follows. In Section 2, several related concepts and results associated
with the FzT are reviewed. In Section 3, we construct procedures to obtain an approximate solution
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for SODEs by using the FzT method. Applications are discussed in Section 4. Finally, conclusions are
given in Section 5.

2. Basic Concepts

Throughout this section, we deal with an interval [a, b] ⊂ R of real numbers. Let [a, b] be an
interval on the real line R. Fuzzy sets on [a, b] will be identified with their membership functions
mapping from [a, b] into [0, 1]. We will assume an interval [a, b] as a real domain. In this section, we
remind about the definitions and claims that were introduced and proven by [5].

Definition 1. (Fuzzy partition) Let x1 < · · · < xn be fixed nodes within [a, b] such that x1 = a, xn = b and
n ≥ 2. The fuzzy sets A1, . . . , An are often called basic functions. We say that fuzzy sets A1, . . . , An ⊂ [a, b]
establish a fuzzy partition of [a, b] if they fulfill the following conditions for k = 1, . . . , n (for the uniformity of
notation, we set x0 = a and xn+1 = b):

1. Ak (x) : [a, b] → [0, 1] is continuous with Ak (xk) = 1, Ak (x) > 0 if x ∈ (xk−1, xk+1) and
Ak (x) = 0 if x /∈ (xk−1, xk+1);

2. Ak (x) , k = 2, . . . , n, strictly increases on [xk−1, xk], and Ak (x) , k = 1, . . . , n − 1, strictly decreases
on [xk, xk+1];

3. For all x ∈ [a, b], ∑n
k=1 Ak(x) = 1. This is called the Ruspini condition.

We say that a fuzzy partition of [a, b] is h-uniform if its nodes x1, . . . , xn, where n ≥ 2
are equidistant. This means that xk = a + h (k − 1) , k = 1, . . . , n, where h = b−a

n−1 , n ≥ 2, and the two
additional properties are fulfilled:

• Ak(xk − x) = Ak(xk + x), k = 2, . . . , n − 1, for all x ∈ [0, h] and:
• Ak(x) = Ak−1(x − h) and Ak+1(x) = Ak(x − h), k = 2, . . . , n − 1, for all x ∈ [xk, xk+1].

Two uniform fuzzy partitions with triangular- and sinusoidal-shaped basic functions can be
found in [5,6]. Throughout this paper, we will write uniform fuzzy partition instead of h-uniform
fuzzy partition.

Definition 2. Let f be a continuous function on [a, b] and Ak(x), k = 1, . . . , n, be a uniform fuzzy partition
of [a, b], n ≥ 2. A vector of real numbers F[ f ] = (F1, F2, . . . , Fn) given by (to complete this notation, we set
x1 = a and xn+1 = b):

Fk [ f ] =

∫ b
a f (x) Ak(x) dx∫ b

a Ak(x) dx
=

∫ xk+1
xk−1

f (x) Ak(x)dx∫ xk+1
xk−1

Ak(x)dx
, k = 1, . . . , n, (1)

is called the direct FzT of f with respect to A1, . . . , An.

Remark 1. The elements F1[ f ], . . . , Fn[ f ] are called components of the FzT. If A1, . . . , An forms a uniform
fuzzy partition, then the expression (1) can be simplified as follows:

F1[ f ] =
2
h

∫ x2

x1

f (x) A1(x)dx, Fn[ f ] =
2
h

∫ xn

xn−1

f (x) An(x)dx,

Fk[ f ] =
1
h

∫ xk+1

xk−1

f (x) Ak(x)dx, k = 2, . . . , n − 1. (2)

Definition 3. Let F[ f ] = (F1, F2, . . . , Fn) be the direct FzT of f ∈ C [a, b] with respect to Ak(x), k = 1, . . . , n.
Then, the inverse FzT of f , f̂ : [a, b] → R, given by:

f̂ (x) =
n

∑
k=1

Fk Ak(x). (3)
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Lemma 1. [6] Let f (x) be continuous on [a, b] and twice continuously differentiable in (a, b), and let basic
functions form a uniform fuzzy partition of [a, b]. Then, for each k = 1, . . . , n:

Fk = f (xk) +O(h2). (4)

Remark 2. An important property of the direct FzT, as well as inverse FzT is their linearity, namely, given
f , g ∈ C [a, b] and α, β ∈ R, if h = α f + βg, then F [h] = αF [ f ] + βF [g] and ĥ = α f̂ + βĝ.

3. FzT for Solving SODEs

In this section, we present methodological remarks and numerical schemes for solving SODEs.

3.1. Methodological Remarks to Applications of the FzT

Consider the Initial Value Problem (IVP) for the SODEs:{
x′(t) = f (t, x (t) , y (t)) , x (t1) = α, t1 ≤ t ≤ tn,

y′(t) = g (t, x (t) , y (t)) , y (t1) = β,
(5)

where α, β ∈ R, f and g are continuous functions on [t1, tn] × R × R and satisfy the Lipschitz
condition. Unfortunately, the analytical solution (x(t), y(t)) of Problem (5) is often difficult and
sometimes impossible to obtain. Thus, approximate solutions by means of FzT are extremely important
for solving (5). A numerical method for (5) is an algorithm that computes FzT components Xk ≈ x(tk)

and Yk ≈ y(tk), for each k = 2, . . . , n (to complete this notation, we set α = X1 = x(t1) and
β = Y1 = y(t1)).

Below, we extend the main principles of FzT detailed in Formulas (6) that are needed later.

Definition 4. Let f (g) be a continuous function on [t1, tn] and A1, . . . , An be the fuzzy partition of [t1, tn].
A vector of real numbers Fk[ f ] = (F1[ f ], . . . , Fn[ f ]) (Gk[g] = (G1[g], . . . , Gn[g])) given by:

Fk[ f ] =

∫ tn
t1

f (t, x (t) , y (t)) Ak(t) dt∫ tn
t1

Ak(t) dt

⎛
⎝Gk[g] =

∫ tn
t1

g(t, x (t) , y (t)) Ak(t) dt∫ tn
t1

Ak(t) dt

⎞
⎠ , (6)

is called the direct FzT of f (g) that is extended with independent variable t and two dependent variables x
and y.

Remark 3. We need a way to approximate the direct FzT components 6. This is discussed in Corollary 1.

In the following, the necessary steps of the FzT are given.

1. Construction of the fuzzy partition:

(a) Specify the number n of components, and compute the step h = (tn − t1) / (n − 1).
(b) Construct the nodes t1 < . . . < tn, where tk = t1 + h(k − 1).
(c) Select the shape of basic functions. We mostly use triangular- or sinusoidal-shaped basic

functions. Recall that the shape of the basic functions determines the course of f̂ , that is
whether it is piecewise linear or nonlinear.

(d) Construct a uniform fuzzy partition of [t1, tn] by triangular- or sinusoidal-shaped basic
functions [5].

2. Computation of FzT: We replace x′ (t) and y′ (t) by their approximations based on the Taylor
expansion as new functions with respect to the fuzzy partition A1, . . . , An by Step 1. In this way,
similarly to [6], we transfer the original SODEs to the space of fuzzy units, solve them in the new
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space and then transfer them back by the inverse FzT. Compute the approximation for x and y
by the inverse FzT applied to [X1, . . . , Xn] and [Y1, . . . , Yn]. In the next subsections, the schemes
provide formulas for the computation of components of FzT.

3.2. Numerical Scheme I for SODEs

In this subsection, we present a modified scheme to solve SODEs using the FzT. Suppose that
the functions f and g on [t1, tn] are sufficiently smooth in (5). For solving SODEs (5) on [t1, tn],
the interval is divided into n − 1 subintervals. Let us choose some uniform fuzzy partition of interval
[t1, tn] with parameter h = (tn − t1)/(n − 1), n ≥ 2, and basic functions A1, . . . , An. In view of the
methodological remarks in Subsection 3.1, we describe the complete sequence of steps, which leads
to the approximation solution of SODEs (5) (see [6] for technical details). Before we apply the direct
FzT to both parts of the differential equation, we will use the Taylor expansion and replace the first
derivatives of the left-hand sides in (5) by their approximations, i.e.,

{
x(t + h) = x(t) + hx′(t) +O(h2),

y(t + h) = y(t) + hy′(t) +O(h2).
(7)

Denote

{
x+(t) = x(t + h),
y+(t) = y(t + h),

as new functions and then apply the direct FzT components

{
Fn

Gn

to both parts of Equation (7).

{
Fn[x′(t)] = 1

h (Fn[x+]− Fn[x]) +O(h2),

Gn[y′(t)] = 1
h (Gn[y+]− Gn[y]) +O(h2),

where

{
Fn[x′] = [X′

1, . . . , X′
n−1],

Gn[y′] = [Y′
1, . . . , Y′

n−1],

{
Fn[x] = [X1, . . . , Xn−1],

Gn[y] = [Y1, . . . , Yn−1],
and

{
Fn[x+] = [X+

1 , . . . , X+
n−1],

Gn[y+] = [Y+
1 , . . . , Y+

n−1].

Now, prove that:

{
X+

1 = X2 +O(h2),

X+
k = Xk+1, k = 2, . . . , n − 2,

and

{
Y+

1 = Y2 +O(h2),

Y+
k = Yk+1, k = 2, . . . , n − 2.

For the values k = 1 and k = n − 1 by Lemma 1, we have

{
X+

k = Xk+1 +O(h2),

Y+
k = Yk+1 +O(h2),

, and for

k = 2, . . . , n − 2, we have:⎧⎨
⎩X+

k = 1
h

∫ tk+1
tk−1

x(t + h).Ak(t)dt = 1
h

∫ tk+2
tk

x(s).Ak+1(s)ds = Xk+1,

Y+
k = 1

h

∫ tk+1
tk−1

y(t + h).Ak(t)dt = 1
h

∫ tk+2
tk

y(s).Ak+1(s)ds = Yk+1.

Then, we get: {
hX′

k = (Xk+1 − Xk) +O(h2),

hY′
k = (Yk+1 − Yk) +O(h2).

, k = 1, . . . , n − 1. (8)

Therefore, we can introduce the (n − 1)× n matrix:

D =
1
h

⎛
⎜⎜⎜⎜⎝
−1 1 0 · · · 0
0 −1 1 · · · 0
...

. . .
...

0 0 · · · −1 1

⎞
⎟⎟⎟⎟⎠ .
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Thus, according to (5), the equality (8) can be rewritten (up to O (h2)) as matrix equality:

{
Fn[x′] = DFn[x],

Gn[y′] = DGn[y],
(9)

where

{
Fn[x′] = [X′

1, . . . , X′
n−1]

T ,

Gn[y′] = [Y′
1, . . . , Y′

n−1]
T ,

and

{
Fn[x] = [X1, . . . , Xn−1]

T ,

Gn[y] = [Y1, . . . , Yn−1]
T .

Now, let us return to the problem (5) and apply the FzT to both sides of the differential equation.
Based on the linearity of FzT and Formula (9), we obtain the following system with respect to the
unknown Fn[x] and Gn[y]: {

DFn[x] = Fn[ f ],

DGn[y] = Gn[g],
(10)

where

{
Fn[ f ] = [F1, . . . , Fn−1]

T ,

Gn[g] = [G1, . . . , Gn−1]
T ,

are the FzT of f (t, x(t), y(t)) (g(t, x(t), y(t))) as a function of t

w.r.t. the chosen basic functions A1, . . . , An. Note that the last components Fn and Gn are not presented
in Fn[ f ] and Gn[g], respectively, due to the dimensionality limitation, and (10) does not include two
initial conditions of (5). Thus, we complete the matrix D by adding the first row as the initial value
as follows:

D∗ = 1
h

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0
−1 1 0 · · · 0
0 −1 1 · · · 0
...

. . .
...

0 0 · · · −1 1

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

so that D∗ is an n × n nonsingular matrix. Based on the initial conditions and the matrix D∗, we also
expand Fn[ f ] and Gn[g] by adding the first element, as follows:

{
F∗

n [ f ] = [ x1
h , F1, . . . , Fn−1]

T ,

G∗
n[g] = [ y1

h , G1, . . . , Gn−1]
T .

Then, the problem (5) can be completely represented by the following expression with respect to
the unknown Fn[x] and Gn[y]: {

D∗.Fn[x] = F∗
n [ f ],

D∗.Gn[y] = G∗
n[g].

(11)

The solution of (11) can be obtained by the following formula:

{
Fn[x] = (D∗)−1.F∗

n [ f ],

Gn[y] = (D∗)−1.G∗
n[g].

(12)
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In fact, to obtain the solution of (12), we should compute the inverse matrix of D∗. Therefore, we
have:

(D∗)−1 = h

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0
1 1 0 · · · 0
0 1 1 · · · 0
...

. . .
...

1 1 · · · 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

and by (12), we get:

Xk+1 = Xk + hFk, X1 = α, Yk+1 = Yk + hGk, Y1 = β, k = 1, . . . , n − 1, (13)

where Fk (Gk) is given by Formula (6). Formula (13) can be applied to the computation of X2, . . . , Xn

and Y2, . . . , Yn. However, it cannot be applied directly by using the function f (t, x, y) or g(t, x, y),
because it uses unknown functions x and y. Therefore, we will use the same trick as in [6] and replace
functions by their FzT components:

F̂k[ f ] =

∫ tn
t1

f (t, Xk, Yk) Ak(t) dt∫ tn
t1

Ak(t) dt
, Ĝk[g] =

∫ tn
t1

g(t, Xk, Yk) Ak(t) dt∫ tn
t1

Ak(t) dt
, k = 1, . . . , n − 1. (14)

Thus, the components of FzT of x and y can be approximated from the following Scheme I:

Xk+1 = Xk + hF̂k, X1 = α, | Yk+1 = Yk + hĜk, Y1 = β, k = 1, . . . , n − 1. (15)

Finally, the approximate solution of (5) can be obtained using the inverse FzT as follows:

xn(t) =
n

∑
k=1

Xk Ak(t), yn(t) =
n

∑
k=1

Yk Ak(t), (16)

where Ak(t), k = 1, 2, . . . , n are given basic functions. The proposed method is similar to the
well-known Euler method and under similar assumptions. It has the same degree of accuracy. In the
next theorem, we obtain an error estimate in the context of a fuzzy partition and error analysis of
numerical Scheme I.

Theorem 1. Let f , g : [t1, tn] → R be twice continuously differentiable on [t1, tn]. Let, moreover, f , g :
[t1, tn] × R× R → R be Lipschitz continuous with respect to x and y, i.e. there exists a constant L ∈ R,
such that for all t ∈ [t1, tn] and x, x′, y, y′ ∈ R,

| f (t, x, y)− f (t, x′, y′)| ≤ L(|x − x′|+ |y − y′|),
|g(t, x, y)− g(t, x′, y′)| ≤ L(|x − x′|+ |y − y′|). (17)

Assume that {Ak | k = 1, . . . , n}, n ≥ 2, is a uniform fuzzy partition of [t1, tn]. Then, the local (global)
error of Scheme I (14)–(15) is of the order h2 (h).

Proof. Let us choose and fix some k, where 2 ≤ k ≤ n, and assume that Xk (Yk) is the k-th FzT
component of x (y). We consider the SODEs (5) and their FzT representation by the system of
equations (11). We start with the following easy consequences from the Taylor expansions:

x(tk+1) = x(tk) + h f (tk, xk, yk) +O
(

h2
)

,

y(tk+1) = y(tk) + hg(tk, xk, yk) +O
(

h2
)

.
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Let ek = xk − Xk, dk = yk − Yk, x(tk) = xk and y(tk) = yk, then according to (14)–(15), we get:

ek+1 = ek + h
(

f (tk, xk, yk)− F̂k
)
+O

(
h2
)

, (18)

dk+1 = dk + h
(

g(tk, xk, yk)− Ĝk
)
+O

(
h2
)

. (19)

By the assumption that f and g have continuous second order derivatives on [t1, tn] and are
Lipschitz continuous with respect to x and y, therefore, using the trapezoid rule and Remark 1, we get:

| f (tk, xk, yk)− F̂k| = | f (tk, xk, yk)− 1
h

∫ tk+1

tk−1

f (t, Xk, Yk)Ak(t)dt|,

= | f (tk, xk, yk)− 1
h

h
2

2 f (tk, Xk, Yk) +O(h2)|,
= | f (tk, xk, yk)− f (tk, Xk, Yk) +O(h2)|,
≤ L(|ek|+ |dk|) +O(h2). (20)

Similarly,
|g(tk, xk, yk)− Ĝk| ≤ L(|ek|+ |dk|) +O(h2).

Therefore,

|ek+1| ≤ |ek|+ hL(|ek|+ |dk|) +O(h2),

|dk+1| ≤ |dk|+ hL(|ek|+ |dk|) +O(h2).

Denoting δk = max(|ek|, |dk|) and using the obvious equality max(a + b, c + b) = max(a, c) + b,
we obtain from the above :

δk+1 ≤ δk + 2hL(|ek|+ |dk|) +O(h2), (21)

and finally,
δk+1 ≤ δk(1 + 2hL) +O(h2).

By iteration, we come to:

δk+1 ≤ δ1(1 + C)k +O(h2)(1 + (1 + C) + . . . + (1 + C)k−1) = δ1(1 + C)k +O(h2)
(1 + C)k − 1

C
,

where C = 2hL. For k = n − 1, we have:

δn � e2Lδ1 +O(h), (22)

where we made use of the following fact: h = (tn − t1)/(n − 1), and the following asymptotic
equalities: (1 + 1/n)n ∼ e, (1 + a)n ∼ 1 + na.

By (21) and (22), we conclude that Scheme I has the local order h2 and the global order h.

Remark 4. Theorem 1 extends Theorem 9.1 of [6] to the SODEs.

Corollary 1. Let the assumptions of Theorem 1 be fulfilled. Then, for each k = 1, . . . , n:

Fk − F̂k = O(h2), and Gk − Ĝk = O(h2),

where Fk, Gk are defined by (6) and F̂k, Ĝk are defined by (14).
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Proof. By Lemma 1, xk − Xk = O(h2) and yk − Yk = O(h2) and (20), we get:

F̂k − f (tk, xk, yk) = O(h2),

and using the trapezoid rule and Remark 1, we obtain:

Fk =
1
h

∫ tk+1

tk−1

f (t, xk, yk)Ak(t)dt,

=
1
h

h
2

2 f (tk, xk, yk) +O(h2),

= f (tk, xk, yk) +O(h2).

which together with the previous estimation proves that:

Fk − F̂k = O(h2).

Similarly,
g(tk, xk, yk)− Ĝk = O(h2) and Gk − Ĝk = O(h2).

Corollary 2. The approximation method for (5) is given by Scheme I (14)–(15) with the local error O(h2).
The approximate solution to (5) can be found by taking the inverse FzT (16) where A1, . . . , An are fixed
basic functions.

Theorem 2. Let f , g ∈ C2 [t1, tn] and bounded on I = [t1, tn]. Let, moreover, basic functions
{Ak | k = 1, . . . , n} , n ≥ 2, form a uniform fuzzy partition of I. Assume that Fk (Gk) , k = 1 . . . , n,
and F′

k
(
G′

k
)

, k = 1 . . . , n, are the FzT components of f (g) and f ′ (g′) with respect to {Ak | k = 1, . . . , n},
respectively. Then, for k = 1, . . . , n − 1:

|Fk+1 − Fk| ≤ h
∣∣F′

k
∣∣+ h2

2
Mf , |Gk+1 − Gk| ≤ h

∣∣G′
k
∣∣+ h2

2
Mg, (23)

where Mf = max
t∈I

| f ′′(t, x(t), y(t))| and Mg = max
t∈I

|g′′(t, x(t), y(t))|.

Proof. Let us write the following result from Taylor’s theorem:

f (t + h, x(t), y(t)) = f (t, x(t), y(t)) + h f ′(t, x(t), y(t)) +
h2

2
f ′′(ε, x(ε), y(ε)),

g(t + h, x(t), y(t)) =g(t, x(t), y(t)) + hg′(t, x(t), y(t)) +
h2

2
g′′(ξ, x(ξ), y(ξ)).

where tk < ε, ξ < tk+1. Using the linearity of the FzT by Remark 2 and the properties of the uniform
fuzzy partition by Definition 1, we get:

Fk [ f (t + h, x, y)] =
1
h

∫ tk+1

tk−1

f (t + h, x, y)Ak(t)dt,

=
1
h

∫ tk+2

tk

f (t, x, y)Ak+1(t)dt,

= Fk+1[ f (t, x, y)], k = 2, 3, . . . , n − 1,
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and:

Fk+1 = Fk + hF′
k +O

(
h2
)

, Gk+1 = Gk + hG′
k +O

(
h2
)

,

Fk+1 ≤ Fk + hF′
k +

h2

2
Mf , Gk+1 ≤ Gk + hG′

k +
h2

2
Mg,

which easily leads to (23).

Lemma 2. Consider Scheme I (14)–(15). If the set of fuzzy sets {Ak | k = 1, . . . , n − 1} , n ≥ 2, is a uniform
fuzzy partition of [t1, tn], then we have for fixed k = 1, . . . , n − 1:

Xk+1 − Xk =

⎧⎪⎨
⎪⎩

2
∫ tn

t1
f (t, Xk, Yk)A1(t)dt if k = 1,

∫ tn
t1

f (t, Xk, Yk)Ak(t)dt if k = 2, . . . , n − 1,

Yk+1 − Yk =

⎧⎪⎨
⎪⎩

2
∫ tn

t1
g(t, Xk, Yk)A1(t)dt if k = 1,

∫ tn
t1

g(t, Xk, Yk)Ak(t)dt if k = 2, . . . , n − 1,

(24)

Proof. The proof can be obtained from Remark 1; in particular, by the properties of the uniform fuzzy
partition

∫ tn
t1

Ak(t)dt = h/2 for k = 1 and
∫ tn

t1
Ak(t)dt = h for k = 2, . . . , n − 1 and after substituting

this into (14)–(15).

Lemma 3. Suppose that f , g are continuous and bounded on I = [t1, tn], and consider that Scheme I (14)–(15)
with respect to the basic functions forms a uniform fuzzy partition of I. Then, we have for fixed k = 1, . . . , n − 1:

|Xk+1 − Xk| ≤ M1h, |Yk+1 − Yk| ≤ M2h,

where M1 = max
t∈[t1,tn ]

| f (t, x, y)| and M2 = max
t∈[t1,tn ]

|g(t, x, y)|.

Proof. Let us choose a value of k in the range 1 ≤ k ≤ n − 1. By using Lemma 2, we get:

|X2 − X1| =
∣∣∣∣2 ∫ t2

t1

f (t, Xk, Yk)A1(t)dt
∣∣∣∣ ,

≤ 2
∫ t2

t1

| f (t, Xk, Yk)A1(t)| dt ≤ 2M1

∫ tk+1

tk−1

A1(t)dt = M1h,

|Xk+1 − Xk| =
∣∣∣∣∫ tk+1

tk−1

f (t, Xk, Yk)Ak(t)dt
∣∣∣∣ ,

≤
∫ tk+1

tk−1

| f (t, Xk, Yk)Ak(t)| dt ≤ M1

∫ tk+1

tk−1

Ak(t)dt = M1h.

Similarly, |Y2 − Y1| ≤ M2h and |Yk+1 − Yk| ≤ M2h.

Throughout the assumptions of Theorem 3, we consider (t, x1, x2) instead (t, x, y).

Theorem 3. Suppose that f (t, x1, x2), g(t, x1, x2) ∈ C2 [t1, t2]. Let
∣∣∣ ∂ f

∂xi

∣∣∣ ≤ L f

(∣∣∣ ∂g
∂xi

∣∣∣ ≤ Lg

)
, i = 1, 2,

and | f (t, x1, x2)| ≤ M1 (|g(t, x1, x2)| ≤ M2). Consider Scheme I (14)–(15) for some positive integer k, and
{Ak | k = 1, . . . , n − 1} , n ≥ 2, is a uniform fuzzy partition of [t1, tn], then the following hold true:
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1. for a value of k in the range 1 ≤ k ≤ n − 1:∣∣F̂k − F̂k−1
∣∣ ≤ L f hUk,k−1 ,

∣∣Ĝk − Ĝk−1
∣∣ ≤ LghUk,k−1 ,

where Uk,k−1 = |Xk − Xk−1|+ |Yk − Yk−1|.
2. for all k = 1, . . . , n − 1:

|Xn+1 − Xn| ≤ Mh
2

en(2Lh2), |Yn+1 − Yn| ≤ Mh
2

en(2Lh2),

where L = L f + Lg and M = ∑2
i Mi.

Proof. 1. Using (6), we can get for each k = 2, . . . , n − 1 and t ∈ I ∩ [tk, tk+1]:

∣∣F̂k − F̂k−1
∣∣ =

∣∣∣∣∣∣
∫ tk+1

tk−1
f (t, Xk, Yk)Ak(t)dt∫ tk+1

tk−1
Ak(t)dt

−
∫ tk

tk−2
f (t, Xk−1, Yk−1)Ak−1(t)dt∫ tk

tk−2
Ak−1(t)dt

∣∣∣∣∣∣ .
Based on Remark 1 and Definition 1, the properties of the uniform fuzzy partition, we replace t
by t − h and then Ak−1(t − h) by Ak(t). Thus,

∣∣F̂k − F̂k−1
∣∣ =

∣∣∣∣∣∣
∫ tk+1

tk−1
f (t, Xk, Yk)Ak(t)dt∫ tk+1

tk−1
Ak(t)dt

−
∫ tk+1

tk−1
f (t − h, Xk−1, Yk−1)Ak(t)dt∫ tk+1

tk−1
Ak(t)dt

∣∣∣∣∣∣ ,
≤ L f (|Xk − Xk−1|+ |Yk − Yk−1|)

∫ tk+1

tk−1

Ak(t)dt,

= L f hUk,k−1. (25)

In a similar way,
∣∣Ĝk − Ĝk−1

∣∣ ≤ LghUk,k−1.

2. We first prove the estimate for k = 1. Then, we show that for all k = 2, . . . , n − 1, by using
Lemma 2, for k = 1,

|X2 − X1| =
∣∣∣∣∫ t2

t1

f (t, Xk, Yk)Ak(t)dt
∣∣∣∣ ,

≤
∫ t2

t1

| f (t, Xk, Yk)Ak(t)| dt ≤ M1

∫ t2

t1

Ak(t)dt ≤ Mh
2

,

where M = ∑2
i Mi. By (15), we get:

Xk+1 − Xk = Xk − Xk−1 + h
(

F̂k − F̂k−1
)

, Yk+1 − Yk = Yk − Yk−1 + h
(
Ĝk − Ĝk−1

)
.

By using (25), we get:

|Xk+1 − Xk| ≤ |Xk − Xk−1|+ Lh2 (|Xk − Xk−1|+ |Yk − Yk−1|) ,

≤ |Xk − Xk−1|+ |Yk − Yk−1|+ 2Lh2 (|Xk − Xk−1|+ |Yk − Yk−1|) ,

≤
[
1 + 2Lh2

]
(|Xk − Xk−1|+ |Yk − Yk−1|) ,

≤
(

1 + 2Lh2
)k

U2,1 ≤ Mh
2

(
1 + 2Lh2

)k
,
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where U2,1 = |X2 − X1|+ |Y2 − Y1|, L = L f + Lg and M = ∑2
i Mi. In particular,

|Xn+1 − Xn| ≤ Mh
2

(
1 + 2Lh2

)n ≤ en(2Lh2) Mh
2

,

where we have used inequality
(
1 + 2h2L

)n ≤ en( 2h2L ), n ≥ 0. Analogously, |Yn+1 − Yn| ≤
en(2Lh2) Mh

2 . which concludes the proof.

Remark 5. The following estimations are used in Theorem 4 for k = 1, . . . , n − 1. Let f (g) satisfy the
Lipschitz condition in the second and third arguments; we get:

| f (tk, xk, yk)− f (tk, Xk, Yk)| ≤ L1 |xk − Xk|+ L2 |yk − Yk| ,
|g(tk, xk, yk)− g(tk, Xk, Yk)| ≤ L3 |xk − Xk|+ L4 |yk − Yk| .

From (20), we get:

f (tk, xk, yk)− F̂k ≤ f (tk, xk, yk)− f (tk, Xk, Yk) +
h2

12 2.M2,∣∣ f (tk, xk, yk)− F̂k
∣∣ ≤ L1 |xk − Xk|+ L2 |yk − Yk|+ h2

6 M2,∣∣g(tk, xk, yk)− Ĝk
∣∣ ≤ L3 |xk − Xk|+ L4 |yk − Yk|+ h2

6 M2.

Thus, ∣∣ f (tk, Xk, Yk)− F̂k
∣∣ ≤ h2

6
M2, and

∣∣g(tk, Xk, Yk)− Ĝk
∣∣ ≤ h2

6
M2,

where M2 = M2 f + M2g, M2 f = max
t∈[t1,tn ]

| f ′′ (t, x, y)| and M2g = max
t∈[t1,tn ]

|g′′ (t, x, y)|.

Now, we show that the proposed Scheme I is convergent.

Theorem 4. Let the assumptions of Theorem (3) be fulfilled, and further assume that f (g) satisfies a Lipschitz
condition in the second and third arguments. Consider Scheme I (14)–(15) for some positive integer k, and
{Ak | k = 1, . . . , n − 1}, n ≥ 2, is a uniform fuzzy partition of [t1, tn]. Thus, if a sequence of h =

{h1, ..., hm} → 0, m > 0, and with each h, we compute the Xk,h, Yk,h component, then
∣∣x(tk)− Xk,h

∣∣,∣∣y(tk)− Yk,h
∣∣ converges to zero for each k = 1, . . . , n − 1.

Proof. Let us drop the h subscript in the errors, writing |x(tk)− Xk| and |y(tk)− Yk|. Now, when
k = 1, the result is clearly true, since x(t1) = X1 = x1, y(t1) = Y1 = y1. By Taylor’s theorem, we have:

x(tk+1) = x(tk) + h f (tk, xk, yk) +
h2

2
f ′(εk, x(εk), y(εk)),

y(tk+1) = y(tk) + hg(tk, xk, yk) +
h2

2
g′(ξk, x(ξk), y(ξk)),

where tk < εk, ξk < tk+1. Denote e1k = xk − Xk, e2k = yk − Yk, xk = x(tk) and yk = y(tk). Then,
by (15), we get:

e1k+1 = e1k + h
(

f (tk, xk, yk)− f (tk, Xk, Yk) + f (tk, Xk, Yk)− F̂k
)
+

h2

2
x′′(εk),

e2k+1 = e2k + h
(

g(tk, xk, yk)− g(tk, Xk, Yk) + g(tk, Xk, Yk)− Ĝk
)
+

h2

2
y′′(ξk).
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By virtue of Remark 5, we get:

|e1k+1| ≤ |e1k|+ hL1 |e1k|+ hL2 |e2k|+ h2

2

(
M1 f +

h
3

M2

)
,

|e2k+1| ≤ |e2k|+ hL4 |e2k|+ hL3 |e1k|+ h2

2

(
M1g +

h
3

M2

)
,

where M1 f = max
t∈[t1,tn ]

|x′′(t)| and M1g = max
t∈[t1,tn ]

|y′′(t)|. Therefore,

Case 1. If c = M1 f + M1g +
2h
3 M2, L = ∑4

i=1 Li , we get:

|e1k+1| ≤ |e1k+1|+ |e2k+1| ≤ (1 + 2hL) (|e1k|+ |e2k|) + h2c/2,

≤ (1 + 2hL)Uk +
h2

2
c ≤ (1 + 2hL)k U1 +

(
k−1

∑
j=0

(1 + 2hL)j

)
h2

2
c,

= (1 + 2hL)k U1 +

(
( 1 + 2hL )k − 1

2hL

)
h2

2
c ≤ ek(2hL)

(
U1 +

hc
4L

)
− hc

4L
,

where Uk = |e1k| + |e2k|. Indeed, we have used inequality (1 + 2hL)k ≤ ek( 2hL ), k ≥ 0,
and the quantity ∑k−1

j=0 (1 + 2hL)j is a finite geometric series; these can be calculated by:

2Lh

(
k−1

∑
j=0

(1 + 2hL)j

)
= (1 + 2Lh)

(
k−1

∑
j=0

(1 + 2hL)j

)
−
(

k−1

∑
j=0

(1 + 2hL)j

)
= (1 + 2hL)k − 1.

In particular, when U1 = 0, this implies that:

|xn − Xn| ≤ hc
4L

(
e2L(tn−t1) − 1

)
, |yn − Yn| ≤ hc

4L

(
e2L(tn−t1) − 1

)
. (26)

Case 2. In view of Remark 5, let L = Li, i = 1, . . . , 4

∣∣ f (tk, xk, yk)− F̂k
∣∣ ≤ h2

6
M2 + 2L max {|xk − Xk| , |yk − Yk|} ,

∣∣g(tk, xk, yk)− Ĝk
∣∣ ≤ h2

6
M2 + 2L max {|xk − Xk| , |yk − Yk|} .

Thus, e1k+1 = xk − Xk, e2k = yk − Yk,

|e1k+1| ≤ |e1k|+ 2Lh max {|e1k| , |e2k|}+ h2

2
c1,

|e2k+1| ≤ |e2k|+ 2Lh max {|e1k| , |e2k|}+ h2

2
c2,

where c1 = M1 f +
h
3 M2 and c2 = M1g +

h
3 M2. Consequently,

|e1k| ≤ (1 + 4Lh)k |U1|+ h2c1
(1 + 4Lh)k − 1

4Lh
,

|e2k| ≤ (1 + 4Lh)k |U1|+ h2c2
(1 + 4Lh)k − 1

4Lh
,

161



Appl. Syst. Innov. 2018, 1, 29

where U1 = |e11|+ |e21|. In particular, when U1 = 0, this implies that:

|xn − Xn| ≤ hc1
e4L(tn−t1) − 1

4L
, |yn − Yn| ≤ hc2

e4L(tn−t1) − 1
4L

, (27)

and if a sequence of h → 0, we get
∣∣e1n,h

∣∣→ 0,
∣∣e2n,h

∣∣→ 0, which concludes the proof.

3.3. Numerical Scheme II for SODEs

In this subsection, we will construct numerical Scheme II, a more advanced method than that of
Scheme I. The components of FzT of x and y can be approximated by the average of the two methods,
Scheme I (14)–(15) and the backward Scheme I (or implicit Scheme I), then the FzT is given by:

Xp = Xk + hF̂k, X1 = α, Yp = Yk + hĜk, Y1 = β,
Xc = Xk + hF̂k+1, X1 = α, Yc = Yk + hĜk+1, Y1 = β,

Xk+1 = 1
2
(
Xp + Xc

)
, Yk+1 = 1

2
(
Yp + Yc

)
,

⎫⎪⎬
⎪⎭ (28)

for k = 1, . . . , n − 1.
The problem with the previous scheme (28) is that the unknown quantities F̂k+1 and Ĝk+1 appear

on both sides (an implicit method). Therefore, one solution to this problem would be to use an explicit
method such as another fuzzy approach. The following Scheme II for k = 1, . . . , n − 1, X1 = α, Y1 = β:

X∗
k+1 = Xk + hF̂k, Y∗

k+1 = Yk + hĜk,
Xk+1 = Xk +

h
2
(

F̂k + F̂∗
k+1
)

, Yk+1 = Yk +
h
2
(
Ĝk + Ĝ∗

k+1
)

,

}
(29)

where:

F̂k[ f ] =

∫ tn
t1

f (t,Xk ,Yk)Ak(t)dt∫ tn
t1

Ak(x)dx
, Ĝk[g] =

∫ tn
t1

g(t,Xk ,Yk)Ak(t)dt∫ tn
t1

Ak(x)dx
,

F̂∗
k+1[ f ] =

∫ tn
t1

f (t,X∗
k+1,Y∗

k+1)Ak+1(t)dt∫ tn
t1

Ak+1(x)dx
, Ĝ∗

k+1[g] =

∫ tn
t1

g(t,X∗
k+1,Y∗

k+1)Ak+1(t)dt∫ tn
t1

Ak+1(x)dx
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (30)

This method computes the approximate coordinates [X1, . . . , Xn] and [Y1, . . . , Yn] of the direct
FzT of the functions x(t) and y(t), respectively. In the sequel, the inverse FzT (16) approximates the
solution x(t) (y(t)) of the SODEs (5).

In the next theorem, we obtain an error estimate in the context of a fuzzy partition and error
analysis of approximation Scheme II.

Theorem 5. Suppose that f (t, x1, x2), g(t, x1, x2) ∈ C2 [t1, t2]. Let
∣∣∣ ∂ f

∂xi

∣∣∣ ≤ L f

(∣∣∣ ∂g
∂xi

∣∣∣ ≤ Lg

)
, i = 1, 2,

and | f (t, x1, x2)| ≤ M1 (|g(t, x1, x2)| ≤ M2). Consider Scheme II (29)–(30) for some positive integer k and
{Ak | k = 1, . . . , n − 1} , n ≥ 2, to be a uniform fuzzy partition of [t1, tn], then the following hold true:

1. for a value of k in the range 1 ≤ k ≤ n − 1:

∣∣F̂∗
k+1 − F̂∗

k
∣∣ ≤Lh

(
1 + 2Lh2

)
Uk,k−1,

∣∣Ĝ∗
k+1 − Ĝ∗

k
∣∣ ≤Lh

(
1 + 2Lh2

)
Uk,k−1,

where Uk,k−1 = |Xk − Xk−1|+ |Yk − Yk−1|.
2. for all k = 1, . . . , n − 1

|Xn+1 − Xn| ≤ Mh
2

en(2Lh2), |Yn+1 − Yn| ≤ Mh
2

en(2Lh2),

where L = L f + Lg and M = ∑2
i Mi.
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Proof. The proof is similar to the proof of Theorem 3, so we just write out the procedure. The proofs
of Part 1 is as follows.∣∣X∗

k+1 − X∗
k
∣∣+ ∣∣Y∗

k+1 − Y∗
k
∣∣ ≤ |Xk − Xk−1|+ h

∣∣F̂k − F̂k−1
∣∣+ |Yk − Yk−1|+ h

∣∣Ĝk − Ĝk−1
∣∣ ,∣∣F̂∗

k+1 − F̂∗
k
∣∣ ≤L f h

(∣∣X∗
k+1 − X∗

k
∣∣+ ∣∣Y∗

k+1 − Y∗
k
∣∣) ,∣∣F̂k − F̂k−1

∣∣ ≤L f hUk,k−1, and
∣∣Ĝk − Ĝk−1

∣∣ ≤ LghUk,k−1.

The proof of Part 2, using (29), gives:

|Xk+1 − Xk| ≤ |Xk − Xk−1|+ Lh2
(

1 + Lh2
)

Uk,k−1,

|Xk+1 − Xk| ≤ |Xk+1 − Xk|+ |Yk+1 − Yk| ≤
(

1 + 2Lh2
(

1 + Lh2
))k

U2,1,

≤Mh
2

(
1 + 2Lh2

(
1 + Lh2

))k
.

where Uk,k−1 = |Xk − Xk−1|+ |Yk − Yk−1| and M = M1 + M2. In particular:

|Xn+1 − Xn| ≤ exp
(

n
(

2Lh2
) (

1 + Lh2
)) Mh

2
, |Yn+1 − Yn| ≤ exp

(
n
(

2Lh2
) (

1 + Lh2
)) Mh

2
,

which concludes the proof.

Lemma 4. Let f and g have continuous second order derivatives on t ∈ [t1, tn], and f (g) satisfies a Lipschitz
condition in the second and third arguments. Then, a local error of Scheme II (29)–(30) is of the order h3.

Proof. We consider the SODEs (5). We start with the Taylor expansion and the forward divided
difference approximation of the second derivative (please see Appendix A for more details), i.e.,

x(tk+1) = x(tk) + hx′(tk) +
h2

2

(
x′(tk+1)− x′(tk)

h
− h

2
x′′′(ε2k)

)
+

h3

6
x′′′(ε1k),

x(tk+1) = x(tk) +
h
2

x′(tk) +
h
2

x′(tk+1) + h3
[

1
6

x′′′(ε1k)− 1
4

x′′′(ε2k)

]
,

where εik ∈ (tk, tk+1) , i = 1, 2. The first derivative can be replaced by the right-hand side of the
differential Equation (5). The Taylor expansion becomes:

x(tk+1) = x(tk) +
h
2
( f (tk, xk, yk) + f (tk+1, xk + h f (tk, xk, yk), yk + hg(tk, xk, yk))) + e f h3,

where e f =
[

1
6 x′′′(ε1k)− 1

4 x′′′(ε2k) +
1
4 f2

]
and f2 = ∂

∂x f (ε3k, x(ε3k), y(ε3k)) +
∂

∂y f (ε3k, x(ε3k), y(ε3k)).
We can write this as:

xk+1 = xk +
h
2

(
K0 + K f

)
+ e f h3,

yk+1 = yk +
h
2
(
K1 + Kg

)
+ egh3,

where:

K0 = f (tk, xk, yk), K1 = g(tk, xk, yk),K f = f (tk+1, xk + hK0, yk + hK1), Kg = g(tk+1, xk + hK0, yk + hK1),

eg =

[
1
6

y′′′(ε1k)− 1
4

y′′′(ε2k) +
1
4

g2y′′(ε3k)

]
and g2 =

∂

∂x
g(ε3k, x(ε3k), y(ε3k)) +

∂

∂y
g(ε3k, x(ε3k), y(ε3k)).
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Now, let f (g) satisfy a Lipschitz condition in the second and third arguments. By Lemma 1 and
Remark 5, we have:

| f (tk, xk, yk)− f (t, Xk, Yk)| ≤ L (|xk − Xk|+ |yk − Yk|) ≤ α f h2 ≤ αh2, |g(tk, xk, yk)− g(t, Xk, Yk)| ≤ αg ≤ αh2,

where α = α f + αg is a positive constant. Once again, using Remark 5 and according to (29)–(30),
we obtain for fixed k = 1, . . . , n − 1:

xk+1 − Xk+1 = xk − Xk +
h
2
(
K0 − F̂k

)
+

h
2

(
K f − F̂∗

k+1

)
+ e f h3,

K0 − F̂k ≤ ∣∣ f (tk, xk, yk)− f (tk, Xk, Yk) + f (tk, Xk, Yk)− F̂k
∣∣ ≤ αh2 +

1
6

M2h2,

K1 − Ĝk =
∣∣g(tk, xk, yk)− g(tk, Xk, Yk) + g(tk, Xk, Yk)− F̂k

∣∣ ≤ αh2 +
1
6

M2h2.

By the trapezium formula, we have:

f (tk+1, X∗
k+1, Y∗

k+1)− F̂∗
k+1 ≤ f (tk+1, X∗

k+1, Y∗
k+1)− f (tk+1, X∗

k+1, Y∗
k+1) +

1
6

M2 f h2 =
1
6

M2 f h2 ≤ 1
6

M2h2,

Note that:

f (tk+1, xk + hK0, yk + hK1)− f (tk+1, X∗
k+1, Y∗

k+1) ≤ L
[|xk − Xk|+ h

∣∣K0 − F̂k
∣∣+ |yk − Yk|+ h

∣∣K1 − Ĝk
∣∣] .

Next,

K f − F̂∗
k+1 = f (tk+1, xk + hK0, yk + hK1)− f (tk+1, X∗

k+1, Y∗
k+1) + f (tk+1, X∗

k+1, Y∗
k+1)− F̂∗

k+1,

≤
[

αh2 +
1
6

M2h2
]
(2Lh + 1) .

This leads to:

|xk+1 − Xk+1| ≤ |xk − Xk|+ h
2

(
αh2 + 1

6 M2h2
)
+ h

2

([
αh2 + 1

6 M2h2
]
(2Lh + 1)

)
+ e f h3 = |xk − Xk|+ Ef h3. (31)

Similarly, |yk+1 − Yk+1| ≤ |yk − Yk| + Egh3, where Ef and Eg are appropriate constants that
depend on f and g, respectively. Therefore, the error of this method is O(h3).

To see that Scheme II is globally a second-order method, we need to establish its convergence.

Theorem 6. Let the assumptions of Lemma 4 be fulfilled. Consider Scheme II (29)–(30) for some positive integer
k, and {Ak | k = 1, . . . , n − 1}, n ≥ 2, is a uniform fuzzy partition of [t1, tn]. Thus, if a sequence of h → 0,
and with each h, we compute the Xk,h, Yk,h component, then

∣∣x(tk)− Xk,h
∣∣, ∣∣y(tk)− Yk,h

∣∣ converges to zero for
each k = 1, . . . , n − 1.

Proof. The proof is similar to the proof of Theorem 4, so we just write out the procedure. According to
Remark 5 and (31), we get:

xk+1 − Xk+1 = xk − Xk +
h
2
(
K0 − F̂k

)
+

h
2

(
K f − F̂∗

k+1

)
+ e f h3,

K0 − F̂k ≤ L1 |xk − Xk|+ L2 |yk − Yk|+ 1
6

M2h2,

K1 − Ĝk ≤ L3 |xk − Xk|+ L4 |yk − Yk|+ 1
6

M2h2,

f (tk+1, X∗
k+1, Y∗

k+1)− F̂∗
k+1 =

1
6

M2 f h2 ≤ 1
6

M2h2,
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f (tk+1, xk + hK0, yk + hK1)− f (tk+1, X∗
k+1, Y∗

k+1) ≤ L1
(|xk − Xk|+ h

∣∣K0 − F̂k
∣∣)+

L2
(|yk − Yk|+ h

∣∣K1 − Ĝk
∣∣) ,

K f − F̂∗
k+1 = f (tk+1, xk + hK0, yk + hK1)− f (tk+1, X∗

k+1, Y∗
k+1) + f (tk+1, X∗

k+1, Y∗
k+1)− F̂∗

k+1,

≤ L1 |xk − Xk|+ hL1
∣∣K0 − F̂k

∣∣+ L2 |yk − Yk|+ hL2
∣∣K1 − Ĝk

∣∣+ 1
6

M2h2.

Once again, using Remark 5 gives:

|xk+1 − Xk+1| ≤ |xk − Xk|+ h
2

(
L1 |xk − Xk|+ L2 |yk − Yk|+ 1

6
M2h2

)
+

h
2

(
L1 |xk − Xk|+ hL1

∣∣K0 − F̂k
∣∣+ L2 |yk − Yk|+ hL2

∣∣K1 − Ĝk
∣∣+ 1

6
M2h2

)
+(

1
4

SM1 − 1
12

M2

)
h3,

where

e f ≤ 1
6 M2 f − 1

4 M2 f +
1
4 SM1 f =

1
4 SM1 f − 1

12 M2 f ,

M1 = M1 f + M1g, M1 f = max
t∈[t1,tn ]

| f ′(t, x, y)|, M1g = max
t∈[t1,tn ]

|g′(t, x, y)|,

M2 = M2 f + M2g, M2 f = max
t∈[t1,tn ]

| f ′′(t, x, y)|, M2g = max
t∈[t1,tn ]

|g′′(t, x, y)|,

S = S f + Sg is the upper bound of ∂ f
∂xi

(
∂g
∂xi

)
, i = 1, 2, x = x1 and y = x2.

Simplifying, then:

|xk+1 − Xk+1| ≤ |xk − Xk|+

+
h
2
(2L1 + hL1L1 + hL2L3) |xk − Xk|+ h

2
(2L2 + hL1L2 + hL2L4) |yk − Yk|

+

(
1
4

SM1 +
1

12
[hL1 + hL2 + 1] M2

)
h3.

Similarly,

|yk+1 − Yk+1| ≤ |yk − Yk|

+
h
2
(2L4 + hL3L2 + hL4L4) |yk − Yk|+ h

2
(2L3 + hL3L1 + hL4L3) |xk − Xk|

+

(
1
4

SM1 +
1
12

[hL3 + hL4 + 1] M2

)
h3.

Therefore,

Case 1. If L = ∑4
i=1 Li and c = 1

2 SM1 +
1
6 [2hL + 1] M2, we get

|xk+1 − Xk+1| ≤ |xk+1 − Xk+1|+ |yk+1 − Yk+1| ≤ [1 + 2hL (1 + hL)] (|xk − Xk|+ |yk − Yk|) + h3

2
c,

|yk+1 − Yk+1| ≤ |xk+1 − Xk+1|+ |yk+1 − Yk+1| ≤ [1 + 2hL (1 + hL)] (|xk − Xk|+ |yk − Yk|) + h3

2
c.
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By using the proof of Theorem 4, when U1 = 0, this implies that:

|xn − Xn| ≤ h2c

4L
(

1 + L(tn−t1)
n

) [exp
(

2L (tn − t1)

(
1 +

L (tn − t1)

n

))
− 1
]

. (32)

In a similar way,

|yn − Yn| ≤ h2c

4L
(

1 + L(tn−t1)
n

) [exp
(

2L (tn − t1)

(
1 +

L (tn − t1)

n

))
− 1
]

. (33)

Case 2. If L = Li, i = 1, . . . , 4 and:

∣∣ f (tk, xk, yk)− F̂k
∣∣ ≤ h2

6 M2 + 2L max {|xk − Xk| , |yk − Yk|} ,∣∣∣ g(tk, xk, yk)− Ĝk

∣∣∣ ≤ h2

6 M2 + 2L max {|xk − Xk| , |yk − Yk|} .

Thus,{
|xk+1 − Xk+1| ≤ |xk − Xk|+ 2Lh (1 + hL) max {|xk − Xk| , |yk − Yk|}+ h3

2 c,
|yk+1 − Yk+1| ≤ |yk − Yk|+ 2Lh (1 + hL) max {|xk − Xk| , |yk − Yk|}+ h3

2 c,

where c = 1
2 SM1 +

1
6 [2hL + 1] M2. Consequently,

⎧⎨
⎩ |xk − Xk| ≤ (1 + 4Lh (1 + hL))k |U1|+ h3c (1+4Lh(1+hL))k−1

4Lh(1+hL) ,

|yk − Yk| ≤ (1 + 4Lh (1 + hL))k |U1|+ h3c (1+4Lh(1+hL))k−1
4Lh(1+hL) ,

where Uk = |xk − Xk|+ |yk − Yk|. In particular,
when U1 = 0, we get:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

|xn − Xn| ≤ h2c

[
exp
(

4L(tn−t1)

(
1+

L(tn−t1)
n

))
−1
]

4L
(

1+
L(tn−t1)

n

) ,

|yn − Yn| ≤ h2c

[
exp
(

4L(tn−t1)

(
1+

L(tn−t1)
n

))
−1
]

4L
(

1+
L(tn−t1)

n

) ,

(34)

and if h = {h1, ..., hm} → 0, m > 0 in (32), (33) and (34), we get
∣∣xn − Xn,h

∣∣ → 0,∣∣yn − Yn,h
∣∣→ 0, which concludes the proof.

4. Applications

One of the main problems of mathematics appears with variable coefficients when
α (t) , β (t) , δ (t) , γ (t) are analytic functions and added to the model. The new differential equations
are represented by non-autonomous SODEs. In this model, time varying values for the growth rate of
the prey, the efficiency of the predator, being the ability to capture prey, the death rate of the predator
and the growth rate of the predator are considered. It is important to remark that since in this problem,
the coefficients are time varying, careful attention must be paid in order to obtain the correct recurrence
equation system of the model. The model, incorporating the above functions, is as follows [30,33,34]:

dx
dt

=α (t) x (t)− β (t) x (t) y (t) , x (0) = x1

dy
dt

=δ (t) x (t) y (t)− γ (t) y (t) , y (0) = y1 (35)
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Three examples are discussed in order to prove the results obtained by Scheme I (14)–(15) and
Scheme II (29)–(30), two examples for the numerical solution of the model (35) and one example for
the linear case.

Example 1. Consider the problem of the Lotka–Volterra prey-predator model (35). We take

α (t) = 4 + tan (t) , β (t) = exp(2t), γ (t) = −2, δ (t) = cos(t), x(0) = −4 and y(0) = 4.

The exact solution for these coefficients is x(t) = −4
cos(t) , y(t) = 4 exp(−2t), as proposed by [30,33,34].

Example 2. Consider the problem of the Lotka–Volterra prey-predator model (35) with

α (t) = −t, β (t) = −t, γ (t) = t, δ (t) = t, x(0) = 2 and y(0) = 2.

The exact solution for these coefficients is x(t) = 2
2−exp(t2/2) , y(t) = 2

2−exp(t2/2) , as proposed by [30,33].

Example 3. Consider the following non-autonomous SODEs with initial values (5):

{
x′(t) = x(t)− y(t) + 2t − t2 − t3 , x(0) = 1 , t ∈ [0, 1]

y′(t) = x(t) + y(t)− 4t2 + t3 , y(0) = 0.
(36)

The exact solution of (36) is given by x(t) = et cos(t) + t2 and y(t) = et sin(t)− t3.

The results are listed in Tables 1–7 by the proposed fuzzy approximation methods with respect
to the raised cosine generating function and Table 8 by the proposed fuzzy approximation methods
with respect to the triangular generating function and raised cosine generating function. The proposed
fuzzy approximation methods are generated by Algorithms A1 and A2 (please see Appendix B).
The mean square error (MSE) is defined as MSE = 1

n (‖Yk − y(tk)‖2)
2. This is an easily computable

quantity for a particular sample. From the numerical tests, the results are summarized as follows:

1. In view of Tables 2–7, a comparison is made between the two new proposed schemes (15), (29),
the Euler method and the trapezoidal rule based on the Euler method for Examples 1–3.

2. Moreover, a comparison of MSE for Examples 1–3 is shown in Table 1. It is observed that the new
fuzzy approximation methods yield more accurate results in comparison with the classical Euler
and classical trapezoidal rule (one-step). The best result (in comparison with the Schemes I and
II) is obtained by Scheme II.

3. In Table 8, a comparison is given between the errors for two proposed schemes based on the FzT
with respect to fuzzy partitions determined by [6,19].

The better results (in comparison with the non-linear case) are obtained by the linear case
and non-autonomous SODEs in Example 3. Further, the results obtained using proposed fuzzy
approximation methods for Examples 1–3 are shown in Figure 1 by using the raised cosine generating
function. In view of Figure 1, the graphical results of Examples 1–3 show a comparison between
numerical schemes (I and II) and the exact solution. Furthermore, in view of Figure 1, a comparison
is given between the numerical results of Examples 1 and 2 and exact solutions for h = 0.01, while
a comparison is given between the numerical results of Example 3 and exact solutions for h = 0.1.
All the graphs are plotted using MATLAB software. This constitutes an important improvement to the
previous fuzzy approach, which did not provide such information for SODEs. Thus, this study will be
particularly important.

Remark 6. We compare new results based on FzT with the conventional numerical methods. For a discussion
of the conventional numerical methods, the Euler method and trapezoidal rule to solve SODEs, see for
example [35,36].
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Table 1. The values of MSE for Example 1–3.

Method
Example 1 Example 2 Example 3

x(t) y(t) x(t) y(t) x(t) y(t)

Scheme I 2.91443 × 10−1 6.67431 × 10−3 1.12399 × 10−1 1.12399 × 10−1 2.92534 × 10−4 1.58256 × 10−3

Scheme II 2.24139 × 10−2 3.77476 × 10−4 3.04846 × 10−4 3.04846 × 10−4 1.72082 × 10−5 4.10161 × 10−5

Euler 6.99731 × 10−1 1.19826 × 10−2 1.14890 × 10−1 1.14890 × 10−1 5.43867 × 10−4 1.68059 × 10−3

Trapezoidal 5.99915 × 10−1 1.40165 × 10−3 2.75574 × 10−2 2.75574 × 10−2 3.19103 × 10−5 5.21595 × 10−4

Table 2. Comparison of numerical results of x(t) for Example 3.

ti Solution x(t)
Proposed

Scheme I

Proposed

Scheme II
Euler Trapezoidal

0.00 1.00000 1.00000 1.00000 1.00000 1.00000
0.10 1.10965 1.10581 1.11259 1.10000 1.10945
0.20 1.23706 1.22517 1.24000 1.21890 1.23671
0.30 1.37957 1.36112 1.38257 1.35438 1.37924
0.40 1.53406 1.51087 1.53717 1.50368 1.53402
0.50 1.69689 1.67119 1.70015 1.66355 1.69755
0.60 1.86386 1.83827 1.86733 1.83022 1.86575
0.70 2.03020 2.00777 2.03392 1.99935 2.03396
0.80 2.19055 2.17473 2.19456 2.16601 2.19692
0.90 2.33891 2.33356 2.34322 2.32461 2.34870
1.00 2.46869 2.47798 2.47776 2.46891 2.48270

Table 3. Comparison of numerical results of y(t) for Example 3.

ti Solution y(t)
Proposed

Scheme I

Proposed

Scheme II
Euler Trapezoidal

0.00 0.00000 0.00000 0.00000 0.00000 0.00000
0.10 0.10933 0.09948 0.10781 0.10000 0.10805
0.20 0.23466 0.21563 0.23168 0.21610 0.23113
0.30 0.37191 0.34407 0.36755 0.34440 0.36521
0.40 0.51694 0.48088 0.51126 0.48098 0.50621
0.50 0.66544 0.62209 0.65855 0.62184 0.64994
0.60 0.81285 0.76359 0.80488 0.76288 0.79202
0.70 0.95430 0.90109 0.94543 0.89979 0.92782
0.80 1.08451 1.03002 1.07494 1.02801 1.05236
0.90 1.19767 1.14549 1.18766 1.14261 1.16023
1.00 1.28736 1.24213 1.28463 1.23823 1.24549
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Table 4. Comparison of numerical results of x(t) for Example 1.

ti Solution x(t) Proposed
Scheme I

Proposed
Scheme II

Euler Trapezoidal

0.00 −4.00000 −4.00000 −4.00000 −4.00000 −4.00000
0.05 −4.00501 −3.97865 −3.99616 −4.00000 −4.00714
0.10 −4.02008 −3.99232 −4.01193 −4.01429 −4.02627
0.15 −4.04543 −4.01914 −4.03732 −4.04276 −4.05752
0.20 −4.08136 −4.05937 −4.07264 −4.08574 −4.10134
0.25 −4.12834 −4.11358 −4.11833 −4.14389 −4.15850
0.30 −4.18701 −4.18268 −4.17490 −4.21830 −4.23015
0.35 −4.25816 −4.26794 −4.24305 −4.31052 −4.31783
0.40 −4.34282 −4.37105 −4.32359 −4.42260 −4.42361
0.45 −4.44224 −4.49423 −4.41752 −4.55722 −4.55014
0.50 −4.55798 −4.64028 −4.52605 −4.71784 −4.70086
0.55 −4.69195 −4.81278 −4.65062 −4.90891 −4.88023
0.60 −4.84651 −5.01628 −4.79297 −5.13613 −5.09399
0.65 −5.02460 −5.25662 −4.95520 −5.40685 −5.34964
0.70 −5.22984 −5.54127 −5.13983 −5.73061 −5.65700
0.75 −5.46680 −5.87990 −5.34992 −6.11990 −6.02912
0.80 −5.74130 −6.28518 −5.58925 −6.59122 −6.48349
0.85 −6.06076 −6.77381 −5.86249 −7.16663 −7.04390
0.90 −6.43490 −7.36820 −6.17551 −7.87602 −7.74310
0.95 −6.87660 −8.09874 −6.53582 −8.76042 −8.62699
1.00 −7.40326 −9.00740 −6.96630 −9.87710 −9.76103

Table 5. Comparison of numerical results of y(t) for Example 1.

ti Solution y(t) Proposed
Scheme I

Proposed
Scheme II

Euler Trapezoidal

0.00 4.00000 4.00000 4.00000 4.00000 4.00000
0.05 3.61935 3.60013 3.62249 3.60000 3.62045
0.10 3.27492 3.24497 3.28040 3.24090 3.27766
0.15 2.96327 2.92506 2.97057 2.91774 2.96757
0.20 2.68128 2.63645 2.69004 2.62635 2.68671
0.25 2.42612 2.37573 2.43612 2.36315 2.43201
0.30 2.19525 2.13994 2.20634 2.12506 2.20079
0.35 1.98634 1.92646 1.99847 1.90938 1.99067
0.40 1.79732 1.73299 1.81047 1.71374 1.79951
0.45 1.62628 1.55749 1.64050 1.53607 1.62541
0.50 1.47152 1.39815 1.48689 1.37451 1.46664
0.55 1.33148 1.25333 1.34811 1.22742 1.32166
0.60 1.20478 1.12159 1.22279 1.09333 1.18908
0.65 1.09013 1.00161 1.10969 0.97093 1.06762
0.70 0.98639 0.89223 1.00768 0.85906 0.95615
0.75 0.89252 0.79241 0.91576 0.75670 0.85366
0.80 0.80759 0.70122 0.83301 0.66295 0.75923
0.85 0.73073 0.61784 0.75862 0.57703 0.67208
0.90 0.66120 0.54154 0.69184 0.49827 0.59150
0.95 0.59827 0.47170 0.63202 0.42612 0.51692
1.00 0.54134 0.40778 0.57734 0.36016 0.44787
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Table 6. Comparison of numerical results of x(t) for Example 2.

ti Solution x(t) Proposed
Scheme I

Proposed
Scheme II

Euler Trapezoidal

0.00 2.00000 2.00000 2.00000 2.00000 2.00000
0.05 2.00250 2.00149 2.00325 2.00000 2.00250
0.10 2.01008 2.00650 2.01082 2.00500 2.01005
0.15 2.02289 2.01660 2.02364 2.01508 2.02279
0.20 2.04124 2.03197 2.04201 2.03042 2.04101
0.25 2.06557 2.05294 2.06636 2.05134 2.06511
0.30 2.09650 2.07996 2.09731 2.07830 2.09567
0.35 2.13485 2.11365 2.13568 2.11191 2.13344
0.40 2.18171 2.15485 2.18256 2.15301 2.17942
0.45 2.23852 2.20462 2.23939 2.20265 2.23493
0.50 2.30720 2.26437 2.30808 2.26226 2.30167
0.55 2.39031 2.33595 2.39116 2.33365 2.38192
0.60 2.49133 2.42177 2.49211 2.41923 2.47868
0.65 2.61513 2.52506 2.61574 2.52224 2.59605
0.70 2.76863 2.65022 2.76888 2.64702 2.73967
0.75 2.96202 2.80329 2.96157 2.79961 2.91754
0.80 3.21093 2.99285 3.20907 2.98854 3.14130
0.85 3.54059 3.23143 3.53586 3.22625 3.42845
0.90 3.99443 3.53788 3.98346 3.53151 3.80653
0.95 4.65413 3.94192 4.62841 3.93381 4.32100
1.00 5.69348 4.49277 5.61875 4.48201 5.05197

Table 7. Comparison of numerical results of y(t) for Example 2.

ti Solution y(t) Proposed
Scheme I

Proposed
Scheme II

Euler Trapezoidal

0.00 2.00000 2.00000 2.00000 2.00000 2.00000
0.05 2.00250 2.00149 2.00325 2.00000 2.00250
0.10 2.01008 2.00650 2.01082 2.00500 2.01005
0.15 2.02289 2.01660 2.02364 2.01508 2.02279
0.20 2.04124 2.03197 2.04201 2.03042 2.04101
0.25 2.06557 2.05294 2.06636 2.05134 2.06511
0.30 2.09650 2.07996 2.09731 2.07830 2.09567
0.35 2.13485 2.11365 2.13568 2.11191 2.13344
0.40 2.18171 2.15485 2.18256 2.15301 2.17942
0.45 2.23852 2.20462 2.23939 2.20265 2.23493
0.50 2.30720 2.26437 2.30808 2.26226 2.30167
0.55 2.39031 2.33595 2.39116 2.33365 2.38192
0.60 2.49133 2.42177 2.49211 2.41923 2.47868
0.65 2.61513 2.52506 2.61574 2.52224 2.59605
0.70 2.76863 2.65022 2.76888 2.64702 2.73967
0.75 2.96202 2.80329 2.96157 2.79961 2.91754
0.80 3.21093 2.99285 3.20907 2.98854 3.14130
0.85 3.54059 3.23143 3.53586 3.22625 3.42845
0.90 3.99443 3.53788 3.98346 3.53151 3.80653
0.95 4.65413 3.94192 4.62841 3.93381 4.32100
1.00 5.69348 4.49277 5.61875 4.48201 5.05197
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x(t)

y(t)

(a) Example 1.

t

(b) Example 2.

t

x(t)

y(t)

(c) Example 3.

Figure 1. A comparison between three fuzzy numerical methods and the exact solution for three
examples.
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Table 8. The values of MSE for Examples 1–3 by the different types of fuzzy partitions.

Case
Proposed Scheme for x(t) Proposed Scheme for y(t)

I II I II

Ex.1 T 1 2.48353 × 10−1 3.37890 × 10−2 6.03282 × 10−3 5.38734 × 10−4

C 2 2.91443 × 10−1 2.24139 × 10−2 6.67431 × 10−3 3.77476 × 10−4

Ex.2 T 1.12099 × 10−1 3.01900 × 10−4 1.12099 × 10−1 3.01900 × 10−4

C 1.12399 × 10−1 3.04846 × 10−4 1.12399 × 10−1 3.04846 × 10−4

Ex.3 T 2.71905 × 10−4 2.08807 × 10−5 1.61509 × 10−3 4.84176 × 10−5

C 2.92534 × 10−4 1.72082 × 10−5 1.58256 × 10−3 4.10161 × 10−5

1 Triangular generating function; 2 Raised cosine generating function.

5. Conclusions

We extended the applicability of fuzzy-based numerical methods to the problems of
conventional mathematics. In particular, we contributed to approximation methods of the SODEs.
Two approximation methods based on the FzT were proposed and their error estimate analyzed.
Moreover, we proved that two approximation methods, namely Schemes I and II, determine an
approximate solution, which converges to the exact solution, and the local truncation error of the
Scheme I (Scheme II) is O(h2)

(O(h3)
)
. As an application, a system of nonlinear differential equations

is solved by using Schemes I and II. From the numerical results, it is observed that the new fuzzy
approximation methods yield more accurate results in comparison with the classical Euler method
(one-stage) and classical trapezoidal rule (two-stage). Hence, the new fuzzy approximation methods
provided alternative techniques for solving differential equations with better results, and the objective
of this research was achieved and tested.

As a consequence, it should be noted that the numerical solutions depend on the types of uniform
fuzzy partitions. For cases

(
1 −
∣∣∣ x−xk

h

∣∣∣) and 1
2

(
1 + cos

(
π
(

x−xk
h

)))
, the shape of the basic functions

determines the form of representation (linear or non-linear) of the numerical solution. This agrees
with the results proposed by [5,6] using uniform fuzzy partitions. It is also worth pointing out that the
results in this research are better in comparison with the classical numerical methods using uniform
fuzzy partitions for linear and nonlinear cases. Thus, the proposed method is very much suitable for
solving SODEs (5) in a linear or nonlinear case under the assumption of f and g satisfying the Lipschitz
condition. If we want to obtain the best approximation of f and g as possible, then the number n
of components should be large. It should be stressed that the application of the FzT can be used for
removing noise from the given data. This is especially important for various practical applications of
FzT. The proposed methods can also be applied to the n-dimensional system of first-order coupled
differential equations in the case of a non-noisy or noisy right-hand side. The discussion will continue
in [37] to give more details about the fuzzy partition and the modification of multiple steps.
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Appendix A. Taylor Series

A Taylor series is given that:

x(tk+1) = x(tk) + hx′(tk) +
h2

2
x′′(tk) +

h3

6
x′′′(ε1k),

= x(tk) + hx′(tk) +
h2

2

(
x′(tk+1)− x′(tk)

h
− h

2
x′′′(ε2k)

)
+

h3

6
x′′′(ε1k),

= x(tk) +
h
2

x′(tk) +
h
2

x′(tk+1) + h3
[

1
6

x′′′(ε1k)− 1
4

x′′′(ε2k)

]
, (A1)

where x′′(t) = x′(tk+1)−x′(tk)
h − h

2 x′′′(ε2k). Calculus can be used to derive that:

x′(tk+1) = f (tk+1, x(tk+1), y(tk+1))

= f (tk+1, x(tk) + h f (tk, x(tk), y(tk)), y(tk) + hg(tk, x(tk), y(tk)))

+
h2

2
f2(ε3k, x(ε3k), y(ε3k))x′′(ε3k),

where f2(ε3k, x(ε3k), y(ε3k)) =
∂

∂x f (ε3k, x(ε3k), y(ε3k)) +
∂

∂y f (ε3k, x(ε3k), y(ε3k)).

Substituting Equation (A1), it is given that:

x(tk+1) = x(tk) +
h
2

x′(tk)

+
h
2

f (tk+1, x(tk) + h f (tk, x(tk), y(tk)), y(tk) + hg(tk, x(tk), y(tk)))

+
h
2

h2

2
f2(ε3k, x(ε3k), y(ε3k))x′′(ε3k)

+ h3
[

1
6

x′′′(ε1k)− 1
4

x′′′(ε2k)

]
,

x(tk+1) = x(tk)+

h
2
(
x′(tk) + f (tk+1, x(tk) + h f (tk, x(tk), y(tk)), y(tk) + hg(tk, x(tk), y(tk)))

)
+ h3

[
1
6

x′′′(ε1k)− 1
4

x′′′(ε2k) +
1
4

f2(ε3k, x(ε3k), y(ε3k))x′′(ε3k)

]
.

It can be rewritten as:

x(tk+1) = x(tk) +
h
2

(
K0 + K f

)
+ e f h3,

where:

K0 = x′(t) = f (tk, x(tk), y(tk)), K1 = y′(t) = g(tk, x(tk), y(tk)), K f = f (tk+1, x(tk) + hK0, y(tk) + hK1),

e f =
1
6

x′′′(ε1k)− 1
4

x′′′(ε2k) +
1
4

f2(ε3k, x(ε3k), y(ε3k))x′′(ε3k), and tk < ε1k, ε2k, ε3k < tk+1.

Similarly,

y(tk+1) = y(tk) +
h
2
(
K1 + Kg

)
+ egh3,
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where:

Kg = g(tk+1, x(tk) + hK0, y(tk) + hK1), eg =
1
6

y′′′(ξ1k)− 1
4

y′′′(ξ2k) +
1
4

g2(ξ3k, x(ξ3k), y(ξ3k))y′′(ξ3k),

g2(ε3k, x(ε3k), y(ε3k)) =
∂

∂x
g(ε3k, x(ε3k), y(ε3k)) +

∂

∂y
g(ε3k, x(ε3k), y(ε3k)),

and tk < ξ1k, ξ2k, ξ3k < tk+1.

Appendix B. Algorithms

In this Appendix, the algorithms of the approximation methods based on FzT for Sections 3.2
and 3.3 are explained in detail. Pseudocode is used to describe the algorithms and a simplified code
that is easy to read. This pseudocode specifies the form of the input to be supplied and the form of
the desired output. As a consequence, a stopping technique independent of the numerical technique
is incorporated into each algorithm to avoid infinite loops. Two punctuation symbols are used in
the algorithms: a period (.) indicates the termination of a step, and a semicolon (;) separates tasks
within a step. The integral symbol (integral(function,upper limits,lower limits)) is used to denote
a definite integral. The steps in the algorithms follow the rules of structured program construction.
They have been arranged so that there should be minimal difficulty translating pseudocode into any
programming language suitable for scientific applications. We approximate the solution of SODEs (5)
at (N + 1) equally-spaced numbers in the interval [a, b] as follows.

Algorithm A1. One-stage (modified Euler) algorithm for the system of ODEs.

INPUT: f (t, x, y) and g(t, x, y) in Equation (5); endpoints a, b; integer N; initial condition y1.

Step 1 Set h = (b − a)/N; X1 = x1; Y1 = y1; t1 = a; k = 1, . . . , N + 1; tk = a + (k − 1)h.
Step 2 Define the generalized uniform fuzzy partitions as Ak(t) = 1

2

(
1 + cos

(
π
(

t−t(k)
h

)))
.

Step 3 For k = 1 to N, do Steps 4–7.
Step 4 F(k) =integral( f (t, X(k), Y(k))Ak(t), t(k − 1), t(k + 1))/integral(Ak(t), t(k − 1), t(k + 1)).

Step 5 G(k) =integral(g(t, X(k), Y(k))Ak(t), t(k − 1), t(k + 1))/integral(Ak(t), t(k − 1), t(k + 1)).

Step 6 X(k + 1) =X(k) + hF(k).
Step 7 Y(k + 1) =Y(k) + hG(k).

end.
OUTPUT: Approximation X and Y to x and y, respectively, at the (N + 1) values of t.

Algorithm A2. Two-stage (modified trapezoidal rule) algorithm for the system of ODEs.

INPUT: f (t, x, y); g(t, x, y); endpoints a, b; integer N; initial condition y1.

Step 1 Set h = (b − a)/N; X1 = x1; Y1 = y1; t1 = a; k = 1, . . . , N + 1; tk = a + (k − 1)h.
Step 2 Define the generalized uniform fuzzy partitions as Ak(t) = 1

2

(
1 + cos

(
π
(

t−t(k)
h

)))
.

Step 3 For k = 1 to N, do Steps 4–11.
Step 04 F(k) =integral( f (t, X(k), Y(k))Ak(t), t(k − 1), t(k + 1))/integral(Ak(t), t(k − 1), t(k + 1)).

Step 05 G(k) =integral(g(t, X(k), Y(k))Ak(t), t(k − 1), t(k + 1))/integral(Ak(t), t(k − 1), t(k + 1)).

Step 06 Xstar(k + 1) =X(k) + hF(k).
Step 07 Ystar(k + 1) =Y(k) + hG(k).
Step 08 Fstar(k + 1) =integral( f (t, Xstar(k + 1), Ystar(k + 1))Ak+1(t), t(k), t(k + 2))/integral(Ak+1(t), t(k), t(k + 2)).

Step 09 Gstar(k + 1) =integral(g(t, Xstar(k + 1), Ystar(k + 1))Ak+1(t), t(k), t(k + 2))/integral(Ak+1(t), t(k), t(k + 2)).

Step 10 X(k + 1) =X(k) + h (F(k) + Fstar(k + 1)) /2.

Step 11 Y(k + 1) =Y(k) + h (G(k) + Gstar(k + 1)) /2.
end.

OUTPUT: Approximation X and Y to x and y, respectively, at the (N + 1) values of t.
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Abstract: In this research, three approximation methods are used in the new generalized uniform
fuzzy partition to solve the system of differential equations (SODEs) based on fuzzy transform
(FzT). New representations of basic functions are proposed based on the new types of a uniform
fuzzy partition and a subnormal generating function. The main properties of a new uniform fuzzy
partition are examined. Further, the simpler form of the fuzzy transform is given alongside some
of its fundamental results. New theorems and lemmas are proved. In accordance with the three
conventional numerical methods: Trapezoidal rule (one step) and Adams Moulton method (two
and three step modifications), new iterative methods (NIM) based on the fuzzy transform are
proposed. These new fuzzy approximation methods yield more accurate results in comparison with
the above-mentioned conventional methods.

Keywords: fuzzy partition; fuzzy transform; numerical methods; NIM; systems of ordinary
differential equations

1. Introduction

Differential equation is particularly useful for different areas of applied sciences and engineering.
Many differential equations have no closed form solutions. Thus, many researchers are developing
approximation methods for solving differential equations, for example [1–3]. In this paper, we continue
the study of approximation methods based on FzT to solutions of differential equations.

The core idea of FzT is a fuzzy partition of a universe into fuzzy subsets. The first fuzzy partition
of FzT with the Ruspini condition was introduced by [4] and was extensively investigated by [5].
This condition implies normality of the fuzzy partition. In addition, the fuzzy partition with the
generalized Ruspini condition (fuzzy r-partition) was introduced by [6]. This fuzzy partition was
achieved by replacing the partition of unity by fuzzy r-partition. This type of partition was used
by [6,7] for smoothing or filtering data based on the inverse FzT. Further, a generalized fuzzy partition
appeared in connection with the notion of the FzT, where FzT components are polynomials of degree
m [8]. By [9], different types of fuzzy partitions are taken into consideration such as B-splines, Shepard
kernels, Bernstein basis polynomials and Favard-Szasz-Mirakjan operators. Later, the higher degree
FzT based on B-splines was proposed [10] to improve the quality of the function approximation of
two variables.

A generalized fuzzy partition was implicitly introduced by [11] with the purpose of meeting the
requirements of image compression. In addition, a generalized fuzzy partition can also be considered
in connection with radial membership functions [12]. Further, necessary and sufficient conditions
for modeling the generalized fuzzy partition was provided by [13]. Recently, a new representation
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formula for basic functions of FzT and a new fuzzy numerical method based on block pulse functions
for numerical solution of integral equations were presented by [14]. The approximation method based
on the FzT with Shepard-type basic functions for linear Fredholm integral equations was discussed
by [15]. New representations of the generalized uniform fuzzy partitions with the normal case to
obtain better approximation solutions for solving Cauchy problems were presented by [16].

FzT is a soft computing method developed by Perfilieva [5] that has many applications,
for example, in differential and integral equations. FzT for solving ordinary Cauchy problems with
one variable was initiated by [4]. The generalization of the Euler method has been discussed by [17]
for solving ordinary Cauchy problems. The author has applied this technique to reef growth and sea
level variations models. Further, FzT has been generalized from the case of constant components to
the case of polynomial components by [8]. Later, the first and second degree FzT based mid-point rule
for solving the Cauchy problem and the uncertain initial value problem have been proposed by [18].
Furthermore, an algorithm to obtain the approximate solutions of second order initial value problems
was constructed by [19]. From this idea, FzT for numerical solutions of two point boundary value
problems was proposed by [20].

FzT of two variables based on finite differences method was used by [21] for solving a type of
partial differential equations with Dirichlet boundary conditions and initial conditions. In addition,
the first degree FzT of two variables was introduced by [22]. By [23], the partial derivatives using the
first FzT were approximated and modification of the Canny edge detector was proposed. Furthermore,
the uniform stability result for the vibrations of a telegraph equation using FzT of two variables
was proposed by [24]. The composition of inverse and direct discrete FzT method was extended to
numerical solution of Fredholm integral equations and Volterra Fredholm integral equations [25].
The general form of the higher order FzT was constructed by [26] for solving differential and integral
equations using any arbitrary basis functions. The FzT has investigated for solving the Volterra
population growth model using the approximation for the Caputo derivative [27]. A new numerical
method based FzT was demonstrated to solve a class of delay differential equations by means of the
Picard-like numerical scheme [28]. FzT was considered to approximate the solution of boundary value
problems by minimizing the integral squared error in 2-norm [29]. In [30], the dynamical properties of
a two neuron system with respect to FzT and a single delay have been investigated. The conditions
under which quasi-consensus in a multi-agent system with sampled data based on FzT were proposed
by [31].

NIM was proposed to solve nonlinear functional equations and the existence of solution for
nonlinear Volterra integral equations [2]. At the same time, NIM was introduced for solving nonlinear
equations by using a different decomposition technique [32]. From this conception, NIM was
considered in terms up to fourth-order in Taylor series for solving nonlinear equations [33]. Sufficiency
conditions have been presented for convergence of the NIM [34]. A new predictor-corrector approach
was developed based on NIM for fractional differential equations [35]. Classical methods are modified
by [3] to derive numerous formulas for solving the differential equations.

The motivation of the proposed study comes from [16,36,37]. In [16], new fuzzy numerical
methods to solve the Cauchy problem was considered and the authors showed that the error can be
reduced by FzT and NIM with respect to new generalized uniform fuzzy partitions, namely power of
the triangular and raised cosine generalized uniform fuzzy partitions, where generating functions are
normal (see also [37] for another approach). In addition, two basic approximation methods, modified
Euler method and Trapezoidal rule, with help from FzT for solving SODEs are analyzed in detail
by [36]. For this purpose, more generally, new generalized uniform fuzzy partitions are proposed in
this study, where a generating function is not normal.

The membership functions in underlying fuzzy partitions are often called basic functions.
There has been a growing interest in investigating the properties of fuzzy partitions.
However, the problem arises on how one can effectively construct the basic function of fuzzy partitions.
In this paper, new representations of basic functions are proposed. This is achieved by introducing
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new generalized uniform fuzzy partitions, where a generating function is not normal. Further, new
fuzzy numerical methods based on NIM and FzT for solving SODEs are introduced and discussed.
In particular, we consider functions of two variables with initial conditions. In accordance with
the existing methods, Trapezoidal rule and Adams Moulton are improved using FzT and NIM.
The methods are combined with one-step, two-step and three-step. As an application, all these
methods are used to solve a general model of the dynamical system, i.e., Lotka–Volterra equation
with derivatives and with variable coefficients. Furthermore, numerical examples are presented. It is
observed that the new fuzzy numerical methods yield more accurate results than classical Trapezoidal
rule and classical Adams Moulton methods (2 and 3-step).

The paper is organized as follows. The main part of the paper is Sections 3 and 4, which provides
new representations for basic functions of FzT, followed by the modified one step, 2-step and 3-step
based on NIM and FzT method with respect to new representations formulas for generalized uniform
fuzzy partition of FzT. In Section 5, numerical examples are discussed. Finally, conclusions are given
in Section 6.

2. Basic Concepts

In this section, we give some definitions and introduce the necessary notation following [38],
which will be used throughout the paper. Throughout this section, we deal with an interval [a, b] ⊂ R

of real numbers.

Definition 1. (generalized uniform fuzzy partition) Let ti ∈ [a, b] , i = 1, . . . , n, be fixed nodes such that
a = t1 < . . . < tn = b, t0 = t1, tn = tn+1, n ≥ 2 and [ti − h, ti + h] ⊆ [a, b]. We say that the fuzzy sets
Ai : [a, b] → [0, 1] constitute a generalized fuzzy partition of [a, b] if the following conditions are fulfilled:

1. (positivity and locality)—Ai (t) > 0 if t ∈ (ti−1, ti+1) and Ai (t) = 0 if t ∈ [a, b] \ (ti−1, ti+1);
2. (continuity)—Ai is continuous on [ti−1, ti+1];
3. (covering)—for t ∈ [a, b] , ∑n

i=1 Ai(t) > 0.

Fuzzy sets A1, . . . , An are called basic functions. It is important to remark that by conditions of locality
and continuity,

∫ b
a Ai(t)dt > 0. A generalized uniform fuzzy partition of [a, b] is defined for equidistant

nodes, i.e., for all i = 1, . . . , n − 1, ti = ti+1 + h, where h = (b − a) / (n − 1) and two additional properties
are satisfied,

4. Ai (ti − t) = Ai (ti + t) for all t ∈ [0, h] , i = 2, . . . , n − 1;
5. Ai (t) = Ai−1 (t − h) and Ai+1 (t) = Ai (t − h) for all t ∈ [ti, ti+1] , i = 2, . . . , n − 1;

then the fuzzy partition is called h-uniform generalized fuzzy partition.

Definition 2. (generating function) A function K : [−1, 1] → [0, 1] is called a generating function if it is
assumed to be even, continuous and K (t) > 0 if t ∈ (−1, 1). The function K : [−1, 1] → R is even if for all
t ∈ [0, 1] , K (−t) = K (t).

The following definition recalls the concept of the generalized fuzzy partition which can be
easily extended to the interval [a, b]. We assume that [a, b] is partitioned by A1, . . . , An, according to
Definition 1.

Definition 3. A h-uniform generalized fuzzy partition of interval [a, b], determined by the triplet (K, h, a),
can be defined using generating function K (Definition 2). Then, basic functions of a h-uniform generalized
fuzzy partition are shifted copies of K defined by

Ai (t) = K
(

t − ti
h

)
, t ∈ [ti − h, ti + h] ,
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for all i = 1, . . . , n. The parameter h is called the bandwidth or the shift of the fuzzy partition and the nodes
ti = a + ih are called the central point of the fuzzy sets A1, . . . , An.

Remark 1. A h-uniform fuzzy partition is called Ruspini if the following condition

Ai (t) + Ai+1 (t) = 1, i = 1, . . . , n − 1, (1)

holds for any t ∈ [ti, ti+1]. This condition is often called Ruspini condition.

New Iterative Method

NIM have proposed by [2] for solving linear and nonlinear functional equations of the form

u = f1 + N (u) , (2)

where f1 is a known function and N a non linear operator. Solutions obtained by this method are in
the form of rapidly converging infinite series which can be effectively approximated by calculating
only the first few terms. In this method non linear operator N is decomposed as N(u) = N(u0) +

∑∞
i=1

{
N
(

∑i
n=0 un

)
− N

(
∑i−1

n=0 un

)}
. In [2], the authors were defined the recurrence relation:

⎧⎪⎪⎨
⎪⎪⎩

u0 = f1,

u1 = N (u0) ,

um+1 = N (u0 + · · ·+ um)− N (u0 + · · ·+ um−1) , m = 1, 2, . . .

(3)

Then(u1 + · · ·+ um+1) = N (u0 + · · ·+ um) , m = 1, 2, 3, . . . , and u = f1 + ∑∞
i=1 ui = f1 +

N(u0) + [N(u0 + u1)− N(u0)] + · · · = f1 + N(u). Hence u satisfies the functional (2).

3. New Representations for Basic Functions of FzT

Let us recall the basic facts of an FzT of a continuous real function f as presented by [5,17].
The first step in the definition of the FzT of f involves the selection of a fuzzy partition of the
domain [a, b] by a finite number n ≥ 2 of fuzzy sets Bk(t), k = 1, . . . , n. In those papers, five
axioms specified Bk(t), k = 1, . . . , n, in the fuzzy partition: normality, locality, continuity, unimodality
(monotonicity) and orthogonality (Ruspini condition). A fuzzy partition is called uniform if the fuzzy
sets Bk(t), k = 2, . . . , n − 1, are shifted copies of symmetrized B1 (more details can be found in [17]).
The membership functions Bk(t), k = 1, . . . , n, in a fuzzy partition are called basic functions. Later,
a generalized fuzzy partition appeared in connection with the notion of a higher-degree FzT [8].
Furthermore, summarize both these notions in [38]. Three axioms specify Bk(t), k = 1, . . . , n, in the
fuzzy partition: positivity and locality, continuity and covering. Recently, the different conditions for
generalized uniform fuzzy partitions was proposed [13,38] while another approach was demonstrated
by [37] where a function can be reconstructed from its F-transform components. In the following,
we modify the definition h-uniform generalized fuzzy partition.

3.1. Generalized Uniform Fuzzy Partitions with the Generalized Normal Case

Let us recall the h-uniform generalized fuzzy partition of real line can be defined using generating
function K. Then, basic functions of the h-uniform generalized fuzzy partition are shifted copies of K.
On the basis of Definition 1 can be also defined using a generating function λβK(t) where β = 1/K(0),
K(0) 	= 0, β > 0 and λ > 0 (in general, not necessarily satisfying normal and Ruspini condition) which
is that K(t) assumed to be even, continuous and K (t) > 0 if t ∈ (−1, 1). Therefore, we will modify
the basic functions of the h-uniform generalized fuzzy partition so that they are shifted copies of λβK
defined by
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Ak (t, t0) = λβK
(

t − t0

h
− k
)

, t ∈ [tk − h, tk + h] , k ∈ Z. (4)

The parameter h is bandwidth of the fuzzy partition and t0 + kh = tk. The concept of the
h-uniform generalized fuzzy partition can be easily extended to the interval [a, b] as follows.

Definition 4. Let t1 < . . . < tn be fixed nodes within [a, b] ⊂ R, such that t1 = a, tn = b and n ≥ 2.
We consider nodes t1, . . . , tn are equidistant, with distance (shift) h = (b − a) / (n − 1). A system of fuzzy
sets B1, . . . , Bn [a, b] → [0, 1] be a generalized uniform fuzzy partitions of [a, b] if it is defined by

Bk (t) =

{
Ak(t, a), t ∈ [a, b] ,

0, otherwise.
=

⎧⎨
⎩λβK

(
t−tk

h

)
, t ∈ [a, b] ,

0, otherwise.
(5)

where tk = a + (k − 1)h, β = 1/K(0), K(0) 	= 0, β > 0 and λ > 0. In the sequel, a generating function
denote by K and basic functions of FzT denote by Bk, k = 1, . . . , n.

Lemma 1. If basic functions Bk, k = 1, . . . , n, of a h-uniform generalized fuzzy partition are shifted copies of
λβK defined by (5). Then, for each k = 1, . . . , n, Bk(tk) = λ, tk ∈ [tk − h, tk + h].

Proof. By (5), we get Bk (tk) = λβK
(

tk−tk
h

)
= λ.

3.2. Simpler Form of F-Transform Components Based on Generalized Uniform Fuzzy Partitions with the
Generalized Normal Case

In this subsection, we present the main principles of FzT with respect to new representations of
h-uniform generalized fuzzy partition. Further, we will show that FzT components with respect to
new representations of h-uniform generalized fuzzy partition can be simplified and approximated of
an original function, say f .

Definition 5. Let f be a continuous function on [a, b] and Bk(t), k = 1, . . . , n, be h-uniform generalized fuzzy
partition of [a, b], n ≥ 2. A vector of real numbers F[ f ] = (F1, F2, . . . , Fn) given by

Fk =

∫ b
a f (t) Bk(t) dt∫ b

a Bk(t) dt
, (6)

for k = 1, . . . , n is called the direct FzT of f with respect to Bk.

In the following, we will simplify the representation (6).

Lemma 2. Let f ∈ C ([a, b]) and according to Definition 4, fuzzy sets Bk, k = 1, . . . , n, n ≥ 2, be a h-uniform
generalized fuzzy partition of [a, b] with a generating function K, then representation (6) of direct FzT can be
simplified for k = 1, . . . , n as follows

Fk =

∫ 1
−1 f (th + tk)K(t) dt∫ 1

−1 K(t) dt
=

∫ h
−h f (t + tk)K( t

h ) dt∫ h
−h K( t

h ) dt
. (7)

Proof. By Definition 4, we get

Bk (t) = λβK
(

t − tk
h

)
, t ∈ [tk − h, tk + h] ,

for k = 1, . . . , n, t0 = t1, tn+1 = tn, and substituting u = t−tk
h and then substituting t = s/h. Thus,

we get
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∫ tk+1

tk−1

f (t) Bk(t) dt = λβh
∫ 1

−1
f (th + tk)K(t) dt = λβ

∫ h

−h
f (t + tk)K(

t
h
) dt,

∫ tk+1

tk−1

Bk(t) dt = λβh
∫ 1

−1
K(t) dt = λβ

∫ h

−h
K(

t
h
) dt,

and its corresponding results with representation (6).

If λ > 0, the Lemma 1 still hold by choosing suitable constant λ, satisfying λ = 1/
(∫ 1

−1 βK(t)dt
)

,

where
∫ 1
−1 βK(t)dt > 0. So, we will restrict ourselves to h-uniform generalized fuzzy partition with

0 < λ = 1/
(∫ 1

−1 βK(t)dt
)

, where
∫ 1
−1 βK(t)dt 	= 0. In the following, we will simplify the above

given expressions for the coefficients F[ f ] = (F1, F2, . . . , Fn) in the representation (6). This fact is very
important for applications which are more flexible and consequently easier to use.

Corollary 1. Let the assumptions of Lemma 2 be fulfilled and 0 < λ = 1/
(∫ 1

−1 βK(t)dt
)

, where∫ 1
−1 βK(t)dt 	= 0. Then, the coefficients F[ f ] = (F1, F2, . . . , Fn) in the expression (6) of the FzT component Fk

of f as follows:

Fk =
1
h

∫ b

a
f (t) Bk(t) dt =

λβ

h

∫ b

a
f (t)K

(
t − tk

h

)
dt, (8)

for k = 1, . . . , n, where interval [a, b] is partitioned by the h-uniform generalized fuzzy partition B1, . . . , Bn.

Proof. Let k ∈ {1, . . . , n} and consider set of fuzzy sets Bk(t) be the h-uniform generalized fuzzy
partition of [a, b] defined by (5). Using the proof of Lemma 2, we get

∫ tk+1

tk−1

Bk(t) dt =
∫ tk+1

tk−1

Ak(t, a), dt =
∫ tk+h

tk−h
λβK

(
t − tk

h

)
dt = hλ

∫ 1

−1
βK (t) dt = h, (9)

where 0 < λ = 1/
(∫ 1

−1 βK(t)dt
)

,
∫ 1
−1 βK(t)dt 	= 0, h is bandwidth of the fuzzy partition and

tk = a + (k − 1)h and then its corresponding in the expression (6).

Lemma 3. Let f ∈ C [a, b]. Then for any ε > 0 there exist nε ∈ N and B1, . . . , Bnε be basic functions form the
h-uniform generalized fuzzy partition of [a, b]. Let Fk, k = 1 . . . , n, be the integral FzT components of f with
respect to B1, . . . , Bnε . Then for each k = 1 . . . , nε − 1 the following estimations hold: | f (t)− Fi| ≤ ε for each
t ∈ [a, b] ∩ [tk, tk+1] and i = k, k + 1.

Proof. see [5].

Corollary 2. Let the conditions of Lemma 3 be fulfilled. Then for each k = 1 . . . , nε − 1 the following
estimations hold: |Fk − Fk+1| < ε.

Proof. According to [5,39], let t ∈ [a, b] ∩ [tk, tk+1]. Then by Lemma 3, for any k = 1, . . . , n − 1
we obtain that | f (t)− Fk| < ε/2 and | f (t)− Fk+1| < ε/2. Thus,

|Fk − Fk+1| ≤ | f (t)− Fk|+ | f (t)− Fk+1| < ε

2
+

ε

2
= ε.

The following theorem estimates the difference between the original function and its direct FzT
with respect to the h-uniform generalized fuzzy partition.

Theorem 1. Let f (t) ∈ C2 [a, b] and the conditions of Lemma 2 be fulfilled. Then for k = 1, . . . , n

Fk = λ f (tk) +O (h2) , (10)
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where 0 < λ = 1/
(∫ 1

−1 βK(t)dt
)

and
∫ 1
−1 βK(t)dt 	= 0.

Proof. By locality condition of definition of h-uniform generalized fuzzy partition, Corollary 1,
Lemma 1, and according to [17], using the trapezoid formula with nodes tk−1, tk, tk+1 to the numerical
computation of the integral, we get for k = 1, . . . , n and 0 < λ = 1/

(∫ 1
−1 βK(t)dt

)

Fk =
1
h

∫ tk+1

tk−1

f (t) Bk(t) dt,

=
1
h

h
2
( f (tk−1) Bk(tk−1) + 2 f (tk) Bk(tk) + f (tk+1) Bk(tk+1)) +O

(
h2
)

,

= f (tk) Bk(tk) +O
(

h2
)
= λ f (tk) +O

(
h2
)

. (11)

Corollary 3. Let f (t) ∈ C2 [a, b] and the conditions of Lemma 2 be fulfilled. Let moreover, f be Lipschitz
continuous with respect to t, i.e., there exists a constant L ∈ R, such that for all t ∈ [a, b] and t, t′ ∈ R,

| f (t)− f (t′)| ≤ L|t − t′|. (12)

Then for k = 1, . . . , n ∣∣∣∣ f (t)− 1
λ

Fk

∣∣∣∣ ≤ Lh +
h2

6λ
M,

where 0 < λ = 1/
(∫ 1

−1 βK(t)dt
)

,
∫ 1
−1 βK(t)dt 	= 0, M = max

t∈[tk−1, tk+1]
| f ′′ (t)| and |t − tk| < h whenever

t ∈ [tk−1, tk+1].

Proof. By the assumption f has continuous second order derivatives on [a, b] and is Lipschitz
continuous with respect to t. Therefore, using the trapezoid rule and let us choose a value of k
in the range 1 ≤ k ≤ n and t ∈ [tk−1, tk+1], we get for 0 < λ = 1/

(∫ 1
−1 βK(t)dt

)
∣∣∣∣ f (t)− 1

λ
Fk

∣∣∣∣ =
∣∣∣∣ f (t)− 1

hλ

∫ tk+1

tk−1

f (t) Bk(t) dt
∣∣∣∣ ,

=

∣∣∣∣ f (t)− 1
hλ

[
hλ f (tk)− h3

12
(

f ′′ (ξk−1) + f ′′ (ξk+1)
)]∣∣∣∣ ,

≤ | f (t)− f (tk)|+ h2

12λ
2M,

≤ L |t − tk|+ h2

6λ
M ≤ Lh +

h2

6λ
M, (13)

where ξk−1 ∈ (tk−1, tk), ξk+1 ∈ (tk, tk+1) and M = max
t∈[tk−1, tk+1]

| f ′′ (t)|.

Remark 2. In view of (13), if 0 < λ ≤ 1. Then,
∣∣∣ f (t)− 1

λ Fk

∣∣∣ ≤ Lh + h2

6 M.

Definition 6. Let F[ f ] = (F1, F2, . . . , Fn) be direct FzT of a function f ∈ C [a, b] with respect to the fuzzy
partition Bk(t), k = 1, . . . , n of [a, b]. Then, the function f̂ defined on [a, b]

f̂ (t) =
∑n

k=1 FkBk(t)
∑n

k=1 Bk(t)
, (14)

is called the inverse FzT of f .

The following lemma estimates the difference between the original function and its inverse FzT.
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Lemma 4. Let the assumptions of Theorem 1 and let f̂ (t) be the inverse FzT of f with respect to the fuzzy
partition of [a, b] is given by Definition 4. Then, the following estimation holds for t ∈ [a, b] and k = 1, . . . , n

f̂ (t) = λ f (tk) +O
(

h2
)

, (15)

where 0 < λ = 1/
(∫ 1

−1 βK(t)dt
)

and
∫ 1
−1 βK(t)dt 	= 0.

Proof. Let t ∈ [a, b] so that t ∈ [tk, tk+1] for some k = 1, . . . , n. By Theorem 1,

f̂ (t)− λ f (tk) =
∑n

k=1 FkBk(t)
∑n

k=1 Bk(t)
− λ f (tk) =

∑n
k=1 FkBk(t)

∑n
k=1 Bk(t)

− ∑n
k=1 λ f (tk) Bk(t)

∑n
k=1 Bk(t)

,

=
∑n

k=1 (Fk − λ f (tk)) Bk(t)
∑n

k=1 Bk(t)
= O

(
h2
)

.

Theorem 2. Let f ∈ C [a, b]. Thus, for any ε > 0 there exist nε ∈ N and B1, . . . , Bnε be the h-uniform
generalized fuzzy partition of [a, b] defined by (5). Then, the following estimations hold

∣∣∣ f̂ (t)− f (t)
∣∣∣ < ε for

each t ∈ [a, b] ∩ [tk, tk+1].

Proof. From the proof of Lemma 4 and then using Lemma (3) in the sense that for all k = 1, . . . , n,

∣∣∣ f̂ (t)− f (t)
∣∣∣ = ∑n

k=1 |Fk − f (t)| Bk(t)
∑n

k=1 Bk(t)
< ε.

Remark 3. According to Definition (4), it is easy to see that the inverse FzT f̂ (tk) = Fk for all k = 1, . . . , n.

On the basis of Definition 4, necessary steps of a new method to construct generalized uniform
fuzzy partitions of [−1, 1] for solve case K is not normal in the following.

1. Select the generating function K which is assumed to be even, continuous and K (t) > 0 if
t ∈ (−1, 1).

2. Specify the value β = 1/K(0), where K(0) 	= 0 to get the normal generating function K and then

compute the value λ = 1/
(∫ 1

−1 βK(t)dt
)

, where
∫ 1
−1 βK(t)dt 	= 0.

3. If conditions β > 0 and λ > 0 holds, then construct generalized uniform fuzzy partitions of
[−1, 1] by λβK (t).

Example 1. Let K : R → [0, 1] be defined by

K(t) = (1 + cos (πt))m .

One can see in Table 1 the h-uniform generalized fuzzy partition of [a, b] determined by Definition 4.

Table 1. Example 1.

KCm
2
(t) β λ Bk = λβK

(
t−tk

h

)
(1 + cos (πt))m 1

2m

√
πΓ(m+1)

2Γ(m+ 1
2 )

(√
πΓ(m+1)

2Γ(m+ 1
2 )

)
1

2m

(
1 + cos

(
π t−tk

h

))m

The following remark is for modified Trapezoidal rule based on FzT and NIM to solve SODEs.

Remark 4. In view of Equation (9),
∫ tk+1

tk−1
Bk(t) dt = h. This means that

∫ tk+1
tk

Bk(t) dt = h
2 .
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Important property of the direct FzT as well as inverse FzT is their linearity, namely, given
f , g ∈ C [a, b] and α, β ∈ R, if h = α f + βg, then F [h] = αF [ f ] + βF [g] and ĥ = α f̂ + βĝ.

4. New Fuzzy Numerical Methods for Solving SODEs

Consider the initial value problem (IVP) for the SODEs:

{
x′(t) = f (t, x, y) , x (t1) = x1, a = t1 ≤ t ≤ tn = b

y′(t) = g (t, x, y) , y (t1) = y1,
(16)

where x1, y1 ∈ R and f , g are continuous function on D = [a, b]× R × R. If f (g) satisfies a Lipschitz
condition on D in the variable x (y), then the initial-value problem (16) has a unique solution x(t) (y(t))
for a ≤ t ≤ b. In many cases, the problem (16) cannot be solved analytically so that numerical solutions
are required. In [16], new representations of basic function based on the FzT are constructed for solving
generalized Cauchy problems with help of NIM, FzT and classical methods (one-step, two-step and
three-step) have presented while Euler method and Mid-point rule, based on FzT to solve Cauchy
problem proposed by [17,18]. Further, NIM has been proposed for solving ODEs and delay differential
equations [3]. Moreover, Adams-Bashforth methods and Adams-Moulton methods are noted as two
families of multistep methods in literature. Multistep methods refer to using several previous values
from the previous steps. The Adams-Bashforth methods were presented by John Couch Adams to
solve a differential equation modelling capillary action due to Francis Bashforth and it follows that the
Adams-Moulton method was developed improved multistep methods for solving ballistic equations
by Forest Ray Moulton. In particular, the Adams-Moulton method is similar to the Adams-Bashforth
method and the Adams-Moulton method was used Newton’s method to solve the implicit equation.
Clearly, Adams-Bashforth methods are explicit methods and the Adams–Moulton methods are implicit
methods, for example, see ([40], p. 111).

Necessary steps of construction of the generalized uniform fuzzy partitions can be summarized
as follows.

1. Specify the number n of components and compute the step h = (tn − t1) / (n − 1). If we want to
obtain as best approximation of f as possible, then n should be large.

2. Construct the nodes t1 < . . . < tn, where tk = t1 + h(k − 1).
3. Select the shape of basic functions. This is achieved by selecting the shape of generating function.
4. Construct a h-uniform generalized fuzzy partition of [t1, tn] by new representations of basic

functions are defined by Definition 4.

To begin the derivation of a modified Trapezoidal rule (1-step) and Adams Moulton method
(2 and 3-step), integrate (16) on the interval [tk, tk+1], k = 1, . . . , n − 1 to obtain=

x(tk+1) = x (tk) +
∫ tk+1

tk

f (s, x(s), y (s)) ds,

y(tk+1) = y (tk) +
∫ tk+1

tk

g (s, x(s), y (s)) ds. (17)

Consider the following integral

I f =
∫ tk+1

tk

f (s, x(s), y (s)) ds,

Ig =
∫ tk+1

tk

g (s, x(s), y (s)) ds. (18)

However, we cannot integrate f (s, x(s), y (s)) and g (s, x(s), y (s)) without knowing x(s) and y(s).
So, the above integral (18) can be approximated by the following approach
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I f ≈
∫ tk+1

tk

f1 (s, x(s), y (s)) ds,

Ig ≈
∫ tk+1

tk

g1 (s, x(s), y (s)) ds, (19)

where f1 and g1 are the approximation of f and g on the interval [tk, tk+1]. Choosing different f1 (g1)
leads to different schemes. In particular, we choose f1 (g1) which contributes to the one, two and
three-step methods based on FzT. Later, modification of these methods based on FzT and NIM.

In this section, we present three new schemes to solve SODEs (16) that use the F-transform and
NIM and suppose that the functions f and g on [a, b] are sufficiently smooth. The first scheme uses
1-step method while the second one uses the 2-step method and the last uses the 3-step method.

4.1. Numerical Scheme I: Modified Trapezoidal Rule Based on FzT and NIM for SODEs

According to necessary steps of construction of the generalized uniform fuzzy partitions in
Section 4, we contributed to approximation methods of SODEs (16) by scheme provides formulas
for the FzT components, Xk (Yk), k = 2, . . . , n − 1, of the unknown function x (t) (y (t)) with
respect to choose some of the h-uniform generalized fuzzy partition, B1, . . . , Bn, of interval [a, b]
with parameter h to approximate solution of SODEs (16). As initial step, choose the number n ≥ 2 and
compute h = (b − a) / (n − 1), then construct the h-uniform generalized fuzzy partition of [a, b] using
Definition 4. Let X1 = x1 and Y1 = y1. In the following, we apply the FzT and NIM to the SODEs (16)
for obtaining the numerical Scheme I, where k = 1, . . . , n − 1.

First, let f1 (g1) in the Equation (19) is chosen as

f1 =BkFk + Bk+1Fk+1,

g1 =BkGk + Bk+1Gk+1, (20)

where

Fk =

∫ b
a f (t, Xk, Yk) Bk(t) dt∫ b

a Bk(t) dt
, Gk =

∫ b
a g(t, Xk, Yk) Bk(t) dt∫ b

a Bk(t) dt
, (21)

and Bk represents the generalized uniform fuzzy partitions that are defined by Definition 4. Then,
substituting (20) into (19) for k = 1, . . . , n − 1

I f ≈
∫ tk+1

tk

BkFkds +
∫ tk+1

tk

Bk+1Fk+1ds,

Ig ≈
∫ tk+1

tk

BkGkds +
∫ tk+1

tk

Bk+1Gk+1ds.

By Remark 4 in the interval [tk, tk+1], we have

I f ≈ h
2
(Fk + Fk+1) , Ig ≈ h

2
(Gk + Gk+1) .

Hence, the one step method based on FzT for (17) is derived as follows, where k = 1, . . . , n − 1.

Xk+1 = Xk +
h
2
(Fk + Fk+1) ,

Yk+1 = Yk +
h
2
(Gk + Gk+1) , (22)

where Fk and Gk are defined by (21).
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This method computes the approximate coordinates [X1, . . . , Xn] and [Y1, . . . , Yn] of the FzT for
the functions x(t) and y(t). The problem with the previous scheme (22) is that the unknown quantities
Fk+1 and Gk+1 which means that Xk+1(Yk+1) appears on both sides and an implicit method. Therefore,
one solution to this problem would be to use an explicit method such as another fuzzy approach,
namely Scheme I. For this purpose, the scheme (22) is of the form

Xk+1 = fx + N(Xk+1), Yk+1 = fy + N(Yk+1),

and can be solved by NIM (2), where

fx = Xk +
h
2

Fk, and N(Xk+1) =
h
2

Fk+1.

fy = Yk +
h
2

Gk, and N(Yk+1) =
h
2

Gk+1.

The three term approximation of the NIM (3) gives the following formulas for solving SODEs (16):

ux0 = Xk +
h
2 Fk, uy0 = Yk +

h
2 Gk,

ux1 = N (ux0) , uy1 = N
(
uy0
)

,
ux2 = N (ux0 + ux1)− N (ux0) , uy2 = N

(
uy0 + uy1

)− N
(
uy0
)

,

⎫⎪⎬
⎪⎭

Hence, the three term approximate solution is

ux = ux0 + ux1 + ux2 = ux0 + N (ux0 + ux1)

and
uy = uy0 + N

(
uy0 + uy1

)
,

which leads to the following formulas.

X∗
k+1 = Xk + hFk/2, Y∗

k+1 = Yk + hGk/2,

X∗∗
k+1 = X∗

k+1 + hF∗
k+1/2, Y∗∗

k+1 = Y∗
k+1 + hG∗

k+1/2,

Xk+1 = Xk + h
(

Fk + F∗∗
k+1
)

/2, Yk+1 = Yk + h
(
Gk + G∗∗

k+1
)

/2,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(23)

where

Fk =

∫ b
a f (t, Xk, Yk)Bk (t) dt∫ b

a Bk (t) dt
, Gk =

∫ b
a g(t, Xk, Yk)Bk (t) dt∫ b

a Bk (t) dt
,

F∗
k+1 =

∫ b
a f (t, X∗

k+1, Y∗
k+1)Bk+1 (t) dt∫ b

a Bk+1 (t) dt
, G∗

k+1 =

∫ b
a g(t, X∗

k+1, Y∗
k+1)Bk+1 (t) dt∫ b

a Bk+1 (t) dt
,

F∗∗
k+1 =

∫ b
a f (t, X∗∗

k+1, Y∗∗
k+1)Bk+1 (t) dt∫ b

a Bk+1 (t) dt
, G∗∗

k+1 =

∫ b
a g(t, X∗∗

k+1, Y∗∗
k+1)Bk+1 (t) dt∫ b

a Bk+1 (t) dt
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(24)

In the sequel, the approximate solution of SODEs (16) can be obtained using the inverse FzT
as follows:

xn (t) =
n

∑
k=1

XkBk (t) , yn (t) =
n

∑
k=1

YkBk (t) . (25)
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4.2. Numerical Scheme II: Modified 2-Step Adams Moulton Method Based on FzT and NIM for SODEs

The Scheme I uses 1-step method for solving SODEs (16). In this subsection, we improve 2-step
Adams Moulton method using FzT and NIM for solving SODEs (16). Let us recall that the modified
2-step Adams Moulton method proposed by [16]. From this idea, the modified 2-step Adams Moulton
method can be extended to approximate the solution of (16) by necessary steps of construction of the
generalized uniform fuzzy partitions in Section 4. It is worth noting that three terms of NIM were used
in [16], while four terms of NIM are used in this study. Let FzT components, Xk (Yk), k = 2, . . . , n − 1,
of the unknown function x (t) (y (t)) with respect to choose some of the h-uniform generalized fuzzy
partition (5) and let X1 = x1, Y1 = y1, X2 = x2 and Y2 = y2 if possible; otherwise, we can compute FzT
components X2 and Y2 from the numerical Scheme I. In the following, we apply the F-transform and
NIM to the SODEs (16) for obtaining the numerical Scheme II, where k = 2, . . . , n − 1. First, if f1 in the
Equation (19) is approximated by

f1 = (p0 + p1) Fk+1 + p2Fk + p3Fk−1, (26)

where

Fk =

∫ b
a f (t, Xk, Yk) Bk(t) dt∫ b

a Bk(t) dt
,

pk = (−1)k ∫ 1
0 (−s+1

k )ds. Substituting (26) into (19), then for k = 1, . . . , n − 1

I f ≈ h
12

(5Fk+1 + 8Fk − Fk−1) .

Similarity,

Ig ≈ h
12

(5Gk+1 + 8Gk − Gk−1) .

Thus, the two step method based FzT for (17) is given for k = 1, . . . , n − 1 as

Xk+1 = Xk + h (8Fk − Fk−1 + 5Fk+1) /12, Yk+1 = Yk + h (8Gk − Gk−1 + 5Gk+1) /12, (27)

where

Fk =

∫ b
a f (t, Xk, Yk)Bk(t)dt∫ b

a Ak(t)dt
, Gk =

∫ b
a g(t, Xk, Yk)Bk(t)dt∫ b

a Bk(t)dt
,

The problem with the previous scheme (27) is that the unknown quantities Fk+1 and Gk+1.
Therefore, one solution to this problem would be to use an explicit method. For this purpose,
the scheme (27) is of the form

Xk+1 = fx + N(Xk+1), Yk+1 = fy + N(Yk+1),

and can be solved by NIM (2), where

fx = Xk +
h

12
(8Fk − Fk−1) , and N(Xk+1) =

5h
12

Fk+1.

fy = Yk +
h

12
(8Gk − Gk−1) , and N(Yk+1) =

5h
12

Gk+1.

The four term approximation of the NIM (3) gives the following formulas for solving SODEs (16):

188



Appl. Syst. Innov. 2018, 1, 30

ux0 = Xk +
h

12 (8Fk − Fk−1) , uy0 = Yk +
h

12 (8Gk − Gk−1) ,
ux1 = N (ux0) , uy1 = N

(
uy0
)

,
ux2 = N (ux0 + ux1)− N (ux0) , uy2 = N

(
uy0 + uy1

)− N
(
uy0
)

,
ux3 = N (ux0 + ux1 + ux2)− N (ux0 + ux1) . uy3 = N

(
uy0 + uy1 + uy2

)− N
(
uy0 + uy1

)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Hence, the four term approximate solution is

ux = ux0 + ux1 + ux2 + ux3 = ux0 + N (ux0 + N (ux0 + ux1))

and
uy = uy0 + N

(
uy0 + N

(
uy0 + uy1

))
,

which leads to the following formulas.

X∗
k+1 = Xk + h (8Fk − Fk−1) /12, Y∗

k+1 = Yk + h (8Gk − Gk−1) /12,

X∗∗
k+1 = X∗

k+1 + 5hF∗
k+1/12, Y∗∗

k+1 = Y∗
k+1 + 5hG∗

k+1/12,

X∗∗∗
k+1 = X∗

k+1 + 5hF∗∗
k+1/12, Y∗∗∗

k+1 = Y∗
k+1 + 5hG∗∗

k+1/12,

Xk+1 = Xk + h
(
8Fk − Fk−1 + 5F∗∗∗

k+1
)

/12, Yk+1 = Yk + h
(
8Gk − Gk−1 + 5G∗∗∗

k+1
)

/12,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(28)

where

Fk−1 =

∫ b
a f (t, Xk−1, Yk−1)Bk−1(t)dt∫ b

a Ak−1(t)dt
, Gk−1 =

∫ b
a g(t, Xk−1, Yk−1))Bk−1(t)dt∫ b

a Bk−1(t)dt
,

Fk =

∫ b
a f (t, Xk, Yk)Bk(t)dt∫ b

a Ak(t)dt
, Gk =

∫ b
a g(t, Xk, Yk)Bk(t)dt∫ b

a Bk(t)dt
,

F∗
k+1 =

∫ b
a f (t, X∗

k+1, Y∗
k+1)Bk+1(t)dt∫ b

a Bk+1(t)dt
, G∗

k+1 =

∫ b
a g(t, X∗

k+1, Y∗
k+1)Bk+1(t)dt∫ b

a Bk+1(t)dt
,

F∗∗
k+1 =

∫ b
a f (t, X∗∗

k+1, Y∗∗
k+1)Bk+1(t)dt∫ b

a Bk+1(t)dt
, G∗∗

k+1 =

∫ b
a g(t, X∗∗

k+1, Y∗∗
k+1)Bk+1(t)dt∫ b

a Bk+1(t)dt
,

F∗∗∗
k+1 =

∫ b
a f (t, X∗∗∗

k+1, Y∗∗∗
k+1)Bk+1(t)dt∫ b

a Bk+1(t)dt
, G∗∗∗

k+1 =

∫ b
a g(t, X∗∗∗

k+1, Y∗∗∗
k+1)Bk+1(t)dt∫ b

a Bk+1(t)dt
.

Then, obtain the desired approximation for x and y by the inverse FzT (25) applied to [X1, . . . , Xn]

and [Y1, . . . , Yn].

4.3. Numerical Scheme III: Modified 3-Step Adams Moulton Method Based on FzT and NIM for SODEs

In this subsection, we improve 3-step Adams Moulton method using FzT and NIM for solving
SODEs (16). The modified 3-step Adams Moulton method proposed by [16] for solving Cauchy
problems. From this idea, we can propose to approximate the solution of (16) by NIM and FzT
components, Xk (Yk), k = 2, . . . , n − 1, of the unknown function x(t) (y(t)) with respect to choose
some of the h-uniform generalized fuzzy partition (see Definition 4), B1, . . . , Bn, of interval [a, b] with
parameter h = (b − a) / (n − 1), n ≥ 2. Let X1 = x1, Y1 = y1, X2 = x2, Y2 = y2, X3 = x3, and Y3 = y3

if possible; otherwise, we can compute FzT components X2, Y2, X3 and Y3 from the numerical
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Scheme I. Now, we apply the F -transform and NIM to the SODEs (16) and obtain the following
numerical Scheme III for k = 3, . . . , n − 1:

According to steps of deriving Equation (27) and then steps of NIM in previous Subsection 4.2,
we get the four term approximation of the NIM as follows.

ux0 = Xk +
h

24 (19Fk − 5Fk−1 + Fk−2) , uy0 = Yk +
h

24 (19Gk − 5Gk−1 + Gk−2) ,
ux1 = N (ux0) , uy1 = N

(
uy0
)

,
ux2 = N (ux0 + ux1)− N (ux0) , uy2 = N

(
uy0 + uy1

)− N
(
uy0
)

,
ux3 = N (ux0 + ux1 + ux2)− N (ux0 + ux1) . uy3 = N

(
uy0 + uy1 + uy2

)− N
(
uy0 + uy1

)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Hence, the four term approximate solution is

ux = ux0 + ux1 + ux2 + ux3 = ux0 + N (ux0 + N (ux0 + ux1))

and
uy = uy0 + N

(
uy0 + N

(
uy0 + uy1

))
,

which leads to the following formulas.

X∗
k+1 = Xk +

h
24 (19Fk − 5Fk−1 + Fk−2) , Y∗

k+1 = Yk +
h

24 (19Gk − 5Gk−1 + Gk−2) ,

X∗∗
k+1 = X∗

k+1 +
9h
24 F∗

k+1, Y∗∗
k+1 = Y∗

k+1 +
9h
24 G∗

k+1,

X∗∗∗
k+1 = X∗

k+1 +
9h
24 F∗∗

k+1, Y∗∗∗
k+1 = Y∗

k+1 +
9h
24 G∗∗

k+1,

Xk+1 = Xk, Yk+1 = Yk,
+ h

24
(
19Fk − 5Fk−1 + Fk−2 + 9F∗∗∗

k+1
)

, + h
24
(
19Gk − 5Gk−1 + Gk−2 + 9G∗∗∗

k+1
)

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(29)

where

Fk−2 =

∫ b
a f (t, Xk−2, Yk−2)Bk−2(t)dt∫ b

a Bk−2(t)dt
, Gk−2 =

∫ b
a g(t, Xk−2, Yk−2))Bk−2(t)dt∫ b

a Bk−2(t)dt
,

Fk−1 =

∫ b
a f (t, Xk−1, Yk−1)Bk−1(t)dt∫ b

a Bk−1(t)dt
, Gk−1 =

∫ b
a g(t, Xk−1, Yk−1))Bk−1(t)dt∫ b

a Bk−1(t)dt
,

Fk =

∫ b
a f (t, Xk, Yk)Bk(t)dt∫ b

a Bk(t)dt
, Gk =

∫ b
a g(t, Xk, Yk)Bk(t)dt∫ b

a Bk(t)dt
,

F∗
k+1 =

∫ b
a f (t, X∗

k+1, Y∗
k+1)Bk+1(t)dt∫ b

a Bk+1(t)dt
, G∗

k+1 =

∫ b
a g(t, X∗

k+1, Y∗
k+1)Bk+1(t)dt∫ b

a Bk+1(t)dt
,

F∗∗
k+1 =

∫ b
a f (t, X∗∗

k+1, Y∗∗
k+1)Bk+1(t)dt∫ b

a Bk+1(t)dt
, G∗∗

k+1 =

∫ b
a g(t, X∗∗

k+1, Y∗∗
k+1)Bk+1(t)dt∫ b

a Bk+1(t)dt
,

F∗∗∗
k+1 =

∫ b
a f (t, X∗∗∗

k+1, Y∗∗∗
k+1)Bk+1(t)dt∫ b

a Bk+1(t)dt
, G∗∗∗

k+1 =

∫ b
a g(t, X∗∗∗

k+1, Y∗∗∗
k+1)Bk+1(t)dt∫ b

a Bk+1(t)dt
.

In the sequel, the inverse FzT (25) approximates the solution x(t) (y(t)) of the problem (16).
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4.4. Error Analysis of Numerical Scheme I for SODEs

In this subsection, we present error analysis for numerical Scheme I and consider the Formula (23).
If x(tk) = xk and y(tk) = yk denote the exact solution and Xk, Yk denote the numerical solution.
Then, substituting the exact solution in the Formula (23), we get

x∗k+1 = xk + hFe
k /2, y∗k+1 = yk + hGe

k/2,

x∗∗k+1 = x∗k+1 + hFe∗
k+1/2, y∗∗k+1 = y∗k+1 + hGe∗

k+1/2,

xk+1 = xk + h
(

Fe
k + Fe∗∗

k+1

)
/2, yk+1 = yk + h

(
Ge

k + Ge∗∗
k+1

)
/2,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(30)

where

Fe
k =

∫ b
a f (t, xk, yk)Bk (t) dt∫ b

a Bk (t) dt
, Ge

k =

∫ b
a g(t, xk, yk)Bk (t) dt∫ b

a Bk (t) dt
,

Fe∗
k+1 =

∫ b
a f (t, x∗k+1, y∗k+1)Bk+1 (t) dt∫ b

a Bk+1 (t) dt
, Ge∗

k+1 =

∫ b
a g(t, x∗k+1, y∗k+1)Bk+1 (t) dt∫ b

a Bk+1 (t) dt
,

Fe∗∗
k+1 =

∫ b
a f (t, x∗∗k+1, y∗∗k+1)Bk+1 (t) dt∫ b

a Bk+1 (t) dt
, Ge∗∗

k+1 =

∫ b
a g(t, x∗∗k+1, y∗∗k+1)Bk+1 (t) dt∫ b

a Bk+1 (t) dt
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(31)

and the truncation error Txk and Tyk of the scheme I are given by

Txk =
xk+1−xk

h − 1
2

(
Fe

k + Fe∗∗
k+1

)
, Tyk =

yk+1−yk
h − 1

2

(
Ge

k + Ge∗∗
k+1

)
. (32)

Rearranging (23), we get

0 =
Xk+1−Xk

h − 1
2
(

Fk + F∗∗
k+1
)

, 0 =
Yk+1−Yk

h − 1
2
(
Gk + G∗∗

k+1
)

. (33)

Let ek+1 = Xk+1 − xk+1 and dk+1 = Yk+1 − yk+1, then subtracting (33) from (32), we get

Txkh = ek+1 − ek − h
2
(Fk − Fe

k )−
h
2
(

F∗∗
k+1 − Fe∗∗

k+1
)

,

Tykh = dk+1 − dk − h
2
(Gk − Ge

k)−
h
2
(
G∗∗

k+1 − Ge∗∗
k+1
)

, (34)

Similarly to Lemma 8 and Theorem 2 by [16], we have the following results.

Lemma 5. Let f , g are assumed to be sufficiently smooth functions of its arguments on [a, b] and be Lipschitz
continuous with respect to x and y, i.e., there exists a constant L ∈ R, such that for all t ∈ [a, b] and
x, x′, y, y′ ∈ R,

| f (t, x, y)− f (t, x′, y′)| ≤ L(|x − x′|+ |y − y′|),
|g(t, x, y)− g(t, x′, y′)| ≤ L(|x − x′|+ |y − y′|). (35)

Assume that {Bk | k = 1, . . . , n}, n ≥ 2, is a h-uniform generalized fuzzy partition of [a, b]. Then we get
for k = 1, . . . , n,

|ek+1| ≤ |ek| (1 + c) + Th and
∣∣∣Fe

k − Fe∗∗
k+1

∣∣∣ ≤ LhM2,

|dk+1| ≤ |dk| (1 + c) + Th and
∣∣∣Ge

k − Ge∗∗
k+1

∣∣∣ ≤ LhM3,
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where c = hL + h2L2

2 + h3L3

8 , T = max
1≤k≤n

|Txk, Tyk|, Fe
k , Fe∗∗

k+1, Ge
k, Ge∗∗

k+1 are determined by Formula (31) and

M2, M3 are upper bound for f and g respectively on [a, b].

Theorem 3. Let f , g : [a, b] → R be twice continuously differentiable on [a, b]. Let moreover, f , g : [a, b]×
R×R → R be Lipschitz continuous with respect to x and y. Assume that {Bk | k = 1, . . . , n}, n ≥ 2, is a
h-uniform generalized fuzzy partition of [a, b]. Then the scheme I (23) is convergent.

The technique of error analysis for rest schemes can be obtained analogously to numerical
Scheme I.

5. Applications

A general model for the dynamical system may be written as dx
dt = xg(x, y), dy

dt = yh(x, y),
where g and h are arbitrary functions of the prey and predator species whose populations are x(t) and
y(t) at time t. However, the following problem of Lotka–Volterra equation with derivatives and with
variable coefficients α (t) , β (t) , δ (t) , γ (t) as functions of time t have not yet been solved by any fuzzy
numerical method. The new differential equations are represented by a non-autonomous ordinary
differential equation system. The model, incorporating the above functions is as follows [41–43]:

dx
dt

=α (t) x (t)− β (t) x (t) y (t) , x (0) = x1

dy
dt

=δ (t) x (t) y (t)− γ (t) y (t) , y (0) = y1 (36)

Two examples are discussed in order to prove that the results obtained by Scheme I (23), II (28)
and III (29) for the numerical solution of the model (36).

Example 2. Consider the problem of Lotka-Volterra-prey- predator model (36). We take α (t) = 4 +

tan (t) , β (t) = exp(2t), γ (t) = −2, δ (t) = cos(t), x(0) = −4 and y(0) = 4.
The exact solution for these coefficients is x(t) = −4

cos(t) , y(t) = 4 exp(−2t) proposed by [41–43].

Example 3. Consider the problem of Lotka-Volterra-prey-predator model (36) with α (t) = −t, β (t) =

−t, γ (t) = t, δ (t) = t, x(0) = 2 and y(0) = 2.
The exact solution for these coefficients is x(t) = 2

2−exp(t2/2) , y(t) = 2
2−exp(t2/2) proposed by [41,42].

The results are listed in Tables 2–6 by the proposed fuzzy approximation methods with respect
to case KC201

2
is defined by Example 1. The proposed fuzzy approximation methods are generated by

Algorithms A1–A3 (Appendix A). The mean square error (MSE) defined as MSE = 1
n (‖Yk − y(tk)‖2)

2.
This is an easily computable quantity for a particular sample. From the numerical tests, the results are
summarized as follows:

1. In view of Tables 2–5, a comparison between the three new proposed schemes ((23), (28) and (29))
and the classical Trapezoidal rule (1-step), classical 2-step Adams Moulton Method and classical
3-step Adams Moulton Method based on Euler method for Examples 2 and 3.

2. Moreover, comparison of MSE for Examples 2 and 3 shown in Table 6. It is observed that the
new fuzzy approximation methods yield more accurate results in comparison with the classical
Trapezoidal rule (one step) and classical Adams Moulton method (two and three steps). Hence,
the new fuzzy approximation methods provide alternative techniques for solving SODEs with
better results.
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Table 2. Comparison of numerical results of x(t) for Example 2.

ti Solution x(t)
Proposed

Scheme I

Proposed

Scheme II

Proposed

Scheme III
Trap 1 2-Step Adams 2 3-Step Adams 3

0.00 −4.00000 −4.00000 −4.00000 −4.00000 −4.00000 −4.00000 −4.00000
0.05 −4.00501 −4.00506 −4.00501 −4.00501 −4.00714 −4.00501 −4.00501
0.10 −4.02008 −4.02059 −4.02011 −4.02008 −4.02627 −4.02187 −4.02008
0.15 −4.04543 −4.04589 −4.04536 −4.04536 −4.05752 −4.04875 −4.04703
0.20 −4.08136 −4.08128 −4.08121 −4.08119 −4.10134 −4.08610 −4.08434
0.25 −4.12834 −4.12721 −4.12813 −4.12811 −4.15850 −4.13442 −4.13261
0.30 −4.18701 −4.18423 −4.18673 −4.18670 −4.23015 −4.19440 −4.19250
0.35 −4.25816 −4.25304 −4.25783 −4.25779 −4.31783 −4.26691 −4.26487
0.40 −4.34282 −4.33453 −4.34243 −4.34236 −4.42361 −4.35300 −4.35077
0.45 −4.44224 −4.42976 −4.44178 −4.44170 −4.55014 −4.45399 −4.45151
0.50 −4.55798 −4.54001 −4.55745 −4.55733 −4.70086 −4.57151 −4.56871
0.55 −4.69195 −4.66686 −4.69134 −4.69117 −4.88023 −4.70755 −4.70433
0.60 −4.84651 −4.81220 −4.84581 −4.84558 −5.09399 −4.86455 −4.86079
0.65 −5.02460 −4.97833 −5.02378 −5.02346 −5.34964 −5.04556 −5.04112
0.70 −5.22984 −5.16805 −5.22887 −5.22845 −5.65700 −5.25435 −5.24903
0.75 −5.46680 −5.38480 −5.46565 −5.46508 −6.02912 −5.49569 −5.48924
0.80 −5.74130 −5.63286 −5.73990 −5.73914 −6.48349 −5.77559 −5.76768
0.85 −6.06076 −5.91759 −6.05906 −6.05803 −7.04390 −6.10182 −6.09202
0.90 −6.43490 −6.24582 −6.43281 −6.43141 −7.74310 −6.48450 −6.47222
0.95 −6.87660 −6.62636 −6.87400 −6.87209 −8.62699 −6.93706 −6.92148
1.00 −7.40326 −7.07221 −7.40106 −7.39831 −9.76103 −7.47766 −7.45769

1 Trapezoidal rule; 2 2-Step Adams Moulton Method; 3 3-Step Adams Moulton Method.

Table 3. Comparison of numerical results of y(t) for Example 2.

ti Solution y(t)
Proposed

Scheme I

Proposed

Scheme II

Proposed

Scheme III
Trap 1 2-Step Adams 2 3-Step Adams 3

0.00 4.00000 4.00000 4.00000 4.00000 4.00000 4.00000 4.00000
0.05 3.61935 3.62135 3.61935 3.61935 3.62045 3.61935 3.61935
0.10 3.27492 3.27848 3.27485 3.27492 3.27766 3.27601 3.27492
0.15 2.96327 2.96802 2.96314 2.96327 2.96757 2.96496 2.96415
0.20 2.68128 2.68698 2.68112 2.68124 2.68671 2.68326 2.68261
0.25 2.42612 2.43262 2.42595 2.42607 2.43201 2.42819 2.42769
0.30 2.19525 2.20247 2.19508 2.19520 2.20079 2.19724 2.19688
0.35 1.98634 1.99425 1.98619 1.98630 1.99067 1.98815 1.98792
0.40 1.79732 1.80593 1.79718 1.79729 1.79951 1.79888 1.79875
0.45 1.62628 1.63564 1.62616 1.62627 1.62541 1.62754 1.62752
0.50 1.47152 1.48170 1.47143 1.47153 1.46664 1.47245 1.47253
0.55 1.33148 1.34257 1.33142 1.33153 1.32166 1.33207 1.33224
0.60 1.20478 1.21688 1.20474 1.20485 1.18908 1.20500 1.20526
0.65 1.09013 1.10337 1.09012 1.09023 1.06762 1.08998 1.09033
0.70 0.98639 1.00091 0.98641 0.98652 0.95615 0.98587 0.98632
0.75 0.89252 0.90848 0.89257 0.89269 0.85366 0.89163 0.89217
0.80 0.80759 0.82515 0.80766 0.80779 0.75923 0.80632 0.80696
0.85 0.73073 0.75011 0.73084 0.73097 0.67208 0.72910 0.72984
0.90 0.66120 0.68260 0.66133 0.66148 0.59150 0.65919 0.66004
0.95 0.59827 0.62195 0.59844 0.59860 0.51692 0.59590 0.59686
1.00 0.54134 0.56745 0.54145 0.54163 0.44787 0.53860 0.53969

1 Trapezoidal rule; 2 2-Step Adams Moulton Method; 3 3-Step Adams Moulton Method.
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Table 4. Comparison of numerical results of x(t) for Example 3.

ti Solution x(t)
Proposed

Scheme I

Proposed

Scheme II

Proposed

Scheme III
Trap 1 2-Step Adams 2 3-Step Adams 3

0.00 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000
0.05 2.00250 2.00257 2.00250 2.00250 2.00250 2.00250 2.00250
0.10 2.01008 2.01016 2.01007 2.01008 2.01005 2.01006 2.01008
0.15 2.02289 2.02299 2.02289 2.02289 2.02279 2.02285 2.02286
0.20 2.04124 2.04138 2.04124 2.04124 2.04101 2.04117 2.04118
0.25 2.06557 2.06577 2.06558 2.06558 2.06511 2.06546 2.06547
0.30 2.09650 2.09676 2.09652 2.09651 2.09567 2.09633 2.09633
0.35 2.13485 2.13520 2.13488 2.13486 2.13344 2.13459 2.13459
0.40 2.18171 2.18218 2.18176 2.18172 2.17942 2.18132 2.18132
0.45 2.23852 2.23915 2.23860 2.23854 2.23493 2.23795 2.23796
0.50 2.30720 2.30803 2.30731 2.30722 2.30167 2.30637 2.30638
0.55 2.39031 2.39140 2.39047 2.39034 2.38192 2.38910 2.38911
0.60 2.49133 2.49279 2.49157 2.49138 2.47868 2.48956 2.48957
0.65 2.61513 2.61708 2.61549 2.61520 2.59605 2.61251 2.61251
0.70 2.76863 2.77126 2.76917 2.76873 2.73967 2.76465 2.76466
0.75 2.96202 2.96563 2.96288 2.96218 2.91754 2.95585 2.95584
0.80 3.21093 3.21600 3.21235 3.21120 3.14130 3.20103 3.20099
0.85 3.54059 3.54791 3.54308 3.54108 3.42845 3.52398 3.52386
0.90 3.99443 4.00539 3.99914 3.99541 3.80653 3.96482 3.96449
0.95 4.65413 4.67130 4.66407 4.65640 4.32100 4.59671 4.59578
1.00 5.69348 5.72071 5.71719 5.69904 5.05197 5.56751 5.56473

1 Trapezoidal rule; 2 2-Step Adams Moulton Method; 3 3-Step Adams Moulton Method.

Table 5. Comparison of numerical results of y(t) for Example 3.

ti Solution y(t)
Proposed

Scheme I

Proposed

Scheme II

Proposed

Scheme III
Trap 1 2-Step Adams 2 3-Step Adams 3

0.00 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000
0.05 2.00250 2.00257 2.00250 2.00250 2.00250 2.00250 2.00250
0.10 2.01008 2.01016 2.01007 2.01008 2.01005 2.01006 2.01008
0.15 2.02289 2.02299 2.02289 2.02289 2.02279 2.02285 2.02286
0.20 2.04124 2.04138 2.04124 2.04124 2.04101 2.04117 2.04118
0.25 2.06557 2.06577 2.06558 2.06558 2.06511 2.06546 2.06547
0.30 2.09650 2.09676 2.09652 2.09651 2.09567 2.09633 2.09633
0.35 2.13485 2.13520 2.13488 2.13486 2.13344 2.13459 2.13459
0.40 2.18171 2.18218 2.18176 2.18172 2.17942 2.18132 2.18132
0.45 2.23852 2.23915 2.23860 2.23854 2.23493 2.23795 2.23796
0.50 2.30720 2.30803 2.30731 2.30722 2.30167 2.30637 2.30638
0.55 2.39031 2.39140 2.39047 2.39034 2.38192 2.38910 2.38911
0.60 2.49133 2.49279 2.49157 2.49138 2.47868 2.48956 2.48957
0.65 2.61513 2.61708 2.61549 2.61520 2.59605 2.61251 2.61251
0.70 2.76863 2.77126 2.76917 2.76873 2.73967 2.76465 2.76466
0.75 2.96202 2.96563 2.96288 2.96218 2.91754 2.95585 2.95584
0.80 3.21093 3.21600 3.21235 3.21120 3.14130 3.20103 3.20099
0.85 3.54059 3.54791 3.54308 3.54108 3.42845 3.52398 3.52386
0.90 3.99443 4.00539 3.99914 3.99541 3.80653 3.96482 3.96449
0.95 4.65413 4.67130 4.66407 4.65640 4.32100 4.59671 4.59578
1.00 5.69348 5.72071 5.71719 5.69904 5.05197 5.56751 5.56473

1 Trapezoidal rule; 2 2-Step Adams Moulton Method; 3 3-Step Adams Moulton Method.
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Table 6. The values of MSE for Examples 2 and 3.

(a) The Values of MSE of x(t) for SODEs

Case
Proposed Scheme for x(t) Classical Method for x(t)

I II III Trapezoidal Rule 2-Step Adams Moulton 3-Step Adams Moulton

Ex.1 KC201
2

1.21569 × 10−2 1.21112 × 10−6 3.71739 × 10−6 5.99915 × 10−1 8.37463 × 10−4 4.72086 × 10−4

Ex.2 KC201
2

6.02153 × 10−5 3.29699 × 10−5 1.77640 × 10−6 2.75574 × 10−2 9.75470 × 10−4 1.01541 × 10−3

(b) The Values of MSE of y(t) for SODEs

Case
Proposed Scheme for y(t) Classical Method for y(t)

I II III Trapezoidal Rule 2-Step Adams Moulton 3-Step Adams Moulton

Ex.1 KC201
2

1.80417 × 10−4 1.20902 × 10−8 2.08739 × 10−8 1.40165 × 10−3 2.25155 × 10−6 1.09674 × 10−6

Ex.2 KC201
2

6.02153 × 10−5 3.29699 × 10−5 1.77640 × 10−6 2.75574 × 10−2 9.75470 × 10−4 1.01541 × 10−3

Further, the results obtained using proposed fuzzy approximation methods for Examples 2 and 3
are shown in Figures 1–3 by using KC201

2
. In view of Figures 2 and 3, the graphical results of

Examples 2 and 3 show a comparison between numerical Schemes (I, II and III) and exact solutions
are shown separated from each other for clarity while a comparison between three proposed fuzzy
numerical methods (Schemes I, II and III) and exact solution are shown in Figure 1. Furthermore, in
view of Figures 2 and 3, a comparison between the numerical results and exact solutions for h = 0.01.
All the graphs are plotted using MATLAB software.

t

x(t)

y(t)

(a)

t

(b)

Figure 1. A comparison between three fuzzy numerical methods and exact solution for two examples.
(a) Example 2; (b) Example 3.
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t

x(t)

y(t)

(a)

t

x(t)

y(t)

(b)

t

x(t)

y(t)

(c)

Figure 2. The graphical solution of Example 2. (a) Scheme I; (b) Scheme II; (c) Scheme III.
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t

(a)

t

(b)

t

(c)

Figure 3. The graphical solution of Example 3. (a) Scheme I; (b) Scheme II; (c) Scheme III.

6. Conclusions

Three approximation methods are used the new generalized uniform fuzzy partitions for solving
SODEs. In accordance with the three approximation methods for Cauchy problem by [16], Trapezoidal
rule (one step) and Adams Moulton method (two and three steps) are improved using FzT and NIM.
The results proved that the first approximation method converged to the exact solution. As an
application, a predator-prey model is solved by using three proposed approximation methods.
From the numerical results, it is observed that the new fuzzy approximation methods yield more
accurate results in comparison with the classical Trapezoidal rule (one step) and classical Adams
Moulton method (two and three steps). So, it is recommended to use the proposed methods to solve
differential equations.
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In this regard, it is well-known that FzT has a certain advantage to cope with problems affected by
noise. This is because the FzT components of original and noisy functions are very similar to each other.
In addition, we can reduce a higher-order differential equation into a system of first-order differential
equations by relabeling the variables. Thus, the proposed methods can also be applied to a higher-order
differential equation in the case of non-noisy or noisy right-hand side. From Algorithms A1–A3
(Appendix A), it is observed that the new fuzzy approximation methods are more time consuming
in comparison with the considered Trapezoidal rule and the Adams Moulton methods. In the future
research, we plan to give more details about running time of proposed methods. Further, we plan to
solve a boundary value problem for a second order ordinary differential equation with fuzzy boundary
conditions, see preliminary results in [44].
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Appendix A. Algorithms

In this appendix, algorithms of approximation methods based on FzT and NIM for Sections 4.1–4.3
are explained with details. A pseudocode is used to describe the algorithms and simplified code that
is easy to read. This pseudocode specifies the form of the input to be supplied and the form of the
desired output. As a consequence, a stopping technique independent of the numerical technique
is incorporated into each algorithm to avoid infinite loops. Two punctuation symbols are used in
the algorithms, a period (.) indicates the termination of a step and a semicolon (;) separates tasks
within a step. In algorithms with help of MATLAB software, the definite integral is specified by
integral (function,upper limits, lower limits). The steps in the algorithms follow the rules of structured
program construction. They have been arranged so that there should be minimal difficulty translating
pseudocode into any programming language suitable for scientific applications. To approximate the
solution of SODEs (16) at (N + 1) equally spaced numbers in the interval [a, b], proceed as follows.

Algorithm A1. One-step algorithm for system of ODEs.

INPUT: f (t, x, y); g(t, x, y); endpoints a, b; integer N; initial condition y1; m.

Step 1 Set h = (b − a)/N; X1 = x1; Y1 = y1; t1 = a; k = 1, . . . , N + 1; tk = a + (k − 1)h.

Step 2 Define the generalized uniform fuzzy partitions as Bk(t) =
(√

πΓ(m+1)
2Γ(m+ 1

2 )

)
1

2m

(
1 + cos

(
π

t−t(k)
h

))m
.

Step 3 for k = 1 to N do Steps 04–15.
Step 04 F(k) = integral( f (t, X(k), Y(k))Bk(t), t(k − 1), t(k + 1))/integral(Bk(t), t(k − 1), t(k + 1)).

Step 05 G(k) = integral(g(t, X(k), Y(k))Bk(t), t(k − 1), t(k + 1))/integral(Bk(t), t(k − 1), t(k + 1)).

Step 06 Xstar(k + 1) = X(k) + hF(k)/2.

Step 07 Ystar(k + 1) = Y(k) + hG(k)/2.

Step 08 Fstar(k + 1) = integral( f (t, Xstar(k + 1), Ystar(k + 1))Bk+1(t), t(k − 1), t(k + 1))/integral(Bk+1(t), t(k − 1), t(k + 1)).

Step 09 Gstar(k + 1) = integral(g(t, Xstar(k + 1), Ystar(k + 1))Bk+1(t), t(k − 1), t(k + 1))/integral(Bk+1(t), t(k − 1), t(k + 1)).

Step 10 Xstar2(k + 1) = Xstar(k + 1) + hFstar(k + 1)/2.

Step 11 Ystar2(k + 1) = Ystar(k + 1) + hGstar(k + 1)/2.

Step 12 Fstar2(k + 1) = integral( f (t, Xstar2(k + 1), Ystar2(k + 1))Bk+1(t), t(k − 1), t(k + 1))/integral(Bk+1(t), t(k − 1), t(k + 1)).

Step 13 Gstar2(k + 1) = integral(g(t, Xstar2(k + 1), Ystar2(k + 1))Bk+1(t), t(k − 1), t(k + 1))/integral(Bk+1(t), t(k − 1), t(k + 1)).

Step 14 X(k + 1) = X(k) + h (F(k) + Fstar2(k + 1)) /2.

Step 15 Y(k + 1) = Y(k) + h (G(k) + Gstar2(k + 1)) /2.
end.

OUTPUT: Approximation X and Y to x and y, respectively at the (N + 1) values of t.
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Algorithm A2. Two-step algorithm for system of ODEs.

INPUT: f (t, x, y); g(t, x, y); endpoints a, b; integer N; initial condition y1; m.

Step 1 Set h = (b − a)/N; X1 = x1; Y1 = y1; t1 = a; k = 1, . . . , N + 1; tk = a + (k − 1)h.

Step 2 Define the generalized uniform fuzzy partitions as Bk(t) =
(√

πΓ(m+1)
2Γ(m+ 1

2 )

)
1

2m

(
1 + cos

(
π

t−t(k)
h

))m
.

Step 3 Set X2 = x2; Y2 = y2. (In the case of no exact solutions, compute X2 and Y2 using Algorithm 1.)
Step 4 for k = 2 to N do Steps 05–18.

Step 05 F(k − 1) =integral( f (t, X(k − 1), Y(k − 1))Bk−1(t), t(k − 1), t(k + 1))/integral(Bk−1(t), t(k − 1), t(k + 1)).

Step 06 G(k − 1) =integral(g(t, X(k − 1), Y(k − 1))Bk−1(t), t(k − 1), t(k + 1))/integral(Bk−1(t), t(k − 1), t(k + 1)).

Step 07 F(k) =integral( f (t, X(k), Y(k))Bk(t), t(k − 1), t(k + 1))/integral(Bk(t), t(k − 1), t(k + 1)).

Step 08 G(k) =integral(g(t, X(k), Y(k))Bk(t), t(k − 1), t(k + 1))/integral(Bk(t), t(k − 1), t(k + 1)).

Step 09 Xstar(k + 1) =X(k) + h(8F(k)− F(k − 1))/12.

Step 10 Ystar(k + 1) =Y(k) + h(8G(k)− G(k − 1))/12.

Step 11 Fstar(k + 1) =integral( f (t, Xstar(k + 1), Ystar(k + 1))Bk+1(t), t(k − 1), t(k + 1))/integral(Bk+1(t), t(k − 1), t(k + 1)).

Step 12 Gstar(k + 1) =integral(g(t, Xstar(k + 1), Ystar(k + 1))Bk+1(t), t(k − 1), t(k + 1))/integral(Bk+1(t), t(k − 1), t(k + 1)).

Step 13 Xstar2(k + 1) =Xstar(k + 1) + 5hFstar(k + 1)/12.

Step 14 Ystar2(k + 1) =Ystar(k + 1) + 5hGstar(k + 1)/12.

Step 15 Fstar2(k + 1) =integral( f (t, Xstar2(k + 1), Ystar2(k + 1))Bk+1(t), t(k − 1), t(k + 1))/integral(Bk+1(t), t(k − 1), t(k + 1)).

Step 16 Gstar2(k + 1) =integral(g(t, Xstar2(k + 1), Ystar2(k + 1))Bk+1(t), t(k − 1), t(k + 1))/integral(Bk+1(t), t(k − 1), t(k + 1)).

Step 17 X(k + 1) =X(k) + h(8F(k)− F(k − 1) + 5Fstar2(k + 1))/12.

Step 18 Y(k + 1) =Y(k) + h(8G(k)− G(k − 1) + 5Gstar2(k + 1))/12.
end.

OUTPUT: Approximation X and Y to x and y, respectively at the (N + 1) values of t.

Algorithm A3. Three-step algorithm for system of ODEs.

INPUT: f (t, x, y); g(t, x, y); endpoints a, b; integer N; initial condition y1; m.

Step 1 Set h = (b − a)/N; X1 = x1; Y1 = y1; t1 = a; k = 1, . . . , N + 1; tk = a + (k − 1)h.

Step 2 Define the generalized uniform fuzzy partitions as Bk(t) =
(√

πΓ(m+1)
2Γ(m+ 1

2 )

)
1

2m

(
1 + cos

(
π

t−t(k)
h

))m
.

Step 3 Set X2 = x2; Y2 = y2; X3 = x3; Y3 = y3. (In the case of no exact solutions, compute X2, Y2, X3 and Y3 using Algorithm 1 or 2.)
Step 4 for k = 3 to N do Steps 05–20.

Step 05 F(k − 2) =integral( f (t, X(k − 2), Y(k − 2))Bk−2(t), t(k − 1), t(k + 1))/integral(Bk−2(t), t(k − 1), t(k + 1)).

Step 06 G(k − 2) =integral(g(t, X(k − 2), Y(k − 2))Bk−2(t), t(k − 1), t(k + 1))/integral(Bk−2(t), t(k − 1), t(k + 1)).

Step 07 F(k − 1) =integral( f (t, X(k − 1), Y(k − 1))Bk−1(t), t(k − 1), t(k + 1))/integral(Bk−1(t), t(k − 1), t(k + 1)).

Step 08 G(k − 1) =integral(g(t, X(k − 1), Y(k − 1))Bk−1(t), t(k − 1), t(k + 1))/integral(Bk−1(t), t(k − 1), t(k + 1)).

Step 09 F(k) =integral( f (t, X(k), Y(k))Bk(t), t(k − 1), t(k + 1))/integral(Bk(t), t(k − 1), t(k + 1)).

Step 10 G(k) =integral(g(t, X(k), Y(k))Bk(t), t(k − 1), t(k + 1))/integral(Bk(t), t(k − 1), t(k + 1)).

Step 11 Xstar(k + 1) =X(k) + h(19F(k)− 5F(k − 1) + F(k − 2))/24.

Step 12 Ystar(k + 1) =Y(k) + h(19G(k)− 5G(k − 1) + G(k − 2))/24.

Step 13 Fstar(k + 1) =integral( f (t, Xstar(k + 1), Ystar(k + 1))Bk+1(t), t(k − 1), t(k + 1))/integral(Bk+1(t), t(k − 1), t(k + 1)).

Step 14 Gstar(k + 1) =integral(g(t, Xstar(k + 1), Ystar(k + 1))Bk+1(t), t(k − 1), t(k + 1))/integral(Bk+1(t), t(k − 1), t(k + 1)).

Step 15 Xstar2(k + 1) =Xstar(k + 1) + 9hFstar(k + 1)/24.

Step 16 Ystar2(k + 1) =Ystar(k + 1) + 9hGstar(k + 1)/24.

Step 17 Fstar2(k + 1) =integral( f (t, Xstar2(k + 1), Ystar2(k + 1))Bk+1(t), t(k − 1), t(k + 1))/integral(Bk+1(t), t(k − 1), t(k + 1)).

Step 18 Gstar2(k + 1) =integral(g(t, Xstar2(k + 1), Ystar2(k + 1))Bk+1(t), t(k − 1), t(k + 1))/integral(Bk+1(t), t(k − 1), t(k + 1)).

Step 19 X(k + 1) =X(k) + h(19F(k)− 5F(k − 1) + F(k − 2) + 9Fstar2(k + 1))/24.

Step 20 Y(k + 1) =Y(k) + h(19G(k)− 5G(k − 1) + G(k − 2) + 9Gstar2(k + 1))/24.
end.

OUTPUT: Approximation X and Y to x and y, respectively at the (N + 1) values of t.
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13. Holčapek, M.; Perfilieva, I.; Novák, V.; Kreinovich, V. Necessary and sufficient conditions for generalized
uniform fuzzy partitions. Fuzzy Sets Syst. 2015, 277, 97–121. [CrossRef]

14. Khastan, A. A new representation for inverse fuzzy transform and its application. Soft Comput. 2017, 21,
3503–3512. [CrossRef]

15. Ziari, S.; Perfilieva, I. On the approximation properties of fuzzy transform. J. Intell. Fuzzy Syst. 2017,
33, 171–180. [CrossRef]

16. Alkasasbeh, H.A.; Perfilieva, I.; Ahmad, M.Z.; Yahya, Z.R. New fuzzy numerical methods for solving Cauchy
problems. Appl. Syst. Innov. 2018, 1, 15. [CrossRef]

17. Perfilieva, I. Fuzzy transform: Application to the Reef growth problem. In Fuzzy Logic in Geology;
Demicco, R.V., Klir, G.J., Eds.; Academic Press: Amsterdam, The Netherlands, 2003; Chapter 9, pp. 275–300.

18. Khastan, A.; Perfilieva, I.; Alijani, Z. A new fuzzy approximation method to Cauchy problems by fuzzy
transform. Fuzzy Sets Syst. 2016, 288, 75–95. [CrossRef]

19. Chen, W.; Shen, Y. Approximate solution for a class of second-order ordinary differential equations by the
fuzzy transform. J. Intell. Fuzzy Syst. 2014, 27, 73–82.

20. Alireza, K.; Zahra, A.; Irina, P. Fuzzy transform to approximate solution of two-point boundary value
problems. Math. Meth. Appl. Sci. 2017, 40, 6147–6154.

21. Holcapek, M.; Valášek, R. Numerical solution of partial differential equations with the help of fuzzy
transform technique. In Proceedings of the 2017 IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE), Naples, Italy, 9–12 July 2017; pp. 1–6.

22. Hodáková, P.; Perfilieva, I. F1-transform of Functions of Two Variables. In EUSFLAT 2013; Atlantis Press:
Milan, Italy, 2013; pp. 547–553.

23. Perfilieva, I.; Hodáková, P.; Hurtík, P. Differentiation by the F-transform and application to edge detection.
Fuzzy Sets Syst. 2016, 288, 96–114. [CrossRef]

24. Ghosh, R.; Chowdhury, S.; Gorain, G.C.; Kar, S. Uniform stabilization of the telegraph equation with a
support by fuzzy transform method. QSci. Connect 2014, 2014, 19. [CrossRef]

25. Ezzati, R.; Mokhtari, F.; Maghasedi, M. Numerical solution of Volterra-Fredholm integral equations with
the help of inverse and direct discrete fuzzy transforms and collocation technique. Int. J. Ind. Math. 2012,
4, 221–229.

26. Zeinali, M.; Alikhani, R.; Shahmorad, S.; Bahrami, F.; Perfilieva, I. On the structural properties of Fm-transform
with applications. Fuzzy Sets Syst. 2018, 342, 32–52. [CrossRef]

27. Baleanu, D.; Agheli, B.; Adabitabar Firozja, M.; Al Qurashi, M.M. A method for solving nonlinear Volterra’s
population growth model of noninteger order. Adv. Differ. Equ. 2017, 2017, 368. [CrossRef]

28. Tomasiello, S. An alternative use of fuzzy transform with application to a class of delay differential equations.
Int. J. Comput. Math. 2017, 94, 1719–1726. [CrossRef]

200



Appl. Syst. Innov. 2018, 1, 30

29. Alijani, Z.; Khastan, A.; Khattri, S.K.; Tomasiello, S. Fuzzy Transform to Approximate Solution of Boundary
Value Problems via Optimal Coefficients. In Proceedings of the 2017 International Conference on High
Performance Computing Simulation (HPCS), Genoa, Italy, 17–21 July 2017; pp. 466–471.

30. Tomasiello, S. A First Investigation on the Dynamics of Two Delayed Neurons through Fuzzy Transform
Approximation. In Proceedings of the 2017 International Conference on High Performance Computing
Simulation (HPCS), Genoa, Italy, 17–21 July 2017; pp. 460–465.

31. Tomasiello, S.; Gaeta, M.; Loia, V. Quasi–consensus in Second–Order Multi–agent Systems with Sampled
Data Through Fuzzy Transform. J. Uncertain Syst. 2016, 10, 243–250.

32. Noor, M.A.; Noor, K.I.; Mohyud-Din, S.T.; Shabbir, A. An iterative method with cubic convergence for
nonlinear equations. Appl. Math. Comput. 2006, 183, 1249–1255. [CrossRef]

33. Saeed, R.K.; Aziz, K.M. An iterative method with quartic convergence for solving nonlinear equations.
Appl. Math. Comput. 2008, 202, 435–440. [CrossRef]

34. Bhalekar, S.; Daftardar-Gejji, V. Convergence of the New Iterative Method. Int. J. Differ. Equ. 2011, 2011, 10.
[CrossRef]

35. Daftardar-Gejji, V.; Sukale, Y.; Bhalekar, S. A new predictor-corrector method for fractional differential
equations. Appl. Math. Comput. 2014, 244, 158–182. [CrossRef]

36. Alkasasbeh, H.A.; Perfilieva, I.; Ahmad, M.Z.; Yahya, Z.R. New approximation methods based on fuzzy
transform for solving SODEs: I. Appl. Syst. Innov. 2018, 1, 29.
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Abstract: The purpose of this paper is to assess how three shaking procedures affect the performance
of a metaheuristic GVNS algorithm. The first shaking procedure is generally known in the literature
as intensified shaking method. The second is a quantum-inspired perturbation method, and the
third is a shuffle method. The GVNS schemes are evaluated using a search strategy for both First
and Best improvement and a time limit of one and two minutes. The formed GVNS schemes were
applied on Traveling Salesman Problem (sTSP, nTSP) benchmark instances from the well-known
TSPLib. To examine the potential advantage of any of the three metaheuristic schemes, extensive
statistical analysis was performed on the reported results. The experimental data shows that for aTSP
instances the first two methods perform roughly equivalently and, in any case, much better than
the shuffle approach. In addition, the first method performs better than the other two when using
the First Improvement strategy, while the second method gives results quite similar to the third.
However, no significant deviations were observed when different methods of perturbation were used
for Symmetric TSP instances (sTSP, nTSP).

Keywords: variable neighborhood search; experimental comparison; statistical analysis; traveling
salesman problem; soft computing

1. Introduction

Variable Neighborhood Search (VNS) is a metaheuristic approach proposed by Mladenovic and
Hansen to solve combinatorial and global optimization problems [1,2]. This framework is primarily
designed to systematically modify the neighborhood structure, to reach an optimal (or near-optimal)
solution [3]. VNS and its extensions have demonstrated their effectiveness in solving many problems
in the combinatorial and global optimization field [4,5].

Each VNS heuristic consists of three parts. The first is a process of shaking (phase of diversification)
used to escape from local optimal solutions. The next one is changing the neighborhood, where the
next neighborhood structure to be searched will be determined; an approval or rejection criterion will
also be applied to the last solution found during this part. The third part is the phase of improvement
(intensification) achieved by exploring neighborhood structures by applying various local search moves.
This exploration is carried out primarily through one of the following steps to change the neighborhood:

• Cyclic neighborhood change step: Whether there is an improvement in some neighborhood or
not, the search continues in the next neighborhood structure in the list.

• Pipe neighborhood change step: If the current solution is improved in some neighborhood,
exploration in that neighborhood will continue.

Appl. Syst. Innov. 2019, 2, 31; doi:10.3390/asi2040031 www.mdpi.com/journal/asi
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• Skewed neighborhood change step: Accept as new incumbent alternatives that not only improve
solutions, but also some that are worse than the current incumbent solution. Such a neighborhood
change step is intended to allow valley exploration away from the incumbent solution. A trial
solution is evaluated taking into consideration not only the trial’s objective values and the
incumbent solution, but also their distance.

Variable neighborhood search variants. Many VNS variants have already been developed and
used to solve hard optimization problems [6,7]. The most commonly used variants are the Basic VNS
(BVNS), the Variable Neighborhood Descent (VND), and the General VNS (GVNS) and the Reduced
VNS (RVNS). In the BVNS a method of diversification is alternated with a local search operator.
VND consists of an improvement procedure in which neighborhood structures are systematically
explored and a neighborhood change step. According to their neighborhood change step, there are
different variants of VND. The pipe-VND, which uses the pipe neighborhood change step, appears to
be the most efficient way to solve computational problems [6]. General Variable Neighborhood Search
(GVNS) is a VNS variant that uses a VND method to improve. In many applications, GVNS has been
successfully tested, as several recent works have shown [8,9].

The efficiency of metaheuristics depends on the efficiency of their components. Performance studies
are a prerequisite for evaluating different metaheuristics [10] or different components of a metaheuristic
algorithm [11]. In this direction and based on the VNS, Huber and Geiger (2017) [12] examined the impact
of different order of local search operators in the improvement component of a VNS algorithm. There are
similar studies for the impact of the initial solution [13] or the use of different neighborhood change
strategies [2] to the overall performance of a VNS algorithm. However, there is a lack of contributions
on studying the impact of the shaking components to the overall performance of a VNS algorithm.
Papalitsas et al. (2019) [14] attempted an initial study on the impact of diversification methods on the
performance of GVNS by focusing on asymmetric TSP instances.

This work is a substantial extension of our recent conference paper [14] in which we investigated
the impact of three shaking methods on a GVNS metaheuristic, applied on asymmetric Traveling
Salesman Problem (TSP) instances from the TSPLib. In an effort to build a comprehensive view related
to that potential impact of diversification methods, the findings of the previous work are integrated
with further analysis on the obtained solutions of symmetric and world TSP instances from TSPLib.
To examine this potential impact of the different perturbation strategies, the three shaking methods
were examined within the same improvement step. Moreover, the resulting GVNS schemes were
executed both with First and Best improvement search strategies, and two different time limits were
used as the main stopping criteria: 60 s and 120 s. The obtained experimental results were analyzed
statistically to establish whether the use of different perturbation methods affects the performance of
the GVNS algorithm. Our findings demonstrate that the use of different perturbation strategies clearly
affect the solution quality in aTSP instances, while no significant differences were observed for the case
of sTSP instances, with the exception of the experiments conducted using Best Improvement and 120 s
run time limit. Moreover, to examine the efficiency of the formed methods, a comparison is performed
between the obtained results and other recent metaheuristic solution approaches for the TSP in the
literature. As it can be confirmed by our experimental results, the proposed GVNS schemes produce
better solutions than the other metaheuristics.

Organization

This paper is organized as follows. In Section 2 the proposed GVNS solution methods and their
technical components are explained. Section 3 contains the experimental results of our performance
analysis, while the statistical tests applied to our numerical results are presented in Section 4. Section 5
provides a comparative study between our algorithms and other metaheuristic solution approaches in
the recent literature. Finally, conclusions and ideas for future work are given in Section 6.
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2. GVNS Heuristics

The formed GVNS methods use the pipe-VND scheme, which means that the search is taking
place in the same neighborhood where the improvement occurs, as their improvement phase.

2.1. Neighborhood Structures

Three local search operators are considered for exploring different solutions:

• 1-0 Relocate. This move removes node i from its current position in the route and re-inserts it
after a selected node b.

• 2-Opt. The 2-Opt move breaks two arcs in the current solution and reconnects them in a
different way.

• 1-1 Exchange. This move swaps two nodes in the current route.

All three neighborhood structures are incorporated in a pipe-VND scheme, as illustrated in
Algorithm 1, where lmax = 3 denotes the number of neighborhood structures.

Algorithm 1 pipe-VND.

1: procedure PVND(N, lmax)
2: l = 1
3: while l <= lmax do
4: select case(l)
5: case(1) : S′ ← 1-0 Relocate(S)
6: case(2) : S′ ← 2-Opt(S)
7: case(3) : S′ ← 1-1 Exchange(S)
8: end select
9: if f (S′) < f (S) then

10: S ← S′
11: else
12: l = l + 1
13: end if
14: end while
15: return S
16: end procedure

2.2. Shaking Methods

To avoid local optimum traps, three different shaking procedures are examined.
These perturbation methods are the following:

Shake_1 . This diversification method randomly selects one of the predefined neighborhood
structures and applies it k times (1 < k < kmax, where kmax is the maximum number of shaking
iterations) in the current solution. The method is summarized in Algorithm 2.

Shake_2 [15]. The scientific community seems to tend to revolve around new unconventional
computing methods. Overall, unconventional computing is a wide range of proposed new or unusual
computing models. Part of these computing models is natural computing [16]. Nature-inspired
computing has emerged as an efficient paradigm for designing and simulating innovative
computational models inspired by natural phenomena to solve complex nonlinear, dynamic specific
problems. Some of the well-known nature-inspired computational systems and algorithms are [17]:

1. Evolutionary, biological-inspired algorithms.
2. Swarm intelligence algorithms inspired by swarm/agent group behavior.
3. Social and cultural algorithms inspired by society’s interactions and beliefs.
4. Inspired by quantum physics, Quantum-inspired algorithms.
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Algorithm 2 Shake_1.

1: procedure SHAKE_1(S, k, lmax)
2: l = random_integer(1, lmax)
3: for i ← 1, k do
4: select case(l)
5: case(1)
6: S′ ← 1-0 Relocate(S)
7: case(2)
8: S′ ← 2-Opt(S)
9: case(3)

10: S′ ← 1-1 Exchange(S)
11: end select
12: end for
13: return S′
14: end procedure

Quantum Computing Principles

Quantum inspired methods imitate the fundamental principles of quantum computing.
Quantum computing, a natural computing subsection and a field recently introduced by Feynman
(1980s). Feynman realized that an effective simulation of an actual quantum system using a standard
computer is not possible because the simulation of actual quantum processes would be exponentially
slowed down [18,19]. Quantum computing is an important addition to the existing standard computing
models. A general concept which considers the process as a quantum phenomenon. Quantum computing
combines, apart from computer science, definitions, mathematical abstractions, and physics. Mathematics,
such as linear algebra, and physics, such as quantum mechanics, are mainly involved.

The qubit is the quantum analogue of the classical bit. Similarly, the quantum register, which
is a collection of qubits, is the quantum analogue of the classical processor register. In each call
of this shaking method, a simulated quantum n-qubit register generates a normalized complex
n-dimensional unit vector. In this context, normalized means that if (z1, . . . , zn) is the complex
vector, then |z1|2 + . . . + |zn|2 = 1. The dimension n of the complex unit vector is greater than or
equal to the dimension of the problem. The complex n-dimensional vector is converted into a real
n-dimensional vector, the components of which are real numbers in the interval [0, 1]. If zi and ri
are the ith components of the complex and real vectors respectively, then ri = |zi|2, i.e., ri is equal
to the modulus squared of zi. Moreover, each of the real vector’s selected components corresponds
to a current solution node. For each node of the incumbent solution, the components are used as a
flag. Sorting the first vector affects the order in the solution vector due to the correspondence between
components and nodes in a tour and thus drives the exploration effort to another point in the search
space. This shaking procedure’s pseudocode is given in Algorithm 3.

Algorithm 3 Shake_2.

1: procedure SHAKE_2(S, n)
2: NQubits ← QuantumRegister(n)
3: Compute the components based on the qubits.
4: Save the n components in the vector QCompVector.
5: Matching each element in the QCompVector with a node in S.
6: Descending sorting on QCompVector produces S′.
7: Recalculate the cost of the new S′.
8: return S′
9: end procedure

Shake_3. This shaking method is a shuffle method, where in each iteration the customers are
placed in a random order. The method is shown in Algorithm 4.
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Algorithm 4 Shake_3.

1: procedure SHAKE_3(S)
2: S′ ← Shu f f le(S)
3: return S′
4: end procedure

2.3. GVNS Schemes

For each perturbation method a GVNS scheme is formed. Specifically, the GVNS_1 contains
Shake_1 as its shaking method, GVNS_2 uses Shake_2 to diversify solutions, and GVNS_3 adopts the
Shake_3 perturbation method. The initial solution is produced by the Nearest Neighbor heuristic in all
GVNS schemes. The pseudocode for three GVNS approaches is given in Algorithms 5–7, respectively.

Algorithm 5 GVNS_1.

1: procedure GVNS_1(S, kmax, max_time, lmax)
2: while time ≤ max_time do
3: for k ← 1, kmax do
4: S∗ = Shake_1(S, k, lmax)
5: S′ = pVND(S∗)
6: if f (S′) < f (S) then
7: S ← S′
8: end if
9: end for

10: end while
11: return S
12: end procedure

Algorithm 6 GVNS_2.

1: procedure GVNS_2(S, n, max_time)
2: while time ≤ max_time do
3: S∗ = Shake_2(S, n)
4: S′ = pVND(S∗)
5: if f (S′) < f (S) then
6: S ← S′
7: end if
8: end while
9: return S

10: end procedure

Algorithm 7 GVNS_3.

1: procedure GVNS_3(S, max_time)
2: while time ≤ max_time do
3: S∗ = Shake_3(S)
4: S′ = pVND(S∗)
5: if f (S′) < f (S) then
6: S ← S′
7: end if
8: end while
9: return S

10: end procedure

It should be mentioned that in all three GVNS methods the neighborhoods are searched with both
the First and Best improvement search strategy.
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3. Computational Analysis

3.1. Computing Environment & Parameter Settings

The aforementioned methods were implemented in Fortran and were executed in a PC running
Windows 64-bit on an Intel Core i7-6700 CPU at 2.6 GHz with 16 GB RAM. The compilation of the code
was done using the Intel Fortran 64 compiler XE with the optimization option /O3. The maximum
execution time limit was set to max_time = 60 s and max_time = 120 s and the maximum number of
shaking iterations in the Shake_1 was experimentally set to kmax = 12.

3.2. Computational Results

This section presents the computational results of the different perturbation strategies for each
class of experiments. The GVNS schemes with the different shaking methods were applied on
TSPLIB instances. The TSP is one of the most famous NP-hard combinatorial optimization problems.
Solving the TSP means finding the minimum cost route so that the salesman starts from a particular
node and returns to that node after passing from all the other nodes once.

All experiments were executed 5 times and the average value of all runs was computed.
Tables 1 and 2 contain the aggregated experimental results. Specifically, they show the benchmark
name, the optimal value (zOpt), the cost of the three GVNS schemes (GVNS_1, GVNS_2 and GVNS_3)
and their corresponding gaps from the optimal value. The results depicted in Table 1 were obtained
using the First Improvement search strategy and an execution time limit of 1 min, whereas the results
in Table 2 were obtained using the Best Improvement search strategy and the same execution time of
1 min. As mentioned earlier, the cost of each GVNS scheme is the average of 5 runs for each problem.
The reported gap is computed as follows: given the outcome x, its gap from the optimal value OV is
given by the formula 100×(x−OV)

OV .

Table 1. The results shown here were obtained using the First Improvement search strategy and an
execution time limit of 1 min [14].

Instance zOpt GVNS_1 GVNS_2 GVNS_3 GAP_1 (%) GAP_2 (%) GAP_3 (%)

br17.atsp 39 39 39 39 0.00 0.00 0.00
ft53.atsp 6905 7189 7328 7737 4.11 6.13 12.05
ft70.atsp 38673 39782 40691 40537 2.87 5.22 4.82
ftv33.atsp 1286 1318 1339 1450 2.49 4.12 12.75
ftv35.atsp 1473 1484 1499 1596 0.75 1.77 8.35
ftv38.atsp 1530 1546 1585 1579 1.05 3.59 3.20
ftv44.atsp 1613 1651 1760 1797 2.36 9.11 11.41
ftv47.atsp 1778 1821 1992 2101 2.42 12.04 18.17
ftv55.atsp 1608 1666 1985 1912 3.61 23.45 18.91
ftv64.atsp 1839 1961 2382 2395 6.63 29.53 30.23
ftv70.atsp 1950 2136 2557 2484 9.54 31.13 27.38
ftv170.atsp 2755 3487 3923 3923 26.57 42.40 42.40

kro124p.atsp 36230 39024 43187 40259 7.71 19.20 11.12
p43.atsp 5620 5620 5623 5658 0.00 0.05 0.68

rbg323.atsp 1326 1516 1563 1626 14.32 17.87 22.62
rbg358.atsp 1163 1347 1437 1404 15.82 23.55 20.72
rbg403.atsp 2465 2535 2587 2565 9.78 4.42 11.76
rbg443.atsp 2720 2814 2859 2814 3.46 5.11 3.46
ry48p.atsp 14422 14549 14901 14738 0.88 3.32 2.19

Average 6599.74 6920.26 7328.37 7190.21 12.33 12.64 24.10

The results in Table 1 indicate a definite pattern, namely that both GVNS_1 and GVNS_2
outperform GVNS_3 in most cases. Recall that GVNS_3 is a shuffle perturbation strategy. For example,
consider benchmark ftv47; we can see that the cost of GVNS_1 is 1821, the cost of GVNS_2 is 1992 and
of GVNS_3 is 2101. GVNS_1 and GVNS_2 both outperform GVNS_3 and are also relatively close to
the optimal value (1778).
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Table 2. The results depicted here were obtained using the Best Improvement search strategy and an
execution time limit of 1 min [14].

Instance zOpt GVNS_1 GVNS_2 GVNS_3 GAP_1 (%) GAP_2 (%) GAP_3 (%)

br17.atsp 39 39 39 39 0.00 0.00 0.00
ft53.atsp 6905 7043 7135 7674 2.00 3.33 11.14
ft70.atsp 38673 39507 40206 40539 2.16 3.96 4.83
ftv33.atsp 1286 1289 1286 1379 0.23 0.00 7.23
ftv35.atsp 1473 1476 1473 1533 0.20 0.00 4.07
ftv38.atsp 1530 1538 1541 1599 0.52 0.72 4.51
ftv44.atsp 1613 1632 1644 1728 1.18 1.92 7.13
ftv47.atsp 1778 1792 1816 1940 0.79 2.14 9.11
ftv55.atsp 1608 1642 1665 2012 2.11 3.54 25.12
ftv64.atsp 1839 1908 1986 2193 3.75 7.99 19.25
ftv70.atsp 1950 2110 2157 2346 8.21 10.62 20.31
ftv170.atsp 2755 3341 3852 3923 21.27 39.82 42.40

kro124p.atsp 36230 36501 37076 38195 0.75 2.34 5.42
p43.atsp 5620 5620 5620 5627 0.00 0.00 0.12

rbg323.atsp 1326 1486 1539 1633 12.06 16.06 23.15
rbg358.atsp 1163 1307 1409 1437 12.38 21.15 23.55
rbg403.atsp 2465 2510 2547 2554 11.76 11.76 11.76
rbg443.atsp 2720 2765 2824 2844 1.65 3.16 4.56
ry48p.atsp 14422 14480 14498 14659 0.40 0.12 1.64

Average 6599.74 6736.11 6858.58 7044.95 15.88 17.69 22.28

In addition, the provided results in Table 2 lead to the same statement that both GVNS_1 and
GVNS_2 produce better results than GVNS_3 in most cases. Table 3 shows the results of the GVNS
schemes within a 2 min run time limit and the First Improvement as search strategy. The results of
Table 3 mention that GVNS_1 outperform GVNS_2 and GVNS_3 in most cases. However, the main
difference from the results of Tables 1 and 2 is that now the behavior of GVNS_2 is closer to that
of GVNS_3 solution approach. Table 4 shows the results achieved by the GVNS schemes within a
2 min run time limit and the Best Improvement search strategy. The results of Table 4 corroborate the
conclusion of Tables 1 and 2 that both GVNS_1 and GVNS_2 outperform GVNS_3 in most cases.

Table 3. Results using the First Improvement search strategy and an execution time limit of 2 min [14].

Instance zOpt GVNS_1 GVNS_2 GVNS_3 GAP_1 (%) GAP_2 (%) GAP_3 (%)

br17.atsp 39 39 39 39 0.00 0.00 0.00
ft53.atsp 6905 7024 7498 7752 1.72 8.59 12.27
ft70.atsp 38673 39615 40827 40505 2.44 5.57 4.74
ftv33.atsp 1286 1330 1370 1454 3.42 6.53 13.06
ftv35.atsp 1473 1482 1519 1604 0.61 3.12 8.89
ftv38.atsp 1530 1547 1618 1576 1.11 5.75 3.01
ftv44.atsp 1613 1628 1839 1812 0.93 14.01 12.34
ftv47.atsp 1778 1787 2020 2097 0.51 13.61 17.94
ftv55.atsp 1608 1668 2012 1912 3.73 25.12 18.91
ftv64.atsp 1839 1951 2484 2476 6.09 35.07 34.64
ftv70.atsp 1950 2165 2571 2484 11.03 31.85 27.38
ftv170.atsp 2755 3412 3923 3923 23.85 42.40 42.40

kro124p.atsp 36230 39344 44243 40849 8.60 22.12 12.75
p43.atsp 5620 5620 5628 5657 0.00 0.14 0.66

rbg323.atsp 1326 1499 1576 1586 13.04 18.85 19.60
rbg358.atsp 1163 1329 1410 1406 14.27 21.23 20.89
rbg403.atsp 2465 2509 2586 2547 2.27 4.10 11.76
rbg443.atsp 2720 2808 2849 2811 3.24 4.74 3.35
ry48p.atsp 14422 14475 14936 14708 0.37 3.56 1.98

Average 6599.74 6906.95 7418.32 7220.95 5.29 13.96 24.78

209



Appl. Syst. Innov. 2019, 2, 31

Table 4. Results using the Best Improvement search strategy and an execution time limit of 2 min [14].

Instance zOpt GVNS_1 GVNS_2 GVNS_3 GAP_1 (%) GAP_2 (%) GAP_3 (%)

br17.atsp 39 39 39 39 0.00 0.00 0.00
ft53.atsp 6905 7043 7207 7773 2.00 4.37 12.57
ft70.atsp 38673 39358 40230 40588 1.77 4.03 4.95
ftv33.atsp 1286 1286 1290 1370 0.00 0.31 6.53
ftv35.atsp 1473 1474 1475 1509 0.07 0.14 2.44
ftv38.atsp 1530 1538 1555 1599 0.52 1.63 4.51
ftv44.atsp 1613 1636 1664 1731 1.43 3.16 7.32
ftv47.atsp 1778 1787 1837 1903 0.51 3.32 7.03
ftv55.atsp 1608 1640 1686 2012 1.99 4.85 25.12
ftv64.atsp 1839 1914 2032 2217 4.08 10.49 20.55
ftv70.atsp 1950 2038 2189 2342 4.51 12.26 20.10
ftv170.atsp 2755 3351 3918 3923 21.63 42.21 42.40

kro124p.atsp 36230 36379 37378 37915 0.41 3.17 4.65
p43.atsp 5620 5620 5620 5625 0.00 0.00 0.09

rbg323.atsp 1326 1473 1531 1610 11.08 15.46 21.41
rbg358.atsp 1163 1292 1405 1435 11.09 20.80 23.38
rbg403.atsp 2465 2498 2547 2553 1.30 3.25 11.76
rbg443.atsp 2720 2771 2822 2842 1.88 3.75 4.49
ry48p.atsp 14422 14468 14464 14678 0.32 0.29 1.78

Average 6599.74 6716.05 6888.89 7034.95 3.28 7.05 22.16

Tables 5–8 contain the aggregated experimental results for Symmetric TSP instances. Specifically,
they contain the benchmark name, the optimal value (zOpt), the cost of the three GVNS variations
(GVNS_1, GVNS_2 and GVNS_3) and their corresponding gaps from the optimal value. Table 5
depicts GVNS using the First Improvement search strategy and an execution time limit of 1 min.
Table 6 shows GVNS using the Best Improvement as search strategy and an execution time of 1 min.
Tables 7 and 8 are executed for 120 s within First and Best improvement search strategy respectively.
The reported results show that the GVNS_3 produce better solutions than the other two algorithms,
and that GVNS_1 and GVNS_2 do not have significant differences.

Table 5. Results using the First Improvement search strategy and an execution time limit of 1 min.

Instance zOpt GVNS_1 GVNS_2 GVNS_3 GAP_1 GAP_2 GAP_3

a280.tsp 2579 2683 2739 2745 4.03 6.20 6.44
att48.tsp 10628 10628 10628 10635 0.00 0.00 0.07

bayg29.tsp 1610 1610 1610 1610 0.00 0.00 0.00
bays29.tsp 2020 2020 2020 2020 0.00 0.00 0.00
bier127.tsp 118282 118636 120066 119966 0.30 1.51 1.42

kroA100.tsp 21282 21296 21375 21398 0.07 0.44 0.55
burma14.tsp 3323 3323 3323 3323 0.00 0.00 0.00

ch130.tsp 6110 6156 6239 6235 0.75 2.11 2.05
ch150.tsp 6528 6583 6720 6723 0.84 2.94 2.99
d493.tsp 35002 36928 37307 37166 5.50 6.59 6.18

kroB100.tsp 22141 22187 22339 22362 0.21 0.89 1.00
kroC100.tsp 20749 20759 20864 20834 0.05 0.55 0.41
kroD100.tsp 21294 21370 21573 21667 0.36 1.31 1.75
kroE100.tsp 22068 22114 22291 22360 0.21 1.01 1.32
kroA150.tsp 26524 26792 27247 27206 1.01 2.73 2.57
kroB150.tsp 26130 26382 26680 26767 0.96 2.10 2.44
kroA200.tsp 29368 29753 30420 30392 1.31 3.58 3.49
kroB200.tsp 29437 30164 30727 30711 2.47 4.38 4.33

d198.tsp 15780 15908 16116 16147 0.81 2.13 2.33
brg180.tsp 1950 1960 2024 2040 0.51 3.79 4.62

berlin52.tsp 7542 7542 7542 7542 0.00 0.00 0.00
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Table 5. Cont.

Instance zOpt GVNS_1 GVNS_2 GVNS_3 GAP_1 GAP_2 GAP_3

dantzig42.tsp 699 699 699 699 0.00 0.00 0.00
eil51.tsp 426 426 426 428 0.00 0.00 0.47
eil76.tsp 538 539 544 545 0.19 1.12 1.30
eil101.tsp 629 630 645 647 0.16 2.54 2.86
fri26.tsp 937 937 937 937 0.00 0.00 0.00

gil262.tsp 2378 2460 2509 2509 3.45 5.51 5.51
gr17.tsp 2085 2085 2085 2085 0.00 0.00 0.00
gr21.tsp 2707 2707 2707 2707 0.00 0.00 0.00
gr24.tsp 1272 1272 1272 1272 0.00 0.00 0.00
gr48.tsp 5046 5046 5046 5048 0.00 0.00 0.04
gr96.tsp 55209 55285 55635 55713 0.14 0.77 0.91

gr120.tsp 6942 6979 7085 7103 0.53 2.06 2.32
gr137.tsp 69853 70207 71158 71330 0.51 1.87 2.11
gr202.tsp 40160 41232 41752 41850 2.67 3.96 4.21
gr229.tsp 134602 137642 139570 140144 2.26 3.69 4.12
gr431.tsp 171414 179950 182365 182884 4.98 6.39 6.69
hk48.tsp 11461 11461 11461 11470 0.00 0.00 0.08

lin105.tsp 14379 14386 14433 14458 0.05 0.38 0.55
lin318.tsp 42029 43641 44175 44183 3.84 5.11 5.13
pcb442.tsp 50778 53301 54176 54486 4.97 6.69 7.30

pr76.tsp 108159 108168 108411 108621 0.01 0.23 0.43
pr107.tsp 44303 44428 44695 44708 0.28 0.88 0.91
pr124.tsp 59030 59045 59169 59222 0.03 0.24 0.33
pr136.tsp 96772 97875 99118 99300 1.14 2.42 2.61
pr144.tsp 58537 58538 58629 58627 0.00 0.16 0.15
pr152.tsp 73682 74016 74379 74299 0.45 0.95 0.84
pr226.tsp 80369 80605 81007 81267 0.29 0.79 1.12
pr264.tsp 49135 50237 50883 50847 2.24 3.56 3.48
pr299.tsp 48191 50331 50917 50883 4.44 5.66 5.59
pr439.tsp 107217 112633 114121 114191 5.05 6.44 6.50
rat99.tsp 1211 1215 1240 1243 0.33 2.39 2.64
rat195.tsp 2323 2371 2456 2453 2.07 5.73 5.60
rd100.tsp 7910 7925 8011 8051 0.19 1.28 1.78
rd400.tsp 15281 15951 16281 16269 4.38 6.54 6.47
si175.tsp 21407 21430 21482 21486 0.11 0.35 0.37
st70.tsp 675 677 675 677 0.30 0.00 0.30

swiss42.tsp 1273 1273 1273 1273 0.00 0.00 0.00
ts225.tsp 126643 126858 128223 128359 0.17 1.25 1.35

tsp225.tsp 3916 4014 4116 4122 2.50 5.11 5.26
u159.tsp 42080 42556 43373 43374 1.13 3.07 3.08

ulysses16.tsp 6859 6859 6859 6859 0.00 0.00 0.00
ulysses22.tsp 7013 7013 7013 7013 0.00 0.00 0.00

ali535.tsp 202339 218486 221688 217544 7.98 9.56 7.51
att532.tsp 27686 29351 29747 28818 6.01 7.44 4.09

brazil58.tsp 25395 33181 25395 25396 30.66 0.00 0.00
brg180.tsp 1950 1959 2040 2158 0.46 4.62 10.67
d657.tsp 48912 52126 53015 51059 6.57 8.39 4.39
d1291.tsp 50801 59103 60214 55243 16.34 18.53 8.74
d1655.tsp 62128 73791 74028 73982 18.77 19.15 19.08
d2103.tsp 80450 86653 86653 86653 7.71 7.71 7.71

dsj1000.tsp 18659688 24056781 24631467 20034159 20.28 23.16 0.17
fl417.tsp 11861 12366 12232 12227 4.26 3.13 3.09
fl1400.tsp 20127 27242 27447 25980 35.35 36.37 29.08
fl1577.tsp 22249 27941 27996 27996 25.58 25.83 25.83
fl3795.tsp 28772 35262 35285 35285 22.56 22.64 22.64

fnl4461.tsp 182566 229963 229963 229963 25.96 25.96 25.96
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Table 5. Cont.

Instance zOpt GVNS_1 GVNS_2 GVNS_3 GAP_1 GAP_2 GAP_3

gr666.tsp 294358 317446 324339 309556 7.84 10.19 5.16
nrw1379.tsp 56638 67679 68964 61769 19.49 21.76 9.06

p654.tsp 34643 36502 36558 35569 5.37 5.53 2.67
pa561.tsp 2763 2928 3053 3003 5.97 10.49 8.69

pcb1173.tsp 56892 70520 71978 61273 23.95 26.52 7.70
pcb3038.tsp 137694 175926 176310 176310 27.77 28.04 28.04
pr1002.tsp 259045 323543 331103 277196 24.90 27.82 7.01
pr2392.tsp 378032 460547 461170 461170 21.83 21.99 21.99
rat575.tsp 6773 7179 7190 7153 5.99 6.15 5.61
rat783.tsp 8806 9634 9610 9341 9.40 9.13 6.08
rl1304.tsp 252948 330540 335779 277603 30.68 32.75 9.75
rl1323.tsp 270199 331586 332103 293133 22.72 22.91 8.49
rl1889.tsp 316536 388695 389270 389270 22.80 22.98 22.98
rl5915.tsp 565530 695602 695602 695602 23.00 23.00 23.00
rl5934.tsp 556045 672412 672412 672412 20.93 20.93 20.93
si535.tsp 48450 48697 48848 48807 0.51 0.82 0.74
si1032.tsp 92650 92883 94571 92909 0.25 2.07 0.28
u574.tsp 36905 40206 40020 39488 8.94 8.44 7.00
u724.tsp 41910 45583 45988 44646 8.76 9.73 6.53

u1060.tsp 224094 297757 308980 242181 32.87 37.88 8.07
u1432.tsp 152970 185839 188807 166714 21.49 23.43 8.98
u1817.tsp 57201 71999 72030 72030 25.87 25.92 25.92
u2152.tsp 64253 78870 79260 79260 22.75 23.36 23.36
u2319.tsp 234256 275453 278765 278765 17.59 19.00 19.00

vm1084.tsp 239297 295088 301477 258248 23.31 25.98 7.92
vm1748.tsp 336556 406536 408102 408102 20.79 21.26 21.26

Average 266956.86 317607.30 323886.60 276033.63 7.31 8.06 6.03

Table 6. Results using the Best Improvement search strategy and an execution time limit of 1 min.

Instance zOpt GVNS_1 GVNS_2 GVNS_3 GAP_1 GAP_2 GAP_3

a280.tsp 2579 2632 2738 2734 2.06 6.17 6.01
att48.tsp 10628 10628 10628 10631 0.00 0.00 0.03

bayg29.tsp 1610 1610 1610 1610 0.00 0.00 0.00
bays29.tsp 2020 2020 2020 2020 0.00 0.00 0.00
bier127.tsp 118282 118411 119593 119962 0.11 1.11 1.42

kroA100.tsp 21282 21282 21332 21413 0.00 0.23 0.62
burma14.tsp 3323 3323 3323 3323 0.00 0.00 0.00

ch130.tsp 6110 6147 6219 6237 0.61 1.78 2.08
ch150.tsp 6528 6571 6704 6725 0.66 2.70 3.02
d493.tsp 35002 36559 37182 37119 4.45 6.23 6.05

kroB100.tsp 22141 22162 22282 22362 0.09 0.64 1.00
kroC100.tsp 20749 20749 20837 20880 0.00 0.42 0.63
kroD100.tsp 21294 21346 21507 21581 0.24 1.00 1.35
kroE100.tsp 22068 22129 22241 22264 0.28 0.78 0.89
kroA150.tsp 26524 26696 27169 27220 0.65 2.43 2.62
kroB150.tsp 26130 26233 26631 26696 0.39 1.92 2.17
kroA200.tsp 29368 29549 30416 30381 0.62 3.57 3.45
kroB200.tsp 29437 29888 30618 30688 1.53 4.01 4.25

d198.tsp 15780 15845 16077 16090 0.41 1.88 1.96
brg180.tsp 1950 1963 2024 2035 0.67 3.79 4.36

berlin52.tsp 7542 7542 7542 7563 0.00 0.00 0.28
dantzig42.tsp 699 699 699 699 0.00 0.00 0.00

eil51.tsp 426 426 426 428 0.00 0.00 0.47
eil76.tsp 538 538 544 547 0.00 1.12 1.67
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Table 6. Cont.

Instance zOpt GVNS_1 GVNS_2 GVNS_3 GAP_1 GAP_2 GAP_3

eil101.tsp 629 630 645 648 0.16 2.54 3.02
fri26.tsp 937 937 937 937 0.00 0.00 0.00

gil262.tsp 2378 2437 2515 2518 2.48 5.76 5.89
gr17.tsp 2085 2085 2085 2085 0.00 0.00 0.00
gr21.tsp 2707 2707 2707 2707 0.00 0.00 0.00
gr24.tsp 1272 1272 1272 1272 0.00 0.00 0.00
gr48.tsp 5046 5046 5046 5049 0.00 0.00 0.06
gr96.tsp 55209 55293 55521 55582 0.15 0.57 0.68

gr120.tsp 6942 6977 7085 7120 0.50 2.06 2.56
gr137.tsp 69853 69948 70964 71412 0.14 1.59 2.23
gr202.tsp 40160 41079 41693 41720 2.29 3.82 3.88
gr229.tsp 134602 136416 139729 140377 1.35 3.81 4.29
gr431.tsp 171414 177946 181693 182205 3.81 6.00 6.30
hk48.tsp 11461 11461 11461 11471 0.00 0.00 0.09

lin105.tsp 14379 14382 14396 14437 0.02 0.12 0.40
lin318.tsp 42029 43094 44070 44309 2.53 4.86 5.42
pcb442.tsp 50778 52584 54456 54581 3.56 7.24 7.49

pr76.tsp 108159 108159 108278 108513 0.00 0.11 0.33
pr107.tsp 44303 44396 44539 44607 0.21 0.53 0.69
pr124.tsp 59030 59030 59058 59081 0.00 0.05 0.09
pr136.tsp 96772 97262 98966 98879 0.51 2.27 2.18
pr144.tsp 58537 58537 58561 58561 0.00 0.04 0.04
pr152.tsp 73682 73781 74027 73966 0.13 0.47 0.39
pr226.tsp 80369 80462 80861 80834 0.12 0.61 0.58
pr264.tsp 49135 49670 50905 50886 1.09 3.60 3.56
pr299.tsp 48191 49245 50614 50646 2.19 5.03 5.09
pr439.tsp 107217 111621 113347 113038 4.11 5.72 5.43
rat99.tsp 1211 1213 1234 1240 0.17 1.90 2.39
rat195.tsp 2323 2356 2451 2457 1.42 5.51 5.77
rd100.tsp 7910 7927 7963 8022 0.21 0.67 1.42
rd400.tsp 15281 15802 16312 16311 3.41 6.75 6.74
si175.tsp 21407 21420 21472 21476 0.06 0.30 0.32
st70.tsp 675 676 675 676 0.15 0.00 0.15

swiss42.tsp 1273 1273 1273 1273 0.00 0.00 0.00
ts225.tsp 126643 126721 127690 127849 0.06 0.83 0.95

tsp225.tsp 3916 3987 4115 4119 1.81 5.08 5.18
u159.tsp 42080 42329 42969 43024 0.59 2.11 2.24

ulysses16.tsp 6859 6859 6859 6859 0.00 0.00 0.00
ulysses22.tsp 7013 7013 7013 7013 0.00 0.00 0.00

ali535.tsp 202339 213387 218429 218205 5.46 7.95 7.84
att532.tsp 27686 28764 29614 29525 3.89 6.96 6.64

brazil58.tsp 25395 33181 25395 25412 30.66 0.00 0.07
brg180.tsp 1950 1963 2019 2198 0.67 3.54 12.72
d657.tsp 48912 51497 52986 51934 5.29 8.33 6.18
d1291.tsp 50801 54927 57302 55431 8.12 12.80 9.11
d1655.tsp 62128 67236 70399 67683 8.22 13.31 8.94
d2103.tsp 80450 83240 86653 83486 3.47 7.71 3.77

dsj1000.tsp 18659688 20201248 20449409 20063920 8.26 9.59 7.53
fl417.tsp 11861 12023 12119 12161 1.37 2.18 2.53
fl1400.tsp 20127 21244 21198 21166 5.55 5.32 5.16
fl1577.tsp 22249 23721 24355 23736 6.62 9.47 6.68
fl3795.tsp 28772 34663 33535 35214 20.47 16.55 22.39

fnl4461.tsp 182566 217998 204703 199441 19.41 12.13 9.24
gr666.tsp 294358 313338 321656 315223 6.45 9.27 7.09

nrw1379.tsp 56638 60516 62459 60983 6.85 10.28 7.67
p654.tsp 34643 36083 35544 36741 4.16 2.60 6.06
pa561.tsp 2763 2893 2896 3058 4.71 4.81 10.68

pcb1173.tsp 56892 61883 63335 62161 8.77 11.32 9.26
pcb3038.tsp 137694 153475 156692 149788 11.46 13.80 8.78
pr1002.tsp 259045 278408 285203 279922 7.47 10.10 8.06
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Table 6. Cont.

Instance zOpt GVNS_1 GVNS_2 GVNS_3 GAP_1 GAP_2 GAP_3

pr2392.tsp 378032 410784 430379 408360 8.66 13.85 8.02
rat575.tsp 6773 7195 7090 7224 6.23 4.68 6.66
rat783.tsp 8806 9373 9391 9391 6.44 6.64 6.64
rl1304.tsp 252948 282487 282839 274566 11.68 11.82 8.55
rl1323.tsp 270199 293350 300601 285668 8.57 11.25 5.73
rl1889.tsp 316536 344218 356697 342893 8.75 12.69 8.33
rl5915.tsp 565530 680825 695602 695602 20.39 23.00 23.00
rl5934.tsp 556045 664895 672412 661012 19.58 20.93 18.88
si535.tsp 48450 48622 48783 48847 0.36 0.69 0.82
si1032.tsp 92650 92918 93397 92908 0.29 0.81 0.28
u574.tsp 36905 40374 40022 39792 9.40 8.45 7.82
u724.tsp 41910 44662 45765 45273 6.57 9.20 8.02

u1060.tsp 224094 242630 246175 243291 8.27 9.85 8.57
u1432.tsp 152970 165304 170578 165833 8.06 11.51 8.41
u1817.tsp 57201 62782 66243 62050 9.76 15.81 8.48
u2152.tsp 64253 70205 74581 70787 9.26 16.07 10.17
u2319.tsp 234256 243928 249738 245475 4.13 6.61 4.79

vm1084.tsp 239297 256431 262955 255369 7.16 9.89 6.72
vm1748.tsp 336556 362026 373926 360551 7.57 11.10 7.13

Average 253944.13 274974.75 278630.04 273507.26 13.05 4.88 4.40

Table 7. Results using the First Improvement search strategy and an execution time limit of 2 min.

Instance zOpt GVNS_1 GVNS_2 GVNS_3 GAP_1 GAP_2 GAP_3

a280.tsp 2579 2672 2728 2706 3.61 5.78 4.92
att48.tsp 10628 10628 10628 10724 0.00 0.00 0.90

bayg29.tsp 1610 1610 1610 1615 0.00 0.00 0.31
bays29.tsp 2020 2020 2020 2028 0.00 0.00 0.40
bier127.tsp 118282 118518 119737 119860 0.20 1.23 1.33

kroA100.tsp 21282 21283 21337 21699 0.00 0.26 1.96
burma14.tsp 3323 3323 3323 3323 0.00 0.00 0.00

ch130.tsp 6110 6157 6218 6289 0.77 1.77 2.93
ch150.tsp 6528 6583 6680 6649 0.84 2.33 1.85
d493.tsp 35002 36659 37040 36557 4.73 5.82 4.44

kroB100.tsp 22141 22168 22317 22557 0.12 0.79 1.88
kroC100.tsp 20749 20757 20806 21321 0.04 0.27 2.76
kroD100.tsp 21294 21329 21567 21904 0.16 1.28 2.86
kroE100.tsp 22068 22144 22250 22407 0.34 0.82 1.54
kroA150.tsp 26524 26630 27050 27738 0.40 1.98 4.58
kroB150.tsp 26130 26232 26701 26742 0.39 2.19 2.34
kroA200.tsp 29368 29570 30177 29718 0.69 2.75 1.19
kroB200.tsp 29437 29801 30459 30205 1.24 3.47 2.61

d198.tsp 15780 15871 16077 15964 0.58 1.88 1.17
brg180.tsp 1950 1956 2026 2153 0.31 3.90 10.41

berlin52.tsp 7542 7542 7542 7591 0.00 0.00 0.65
dantzig42.tsp 699 699 699 706 0.00 0.00 1.00

eil51.tsp 426 426 426 430 0.00 0.00 0.94
eil76.tsp 538 538 543 544 0.00 0.93 1.12
eil101.tsp 629 629 642 649 0.00 2.07 3.18
fri26.tsp 937 937 937 948 0.00 0.00 1.17

gil262.tsp 2378 2444 2505 2542 2.78 5.34 6.90
gr17.tsp 2085 2085 2085 2085 0.00 0.00 0.00
gr21.tsp 2707 2707 2707 2707 0.00 0.00 0.00
gr24.tsp 1272 1272 1272 1272 0.00 0.00 0.00
gr48.tsp 5046 5046 5046 5063 0.00 0.00 0.34
gr96.tsp 55209 55247 55549 56109 0.07 0.62 1.63
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Table 7. Cont.

Instance zOpt GVNS_1 GVNS_2 GVNS_3 GAP_1 GAP_2 GAP_3

gr120.tsp 6942 6960 7063 7103 0.26 1.74 2.32
gr137.tsp 69853 70005 71002 71579 0.22 1.64 2.47
gr202.tsp 40160 40973 41598 41672 2.02 3.58 3.76
gr229.tsp 134602 136884 139544 138929 1.70 3.67 3.21
gr431.tsp 171414 178310 181839 180800 4.02 6.08 5.48
hk48.tsp 11461 11461 11461 11664 0.00 0.00 1.77

lin105.tsp 14379 14394 14413 14672 0.10 0.24 2.04
lin318.tsp 42029 43463 44016 44024 3.41 4.73 4.75
pcb442.tsp 50778 52867 53957 52362 4.11 6.26 3.12

pr76.tsp 108159 108159 108373 109446 0.00 0.20 1.19
pr107.tsp 44303 44400 44687 44769 0.22 0.87 1.05
pr124.tsp 59030 59033 59108 59444 0.01 0.13 0.70
pr136.tsp 96772 97158 98762 101877 0.40 2.06 5.28
pr144.tsp 58537 58537 58605 60768 0.00 0.12 3.81
pr152.tsp 73682 73801 74185 75515 0.16 0.68 2.49
pr226.tsp 80369 80533 80840 81472 0.20 0.59 1.37
pr264.tsp 49135 49633 50391 50951 1.01 2.56 3.70
pr299.tsp 48191 49595 50642 50023 2.91 5.09 3.80
pr439.tsp 107217 111921 113644 113269 4.39 5.99 5.64
rat99.tsp 1211 1212 1236 1266 0.08 2.06 4.54
rat195.tsp 2323 2365 2448 2404 1.81 5.38 3.49
rd100.tsp 7910 7925 7998 8122 0.19 1.11 2.68
rd400.tsp 15281 15847 16203 15936 3.70 6.03 4.29
si175.tsp 21407 21428 21475 21514 0.10 0.32 0.50
st70.tsp 675 676 675 691 0.15 0.00 2.37

swiss42.tsp 1273 1273 1273 1273 0.00 0.00 0.00
ts225.tsp 126643 126815 128183 127374 0.14 1.22 0.58

tsp225.tsp 3916 3996 4101 4093 2.04 4.72 4.52
u159.tsp 42080 42341 43196 44203 0.62 2.65 5.05

ulysses16.tsp 6859 6859 6859 6860 0.00 0.00 0.01
ulysses22.tsp 7013 7013 7013 7013 0.00 0.00 0.00

ali535.tsp 202339 217245 219075 216606 7.37 8.27 7.05
att532.tsp 27686 29167 29615 28916 5.35 6.97 4.44

brazil58.tsp 25395 36518 25395 25395 43.80 0.00 0.00
brg180.tsp 1950 1956 2023 2165 0.31 3.74 11.03
d657.tsp 48912 51769 52769 50997 5.84 7.89 4.26
d1291.tsp 50801 56007 60214 55060 10.25 18.53 8.38
d1655.tsp 62128 73181 74028 66384 17.79 19.15 6.85
d2103.tsp 80450 86582 86653 83454 7.62 7.71 3.73

dsj1000.tsp 18659688 22538673 24631467 19905772 20.79 32.00 6.68
fl417.tsp 11861 12118 12233 12190 2.17 3.14 2.77

fl1400.tsp 20127 27026 27447 21220 34.28 36.37 5.43
fl1577.tsp 22249 27461 27996 23500 23.43 25.83 5.62
fl3795.tsp 28772 35731 35285 35285 24.19 22.64 22.64

fnl4461.tsp 182566 229761 229963 229963 25.85 25.96 25.96
gr666.tsp 294358 316182 321701 308908 7.41 9.29 4.94

nrw1379.tsp 56638 67094 68964 60193 18.46 21.76 6.28
p654.tsp 34643 36022 36019 35708 3.98 3.97 3.07
pa561.tsp 2763 2905 3001 3008 5.14 8.61 8.87

pcb1173.tsp 56892 65023 70731 61249 14.29 24.33 7.66
pcb3038.tsp 137694 175799 176310 176310 27.67 28.04 28.04
pr1002.tsp 259045 279694 296142 275098 7.97 14.32 6.20
pr2392.tsp 378032 459687 461170 461170 21.60 21.99 21.99
rat575.tsp 6773 7136 7182 7158 5.36 6.03 5.68
rat783.tsp 8806 9501 9620 9352 7.89 9.24 6.20
rl1304.tsp 252948 322802 335779 274942 27.62 32.75 8.70
rl1323.tsp 270199 316844 332103 291235 17.26 22.91 7.79
rl1889.tsp 316536 388400 389270 389270 22.70 22.98 22.98
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Instance zOpt GVNS_1 GVNS_2 GVNS_3 GAP_1 GAP_2 GAP_3

rl5915.tsp 565530 695466 695602 695602 22.98 23.00 23.00
rl5934.tsp 556045 672290 672412 672412 20.91 20.93 20.93
si535.tsp 48450 48648 48803 48765 0.41 0.73 0.65
si1032.tsp 92650 92864 93285 92925 0.23 0.69 0.30
u574.tsp 36905 40248 39803 39467 9.06 7.85 6.94
u724.tsp 41910 44972 45492 44598 7.31 8.55 6.41

u1060.tsp 224094 286667 251451 240193 27.92 12.21 7.18
u1432.tsp 152970 181206 188807 164045 18.46 23.43 7.24
u1817.tsp 57201 71024 72030 63539 24.17 25.92 11.08
u2152.tsp 64253 78581 79260 79217 22.30 23.36 23.29
u2319.tsp 234256 274542 278765 266890 17.20 19.00 13.93

vm1084.tsp 239297 265725 279047 255832 11.04 16.61 6.91
vm1748.tsp 336556 407007 408102 361567 20.93 21.26 7.43

Average 253944.13 301717.44 322626.30 273781.10 14.50 7.41 5.26

In some cases, GVNS_3 with a time limit of 1 min produced better results than using the 2
min time limit in solving sTSP instances. This might be happened due to the use of pure random
diversification method such as the shuffle operator. More precisely, by executing more times GVNS_3,
the shuffle operator is also executed more times and consequently it can shift the search into not so
promising areas. Thus, the search may be trapped into low quality local optima.

Table 8. Results using the Best Improvement search strategy and an execution time limit of 2 min.

Instance zOpt GVNS_1 GVNS_2 GVNS_3 GAP_1 GAP_2 GAP_3

a280.tsp 2579 2630 2725 2706 1.98 5.66 4.92
att48.tsp 10628 10628 10628 10820 0.00 0.00 1.81

bayg29.tsp 1610 1610 1610 1613 0.00 0.00 0.19
bays29.tsp 2020 2020 2020 2029 0.00 0.00 0.45
bier127.tsp 118282 118421 119583 119527 0.12 1.10 1.05

kroA100.tsp 21282 21282 21312 21631 0.00 0.14 1.64
burma14.tsp 3323 3323 3323 3323 0.00 0.00 0.00

ch130.tsp 6110 6137 6208 6337 0.44 1.60 3.72
ch150.tsp 6528 6564 6680 6749 0.55 2.33 3.39
d493.tsp 35002 36232 37168 36822 3.51 6.19 5.20

kroB100.tsp 22141 22168 22249 22517 0.12 0.49 1.70
kroC100.tsp 20749 20749 20804 21402 0.00 0.27 3.15
kroD100.tsp 21294 21317 21461 21935 0.11 0.78 3.01
kroE100.tsp 22068 22122 22201 22450 0.24 0.60 1.73
kroA150.tsp 26524 26656 27119 27400 0.50 2.24 3.30
kroB150.tsp 26130 26232 26605 26816 0.39 1.82 2.63
kroA200.tsp 29368 29494 30276 30135 0.43 3.09 2.61
kroB200.tsp 29437 29732 30481 30843 1.00 3.55 4.78

d198.tsp 15780 15832 16036 16036 0.33 1.62 1.62
brg180.tsp 1950 1955 2014 2166 0.26 3.28 11.08

berlin52.tsp 7542 7542 7542 7737 0.00 0.00 2.59
dantzig42.tsp 699 699 699 703 0.00 0.00 0.57

eil51.tsp 426 426 426 432 0.00 0.00 1.41
eil76.tsp 538 538 542 543 0.00 0.74 0.93
eil101.tsp 629 630 644 648 0.16 2.38 3.02
fri26.tsp 937 937 937 940 0.00 0.00 0.32

gil262.tsp 2378 2432 2505 2497 2.27 5.34 5.00
gr17.tsp 2085 2085 2085 2086 0.00 0.00 0.05
gr21.tsp 2707 2707 2707 2707 0.00 0.00 0.00

Average 253944.1262 272756.94 277586.89 273027.78 3.55 4.49 4.24
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Instance zOpt GVNS_1 GVNS_2 GVNS_3 GAP_1 GAP_2 GAP_3

gr24.tsp 1272 1272 1272 1273 0.00 0.00 0.08
gr48.tsp 5046 5046 5046 5089 0.00 0.00 0.85
gr96.tsp 55209 55259 55431 56269 0.09 0.40 1.92
gr120.tsp 6942 6975 7072 7130 0.48 1.87 2.71
gr137.tsp 69853 69869 70885 71215 0.02 1.48 1.95
gr202.tsp 40160 40860 41588 41762 1.74 3.56 3.99
gr229.tsp 134602 136101 139315 138770 1.11 3.50 3.10
gr431.tsp 171414 176629 181296 178732 3.04 5.76 4.27
hk48.tsp 11461 11461 11461 11519 0.00 0.00 0.51

lin105.tsp 14379 14379 14398 14505 0.00 0.13 0.88
lin318.tsp 42029 42989 43941 43768 2.28 4.55 4.14
pcb442.tsp 50778 52381 54108 52870 3.16 6.56 4.12

pr76.tsp 108159 108159 108227 109317 0.00 0.06 1.07
pr107.tsp 44303 44384 44473 44502 0.18 0.38 0.45
pr124.tsp 59030 59030 59039 59460 0.00 0.02 0.73
pr136.tsp 96772 97202 98613 100072 0.44 1.90 3.41
pr144.tsp 58537 58537 58544 60558 0.00 0.01 3.45
pr152.tsp 73682 73808 73884 74209 0.17 0.27 0.72
pr226.tsp 80369 80411 80677 81071 0.05 0.38 0.87
pr264.tsp 49135 49324 50715 52468 0.38 3.22 6.78
pr299.tsp 48191 48906 50363 51424 1.48 4.51 6.71
pr439.tsp 107217 110910 112735 114367 3.44 5.15 6.67
rat99.tsp 1211 1211 1232 1251 0.00 1.73 3.30
rat195.tsp 2323 2349 2448 2395 1.12 5.38 3.10
rd100.tsp 7910 7912 7943 8190 0.03 0.42 3.54
rd400.tsp 15281 15684 16272 16102 2.64 6.49 5.37
si175.tsp 21407 21422 21463 21510 0.07 0.26 0.48
st70.tsp 675 676 675 690 0.15 0.00 2.22

swiss42.tsp 1273 1273 1273 1273 0.00 0.00 0.00
ts225.tsp 126643 126654 127458 128716 0.01 0.64 1.64

tsp225.tsp 3916 3976 4107 4044 1.53 4.88 3.27
u159.tsp 42080 42282 42941 44205 0.48 2.05 5.05

ulysses16.tsp 6859 6859 6859 6860 0.00 0.00 0.01
ulysses22.tsp 7013 7013 7013 7041 0.00 0.00 0.40

ali535.tsp 202339 211954 217611 217607 4.75 7.55 7.55
att532.tsp 27686 28736 29545 29247 3.79 6.71 5.64

brazil58.tsp 25395 36518 25395 25395 43.80 0.00 0.00
brg180.tsp 1950 1964 2012 2178 0.72 3.18 11.69
d657.tsp 48912 51393 52852 51827 5.07 8.06 5.96
d1291.tsp 50801 54485 57344 55645 7.25 12.88 9.54
d1655.tsp 62128 67025 70119 67295 7.88 12.86 8.32
d2103.tsp 80450 83138 86653 83452 3.34 7.71 3.73

dsj1000.tsp 18659688 20039179 20433714 20142317 7.39 9.51 7.95
fl417.tsp 11861 11987 12111 12128 1.06 2.11 2.25
fl1400.tsp 20127 21201 21064 21204 5.34 4.66 5.35
fl1577.tsp 22249 23558 24252 23746 5.88 9.00 6.73
fl3795.tsp 28772 34390 32152 30584 19.53 11.75 6.30

fnl4461.tsp 182566 199718 204450 196648 9.39 11.99 7.71
gr666.tsp 294358 312215 319791 314260 6.07 8.64 6.76

nrw1379.tsp 56638 60460 62354 60951 6.75 10.09 7.62
p654.tsp 34643 37951 35465 36421 9.55 2.37 5.13
pa561.tsp 2763 2880 2886 3067 4.23 4.45 11.00

pcb1173.tsp 56892 61479 63387 61469 8.06 11.42 8.05
pcb3038.tsp 137694 151130 155733 149676 9.76 13.10 8.70
pr1002.tsp 259045 275588 284850 279390 6.39 9.96 7.85
pr2392.tsp 378032 410246 428532 408360 8.52 13.36 8.02
rat575.tsp 6773 7133 7153 7245 5.32 5.61 6.97
rat783.tsp 8806 9344 9250 9390 6.11 5.04 6.63
rl1304.tsp 252948 278657 280329 275084 10.16 10.82 8.75

Average 253944.1262 272756.94 277586.89 273027.78 3.55 4.49 4.24

217



Appl. Syst. Innov. 2019, 2, 31

Table 8. Cont.

Instance zOpt GVNS_1 GVNS_2 GVNS_3 GAP_1 GAP_2 GAP_3

rl1323.tsp 270199 291236 298519 285864 7.79 10.48 5.80
rl1889.tsp 316536 343698 353960 341771 8.58 11.82 7.97
rl5915.tsp 565530 677844 654919 633460 19.86 15.81 12.01
rl5934.tsp 556045 661867 644987 604596 19.03 16.00 8.73
si535.tsp 48450 48588 48769 48812 0.28 0.66 0.75
si1032.tsp 92650 92889 93382 92896 0.26 0.79 0.27
u574.tsp 36905 41429 39874 39865 12.26 8.04 8.02
u724.tsp 41910 44377 45604 44785 5.89 8.81 6.86
u1060.tsp 224094 241290 245211 243817 7.67 9.42 8.80
u1432.tsp 152970 164667 170476 165505 7.65 11.44 8.19
u1817.tsp 57201 62417 65840 61861 9.12 15.10 8.15
u2152.tsp 64253 69701 74338 70656 8.48 15.70 9.97
u2319.tsp 234256 243207 249416 245493 3.82 6.47 4.80

vm1084.tsp 239297 254315 262020 256838 6.28 9.50 7.33
vm1748.tsp 336556 359808 373774 356880 6.91 11.06 6.04

Average 253944.1262 272756.94 277586.89 273027.78 3.55 4.49 4.24

Tables 9–12 contain the aggregated experimental results for the National TSP instances.
They contain the benchmark name, the optimal value (zOpt), the cost of the three GVNS algorithms
(GVNS_1, GVNS_2 and GVNS_3) and the solution gaps from the optimal value for each method.
Table 9 depicts GVNS using the First Improvement search strategy and an execution time limit of
1 min. Table 10 shows GVNS using the Best Improvement search strategy and an execution time
limit of 1 min. Tables 11 and 12 provide the results achieved by the developed GVNS algorithms
with a 2 min time limit within the First and Best improvement search strategy respectively. A notable
observation is that in general there are not any significant differences between different methods.
However, we notice that on First Improvement for both 1 and 2 min GVNS_3 outperforms GVNS_1
and GVNS_2 implementations. Contrariwise, on Best Improvement all three methods perform better
in general than on First Improvement. However, there is no significant difference between them.

Table 9. Results using the First Improvement search strategy and an execution time limit of 1 min.

Instance zOpt GVNS_1 GVNS_2 GVNS_3 GAP_1 (%) GAP_2 (%) GAP_3 (%)

ar9152.tsp 837479 1648442 1648596 1648596 96.83 96.85 96.85
gr9882.tsp 300899 388910 388944 388944 29.25 29.26 29.26
eg7146.tsp 172387 220232 220315 220315 27.75 27.80 27.80
fi10639.tsp 520527 649604 649604 649604 24.80 24.80 24.80

ho14473.tsp 177105 484571 484812 484812 173.61 173.74 173.74
ei8246.tsp 206171 258851 258889 258889 25.55 25.57 25.57
ja9847.tsp 491924 612157 612304 612304 24.44 24.47 24.47
kz9976.tsp 1061882 1358247 1358247 1358247 27.91 27.91 27.91
lu980.tsp 11340 18708 23688 12236 64.97 108.89 7.90

mo14185.tsp 427377 529729 529729 529729 23.95 23.95 23.95
nu3496.tsp 96132 220359 221920 221920 129.23 130.85 130.85
mu1979.tsp 86891 119104 120908 120908 37.07 39.15 39.15
qa194.tsp 9352 9501 9727 9706 1.59 4.01 3.79

rw1621.tsp 26051 53343 58148 58052 104.76 123.21 122.84
tz6117.tsp 394718 500936 501184 501184 26.91 26.97 26.97
uy734.tsp 79114 84131 86022 83282 6.34 8.73 5.27
wi29.tsp 27603 27603 27603 27681 0.00 0.00 0.28

ym7663.tsp 238314 308477 308747 308747 29.44 29.55 29.55
zi929.tsp 95345 101541 112775 100572 6.50 18.28 5.48

ca4663.tsp 1290319 1646429 1646889 1646889 27.60 27.63 27.63

Average 327546.50 462043.75 463452.55 462130.85 44.43 48.58 42.70
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Table 10. Results using the Best Improvement search strategy and an execution time limit of 1 min.

Instance zOpt GVNS_1 GVNS_2 GVNS_3 GAP_1 (%) GAP_2 (%) GAP_3 (%)

ar9152.tsp 837479 1317886 1648596 1648596 57.36 96.85 96.85
gr9882.tsp 300899 368968 388944 388944 22.62 29.26 29.26
eg7146.tsp 172387 206756 220315 220315 19.94 27.80 27.80
fi10639.tsp 520527 625547 649604 649604 20.18 24.80 24.80

ho14473.tsp 177105 362827 484812 459459 104.87 173.74 159.43
ei8246.tsp 206171 246249 258889 258889 19.44 25.57 25.57
ja9847.tsp 491924 595913 612304 612304 21.14 24.47 24.47
kz9976.tsp 1061882 1296253 1358247 1358247 22.07 27.91 27.91
lu980.tsp 11340 12052 12388 12530 6.28 9.24 10.49

mo14185.tsp 427377 514995 529729 529729 20.50 23.95 23.95
nu3496.tsp 96132 108839 108639 108685 13.22 13.01 13.06
mu1979.tsp 86891 93453 95413 93433 7.55 9.81 7.53
qa194.tsp 9352 9468 9717 9791 1.24 3.90 4.69

rw1621.tsp 26051 28360 28866 29127 8.86 10.81 11.81
tz6117.tsp 394718 478074 483082 445901 21.12 22.39 12.97
uy734.tsp 79114 83595 86201 84628 5.66 8.96 6.97
wi29.tsp 27603 27603 27603 27603 0.00 0.00 0.00

ym7663.tsp 238314 291939 308747 308747 22.50 29.55 29.55
zi929.tsp 95345 100461 103557 100474 5.37 8.61 5.38

ca4663.tsp 1290319 1532650 1463565 1428402 18.78 13.43 10.70

Average 327546.50 415094.40 443960.90 438770.40 20.93 29.20 27.66

Table 11. Results using the First Improvement search strategy and an execution time limit of 2 min.

Instance zOpt GVNS_1 GVNS_2 GVNS_3 GAP_1 (%) GAP_2 (%) GAP_3 (%)

ar9152.tsp 837479 1648304 1648596 1648596 96.82 96.85 96.85
gr9882.tsp 300899 388916 388944 388944 29.25 29.26 29.26
eg7146.tsp 172387 220290 220315 220315 27.79 27.80 27.80
fi10639.tsp 520527 649604 649604 649604 24.80 24.80 24.80

ho14473.tsp 177105 484793 484812 484812 173.73 173.74 173.74
ei8246.tsp 206171 258867 258889 258889 25.56 25.57 25.57
ja9847.tsp 491924 612304 612304 612304 24.47 24.47 24.47
kz9976.tsp 1061882 1358246 1358247 1358247 27.91 27.91 27.91
lu980.tsp 11340 20909 23688 14382 84.38 108.89 26.83

mo14185.tsp 427377 529699 529729 529729 23.94 23.95 23.95
nu3496.tsp 96132 221466 221920 221920 130.38 130.85 130.85
mu1979.tsp 86891 119586 120908 120908 37.63 39.15 39.15
qa194.tsp 9352 9543 9811 9731 2.04 4.91 4.05

rw1621.tsp 26051 56293 58148 58148 116.09 123.21 123.21
tz6117.tsp 394718 501137 501184 501184 26.96 26.97 26.97
uy734.tsp 79114 85036 99005 83383 7.49 25.14 5.40
wi29.tsp 27603 27603 27603 27701 0.00 0.00 0.36

ym7663.tsp 238314 308713 308747 308747 29.54 29.55 29.55
zi929.tsp 95345 104572 113927 101795 9.68 19.49 6.76

ca4663.tsp 1290319 1645854 1646889 1646889 27.55 27.63 27.63

Average 327546.50 462586.75 464163.50 462311.40 46.30 49.51 43.76
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Table 12. Results using the Best Improvement search strategy and an execution time limit of 2 min.

Instance zOpt GVNS_1 GVNS_2 GVNS_3 GAP_1 (%) GAP_2 (%) GAP_3 (%)

ar9152.tsp 837479 1372411 1648596 1648596 63.87 96.85 96.85
gr9882.tsp 300899 377898 388944 388944 25.59 29.26 29.26
eg7146.tsp 172387 209515 220315 220315 21.54 27.80 27.80
fi10639.tsp 520527 635913 649604 649604 22.17 24.80 24.80

ho14473.tsp 177105 449416 484812 474609 153.76 173.74 167.98
ei8246.tsp 206171 248441 258889 258889 20.50 25.57 25.57
ja9847.tsp 491924 602674 612304 612304 22.51 24.47 24.47
kz9976.tsp 1061882 1327647 1358247 1358247 25.03 27.91 27.91
lu980.tsp 11340 12151 12458 12559 7.15 9.86 10.75

mo14185.tsp 427377 527335 529729 529729 23.39 23.95 23.95
nu3496.tsp 96132 115162 108803 109804 19.80 13.18 14.22
mu1979.tsp 86891 94072 95874 94358 8.26 10.34 8.59
qa194.tsp 9352 9525 9757 9759 1.85 4.33 4.35

rw1621.tsp 26051 28784 29118 29131 10.49 11.77 11.82
tz6117.tsp 394718 475863 501184 501184 20.56 26.97 26.97
uy734.tsp 79114 84585 86358 84686 6.92 9.16 7.04
wi29.tsp 27603 27603 27603 27612 0.00 0.00 0.03

ym7663.tsp 238314 295414 308747 308747 23.96 29.55 29.55
zi929.tsp 95345 101161 104327 100881 6.10 9.42 5.81

ca4663.tsp 1290319 1573320 1646889 1470076 21.93 27.63 13.93

Average 327546.50 428444.50 454127.90 444501.70 25.27 30.33 29.08

4. Statistical Analysis on Computational Results

This section presents the statistical tests which were performed on the computational results, to
evaluate the performance of the three different GVNS methods. Different statistical tests are applied
to different data structures. In particular, statistical analysis methods can be divided on parametric
and non-parametric tests. The first category examines normal variables whereas the other methods
concern non-normal variables [20].

Initially, the application of a normality test showed that the numerical data does not follow the
normal distribution. Consequently, we applied the Kruskal–Wallis test for checking the existence of a
statistically significant difference between the methods. In this test receiving a p-value less than 0.05
means that there is a statistically significant difference.

At the present point, it should be mentioned that the statistical analysis was performed on median
values to eliminate potential extreme deviation on the average values based on extreme values. Also,
the related to the aTSP analysis is taken from our previous work [14] and it is presented here for
building a more comprehensive view.

4.1. Statistical Analysis on aTSP Results

In Table 13 we can see that for all cases p-value is less than 0.05, which means that there is a
statistically significant difference between the three methods in all cases. For further examination,
pairwise Wilcoxon tests were performed.

Table 13. Kruskal–Wallis rank sum test.

X2 df p-Value

FI_1min 6.8689 2 0.0322
FI_2mins 9.0314 2 0.0109
BI_1min 9.2739 2 0.0097
BI_2mins 9.6658 2 0.008
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In accordance with the pairwise tests which are summarized in Table 14, it is clear that the GVNS_1
has significant differences with the other two schemes in all cases. Both GVNS_2 and GVNS_3 perform
equivalently using the First Improvement search strategy independently of the execution time limit,
while using the Best Improvement strategy they have significant reported differences with both time
limits [14].

Table 14. KPairwise comparisons using Wilcoxon signed rank test.

FI_1min

GVNS1 GVNS2
GVNS2 0.00064
GVNS3 0.00064 0.6701

FI_2mins

GVNS1 GVNS2
GVNS2 0.00064
GVNS3 0.00064 0.4488

BI_1min

GVNS1 GVNS2
GVNS2 0.00109
GVNS3 0.00064 0.00064

BI_2mins

GVNS2 0.00109
GVNS3 0.00064 0.00064

In respect to this Kruskal–Wallis statistical analysis, we have four box-plots illustrated in
Figures 1a,b and 2a,b four box plots. Each one depicts either First Improvement or Best Improvement
for one minute, as well as for two minutes runs.

Moreover, based on the corresponding of the previous statistical summary, box plots, it is
confirmed that the GVNS_1 produces much better results than the other two algorithms in all cases for
the aTSP, while the GVNS_2 outperform the GVNS_3 in also all cases. Also, by checking the medians
at the box plots it can be seen that the GVNS_2 performs significantly better on Best Improvement,
as it produces results that are “close" to the results of GVNS_1.
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Figure 1. Statistical test for aTSP (1/2). (a) Statistical test box plots for aTSP 1min FI; (b) Statistical test
box plots for aTSP 1min BI.
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Figure 2. Statistical test for aTSP (2/2). (a) Statistical test box plots for aTSP 2mins FI; (b) Statistical test
box plots for aTSP 2mins BI.

4.2. Statistical Analysis on sTSP

In this subsection the statistical analysis on the results achieved by the three GVNS schemes on
sTSP instances is provided.

According to the values in Table 15 we can see that only using the Best Improvement search
strategy within a 2 min execution time limit, there are statistically significant differences.

Table 15. Kruskal–Wallis rank sum test.

X2 df p-Value

FI_1min 2.4392 2 0.2954
FI_2min 4.5181 2 0.1045
BI_1min 5.5397 2 0.06267
BI_2min 11.677 2 0.002913

More specifically, the values in Table 16 highlights that there is a difference between the GVNS_1
and the other two GVNS algorithms. In particular, based on the following box plots, the GVNS_1 is
slightly better than the GVNS_2 and GVNS_3, which they perform almost equivalently.

Table 16. KPairwise comparisons using Wilcoxon signed rank test.

BI_2min

GVNS1 GVNS2

GVNS2 0.0000000990

GVNS3 0.0000002300 0.6800000000

Subsequently of this Kruskal–Wallis statistical analysis, we have four box-plots illustrated in
Figures 3a,b and 4a,b four box plots. Each one depicts either First Improvement or Best Improvement
for one minute, as well as for two minutes runs.
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Figure 3. Statistical test for sTSP (1/2). (a) Statistical test box plots for sTSP 1min FI; (b) Statistical test
box plots for sTSP 1min BI.
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Figure 4. Statistical test for sTSP (2/2). (a) Statistical test box plots for sTSP 2min FI; (b) Statistical test
box plots for sTSP 2min BI.

4.3. Statistical Analysis on nTSP

In the case of the National TSP instances and based on the values given in Table 17 we can see
that there is no significant statistical difference between the three methods.

Table 17. Kruskal–Wallis rank sum test.

X2 df p-Value

FI_1min 0.22253 2 0.8947
FI_2min 0.18068 2 0.9136
BI_1min 1.825 2 0.4015
BI_2min 1.9646 2 0.3744

As a result of this Kruskal–Wallis statistical analysis, we have four box-plots illustrated in
Figures 5a,b and 6a,b four box plots. Each one depicts either First Improvement or Best Improvement
for one minute, as well as for two minutes runs. By checking the median value of each method, it is
clear that the three algorithms perform equivalently.
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Figure 5. Statistical test for nTSP (1/2). (a) Statistical test box plots for nTSP 1min FI; (b) Statistical test
box plots for nTSP 1min BI.

0.0

0.5

1.0

1.5

GVNS1 GVNS2 GVNS3
Algorithms

G
ap

s 
%

Algorithms

GVNS1

GVNS2

GVNS3

(a)

0.0

0.5

1.0

1.5

GVNS1 GVNS2 GVNS3
Algorithms

G
ap

s 
%

Algorithms

GVNS1

GVNS2

GVNS3

(b)

Figure 6. Statistical test for nTSP (2/2). (a) Statistical test box plots for nTSP 2min FI; (b) Statistical test
box plots for nTSP 2min BI

5. Comparison with Recent Similar Works

In their recent work, Halim et al. have presented an extensive analysis over the performance
of different heuristic and metaheuristic algorithms on some TSPLib instances [21]. In addition,
Hore et al. [22] proposed an improved hybrid VNS algorithm for solving TSP instances. In this section,
a comparison between our proposed GVNS schemes (GVNS_1 and GVNS_2) and those algorithms
presented on papers [21,22] is performed.

Table 18 shows the comparison between our GVNS_1 and GVNS_2, within the Best Improvement
search strategy and a time limit of 120 s, with all metaheuristic solution approaches presented in the
work of Halim et al. [21]. The results show that our methods produce better results than the previously
mentioned metaheuristics, except the case of instance rat195.tsp in which the GA and the TS perform
better than GVNS_2.

Table 18. Comparisons between GVNS_1 and GVNS_2 with BI for 2mins with the recent work of
Halim et al.

Instance OV GVNS_1 GVNS_2 GA SA TS ACO TPO

eil51.tsp 426 426 426 454.1 439.13 439.1 467.46 437.26
berlin52.tsp 7542 7542 7542 7946.4 7960.67 7740.1 7922.32 7705.8

st70.tsp 675 676 675 700.72 696.33 690.27 756.55 697.12
kroA100.tsp 21282 21282 21312 22726.2 22277.5 22521.64 22941.68 22463.6

ch130.tsp 6110 6137 6208 6610.8 6558.7 6717.06 6913.99 6515.28
rat195.tsp 2323 2349 2448 2414.52 2537.99 2373.94 2465.11 2573.47
a280.tsp 2579 2630 2725 2789.83 2830.18 2800.79 2867.85 2790.54
rd400.tsp 15281 15684 16272 16567.29 16816.65 20723.56 19259.06 18190.84

pcb442.tsp 50778 52381 54108 55718.9 57421.04 83123.01 63436.7 60750.43
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Table 19 shows the comparison between our GVNS_1 and GVNS_2, within the Best Improvement
search strategy and a time limit of 120 s with the results obtained by a hybrid VNS in the
second mentioned work [22]. It is clearly observed that our methods outperform the hybrid VNS.
More specifically, the GVNS_1 outperforms the hybrid VNS algorithm in all tested instances, while the
GNVS_2 produce better results than those achieved by Hore et al. approach in seven out of
10 problem instances.

Table 19. Comparisons between GVNS_1 and GVNS_2 with BI for 2 mins with the recent VNS work of
Hore et al.

Instance OV GVNS_1 GVNS_2 Average Average Time

eil51.tsp 426 426 426 428.98 454.1
berlin52.tsp 7542 7542 7542 7544.36 7946.4

st70.tsp 675 676 675 677.11 700.72
kroA100.tsp 21282 21282 21312 21695.79 22726.2

ch130.tsp 6110 6137 6208 6153.72 6610.8
rat195.tsp 2323 2349 2448 2453.81 1382.34
rd400.tsp 15281 15684 16272 16250.21 1953.49

pcb1173.tsp 56892 61479 63387 63435.95 9531.54
pcb442.tsp 50778 52381 54108 50800.24 2183.27

Table 20 shows the abbreviations regarding the metaheuristic algorithms presented in [21].

Table 20. Abbreviations.

GA Genetic Algorithm
SA Simulated Annealing
TS Tabu Search
ACO Ant Colony Optimization
TPO Tree Physiology Optimization

6. Conclusions and Future Work

A thorough and comprehensive performance analysis on the efficiency of three GVNS algorithms
has been presented in this work. The main difference lies on the perturbation strategy used.
Our comparative performance analysis involves problems that are modelled as asymmetric and
Symmetric TSP instances that are resolved using GVNS. The well-known TSP benchmarks from the
TSPLIB are used for extensive experimental testing. We believe that the experimental results are
quite conclusive, as they confirm that for asymmetric TSP instances GVNS_1 outperforms the other
two methods and GVNS_2 consistently provides better solutions in all cases compared to GVNS_3.
Simultaneously, the perturbation strategy does not seem to critically affect the solutions of Symmetric
TSP instances.

It is also worth emphasizing that even though the improvement stage of the GVNS schemes has
been given limited attention, the present paper shows that the tested approaches to the solution, can be
quite promising. This is justified by the solutions produced, which are significantly better than other
metaheuristic approaches in recent literature.

The investigation of alternative neighborhood structures and neighborhood change movements
in VND under the GVNS framework could be a possible direction for future work. In the same vein,
one might potentially study modifications or specific combinations with more than one perturbation
strategy during the perturbation phase in an effort to determine whether optimal solutions can be
achieved even closer, especially on large asymmetric benchmarks.
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TSP Traveling Salesman Problem
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GA Genetic Algorithm
SA Simulated Annealing
TS Tabu Search
ACO Ant Colony Optimization
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Abstract: Grading of rice intents to discriminate broken and whole grain from a sample. Standard
techniques for image-based rice grading using advanced statistical methods seldom take into account
the domain knowledge associated with the data. In the context of a high product value basmati rice
with an image based grading process, one ought to consider the physical properties of grain and
the associated knowledge. In this present work, a model of quality grade testing and identification
is proposed using a novel digital image processing and knowledge-based adaptive neuro-fuzzy
inference system (ANFIS). The rationale behind adopting a grading system based on fuzzy rules
relies on capabilities of ANFIS to simulate the behaviour of an expert in the characterization of rice
grain using the physical properties of rice grains. The rice kernels are characterized with the help of
morphological descriptors and geometric features which are derived from sample images of milled
basmati rice. The predictive capability of the proposed technique has been tested on a sufficient
number of training and test images of basmati rice grain. The proposed method outperforms with
a promising result in an evaluation of rice quality with >98.5% classification accuracy for broken and
whole grain as compared to standard machine learning technique viz. support vector machine (SVM)
and K-nearest neighbour (KNN). The milling efficiency is also assessed using the ratio between head
rice and broken rice percentage and it is 77.27% for the test sample. The overall results of the adopted
methodology are promising in terms of classification accuracy and efficiency.

Keywords: ANFIS; basmati rice; image processing; grading; quality assessment; fuzzy inference system

1. Introduction

India is the leading exporter of the basmati rice (Oryza sativa) to the global market. The annual
export of basmati rice was ∼4.05 million MT to the global market during the year 2015–2016 [1].
Basmati rice is a protracted slender grain variety of aromatic rice grown in the Indian sub-continent.
It has a high product value due to its flavour, delicate texture, delightful fragrance, and softness.
The length of basmati rice grain is longer than the width, and it grows even longer during cooking [2].

The high-value basmati rice grain has to go through several operations (such as threshing,
handling, de-husking, milling and whitening of grains) starting from harvesting of paddy to final
production of rice grains by means of several mechanical systems [3]. Thereby, the grade of the
produced grain exclusively depends on the adjustment of the equipment used in the various mentioned
operations. In general, in a rice milling facility, the quality grade of product is being monitored
by visual inspection by experienced quality control personnel at 2–3 h intervals, rather utilizing
a continuous operational measurement method. This means that the operator, based on his experience
and proficiency with the processing machinery, assesses the quality grade of the product by mere visual
inspection of rice grain appearance and making the required adjustments which are time-consuming
and subjective.
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Alternatively, image-based grading approaches are nondestructive and rapid. With suitable
statistical or machine learning techniques, the image-based approaches are proven to be an efficient
way to achieve automatic inspection and grade evaluation efficiently [4,5]. During last decade,
researchers have investigated several techniques based on machine vision and digital image processing
for quality assessment of rice kernels which are fast, non-destructive, accurate, and cost-effective as
compared to traditional methods [6,7]. Image-based approaches have been applied for characterizing
rice grains using either one of the morphological, colour, and textural features, or a combination.
However, in order to find suitable rice grain descriptor and to improve the classification accuracy, it is
imperative that some key features should be selected to describe grain feature exactly.

The marketing value of rice depends on its physical qualities after processing. Major axis/minor
axis ratio of the rice kernel is reported as a key feature of basmati rice which might identify the
adulteration of basmati rice with other rice varieties [8]. Vaingankar and Kulkarni [8] reported the
major axis/minor axis ratio of 3.92–4.09 as an indicator of pure Basmati-370 variety. In the context
of grading of rice, the percentage of the head or whole grain and broken grain is a most important
factor which determines the milling efficiency. Till date, several studies reported improvement in
classification accuracy of rice grain using machine vision and image processing techniques [9–12].

Pazoki et al. [13] illustrated that determining grain variety using a simple mathematical function
is difficult because the grain has various morphologies, colours, and textures. Alternatively, artificial
neural network (ANNs) techniques have been applied for grain quality control and discrimination of
grain variety. Chen et al. [14] proposed a methodology to identify five corn varieties with the accuracy
of more than 90% using pattern recognition techniques and neural networks. In a comparative analysis
in [11] of artificial neural networks, support vector machines, decision trees and Bayesian Networks
to classify milled rice samples, it has produced highest classification accuracy with ANN. Despite
promising results, there are several problems might arise with ANN’s training and designing [15–18].
The assignment of the weights in ANN structure is one of the most important problems [19] which
has a direct effect on its performance. Moreover, the uncertainties in ANN output is proven to be
a challenging issue [20].

ANN optimization is limited in practice by a finite training sample and is accomplished through a
stochastic training process which gives ANN the ability to avoid being trapped at local minima. On the
contrary, this stochastic process makes ANN optimization empirical and subject to strong influence
from statistical variations [20]. To overcome these issues with ANN, a hybrid approach with the fuzzy
system has introduced. Fuzzy systems are quite good at handling uncertainties and can interpret the
relationship between input and output by producing rules. Therefore, to increase the capability of
Fuzzy and ANN, hybridization of ANN and fuzzy is usually implemented. Sabanci et al. [21] used
ANFIS for wheat grain classification with 99.46% of classification accuracy. Zareiforoush et al. [22]
coupled a fuzzy inference system (FIS) with image processing technique for a decision-support system
for qualitative grading of milled rice. The results are reported with 89.8% agreement between the
grading results obtained from the FIS system and those determined by the experts.

In the context of rice grading, some head grains are easily misclassified with broken grain due
to the resemblance in single feature (e.g., eccentricity) extracted from digital images and are not
deterministically separable. In such cases, fuzzy approach [23] is more convenient for discrimination
of head and broken rice grains [24]. Shiddiq et al. [25] investigated the rice milling degree using colour
features (RGB) with an adaptive network-based fuzzy inference model. It was reported an error of
3.55–5.62% in milling degree using this process. However, the morphological features can improve the
efficiency in terms of classification. In this context, a grading system based on fuzzy rules can simulate
the behaviour of an expert in the evaluation and classification of physical properties of rice grains for
grading. In this present work, the predictive capacity of ANFIS is assessed for quality testing and
identification of basmati rice based on morphological features. This has been motivated by the fact
that well-documented knowledge regarding rice kernels are usually available [26,27]. This knowledge
has been incorporated in forming the rules of the fuzzy inference system used to determine head and
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broken rice kernels. Moreover, the proposed ANFIS based classification method provides a rationale
behind the knowledge of morphological features and their underlying dependencies with rice grains.
Subsequently, the milling efficiency is estimated with broken grain and head grain ratio for test images.
Furthermore, the proposed classification method is compared with standard data-driven machine
learning techniques viz., support vector machine (SVM) and k-nearest neighbour (KNN) classifier.

The rest of the manuscript is organized as follows: Section 2 briefly describes the materials and
methods. Section 3 explain in detail the results and finally the work is succinctly summarized and
concluded in Section 4.

2. Materials and Methods

The schematic workflow of the proposed ANFIS based grading of basmati rice grains is given in
this section. Subsequently, the steps involved in the technique are detailed in the following subsections.

2.1. Sample Preparation

Basmati rice grains of different grades (Pusa basmati 1121), were used in this study. This variety
of basmati rice possesses extra-long slender milled grains (∼9.0 mm), pleasant aroma, and an
exceptionally high cooked kernel elongation ratio of ∼2.5 [28]. It is the most common Basmati
rice variety in rice grain quality research for developing standard Basmati quality traits. The grades of
the rice sample are based on the percentage of broken rice content (e.g., 5% broken rice).

The rice grain samples can be taken as heaped together or in a scattered arrangement for imaging.
These arrangements are important which is likely due to the fact that the grain characterization method
employs the visual attributes of grains obtained from image-processing techniques. Thus, the heaped
grain images might attain certain disadvantages e.g., boundaries of grains not completely visible and
distinguishable and noise appearing more prominent than the boundaries if grains are overlapping
with each other [21]. Thereby, it is desirable to take samples in a scattered arrangement with a black
background (it can improve the contrast of the image in the scattered configuration). Furthermore,
it should be ensured that not too many rice grains are clustering in scattered configuration.

2.2. Imaging System and Image Acquisition

A schematic diagram of the image acquisition system is shown in Figure 1. Typically, a vision
system consists of the illumination component to illuminate the sample under test; the camera to
acquire an image; personal computer or microprocessor system to provide disk storage of images and
computational capability.

In an image acquisition system, choosing the right lighting strategy remains a difficult problem
because there is no specific guideline for integrating lighting and machine vision application. Despite
this, some rules of thumb exist [29] which suggest that fluorescent bulbs are inherently more efficient
and produce more intense illumination at specific wavelengths. Moreover, the fluorescent light
provides a more even, uniform dispersion of light from the emitting surface [30]. A 25–40 kHz
ring-shaped compact fluorescent light is used for illumination in this setup. Apart from the illuminant,
the surface geometry is also important in the illumination design. In this present work, a diffuse
illuminator is used to produce uniform lighting as shown in Figure 1. Such a setup is extremely useful
for visual inspection of grains and oilseed with a success rate almost reaching 100% [31].

The system was enclosed in a dark chamber to prevent exposure to stray light. The digital camera
(Canon EOS 1300D) was set in the manual mode for image acquisition with an ISO of 400 and a shutter
of 1/30 s. The images were taken with a black background for basmati rice sample with different
orientation and quality in a scattered arrangement for training and testing. Camera aperture and focus
were adjusted to make individual grain boundaries distinguishable in the picture. A total of 40 images
were acquired and saved in raw format, in which no adjustment (e.g., white balance) was applied.
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Figure 1. Schematic diagram of image acquisition system equipped with a camera, illumination source
and geometry, and connected PC.

2.3. Image Processing

The image processing was carried out with MATLAB to acquire the feature data. At first,
the acquired RGB image was separated in single R, G and B channel in grayscale mode. Subsequently,
each channel grey image was converted to a binary image using Otsu’s method [32]. This method
converts the grayscale image to a binary image based on image clustering in accordance with
a threshold value. This threshold value is optimally determined between 0 and 1 by Otsu’s method.
The grey level is normalized from 0–255 to 0–1. The method then splits the normalized image into
two classes having lower or higher grey level than the threshold value. Each pixel is set to white (1)
if the grey level is higher than the threshold value, otherwise, it is set to black (0). Thus, the image
segmentation considers the identification of objects within an image using an edge detection algorithm
which identifies the boundaries of individual object and labels the centre of each object for further
processing. Eventually, each grain’s position is fixed and it is tagged according to its position through
a segmentation process.

The noise of each image is then eliminated using a morphological process. It is followed by
morphological opening operation [33] were applied with ‘disk’ type structuring element using ‘imopen’
function followed by hole filling and clear borders. Morphological opening operations generally
smooth the objects of the image. Opening operation eliminates thin protrusions of the objects. Opening
operation eliminates the objects which cannot accommodate the structuring element completely. Thus it
removes the noise from the image. Then, each object was labelled followed by counting the objects.

Feature extraction involves the retrieval of quantitative information from the segmented images.
Here, extraction of parameters e.g., eccentricity, equivalent diameter, area, perimeter, major axis length
and minor axis length have been carried out further with ‘regionprops’ function for differentiating
head grain from broken grain. Aspect ratio i.e., major axis length/minor axis length was estimated
from object feature set. The schematic processing chain is shown in Figure 2. The similar operation was
conducted for other training images of basmati rice sample and for the test image too. Feature dataset
for training as well as testing was created from the object properties and object class (Whole grain = 1
or broken grain = 0).
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Figure 2. Schematic workflow for image processing.

2.4. Features of Basmati Rice

To physical properties of the rice kernel is characterised using the morphological features. Rice
grains are generally considered as an ellipse as shown in Figure 3. Based on this assumption of the
object, the following morphological features as reported by Shantaiya and Ansari [34] are considered
for the present study. The devised features are also reported to be promising in [35] as optimal
morphological features for rice kernel identification using standard sequential forward (SFS) algorithm.
These features are:

• Major axis length: It is the total number of pixels between the extreme points along the major axis
of the rice kernel.

• Minor axis length: It measures the number of pixels between the extreme points of the along the
minor axis of the rice kernel.

• Perimeter: It is the total number of pixels along the boundary of rice grain.
• Area: It is the total number of pixels in rice grain object.
• Aspect ratio (a/b): It is the ratio of major axis length and minor axis length of the rice grain.
• Eccentricity: The eccentricity is calculated by a fraction of the number of pixels between the major

axis length and foci of the ellipse containing the grain. The value of eccentricity ranges in between
0 to 1.

• Equivalent diameter: Equivalent diameter of rice grains is calculated as, Eqd =
√
(4 ∗ Area)/π

These parameters were extracted with image processing techniques as discussed in Section 2.3.
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Figure 3. Rice grain properties.

2.5. Fuzzy Inference System

A Fuzzy Inference System (FIS) incorporates the knowledge of an expert, during design a model
in between input and output parameters. In FIS, the input-output relations are defined by a set of fuzzy
rules, e.g., IF-THEN rules [36]. Fuzzy logic-reasoning involves the assignment of membership function
to the input and output parameters; and the rule base which processes the fuzzy values of the inputs
to fuzzy values of the outputs. The accurate selection of these membership function and the rules is
one of the most critical stages in the FIS which needs expert knowledge. FIS consists of three segments
viz. fuzzification, inference engine and defuzzifier. Fuzzification converts the numeric value of the
input to a linguistic variable with the help of the membership functions e.g., triangular, trapezoidal,
Gaussian, etc. The inference engine evaluates the degree of the membership function of the input
variables (premise) to the fuzzy consequent part using the fuzzy IF-THEN rules. The conditional
statement contains a premise, the if-part, and a conclusion, the then-part [37]. The knowledge involved
in a fuzzy inference system contains a group of several rules [38]. At last, the defuzzifier converts the
fuzzy output into a crisp value. The fuzzy inference engine is the core of FIS which can represent the
human decision-making process [36].

The Takagi-Sugeno (T-S) FIS has fuzzy inputs and a crisp output which is a linear combination of
the inputs or constant. This method is computationally efficient and suitable to work with optimization
and adaptive techniques [39]. The T-S method involves a systematic approach to generating fuzzy rules
from a given input-output data set (Figure 4). It uses a membership function of the input variables
for producing the consequent (then part). It uses the fuzzy rule: IF x is A AND y is B THEN z is
f (x, y) where x, y, and z are linguistic variables, A and B are fuzzy sets and f (x, y) is a mathematical
function [39]. T-S FIS uses a weighted average to generate the crisp output.

In this present work, zero order T-S was adopted for grading of basmati rice. The membership
functions were taken as ‘gbellmf’ [40] for all inputs viz. eccentricity, equivalent diameter, perimeter
and the major axis length/minor axis length (a/b); the outputs were taken as constant (for whole
grain, output = 1 and broken grain output = 0). An example of fuzzy membership function is shown in
Figure 5. The rules of the T-S method were taken as follows:

• Rule 1: If (eccentricity is high) and (equivalent diameter is high) and (perimeter is high) and
(a/b is high) then (output is Whole grain).

• Rule 2: If (eccentricity is low) and (equivalent diameter is low) and (perimeter is low) and (a/b is
low) then (output is broken grain).
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Figure 4. Takagi-Sugeno type FIS system with premise and consequent part.

Figure 5. Membership function for Eccentricity feature.

2.6. Adaptive Neuro-Fuzzy Inference System (ANFIS)

The adaptive neural network based fuzzy inference system (ANFIS) is a hybrid system. It includes
both the advantages of the self-adaptability and learning competence of the neural network and the
ability of the fuzzy system to take into account the prevailing uncertainty and imprecision of real
systems. The neuro-fuzzy modeling approach is concerned with model extraction from numerical data
which represents the dynamic behaviour of the scheme. With ANFIS method, an initial fuzzy model is
generated with the help of the rules extracted from the input-output data. Next, the neural network is
used to tune the rules of the initial fuzzy model to produce the final ANFIS model. The formulations
and discussion of ANFIS architecture can be found in [41,42]. Unlike ANN, it has a higher capability
in the learning process to adapt to its environment. Therefore, it can be used to automatically adjust
the membership function’s parameters and reduce the rate of errors in the determination of rules in
fuzzy logic.
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The ANFIS architecture shown in Figure 6 is an adaptive network that uses supervised learning
algorithm and has a function similar to the model of Takagi-Sugeno fuzzy inference system as discussed
in Section 2.5. Let’s assume that there are two inputs x and y, and one output f of the architecture.
Two rules are used in the method of “If-Then” for Takagi–Sugeno model, as follows:

• Rule 1: If x is A1 and y is B1 Then f1 = p1x + q1y + r1.
• Rule 2: If x is A2 and y is B2 Then f2 = p2x + q2y + r2.

where A1, A2 and B1, B2 are the membership functions of each input x and y (premises), while p1, q1,
r1 and p2, q2, r2 are linear parameters in the consequent part of Takagi–Sugeno fuzzy inference model.
ANFIS architecture has five layers. The first and fourth layers contain an adaptive node, while the
other layers are fixed nodes.

Figure 6. ANFIS architecture with input, hidden and output layer [43].

Layer 1: Each node adapts to a function parameter. The output from each node is a degree
of membership value that is given by the input of the membership functions. For example,
the membership function used in this study is a generalized bell membership function (c.f. Section 2.5).

μAi(x) =
1

1 +
∣∣ x−c

a

∣∣2b (1)

where μAi is the degree of membership functions for the fuzzy set Ai, and {a, b, c} are the parameters of
a membership function which can change the shape of the membership function as shown in Figure 5.

Layer 2: Each node in this layer is fixed or non-adaptive and represented with a product operator
Π. Each node in this layer represents the firing strength for each rule.

Layer 3: Each node in this layer is fixed or non-adaptive and labeled as N. It is normalizing the
firing strength as w̄i = wi/ ∑ wi.

Layer 4: Each node in this layer is an adaptive node with a node function defined as
w̄i fi = pix + qiy + ri. The parameters in this layer are referred to as consequent parameters.

Layer 5: The single node in this layer is a fixed or non-adaptive node that computes the overall
output as the summation of all incoming signals from previous nodes as ∑ w̄i fi.

In the ANFIS architecture, the first layer and the fourth layer contain the parameters which are
tuned during the training phase. The number of training epochs, the membership functions and
the number of fuzzy rules should be selected accurately while designing of ANFIS model [41], as it
may lead system to overfit the data. This tuning is obtained with a hybrid algorithm combining
the least-squares method and the gradient descent method with a mean square error method [44].
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The training error, as well as test error, are also assessed using the rice grain sample data. A threshold
was applied to the output of ANFIS to get a binary class of whole grain or broken grain.

2.7. Design of Experiment

The features (c.f. Section 2.4) were obtained form all the basmati rice sample images (in total
40 images) as discussed in aforementioned Sections. Among them, features obtained from 30 images
were used to train the ANFIS and features derived from the remaining 10 images were used for
testing. Subsequently, the classification accuracy was estimated with actual class of test data and ANFIS
output results. Furthermore, the performance of ANFIS was compared with standard classification
techniques of support vector machines (SVM) and K-nearest neighbours (KNN). The optimal margin
and kernel parameters (radial basis function) for the Soft-margin SVM classifiers were determined
using grid search and 10-fold cross-validation. Each image contains ∼15 rice kernels (objects). However,
for representation we have kept only 1 image and have shown all image processing steps involved in
result section (c.f. Section 3).

Furthermore, the effectiveness of morphological features was analyzed for a segmented test image
(for each object). The histograms of individual feature can provide a rationale by relating the features
to the physical properties derived from an image based technique associated with the grain class.
In addition to the classification accuracy assessment, the milling efficiency (the ratio of broken grain and
whole grain) was assessed using the broken grain and whole grain objects derived from a test image.

3. Results and Discussion

This section explains the results of the ANFIS based rice grading technique. The proposed
morphological features are generated as detailed in Section 3.1 using the image processing technique
which was performed using the steps described in Section 2.3. In Section 3.2, the ANFIS classification
result using the features is analyzed and subsequently compared with the standard classification
method. Furthermore, a histogram analysis of features are followed by estimation of the milling
efficiency in Sections 3.3 and 3.4.

3.1. Image Processing Outputs

The sample images were processed as mentioned in Section 2.3. An example of the processed
images is shown in Figure 7. These images were used for feature extraction which was utilized for a fuzzy
model generation. The images are consisting of both whole and broken grain rice. After segmentation
and morphological operations, each object of an individual image is labelled as shown in Figure 7h–l.
The features associated with each object (e.g., Object 1 in Figure 7h) are stored with the associated
objectID in a tuple. These data set are further being used in training and testing of the classifier.

3.2. Classification Performance

The features extracted from processed training images were used to build the ANFIS model.
Test error was found to be on training data for 20 epochs during ANFIS training (Figure 8). The error
was zero for test data after thresholding (threshold at 2) on ANFIS output. The results of training and
testing are quite impressive as shown in Figure 8 and it is further analyzed in Table 1.

From Table 1 it is observed that for the majority of the objects (rice grains in test image) the ANFIS
output threshold class is similar to actual class (i.e., 0 or 1). Therefore, the classification accuracy of
ANFIS is 100%, as an actual class and ANFIS output class for the test objects are alike.

Here it is important to note that the proposed approach categorizes basmati rice grains into two
categories: (1) whole grain and (2) broken grain. Perhaps the readers can imagine what happens
with imperfect grains or the imperfect whole grain? For an imperfect grain, the morphological
parameters are different from a whole grain. The present study considers a binary classification
(‘whole grain’ = 1, ‘broken grains or/and others’ = 0). The membership function is taken as ‘High’
and ‘Low’ (cf. Section 2.5). For an imperfect grain eccentricity will be ‘low’, (a/b) is ‘low’. Perimeter

237



Appl. Syst. Innov. 2018, 1, 19

might be ‘medium’. However, in our case membership function is set to ‘High’ and ‘Low’. Therefore,
it will be classified as ‘broken grain’. By virtue of these, imperfect grain anyhow is separated from
‘whole grain’, thus it is not affecting ‘milling efficiency’. Figure 9 illustrates a similar scenario which is
analyzed from a test image. It is clearly showing a dissimilarity between grain physical parameters for
three-grain types.

Figure 7. Image processing outputs. (a) Raw sample image (RGB); (b) Red channel image; (c) Green
channel image; (d) Blue channel image; (e) Binary image; (f) Image after morphological opening;
(g) Hole filled and border cleared image; (h) Labelled objects in training sample1 image; (i) Labelled
objects in training sample 2 image; (j) Labelled objects in training sample 3 image; (k) Labelled objects
in training sample 4 image; (l) Labelled objects in test sample image.

Figure 8. Training and test error for sample images. During training, after 11 epochs the error
significantly reduces. In test error plot, the blue dots are actual output, and the red stars are ANFIS
output corresponding to each object.
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Figure 9. Variations in features in between different grains. (a) Whole rice grain; (b) Broken rice grain;
(c) Imperfect rice grain.

Table 1. ANFIS results for test image for each rice object. Threshold is applied with rule: If (ANFIS output
class > 2) Then (ANFIS output class thresholded = 0).

Object Label Actual Class ANFIS Output Class
ANFIS Class

Output Thresholded

1 1 2.353 1
2 1 2.723 1
3 1 2.352 1
4 1 2.240 1
5 0 1.168 0
6 0 0.859 0
7 1 2.050 1
8 1 2.228 1
9 1 2.973 1
10 0 1.073 0
11 1 2.971 1
12 1 2.231 1
13 1 1.992 1
14 1 2.309 1
15 0 0.841 0
16 0 0.959 0
17 1 3.189 1
18 1 2.183 1
19 1 2.251 1
20 1 2.347 1
21 1 3.184 1
22 1 2.182 1

From the experimental results, it is observed that the ANFIS perform satisfactorily in evaluating
the percentage of broken rice with an overall accuracy of >98.5%. However, the comparative analysis
with the SVM and KNN are less favourable with accuracies <95% for 10 test images as shown in spider
plot in Figure 10.
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Figure 10. Classification performance of ANFIS, SVM and KNN for 10 test image samples. I1-I10
represents the test image IDs.

3.3. Histogram of Features in Testing Images

Histograms of feature extracted from the test image objects are shown in Figure 11. All the
features are positively skewed representing a positive relation with basmati grain size (head grain).
The occurrence of eccentricity >0.9 is found for more than 16 rice objects in the test image. The aspect
ratio is >2.4 for more than 17 objects. Similar results are also shown in the case of area, perimeter and
major axis length. The histogram images as shown in Figure 11, also exemplify the head grain and
broken grain percentage in the test images.

Figure 11. Histogram of eccentricity, aspect ratio, equivalent diameter, area, perimeter and major axis
length of test image objects.
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3.4. Milling Efficiency

From the test image output results, the number of the whole grains = 17 out of 22 objects,
whereas, the broken grain objectsare = 5 out of 22 objects. Therefore, the percentage of whole grain
= (17/22)× 100 = 77.27%. This milling efficiency (η) was found for a specific roller characteristic
(rpm = 2000 and gap between roller ∼0.5 mm) of the milling machine [45]. The milling efficiencies
were evaluated in a similar way for the 10 test images. Subsequently, the average of all the 10 milling
efficiencies was determined, which is ∼77.3% with a standard deviation (σ) of 1.5. The milling
efficiency (ηavg) derived using the image-based method was in accordance with the manual calculation
results (η = 76.87%).

4. Summary and Conclusions

Standard classification technique seldom incorporates domain knowledge associated with the
physical properties of rice grain. Hence, a knowledge-based neuro-fuzzy classification technique
was proposed in this study for grading of basmati rice grains. This technique takes into account the
physical properties of grain devised from an image-based method to classify whole and broken grain.

A novel image processing technique was adopted for morphological feature extraction followed
by ANFIS model building for discrimination of grains. The classification accuracy for the test images
were >98.6%, which comparatively better than standard SVM and KNN classifier (<95%). Moreover,
the proposed ANFIS classification results seem to be more reliable than the results obtained from SVM
and KNN, since it deals with uncertainty in output. It is important to note that the standard technique
does not take into account any domain knowledge associated with grain physical properties. In fact,
the physical properties are essential for grain grading and characterization as analyzed in this study.

The milling efficiency was estimated in terms of percentage of whole grain or head grain and it
was 77.27% for the test sample. However, the colour and texture based quality and grading was not
considered during feature selection. The overall results of the adopted methodology were promising in
terms of classification accuracy and efficiency. This work can be extended to discrimination of different
rice varieties for determining the degree adulteration. Furthermore, the real-time image processing
based grading can be addressed equally. This can be extended for optimization of milling machine
parts characteristics during milling operation (roller parameter-speed, the gap between rollers) for
process automation using micro-controller units.
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Abstract: This paper presents a novel method of restoring the electron beam (EB) measurements
that are degraded by linear motion blur. This is based on a fuzzy inference system (FIS) and Wiener
inverse filter, together providing autonomy, reliability, flexibility, and real-time execution. This system
is capable of restoring highly degraded signals without requiring the exact knowledge of EB probe
size. The FIS is formed of three inputs, eight fuzzy rules, and one output. The FIS is responsible
for monitoring the restoration results, grading their validity, and choosing the one that yields to a
better grade. These grades are produced autonomously by analyzing results of a Wiener inverse
filter. To benchmark the performance of the system, ground truth signals obtained using an 18 μm
wire probe were compared with the restorations. Main aims are therefore: (a) Provide unsupervised
deblurring for device independent EB measurement; (b) improve the reliability of the process; and
(c) apply deblurring without knowing the probe size. These further facilitate the deployment and
manufacturing of EB probes as well as facilitate accurate and probe-independent EB characterization.
This paper’s findings also makes restoration of previously collected EB measurements easier where
the probe sizes are not known nor recorded.

Keywords: fuzzy inference system; fuzzy logics; linear motion blur; fuzzy deblurring; electron beam
calibration; signal and image processing

1. Introduction

The main goal of fuzzy systems is to define and control sophisticated processes by incorporating
and taking advantage of human knowledge and experience. Nowadays, fuzzy logics are widely
used in industry for various applications ranging from cameras to cement kilns, trains, and vacuum
cleaners [1]. Furthermore, deblurring techniques have versatile applications and they are either
performed in spatial [2] or frequency domains [3–5]. Hosseinzadeh [6] modeled the electron beam (EB)
measurement process with a linear motion blur and evaluated three of the well-established deblurring
techniques for EB restoration. In this study [6], Hosseinzadeh used a Weiner inverse filter and blind
Richardson-Lucy deconvolutions to restore the EB distribution and correct the measurements through
deblurring. A simple motion blur is formulated in Equation (1).

g(x) =
∫

f (x)h(x) + n(x), (1)

where in the spatial domain, f , g, h, and n are the ground truth signal (EB distribution) of length
L f , degraded signal (measurement from probe), point spread function (PSF) of length Lh, and noise
respectively. Their frequency domains are represented by uppercase letters F, G, and H. In the case of
electron beam measurements, the ground truth signal is the distribution of EB and the degraded signal
is the measurement acquired from the probe. The electron absorption of a slit or wire probe of size Lh
is modeled with a PSF kernel [6].

Appl. Syst. Innov. 2018, 1, 48; doi:10.3390/asi1040048 www.mdpi.com/journal/asi
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Linear motion blur point spread function has two distinct characteristics of motion direction
and length (L) [7]. The PSF is known for having harmonically spaced vanishing magnitudes in the
frequency domain due to its limited length in the spatial domain [8]. There are several approaches to
estimate Lh such as log power spectrum, cepstrum, bispectrum, and pitch detection algorithms.
In image deblurring jargon, it is assumed that the frequency spectrum of F is smooth and does not
contain vanishing frequencies, hence any vanishing frequencies in G are associated to H [9,10].
However, this assumption usually does not hold for EB measurements, especially where the L f
is in the same order of Lh. This similarity makes it complicated to distinguish between L f and Lh and
therefore compromises the deblurring process by an incorrect detection of null frequencies. Such an
erroneous deblurring process is likely to produce an incorrect but convincing result, notably when
f and h have remarkable cross-correlation. This ambiguity is likely to happen in EB measurements,
because: (a) f and h are usually in the same order of magnitude and they have relatively high
cross-correlation; and (b) the L f can be inconsistent. In Reference [6], a prior knowledge of Lh is used to
estimate the position of null frequency of h from the spectrum analysis of G. Hosseinzadeh limited the
spectrum of G to ±15% of the nominal Lh by applying a window to its log-power spectrum, thereby
ignoring vanishing frequencies outside of this interval. This algorithm is available in Reference [11].
This strategy relies on knowing the Lh. Therefore, it is a good approach when it is known accurately.
There are a few limitations with this method due to the varying nature of L f during the calibration and
measurement process. As a result, the beam’s vanishing frequency (or its harmonics) can be located
within the applied window and cause a false detection. Furthermore, if the inaccuracy of Lh is more
than 15%, the null frequency of h is ignored by the window resulting in an erroneous restoration.
In addition, any inaccuracy of more than ±15% cannot be compensated.

One solution to effectively address this uncertainty is to use fuzzy systems. Fuzzy inference
systems are widely used to address instrumental uncertainties. A comprehensive review and
explanation of fuzzy inference systems are provided in Reference [12].

It is known that a wrong estimation of Lh can lead to drastic noise-like errors in the restorations [13].
Furthermore, utilizing deblurring techniques for industrial purposes requires real-time, reliable,
and unsupervised methods. To satisfy these requirements, this article proposes a Wiener filter that
is monitored by a fuzzy inference system. A Wiener filter is selected due to its simplicity, real-time
execution, and superior performance in the restoration of linear motion blur [6]. The fuzzy inference
system deals with the uncertainty of the deconvolution by monitoring the entire restoration process.
This FIS is comprised of three crisp inputs that included the PSF length or probe size (Lh) deviation,
attenuation of the vanishing frequencies, and deconvolution residue.

However, probe size deviation is an optional input, which is based on a previous rough
knowledge of Lh. If Lh is roughly known, it serves as a reference point from which the PSF length
deviation is calculated. Therefore, unlike Reference [6], prior knowledge of Lh does not limit the
inaccuracy compensation to ±15%. It is demonstrated in Reference [6] that the spatial domain of
h has a sharper transition compared to the EB distribution ( f ). This is due to the semi-Gaussian
distribution of f compared to h. Therefore, vanishing frequencies of h are expected to have higher
attenuation or lower magnitude compared to f . Hence, the normalized magnitude of the detected
null frequencies in G are the second crisp input to the fuzzy inference systems. The last input of the
system is the quantified deblurring artifacts that are introduced during the restoration of f from g.
The restored beam distributions are denoted as ( f̂ ). These residual artifacts are inevitable and they
increase as the h deviates from its mathematical definition. Extraction of residues from f̂ is explained in
section II. The output of the fuzzy system (Ei) is defuzzified to represent the quality of the restorations.
This output is generated based on the definition of the fuzzy rules that are explained in the next section.

The rest of this paper is arranged as follows: Section 2 illustrates the details of FIS implementation.
This includes specifying the crisp inputs and fuzzifying them, defining the membership functions,
and formulating the fuzzy sets. The section continues by identifying the fuzzy rules and making
an inference to generate the output. Section 3 presents the practical results of the proposed method
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and the ability of the system to distinguish the correct deblurring results. The values of membership
functions parameters are provided and a comparison is made between implementing the fuzzy system
with and without the knowledge of probe size (Lh).

2. Modeling and Implementation

As mentioned, when there is similarity between L f and Lh it is difficult to discriminate between
their null frequencies just by looking at G. This introduces an uncertainty and makes it hard to decide
which null frequency belongs to the probe (H) because null frequencies can belong to either beam (F)
or probe (H). To address the uncertainty of unsupervised Lh detection, all the null frequencies in G
are identified and only the first two nulls with lowest frequencies are extracted while avoiding the
harmonics. This implies that a maximum of two null frequencies (ωi=1,2) are to be extracted from G.
There are three possibilities based on the extracted number of null frequencies: (a) If no null frequency
is detected due to Lh � L f , then motion blur effect is negligible and deconvolution is not necessary;
(b) if a single null frequency is detected as a result of Lh � L f , then the deconvolution can progress
without involving the fuzzy system as the null frequency belongs to Lh; (c) in case two null frequencies
are extracted (ω1, ω2), two deconvolutions are performed where each of the deconvolutions are
performed by adjusting their corresponding L̂i=1,2 (L̂i=1,2 ∝ 1/ωi=1,2). This is done because both ω1

and ω2 could be belonging to h of different sizes.
The FIS is defined with three merits to grade the deblurrings. Deblurrings are performed by

two individual Weiner filters that use L̂1 and L̂2 resulting in f̂1 and f̂2 respectively. The fuzzy system
produces a single crisp output deconvolution grade (Ei=1,2) for each restoration. The restoration
process that produces a higher Ei is then chosen as the correct process with its corresponding L̂i being
the correct probe size ( Lh ← L̂i ). A single layer (non-hierarchal) fuzzy inference system of three inputs
and a single output is designed to evaluate the overall deblurring process. These inputs are: PSF length
deviation, null frequency magnitude, and residue, and the deconvolution grade is the only output.
These inputs and the output are explained in detail as follows.

2.1. PSF Length Deviation

As mentioned, ω1 and ω2 are extracted to accurately adjust the Lh during the restoration process.
By having rough prior knowledge of the probe size (Lh) and the estimated sizes (L̂i) from G, we can
define PSF length deviation as the distance between the expected and the estimations (|Lh − L̂i|).
This definition converges to zero if the estimation is close to the prior knowledge, whereas it increases
if L̂i is deviated from Lh. Two fuzzy sets (A f ar & Aclose) with membership functions of μ′

m and μm are
defined to account for the probe inaccuracy and assign a degree of membership to each L̂i based on its
deviation from Lh. Membership functions are defined by polynomial-Z (zmf) and polynomial-S (smf).
The Aclose fuzzy set definition and its membership function is formulated in Equation (2). A thorough
evaluation of fuzzy membership functions are provided in Reference [14].

Aclose = {(L̂i, μm(L̂i)
)| 0 < L̂i < ∞, m(L̂i) =

2|Lh−L̂i |
Lh

},

μm =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 m ≤ am

1 − 2
(

m−am
cm−am

)2
am < m ≤ am+cm

2

2
(

m−cm
cm−am

)2 am+cm
2 < m ≤ cm

0 m > cm

,
(2)

where am and cm are the membership function parameters that are found heuristically through
analysis of several measurements.
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2.2. Null Frequency Magnitude

The second input of the fuzzy system is the magnitude of the extracted null frequencies.
This is extracted from the normalized log-power spectrum of g and has a dynamic range of 0 to
1 dB, demonstrated in Figure 1.

Figure 1. Normalized power spectrum of G exhibits ω1 and ω2 at 0.12 and 0.165 MHz frequencies with
their harmonics at higher frequencies.

As explained, h is most likely to have rapid spatial transitions compared to f . This implies that
H is likely to have the nulls with higher attenuation in G (nulls with lower magnitude). As a result,
two fuzzy sets (Bhigh & BLow) with membership functions of μ′

o and μo are defined to assign a
higher membership value to the nulls with more attenuation (or lower magnitude), whereas a lower
degree of membership is assigned to less attenuated (higher magnitude) nulls. Membership functions
are defined with zmf and sfm. BLow is formulated in Equation (3), where GN is the normalized
frequency spectrum of the degraded signal G and ao and co are the membership function parameters.
AFar membership function definition is similar to BLow as they are both defined by smf.

BLow = {(L̂i, μ′
o(L̂i)

)| 0 < L̂i < ∞, o(L̂i) = log (|GN(L̂i) + 1|)},

μ′
o =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 o ≤ ao

2
(

o−ao
co−ao

)2
ao < o ≤ ao+co

2

1 − 2
(

o−co
co−ao

)2 ao+co
2 < o ≤ co

1 o > co

,
(3)

2.3. Deconvolution Artifact Residues

Deconvolutions are performed using the Wiener inverse filtering process in Equation (4).

F̂i =
1

H(ωi)

⎡
⎣ |H(ωi)|2
|H(ωi)|2 + 1

SNR(ω)

⎤
⎦G(ω), (4)

where in the frequency domain, F̂i is the restored ground truth signal and SNR is the signal-to-noise
ratio. After the deconvolutions, f̂i=1,2 has shorter lengths in spatial domain compared to g. We first
normalized g and both of the restorations ( f̂i=1,2) between [0,−1], gN is then shifted so its minimum is
matched with the minimums of each f̂i in the spatial domain to obtain ĝN . Finally, every restoration
residue (ri) is quantified as in Equation (5).

ri =
4∫

g(x)dx
·
∫

f̂i(τ)dτ {τ ∈ x|ĝN(τ) > −0.05}, (5)
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The deconvolution process using both of the extracted PSFs and their corresponding residues
are showed in Figure 2. The deconvolution was performed with a Wiener inverse filter, where h is
formulated in Equation (6).

hL̂i
(x) =

{
0 o.w

1 |x| < L̂i
2

, (6)

Figure 2. Deconvolution of the degraded pulse in Figure 1, using two different point spread function
(PSF) lengths and demonstration of their deconvolution residues.

Two fuzzy sets (Clow and Chigh) are defined with membership functions of μr and μ′
r using zmf and

smf respectively, where the overall shape of the functions is determined by ar and cr. These functions
are designed to assign a higher degree of membership to the L̂i that produces a smaller number of
residues after restoration.

2.4. Deconvolution Grade

All the combinations of the aforementioned inputs are used to form eight if–then rule statements
with different weights. These statements, with their corresponding weights, are provided in Table 1.
Fuzzy AND operator is then used for the implication of the fuzzy consequences.

Table 1. Rule base formation criteria.

Antecedent Consequence
Rule Weight

PSF Dev Attenuation Residue Restoration Quality

μm μo μr μg 1
μm μo μ′

r μg 0.66
μm μ′

o μr μg 0.66
μm μ′

o μ′
r μb 0.66

μ′
m μo μr μg 0.66

μ′
m μo μ′

r μb 0.66
μ′

m μ′
o μr μb 0.66

μ′
m μ′

o μ′
r μb 1
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Rule weight is added to scale the consequences and account for the certainty of the rules.
The consequence is the restoration quality with two fuzzy sets (Dgood & Dbad) and membership
functions of μq and μ′

q respectively defined by smf and zmf. Aggregations of the rules are performed
by using a Zadeh T-norm and defuzzifications are carried out by mean of maximum (MoM) method [15].
The resulting crisp values are the deconvolution grades (Ei=1,2). Therefore, there is a grade (Ei=1,2) for
each deconvolution. In other words, for each f̂i=1,2 that is deblurred by its corresponding hL̂i=1,2

, there is
an overall grade of restoration (Ei=1,2). According to the definition of the consequence membership
functions, a greater value of Ei represents a better restoration and, on the contrary, a lower value of Ei
represents a possible erroneous process, (Ei is ranging from 0 to 1). With this proposed system, if by
mistake L f is used instead of Lh in the formation of the h (Equation (6)), then the resulting Ei will be
lower. Overall, E1 and E2 are used comparatively to determine and select the best restoration between
f̂1 and f̂2 that are emerged from restoring a degraded sample (g). This proposed system and its overall
restoration processes are demonstrated in Figure 3.

Figure 3. Process diagram, L̂i connections to the fuzzy inference system (FIS) are optional.

3. Practical Result

Membership Function Parameters

Membership function parameters were investigated pragmatically by testing the explained
algorithm for various degraded EB measurement samples. In all degraded measurements, h and f had
approximately similar sizes as a result of which L̂1

∼= L̂2. The membership functions were designed
with smooth transitions to provide a general solution and more flexibility, except for the attenuation.
To further discriminate between E1 and E2, the attenuation membership function parameters were
adjusted to have more emphasis between the interval of 0 to 0.3 dB. This intuitive definition was done
by observing the magnitude of null frequencies in several degraded signals where the attenuation of
the null frequencies was always under 0.3 dB. The membership function parameters are presented in
Table 2.

Table 2. Membership function definition details.

PSF Deviation Attenuation Residue Restoration Quality

μm μ′
m μo μ′

o μr μ′
r μq μ′

q
am cm am cm ao co ao co ar cr ar cr aq cq aq cq
0.02 1 0.04 1 0.02 0.3 0.05 0.3 0 1 0 1 0 1 0 1

The membership functions of attenuation (Bhigh & BLow) and residue (Clow & Chigh) fuzzy sets
are depicted in Figure 4, according to their values in Table 2. The fuzzy sets of PSF deviation and
restoration quality were also defined with the similar membership functions to that of residues.
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Figure 4. Attenuation and deconvolution residue membership functions.

The analysis of a few of the samples are shown in Figures 5 and 6. For a few of the EB
measurements, the Lh (probe sizes) were known to be 1.00, 0.20, and 0.40 mm respectively. The crisp
fuzzy inputs and deconvolution grades Ei were also provided for every sample. The restoration that
resulted in the higher Ei was selected by the system as the correct solution and its corresponding
L̂i therefore represents the probe size ( L̂h ← L̂i) . To validate the proposed system with the ground
truth signal ( f ) [6], both restorations ( f̂1,2) were compared against their ground truth signal using
cross-correlation. For the f̂i with the higher Ei, the cross-correlation of f̂i and f also produced greater
coefficients, supporting the accuracy and reliability of the system. As another benchmark, full width
at half maximum (FWHM) analysis was used, as it is a popular measure in the EB calibration jargon.
The FWHM of f and the f̂i that had the higher Ei produced a similar result, further confirming that the
FIS had successfully identified the correct restoration process.

Figure 5. Null frequencies in the spectrum of the degraded pulse. Result of restoration with detected
null frequencies, expected PSF length of 1 mm on the left and 0.2 mm on the right.
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Figure 6. Null frequencies in the spectrum of the degraded pulse. Result of restoration with detected
null frequencies, expected PSF length of 0.4 mm.

4. Conclusions and Discussion

The algorithm showed superior performance when a rough prior knowledge of Lh was provided
for the fuzzy inference system. The ΔEi = (|E1 − E2|) was greater than 0.5 thereby clearly identifying
and segregating the correct deconvolution process. The algorithm was also tested without including
the PSF knowledge, in which case ΔEi was in the interval of 0.1 to 0.5, which was enough to confidently
separate the correct deconvolution process.

Figure 6 depicted a special case where H had a null frequency at ωh = 120 kHz with a normalized
magnitude of 0.09 dB, whereas, F null was at ω f = 170 kHz with a magnitude of 0.02 dB and had four
times higher attenuation. Although ω f had a magnitude that was in its favor, the PSF deviation of
0.51 was not, yet the PSF deviation outweighed its low magnitude and the correct restoration
was successfully distinguished with 14% separation in the deconvolution grades (|E1 − E2| = 0.14).
This high attenuation of ω f was most likely due to it being closer to the second harmonic of ωh and,
therefore, it experienced further attenuation. Nevertheless, owing to the FIS implementation, the correct
restoration process was identified. All the possible rules were considered for the implementation of
this FIS and its tuning was performed heuristically by an expert. However, clustering algorithms could
be used for FIS with multiple inputs and membership functions to determine the optimum number of
rules. Furthermore, adaptive FISs can be used to automate the tuning and learning process of the FIS
in a more complicated and complex scenario.
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Abstract: Motion control of mobile robots in a cluttered environment with obstacles is an important
problem. It is unsatisfactory to control a robot’s motion using traditional control algorithms in a
complex environment in real time. Gaze tracking technology has brought an important perspective
to this issue. Gaze guided driving a vehicle based on eye movements supply significant features
of nature task to realization. This paper presents an intelligent vision-based gaze guided robot
control (GGC) platform that uses a user-computer interface based on gaze tracking enables a user
to control the motion of a mobile robot using eyes gaze coordinate as inputs to the system. In this
paper, an overhead camera, eyes tracking device, a differential drive mobile robot, vision and interval
type-2 fuzzy inference (IT2FIS) tools are utilized. The methodology incorporates two basic behaviors;
map generation and go-to-goal behavior. Go-to-goal behavior based on an IT2FIS is more soft and
steady progress in data processing with uncertainties to generate better performance. The algorithms
are implemented in the indoor environment with the presence of obstacles. Experiments and
simulation results indicated that intelligent vision-based gaze guided robot control (GGC) system can
be successfully applied and the IT2FIS can successfully make operator intention, modulate speed and
direction accordingly.

Keywords: eye gaze tracking; interval type-2 fuzzy logic; vision system; mobile robots; intelligent
control

1. Introduction

Mobile robot motion control problems have attracted considerable interest from researchers.
The environments where the robot moves may vary from static or dynamic obstacles. In such an
uncertain environment without prior information about the robot, target and obstacle, the basic aim is
to safely move the robot without colliding with obstacles and reach the target point. The problem is
the design of a safe and efficient algorithm that will guide robots to the target. The control system
of these robots includes a set of algorithms. Recently, various methodologies have been utilized for
mobile robot navigation [1–3]. These are, artificial potential fields (APF) [4–6], vision-based gaze
guided control (GGC) [7–15], fuzzy logic control [12,16–18], vector field histogram (VFH) [19,20],
rapidly-exploring random trees [21,22], and obstacle avoidance and path planning [23] algorithms.
The fuzzy logic controller is one of the efficient techniques, which tends to be used actually for
steering control in unpredictable environments [3,24,25]. Fuzzy logic can smoothly be concerted to
handle various types of linear and nonlinear systems like the human model perception process in
uncertainty [26]. Motion control of a mobile robot in an unstructured dynamic or static environment is
usually characterized by a number of uncertainties that characterize real-world environments. To have
exact and complete for prior knowledge of these environments is not possible. As the membership sets
of the type-2 fuzzy systems are fuzzy, they offer a stronger solution to the type-1 fuzziness to represent
and address uncertainty types. Type-1 fuzzy control cannot handle such kind of uncertainties. For this

Appl. Syst. Innov. 2019, 2, 14; doi:10.3390/asi2020014 www.mdpi.com/journal/asi

255



Appl. Syst. Innov. 2019, 2, 14

reason, the type-2 fuzzy system [24,27] is preferred to handle uncertainties and increase performance of
the control navigation system that was introduced by Zadeh [28,29]. Type-2 fuzzy sets theory has been
further developed by Mendel and Karnik [24,30,31]. Theoretical background computational methods
of IT2FIS and its design principles were developed for type reduction [32–35].

In the paper, a gaze guided robot control system, based on eye gaze using the type-2 fuzzy controller,
is presented. It aimed to determine the robot’s direction based on the target location and create wheel
speeds based on gaze direction and demonstrate how gaze could be used for automatic control of a
mobile robot. That means to obtain a model of the robot moving towards the objects by looking directly
at the object of interest in the real world. The interaction methods are expected to benefit users with
mobility in their daily works. The intent of gaze direction amplitudes and the angle variables are applied
for designing the motion control system’s input. The input variables are image coordinates in 2D image
space of the scene monitored by the overhead camera. Eye movements identified such as looking up,
down in y (eye width) coordinates and left and right in x (eye height) coordinates values were mapped
to the mobile robot steering commands. The approximate width (X) and height (Y) of the eye was
taken into account for the inputs. Gaze combination control is a benefit from effective hands-free input
parameter of remote vehicles control. Gaze-based robot control work done in this regard is relatively
scarce. Combining different types of technology with eye based systems [36–40] integration can be
useful for disabled, elderly and patients peoples that especially with neuro-motor disabilities. They can
remotely control a moving platform [11,12,41,42] with these technologies in complex daily tasks [14,43].
A wheelchair is a good substitute, for example Reference [44]. It’s orientation commands are created by
a wheelchair mounted eye movement tracking system [45–47].

The proposed gaze guided robot control (GGC) system consist of an EV3 robotic platform. It is
highly customizable and provides advanced LabVIEW programming features [48,49]. In this platform,
two high-resolution cameras are used. The first camera is mounted on the robot moving platform
for transmitting a live video to the user screen. The second camera is used to identify the user’s eye
movement and translate this gaze direction to the host system to calculate the robot’s steering control
by using soft computing technique. The goal is to process to robot’s movements where the user is
looking at the display screen. To make the robot move around in the vibrant environment under the
visibility of an overhead camera, it is focused on the remote settings with a 2D gaze guided driving
system such as forward, backward, left and right.

This paper is organized as follows. Section 2 represents the procedure of the gaze guided system
including a vision system of gaze tracking, the control system of the type-2 fuzzy mechanism and its
application and experimental platform. The experimental design and results of the proposed methods
are given in Section 3. Section 4 includes the discussion. Finally, Section 5 concludes the paper and
recommendation for future works.

2. Method of Gaze Guided System

The intention of the system’s architecture is to achieve an influential integration of eye tracking
technology with practical GGC system. The overall concept of gaze guided robot control system
can be demonstrated in Figure 1. In this structure, it is illustrated how different physical elements
can be attached and communicate. The system architecture is divided into three parts. The first
part is (user side) the user inferences, which are related to the eye tracking subsystem and the eye
movement translation into robotic platform commands (1), the second part (host-IT2FIS) is data
processing and command execution (2), the third part (robot side) is a robot moving environment
under the visibility of an overhead camera. This framework includes four parts: an eye tracking system
which can track user’s eyes, an overhead camera system that supplies the video feedback to the user,
a wheeled mobile robot and the host computer system which is accountable for collecting the gaze
data and commentate it into robot motion commands. The mobile robot used in this platform has an
ARM9-based processor at 300 MHz Linux-based operating system. Detailed properties can be viewed
in [50]. A well-developed programming interface based LabVIEW programming language allows us
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to transmit movement information, depending on the direction of the gaze, to the robotic platform
via Bluetooth. The image acquisition camera [51] is able to provide live video with a resolution of
480 × 640 at 30 fps. The overhead camera height from the floor is approximation 2 m. The system
software principally consists of two parts: the vision detection (eye tracking, robot tracking) and
motion control algorithm. Sub-titles and details of the system are given below.

Figure 1. Interaction of the gaze-guided robot control system (1. User side, 2. Control system,
3. Robot side).

2.1. Eye-Gaze Tracking GGC System

The GGC control system architecture is shown in Figure 1. In the first block (1), a user sitting in a
chair and watches the live video from an overhead camera. The movement of the robot is monitored on
this screen. Wherever the robot is required to move, the user looks at that side. The visual attention on
that side is extracted from gaze data. To perform the robot navigation, the visual attention is converted
from image space to 2D Cartesian space and produces control commands from this coordinate system.
The point of gaze as the user observes the video frames is utilized for robot motion control inputs.
The direction and speed are regulated by distance from the center point of the eye as seen in Figure 2.
X-axis regulates steering and y-axis regulates robot speed.

 

Figure 2. Robot control input parameters range (the X-axis regulate steering and the Y-axis regulates
speed).

A high-resolution webcam [51] is used to track eyes where the user is looking. It is a video-based
remote eye tracking system. A shape adapted mean shift algorithm [52] is utilized which is asymmetric
and anisotropic kernels for object tracking which is process the image and calculates the point of gaze
coordinates (see Figure 3).

Figure 3. Structure and functionality of real-time eye tracking algorithm.
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A series of raw image continuously capture in image acquisition step (see Figure 4). The image
tackled in this step is important in order to get the relevant Region of interest (ROI). The algorithms
have been implemented using NI Vision Builder programming tools. The images are sent to the NI
Vision system for machine vision and image processing applications. Image pre-processing makes
easier to extract ROI. The analysis has purposed the removal of uninterested information to reduce the
processing area. The original image is transformed into a grayscale and masked image that does not
need to detect an eye feature point. A morphological operation has been applied for increasing the
detection accuracy. A shape adapted mean shift algorithm has been applied which provides angular as
well as a linear offset in object shapes.

Figure 4. Image Analysis Steps.

This algorithm allows tracking eye templates with changing shapes and size and a built-in function
using the NI vision assistant. The tracking template position is well-considered as the reference and its
coordinates are taken into account. In the final image analysis, the eye coordinate system is obtained
(see Figure 5).

 

Figure 5. Real-image analysis.

2.2. Overhead Camera System-Robot Tracking

In Figure 1 (3. robot side), the graphical representation of an overhead camera based robot tracking
field is shown. The environment where the robot moves is characterized by static obstacles. Gaze-based
collision-free motion control of the robot in such a static environment is important. Environment model
is captured by an overhead camera and sent to the NI vision system then the mobile robot on the field
is tracked by a standardized vision system. The center of the moving robot area is accepted as (0,0).
Horizontal (x) and vertical (y) axes represent the robot direction and wheel velocity. The information
of the robot motion control environment is received by the host computer, and the robot tracking
algorithm is executed. The robot’s position is continuously tracked and updated considering the
acquired information from the sequentially captured images. Decision strategy is improved in the
host system for plans the robot motion and corresponding velocity commands. The host computer
regulates the rotational velocities of wheels and sends these commands to the robot. An experiment
image shown in Figure 6 has captured by the overhead camera and this image is sent to the NI vision
system and user monitor.

The robot steering control command is produced by eye gaze movement as explained before.
After defining the eye gaze coordinates, the output signal calculated for robot motor speeds by using
type-2 fuzzy control sent via Bluetooth.
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Figure 6. The graphical representation of the robot field.

2.3. Interval Type2 Fuzzy Control System

The design and theoretical basis of a type-2 fuzzy model for mobile robot motion control has been
presented in this section. This is planned to supply the basic thoughts needed to explain the algorithm
using gaze input variables and rule base to determine the value of the output system. Fuzzy type-2
has been verified to be a powerful tool for controlling a complex system because of its robustness for
controlling nonlinear systems with characteristic and uncertainties [33,53]. The concept of the type-2
fuzzy set was proposed by Zadeh [28,54] as an extension of type-1 fuzzy logic. It is able to model
uncertainties in a much better way for control application. The appearance of uncertainties in nonlinear
system control using the highest and lowest value of the parameter extending type-1 (Figure 7a)
fuzzy to type-2. (Figure 7b). Uncertainty is a characteristic of information, which may be incomplete,
inaccurate, undefined, and inconsistent and so on. These are represented by a region called a footprint
of uncertainty (FOU) that is a limited region of upper and lower type-1 membership function.

 
(a) (b) 

Figure 7. (a) Type-1 membership function. (b) Type-2 membership function.

An interval type-2 fuzzy set denoted by Ã, it is expressed in (1) or (2).

Ã =
{
(x, y), μÃ(x, y)

∣∣∣ ∀xε X, ∀uε Jx ⊆ [0 1]
}
. (1)

Hence, μÃ(x, u) = 1, ∀uε Jx ⊆ [0 1] it is considered as interval type-2 membership function as shown
in Figure 8.

Ã =

∫
xεX

∫
uεJx

1/(x, u) Jx ⊆ [0 1] (2)

where
∫ ∫

donate the union of all acceptable x and u. An IT2FIS can be explained in terms of an upper
membership function μÃ (x) and a lower membership function μ

Ã
(x). Jx is just the interval [μÃ (x),

μ
Ã
(x)]. A type-2 FIS is characterized by IF-THEN rules, where the antecedent and consequent sets are of

type-2. The fundamental block used for designing the type-2 controller is the same as used with type-1.
As shown in Figure 8, A type-2 FLS includes a fuzzifier, a rule base, a fuzzy inference engine, and an
output complement. The output processor includes a type-reducer and defuzzifier; it produces a type-1
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fuzzy set output (from the type-reducer) or a crisp number (from the defuzzifier) [53]. Type reducer is
added because of its association with the nature of the membership grade of the elements [35].

Figure 8. Structure of a type-2 fuzzy logic system.

2.3.1. Fuzzifier

In this case, the inputs of the fuzzy sets are described. There are two inputs parameter used in the
proposed system. These are named robot direction and robot speed respectively. The width (X) and
height (Y) of the eye was taken into account for the input membership functions’ values range (see
Figure 9). As mentioned before, X-axis is representing the robot direction and Y-axis is representing the
robot speed which is used to determine the two crisp inputs variables. Table 1 shows the width and
height information of the eye. These data are taken into account for the input function. In this table,
it is illustrated that the eyes’ start and end coordinate space in 2D is used for arranging the membership
function. The membership functions consist of one or several type-2 fuzzy sets. A numerical vector x
of fuzzifier maps into a type-2 set Ã. Type-2 fuzzy singleton is considered. In a singleton fuzzification,
the inputs are crisp values on nonzero membership. We contemplate three fuzzy membership functions
for the robot direction with labels L̃, S̃, R̃. These are indicating left, straight, and right respectively as
illustrated in Figure 10. We worked using Gaussian and sigmoidal membership functions. A Gaussian
type-2 fuzzy set is one in which the membership grade of every domain point is a Gaussian type-1
set contained in [0,1]. These functions are unable to specify asymmetric and archive smoothness
membership function which are important in certain applications. The sigmoidal membership function,
which is either open left, right asymmetric closed, it is appropriate for representing concepts such as
very large” or very negative”. In the same method, we contemplate three membership functions for
robot speed with labels Ñ, M̃, F̃, these are indicating near, medium, far respectively as illustrated in
Figure 10. The variable range of functions is not infinite (see Figure 10).

 
Figure 9. Eye tracking region variable.
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Table 1. Eye region information.

LengthX 409 pixel Start (X) = 104 Start (Y) = 253 End (X) = 513 End (Y) = 253 Mean = 61.1 StdDev = 45.7 Min = 9 Max = 157

LengthY 247 pixel Start (X) = 310 Start (Y) = 98 End (X) = 310 End (Y) = 345 Mean = 30.6 StdDev = 29.4 Min = 5 Max = 131

 
Figure 10. Membership functions of robot direction and speed.

The output fuzzy controllers are the left and right velocities of the wheel speed. The linguistic
variables are implemented with tree membership function. For both right and left wheel speed,
these are labeled as S̃, M̃, F̃—slow, medium and fast respectively. It is illustrated in Figure 11.

Figure 11. Membership functions of the wheels speed.

2.3.2. Fuzzy Inference Engine

The inference engine combines rules and gives an outline from input to output type-2 fuzzy sets.
Figure 8 shows a graphical representation of the relationship between input and output. It is necessary
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to compute the intersection and union of type-2 sets and implement compositions of type-2 relations.
The desired behavior is defined by a set of linguistic rules. It is necessary to set the rules adequately
for the desired result. For instance, a type-2 fuzzy logic with p inputs (x1 ∈ X1 , . . . xp ∈ Xp) and one
output (y) with M rules have the following form.

RL : IF x1 is F̃L1 . . . and xp is F̃Lp THEN y is G̃
L

, L = 1 . . .M.

The knowledge bases related to the robot wheels speed are reported in Table 2. The approximate
locations of the rules formed in the knowledge base in the coordinate plane are shown in Figure 12.

Table 2. Rule base for robot wheel speed fuzzy controller.

Y (Speed)
X (Direction)

Left (
~
L) Straight (

~
S) Right (

~
R)

Near (
~
N)

Lws =
~
S

Rws =
~
F

Lws =
~
S

Rws =
~
S

Lws =
~
F

Rws =
~
S

Medium (
~

M)
Lws =

~
S

Rws = M̃

Lws =
~

M

Rws =
~

M

Lws = M̃

Rws =
~
S

Far (
~
F)

Lws =
~

M

Rws =
~
F

Lws =
~
F

Rws = F̃

Lws =
~
F

Rws =
~

M

Figure 12. Graphical distribution of the rule table.

In this experiment, we used type-2 fuzzy sets and minimum t-norm operation. The rule firing
strength Fi(x) for crisp input vector is given by type-1 fuzzy set.

Fl(x′) =
[

f l (x′), f
l
(x′)

]
≡

[
f l, f

l
]

(3)

where
f l(x′) = μ

F̃l
1

(
x′1

)
∗ . . . ∗ μ

F̃l
p

(
x′p

)
, (4)

f
l
(x′) = μF̃l

1

(
x′1

)
∗ . . . ∗ μF̃l

1

(
x′p

)
. (5)

The graphical representation of the rules of the system is shown in Figure 12. These are composed
of input and output linguistic variables. Nine inference rules are designed to determine how the
mobile robot should be steered and velocity. In each rule, a logic and operation is used to deduce the
output. In Table 2 we present the rule set whose format is established as follows:

Rule 1: IF Direction (X) is left and speed (Y) is medium, then left wheel speed (Lws) is small and
right wheel speed is medium.

262



Appl. Syst. Innov. 2019, 2, 14

2.3.3. Type Reducer

Type reducer creates a type-1 fuzzy set output which is then transformed into a crisp output
through the defuzzifier that combines the outputs sets to acquire a single output using one of the
existing type reduction methods. Type reducer was proposed by Karnik and Mende [32,34,55]. In our
experiments, we used the center of sets (cos) type reduction method. The expression of this method
can be written in the following Equation (6).

Ycos(x) = [yl, yr] =

∫
y1∈[yl

1,yr1]
. . .

∫
y1∈[yl

M,yrM]

∫
f 1∈[ f 1, f

1
]
. . .

∫
f M∈[ f M, f

M
]
/

∑M
i=1 f iyi∑M

i=1 f i
. (6)

The consequent set of the interval type-2 determined by two endpoints (yl, yr). If the values
of fi and yi, which are associated with yl, are donated fli and yl

i, respectively, and the values of fi
and yi which are associated with yr are donated fri and yr

i respectively, these points are given in
Equations (7) and (8).

yl =

∑M
i=1 fliyl

i∑M
i=1 fli

(7)

yr =

∑M
i=1 friyr

i∑M
i=1 fri

(8)

where yl and yr are the output of IT2FIS, which can be used to verify data (training or testing) contained
in the output of the fuzzy system.

2.3.4. Defuzzifier

The interval fuzzy set Ycos(x) variables obtained from type reducer are defuzzified and the
average of yl and yr are used to defuzzify the output of an interval singleton type-2 fuzzy logic system.
The equation is written as

y(x) =
yl + yr

2
. (9)

3. Experiments and Results

In this paper, we focused on intelligent vision-based gaze guided robot control systems.
The evaluation and validation of this method were tested with several experiments. The experiments
were performed under an overhead camera image and using type-2 fuzzy control system. The aim is
to make strategic planning and implement remote control of the robot on the base of gaze coordinates
where user looking for. The experiments included two stages; evaluation and determination of gaze
coordination and using this information as input command effectively for robot control. In our
proposed method, we have designed an interface system where the user looks at the experimental
field view from the overhead camera on the computer monitor. The eye gaze tracker is calibrated
based on real-world eye viewing fields. The human eye view field is an essential factor in getting
the coordination system. The closed eye situation is also identified by the computer program and is
used to stop the robot. Then the gaze coordinates are utilized to control the robot remotely. It aims
to directly control the robot after calibration of the gaze tracker. The robot direction and speed are
modulated linearly by the distance from the center of the gaze coordinate. In the eye horizontal
plane, the x-axis represents the movement of the eye gaze coordinate and the vertical plane coordinate
system represents the mobile robot wheel speed input variables. In order to determine robot steering,
this coordinate system is considered. Commands for robot motion control are extracted and updated
for every 250 ms continuously.

The simulation results show the ability of the type-2 fuzzy logic controller to simultaneously
determine human intention from the combined viewpoint and eye gaze. Nevertheless, the proposed
method is powerful to determine robot speed, orientation, and obstacle avoidance. In Figure 13,
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the simulation of the robot’s initial and goal points is illustrated and robot motion data on this behavior
is also shown in Table 3.

Figure 13. Robot trajectory from eye gaze based go-to-goal behavior.

Table 3. Robot trajectories data (inputs, outputs) for two scenarios from Figure 13.

Order

1. Scenario 2. Scenarios

Inputs
(Gaze Coordinate)

Outputs
Inputs

(Gaze Coordinate)
Outputs

X Y LWA RWS X Y LWS RWS

1 269 296 12.29 12.65 269 290 14.03 14.38
5 272 204 24.88 25.04 255 272 20.46 21.2

12 509 209 25.05 8.01 20 223 7.14 25.01
19 516 183 26.73 17.52 14 157 22.69 34.56
26 501 151 36.71 30.17 36 83 24.98 42.94
33 517 53 42.08 31.27 284 66 24.99 37.8
40 493 56 42.26 31.47 187 8 26.01 37.77
47 182 58 24.99 42.37 185 15 25.12 38.4
. . . . . . . . . . . . . . . . . . . . . . . . . . .

The outcomes of the experiment and simulation are illustrated graphically and plotted separately
to elucidate the effect of gaze based on the fuzzy type-2 rule set in Figures 14–19. In Table 3, it can be
seen that robot wheel speeds are change according to the gaze coordinates. In this table, there are only a
few examples. The details of these data are shown graphically below in Figures 15, 17, and 18. Various
scenarios were performed to test the proposed method in a real environment. The experimental setup
is shown in Figures 14 and 16. The adaptability, robustness, accuracy and efficiency of the proposed
methods can be observed from these experimental results. The real experimental environment is shown
in Figures 14 and 16. It includes the robot, obstacle and target token. Here are six different frames
obtained from the experimental environment. The eye gaze data coordinates, robot path coordinates,
and robot wheel speed are stored during the movement of the robot and this data is graphically
illustrated. The affection of the relationship between robot speed and gaze point is illustrated in
Figure 18. The effectiveness of the fuzzy rules and suitability of the fuzzy controller on collision-free
behavior is shown in Figure 19.

In the first scenario (see Figure 14), the robot navigates in an uncomplicated environment with one
obstacle. Throughout its motion to the target, the mobile robot encounters an obstacle. In this situation,

264



Appl. Syst. Innov. 2019, 2, 14

the robot is moving smoothly and without colliding. The real experimentation of this scenario is
illustrated in Figure 14. The eye gaze coordination for this scenario is shown in Figure 15.

Figure 14. Experimental setup; 1. Scenario—robot motion control from start (1) and goal (6) position.

 
(a) (b) 

Figure 15. Eye gaze coordination for 1. Scenario (Figure 13) (2D line graph (a), scattered (b)).

In the second scenario, the user has directed the robot to the left side with the eye movements.
It was seen that the mobile robot behaved similarly to its first scenario. The real experimental results
are shown in Figure 16. The plot of this scenario is shown in Figure 17. The objective of this driving is
to confirm the efficacy of the method in different cases. As can be seen from this case, the mobile robot
navigates successfully around the obstacles without collision and reach the target.

 

Figure 16. Experiment setup; 2. Scenario—robot motion control from start (1) and goal (6) position.
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(a) (b) 

Figure 17. Eye gaze coordination for 2. Scenario (Figure 12) (2D line graph (a), scattered (b)).

The robot wheel speed for the two scenarios is shown in Figure 18. And, the Robot trajectory
from the experiment of Figure 14 is shown in Figure 19.

  
(a) (b) 

Figure 18. Robot wheel speed for the two scenarios (1. Scenario (a), 2. Scenario (b)) from Figures 14–16.

  
(a) (b) 

Figure 19. Robot trajectory from the experiment of Figure 14 (1. Scenario). (a) Inputs (Gaze Coordinate);
(b) robot path trajectory.
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4. Discussion

From the experiments, the human gaze has been evidenced to be an encouraging modality for
GGC. Our proposed method was expanded to explore motion control by straight-gaze input to perform
hands-free control of the mobile robot. The gaze-based control system has good potential for future
work. We think that this technology has a significant function in facilitating the life of a disabled
person. The gaze-based control system is still in its infancy and its function and features need to be
further developed in order to be implemented in more complex situations. The use of an eye-based
interaction modality can reduce both physical and mental burden. The main aim will be to increase the
usability of the system by increasing the learning and ease-of-use by considering the overall efficiency.
A low-cost eye-tracking device used in our experiments is crucial in the stability. The user’s head must
be stable and the eye tracker must snapshot the eye frame in certain positions. Although this situation
is difficult to set-up, it is preferred because it is inexpensive and robust in the gaze position for motion
control commands. The profoundly accurate eye trackers are able to present control of vehicles that
are as good in term of speed and error as mouse control. It is clear that the differentiation between
our model and controlling a wheelchair-based gaze guide drive is using overhead camera images.
This type of motion control could be profitable in remote control situations like hazardous, poisonous
places where the hands are needed for other tasks. A signification limitation of the current work is
that the surveillance system is managed from a fixed location. The correct determination of gaze
width and height positions (start and end) is important for the designed controller. When the eyes are
closed, the engines are driven to zero and thus the robot is stopped. For this purpose, the sub-program
has been audited without choosing the rule base. This is considered as the mobile robot’s go-to-goal
behavior. For this reason, the behavior of robot retraction has not been taken into account. This choice
was made for the purpose of feasibility in testing a novel idea for socially assistive robots. It is our
expectation that a new idea is implemented for target audiences who need socially assisted robots.

The proposed method was implemented for an indoor experiment. As the work accomplished in
this paper progressed, many ideas came to mind, which could be discussed in future research, such as
outdoor experiments and investigations on how the gaze based control of devices and how it compares
with traditional methods such as omnidirectional wheels. These wheels are troublesome individuals
compared to the traditional ones. Lastly, our proposed method may sub serve as a simple, secure and
affordable method for future gaze guided vehicle control prototypes.

5. Conclusions

In this paper, we proposed a vision-based gaze guide mobile robot control. Application of gaze
interaction, wearable, and mobile technology has mainly been conducted on controlling the movement
of robots. Users were enabled to control the robot remotely and hands-free by using their eyes to
specify the target where they want the robot to move to. A central processing unit executes data
communication between the user and the robotic platform. This continuously monitors the state of the
robot through visual feedback and send commands to control the motion of the robot. Our experiments
include an overhead camera, an eye tracking device, a differential drive mobile robot, vision and
IT2FIS tools. This controller produces the required wheel velocity commands to drive the mobile robot
to its destination along a smooth path. To achieve this requirement, our methodology incorporates
two basic behaviors, map generation and go-to-goal behavior. Go-to-goal behavior, based on an
IT2FIS, is more smooth and uniform to progress handling data in uncertainties to produce a better
performance. The algorithms are implemented in an indoor environment with the presence of obstacles.
Furthermore, the IT2FIS controller was strongly used to control a real-time mobile robot using exact
gaze data obtained from human users using an eye tracking system. The differential drive mobile
robot (EV3) was successfully commanded by the user’s gaze. This method of interaction is available to
most people, including those with disabilities and the elderly, who undermine motor ability. Thus,
I would like to express that this technology needs to be developed in order to be able to be used in
many fields. This system can also be an alternative or supplement to a conventional control interface
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such as a mouse or joystick, etc. The results from the proposed technique have been illustrated via
simulation and experiments. It is indicated that the intelligent vision-based gaze guided robot control
(GGC) system is applicable and the IT2FIS can successfully infer operator intent, modulate speed and
direction accordingly. The experimental results obtained are very adequate and verify the efficacy of
the proposed approach.

Author Contributions: M.D. analyzed the original Mobile Robot motion control, visual servoing system and Gaze
Guide control methods and applied Type-2 fuzzy logic for dynamic parameter adaptation applied for tracking
trajectories, and contributed to performing the experiments and wrote the paper; O.C. reviewed the state of the
art, analyzed the data and proposed the method; A.F.K. contributed to the discussion and analysis of the results.

Funding: This research was funded by TUBITAK-BIDEB under grant 2214/A.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Choset, H.; Lynch, K.M.; Hutchinson, S.; Kantor, G.A.; Burgard, W.; Kavraki, L.E.; Thrun, S. Principles of Robot
Motion: Theory, Algorithms, and Implementation; MIT Press: Cambridge, MA, USA, 2007.

2. Siegwart, R.; Nourbakhsh, I.R.; Scaramuzza, D.; Arkin, R.C. Introduction to Autonomous Mobile Robots;
MIT Press: Cambridge, MA, USA, 2011.

3. Abiyev, R.H.; Erin, B.; Denker, A. Navigation of Mobile Robot Using Type-2 Fuzzy System. In Intelligent
Computing Methodologies; Huang, D.-S., Hussain, A., Han, K., Gromiha, M.M., Eds.; Springer International
Publishing: Cham, Switzerland, 2017; Volume 10363, pp. 15–26.

4. Rimon, E.; Koditschek, D.E. Exact robot navigation using artificial potential functions. IEEE Trans.
Robot. Autom. 1992, 8, 501–518. [CrossRef]

5. Dönmez, E.; Kocamaz, A.F.; Dirik, M. Visual Based Path Planning with Adaptive Artificial Potential Field.
In Proceedings of the 2017 25th Signal Processing and Communications Applications Conference (SIU 2017),
Antalya, Turkey, 15–18 May 2017.

6. Dönmez, E.; Kocamaz, A.F.; Dirik, M. A Vision-Based Real-Time Mobile Robot Controller Design Based on
Gaussian Function for Indoor Environment. Arab. J. Sci. Eng. 2018, 43, 7127–7142. [CrossRef]

7. Barea, R.; Boquete, L.; Bergasa, L.M.; López, E.; Mazo, M. Electro-Oculographic Guidance of a Wheelchair
Using Eye Movements Codification. Int. J. Robot. Res. 2003, 22, 641–652. [CrossRef]

8. Yu, C.; Schermerhorn, P.; Scheutz, M. Adaptive eye gaze patterns in interactions with human and artificial
agents. ACM Trans. Interact. Intell. Syst. 2012, 1, 1–25. [CrossRef]

9. Lee, J.; Hyun, C.-H.; Park, M. A Vision-Based Automated Guided Vehicle System with Marker Recognition
for Indoor Use. Sensors 2013, 13, 10052–10073. [CrossRef] [PubMed]

10. Li, S.; Zhang, X.; Kim, F.J.; da Silva, R.D.; Gustafson, D.; Molina, W.R. Attention-Aware Robotic Laparoscope
Based on Fuzzy Interpretation of Eye-Gaze Patterns. J. Med. Devices 2015, 9, 041007. [CrossRef]

11. Nelson, C.A.; Zhang, X.; Webb, J.; Li, S. Fuzzy Control for Gaze-Guided Personal Assistance Robots:
Simulation and Experimental Application. Int. J. Adv. Intell. Syst. 2015, 8, 77–84.

12. Nelson, C.A. Fuzzy Logic Control for Gaze-Guided Personal Assistance Robots. Int. J. Adv. Intell. Syst. 2014,
8, 77–84.

13. Yu, M.; Wang, X.; Lin, Y.; Bai, X. Gaze tracking system for teleoperation. In Proceedings of the 26th Chinese
Control and Decision Conference (2014 CCDC), Changsha, China, 31 May–2 June 2014.

14. Pasarica, A.; Andruseac, G.G.; Adochiei, I.; Rotariu, C.; Costin, H.; Adochiei, F. Remote Control of an
Autonomous Robotic Platform Based on Eye Tracking. Adv. Electr. Comput. Eng. 2016, 16, 95–100. [CrossRef]

15. Astudillo, L.; Melin, P.; Castillo, O. Chemical Optimization Algorithm for Fuzzy Controller; Springer International
Publishing: Cham, Switzerland, 2014.

16. Martínez, R.; Castillo, O.; Aguilar, L.T. Intelligent Control for a Perturbed Autonomous Wheeled Mobile
Robot Using Type-2 Fuzzy Logic and Genetic Algorithms. J. Autom. Mob. Robot. Intell. Syst. 2008, 2, 12–22.

17. Astudillo, L.; Castillo, O.; Melin, P.; Alanis, A.; Soria, J.; Aguilar, L.T. Intelligent Control of an Autonomous
Mobile Robot using Type-2 Fuzzy Logic. Eng. Lett. 2013, 13, 5.

18. Han, J.; Han, S.; Lee, J. The Tracking of a Moving Object by a Mobile Robot Following the Object’s Sound.
J. Intell. Robot. Syst. 2013, 71, 31–42. [CrossRef]

268



Appl. Syst. Innov. 2019, 2, 14

19. Borenstein, J.; Koren, Y. The vector field histogram-fast obstacle avoidance for mobile robots. IEEE Trans.
Robot. Autom. 1991, 7, 278–288. [CrossRef]

20. Ulrich, I.; Borenstein, J. VFH+: Reliable obstacle avoidance for fast mobile robots. In Proceedings of the
1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146), Leuven, Belgium,
20 May 1998; Volume 2, pp. 1572–1577.

21. LaValle, S.M.; Kuffner, J.J., Jr. Randomized kinodynamic planning. Int. J. Robot. Res. 2001, 20, 378–400.
[CrossRef]

22. Dönmez, E.; Kocamaz, A.F.; Dirik, M. Bi-RRT path extraction and curve fitting smooth with visual based
configuration space mapping. In Proceedings of the International Artificial Intelligence and Data Processing
Symposium (IDAP), Malatya, Turkey, 16–17 September 2017.

23. Rashid, A.T.; Ali, A.A.; Frasca, M.; Fortuna, L. Path planning with obstacle avoidance based on visibility
binary tree algorithm. Robot. Auton. Syst. 2013, 61, 1440–1449. [CrossRef]

24. Wu, H.; Mendel, J.M. Introduction to Uncertainty Bounds and Their Use in the Design of Interval Type-2
Fuzzy Logic Systems. In Proceedings of the 10th IEEE International Conference on Fuzzy Systems
(Cat. No.01CH37297), Melbourne, Victoria, Australia, 2–5 December 2001.

25. Al-Mutib, K.; Abdessemed, F. Indoor Mobile Robot Navigation in Unknown Environment Using Fuzzy
Logic Based Behaviors. Adv. Sci. Technol. Eng. Syst. J. 2017, 2, 327–337. [CrossRef]

26. Sepúlveda, R.; Castillo, O.; Melin, P.; Rodríguez-Díaz, A.; Montiel, O. Experimental study of intelligent
controllers under uncertainty using type-1 and type-2 fuzzy logic. Inf. Sci. 2007, 177, 2023–2048. [CrossRef]

27. Castro, J.R.; Castillo, O. Interval Type-2 Fuzzy Logic for Intelligent Control Applications. In Proceedings
of the 2007 Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS’07),
San Diego, CA, USA, 24–27 June 2007; pp. 592–597.

28. Zadeh, L.A. A fuzzy-algorithmic approach to the definition of complex or imprecise concepts. Int. J.
Man-Mach. Stud. 1976, 8, 249–291. [CrossRef]

29. Mendel, J.M. Type-2 fuzzy sets and systems. Inf. Sci. 2007, 177, 84–110. [CrossRef]
30. Mendel, J.M.; John, R.I.B. Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 2002, 10, 117–127.

[CrossRef]
31. Wu, H.; Mendel, J.M. Uncertainty bounds and their use in the design of interval type-2 fuzzy logic systems.

IEEE Trans. Fuzzy Syst. 2002, 10, 622–639.
32. Karnik, N.N.; Mendel, J.M.; Liang, Q. Type-2 Fuzzy Logic Systems. IEEE Trans. Fuzzy Syst. 1999, 7, 16.

[CrossRef]
33. Sadeghian, A.; Mendel, J.M.; Tahayori, H. Advances in Type-2 Fuzzy Sets and Systems: Theory and Applications;

Springer: New York, NY, USA, 2013.
34. Mendel, J.M.; John, R.I.; Liu, F. Interval Type-2 Fuzzy Logic Systems Made Simple. IEEE Trans. Fuzzy Syst.

2006, 14, 808–821. [CrossRef]
35. Castillo, O.; Melin, P. A review on interval type-2 fuzzy logic applications in intelligent control. Inf. Sci. 2014,

279, 615–631. [CrossRef]
36. Andersh, J.; Mettler, B. Modeling the human visuo-motor system to support remote-control operation.

Sensors 2018, 18, 2979. [CrossRef]
37. Andersh, J.; Li, B.; Mettler, B. Modeling visuo-motor control and guidance functions in remote-control

operation. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems,
Chicago, IL, USA, 14–18 September 2014.

38. Tseng, K.S.; Mettler, B. Analysis of Coordination Patterns between Gaze and Control in Human Spatial
Search. IFAC-PapersOnLine 2019, 51, 264–271. [CrossRef]

39. Cai, H.; Fang, Y.; Ju, Z.; Costescu, C.; David, D.; Billing, E.; Ziemke, T.; Thill., S.; Belpaeme, T.; Vanderborght, B.;
et al. Sensing-enhanced therapy system for assessing children with autism spectrum disorders: A feasibility
study. IEEE Sens. J. 2019, 19, 1508–1518. [CrossRef]

40. Hernández, E.; Hernández, S.; Molina, D.; Acebrón, R.; Cena, C.E.G. OSCANN: Technical characterization of
a novel gaze tracking analyzer. Sensors 2018, 18, 522. [CrossRef] [PubMed]

41. Webb, J.D. Gaze Control for Remote Robotics; Colorado School of Mines: Golden, CO, USA, 2016; p. 87.
42. Prabhakar, G.; Biswas, P. Eye Gaze Controlled Projected Display in Automotive and Military Aviation

Environments. Multimodal Technol. Interact. 2018, 2, 1. [CrossRef]

269



Appl. Syst. Innov. 2019, 2, 14

43. Li, S.; Webb, J.; Zhang, X.; Nelson, C.A. User evaluation of a novel eye-based control modality for robot-assisted
object retrieval. Adv. Robot. 2017, 31, 382–393. [CrossRef]

44. Rojas, M.; Ponce, P.; Molina, A. A fuzzy logic navigation controller implemented in hardware for an electric
wheelchair. Int. J. Adv. Robot. Syst. 2018, 15, 1729881418755768. [CrossRef]

45. Solea, R.; Filipescu, A.; Filipescu, A.; Minca, E.; Filipescu, S. Wheelchair control and navigation based on
kinematic model and iris movement. In Proceedings of the IEEE 7th International Conference on Cybernetics
and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM),
Siem Reap, Cambodia, 15–17 July 2015.

46. Heo, H.; Lee, J.M.; Jung, D.; Lee, J.W.; Park, K.R. Nonwearable Gaze Tracking System for Controlling Home
Appliance. Sci. World J. 2014, 2014, 303670. [CrossRef] [PubMed]

47. Matsumotot, Y.; Ino, T.; Ogsawara, T. Development of intelligent wheelchair system with face and gaze
based interface. In Proceedings of the 10th IEEE International Workshop on Robot and Human Interactive
Communication, ROMAN 2001 (Cat. No.01TH8591), Paris, France, 18–21 September 2001; pp. 262–267.

48. Training Program for Dyslexic Children Using Educational Robotics—PDF Free Download. zapdf.com.
Available online: https://zapdf.com/training-program-for-dyslexic-children-using-educational-rob.html
(accessed on 1 September 2018).

49. NI LabVIEW Module for LEGO® MINDSTORMS®—National Instruments. Available online: http://sine.ni.
com/nips/cds/view/p/lang/en/nid/212785 (accessed on 1 September 2018).

50. About EV3—Mindstorms. LEGO.com. Available online: https://www.lego.com/en-us/mindstorms/about-ev3
(accessed on 3 September 2018).

51. Logitech C920 HD Pro Webcam for Windows, Mac, and Chrome OS. Available online: https://www.logitech.
com/en-us/product/hd-pro-webcam-c920?crid=34 (accessed on 3 September 2018).

52. Object Tracking Techniques—NI Vision 2016 for LabVIEW Help—National Instruments. Available
online: https://zone.ni.com/reference/en-XX/help/370281AC-01/nivisionconcepts/object_tracking_techniques/
(accessed on 4 September 2018).

53. Castillo, O.; Melin, P.; Kacprzyk, J.; Pedrycz, W. Type-2 Fuzzy Logic: Theory and Applications. In Proceedings
of the 2007 IEEE International Conference on Granular Computing (GRC 2007), Fremont, CA, USA,
2–4 November 2007; p. 145.

54. Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning-III. Inf. Sci.
1975, 9, 43–80. [CrossRef]

55. Karnik, N.N.; Mendel, J.M. Centroid of a type-2 fuzzy set. Inf. Sci. 2001, 132, 195–220. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

270



MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Applied System Innovation Editorial Office
E-mail: asi@mdpi.com

www.mdpi.com/journal/asi





ISBN 978-3-0365-4930-9 

MDPI  

St. Alban-Anlage 66 

4052 Basel 

Switzerland

Tel: +41 61 683 77 34

www.mdpi.com


	A9Rclrsnk_c7uox4_8fs.pdf
	[ASI] Fuzzy Decision Making and Soft Computing Applications.pdf
	A9Rclrsnk_c7uox4_8fs

