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Lucas Prado Osco, José Marcato Junior, Ana Paula Marques Ramos, Danielle Elis Garcia

Furuya, Dthenifer Cordeiro Santana, Larissa Pereira Ribeiro Teodoro, Wesley Nunes
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Preface to ”Remote Sensing for Precision Nitrogen

Management”

Nitrogen is the most widely used macro nutrient in the world. Agriculture is a major

source of N2O emissions and nitrate-nitrogen leaching. Precision nitrogen management aims to

match nitrogen supply with crop nitrogen demand in both space and time to ensure high crop

yields while increasing nitrogen use efficiency and protecting the environment. The effective and

efficient non-destructive estimation and diagnosis of crop nitrogen status and in-season nitrogen

recommendations is crucially important for the success of precision nitrogen management. Remote

sensing is one of the key supporting technologies for precision nitrogen management and significant

progress has been made in the last decade to develop proximal and remote sensing-based in-season

crop nitrogen status diagnosis and recommendation strategies. To help readers keep up to date

with the progress in the field, this Special Issue focuses on fundamental and applied research on

the non-destructive estimation and diagnosis of crop leaf and plant nitrogen status and in-season

nitrogen management strategies based on leaf sensors, proximal canopy sensors, unmanned aerial

vehicle remote sensing, manned aerial remote sensing and satellite remote sensing technologies.

Statistical and machine learning methods are used to predict plant-nitrogen-related parameters with

sensor data or sensor data together with soil, landscape, weather and/or management information.

Different sensing technologies or different modelling approaches are compared and evaluated.

Strategies are developed to use crop sensing data for in-season nitrogen recommendations to

improve nitrogen use efficiency and protect the environment. We greatly appreciate the support

and contributions from all the authors and the editorial staff of Remote Sensing which made the

development of this Special Issue a great success.

Yuxin Miao, Raj Khosla, and David J. Mulla

Editors
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Estimating Plant Nitrogen Concentration of Maize
Using a Leaf Fluorescence Sensor across
Growth Stages
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Abstract: Nitrogen (N) is one of the most essential nutrients that can significantly affect crop grain
yield and quality. The implementation of proximal and remote sensing technologies in precision
agriculture has provided new opportunities for non-destructive and real-time diagnosis of crop N
status and precision N management. Notably, leaf fluorescence sensors have shown high potential in
the accurate estimation of plant N status. However, most studies using leaf fluorescence sensors have
mainly focused on the estimation of leaf N concentration (LNC) rather than plant N concentration
(PNC). The objectives of this study were to (1) determine the relationship of maize (Zea mays L.)
LNC and PNC, (2) evaluate the main factors influencing the variations of leaf fluorescence sensor
parameters, and (3) establish a general model to estimate PNC directly across growth stages. A leaf
fluorescence sensor, Dualex 4, was used to test maize leaves with three different positions across four
growth stages in two fields with different soil types, planting densities, and N application rates in
Northeast China in 2016 and 2017. The results indicated that the total leaf N concentration (TLNC)
and PNC had a strong correlation (R2 = 0.91 to 0.98) with the single leaf N concentration (SLNC).
The TLNC and PNC were affected by maize growth stage and N application rate but not the soil type.
When used in combination with the days after sowing (DAS) parameter, modified Dualex 4 indices
showed strong relationships with TLNC and PNC across growth stages. Both modified chlorophyll
concentration (mChl) and modified N balance index (mNBI) were reliable predictors of PNC. Good
results could be achieved by using information obtained only from the newly fully expanded leaves
before the tasseling stage (VT) and the leaves above panicle at the VT stage to estimate PNC. It is
concluded that when used together with DAS, the leaf fluorescence sensor (Dualex 4) can be used to
reliably estimate maize PNC across growth stages.

Keywords: nitrogen status diagnosis; Dualex sensor; precision nitrogen management; leaf position;
proximal sensing; nitrogen balance index

1. Introduction

Maize (Zea mays L.) is one of the three major grain crops in the world along with rice (Oryza
sativa L.) and wheat (Triticum aestivum L.) [1]. Nitrogen (N) is one of the most essential nutrients that

Remote Sens. 2020, 12, 1139; doi:10.3390/rs12071139 www.mdpi.com/journal/remotesensing
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significantly affect maize yield, biomass, and grain quality. However, over-application of N is common
in Chinese agriculture, resulting in many environmental problems [2,3]. Precision N management
strategies aiming to apply the optimal amount of N fertilizer at the right time and place can help
increase crop yield and N use efficiency, as well as reduce N surplus and environmental impacts [4–6].

The development and implementation of proximal and remote sensing technologies has provided
new opportunities for non-destructive and real-time crop N status estimation on different scales [7–9].
Since leaf pigment concentrations, especially the chlorophyll concentration (Chl), can affect leaf
reflectance properties and are highly correlated with N status, many optical sensors have been used
to measure the canopy reflectance of a specific area or the entire crop field to estimate plant N
status [7,10–12]. However, reflectance sensors are usually influenced by light conditions, soil and
water background, and often saturate under high biomass conditions. Proximal fluorescence sensing is
insensitive to soil backgrounds, environmental light, or biomass conditions and may overcome some
of the problems in N status diagnosis [7,13]. As a traditional and standard indicator of plant N status,
plant N concentration (PNC) is closely related to yield performance [14–16]. Therefore, PNC has been
widely estimated through various sensing methods, and used as a reference in different N diagnostic
methods, with critical PNC values established for different crops and growth stages [7,17,18]. Most
importantly, unlike reflectance indices, fluorescence signals have stronger relationships with PNC as
they are mainly affected by leaf Chl concentration but not by biomass or leaf area index (LAI) [13,19–21].

Dualex 4 (Force-A, Orsay, France) is a portable leaf fluorescence sensor and has been used in the
past few years to monitor crop physiology and study N status diagnosis [22]. Apart from measuring
Chl concentration through leaf transmittance, Dualex 4 can also measure leaf epidermal flavonoids
(Flav) by comparing the Chl fluorescence induced by ultra-violet (UV) excitation at 375 nm to that
induced by red light at 650 nm wavelength [23–25], and provides a new Chl/Flav ratio called N balance
index (NBI). Numerous recent studies have focused on utilizing Dualex 4 to estimate N status in
a variety of crops, and have revealed a significant relationship between Dualex 4 readings and N
indicators. For example, Dualex 4-based Chl readings were found to be highly related to leaf Chl
concentrations in four crops including corn, soybean (Glycine max L. Merr.), spring wheat (Triticum
aestivum L.), and canola (Brassica napus L.) (R2 = 0.69–0.90) [26]. Cartelat et al. [27] showed a strong
linear relationship between phenolics (Phen) measured by Dualex sensor and leaf N concentration
(LNC) (R2 = 0.76) and further displayed the correlation between Phen and N nutrition index (NNI)
(r = −0.60) for wheat. It was found that NBI calculated using a chlorophyll metercombined with an
older version Dualex sensor could predict PNC and NNI most accurately for muskmelon (Cucumis
melo L. cv. Tezac) (R2 = 0.79–0.93 and 0.80–0.95) [28].

However, it is sometimes difficult to successfully use various proximal and remote sensors,
including fluorescence sensors, because spectral data may vary due to different factors, such as soil
conditions, crop growth stages, and leaf positions [7,9,21,29–32]. The variations of different soils in
terms of quality, water, nutrition, and temperature often affect crop growth and lead to changes in crop
properties [33–36]. Stress events resulting from environmental situations may eventually change the
content of some compounds like leaf pigments [37–39]. This could modify leaf optical and fluorescence
properties and be monitored by proximal or remote sensing technologies.

It has been a great challenge to use proximal and remote sensing technologies to reliably estimate
PNC across growth stages [40]. The active canopy sensor GreenSeeker-based vegetation indices
(VIs) could be used to predict LAI and aboveground biomass well (R2 = 0.83–0.89), but had a poor
performance for PNC estimation (R2 = 0.47) across V5–V10 growth stages for spring maize in Northeast
China [41]. Different VIs and prediction models will be needed to estimate PNC at different growth
stages [40,42]. PNC can be more reliably estimated at later growth stages, but at early growth stages
before crop canopy closure, the performance of most prediction models has been quite poor, even with
hyperspectral remote sensing data [40,42]. Gabriel et al. [43] compared two leaf chlorophyll sensors
(SPAD-502 and Dualex) for estimating maize LNC on two different dates, and demonstrated similar
performance of the two sensors, with R2 = 0.43 and 0.62 for SPAD and R2 = 0.42 and 0.68 for Dualex.
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Tremblay et al. [29] found that Dualex could be used to diagnose maize N status successfully within
21 days after topdressing but lost sensitivity at later stages. A hand-held canopy fluorescence sensor
Multiplex has been used to detect N status in early growth stages of maize and it was proven that
the Multiplex parameters were strongly influenced by N dose [20,44]. Moreover, strong relationships
between fluorescence indices and N indicators of rice at different growth stages were revealed by
Huang et al. [45]. To overcome the influence of growth stage or other factors, N sufficiency index
(NSI) or response index (RI) is generally calculated by using a well-fertilized area as the reference to
diagnose crop N status [41,45,46], but such approach will require a well-fertilized area or N rich plot,
and generally cannot improve the prediction of PNC across growth stages [45]. Therefore, more studies
are still needed to develop methods for reliable prediction of PNC across growth stages.

Several studies have reported the use of fluorescence sensing technology to evaluate crop N
status. For example, Yang et al. [47] showed that there were consistent positive correlations between
fluorescence parameters and LNC for different rice cultivars with R2 varying from 0.70 to 0.90. Another
study demonstrated that NBI and NBI1 based on the Multiplex 2 fluorescence sensor were linearly
related to LNC with a high coefficient of determination for two turfgrass cultivars (R2 = 0.85–0.87
and R2 = 0.75–0.78, respectively) [48]. A study using a Dualex sensor calibrated three optical indices
(Chl, Flav and NBI) against LNC of grapevine (Vitis vinifera L.) and verified that NBI was optimal for
estimating LNC with a root-mean-square error (RMSE) smaller than 2 mg of N g−1 dry weight. The
threshold values of NBI from 11 to 18 at flowering and 8 to 11 at bunch closure were proposed [17].
Recently, Zhang et al. [49] found Dualex 4 sensor parameters were significantly correlated with rice
PNC at different growth stages (R2 = 0.43–0.77) or across growth stages (R2 = 0.52–0.69).

To date, few studies have reported on how to use leaf fluorescence sensors to accurately estimate
crop PNC, especially developing strategies to effectively overcome the influence of different growth
stages. Therefore, the objectives of this study were to (1) determine the relationship of maize LNC and
PNC, (2) evaluate the main factors influencing the variations of leaf fluorescence sensor parameters,
and (3) develop a practical strategy to reliably estimate maize PNC using leaf fluorescence sensor
across different growth stages.

2. Materials and Methods

2.1. Study Site and Soil Description

The study was conducted in Lishu County (43◦02′–43◦46′N, 123◦45′–124◦53′E), Jilin Province
in Northeast China from 2016 to 2017. Located in North Temperate Zone with four distinct seasons,
this region has a semi-humid continental monsoon climate. The mean annual average temperature is
6.6 ◦C, and the annual average precipitation is 556 mm, about 80% of which occurs during the crop
growing season from May to September. Figure 1 shows the precipitation distribution and mean
temperature during the growing season in 2016–2017 in Lishu.
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Figure 1. Daily precipitation (mm) and mean temperature (◦C) during the growing season at the study
site in 2016 and 2017.

Two sites with different soil types were selected for this study. Site 1 has Aeolian sandy soil
(loamy sand), which is classified as typic Cryopsamments. Site 2 has Black soil (loamy clay), which is
classified as typic Haploboroll in the United States Department of Agriculture (USDA) Soil Taxonomy.

2.2. Experimental Design

All the treatments of the experiment were the same in both fields. Using a split-plot design
with three replications, a local maize cultivar Liangyu 66 was sown in early May each year with
planting densities of 55,000, 70,000 and 85,000 plant ha−1 as the main plots, and six N treatments were
established as the subplots, with total N doses of 0, 60, 120, 180, 240, and 300 kg ha−1, respectively.
The N fertilizers were applied in two split applications: 1/3 was broadcasted and incorporated into
the soil with rotary tillage as basal N using ammonium sulfate before sowing, and 2/3 was banded as
side-dress N using urea at around V8–V9 growth stage in early July. The subplots in a wide-narrow
row planting pattern were 9 × 12 m with 1 m wide alley between the subplots. Sufficient phosphate
(90 kg P2O5 ha−1) and potash (90 kg K2O ha−1) fertilizers were applied before sowing to make sure P
and K nutrients were not limiting for each plot.

There was no irrigation at Site 2, while about 50 mm of water was irrigated into the soil around
mid-July at Site 1 in each year due to water stress in sandy soil. All plots were kept free of weeds,
insects, and diseases with pesticides based on local standard practices. Detailed information about the
experiments conducted in this study in 2016 and 2017 is listed in Table 1.
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Table 1. Experimental set-up, plant sampling, and sensing stages in the experiment conducted in 2016
and 2017.

Site
Planting

Date
Side Dressing

Date
Harvest

Date
Irrigation Date Sampling and Sensing Stage

2016

Site 1 May 7th Jul. 3rd (57
DAS) Oct. 6th Jul. 13–16th

(70–73 DAS)

V8 (49 DAS *, 50 DAS), V12 (70
DAS *, 73 DAS), VT (78 DAS *,

81 DAS)

Site 2 May. 5th Jul. 4th (60
DAS) Sep. 29th No irrigation V8 (50 DAS, 51 DAS *), V13 (72

DAS *), VT (78 DAS, 80 DAS *)

2017

Site 1 May. 4th Jul. 3rd (60
DAS) Oct. 3rd Jul. 11–13th

(69–71 DAS)

V4 (30 DAS *), V6 (40 DAS), V8
(56 DAS), V11 (65 DAS *), VT (84

DAS, 86 DAS *)

Site 2 May. 3th Jul. 2nd (60
DAS) Oct. 2nd No irrigation

V4 (29 DAS *), V6 (38 DAS), V8
(52 DAS), V11 (64 DAS *), VT (83

DAS, 85 DAS *)

* Data acquired at these stages were used to plot the relationships between SLNC and TLNC or PNC.

2.3. Dualex 4 Sensor Data Collection, Plant Sampling, and Measurements

Three representative plants located in the center rows of each plot of six N treatments at the
70,000 plants ha−1 density in the two fields were selected to be cut at the ground level at V8, V12,
and VT in 2016, and V4, V11, and VT in 2017. Each single leaf was separated from the whole plant,
and leaves in the same position of the three plants in each plot were mixed together. The stems were
also mixed together.

The Dualex 4 sensor (Force-A, Orsay, France) was used in this study for proximal sensing.
Three representative plants located in the inner rows of each plot of six N treatments at three densities
were selected to be sampled and measured by the sensor. In particular, this sensor measures a leaf
surface area of 20 mm2. The plant samples and sensor readings were obtained at V6, V8, V12, and VT
growth stages in 2016 and at V6, V8, and VT growth stages in 2017 in each field. Dualex 4 values were
measured at around the leaf blade midpoint to avoid midribs or physical damage on the adaxial side
(upper side) of the uppermost, second, and third fully expanded leaves before VT stage, as well as the
leaf above the panicle, panicle leaf, and the leaf below the panicle at the VT growth stage for each plant
in each plot. After sensing, all plant samples in each plot were separated into leaves and stems except
for the V6 growth stage.

All samples were oven-dried at 105 °C for 30 min, then dried at 70 °C to a constant weight,
and ground into fine powders to determine N concentration using a modified Kjeldahl digestion
method [50]. The total NLC (TLNC) is the sum of the product of the N concentration of each leaf and
its proportional weight, while PNC is calculated by adding the product of the N concentration of each
organ and its proportional weight. As the leaves were the main component of the plant at the V6
growth stage, the TLNC at this stage was also used as PNC in this study.

The data acquisition dates and days after sowing (DAS) are shown in Table 1. For the convenience
of discussion, the first, second, and third leaves counted from the top of the maize plant selected
for sensor measurement in this research were abbreviated as Leaf 1, Leaf 2, and Leaf 3, respectively.
The three Dualex 4 parameters (Chl, Flav, and NBI) at the same leaf position of three plants in each
plot were averaged and used as the mean reading of that leaf position for the plot. The details of the
Dualex 4 parameters are shown in Table 2.
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Table 2. The details of Dualex 4-based parameters.

Parameters Abbreviation Algorithm

Chlorophyll Chl FRFR/RFR
Flavonoids Flav Log (FRFR/FRFUV)

Nitrogen balance index NBI Chl/Flav
Modified chlorophyll mChl Chl/DAS
Modified flavonoids mFlav Flav × DAS

Modified nitrogen balance index mNBI NBI/DAS2

2.4. Statistical Analysis

The data collected were pooled together to establish the relationships between single LNC (SLNC)
and TLNC and PNC. In addition, the data collected by fluorescence sensing for each site, year, growth
stage, and N rate were divided into a calibration dataset (two replications of the observations) and a
validation dataset (one replication of the observations). The mean, standard deviation (SD), coefficient
of variation (CV, %) of SLNC, TLNC, and PNC were calculated using Microsoft Excel (Microsoft
Corporation, Redmond, WA, USA).

Besides three raw Dualex 4 parameters, three modified parameters derived from them based
on DAS were used in this study: modified Chl (mChl), modified Flav (mFlav), and modified NBI
(mNBI) were computed as the ratio of Chl to DAS, the product of Flav and DAS, and the ratio of NBI
to the square of DAS (Table 2). The coefficient of determination (R2) values for all relationships were
calculated using SPSS 21.0 (SPSS Inc., Chicago, IL, USA), and the model with the highest R2 between
the Dualex parameters and the two N indices (TLNC and PNC) was selected and listed in this paper,
and was used for further estimation of PNC. The performance of the established relationship models
for predicting PNC was evaluated by comparing R2, RMSE, and relative error (RE). The higher the R2

and the lower the RMSE and RE, the higher the accuracy of the prediction models. Agronomic and
proximal sensing data were subjected to the least significant difference (LSD) test at a 5% significance
level to assess differences between the means of treatments using SPSS 21.0.

3. Results

3.1. Interrelationships of SLNC, TLNC, and PNC

We plotted SLNC against TLNC and PNC in Figure 2. The SLNC was highly related to both TLNC
and PNC with R2 varying from 0.91 to 0.98. The best relationships appeared in the results for Leaf 1
(R2 = 0.98 and 0.96), followed by Leaf 2 and finally Leaf 3. As the sum of each single leaf, the TLNC
was more related to SLNC than that of the whole plant, because the PNC was also affected by the stem
N concentration. However, the strong correlations of TLNC and PNC to SLNC indicated the high
probability to use information acquired from a single leaf, especially Leaf 1, to understand the N status
of maize through the prediction of TLNC or PNC.
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Figure 2. Relationships between single leaf N concentration (SLNC) obtained from three different
leaves of a plant and total leaf N concentration (TLNC) and plant N concentration (PNC).

3.2. Effects of Soil Type, Growth Stage, and N Rate on Maize TLNC and PNC

Figure 3 indicated that PNC was slightly lower than TLNC, and both were significantly affected by
the growth stage and N rate. Different soil types only resulted in different TLNC values (mean = 22.91
and 23.93 g kg−1 for Aeolian sandy soil field (Site 1) and Black soil field (Site 2), respectively). For PNC,
there was no significant difference between the two fields, with 20.07 and 20.69 g kg−1 for Aeolian sandy
soil field (Site 1) and Black soil field (Site 2), respectively (Figure 3a). In contrast, TLNC of four growth
stages differed significantly, from 17.06 g kg−1 at the V12 growth stage to 31.03 g kg−1 at the V6 growth
stage, while PNC ranged from 12.10 g kg−1 at the VT growth stage to 31.28 g kg−1 at the V6 growth
stage, without a significant difference between the V12 and VT growth stages (Figure 3b). The mean
values of TLNC and PNC increased with N rates from the lowest under 0 kg ha−1 N rate treatment
(18.10 g kg−1 for TLNC and 16.25 g kg−1 for PNC) to the highest under 300 kg ha−1 N rate treatment
(27.09 g kg−1 for TLNC and 23.44 g kg−1 for PNC). The values of TLNC were significantly different
under low N treatments (0 and 60 kg ha−1), but not under high N treatments (240 and 300 kg ha−1).
However, the values of PNC were not significantly different under either low or high N treatments
(Figure 3c).
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Figure 3. Total leaf N concentration (TLNC) and plant N concentration (PNC) as affected by different
soil types (a), growth stages (b), and N rates (c). The different letters above the boxes indicate that the
TLNC and PNC values differed significantly according to the least significant difference test at p ≤ 0.05.

3.3. Effects of Soil Type, Growth Stage, and N Rate on Dualex 4 Parameters

The differences in Chl, Flav, and NBI measured with a Dualex 4 sensor as influenced by soil types,
growth stages, and N rates were analyzed and displayed in Figure 4. The Dualex 4 sensor-based
fluorescence parameter values obtained from the three differently positioned leaves did not exhibit
significant variability under the two soil types, except for Chl values of Leaf 2, with 41.70 for Aeolian
sandy soil field (Site 1) and 43.14 for Black soil field (Site 2) (Figure 4a,d,g). Fluorescence parameter
values changed less significantly with growth stages than TLNC and PNC (Figures 3b and 4b,e,h).
For Chl, there was no consistent trend as maize grew, although there was a significant difference at
late growth stages for Leaf 1 and at early stages for Leaf 2 and Leaf 3 (Figure 4b). Flav values showed
a constant decreasing trend with the growth of maize, similar to the changes of TLNC and PNC,
but with less variation. Comparatively, the variation trend of Leaf 1 was the same as that of PNC,
while the values of the other two leaves changed significantly with growth stages (Figures 3b and 4e).
NBI also showed significant differences among different growth stages, particularly for Leaf 2 and Leaf
3, but NBI and TLNC and PNC exhibited opposite trends from Flav, increasing with the increase of
DAS (Figures 3b and 4h). Besides, the Chl and NBI values increased with N rate up to 240 kg ha−1 for
all three differently positioned leaves (Figure 4c,i). There was a negative relationship between Flav and
N rate, with higher levels of Flav found in low N treatments and lower levels of Flav found in high N
treatments. However, Flav did not vary much from 180 to 300 kg ha−1 N rates (Figure 4f). Moreover,
the readings of the three fluorescence parameters of the three differently positioned leaves were very
similar in different fields and under different growth stages and N rates (Figure 4).
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Figure 4. Dualex 4 parameters (chlorophyll concentration (Chl), leaf epidermal flavonoids (Flav), and
N balance index (NBI)) as affected by different soil types, growth stages, and N rates. The different
letters above the boxes indicate that the Dualex 4 parameter values differed significantly according to
the least significant difference test at p ≤ 0.05.

The results above indicated that growth stage was the main factor that influences the general
model’s estimation of maize N concentration. To overcome the problem of the high inconsistency
between the Dualex 4 parameters and the TLNC and PNC across growth stages, the modified Dualex
4 parameters incorporating the information of DAS were computed and the variations of these new
parameters are displayed in Figure 5. It was evident that changes in these new parameters of differently
positioned leaves varied markedly among different growth stages after combining with DAS, although
a reverse trend was observed in mFlav compared with the original Flav. The mNBI showed a similar
trend as mChl with the growth stage.
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Figure 5. Modified Dualex 4 parameters (modified Chl (mChl) (a), modified Falv (mFlav) (b), and
modified (mNBI)) (c) as affected by growth stage. Different letters above the boxes indicate that the
modified Dualex 4 parameter values differed significantly according to the least significant difference
test at p ≤ 0.05.

3.4. Relationships between Dualex 4 Parameters and TLNC or PNC

All data acquired from the two study sites across growth stages were gathered together and
divided into calibration and validation datasets to establish a general model for PNC estimation
(Table 3).

Table 3. Descriptive statistics for TLNC and PNC for calibration and validation datasets.

Dataset
TLNC (g kg−1) PNC (g kg−1)

Mean SD CV (%) Mean SD CV (%)

Calibration dataset
n = 504 23.59 7.24 31 20.61 8.73 42

Validation dataset
n = 252 23.08 7.07 31 19.91 8.68 44

The mean values of TLNC (23.08–23.59 g kg−1) were larger than those of PNC (19.91–20.61 g kg−1)
in both datasets. For the calibration dataset, across all growth stages, the PNC was more variable
(CV = 42%) than the TLNC (CV = 31%), and the validation dataset had similar variability as the
calibration dataset with a CV of 44% for PNC and of 31% for TLNC.

The original Dualex 4 readings, Chl, Flav, and NBI, demonstrated poor relationships with TLNC
or PNC across growth stages, with R2 ranging from 0.01 to 0.34 (Table 4). The mean values of Chl,
Flav, and NBI for the three differently positioned leaves were calculated and their relationships with
TLNC and PNC at four growth stages are displayed in Figure 6. The impact of growth stages on these
relationships were significant.

Table 4. Coefficients of determination (R2) for the relationships between Dualex 4-based parameters of
three differently positioned leaves and two N status indicators (TLNC and PNC).

N Concentration
(g kg−1)

Leaf
Position

Chl Flav NBI mChl mFlav mNBI

Model R2 Model R2 Model R2 Model R2 Model R2 Model R2

TLNC
Leaf 1 Q 0.34 Q 0.11 P 0.03 P 0.80 P 0.53 P 0.77
Leaf 2 Q 0.34 Q 0.16 P 0.01 P 0.78 P 0.49 P 0.76
Leaf 3 P 0.18 Q 0.10 Q 0.01 P 0.75 E 0.50 P 0.74

PNC
Leaf 1 Q 0.20 Q 0.22 Q 0.03 Q 0.84 P 0.56 P 0.80
Leaf 2 Q 0.18 Q 0.33 Q 0.07 P 0.83 P 0.49 P 0.79
Leaf 3 Q 0.10 Q 0.25 Q 0.09 P 0.78 P 0.50 P 0.75

Note: Q: Quadratic model; P: Power model; E: Exponential model.
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Figure 6. Relationships between original Dualex 4 parameters (Chl (a,d), Flav (b,e), and NBI (c,f)) for
the mean values of three differently positioned leaves and two N status indicators (TLNC (a–c)) and
PNC (d–f)) across growth stages. The models with the highest R2 are displayed, with L (e), P (a), and
Q (d) indicating linear, power, and quadratic models, respectively.

However, after combining with DAS, which was directly connected to the growth stage,
the modified Dualex 4 parameters (mChl, mFlav, and mNBI) were highly related to TLNC and
PNC (Table 4 and Figure 7). As maize grew, the values of mChl and mNBI decreased with the increase
of TLNC and PNC (Figure 7a,c,d,f), while the values of mFlav increased with the growth stages and
exhibited negative relationships with both TLNC and PNC accordingly (Figure 7b,e).

The mChl was most related to TLNC and PNC with R2 ranging from 0.75 to 0.84 for single-position
leaves. mNBI also performed very well, with R2 ranging from 0.74 to 0.80. Nevertheless, the result
for mFlav (R2 = 0.49–0.56) was not as good as the above-mentioned two parameters, but it was
much better than that of the original Flav (Table 4). A power function relationship was found for the
models established based on the values measured on every single leaf for mChl, mFlav, and mNBI.
Leaf 1 showed the best potential to estimate PNC with the highest R2 values (Table 4). Moreover,
by calculating the mean values of each parameter of the three leaves, the correlations between the
modified Dualex 4 parameters and TLNC or PNC were improved to a certain extent, especially for
mFlav (Figure 7b,e and Table 4). Compared with TLNC, PNC was more related to the modified Dualex
4 parameters (mChl, mFlav, and mNBI). This indicated that the modified Dualex 4 parameters had
greater potential for direct estimation of PNC accurately (Figure 7 and Table 4).
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Figure 7. Relationships between modified Dualex 4 parameters (mChl, mFlav, and mNBI) for the
mean values of three differently positioned leaves and two N status indicators (TLNC and PNC) across
growth stages.

3.5. The Estimation of PNC Using Different Modified Dualex 4 Parameters

In order to establish good relationships between modified Dualex 4 parameters and PNC as well
as TLNC, the above models describing their relationships were further evaluated with the validation
dataset. The validation results of mChl for estimating TLNC and PNC were the best with the highest
R2 (0.71–0.79 and 0.73–0.84) and the lowest RMSE (3.27–0.81 and 3.46–4.48) and RE (14%–16% and
17–23%) (Table 5). Although the mFlav showed a better relationship with TLNC and PNC than the
original Flav, it still did not perform as well as the other two modified Dualex parameters in predicting
TLNC and PNC, with the lowest R2 (0.42–0.53 and 0.40–0.53) and the highest RMSE (4.83–5.38 and
5.96–6.73) and RE (21%–23% and 30%–34%) (Table 5). For single leaf, mChl obtained from Leaf 1
predicted TLNC and PNC most accurately, while mFlav and mNBI obtained from Leaf 3 showed
the highest accuracy among the three positioned leaves (Table 5). Besides, the results were further
improved by averaging the mFlav and mNBI readings measured from three differently positioned
leaves (Table 5 and Figure 8b,c,e,f). The data distribution for the V6 growth stage deviated from the 1:1
line more significantly than the other growth stages, which would influence the estimation results to
some extent (Figure 8). Above all, the modified Dualex 4 parameters showed a better performance for
direct PNC estimation across growth stages, but not for TLNC estimation, which implied that it was
needless to estimate maize PNC by estimating TLNC using sensor readings acquired primarily from
single leaves.

12



Remote Sens. 2020, 12, 1139

Table 5. Validation results for the estimation of TLNC and PNC using modified Dualex 4 parameters
for single-position leaves by the general estimation models across growth stages.

N Concentration
(g kg−1)

Leaf
Position

mChl mFlav mNBI

R2 RMSE RE(%) R2 RMSE RE(%) R2 RMSE RE(%)

TLNC
Leaf 1 0.79 3.27 14 0.45 5.22 23 0.72 3.76 16
Leaf 2 0.76 3.45 15 0.42 5.38 23 0.71 3.77 16
Leaf 3 0.71 3.81 16 0.53 4.83 21 0.73 3.65 16

PNC
Leaf 1 0.84 3.46 17 0.41 6.66 33 0.73 4.52 23
Leaf 2 0.82 3.68 18 0.40 6.73 34 0.74 4.37 22
Leaf 3 0.73 4.48 23 0.53 5.96 30 0.75 4.29 22

Figure 8. Validation results for the prediction of TLNC (a–c) and PNC (d–f) using the mean values
of modified Dualex 4 parameters for three single-position leaves. Black and red lines indicate the
regression and the 1:1 line, respectively.

4. Discussion

4.1. Feasibility of Estimating Maize N Status Using Single Leaf-based Dualex 4 Parameters

The SLNC of the fully expanded three leaves selected in our study was linearly related to both
TLNC and PNC, with high R2 values. Considering the good relationships between SLNC and TLNC
and PNC (Figure 2), and the significant change trend of Dualex 4 parameters with the increase of N
rate (Figures 3c and 4c,f,i), this study verified that it would be possible to predict maize N status using
the information from a single leaf of maize and be possible to predict PNC directly or indirectly by
predicting TLNC first.

The Chl values elevated with an increasing N rate (Figure 4c), which conforms to the finding
that leaf chlorophyll is strongly affected by leaf N [51–53]. Leaf N contributed a large proportion
to plant photosynthesis [54]. However, as an indicator of epidermal flavonoids, a carbon-based
secondary metabolite, Flav exhibited a reverse trend with the changes of N rate (Figure 4f) because
the carbon-based metabolite would be produced under low N level and would consequently cause
the enhanced synthesis of flavonoids [55,56]. As the ratio of Chl to Flav, NBI increased with N rate
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(Figure 4i) and has been considered to be a sensitive indicator of crop N status [13,28,44,57]. The results
of this study indeed showed that the range of NBI variation was greater than that of Chl and Flav
under different N rates (Figure 4c,f,i).

The Dualex 4 parameters’ good discrimination ability of different N rates and the saturation
at high N levels (240 and 300 kg ha−1) (Figure 4) was in agreement with other studies using the
fluorescence-based method [58]. The suggested optimal N rate for the experimental sites in our study
was approximately 180–200 kg ha−1 [59], so the N rates of 240 and 300 kg ha−1 exceeded the optimal
level. Some previous studies have concluded that fluorescence indices were insensitive to high crop
N content in the range of optimal to excessive N levels [58,60]. In this study, as shown in Figure 3c,
both TLNC and PNC varied clearly with the changes of N rate from 0 through 240 kg ha−1, but there
was no significant difference between 240 and 300 kg ha−1 N rates. Thus, in this study, the saturation
of Dualex 4 parameters on high N rates was closely related to the N status of maize, and we could not
draw a similar conclusion that the fluorescence indices were insensitive to high N content here.

4.2. Main Factor(s) Affecting the Establishment of the General Model and the Best Parameter(s) for
PNC Estimation

Compared with stems, leaves are more important for photosynthesis. However, maize plants
grown in the Aeolian sandy soil field (Site 1) were much more vulnerable to water deficiency than
maize plants grown in the Black soil field (Site 2). Due to the N accumulation in stems, the PNC
obtained in the Aeolian sandy soil field increased when the N concentration of stems was taken into
account. Therefore, the difference in PNC between the two fields vanished (Figure 3a). The significant
variation observed in TLNC values but the similarity observed in PNC values in the two study sites
(Figure 3a) implies that it may be more difficult to evaluate TLNC from different soil fields, and it would
be more feasible to establish a PNC predicting model neglecting the effect of soil types. Nevertheless,
it is necessary to distinguish soil types when estimating PNC indirectly by estimating TLNC first
(Figure 4a,d,g).

The changes of TLNC or PNC as affected by growth stages (Figure 3b) have been verified in
diverse crops in other studies [28,61,62]. This is why growth stages must be strictly defined and
distinguished for N status evaluation in most studies. Thus, the growth stage plays an important role
in establishing general models for PNC estimation according to the findings of this study.

Chl measured by Dualex 4 has been calibrated in μg cm−2 units [22], which means Chl is a proxy
of surface-based N. However, the TLNC and PNC mentioned in this study were both calculated based
on mass. The area-based LNC changes very little during the growing season due to the expression of
area-based LNC forces changes in specific leaf areas [63]. The time we selected to conduct the sensing
was before the reproductive phase, and there was no obvious redistribution of N from the leaves to the
ears that would result in the significant reduction of LNC. Furthermore, the Dualex 4 only measures
a green leaf surface area of 20 mm2 that would not exhibit too much variation of N concentration.
Thus, the surface-based parameter Chl is relatively more stable than the mass-based TLNC and PNC
(Figures 3b and 4b).

Different from Chl, the epidermal Flav estimated by Dualex 4, which is the representative of
total leaf Flav [27,64], is considered as a surrogate of dry leaf mass per area with no units [22].
Meyer et al. [23] reported the positive correlations between mass-based polyphenols (mainly Flav) and
leaf mass per area for woody plants, which revealed the regularity of the decrease in Flav was caused
by the increase in leaf dry mass. Thicker leaves had a larger leaf mass per area, and the accumulation
of organic matter in leaves played the role of Flav dilution. In addition, a previous study has reported
that the accumulation of Flav was highly sensitive to light intensity [65]. As the maize grows, the leaf
area and canopy closure of the uppermost leaves gradually increase, resulting in increased degree of
shading. This may limit the expression of Flav synthetic genes and lead to a reduction in flavonoid
content in these leaves during later growth stages. More studies are still needed on the periodic
changes of Flav.
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As the ratio of Chl to Flav, NBI is equivalent to mass-based Chl (Chl g−1 dry mass). Since Chl
is relatively stable and Flav showed a downward trend as the maize grew, it is easy to understand
the reverse trend of NBI to Flav (Figure 4h). The inconsistent relationships between the original
Dualex 4 parameters (Chl, Flav, and NBI) and TLNC or PNC at different growth stages led to poor
model performance across the growth stages (Table 4 and Figure 6). This makes the original Dualex 4
parameters unfeasible for estimating TLNC and PNC across growth stages.

Varvel et al. [46] pointed out that it is effective to evaluate crop N status by calculating growing
degree days (GDD) when a specific growth stage cannot be determined. Following the idea of
Teal et al. [66], who predicted maize yield using normalized difference vegetation index (NDVI) and
GDD, DAS was used together with Dualex 4 parameters in this study to explore the potential of
real-time PNC estimation across growth stages. The results of this study indicated the relationships
between the DAS-based modified Dualex 4 parameters and TLNC and PNC across growth stages
were significantly improved and were simulated by power function models. Furthermore, this study
revealed a stronger relationship between the modified parameters and PNC than TLNC. In addition,
the good relations between SLNC and PNC implied that PNC could be directly estimated well using a
leaf sensor instead of indirect estimation through TLNC (Table 5 and Figure 8). This indicates the great
potential of leaf-based Dualex 4 for assessing plant N status, not just maize leaf N status.

It has been reported that polyphenols (Phen, including Flav) may be a more specific indicator
of crop N status than Chl because of the sensitivity of Chl to sulfur stress [67]. Padilla et al. [58]
demonstrated the strong linear relationships between Flav, measured by a Multiplex sensor, and
cucumber (Cucumis sativus ‘Strategos’) N concentration (R2 = 0.87–0.95). Besides, some studies pointed
out the superiority of NBI (or Chl/Phen) in N status estimation in a variety of crops, including
maize [28,29,31,44,48,57,68]. However, mChl (Chl) performed best while mFlav (Flav) performed
worst in this study.

The relatively poor performance of mFlav indicated the difficulty of estimating PNC accurately
using Flav, while the difficulty for estimating Phen in leaves has been attributed to different solubility,
distribution locations, and species varieties [23]. Flav has previously been shown to perform well in N
status estimation for other crops such as vegetable, rice, and sweet cherry (Prunus avium L.) [49,52,68,69].
However, the relatively thick maize leaves could affect the transmittance of the light emitted by the
sensor and then lead to the change of the parameter [22]. Measurements taken from both the adaxial
(top) and abaxial (bottom) sides of the leaves may help improve maize PNC estimation by Flav, although
the flavonoid contents in the adaxial and abaxial sides of the leaves are highly correlated in some
crops [27,57]. Moreover, the change of Flav content is influenced by various factors in addition to N
such as leaf thickness, light condition, water stress, pathogen attack, low temperature, and the onset of
senescence [17,30,65,70]. Although affected by the poor performance of mFlav, the estimation results of
mNBI-based models showed similar R2 values with mChl, indicating the good performance of NBI for
N indices estimation. These results conform to the findings of some previous studies [27–29,31,44,49,57].

4.3. The Most Suitable Leaf Position for Sensing Measurements and PNC Estimation

We tested three differently positioned leaves at each growth stage in this study in order to
understand their effects on evaluating maize N status. The changes of the Dualex 4-based parameters
with leaf positions were relatively smaller than that with the growth stage and N rate. Nevertheless, there
were slight differences among the three leaves, which consequently displayed different performance in
PNC prediction.

It was noted that leaf Chl and Flav contents depended on leaf age (leaf position) induced by
light conditions [71,72]. The photosynthetic photon flux density would decrease with increasing
canopy depth during crop growth and canopy development [73]. The priority supplement of
N in younger leaves (upper leaves) re-translocated from older leaves (lower leaves) leads to the
preferential distribution of N to the upper leaves [74] and consequently leads to higher rates of canopy
photosynthesis, which needs a higher content of Chl. The finding of higher Chl values in Leaf 1 (the
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uppermost leaf) than in Leaf 3 (the lowest leaf) was similar to the study results for rice [74,75]. Higher
Flav contents in older leaves have been reported [71,76,77], similar to the results of this study. Besides,
the decrease of leaf mass per area along with leaf thickness as leaf position declines, the limited sunlight
in the lower leaves mentioned above caused the change of Flav with the leaf position. However,
there was a slightly increasing tendency of Chl measurement in Leaf 2, which may be caused by the
close locations of the three leaves. As the uppermost leaf (Leaf 1) was newly expanded soon after
Leaf 2, the N concentration of these two leaves would not differ too much. In addition, the average
values used in this analysis may help reduce some variations. The Flav is an N-free compound, so its
continuous change with leaf positions was more distinct.

To diagnose crop N status quickly and effectively, the test frequency of a leaf sensor must be
reduced. Thus, selecting the most appropriate leaf rather than several leaves of a plant for sensing
measurement with high accuracy and reliability is important. The measurements taken from Leaf 1 for
all three modified Dualex parameters provided the highest model R2 in TLNC and PNC predictions.
The best performance of mFlav appeared in Leaf 3 in PNC estimation, and the mean values of three
leaves improved the results significantly, but the results were not as good as the other two parameters.
For mNBI, although the best result appeared in Leaf 3 too, it did not show a significant superiority over
the results of the other two leaves. Thus, in conclusion, the measurement of Leaf 1 may be sufficient
to estimate maize N status using Dualex 4-based mChl and mNBI whereas Leaf 3 is preferred to
accurately estimate PNC using mFlav.

4.4. Implications for Practical Application and Future Research Needs

This study found that combining with DAS, the Dualex 4 leaf fluorescence sensor could be used
to reliably estimate maize PNC across growth stages, even if only one leaf (uppermost) was sampled.
The estimated PNC can then be compared with threshold or critical PNC values to diagnose maize
N status by calculating N nutrition index (NNI) [41]. For this purpose, maize aboveground biomass
will be needed and can be reliably estimated using active canopy sensors, like GreenSeeker or Crop
Circle sensors [41,78]. Research is needed to develop methods to use Dualex 4 sensor to estimate NNI
directly, as demonstrated for SPAD chlorophyll meter [79]. Based on the relationship between SPAD
chlorophyll meter readings and PNC and the critical N concentration curve for maize, Yang et al. [80]
established the critical or optimal chlorophyll meter (SPAD) reading curve. Measured chlorophyll
meter readings can then be compared with critical chlorophyll meter readings at specific biomass to
calculate NNI, without the need to estimate PNC. This is an innovative idea and should be tested with
the Dualex sensor.

The relationship between leaf and canopy fluorescence parameters could be further investigated
through the use of a simple model taking into account leaf fluorescence profile inside the canopy,
structural variations of the canopy, and background reflection [81]. Such information can be useful to
evaluate the possibility to use the proposed method in conjunction with remote sensing fluorescence
measurements obtained from an unmanned aerial vehicle (UAV) [82], aerial or satellite remote
sensing [83,84].

In theory, NBI combining both Chl and Flav should be more sensitive to crop N status than using
Chl or Flav alone, as found by previous research [28,29,31,44,48,57,68]. However, NBI did not perform
better than Chl in this study. Those previous studies either used an earlier model of Dualex sensor
(cannot measure Chl) and chlorophyll meter to calculate NBI or used canopy fluorescence sensor
Multiplex or studied other crops. Therefore, more studies are needed to confirm our results with
maize and further evaluate the potential of improving corn N status diagnosis using both Chl and Flav
information, as well as other related soil, weather, and management data.

5. Conclusions

This study demonstrated the reliability of maize PNC estimation by fluorescence parameters
obtained from single leaves using a leaf sensor Dualex 4. The fluorescence parameter values did not
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exhibit significant variability under the two different soil conditions, which indicated the needlessness
of establishing a soil-specific predicting model in this study, while the variations between the PNC and
Dualex 4 parameters at different growth stages make it difficult to estimate PNC across all growth
stages using the original Dualex 4 parameters. Nevertheless, the modified Dualex 4 parameters using
the information of DAS overcame the problem caused by growth stage changes and allowed accurate
estimation of PNC using a general model across growth stages. Among the three parameters obtained
by Dualex 4, mChl and mNBI were more reliable indicators for PNC estimation. It was sufficient to
take the fluorescence measurement from the uppermost leaf of maize. Further research needs to focus
on improving the accuracy of PNC estimation in early growth stages and practical methods for maize
N status diagnosis using proximal leaf fluorescence sensors.

Author Contributions: Y.M. and H.L. designed the experiment. R.D. conducted the experiment, performed the
analysis, and wrote the original paper, X.W., Z.C., and W.Z. assisted in the experiment, plant and soil sampling,
and sample processing. Y.M. and F.Y. reviewed and revised the manuscript. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the Key National Research and Development Program (2016YFD0200600;
2016YFD0200602), Norwegian Ministry of Foreign Affairs (SINOGRAIN II, CHN-17/0019), the Internationalization
Training and Promotion Project of Graduate Students in China Agricultural University, and the UK Biotechnology
and Biological Sciences Research Council (BB/P004555/1).

Acknowledgments: We would like to thank Guohua Mi, Zheng Fang, Xuezhi Yue, and Hainie Zha for their
assistance during this study. We also would like to thank the local farmers for their cooperation in this research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. FAO. Cultured Aquatic Species Information Programme, Epinephelus Coioides. Available online: http:
//www.fao.org (accessed on 28 June 2019).

2. Gu, B.; Ju, X.; Wu, Y.; Erisman, J.W.; Bleeker, A.; Reis, S.; Smith, R.I. Cleaning up nitrogen pollution may
reduce future carbon sinks. Glob. Environ. Chang. 2018, 48, 56–66. [CrossRef]

3. Zhang, F.; Chen, X.; Vitousek, P. An experiment for the world. Nature 2013, 497, 33–35. [CrossRef] [PubMed]
4. Jin, Z.; Archontoulis, S.V.; Lobell, D.B. How much will precision nitrogen management pay off? An evaluation

based on simulating thousands of corn fields over the US corn-belt. Field Crop. Res. 2019, 240, 12–22.
[CrossRef]

5. Wang, X.; Miao, Y.; Dong, R.; Chen, Z.; Guan, Y.; Yue, X.; Fang, Z.; Mulla, D.J. Developing active canopy
sensor-based precision nitrogen management strategies for corn in Northeast China. Sustainability 2019, 11,
706.

6. Kyveryga, P.M.; Blackmer, A.M.; Zhang, J. Characterizing and classifying variability in corn yield response
to nitrogen fertilization on subfield and field scales. Agron. J. 2009, 101, 269–277. [CrossRef]

7. Muñoz-Huerta, R.F.; Guevara-Gonzalez, R.G.; Contreras-Medina, L.M.; Torres-Pacheco, I.; Prado-Olivarez, J.;
Ocampo-Velazquez, R.V. A review of methods for sensing the nitrogen status in plants: Advantages,
disadvantages and recent advances. Sensors 2013, 13, 10823–10843. [CrossRef] [PubMed]

8. Corti, M.; Cavalli, D.; Cabassi, G.; Gallina, P.M.; Bechini, L. Does remote and proximal optical sensing
successfully estimate maize variables? A review. Eur. J. Agron. 2018, 99, 37–50. [CrossRef]

9. Pinter, P.J.; Hatfield, J.L.; Schepers, J.S.; Barnes, E.M.; Moran, M.S.; Daughtry, C.S.T.; Upchurch, D.R. Remote
sensing for crop management. Photogramm. Eng. Remote. Sens. 2003, 69, 647–664. [CrossRef]

10. Mulla, D.J. Twenty-five years of remote sensing in precision agriculture: Key advances and remaining
knowledge gaps. Biosyst. Eng. 2013, 114, 358–371. [CrossRef]

11. Nigon, T.J.; Mulla, D.J.; Rosen, C.J.; Cohen, Y.; Alchanatis, V.; Rud, R. Evaluation of the nitrogen sufficiency
index for use with high resolution, broadband aerial imagery in a commercial potato field. Precis. Agric.
2014, 15, 202–226. [CrossRef]

12. Delloye, C.; Weiss, M.; Defourny, P. Retrieval of the canopy chlorophyll content from Sentinel-2 spectral
bands to estimate nitrogen uptake in intensive winter wheat cropping systems. Remote. Sens. Environ. 2018,
216, 245–261. [CrossRef]

17



Remote Sens. 2020, 12, 1139

13. Tremblay, N.; Wang, Z.; Cerovic, Z.G. Sensing crop nitrogen status with fluorescence indicators. A review.
Agron. Sustain. Dev. 2012, 32, 451–464. [CrossRef]

14. Kovács, P.; Vyn, T.J. Relationships between ear-leaf nutrient concentrations at silking and corn biomass and
grain yields at maturity. Agron. J. 2017, 109, 2898–2906. [CrossRef]

15. Gaju, O.; Allard, V.; Martre, P.; Le Gouis, J.; Moreau, D.; Bogard, M.; Hubbart, S.; Foulkes, M.J. Nitrogen
partitioning and remobilization in relation to leaf senescence, grain yield and grain nitrogen concentration in
wheat cultivars. Field Crop Res. 2014, 155, 213–223. [CrossRef]

16. Isfan, D.; Zizka, J.; D’Avignon, A.; Deschênes, M. Relationships between nitrogen rate, plant nitrogen
concentration, yield and residual soil nitrate-nitrogen in silage corn. Commun. Soil Sci. Plant Anal. 1995, 26,
2531–2557. [CrossRef]

17. Cerovic, Z.G.; Ghozlen, N.B.; Milhade, C.; Obert, M.; Debuisson, S.; Moigne, M.L. Nondestructive diagnostic
test for nitrogen nutrition of grapevine (Vitis vinifera L.) based on Dualex leaf-clip measurements in the field.
J. Agric. Food Chem. 2015, 63, 3669–3680. [CrossRef] [PubMed]

18. Duan, D.; Zhao, C.; Li, Z.; Yang, G.; Yang, W. Estimating total leaf nitrogen concentration in winter wheat by
canopy hyperspectral data and nitrogen vertical distribution. J. Integr. Agric. 2019, 18, 1562–1570. [CrossRef]

19. Huang, S.; Miao, Y.; Zhao, G.; Yuan, F.; Ma, B.; Tan, C.; Yu, W.; Gnyp, M.L.; Lenz-Wiedemann, V.I.S.;
Rascher, U.; et al. Satellite remote sensing-based in-season diagnosis of rice nitrogen status in Northeast
China. Remote Sens. 2015, 7, 10646–10667. [CrossRef]

20. Longchamps, L.; Khosla, R. Early detection of nitrogen variability in corn using fluorescence. Agron. J. 2014,
106, 511–518. [CrossRef]

21. Heege, H.J.; Reusch, S.; Thiessen, E. Prospects and results for optical systems for site-specific on-the-go
control of nitrogen-top-dressing in Germany. Precis. Agric. 2008, 9, 115–131. [CrossRef]

22. Cerovic, Z.G.; Masdoumier, G.; Ghozlen, N.B.; Latouche, G. A new optical leaf-clip meter for simultaneous
non-destructive assessment of leaf chlorophyll and epidermal flavonoids. Physiol. Plant. 2012, 146, 251–260.
[CrossRef] [PubMed]

23. Meyer, S.; Cerovic, Z.G.; Goulas, Y.; Montpied, P.; Demotes-Mainard, S.; Bidel, L.P.; Moya, I.; Dreyer, E.
Relationships between optically assessed polyphenols and chlorophyll contents, and leaf mass per area ratio
in woody plants: A signature of the carbon-nitrogen balance within leaves? Plant Cell Environ. 2006, 29,
1338–1348. [CrossRef] [PubMed]

24. Cerovic, Z.G.; Ounis, A.; Cartelat, A.; Latouche, G.; Khosla, R. The use of chlorophyll fluorescence excitation
spectra for the non-destructive in situ assessment of UV-absorbing compounds in leaves. Plant Cell Environ.
2002, 25, 1663–1676. [CrossRef]

25. Barnes, P.W.; Searles, P.S.; Ballaré, C.L.; Ryel, R.J.; Caldwell, M.M. Non-invasive measurements of leaf
epidermal transmittance of UV radiation using chlorophyll fluorescence: Field and laboratory studies.
Physiol. Plant. 2000, 109, 274–283. [CrossRef]

26. Dong, T.; Shang, J.; Chen, J.; Liu, J.; Qian, B.; Ma, B.; Morrison, M.J.; Zhang, C.; Liu, Y.; Shi, Y.; et al.
Assessment of portable chlorophyll meters for measuring crop leaf chlorophyll concentration. Remote Sens.
2019, 11, 2706. [CrossRef]

27. Cartelat, A.; Cerovic, Z.G.; Goulas, Y.; Meyer, S.; Lelarge, C.; Prioul, J.L.; Barbottin, A.; Jeuffroy, M.H.; Gate, P.;
Agati, G.; et al. Optically assessed contents of leaf polyphenolics and chlorophyll as indicators of nitrogen
deficiency in wheat (Triticum aestivum L.). Field Crop Res. 2005, 91, 35–49. [CrossRef]

28. Padilla, F.M.; Peña-Fleitas, M.T.; Gallardo, M.; Thompson, R.B. Evaluation of optical sensor measurements of
canopy reflectance and of leaf flavonols and chlorophyll contents to assess crop nitrogen status of muskmelon.
Eur. J. Agron. 2014, 58, 39–52. [CrossRef]

29. Tremblay, N.; Wang, Z.; Bélec, C. Evaluation of the Dualex for the assessment of corn nitrogen status. J. Plant
Nutr. 2007, 30, 1355–1369. [CrossRef]

30. Goulas, Y.; Cerovic, Z.G.; Cartelat, A.; Moya, I. Dualex: A new instrument for field measurements of
epidermal ultraviolet absorbance by chlorophyll fluorescence. Appl. Opt. 2004, 43, 4488–4496. [CrossRef]

31. Tremblay, N.; Wang, Z.; Bélec, C. Performance of Dualex in spring wheat for crop nitrogen status assessment,
yield prediction and estimation of soil nitrate content. J. Plant Nutr. 2009, 33, 57–70. [CrossRef]

32. Apostol, S.; Viau, A.A.; Tremblay, N.; Briantais, J.-M.; Prasher, S.; Parent, L.-E.; Moya, I. Laser-induced
fluorescence signatures as a tool for remote monitoring of water and nitrogen stresses in plants. Can. J.
Remote Sens. 2003, 29, 57–65. [CrossRef]

18



Remote Sens. 2020, 12, 1139

33. Xu, J.; Cai, H.; Wang, X.; Ma, C.; Lu, Y.; Ding, Y.; Wang, X.; Chen, H.; Wang, Y.; Saddique, Q. Exploring
optimal irrigation and nitrogen fertilization in a winter wheat-summer maize rotation system for improving
crop yield and reducing water and nitrogen leaching. Agric. Water. Manage. 2020, 228, 105904. [CrossRef]

34. Carolina, S.P.; Crossa, J.L.; Bonnett, D.; Yamaguchi-Shinozaki, K.; Reynolds, M.P. Phenotyping transgenic
wheat for drought resistance. J. Exp. Bot. 2012, 63, 1799–1808. [CrossRef]

35. Scharf, P.C.; Kitchen, N.R.; Sudduth, K.A.; Davis, J.G. Spatially variable corn yield is a weak predictor of
optimal nitrogen rate. Soil Sci. Soc. Am. J. 2006, 70, 2154–2160. [CrossRef]

36. Power, J.F.; Willis, W.O.; Grunes, D.L.; Reichman, G.A. Effect of soil temperature, phosphorus and plant age
on growth analysis of barley. Agron. J. 1967, 59, 231–234. [CrossRef]

37. Sarker, U.; Oba, S. Response of nutrients, minerals, antioxidant leaf pigments, vitamins, polyphenol, flavonoid
and antioxidant activity in selected vegetable amaranth under four soil water content. Food Chem. 2018, 252,
72–83. [CrossRef]

38. Lea, U.S.; Slimestad, R.; Smedvig, P.; Lillo, C. Nitrogen deficiency enhances expression of specific MYB and
bHLH transcription factors and accumulation of end products in the flavonoid pathway. Planta 2007, 225,
1245–1253. [CrossRef]

39. Shapiro, C. Using a chlorophyll meter to manage nitrogen applications to corn with high nitrate irrigation
water. Commun. Soil Sci. Plant Anal. 1999, 30, 1037–1049. [CrossRef]

40. Li, F.; Miao, Y.; Hennig, S.D.; Gnyp, M.L.; Chen, X.; Jia, L.; Bareth, G. Evaluating hyperspectral vegetation
indices for estimating nitrogen concentration of winter wheat at different growth stages. Precis. Agric. 2010,
11, 335–357. [CrossRef]

41. Xia, T.; Miao, Y.; Wu, D.; Shao, H.; Khosla, R.; Mi, G. Active optical sensing of spring corn for in-season
diagnosis of nitrogen status based on nitrogen nutrition index. Remote Sens. 2016, 8, 605. [CrossRef]

42. Li, F.; Miao, Y.; Feng, G.; Yuan, F.; Yue, S.; Gao, X.; Liu, Y.; Liu, B.; Ustin, S.L.; Chen, X. Improving estimation
of summer maize nitrogen status with red edge-based spectral vegetation indices. Field Crops Res. 2014, 157,
111–123. [CrossRef]

43. Gabriel, J.L.; Quemada, M.; Alonso-Ayuso, M.; Lizaso, J.; Martín-Lammerding, D. Predicting N status in
maize with clip sensors: Choosing sensor, leaf sampling point, and timing. Sensors. 2019, 19, 3881. [CrossRef]
[PubMed]

44. Zhang, Y.; Tremblay, N.; Zhu, J. A first comparison of Multiplex®for the assessment of corn nitrogen status.
J. Food. Agric. Environ. 2012, 10, 1008–1016.

45. Huang, S.; Miao, Y.; Yuan, F.; Cao, Q.; Ye, H.; Lenz-Wiedemann, V.I.S.; Bareth, G. In-Season diagnosis of rice
nitrogen status using proximal fluorescence canopy sensor at different growth stages. Remote Sens. 2019, 11,
1847. [CrossRef]

46. Varvel, G.E.; Wilhelm, W.W.; Shanahan, J.F.; Schepers, J.S. An algorithm for corn nitrogen recommendations
using a chlorophyll meter-based sufficiency index. Agron. J. 2007, 99, 701–706. [CrossRef]

47. Yang, J.; Gong, W.; Shi, S.; Du, L.; Sun, J.; Song, S.; Chen, B.; Zhang, Z. Analyzing the performance of
fluorescence parameters in the monitoring of leaf nitrogen content of paddy rice. Sci. Rep. 2016, 6, 28787.
[CrossRef]

48. Agati, G.; Foschi, L.; Grossi, N.; Guglielminetti, L.; Cerovic, Z.G.; Volterrani, M. Fluorescence-based versus
reflectance proximal sensing of nitrogen content in Paspalum vaginatum and Zoysia matrella turfgrasses.
Eur. J. Agron. 2013, 45, 39–51. [CrossRef]

49. Zhang, K.; Liu, X.; Ma, Y.; Zhang, R.; Cao, Q.; Zhu, Y.; Cao, W.; Tian, Y. A comparative assessment of measures
of leaf nitrogen in rice using two leaf-clip meters. Sensors 2020, 20, 175. [CrossRef]

50. Nelson, D.W.; Sommers, L.E. Determination of total nitrogen in plant material. Agron. J. 1973, 65, 109–112.
[CrossRef]

51. Roca, L.F.; Romero, J.; Bohórquez, J.M.; Alcántara, E.; Fernández-Escobar, R.; Trapero, A. Nitrogen status
affects growth, chlorophyll content and infection by Fusicladium oleagineum in olive. Crop Prot. 2018, 109,
80–85. [CrossRef]

52. Padilla, F.M.; de Souza, R.; Peña-Fleitas, M.T.; Gallardo, M.; Giménez, C.; Thompson, R.B. Different responses
of various chlorophyll meters to increasing nitrogen supply in sweet pepper. Front Plant Sci. 2018, 9, 1752.
[CrossRef] [PubMed]

19



Remote Sens. 2020, 12, 1139

53. Schlemmer, M.; Gitelson, A.; Schepers, J.; Ferguson, R.; Peng, Y.; Shanahan, J.; Rundquist, D. Remote
estimation of nitrogen and chlorophyll contents in maize at leaf and canopy levels. Int. J. Appl. Earth Obs.
2013, 25, 47–54. [CrossRef]

54. Evans, J.R. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 1989, 78, 9–19.
[CrossRef] [PubMed]

55. Bragazza, L.; Freeman, C. High nitrogen availability reduces polyphenol content in Sphagnum peat. Sci.
Total Environ. 2007, 377, 439–443. [CrossRef]

56. Liu, W.; Zhu, D.W.; Liu, D.H.; Geng, M.J.; Zhou, W.B.; Mi, W.J.; Yang, T.W.; Hamilton, D. Influence of nitrogen
on the primary and secondary metabolism and synthesis of flavonoids in Chrysanthemum morifolium
Ramat. J. Plant Nutr. 2010, 33, 240–254. [CrossRef]

57. Li, J.; Zhang, J.; Zhao, Z.; Lei, X.; Xu, X.; Weng, D.; Gao, Y.; Cao, L. Use of fluorescence-based sensors to
determine the nitrogen status of paddy rice. J. Agric. Sci. 2013, 151, 862–887. [CrossRef]

58. Padilla, F.M.; Peña-Fleitas, M.T.; Gallardo, M.; Thompson, R.B. Proximal optical sensing of cucumber crop N
status using chlorophyll fluorescence indices. Eur. J. Agron. 2016, 73, 83–97. [CrossRef]

59. Cui, Z.L.; Zhang, H.Y.; Chen, X.P.; Zhang, C.C.; Ma, W.Q.; Huang, C.D.; Zhang, W.F.; Mi, G.H.; miAo, Y.X.;
Li, X.L.; et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature 2018, 555,
363–366. [CrossRef]

60. Richardson, A.D.; Duigan, S.P.; Berlyn, G.P. An evaluation of noninvasive methods to estimate foliar
chlorophyll content. New Phytol. 2002, 153, 185–194. [CrossRef]

61. Romero, I.; García-Escudero, E.; Martín, I. Leaf blade versus petiole analysis for nutritional diagnosis of Vitis
vinifera L. cv. Tempranillo. Am. J. Enol. Vitic. 2012, 64, 50–64. [CrossRef]

62. Romero, I.; García-Escudero, E.; Martín, I. Effects of leaf position on blade and petiole mineral nutrient
concentration of Tempranillo grapevine (Vitis vinifera L.). Am. J. Enol. Vitic. 2010, 61, 544–550. [CrossRef]

63. Ziadi, N.; Bélanger, G.; Gastal, F.; Claessens, A.; Lemaire, G.; Tremblay, N. Leaf nitrogen concentration as an
indicator of corn nitrogen status. Agron. J. 2009, 101, 947–957. [CrossRef]

64. Kolb, C.A.; Pfündel, E.E. Origins of non-linear and dissimilar relationships between epidermal UV absorbance
and UV absorbance of extracted phenolics in leaves of grapevine and barley. Plant Cell Environ. 2005, 28,
580–590. [CrossRef]

65. Agati, G.; Cerovic, Z.G.; Pinelli, P.; Tattini, M. Light-induced accumulation of ortho-dihydroxylated flavonoids
as non-destructively monitored by chlorophyll fluorescence excitation techniques. Environ. Exp. Bot. 2011,
73, 3–9. [CrossRef]

66. Teal, R.K.; Tubana, B.; Girma, K.; Freeman, K.W.; Arnall, D.B.; Walsh, O.; Raun, W.R. In-season prediction
of corn grain yield potential using normalized difference vegetation index. Agron. J. 2006, 98, 1488–1494.
[CrossRef]

67. Samson, G.; Tremblay, N.; Dudelzak, A.E.; Babichenko, S.M.; Dextraze, L.; Wollring, J. Nutrient stress of
corn plants: Early detection and discrimination using a compact multiwavelength fluorescent lidar. In
Proceedings of the 4th EARSeL Workshop Lidar Remote Sensing of Land and Sea held during the 20th
EARSeL Symposium, Dresden, Germany, 14–16 June 2000.

68. Overbeck, V.; Schmitz, M.; Tartachnyk, I.; Blanke, M. Identification of light availability in different sweet
cherry orchards under cover by using non-destructive measurements with a Dualex™. Eur. J. Agron. 2018,
93, 50–56. [CrossRef]

69. Padilla, F.M.; Gallardo, M.; Peña-Fleitas, M.T.; De Souza, R.; Thompson, R.B. Proximal optical sensors for
nitrogen management of vegetable crops: A review. Sensors 2018, 18, 2083. [CrossRef]

70. Agati, G.; Brunetti, C.; Di Ferdinando, M.; Ferrini, F.; Pollastri, S.; Tattini, M. Functional roles of flavonoids in
photoprotection: New evidence, lessons from the past. Plant Physiol. Biochem. 2013, 72, 35–45. [CrossRef]

71. Louis, J.; Meyer, S.; Maunoury-Danger, F.; Fresneau, C.; Meudec, E.; Cerovic, Z.G. Seasonal changes in
optically assessed epidermal phenolic compounds and chlorophyll contents in leaves of sessile oak (Quercus
petraea): Towards signatures of phenological stage. Funct. Plant Biol. 2009, 36, 732–741. [CrossRef]

72. Louis, J.; Genet, H.; Meyer, S.; Soudani, K.; Montpied, P.; Legout, A.; Dreyer, E.; Cerovic, Z.G.; Dufrêne, E.
Tree age-related effects on sun acclimated leaves in a chronosequence of beech (fagus sylvatica) stands. Funct.
Plant Biol. 2012, 39, 323–331. [CrossRef]

73. Yang, H.; Li, J.; Yang, J.; Wang, H.; Zou, J.; He, J. Effects of nitrogen application rate and leaf age on the
distribution pattern of leaf SPAD readings in the rice canopy. PLoS ONE 2014, 9, e92509. [CrossRef] [PubMed]

20



Remote Sens. 2020, 12, 1139

74. Wang, S.; Zhu, Y.; Jiang, H.; Cao, W. Positional differences in nitrogen and sugar concentrations of upper
leaves relate to plant N status in rice under different N rates. Field Crop Res. 2006, 96, 224–234. [CrossRef]

75. Lin, F.F.; Qiu, L.F.; Deng, J.S.; Shi, Y.Y.; Chen, L.S.; Wang, K. Investigation of SPAD meter-based indices for
estimating rice nitrogen status. Compu. Electron. Agric. 2010, 71S, 60–65. [CrossRef]

76. Abdallah, S.B.; Rabhi, M.; Harbaoui, F.; Zar-kalai, F.; Lachâal, M.; Karray-Bouraoui, N. Distribution of
phenolic compounds and antioxidant activity between young and old leaves of Carthamus tinctorius L. and
their induction by salt stress. Acta Physiol. Plant. 2013, 35, 1161–1169. [CrossRef]

77. Vagiri, M.; Conner, S.; Stewart, D.; Andersson, S.C.; Verrall, S.; Johansson, E.; Rumpunen, K. Phenolic
compounds in blackcurrant (Ribes nigrum L.) leaves relative to leaf position and harvest date. Food Chem.
2014, 172, 135–142. [CrossRef] [PubMed]

78. Mulla, D.J.; Miao, Y. Precision Farming. In Land Resources Monitoring, Modeling, and Mapping with Remote
Sensing; Thenkabail, P.S., Ed.; CRC Press: Boca Raton, FL, USA, 2016.

79. Ziadi, N.; Brassard, M.; Bélanger, G.; Claessens, A.; Tremblay, N.; Cambouris, A.N.; Nolin, M.C.; Parent, L.E.
Chlorophyll measurements and nitrogen nutrition index for the evaluation of corn nitrogen status. Agron. J.
2008, 100, 1264–1273. [CrossRef]

80. Yang, Y.; Timlin, D.J.; Fleisher, D.H.; Lokhande, S.B.; Chun, J.A.; Kim, S.H.; Staver, K.; Reddy, V.R. Nitrogen
concentration and dry-matter accumulation in maize crop: Assessing maize nitrogen status with an allometric
function and a chlorophyll meter. Commun. Soil Sci. Plant Anal. 2012, 43, 1563–1575. [CrossRef]

81. Olioso, A.; Méthy, M.; Lacaze, B. Fluorescence as a Function of Canopy Structure and Leaf Fluorescence.
Remote. Sens. Environ. 1992, 41, 239–247. [CrossRef]

82. Garzonio, R.; di Mauro, B.; Colombo, R.; Cogliati, S. Surface reflectance and sun-induced fluorescence
spectroscopy measurements using a small hyperspectral UAS. Remote Sens. 2017, 9, 472. [CrossRef]

83. Coppo, P.; Taiti, A.; Pettinato, L.; Francois, M.; Taccola, M.; Drusch, M. Fluorescence imaging spectrometer
(FLORIS) for ESA FLEX mission. Remote Sens. 2017, 9, 649. [CrossRef]

84. Miao, Y.; Mulla, D.J.; Randall, G.W.; Vetsch, J.A.; Vintila, R. Combining chlorophyll meter readings and high
spatial resolution remote sensing images for in-season site-specific nitrogen management of corn. Precis.
Agric. 2009, 10, 45–62. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

21





remote sensing 

Article

Assessment of Portable Chlorophyll Meters for
Measuring Crop Leaf Chlorophyll Concentration

Taifeng Dong 1, Jiali Shang 1,*, Jing M. Chen 2,*, Jiangui Liu 1, Budong Qian 1, Baoluo Ma 1,

Malcolm J. Morrison 1, Chao Zhang 1, Yupeng Liu 1, Yichao Shi 1, Hui Pan 1 and Guisheng Zhou 3

1 Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6,
Canada; taifeng.dong@canada.ca (T.D.); jiangui.liu@canada.ca (J.L.); Budong.Qian@canada.ca (B.Q.);
baoluo.ma@canada.ca (B.M.); Malcolm.Morrison@Canada.ca (M.J.M.); Zhangc1700@yzu.edu.cn (C.Z.);
Ykevin.Liu@mail.utoronto.ca (Y.L.); Yichao.Shi@Canada.ca (Y.S.); Pan.Hui@agr.gc.ca (H.P.)

2 Department of Geography and Planning, University of Toronto, Toronto, ON M5S 3G3, Canada
3 College of Agriculture, Yangzhou University, Yangzhou 225009, China; gszhou@yzu.edu.cn
* Correspondence: jiali.shang@canada.ca (J.S.); jing.chen@utoronto.ca (J.M.C.)

Received: 16 October 2019; Accepted: 13 November 2019; Published: 19 November 2019

Abstract: Accurate measurement of leaf chlorophyll concentration (LChl) in the field using a
portable chlorophyll meter (PCM) is crucial to support methodology development for mapping
the spatiotemporal variability of crop nitrogen status using remote sensing. Several PCMs have
been developed to measure LChl instantaneously and non-destructively in the field, however, their
readings are relative quantities that need to be converted into actual LChl values using conversion
functions. The aim of this study was to investigate the relationship between actual LChl and PCM
readings obtained by three PCMs: SPAD-502, CCM-200, and Dualex-4. Field experiments were
conducted in 2016 on four crops: corn (Zea mays L.), soybean (Glycine max L. Merr.), spring wheat
(Triticum aestivum L.), and canola (Brassica napus L.), at the Central Experimental Farm of Agriculture
and Agri-Food Canada in Ottawa, Ontario, Canada. To evaluate the impact of other factors (leaf
internal structure, leaf pigments other than chlorophyll, and the heterogeneity of LChl distribution)
on the conversion function, a global sensitivity analysis was conducted using the PROSPECT-D model
to simulate PCM readings under different conditions. Results showed that Dualex-4 had a better
performance for actual LChl measurement than SPAD-502 and CCM-200, using a general conversion
function for all four crops tested. For SPAD-502 and CCM-200, the error in the readings increases
with increasing LChl. The sensitivity analysis reveals that deviations from the calibration functions
are more induced by non-uniform LChl distribution than leaf architectures. The readings of Dualex-4
can have a better ability to restrict these influences than those of the other two PCMs.

Keywords: leaf chlorophyll concentration; portable chlorophyll meter; crop; PROSPECT-D; sensitivity
analysis; remote sensing; radiative transfer model

1. Introduction

Estimation of plant traits using remote sensing data, such as leaf nitrogen concentration, leaf
chlorophyll concentration (LChl) and leaf area index (LAI), is important for mapping the spatiotemporal
variability of crop and soil conditions, and modeling crop nutrient balance, and crop productivity [1–3].
LChl is the main light-harvesting pigment that determines leaf photosynthetic capacity, and it is highly
influenced by nitrogen fertilization [4–6]. Furthermore, incorporating LChl into process-based crop
models could improve model performance [7,8]. LChl varies with leaf positions, species, crop types,
crop growth stages and crop managements [7,9,10]; thus, knowledge on the spatiotemporal variability
of LChl is important to understand the status of crop growth condition and productivity [8,11,12].
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A number of studies have investigated the potential of remote sensing data in estimating LChl using
statistical or physical based approaches [13–15]. There has been rapid development in new satellite
sensors, such as multispectral satellite sensors with red-edge (680–750 nm) reflectance measurements
(e.g., Sentinel-2 and VENμS) [16,17], the VNIR-SWIR hyperspectral satellite sensors (e.g., HyspIRI and
EnMAP) [18,19], and the multi- and hyperspectral imaging systems mounted on a UAV system [19].
In particular, these sensors possess the red-edge or hyperspectral reflectance that is highly sensitive
to changes in LChl [4]. This allows for improved accuracy for LChl estimation from remote sensing
data at different spatial scales. Accurate in situ LChl measurements are essential for developing and
validating remote-sensing LChl estimation models.

Destructive and non-destructive methods are often used for LChl measurement. Both methods rely
on measured light absorption/transmission to determine LChl [2,20,21]. Conventionally, destructive
measurement is conducted using a wet-chemical method in a lab setting [4,22]. Leaves are harvested
from the plant and chlorophyll is extracted using organic solvents (e.g., acetone, methanol, ethanol,
dimethyl sulphoxide (DMSO), or N-dimethyl formamide (DMF) [4,22,23]. A spectrophotometer, a
fluorometer, or a high-performance liquid chromatography (HPLC) is often used to measure light
absorptions at a few wavelength ranges [4,23], which are then used to determine LChl. The lab-based
approach is costly, labour intensive and time consuming. In addition, destructive sampling does not
allow for tracking the temporal dynamics of LChl of the same leaves [5].

Non-destructive methods provide a cost-efficient way for frequent measurement of LChl over a
large area [2,9,10]. Studies have found that spectral indices derived from light absorbance or reflectance
at the visible and near infrared (NIR) regions have good correlations with LChl [24–27] and can be used to
develop non-destructive methods for LChl measurements [27,28]. Portable chlorophyll meters (PCMs),
such as the SPAD-502/501 (Soil Plant Analysis Development (SPAD) chlorophyll meter, Konica–Minolta,
Inc., Osaka, Japan), the CCM-200 (CCM-200 plus Chlorophyll Content Meter, Opti-Sciences, Inc.,
Hudson, NH), and the Dualex-4 (Dualex Scientific+TM Polyphenol & Chlorophyll Meter, FORCE-A,
Orsay, France), have been developed for non-destructive measurements of LChl and nitrogen in the
field [2,29,30]. The readings from the PCMs (meter reading) are relative quantities that need to be
converted to actual LChl. The transformation equations are usually established using meter readings
and lab-measured LChl of the same leaf area [21,29–32]. For instance, Markwell et al. [21] developed a
widely used exponential equation to estimate LChl from SPAD-502 readings, and Cerovic et al. [29]
subsequently developed a generic conversion function for SPAD-502 readings based on more data
collected in different studies (e.g., Markwell et al. [21], Richardson et al. [30] and Marenco et al. [33]).

It should be noted that factors other than LChl may also influence the light transmittance of
a leaf, such as leaf structure, water content and leaf pigment distribution [2,34,35]. Environmental
factors such as light intensity can also affect light transmittance of a leaf, resulting in measurement
errors of LChl [36,37]. Influences on light transmittance can be categorized into two groups [38–40].
The first is the detour effect (light scattering), caused primarily by non-chlorophyll components (e.g.,
leaf architecture and dry matter), which can result in an increase in the path length of light inside
a leaf [41]. The sieve effect occurs when light passes through leaf tissues without being absorbed,
thereby decreasing total absorption [39,40,42]. The distribution of chlorophyll molecules within a leaf
is usually non-uniform, associated with the structural organization of the grana within the chloroplasts,
chloroplasts within the cells, and cells within the tissue layers [43,44]. Furthermore, the influences
on light transmittance vary with wavelength. Since different PCMs are developed based on different
wavelengths, they may be impacted differently by different factors. Large uncertainties have been
reported when converting meter readings into LChl using a general conversion function for different
crops [29,39]. An in depth understanding of the mechanisms for the PCMs is useful for improving
protocols to obtain high-quality in situ LChl measurements. However, it is difficult to consider the
impacts from all leaf/canopy and environmental factors through field experiments. Using a leaf
radiative transfer model to simulate the complex light transmission processes inside a leaf may provide
a solution [14,35,43]. This study, therefore, was designed to address the following: (1) the performances
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of different PCMs in estimating actual LChl, (2) the relationships between PCM reading and the actual
LChl, (3) the sources of errors in PCM measurements based on simulations of light transmission in a
leaf using radiative transfer model, and (4) the potential of deriving a generic conversion equation for
a specific PCM. To address these, an experiment was conducted to collect PCM readings of corn (Zea
mays L.), spring wheat (Triticum aestivum L.), soybean (Glycine max L. Merr.) and canola (Brassica napus
L.) using the three aforementioned instruments (SPAD-502, CCM-200 and Dualex-4) at the Central
Experimental Farm (CEF) of Agriculture and Agri-Food Canada (AAFC) in Ottawa, during the 2016
growing season.

2. Materials and Methods

2.1. Theoretical Basis of Portable Chlorophyll Meters

A portable chlorophyll meter measures the light transmittance of a leaf at two different wavelengths,
the index band and the reference band. The index band resides in a chlorophyll absorption region,
whereas the reference band is located in the NIR region. There is generally no light absorption in the
reference band, which is used to compensate for mechanical differences caused by leaf structure, such
as leaf thickness or/and leaf density [24,27,45].

The SPAD-502 (Konica–Minolta, Inc., Osaka, Japan) is the earliest and most widely used PCM.
It quantifies LChl based on the difference of light transmittance between the NIR band (centered at
940 nm with a full-width at half magnitude (FWHM) of about 10 nm) and the red band (centered at
650 nm with FWHM of about 30 nm). The reading is formulated as [21,40]:

SPAD = k
[
log (

I′940

I940
) − log (

I′650

I650
)

]
+ c = k[log (T940) − log (T650)] + c (1)

where k and c are calibration coefficients, I′940 and I′650 are transmitted light intensities at respective
wavelengths, I940 and I650 are light intensities of the LED light sources, and T940 and T650 are light
transmittances through the leaf. SPAD-502 has a 6 mm2 (2 mm × 3 mm) measurement aperture.
The claimed accuracy of the SPAD-502 reading is within ±1.0 unit for a range of 0 to 50 under normal
conditions. The value may be less accurate when the reading is greater than 50.

The CCM-200 PCM (Opti-Sciences, Inc., Hudson, NH, USA, Apogee Instruments 2011) measures
a chlorophyll content index (CCI)—the ratio of leaf light transmittance between the wavelength of 931
and 653 nm (T931 and T653) ([39]:

CCI =
I′931/I931

I′653/I653
=

T931

T653
(2)

where, I′931 and I′653 are the measured leaf light transmission intensities at respective wavelengths, and
I931 and I653 are the light intensities of the LED light source centered at 931 (FWHM about 25 nm) and
653 nm (FWHM about 50 nm), respectively. Calibration is required every time the instrument is turned
on. The CCM-200 has a sensing aperture of 71 mm2 (9.5 mm diameter). The readings of CCM-200
range from 0 to 200, with a resolution of ±1.0 CCI units.

The Dualex-4 Scientific (FORCE-A, Orsay, France) is a new-generation polyphenol and chlorophyll
meter that measures the leaf chlorophyll index (Chl), the flavonol index (Flav), the anthocyanin index
(Anth) and nitrogen balance index (NBI) [29,46]. Flav and Anth are relative measures of flavonol and
anthocyanins’ concentration, respectively [46–48]. NBI is the ratio between Chl and Flav, corresponding
to LChl corrected by dry leaf mass per unit area. Calculation of Chl uses a red-edge band centered at
710 nm and an NIR band centered at 850 nm. The reason for using a red-edge band is that indices
based on the red-edge and the NIR wavelength have better sensitivity to chlorophyll concentration
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than the indices based on the red and NIR wavelengths [28,31,49]. Its circular sensing aperture has a
diameter of 5 mm (~20 mm2). The Chl readings range from 5 to 80 μg cm−2. The function of Chl [29] is:

Chl = k (
I′850/I850

I′710/I710
− 1) + c = k(

T850

T710
− 1) + c (3)

where k is the calibration coefficient to obtain leaf chlorophyll concentration in the unit of μg cm−2,
and c is a constant for correcting the potential bias of the model. Instrument calibration is required
prior to use and is done with no sample in the measuring head.

2.2. Leaf Chlorophyll Concentration Measurement

Field experiments were conducted at the Central Experimental Farm (45.38◦ N, 75.71◦ W, Figure 1)
in Ottawa, Ontario, Canada, which included a field experiment and a greenhouse experiment. Field
sampling for corn, soybean, canola and spring wheat was conducted three times during the growing
season on 21 June, 7 July and 4 August 2016. Measurements of LChl for corn and soybeans were
collected from a rotation experiment field with eight rotation patterns. The field was divided into 48
strips, each about 9 m wide and 17 m long. All the corn plots received three levels of nitrogen (N)
fertilizer (0, 100 and 200 kg N ha−1) with six replications for each level of N application. Soybean was
not fertilized. LChl were measured at the plots of continuous cropping with corn or soybean. Canola
was planted in a field adjacent to the rotation field (Figure 1). The field was divided into two sections
for two different experiments. The first experiment was designed to test eight rates of N application on
two canola varieties (InVigor L140P and InVigor 5440), each with four replicates. Each plot was 4.0 m
wide by 6.0 m long. The second experiment was designed to test 12 combinations of different rates of
N and Sulphur application, with three rates of N (0, 75, 150 kg ha−1) and four rates of Sulphur (0, 10,
20, 40 kg ha−1). Each treatment had four replicates, resulting in a total of 48 plots with the same size as
the first experiment. In this study, LChl was measured at plots receiving five levels of N application (0,
50, 100, 150 and 200 kg N ha−1) in the first experiment, and plots receiving 75 kg N ha−1 and four rates
of Sulphur (0, 10, 20, 40 kg ha−1) in the second experiment. The spring wheat field was adjacent to the
canola field (Figure 1). The field was treated with uniform nitrogen fertilization (150 kg N ha−1). LChl
was measured at 8 randomly selected plots.

Figure 1. Location of the four sampling fields in the Central Experimental Farm, Ottawa, Ontario,
Canada; background satellite imagery (9 June 2018) obtained from the Google Earth Pro.
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In the greenhouse, canola was seeded on 2 May 2016. Five rates of N (0, 50, 75, 100, and
150 kg N ha−1) were applied with six replications per treatment to examine the response of crop growth
to N application. There were a total of 30 pots with a size of 15 cm in diameter and 15 cm in depth.
The soil used was a mixture of one-half sand and one-half potting soil to create soil N deficient.
The pots were placed on a bench 1 m above the ground, with a distance of 10 cm from each other.
The greenhouse was controlled at 25–15 ◦C day/night temperature and with a 16 h photoperiod. Plants
received both natural light, and light from fluorescence lamps with an intensity of 300 μmol m−2 s−1

during cloudy periods. Chlorophyll measurements using PCMs and leaf sampling were conducted
on 30 May and 16 June 2016, corresponding to the plant’s growth stage, with 5–6 leaves and early
flowering, respectively.

A total of 220 plants were selected from the two experiments and from different dates (Table 1).
For each plant, a fully expanded leaf from the top, usually the second leaf, was selected for measurement.
Multiple readings were taken for a leaf depending on its size, and the average reading was used as the
representative value for the meter reading of each leaf. In detail, four to five readings were taken for
soybean and canola at the middle portion of the leaf and on two sides of the main rib (avoiding the
midrib and veins). For spring wheat, six to eight readings were taken at the two sides of the main
rib. Measurements with eight to ten readings for corn leaves were taken between the midrib and
the leaf margin about 20 cm from the stalk. Readings were taken at the same area on the leaf for the
three instruments.

Table 1. Description of the total number of samples for chlorophyll content measurement in each
crop type.

Crop Type Seeding Date May 30 June 16 June 21 July 07 August 04 Total

Experiment 1

Corn May 18 - - 19 18 18 55
Soybean May 12 6 9 10 25

Spring wheat April 27 - - 7 9 6 23
Canola May 6 30 27 Harvested 57

Experiment 2
(greenhouse) Canola May 2 30 30 - - - 60

Total - 30 30 62 64 34 220

For destructive sampling, four to six discs (1.09 cm2) were clipped from the same leaf at the same
area where readings were taken using the three PCMs. Leaf discs were placed into a 15 mL plastic
tube and kept cool. In the laboratory, the samples were stored in liquid nitrogen at −80 ◦C before
further processing. For chemical determination of pigment concentration, the samples from each site
were placed in 10 mL of ethanol solution (96%, v/v) and incubated at room temperature in the dark
for four days until leaf samples turned white completely. The solution for each site was put in three
cuvettes, and light absorption was measured for each cuvette using a Varian Cary 100 Bio UV-Visible
Spectrophotometer (Thermo Electron Corporation, Madison, WI, USA) at three wavelengths: 665, 649
and 470 nm. Chlorophyll a (Chla), chlorophyll b (Chlb) and total carotenoid concentrations (Car) were
calculated using the following equations (Lichtenthaler et al. [22]):

Chla(μg cm−2) = (13.95A665 − 6.88A649) ×V/TLA (4)

Chlb(μg cm−2) = (24.96A649 − 7.32A665) ×V/TLA (5)

LChl(μg cm−2) = (6.63A665 + 18.08A649) ×V/TLA (6)

Car(μg cm−2) = (1000A470 − 2.05Chla − 114.8Chlb)/245×V/TLA (7)

where A is the measured absorbance at different wavelengths given by the subscript (in nm); TLA
is the total leaf area (cm2) used, and V is the amount of ethanol (solvent, mL). The total chlorophyll
concentration (LChl) was the sum of Chla and Chlb. The composition of LChl (Chla/Chlb ratio) was
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also calculated. Values for the three cuvettes of a site were averaged to obtain pigment concentrations
for the site.

2.3. Statistical Analysis

Among the 220 samples collected, 194 samples were retained for analysis. The other 26 samples
were excluded, as their measured absorbance at 649 nm was wrong (>1 absorbance unit). To identify
the difference in leaf pigment traits among the four crops, statistical indicators, including the average,
the minimum, the maximum, and the coefficient of variance (CV), of the meter readings and leaf
pigments’ concentrations were derived separately. Flav, Anth, and NBI, derived from the Dualex-4,
were also analyzed. Correlations among leaf pigment concentrations determined from the lab, and
linear or nonlinear regressions between meter readings and leaf pigment concentration (LChl and
Car) were then analyzed, respectively. The purpose of this analysis was to investigate whether other
pigments impacted on the conversion functions from optical reading to the actual LChl.

2.4. Sensitivity Analysis

Leaf reflectance and transmittance can be simulated using a leaf radiative transfer mode, by
taking into consideration LChl as well as interference factors (e.g, leaf structure and leaf pigments
other than LChl) [14,34,35,43]. PCM is developed based on sensing technologies through spectral
measurements. The PROSPECT-D [14], the newest version of the PROSPECT leaf optical model, was
used. The model simulates leaf directional–hemispherical reflectance and transmittance in the spectral
range 400–2500 nm using a set of leaf parameters, such as leaf anthocyanins (Canth), chlorophyll and
carotenoid concentration, leaf water concentration (Cw), leaf dry matter concentration (Cm), and leaf
structure parameter (Ns) [14,35].

To evaluate the detour effect, leaf–light transmittance was simulated using the PROSPECT-D
model. Leaf brown pigment (Cbp) was given a value of zero, as the analysis was performed on green
leaves only. Except for a constant value assigned to LChl, the other variables (Ns, Cw, Car, Cm and
Canth) were varied in a range determined from field measurements and the literature studies [7,14,35],
following a uniform distribution (Table 2). Light transmittances at wavelengths centered at 940, 931,
850, 710, 653, and 650 nm were then simulated. The spectral response functions of the LEDs used in the
PCMs [50–52] were also considered. A global sensitivity analysis (GSA) was conducted to determine
the contribution variation for each leaf parameter, using the SIMLAB (Simulation Environment for
Sensitivity and Uncertainty Analysis, http://simlab.jrc.ec.europa.eu/) software. Detailed information
on the variance-based GSA and its application in the simulation of PROSPECT model can be found in
the studies of Dong et al. [53] and Liu et al. [54].

Table 2. Summary of PROSPECT-D parameters used to simulate leaf transmittance.

Variable Constant Range Step Reference

Leaf structure parameter, Ns 1.55 1.0–2.8 0.2 [35]
Leaf chlorophyll concentration, LChl (μg cm−2) 48.39 10–80 5 Field collection
Leaf carotenoid concentration, Car (μg cm−2) 8.04 3.6–12.6 1.0 Field collection
Leaf water concentration, Cw (g cm−2) 0.0113 0.004–0.04 0.004 [35]
Leaf dry matter concentration, Cm (g cm−2) 0.0053 0.0017–0.0137 0.00133 [35]
Leaf anthocyanin concentration, Canth (μg cm−2) 1.0 0–14.0 1.4 [14]
Leaf brown pigment, Cbp 0.0 - - [55]

To investigate the sieve effects, the approach proposed by Uddling et al. [38] was used in the
PROSPECT-D simulations. It is assumed that the variation in actual LChl within the measured area
follows a normal distribution around the average value of LChl (μ). The standard deviation (σ) of
LChl was set within the range 10–50% of μ in steps of 10% of μ. The average LChl (μ) was varied
from 10 to 80 μg cm−2 with steps of 5 μg cm−2. For simplicity, other variables were given constant
values obtained from field measurements (e.g., Car) or the literature studies (e.g., Ns, Cm and Canth)
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(Table 2). For instance, Car was assigned as 8.04 g cm−2, as that is the mean value of Car obtained in our
in situ measurements, and Ns was 1.55 as an average value of cereal crops [35,54]. The variations in
the log (T940/T650) (Equation (1)), the (T931/T653) (Equation (2)) and the (T850/T710 − 1) (Equation (3))
responses to different degrees of heterogeneity of leaf chlorophyll concentration distribution were
then analyzed.

3. Results

3.1. Variability of LChl

Statistics of meter readings and lab pigment concentration measurements for four crops together
are given in Table 3. Readings by CCM-200 (CCM-200-CCI) had a wider range and larger variation
(CV = 46.3%, 8.7–80.3) than those of SPAD-502 (CV = 18.3%, 25.5–70.3) and Dualex-4 (Dualex-4-Chl,
CV = 22.5%, 22.1–61.0). Large variations were also observed in Flav (CV = 42.5%), Anth (CV = 46.3%)
and NBI (CV = 65.3%) of Dualex-4. For lab chemical measurements, the absolute pigment concentration
ranged from 25.6 to 83.6 μg cm−2 for LChl (μ = 48.4 μg cm−2 and CV = 25.3%) and 3.6 to 13.3 μg cm−2

for Car (CV = 28.0%). These suggest that the variability of the SPAD-502 readings and the Dualex-4-Chl
readings was closer to the variability of actual LChl than that of the CCM-200-CCI. For the LChl
composition, Chla (19.9 to 62.8 μg cm−2) was generally greater than Chlb (4.6 to 21.1 μg cm−2), with a
ratio (Chla/Chlb) between 2.2 and 4.6 (μ = 3.3, CV = 14.4%). Car generally constituted about 14% of the
sum of LChl and Car, as all selected leaves were in dark-green.

Table 3. Statistics of leaf pigment concentration measurements of four crops (corn, soybean, spring
wheat and canola), using three portable chlorophyll meters and lab chemical methods.

LChl Types Mean CV (%) a Min b Max b

Portable chlorophyll meter

SPAD-502 46.6 18.3 25.5 67.8
CCM-200-CCI 33.1 46.3 8.7 75.8
Dualex-4-Chl 37.4 22.6 22.1 61.0
Dualex-4-Flav 1.2 42.5 0.2 2.0

Dualex-4-Anth 0.1 46.3 0.0 0.2

Dualex-4-NBI 41.1 65.3 11.6 122.5

Lab chemical measurement

Car (μg cm−2) 8.0 28.0 3.6 13.3
Chla (μg cm−2) 37.1 26.0 19.9 62.8
Chlb (μg cm−2) 11.3 25.9 4.6 21.1
Chla/Chlb ratio 3.3 14.4 2.2 4.6
LChl (μg cm−2) 48.4 25.3 25.6 83.6

a CV is the coefficient of variation, as the ratio of the standard error to the average value (n = 195); b Min and Max
are the minimum and the maximum values, respectively.

Leaves of the four crops were different, according to the statistical characteristics of lab pigment
concentration measurements in each crop (Figure 2). Chla/Chlb of corn, with a mean value of 4.0
and range of 3.2–4.6, was higher than that of the other three crops, and Chla/Chlb for canola, spring
wheat and soybean crops were close to each other. Spring wheat had a larger mean value of pigment
concentrations (LChl, Chla, Chlb and Car) than other crops (Figure 2). Soybean had lower variation
(CV = 15.4% for LChl and 11.5% for Car) than the other three crops (Table A1). Pigment concentrations
of canola in the greenhouse were apparently lower than that of canola in the field. Similar differences
can be found in the Flav index of Dualex-4 between the greenhouse canola (Flav = 0.3) and the field
canola (Flav = 1.7) (Table A1). This may reflect the great difference in light conditions between field
and greenhouse, as the Flav index of Dualex-4 is an indicator of light intensity [36,47,56].
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Figure 2. Mean value and standard value in four crops for Car (a), LChl (b), Chla (c), Chlb, (d) Chla/Chlb
ratio (e), SPAD-502 (f), Dualex-4-CCI (g) and CCM-200 (h).

CCM-200 readings showed the largest variability for any specific crop (Table A1 and Figure 2).
Figure 2f–h show that average values of meter readings by each PCM were different among the four
crops. The relative differences of average values among the four crops for the SPAD-502 readings were
similar to those of the CCM-200-CCI, but were different from those of Dualex-4-Chl. The averages of
Dualex-4-Chl for the four crops showed similar relative differences to actual LChl (Figure 2b).

3.2. Correlation among Leaf Pigment Concentrations

Examination of the correlation between Chla, Chlb, LChl and Car is helpful to understand the
potential impact of other pigments on the conversion of PCM readings into actual LChl. Figure 3
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shows that there were strong linear correlations among leaf pigment concentrations determined by lab
chemical method. The linear regression between Chla and Chlb for corn (C4 plant) was different from
that of the other three crops (C3 plant), showing a greater Chla/Chlb. In comparison, the relationship
between the Car and LChl was more universal among the four crops, and both Chla and Chlb had a
strong correlation with Car.

 

  

μ

(a) Chlb vs. Chla

μ

(b) LChl vs. Car

μ

(c) Chla vs. Car

μ

(d) Chlb vs. Ca

Figure 3. Scatterplots showing the linear relationship between leaf pigments in four different crops for
(a) leaf chlorophyll a (Chla) vs. leaf chlorophyll b (Chlb), (b) leaf chlorophyll concentration (Chla+Chla,
LChl) vs. leaf carotenoid concentration (Car), (c) Chla vs. Car and (d) Chlb vs. Ca.

3.3. Estimation of Pigment Concentration from PCM Readings

Figure 4 shows that both Car and LChl had a strong linear or nonlinear correlation with PCM
readings. In general, the best regression model is nonlinear for SPAD-502 and CCM-200, but is linear
for Dualex-4. It was observed that different crops had different relationships between SPAD-502 and
CCM-200 readings and actual pigment concentrations (Table 4). Except for Dualex-4, errors of estimates
in both LChl and Car increased with the increasing value of meter readings. For the same level of
actual LChl (and Car), SPAD-502 and CCM-200 had lower readings for spring wheat and soybean than
for corn and canola. The R2 values for SPAD-502 (R2 = 0.48 for LChl and R2 = 0.40 for Car) were larger
than those for CCM-200-CCI (R2 = 0.40 for LChl and R2 = 0.33 for Car), suggesting that the readings
of SPAD-502 were better at restricting interference from other factors (e.g., leaf architectures) than
CCM-200-CCI. The actual LChl values higher than 60 μg cm−2 for corn and canola could not be well
estimated from CCM-200-CCI. Dualex-4-Chl was the best PCM for consistent measurements of LChl
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for all the four crops (R2 = 0.74). A generic function was possible for converting Dualex-4-Chl readings
into actual LChl for the four crops, with an average accuracy of 87%.

 

 

 

(a) SPAD-502 vs. Car (b) SPAD-502 vs. LChl

(c) CCM-200 vs. Car (d) CCM-200 vs. LChl

(e) Dualex-4 vs. Car (f) Dualex-4 vs. LChl

Figure 4. Scatterplots showing linear relationships between leaf carotenoid concentration (Car, μ cm−2),
leaf chlorophyll concentration (LChl, μ cm−2) and meter readings for SPAD-502, Dualex-4 and CCM-200
in four different crops.
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Table 4. Regression analysis between readings from the handheld chlorophyll meters (meter reading,
(x) and lab-measured leaf carotenoid and chlorophyll concentration (y); RMSE (μg cm−2) is the
root–mean–square error.

Handheld
Chlorophyll

Meter

Leaf Chlorophyll Concentration Leaf Carotenoid Concentration

Regression R2 RMSE Regression R2 RMSE

Canola
SPAD-502 y = 0.88x + 1.55 0.77 4.51 y = 0.21x − 2.78 0.80 0.99

CCM-200-CCI y = 0.45x + 27.25 0.75 5.93 y = 0.11x + 3.30 0.78 1.30
Dualex-4-Chl y = 1.14x + 4.28 0.83 3.86 y = 0.26x − 1.52 0.75 1.11

Corn
SPAD-502 y = 1.31x − 13.02 0.90 3.68 y = 0.17x − 0.47 0.74 0.93

CCM-200-CCI y = 0.72x + 23.18 0.81 5.04 y = 0.10x + 4.30 0.68 0.99
Dualex-4-Chl y = 1.21x + 0.37 0.69 6.33 y = 0.14x + 1.94 0.46 1.27

Soybean
SPAD-502 y = 1.91x − 21.71 0.88 2.79 y = 0.23x + 0.71 0.68 0.63

CCM-200-CCI y = 8.53x0.60 0.84 3.44 y = 3.22x0.37 0.59 0.72
Dualex-4-Chl y = 1.55x − 1.20 0.90 2.56 y = 0.18x + 3.45 0.64 0.66

Spring
wheat

SPAD-502 y = 10.71e0.04x 0.66 8.88 y = 2.54e0.03x 0.48 1.48
CCM-200-CCI y = 4.58x0.76 0.74 7.57 y = 1.20x0.62 0.58 1.28
Dualex-4-Chl y =1.52x − 5.57 0.72 5.12 y = 0.19x + 1.76 0.52 1.01

All crops
SPAD-502 y = 18.29e0.02x 0.48 9.31 y = 0.16x + 0.47 0.39 1.75

CCM-200-CCI y = 14.49x0.34 0.40 10.12 y = 2.18x0.37 0.33 1.88
Dualex-4-Chl y = 1.27x + 1.11 0.74 6.25 y = 0.20x + 0.51 0.55 1.48

3.4. Relationship of Meter Reading Averages and Deviations

Multiple readings were taken per plant sample using the PCMs, from which the average and the
standard deviation can be derived for each sample plant. Figure 5 shows the relationship between the
averages and the standard deviations of the PCM readings. The results of the greenhouse canola are
shown as an example, using SPAD-502 measurements. The standard deviation generally increased for
both SPAD-502 and CCM-200-CCI readings which suggests that the sources of measured error of the
two instruments increased with actual LChl. However, the standard deviation in the Dualex-4-Chl
readings was smaller and did not show an apparent increasing trend.

 

 

(a) SPAD-502 (b) CCM-200

(c) Dualex-4

Figure 5. Relationship between meter readings and standard deviation error of measurements for
SPAD-502, CCM-200 and Dualex-4; the meter reading was the average value of 4–5 readings of each leaf
sample and the standard deviation value was derived from these readings; the standard deviation for
SPAD-502 was only recorded for the canola in the Greenhouse.3.5. Factors Affecting Meter Readings.
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3.4.1. Influence of Leaf Parameters

Results from the global sensitivity analysis (GSA) in Table 5 indicate that variability of light
transmittance is primarily affected by LChl and Ns for the index band and by Ns and Cm for the
reference band. Compared with the index band used in Dualex-4-CCI (710 nm), light transmittance
in the index band used by both SPAD-502 (650 nm) and CCM-200-CCI (653 nm) is more sensitive to
LChl, especially low LChl. Ns contributed >90% of the light transmittance variability for the reference
band. Increasing Ns could increase light interaction probability within a leaf, and thereby boost light
absorption and reduce light transmittance [14,40,57,58]. Increasing Cm would yield similar results but
at a lower level. The impact of other parameters on light transmittance variability, including Car, Canth

and Cw, were relatively small.

Table 5. Results of the global sensitivity analysis (GSA). The first order index derived from the GSA
represents the contribution of a parameter (Ns, LChl, Car, Cw, Cm and Canth in the first row) to a
variable (T650, T653 etc. in the second column), and the interaction effects of all the parameters.

Ns LChl Car Cw Cm Canth Interactions

Index band
T650 (SPAD-502) 11.36 79.73 0.00 0.00 0.01 0.00 8.90
T653 (CCM-200) 12.00 79.31 0.00 0.00 0.02 0.00 8.67
T710 (Dualex-4) 42.57 55.96 0.00 0.00 0.33 0.00 1.14

Reference
band

T940 (SPAD-502) 95.74 0.00 0.00 0.35 3.53 0.00 0.38
T931 (CCM-200) 95.72 0.00 0.00 0.38 3.52 0.00 0.38
T850 (Dualex-4) 95.85 0.00 0.00 0.01 3.75 0.00 0.39

Ratio

T940/T650 11.37 74.13 0.00 0.01 0.05 0.00 14.44
Log(T940/T650)
(SPAD-502) 7.50 91.68 0.00 0.01 0.03 0.00 0.78

(T931/T653)
(CCM-200) 10.81 79.96 0.00 0.02 0.05 0.00 9.16

(T850/T710)
(Dualex-4) 10.91 84.39 0.00 0.00 0.17 0.00 4.53

Note: Ns: leaf structure parameter; LChl (μ cm−2): leaf chlorophyll concentration; Car (μ cm−2): leaf carotenoid
concentration; Cw (μ cm−2): leaf water concentration; Cm (μ cm−2): leaf dry matter concentration and Canth (μ cm−2):
leaf anthocyanin concentration.

Table 5 also shows that the ratio between NIR and VIS transmittance can suppress the interaction
effects of leaf structure (e.g., Ns and Cm) on meter readings. The effect is more apparent for T850/T710
in Dualex-4-Chl. The influence of leaf parameters on T940/T650 used in SPAD-502 is not different
from that on T931/T653 used in CCM-200. This is because the center wavelengths of the two bands
used in SPAD-502 are close to that used in the CCM-200. However, it is important to note that the
logarithmic transformation of T940/T650 used in the SPAD-502 instrument reduces the influence of Ns

and other parameters, and thereby improves its sensitivity to LChl measurement, compared with the
ratio of T940/T650 and the ratio of T931/T653. Compared to CCM-200 and Dualex-4, this increases the
sensitivity of SPAD-502 to LChl. The meter readings of Dualex-4 are more sensitive to LChl compared
with that of CCM-200.

Further analysis (Figure 6) showed that the variability of PCM readings caused by other interference
factors (Ns, Cw, Car, Cm and Canth) increases with LChl, consistent with the studies by Uddling et al. [38]
and Nauš et al. [40]. The result in Figure 6(d) shows that log(T940/T650) used in SPAD-502 could have
the best performance in reducing the influences of light scattering caused by interference factors (e.g.,
leaf structure), especially at a high LChl. The change in CV was more stable for Dualex-4 (T850/T710;
12.21–21.35%) and SPAD-502 (log (T940/T650); 7.66–12.21%). However, the change in CV for SPAD-502
(log (T940/T650)) was generally lower than for Dualex-4 (T850/T710).
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Figure 6. Uncertainty of the readings (shown by the error bars) due to interference factors other than
leaf chlorophyll for the three instruments (a–c) and the relative error as a function of leaf chlorophyll
concentration (d). The solid gray lines represent the 1:1 relationship (no impact from other factors).
Parameters of the PROSPECT-D simulation are given in Table 2.

3.4.2. The Influence of Non-Uniform LChl Distribution

Figure 7 shows that the impact of non-uniform distribution of LChl on meter readings becomes
more apparent with increasing LChl. Meter readings decrease with increasing heterogeneity of LChl
distribution, in particular at high LChl values. This is more apparent for CCM-200 and less apparent
for Dualex-4. The readings of Dualex-4 were the least affected by the non-uniform distribution of LChl,
as the sensitivity of LChl to light transmission at 710 nm was weaker than at the red wavelengths
(Table 5).
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Figure 7. Influence of non-uniform distribution of leaf chlorophyll concentration on the readings of
portable chlorophyll meters: (a) SPAD-502; (b) CCM-200; (c) Dualex-4; the solid gray lines (1:1 line)
represent the change of light transmittance under the same amount of leaf chlorophyll concentration
with uniform distribution. Parameters of the PROSPECT-D simulation are shown in Table 2.

4. Discussion

The four crops were selected to explore the capability of the three PCMs for crop LChl measurement.
Leaf pigment contents were different among the four crops (Figure 2 and Table A1). In particular,
the composition of LChl (i.e., Chla/Chlb ratio, Table A1) was obviously different between C4 plants
(corn) and C3 plants (spring wheat, canola and soybean) because of their difference in photosynthesis
pathways [39,56,59,60]. Actual LChl, especially high LChl, had a larger linear correlation coefficient
with the Dualex-4-Chl readings than with the SPAD-502 and the CCM-200-CCI for an individual
crop and for the four crops combined (Table 4). Both SPAD-502 and CCM-200-CCI tend to have a
nonlinear relationship with actual LChl, as they are sensitive to LChl at low LChl rates but are easily
saturated at high LChl rates [61]. These results are consistent with the results from Cerovic et al. [29]
and Casa et al. [32], in which Dualex-4-Chl performed better than the other two instruments. More
importantly, there is a greater potential to develop a generic calibration function for LChl estimates of
the four crops using Dualex-4-Chl than using SPAD-502 and CCM-200-CCI. Dualex-4 could be more
accurate and applicable than the other two PCMs in measuring LChl over a wide, dynamic range
using a generic conversion function. Time and effort taken to recalibrate the concversion fuction for
different crops would be largely reduced by using the Dualex-4 compared to the other two PCMs.
Moreover, Dualex-4 has lower uncertainties at high LChl rates (Figures 5 and 7). LChl generally shows
an increasing trend during the vegetative stage, and reaches its maximum at the peak growing stage,
which is an improtant inditor for asessing crop nitrogen uptake and crop yield [7,62]. Thus, Dualex-4
might be a better PCM to accuartely measure LChl at the peak growth stage.

Sensitivity analysis using the PROSPECT-D model simulation revealed that the leaf structure
parameter (Ns) had a strong impact on the variability of PCM readings. The literature showed similar
results; PCM readings were significantly affected by leaf internal architecture such as leaf thickness,
specific leaf mass, and leaf succulence [12,27,33,58,63]. Variability in the leaf structure parameter greatly
influenced light interactions within the leaf, resulting in significant changes in light transmittance in
the VIS and NIR ranges [27,35,57]. Our study showed that the influence of leaf structure parameters
was different on both the reference and the index bands. The influence of the parameters on the index
band (710 nm) for Dualex-4-Chl was much greater than for SPAD-502 (650 nm) and CCM-200-CCI
(653 nm), while the influence of the parameters on the reference band was comparable for all three
PCMs (Table 5). The influence of multiple scattering of light by leaf tissues could be further reduced by
taking a simple ratio of NIR to VIS transmittance [26,27,39,58,64]. The ratio of T850/T710 was better
to restrict the influence of leaf structure parameters than T940/T650 and T937/T653. The logarithmic
function applied to the ratio of 940/650 can restrict the influence of leaf structure parameters, especially
at high LChl, and improve the sensitivity to Cab. However, the overall ability of the three PCMs to
reduce the impacts was limited (<15%), and their difference was small. The non-uniform distribution of
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LChl within the measured area was another important factor influencing the variation of PCM readings.
The sensing area of CCM-200 (71 mm2) is much larger than the sensing area of SPAD-502 (6 mm2)
and Dualex-4 (20 mm2), hence CCM-200 can be more susceptible to greater non-uniformity in LChl
distribution. In particular, CCM-200-CCI had larger variations at high LChl, compared with SPAD-200
and Dualex-4 (Figure 4), which is consistent with the observations of Padilla et al. [65]. Our simulation,
using the method by Uddling et al. [38], showed that CCM-200-CCI was most sensitive to the degree
of non-uniformity of the LChl distribution, especially when LChl was high (Figure 7). Increased
heterogeneity of LChl distribution across leaf area can result in an increased light transmittance and
decreased light absorption at the red wavelengths [38]. Although similar wavelengths are employed
in both SPAD-502 and CCM-200-CCI, the variability of SPAD-502 readings is not largely influenced
by the heterogeneity distribution of LChl within the measured area. This could be attributed to the
logarithmic transformation used in the SPAD-502, which helps reduce the divergence of non-uniform
distribution of LChl [39]. Dualex-4-Chl was the best at restricting the influence of the non-uniform
LChl distribution. The data in this study showed that the meter readings for both SPAD-502 and
CCM-200 had crop-specific relationships with LChl (Figure 4). In particular, the deviations apparently
increased at high rates of LChl. In addition, the errors of meter readings within the measured area
increased with increasing LChl (Figure 5). The results in both Figures 4 and 5 are more consistent
with Figure 7 than with Figure 6, suggesting that uncertainty in PCM readings was more due to
non-uniform distribution of LChl than to leaf structure parameters. The studies of Parry et al. [39]
and Richardson et al. [30] also showed that the non-uniform distribution of LChl at high LChl had
an apparent influence on both SPAD-502 and CCM-200 readings. Previous studies [20,63] found that
the heterogeneity of the pigment distribution was greater for leaves with a higher pigment content,
as leaves with high chlorophyll concentration tend to have a high chlorophyll density in chloroplasts,
rather than develop more chloroplasts [20].

The variations of light intensity can greatly influence chloroplast movement inside a
leaf [37,40,43,66]. This can lead to variations of leaf optical properties (reflectance, absorbance and
fluorescence) for the same amount of LChl, and therefore difference in PCM readings. Nauš et al. [40]
found that the movement of chloroplast from the cell walls perpendicular to the incident light (face
position) to the cell walls parallel to the incident light (the side position) could induce approximately
35% of the difference in SPAD-502 readings. Padilla et al. [36] reported that measurement time in
day determines light intensity and can have a strong impact on SPAD-502 and CCM-200 readings.
The ratio of Chla/Chlb was considered to be an indicator of light intensity that has strong influence on
chloroplast movement [56,67]. Strong relationships between the Chla/Chlb ratio and SPAD-502 readings
were observed by Netto et al. [67] and Li et al. [63]; however, we did not find similar relationships
between the Chla/Chlb ratio and PCM readings in the present study, similar to the result obtained
by Parry et al. [39]. The large difference in light conditions between the field and the greenhouse for
canola was revealed by the Flav index of Dualex-4 measurements, which was another indicator of light
intensity [36,47,56]. In addition, the chloroplast movement is closely linked with the combined effects
of light scattering (detour effect) and non-uniform chlorophyll distribution (sieve effect) [40,43,66].
For instance, Nauš et al. [40] reported that the impact of chloroplast movement on the relationship
between SPAD readings and actual LChl was different between old and young tobacco leaves with
different leaf structures (e.g., leaf area mass and leaf thickness). Our study results indirectly support
this finding. In particular, the variability of the CCM-200-CCI readings was greatly affected by both
light scattering and non-uniform LChl distribution. More recently, Stuckens et al. [68] developed a
Dorsiventral Leaf Model (DLM) to simulate leaf radiative transfer by considering the influence of leaf
asymmetry that is modeled by assigning non-uniform distributions of pigments, water and dry matter
to palisade and mesophyll layers and by simulating different amounts of light diffusion for adaxial and
abaxial leaf surfaces. Baránková et al. [43] developed a Simple Explicitly Non-Linear Empirical model
for Leaf Optical Properties (SENLELOP model) to investigate the influence of chloroplast movement on
the optical properties of green tobacco leaves. In future studies, a specially designed field experiment
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integrated with the SENLELOP model, DLM, or other, similar models, could lead to an improved
understanding of the mechanistic relationship between optical readings and LChl.

5. Conclusions

In this study, we evaluated the performances of three commonly used portable chlorophyll meters
(SPAD-502, CCM-200 and Dualex-4) in measuring the leaf chlorophyll concentration (LChl) of four
different crops. Analyses were conducted based on field measurements of four crops (corn, soybean,
spring wheat and canola), to explore the relationships between the actual LChl measured in the lab
and readings from the portable chlorophyll meters (PCM). Simulation of leaf transmittance using
the PROSPECT-D model was used to further explore the driving factors of light transmission on the
used wavelengths, including leaf pigments other than chlorophyll, leaf internal structure, and the
heterogeneity of LChl distribution. Major conclusions can be drawn as follows:

(1) SPAD-502 and CCM-200 readings of this study had larger dynamic ranges than Dualex-4 readings.
The sources of error for both SPAD-502 and CCM-220 readings increased with increasing LChl,
whereas they were relatively stable for Dualex-4;

(2) Relationships between SPAD-502 and CCM-200 readings and the actual LChl were more sensitive
to crop type than the relationships between Dualex-4 and LChl;

(3) The sieve effect (caused by the heterogeneity of LChl distribution) would have more influence on
PCM readings than the detour effect (caused by leaf parameters, such as leaf pigments and leaf
internal structure) does. The ratio of light transmittance between the index and reference bands
used in the Dualex-4-Chl was generally better at minimizing the interference factors;

(4) Our results suggest that Dualex-4 is a better choice for collecting LChl measurements for different
crops in the field, compared with the SPAD-502 and the CCM-200.
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Appendix A

Table A1. Statistics of leaf pigment content measurements by crop type (canola, corn, soybean and
spring wheat).

Crop Types Mean CV (%) a Range (Min–Max) b

Canola (Field, n = 57)

Chlorophyll
meter

SPAD-502 53.9 12.5 32.8–67.8
CCM-200-CCI 47.2 32.1 13.4–75.8
Dualex-4-Chl 38.7 15.8 22.3–58.8
Dualex-4-Flav 1.7 13.3 1.1–2.0
Dualex-4-Anth 0.1 50.4 0.0–0.1
Dualex-4-NBI 24.1 23.7 11.6–36.6

Lab chemical
measurement

Car (μg cm−2) 8.7 18.7 4.8–12.0
Chla (μg cm−2) 36.4 18.4 20.0–52.6
Chlb (μg cm−2) 12.0 19.2 6.4–16.6
Chla/Chlb ratio 3.1 6.6 2.7–3.8
LChl (μg cm−2) 48.6 18.4 26.4–69.2
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Table A1. Cont.

Crop Types Mean CV (%) a Range (Min–Max) b

Canola (Greenhouse,
n = 41)

Chlorophyll
meter

SPAD-502 41.1 13.4 31.8–53.6
CCM-200-CCI 23.0 34.3 8.7–46.9
Dualex-4-Chl 31.2 21.1 22.8–52.9
Dualex-4-Flav 0.3 19.3 0.2–0.5
Dualex-4-Anth 0.1 31.9 0.0–0.1
Dualex-4-NBI 90.7 12.2 65.6–122.5

Lab chemical
measurement

Car (μg cm−2) 5.3 19.4 3.6–8.3
Chla (μg cm−2) 27.6 14.9 19.9–40.2
Chlb (μg cm−2) 9.6 16.6 7.8–15.9
Chla/Chlb ratio 2.9 9.5 2.2–3.3
LChl (μg cm−2) 30.3 37.0 11.4–53.2

Corn (n = 52)

Chlorophyll
meter

SPAD-502 46.7 18.4 25.5–62.2
CCM-200-CCI 34.5 42.6 20.4–68.2
Dualex-4-Chl 39.2 20.9 21.1–52.4
Dualex-4-Flav 1.4 22.4 0.7–1.8
Dualex-4-Anth 0.1 33.4 0.0–0.2
Dualex-4-NBI 30.3 29.5 12.4–53.8

Lab chemical
measurement

Car (μg cm−2) 7.7 22.1 4.8–10.9
Chla (μg cm−2) 38.6 24.1 20.8–56.5
Chlb (μg cm−2) 9.7 24.0 4.6–14.0
Chla/Chlb ratio 4.0 5.8 3.2–4.6
LChl (μg cm−2) 49.0 25.1 25.6–70.5

Soybean (n = 25)

Chlorophyll
meter

SPAD-502 39.3 10.2 31.4–48.3
CCM-200-CCI 21.1 23.8 12.1–34.7
Dualex-4-Chl 35.3 14.2 25.0–46.2
Dualex-4-Flav 1.47 8.2 1.2–1.7
Dualex-4-Anth 0.1 40.7 0.0–0.1
Dualex-4-NBI 24.1 12.4 16.8–29.9

Lab chemical
measurement

Car (μg cm−2) 9.8 11.5 7.6–11.6
Chla (μg cm−2) 41.3 15.3 27.2–51.8
Chlb (μg cm−2) 12.2 15.9 7.7–15.9
Chla/Chlb ratio 3.4 4.4 3.0–3.8
LChl (μg cm−2) 53.2 15.4 34.9–67.3

Spring wheat (n = 20)

Chlorophyll
meter

SPAD-502 50.8 10.8 39.7–59.6
CCM-200-CCI 34.5 23.2 17.7–47.5
Dualex-4-Chl 47.8 16.9 31.2–61.0
Dualex-4-Flav 1.2 8.2 1.1–1.5
Dualex-4-Anth 0.1 48.4 0.0–0.1
Dualex-4-NBI 38.9 19.6 25.1–56.6

Lab chemical
measurement

Car (μg cm−2) 10.5 18.9 5.5–13.3
Chla (μg cm−2) 49.8 20.6 26.3–62.8
Chlb (μg cm−2) 15.5 22.9 9.2–21.1
Chla/Chlb ratio 3.2 6.3 2.9–3.6
LChl (μg cm−2) 64.4 27.0 32.3–97.8

a CV (%) is the coefficient of variation, as the ratio of the standard error to the average value (n = 195); b Min and
Max are the minimum and the maximum values, respectively.
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Abstract: Predicting the grain yield during early to mid-growth stages is important for initial
diagnosis of rice and quantitative regulation of topdressing. In this study, we conducted four
experiments using different nitrogen (N) application rates (0–400 kg N·ha−1) in three Japonica
rice cultivars (Wuyunjing24, Ningjing4, and Lianjing7) grown in Jiangsu province, Eastern China,
from 2015–2016. Spectral reflectance data were collected multiple times during early to mid-growth
stages using an active mounted sensor (RapidScan CS-45, Holland Scientific Inc., Lincoln, NE, USA).
Data were then used to calculate optimal vegetation indexes (normalized difference red edge, NDRE;
normalized difference vegetation index, NDVI; ratio vegetation index, RVI; red-edge ratio vegetation
index, RERVI), which were used to develop a dynamic change model and in-season grain yield
prediction model. The NDRE index was more stable than other indexes (NDVI, RVI, RERVI), showing
less standard deviation at the same N fertilizer rate. The R2 of the relationships between leaf area
index (LAI), plant nitrogen accumulation (PNA), and NDRE also increased compared to other indexes.
These findings suggest that NDRE is suitable for analysis of paddy rice N nutrition. According to
real-time series changes in NDRE, the resulting dynamic model followed a sigmoid curve, with a
coefficient of determination (R2) >0.9 and relative root-mean-square error <5%. Moreover, the feature
platform value (saturation value, SV) of the NDRE-based model accurately predicted the differences
between treatments and the final grain yield levels. R2 values of the relationship between SV and
yield were >0.7. For every 0.1 increase in SV, grain yield increased by 3608.1 kg·ha−1. Overall, our new
dynamic model effectively predicted grain yield at stem elongation and booting stages, providing
real-time crop N nutrition data for management of N fertilizer topdressing in rice production.

Keywords: red-edge; NDRE; dynamic change model; sigmoid curve; grain yield prediction

1. Introduction

Rice (Oryza sativa L.) is a staple food for billions of people worldwide. China is the largest rice
producer in the world, with approximately 31 million hectares of paddy rice cultivation [1]. To ensure
sustainable food production, agricultural producers invest in a significant amount of nitrogen (N)
fertilizer [1]. Zhang et al. reported that the N use efficiency (NUE) of China’s major food crops was less
than 30% [2], representing 33% of the global NUE, and 40% of that in developed countries in Europe
and America [3]. Scientific management of N fertilizer use is, therefore, crucial in realizing the goals of
high yield, quality, and efficiency in rice production in eastern China.
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Methods based on appropriate indicators, such as leaf area index (LAI), soil and plant analyzer
development (SPAD), and N nutrition index (NNI), and yield forecasts are often used for crop
growth diagnostics and fertilizer quantification [4]. Site-specific nutrient management (SSNM)
of N fertilizer topdressing, which is based on comparisons of SPAD and threshold values at key
growth stages, is one such method [5]. However, different varieties have different thresholds.
For example, SPAD thresholds of rice cultivars Shanyou63 and Liangyoupei9 were found to be
36 and 38, respectively [6,7]. During rice-wheat rotation, SPAD values should be more than 37.5 to
ensure high yield; if lower, 30 kg·ha−1 N fertilizer topdressing is applied [8]. Meanwhile, Qiong et al.
recommended an SPAD threshold of 39–41 for the application of N fertilizer at critical growth stages in
paddy rice [9] (Table 1). Moreover, Peng et al. suggested that, under SSNM management in China,
a plot requires just 68% of the N fertilizer applied under traditional fertilization methods, resulting
in a 5% increase in N use efficiency (NUE) [5]. However, SPAD thresholds are affected by a number
factors including the species, regional climates, soil type, and N fertilizer management measures [7],
resulting in significantly different thresholds.

Table 1. Summary of threshold distributions under different conditions.

Author Eco-site Variety Threshold

Huang et al. [6] Hubei, China Shanyou63,
Liangyoupei9 36, 38

Singh et al. [7] Indo-Gangetic plains, India PR118, PAU201, etc. 37.5

Qiong et al. [8] Hubei, China Peiliangyou3076,
Yangliangyou6 39–41

He et al. [3] Hubei, China Liangyoupei9,
Shanyou63 38, 39, 35–37

Fan et al. [10] Helongjiang, China Songjing98-128 38–40

The critical N dilution curve can also be used to describe in-season plant N status [11]. Based on
this model, the N nutrition index (NNI), a widely applicable diagnostic indicator, is used for N
diagnosis [12]. When NNI = 1, N nutrition is optimal, while NNI > 1 and NNI < 1 indicate excess
and deficient N nutrition, respectively [13]. NNI can accurately predict the relative yield of rice at
different stages, with coefficients of determination (R2) greater than 0.74 [14]. Similar results were also
obtained using the normalized difference vegetation index (NDVI) of GreenSeeker (Trimble Navigation
Ltd. Sunnyvale, CA, USA) in barley and maize. NNI was previously found to account for 70% of
the variation in crop N nutrition [15,16]; however, in practical applications, in different regions and
with different rice varieties, NNI is less effective. Calculated NNI values were found to have a large
range [17]. For example, Hu et al. reported NNI values ranging from 0.4–1.6 [18], while Houlès et al.
suggested that 0.25–1.25 was the optimal range [19]. Moreover, Debaeke et al. revealed NNI values
ranging from 0.5–1.5 in wheat [20]. Significant differences between studies were also revealed [21].
These differences in critical N concentrations, therefore, reduced the popularity and widespread use
of NNI.

Yield prediction methods use crop conditions at early to mid-growth stages to predict the potential
yield of that season, thereby determining the amount of fertilizer topdressing required [4]. In traditional
methods, agronomic parameters such as the leaf area index (LAI) and plant dry matter (PDM) at
different growth stages are commonly used to predict potential yield. The quantitative relationships
between these indicators and final yield is then determined, allowing N fertilizer application rates
to be recommended [22]. Portable spectral sensors are also used to collect crop spectral information,
which is then used to determine vegetation indexes and the relationship with final yield. Moreover,
Spitkó et al. revealed a relationship between NDVI and yield after anthesis; however, the correlation
coefficient was less than 0.5 (r) [23]. Tubaña et al. also established a relationship between relative
NDVI and relative yield (relative to the respective maximum) at panicle differentiation and for two
weeks thereafter [24]. Similarly, the determination coefficient was less than 0.5. Meanwhile, Liu et al.
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confirmed a relatively stable relationship between NDVI and grain yield in double-cropping rice
during major growth periods, with R2 values ranging from 0.6 to 0.65 [25].

Xue et al. also described the relationship between NDVI and N accumulation from tillering to early
grain filling stages, and used the obtained sufficiency index (SI) to predict potential yield and guide
topdressing nitrogen management [26]. The R2 value was 0.8, resulting in effective improvements in
NUE. Furthermore, Evert et al. studied the relationship between the weighted difference vegetation
index (WDVI) and the N status of potato using MSR87 (CropScan Inc., Rochester, MN, USA) [27],
revealing a significant correlation between WDVI and N uptake. Accordingly, they were able to
establish a potential yield model for potato. Similarly, Morier et al. used FieldSpec HandHeld
(Analytical Spectral Devices (ASD), Inc., Boulder, CO) to obtain hyperspectral data (325–1075 nm and
a spectral resolution of 3.5 nm at 700 nm) for monitoring of potato populations, revealing that the best
relationship existed between the index incorporating the red-edge wave (CIred-edge) and yield. As a
result, they were able to explain 76% of the variability in total tuber yield at 55 days after planting [28].

Lukina et al. and Raun et al. also proposed an N fertilization optimization algorithm based
on spectral index and the corresponding time of the growing degree days (GDD), which allowed
calculations of the estimated yield coefficient in-season estimated yield (INSEY) [29,30]. This method
eliminated the effect of different growth stages, compared with approaches based on vegetation
indexes, and improved accuracy by 30% in terms of grain yield predictions in winter wheat [31].
However, studies also showed that NDVI and other spectral indexes have a significant saturation effect
under high vegetation coverage [32]. In rice, accuracy decreases when the plant dry matter is greater
than 3736 kg·ha−1 [33]. As a result, the prediction accuracy of the algorithm also decreased, with an R2

of only 0.5 [34]. Moreover, in rice crops in particular, R2 was only about 0.4–0.5 at stem elongation and
booting stages [8,35]. However, Thompson et al. revealed that red-edge bands based on normalized
difference red edge (NDRE) could effectively identify crop populations, with a higher correlation
with indicators such as plant nitrogen accumulation, helping solve the problem of saturation [36].
Cao et al. used multispectral data of Crop Circle-ACS470 (Holland Scientific, Lincoln, NE, USA) to
fit a variety of vegetation indexes including the normalized NIR index (NNIR), green soil-adjusted
vegetation index (GSAVI), and modified enhanced vegetation index (MEVI); then, based on these
indexes, they determined the relationship between INSEY and rice yield at stem elongation and
booting [37]. These results revealed an R2 value of 0.8 at stem elongation, 21–26% higher than that
based on INSEY-NDVI and INSEY-RVI [38]. However, few studies examined the use of NDRE-related
models in accurate management of crop N fertilizer topdressing.

Previous studies suggested problems of saturation with models using vegetation indexes such
as the single spectral index, resulting in low prediction accuracy when used to predict nutrition or
grain yield in paddy rice [38]. Screening of effective vegetation indexes and development of a stable
accurate method for predicting rice grain yield is, therefore, required. This paper, therefore, aimed
to (1) evaluate spectral index data obtained using the active multi-spectrometer RapidScan CS-45
(Holland Scientific Inc., Lincoln, NE, USA) during rice growth; (2) construct a dynamic model using
the vegetation index data; and (3) develop a prediction algorithm of rice grain yield based on the
dynamic model.

2. Materials and Methods

2.1. Experiment Design

Japonica rice is the main variety grown in Jiangsu Province, which has the highest average rice
production in all China [2]. This study was carried out in two typical Japonica rice-producing areas in
Jiangsu Province, the lower reaches of the Yangtze River (Rugao) and the Huaihe River Basin (Huai’an
and Sihong) in northern Jiangsu. In Rugao, the predominant soil type is loam, with a total N content
of 1.71 g·kg−1, olsen phosphorus (P) content of 13.3 mg·kg−1, and available potassium (K) content of
95.7 mg·kg−1. The soil types in Huai’an and Sihong are yellow-brown and lime concretion black soil,
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respectively, with a total N content of 1.35 and 1.28 g·kg−1, olsen P content of 32 and 27.6 mg·kg−1,
and available K content of 85.3 and 75.2 mg·kg−1, respectively. The climate data of each experimental
site (Exp. 1, Exp. 2, and Exp. 3) is shown in Figure 1. Four experiments were carried out in total
using different N application rates (0–400 kg·N·ha−1) and three Japonica rice varieties, Wuyunjing24
(WYJ24), Ningjing4 (NJ4), and Lianjing7 (LJ7), as detailed in Table 2.

Experiment 1 (Exp. 1): Experiment 1 was conducted over a single season from June to October,
2015, in Rugao (118.26◦E, 33.37◦N). Rice variety WYJ24 was sown on 15 May and transplanted on 15
June at a density of 15 × 30 cm. The plot was 7 by 5 m and covered a total area of 35 m2. Four basal N
fertilization rates (0 (N0), 120 (N5), 180 (N7), and 240 (N8) kg·ha−1) were applied in the form of urea at
a rate of 50% at pre-planting and 50% at tillering, and four topdressing N fertilizer rates (0 (T0), 80 (T3),
120 (T6), and 160 (T7) kg·ha−1) were also applied in the form of urea at a rate of 50 at stem elongation
and 50% at booting. A no-topdressing treatment (T0) was also examined at each N gradient. In each
treatment, 127 kg·ha−1 P2O5 was applied as supplemental phosphate fertilizer and 225 kg·ha−1 K2O
(50% at pre-planting, 50% at stem elongation) was applied as potash fertilizer.

Experiment 2 (Exp. 2): Experiment 2 was conducted over a single season from June to October,
2015, in Sihong (118.26◦E, 33.37◦N). Varieties WYJ24, NJ4, and LJ7 were transplanted on 14 and 20 June.
Four basal N fertilization rates (0 (N0), 36 (N1), 72 (N3), and 108 (N4) kg·ha−1) were applied in the
form of urea at a rate of 50% at pre-planting and 50% at tillering, and four topdressing N fertilizer rates
(0 (T0), 84 (T4), 168 (T8), and 252 (T9) kg·ha−1) were applied in the form of urea at a rate of 50% at
stem elongation and 50% at booting. Other factors were as in Exp. 1.

Experiment 3 (Exp. 3): Experiment 3 was conducted in 2016 in Rugao (118.26◦E, 33.37◦N).
Varieties WYJ24 and NJ4 were transplanted on 25 June. Four basal N fertilization rates (0 (N0), 60 (N2),
150 (N6), and 240 (N8) kg·ha−1) were applied in the form of urea at a rate of 50% at pre-planting and
50% at tillering. For WYJ24, six topdressing N fertilizer rates (0 (T0), 40 (T1), 50 (T2), 80 (T3), 100 (T5),
and 160 (T7) kg·ha−1) were also applied in the form of urea at a rate of 50% at stem elongation and
50% at booting, and four topdressing N fertilizer rates (0 (T0), 40 (T1), 100 (T5), and 160 (T7) kg·ha−1)
were applied for NJ4. Other factors were as in Exp. 1.

Experiment 4 (Exp. 4): Experiment 4 was a repeat of Exp. 2, carried out in 2016. Detailed
information on each experiment is provided in Table 2. Data from Exp. 1 and Exp. 3 were mainly used
to develop the model, while data from Exp. 2 and Exp. 4 were used for model testing. Exp. 2 and 4
were performed to maintain uniformity across different study years.

Figure 1. Daily temperatures during the rice growing seasons in 2015–2016.
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Table 2. Basic characteristics of experiments 1, 2, 3 and 4.

Experiment Location Transplanting and
Harvest Date

Cultivar Treatment
Nitrogen fertilizer (N, kg·ha−1)

Basal and tillering fertilizer Panicle fertilizer Total fertilizer

Exp. 1
2015

Rugao
118.26◦E,
33.37◦N

14 June
25 Oct.

WYJ24

N0T0 0 (N0) 0 (T0) 0
N5T0 120 (N5) 0 (T0) 120
N5T3 120 (N5) 80 (T3) 200
N7T0 180 (N7) 0 (T0) 180
N7T6 180 (N7) 120 (T6) 300
N8T0 240 (N8) 0 (T0) 240
N8T7 240 (N8) 160 (T7) 400

Exp. 2
2015

SiHong
118.26◦E,
33.37◦N

14 June
25 Oct.

WYJ24,
NJ4,
LJ7

N0T0 0 (N0) 0 (T0) 0
N1T4 36 (N1) 84 (T4) 120
N3T8 72 (N3) 168 (T8) 240
N4T9 108 (N4) 252 (T9) 360

Exp. 3
2016

RuGao
120.76◦E,
32.27◦N

25 June
26 Oct.

WYJ24 N0T0 0 (N0) 0 (T0) 0
N2T0 60 (N2) 0 (T0) 60
N2T1 60 (N2) 40 (T1) 100
N2T3 60 (N2) 80 (T3) 140
N6T0 150 (N6) 0 (T0) 150
N6T2 150 (N6) 50 (T2) 200
N6T5 150 (N6) 100 (T5) 250
N8T0 240 (N8) 0 (T0) 240
N8T3 240 (N8) 80 (T3) 320
N8T7 240 (N8) 160 (T7) 400

NJ4 N0T0 0 (N0) 0 (T0) 0
N2T1 60 (N2) 40 (T1) 100
N6T5 150 (N6) 100 (T5) 250
N8T7 240 (N8) 160 (T7) 400

Exp. 4
2016

SiHong
118.26◦E,
33.37◦N

18 June
22 Oct.

WYJ24,
NJ4,
LJ7

N0T0 0 (N0) 0 (T0) 0
N1T4 36 (N1) 84 (T4) 120
N3T8 72 (N3) 168 (T8) 240
N4T9 108 (N4) 252 (T9) 360

Note: “WYJ24” is “Wunyunjing24”, “NJ4” is “Ningjing4”, “LJ7” is “Lianjing7”; “N0–8” represents the different
basal nitrogen fertilizer rates; “T0–9” represents the different topdressing N fertilizer rates.

2.2. Data Acquisition and Determination

Spectral reflectance data were collected using the active portable sensor RapidScan CS-45
(Holland Scientific Inc., Lincoln, NE, USA), and contained red (R, 670 nm), red-edge (Re, 730 nm),
and near-infrared (NIR, 780 nm) wavebands. It has its own light source; thus, dependency on sunlight
was avoided, preventing sensitivity to weather conditions. All spectral measurements were performed
during cloud-free periods between 9:30 and 10:30 a.m. with the sensor placed 0.7 m above the canopy.
Three representative lines were selected in each plot. The sensor records one spectral reflectance
value every second along the line at uniform velocity, giving approximately 70–80 values per line.
The average spectral index and reflectance in each plot was then calculated.

Exp. 1 and Exp. 3 were carried out from mid-tillering, with measurements every seven days until
the end of tillering to flowering, when testing was conducted every three days. In Exp. 2 and Exp. 4,
measurements were carried out simultaneously with sampling at each growth stage.

In each experiment, three hills from each plot were sampled for growth analysis at different
stages during vegetative growth. Plants were manually uprooted and then cut at ground level for
determination of N concentration. Fresh plants were separated into green leaf blade (leaf) and culm
plus sheath (stem) samples, heated for 30 min at 105 ◦C to halt metabolic processes, and then dried
at 80 ◦C in a forced-draft oven until reaching a constant weight. Plant dry matter (PDM) and leaf
dry matter (LDM) were then determined before grinding the samples and passing them through a
1-mm sieve in a Wiley mill. The green fresh leaf samples were immediately scanned using an LI-3000A
(Li-Cor, Lnr, Lincoln, NE) and the green leaf area of each layer was obtained to calculate the green
LAI for each plot (the sum of different layers). The samples were then stored in plastic bags at room
temperature until further chemical analysis. Whole-plant and leaf N concentrations (PNC and LNC)
were determined using an elemental analyzer (vario MACRO cube; Elementar, Hanau, Germany); then,
plant N accumulation (PNA) and leaf N accumulation (LNA) were calculated using the PDM/LDM
and PNC/LNC values. Grain yield was determined in a 2-m2 area in each plot and adjusted to a
moisture content of 14.5%.
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2.3. Data Analysis

2.3.1. Calculation of Relative Accumulated Growing Degree Days (RAGDD)

Meteorological data including temperature were collected using the automated weather station
Dynameta-1K (Dynamax Inc., Houston, TX, USA), which was installed at each test site, and recorded
using the EM50 data acquisition system (Decagon Devices Inc., Washington, USA) every 5 min.
Data were then used to calculate the accumulation growing degree days (AGDD) and RAGDD. In
this paper, RAGDD was used as a time variable and was calculated from the AGDD, while AGDD
represents the sum of growing degree days (GDD) throughout each experiment [39]. AGDD can be
predicted using GDD or time [40], and in this study, it was calculated as follows:

GDD =
TMax + TMin

2
− TBASE, (1)

where TMax and TMin represent the maximum and minimum temperatures on a specific day,
respectively, and TBASE is the base temperature, which is usually set at 12.5 ◦C for Japonica rice [41].
RAGDD was then calculated as follows:

RAGDD =
AGDDi

AGDDharvest
, (2)

where AGDDi represents the AGDD on a specific day, and AGDDharvest is the AGDD at harvest,
representing the AGDD of the entire growth period.

2.3.2. Statistical Analyses

Mapping, profiling, curve fitting, and model building were carried out using OriginPro 9.0
(OriginLab Corporation, Northampton, MA, USA). Four commonly used spectral indexes were
determined in this study: NDVI, NDRE, the ratio vegetation index (RVI), and red-edge ratio vegetation
index (RERVI). To do so, three wavebands tests were carried out using RapidSCAN during N nutrition
monitoring. The specific equations are shown in Table 3. Data-fitting processes were performed
using Origin 9.0, choosing different equations based on convergence. Linear, quadratic, logarithmic,
exponential, and rational models were evaluated; then, the model with the highest coefficient of
determination (R2) was adopted. The accuracy of the model was evaluated using the R2 and relative
root-mean-square error (RRMSE), and the 1:1 relationship between the experimental observations and
model predictions were plotted as follows:

RRMSE =

√
1
n
×

n

∑
i=1

(Pi − Oi)
2 × 100

Oi
, (3)

where n is the number of test samples, Pi is the model estimate, Oi is the observed value, and Oi is the
average observed value.

Table 3. Equations of each vegetation index.

Spectral Index Equation Sensitivity Indicator Reference

Normalized difference vegetation index (NDVI) NIR−R
NIR+R

Grain yield, HI, N status, RUE,
LAI, Biomass, Grain protein [36,42]

Normalized difference red edge (NDRE) NIR−Re
NIR+Re LAI, Biomass, N status [6,33]

Ratio vegetation index (RVI) NIR
R

Grain yield, Biomass, LAI, Grain
protein, N status [37,42]

Red-edge vegetation index (RERVI) NIR
Re LAI, Biomass, N status [37]

Note: NIR, Re, and R refer to the reflectance of near-infrared, red-edge, and red wavelengths, respectively. LAI:
leaf area index, HI: harvest index (unit-less), RUE: radiation use efficiency.
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3. Results

3.1. Dynamic Changes in Agronomic Parameters and Spectral Indexes before Flowering

The dynamic changes in rice agronomic parameters (LAI, PDM, and PNA) in relation to N
nutrition were examined in Exp. 1–4 (Figure 2). Similar dynamic characteristics were observed
between varieties under different N rates. The results showed that LAI first increased then remained
stable (Figure 2A–D). During booting, LAI continued to increase, with the biggest growth rate
appearing at the panicle initiation stage. After entering the booting stage, LAI stabilized and
remained essentially unchanged thereafter. PDM increased at an invariable rate from tillering to
flowering (Figure 2E–H), while PNA was consistent with LNA, continually increasing until flowering
(Figure 2M–T). PNC differed slightly from the other N indicators, decreasing up until flowering at an
increasing rate (Figure 2I–L).

Figure 2. Dynamic changes in agronomic parameters before the grain filling stage. (A–D) Leaf area
index, (E–H) plant dry matter, (I–L) nitrogen concentration, (M–P) whole-plant nitrogen accumulation,
and (Q–T) leaf nitrogen accumulation in Exp. 1 and Exp. 4. “N0T0, N1T4, N2T0, N3T8, N6T5,
N8T7, N5T3, N7T6, N3T8, and N4T9” represent basal and topdressing N fertilizer rates (0, 36 + 84,
60 + 0, 72 + 168, 150 + 100, 240 + 160, 120 + 80, 180 + 120, 72 + 168, and 108 + 252 kg·ha−1, respectively).
RAGDD: relative accumulated growing degree days; TI: tillering, SE: stem elongation, PI: panicle
initiation, BT: booting, HD: heading, FL: flowering, and GF: grain filling.

As shown in Figure 3A–H, NDVI and NDRE increased slowly before stem elongation followed
by a rapid rise till booting then a slow increase or static period. This was similar to the changes in LAI.
Changes in the RVI and RERVI were similar to those of PDM, PNA, and LNA (Figure 3I–P); however,
growth rates differed. The growth rate of PDM and PNA accelerated at the end of the stem elongation
stage, while RVI remained relatively stable. PNC showed an opposite trend to all spectral indexes
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and consistency was also poor. All vegetation indexes showed different values under different N
gradients. The red-edge-based vegetation indexes NDRE and RERVI showed higher distinction under
different N fertilizer rates, while NDVI showed slight overlap between fertilizer rates. Compared with
NDRE, RERVI showed a smaller range before flowering, making it hard to distinguish between growth
stages and, therefore, less useful. In each single test, NDRE errors and fluctuations were smaller than
those of NDVI, making it more stable. Moreover, ranges of all agronomic parameters were also small,
suggesting that the environmental effect on NDVI was much bigger than the effect on NDRE.

 
Figure 3. Dynamic changes in the vegetation indexes (NDRE, NDVI) before grain filling. “N0T0, N1T4,
N2T0, N3T8, N6T5, N8T7 N5T3, N7T6, N3T8, and N4T9” represent different basal and topdressing
N fertilizer rates (0, 36 + 84, 60 + 0, 72 + 168, 150 + 100, 240 + 160, 120 + 80, 180 + 120, 72 + 168,
and 108 + 252 kg·ha−1, respectively). RAGDD: relative accumulated growing degree days; TI:
tillering, SE: stem elongation, PI: panicle initiation, BT: booting, HD: heading, FL: flowering, GF:
grain filling; NDVI: normalized difference vegetation index, NDRE: normalized difference red edge;
RERVI: red-edge ratio vegetation index, and RVI: ratio vegetation index.

3.2. Relationship between the Spectral Indexes and Agronomic Parameters

Using the results of Exp. 1–4 (Table 4), the relationships between each vegetation index and
agronomic parameter were also determined, revealing differing results. The relationships between the
spectral indexes and LAI and leaf N accumulation were strongest, while those with N concentration
were lowest. Moreover, all correlations were low at the tillering stage, increasing with growth
until reaching a maximum at stage. During the entire pre-flowering period, the R2 of the red-edge
band-based indexes were higher than bidirectional reflectance simulation of the red-band-based
vegetation indexes. Using the NDRE and NDVI findings in Exp. 1–4, NDVI (Figure 4A) saturation
and an intermittent phenomenon were obvious, while the NDRE (Figure 4B) data were more clearly
distributed and had a better relationship with LAI. This is also consistent with results in other crops [43].
The relationships between red-edge band-based vegetation indexes and agronomic parameters were,
therefore, better than those indexes based on the red band.
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Figure 4. Relationship between (A) the normalized difference vegetation index (NDVI) and (B)
normalized difference red edge (NDRE) and leaf area index (LAI) before flowering.

We also compared the relationships between agronomic parameters and final yield during
the main growth period (Table 5). As pointed out previously, the relationship between agronomic
parameters and yield differs at different growth stages [44,45]. This study yielded similar results.
The relationship between LAI or N accumulation and yield was best at certain growth stages. Moreover,
LAI had the highest coefficient and was more stable than N accumulation, highlighting its potential
use in yield predictions.

Table 5. Coefficients of determination (R2) of the correlations between the agronomic parameters at
different stages and yield.

Growing stage LAI PNC PNA LNA

Tillering 0.82 0.16 0.73 0.76
Stem elongation 0.72 0.23 0.70 0.67
Panicle initiation 0.73 0.09 0.56 0.74

Booting 0.76 0.42 0.75 0.65

Notes: LAI: leaf area index, PNC: plant nitrogen concentration, PNA: plant nitrogen accumulation, LNA:
leaf nitrogen accumulation.

As mentioned earlier, there were differences in the ranges of NDRE and RERVI before flowering.
Stability and distinction between the N gradients of NDRE were better than those of RERVI (Figure 3).
Moreover, the dynamic changes in LAI and NDRE were the most consistent (Figures 2 and 3).
These results suggest that NDRE can be used to effectively reflect the growth status of rice under
different N treatments, and in different eco-sites and different varieties, highlighting its potential use
in growth diagnosis and dynamic model construction.

3.3. Construction of a Dynamic Model of NDRE

In this study, NDRE values were stable at first before showing a period of rapid growth throughout
the entire pre-flowering stage, followed by a second stable, consistent with sigmoid-curve variation
(Figure 5). Therefore, we chose a sigmoid curve to construct the dynamic change model of NDRE
(Equation (4)).

y =
A1 − A2

1 + e(x−x0)/dx
+ A2, (4)

where x represents the time-variable RAGDD, y is the spectral index NDRE value, A1 is the previous
platform value corresponding to the baseline value (BV) in each treatment, A2 is the medium platform
value corresponding to processing of the saturation value (SV), and x0 is the midpoint of the sigmoid
curve, that is, the point at which the model reaches inflection, indicating the different stages of
dynamic change (Figure 5). Before x0, rice is considered to be in the rapid growth stage, while, after x0,
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the growth rate decreases and the population reaches a peak. Moreover, when x = x0, x = A1+A2
2 ,

the growth rate of the model is at its highest. Finally, dx represents the time constant of the model.

Figure 5. Dynamic characteristics of the sigmoid curve. NDRE: normalized difference red edge,
RAGDD: relative accumulated growing degree day, A1: the platform value corresponding to the
baseline value (BV) in each treatment, A2: the medium platform value corresponding to processing of
the saturation value (SV), x0: the midpoint of dynamic change, that is, the point at which the model
reaches its inflection point, indicating the different stages of dynamic change.

At early and mid-tillering stages, resource requirements including fertilizer and water were
relatively small, resulting in a small growing base. Moreover, vegetation coverage was also small,
causing the canopy spectra to contain a lot of water and soil background information. As a result,
the NDRE values were low and fluctuated around BV. In the mid-stage of growth, particularly early
stem elongation, the growth rate increased rapidly, leading to a rapid growth period. After this, in the
late stem elongation and booting stages, growth gradually reached a peak, and spectral index growth
slowed until flowering.

Results of low (N2T1, 60 + 40 kg·ha−1), medium (N5T3, 120 + 80 kg·ha−1), and high (N8T7,
240 + 160 kg·ha−1) N fertilizer averages are shown in Figure 6. At early growth stages, the differences
in NDRE were not significant; however, SV values differed during mid-growth stages. The SV of N2T1
was low at approximately 0.23, while the values of N5T3 and N8T7 were 0.29 and 0.38. Meanwhile,
NDVI arrived at its threshold earlier than NDRE as shown in Figure 6, and it was hard to distinguish
between N2T1, N5T3, and N8T7 treatments.

Figure 6. Dynamic fitting curves of each vegetation index (NDRE and NDVI) under high (N8T7,
240 + 160 kg·ha−1), medium (N5T3, 120 + 80 kg·ha−1), and low (N2T1, 60 + 40 kg·ha−1) nitrogen
treatment. The solid lines denote the logistic regression and the dotted lines represent the confidence
bands (p = 0.95). Solid points denote measured values.

The model parameters were mainly obtained by fitting the measured values obtained at a high
frequency testing, that is, under Exp. 1 and 3. In addition, BV and SV parameters were also estimated
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from NDRE values obtained at corresponding growth stages. For example, in the stem elongation to
booting stages, NDRE entered the mid-stage of growth in the SV period. At this time, regardless of
measurement errors, the measured NDRE values were approximately equal to the SV value. The SVs
of Exp. 2 and Exp. 4 were subsequently obtained using this method. At the latest, SV values are
determined at the early date.

3.4. Testing of Each Vegetation Index-Based Dynamic Model and Parameter Analysis

3.4.1. Verification of Model Construction Correctness

To confirm the accuracy of the dynamic models, they were fitted using each experiment and N
treatment (Table 6). The results of model fitting based on NDRE showed that the R2 values of different
N gradients were greater than 0.9, while the values of RRMSE were less than 5%, suggesting that
model values showed very small differences compared to the measured values, also indicating that the
modeling effect of the different gradients was good. The normal distribution test of standard residuals
under each treatment model showed that the probability of normal distribution was greater than 0.05,
revealing that the standard residuals of each treatment were within normal distribution and that the
model errors were random and generated by the model itself. Model fitting based on NDVI resulted in
a high R2 (0.87–0.96); however, the range of RRMSE was 7.5–21% higher than that of NDRE. Overall,
these findings suggest that the model was applicable under different N levels, with different varieties,
in different eco-sites, and in different years, confirming the accuracy of the model.

3.4.2. Changes in BV and SV under Different Treatments and Their Relationship with
Agronomic Parameters

The NDRE values changed little at early stages of growth, fluctuating around the BV value.
The BV under each treatment was less than 0.25 and there were no differences between treatments
(Figure 7, NDRE), while BV and SV estimated using NDVI showed no obvious regularity. SV calculated
using NDRE increased with increasing N fertilizer rates, and the trends between treatments were
consistent. The differences with topdressing under the same basal fertilizer also differed, and the SV
of T0 decreased by 15–25%. Moreover, a 10% increase in SV was observed between N0T0 and N5T0,
N5T0 and N7T0, and N7T0 and N8T0. The differences between N application and topdressing levels
also differed, suggesting that SV has obvious potential in growth status analysis in rice.

The relationship between SV and agronomic parameters was subsequently examined using the
data from Exp. 1 and Exp. 3 (Figure 8). The relationships between SV and LAI, PDM, PNA, and LNA
were good at both stem elongation (fourth leaf from the top stage) and booting stage (second leaf
from the top stage). For NDRE, the R2 of each of these relationships was more than 0.6. At stem
elongation, there were slight differences but essentially similar correlations between SV and LAI, PDM,
PNA, and LNA. Correlations at booting stage were better than those at stem elongation. Overall,
LAI had the best relationship with SV. However, with NDVI, poor correlation was observed between
all parameters.

Variation in the critical point x0 under each treatment was also examined. As shown in Table 7,
the model reached a critical point of dynamic change earlier in Exp. 1 than Exp. 3. This was especially
true under identical N fertilizer treatments, namely, 0, 200, 240, and 320 kg·N·ha−1 N fertilizer
topdressing. Moreover, the earliest critical point was observed under N8T0 (240 kg·N·ha−1) treatment
in both experiments (Exp. 1 and Exp. 3). Meanwhile, 100–200 kg·N·ha−1 plots showed the highest
average RAGDD values.
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Figure 7. Baseline values (BV) and saturation values (SV) calculated using different vegetation indexes
(NDRE, NDVI) under each treatment according to the total N rate. “N0T0, N5T0, N5T3, N7T0, N7T6,
N8T0, and N8T7” represent different basal and topdressing N fertilizer rates (0 + 0, 120 + 0, 120 + 0,
180 + 0, 180 + 120, 240 + 0, and 240 + 160 kg·ha−1, respectively).

Table 7. Distribution of the critical point of dynamic change under a single time series.

Experiment Exp. 1

Treatment N0T0 N5T0 N7T0 N5T3 N8T0 N7T6 N8T3
(kg·ha−1) 0 120 180 200 240 300 320
RAGDD 0.366 0.374 0.351 0.357 0.303 0.345 0.314

Exp. 3

Treatment N0T0 N2T0 N2T1 N6T0 N6T2 N8T0 N8T3
(kg·ha−1) 0 60 100 150 200 240 320
RAGDD 0.516 0.55 0.524 0.559 0.538 0.494 0.542

Notes: “N8T0, N8T3, N7T6, N7T0, N5T3, N0T0, N5T0, N2T1, N6T2, N2T0, and N6T0” represent different basal and
topdressing N fertilizer rates (240 + 0, 240 + 80, 180 + 120, 180 + 0, 120 + 80, 0 + 0, 120 + 0, 60 + 40, 150 + 50, 60 + 0,
and 150 + 0 kg·ha−1, respectively).
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Figure 8. Relationships between saturation values (SV, calculated using NDRE or NDVI) and leaf area
index (LAI), plant dry matter, plant nitrogen accumulation, and leaf nitrogen accumulation at stem
elongation and booting.

3.5. Prediction Algorithm for Rice Grain Yield

The relationship between BV, SV, and x0 with grain yield was also studied (Figure 9). The results
showed a poor relationship between BV and yield (Figure 9A,E), while x0 value was negatively
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correlated with yield, and, although the correlation was poor, differences were observed among
cultivars (Figure 9B,F). There were no differences in SV between experiments, suggesting that SV
showed the similar correlations with yield between different years, eco-sites, and varieties (Figure 9C).
Meanwhile, the NDVI-based SV was poorly correlated with grain yield.

 
Figure 9. Relationships between each vegetation index (NDRE, NDVI) based on different model
parameters (SV, BV, and x0) and grain yield. BV: baseline value, SV: saturation value, and x0:
the midpoint of the sigmoid curve. (A,E) show the BV, (B,F) show the x0, and (C,G) show the SV.

The quantitative relationship between SV and grain yield was developed (Figure 10) using the
data from Exp. 1 and Exp. 3. As shown in Figure 10, grain yield was forecast using linear regression
analysis based on the SV values. Grain yield was evenly distributed from 6000 to 13000 kg·ha−1 and
the model was good. The slope of the linear model was 36081 kg·ha−1, suggesting that with every
0.1 increase in SV, yield increased by 3608.1 kg·ha−1.

Figure 10. Yield prediction linear model based on saturation values (SV). SV in (A) was calculated
using NDRE, and in (B) was calculated by NDVI.

The data from Exp. 2 and Exp. 4 were subsequently used to test the accuracy of the SV-based
yield prediction model (Figure 11). As shown, in Figure 11A, SV was obtained from the fitted sigmoid
curve model, while, in Figure 11B, values were estimated using measured NDRE values from the
stem elongation to booting stages. Both methods gave good prediction results. The predicted yields
in both study years showed no obvious abnormalities compared with the observed yield, and the
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overall prediction error was approximately 20%. These findings suggest that the model is applicable in
different varieties and different rice planting regions under different SV acquisition methods.

Figure 11. Test results of the yield prediction models based on saturation values (SV). SV in (A)
was obtained from the fitted sigmoid curve model, and in (B) was estimated using measured NDRE
(normalized difference red edge) values from stem elongation to booting stages.

We also used the same data from the same growth stages to estimate yield using INSEY
(Figure 12) [46]. Of all stages, the best correlation was obtained in booting stage. As shown
in Figure 12A, the R2 of the INSEY-NDVI model was low with poor accuracy. Meanwhile,
the INSEY-NDRE model had 70% prediction accuracy, but this was still less accurate than the SV-based
yield prediction algorithm by about 10% (Figure 12B).

Figure 12. Test results of the yield prediction models based on in-season estimated yield (INSEY).
(A) The normalized difference vegetation index (NDVI)-INSEY model and (B) the normalized difference
red edge (NDRE)-INSEY model.

4. Discussion

4.1. Spectral Indexes for Rice Growth Diagnosis

NDVI is the most widely used spectral index. However, because of the characteristics of red
light in NDVI itself [47,48], saturation occurs when the population or coverage reaches a certain level,
thereby affecting the monitoring effect [41]. Muñoz-Huerta et al. revealed a positive linear relationship
between RVI and N uptake in winter wheat, as well as insensitivity to growth stage and crop variety.
In addition, RVI was previously used to estimate N status in over-fertilized fields [49]. It was also
suggested that the red-edge-based vegetation indexes (RVI, NDRE) perform well in estimating NNI
and plant N accumulation [37]. In this study, serious overlap and a cross between obtained values and
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the error ranges of different gradients in spectral indexes containing red bands was observed after stem
elongation, preventing clarification of the differences between N gradients. Studies showed that the
absorption of chlorophyll on the red-edge waveband is weaker than that of red light, with the red-edge
region having stronger transmission ability with the crop canopy and leaf [25]. Use of red-edge rather
than red-light bands can, therefore, reduce the saturation phenomenon, enhancing monitoring and
diagnosis of crop N nutrition.

In this study, NDVI did not distinguish between different N treatments during mid-growth and
late growth stages, similar to the findings of Liu et al. [41]. It was also previously revealed that, at an
early growth stage (before stem elongation), NDVI resulted in a better relationship with rice grain yield;
however, on approaching maturity, NDRE performed better [50]. Red-edge-based NDRE reflects this
phenomenon via differences in saturation values. Our results suggest that the shortcoming of NDVI
is that saturation at an early stage leads to no differences in SV with varying N rates. Yumiko et al.
also reported that NDVI reached saturation earlier than NDRE under different N rates [50]. NDVI can,
therefore, be used to determine low-land rice at early growth stages, but is less useful at mid-growth
to late growth stages. Moreover, using vegetation indexes with the red-light band, correlations with
agronomic parameters were poor, while the red-edge band-based indexes (NDRE and RERVI) showed
a linear relationship with agronomic parameters, allowing differences between N fertilizer levels
to be distinguished. However, changes in RERVI throughout the entire growth period were small,
thereby preventing effective analysis between different stages. In the same plot, NDRE showed lower
variability than RERVI. These findings suggest that NDRE can be used to reflect the growth status of
different treatments, making it a suitable index for diagnosis of rice growth.

4.2. The Dynamic Model and Parameters of Rice Spectral Indexes

The results of this study suggest that NDRE conforms to a sigmoid curve. In early stages, NDRE
fluctuated around background BV values at a low level. However, values began to rise rapidly after
tillering. The critical point (x0) of the dynamic model was then reached on entering stem elongation.
Meanwhile, at flowering stage, the dynamic model became stable again and approached the feature
platform SV.

Previous monitoring methods such as the saturation index (SI) method and NNI are based mainly
on data collected at each growth stage [8]. These methods mostly lack biophysical mechanisms,
often fail to obtain indicators, and consist of a complex calculation method [25]. Moreover, deviations
in identification of growth stages, environmental factors, time selection, and so on have a significant
impact on these single tests. Furthermore, single measured values are treated as a reflection of an
entire stage in the calculations, resulting in greater deviation from the actual values [51].

In this paper, the parameters in the model have practical biological meaning. The range of x0

reflects growth and development of rice at early stages. The findings also suggest that higher x0 values
occur under abnormally high temperatures in early stages compared with normal growing conditions.
The x0 value can be used as an indicator of the growth environment during early stages of growth;
however, the poor correlation between x0 and grain yield prevented quantification of yield predictions.

BV was also able to reflect growth status at early stages. However, when rice coverage was less
than 50%, including the depth of the water layer, turbidity, soil background color, and so on, there was
an impact on the spectral reflectance test [52,53]. In this study, BV values were low under all treatments,
and no obvious differences between gradients were observed. Meanwhile, BV did not distinguish
between differences in basal fertilizers levels in early stages of growth, suggesting that water and soil
background information under low coverage conditions during this period obscure growth information
contained in the spectral data. BV is, therefore, not applicable for direct monitoring and diagnosis
of rice growth, although differences in LAI and other agronomic parameters were obvious. In the
future, we aim to increase accuracy by adding variables such as coverage, soil, and water to improve
the signal-to-noise ratio.
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In the middle of the growing season, SV values overcame the above problems in x0 and BV.
SV values differed between different rice populations under different treatments and in different
groups, and there was a good linear relationship with agronomic parameters such as LAI and
aboveground N accumulation. SV values could be obtained not only from the fitted model, but also
from measured values. Overall, the accuracy and availability of the model were high, confirming
applicability for monitoring and diagnosis.

The dynamic model was successfully used to determine growth status using different rice varieties,
in different eco-sites, and under different N rates before flowering with 90% variation. Bonfil et al.
also reported similar dynamic changes in wheat in 2016 [52]. Moreover, our dynamic model also
determined the growth status of paddy rice using RapidScan CS-45 at different grain yield levels.
Of course, it can also be used to predict yield before flowering without any specific calibration. It should
also be used on non-rainy days, since water droplets on the blade affect monitoring. In the future,
the growth status after flowering stage will be examined further, and additional vegetation indexes
will be used in developing a dynamic model.

4.3. SV-Based Yield Prediction Algorithm

In previous studies, spectral indexes were used to predict yield in crops such as wheat [54] and
sugarcane [55] with good results. Bonfil used RapidScan CS-45 to monitor the dynamic changes in
wheat, revealing a good linear relationship between NDRE and wheat yield in different varieties [54].
In this study, the dynamic pattern of NDRE at pre-flowering stages was consistent, and predicted
yield was achieved under optimal growing conditions other than limited N fertilizer. Kanke et al. also
revealed that vegetation indexes containing the red-edge band had a better linear relationship with
agronomic parameters and yield at main growth stages in rice [55]. A linear model of yield prediction
using different vegetation indexes as input variables was also established, within which NDRE and
RERVI gave best correlations, with R2 values greater than 0.8. However, the prediction equation was
predicted using data from a single growth stage, and the parameters differed between stages, making it
of no use between stages or deviations [56]. Similarly, Cowley et al. established an NDVI-based model
for forecasting of rapeseed yield [57], while Liu et al. proved the dynamic model could be continuously
used to monitor N nutrition status in a single growing season [41]. However, it could only be used
when GDD was between 210 and 320 ◦C.

Thus, the problem of low prediction accuracy resulting from NDVI saturation when using
traditional algorithms in rice under high yield conditions remains unsolved. In this study, SV showed
a good linear relationship with agronomic parameters and yield. Moreover, SV values were the feature
platform of each treatment, eliminating deviations between tests and different environments, thereby
increasing applicability of the model, improving stability of the algorithm, and widening the available
time range. In addition, SV values could be obtained not only from the fitted model, but also from
measured values. Moreover, measurement and processing are relatively simple and do not require
normalization or other transformations to maintain accuracy, simplifying our method compared with
other algorithms [58].

Satellite remote sensing (RS) data were extensively applied to a wide range of research problems
and practical applications, including yield predictions [59]. Zhu et al. used Moderate Resolution
Imaging Spectroradiometer Enhanced Vegetation Index (MODIS EVI) time-series data to predict yield
in winter wheat, revealing a high R2 (0.70) and low RMSE (343.34 kg·hm−2) [60]. Furthermore, Fletcher
reported continuity of multispectral high-resolution optical observations over global terrestrial surfaces
using Sentinel 2 [61], providing detailed information within field variability [62]. Our newly developed
SV-based yield prediction algorithm must now be tested and applied under different RS platforms,
such as unmanned aerial vehicles and Sentinel 2.
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4.4. Interval System Errors between Experiments and Uncertainties of the Model

In different experiments, trends in indicators were basically the same, although the ranges of
change were quite different, especially in Exp. 1 (2015) and Exp. 3 (2016). This was possibly due to
the differences in meteorological conditions in 2015 and 2016 (Figure 13). From June to early July
2016, the temperature was slightly higher than in 2015; thus, growth was relatively fast in early and
mid-tillering. However, in late July to August, unusually high temperatures and continuous rain
occurred, which is not conducive to rice growth and development, thereby inhibiting growth. As a
result, the agronomic parameters, spectral indexes, and other indicators decreased sharply in 2015.

Figure 13. Daily average temperatures in the study site from late tillering to early stem elongation in
2015 and 2016.

This phenomenon was also reflected in another way. In both years, x0 values remained relatively
concentrated at the end of the tillering stage; however, there were differences between N rates.
Moreover, the critical point shifted in 2016 compared to 2015. The average daily temperature was
higher than 33 ◦C at the end of tillering and early stem elongation stage in Exp. 3, 2016. The optimum
temperature of paddy rice at tillering is 25~30 ◦C, while the maximum temperature is 32 ◦C [42]
(Figure 13). As a result, these high temperatures caused an abnormal increase in the RAGDD time
variable, even though growth was inhibited and x0 increased.

Model uncertainty received considerable attention in recent studies [63]. There is growing pressure
on crop field production to conform to quality standards, which require evaluation and expression
of the uncertainty of measurement results [64]. It is, therefore, important to determine the degree
of uncertainty associated with a model and its application in predicting crop N status and yield.
In this study, the dynamic model was developed using a large database, diverse eco-sites, different
rice varieties, and differing N rates; however, errors were revealed when the model output was
compared with observations. Moreover, it is difficult to evaluate uncertainty in practice. For example,
the uncertainty of certain components is often unknown in crop field experiments, such as those
associated with environmental effects or different sensors. During the 2015–2017 growing season,
the sensors were calibrated each year to avoid errors; however, additional field experiments are needed
to expand the database and therefore improve the robustness of our dynamic model.

5. Conclusions

We used the active spectrometer RapidScan CS-45 to determine the dynamic changes in different
spectral indexes and agronomic parameters in rice. The results suggest that NDRE is more stable than
other indexes, with the distinctions between different treatment gradients most obvious. NDRE also
had the best relationship with agronomic parameters. The dynamic changes in NDRE and LAI were
similar, and followed a “slow–fast–slow” trend during the pre-flowering period.

A sigmoid curve was used in NDRE dynamic model construction, with high accuracy and an R2

of 0.9 and RRMSE of 5%. The model contained critical point x0, background value BV, and feature
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platform value SV parameters. The relationships with yield showed that each of these parameters was
correlated with yield, although SV was better than the other two parameters. SV showed a good linear
relationship with in-season potential grain. Based on these findings, we constructed a yield prediction
model. With every 0.1 increase in SV, grain yield increased by 3608.1 kg·ha−1. The overall prediction
accuracy of the model was greater than 80%. It can be used at stem elongation and booting, improving
timeliness compared with existing forecasting algorithms. Our model is, therefore, useful for rice
production management, purchasing and storage preparation, rice spot price trend forecasts, and food
policy decision-making.
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Abstract: Precision nitrogen (N) management requires an accurate and timely in-season assessment of
crop N status. The proximal fluorescence sensor Multiplex®3 is a promising tool for monitoring crop
N status. It performs a non-destructive estimation of plant chlorophyll, flavonol, and anthocyanin
contents, which are related to plant N status. The objective of this study was to evaluate the potential
of proximal fluorescence sensing for N status estimation at different growth stages for rice in cold
regions. In 2012 and 2013, paddy rice field experiments with five N supply rates and two varieties
were conducted in northeast China. Field samples and fluorescence data were collected in the leaf
scale (LS), on-the-go (OG), and above the canopy (AC) modes using Multiplex®3 at the panicle
initiation (PI), stem elongation (SE), and heading (HE) stages. The relationships between the Multiplex
indices or normalized N sufficient indices (NSI) and five N status indicators (above-ground biomass
(AGB), leaf N concentration (LNC), plant N concentration (PNC), plant N uptake (PNU), and N
nutrition index (NNI)) were evaluated. Results showed that Multiplex measurements taken using
the OG mode were more sensitive to rice N status than those made in the other two modes in this
study. Most of the measured fluorescence indices, especially the N balance index (NBI), simple
fluorescence ratios (SFR), blue–green to far-red fluorescence ratio (BRR_FRF), and flavonol (FLAV)
were highly sensitive to N status. Strong relationships between these fluorescence indices and N
indicators, especially the LNC, PNC, and NNI were revealed, with coefficients of determination (R2)
ranging from 0.40 to 0.78. The N diagnostic results indicated that the normalized N sufficiency index
based on NBI under red illumination (NBI_RNSI) and FLAV achieved the highest diagnostic accuracy
rate (90%) at the SE and HE stages, respectively, while NBI_RNSI showed the highest diagnostic
consistency across growth stages. The study concluded that the Multiplex sensor could be used to
reliably estimate N nutritional status for rice in cold regions, especially for the estimation of LNC,
PNC, and NNI. The normalized N sufficiency indices based on the Multiplex indices could further
improve the accuracy of N nutrition diagnosis by reducing the influences of inter-annual variations
and different varieties, as compared with the original Multiplex indices.

Keywords: Multiplex®3 sensor; nitrogen balance index; nitrogen nutrition index; nitrogen status
diagnosis; precision nitrogen management
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1. Introduction

Nitrogen (N) is an essential nutrient for plant growth and development. However, excessive N
fertilizer applications have led to severe environmental impacts in China [1,2]. Therefore, there has
been a growing interest in developing precision N management strategies in agricultural research for
many years. This requires the development of efficient and timely crop N status diagnosis strategies
and technologies [3].

Plant or leaf N concentration is an indication of N nutritional status. The traditional N testing
method in the laboratory is time-consuming and impractical for characterizing spatial and temporal
variability in crop N status in precision N management. Alternatively, it is known that there is a strong
relationship between plant chlorophyll content and N content, although other stress factors, such as
water deficit, cold, heat, excess light, leaf or root pathogens, etc., can also influence chlorophyll content
directly or indirectly [4,5]. Therefore, various instruments based on measuring chlorophyll have been
developed to provide indirect, nondestructive, and real-time estimations of leaf N content [3,6]. For
example, the Soil Plant Analysis Development chlorophyll meter (SPAD) developed by Minolta Camera
Co. (Osaka, Japan) is a widely used portable instrument for measuring chlorophyll in leaves. The
SPAD meter measures the difference in absorption between the red (660 nm) and near-infrared (940 nm)
wavelengths [7,8]. Leaf chlorophyll absorbs red light but not infrared, therefore, the SPAD readings
indicate plant chlorophyll concentration and N content [9–11]. However, the reliability of SPAD results
is affected by factors such as growth stage, irradiance, water status, and leaf thickness [3,5,9].

Optical non-destructive remote sensing methods based on canopy reflectance measurements have
also been widely used [12,13]. The high measuring efficiency of reflectance spectroscopy sensors and
the strong correlation between their measurements and crop physiological and biochemical parameters
offer a high potential for N management [14,15]. Proximal active sensors, such as GreenSeeker
(NTech Industries, Inc., Ukiah, CA) and Crop Circle (Holland Scientific, NE, USA), have been used to
diagnose N nutritional status in real-time and to guide in-season precision management for rice N
fertilization [16,17]. However, the results based on the canopy reflectance are affected by various factors,
such as soil characteristics, crop growth stages, and saturation under high biomass conditions [16,18].
In addition, it is more difficult to estimate chlorophyll or N status using optical remote sensing methods
as the contribution of leaf area index and biomass to canopy reflectance is much greater than that of
chlorophyll or N concentration [19,20].

Unlike reflectance indices, the fluorescence spectra are less affected by biomass or leaf area
index [15,21]. At different N nutritional levels, the fluorescence intensities of leaves are significantly
different near the 440 nm (Blue, B), 525 nm (Green, G), 685–690 nm (Red, R), and 735–740 nm
(Near-infrared, NIR) wavelengths [22,23]. Studies have shown that the fluorescence ratio of NIR and
R bands is highly correlated with chlorophyll concentration [24,25] and leaf N concentration [26].
Because the fluorescence ratio is only related to chlorophyll concentration or photosynthetic activities,
soil background does not affect the vegetation spectra at the early growth stages. Longchamps
and Khosla [27] observed that N supply levels in corn could be differentiated as early as the V5
phenological stage using a proximal fluorescence sensor. In contrast, the test results only became
reliable starting from the V8 growth stage based on reflective sensors [28,29]. Therefore, chlorophyll
fluorescence sensing is a powerful solution to the shortcomings of proximal reflectance sensors in crop
N status monitoring.

In addition to chlorophyll content, polyphenols (mainly flavonols) can also be used to estimate
plant N status. When N is deficient, polyphenols increase significantly due to carbon and N balance
regulation mechanisms [30], although an increase in polyphenol concentration may also be related to
their photoprotective roles [31]. These compounds are mainly concentrated in epidermal cells and
have typical absorption peaks in the ultraviolet region [31–33]. Thus, N status diagnosis is improved
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by combining the polyphenol and chlorophyll fluorescence [34,35]. Lejealle et al. [36] demonstrated
that the N balance index (NBI), the ratio of chlorophyll to flavonol, had a better and more stable
correlation with leaf N concentration. Leaf fluorescence sensor Dualex (FORCE-A, Orsay, Paris, France)
and canopy fluorescence sensor Multiplex (FORCE-A, Orsay, Paris, France) can be used to estimate
plant polyphenol contents as well as chlorophyll content. Thus, in addition to N, these fluorescence
sensors can detect physiological and biochemical plant parameters such as anthocyanins [37], or plant
diseases [38]. Furthermore, Multiplex is a canopy sensor that is more efficient than a leaf sensor such
as Dualex. It allows rapid large-area measurements with simultaneous GPS data recording for field
map generation [39,40]. However, studies based on Multiplex are still limited, especially for rice N
status diagnosis and precision N management. Zhang et al. [41] identified FERARI (fluorescence
excitation ratio anthocyanin relative index), SFR_G (simple fluorescence ratio under green excitation),
SPAD/DUAD (Dualex reading), and SPAD reading as valuable indicators for monitoring corn N status
at early stages. In addition, they found leaf-scale (LS) Multiplex measurements were better related to
N treatments than the Multiplex readings made from a small distance above the canopy (AC). Li et
al. [42] reported that both leaf-based SPAD and canopy Multiplex indices could be used to predict rice
leaf N contents. The on-the-go (OG) measurement mode means placing the sensor probe in the canopy
close to the blade and continuously collecting data during the move. This mode is most efficient in
data collection. In a recent study, Diago et al. [39] confirmed the capability of the Multiplex sensor
using the OG mode to estimate key nutritional parameters in grapevine leaves in motion by calibrating
Multiplex against the leaf-clip Dualex sensor. However, further systematic and comprehensive study
is necessary to investigate the application potential of canopy fluorescence sensing for rice N status
diagnosis in motion.

Hence, the main objectives of this study were to: (1) Determine the feasibility of using canopy
multispectral fluorescence sensing system such as the Multiplex sensor to estimate N status in paddy
rice by comparing the results of three measurement modes (LS, AC, and OG); and (2) establish and
validate the estimation models for N indicators based on the optimal Multiplex indices. In addition, to
reduce the influences of varieties, years, sites, and other factors, the normalized N sufficiency index
(NSI) was calculated and included in the analysis of the fluorescence indices. Well-fertilized reference
plots were used to normalize reflectance measurements as more stable rice N diagnostic results might
be obtained when calculating the NSI [43].

2. Materials and Methods

2.1. Experimental Design

Two field trials were conducted at the Jiansanjiang Experiment Station of China Agricultural
University (47◦15′N, 132◦39′E), Sanjiang Plain, Heilongjiang Province, northeast China. The field
experiments in 2012 and 2013 included five different N rates (0, 70, 100, 130, 160 kg N ha−1) and two
Japonica rice varieties, Kongyu 131 (KY 131) and Longjing 21 (LJ 21). These two represent the main
varieties in this region: KY131 has 11 leaves, four elongation nodes and about 127 maturity days, while
LJ 21 has 12 leaves and needs 133 maturity days. Planting density was approximately 30 hills m−2 for
KY 131 and 28 hills m−2 for LJ 21, with an identical row spacing of 0.3 m. The plot size was 4.5 m × 9 m.
The N fertilizer applications were split into 40%, 30%, 30%, and applied before the transplanting, at the
active tillering stage, and at the stem elongation (SE) stage, respectively. Phosphate (50 kg P2O5 ha−1)
fertilizers were applied before transplanting, and potash (100 kg K2O ha−1) fertilizers were applied as
two splits, 50% as basal fertilizer and 50% as panicle fertilizer at the SE stage. The two experiments
were carried out in a randomized complete block design with three replicates. Table 1 lists the details
of the two experiments.
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Table 1. Details of nitrogen (N) rate experiments with two rice cultivars conducted during 2012–2013.

Experiment Year Cultivar Transplanting Date Sampling Date and Stage

1 2012 KY 131 18 May 21 June (PI), 29 June (SE), 23 July (HE)
1 2012 LJ 21 18 May 25 June (PI), 2 July (SE), 23 July (HE)
2 2013 KY 131 17 May 23 June (PI), 2 July (SE), 22 July (HE)
2 2013 LJ 21 17 May 28 June (PI), 6 July (SE), 27 July (HE)

PI: Panicle Initiation; SE: Stem Elongation; HE: Heading.

2.2. Fluorescence Measurements

The portable fluorescence sensor Multiplex®3 was used in this study. It is an active sensor
involving four emission light sources (UV_A, green, red or blue) to excite the fluorescence in plant
tissues. Generally, the UV_A (375 nm), green (530 nm), and red (630 nm) emission light sources were
used for plant monitoring while the blue (470 nm) emission light source was used for calibration. The
sensor has three filtered detectors for fluorescence recording including blue–green fluorescence (447
nm) (BGF), red fluorescence (665 nm) (RF) and far-red fluorescence (735 nm) (FRF). The fluorescence
measurements were not influenced by ambient light conditions [41].

All the variables provided by the Multiplex sensor and their explanations are listed in Table 2.
There are nine measured single fluorescence variables under three excitations and ten calculated
indices. The Simple Fluorescence Ratio (SFR) index is the ratio of the FRF and RF emission under
red (SFR_R) or green (SFR_G) illumination. SFR is related to leaf chlorophyll content. Due to the
chlorophyll absorption waveband overlapping with its fluorescence emission red band, the chlorophyll
re-absorption occurs at the shorter red wavelength rather than at the far-red wavelength. Therefore,
using the FRF as a reference, the absorption of the RF reflects the content of chlorophyll [24,44].
Accordingly, SFR increases as chlorophyll content increases. The Flavonols (FLAV) index compares the
fluorescence emission density of the far-red fluorescence under ultraviolet (FRF_UV) and red excitation
(FRF_R). It is related to the flavonoid concentration of the epidermal layer [45,46]. The N Balance Index
(NBI) is defined as the ratio of SFR and FLAV [47]. Therefore, NBI is proportional to both chlorophyll
and flavonoid concentrations. Blue–green to far-red fluorescence ratio (BRR_FRF) index is the ratio of
BGF and FRF under UV excitation. The ratio of fluorescence emission at 440 nm and 740 nm (F440/F740)
wavelength has been shown to be sensitive to environmental changes and growth conditions, and
can detect plant stress before visible symptoms occur [18,48]. The Anthocyanins (ANTH) index and
FERARI are both proven to be correlated with skin anthocyanin content [49].

Measurements were taken in motion with the sensor bottom along and just touching the crop
leaves on two representative rows in the center of each plot. The data collected from the two rows were
averaged to represent the plot [50]. This approach was named “measuring in motion” or “on-the-go”
(OG) mode. Notably, in the OG mode, the Multiplex sensor was placed right above the crop leaves
manually while walking forward as it is impractical to use a motorized vehicle or to mount the sensor
on a vehicle in paddy fields. For comparison purposes, data were also measured in the LS and AC
modes. The leaf-borne measurements in the LS mode were collected in the laboratory by taking ten
leaves in the second position from the top. In the AC mode, the measurements were collected in the
field by randomly selecting ten representative hills and placing the Multiplex sensor at a distance of
approximately 10 cm above each selected hill. The average reading was then used to represent the plot.

2.3. Plant Sampling and Measurements

At the PI, SE, and HE stages, for each plot three to six plant samples were collected in each
plot from the same rows where fluorescence sensor measurements were acquired. Various N status
indicators, including above-ground biomass (AGB), plant N concentration (PNC), leaf N concentration
(LNC), plant N uptake (PNU), and N nutrition index (NNI), were determined. The detailed sampling
dates and related information are listed in Table 1. Roots from all the plant samples were removed and
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the samples were cleaned with water and then separated into leaves, stems, and panicles (e.g., HE
stage). All samples were dried at 105 ◦C for half an hour to reduce plant metabolic activities. After
being dried in an oven at 70–80 ◦C to constant weight, the samples were weighed. N concentrations
for leaves, stems, and panicles were determined using the standard Kjeldahl method. The PNC is
the sum of the products of each organ’s N concentration and its proportional weight. The PNU was
determined by multiplying PNC by AGB. The NNI is defined as the ratio of the actual PNC (Na) and
the critical N concentration (Nc), with Nc being calculated following the equation developed for rice in
this region [51].

Table 2. Description of the variables and indices recorded by the Multiplex sensor (modified from
Table 1 by Zhang et al. [41]).

Variables Formula Explanation

BGF_UV / Blue–green Fluorescence under UV excitation
RF_UV / Red Fluorescence under UV excitation

FRF_UV / Far-Red Fluorescence under UV excitation
BGF_G / Reflected Blue–Green light under Green excitation
RF_G / Red Fluorescence under Green excitation

FRF_G / Far-Red Fluorescence under Green excitation

RF_R / Red Fluorescence under Red excitation
FRF_R / Far-Red Fluorescence under Red excitation
SFR_G FRF_G/RF_G Simple Fluorescence Ratio under Green excitation
SFR_R FRF_R/RF_R Simple Fluorescence Ratio under Red excitation

BRR_FRF BGF_UV/FRF_UV Blue–green to Far-Red Fluorescence Ratio under UV excitation
FER_RUV FRF_R/FRF_UV Flavonols under Red and UV excitation

FLAV Log (FRF_R/FRF_UV) Flavonols under Red and UV excitation
FER_RG FRF_R/FRF_G Anthocyanins under Red and Green excitation
ANTH Log (FRF_R/FRF_G) Anthocyanins under Red and Green excitation
NBI_G FRF_UV/RF_G Nitrogen Balance Index under UV and Green excitation
NBI_R FRF_UV/RF_R Nitrogen Balance Index under UV and Red excitation

FERARI# Log (5000/FRF_R) Fluorescence Excitation Ratio Anthocyanin Relative Index

# the variable is not measured in the “on-the-go” mode.

2.4. Statistical Analysis

The Multiplex data of the three measurement modes at each sampling stage, year, and cultivar
obtained under the varied N supply were subjected to analysis of variance (ANOVA) using SAS
software (SAS Institute, Cary, NC, USA). Moreover, the means for each treatment were compared using
the least significant difference (LSD) test at the 95% level of significance. Relationships between the
Multiplex indices and N status indicators were determined. All of the in-situ samples were divided
into two groups by a stratified random sampling method, with approximately 2/3 of the data used for
model calibration and the remaining for model validation. Simple linear regression analyses were
performed with SPSS 20.0 (SPSS Inc., Chicago, Illinois, USA). The coefficient of determination (R2)
was calculated for comparison. The relationships between Multiplex indices and N status indicators
established at different growth stages were validated. The root mean square error (RMSE) and the
relative error (RE), shown in Equations (1) and (2), between the predicted and observed values were
used for evaluation.

RMSE =

√√
1
n

n∑
i=1

(yi − ŷi)
2 (1)

RE(%) =
RMSE

y
× 100 (2)

where yi, ŷi, and y were the observed, predicted, and mean value, respectively.

71



Remote Sens. 2019, 11, 1847

In order to evaluate normalized vegetation indices for improving the estimation of N nutrition
indicators, the well-fertilized plots were used as N sufficient reference to calculate the NSI index.
The NSI index equals to the ratio of Multiplex indices of the plots receiving normal N rates and the
well-fertilized plots. In this study, the treatment with the largest shoot dry matter was defined as the
well-fertilized plot, corresponding to the treatment of 130 or 160 kg N ha−1.

Finally, the NNI diagnostic results of validation data using Multiplex indices were compared
to the observed NNI by areal agreement and Kappa statistics [52]. Both used the same diagnostic
criteria: N was deficient when NNI < 0.95, N was optimal when NNI is between 0.95–1.05, and N was
in surplus when NNI > 1.05. The areal agreement (%) and Kappa statistics were used to determine
the accuracy of the diagnostic results. The areal agreement indicates the percentage of two groups
sharing a common category or diagnostic class [53]. The Kappa statistic is a more robust measure
of the agreement of two classifications by correcting the agreement that occurs by chance. When
Kappa equals 1, it indicates that the two categorization systems are identical. Kappa ≥ 0.60 indicates a
satisfactory agreement, while the Kappa < 0.4 indicates weak agreement [54].

3. Results

3.1. Comparison of the Three Measurement Modes

The three aforementioned measurement modes were applied for each treatment plot. The results
were compared to determine the best measurement mode. The abbreviation of the measurement mode
is added to the variable as a prefix. For example, AC_SFR_G represents the Multiplex index SFR_G
obtained from above the canopy.

Figure 1 shows box plots of Multiplex indices obtained from the three measuring modes at two
phenological stages. Since FLAV and ANTH are the log transformation values of FER_RUV and
FER_RG, only FLAV and ANTH were selected for the analysis to avoid duplication. During both the
PI and SE growth stages, the mean values of the Multiplex indices (except for the BRR_FRF) obtained
using the OG mode were significantly higher (P ≤ 0.05) than the leaf-borne indices measured in the LS
mode, whereas the latter were significantly higher than the measurements obtained in the AC mode.
In addition, substantial large data ranges were shown in the NBI_G and NBI_R indices measured in
motion and the leaf-borne BRR_FRF value.

The ANOVA results are listed in Table 3, indicating the sensitivities of the Multiplex indices to
five N rates (0, 70, 100, 130, and 160 kg N ha−1). N fertilization treatment effects were significant
for most of the Multiplex variables measured in the OG mode whereas the opposite was true for
the leaf-borne measurements. Comparatively, the N treatment effects were more significant for the
readings obtained in the OG mode than those collected in the AC mode, while the measurements
collected using the LS mode showed the minimum sensitivity to N rate changes. As an example,
Figure 2 further demonstrates the comparison of the selected Multiplex indices at each N application
rate for cultivar KY 131 in 2013. From Figure 2 we can also see that the indices measured using the OG
mode could better distinguish the effects of N supply compared to the other two modes. Especially,
the Multiplex indices measured in the OG mode performed consistently better than the others for
differentiating high N-application treatment (≥100 kg ha−1) effects. Similar results were achieved for
the variety LJ 21, or for the experiments conducted in 2012.

In conclusion, the ANOVA analysis results showed that most of the Multiplex variables obtained
in the OG mode were more sensitive to N supply, followed by the AC modes, while measurements
made in the LS mode were the least influenced by N supply (Table 3, Figure 2). Thus, only the results
of the OG mode were used for further analysis and discussion.
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Figure 1. Box plots of selected Multiplex index values for the above canopy, on-the-go, and leaf scale
measuring modes at the panicle initiation and stem elongation stages in 2013: Simple fluorescence
ratio under green excitation (SFR_G) (a), simple fluorescence ratio under red excitation (SFR_R) (b),
flavonol (FLAV) (c), blue–green to far-red fluorescence ratio (BRR_FRF) (d), anthocyanins (ANTH) (e),
nitrogen balance index under UV and red excitation (NBI_R) (f), and nitrogen balance index under UV
and green excitation (NBI_G) (g). Within the same growth stage, different lowercase (panicle initiation
stage) or uppercase letters (stem elongation stage) above or below the boxes indicate that the Multiplex
index values differed significantly according to the least significant difference test at P ≤ 0.05.
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Figure 2. Cont.
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Figure 2. Mean value comparisons for each Multiplex index at the three growth stages and each N
application rate (kg N ha−1) for variety KY 131 in 2013. Means and standard errors are shown in each
cell for N rate treatments with each measurement mode (Above Canopy, AC; On-the-go, OG; Leaf
Scale, LS). Different lowercase letters at the bottom of the plot at each growth stage indicate significant
differences according to the least significant difference test at P ≤ 0.05.

3.2. Changes in Multiplex Indices (“On-The-Go” Mode) over Growth Stages under Different N Supplies

The SFR_G, SFR_R, NBI_G, and NBI_R indices demonstrated an increasing trend as N rate
increased, while a decreasing trend was shown for FLAV (Figure 2). Comparatively, the ANTH and
BRR_FRF values were less sensitive to the changes in N rates. The values of these SFR_G, SFR_R,
NBI_G, and NBI_R indices increased from the PI to SE stage but decreased slightly from the SE to HE
stage, because the panicle formation decreased the chlorophyll/N concentration in the upper layer at
the HE stage. The opposite was true for the BRR_FRF, FLAV, and ANTH. NBI_G and NBI_R could
differentiate different N application rates the best regardless of the growth stages, followed by SFR_G,
SFR_R, BRR_FRF, and FLAV. The performance of ANTH was the worst (Figure 2).

3.3. Correlations between Multiplex Indices (“On-The-Go” Mode) and N Status Indicators

The linear regression results of the seven Multiplex indices and the five N status indicators at
three growth stages across the two rice varieties are shown in Table 4. The SFR_G, SFR_R, NBI_G, and
NBI_R indices were positively correlated with the N indicators whereas the BRR_FRF, ANTH, and
FLAV were inversely associated with them. The R2 of the regression models based on these indices
varied from 0.03 to 0.78. The best performing index varied at different stages, but NBI_G and NBI_R
showed steady high correlations with all five N status indicators. The second-best performing indices
were BRR_FRF and FLAV. The SFR_G and SFR_R indices displayed high or moderate correlations with
the N indicators during the PI or HE stage, respectively.
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Compared to the counterpart of the standard indices, the normalized sufficiency indices SFR_GNSI,
SFR_RNSI, and ANTHNSI exhibited better linear relationships with LNC, PNC, and NNI in most
of the cases, especially at the SE and HE stages. The NBI_GNSI and NBI_RNSI displayed enhanced
relationships with the LNC and PNC at the PI and HE stages, and with the NNI at the HE stage. The
BRR_FRFNSI, FLAVNSI showed improved associations with PNC at the PI and HE stages, and with
NNI at the SE and HE stages. All the standard indices showed moderate–high relationships with the
AGB and PNU during the PI and HE stages, while at the HE stage, greatly improved R2 values were
obtained using the normalized indices.

3.4. Validation of the Estimation Models for N Status Indicators

In order to diagnose rice N status, linear regression models between the Multiplex indices and N
indicators were established. The regression models varied across growth stages. Table 5 lists the best
performing models at the PI, SE, and HE stages. The best performing indices differed across the stages.
However, the relationships of NBI_G and NBI_R with N indicators were relatively more stable. After
normalization, the NBI_RNSI showed an absolute advantage for N status estimation at the PI and SE
growth stages, while the FLAVNSI demonstrated to be optimal for estimating most of the N indicators.

Table 5. Equations and coefficients of determination of linear regression models (n = 40) at different
growth stages based on the best performing Multiplex index and crop N indicators (LNC, PNC, NNI,
PNU, and AGB).

Growth Stage Standard Indices Model R2 Normalized Indices Model R2

PI SFR_G LNC = 4.468x + 5.932 0.63 NBI_RNSI LNC = 23.918x + 10.413 0.60
PI SFR_G PNC = 2.912x + 4.961 0.64 NBI_RNSI PNC = 15.323x + 8.247 0.65
PI SFR_G NNI = 0.2442x-0.5188 0.72 NBI_RNSI NNI = 1.1412x − 0.1116 0.58
PI NBI_R PNU = 88.184x-33.56 0.69 NBI_RNSI PNU = 85.908x − 43.67 0.46
PI NBI_G AGB = 1.5268x-1.1565 0.64 NBI_RNSI AGB = 2.905x − 1.1184 0.36

SE NBI_G LNC = 8.707x + 14.352 0.68 NBI_RNSI LNC = 17.96x + 16.279 0.55
SE NBI_G PNC = 5.544x + 9.082 0.71 NBI_RNSI PNC = 12.317x + 9.542 0.64
SE NBI_G NNI = 0.5003x + 0.0582 0.78 NBI_RNSI NNI = 1.1571x + 0.0601 0.77
SE NBI_G PNU = 51.494x-40.873 0.71 NBI_RNSI PNU = 120.8x − 42.157 0.72
SE NBI_G AGB = 1.7391x-0.4502 0.50 NBI_RNSI AGB = 4.1975x − 0.5961 0.56

HE BRR_FRF LNC = -210.31x + 47.452 0.67 NBI_GNSI LNC = 21.646x + 15.473 0.69
HE BRR_FRF PNC = -131.79x + 24.313 0.66 FLAVNSI PNC = -31.59x + 49.591 0.76
HE NBI_G NNI = 0.5942x-0.054 0.76 FLAVNSI NNI = -3.0631x + 4.3956 0.82
HE NBI_R PNU = 213.07x-67.623 0.72 FLAVNSI PNU = -462.81x + 612.19 0.64
HE NBI_R AGB = 8.3363x + 0.0609 0.51 FLAVNSI AGB = -15.729x + 24.131 0.34

Figure 3 shows the RE values of the validation models for six Multiplex indices (SFR_G, SFR_R,
BRR_FRF, FLAV, NBI_G, and NBI_R) and the N status indicators. The RE values for AGB and PNU
estimations based on these indices decreased steadily with advancing growth stages, while a slightly
increasing trend was observed for the LNC and PNC estimation models from the SE to HE stage. The
RE values for LNC (4.50%–10.24%) and PNC (5.87%–10.87%) models were much smaller than those
for AGB (15.49%–30.18%) and PNU (19.31%–31.25%), while the REs of NNI remained similar during
the three growth stages. At the earlier to middle growth stages, NBI_R and NBI_G presented a lower
RE than the other four indices for all the five N indicators. At the HE stage, however, the prediction
accuracies of the six indices were similar.
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Figure 3. The relative error (RE) values of the validation analysis based on the regression models of
the six Multiplex indices and the N status indicators for (a) above-ground biomass (AGB), (b) plant
N uptake (PNU), (c) leaf N concentration (LNC), (d) plant N concentration (PNC), and (e) nitrogen
nutrition index (NNI) at the panicle initiation (PI), stem elongation (SE), and heading (HE) stages.

3.5. Rice N Status Diagnosis

The best performing indices including SFR_G, BRR_FRF, NBI_G, NBI_R, NBI_GNSI, NBI_RNSI and
FLAVNSI were validated using independent data sets (Table 5). Moderate–high model performance
with R2 ranging from 0.34 to 0.82 was observed, especially for the LNC, PNC, and NNI estimations.
The areal agreement and Kappa statistics were compared at the critical N fertilizer application stages
(SE and HE) to evaluate the N diagnostic accuracies of the indices. Results confirmed that the NNI
models based on NBI_R and NBI_G performed consistently well at the SE and HE growth stages, and
their corresponding NSI indices further improved the results (Table 6). At the SE stage, the NBI_RNSI

achieved the highest diagnostic accuracy (areal agreement = 90%; Kappa = 0.84), while the best
accuracy was achieved by FLAV at the HE stage (areal agreement = 90%; Kappa = 0.76). In addition,
across the two growth stages, the NBI_RNSI showed the highest diagnostic consistency, followed by
the BRR_FRFNSI.
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Table 6. Agreement and Kappa statistics for different indices (SFR_G, SFR_R, BRR_FRF, FLAV,
ANTH, NBI_G, and NBI_R) and corresponding normalized indices (SFR_GNSI, SFR_RNSI, BRR_FRFNSI,
FLAVNSI, ANTHNSI, NBI_GNSI, and NBI_RNSI) regarding diagnostic results (Nitrogen Nutrition Index)
at different growth stages.

Comparison
Agreement (%) Kappa statistics

Comparison
Agreement (%) Kappa statistics

SE HE SE HE SE HE SE HE

SFR_G and NNI 75 65 0.554 *** 0.310 * SFR_GNSI and NNI 70 85 0.494 ** 0.661 ***
SFR_R and NNI 70 70 0.510 *** 0.322 * SFR_RNSI and NNI 75 85 0.583 *** 0.661 ***

BRR_FRF and NNI 60 70 0.363 * 0.409 ** BRR_FRFNSI and NNI 80 80 0.655 *** 0.538 ***
FLAV and NNI 75 90 0.605 *** 0.763 *** FLAVNSI and NNI 75 80 0.558 *** 0.570 ***
ANTH and NNI 55 75 0.283NS 0.355 * ANTHNSI and NNI 80 65 0.669 *** 0.227NS
NBI_G and NNI 75 80 0.595 *** 0.590 *** NBI_GNSI and NNI 75 85 0.673 *** 0.698 ***
NBI_R and NNI 75 80 0.595 *** 0.590 *** NBI_RNSI and NNI 90 85 0.840 *** 0.698 ***

*** Significant at the 0.001 level; ** Significant at the 0.01 level; * Significant at the 0.05 level; NS Not significant.

4. Discussion

4.1. Multiplex Measurement Modes and Estimation of Crop N Indicators by Fluorescence Indices

The N treatment effects were more significant for the readings obtained in the OG mode than those
collected in the AC mode (Table 3, Figure 2), which is different from the finding by Diago et al. [39] who
reported a 20% loss of information occurred when using the Multiplex on-the-go (compared to the AC
mode) for N assessment of grapevine. This is because the OG measurements in this study were taken
manually by placing the Multiplex sensor right on the top of the rice rather than a small distance above
the rice canopy while passing through the rice paddy. In contrast, in the study by Diago et al. [39], the
Multiplex sensor was mounted onto an all-terrain vehicle and placed 1.5 m above the ground so that
the leaves on the mid-part of the canopy were automatically measured at a 20 cm distance, the same
measuring distance as their AC mode. In addition, this study revealed that measurements made using
the LS mode were the least sensitive to N supply, contrasting to the result by Zhang et al. [41] who
found Multiplex measurements made from corn leaves were more capable of distinguishing plant N
status than those made from above the plants. While the leaf scale measurements made in this study
were collected in the laboratory by taking ten leaves in the second position from the top, the leaf-borne
measurements by Zhang et al. [41] were made on 20 representative plants in the center two rows of
each plot in the field, which is more similar to the OG rather than the LS method in this study. Another
possible reason for their better results with the LS method is that the OG measurements do not give
much time to choose leaves and result in more random leaf choosing than the LS method, which may
have an unwanted tendency to choose “good” leaves. This is particularly true for maize, because
systematic use of a representative leaf is easier, as it is well known which is the most representative
leaf for each growth stage, given its determined growth. For rice, the individual leaves are quite
small and the signal obtained during the measurements taken on a leaf is relatively weak and can
be easily affected by other factors. One advantage the “measuring in motion” or OG mode has is
efficiency, especially when the sensor is mounted on a vehicle or other automatic devices, which might
make practical applications of such non-destructive technology over large areas possible. Bringing the
sensor close to or even touching the leaves of the crop in OG mode may help reduce information loss.
However, further well-designed studies are needed to confirm this finding.

Strong relationships between the Multiplex indices (SFR_G, SFR_R, BRR_FRF, FLAV, NBI_G,
and NBI_R) measured in the OG mode and the five N indicators were achieved with low RE
and high R2 values (Table 4, Figure 3). This finding conforms to previous research results in this
field [26,42,55,56]. Many studies confirmed SFR was a good fluorescence index for chlorophyll content
monitoring [24,38,57]. However, in this study, it was found that the R2 of the SFR_G, SFR_R for LNC,
PNC, and NNI estimation decreased steadily from the early-stage to later stages, while an opposite
trend was observed for FLAV. Padilla et al. [55] found that the relationships between the NNI and
SFR_G changed with the phenological stages of cucumber (Cucumis sativus L.). Firstly, the consistency
of the relationship between chlorophyll content and N concentration varied with crop development,
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leading to different performances of SFR for N concentration estimation. For example, the linear
correlation between LNC and chlorophyll meter readings of rice was weaker at the SE stage than at
other growth stages [58]. Secondly, the weaker differentiation ability of SFR under the unlimited N
conditions may also be a reason [55]. The performance of FLAV increased from the PI to HE stages,
which was confirmed by Padilla et al. [59], who found the relationship of FLAV and NNI increased at
the middle to late growth stages. The better performance of FLAV at the later stage may be attributed to
the accumulation of the flavonols content in leaves under light radiation [44,60]. The NBI_G and NBI_R
indices were shown as the best indices for estimating the N indicators (Table 5). Many studies have
proven that the NBI indices appeared to be the most efficient in estimating the N status [47,56,59,61].
This is because the NBI is a ratio of SFR and FLAV, which makes it more robust than using FLAV or
SFR alone to reduce the effects of leaf age or other factors [34,36,47]. The NBI_G and NBI_R had similar
performance in this study, as demonstrated by Longchamps and Khosla [27]. Moreover, Longchamps
and Khosl [27] found that SFR was less sensitive to N application than NBI, which conforms to our
results, as shown in Figure 2. In most cases, the SFR_G and SFR_R indices could not distinguish
between the 100 and 130 kg N ha−1 treatments, but NBI could. The BRR_FRF index was significantly
correlated with the N nutritional status and was especially sensitive to N deficiency in this research.
When there is N stress, the fluorescence ratio of blue–green/far-red will increase after exposure to
elevated UV radiation to avoid or alleviate the damage of the photosynthetic apparatus [62]. Generally,
the UV-protection response takes place before the chlorophyll damage can be seen, so the BRR_FRF can
also be considered as a potential index that can realize early N deficiency detection [63]. The BRR_FRF
was also very sensitive to environmental stresses, such as disease and drought [38,63,64]. The ANTH
index provided by Multiplex is commonly used to reflect anthocyanin content, which corresponds to
the maturation degree of fruit [49,65]. In this research, the low values of ANTH were due to the low
anthocyanin content in the rapid vegetative growth phase for rice [66]. Nevertheless, ANTH was also
found to be closely related to the leaf chlorophyll concentration in some studies [38,41]. This study
revealed that ANTH was significantly related to N status indicators in PI and HE growth stages with
moderate R2 values (Table 4).

4.2. Normalized Nitrogen Sufficiency Fluorescence Indices

Our research involved two years and two varieties of experiments. In these experiments, N
fertilization rate is the main variable, and the variation is so high that it will probably override any other
source of variation. In a commercial field, many factors can influence N availability, N and Chlorophyll
relationship, or Chlorophyll (+FLAV and ANTH) relations to fluorescence indices, including biotic
or abiotic stresses at the moment of measurement or in the history of the crop or even the field. The
normalized N sufficiency index approach has been suggested to reduce the influence of the varieties,
developmental stages, and other variables on SPAD values or spectral data [3,11,67]. From the results
of this study, in most cases, the normalized NSIs were better associated with the LNC, PNC, and
NNI (Table 4). The R2 of the ANTHNSI was improved the most, followed by the NBI_GNSI and
NBI_RNSI. However, the improvement in R2 for BRR_FRFNSI was minimal. The variance analysis of
this study showed consistent results, which demonstrated that NSI indices could reduce the influence
of inter-annual and growth stage differences. Since NNI itself is a diagnostic criterion, it represents an
optimal N status when NNI is equal to one [68]. Most of the NSI indices greatly improved the NNI
diagnostic accuracy at the critical topdressing (SE and HE) stages (Table 6). Similarly, Lu et al. [43]
observed that the NNI inversion through the normalized vegetation indices further improved the N
nutrition diagnostic results of rice.

Hussain et al. [69] proposed a critical NSI value of 0.90 for rice. However, in this study, when
the NSI indices were 0.90, different optimal NNI values, ranging from 0.85 to 2.14, were derived by
different indices at different developmental stages. Only the corresponding optimal NNI values for
the NBI_GNSI and NBI_RNSI indices were close to one (ranging from 0.91 to 1.19). Therefore, to avoid
the risk of misdiagnosis, the NSI threshold was not used as a diagnostic criterion directly. A possible
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reason for this is that the N fertilizer application rate in this study was only 1.3–1.6 times higher than
the optimal amount instead of 1.8–2.0 times higher than recommended for the well-fertilized N plot as
Hussain et al. [69] suggested. Furthermore, all of the Multiplex indices were divided by the readings
of the N rate with the largest shoot dry matter at each sampling date to obtain a sufficiency index.
However, Varvel et al. [70] suggested that the maximum readings within each cropping system, variety,
and year should be considered as the normalized criterion. Obviously, with different normalization
criteria, different sufficiency indices will be obtained, which will affect the corresponding analysis
results. Another limitation of the NSI approach is that well-fertilized reference plots need to be
established in each farmer’s field for practical application purposes, and some farmers may not be
willing to do this. More in-depth and systematic research is expected in the future.

4.3. The Application Potential of the Multiplex Sensor

The Multiplex indices presented good R2 values for LNC and PNC estimations at the earlier
growth stages (Table 4). In particular, the validation data showed that the RE values for LNC and PNC
estimations were as low as 6%–7% (Figure 3c,d). This is consistent with the results of Cerovic et al. [71]
and Agati et al. [56], who have shown a high correlation between the fluorescence index and LNC. NBI
and LNC had a fairly linear relationship. Therefore, the NBI indices can be used to more accurately
estimate a wider range of LNC. Agati et al. [56] also found the results based on reflectance imaging
(camera picture) are less sensitive to N application than fluorescence-based indices. Research by
Stroppiana et al. [72] and Yu et al. [19] on rice showed unsatisfactory results for the estimation of LNC
and PNC based on reflectance spectroscopy. This is possibly due to the fact that the effect of N on the
leaf area index and biomass is much greater than its effect on chlorophyll content. Second, near-infrared
radiation is hardly absorbed in the canopy and is highly transmissive, so its correlation with leaf
area index or biomass is extremely high; while visible light, especially the blue and red radiation, is
easily absorbed by chlorophyll and its transmittance is low, so it is highly correlated with chlorophyll
content [15,72]. On the other hand, changes in plant metabolism indicators are fast or slow due to
changes in response to the environment. However, the sensitivity of reflectance-based parameters
does not always provide satisfactory monitoring results [73]. Demotes-Mainard et al. [74] observed
that changes in N concentration took precedence over changes in biomass. Thus, fluorescence-based
techniques that are highly sensitive to plant N status information may address the limitation of
reflectance-based methods [27,73]. Similarly, the Multiplex indices, especially the NBI_G and NBI_R,
presented accurate estimation for NNI, with R2 reaching a maximum of 0.72–0.78, and the validation
results also showed a low inversion error for NNI (RMSE ≤ 0.16, RE ≤ 15%) (Table 4). Many studies
have confirmed that NBI has a strong estimation potential for NNI [47,55,59]. This is because NBI is
the ratio of SFR to FLAV. The SFR index was considered to be an important parameter for estimating
chlorophyll concentration, which was often used as an index of surface-based N [75], while the FLAV
parameter directly reflects flavonol content, which is controlled by light as well as leaf mass per area,
and has a strong correlation with leaf mass [76]. Therefore, NBI as the SFR/FLAV ratio is the best N
nutrition diagnostic index.

The fluorescence-based indices are more sensitive to chlorophyll or N content than the
reflectance-based indices and can detect the difference in N nutrition status earlier. However, the
difference of the stage-based models between the indices and the N nutrition indicators based on the
canopy reflectance instrument is smaller than that based on fluorescence [59]. The surface area of the
crop involved in each test when using the canopy reflectance spectroscopy sensors is larger than the
fluorescence sensors [59]. Therefore, canopy reflectance measurements are more representative, while
fluorescence instruments require increasing the number of tests to obtain sufficiently representative
data. Although the performance of the fluorescence sensor was quite good for estimating LNC, PNC,
and NNI, 22%–60% of their variability was still not explained. In addition, the fluorescence sensor
did not perform very well for estimating plant biomass in the middle to late stages (Table 4). It has
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been suggested to combine the fluorescence and reflectance data to improve the estimation of plant N
status [3,73]. This may be one of the important research directions in the future.

5. Conclusions

This research compared the LS, OG, and AC measurement modes of the fluorescence instrument
Multiplex®3 and determined that the OG mode was best suited for this rice N status study. Using the
OG mode, stable test results and crop growth information were derived. The results revealed that
the fluorescence indices of NBI, SFR, BRR_FRF, and FLAV were significantly correlated to all five N
status indicators from the PI through HE growth stages. Among them, NBI_G and NBI_R were the
best performing indices and highly correlated to LNC (R2 = 0.52–0.68), PNC (R2 = 0.52–0.71), NNI
(R2 = 0.69–0.78), AGB (R2 = 0.47–0.64), and PNU (R2 = 0.68–0.72) at the three growth stages. The
normalized sufficiency indices of the Multiplex parameters could greatly improve the LNC, PNC,
and NNI estimation ability, especially at the HE stage. The N diagnostic results indicated that the
NBI_RNSI and FLAV achieved the highest diagnostic accuracy rate (90%) at the SE and HE stage,
respectively, while NBI_RNSI showed the highest analytical consistency across growth stages. The
results suggest that the Multiplex sensor can be used to reliably estimate N nutritional status for rice in
cold regions, especially for the estimation of LNC, PNC, and NNI. The normalized sufficiency indices
based on Multiplex indices may further improve the accuracy of N nutrition diagnosis by reducing the
differences between years and varieties.
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Abstract: Vegetation indices (VIs) can be useful tools to evaluate crop nitrogen (N) status. To be
effective, VIs measurements must be related to crop N status. The nitrogen nutrition index (NNI) is a
widely accepted parameter of crop N status. The present work evaluates the performance of several
VIs to estimate NNI in sweet pepper (Capsicum annuum). The performance of VIs to estimate NNI
was evaluated using parameters of linear regression analysis conducted for calibration and validation.
Three different sweet pepper crops were grown with combined irrigation and fertigation, in Almería,
Spain. In each crop, five different N concentrations in the nutrient solution were frequently applied by
drip irrigation. Proximal crop reflectance was measured with Crop Circle ACS470 and GreenSeeker
handheld sensors, approximately every ten days, throughout the crops. The relative performance of
VIs differed between phenological stages. Relationships of VIs with NNI were strongest in the early
fruit growth and flowering stages, and less strong in the vegetative and harvest stages. The green
band-based VIs, GNDVI, and GVI, provided the best results for estimating crop NNI in sweet pepper,
for individual phenological stages. GNDVI had the best performance in the vegetative, flowering,
and harvest stages, and GVI had the best performance in the early fruit growth stage. Some of the VIs
evaluated are promising tools to estimate crop N status in sweet pepper and have the potential to
contribute to improving crop N management of sweet pepper crops.

Keywords: canopy reflectance; crop N status; Capsicum annuum; proximal optical sensors

1. Introduction

Vegetable crops production is characterized by nitrogen (N) losses and the associated
environmental problems [1–3]. The most common environmental problems include ground and
surface water contamination, eutrophication of surface water, and nitrous oxide (N2O) emission [4,5].
These problems are often a consequence of the high use of N fertilizer as a way to ensure optimal
growth and production [6], which generally exceeds the demand of the crops [3,7,8]. Knowing crop N
requirements and matching N supply to crop demand are requirements to reduce N contamination of
water bodies by intensive vegetable production [3,9,10]. Various tools are available for monitoring crop
N status [3,11]. A traditional tool is leaf nutrient analysis, which requires laborious and time-consuming
laboratory work, and which generally cannot characterize the temporal and spatial variability of N
status [12,13]. These are major drawbacks, because knowledge of temporal and spatial variability
of crop N status appreciably assists the matching of N supply to crop N requirements [14]. Optical
sensors are devices that provide rapid, effective, and nondestructive assessment of crop N status, in the
field [3,15]. They enable frequent assessment throughout a crop, and assessment of spatial variability.
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Amongst the proximal optical sensors, canopy reflectance sensors have two very positive features in
that they can measure large areas of a crop and have on-the-go measurement capability [16].

Crop reflectance measurements can be used to assess N status of field crops [11]. These measurements
are based on the differential reflection of wavelengths of radiation [3], which are absorbed and reflected
by the crop in different proportions, depending on crop N status [15]. Generally, the light wavelengths
used are in red, green, and near-infrared ranges [11]. More recently, the red-edge has been proposed
to overcome the reported saturation of the red band [17,18]. Using reflectance data of different
wavelengths, vegetation indices are calculated, which commonly combine reflectance data from 2–3
wavelengths [19].

Measurements of crop reflectance can be made with proximal sensors positioned relatively close
to the canopy, from several centimeters to a few meters away [15]. Due to the field of view of the
sensors, each individual measurement can integrate a large area of crop canopy [3,20]. Depending
on the sensor, continuous measurements can be made as the sensor passes along the crop canopy
(“on-the-go” measurement), thereby integrating large surface areas of crop canopy [15].

In order to use vegetation indices, calculated from canopy reflectance measurement, as a proxy of
crop N status, calibration is required. A commonly-used approach is to determine the relationship
between values of a given vegetation index and a measure of crop N status, such as the nitrogen
nutrition index (NNI) [13,21]. NNI is calculated by dividing the actual crop N content by the critical
crop N content [22,23], the latter being the lowest crop N content necessary for nonlimiting growth.
Values of NNI equal to 1 indicate optimal N nutrition [24], and any deviation from 1 indicates excess N
(i.e., NNI>1) or deficient N (i.e., NNI<1) crop status.

Numerous studies have reported that vegetation indices, obtained with canopy reflectance sensors,
are strongly related to crop biomass and yield [11,25,26]. Appreciably, fewer studies have assessed
the capability of vegetation indices, measured with proximal reflectance sensors, to assess crop N
status [27]. Most studies have been conducted in cereal crops such as wheat [12,27,28] and rice [29,30];
very few with vegetable crops such as sweet pepper. To use vegetation indices as estimators of
crop N status, it is necessary to derive a regression equation between the measured vegetation index
(independent variable) and crop NNI (dependent variable) [31]. This procedure requires firstly fitting
a regression equation between the vegetation index and crop NNI with a calibration dataset [27],
and secondly, it requires validation of this regression equation with an independent, validation dataset.

Environmental problems associated with the high use of N fertilizer in vegetable production
systems have been reported for diverse regions [5], such as southeastern (SE) Spain [32], SE United
States [6], and China [7,33]. Greenhouse production systems are major sources of vegetables [34].
Within greenhouse-based vegetable production systems, sweet pepper is one of the most important
vegetable crop [35]. In SE Spain, approximately 40,000 ha [36] of highly-concentrated greenhouses are
used for intensive vegetable production; 30,000 ha are located in the Almería province. This system is
characterized by high rates of N fertilizer and an excessive N supply [2,37] that are associated with
nitrate contamination of underlying aquifers [32]. There is increasingly strong pressure to improve crop
N management to reduce aquifer contamination from this vegetable production system. In Almeria,
sweet pepper is one of the most important crops; each year, it is grown on 8000 ha [38].

Given the pressure to improve N management in greenhouse-based vegetable production [2,7]
and that sweet pepper is a major crop, information is required of tools and sensors that inform of
the N status of sweet pepper crops grown in greenhouses. Such tools will provide vital information
of the adequacy of ongoing N management, enabling optimal N fertilizer use and ensuring less
environmentally harmful N losses [3].

In the present work, eight vegetation indices, calculated from canopy reflectance measurements
obtained with two different proximal sensors, were evaluated to estimate crop N status of sweet pepper.
Firstly, calibration regression equations of each vegetation index to crop NNI were fitted. Secondly,
these regression equations were subsequently validated using a different dataset. Thirdly, using the
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validated equations between vegetation indices and crop NNI, sufficiency values were derived for
each vegetation index for optimal N nutrition, for the major phenological stages of sweet pepper crops.

2. Material and Methods

2.1. Site and Experimental Design

Three experiments with sweet pepper (Capsicum annuum cv. Melchor) were carried out in a plastic
greenhouse in Almería, southeast Spain. The greenhouses were located in the experimental station
of the University of Almería (36◦ 51′ 51” N, 2◦ 16′ 56” W, 92 m altitude). The first crop was grown
in 2014–2015, the second in 2016–2017, and the third in 2017–2018 (Table 1). All crops spanned a
summer-winter cycle. Further details of the greenhouse are in Padilla et al. 2014 [39] and 2017 [21].
The crops were grown in an artificial layered soil, known as “enarenado”, typical of commercial
greenhouse crops in SE Spain [2].

Table 1. Duration, beginning of nitrogen (N) treatments, concentration of mineral N (NO3
−–N +

NH4
+–N) applied in nutrient solutions, and mineral N amount applied in fertigation, in the three sweet

pepper crops. DAT: Days after transplanting.

Crop Cycle
Duration

(Days)
Beginning of
N Treatments

Mineral N
Concentration
of Treatments
(mmol N L-1)

Amount of
Mineral N
Applied

(kg N ha-1)

2014–2015 12 August –
29 January 170 1 DAT

N1: 2.4
N2: 6.2
N3: 12.6
N4: 16.1
N5: 20.0

N1: 64
N2: 189
N3: 516
N4: 804
N5: 990

2016–2017 19 July –
24 March 248 9 DAT

N1: 2.0
N2: 5.3
N3: 9.7

N4: 13.5
N5: 17.7

N1: 88
N2: 302
N3: 561

N4: 1052
N5: 1320

2017–2018 21 July –
20 February 214 10 DAT

N1: 2.0
N2: 5.7
N3: 9.7
N4: 13.1
N5: 16.7

N1: 86
N2: 304
N3: 519
N4: 870
N5: 1198

The crops were established by transplanting 35-day old seedlings, in twin rows (0.8 m between
twin rows and 1.2 m between twin rows) and 0.5 m distance between plants within each line, with a
plant density of 2 plants m−2. Each experimental plot measured 6 by 6 m, giving a total of 72 plants
per replicate plot. There were three twin rows of plants, 6 m in length in each plot. The middle twin
row was used for canopy reflectance measurements.

Water and fertilizers were applied combined through fertigation, by using an above-ground drip
irrigation system. Each plant was planted close to an emitter. The fertigation was applied every
two–three days, depending on crop demand. The three experiments consisted of a fully randomized
block design, with five N treatments and four replicates per treatment. The N treatments were applied
by fertigation by using different nutrient solutions with increasing N concentration. All other macro and
micronutrients were applied in the nutrient solution to ensure they were not limiting. The treatments
were: Very deficient N (N1), deficient N (N2), conventional N (N3), excessive N (N4), and very
excessive N (N5) (Table 1). N was applied mostly (90%) as nitrate (NO3

−), the rest as ammonium
(NH4

+). The crop was physically supported which is typical for pepper production in this system.
Crop management followed local practices.
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2.2. Canopy Reflectance with Optical Sensors

Two active proximal reflectance sensors were used to measure canopy reflectance information
throughout the three crops. In the first crop, reflectance measurements were made weekly and in the
second and third crops every two weeks. The sensors used were the GreenSeeker handheld sensor
(Trimble Navigation Limited, Sunnyvale, CA, USA) and the Crop Circle ACS-470 (Holland Scientific
Inc., Lincoln, NE, USA). The measurements were made by positioning both sensors vertically and
parallel to the crop rows, so that the upper limit of the field of view was at the height of the most
recently fully expanded leaf [15].

The GreenSeeker includes two light sources, visible (660 nm—red light) and near-infrared (NIR)
(780 nm). This sensor measures the fraction of emitted lights reflected from the crop to calculate the
vegetation index NDVI which is explained in Table 2. The GreenSeeker handheld sensor was positioned
at 60 cm horizontal distance to the foliage; the field of view was an oval with a height of ≈ 25 cm.
The measuring mode was the individual measurement (“one-shot”). For each date of measurement,
eight marked plants were measured per replicate plot, and the mean value was determined.

Table 2. Vegetation indices calculated in the present study.

Index Acronym Equation Reference

Normalized Difference
Vegetation Index NDVI NIR−RED

NIR+RED Sellers [40]

Green Normalized
Difference Vegetation Index GNDVI NIR−Green

NIR+Green Ma et al. [41]

Red Ratio of Vegetation
Index RVI NIR

Red Birth and McVey [42]

Green Ratio of Vegetation
Index GVI NIR

Green Birth and McVey [42]

Red Edge Normalized
Difference Vegetation Index RENDVI

NIR−Red Edge
NIR+Red Edge

Gitelson and Merzlyak [43]

Chlorophyll Index CI NIR
Red Edge Gitelson et al. [44]

Canopy Chlorophyll
Content Index CCCI RENDVI−RENDVImin

RENDVImax−RENDVImin Fitzgerald et al. [28]

MERIS Terrestrial
Chlorophyll Index MTCI

NIR−Red Edge
Red Edge−Red

Dash and Curran [45]

The Crop Circle ACS-470 used filters at 550 nm (green), 670 nm (red), 760 nm (near infrared;
NIR), and 730 nm (red edge). The sensor was positioned at a 45 cm horizontal distance. The field
of view was a rectangle of ≈ 26 (vertical) × 5 (horizontal) cm. The measurements were made in two
separate passes. Each pass consisted of a 4 m transect in each line of plants in the middle twin row of
each plot. In the first pass, green, red, and NIR filters were used; in the second pass, red edge, red,
and NIR filters were used. Measurements were collected at a frequency of 10 readings per second.
On-the-go measurements were made by walking at approximately 1.5 km h−1. In total, 200 individual
measurements were collected per plot. Data were stored in a portable GeoSCOUT GLS-400 data logger
(Holland Scientific, Inc.). The vegetation indices shown in Table 2 were calculated from reflectance
values of individual wavelengths.

2.3. Crop Sampling and NNI Determination

In each of the crops, periodical aboveground biomass samplings (approximately every 14 days)
were made to determine dry matter (DM). For each replicate plot in each sampling, two complete
plants were selected and removed. The dry weights of different components of the plants (stem,
leaf, and fruit) were recorded by oven-drying until constant weight at 65 ◦C. In each replicate plot,
the fruit production and pruned material were recorded throughout the crop in eight marked plants.
Subsamples of dry material were ground prior to analysis of N content (%N) in a Dumas-type elemental
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analyzer (Rapid N, Elementar, Analysensysteme GmbH, Hanau, Germany). The amount of N was
calculated by multiplying the %N by the dry matter mass of the corresponding component.

The NNI was calculated using the critical N curve derived for greenhouse-grown sweet pepper
crop: Critical N = 4.71·DM−0.22 (Alejandra Rodríguez, University of Almeria, unpublished data).
The NNI was calculated by dividing the N content measured in the crop by the critical N content.
The NNI value for each reflectance measurement day was by interpolating DM and crop N content
values between two consecutive biomass samplings [46].

2.4. Data Analysis

Data of reflectance measurements and NNI were grouped and analyzed for phenological stage.
Four main phenological stages were considered for sweet pepper, according to de Souza et al. [47], as:
(1) Vegetative, (2) flowering, (3) early fruit growth, and (4) harvest. The definition of the phenological
stages is in de Souza et al. [47]. Within each phenological stage, several canopy reflectance measurements
and biomass samplings were conducted. To integrate data of the various measurements within each
phenological stage, integrated NNI and vegetation indices values were calculated, according to Lemaire
and Gastal [24] and Padilla et al. [21], as:

Integrated index =
1
D

.
∑

(V.ds) (1)

where D was the duration of the phenological stage, V was the value of NNI or vegetation index for
each day of measurement, and ds was the duration between two successive measurements [47].

Predictive regression functions were evaluated to estimate NNI of sweet pepper for each of the
eight vegetation indices assessed in the current work. For each phenological stage of the three crops;
data of integrated vegetation indices and the corresponding integrated NNI were pooled. This created a
single pooled data set of 60 data points for each vegetation index in each phenological stage considering
the three crops together. The 60 data points, for each phenological stage were randomly separated into
two groups: Forty data points (2/3 of total data) for the calibration dataset, and 20 data points (1/3 of
total data) for the validation dataset. With the calibration dataset, simple linear regression analyses
were conducted with the integrated vegetation index as the independent variable (x variable) and
NNIi as the dependent variable (y variable). The software CurveExpert Professional®2.2.0 software
(Daniel G. Hyams, MS, USA) was used. Validation of the equations that related each integrated
vegetation index with NNIi, for each phenological stage, was then conducted with the validation
dataset. Validation consisted of calculating the predicted NNIi from the calibration equation for each
combination of vegetation index and phenological stage. Predicted NNIi values were then compared
with the NNIi values of the validation dataset. Linear regression analysis was made between observed
NNIi (independent variable) and predicted NNIi (dependent variable) and the root mean square error
(RMSE) of the NNI estimation was determined. The RMSE was calculated as:

RMSE =

√∑n

1

(Ei −Oi)
2

n
(2)

where n is the number of samples, Ei is the estimated value of the relationship, and Oi is the observed
value [48].

The performance of the different vegetation indices was evaluated according to Xin-feng et al.,
2013 [49]; this procedure considers both the calibration and validation results. Coefficient of
determination (R2) and RMSE values of the linear regression of the calibration dataset, and the
R2 and RMSE values, absolute values of slope-1, and absolute values of intercept of the linear regression
of the validation dataset were used [49]. Slope-1 is the absolute value of the slope after subtracting one
from the slope of the linear regression. The use of this parameter effectively normalizes slope values
and enabled ranking of all integrated vegetation indices from lowest to highest values.
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The performance of each vegetation index was calculated (i) by sorting R2 in decreasing order
and RMSE in ascending order for the calibration and validation datasets separately, and (ii) the sorting
of absolute slope-1 and absolute intercept values in ascending order for the validation dataset [49].
The best performing vegetation index was that which had the lowest sum of these six factors [49].
Additionally, the performance of the validation regression equation of the different vegetation indices,
in each phenological stage, was assessed by comparing the relative error (RE) between observed and
estimated NNIi values. The relative error was calculated as:

RE:
RMSE

Oi
(3)

where Oi is the average of observed values.
Sufficiency values of each vegetation index, for each phenological stage, were calculated from the

regression equations of the calibration datasets. The equations of calibration for each phenological
stage were solved for NNI = 1, according to Lemaire et al. [23].

3. Results

3.1. Phenological Relationships Between Integrated Vegetation Indices and Integrated NNI (NNIi),
for Calibration Dataset

For the calibration data, the relationships between most of the integrated vegetation indices and
NNIi, in each phenological stage, were highly significant (Table 3, Figure 1). In the vegetative stage,
the coefficients of determination (R2) of these relationships were generally low; averaged across all
vegetation indices, the R2 of the vegetative stage was 0.45 ± 0.05. In the vegetative stage, the R2 ranged
from 0.19 to 0.50 for most of the vegetation indices, except the GNDVIi which had a R2 value of 0.63
(Table 3). In the flowering stage, the coefficients of determination were slightly higher than in the
vegetative stage, with an average R2 value for all vegetation indices of 0.52 ± 0.03 and a range from
0.38 to 0.65 (Table 3). The highest R2 values were obtained in phenological stage corresponding to
early fruit growth, where the average R2 value across all vegetation indices was 0.71 ± 0.04, with a
range from 0.52 to 0.84 (Table 3). The harvest stage had the lowest R2 values of all phenological stages
for all vegetation indices considered together, the average was 0.27 ± 0.02, with a range from 0.19 to
0.42 (Table 3).

Comparing the performance of different vegetation indices to estimate NNI throughout the crops,
the integrated vegetation indices that were based on the green band (GNDVI and GVI) had higher and
more consistent R2 values in the first three phenological stages, which were the vegetative, flowering,
and early fruit growth stages. The R2 values for GNDVIi were 0.63, 0.65, and 0.62 for the vegetative,
flowering, and early fruit growth stage, respectively. For GVIi, the R2 values were 0.56, 0.60, and 0.63,
respectively, for the same phenological stages (Table 3). The R2 values of RVIi, CIi, and CCIi vegetation
indices were low (R2 < 0.50) and very similar in the vegetative and flowering stages but increased
in the early fruit growth stage (Table 3). For the rest of the integrated vegetation indices evaluated,
the R2 values increased from the vegetative to early fruit growth stages, being lowest in the harvest
stage (Table 3). Sufficiency values of each integrated vegetation index, for each phenological stage,
were calculated from the regression equations of the calibration datasets. The equations of calibration
for each phenological stage were solved for NNI = 1.
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Figure 1. Linear regressions between each integrated vegetation index and integrated nitrogen nutrition
index (NNIi) for the four vegetative stages, for calibration data (n = 40). Circle: Vegetative; Triangle:
Flowering; Square: Early fruit growth; and Diamond: Harvest stage. Panel (a) shows normalized
index vegetation index (NDVI) measured with GreenSeeker sensor and the other panels (b–i) show
indices calculated with the Crop Circle sensor. Results of regression are in Table 3. Abbreviations for
vegetation indices are in Table 2.

3.2. Validation of the Phenological Relationships Between Vegetation Indices and NNIi

Validation of the relationships established with the calibration dataset was made with an
independent and different dataset. For all of the vegetation indices analyzed, the vegetative stage
had the worst validation results. In this stage, the average R2 and RMSE values for all indices were
0.46 ± 0.05 and 0.123 ± 0.006, respectively (Table 4). The validation results, for all vegetation indices,
improved in the flowering and early fruit growth phenological stages. In these stages, the average R2

and RMSE values for all indices were 0.63 ± 0.04 and 0.127 ± 0.006, for the flowering stage, and were
0.87 ± 0.02 and 0.120 ± 0.008, for the fruit growth stage, respectively (Table 4). In the harvest stage,
validation results were intermediate (Table 4), with average R2 and RMSE values for all indices of 0.59
± 0.09 and 0.125 ± 0.002, respectively.
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Generally, for the vegetative stage, the slope of linear regression between observed and predicted
NNIi values was appreciably different to one for all of the vegetation indices evaluated; the average
slope value for all indices was 0.513 ± 0.057 (Table 4). The exception was the GNDVIi that had a slope
of 0.806. Compared to the 1:1 line, there was a tendency for all vegetation indices except GNDVI to
overestimate NNI values for NNI values < 0.9, and a tendency to underestimate NNI, for NNI values
>0.9 (Figure 2, green circles). In the flowering stage, the slopes of the regression between observed and
predicted NNIi values were closer to one for all of the vegetation indices evaluated (average value of
0.756± 0.049), and particularly so for NDVI (0.946) and GNDVI (0.905) (Table 4). Compared to the 1:1
line, all of the vegetation indices except for NDVI and GNDVI tended to overestimate NNI values at
NNI values <1, and underestimate NNI at NNI values >1 (Figure 2, red triangles). In the early fruit
growth stage, slopes of linear regression between observed and predicted NNIi values were slightly
above 1 for all of the vegetation indices evaluated (average value of 1.282 ± 0.036) (Table 4). Compared
to the 1:1 line, all vegetation indices underestimated NNI values at the whole range of NNI observed
in the early fruit growth stage (Figure 2, blue squares). In the harvest stage, the slopes of the regression
between observed and predicted NNIi values were close to 0.5 for all vegetation indices evaluated
(average value of 0.433± 0.018) (Table 4). Compared to the 1:1 line, all vegetation indices overestimated
NNI values, at NNI values < 0.9, and underestimate NNI, at NNI values > 0.9 during the harvest stage
(Figure 2, grey diamonds).

Figure 2. Relationships between observed integrated Nitrogen Nutrition Index (NNIi) and predicted
NNIi for the four phenological stages, for validation data (n = 20). Circle: Vegetative; Triangle:
Flowering; Square: Early fruit growth; and Diamond: Harvest stage. Panel (a) shows NDVI measured
with GreenSeeker sensor and the other panels (b–i) show indices calculated with Crop Circle sensor.
Dotted line represents the 1:1 line. Results of regression are in Table 4. Abbreviations for vegetation
indices are in Table 2.
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The relative error (RE) of the validation analysis for all vegetation indices evaluated in each
phenological stage are presented in Figure 3. For the vegetative, flowering, and early fruit growth
stages, RE ranged from 8% to 17%, with average RE values, for all indices, of 12.9% ± 0.59%, 13.2% ±
0.66% and 12.4% ± 0.78%, respectively. In the harvest stage, the RE ranged from 12% to 15%, with an
average value of 13.5% ± 0.21% for all indices. The vegetation indices GVI and GNDVI had consistently
lower RE values in most of the phenological stages (average RE values across phenological stages
of 10.7% ± 1.03% and 11.3% ± 0.81%, respectively), followed by the RVI index (averaged RE values
across phenological stages of 12.4% ± 0.40%). The GVI had the lowest RE in the vegetative, flowering,
and early fruit growth stages (Figure 3). In contrast, the RENDVI index was the vegetation index with
highest RE values throughout the four phenological stages (average value of 14.5% ± 1.09%).

Figure 3. Relative error of linear relationships between observed integrated Nitrogen Nutrition
Index (NNIi) values and predicted NNIi for each vegetation index at different phenological stages,
for validation data (n = 20). Veg: Vegetative stage; Fl: Flowering stage; FG: Early fruit growth stage;
Hv: Harvest stage. Abbreviations for vegetation indices are in Table 2.

3.3. Performance of Vegetation Indices

The classification of vegetation indices based on R2 and RMSE of linear regression analysis of the
calibration and validation datasets, and on the slope and intercept values of linear regressions of the
validation dataset, showed that six (NDVI, RVI, RENDVI, CI, CCCI, and MTCI) of the nine vegetation
indices evaluated had their best performance in the early fruit growth stage (Table 5). For NDVI, RVI,
CI, CCCI, and MTCI, the flowering stage, was the phenological stage in which the second best results
were obtained, for these indices, which were only slightly inferior to those in the early fruit growth
stage. The RENDVI index was the exception, where the second best performance was in the vegetative
stage (Table 5). For the three remaining vegetation indices (NDVIGS measured with GreenSeeker,
GNDVI, and GVI), the best performance was in the flowering stage, followed by the early fruit growth
stage. The worst performance for most of the vegetation indices occurred in the harvest stage, followed
by the vegetative stage (Table 5).
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Table 5. Ranking of best performing phenological stage for each vegetation index. Performance was
evaluated using R2 and RMSE of linear regression of calibration and validation datasets, and slope and
intercept of linear regression of validation dataset. Numbers in brackets show the performance of each
phenological stage. The best performance is the one which has the lowest value.

Best
Performance

NDVIGS NDVI GNDVI RVI GVI RENDVI CI CCCI MTCI

1st Flowering
(10)

Early fruit
growth (10)

Flowering
(9)

Early fruit
growth (8)

Flowering
(10)

Early fruit
growth (10)

Early fruit
growth (11)

Early fruit
growth (6)

Early fruit
growth (7)

Early fruit
growth (10)

2nd Early fruit
growth (14)

Flowering
(12)

Early fruit
growth (14)

Flowering
(14)

Vegetative
(17)

Vegetative
(11)

Flowering
(13)

Flowering
(16)

Flowering
(14)

3rd Harvest
(16)

Vegetative
(18)

Vegetative
(15)

Vegetative
(15)

Harvest
(23)

Flowering
(19)

Vegetative
(19)

Harvest
(18)

Harvest
(17)

4th Vegetative
(20)

Harvest
(20)

Harvest
(22)

Harvest
(23)

Harvest
(20)

Harvest
(20)

Vegetative
(20)

Vegetative
(22)

For each phenological stage, the performance of the vegetation indices was compared to one
another in Table 6. In the vegetative, flowering, and harvest stages, the best performing index was
GNDVI. In early fruit growth stage, the best performing index was GVI. The performance of various
indices, in this ranking was not constant in the different stages (Table 6). For example, in the vegetative
stage, the second and third best performing vegetation indices were GVI and RENDVI, respectively,
but RENDVI was one of the worst performing indices in the other three stages. Similar results were
obtained for MTCI, which was the second-best performing index in the early fruit growth stage but was
amongst the last positions in the other three stages. Overall, considering the four stages together, the
best performing vegetation index was GNDVI, followed by GVI. The vegetation indices that performed
worse were CCCI and MTCI (Table 6).

Table 6. Ranking of best performing indices for each phenological stage. Performance was evaluated
using R2 and RMSE of linear regression of calibration and validation datasets, and slope and intercept
of linear regression of validation dataset. Numbers in brackets show the performance of each index.
The best performance index is the one which has the lowest value.

Best Performance Vegetative Flowering Early Fruit Growth Harvest Whole Crop

1st GNDVI (12) GNDVI (9) GVI (20) GNDVI (12) GNDVIi (60)
2nd GVI (13) NDVIGS (18) MTCI (22) NDVIGS (13) GVIi (73)

GVI (18)
3rd RENDVI (20) NDVI (19) CCCI (26) CI (21) NDVIiGS (98)
4th RVI (25) RVI (32) GNDVI (27) GVI (22) CIi (117)

CI (32) RVI (27)
5th NDVIGS (29) MTCI (40) CI (31) NDVI (33) RVIi (121)
6th CI (33) CCCI (48) NDVI (37) RVI (37) NDVIi (131)
7th NDVI (42) RENDVI (54) NDVIGS (38) MTCI (38) MTCIi (147)
8th MTCI (47) RENDVI (42) CCCI (46) RENDVIi (164)
9th CCCI (49) RENDVI (48) CCCIi (169)

3.4. Sufficiency Values of Vegetation Indices

Sufficiency values of each vegetation index for each phenological stage were derived from the
calibration equations. Figure 4 shows the dynamics of sufficiency values of each vegetation index
throughout the four phenological stages. The sufficiency values of the best performing vegetation
indices ranged 0.64–0.76 for GNDVI, and 4.93–7.36 for GVI. The largest difference between sufficiency
values, for most of the vegetation indices evaluated, was between vegetative and flowering stages.
On average, the relative increase in sufficiency values from the vegetative to the flowering stage was
approximately 10% for NDVI, measured both with Crop Circle and GreenSeeker sensors, and for
GNDVI, RENDVI, and CI. There were much larger relative increases for RVI and GVI, which were
34% and 25% higher in the flowering stage compared to the vegetative stage. In contrast, the smallest
differences in sufficiency values between these two stages were for the CCCI and MTCI indices,
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with values of approximately 5%. Generally, the sufficiency values for the early fruit growth stage
were similar to those for the flowering and harvest stages; except for GVI, CCCI, and MTCI which
were on average 13% higher in the early fruit growth stage compared to the flowering stage.

Figure 4. Sufficiency values of integrated vegetation indices calculated for NNI = 1 over different
phenological stages: Veg: Vegetative; Fl: Flowering; FG: Early fruit growth; and Hv: Harvest.
Abbreviations for vegetation indices are in Table 2. Panel (a) shows NDVI measured with GreenSeeker
sensor and the other panels (b–i) show indices calculated with Crop Circle sensor.

4. Discussion

In sweet pepper, the R2 and RMSE of linear regressions between vegetation indices and crop NNI
were variable between phenological stages throughout the crop and between the eight vegetation
indices evaluated. The best performance of vegetation indices for estimation of crop NNIi, in terms of
R2 and RMSE values, was in the early fruit growth stage. Using these criteria, the worst performance
for estimating NNIi was in the harvest stage, followed by the vegetative stage, for most of the
vegetation indices evaluated. Similar variability of performance of vegetation indices, throughout a
crop, was reported by Hatfield and Prueger [50], in maize and soybean. In that research, the relative
performance of different vegetation indices for estimating leaf chlorophyll content differed as the
growing season progressed. Similarly, Yu et al. [29] found in rice that some red edge-band based
vegetation indices had better performance to estimate plant N concentration after the heading stage.
In wheat, performance of vegetation indices varied across growth stages, with better results after
flowering was reported by Li et al. [51].

According to the analysis of R2 and RMSE values of linear relationships between vegetation
indices and NNIi, for the calibration dataset, vegetation indices based on reflectance of the green
band (i.e., GNDVI and GVI) had consistently higher R2 values and lower RMSE values throughout
most of the phenological stages of the crop (average R2 value of 0.62 in the three first phenological
stages). These results indicate that vegetation indices based on reflectance of the green band estimated
crop NNIi with more accuracy than the rest of vegetation indices evaluated. In rice, Cao et al. [30]
also found that the best indices to estimate NNI, in the different parts of the crop cycle, were mainly

101



Remote Sens. 2020, 12, 763

green band based indices. In the present study, there was an exception in the early fruit growth stage,
where vegetation indices based on reflectance of red edge band (i.e., RENDVI, CI, CCCI, and MTCI)
had higher R2 values (average R2 value across these four indices of 0.83) than green band based
vegetation indices such as GNDVI and GVI. These results are consistent with Yu et al. [29], who found
that the red edge based vegetation indices were more sensitive to plant N concentration particularly
after the heading stage in rice, whereas green based vegetation indices were more sensitive to plant N
concentration in the rest of stages.

Vegetation indices based on reflectance in the green band and in the red edge band are very
sensitive to leaf and crop greenness [41,52,53]. They have been preferred over red band based reflectance
indices as indicators of crop N status [11,21,25] because of higher sensitivity, particularly of the red
edge band at high chlorophyll levels contents [43]. In the present study, vegetation indices based on
reflectance in the green band were more sensitive to estimate crop N status than vegetation indices
based on the red edge band in all phenological stages, except for the early fruit growth stage when
green pepper fruits developed and enlarged. It is possible that the abundance of green tissues in this
stage, formed by green pepper fruits and leaves, caused some degree of saturation of the green band
but not of the red edge band.

To validate the calibration linear regression equations (derived from the calibration data set) that
estimated crop NNIi values from integrated vegetation index measurements, the same calibration
linear regression equations were used to estimate NNIi values from the validation data set for each
vegetation index. The NNIi values estimated, with this procedure, were compared with the integrated
measured NNI values, by linear regression analysis. For most of the vegetation indices evaluated,
there was a deficient validation of the regression equations in the vegetative and harvest stages,
and more successful validation in the flowering and early fruit growth stages. This interpretation
is based on the slope of linear regression between observed and predicted NNIi values, and on the
calculated relative error.

In the vegetative and harvest stages, the slopes of linear regression diverged appreciably from
one and the relative errors were very different to 0% which would represent perfect validation of
regression equations [54–56]. In contrast, in the flowering and early fruit growth stages, all indices
had slopes and relative errors closer to 1 and 0%, respectively. The reason for this poor calibration in
the vegetative and harvest stages may be associated to characteristics of the crop canopy in these two
stages. In the vegetative stage, the plants are small and have low foliage density, which could affect
reflectance measurements by the inclusion of background noise [11,15]. Johansen and Tømmervik [57]
and Wang et al. [58] reported a lack of precision with NDVI until the plant canopy achieved adequate
coverage. In the harvest stage, mottling and discoloration of older leaves, because of crop age, can affect
reflectance measurements, as has been reported for cucumber [46].

Validation results (slopes of linear regression between observed and predicted NNIs values,
and relative errors) were consistent with the evaluation conducted taking into account results of
regression of both calibration and validation datasets [49]. There was a clear tendency for better
performance of most vegetation indices in the early fruit growth stage, followed by the flowering
stage. The performance of most vegetation indices was worse in the vegetative and harvest stages,
most likely due to the characteristics of the crop canopy in these two stages, insufficient foliage density
in the vegetative stage, and aging foliage in the harvest stage, as discussed previously.

Analyzing the performance of each vegetation index to estimate NNI within each phenological
stage, GNDVI was the best index in three of four phenological stages (vegetative, flowering, and
harvest), and GVI was the best performing vegetation index in the other stage (early fruit growth).
This is in agreement with Padilla et al. [21] and de Souza et al., [59] who reported these two indices (i.e.,
GNDVI and GVI) to be more strongly related to NNI in cucumber. Likewise, green vegetation indices
of processing tomato were more strongly related to leaf N content than red vegetation indices [60].
Very similar results were also obtained in broccoli [61].
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The RENDVI and CCCI were the worst performing indices. The poor performance of CCCI
index, in the present study, in the vegetative stage is inconsistent with the results obtained in maize
by Li et al. [62]. Li et al. [62] reported that CCCI successfully excluded the effect of soil reflectance
when crop cover was low. The different results with CCCI in our study and that of Li et al. [62] may
be due to the measurement procedures and the structure of the different crops. In the current study,
measurements were made from the side of the crop, and in maize from above. Moreover, the pepper
crops in the current study were vertically supported. It is possible that CCCI was influenced by the
small areas of empty background, between adjacent pepper plants, that were exposed by vertically
supporting the plants.

Comparing the sufficiency values obtained, for maximum dry matter production between the
different phenological stages, it was possible to derive a unique sufficiency value for the complete crop
cycle for CCCI of 0.61 and for MTCI of 1.57 because the relative differences between phenological stages
were small (Figure 4). For the other indices, such as RVI and GVI, the relative difference between the
sufficiency value of vegetative and flowering stages were too large (around 30%) to be able to derive a
unique sufficiency value for the complete crop cycle. For the rest of the indices evaluated (NDVIGS,
NDVI, GNDVI, RENDVI, and CI), the relative difference between vegetative and flowering stages was
approximately 10%. In the current work, it was considered not possible to calculate a unique sufficiency
value for the whole crop cycle for sweet pepper for the NDVI, GNDVI, RVI, GVI, and RENDVI indices.
However, in cucumber, it was possible to calculate a unique sufficiency value for the entire crop cycle
because of the relative constancy of sufficiency values throughout the cycle [21]. Overall, the sufficiency
values derived for sweet pepper were higher than those derived for cucumber [21], for equivalent
indices. This difference may be due to the relatively high chlorophyll content and greenness of sweet
pepper crops compared to other vegetable and cereal species [63].

5. Conclusions

The present work evaluated the capacity of different vegetation indices to estimate crop NNI in the
vegetative, flowering, early fruit growth, and harvest phenological stages of sweet pepper. There were
differences in the performance of the indices within individual phenological stages and between stages.
The best performance of all indices was in the early fruit growth and the flowering stages. The best
performing indices to assess crop N in sweet pepper were the green band based indices GNDVI and
GVI which had the best results for all phenological stages.
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Abstract: Accurate and non-destructive in-season crop nitrogen (N) status diagnosis is important for
the success of precision N management (PNM). Several active canopy sensors (ACS) with two or
three spectral wavebands have been used for this purpose. The Crop Circle Phenom sensor is a new
integrated multi-parameter proximal ACS system for in-field plant phenomics with the capability to
measure reflectance, structural, and climatic attributes. The objective of this study was to evaluate
this multi-parameter Crop Circle Phenom sensing system for in-season diagnosis of corn (Zea mays
L.) N status across different soil drainage and tillage systems under variable N supply conditions.
The four plant metrics used to approximate in-season N status consist of aboveground biomass
(AGB), plant N concentration (PNC), plant N uptake (PNU), and N nutrition index (NNI). A field
experiment was conducted in Wells, Minnesota during the 2018 and the 2019 growing seasons with
a split-split plot design replicated four times with soil drainage (drained and undrained) as main
block, tillage (conventional, no-till, and strip-till) as split plot, and pre-plant N (PPN) rate (0 to 225 in
45 kg ha−1 increment) as the split-split plot. Crop Circle Phenom measurements alongside destructive
whole plant samples were collected at V8 +/−1 growth stage. Proximal sensor metrics were used to
construct regression models to estimate N status indicators using simple regression (SR) and eXtreme
Gradient Boosting (XGB) models. The sensor derived indices tested included normalized difference
vegetation index (NDVI), normalized difference red edge (NDRE), estimated canopy chlorophyll
content (eCCC), estimated leaf area index (eLAI), ratio vegetation index (RVI), canopy chlorophyll
content index (CCCI), fractional photosynthetically active radiation (fPAR), and canopy and air
temperature difference (ΔTemp). Management practices such as drainage, tillage, and PPN rate were
also included to determine the potential improvement in corn N status diagnosis. Three of the four
replicated drained and undrained blocks were randomly selected as training data, and the remaining
drained and undrained blocks were used as testing data. The results indicated that SR modeling
using NDVI would be sufficient for estimating AGB compared to more complex machine learning
methods. Conversely, PNC, PNU, and NNI all benefitted from XGB modeling based on multiple
inputs. Among different approaches of XGB modeling, combining management information and
Crop Circle Phenom measurements together increased model performance for predicting each of the
four plant N metrics compared with solely using sensing data. The PPN rate was the most important
management metric for all models compared to drainage and tillage information. Combining Crop
Circle Phenom sensor parameters and management information is a promising strategy for in-season
diagnosis of corn N status. More studies are needed to further evaluate this new integrated sensing
system under diverse on-farm conditions and to test other machine learning models.

Keywords: precision nitrogen management; active canopy sensing; integrated sensing system;
machine learning; nitrogen nutrition index

1. Introduction

Agricultural nutrient management has been historically guided using grower knowl-
edge of cultivated land and soil supply of essential nutrients such as nitrogen (N), phospho-
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rous, and potassium. Over the past forty years, the development of precision agriculture
has offered an alternative method of guiding nutrient management leveraged on using
proximal and remote sensing, data analysis, and smart machinery to optimize fertilizer
application timing and rate to match nutrient supply with crop demand [1]. Within com-
mercial crop production, N is frequently the primary limiting nutrient for plant growth [2].
Limiting conditions are often attributable to N mobility within the soil horizon and sus-
ceptibility for losses through leaching, denitrification, and volatilization processes [3,4].
Improving N management is critical to protection of water resources and reduction of at-
mospheric greenhouse gas levels [5]. Centered on matching N supply with crop N demand
in both space and time, precision N management (PNM) has the potential to increase N
use efficiency by reducing N losses while maintaining crop yields [6,7].

For corn (Zea mays L.) production, N fertilizer timing and rate are critical aspects
to mitigating N loss [8]. Physiologically, corn plant N concentration (PNC) is highest
earlier in its vegetative growth and decreases until plant senescence; however, plant
N demand is greatest midway through the growing season when the plant is rapidly
increasing in biomass. Historically, N fertilizer is applied in full around the time of
planting with the expectation that sufficient N will persist throughout the season to facilitate
optimal plant growth. This practice is viable for growing seasons with low early season
N loss and ideal weather conditions. However, it is not conductive for field seasons
with high N loss potential from heavy or frequent rain events. For this reason, optimal
in-season N management must develop tools which determine plant N status accurately
and non-destructively [9]. Corn plants predominantly exhibit N deficiency symptoms
of stunting due to decreased cell division and leaf chlorosis of older leaves [10]. Plénet
and Lemaire [11] established an empirical allometric critical N dilution curve, which
calculates the minimum PNC needed to optimally grow as “critical” N concentration
(Nc) depending on aboveground biomass (AGB). Corn N status can be determined by
calculating N nutrition index (NNI), which is defined as the ratio of actual PNC to Nc. Since
the development of corn NNI, subsequent studies have evaluated its efficacy and utilized it
as a tool to improve corn N status diagnosis and to guide side-dress N application [12–15].

To apply NNI in commercial agriculture, there are several methods to determine corn
AGB and PNC. Traditional destructive sampling and analysis is not only time consuming
and expensive but also cannot adequately capture spatial or temporal variability because it
is a snapshot of crop health at a specific location and day of year [16,17]. As a result, proxi-
mal and remote sensing technologies have been developed for real-time non-destructive N
status estimation. Canopy sensors are more efficient than destructive sampling because
they can be quickly collected and return instantaneous estimations of plant health. Addi-
tionally, active instruments are superior and more repeatable compared to passive sensors
because their measurements are independent of environmental light conditions.

Three of the most frequently utilized active canopy sensors (ACS) for corn N man-
agement are the two-band GreenSeeker (Trimble Inc., Sunnyvale, CA, USA), the three-
band Crop Circle ACS-430 (Holland Scientific, Lincoln, NE, USA), and the three-band
RapidScan CS-45 (Holland Scientific, Lincoln, NE, USA). Researchers have developed
empirical techniques to estimate in-season N status through correlating multispectral
band reflectance measurements or calculated vegetative indices (VIs) with crop N sta-
tus indicators. Xia et al. [13] used a GreenSeeker sensor to predict corn NNI and found
the sensor derived VIs could moderately predict NNI directly (R2 between 0.56–0.65) at
V7–V10 growth stage when used with N-rich plots as reference to calculate response in-
dex. However, the GreenSeeker sensor did not perform well when solely using VIs to
predict NNI (R2 between 0.33–0.55) without using N rich plots. Paiao et al. [18] evaluated
GreenSeeker and RapidSCAN sensors for corn plant N status estimation from V4 to R1 in
Minnesota. The study found that optimum N rates did not correlate well with proximal
sensor measurements prior to V12 stage, which could limit their values for determining
side-dress N needs around V8–V9 stages.
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The Crop Circle Phenom is a new integrated multi-parameter ACS, which measures
spectral reflectance of red, red-edge, and near-infrared wavelengths to calculate normal-
ized difference vegetation index (NDVI) [19] and the normalized difference red edge
(NDRE) [20] as well as to provide several other variables, including estimated canopy
chlorophyll content (eCCC), estimated leaf area index (eLAI), atmospheric pressure, rel-
ative humidity, reflected and incoming photosynthetically active radiation (PAR), and
canopy and air temperatures. These additional metrics can be used to calculate physiologi-
cal metrics such as fractional PAR (fPAR) and canopy-air temperature difference (ΔTemp).
Previous research indicated that PAR [21] and canopy temperature [22] could be used to
estimate biomass and crop N stress. Therefore, through measuring spectral, estimated
structural characteristics, and climatic variables, the Crop Circle Phenom sensor system
is hypothesized to be able to improve corn N status estimation and diagnosis compared
to only using vegetation indices such as NDVI and NDRE. To date, no study has been
reported for the evaluation of this new integrated sensor system for in-season corn N status
estimation. Therefore, the objective of this research was to evaluate the potential of the
Crop Circle Phenom sensor system for in-season diagnosis of corn N status across different
drainage and tillage systems under variable N supply conditions.

2. Materials and Methods

2.1. Study Site

The study was conducted in southcentral Minnesota near Wells, MN (43◦51′15.7′′ N
93◦43′47.2′′ W) in the 2018 and the 2019 growing seasons. The predominant soil types at
the site are Marna silty clay loam (fine, smectitic, mesic Vertic Endoaquolls) and Nicollet
silty-clay loam (fine-loamy, mixed, superactive, mesic Aquic Hapludolls). The experiment
was conducted in a randomized complete-block design with a split-splitplot arrangement
and four replications in a corn-soybean (Glycine max L.) rotation where both crops are
present every year. The main plot was set up in 2011 with subsurface tile drainage where
half of the blocks are fully closed (undrained) and the other half are fully open (drained).
For more details, see Fernández et al. [23]. The sub-plot includes three tillage treatments
established in 2017: no-tillage (NT), strip-tillage (ST), and conventional-tillage (CT). The
sub-sub-plot is six pre-plant N (PPN) rate treatments (0, 45, 90, 135, 180, 225 kg-N ha−1)
initiated in 2017 (Figure 1). The trials are part of a larger experiment with N timing also
being evaluated at various early growth stages, but only the PPN treatments were used for
this project. Each treatment plot was composed of four planted rows approximately nine
meters in length with 76 cm row spacing and approximately 83,000 plants ha−1 density.
Nitrogen was applied as urea+Agrotain (46-0-0) (urea with N-(n-butyl) thiophosphoric
triamide (NBPT)) (Koch Fertilizer LLC, Wichita, KS, USA) in mid-May within a week of
planting the crop. The Pioneer hybrid P9929AMXT was used in this study.

2.2. Proximal Sensor Collection

Proximal sensing data were collected around V8 growth stages in the 2018 and the 2019
growing seasons using a Crop Circle Phenom canopy sensor (Holland Scientific, Lincoln,
NE, USA). This sensor fuses the instrument capabilities of a Crop Circle ACS-430 and a
Crop Circle DAS43X sensor using a GeoScout X controller, which simultaneously geotags
and timestamps each unique measurement (Figure 2). Analogous to prior studies which
have utilized the Crop Circle ACS-430, the Phenom sensor collects reflectance data in red
(670 nm), red-edge (RE, 730 nm), and near-infrared (NIR, 780 nm) wavelengths as well as
automatically calculated NDVI and NDRE. Furthermore, the Crop Circle Phenom sensor
system also calculates eLAI and eCCC using empirical relationships with spectral bands.
In addition to spectral data, this sensor system collects environmental information from
a DAS43X sensor that measures atmospheric pressure, relative humidity, incoming and
reflected PAR, canopy temperature, and air temperature. Supplemental vegetation indices
were selected based on their previously published ability to approximate plant N metrics,
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including canopy chlorophyll content index (CCCI) and ratio vegetation index (RVI). Canopy
and air temperature difference (ΔTemp) and fPAR were also calculated (Table 1).

Figure 1. Wells research site experimental design with four replicates of block resolution drainage
treatments and sub-plot tillage and sub-sub plot pre-plant N treatments. Green plots signify pre-plant
N treatments while purple plots are timing treatments outside the realm of this study. NT, ST, and CT
stand for no-till, strip-tillage, and conventional-tillage, respectively. The numbers for the pre-plant N
treatment plots indicate the N rates (kg ha−1).

Table 1. List of sensor parameters calculated using the Crop Circle Phenom.

Vegetation Index Abbreviation Formula Reference

Normalized Difference
Vegetation Index NDVI (NIR−RED)

(NIR+RED)
[19]

Normalized Difference Red
Edge NDRE (NIR−RE)

(NIR+RE)
[20]

Estimated Canopy Chlorophyll
Content eCCC

(a∗NIR−b∗RE)
(c∗RE−d∗R)

where a, b, c, d are scaling
constants

[24]

Estimated Leaf Area Index eLAI k∗ ln(1 − NDVI)
where k is a scaling constant [25]

Ratio Vegetation Index RVI NIR
R [26]

Canopy Chlorophyll Content
Index CCCI (NDRE)

(NDVI)
[27]

Delta Temperature ΔTemp Canopy Temp (C)—Air
Temp (C) [28]

Fractional Photosynthetically
Active Radiation fPAR Re f lected PAR

Incoming PAR [28]
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The Crop Circle Phenom system was fitted to a custom mount and handle to enable
the user to hold the sensor level at nadir approximately 30 cm above the canopy and
approximately a meter ahead of the operator to avoid casting a shadow on the area of
interest. Two measurements were collected in each plot from the center two treatment
rows, and the readings were averaged to represent each plot. The sensor metadata provide
estimated distance between sensor and canopy derived from the spectral band observations
and the inverse square law. The estimated distance to canopy occasionally varied within
plot, and rapidly changing sensor readings (>50 cm) were removed.

(a) 

 
(b) 

Figure 2. Crop Circle Phenom sensor (a) custom assembly with extendable pole and (b) close up view of ACS-430 and
DAS43X sensor components.

2.3. Plant Sampling and Analysis

Following sensor measurements, six whole plant samples were collected at V8 growth
stage, oven-dried at 60 ◦C to a constant weight, weighed for AGB determination, ground,
and analyzed for total N by combustion [29]. Stand count measurements were collected
from each plot around V8 growth stage from 12.2 m of crop rows from the two center rows.
Total dried AGB was calculated using plot stand counts and average dried biomass weight
per plant for each plot. Furthermore, PNU (kg ha−1) was calculated using AGB and PNC.
Plant N status was evaluated by calculating Nc and NNI using the critical N dilution curve
developed by Plénet and Lemaire [11] (Equations (1) and (2)). The allometric function
estimates Nc at different dried AGB weight (W). The authors observed the relationship
was best utilized between 1 Mg ha−1 and 22 Mg ha−1 but recommend a constant Nc of
3.4% be applied under 1 Mg ha−1 dried AGB.

Nc = 3.4 ∗ W−0.37 (1)

NNI =
PNC

Nc
(2)

2.4. Data Analysis

The dataset consisted of 275 unique plot observations representing the 2018 and the
2019 growing seasons across drainage, tillage, and PPN treatment variables. A handful
of plots (n = 13) were accidentally not collected or were removed due to irregular sensor
readings, which reduced the measurement count from the overall 288 unique plots. Training
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and testing datasets were produced by randomly selecting three of the four drained and
undrained experimental blocks as a training dataset (n = 208) and using the remaining
block data as a testing dataset (n = 67). This methodology was selected to maintain an
approximately equal distribution of drainage, tillage, and PPN treatments in both the
training and the testing datasets. Using Crop Circle Phenom derived spectral and climatic
parameters and destructively sampled corn N indicators, simple regression (SR) and
eXtreme Gradient Boosting (XGB) machine learning-based approaches were investigated
to predict AGB, PNC, PNU, and NNI. The training dataset was used to fit each of the SR
and the XGR regression models, while the testing dataset was solely utilized to validate
the final performance of each of the models.

Each of the selected Crop Circle Phenom measured parameters was individually
evaluated for predicting AGB, PNC, PNU, and NNI using the SciPy curve_fit Python
function [30]. In addition to fitting linear models, exponential, power, and quadratic
models were also evaluated and compared to create best fit for each sensor metric. The
model with the lowest training mean absolute error (MAE) and root mean square error
(RMSE) calculated using scikit-learn package [31] was selected as the optimal model.

To evaluate the benefit of fusing multiple sensor parameters alongside management
data, XGB regression models were constructed and compared to SR. Drainage and tillage
treatments were hypothesized to influence in-season N status, yet neither could be easily
included in SR modeling. The XGB machine learning package was examined to allow
categorical variables to be evaluated in conjunction with the quantitative proximal sensor
data. Three distinct levels of input variables were investigated for XGB modeling, which
consisted of (1) default vegetation indices of NDVI and NDRE automatically calculated by
the Crop Circle Phenom sensor system, (2) NDVI and NDRE plus additional Crop Circle
Phenom collected variables, and (3) Crop Circle Phenom sensor data plus management
information (drainage, tillage, and PPN).

The XGB regression model was adopted as a machine learning strategy to improve plant
N status prediction due to its ease of use and ability to be tuned towards small datasets to
avoid overfitting through altering the hyperparameter inputs [32]. This valuable characteristic
is primarily due to its ability to be tuned for learning rate and size of decision trees.

Machine learning models to predict N status variables were constructed using the
Python package XGBoost Regressor [32]. Tuning the machine learning hyperparameters
was performed using the XGBoost built-in cross-validation function, which was only
utilized within the training dataset. To perform cross-validation for each plant growth
parameter, a Python function was constructed, which utilized three k-folds within the
training dataset to test various max depth, minimum child weights, and learning rates.
Hyperparameter tuning is critical to machine learning model performance because they
together govern the performance of the model through minimizing overall loss versus
risk of model overfitting [33]. Since a tree based XGBoost model is used, max depth and
minimum child weight decide depth of tree and number of samples per node, respec-
tively, whereas learning rate controls how successive trees weigh input features (Figure 3).
To avoid overfitting training data during tuning, an early stopping parameter was used to
halt subsequent boosting rounds after five iterations where MAE did not improve. The
parameter set that returned the lowest MAE was used as the starting parameters for the
XGB regression model.

The model performance was evaluated using mean absolute error (MAE) and root
mean squared error (RMSE) (Equations (3) and (4)) alongside coefficient of determination
(R2). Both error metrics calculate the average difference between predicted and observed
variables where n is the number of measurements, yi is the i-th observed measurement,
and ŷi is the corresponding predicted measurement.

MAE =
1
n

n

∑
i=1

|yi − ŷi| (3)
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RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (4)

Figure 3. Example eXtreme Gradient Boosting (XGB) XGBoost regression tree composed of a series
of conditional statements that test each observation with successive branches and leaf nodes deciding
the predicted split value of a target variable.

2.5. Corn N Status Diagnosis

The NNI values were used to diagnose corn N status using the following threshold
values: NNI < 0.95, 0.95 ≤ NNI ≤ 1.05, NNI > 1.05 for deficient, optimum, and surplus
N status, respectively [13,34]. Using measured and predicted NNI values by SR and XGB
models from the test dataset, the accuracy of corn N status diagnosis was evaluated using
areal agreement and kappa statistics [13,35]. The areal agreement is the percentage of
predicted and measured diagnostic results sharing a common classification, while kappa
statistics is a more robust indicator of the agreement of the two diagnostic results that is
adjusted for random chance classification [36]. The kappa statistics values < 0.4, 0.4–0.6,
and > 0.6 indicate weak, moderate, and strong agreement [37].

3. Results

3.1. Corn N Status Indicator Variability

Across the experiment treatments and two site years, PNU demonstrated the greatest
amount of variability (coefficient of variation (CV) around 40%) with a range of 3.95 to
101.68 kg ha−1 (Table 2). NNI fluctuated comparably less between 0.34 and 1.40 with
a CV around 30%. The PNC and the AGB statistics show similar variability, with CV
of 26–27%. Random selection of three of the four drainage replicates into training data
and one drainage replicate block into testing data resulted in comparable statistics to
construct and validate N status models. The large variabilities in N status indicators
(CV = 25.96–40.11%) indicated the suitability of the datasets for evaluating the Crop Circle
Phenom sensor system.

Table 2. Descriptive statistics of aboveground biomass (AGB), plant N concentration (PNC), plant N
uptake (PNU), and N nutrition index (NNI) at V7–V8 growth stage for training and testing datasets
across drainage, tillage, N treatments, and site years.

Training Set (n = 208) Testing Set (n = 67)
Max Min Mean CV(%) Max Min Mean CV(%)

AGB (Mg ha−1) 3.27 0.59 2.03 26.89 2.95 0.85 1.88 25.96
PNC (g kg−1) 3.86 0.95 2.48 26.54 3.68 1.14 2.45 27.04

PNU (kg ha−1) 101.68 3.95 51.79 39.27 86.98 7.79 46.82 40.11
NNI 1.38 0.28 0.95 29.34 1.40 0.34 0.91 30.22

3.2. Crop Circle Phenom Sensor Inter-Parameter Correlation

Several of the Crop Circle Phenom sensor parameter combinations were strongly
related (Figure 4). One such example of a strongly correlated parameter paring was eCCC
and eLAI with a nearly linear relationship (R2 = 1) (Figure 4). Overall correlations between
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spectral sensor metrics were moderate to strong (R2 = 0.70–0.98), whereas environmental
temperature and PAR metrics were less correlated (R2 = 0.12–0.46).

Figure 4. Correlation pairs between the Crop Circle Phenom metrics. Upper panel displays the
relationship between sensor metrics and lower corner panel shows coefficient of determination (R2).

3.3. Simple Regression Analysis

Simple regression models showed significant variation in prediction ability between
the Crop Circle Phenom parameters and the four plant N status indicators (Table 3). Across
the sensor parameters, NDVI (MAE = 0.23 Mg ha−1), NDRE (MAE = 0.24 Mg ha−1), and
RVI (MAE = 0.24 Mg ha−1) performed the best for predicting AGB. Conversely, CCCI
outperformed the other sensor metrics for predicting PNC (MAE = 0.41 g N 100g DM−1)
and NNI (MAE = 0.16 g N 100g DM−1). The eCCC parameter was the best performing
sensor parameter for predicting PNU (MAE = 11.12 kg ha−1). PNU was overall the most
difficult N status indicator for the sensor parameters to predict (MAE range 11.21 to
14.24 kg ha−1). Compared to spectral parameters, fPAR and ΔTemp both performed poorly
for all N status indicators. In several instances, a suitable model could not be fit for all
sensor metrics, and, therefore, SR results were not reported.

The best performing metric for each testing SR model was plotted in Figure 5. Training
models suggested that AGB, PNU, and NNI were best fit using a non-linear model because
their MAE and RMSE decreased compared to linear models.
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Table 3. The performance of simple regression (SR) models using Crop Circle Phenom sensor parame-
ters for predicting corn N status indicators across years and treatments. NDVI: normalized difference
vegetation index; NDRE: normalized difference red edge; eCCC: estimated canopy chlorophyll
content; eLAI: estimated leaf area index; RVI: ratio vegetation index; CCCI: canopy chlorophyll
content index; fPAR: fractional photosynthetically active radiation; MAE: mean absolute error; RMSE:
root mean squared error.

Parameter Regression Model
Training Testing

R2 MAE RMSE R2 MAE RMSE

Aboveground Biomass (AGB)
NDVI y = 20.56x2 − 24.76x + 8.29 0.46 0.31 0.40 0.66 0.23 0.28
NDRE y = 0.35e4.43x 0.45 0.30 0.40 0.60 0.24 0.31
eLAI y = 0.44x + 0.76 0.45 0.30 0.40 0.58 0.25 0.32
eCCC y = 0.39x + 0.72 0.45 0.30 0.40 0.58 0.25 0.31
RVI y = 0.13x + 0.44 0.45 0.31 0.40 0.65 0.24 0.29

CCCI y = 24.07x2 − 12.40x + 2.53 0.34 0.33 0.44 0.36 0.31 0.39
fPAR y = 8.09x + 0.42 0.15 0.40 0.50 0.16 0.34 0.44

ΔTemp y = −0.18x + 1.96 0.25 0.37 0.47 0.26 0.32 0.42

Plant Nitrogen Concentration (PNC)
NDRE y = 5.88x + 0.16 0.16 0.49 0.60 0.23 0.48 0.58
eLAI y = −0.25x2 + 1.64x − 0.05 0.21 0.48 0.58 0.27 0.47 0.56
eCCC y = −0.18x2 + 1.40x − 0.01 0.23 0.47 0.58 0.29 0.47 0.55
CCCI y = 9.58x − 2.00 0.27 0.45 0.56 0.41 0.41 0.50

Plant Nitrogen Uptake (PNU)

NDVI y = 106.79x4.21 0.26 14.42 17.46 0.26 13.85 16.09
NDRE y = 276.23x − 56.97 0.38 12.48 15.95 0.48 11.51 13.48
eLAI y = −4.07x2 + 37.35x − 19.11 0.38 12.44 15.99 0.49 11.21 13.29
eCCC y = −2.68x2 + 30.05x − 16.11 0.39 12.36 15.91 0.50 11.12 13.22
RVI y = 3.52x + 8.33 0.24 14.69 17.68 0.23 14.24 16.35

CCCI y = 353.23x2 + 34.6x − 42.08 0.38 12.30 16.01 0.46 11.25 13.76

Nitrogen Nutrition Index (NNI)

NDVI y = 0.13e2.34x 0.12 0.22 0.26 0.10 0.22 0.26
NDRE y = 3.32x − 0.36 0.30 0.19 0.23 0.41 0.18 0.21
eLAI y = 0.17x + 0.46 0.25 0.20 0.24 0.34 0.19 0.22
eCCC y = 0.16x + 0.43 0.27 0.20 0.24 0.37 0.19 0.22
RVI y = 0.03x + 0.57 0.10 0.23 0.26 0.08 0.23 0.26

CCCI y = 6.16x2.48 0.38 0.18 0.22 0.53 0.16 0.19
fPAR y = 3.36x + 0.28 0.10 0.22 0.26 0.08 0.23 0.26

3.4. Machine Learning Modeling Using eXtreme Gradient Boosted (XGB) Regression

The XGB regression models with NDVI and NDRE performed relatively well. Al-
though adding additional sensor variables as inputs improved the model performance with
training dataset for all the four N status indicators, the testing results were not improved
(Table 4). The XGB models with all Crop Circle Phenom metrics combined with manage-
ment information performed the best with both training and testing datasets, except AGB
for training.

Validation models using testing dataset observations resulted in N status indicator
estimation with model accuracy of R2 > 0.6 and RMSE < 0.40 for all AGB, PNC, and
PNU, but lower model accuracy was present for PNU (Figure 6). Model performance
for the training and the testing datasets suggested a considerable difference between
including traditional vegetation indices compared to using all sensor and management
information. Comparing the performance of models using NDVI and NDRE verses models
which utilized all Crop Circle Phenom parameters, the NDVI and the NDRE-based models
matched or outperformed the full parameter models for all four N status indicators when
validated using the testing dataset (Table 4).
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(a)

 

(b)

(c) (d)

Figure 5. Measured versus predicted (a) aboveground biomass (AGB) using SR NDVI, (b) plant N concentration (PNC)
using SR CCCI, (c) plant N uptake (PNU) using SR eCCC, and (d) N nutrition index (NNI) using SR CCCI.

Table 4. eXtreme gradient boosted (XGB) model performance using different levels of Crop Circle Phe-
nom sensor and management variables for predicting aboveground biomass, plant N concentration,
plant N uptake, and N nutrition index.

Plant Variables Input Variables
Training Testing

R2 MAE RMSE R2 MAE RMSE

Aboveground
Biomass(Mg ha−1)

NDRE + NDVI 0.61 0.26 0.34 0.54 0.26 0.33
All Phenom Sensor Metrics 0.83 0.17 0.23 0.50 0.28 0.34

Phenom Metrics +
Management 0.70 0.23 0.30 0.60 0.24 0.30

Plant N
Concentration

NDRE + NDVI 0.64 0.32 0.40 0.59 0.33 0.42
All Phenom Sensor Metrics 0.82 0.21 0.28 0.50 0.38 0.46

Phenom Metrics +
Management 0.88 0.18 0.23 0.66 0.27 0.38

Plant N Uptake
NDRE + NDVI 0.51 11.13 14.18 0.43 11.80 14.10

All Phenom Sensor Metrics 0.61 9.76 12.59 0.35 12.18 15.01
Phenom Metrics +

Management 0.80 7.08 9.05 0.44 10.83 14.00

N Nutrition Index

NDRE + NDVI 0.65 0.13 0.16 0.55 0.15 0.18
All Phenom Sensor Metrics 0.85 0.08 0.11 0.52 0.15 0.19

Phenom Metrics +
Management 0.96 0.04 0.06 0.65 0.13 0.16

Note: Management data included drainage, tillage, and pre-plant N rate.

Since the Crop Circle Phenom is a new sensor system, only two site years of data are
available. This limitation was mitigated through hyperparameter tuning of max depth,
minimum child weight, and learning rate. No overall patterns of greater max depth, min
child weight, or learning rate were observed by adding additional sensor or management
parameters (Table 5). Cross-validation models using three k-folds were also employed
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to tune the hyperparameters using the training dataset. In the case of PNU, manual
tuning was instead performed because the cross-validation model did not converge on
suitable parameters.

(a) 

 

 

(b) 

 

(c) (d) 

Figure 6. Measured versus predicted (a) aboveground biomass (AGB), (b) plant N concentration (PNC), (c) plant nitrogen
uptake (PNU), and (d) nitrogen nutrition index (NNI) by XGB regression models using testing dataset and all phenom
metrics and management data.

Table 5. XGB cross-validation hyperparameters. Mean absolute error was minimized for ABG, PNC,
and NNI using built-in function and was manually tuned for PNU.

Plant Variables Input Variables

Hyperparameter Parameters

Max
Depth

Min Child
Weight

Learning
Rate

Aboveground
Biomass

NDRE + NDVI 2 5 0.10
Phenom Sensor Metrics 4 5 0.05

Sensor Metrics + Management 4 2 0.05

Plant N
Concentration

NDRE + NDVI 3 1 0.10
All Phenom Sensor Metrics 2 4 0.15

All Sensor Metrics + Management 3 3 0.05

Plant N Uptake
NDRE + NDVI 2 3 0.05

All Phenom Sensor Metrics 2 3 0.05
All Sensor Metrics + Management 2 3 0.10

N Nutrition Index

NDRE + NDVI 4 1 0.05
All Phenom Sensor Metrics 4 5 0.05

All Sensor Metrics + Management 3 3 0.15
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3.5. Relative Importance of Input Variables

The importance values were calculated for each N status prediction model to indicate
relative worth of sensing and management parameters using the XGB plot_importance
tool. Average gain value per model split was selected as the parameter used to measure
a feature’s F score. This metric computed the average split value that each Crop Circle
Phenom or management parameter was selected in and averaged their value for each N
status indicator. The resulting model suggests PPN was the most important input variable
for predicting PNC, PNU, and NNI (Figure 7b–d). However, sensing parameters NDRE,
RVI, and NDVI were the most important parameters for predicting AGB (Figure 7a). CCCI
was the most important sensor parameter to be included for estimating PNC, PNU or NNI,
however, it was one of the lower importance sensor metrics for AGB prediction.

Tillage and drainage variables were not rated highly for predicting PNC, PNU, or NNI.
An exception was that no-till (NT) was the fourth highest ranked metric for predicting AGB,
although its F score was significantly lower compared to the top sensor metrics (Figure 7a).
Drainage was predicted to have a high importance for predicting plant N status indicators
due to its correlation with N loss processes, however, it consistently had a lower feature
importance compared to sensing parameters and PPN.

(a) 
AGB

 

(b) 
PNC

 

(c) 
PNU

 

(d) 
NNI

 
Figure 7. Relative importance of sensor metrics and management variables for predicting (a) AGB, (b) PNC, (c) PNU, and
(d) NNI as represented by the F score values from XGB regression.

3.6. Diagnosis of In-Season N Status Using NNI

The areal agreement and the kappa coefficient statistics for evaluating the efficacy
of each sensor modeling technique to diagnose corn N status (NNI < 0.95 = deficient,
0.95 < NNI < 1.05 = optimum, NNI > 1.05 surplus) are given in Table 6. Among the
67 measurements, 37 plots were deficient, 4 were optimum, and 26 were surplus. Using
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the best performing NDRE and CCCI single sensor parameters to estimate corn N status
demonstrated acceptable diagnostic accuracy for deficient conditions based on testing data
(62–70%), however, both parameters performed poorly when diagnosing surplus corn
N condition (<42%). Comparing XGB modeling techniques, only the model combining
Crop Circle Phenom sensor parameters with management data achieved kappa statistics
of over 0.4, with the overall areal agreement of 72%. Although the XGB models using
NDVI and NDRE or all Crop Circle Phenom sensor data both improved overall corn N
status diagnostic accuracy compared with SR models using NDRE or CCCI, neither of
them achieved moderate agreement based on kappa statistics (0.4–0.6).

Table 6. Corn N status diagnosis accuracy based on NNI prediction using SR and XGB regression
results. Model precision was assessed using areal agreement (%) and kappa statistics (NNI < 0.95 =
deficient, 0.95 < NNI < 1.05 = optimum, NNI > 1.05 surplus).

Areal Agreement (%)
Kappa

StatisticsDeficient
(n = 37)

Optimum
(n = 4)

Surplus
(n = 26)

Overall
(n = 67)

NDRE 70 25 23 49 0.22
CCCI 62 50 42 54 0.26

XGB NDVI+NDRE 70 0 50 58 0.31
XGB All Phenom Metrics 68 25 46 57 0.29

XGB Phenom +
Management

68 50 81 72 0.54

4. Discussion

4.1. Crop Circle Phenom Comparison to Similar Proximal Active Canopy Sensors

This research was conducted to evaluate the potential of the new multi-parameter
Crop Circle Phenom sensor system, which has traditional spectral band reflectance and
vegetation indices as well as climatic and physiological metrics. Compared with the com-
monly used three-band Crop Circle ACS 430 or RapidSCAN CS-45 sensors that calculate
NDVI and NDRE, the Crop Circle Phenom system also provides eLAI and eCCC. These
additional estimated parameters proved beneficial for estimating PNC and PNU in SR
models, as both outperformed NDVI and NDRE. Regarding AGB estimation, eLAI and
eCCC performed similarly to NDVI and NDRE. This is not a surprise, as NDVI has been
extensively used for AGB estimation [38,39]. Similarly, the commonly used three band
active canopy sensors and the Crop Circle Phenom sensor system would have comparable
performance estimating NNI or PNU, since NNI was best predicted using CCCI, and
PNU was estimated similarly well using eCCC, eLAI, NDRE, or CCCI, which can all be
calculated by all these sensors.

Aside from the estimated LAI and CCC metrics, the key potential advantage of the
Crop Circle Phenom sensor system is the derivation of ΔTemp and fPAR. The ΔTemp
parameter has been commonly used to identify crop water stress [40,41], however, limited
research has been conducted to investigate how crop N status influences canopy temper-
ature. Yan et al. [42] found that rice canopy temperature responded to N rate, with N
stress causing higher temperatures. Similarly, Alzaben, Fraser, and Swanton [22] used
thermal imagery to investigate the relation between canopy temperature and N status. The
study observed that both corn leaf and whirl temperatures statistically responded to N
treatment, with optimal N corresponding to lower canopy temperature. For this study,
ΔTemp calculated from the sensor’s air and canopy temperature readings showed a poor
relationship with all four plant N metrics using SR. This result contrasts with previous
research but could be explained by the inability of the proximal sensor to separate soil and
plant signals. Alzaben, Fraser, and Swanton [22] were able to separate plants from soil
background using a segmentation algorithm, which they indicated considerably changed
their measured plot temperatures.
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As with ΔTemp, fPAR has not been thoroughly studied in crop nutrient management.
Although PAR information can be used as a component to estimate crop biomass, yield,
and primary productivity [21], no published article has used it as a metric to estimate
plant N status. For this reason, fPAR was investigated in this study and compared with
traditional vegetative indices. The results of this study indicated that fPAR was marginally
related to other sensor metrics (R = 0.17–0.28) and was not as important as vegetation
indices for predicting corn N status based on SR analysis, including AGB.

Although fPAR did not perform well using SR, it showed more potential when used
in XGB regression models as it was ranked as one of the most important variables for
predicting NNI. This result indicated that fPAR was not an important predictor of N
status individually but could provide important information complementary to spectral
vegetation indices. However, ΔTemp did not rank highly in any of the N indicator models.
The ΔTemp information may be beneficial to help differentiate different stress factors since
it has already been shown to detect water stress, as demonstrated by Jensen et al. [43] and
DeJonge et al. [41].

4.2. Modelling Strategies for In-Season Corn N Status Prediction and Diagnosis

The SR modeling was evaluated as a simplistic approach to model N nutrition met-
rics; however, limitations were discovered when including categorical field management
variables. Additionally, determining the correct model fit for each sensor metric is difficult
since most relationships are non-linear. Therefore, machine learning methods that can
include categorical variables may be a better approach to model non-linear relationships.

The XGB regression was investigated as a machine learning method to predict in-
season N metrics using three distinct levels: NDVI and NDRE, all selected Crop Circle
Phenom sensor parameters, and all sensor parameters as well as drainage, tillage, and PPN
management information. The results indicated that corn N status indicators were best
predicted when sensor data and management information were utilized together. The PPN
rate information was highly important for predicting PNC, PNU, and NNI, however, it was
not as important for predicting AGB. Compared to PPN, drainage and tillage information
did not contribute as strongly to the prediction of any of the plant N metrics since their F
scores were significantly lower than most sensor metrics. This low feature importance was
unexpected since both drainage and tillage were found to be significant factors for grain
yield (data not shown).

Models using all Crop Circle parameters overall performed better than models only
using NDVI and NDRE using the training dataset, although this did not translate into
improved performance of the testing dataset that was at best comparable to using only
NDVI and NDRE. Comparing the importance of each sensor metric, CCCI was the most
informative sensor index for PNC, PNU, and NNI. This supports previous studies [44–46].
It should be noted that the CCCI used in this study is a simplified index calculated as
NDRE/NDVI, while the original CCCI was based on the theory of two-dimensional planar
domain involving both NDRE and NDVI [47,48]. More studies are needed to further
evaluate the simplified and the original CCCI for applications in crop N status prediction
and diagnosis.

The N status diagnosis results also indicated that XGB models using two or more
variables outperformed SR models using one variable. The XGB models using NDVI and
NDRE or all selected Crop Circle Phenom sensor derived variables performed similarly,
with the same areal agreement (57%) and slight difference in kappa statistics (0.32 vs. 0.36).
Adding management information further improved the N status diagnostic accuracy, with
areal agreement of 72% and kappa statistics of 0.54. This result highlighted the importance
of combining management information with crop sensor data.

Few previous studies have attempted to combine sensor data with soil and climate
data to improve in-season N recommendations [49–51], however, limited studies have
been reported to combine management practice information with crop sensor data for
in-season N status prediction and diagnosis. Countless machine learning models have
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been used for predicting crop N status indicators [52–55], however, XGB regression was
selected for this project because it includes self-contained cross validation modules to
perform hyperparameter tuning and the ability to define an early stopping parameter
to mitigate overfitting. Specifically, the ability to tune for learning rate was important
within our limited dataset because it further mitigated the risk of overfitting our training
models. Nevertheless, the results in this study indicated that overfitting was still a problem.
More studies are needed to broaden the dataset and evaluate different machine learning
methods [51,54].

4.3. Implications for On-Farm Applications

Proximal sensing systems are beneficial for on-farm use because they require minimal
training to collect data and fewer processing resources than aerial or satellite imagery.
The Crop Circle Phenom sensor system is designed to be mounted on a vehicle or tractor,
which makes it more difficult to be carried by hand for small plot research. To deploy
it in small plot experiments, a custom pole was constructed to mount the two sensors
and the GeoScout data logger. Another difference compared to similar proximal sensors
is the Phenom requires an external 12 volt battery to power its active sensor light for
calculating reflectance. Although the Crop Circle Phenom requires modifications for small
plot research, adapting the sensor system for commercial field applications would be much
easier because the mounting hardware and the electrical wiring were designed for use
on a field implement. This ease of use for commercial applications is also due to its GPS
connectivity and ability to quickly swap out the sensor across a range of field implements
from sprayers to fertilizer spreaders, which enables whole field resolution readings to be
collected throughout the growing season.

Another way in which the Crop Circle Phenom can set itself apart as a proximal
sensing system is through its multi-parameter spectral, environmental, and physiological
metrics. Utilizing biophysical relationships between spectral features and temperature, the
Crop Circle Phenom can be used to estimate ΔTemp and fPAR. Although utilized in this
study to investigate N status, these metrics have the potential to differentiate various stress
factors such as water status and pathological issues. However, both these management
considerations were outside the scope of this research and should be investigated in
the future.

The PPN information was an important factor to use with crop sensor data for in-
season N status prediction and diagnosis. Such data can be easily obtained from as-applied
maps and should be included in in-season N status diagnosis, especially when variable
rate PPN is applied.

5. Conclusions

The Crop Circle Phenom sensing system possesses multi-parameter indices that can be
used to measure crop canopy reflectance, eLAI, eCCC, and calculate ΔTemp and fPAR. The
eLAI and eCCC indices performed slightly better than NDVI and NDRE for predicting PNC
and PNU using SR models. As a result, these indices warrant inclusion in future sensor-
based diagnosis methods alongside traditional vegetation indices. In contrast, SR models
using ΔTemp or fPAR did not perform well for predicting plant N status indicators. This
poorer model performance could be due to inability to segment soil from plant reflectance,
as is possible with imagery or potted plant experiments. Nonetheless, both ΔTemp and
fPAR parameters were useful for N status prediction when used alongside reflectance
parameters with machine learning models, such as XGB regression. The CCCI parameter
was found to be an important vegetation index for predicting PNC, PNU, and NNI in both
SR and XGB modeling. This improvement over NDVI and NDRE indicates CCCI should
be included in future sensor guided management research.

The Crop Circle Phenom sensor system shows promise as a tool for in-season corn
N status prediction and diagnosis across different drainage, tillage, N supply, and site
year conditions. Combining management information, especially PPN, with Crop Circle
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Phenom sensor data using machine learning can improve corn N status prediction and
diagnosis compared to only using sensor data. Additional studies are needed to further
evaluate this new multi-parameter Crop Circle Phenom sensing system with more site year
data using additional tree based supervised models.
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Abstract: Precise detection of leaf nitrogen concentration (LNC) is helpful for nutrient diagnosis and
fertilization guidance in farm crops. Numerous researchers have estimated LNC with techniques
based on reflectance spectra or active chlorophyll fluorescence, which have limitations of low accuracy
or small scale in the field. Given the correlation between chlorophyll and nitrogen contents, the
response of sun-induced chlorophyll fluorescence (SIF) to chlorophyll (Chl) content reported in a
few papers suggests the feasibility of quantifying LNC using SIF. Few studies have investigated
the difference and power of the upward and downward SIF components on monitoring LNC in
winter wheat. We conducted two field experiments to evaluate the capacity of SIF to monitor the
LNC of winter wheat during the entire growth season and compare the differences of the upward
and downward SIF for LNC detection. A FluoWat leaf clip coupled with a ASD spectrometer was
used to measure the upward and downward SIF under sunlight. It was found that three (↓FY687,
↑FY687/↑FY739, and ↓FY687/↓FY739) out of the six SIF yield (FY) indices examined were significantly
correlated to the LNC (R2 = 0.6, 0.51, 0.75, respectively). The downward SIF yield indices exhibited
better performance than the upward FY indices in monitoring the LNC with the ↓FY687/↓FY739
being the best FY index. Moreover, the LNC models based on the three SIF yield indices are insensitive
to the chlorophyll content and the leaf mass per area (LMA). These findings suggest the downward
SIF should not be neglected for monitoring crop LNC at the leaf scale, although it is more difficult to
measure with current instruments. The downward SIF could play an increasingly important role in
understanding of the SIF emission for LNC detection at different scales. These results could provide
a solid foundation for elucidating the mechanism of SIF for LNC estimation at the canopy scale.

Keywords: sun-induced chlorophyll fluorescence (SIF); SIF yield indices; upward; downward; leaf
nitrogen concentration (LNC); wheat (Triticum aestivum L.)
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1. Introduction

Nitrogen, an essential element in chlorophyll and in enzymes needed for photosynthesis, plays an
important role in maintaining crop growth and enhancing grain yield [1]. However, over-fertilization will
result in lower nitrogen-use efficiency and environmental pollution. Leaf nitrogen concentration (LNC)
can be used to diagnose the nutritional status and guide precise fertilization [2–4]. Therefore, many studies
have been devoted to accurately monitoring crop LNC [5–7]. The close correlation between chlorophyll
(Chl) and nitrogen content makes it possible to quantify the crop LNC with empirical methods [8].
Existing studies have illustrated that reflectance-based parameters/vegetation indices could be used
to monitor the LNC [9–11], which are based on the absorption characteristics of chemical components.
However, until now, these studies have some shortcomings, such as mixed signals from the plants and
the soil, lack of specificity of the nitrogen stress, and limitations to the specific ranges of biomass, leaf area,
and chlorophyll [12]. In the past decades, chlorophyll fluorescence (ChlF), the light emitted by chlorophyll
has proven to be highly related to crop physiology and sensitive to plant nitrogen status when compared
with reflectance signals [13].

ChlF, used to probe many aspects of photosynthesis of plants and other photosynthetic organisms,
is emitted by Chl, independent of soil interference and biomass. Govindjee [14] suggested that ChIF
could provide abundant information about photosynthetic characteristics, including pigment system
composition, de-excitation energy, rates of electron transfer reactions on Photosystem II (PS II), actual
photochemical quantum yields and coefficients of photochemical quenching. Since nitrogen is the main
element of Chl and enzymes, plant nitrogen content affects the Photosystem I (PS I) and Photosystem II
(PS II) functions, and then influences the photosynthetic characteristics by affecting the photosynthetic
pigment content and physical changes in pigment-protein complexes. Therefore, plant nitrogen content
could affect the photosynthetic function leading to the changes of ChlF emission. Meanwhile, the
strong link between LNC and ChlF provides an empirical basis for detecting plant LNC.

ChlF can be measured with active and passive ChlF techniques depending on the type of excitation
light source. The active ChlF measurements have been proposed as possible species-specific approach
to monitor the LNC and indentify nutrient deficiency of crops by several scientists [15–20]. For example,
laser-induced fluorescence parameters (F685, F740: fluorescence intensity at 685 nm and 740 nm;
F740/F685: ratio of fluorescence intensity at 740 nm and 685 nm) are reported as a potential method
for non-destructively monitoring paddy rice LNC [21]. It seems that much progress has been made
to detect LNC using ChlF [22–24]. To date, there still exist some limitations to the application of
active ChlF. First, due to the artificial light source used to excite the leaf fluorescence emission, the
active ChlF is mainly used for individual leaves and small plants. Moreover, it is unrealistic to be
applied at the large scale with the limitation of laser pulse energy and background interference [25,26].
Additionally, it is difficult to extrapolate the result because the shape and intensity of the active ChlF
varies with the excitation light source [14].

Sun-induced fluorescence (SIF), also known as passive chlorophyll fluorescence, has been widely
used in recent years as a promising approach to probing plant physiology, net photosynthesis, stress
status at different scales, i.e., leaf, canopy, region and global [27,28]. SIF, a bimodal spectrum ranging
from 650 nm to 850 nm, is emitted directly by Chls under the excitation of sun-light. It is composed
of two peaks, with the first peak (685 nm) located in the red region, which is mainly attributable to
Photosystem II (PS II), and the second peak (740 nm) located in the far-red region, which is attributed
to Photosystem I (PS I) and PS II [29,30]. Compared with the values of the reflected and transmitted
radiation, though the signal of leaf SIF is relatively small (just about 2–5% in the near-infrared), it plays
an important role in characterizing the photosynthetic process [29,31]. SIF has been employed as an
effective means not only for detecting plant photosynthetic capacity [32], light-use efficiency [33,34],
stress, and injury [35,36], but also for other physiological parameters related to nitrogen fertility
conditions. The ChlF peak ratio is known to be an accurate estimator of leaf Chl content [23,24], which
is an indirect association between ChlF and LNC, mediated by chlorophyll. Tubuxin et al. [37] has
estimated the Chl content using SIF at various growth stages of paprika (Capsicum annuum cv. ‘Sven’)
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plants. Moreover, Du et al. [38] reported a high relationship between SIF at the canopy level and
photosynthetically active radiation absorbed by chlorophyll, although it is affected by species-specific,
bio-chemical components and canopy structure, particularly at the O2-B band. The model-based
analysis has shown that the slope of gross primary production and SIF tends to be smaller with
increasing Chlorophyll a + b content (Cab). The slope is only sensitive when Cab is <20 μg·cm−2

and is stable when Cab is >20 μg·cm−2 [39]. The studies mentioned above provide the experimental
basis to probe the LNC utilizing SIF, which is closely linked with the management of nitrogen fertility.
However, few studies so far have explored the feasibility and potential of SIF to detect the LNC in
agronomic crops.

Concerning a typical bifacial leaf, SIF is emitted from both sides [13,40]. Although the upward and
downward SIF are generated by the same incident light, there are differences between them due to the
internal pigment distribution and structural factors [13]. Descriptions of the upward and downward
SIF characteristics are helpful to interpret the remote sensing signal. Understanding and comparing
the contribution of the upward and downward SIF in the total SIF helps in recognizing the change of
SIF in the propagation process in a remote sensing manner. Moreover, it should also be noted that two
SIF emission peaks are affected by strong internal absorption, which could affect the percentage of the
upward and downward SIF and change the ratio between red and far-red peaks for both sides. So far,
no studies have investigated the capacity and difference of upward and downward SIF in the LNC
detection. Few researchers have compared the ability of the two SIF peaks to estimate LNC, which
would be beneficial to understanding the mechanism of monitoring the LNC based on SIF.

The overall goal of this study is to estimate LNC in wheat, a major food crop, using SIF related
parameters. To fulfill this goal, four main objectives are pursued: (1) to understand the variation of
upward and downward SIF spectra under different LNC levels; (2) to compare the differences of the
correlations between the upward and downward SIF spectra and LNC; (3) to construct an empirical
model for estimation of LNC based on the upward and downward SIF-related parameters; (4) to
evaluate the performance of the LNC models under various Chl content and leaf mass per area (LMA)
levels in wheat.

2. Materials and Methods

2.1. Experimental Design

Two completely randomized block design field experiments were carried out over one growing
season with different nitrogen application rates, planting densities and different winter wheat cultivars
replicated three times, in Jiangsu province of East China. During two experiments, 50% nitrogen
fertilizer was applied at the pre-planting stage and 50% at the jointing period for N+ treatments. During
Experiment 1, 120 kg·hm−2 of monocalcium phosphate (P2O5) and 135 kg·ha−1 of potassium chloride
(KCl) were applied prior to seeding for all treatments. During Experiment 2, 105 kg hm−2 P2O5 was
applied at sowing and 135 kg·ha−1 KCl was split 50% at sowing and 50% at jointing. Crop management
followed local standard practices in wheat production. The detailed information is provided in Table 1.

Table 1. Design of two field experiments and data acquisition.

Experiment (Exp.) Year
Plot Size
(m × m)

Wheat Cultivar
Planting
Density

N Application
Rate (Kg·ha−1)

Sampling Date
Number of

Samples

1
Rugao

(32◦15′N, 120◦38′E)
2016–2017 5 × 6

Yangmai 15 (V1)
Yangmai 16 (V2)

25 cm
40 cm

0, 150, 300

Jointing, 29
Booting, 30
Heading, 30
Anthesis 30

2
Sihong

(33◦27′N, 118◦13′E)
2016–2017 6 × 7

Huaimai 20 (V3)
Xumai 30 (V4) 25 cm 0, 90, 180, 270, 360

Booting, 30
Heading, 30
Anthesis 30
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2.2. Measurements of Sun-Induced Fluorescence at the Leaf Scale

2.2.1. Acquisition of the Upward (↑F) and Downward (↓F) SIF Spectra at the Leaf Scale

Reflectance (R), transmittance (T) without fluorescence contribution, and chlorophyll fluorescence
(F) datasets were measured under natural illumination with clear sky conditions using an ASD
FieldSpec Pro FR2500 spectrometer (ASD) (Analytical Spectral Devices, Boulder, CO, USA) coupled
with the FluoWat leaf clip (Producción por mecanizados villanueva S.L.U, Spain) from 10:00–11:30 at
each growth stage [13,41,42]. The ASD recorded data at 1 nm intervals in the region of 350–2500 nm.
The spectral data were collected with a sampling interval of 1.4 nm and a full width at half maximum
(FWHM) spectral resolution of 3 nm in 350–1000 nm. It recorded reflectance with a sampling interval
of 2 nm and a FWHM spectral resolution of 10 nm in 1000–2500 nm.

Due to the flexible design of the FluoWat leaf clip, fiber can be vertically positioned onto the adaxial
and abaxial leaf (Figure 1A). The incoming sun radiance (I) was measured as the reflected radiance of a
Spectralon reflectance standard (ODM-98, Gigahertz-Optik GmbH, Türkenfeld, Germany). When the
leaf was clamped into the FluoWat leaf clip, the incident solar beam could be manually aligned into the
open aperture with the direction of 45◦ relative to the leaf surface, and the R-T-F datasets were measured.
Then, a high performance low pass filter (<650 nm, Producción por mecanizados villanueva S.L.U,
Spain) was used to cut off the light above 650 nm, the upward and downward fluorescence emission (↑F
and ↓F) were obtained separately (Figure 1B) [13,42]. Upward and downward sun-induced fluorescence
emission (↑F and ↓F) were measured at the same point of the upper and lower epidermis of the wheat
leaf, respectively. The point of the measurement was at two-thirds of the distance from the leaf base.
The first, second, and third fully-expanded leaves from the top were selected randomly from a plant
in every plot. The leaf veins were avoided to appear in the detection area during the measurements.
Additional details regarding the data acquisition are provided in Figures 1 and 2.

Figure 1. Scheme of the FluoWat leaf clip during measurement. Reflectance and transmittance with
the contribution of SIF are measured by inserting a fiber into the upward and downward position of
the FluoWat leaf clip (A); with the short-pass filter (wavelength shorter than 650 nm), the upward and
downward SIF are collected (B).

2.2.2. Sun-Induced Fluorescence (SIF) Yield Indices

Since the intensity of the incident light was different on every testing day during the whole wheat
growth stages, SIF yield indices (FY, unitless) were calculated by normalizing the SIF for the absorbed
incoming photosynthetic active radiance (APAR). APAR equals the integration of incoming sun radiance
in the photosynthetic active radiation (PAR) region (400–700 nm) multiplying with the fraction of the light
absorbed in the PAR region of (fAPAR) [42] (Equations (1)–(5)). The total measured Chl fluorescence yield
(FYtot, unitless) equals the sum of the upward and downward Chl fluorescence yield (FYtot = ↑FY + ↓FY).
Additionally, several SIF yield indices constructed by the red and the far-red emission peaks also were
calculated to track the characteristics of the SIF spectra (Table 2). More details about the measurements
and the formulas of SIF yield indices used in the paper, can be seen in [13,42].
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PAR =
∫ 700

400
I · dλ (1)

fAPAR = (1 − R − T) (2)

APAR =
∫ 700

400
[ I × fAPAR]dλ (3)

↑ FY =
↑ F

APAR
(4)

↓ FY =
↓ F

APAR
(5)

 

Figure 2. Drawing of the SIF measurement.

The distribution of SIF peaks in the red region and far-red region was close to the normal
distribution, as shown in Figure 3. The data collected from the two ecological sites showed that the
peak in the red region was located in the range of 685–690 nm, among which a 40% SIF peak appeared
at 687 nm (Figure 3A). The peak in the far-red region was situated around 735–741 nm, of which a 58%
SIF peak was discovered at 739 nm (Figure 3B). Therefore, the SIF yield indices calculated in this study
were based on the peak emission positions of 687 nm and 739 nm.

Figure 3. Distributions of the SIF peak emission positions in winter wheat ((A) the red region, (B) the
far-red region).

Table 2. SIF yield indices used in this study.

SIF Yield Indices Definition Formula

Upward
↑FY687 (%) Upward SIF emission at 687 nm normalized by APAR ↑F687/APAR
↑FY739 (%) Upward SIF emission at 739 nm normalized by APAR ↑F739/APAR

↑FY687/↑FY739 (%) The ratio of upward SIF emission peaks ↑FY687/↑FY739

Downward

↓FY687 (%) Downward SIF emission at 687 nm normalized by APAR ↓F687/APAR
↓FY739 (%) Downward SIF emission at 739 nm normalized by APAR ↓F739/APAR

↓FY687/↓FY739 (%) The ratio of downward SIF emission peaks ↓FY687/↓FY739
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2.3. Measurements of Leaf Biochemical Parameters

All leaves were detached for scanning and weighing after the measurement of SIF. Leaf area
was determined with a leaf area meter LI-3000 (LI-COR, Inc., Lincoln, NE, USA). Finally, leaves were
oven-dried at 105 ◦C for 30 min, and then at 80 ◦C for 48 h until a constant dry weight (DW) was
obtained. LMA was calculated as grams of dry mass per square centimeter. The LNC in the leaf
tissues (% or Gn·g−1 DW) was determined using the micro-Kjeldahl method in this study. The leaf Chl
content was estimated by the PROCWT model which couples PROSPECT with continuous wavelet
transform [43].

2.4. Calculation of Vegetation Indices

To compare the differences in detection of LNC between the SIF and the vegetation indices, some
widely used vegetation indices from previous studies are cited, such as a normalized difference vegetation
index (NDVI), enhanced vegetation index (EVI2), red edge inflection point (REP), green NDVI, green
chlorophyll index (CIgreen), and red edge chlorophyll index (CIred edge). NDVI, EVI2, and green NDVI are
generally applied for the remote estimation of canopy LAI, while REP, CIgreen, and CIred edge are widely
used to estimate the Chl content. The detailed information is summarized in Table 3.

Table 3. Vegetation indices used in this study.

Index Equation Reference

Normalized difference vegetation index (NDVI) (R810 − R690)/(R810 + R690) [44]
Enhanced vegetation index (EVI2) 2.5 × (R810 − R690)/(R810 + 2.4 × R690 + 1) [45]

Red edge inflection point (REP) R700 + 40 × [(R670 + R780)/2 − R700)/(R740 − R700)] [46]
Green NDVI (R800 − R550)/(R800 + R550) [47]

Green chlorophyll index (CIgreen) (R800/R550) − 1 [48,49]
Red edge chlorophyll index (CIred edge) (R800/R720) − 1 [48,49]

2.5. Statistical Analysis

The constructed models of combined wheat LNC data were evaluated in leave-one-out cross
validation (LOOCV). The predictive performance of LNC models on SIF yield indices was evaluated
using different statistical parameters: The coefficient of determination (R2); root mean square error
(RMSE); relative root mean square error (RRMSE).

The fitness between the predicted and observed values were evaluated by the square of correlation
coefficient (R2), the root mean square error (RMSE) [50], and relative root mean square error
(RRMSE) [51].

3. Results

3.1. Characteristics of SIF Spectra at the Leaf Scale under Varied Nitrogen Rates

We took the Experiment 2 data as the example to demonstrate the differences of the downward
and upward SIF in the region of 665–850 nm at different nitrogen levels (Figure 4), and SIF in the
region of 650–665 nm was deleted due to the noise of partial transmittance of the filter in the region.
Generally, Figure 4A–C show that, with the increase of LNC, SIF yield is decreasing in the red region,
while it rises in the near-infrared region, which was observed on both the upward and downward SIF
yield. The red and far-red peaks are clearly visible at the upward SIF spectra, with a lower peak in the
red region than that in the far-red region (Figure 4A); but, in the downward SIF yield spectrum, the
red peak is inconspicuous, especially for the leaves with high LNC (Figure 4B).

Figure 4D–F show how the signal of the downward SIF is generally weaker than that of the
upward SIF for a given LNC. Both the signal of two peaks in the red region and the far-red region
for the downward SIF is significantly smaller than that in the upward SIF. However, the peak in the
far-red region is only a little smaller in downward SIF than that in the upward SIF. The changing trend
was consistent under the different nitrogen levels.
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Figure 4. The upward, downward and total SIF yield spectra under different nitrogen levels in
Experiment 2. Top row, each figure comparing different LNC contents for a given SIF component
(A–C). Bottom row, each figure comparing the different SIF contributions for a given LNC (D–F).

3.2. Correlations between the Upward and Downward SIF Yield and Three Given LNC Ranges for the
Winter Wheat

Correlation coefficients between the upward and downward SIF yield spectra and the three
different ranges of LNC are shown in Figure 5. It shows that the sensitive band to the LNC is
approximately at 686 nm in the visible spectral range. There is a quite flat curve in the region of
730–770 nm in the far-red region, with the close to highest correlation with LNC at 758 nm for both
upward and downward SIF, as shown in Figure 5. The LNC is negatively correlated to both upward
and downward SIF of wheat leaves in the region of 650–720 nm, which shows similar trends in different
bands under all the LNC ranges. However, the correlation coefficient in the region of 720–830 nm
is positive when the LNC was <3.8% for bidirectional SIF, nevertheless, it is negative in the region
of 650–850 nm when 3.8% < LNC < 5% for the downward SIF (Figure 5B). Overall, the downward
SIF exhibits a closer relationship with the LNC than that of the upward SIF for the whole SIF region,
especially when the LNC is >3.8%. Meanwhile, the correlation coefficient between the LNC and SIF is
significantly higher in the red region than that in the far-red region, especially when LNC is <3.8%.

Figure 5. Correlation coefficients between the upward, downward SIF spectra and the three different
ranges of LNC.
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3.3. Constructing the LNC Estimation Models on SIF Yield Indices in Wheat

The scatter plots for the 210 pairs of the LNC and the upward and downward SIF yield indices
samples for two experiments (Experiment 1 and Experiment 2) are shown in Figure 6. The best-fit
function for the relationships between SIF yield indices and the LNC are all nonlinear. It shows that
↓FY687 performs much better than ↑FY687 with R2 as 0.58, 0.72 and 0.60 for Experiment 1, Experiment
2 and combined datasets, respectively (Figure 6A,D). Neither the upward nor downward FY739 indices
present any correlation (Figure 6B,D). The upward red/far-red peak ratios (↑FY687/↑FY739) yield
the performance with R2 values of 0.45, 0.65, and 0.51 for Experiment 1, Experiment 2, and combined
data, respectively. The downward red/far-red peak ratio ↓FY687/↓FY739 exhibits the strongest
relationship with a non-linear character in each dataset (R2 = 0.72, 0.80 and 0.75 for Experiment
1 dataset, Experiment 2 dataset, and combined, respectively) (Figure 6F).

Figure 6A–C show that, for all upward SIF yield indices, the upward red/far-red peak ratio index
↑FY687/↑FY739 has better fit with the LNC, although with an R2 of 0.65 it is not very strong. Among the
downward SIF yield indices, the ratio ↓FY687/↓FY739 has the best ability to estimate the LNC due to
the highest fit, in this case, with an R2 between 0.72 and 0.80. Briefly, ↓FY687, ↑FY687/↑FY739 and
↓FY687/↓FY739 yield better results with LNC than other SIF yield indices. However, it seems that
these three SIF yield indices lack sensitivity to the LNC at low LNC values.

To conclude, the best-fit functions for the relationships between SIF yield indices and LNC were
mostly nonlinear with better performance in downward SIF yield indices than that of the upward
ones. The red/far-red peak ratio indices showed higher correlation with LNC than that of the single
peak SIF yield indices, particularly for ↓FY687/↓FY739 on which the nonlinear exponent prediction
function was built with the best goodness of fit. Moreover, it was also found that the differences of the
↓FY687/↓FY739 models between the two data sets were the smallest.

Figure 6. LNC plotted against SIF yield indices (Top row is the upward; Bottom row is the
downward). (A) the upward ↑FY687 (×10−5); (B) the upward↑FY739 (×10−5); (C) the upward
↑FY687/↑FY739; (D) the downward ↓FY687 (×10−5); (E) the downward ↓FY739 (×10−5); (F) the
downward ↓FY687/↓FY739. Note: green, blue, and red lines are the best-fit function for the Experiment
1 (Exp. 1), Experiment 2 (Exp. 2), and the two datasets combined, respectively.

3.4. Validation of the Estimated LNC Model on SIF Yield Indices in Wheat

The LNC models constructed on the upward and downward SIF yield indices group of FY687, FY739
and red/far-red peak ratio indices (FY687/FY739) were validated by the two combined datasets using
LOOCV with three statistical parameters of the coefficients of determination (R2), the root mean square
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error (RMSE) and relative root mean square error (RRMSE) (Figure 7). Among them, the estimation models
built on ↓FY687 and red/far-red peak ratio indices group (↑FY687/↑FY739 and ↓FY687/↓FY739) performed
well overall (Figure 7C,D,F). Additionally, ↓FY687/↓FY739 did best with the highest correlation (0.74)
and the lowest RRMSE (9.25%), followed by ↑FY687/↑FY739 (R2 = 0.50, RMSE = 0.39, RRMSE = 12.88%).
The regression line was close to y = x line. The 1:1 plotting with the observed and predicted values
exhibited the reliability and accuracy of the derived models, as shown in Figure 7C,F.

Figure 7. Comparisons between measured and predicted LNC. (A) the upward ↑FY687 (×10−5); (B) the
upward↑FY739 (×10−5); (C) the upward ↑FY687/↑FY739; (D) the downward ↓FY687 (×10−5); (E) the
downward ↓FY739 (×10−5); (F) the downward ↓FY687/↓FY739. Data points from the Experiment 1
and Experiment 2 data sets are shown in green (triangle) and blue (square), respectively.

Table 4 illustrates the performance of monitoring models for LNC on vegetation indices used
in previous studies for 210 combined samples. Based on the statistical parameters of the calibration
and validation sets, CIred edge shows the highest correlation to LNC, followed by CIgreen, Green NDVI,
and REP, which yielded better precision than NDVI and EVI for LNC detection. Consistent with the
performance in calibration, NDVI and EVI show poorer accuracy than the other four vegetation indices.
The vegetation indices NDVI and EVI used for estimation of LAI did not perform well since they
were not sensitive when the LNC was high. Compared with the SIF yield indices, only downward
fluorescence ratios (↓FY687/↓FY739) appeared to perform better than CIred edge, but not significantly.

Table 4. Better performing LNC models based on vegetation indices in the calibration and validation.

Vegetation Index
Calibration Validation

Reference
Equation R2 R2 RMSE RRMSE

EVI y = 6.74x − 0.67 0.25 0.23 0.49 [45]
NDVI y = 8.67x – 2.62 0.35 0.33 0.45 14.9% [44]

Green NDVI y = 0.91e2.39x 0.64 0.61 0.38 11.30% [47]
REP y = 0.18x − 125.03 0.65 0.63 0.33 10.991% [46]

CIgreen y = 1.62e0.30x 0.67 0.63 0.36 11.10% [48,49]
CIred edge y = 1.70e1.30x 0.71 0.68 0.30 10.54% [48,49]

↓FY687/↓FY739 y = −ln(x) + 1.56 0.75 0.74 0.28 9.25% This study
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3.5. Assessing the LNC Models on SIF Yield Indices under Individual Stage, Different LNC, Chl Content, and
Leaf Structure LMA

It can be seen that ↓FY687, ↑FY687/↑FY739, and ↓FY687/↓FY739 yield stable relationships with
LNC under various stages with broader ranges of Chl content, in Figure 6. Due to the more complete
data acquisition period in Experiment 1 than that of Experiment 2, we took Experiment 1 as the example
to compare the performance of these three LNC models in individual stages (Figure 8). They all had
the best performance during the anthesis stage, followed by the heading stage, booting stage, and
jointing stage. This might be caused by the large difference among the samples at the anthesis stage,
which led to the wide range of LNC, Chl content and leaf-structure properties. Meanwhile, the range
of ↓FY687/↓FY739 and ↓FY687 were larger than ↑FY687/↑FY739, therefore, the LNC models based on
↓FY687/↓FY739 and ↓FY687 have stronger applicability.

Figure 8. LNC plotted against SIF yield indices at different growth stages: ↓FY687 (A); ↑FY687/↑FY739
(B) and ↓FY687/↓FY739 (C). The data are shown in red (triangle) for jointing stage samples, magenta
(square) for booting stage samples, green (circle) for heading stage samples, and blue (plus) for anthesis
stage samples. All regressed lines are statistically significant (p < 0.001).

SIF emission is influenced by the re-absorption of Chl and leaf structure. The data of the LNC
and SIF were divided into five groups according to the value of Chl content and LMA in this study.
The objective was to evaluate LNC models on the conditions of practical growth status with varied
Chl content and LMA. Figure 9 shows the scatter diagram of SIF yield indices and LNC at different
Chl content levels. Observing the Chl content at different groups, the distribution of SIF–LNC scatter
changed a little with the change of Chl content. Especially when Chl content is about 55 μg·cm−2, the
↑FY687/↑FY739 and ↓FY687/↓FY739 were not sensitive to LNC. The SIF yield indices ↓FY687 and
↓FY687/↓FY739 still were sensitive to LNC under the low Chl concentrations, just the model changed
a little. Generally, the changes of the SIF–LNC models in five groups were not significant. As shown in
Figure 10A, although Chl was highly related to LNC, Chl content exerted influence on the relationships
between ↓FY687, ↑FY687/↑FY739, and ↓FY687 and the LNC.

Figure 9. Effects of different Chl content on the relationships between SIF yield indices and LNC.
(A) ↓FY687 (×10−5); (B) ↑FY687/↑FY739; (C) ↓FY687/↓FY739.
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We explored the LMA impact on the relationship between SIF yield indices and the LNC with a
sensitivity analysis using some measured data with different LMA categories (Figure 11). All the SIF
yield indices showed less variability to LMA (Figure 11) for LMA values in each range (14–97 g/m2)
and all LNC ranges (1–5%). SIF were sensitive to LNC all the time and the relationships between SIF
and LNC at five groups hardly changed. Therefore, the relationships between all SIF yield indices and
LNC were almost independent of the LMA. Meanwhile, Figure 10B shows that the LMA is not relevant
to LNC in any case. It can be concluded that the SIF emission also is affected by other leaf properties.

Figure 10. Chl content (A) and LMA (B) versus LNC for two ecological datasets. The data of
Experiment1 and Experiment 2 are shown in green (triangle) and blue (square), respectively.

Figure 11. Effects of varied LMA on SIF yield indices to LNC. (A) ↓FY687 (×10−5); (B) ↑FY687/↑FY739;
(C) ↓FY687/↓FY739.

4. Discussion

4.1. Power of the Upward and Downward SIF Yield Indices (↑FY and ↓FY) in LNC Detection

This study showed that the absolute value of upward SIF emission was higher than that of
the downward SIF for all leaves. Figure 12A,B,C also show that the value of the downward SIF
yield indices (↓FY687 and ↓FY739) are generally lower than that in the upward fluorescence (↑FY687
and ↑FY739). Due to the stronger absorption, scattering effect for the SIF emission [52], and more
chlorophyll content around the upper epidermis, it was observed that the upward SIF radiance and SIF
yield indices were higher compared with that of the downward SIF, especially for the SIF peak in the
red region, which is consistent with [40,53]. Much of the light is absorbed by the palisade parenchyma,
in the view of light propagation in the leaves. The SIF emitted downward possibly was self-absorbed a
second time by Chl in the leaf, reducing the downward SIF, which was weaker with the spongiform
parenchyma acting as a diffuser [54].
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Figure 12. Linear relationship between upward and downward SIF yield indices: A (upward ↑FY687,
downward ↓FY687), B (upward ↑FY739, downward ↓FY739) and C (upward ↑FY687/ ↑FY739, downward
↓FY687/ ↓FY739) for two datasets of Experiment 1 and Experiment 2 shown in green (triangle) and blue
(square), respectively. Statistical significance is shown as * p < 0.05; ** p < 0.01; *** p < 0.001.

Since the LNC is directly linked to Chl content, it is to be expected that the emission of the peak
in the red region decreased with the increasing of the LNC, however, increased in the far-red region.
This phenomenon of the transmittance and reflectance characteristics for wheat leaves was consistent
with the upward and downward SIF, which is the same as the previous results [55–57]. The reason for
the low accuracy of ↑FY739 and ↓FY739 for the LNC is the strong self-absorption of chlorophyll in the
red region rather than in the far-red region. The red peak of SIF is more likely to be closely correlated
to the LNC than the far-red peak, which agrees with previous study [52]. Although the downward
SIF signal was weaker than that of the upward SIF, the correlation coefficient between the LNC and
the downward SIF was higher than that with the upward SIF. Bidirectional observations revealed that
downward SIF yield indices (↓FY687 and ↓FY687/↓FY739), ↓FY687/↓FY739 especially has a closer
relationship with the LNC than that with the upward SIF yield indices (↑FY687 and ↑FY687/↑FY739)
(Figures 5 and 6). Zhao et al. [53] also indicated that the downward SIF was more sensitive to Chl
content than the upward SIF in the red region by the sensitivity analysis. The cause for these phenomena
might be the absorption of Chl, which was more obvious for the downward SIF than that for the upward
SIF [58,59]. Moreover, this effect can also be influenced by the leaf thickness, which will affect the
photon’s path length within the leaf [53]. Van Wittenberghe [13] concluded that the downward SIF, as
an important part of SIF emission, should be taken into consideration when interpreting the SIF signal
at the scales of leaf, canopy, and landscape, which validates the results of this study.

4.2. Reason for Better Performance of Peak Ratio Indices in LNC Detection

Compared with the single peak SIF yield indices, the red/far-red peak ratio indices
(↑FY687/↑FY739, ↓FY687/↓FY739) reflected the proportion of two photosystems. Regarding the
two peaks in the SIF, the peak located in the red spectral region (around 687 nm) mainly originated
from Photosystem II (PS II), and the other peak (about 739 nm) in the far-red region attributed to
both Photosystem I (PS I) and PS II [29,30]. The reason for the better performance of red/far-red peak
ratio in LNC estimation is not only the stacking of the thylakoid membranes, but also the associated
changes in spillover [60], led to the red/far-red peak ratio performing better in detecting several
types of growth status. According to the relevant studies over the last decades, it has been verified
that the red/far-red peak ratio index (F687/F739) from active fluorescence technology is correlated
with the maximum photochemical efficiency of PS II, largely due to reabsorption in the red region
for ChlF, which was suggested to be an indicator to Chl content [61,62], especially in diagnosing
the plant stress status [63]. Van Wittenberghe et al. [13] found that both the red/far-red peak ratio
indices (↓FY (687)/↓FY (741) and ↑FY (687)/↑FY (739)) have a high correlation with Chl content, and
they decrease with the increasing of Chl content. According to Tubuxin et al. [37], solar-induced and

136



Remote Sens. 2018, 10, 1315

artificial light-induced Chl fluorescence yield ratios of 686 nm and 760 nm were both highly correlated
with the Chl content. Due to the strong relationship between Chl content and LNC, the red/far-red
peak ratio indices (↑FY687/↑FY739, ↓FY687/↓FY739) could be used to estimate the LNC, especially
for the downward SIF yield indices ↓FY687/↓FY739, which also corresponded well with the result
drawn by [22–24].

It can be seen that ↓FY687, ↑FY687/↑FY739, and ↓FY687/↓FY739 all lacked sensitivity to the
LNC at low LNC values. Since the LNC models constructed in this study were empirical, inevitably
there would be a problem on the high value or low value. Figure 6 shows that, although the SIF yield
indices might lack sensitivity to those parameters of the LNC at low LNC values, it displays that the
relationships between ↓FY687, ↓FY687/↓FY739, and LNC—shown in Figure 9A,B—were better than
expected. The SIF yield indices ↓FY687 and ↓FY687/↓FY739 still were sensitive to the LNC under the
low Chl concentrations, which changed a little compared to the model built on all data.

Generally, simpler methods (SPAD, Dualex) are preferred to estimate the LNC [64,65], however,
neither can be used at the leaf scale. Although the reflectance-based parameters are widely used
to monitor LNC [66], they lack specificity to nitrogen stress [12]. Compared with the performance
of vegetation indices, only the result yielded by the downward fluorescence ratio (↓FY687/↓FY739)
was better than CIred edge, while the relationships between other SIF yield indices and the LNC was
not as good as CIred edge. This might be because the LNC used in this paper refers to the total
nitrogen, including the nitrogen involved in photosynthesis and nitrogen in other forms. SIF mainly
monitors the nitrogen which is involved in photosynthesis. The mechanism of SIF for the LNC
estimation is different from that of hyperspectral remote sensing, which is based on the spectral
absorption characteristics caused by the chemical bonds in the chemical composition under certain
light intensities. The RubisCo and the Chl are two major storage for nitrogen, both of which are
involved in photosynthesis. Evans [67] found that, within species, there are strong linear relationships
between nitrogen and both RuBP carboxylase and chlorophyll. Since Chl can be measured easily,
in this study only the Chl was taken into consideration, which could be the reason the monitoring
accuracy was not very high.

4.3. Performance of the Relationships between SIF Yield Indices and LNC under the Varied Chl Content and
Leaf Structure LMA

The influence of the Chl content and the LMA on the LNC models was explored using the
field-measured datasets. Chl content is a significant factor in linking SIF with LNC, so the conclusion
of this study can provide a reference for LNC estimation using SIF yield indices. The SIF yield indices
seemed to be less accurate at a lower LNC content. Regarding low Chl content, the slopes of ↓FY687,
↓FY687/↓FY739, and LNC were still sensitive, however, the SIF–LNC model changed a little, including
the slope and intercept. Zhang et al. [39] also found that the slope of gross primary production and SIF
also was insensitive when Cab was >20 μg·cm–2 using the model-based analysis.

We did not record leaf angle and leaf thickness, so the LMA was the alternative for leaf structure.
This study showed that the relationships between SIF yield indices and LNC were relatively insensitive
to the LMA. Van Wittenberghe et al. [13] illustrated there was not a significant influence of specific
leaf area on ↓F755/↑F755. The result probably was caused by the emission fluorescence escaped from
the leaf being affected by the other properties, such as the pigments and leaf structure., To reduce the
influence of variable light intensity, the SIF yield indices used in the study were normalized by APAR,
Therefore, regardless of saturated or unsaturated light conditions, the effects of light were minimized,
meanwhile, the kinetic effects of the non-saturating light and the variability of chloroplast movement
were not considered for the SIF measurement collected under variable light intensities. Therefore, in
the ongoing research, we would focus on improving the machine for SIF measurement at the leaf scale
and providing a more practical SIF index to estimate the LNC combining the result of canopy scale
and assessing the influence of canopy structure properties (leaf area, leaf angle, and more) on the SIF
yield indices.
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5. Conclusions

We assessed the capacity of upward and downward SIF yield indices for LNC estimation at the leaf
scale under various growth stages for winter wheat. The signal of the upward SIF was higher than that
of the downward SIF due to the re-absorption and scattering effect. Bidirectional observations revealed
that downward SIF had the higher fitness with the LNC than that of upward SIF. Downward SIF
also played an important role for predicting the LNC of winter wheat. The downward red/far-red
peak ratio index (↓FY687/↓FY739) showed the highest correlation to LNC with stable performance.
The relationships between LNC and these three SIF yield indices (↓FY687, ↑FY687/↑FY739, and
↓FY687/↓FY739) were hardly influenced by the LMA and Chl content. Therefore, SIF can be used as a
new priority with higher accuracy than vegetation indices to detect nitrogen content directly for future
study in the scales of field and region. SIF can be affected by the canopy structure, background, and
atmospheric absorption, but, in this study we simply assessed the LNC using SIF yield indices under
the varied ranges of Chl content and LMA. We should consider the impact of those factors on LNC
estimation by SIF yield indices in their on-going research.
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Abstract: Leaf nitrogen concentration (LNC) is a significant indicator of crops growth status, which is
related to crop yield and photosynthetic efficiency. Laser-induced fluorescence is a promising
technology for LNC estimation and has been widely used in remote sensing. The accuracy of
LNC monitoring relies greatly on the selection of fluorescence characteristics and the number of
fluorescence characteristics. It would be useful to analyze the performance of fluorescence intensity
and ratio characteristics at different wavelengths for LNC estimation. In this study, the fluorescence
spectra of paddy rice excited by different excitation light wavelengths (355 nm, 460 nm, and 556 nm)
were acquired. The performance of the fluorescence intensity and fluorescence ratio of each band
were analyzed in detail based on back-propagation neural network (BPNN) for LNC estimation.
At 355 nm and 460 nm excitation wavelengths, the fluorescence characteristics related to LNC were
mainly located in the far-red region, and at 556 nm excitation wavelength, the red region being an
optimal band. Additionally, the effect of the number of fluorescence characteristics on the accuracy of
LNC estimation was analyzed by using principal component analysis combined with BPNN. Results
demonstrate that at least two fluorescence spectral features should be selected in the red and far-red
regions to estimate LNC and efficiently improve the accuracy of LNC estimation.

Keywords: laser-induced fluorescence; leaf nitrogen concentration; back-propagation neural network;
principal component analysis; fluorescence characteristics

1. Introduction

Chlorophyll is an essential factor in crop photosynthesis, and nitrogen (N), a main element
in chlorophyll, can favorably affect the growth and quality of crops. Leaf nitrogen concentration
(LNC) is a key indicator of the N nutrition in crops, and scientific N fertilization measurements
can be obtained by monitoring the LNC [1,2]. Thus, estimating leaf nitrogen concentration (LNC)
accurately and nondestructively is important for the accurate diagnosis and quality evaluation of plant
growth status [3,4]. The development of remote sensing has made it a significant tool for monitoring
plant growth at the leaf, canopy, and landscape levels [5–8]. Many researchers have investigated
hyperspectral remote sensing and found a certain difference among the sensitive bands of the LNC
for different crops [9–11]. Moreover, the optimal bands will vary at different growth stages of the
same crops [12]. Therefore, chlorophyll fluorescence was proposed and utilized for monitoring crop
growth status. Chlorophyll fluorescence has shown to be a promising technology for monitoring crop
growth status.
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Variable chlorophyll fluorescence (or Kautsky kinetics) posits that fluorescence intensity changes
with time at a certain wavelength. These fluorescence characteristics are mainly used to monitor the
photosynthesis of crops [13–15]. However, Kautsky kinetics are seldom utilized in the monitoring of N
status or other agricultural application due to limitations such as the requirement of a fixed distance
of measurement and the need for dark-adaption 15 min before measurement [16]. Thus, Tartachnyk
and Rademacher [17] suggested that laser-induced chlorophyll fluorescence (LICF) is more conducive
to monitoring the N status of crops compared with Kautsky kinetics. Laser-induced fluorescence
(LIF) spectra contain abundant spectral information. Fluorescence intensity will be related to different
nutrient stresses [14]. Owing to its rapid, non-destructive, and high sensitivity properties, LICF has
been widely utilized in monitoring N fertilizer levels in crops [8,18–20].

Subhash and Mohanan [21] pointed out that the fluorescence intensity ratios F690/F725nm and
F690/F705nm have great potential for remote sensing-based monitoring of the effect of nutrient
stress on paddy rice growth status. Some research analyzed the monitoring ability of LICF for
crop nutrition stress and proposed that the fluorescence ratio F685/F730 is mainly related to
foliar chlorophyll concentration when no significant reduction in chlorophyll concentration has
occurred [22,23]. Gu et al. [24] analyzed the fluorescence characteristics of rice, which has suffered
flooding and waterlogging, and demonstrated that LICF can also be used to analyze water stress in
crops. Anderson et al. attempted to estimate the cowpea (Vigna unguiculata (L.) Walp) yield based
on the LICF characteristics and found that the fluorescence characteristics were sensitive to change
in photosynthetic activity [25]. Yang et al. [26,27] discussed the performance of the LICF for LNC
estimation in paddy rice with the support vector machine and back-propagation neural network
(BPNN) models. However, studies about the performance of chlorophyll fluorescence intensity or
fluorescence ratios of each band for LNC estimation are still sparse. In addition, LIF contains large
amounts of spectral information, and studies are lacking on the correct number of fluorescence
characteristics that should be selected from the fluorescence spectrum to estimate LNC. Thus, the main
target of the present study is to analyze the performance of the fluorescence intensity and fluorescence
ratio of each band for LNC estimation in paddy rice with different excitation light wavelengths.
Additionally, the effect of the number of fluorescence characteristics on the accuracy of LNC estimation
was discussed by using principal component analysis (PCA) combined with BPNN.

2. Materials and Methods

2.1. Materials and Experimental Design

The paddy rice variety Yangliangyou 6 was cultivated in Huazhong Agricultural University,
Wuhan City in the province of Hubei, China (Figure 1). The rice was seeded on 30 April 2018,
and transplanted to the field on 27 May 2015. Four levels of urea fertilizer (0, 120, 180, 240 kg/ha) were
used and divided into three splits (60% at seeding, 20% at tillering and 20% at shooting). In addition,
the experimental field had a randomized complete block design with three replications for each
treatment under the same cultivation conditions. In each plot, nine fully expanded second leaves
from the top were gathered randomly with three replicates for each experimental field on 26 July
2018, providing a total of 324 samples. The fresh leaf samples were sealed in plastic bags, stored in ice
chests, and then transported to the laboratory for fluorescence measurement. During the fluorescence
measurement, the samples were held on a black paperboard, which is a non-fluorescent material [28].
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Figure 1. Location of experimental fields, Huazhong Agricultural University in Wuhan, Hubei
province, China.

2.2. Measurement of Fluorescence Spectra

The system utilized for LIF measurement consists of three main parts (Figure 2), including the laser
emission, optical receiver, and fluorescence signal detection [26]. Generally, the fluorescence is emitted
in a longer wavelength region than the excitation wavelength and chlorophyll fluorescence is mainly
located in 600–800 nm region [29]. Therefore, 355 nm (ultraviolet), 460 nm (blue), and 556 nm (red)
excitation lights were used in the present study to induce plant fluorescence. The 355 nm excitation
light source is a neodymium-doped yttrium aluminum garnet laser. The 460 nm and 556 nm lasers
used were made by Spectra-Physics. The excitation light was irradiated on the surface of the samples
at a near 90◦ angle, and the emitted fluorescence was collected using the convex lens at a near 90◦ angle
on the same side. In addition, a long-pass filter (Semrock BLP01-355R-25 with the edge of 361 nm and
the 93% transmittance at 364.9–900 nm for 355 nm excitation light; and LP02-633RE-25 with the edge
of 633 nm and the 93% transmittance at 636.9–1427.4 nm for 460 and 556 nm excitation light sources)
was placed before the optical fiber probe and was utilized to reduce the reflected light from the laser
entering system. Then, the fluorescence signal entered the spectrometer (Princeton Instrument SP2500i
with the spectral resolution of 0.5 nm) by using the single-mode optical fiber with a diameter of 200 μm
and was detected by an intensified charge-coupled device camera. Fluorescence data was stored in a
personal computer for subsequent analysis.

 

Figure 2. The schematic of the LIF system. BE, beam expander (5 times at 355 nm, 460 nm and 556 nm);
ICCD, intensified charge-coupled device.
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The fluorescence spectral regions were 360–800 nm, 640–790 nm, and 640–800 nm for the 355 nm,
460 nm and 556 nm excitation lights. The sample interval was 0.5 nm. After the fluorescence spectra
was measured, all samples were immediately carried to the Wuhan Academy of Agricultural Science
and Technology for LNC analysis. The standard Kjeldahl method was utilized to determine LNC in
the present study [3]. Firstly, these samples were cut into pieces and oven-dried at 105 ◦C for 30 min
and then at 80 ◦C until constant weight for chemical analysis. Then, those pigments soluble in organic
solvents were extracted from leaves in acetone for 12 h in the dark at room temperature. The detailed
description of standard Kjeldahl method can be found in reference [30].

2.3. Back-Propagation Neural Network

BPNN is a kind of feedforward network with the advantage of self-adaption and self-learning
with good performance and has been widely utilized in solving various nonlinear problems. A BPNN
model usually consists of three layers, namely, input, hidden, and output layers. The weight of the
neurons can be adjusted based on the errors between the target output values and measured values.
The training process of BPNN model involves updating the weights until the average sum squared
error of the training dataset is minimized within the specified tolerance. A brief introduction about
BPNN can be referred to in a previous study [31,32]. The fluorescence characteristics of each excitation
light were randomly divided into two datasets, namely, 70% as the training dataset and another 30%
as the validation set for LNC prediction [32,33]. In the BPNN model, the fluorescence characteristics
served as the input parameter to train the model, and the LNC responded to the output parameters.
The coefficient of determination (R2) between the predicted and measured LNC, the root mean square
error (RMSE), and the relative error (RE) were utilized in this study to assess the performance of
fluorescence characteristics for LNC estimation. Each characteristic setting was repeated 100 times
based on the BPNN model, and the average was obtained.

2.4. Principal Component Analysis

The fluorescence spectra contain spectral information with hundreds of bands that provide
high dimensionality that is usually much higher than the number of available training samples.
Furthermore, the high-dimensional fluorescence spectra have significant redundancy, because large
autocorrelation between adjacent variables is observed. PCA as a tool for dimensionality analysis
can efficiently extract the main characteristic variables without any notable loss of information from
hundreds or thousands spectral bands [34]. In the process of spectral analysis by using the PCA,
the eigen values and eigen vectors of covariance matrix composed of fluorescence spectra were first
calculated. Then, multi-dimensional data vectors were mapped from the spectral space to a new
orthogonal space using the principal components (PCs). The new variables were calculated based on
the combination of the original spectra [35].

wi =
k

∑
j=1

p2 (
Xj, Yi

)
(1)

where, Xj is the PC, Yi represents the original values at ith bands, wi corresponds to the sum of the kth
PC for the ith wavelength, and P is the loading weight of the latent variables. Thus, the analysis can be
efficiently simplified using fewer calculated variables than the original ones [33].

3. Results

3.1. Fluorescence Spectrum

Figure 3 shows the fluorescence spectrum of paddy rice leaf excited by 355 nm laser.
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Figure 3. Paddy rice foliar fluorescence spectrum excited by 355 nm excitation light.

The fluorescence spectrum displayed three main fluorescence peaks at 460, 685, and 740 nm, and a
peak shoulder at 525 nm (Figure 3). According to previous research works, chlorophyll fluorescence
mainly focuses on the wavelength ranges from 600 and 800 nm and peak centering at 685 and 740 nm.
The fluorescence peak at 740 nm is attributed to the antenna chlorophyll of Photosystems I and
II. Another fluorescence peak at 685 nm corresponds to Chlorophyll a, which is associated with
Photosystem II [36]. The fluorescence peak shoulder at 525 nm and the peak at 460 nm are attributed
to riboflavin and nicotinamide adenine dinucleotide, respectively [37,38]. Figure 3 also shows that the
chlorophyll fluorescence at 685 nm is lower than that at 740 nm [18,39]. As the chlorophyll fluorescence
is related to the biochemical content of the leaf, it can be applied to remote sensing monitoring and has
been identified as a promising technology in the quantitative monitoring of remote sensing.

3.2. LNC Estimation Based on Fluorescence Spectra

To analyze the predictive ability of the fluorescence spectra for monitoring LNC in paddy
rice, the BPNN algorithm was used to inversely predict LNC based on the fluorescence spectra.
The relationship between the measured and predicted LNC were established and illustrated in Figure 4.

Figure 4. Cont.
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Figure 4. Relationship between the measured and predicted LNC by using BPNN based on fluorescence
spectra with different excitation light wavelengths. (a) 355 nm, (b) 460 nm, (c) 556 nm. The blue dotted
line is the 1:1 line. The red solid line is the linear regression.

The results of the comparison among the R2 values in Figure 4 shows that the fluorescence
spectra exhibit a promising potential for revising LNC, and the overall R2 exceeds 0.76. The red
solid line denotes the linear regression analysis results between the predicted and measured LNC.
For 355 nm (R2 = 0.832) and 556 nm (R2 = 0.821) excitation lights, the inversion results show better
predictive performance, having higher R2 and lower RMSE and RE than those for 460nm (R2 = 0.766)
excitation light.

3.3. Performance of Each Band’s Fluorescence Intensity for LNC Estimation

The sampling interval of the fluorescence spectrum is 0.5 nm for the three excitation light
wavelengths. The fluorescence spectra contain a large number of spectral bands, which may be
autocorrelated between adjacent bands. To discuss the performance of the fluorescence intensity
of each band for estimating LNC, the fluorescence characteristics of each band were used as the
input parameter to train the BPNN model to estimate LNC. Each setting was repeated 100 times
and the average of R2 was obtained for every band performance assessment in the LNC estimation.
This method can eliminate the local optimum effect of the internal parameters on the BPNN model.
The R2 between the measured and predicted LNC based on the fluorescence characteristic of a single
wavelength with different excitation light wavelengths is shown in Figure 5.

Figure 5. Cont.
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Figure 5. R2 between the measured and predicted LNC with single wavelength fluorescence served as
the input parameter to train the BPNN model for different excitation light wavelengths. (a) 355 nm,
(b) 460 nm, (c) 556 nm.

As shown in Figure 5, different bands exhibited different performances in the LNC estimation.
For 355 nm excitation light, the chlorophyll fluorescence from 670 nm to 750 nm displayed better
performance (R2 > 0.70) in LNC estimation based on the BPNN model than the other bands. For 460 nm
excitation light, the optimal fluorescence bands mainly focus on the near 735 nm with the R2 more
than 0.65. For 556 nm excitation light, the optimal fluorescence bands are located near 685 nm, and the
R2 is more than 0.7. Thus, the fluorescence characteristics of paddy rice, which can be used to estimate
LNC, were mainly located in the red and far-red fluorescence spectral regions.

3.4. Performance of Fluorescence Ratio for LNC Estimation

To analyze the optimal fluorescence characteristics band ratios for estimating paddy rice LNC,
further analysis was done on the performance of fluorescence ratios for LNC estimation based on the
BPNN model by using datasets with different excitation light wavelengths (Figure 6).

Figure 6 shows the equipotential graphs of R2 between the measured and predicted LNC with
the two wavelengths on the vertical axis and the abscissa with different excitation light wavelengths.
An overview of the statistical consequence for the performance of all fluorescence ratios was also
provided. For 355 nm excitation light, the fluorescence ratio between red and blue wavelengths
displayed higher R2 than other ratios for estimating LNC. For the 460 and 556 nm excitation lights,
the fluorescence ratios between far-red and red wavelengths exhibited higher R2 than other ratios for
estimating LNC. Thus, the chlorophyll fluorescence characteristics ratio located at the red and far-red
regions showed better performance for LNC estimation than other regions.

3.5. LNC Estimation Based on PCA

3.5.1. Accumulative Variance Analysis

PCA was utilized for the analysis of the internal correlation and reduction of dimensionality of
the fluorescence spectra. The most significant characteristic variables were extracted, because the
fluorescence spectra contain large amounts of information, which may influence its performance in
the LNC estimation. The cumulative variance changes with PC are shown in Figure 7. Apparently,
the cumulative variance with additional PC was increased slightly when the number of PCs exceeded
four (Table 1).
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Figure 6. Equipotential graphs of R2 between the measured and predicted LNC based on the BPNN
model with fluorescence ratio of each band for different excitation light wavelengths. (a) 355 nm,
(b) 460 nm, (c) 556 nm.

Table 1. Percentages of explained variance for the first four principal components (PCs) with different
excitation wavelengths.

355 nm 460 nm 556 nm

Eigen
Values

Explained
Variance

Eigen
Values

Explained
Variance

Eigen
Values

Explained
Variance

PC1 11.05 80.95% 4.08 66.24% 4.98 75.88%
PC2 1.26 15.94% 1.08 17.18% 0.52 14.24%
PC3 0.13 1.02% 0.58 9.37% 0.28 4.71%
PC4 0.08 0.61% 0.18 2.94% 0.12 1.64%

According to previous research, the first four PCs were mainly attributed to the red and far-red
regions [26]. For 355 nm excitation light, the PC3 contains the blue region, but the rate of contribution
was less than 2%. Additionally, other PCs contained less spectral information, which is related to
LNC that can be ignored and will not influence the performance of the extracted characteristics for
estimating LNC.

150



Remote Sens. 2018, 10, 1402

  

Figure 7. Cumulative explained variances of PC for different excitation light wavelengths. (a) 355 nm,
(b) 460 nm, (c) 556 nm.

3.5.2. Performance of New Variables for LNC Estimation

Then, the new variables were calculated based on each PC and used to estimate LNC based on
the BPNN model. The R2 between the measured and predicted LNC changed with the number of new
variables (Figure 8).

Figure 8. Cont.
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Figure 8. R2 between the measured and predicted LNC changes with PC number based on the BPNN
model at different excitation light wavelengths. (a) 355 nm, (b) 460 nm, (c) 556 nm.

As shown in Figure 8, the trend in R2 changes consistently with the number of variables at
different excitation light wavelengths. R2 first increased with increasing the number of variables,
and then decreased when the number of variables was over four or five. For 355 nm excitation light,
the variable number is four when the R2 reached maximum. For 460 nm and 556 nm excitation light,
the R2 exhibited the same tendency. Thus, the increase of explained variance with additional PC
will be reduced to less than 1%, which means that the new calculated variable contains less spectral
information than the raw variables. In addition, the results also demonstrated that the fluorescence
spectra contain a large amount of information, which will influence the LNC estimation.

3.5.3. Estimation of LNC Based on Calculated Variables

The first four PCs were utilized for further study. The new variables calculated based on PC were
provided as input parameters for training the BPNN model. The scatter plots between the measured
and predicted LNC were established via linear regression analysis (Figure 9).

 

Figure 9. Cont.
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Figure 9. Relationship between the predicted LNC by using PCA combined with BPNN and the
measured LNC for different excitation light wavelengths. (a) 355 nm, (b) 460 nm, (c) 556 nm. The blue
dotted line is the 1:1 line. The red solid line is the linear regression.

As shown in Figure 9, the performance of new variables calculated through PCA for monitoring
LNC was analyzed for different excitation light wavelengths. The solid line represents the
linear regression analysis that denotes the correlation between the predicted and measured LNC.
The inversion results demonstrated that PCA can efficiently extract the fluorescence spectral
characteristics for LNC estimation with high R2 and low RMSE, and RE values. All the R2 values
exceed 0.80 and can reach up to 0.86. Therefore, the extracted fluorescence characteristics located at
red and far-red region can be effectively utilized to estimate LNC.

4. Discussion

LNC is a significant indicator for estimating crop growth status. A large number of correlational
studies have been done by using passive and active remote sensing technologies. Plant fluorescence
emitted by the chlorophyll in the leaf, which is related to photosynthetic pigments, can be affected by
LNC. In addition, the molecular structure of chlorophyll contains a porphyrin ring structure which
is consisted of carbon©, oxygen (O), and N. Thus, fluorescence can be utilized in the estimation of
the biochemical content of the leaf [40,41]. Most recently, related studies have been conducted on the
application of LIF [42] to monitor the biochemical content of crops. In the present study, we mainly
discussed the effect of fluorescence characteristics on the LNC estimation and provided a guide for the
selection of fluorescence characteristics.

Chlorophyll fluorescence displayed two main fluorescence peaks, and the fluorescence peak at
685 nm is less intensive than that at 740 nm (Figure 3). The reason is that the fluorescence emitted
between 680 and 695 nm was more strongly reabsorbed by the chlorophyll pigment in the upper
layer leaf cells than the fluorescence emitted between 730 and 750 nm. Thus, chlorophyll pigment
had little influence on the fluorescence peak at 740 nm [39]. The fluorescence spectra excited by
different excitation light wavelengths exhibited different performance for the LNC estimation (Figure 4).
The results showed that 355 nm and 556 nm excitation lights are superior to 460 nm excitation light in
the LNC estimation. The possible interpretation may be that fluorescence spectrum excited by 355 nm
excitation light contains more fluorescence characteristics (360–800 nm), and that excited by 556 nm
excitation light can penetrate deeper in the leaf than other excitation lights [26,43]. Furthermore,
the absorption of foliar pigment may also influence the excitation light in the inner leaf influencing the
performance of fluorescence characteristics for the LNC estimation.

The fluorescence spectrum contained large amounts of spectral information, and the red and
far-red regions exhibited good performance in estimating LNC (Figure 5). This result is mainly
because a large autocorrelation between different bands exists, and the two adjacent bands carry
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similar fluorescence information. Thus, fluorescence characteristics can be selected from the near
fluorescence peaks at 685 nm and 740 nm to estimate LNC and are not just limited to the fluorescence
characteristics peaks. For 355 nm and 460 nm excitation lights, the fluorescence can be chosen from
the far-red region for LNC estimation, and for 556 nm excitation light, the red region may be the
optimal band. The results of PCA showed that the first three PCs can explain more than 90% of the
spectral information with different excitation light wavelengths (Figure 7). However, the trend of R2

changes with variable number by increasing and then decreasing when the number of fluorescence
characteristics was over four or five (Figure 8). PCA can extract significant spectral information,
and the increase of explained variance will be small with an increase of PC number. In addition,
when additional PCs cannot provide more information than raw spectral information, the performance
of the extracted fluorescence characteristics will decrease in their ability to estimate LNC. Thus, when
the number of PCs exceeded four or five, the R2 will decrease with an increase of variable number.
However, to improve the inversion accuracy of the LNC, selecting at least two fluorescence spectral
features in the red and far-red region, respectively, is necessary. Related investigation showed that the
extracted fluorescence characteristics were mainly located at the red and far-red regions, which can
be effectively applied to LNC estimation (Figure 9) [26]. In addition, the selection of fluorescence
characteristics is not just limited in the fluorescence characteristic peaks at 685 nm and 740 nm for
LNC estimation. The fluorescence characteristics, which are located in the red and far-red regions
(660–770 nm), can be also efficiently applied to LNC estimation [44].

In this study, a detailed analysis of the performance of the fluorescence spectral characteristics of
each band for LNC estimation was conducted based on BPNN. However, some limitations should
be considered for further studies. For the BPNN, although each setting was repeated one hundred
times and the average was obtained to eliminate the local optimum effect of the internal parameters of
the BPNN model, the optimal network architecture also needs to be analyzed. Furthermore, the effect
of the number of fluorescence characteristics on the reversion performance was discussed in detail.
Selecting the number of optimal fluorescence characteristics for LNC estimation also needs to be
addressed in further studies. In addition, the effect of the spectral sampling interval and the type
of crops on the performance of fluorescence characteristics for estimating LNC will be a promising
study direction.

5. Conclusions

In this study, the performance of the fluorescence characteristics and fluorescence ratio of each
band for the LNC estimation were analyzed in detail based on the BPNN model combined with PCA.
Furthermore, the effect of the number of fluorescence characteristics on the accuracy of LNC estimation
was also analyzed. The results demonstrated that the fluorescence characteristic, which is related to
the LNC, is mainly located in the red and far-red regions, and the latter is superior to the former for
LNC monitoring. For 355 nm and 460 nm excitation lights, the fluorescence characteristics can be
chosen from the far-red region for LNC estimation, and for 556 nm excitation light, the red region is
optimal. Thus, the selection of fluorescence characteristics is not just limited in the fluorescence peaks
for LNC estimation. What’s more, this study found that selecting at least two fluorescence spectral
features in the red and far-red regions is necessary for LNC estimation. Additional research will be
conducted to extend the results to different crop varieties.
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Abstract: The vertical leaf nitrogen (N) distribution in the crop canopy is considered to be an
important adaptive response of crop growth and production. Remote sensing has been widely
applied for the determination of a crop’s N status. Some studies have also focused on estimating the
vertical leaf N distribution in the crop canopy, but these analyses have rarely considered the plant
geometry and its influences on the remote estimation of the N vertical distribution in the crop canopy.
In this study, field experiments with three types of maize (Zea mays L.) plant geometry (i.e., horizontal
type, intermediate type, and upright type) were conducted to demonstrate how the maize plant
geometry influences the remote estimation of N distribution in the vertical canopy (i.e., upper layer,
middle layer, and bottom layer) at different growth stages. The results revealed that there were
significant differences among the three maize plant geometry types in terms of canopy architecture,
vertical distribution of leaf N density (LND, g m−2), and the LND estimates in the leaves of different
layers based on canopy hyperspectral reflectance measurements. The upright leaf variety had the
highest correlation between the lower-layer LND (R2 = 0.52) and the best simple ratio (SR) index
(736, 812), and this index performed well for estimating the upper (R2 = 0.50) and middle (R2 = 0.60)
layer LND. However, for the intermediate leaf variety, only 25% of the variation in the lower-layer
LND was explained by the best SR index (721, 935). The horizontal leaf variety showed little spectral
sensitivity to the lower-layer LND. In addition, the growth stages also affected the remote detection of
the lower leaf N status of the canopy, because the canopy reflectance was dominated by the biomass
before the 12th leaf stage and by the plant N after this stage. Therefore, we can conclude that a more
accurate estimation of the N vertical distribution in the canopy is obtained by canopy hyperspectral
reflectance when the maize plants have more upright leaves.

Keywords: nitrogen; vertical distribution; plant geometry; remote sensing; maize

1. Introduction

Nitrogen (N) is an essential nutrient and the most limiting nutrient for crop growth and yield [1–3].
N deficiency in crops causes the older and lower leaves on the plant to turn yellow and wilt
and ultimately impact leaf photosynthesis, crop yield, and quality [4–7]. The overapplication or
misapplication of N fertilizers on farmland can also result in crop lodging, reduced efficiency in N use,
and increased risk of environmental contamination [8–10]. Fortunately, precision N management has
the potential to solve these problems by matching the N supply with the crop’s N requirements at the
correct rate, place, and time [11]. Additionally, remote sensing provides an alternative to large-area
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crop N diagnosis. Various methods have been presented for the estimation of canopy total N or canopy
mean N concentration using hyperspectral reflectance information. However, these methods seldom
consider the non-uniformity of the N distribution [12–16].

Various studies reported that the vertical leaf N distribution of a plant canopy is non-uniform; i.e.,
the shaded lower leaves generally have a lower N content than the upper illuminated leaves [17–21].
It has also been shown that the lower leaves are more sensitive to N deficiency than the upper
leaves [22]. The transmission of N in response to N stress is generally from the bottom, old leaves to the
upper, new leaves in crops [23]. Thus, N deficiencies usually occur first in the bottom leaves, whereas
excess N affects the upper leaves [9]. Therefore, N fertilization should ideally be applied according to
the vertical leaf N distribution, which is critical for an early assessment of the crop growth status.

A few studies have focused on estimating the vertical leaf N distribution in the crop canopy using
remote sensing technology. The existing studies can be grouped into two categories based on the
acquisition type of the hyperspectral data; i.e., the leaf N content of different vertical layers can be
estimated using top-view spectral data observations [24,25] or multi-angular canopy reflectance data
can be obtained to select the optimal observation zenith angle of different vertical layers [9,16].

Canopy structure is an important factor influencing the vertical N distribution in plant
canopies [26–29] because it determines the light distribution within the canopy [30]. Plants allocate N
based on the light distribution pattern within the canopy, and the illuminated upper leaves accumulate
more N than the shaded lower leaves in an effort to maximize total canopy photosynthesis [21,31].
Other factors that affect canopy structure, such as the plant geometry (i.e., horizontal type, intermediate
type, or upright type), also result in changes in the vertical N distribution of the crop canopy [21].
In densely planted stands, plants with relatively horizontal leaves increase the leaf shade and decrease
the light transmittance rate, whereas plants with relatively upright leaves have a plant architecture
that allows the lower leaves to capture more light [32–35]. Maize (Zea mays L.) is a large-grain
plant grown across the world. During the last 50 years, whether selection for morphological traits
of maize was unintentional in the United States [36] or intentional in China [37,38], the leaves of
maize have become more upright, increasing their tolerance to high planting densities and achieving
genetic gains [36,37,39,40]. However, until recently, few studies have considered the plant geometry
(i.e., horizontal, intermediate, or upright leaf types) and its influences on the remote estimation of the
N vertical distribution in the canopy of maize [21].

The objectives of this study are to (i) demonstrate how plant geometry influences the remote
estimation of the N vertical distribution in the canopy of maize at different growth stages, (ii) evaluate
the performance of published hyperspectral vegetation indices (VIs) for estimating the N vertical
distribution in the maize canopy, and (iii) determine the optimum published vegetation index to obtain
a high-precision estimate of the N content in the leaves of the lower canopy.

2. Materials and Methods

2.1. Experimental Site

Field experiments were conducted in 2002 and 2003 in the area of the Xiaotangshan Precision
Agriculture Experimental Base (40◦11′N, 116◦27′E) in Beijing City, China. The soil type at the field site
is Eutric Cambisols according to the International Union of Soil Sciences (IUSS) Working Group World
Reference Base (WRB) soil classification system [41], and the soil texture is a silty clay loam according
to the United States Department of Agriculture (USDA) soil texture triangle [42]. The nutrient contents
of the top soil (0–30 cm) were as follows: 1.9–2.2 g kg−1 of organic matter, 10.2–12.3 mg kg−1 of
ammonium N, 16.2–18.0 mg kg−1 of nitrate N, 15.2–17.6 mg kg−1 of available phosphorus, and
225–230 mg kg−1 of available potassium. The cropping system is winter wheat (Triticum aestivum L.)—
summer maize rotation, which is most popular in North China. The field site is located in a warm
temperate climate zone in a semi-moist continental monsoon region. The annual average temperature,
precipitation and sunlight hours are 10–12 ◦C, 600–700 mm and 2700–2800 h, respectively. The seasonal
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distribution of precipitation is uneven, with 70% of the precipitation occurring from July to September.
The climatic characteristics are suitable for many field crops, including wheat, maize, and soybeans
(Glycine max L.), which can only be harvested twice a year.

2.2. Experimental Design

In this study, the treatments consisted of three maize plant geometry types. The classification
of the maize plant geometry types was based on the leaf orientation value (LOV) that was proposed
by Pepper et al. (1977) [43]. Specifically, maize varieties with an LOV ≥ 60◦ were categorized as a
horizontal leaf type, those with 30◦ < LOV < 60◦ were categorized as an intermediate leaf type, and
those with LOV ≤ 30◦ were categorized as an upright leaf type. The LOV was calculated as follows:

LOV = 1/n∑(90 − θ)×
(

L f /L
)

(1)

where θ is the measured leaf angle, Lf is the length from the leaf collar to the flagging point of the
measured leaves, L is the leaf length, and n is the number of measured leaves [43]. Two experiments
were performed from June to September in 2002 and 2003 at the Xiaotangshan Precision Agriculture
Experimental Base.

The experiment in 2002 was a split-plot design. The main plot consisted of three maize plant
geometry treatments, including one horizontal variety (Nongda 80), one intermediate variety (Jingyu 7),
and one upright variety (Tangyu 10). The subplot consisted of three N application rates: 0, 150, and
300 kg N ha−1 with urea. Initially, 50% of the urea was applied at the 6th leaf stage (V6), and the rest at
the 12th leaf stage (V12). The treatment plot size was 15 m by 7 m and the planting distance was 70 cm
by 30 cm (planting density of 48,000 plants ha−1). The field management, such as weeding, irrigation
and pesticide applications, followed the local standard practices.

The experiment in 2003 involved three plant geometry treatments with 15 varieties, including five
horizontal varieties (Nongda 80, 96–3, Zhengdan 958, Yuyu 22 and Nongda 108), five intermediate
varieties (Jingyu 7, Zhongyuandan 32, Zhongdan 9409, Gaoyou 115 and Zhongnuo 2), and five
upright varieties (Tangyu 10, Hudan 2000, Jingshibai 1, Tangkang 5 and Jiangzao 13). The treatment
plot size was 15 m by 7 m and the planting distance was 70 cm by 30 cm. All the treatments were
conducted under the same management practices according to the local standard practices for summer
maize production.

2.3. Hyperspectral Reflectance Measurement

The canopy spectral reflectance was measured using an ASD FieldSpec® Pro FR spectroradiometer
(Analytical Spectral Devices, Boulder, CO, USA) between 10:00 AM and 2:00 PM (Beijing local time)
under clear sky conditions. The ASD spectroradiometer was configured with a spectral range from
350 nm to 2500 nm, a 1.4 nm sampling interval between 350 nm and 1000 nm, a 2 nm sampling
interval between 1000 nm and 2500 nm, and with 3 nm spectral resolution at 700 nm, and 10 nm
spectral resolution at 1400 nm and 2100 nm. The hyperspectral data were subdivided into 1 nm
bandwidths by using a self-driven interpolation method of the ASD spectroradiometer, and they
were then saved to the connected PC. In this study, we used data from the common spectral region
of 350–1050 nm. The field of view of the ASD spectroradiometer was 25◦. A fiber-optic probe was
fixed at the top end of a height-adjustable inverted-L pole. All canopy reflectance measurements
were obtained from a distance of 1.6 m above the maize canopy. The reflectance measurements were
acquired randomly at three sites in each plot and then averaged to represent the canopy reflectance of
the plot. The spectral measurements and plant samples were obtained at the major growth stages of
the maize plant, including the 6th leaf stage (V6), 12th leaf stage (V12), 14th leaf stage (V14), tasseling
stage (VT), silking stage (R1), and milk stage (R3) for both the 2002 and 2003 experiments.
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2.4. Plant Vertical Layered Sampling and Measurements

After measuring the canopy reflectance, three maize plants near the locations of the spectral
measurement were cut at ground level and quickly transported to the nearby laboratory. The plants
were divided into three layers based on 1/3 position of the total number of leaves from top to bottom
of the canopy (i.e., the upper layer is the first layer, the middle layer is the second layer, and the bottom
layer is the third layer). The stamens after the VT were not considered in this study. All green leaves
were separated from the stems, and were cleaned and oven-dried for 15 min at 105 ◦C and later at
80 ◦C for 8 h to a constant weight. The leaf area index (LAI) of each layer was determined using the
gravimetric method [44]. This method correlates the dry weight of leaves and leaf area using the
ratio of leaf dry mass to leaf area (specific leaf weight, g m−2), which is predetermined from a sub
sample extracted from collected leaves. The leaf N concentration (%) of each layer was determined
using the Kjeldahl method following concentrated sulphuric acid (H2SO4) digestion as described by
Helrich (1990) [45].

The crop N concentration in plants in dense canopies declines as they grow and the dry matter
increases during the growth period, even when there is an ample supply of N [46]. This “dilution
effect” exists in most crops, such as rice (Oryza sativa L.) [1], wheat [2], maize [3], and potato (Solanum
tuberosum L.) [47]. It was demonstrated that the rate of the above-ground biomass production exceeds
the rate of N uptake by plants before heading, when the biomass dominates the canopy reflectance [48].
In contrast, the rate of increase in biomass decreases and the “dilution effect” culminates after heading,
when the plant N dominates the canopy reflectance. The leaf N density (LND, g m−2), which embodies
the N concentration, biomass, and LAI, is defined as the accumulation of N in the plant leaves per unit
area [9]. In this study, the LND was used as the indicator of the N status. The LND of each layer is
defined as

LNDi = %Ni × SLWi × LAIi (2)

where i denotes the position of the layer of the maize canopy; %N is the leaf N concentration (%);
SLW denotes the specific leaf weight (g m−2).

The canopy structure, namely the LAI vertical distribution in a canopy, affects the light interception
that greatly impacts the vertical distribution patterns of the canopy N [18,30,49,50]. In most studies, the
leaf N distribution in canopies was expressed as a function of the relative cumulative LAI (a ratio of the
cumulative LAI from the top to the bottom of the canopy to the total LAI of the canopy, LAIC/LAIT)
of a given depth [21,26,51]. In this study, we used the relative LAI of a given layer, which is a ratio of
the subtotal leaf area of a given layer to the total leaf area index of the canopy (LAIi/LAIT, where i = 1,
2 and 3 represents the upper layer, middle layer and bottom layer of the canopy, respectively) to allow
for the comparison of the maize varieties. The sum of the LAIi/LAIT of all layers is one.

2.5. Hyperspectral Vegetation Indices and Data Analysis

The selected published hyperspectral VIs that have been used to estimate the crop N status are
listed in Table 1. In order to determine the effects of the band combinations and growth stages on
the relationships and the performance of the VIs for deriving the N status of each layer of different
plant types, new VIs were calculated. These consisted of simple ratio indices (SR = B1/B2) involving
all possible 2-band combinations from 350 to 1050 nm. The growth stages were separated into the
V6 to V12 stages (when the canopy was not closed) and the V14 to R3 stages (when the canopy was
fully closed) to evaluate the effect of the growth stages on the relationship and performance of the
VIs. In addition, the analyses were combined across all growth stages. The correlation and regression
analyses were performed using the MATLAB 7.0 software (The MathWorks, Inc., Natick, MA, USA).
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Table 1. Published vegetation indices used in this study.

Index Formula Reference

Simple ratio (SR) 1 B810/B560 [13]

SR 2 B750/B710 [52]

Normalized difference vegetation index (NDVI) (B800 − B680)/(B800 + B680) [53]

Green NDVI (B750 − B550)/(B750 + B550) [54]

Normalized difference red edge (NDRE) Index (B790 − B720)/(B790 + B720) [55]

Optimized soil-adjusted vegetation index (OSAVI) 1.16 × (B800 − B670)/(B800 + B670 + 0.16) [56]

MERIS * terrestrial chlorophyll index (MTCI) (B754 − B709)/(B709 − B681) [57]

Double-peak nitrogen index (NDDA) (B680 + B756 − 2 × B718)/(B756 − B680) [58]

Modified red-edge normalized difference vegetation
Index (mND705) (B750 − B705)/(B750 + B705 − 2 × B445) [59]

New double difference (DDn) Index 2 × B710 − B660 − B760 [60]

Modified chlorophyll absorption ratio index (MCARI) (B750 − B705 − 0.2 × (B750 − B550)) × (B750/B705) [61]

MCARI/OSAVI MCARI/OSAVI [62]

* MERIS = Medium Resolution Imaging Spectrometer.

3. Results

3.1. Canopy Structure Characteristics

As shown in Figure 1, the upper layer LAI1/LAIT of the horizontal, intermediate, and upright
leaf varieties ranged from 0.30 to 0.62, 0.24 to 0.62, and 0.22 to 0.64, respectively, decreasing with
maize growth. Prior to the V12 stage, there were small differences in the LAI1/LAIT among the
different plant geometry types, whereas, after the V12 stage, the LAI1/LAIT of the upright varieties
decreased the most, followed by the intermediate varieties and horizontal varieties. In contrast,
the LAI3/LAIT of the bottom layer of all plant types initially increased prior to the V14 stage and after
that, it decreased slightly as the crop grew. The LAI3/LAIT ranged from 0.06 to 0.29 for the horizontal
varieties, from 0.07 to 0.33 for the intermediate varieties, and from 0.06 to 0.44 for the upright varieties.
The LAI2/LAIT values of the middle layer of the three plant types were relatively stable during the
entire growth period.

Furthermore, the differences in the LAIi/LAIT among the different varieties became more apparent
after the V14 stage. The coefficients of variation (CV) of the LAI1/LAIT of the different plant types
after the V14 stage ranged from 13.3 to 20.7% with a mean of 16.7%, whereas it varied from 1.4 to 4.4%
with a relatively small mean of 2.7% prior to the V12 stage. Similar to the upper layer, the variation of
the LAI3/LAIT of the different plant types was greater after the V14 stage (CV ranged from 21.8 to
35.0% with a mean of 26.7%) than before the V12 stage (CV ranged from 9.3 to 22.1% with a mean of
14.4%). The difference in the LAI2/LAIT between the different plant types was relatively small.
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Figure 1. Comparison of the relative leaf area index (LAI) (LAIi/LAIT) of the vertical canopy layers
for different maize plant geometry types. LAIi/LAIT represents the ratio of the subtotal leaf area of a
given layer (LAIi) to the total LAI of the canopy (LAIT). (a) Upper layer; (b) middle layer; (c) bottom
layer. Error bars represent standard error of the mean.

3.2. Vertical Distribution Characteristics of Leaf N Density

The LND values of the vertical canopy layers of the different plant geometry types are listed
in Table 2. From top to bottom within the canopies, the LND showed a decreasing trend. For the
horizontal leaf varieties across the growth stages, the LND at the bottom layer ranged between 0.13
and 2.66 g m−2 (mean = 0.93 g m−2, and CV = 80.0%) and was lower but more variable than that
in the upper and middle layers, where the LND was from 1.30 to 3.71 g m−2 (mean = 2.22 g m−2,
and CV = 28.0%) and 0.50 to 2.91 g m−2 (mean = 1.82 g m−2, and CV = 29.1%), respectively. This
trend was also true for both the intermediate and upright leaf varieties. The variation in LND was
larger in the bottom layer than that in the upper and middle layers across all the stages, and the CV
values in the upper, middle and bottom layers of the intermediate leaf varieties were 27.8%, 33.2%
and 68.3%, respectively, and for the upright leaf varieties, the values were 25.3%, 34.8% and 81.4%,
respectively. The average LND values in the bottom layer of the intermediate and upright leaf varieties
were 1.08 and 1.18 g m−2, respectively, and both were significantly lower than those in the upper
and middle layers. This is consistent with previous studies, which reported that the lower shaded
leaves generally have a lower N content than the upper illuminated leaves [21,28,29,63,64]. The LND
gradient between the upper and bottom layers was 1.29 g m−2 for the horizontal varieties, 1.09 g m−2

for the intermediate varieties, and 0.85 g m−2 for the upright varieties, respectively, indicating that the
vertical N gradients decreased as the canopy leaves changed to a more upright geometry. This occurs
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because the upright leaf variety has a high light transmittance rate, and leaves growing under better
light conditions accumulate more N than shaded leaves [31]. In addition, the average LND values in
the bottom layer were lower during the V6 to V12 stages than during the V14 to R3 stages (0.57 vs.
1.18 g m−2 for the horizontal varieties, 0.65 vs. 1.14 g m−2 for the intermediate varieties, and 0.64 vs.
1.56 g m−2 for the upright varieties, respectively).

Table 2. Descriptive statistics of the leaf N density (g m−2) in the vertical canopy layers of different
maize plant geometry types.

Growth Stage Canopy Layer n Min Max Mean SD 1 CV 2 (%)

Horizontal leaf varieties

All stages
Upper layer 49 1.30 3.71 2.22 0.62 28.0
Middle layer 49 0.50 2.91 1.82 0.53 29.1
Bottom layer 49 0.13 2.66 0.93 0.74 80.0

V6 to V12 stages
Upper layer 21 1.41 3.71 2.37 0.74 31.2
Middle layer 21 0.50 2.44 1.59 0.56 35.4
Bottom layer 21 0.13 1.33 0.57 0.38 66.4

V14 to R3 stages
Upper layer 28 1.30 2.80 2.06 0.43 21.1
Middle layer 28 1.39 2.91 2.02 0.42 20.9
Bottom layer 28 0.17 2.66 1.18 0.84 70.6

Intermediate leaf varieties

All stage
Upper layer 49 0.88 3.74 2.17 0.72 33.2
Middle layer 49 0.71 3.24 2.18 0.61 27.8
Bottom layer 49 0.25 3.01 1.08 0.74 68.3

V6 to V12 stages
Upper layer 21 1.33 3.74 2.59 0.74 28.7
Middle layer 21 0.71 3.24 2.02 0.61 30.1
Bottom layer 21 0.25 1.29 0.65 0.35 53.4

V14 to R3 stages
Upper layer 28 0.88 2.72 1.86 0.53 28.7
Middle layer 28 1.25 3.15 2.30 0.59 25.8
Bottom layer 28 0.37 3.01 1.40 0.79 56.8

Upright leaf varieties

All stage
Upper layer 49 0.81 3.68 2.03 0.71 34.8
Middle layer 49 0.93 2.96 2.09 0.53 25.3
Bottom layer 49 0.12 3.38 1.18 0.96 81.4

V6 to V12 stages
Upper layer 21 1.32 3.68 2.36 0.70 29.8
Middle layer 21 0.93 2.94 1.98 0.66 33.2
Bottom layer 21 0.12 1.91 0.64 0.48 75.0

V14 to R3 stages
Upper layer 28 0.81 3.35 1.79 0.62 34.5
Middle layer 28 1.28 2.96 2.18 0.41 18.7
Bottom layer 28 0.18 3.38 1.56 1.04 66.5

1 Standard deviation. 2 Coefficient of variation.

3.3. Performance of Published Vegetation Indices

The correlation analysis results between the published indices and the LND in the vertical canopy
layers of the different plant geometry types are shown in Table 3. All 12 published indices performed
well for the upper layer (p < 0.05) for all varieties and growth stages. As the depth of the canopy
increased, the correlations between the LND and the published indices gradually weakened, but
they differed among the plant types. For the bottom layer of the canopy, the five best performing
published indices for the upright leaf varieties were SR 1, SR 2, normalized differentiated red-edge
index (NDRE), MERIS terrestrial chlorophyll index (MTCI), and double-peak nitrogen index (NDDA)
with R2 values ranging from 0.42 to 0.48, whereas those for intermediate leaf varieties were SR 1,
SR 2, green-normalized differentiated vegetation index (NDVI), NDRE, and modified chlorophyll
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absorption ratio index (MCARI) with R2 values ranging from 0.18 to 0.20. The horizontal leaf varieties
had low correlations between the bottom layer LND and the spectral indices (R2 < 0.02, p > 0.05).

Table 3. Coefficients of determination (R2) for the relationship between the vegetation indices and the
leaf N density.

Index

All Stages V6 to V12 Stages V14 to R3 Stages

Upper
Layer

Middle
Layer

Bottom
Layer

Upper
Layer

Middle
Layer

Bottom
Layer

Upper
Layer

Middle
Layer

Bottom
Layer

Horizontal leaf varieties

SR 1 0.63 ** 0.23 ** 0.00 0.68 ** 0.06 0.20 0.41 ** 0.38 ** 0.09
SR 2 0.67 ** 0.23 ** 0.00 0.78 ** 0.14 0.27 * 0.34 ** 0.27 ** 0.11
NDVI 0.75 ** 0.14 * 0.01 0.83 ** 0.09 0.24 0.57 ** 0.19 * 0.17
Green NDVI 0.69 ** 0.22 ** 0.02 0.75 ** 0.08 0.22 0.42 ** 0.39 ** 0.08
NDRE 0.60 ** 0.30 ** 0.02 0.73 ** 0.15 0.31 0.21 * 0.31 ** 0.10
OSAVI 0.75 ** 0.14 * 0.01 0.83 ** 0.09 0.24 0.58 ** 0.20 * 0.16
MTCI 0.23 ** 0.30 ** 0.02 0.38 * 0.33 * 0.30 * 0.10 0.19 * 0.03
NDDA 0.25 ** 0.34 ** 0.02 0.40 * 0.29 * 0.31 * 0.06 0.24 * 0.05
mND705 0.69 ** 0.23 ** 0.01 0.83 ** 0.19 0.30 * 0.22 * 0.16 0.15
DDn 0.39 ** 0.07 0.00 0.54 ** 0.02 0.31 * 0.33 ** 0.36 ** 0.13
MCARI 0.46 ** 0.06 0.00 0.64 ** 0.03 0.29 * 0.37 ** 0.30 ** 0.15
MCARI/OSAVI 0.40 ** 0.05 0.01 0.58 ** 0.03 0.29 * 0.33 ** 0.30 ** 0.14

Intermediate leaf varieties

SR 1 0.59 ** 0.50 ** 0.20 ** 0.55 ** 0.50 ** 0.50 ** 0.38 ** 0.51 ** 0.07
SR 2 0.52 ** 0.54 ** 0.20 ** 0.51 ** 0.60 ** 0.50 ** 0.32 ** 0.50 ** 0.15 *
NDVI 0.45 ** 0.46 ** 0.15 ** 0.57 ** 0.53 ** 0.35 * 0.19 0.60 ** 0.22 *
Green NDVI 0.55 ** 0.50 ** 0.18 ** 0.52 ** 0.56 ** 0.40 * 0.37 ** 0.53 ** 0.11
NDRE 0.49 ** 0.49 ** 0.20 ** 0.43 * 0.64 ** 0.49 ** 0.20 * 0.41 ** 0.05
OSAVI 0.46 ** 0.46 ** 0.15 * 0.56 ** 0.53 ** 0.35 * 0.21 * 0.59 ** 0.22 *
MTCI 0.41 ** 0.43 ** 0.18 ** 0.22 0.63 ** 0.49 ** 0.30 ** 0.25 * 0.03
NDDA 0.35 ** 0.36 ** 0.16 ** 0.18 0.61 ** 0.43 * 0.12 0.16 0.00
mND705 0.45 ** 0.48 ** 0.17 ** 0.46 ** 0.63 ** 0.37 * 0.27 ** 0.41 ** 0.16 *
DDn 0.18 * 0.42 ** 0.13 * 0.13 0.50 ** 0.47 ** 0.06 0.43 ** 0.07
MCARI 0.26 ** 0.47 ** 0.13 * 0.28 0.57 ** 0.54 ** 0.17 0.50 ** 0.10
MCARI/OSAVI 0.20 ** 0.44 ** 0.12 * 0.19 0.54 ** 0.52 ** 0.15 0.47 ** 0.09

Upright leaf varieties

SR 1 0.58 ** 0.51 ** 0.44 ** 0.60 ** 0.50 ** 0.54 ** 0.47 ** 0.53 ** 0.34 **
SR 2 0.61 ** 0.56 ** 0.42 ** 0.64 ** 0.57 ** 0.53 ** 0.55 ** 0.54 ** 0.39 **
NDVI 0.53 ** 0.39 ** 0.24 ** 0.54 ** 0.33 * 0.28 * 0.59 ** 0.50 ** 0.32 **
Green NDVI 0.59 ** 0.50 ** 0.37 ** 0.59 ** 0.48 ** 0.44 ** 0.50 ** 0.51 ** 0.30 **
NDRE 0.63 ** 0.56 ** 0.45 ** 0.63 ** 0.64 ** 0.52 ** 0.52 ** 0.50 ** 0.36 **
OSAVI 0.53 ** 0.39 ** 0.24 ** 0.54 ** 0.33 * 0.27 * 0.59 ** 0.49 ** 0.32 **
MTCI 0.53 ** 0.56 ** 0.48 ** 0.49 ** 0.76 ** 0.61 ** 0.50 ** 0.48 ** 0.39 **
NDDA 0.52 ** 0.56 ** 0.45 ** 0.48 ** 0.77 ** 0.56 ** 0.44 ** 0.45 ** 0.33 **
mND705 0.61 ** 0.58 ** 0.36 ** 0.65 ** 0.59 ** 0.43 * 0.58 ** 0.52 ** 0.36 **
DDn 0.43 ** 0.43 ** 0.27 ** 0.56 ** 0.53 ** 0.55 ** 0.35 ** 0.34 ** 0.20 *
MCARI 0.47 ** 0.46 ** 0.29 ** 0.61 ** 0.47 ** 0.54 ** 0.42 ** 0.46 ** 0.28 **
MCARI/OSAVI 0.43 ** 0.45 ** 0.28 ** 0.59 ** 0.50 ** 0.59 ** 0.40 ** 0.42 ** 0.26 **

Analyses were performed using Pearson correlation. * Significant at 0.05 level based on a two-tailed test.
** Significant at 0.01 level based on a two-tailed test.

For the different growth stages, the correlation between the upper-layer LND and the published
indices was higher before the V12 stage than after the V12 stage. The possible reason is that the spectral
information of the upper leaves is influenced by the maize tassels at the top of the canopy during the
later stages. Similar to the results for the upper layer, the bottom-layer LND of all varieties had good
correlations with the published indices during the V6 to V12 stages. In comparison, during the V14 to
R3 stages, the correlations varied greatly for the different varieties during the V14 to R3 stages. The
upright leaf varieties exhibited the best correlations between the LND and all the published indices
and were significant at the 0.05 significance level (R2 ranging from 0.20 to 0.39). The intermediate leaf
varieties exhibited significant correlations at the 0.05 significance level (R2 ranging from 0.15–0.22),
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whereas the horizontal leaf varieties had non-significant correlations with the published indices
(R2 < 0.17, p > 0.05).

3.4. Identification of New Vegetation Indices

The analysis of the published VIs shows that the SR index generally provided a good estimate of
the LND vertical distribution in the maize canopy. Therefore, we further examined all the possible
2-band combinations from 350 to 1150 nm and correlated them with the LND in the different canopy
layers. The matrix plots of the coefficients of determination (R2) between the SRs and the LND show
that the relationships varied in terms of canopy layers, plant geometry types, and growth stages
(Figures 2–4). Consistent with the results of the published vegetation indices, the R2 for the SRs was
higher for the upper layer than the lower layers. The R2 values of the lower layers exhibited greater
differences in the contour plots for the different maize plant geometry types (Figure 2). When the
data for all growth stages were combined, the performances of the SRs were significantly affected by
the plant geometry types, especially in the middle and the bottom layers. For instance, in the bottom
layers of both the intermediate and upright leaf varieties, the highest R2 values were observed for the
red-edge bands (700–760 nm) paired with the red-edge to near-infrared (NIR) bands (700–1050 nm),
followed by the green bands (550–580 nm) paired with the red-edge to NIR bands (700–1050 nm).
The best new SR index (736, 812) produced the highest R2 value of 0.52 for all stages for modeling the
bottom-layer LND of the upright leaf varieties. The same SR index (736, 812) was also suitable for
estimating the upper and middle-layer LND of the upright leaf varieties, with R2 values of 0.50 and
0.60, respectively. For the intermediate leaf varieties, the highest R2 value generated by the SR index
(721, 935) was only 0.25. For the horizontal leaf varieties, however, few bands showed sensitivity to
the bottom-layer LND.

For the different growth stages, there were good correlations between the SRs and the LND for all
canopy layers except for the horizontal leaf varieties during the V6 to V12 stages. The sensitive bands
in the middle and bottom layers were centered at (i) the red-edge bands (700–760 nm) paired with the
red-edge to NIR bands (700–1050 nm) and (ii) the blue bands (440–490 nm) paired with the orange
bands (590–640 nm) (Figure 3). For the bottom layer, for example, the best new SRs yielded large R2

values than the published indices. The R2 values were 0.71 for the SR index (753, 812), 0.63 for the
SR index (748, 793), and 0.38 for the SR index (740, 775) for the upright, intermediate, and horizontal
leaf varieties, respectively. In comparison, during the V14 to R3 stages, the R2 values for the SRs were
considerably lower for the bottom layer. The sensitive bands for the bottom layer were shifted to (i) the
orange to red bands (590–710 nm) paired with the red-edge to NIR bands (710–1050 nm) and (ii) green
bands (520–600 nm) paired with the red bands (600–700 nm) (Figure 4). The SR index (524, 583) and SR
index (591, 611) were the best new SRs for the upright (R2 = 0.54) and intermediate (R2 = 0.30) leaf
varieties, respectively. Additionally, there were also very poor relationships between the SRs and the
bottom-layer LND of the horizontal leaf varieties.
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Figure 2. Maps showing the coefficients of determination (R2) for the relationships between the leaf N
density and SR index calculated from all possible 2-band combinations in the range of 35–1050 nm across
all stages. (a) The upper layer of horizontal leaf varieties; (b) the middle layer of the horizontal leaf
varieties; (c) the bottom layer of the horizontal leaf varieties; (d) the upper layer of the intermediate leaf
varieties; (e) the middle layer of the intermediate leaf varieties; (f) the bottom layer of the intermediate
leaf varieties; (g) the upper layer of the upright leaf varieties; (h) the middle layer of the upright leaf
varieties; and (i) the bottom layer of the upright leaf varieties.
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Figure 3. Maps showing the R2 for the relationships between the leaf N density and SR index calculated
from all possible 2-band combinations in the range of 350–1050 nm during the V6 to V12 stages. (a) The
upper layer of the horizontal leaf varieties; (b) the middle layer of the horizontal leaf varieties; (c) the
bottom layer of the horizontal leaf varieties; (d) the upper layer of the intermediate leaf varieties; (e) the
middle layer of the intermediate leaf varieties; (f) the bottom layer of the intermediate leaf varieties;
(g) the upper layer of the upright leaf varieties, (h) the middle layer of the upright leaf varieties; and
(i) the bottom layer of the upright leaf varieties.

169



Remote Sens. 2018, 10, 1995

Figure 4. Maps showing the R2 for the relationships between the leaf N density and SR index calculated
from all possible 2-band combinations in the range of 350–1050 nm during the V14 to R3 stages. (a) The
upper layer of the horizontal leaf varieties; (b) the middle layer of the horizontal leaf varieties; (c) the
bottom layer of the horizontal leaf varieties; (d) the upper layer of the intermediate leaf varieties; (e) the
middle layer of the intermediate leaf varieties; (f) the bottom layer of the intermediate leaf varieties;
(g) the upper layer of the upright leaf varieties; (h) the middle layer of the upright leaf varieties; and
(i) the bottom layer of the upright leaf varieties.

4. Discussion

The non-uniformity of the vertical leaf N distribution in the canopy of plants has been demonstrated in
many studies; i.e., the lower shaded leaves generally have a lower N content than the upper illuminated
leaves [21,28,29,63,64]. Our results revealed that there were significant differences in the LAIi/LAIT

between the different maize plant geometry types (i.e., the order of the upper-layer LAI1/LAIT was
horizontal leaf varieties > intermediate leaf varieties > upright leaf varieties, whereas the order of
the bottom-layer LAI3/LAIT was upright leaf varieties > horizontal leaf varieties > intermediate leaf
varieties). This resulted in a decrease in the vertical N gradients between the upper layer and the
bottom layer as the plant type changed to a more upright geometry (i.e., 1.29, 1.09, and 0.85 g m−2

for the horizontal, intermediate, and upright varieties, respectively). In addition, the variation in the
bottom-layer LND was larger than that of the upper-layer LND across the entire growth period (i.e., CV:
80.0% vs. 28.0% for the horizontal leaf varieties, 68.3% vs. 33.2% for the intermediate leaf varieties,
81.4% vs. 34.8% for the upright leaf varieties). This is consistent with the results of Lu (1994) [22], who
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reported that the lower leaves of the crop canopy are more sensitive to N deficiency or N translocation
than the upper leaves.

The most encouraging result, however, was that the maize geometry plant type had a significant
effect on the detectability of the vertical leaf N distribution in the canopy using canopy spectral
reflectance, as well as the sensitivity of the bands. As shown in Table 2 and Figure 3, the correlations
are higher between the lower leaf N and the spectral indices (both for the published indices and the
new SRs) for maize plants with upright leaves than those with relatively flat leaves. For the bottom
layers of the upright leaf varieties, the red edge and NIR bands performed better than the visible
bands, which is in agreement with the results of Feng et al. (2008) [65] for wheat and those of Yu et al.
(2013) [14] for rice. Actually, 52% of the variation in the bottom layer LND of upright leaf varieties
was explained by the best performing newly proposed SR index (736, 812), whereas only 25% of
the variation in the bottom layer LND of the intermediate leaf varieties was explained by the best
performing newly proposed SR index (721, 935). Few bands were sensitive to the LND of the bottom
layer of the horizontal leaf varieties. This is attributed to the fact that, in plants with upright leaves,
the bottom layer contributes more to the canopy spectral reflectance than in plants with relatively flat
leaves [30,32–34,37].

The results also showed that the growth stages had a large influence on the remote estimation
of the N vertical distribution in the canopy. During the V6 to V12 stages, the sensitive bands for
detecting the bottom leaf N were the red-edge bands (700–760 nm) paired with the red-edge to NIR
bands (700–1050 nm), and these were shifted to the orange to red bands (590–710 nm) paired with the
red-edge to NIR bands (710–1050 nm) during the V14 to R3 stages. This occurred because the canopy
reflectance was dominated by the biomass before the V12 stage and by the plant N after this stage [14].
In addition, many studies have shown that the green duration and the senescence speed of the lower
leaves of the crop are closely related to the amount of light quanta that is received [34,66]. When the
canopy is fully closed during the later growth stage (i.e., after the V14 stage in this study), the bottom
leaves begin to senesce and wilt.

The timely and accurate diagnosis of maize N nutritional status is essential for precise N
management. The vertical leaf N distribution is very important for N status diagnosis because
when N is deficient, lower leaves will show deficiency symptoms first. The results of this study
indicated that it was feasible to estimate the N vertical distribution in the maize canopy using canopy
hyperspectral reflectance before the V12 stage. These results provide a theoretical basis for early
diagnosis of maize N status using remote sensing for precision N management, especially for upright
leaf type varieties. According to the local standard practices, the topdressing of N for maize is mainly
applied between V6 and V12 stages. The N vertical distribution information in the canopy of maize
before the V12 stage can be used to guide in-season N management. More studies are needed to
develop corresponding N recommendation algorithms based on such information. However, there
are still some limitations in this study. The factors affecting the reflectivity should be considered in
future research; for example, the sun angle, background, LAI, leaf angle distribution, and pigment
content [67,68]. Moreover, the hyperspectral reflectance data obtained from the top of the canopy by
ASD FieldSpec® Pro FR spectroradiometer represents spectrally mixed information because the upper,
middle, and bottom-layer leaves cannot be distinguished. In the future, we plan to use hyperspectral
imaging acquired from different zenith and azimuth angles, which may be more suitable for estimating
the vertical N distribution in the crop canopy. A fusion of LiDAR and hyperspectral (or multispectral)
data collected from unmanned aerial vehicle (UAV) platforms also has great potential in estimating N
vertical distribution in the crop canopies at field and farm scales for precision agriculture applications.

5. Conclusions

This study evaluated the influences of the maize plant geometry (i.e., horizontal type, intermediate
type, and upright type) on the remote estimation of the vertical N distribution in a canopy at different
growth stages. The results showed that there were significant differences between the three maize
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plant geometry types in terms of canopy architecture and N vertical distribution. The vertical LND
gradients between the upper layer and bottom layer decreased as the leaves of the maize changed to a
more upright geometry (i.e., 1.29, 1.09, and 0.85 g m−2 for the horizontal, intermediate, and upright
varieties, respectively). In comparison, the lower-layer LND was more sensitive than the upper-layer
LND for the combined growth stages. The results also showed that the maize plant geometry had a
significant impact on the estimation of the vertical N distribution based on canopy spectral reflectance.
The upright leaf varieties had the highest correlation between the lower-layer LND (R2 = 0.52) and the
new SR index (736, 812), and this index also performed well for estimating the upper (R2 = 0.50) and
middle (R2 = 0.60) layer LND. However, for the intermediate leaf variety, only 25% of the variation
in the bottom-layer LND was explained by the best new SR index (721, 935) and few bands showed
sensitivity to the bottom-layer LND of the horizontal leaf varieties. Furthermore, the growth stages
also influenced the remote detection of the lower-leaf N status of the canopy, because the canopy
reflectance was dominated by the biomass before the V12 stage and by the plant N after this stage.
Therefore, we can conclude that a more accurate estimation of the N vertical distribution in the canopy
can be obtained by canopy hyperspectral reflectance for maize plants with more upright leaves.
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Abstract: Leaf chlorophyll content (LCC) provides valuable information about the nutrition and
photosynthesis statuses of crops. Vegetation index-based methods have been widely used in crop
management studies for the non-destructive estimation of LCC using remote sensing technology.
However, many published vegetation indices are sensitive to crop canopy structure, especially
the leaf area index (LAI), when crop canopy spectra are used. Herein, to address this issue,
we propose four new spectral indices (The red-edge-chlorophyll absorption index (RECAI), the
red-edge-chlorophyll absorption index/optimized soil-adjusted vegetation index (RECAI/OSAVI),
the red-edge-chlorophyll absorption index/ the triangular vegetation index (RECAI/TVI), and the
red-edge-chlorophyll absorption index/the modified triangular vegetation index(RECAI/MTVI2)) and
evaluate their performance for LCC retrieval by comparing their results with those of eight published
spectral indices that are commonly used to estimate LCC. A total of 456 winter wheat canopy spectral
data corresponding to physiological parameters in a wide range of species, growth stages, stress
treatments, and growing seasons were collected. Five regression models (linear, power, exponential,
polynomial, and logarithmic) were built to estimate LCC in this study. The results indicated that
the newly proposed integrated RECAI/TVI exhibited the highest LCC predictive accuracy among all
indices, where R2 values increased by more than 13.09% and RMSE values reduced by more than
6.22%. While this index exhibited the best association with LCC (0.708** ≤ r ≤ 0.819**) among all
indices, RECAI/TVI exhibited no significant relationship with LAI (0.029 ≤ r ≤ 0.167), making it
largely insensitive to LAI changes. In terms of the effects of different field management measures,
the LCC predictive accuracy by RECAI/TVI can be influenced by erective winter wheat varieties,
low N fertilizer application density, no water application, and early sowing dates. In general, the
newly developed integrated RECAI/TVI was sensitive to winter wheat LCC with a reduction in the
influence of LAI. This index has strong potential for monitoring winter wheat nitrogen status and
precision nitrogen management. However, further studies are required to test this index with more
diverse datasets and different crops.

Keywords: leaf chlorophyll content; red-edge reflectance; spectral index; winter wheat

Remote Sens. 2019, 11, 974; doi:10.3390/rs11080974 www.mdpi.com/journal/remotesensing

177



Remote Sens. 2019, 11, 974

1. Introduction

As winter wheat is one of the most important food crops in China, the timely and accurate
monitoring of the growth and nutrition of this crop contributes to proper field management. The leaf
chlorophyll content (LCC), which includes the contents of chlorophyll a and chlorophyll b, can provide
crucial information for understanding vegetation stress [1,2], physiological status, and photosynthesis
potential [3,4]. In addition, LCC is strongly related to the N content [5–8] and can be used as a close
proxy for the N concentration at the leaf level [9,10]. The traditional measurement approach in the
laboratory is relatively time- and labor-consuming, making it difficult to meet the practical demands of
precise crop management in large fields. With the development of remote sensing techniques, remotely
sensed data have been widely used to accurately and non-destructively monitor crop chlorophyll
contents [2,11,12].

Currently, the semi-empirical index-based approach is commonly used to estimate crop chlorophyll
content. According to the typical spectral absorption characteristics of chlorophyll pigments, red
and near-infrared (NIR) spectral bands are primarily used to build chlorophyll content indices [4].
The red-edge spectrum has received much attention for many years for monitoring chlorophyll content,
and the red edge has been identified to be more sensitive to chlorophyll contents than the red part of
the spectrum [2,13]. The “red edge” refers to the steep part between the chlorophyll absorption valley
in the red band and the high reflection shoulder in the NIR band. The importance of the red-edge
spectra for estimating chlorophyll content was demonstrated by extensive studies based on the
combined PROSPECT leaf optical properties model and SAIL canopy bidirectional reflectance model
(PROSAIL)-simulated spectra or ground-measured spectra. Therefore, some red-edge parameters
and chlorophyll indices were developed based on the red-edge band(s). Several scholars have
developed red-edge parameters, such as the red-edge position, red-edge amplitude, red-edge width,
red-edge kurtosis, minimum amplitude, and red-edge amplitude/minimum amplitude, to predict
crop chlorophyll contents. Yao et al. [14] analyzed the relationship between the red-edge spectrum
features of the winter wheat canopy and leaf chlorophyll content (SPAD) values in different growing
periods and noted that the model-based red-edge kurtosis exhibited the highest SPAD predictive
accuracy. Liu et al. [15] calculated seven red-edge parameters as inputs for a back-propagation (BP)
neural network estimation model and studied the LCCs of Pinus massoniana. Gitelson and Merzlyak [2]
proposed that the sensitivity of the normalized difference vegetation index (NDVI) to chlorophyll
content can be improved by replacing the reflectance in the red band with the reflectance in the
red-edge band at approximately 690–710 nm. Zillmann et al. [16] concluded that the normalized
difference red edge (NDRE) index was strongly linearly related to the winter wheat chlorophyll content
at the canopy level based on RapidEye images. Based on the strong absorption characteristics of
chlorophyll in the red band, Kim et al. [17] built a new chlorophyll absorption ratio index (CARI) to
reduce the effect from non-photosynthetic materials by using the ratio of the reflectances at 700 nm
and 550 nm. Daughtry et al. [18] proposed the modified chlorophyll absorption ratio index (MCARI)
by introducing the R700/R670 ratio to the CARI index to reduce background effects. However, MCARI
was still sensitive to background properties. Then, Haboudane et al. [19] introduced the R700–R550

term to MCARI to further reduce the effects from the background and proposed a new index called
the transformed chlorophyll absorption in reflectance index (TCARI). Gitelson et al. [20] found that
the reciprocal reflectance in the range from 695–705 nm is closely related to LCC and proposed a
new index called CIred-edge that obviously improved the accuracy of chlorophyll content prediction.
Many scholars have used the CIred-edge index to estimate the chlorophyll contents of different crop
species [8,16,21,22]. Based on the band settings of medium resolution imaging spectrometer (MERIS)
data, Dash and Curran [23] proposed the medium resolution imaging spectrometer (MERIS) terrestrial
chlorophyll index (MTCI), which is strongly related to the red-edge position and has been used to
successfully predict vegetation chlorophyll contents at the canopy level. Maire et al. [24] proposed the
new double difference (DD) index to estimate tree chlorophyll contents according to the “peak jump”
and the multiple-peak features existing on the first derivative of the spectral reflectance. Jin et al. [25]
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built two new indices, the double-peak canopy nitrogen index I (DCNI I) and the ratio of the plant
pigment ratio to the NDVI (PPR/NDVI), to estimate cotton LCCs with high predictive accuracy.

Most vegetation indices have been developed to estimate chlorophyll content at the canopy level.
However, research on the estimation of LCCs using a vegetation index approach with crop canopy
spectra is relatively limited and unsatisfactory, mainly because crop canopy spectra are affected by not
only leaf biochemical parameters and leaf distribution but also crop canopy structure, soil nutrients,
atmosphere, and other factors. In addition, red-edge spectra are influenced by both chlorophyll
pigments and the leaf area index (LAI) [26,27]. As a result, the precision of leaf-scale chlorophyll
content inversions based on crop canopy spectral data is often low. Therefore, the influence of LAI
prevents the use of red-edge information as an LCC estimator. An optical chlorophyll index should
be both sensitive to chlorophyll content and insensitive to other interference factors [28]. However,
uncoupling the interplay of chlorophyll pigments and LAI on spectral reflectance is a challenging
issue for the estimation of crop chlorophyll content at the leaf level by remote sensing. Only a few
studies have explored this problem using specific crop types. Daughtry et al. [18] used simulated data
to demonstrate that the combination of two groups of vegetation indices that minimize background
reflectance contributions and strongly respond to leaf chlorophyll concentrations can be used to
estimate the leaf chlorophyll concentration at the leaf level with minimal confounding effects from the
LAI and soil background. Haboudane et al. [19] proposed that the transformed chlorophyll absorption
in the reflectance index/optimized soil-adjusted vegetation index (TCARI/OSAVI) is both very sensitive
to LCCs and very resistant to impacts from LAI and solar zenith angle. He also estimated corn
LCCs using TCARI/OSAVI and achieved good results. Kooistra and Clevers [29] used TCARI/OSAVI,
TCI/OSAVI (the triangular chlorophyll index/ optimized soil-adjusted vegetation index), and CVI
(chlorophyll vegetation index) to estimate the LCC in potato crops using RapidEye images, and the best
result was obtained using TCARI/OSAVI. Clevers et al. [30] also found that TCARI/OSAVI provided
a good linear estimation of the LCC in potato crops using Sentinel-2 images. Cui et al. [31] also
found that TCARI/OSAVI was the best index to predict LCC with strong anti-disturbance ability.
Crop type had a clear influence on the predictions of LCCs using these combined vegetation indices.
Haboudane et al. [32] found that the predictive accuracy of the wheat LCC was obviously lower than
that of the corn LCC.

Therefore, the objective of this study was to develop a new approach for LCC estimation for
winter wheat based on crop canopy reflectance with minimum sensitivity to LAI and consistent
sensitivity to different crop growth conditions. Given this goal, the spectral response characteristics of
the red-edge region of chlorophyll pigments were fully considered for creating the new chlorophyll
indices. The sensitivity of the newly proposed indices to LCC and the insensitivity to LAI were
analyzed using a large amount of field data. Finally, the consistent performance of the best spectral
index on the estimation of LCC under various field management strategies (winter wheat variety,
quantity of N fertilizer, quantity of water applied, sowing date) was evaluated.

2. Materials and Methods

2.1. Experimental Site and Experimental Design

The field experiments were performed at the National Experimental Station for Precision
Agriculture, Changping District of Beijing, China (40◦10.6′N, 116◦26.3′E). The site has a temperate
climate, with an average annual precipitation of 507.7 mm and a mean annual temperature of 13.8 ◦C.
The field soil is silty clay loam. Winter wheat (Triticum aestivum L.) was planted at this site in the
2001–2002 and 2009–2010 growing seasons. To obtain a wide range of LCCs, various field treatments
were implemented for these experiments.

In the 2001–2002 campaign, the study site was divided into 48 small plots, each of which was
32.4 m × 30 m, separated by a 1-m wide isolation strip from adjacent plots. Winter wheat was planted
on 26–27 September 2001, and four N fertilization densities (0, 150, 300, and 450 kg ha−1), four water
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treatment plans (0, 225, 450, and 675 m3 ha−1), and three winter wheat varieties (Zhongyou 9507,
Jing 9428, and Jingdong 8) were used in these experiments. Table 1 shows the descriptions of the
experimental designs. Zhongyou 9507 and Jing 9428 are horizontal varieties, and Jingdong 8 is an
erective variety. For all plots, one-third of the total N fertilization was applied pre-planting, one-third
was applied at the tillering stage (Zadoks scale 20, Z20), and the remainder was applied at the stem
elongation stage (Z30). Half of the water was applied at the tillering stage (Z20), and the remainder
was applied at the elongation stage (Z30). The wheat LAI, LCC, and canopy spectra were measured at
tillering (Z25), stem elongation (Z31 and Z34), booting (Z41), head emergence (Z54), and pollination
(Z68), and the crop was harvested on 20 June 2002. This procedure produced a total of 288 samples for
the 2002 campaign.

Table 1. Descriptions of the winter wheat experimental design in 2001–2002.

N fertilizer
Water W1

(0 m3 ha−1)
W2

(225 m3 ha−1)
W3

(450 m3 ha−1)
W4

(675 m3 ha−1)
Variety

N1
(0 kg ha−1)

12 13 36 37 Zhongyou 9507
11 14 35 38 Jing 9428
10 15 34 39 Jingdong 8

N2
(150 kg ha−1)

9 16 33 40 Zhongyou 9507
8 17 32 41 Jing 9428
7 18 31 42 Jingdong 8

N3
(300 kg ha−1)

6 19 30 43 Zhongyou 9507
5 20 29 44 Jing 9428
4 21 28 45 Jingdong 8

N4
(450 kg ha−1)

3 22 27 46 Zhongyou 9507
2 23 26 47 Jing 9428
11 24 25 48 Jingdong 8

1 The numbers represent the sequence numbers of different plots.

In the 2009–2010 campaign, winter wheat was planted in 36 plots (a total area of 5040 m2).
This campaign used three winter wheat cultivars (Nongda 195, Jing 9428, and Jingdong 13), four N
fertilization densities (56, 82, 109, and 135 kg ha−1), and three sowing dates (25 September and 5 and
15 October). Table 2 shows the descriptions of the experimental design. Nongda 195 and Jing 9418 are
horizontal varieties, and Jingdong 13 is an erective variety. The nitrogen fertilizer was applied twice,
with the first application on 23 September (56 kg ha−1 for each plot) and the second application on
21 April (0, 26, 53, and 79 kg ha−1) for the sowing treatment on 25 September, and one N fertilizer level
(53 kg ha−1) was applied for the sowing treatments on 5 and 15 October. The seeding rates were 152,
217, and 279 kg ha−1 for the sowing dates of 25 September and 5 and 15 October, respectively. The other
field management measures were consistent with conventional management by farmers. The wheat
LAI, LCC, and canopy reflectance spectra were measured at stem elongation (Z36), booting (Z41),
flowering (Z65), and milk (Z73 and Z75). Although winter wheat was planted on different dates, there
were no major differences in development stages between the different treatments, especially after the
head emergence stage. The winter wheat was harvested on 23 June 2010, and a total of 168 samples
were produced for the 2010 campaign.
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Table 2. Descriptions of the winter wheat experimental design in 2009–2010.

Sowing Date
Variety

25 September 5 October 15 October

N
fertilizer

56 kg ha−1
2 1 1 / 2 / / / Nongda 195

10 9 / / / / Jing 9428
18 17 / / / / Jingdong 13

82 kg ha−1
4 3 / / / / Nongda 195

12 11 / / / / Jing 9428
20 19 / / / / Jingdong 13

109 kg ha−1
6 5 26 25 32 31 Nongda 195
14 13 28 27 34 33 Jing 9428
22 21 30 29 36 35 Jingdong 13

135 kg ha−1
8 7 / / / / Nongda 195

16 15 / / / / Jing 9428
24 23 / / / / Jingdong 13

1 The numbers stand for the sequence numbers of different plots. 2 / stands for no plot.

2.2. Field Measurements

2.2.1. Measurement of the Reflectance Spectrum from the Winter Wheat Canopy

During the 2002 and 2010 growing seasons, a 1-m2 area of winter wheat was selected for canopy
reflectance measurements using a portable field spectroradiometer (FieldSpec-FR2500, ASD, USA)
with a spectral range from 350 to 2500 nm and spectral resolutions of 3 nm from 350 to 1050 nm
and 10 nm from 1050 to 2500 nm. To ensure accurate measurements, the canopy spectral data were
acquired under clear, blue skies between 10:00 and 14:00 h (Beijing Local Time) at a height of 1.3 m
above the wheat canopy with a field of view of 25◦ to maintain the same viewing geometry. A total of
20 measurements were collected in each plot, and the average spectrum was retained as the spectrum
for the plot. The measured radiance was converted into absolute reflectance using a calibration from a
white Spectralon®(Labsphere, Inc., North Sutton, NH, USA) reference panel, as follows:

Rtarget =
DNtarget

DNreference
×Rreference (1)

where Rtarget is the spectral reflectance of the winter wheat canopy, DNtarget and DNreference are the
radiances of the winter wheat canopy and the white reference panel, respectively, and Rreference is the
reflectance of the white reference panel.

2.2.2. Measurement of Plant Parameters

After acquiring the canopy spectra, all plants in four 1-m long rows per plot (with a row spacing
of 25 cm) were harvested on each investigation date, placed in a plastic bag and transported to the
laboratory for measurement of LCC and green LAI.

The LCC was measured in the laboratory using standard procedures [33]. First, fresh winter wheat
leaf samples from a certain area in each plot were mixed with a given volume of 80% alcohol solution.
Each sample was placed in a cuvette and stored in the dark at 25 ◦C for 48 h. Next, the absorbance of
pigments at 663 and 646 nm was measured using an L6 ultraviolet-visible spectrophotometer (INESA,
China). The concentrations of chlorophyll a and chlorophyll b were calculated using

Chla
(
mg L−1

)
= 12.21 × A663−2.81 × A646 (2)

Chlb
(
mg L−1

)
= 20.13×A646 − 5.03×A663 (3)
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Chla+b
(
mg L−1

)
= Chla

(
mg L−1

)
+ Chlb

(
mg L−1

)
(4)

Chla+b
(
mg g−1

)
=

[
Chla+b

(
mg L−1

)
×VT(ml)

]/
[W(g) × 1000] (5)

where Chla and Chlb are the chlorophyll a and chlorophyll b concentrations (mg L−1), A663 and A646 are
the absorbances of the extract solution at 663 and 646 nm, Chla+b is the chlorophyll a + b content per
unit leaf weight (mg g−1), VT is the volume in mL of leaf chlorophyll extract solution, and W is the leaf
weight (g).

The green LAI was measured using the dried-weight method [34]. In each plot, all green leaves
from the samples were separated from the stems. Thirty leaves were randomly selected from all
the green leaves to ensure that all ages and sizes of leaves were included. Then, a leaf segment of
approximately 1 cm2 was cut from the middle parts of the thirty leaves, and these leaf segments
served as reference leaves. All green leaves, including the reference leaves, were oven dried at 70 ◦C
to a constant weight. The reference leaves and the remaining leaves were weighed. The relationship
between fresh leaf area and leaf dry weight for the reference leaves was used to convert the dry weight
of all green leaves into fresh leaf area. The green LAI was calculated using

LAI =
SrWt

SlWr
(6)

where Sr (m2) is the area of the fresh reference leaves, Wt (g) is the total dry weight of all green leaves,
Sl (m2) is the sampled land area, and Wr (g) is the dry weight of the reference leaves.

The statistical analyses of the measured winter wheat LCC and LAI for the 2001–2002 and
2009–2010 datasets are shown in Table 3. For the 2002 dataset, the mean values of LCC and LAI are
3.102 and 2.311, respectively, and both LCC and LAI have moderate levels of variation. For the 2010
dataset, the mean values of LCC and LAI are 2.913 and 2.069, respectively, and both LCC and LAI also
have moderate levels of variation.

Table 3. Results of the statistical analysis of the measured winter wheat LCC (mg g−1) and LAI.

Datasets Parameter Mean Min Max SD CV (%) n

2002
LCC 3.102 1.832 6.439 1.014 32.688 288
LAI 2.311 0.434 4.859 1.017 43.995 288

2010
LCC 2.913 1.066 5.879 0.925 31.741 168
LAI 2.069 0.394 5.374 0.869 42.030 168

LCC = leaf chlorophyll content; LAI = leaf area index; Min = the minimum value; Max = the maximum value;
SD = the standard deviation; CV = the coefficient of variation; n = the number of samples.

2.3. Spectral Indices

2.3.1. New Spectral Index

The spectral characteristics of green vegetation at the canopy level with different LCCs, which
were simulated by the combined PROSPECT + SAIL model (teledetection.ipgp.jussieu.fr/prosail/) via
MATLAB R2015a software (MathWorks, Inc., Natick, MA, USA), are shown in Figure 1. To investigate
the effect of chlorophyll content on canopy spectral reflectance, LCC was set to change from 10 to
70 μg cm−2 with a step of 10 μg cm−2, LAI was fixed to a value of 3, carotenoid content was 8,
cbrown content was 0, equivalent water thickness (Cw) was 0.0015 cm, dry matter content (Cm) was
0.0035 g cm−2, and the leaf structure parameter (N) was 1.41. These input parameters were fixed with
reasonable values based on field measurements and previous studies [35,36]. As shown in Figure 1,
chlorophyll pigments mainly affect the visible spectral range; when LCC increases, the reflectance in
the green, red, and red-edge bands decreases gradually. The reflectance in the NIR bands approaches
an approximately constant value. Based on this phenomenon, we tried to construct a new spectral
index that is thought of as a ratio of the difference between the reflectance in the NIR band and that in
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the red-edge band to the reflectance in the green band (chlorophyll absorption minimum). This ratio
form can effectively enhance the spectral difference between different LCC levels. The higher the LCC
is, the larger the value of the new index.

Figure 1. Crop canopy spectral reflectance with various LCCs, as simulated by the combined PROSPECT
leaf optical properties model and SAIL canopy bidirectional reflectance model (PROSAIL) model.

Previous studies also demonstrated that the combined effects of chlorophyll concentration and
LAI variation strongly influence the abrupt changes affecting the vegetation reflectance in the red-edge
region, as shown in Figure 2, which uses spectra simulated by the SAIL radiative transfer model [32].
According to Figure 2, the wavelength regions that are most sensitive to leaf chlorophyll variability
are centered at 550 nm in the green peak and 720 nm in the red edge. In contrast, the LAI generates
weak variations in the reflectance spectrum at 550 and 720 nm. The reflectance in the NIR region
does not vary with LCC. Therefore, we selected the bands at 550 nm (green band), 720 nm (red-edge
band), and 800 nm (NIR band) to build the new spectral index. Moreover, Kim [17] showed that the
ratio of reflectance at 700 nm and 550 nm (the bands corresponding to the minimum absorption of
the photosynthetic pigments) is closely influenced by non-photosynthetic materials in the canopy.
Therefore, this ratio was introduced to the new spectral index to reduce the effects of non-photosynthetic
materials in the remote estimates of LCC. Finally, a new spectral index called the red-edge-chlorophyll
absorption index (RECAI) is defined as follows:

(R800 −R720)/R550 × (R700/R550) (7)

Figure 2. Relative difference in canopy reflectance [32]. (a) Difference between reflectance spectra
corresponding to various chlorophyll contents and reflectance spectra corresponding to LCC = 70 μg cm−2.
In the legend, Chl 30–70 is the difference between the reflectance spectra corresponding to LCC = 30
and 70 μg cm−2. (b) Difference between reflectance spectra representing various LAI values and the
spectrum corresponding to LAI = 8. The legend follows the same format as in the left panel.
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Due to the effect of LAI on LCC estimates, we developed three other integrated indices in this
study: RECAI/OSAVI, RECAI/TVI, and RECAI/MTVI2 (see Table 4). These indices are based on
previously published methods that take the ratio of two VIs: one is sensitive to the canopy chlorophyll
content, and the other is sensitive to LAI [18,19,29,30,32]. The optimized soil-adjusted vegetation
index (OSAVI) [37], the triangular vegetation index (TVI) [38], and the modified TVI (MTVI2) [39] are
confirmed to be sensitive to LAI and were used to build integrated indices with chlorophyll-related
indices effective for estimating LCC. Such ratios can minimize the influence of LAI and maximize
the sensitivity to LCC. Because the value of RECAI/TVI is very small, it is scaled up by two orders of
magnitude in practical calculations. OSAVI, TVI, and MTVI2 are calculated as follows:

OSAVI = 1.16(R 800 − R670)/(R 800 + R670 + 0.16) (8)

TVI = 0.5[120 (R750 − R550) − 200(R 670 − R550)] (9)

MTVI2 =
1.5[1.2 (R800 − R550) − 2.5(R 670 − R550)]√
(2R 800 + 1)2 − (6R 800 − 5

√
R670) − 0.5

(10)

2.3.2. Spectral Indices in this Study

For the present study, we selected eight spectral indices from the literature to evaluate their
capacity and consistency in estimating chlorophyll content. The details of these indices are provided
in Table 4. The eight published chlorophyll-related VIs based on discrete red-edge and green bands
(chlorophyll absorption minimum) and/or the red band (chlorophyll absorption maximum) have been
confirmed to be closely related to LCC [24,40–44].

Table 4. Spectral indices used in this study.

Index Formula Reference

Green chlorophyll index (CIgreen) R783/R550 − 1 [11,20]
Red-edge chlorophyll index (CIred-edge) R783/R705 − 1 [11,20]

Moderate-resolution imaging spectrometer
terrestrial chlorophyll index (MTCI) (R750 − R710)/(R710 − R680) [23]

Red-edge model index (R-M) (R750/R720) − 1 [11]
Double-peak canopy nitrogen index I

(DCNI I) [(R750 − R670+0.09)(R750 − R700)]/(R700 − R670) [25]

The modified chlorophyll absorption ratio
index/optimized soil-adjusted vegetation

index (MCARI/OSAVI)

[(R700 − R670) − 0.2(R700 − R550)]
(R700/R670)/[1.16(R800-R670)/(R800+R670+0.16)] [32]

The transformed chlorophyll absorption in
the reflectance index/optimized
soil-adjusted vegetation index

(TCARI/OSAVI)

3[(R700 − R670) − 0.2(R700 − R550)(R700/R670)]/
[1.16(R800 − R670)/(R800+R670+0.16)] [19]

The triangular chlorophyll index/optimized
soil-adjusted vegetation index (TCI/OSAVI)

[1.2(R700 − R550) − 1.5(R 670 − R550)
√
(R 700/R670)

]/
[1.16(R800 − R670)/(R800 + R670 + 0.16)]

[32]

The red-edge-chlorophyll absorption index
(RECAI) (R800 − R720)/R550*(R700/R550) This study

The red-edge-chlorophyll absorption index/
optimized soil-adjusted vegetation index

(RECAI/OSAVI)
RECAI/OSAVI This study

The red-edge-chlorophyll absorption index/
the triangular vegetation index

(RECAI/TVI)
100RECAI/TVI This study

The red-edge-chlorophyll absorption index/
the modified triangular vegetation index

(RECAI/MTVI2)
RECAI/MTVI2 This study
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2.4. Analysis Method and Software

For this work, the measured dataset was used to estimate LCC through a semi-empirical vegetation
index approach. The dataset was divided randomly into two subsets: 80% as the training dataset
(365 samples) and 20% as the validation dataset (91 samples). Five regression models (linear, power,
exponential, polynomial, and logarithmic) were used to model the relationships between LCC and
different spectral indices. The coefficient of determination (R2) and the root mean square error (RMSE)
were selected as the accuracy indicators of the statistical models. The details of the R2 and RMSE
indicators are available in Richter [45]. The conventional statistical analysis of various parameters was
performed using SPSS 18.0 software (SPSS Inc., Chicago, IL). The regression models were established,
and the validation procedures were performed using MATLAB R2015a software (The Math Works,
Inc., Natick, MA, USA).

3. Results

3.1. Prediction LCC by VIs

The LCC was predicted based on the published and newly proposed spectral indices using a
ground-measured dataset. Approximately 365 samples from this dataset were used to build empirical
regression models between LCC and VIs (linear, power, exponential, polynomial, and logarithmic).
The scatterplots and estimation results are shown in Figure 3. As shown in this figure, RECAI/TVI
exhibited the highest R2 value (0.573) and the lowest RMSE value (0.663 mg g−1), followed by
TCARI/OSAVI (R2 = 0.498 and RMSE = 0.707 mg g−1), TCI/OSAVI (R2 = 0.373 and RMSE = 0.795 mg g−1),
MCARI/OSAVI (R2 = 0.301 and RMSE = 0.841 mg g−1), and then the other indices. Unexpectedly,
CIgreen and CIred-edge did not exhibit good performance in this study. As determined by the fit lines, the
prediction models of CIgreen, CIred-edge, R-M, DCNI I, RECAI, and RECAI/TVI were exponential models,
while the other vegetation indices were power models. The scatterplots between LCC and RECAI/TVI,
TCARI/OSAVI, TCI/OSAVI, and MCARI/OSAVI were regular, while the others were diverse. There was
a near-linear relationship between RECAI/TVI and LCC, which was more linear than the relationships
between LCC and TCARI/OSAVI, TCI/OSAVI, and MCARI/OSAVI.

Figure 3. Cont.

185



Remote Sens. 2019, 11, 974

Figure 3. (a–l) The scatterplots between measured LCC versus CIgreen, CIred-edge, MTCI, R-M, DCNI I,
MCARI/OSAVI, TCARI/OSAVI, TCI/OSAVI, RECAI, RECAI/OSAVI, RECAI/TVI, and RECAI/MTVI2
for the 2002 + 2010 combined calibration dataset (n = 365), respectively.

The predicted performances of the integrated vegetation indices (MCARI/OSAVI, TCARI/OSAVI,
TCI/OSAVI, RECAI/TVI, RECAI/OSAVI, and RECAI/MTVI2 with 0.272 ≤ R2 ≤ 0.573) were superior to
those of the single vegetation indices (CIgreen, CIred-edge, MTCI, R-M, and DCNI I with 0.065 ≤ R2 ≤ 0.256),
which again proved that the ratio method was helpful for improving the estimation accuracy when
using crop canopy spectral data.

3.2. Comparing the LCC Estimation Performances of the Indices

The predicted LCC values were plotted against field LCC measurements using the remaining
samples (91 samples). The R2 and RMSE values were selected to assess the confidence of the relationship
(Figure 4). Figure 4 (RECAI/TVI) shows that there was very good agreement between the estimated
LCC values and the field-measured LCC values, with the highest R2 values (0.518) and the lowest
RMSE values (0.658 mg g−1), followed by TCARI/OSAVI (R2 = 0.473 and RMSE = 0.680 mg g−1),
TCI/OSAVI (R2 = 0.296 and RMSE = 0.787 mg g−1), MCARI/OSAVI (R2 = 0.217 and RMSE = 0.832 mg g−1),
R-M (R2 = 0.204 and RMSE = 0.840 mg g−1), and RECAI/OSAVI (R2 = 0.201 and RMSE = 0.843 mg g−1).
The order of the validation accuracies of these models was similar to the order of the prediction
accuracies. From Figure 4, the slope of the validation linear fit for RECAI/TVI was closer to unity
than that for the other indices. The LCCs were overestimated for low values and underestimated for
high values by RECAI/TVI, TCARI/OSAVI, and TCI/OSAVI, especially TCARI/OSAVI and TCI/OSAVI.
The LCC prediction results evidently showed that RECAI/TVI had the greatest potential for estimating
winter wheat LCC. The DCNI Iprovided the worst predictions in this study with the measured datasets,
which was inconsistent with the results obtained by [25]. This discrepancy can be justified by the fact
that DCNI I was initially proposed for LCC estimation in cotton, which has a completely different
canopy structure than winter wheat.
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Figure 4. (a–l) The validation scatterplots between measured and predicted LCC by CIgreen, CIred-edge,
MTCI, R-M, DCNI I, MCARI/OSAVI, TCARI/OSAVI, TCI/OSAVI, RECAI, RECAI/OSAVI, RECAI/TVI,
and RECAI/MTVI2 for the dataset (n = 91), respectively.
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3.3. Effect of LAI on the Assessment of LCC

To analyze the influence of LAI on the LCC estimation, the relationships between the spectral
indices and LCC and LAI were analyzed under five LAI levels (0 < LAI < 1, 1 ≤ LAI < 2, 2 ≤ LAI < 3,
3 ≤ LAI < 4, LAI ≥ 4). The results are shown in Table 5.

Table 5. Pearson correlation coefficients (r values) between spectral indices and winter wheat LCC
and LAI.

0 < LAI < 1
(n1 = 52)

1 ≤ LAI < 2
(n = 143)

2 ≤ LAI < 3
(n = 154)

3 ≤ LAI < 4
(n = 94)

LAI ≥ 4
(n = 13)

LCC LAI LCC LAI LCC LAI LCC LAI LCC LAI

CIgreen 0.665 ** 0.422 ** 0.468 ** 0.469 ** 0.426 ** 0.366 ** 0.692 ** 0.014 0.613 * 0.116
CIred-edge 0.661 ** 0.422 ** 0.465 ** 0.481 ** 0.464 ** 0.346 ** 0.725 ** −0.004 0.581 * 0.182

MTCI 0.526 ** 0.233 0.432 ** 0.453 ** 0.454 ** 0.293 ** 0.758 ** −0.111 0.673 * −0.043
R-M 0.664 ** 0.426 ** 0.486 ** 0.497 ** 0.485 ** 0.347 ** 0.746 ** −0.024 0.630 * 0.085

DCNI I 0.102 0.333 * 0.022 0.508 ** 0.177 * 0.388 ** 0.533 ** 0.078 0.359 0.049
MCARI/OSAVI −0.570 ** 0.185 −0.526 ** −0.150 −0.524 ** 0.146 −0.519 ** 0.364 ** −0.523 0.249
TCARI/OSAVI −0.668 ** 0.054 −0.652 ** −0.246 ** −0.669 ** 0.040 −0.676 ** 0.264 * −0.568 * 0.017

TCI/OSAVI −0.608 ** 0.155 −0.588 ** -0.148 −0.585 ** 0.133 −0.568 ** 0.338 ** −0.551 0.186
RECAI 0.688 ** 0.398 ** 0.542 ** 0.427 ** 0.454 ** 0.357 ** 0.698 ** −0.009 0.730 ** −0.103

RECAI/OSAVI 0.621 ** 0.255 0.545 ** 0.341 ** 0.450 ** 0.335 ** 0.693 ** −0.041 0.750 ** −0.207
RECAI/TVI 0.777 ** 0.029 0.819 ** 0.109 0.708 ** 0.053 0.722 ** −0.167 0.730 ** −0.106

RECAI/MTVI2 0.615 ** 0.238 0.535 ** 0.353 ** 0.445 ** 0.342 ** 0.694 ** −0.035 0.742 ** −0.177

** and * indicate significance at the 0.01 and 0.05 levels, respectively. 1 n is the number of samples. CIgreen = green
chlorophyll index, CIred-edge = red-edge chlorophyll index, MTCI = moderate-resolution imaging spectrometer
terrestrial chlorophyll index, R-M = red-edge model index, DCNI I = double-peak canopy nitrogen index I;
MCARI/OSAVI = the modified chlorophyll absorption ratio index/optimized soil-adjusted vegetation index,
TCARI/OSAVI = the transformed chlorophyll absorption in the reflectance index/optimized soil-adjusted vegetation
index, TCI/OSAVI = the triangular chlorophyll index/ optimized soil-adjusted vegetation index, RECAI = the
red-edge-chlorophyll absorption index, RECAI/OSAVI = the red-edge-chlorophyll absorption index/ optimized
soil-adjusted vegetation index, RECAI/TVI = the red-edge-chlorophyll absorption index/ the triangular vegetation
index, and RECAI/MTVI2 = the red-edge-chlorophyll absorption index/ the modified triangular vegetation index.

For 0< LAI< 1, all indices except DCNI I were strongly sensitive to LCC at the 0.01 confidence level.
MTCI, MCARI/OSAVI, TCARI/OSAVI, TCI/OSAVI, RECAI/OSAVI, RECAI/TVI, and RECAI/MTVI2
were not correlated with LAI, but the other indices were sensitive to LAI. The RECAI/TVI exhibited
the highest correlation with LCC (r = 0.777**, significant at the 0.01 level) and no correlation with
LAI (r = 0.029) among the indices. For 1 ≤ LAI < 2, all indices except DCNI I were significantly
correlated with LCC (0.432 ≤ r ≤ 0.819). Only MCARI/OSAVI, TCI/OSAVI, and RECAI/TVI showed no
correlation with LAI, whereas the other indices showed a strong correlation with LAI. The RECAI/TVI
also showed the highest correlation coefficient with LCC (r = 0.819**) and no relationship with LAI
(r = 0.109). For 2 ≤ LAI < 3, all indices were correlated with LCC (0.177 ≤ r ≤ 0.708). The RECAI/TVI
exhibited the best correlation with LCC (r = 0.708**), followed by TCARI/OSAVI (r = 0.669**). Most
indices were sensitive to LAI (0.293 ≤ r ≤ 0.388) except for MCARI/OSAVI (r = 0.146), TCARI/OSAVI
(r = 0.040), TCI/OSAVI (r = 0.133), and RECAI/TVI (r = 0.053). For 3 ≤ LAI < 4, all indices were
significantly related to LCC at the 0.01 level, and RECAI/TVI still showed a very strong correlation
with LCC (r = 0.722 at the 0.01 level). Most of the vegetation indices showed no correlation with LAI,
except for MCARI/OSAVI, TCARI/OSAVI, and TCI/OSAVI. For LAI ≥ 4, the relationships between
vegetation indices and LCC were weakened for most indices, but RECAI, RECAI/OSAVI, RECAI/TVI,
and RECAI/MTVI2 still showed strong correlations with LCC at the 0.01 level. No indices were related
to LAI. In general, at both low and high LAI levels, RECAI/TVI was the most closely related to LCC at
the 0.01 confidence level. This index was poorly related to LAI, indicating that it may be considered
the best index for estimating LCC.
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4. Discussion

4.1. Building a New Vegetation Index for Retrieving Winter Wheat Leaf Chlorophyll Content

The change in LCC contributes to the variation in reflectance in the visible spectral region,
especially in the green, red, and red-edge bands. In this study, we adhered to the following three
principles to select the optimal bands for the new spectral index RECAI. (1) To minimize the effect of
LAI, the reflectance of the selected bands should be more sensitive to LCC and less sensitive to LAI.
According to Figure 2, wavelength regions centered on 550 nm in the green peak and 720 nm in the
red edge are most sensitive to leaf chlorophyll variability and least sensitive to LAI variability [32].
(2) To mitigate the potential saturation problem, we selected the green (550 nm) and red-edge (700 nm
and 720 nm) bands instead of the red band (the maximum absorption of chlorophyll is near 670 nm).
Some researchers found that even low chlorophyll content saturates the absorption in the red spectral
region, whereas the reflectance in a wide range from 530 to 630 nm and near 700 nm remains sensitive
to high chlorophyll contents [2,20,46]. (3) To reduce the effects of non-photosynthetic materials, we
selected the ratio of reflectance at 550 and 700 nm, which corresponds to the minimum absorption
of chlorophyll. This selection was based on the finding that the ratio of R700 and R550 is considered
constant at the leaf level, despite the variability in chlorophyll content [17,19,35,47].

However, Table 5 indicates that RECAI was still strongly correlated with LAI, indicating that
RECAI did not effectively minimize the effect of LAI variations on LCC estimation. To overcome this
drawback, we utilized the method in this study by taking a ratio of two VIs: one that is sensitive to the
canopy chlorophyll content and another that is sensitive to LAI effects [18,19,30–32]. Thus, TVI, MTVI2,
and OSAVI were introduced to reduce the effect on RECAI on the LAI variation. According to the
results from the ground-measured datasets (Figure 3 and Table 5), all three spectral indices (RECAI/TVI,
RECAI/OSAVI, and RECAI/MTVI2) improved the LCC predictive accuracy and reduced the sensitivity
to LAI compared with RECAI. The RECAI/TVI exhibited very good performance in terms of LCC
estimation; RECAI/MTVI2 and RECAI/OSAVI did not perform as well as RECAI/TVI, which may
be explained by the relationship between (i) TVI, MTVI2, OSAVI and (ii) LCC, LAI. As shown in
Table 6, TVI, OSAVI, and MTVI2 were strongly correlated with LAI and weakly correlated (or even
uncorrelated) with LCC, which met the demands of the abovementioned method for developing
a ratio index to reduce the effect of LAI. The TVI was more sensitive to LAI and less sensitive to
LCC than OSAVI and MTVI2, which was why RECAI/TVI performed better for LCC estimation than
RECAI/OSAVI and RECAI/MTVI2.

Table 6. Correlation coefficients (r) between (i) TVI, OSAVI, MTVI2 and (ii) LCC, LAI for the 2002, 2010,
and 2002+2010 datasets.

LCC LAI

TVI −0.193 ** 0.167 * −0.037 0.800 ** 0.735 ** 0.779 **
OSAVI 0.308 ** 0.220 ** 0.326 ** 0.799 ** 0.643 ** 0.764 **
MTVI2 0.307 ** 0.370 ** 0.269 ** 0.761 ** 0.720 ** 0.690 **

** Indicates significance at the 0.01 level; * indicates significance at the 0.05 level. N = 288, 168, and 456 for the 2002,
2010, and 2002+2010 datasets, respectively.

4.2. Effect of Field Management Measures on the RECAI/TVI Index

Field management measures strongly impact crop growth and lead to variations in LCC. In this
study, we analyzed how winter wheat varieties, N fertilizer, irrigation volume, and sowing dates affect
the newly proposed RECAI/TVI (Figure 5).

For different winter wheat varieties, Jing 9428, Zhongyou 9507 and Nongda 195 are horizontal
winter wheat varieties, whereas Jingdong 8 and Jingdong 13 are erective varieties. From Figure 5a,b,
RECAI/TVI performed better for the horizontal varieties than for the erective varieties on both the 2002
and 2010 datasets. In 2002, the R2 values of the horizontal varieties (Jing 9428 and Zhongyou 9507)
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were 0.682 and 0.688, respectively, whereas the R2 of the erective variety (Jingdong 8) was only 0.351.
In 2010, the R2 values of the horizontal varieties (Jing 9428 and Nongda 195) were 0.736 and 0.714,
respectively, whereas the R2 of the erective variety (Jingdong 13) was 0.590. For a given LAI, horizontal
winter wheat can effectively increase the vegetation fraction and reduce the influence of soil compared
with the erective variety. That is, the RECAI/TVI of horizontal varieties can obtain a more accurate
estimate of LCC.

Figure 5. Influence of different field management measures on RECAI/TVI. (a), (b), (c), (d), (e), (f) stand
for the scatter plots between RECAI/TVI and LCC under different crop varieties (2002), crop varieties
(2010), nitrogen fertilization densities (2002), nitrogen fertilization densities (2010), water treatments,
and bowing date treatments, respectively.
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For different N fertilizer contents, for both the 2002 and 2010 datasets, high N fertilizer density
can improve the accuracy of LCC estimates when using RECAI/TVI (Figure 5c,d). For example, low
N application densities (0, 56, 82, and 109 kg ha−1) provided LCC estimates with low accuracy by
RECAI/TVI (0.428 ≤ R2 ≤ 0.502). A high N application density (135, 150, 300, and 450 kg ha−1) provides
highly accurate LCC estimates by RECAI/TVI (0.601 ≤ R2 ≤ 0.702). Another phenomenon is that
overfertilization with nitrogen can reduce the accuracy of LCC estimates.

For different water treatments on the 2002 dataset, no water treatment (W1) led to the worst
prediction accuracy of LCC with RECAI/TVI (R2 = 0.399), whereas the other water treatments led to
better prediction accuracy of LCC with RECAI/TVI (R2 ≥ 0.620) (see Figure 5e). No irrigation treatment
(W1) had a strong impact on seed germination and seedlings, which led to worse growth and large soil
background influence by the RECAI/TVI method. Due to natural precipitation, the different water
treatments (W2, W3, and W4) had little effect on crop growth. Therefore, there were no obvious
differences in the effect of soil background on LCC estimated by RECAI/TVI.

The different sowing dates in the 2010 dataset affected the LCC predictive performance of
RECAI/TVI (see Figure 5f). For sowing date 1 (25 September), the R2 between RECAI/TVI and LCC was
0.595, whereas for sowing dates 2 (5 October) and 3 (15 October), the R2 values were 0.888 and 0.848,
respectively. This result may be attributed to the tiller number for winter wheat in the different sowing
date treatments. Because sowing late may lead to the capacity reduction in tillering, especially before
winter, a larger seeding rate was applied in the field on sowing dates 2 (217 kg ha−1) and 3 (279 kg ha−1)
than that applied on sowing date 1 (152 kg ha−1) to obtain a sufficiently high tiller number. However,
during the stem elongation stage, which is the end of the tillering period, the number of stems for
sowing dates 2 (626 m−2) and 3 (468 m−2) was obviously lower than that for sowing date 1 (857 m−2).
This result indicated that an excessive tiller number may reduce the performance of RECAI/TVI on
LCC estimation.

4.3. Comparison of the Performances of Different VIs

In this study, we found that LCC exhibited different relationships with different spectral indices.
In general, the ratio vegetation indices, which comprise VIs for estimating canopy chlorophyll
contents and VIs for estimating LAI, exhibited good predictive performance for LCC. For example,
RECAI/TVI, TCARI/OSAVI, MCARI/OSAVI, TCI/OSAVI, RECAI/OSAVI, and RECAI/MTVI2 showed
better predictive accuracies with large RMSE values between 0.658 mg g−1 and 0.847 mg g−1, whereas
CIgreen, CIred-edge, MTCI, R-M, DCNI I, and RECAI showed large RMSE values between 0.840 mg g−1 and
0.923 mg g−1. This result is in agreement with the results of previous studies on LCC estimation [29].
The TCARI/OSAVI has been widely used to estimate LCC in published research. In this study,
TCARI/OSAVI showed better performance for LCC retrieval, which is consistent with the results of
other studies [28–30]. However, this index did not estimate the LCC of winter wheat as well as other crop
species (corn, potato) as indicated by other published reports, and this index performed slightly worse
than RECAI/TVI in this study. This result can be interpreted by the viewpoint that TCARI/OSAVI is still
sensitive to the soil background and LAI variations, especially when LAI < 3 [32,48]. The chlorophyll
indices (CIgreen and CIred-edge) did not perform well in LCC estimations in our study, which is in
accordance with the results of a previous study [30] that proved that the chlorophyll indices were more
suitable for the estimation of canopy chlorophyll content.

Overall, the newly proposed RECAI/TVI greatly improved the predictive accuracy, effectively
overcame the saturation problem and reduced the effect of LAI when used to estimate winter wheat
LCC. Thus, RECAI/TVI is considered the best spectral index for estimating LCC. However, some
problems still need to be addressed in future work. Remote estimates of LCC always depend strongly
on the growth stage because changes in vegetation fraction, plant type, and other factors may lead
to variations in the canopy spectral reflectance. Furthermore, the performance of RECAI/TVI at a
given growth stage remains to be addressed to help precision field management. Additionally, the
performance of the index in estimating the LCC of other crops, such as rice or corn, should be examined.
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In future research, we will put much more effort into confirming the capacity of RECAI/TVI to estimate
LCC given different crop growth stages, different types of crops, different spatial scales, and different
spectral data.

5. Conclusions

Chlorophyll is a vital pigment for photosynthesis and directly or indirectly reflects crop nutritional
status, growth, vigor, etc. This study focused on testing a remote sensing method to accurately
estimate the LCC of winter wheat over crop canopies with minimum effects from LAI. Based on the
measured datasets (n= 456), we evaluated the performance of eight published and four newly proposed
spectral indices for LCC retrieval. The results showed that the newly proposed RECAI/TVI performed
excellently for LCC estimation, with R2 values that increased by more than 13.09% and RMSE values
that decreased by more than 6.22%. In addition, whether at low LAI or at high LAI, RECAI/TVI
showed a significant relationship with LCC (0.708** ≤ r ≤ 0.819**) and revealed no relationship with
LAI variation (0.029 ≤ r ≤ 0.167), indicating that it clearly reduced the influence of LAI. These results
also indicate that RECAI/TVI may be considered the optimal index for estimating winter wheat LCC.
The LCC predictive accuracy of RECAI/TVI can be influenced by erective winter wheat varieties, a low
density of N fertilizer, no water application, and early sowing (excessive tiller number). Therefore,
due to the complexity of crop growth conditions, the capability of RECAI/TVI to accurately estimate
the LCC of winter wheat should be further verified by applying this index to a more varied range of
field-measured data.
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Abstract: Leaf nitrogen concentration (LNC) is an important indicator for accurate diagnosis and
quantitative evaluation of plant growth status. The objective was to apply a discrete wavelet transform
(DWT) analysis in winter wheat for the estimation of LNC based on visible and near-infrared
(400–1350 nm) canopy reflectance spectra. In this paper, in situ LNC data and ground-based
hyperspectral canopy reflectance was measured over three years at different sites during the tillering,
jointing, booting and filling stages of winter wheat. The DWT analysis was conducted on canopy
original spectrum, log-transformed spectrum, first derivative spectrum and continuum removal
spectrum, respectively, to obtain approximation coefficients, detail coefficients and energy values
to characterize canopy spectra. The quantitative relationships between LNC and characteristic
parameters were investigated and compared with models established by sensitive band reflectance
and typical spectral indices. The results showed combining log-transformed spectrum and a sym8
wavelet function with partial least squares regression (PLS) based on the approximation coefficients
at decomposition level 4 most accurately predicted LNC. This approach could explain 11% more
variability in LNC than the best spectral index mSR705 alone, and was more stable in estimating
LNC than models based on random forest regression (RF). The results indicated that narrowband
reflectance spectroscopy (450–1350 nm) combined with DWT analysis and PLS regression was a
promising method for rapid and nondestructive estimation of LNC for winter wheat across a range in
growth stages.

Keywords: leaf nitrogen concentration; discrete wavelet transform; partial least squares; hyper-spectra

1. Introduction

Nitrogen (N) is one of the essential elements in plants. N deficiency seriously affects the
photosynthesis process and physiological metabolism and results in poor wheat grain yield and
quality [1,2]. Excessive N over fertilization not only fails to increase crop yield, but also causes the
unnecessary purchase of fertilizer and results in environmental pollution [3,4]. Knowledge of in-season
plant N status is the key to guiding N fertilization for farmers. Leaf nitrogen concentration (LNC) is an
important indicator of N nutrition in crops and is desired to be obtained by a rapid, non-destructive
method [5]. Hyperspectral remote sensing captures continuous and subtle spectral absorption features
of crop canopy from narrow bands, which has been widely applied to differentiate and quantify the
biophysical and biochemical parameters of agricultural crops [6]. Absorption characteristics of N
itself are quite weak and often are expressed by amino acid absorption characteristics in protein. The
sensitive absorption wavelength of N lies in short-wave-infrared (SWIR), which is easily obscured
by water-vapor absorption characteristics [7,8]. Visible spectrum (VIS) and near-infrared (NIR) band
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reflectance are often used to estimate LNC indirectly due to the strong positive correlation with leaf
chlorophyll content and pronounced sensitivity to canopy structures [9–12].

Among the estimating approaches, linear or non-linear regression models are typically analyzed
based on individual input variable of sensitive waveband reflectance. However, the canopy reflectance
spectra and sensitive wavebands of LNC are easily and strongly influenced by the soil background,
vegetation canopy geometry and atmospheric conditions [13]. Spectral transformation techniques such
as first derivative transformation, continuum removal and log-transformation processing techniques
are applied to reduce the effects of the surroundings and to enhance the spectral sensitivity to crop N
content [11,14,15]. However, it remains to be discussed about which spectral transformation is more
effective in canopy N evaluation. Meanwhile, a number of spectral indices sensitive to chlorophyll and
canopy structures with robustness have been developed to minimize spectral noise and to estimate
N-related indicators [16–18]. These include the modified normalized difference (mND705) and the
modified simple ratio (mSR705), which effectively reduce the impact of differences in leaf surface
reflectance and improve the sensitivity of pigment and N content estimation [19]. Chen et al. [20]
developed the three-band double-peak canopy nitrogen index (DCNI) to predict the LNC of maize and
wheat during the critical N management stage. However, these indices are calculated by utilizing a
limited number of wavelengths in specific spectral regions, which have not exploited the entire range
in hyperspectral data [21] and are calibrated against a specific database, which cannot be generalized
to other databases [22]. There is an urgent need to propose an approach that could take advantage of
the entire canopy spectral information as well as diminish the impacts of band autocorrelation and
data redundancy.

The wavelet transform (WT) is a multi-resolution analysis tool that has found several applications
in signal processing and compression [23], pattern recognition and classification [24], and recently was
involved in precision agriculture applications such as detection of crop-yield-reducing weeds [25],
estimation of leaf chlorophyll content [22], crop residue management [26] and diagnosis of crop
diseases [27]. Discrete wavelet transform (DWT) is capable of decomposing canopy original spectra
into different DWT coefficients in fine-scale detail coefficient (DC) and coarse-scale approximation
coefficient (AC) on the basis of mother wavelet functions. DC provides a detailed view of the input
hyperspectral signal in response to noise and special information inhered in the signal. Low-frequency
AC is an expression of global behavior of the signal, which corresponds to the main and large trend in
a signal. The AC and DC together reflect the time-frequency properties of the canopy spectral signal at
different scales [23–25]. It is considered as a productive tool for hyperspectral feature extraction [25],
and has been successfully used in quantifying pigment concentrations [28], retrieving soil moisture [29],
estimating crop residue mass [26] and leaf area index (LAI) mapping [30]. However, little application of
DWT in crop agronomy parameter evaluation is reported in the literature. Moreover, the relationship
between DWT features and LNC has not yet been studied.

In this study, we focused on the relationship between leaf N concentration and canopy spectral
reflectance to explore the possibilities of using the entire VIS-NIR region (400–1350 nm) for winter
wheat LNC assessment. The objectives of this study were (1) to analyze the impacts of the spectral
transformation type, mother wavelet and decomposition level on feature extraction of the entire canopy
spectra with a DWT analysis; (2) to construct DWT-based LNC estimating models with partial least
squares (PLS) and random forest (RF) regression and (3) to compare the models in (2) with sensitive
band reflectance-based and spectral index-based LNC estimation models (SR-LNC and SI-LNC) to
find a promising LNC monitoring model across a range of wheat growth stages.
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2. Materials and Methods

2.1. Data Acquisition

2.1.1. Experimental Design

The experiments were conducted in Guanzhong region, Shaanxi Province, China. The winter
wheat was planted in mid-October and harvested in mid-June of the following year. In experiment 1,
the commonly adopted wheat cultivar in this region, Xiaoyan 22 was cultivated in 2013–2015 at No.1
experiment station of Northwest Agriculture and Forestry University (108◦03’ E, 34◦17’ N; elevation:
454 m). A total of 24 plots were set and each plot size was 12 m2 (3 m × 4 m) with a planting row
spacing of 0.2 m and a plant density of 185 kgha−1. Six N rates (0, 30, 60, 90, 120 and 150 kg ha−1) and
six P rates (0, 15, 30, 60, 75 and 90 kg ha−1) were employed with two replications. 30 kg ha−1 P2O5 and
60 kg ha−1 N were applied as a basal fertilizer for N and P treatments, respectively. There was no K
fertilizer application due to the K sufficiency in this area. Experiment 2 was conducted at Qian County
(108◦10’ E, 34◦37’ N; elevation: 830 m) in Xianyang City during the years 2014 to 2015. A total of 36
plots were set and each plot was 36 m2 (6 m × 6 m) with a similar cultivar as experiment 1. Six N rates
(0, 45, 90, 135, 180 and 225 kg ha−1), six P rates (0, 22.5, 45, 67.5, 90 and 112.5 kg ha−1) and six K rates
(0, 15, 30, 45, 60 and 75 kg ha−1) were applied and replicated twice. 60 kg ha−1 K2O and 45 kg ha−1

P2O5, 60 kg ha−1 K2O and 90 kg ha−1 N and 90 kg ha−1 N and 45 kg ha−1 P2O5 were applied as a basal
fertilizer for N, P and K treatments, respectively, before planting. For all the treatments, N, P2O5 and
K2O fertilizers were applied as urea, potassium chloride and superphosphate, respectively. All the plot
crop planting and management patterns followed the local standard practices for wheat production.

2.1.2. Canopy Spectral Measurement

All canopy spectral measurements were collected by a field portable spectrometer (SVC HR-1024I,
USA) whose sensor could collect the canopy spectrum from 350–2500 nm with a sampling interval of
3.5 nm for 350–1000 nm, 3.6 nm for 1000–1850 nm and 2.5 nm for the 1850–2500 nm spectral region. Each
spectral measurement was obtained with a 25◦ field-of-view operating from a height of 1.3m above the
ground under clear sky conditions between 10:00 and 14:00 local time. Before each measurement, a
white BaSO4 calibration panel was used to calculate the black and baseline reflectance. To minimize
the effects caused by the surroundings, the canopy spectrum in each plot was obtained by randomly
selecting three sampling sites, and then averaging these into a single spectral sample. Each sample
consisted of an average of ten scans at an optimized integration time. Canopy spectral data were
measured during the main growth stages in each growing season. A total of 84, 84, 74 and 73 samples
were obtained in tillering, jointing, booting and filling growth stages.

2.1.3. Leaf Nitrogen Concentration Measurement

Samples for LNC determination were collected immediately after measurements of the canopy
spectra. Wheat plants from an area of 0.08 m2 (0.2 m × 0.4 m) and 0.25 m2 (0.5 m × 0.5 m) of each
plot in experiments 1 and 2 were cut respectively at ground level. All green leaves were separated
from stems, sealed in plastic bags and transferred to the laboratory with ice chests. Then, the samples
were oven-dried at 105 ◦C for 30 min, followed by oven drying at 80 ◦C until a constant weight was
achieved. Finally, dried leaves were finely ground and a subsample of ground leaves was taken to
analyze for LNC (g per 100 g dry weight, %) using the Kjeldahl method [31].

2.2. Spectral Transformation

The spectral response in VIS-NIR bands at 400–1350 nm was used to monitor the wheat LNC in
this study. All the canopy spectral reflectance curves were resampled at 1 nm spectral interval, and then
the Savitzky–Golay smoothing procedure [32] with a nine-point moving window and a second-order
polynomial fitting was applied to each spectrum. The smoothed canopy spectrum was labeled as
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the original spectrum (OS). After that, three kinds of commonly used spectral transformations were
calculated to compare with OS, including a log-transformed spectrum (LOGS), first derivative spectrum
(FDS) and continuum removal spectrum (CRS). LOGS was determined by calculating a log function of
the spectral reflectance’s reciprocal [14]. FDS was derived through calculating differences in reflectance
between adjacent wavebands [33]. CRS was obtained by normalizing the absorption valley in the
spectral curve onto the continuum line of the absorption valley [34].

2.3. Analytical Methods

2.3.1. Discrete Wavelet Transform Analysis

The background and principle of discrete wavelet transform (DWT) can be found in the
literature [25]. It can be described as a set of inner products between a finite-length signal and
a discretized wavelet basis made by scaled and transformed versions of a mother wavelet. The result
is known as the DWT coefficient. The mathematical expression is as follows,

Wi,k =
〈

f (λ),φi,k(λ)
〉
, (1)

φi,k(λ) =
1√
2i
ψ(
λ

2i − k), (2)

where Wi,k is a DWT coefficient; f (λ) is a signal; ϕi,k(λ) is the discretized wavelet basis used to fit
optimally the signal; i is the ith decomposition level or step and k is the kth wavelet coefficient at the
ith level. With DWT analysis, signals are analyzed over a discrete set of scales, typically being dyadic
(2i, i = 1, 2, 3, . . . i is the decomposition level) [25,28,30].

In practice, the wavelet basis performs as a set of high-pass and low-pass filters to decompose
the signal into low-scale, high-frequency detail coefficients (DCs) and high-scale, low-frequency
approximation coefficients (ACs) according to scale. The length of the ACs and DCs is related to the
type of mother wavelet and decomposition level. In a multi-level decomposition, the filtering process
can be iterated with successive approximations being decomposed in turn, so that the signal is broken
down into many lower resolution components (Figure 1). Through the DWT, not only can the detailed
behavior be separated from the macroscopic behavior, but also the dimensionality of hyperspectral
data is reduced. All the information in the original signal is contained in the ACs at a particular
decomposition level i (Li) plus the DCs at decomposition level 1 to level j (L1–Li).

 
Figure 1. Process of multi-level discrete wavelet transform decomposition of signal S. ACi and DCi

denote the approximation coefficient (AC) and detail coefficient (DC) at the ith decomposition level (Li).
Taking L3 for example, the output wavelet decomposition vectors include AC3, DC1, DC2 and DC3. The
size of each box demonstrates the length of the successive approximation and detail coefficients vectors.

Considering the canopy spectrum as a signal changing with wavelength, the ACs and DCs after
multi-level DWT decomposition were investigated as feature parameters of canopy spectra to find
whether it is a productive tool for LNC estimation in this paper. DWT analysis could be implemented
with the function ‘wavedec’ in MATLAB Wavelet Toolbox. The function, ‘wrcoef’, was used to
reconstruct the spectral signal so as to find out how ACs delineate the canopy spectral information.
Energy value (EV) [30] is a set of compressed ACs and DCs, which tries to take advantage of ACs and
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DCs to characterize the whole signal information. It also can be considered as a feature parameter of
canopy hyper-spectral signal and can be obtained through the expression (3):

EVi =

√√√
1
K

K∑
k=1

wi,k
2, (3)

where EVi denotes the wavelet energy value of the ith decomposition level (Li), wi,k is the kth wavelet
coefficient at Li and K represents the total number of wavelet coefficients under each level. As shown
in Figure 1, EV3 will be calculated with the AC3, DC1, DC2 and DC3 according to expression (3). Five
mother wavelet functions including db10, sym8, coif5, bior6.8 and rbio6.8 from the Daubechies, Symlet,
Coiflet, Biorthogonal and Reverse biorthogonal wavelet families, respectively, were assessed in this
study, which are commonly tested wavelet families in the canopy spectra decomposition [25–28,30].

2.3.2. Existing Spectral Indices Calculation

A total of ten correlated hyperspectral indices from three categories were selected and examined for
comparison with the DWT approach, including (1) chlorophyll indices: Modified red edge simple ratio
index (mSR705), MERIS terrestrial chlorophyll index (MTCI), structurally insensitive pigment index
(SIPI) and normalized pigment chlorophyll index (NPCI); (2) nitrogen indices: Nitrogen reflectance
index (NRI), normalized difference red-edge index (NDRE) and double-peak canopy nitrogen index
(DCNI); (3) greenness indices: Green normalized difference vegetation index (GNDVI), optimized
soil-adjusted vegetation index (OSAVI) and modified triangular vegetation index (MTVI2). The
definitions and reference sources for these ten spectral indices are summarized in Table 1.

Table 1. The definitions and reference sources of narrowband spectral indices tested in this study.

Category Index Formula Developed by

Chlorophyll indices

mSR705 (R750 – R445)/(R705 − R445) [19]
MTCI (R754 − R709)/(R709 − R681) [35]
SIPI (R800 − R445)/(R800 − R680) [36]

NPCI (R430 − R680)/(R430 + R680) [36]

Nitrogen indices
NRI (R570 − R670)/(R570 + R670) [37]

NDRE (R790 − R720)/(R790 + R720) [38]
DCNI (R720 − R700)/(R700 − R670)/(R720 − R670 + 0.03) [20]

Greenness indices
GNDVI (R750 − R550)/( R750 + R550) [39]
OSAVI 1.16(R800−R670)/(R800 + R670 + 0.16) [40]

MTVI2
1.5(1.2(R800 − R550) − 2.5(R670 − R550))/sqrt((2R800

+ 1)2 − (6R800 − 5sqrt(R670)) − 0.5) [41]

Ri is the reflectance at i nm wavelength

2.3.3. Modeling Method

The ordinary least squares (OLS) regression analysis was used to construct the LNC estimation
model based on sensitive-band reflectance and spectral index. Two types of multivariate models,
partial least squares (PLS) regression and random forest (RF) regression, were carried out to establish
the estimation model on the basis of wavelet coefficients and energy values.

PLS regression is a bilinear multivariate regression method. It compresses the input data into
a number of independent latent variables (LVs) and maximizes the covariance between the LV
scores and dependent variables. The operation makes it possible to avoid high collinearity among
multi-variables and shows better prediction performance when compared with stepwise regression
or principal component regression [21,42]. The basic PLS algorithm could be obtained in Geladi
and Kowalski [43]. The number of latent variables is selected on the basis of the standard error of
leave-one-out cross-validation. Parameter optimization and modeling were implemented with the PLS
Toolbox based on MATLAB® 7.0 (MathWorks, Inc., Natick, MA, USA).
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RF regression is an ensemble machine learning algorithm based on regression trees [44,45]. It uses
the bootstrap sampling method and randomized subspace method to build decision trees, in which
only randomly selected predictors are used for each tree. The final prediction result is determined by
the average of all decision trees. Two parameters need to be optimized in RF: ‘ntree’, the number of
regression trees grown based on a bootstrap sample of the observations; ‘mtry’, the number of different
predictors (independent variables) tested at each node. The random forest library developed in the R
package (R Development Core Team 2008) was employed to implement the RF algorithm in this study.
The parameter ‘mtry’ was set as 1/3 of the number of independent variables and the ‘ntree’ was set at
500 as suggested by Breiman [43].

2.3.4. Calibration and Validation

In order to ensure the range of LNC is represented in both datasets, all the observations were
pooled together and then divided into calibration and validation dataset according to LNC values in an
ascending sort order with a proportion of 4:1 [46]. The calibration and validation data sets were evenly
distributed (Table 2). LNC ranged from 0.22% to 3.87% across all growth stages, with an average value
of 1.47%. The coefficient of variation (CV) was 52.03% indicating a moderate temporal variation.

Table 2. The statistical description of leaf nitrogen concentration (%) across all growth stages.

Data Set No. of Samples Min Max Range Mean SD Variance Skewness Kurtosis CV (%)

Whole 315 0.22 3.87 3.64 1.47 0.77 0.59 0.76 2.98 52.03
Calibration 252 0.22 3.60 3.38 1.46 0.76 0.58 0.73 2.88 51.88
Validation 63 0.35 3.87 3.52 1.5 0.79 0.63 0.86 3.26 53.00

The coefficient of determination (R2), root mean square error (RMSE), relative error (RE, %) and
the ratio of prediction to deviation (RPD) were used to measure the predictive performance of each
estimation model by different methods. Higher values of R2 and RPD, and lower values of RMSE and
RE indicate better dependability and accuracy of the regression model in predicting LNC [21,47,48].
RPD is a ratio of standard deviation to RMSE. RPD values greater than 2.0 indicate a stable and accurate
predictive model, an RPD value between 1.4 and 2.0 indicates a fair model that could be improved by
more accurate prediction techniques and a value less than 1.4 indicates poor predictive capacity [21].
Rc2, Rv2, RMSEc, RMSEv, REc, REv, RPDc and RPDv in this paper represented R2, RMSE, RE and RPD
in the calibration and validation data set, respectively. A 1:1 plot of observed vs. estimated values was
drawn to demonstrate the degree of model fit.

3. Results

3.1. LNC Estimation Models (SR-LNC) Based on Sensitive-Band Reflectance

3.1.1. Correlations Between Canopy Spectra and LNC

In general, winter wheat canopy reflectance was more significantly correlated with LNC at VIS
than NIR wavelengths (Figure 2). The absolute values of the correlation coefficient were greater
than 0.6 at 400–750 nm. Correlations were similar from 614 to 640 nm, with the strongest negative
value of −0.75. The correlation between FDS and LNC changed rapidly at 400–1300 nm. It was
slightly better at 435–465 nm than other wavelengths, and the best correlation coefficient was −0.76 at
447 nm. A weak negative correlation between LOGS and LNC was found in the near-infrared region
(750–1300 nm), whereas a strong positive correlation was observed at 400–750 nm, which significantly
improved the relationship between OS and LNC at 600–700 nm. The highest correlations appeared at
642–648 nm with a correlation coefficient of 0.83. Correlation between CRS and LNC was better at
400–765 nm, 934–1050 nm, 1124–1290 nm and 1304–1350 nm than that between OS and LNC. Moreover,
the correlation coefficients were greater than 0.6 at 400–760 nm and 1180–1270 nm, and the best
correlation coefficient was −0.85 at 721–727 nm. As reflectance at 640 nm was affected by chlorophyll
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absorption [8], and 725 nm within the red-edge wavelength region was highly related with canopy
nitrogen content [17], 640 nm and 725 nm were selected as the bands of OS and CRS most sensitive to
LNC, respectively. According to the best correlation with canopy spectra, 447 nm and 645 nm (center
part of 642–648 nm) were regarded as the bands of FDS and LOGS most sensitive to LNC, respectively.
The spectral reflectance of sensitive bands is used to establish LNC estimation models.

Figure 2. Correlation coefficients between leaf nitrogen concentration and transformed canopy spectra,
including original spectrum (OS), first derivative spectrum (FDS), log-transformed spectrum (LOGS)
and continuum removal spectrum (CRS).

3.1.2. Construction of SR-LNC Estimation Models

The calibration and validation accuracy of FDS at 447 nm and OS at 640 nm were similar to
each other (Figure 3; Figure 4). LOGS at 645 nm and CRS at 725 nm significantly improved the LNC
prediction accuracy relative to the FDS and OS models, and the Rc

2s in exponential prediction models
were 0.73 and 0.79, respectively. The Rv

2s in validation samples were 0.72 and 0.85, RMSEvs were
0.42 and 0.35 and REvs were 28.38 and 20.65 for LOGS and CRS, respectively. Scatter plots between
predicted and measured LNC values indicated that higher LNC values were underestimated (Figure 4).
CRS was superior to other spectra in predicting LNC at sensitive reflectance bands, with predicted and
measured LNC values falling close to the 1:1 line.

− −−

Figure 3. Leaf nitrogen concentration prediction models based on sensitive band reflectance. The solid
line represents the exponential fitting.
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Figure 4. Scatter plots between the measured and predicted leaf nitrogen concentration based on
sensitive band reflectance. The dash line is the 1:1 line.

3.2. LNC Estimation Models (SI-LNC) Based on Spectral Indices

All the spectral indices were significantly correlated with LNC as shown in Table 3. The mSR705

index was the best of ten spectral indices, which could explain 83% variability in LNC. The higher
Rv

2 (0.86), lower RMSEv (0.28) and REv (18.81) also illustrated a better performance of mSR705. The
NDRE index was the best of three nitrogen indices, which could explain 80% of variability in LNC. The
GNDVI was the best among the three greenness indices. Both GNDVI and NDRE were exponentially
related to LNC, while the accuracy of GNDVI was slightly worse than NDRE.

Table 3. Estimation models and prediction errors of leaf nitrogen concentration based on the spectral
indices. ** at 0.01 significance level.

Category Index
Correlation
Coefficient

Equation Rc
2 Rv

2 RMSEv REv

Chlorophyll
indices

mSR705 0.91 ** LNC = 0.2702x − 0.6773 0.83 0.86 0.28 18.81
MTCI 0.89 ** LNC = 0.5454x − 1.0901 0.78 0.84 0.31 20.94
SIPI 0.79 ** LNC = 1E − 06e15.28x 0.71 0.69 0.57 37.80

NPCI 0.80 ** LNC = 1.9583e4.13x 0.70 0.71 0.45 30.13

Nitrogen indices
NRI 0.70 ** LNC = 6.2342x − 0.5199 0.50 0.50 0.56 37.64

NDRE 0.86 ** LNC = 0.046e6.28x 0.80 0.85 0.30 20.27
DCNI 0.79 ** LNC = 0.039x − 0.8904 0.63 0.74 0.41 27.06

Greenness
indices

GNDVI 0.85 ** LNC = 0.002e8.44x 0.81 0.82 0.33 21.90
OSAVI 0.69 ** LNC = 0.0099e6.61x 0.55 0.54 0.55 36.61
MTVI2 0.60 ** LNC = 5.293x − 1.0551 0.36 0.42 0.60 40.08

3.3. LNC Estimation Models (DWT-LNC) Based on DWT Features

3.3.1. Selection of Optimum Mother Wavelet and Decomposition Level

The number of DWT coefficients describes the extent of data compression. As shown in Table 4,
the number of DWT coefficients changed with the mother wavelet and decomposition level, and was
independent on spectral transformation types. It tended to drop off from L1 to L12, and the downward
trend became stable at L10. Among five mother wavelets, sym8 had the strongest data compression
ability, while coif5 was the weakest. For example, the total number of wavebands in this study was 951
(from 400–1350 nm). After DWT analysis at decomposition level 10, the number of DWT coefficients
with mother wavelet function sym8 was 15, while coif5 had 29, which was determined from the wavelet
basis length [25].

Table 4. The number of wavelet coefficients under different mother wavelets and decomposition levels.

Mother Wavelet L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

bior6.8 484 250 133 75 46 31 24 20 18 17 17 17
coif5 490 259 144 86 57 43 36 32 30 29 29 29
db10 485 252 135 77 48 33 26 22 20 19 19 19

rbio6.8 484 250 133 75 46 31 24 20 18 17 17 17
sym8 483 249 132 73 44 29 22 18 16 15 15 15
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Since the approximation coefficient (AC) was considered as an indicator of global information for
the canopy spectrum, ACs of each transformed spectrum at decomposition level 1 to 12 were utilized
to perform signal reconstruction in order to find out how ACs delineated the canopy reflectance
spectra. The correlations between canopy spectral signals and reconstruction signals are shown in
Figure 5. The correlation coefficient decreased from L5 until leveling off at L10, which indicated that
the explanatory and signal restoring ability of ACs to canopy spectra declined gradually from L5 to
L10. All the correlation coefficients were still above 0.7 at L10 except with FDS, which went down to
less than 0.6 rapidly after decomposition level 6. The mother wavelet db10 was more labile compared
to the others, especially poor was the large fluctuation in CRS correlations. Taking into account the
data compression effectiveness, stability of mother wavelet and ability to maintain the information
quality of the canopy spectra, a mother wavelet sym8 at decomposition level of L1–L10 was chosen to
conduct the DWT to analyze the correlation with LNC.

Figure 5. Correlations between reconstructed signals and transformed spectra for different mother
wavelets at each decomposition level. (a) OS, (b) FDS, (c) LOGS and (d) CRS.

3.3.2. DWT-LNC Models Based on PLS Regression

PLS Regression Using Wavelet ACs

All the LNC estimation models established by calibration of sample measurements with ACs
of sym8 at L1 to L10 passed the 0.01 significance level test. The number of latent variables (LVs)
extracted by PLS regression increased and then decreased with the decomposition level (Figure 6). The
maximum number of latent variables emerged at L5, which implied a lower convergence rate of the
PLS regression at L5. As a whole, all the estimating models had high prediction accuracy (Rc

2 was
greater than 0.70). The general trend of Rc

2 in each predicting model increased and then decreased
gradually with an increasing decomposition level (Figure 7). The ACs could explain 90%–93% of
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the variability in LNC at L1 to L5, except with CRS at L1. The variation of Rv
2 was consistent with

Rc
2, and all the Rv

2s were greater than 0.75. Table 5 shows the variation in RMSE and RE. LOGS
had stronger prediction ability over other models, with the highest values of Rv

2 and Rc
2, and lowest

REv and RMSEv values at L1–L10. All the RMSEvs were below 0.30. The Rv
2s were 0.93, 0.93 and

0.91 respectively for the LOGS at L3, L4 and L5. Measured and predicted LNC values with ACs from
LOGS at L3–L5 closely approximated a 1:1 line (Figure 8), and the PLS model at L4 yielded the optimal
prediction accuracy (RMSEv = 0.20, REv = 13.47).

Figure 6. The number of latent variables in a partial least squares regression based on
approximation coefficients.

Figure 7. Relationships between determination coefficients and decomposition level of partial least
squares regression models with approximation coefficients in the calibration (a) and validation set (b).

Table 5. The coefficient of determination, root mean square error and relative error of the validation set
based on a partial least squares regression with wavelet approximation coefficients.

OS FDS LOGS CRS

Rv
2 RMSEv REv Rv

2 RMSEv REv Rv
2 RMSEv REv Rv

2 RMSEv REv

AC1 0.86 0.29 19.59 0.88 0.27 18.07 0.91 0.24 15.78 0.83 0.33 22.06
AC2 0.86 0.30 19.68 0.89 0.26 17.22 0.92 0.23 15.19 0.84 0.33 22.13
AC3 0.84 0.32 21.24 0.92 0.23 15.50 0.93 0.20 13.59 0.87 0.33 22.18
AC4 0.87 0.29 19.09 0.87 0.27 18.18 0.93 0.20 13.47 0.84 0.33 22.20
AC5 0.88 0.28 18.45 0.88 0.29 19.49 0.91 0.23 15.60 0.88 0.28 18.37
AC6 0.85 0.31 20.98 0.85 0.31 20.76 0.88 0.27 17.95 0.88 0.27 18.24
AC7 0.82 0.34 22.62 0.85 0.31 20.52 0.87 0.30 20.11 0.88 0.27 17.99
AC8 0.83 0.33 22.28 0.81 0.31 20.84 0.86 0.30 19.83 0.84 0.31 20.87
AC9 0.77 0.38 25.13 0.81 0.35 23.07 0.85 0.30 20.29 0.85 0.31 20.74
AC10 0.78 0.37 24.90 0.83 0.32 21.64 0.86 0.29 19.59 0.85 0.30 20.14
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Figure 8. Relationships between measured and predicted leaf nitrogen concentration (%) based on the
approximation coefficients of the log-transformed spectra (LOGS) at decomposition level 3, 4 and 5 in
validation set.

PLS Regression Using Wavelet DCs

The high-frequency detail coefficient of DWT analysis represented noise or minor absorption
in the canopy spectrum [21,28,49]. Figure 5 shows that the correlation coefficients between canopy
spectral signals and reconstruction signals by ACs at decomposition level 1 to 5 were close to 1, which
indicates that DCs at L1 to L5 were very small in amplitude (near zero) and could be removed without
major loss in the information content of the signal. Table 6 summarizes the validation results of PLS
models based on DCs at L6–L10. Prediction accuracy decreased with the decomposition level. The
performance of LOGS was better than other spectral transformations, but it was still worse than PLS
modeling with ACs (Table 5).

Table 6. The coefficient of determination, root mean square error and relative error of the validation set
based on a partial least squares regression with detail coefficients at decomposition level 6 to level 10.
DCi denotes the detail coefficient (DC) at Li.

DC
OS FDS LOGS CRS

Rv
2 RMSEv REv Rv

2 RMSEv REv Rv
2 RMSEv REv Rv

2 RMSEv REv

DC6 0.84 0.32 21.43 0.81 0.35 23.02 0.89 0.26 17.53 0.85 0.30 20.25
DC7 0.83 0.33 21.75 0.77 0.38 25.19 0.89 0.27 17.73 0.84 0.32 21.41
DC8 0.83 0.33 22.17 0.57 0.52 34.54 0.87 0.29 18.38 0.81 0.35 23.13
DC9 0.77 0.38 25.36 0.48 0.57 38.05 0.88 0.28 18.77 0.81 0.36 23.76
DC10 0.76 0.39 26.17 0.39 0.62 41.63 0.88 0.28 19.55 0.77 0.38 25.53

PLS Regression Using EVs

Energy values achieve further compression of spectral signals. After multi-level one-dimensional
wavelet analysis at decomposition level n, n + 1 variables were used to calculate the energy value
according to Equation (3), and the relationship between energy value and LNC was analyzed by using
PLS regression (Table 7). With an increase in decomposition level, Rv

2 increased and then decreased
with OS and LOGS, while a general tendency of first increasing then decreasing and a conspicuous
monotonic increase were found, respectively, with FDS and CRS (Table 7). However, all the Rv

2

reached the maximum at L10. Energy value could explain over 80% of the variability of LNC at L10

with fewer variables (number of variables was 11). LOGS still gave the best performance over the other
transformations (with Rc

2 of 0.85 and Rv
2 of 0.88), but the overall accuracy was still lower than those

using approximate coefficients at L3–L5 (Figure 6). The RMSE and RE of validation set were 0.26 and
17.82 respectively, also a poorer correlation compared with the results in Table 5.
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Table 7. The coefficient of determination, root mean square error and relative error of the validation set
based on a partial least squares regression with wavelet energy values. EVi denotes energy value (EV)
at decomposition level i.

EV
OS FDS LOGS CRS

Rv
2 RMSEv REv Rv

2 RMSEv REv Rv
2 RMSEv REv Rv

2 RMSEv REv

EV1 0.14 0.73 49.02 0.46 0.58 38.83 0.47 0.57 38.22 0.64 0.47 31.61
EV2 0.25 0.69 46.14 0.43 0.59 39.80 0.72 0.42 28.67 0.71 0.43 28.43
EV3 0.19 0.71 47.34 0.41 0.61 40.58 0.71 0.44 29.36 0.72 0.41 27.66
EV4 0.19 0.71 47.34 0.36 0.63 42.08 0.65 0.46 31.14 0.74 0.40 26.74
EV5 0.29 0.67 44.42 0.32 0.65 43.47 0.69 0.43 29.05 0.75 0.39 26.34
EV6 0.74 0.42 27.93 0.65 0.47 26.41 0.81 0.34 22.85 0.75 0.39 26.41
EV7 0.79 0.36 23.99 0.66 0.47 31.49 0.81 0.34 22.91 0.76 0.38 25.88
EV8 0.87 0.29 19.22 0.74 0.41 27.61 0.83 0.32 21.56 0.80 0.35 23.56
EV9 0.87 0.29 19.15 0.76 0.40 27.02 0.84 0.32 21.35 0.81 0.34 23.19
EV10 0.87 0.29 19.28 0.82 0.35 23.23 0.88 0.26 17.82 0.83 0.33 22.17

3.3.3. DWT-LNC Based on RF Regression

ACs and EV10 were selected to build the RF regression models. As showed in Table 8, R2s in the
validation set were slightly lower than the calibration set and most of them were less than 0.90, except
for results using ACs of LOGS in L4 and L5. After L5, the RMSEv and REv tended to go up slightly for
all transformations especially with FDS. In general, LOGS was better than other transformations in
estimating LNC by ACs with RF regression. ACs at L4 had the best RMSEv and REv, being 0.24 and
16.08, respectively, while the ACs at L10 were the worst in the RF regression models. The accuracy
of RF models based on energy values of wavelet coefficients was improved compared with the PLS
regression, but still poorer than using ACs.

Table 8. Validation of leaf nitrogen concentration estimation models based on a random forest regression
with discrete wavelet transform features. ACi denotes approximation coefficient (AC) at Li; EV10 is the
energy value at L10.

OS FDS LOGS CRS

Rv
2 RMSEv REv Rv

2 RMSEv REv Rv
2 RMSEv REv Rv

2 RMSEv REv

AC1 0.86 0.29 19.64 0.87 0.29 19.30 0.89 0.26 17.53 0.89 0.27 17.93
AC2 0.86 0.30 19.86 0.87 0.29 19.25 0.89 0.27 17.91 0.89 0.28 18.38
AC3 0.87 0.29 19.34 0.87 0.29 19.20 0.89 0.26 17.21 0.88 0.28 18.41
AC4 0.86 0.29 19.52 0.86 0.29 19.52 0.91 0.24 16.08 0.89 0.27 17.78
AC5 0.87 0.28 18.89 0.87 0.29 19.01 0.90 0.25 16.35 0.89 0.28 18.44
AC6 0.86 0.28 18.91 0.86 0.29 19.44 0.86 0.28 18.40 0.88 0.29 19.25
AC7 0.88 0.29 19.41 0.71 0.43 28.76 0.86 0.30 20.12 0.86 0.31 20.77
AC8 0.83 0.33 21.84 0.69 0.45 29.85 0.85 0.31 20.84 0.84 0.32 21.57
AC9 0.85 0.31 20.67 0.64 0.49 32.45 0.80 0.36 24.02 0.81 0.35 23.27
AC10 0.83 0.32 21.49 0.51 0.56 37.15 0.74 0.41 27.17 0.76 0.39 26.23
EV10 0.82 0.35 23.34 0.77 0.38 25.36 0.86 0.29 19.43 0.84 0.32 21.16

3.4. Estimation Accuracy Comparison

Compared with OS at 640 nm, the sensitive band reflectance of CRS at 725 nm provided a
significant improvement in the accuracy of estimating LNC. The Rc

2 and Rv
2 increased to 0.79 and

0.85, and the RMSEv and REv decreased to 0.35 and 20.65, respectively (Figure 2). The accuracy also
was better than the results of LOGS and FDS at 645 nm and 447 nm, respectively (Figures 3 and 4).
However, it was still lower than the performance of some spectral indices especially mSR705 (Rc

2 =

0.83, Rv
2 = 0.86, RMSEv = 0.28 and REv = 18.81; Table 3). The LOGS was obviously distinguished from

four transformed canopy spectra in the discrete wavelet transform analysis and exhibited a promising
potential for revising LNC. For PLS modeling, LOGS combined with ACs at L4 produced the best
performance both in the calibration and validation sets. The prediction result of LNC in the high-value
region was better than SR-based and SI-based LNC estimation models. DCs and EVs performed
worse in LNC evaluation by using PLS regression. The best prediction accuracy of DCs was at the

206



Remote Sens. 2019, 11, 1331

decomposition level 6 (Rv
2 = 0.89, RMSEv = 0.26 and REv = 17.53), which was slightly higher than the

mSR705 index. EVs at L10 had similar prediction accuracy as DCs at L6. With RF regression, LOGS
at L4 showed the highest accuracy in LNC prediction on the basis of ACs, with the Rv

2, RMSEv and
REv being 0.91, 0.24 and 16.28, respectively, which were slightly worse than the PLS regression. LNC
estimation result using energy values was improved by a RF regression, but it was still lower than the
PLS and RF models with ACs at L4.

The ration of prediction to deviation (RPD) is calculated by dividing the standard deviation
(SD) of the reference data by the standard error of prediction. Since the SD values for calibration
and validation data set are constants, the RPD value will not change the ranking of best performing
indicators. However, the RPD is a dimensionless parameter and can be classified to different categories
to evaluate the model accuracy. Table 9 exhibited the RPD values in some of the estimation models.
All the RPDs in the calibration set and validation set exceeded 2.0 except the OLS regression model
based on the CRS725, which indicated all the estimation models in Table 9 had stable and accurate
predictive abilities. The PLS model with AC4 produced the best performance (RPDc = 3.97 and RPDv

= 3.95), and followed by the RF regression model with AC4 (RPDc = 3.04 and RPDv = 3.29). Overall,
by comparing all the methods in this article with statistical indicators of R2, RMSE, RE and RPD, an
integrated approach using DWT ACs and PLS regression exhibited the highest stability and reliability
in LNC estimation.

Table 9. The ratio of prediction to deviation (RPD) values in the calibration models and validation
models of leaf nitrogen concentration.

Model
OLS Regression PLS Regression RF Regression

CRS725 mSR705 AC4 DC6 EV10 AC4 EV10

RPDc 1.95 2.43 3.97 2.81 2.61 3.04 2.38
RPDv 2.26 2.82 3.95 3.04 3.04 3.29 2.72

4. Discussion

A large number of studies have been conducted with passive and active remote sensing technologies
for the timely and non-destructive evaluation of LNC [9–11,13–17,50]. In the present study, we mainly
discussed the effect of the entire range of canopy reflectance (400–1350 nm) on LNC estimation and
provided a guide for feature extraction by DWT analysis and PLS regression.

4.1. Sensitive Band Reflectance and Spectral Transformation

This study demonstrated that spectral measurements were apparently useful for describing the N
status of wheat canopies. It is known that pure chlorophyll a and b had absorption peaks at red and
blue wavelength regions, respectively. The red edge (680–760 nm) caused by the strong absorption of
pigments in the red spectrum and leaf scattering in the NIR spectrum has been found to be sensitive
to crop growth [12,14,16–18]. As N concentration was linked to the plant photosynthetic pigments
concentration especially chlorophyll, the correlation between leaf nitrogen concentration and spectral
reflectance in visible light was better than in the near-infrared region as shown in Figure 2. All the
sensitive wavebands of spectral transformations were located in visible light (OS at 640 nm, FDS at
447 nm, LOGS at 645 nm and CRS at 725 nm). In previous research, the first derivative was closely
related to N concentration in corn and wheat [20], which was designed to eliminate background signals
or noise and to resolve overlapping spectral features. The LOG transformation performed accurately
compared with the original reflectance when estimating N concentrations [14]. CRS yielded the highest
accuracy in estimating grass leaf nitrogen concentrations, followed by the LOGS [51]. Continuum
removal enhanced the differences in absorption strength [34]. All indicated that spectral transformation
could provide more sensitive features than canopy original spectrum and could be used to increase
the accuracy of crop N estimation. We compared the LNC estimation accuracy of these four spectral
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transformations in this study. The result showed the performance of CRS (Rc
2 = 0.79) was higher

than that of LOGS, FDS and OS (Figure 3) in winter wheat LNC prediction. The same conclusion was
obtained in the grass foliar nitrogen retrieval reported by Ramoelo et al. [51], where an R2 of 0.81 was
based on a greenhouse experiment using continuum removal in combination with a PLS regression.
As a whole, the exponential model was more suitable for delineating the quantitative relationship
between sensitive band reflectance and LNC than a linear regression (Figure 3). This may be caused by
the fact that the relationship between leaf N and chlorophyll concentration was not linear [10,52].

4.2. Relationship Between Spectral Indices and LNC

Canopy spectra obtained by remote sensing were affected by the canopy structure and surrounding
conditions, while the spectral index could eliminate the impacts at a certain extent through the
combination of characteristic bands [12]. Reflectance in the red-edge region (680–760 nm) was closely
related to the chlorophyll content in plants as well as the nutritional status of plants, which had always
been considered to be important in relationships with biochemical or biophysical parameters [53].
The mSR705 index of chlorophyll indices, NDRE index of nitrogen indices and GNDVI of greenness
indices in this paper were constructed on the basis of red edge reflectance, could explain 83%, 80%
and 81% of the variability in LNC, respectively (Table 3), and had better performance than other
spectral indices. This was consistent with the report that the GNDVI performed similarly as NDRE
in estimating maize N concentration [52]. Green and red edge reflectance were sensitive to a wider
range of chlorophyll levels than red reflectance. The predictive ability of NDRE in the category of
nitrogen indices was higher than with NRI and DCNI in this study (Table 3). NDRE is similar in form
to NDVI, but with the red band being replaced by a red edge band. NRI, a normalized near-infrared
over green waveband reflectance ratio, has been used to assess in-season corn N status and to develop
N variability maps [37,54], but in our study, the predictive ability (Rc

2 = 0.50) of NRI was lower than
NDRE (Rc

2 = 0.80). These results demonstrated the importance of red edge vegetation indices for
estimating winter wheat N status.

Three-band spectral indices were proposed to solve the saturation problem associated with
two-band indices [18,55,56]. Chen et al. [20] developed the three-band spectral index DCNI using the
double-peak characteristics of the red edge to predict the nitrogen content of maize and wheat showed
the determination coefficient of the prediction equation being 0.72 and 0.44, respectively. However,
the DCNI (Rc

2 = 0.63) explained 20% less variability in LNC than mSR705 in this study (Table 3). The
RMSE of mSR705 (RMSEv = 0.28) indicated an ordinary performance of the LNC prediction model, and
an RMSEv of 0.41 indicated poor model performance of DCNI [48].

4.3. Features and Parameters Selection of the DWT Analysis

The mother wavelet function and decomposition level were two crucial parameters required
for DWT analysis. The scaled and translated mother wavelet was used to fit the canopy spectra.
Cocchi et al. [57] demonstrated the difficulty in developing a priori rules for identifying the most
appropriate mother wavelet because the optimum mother wavelet changed with the particular task [58].
Five commonly used mother wavelets in vegetation spectra decomposition were tested in this study.
Results showed that the mother wavelet sym8 was excellent in dimensionality reduction and signal
reconstruction than other wavelets. Features based on the sym8 made a good LNC estimation accuracy
(Tables 5–7), which indicated the shape of the wavelet sym8 could explicate the differences between
the LNC.

Three DWT features (AC, DC and EV) were extracted to analyze the relationship with LNC. The
wavelet low-frequency approximation coefficient (AC) was a reflection of global features in canopy
spectra, while the high-frequency detail coefficient (DC) was a depiction of noise information, which
together contained all of the information presented in the original spectrum. Energy value (EV) was
a set of compressed ACs and DCs, which tried to take advantage of ACs and DCs to express the
whole signal information. Blackburn and Ferwerda [59] used the approximation coefficients at level 8
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along with detail coefficients from level 1 to 8 to estimate chlorophyll concentration. However, most
of the characteristic information of canopy spectra was in the approximation coefficients at a lower
decomposition scale. For their study, DCs were very small in amplitude and could be removed without
major loss in the information content of the signal kept in ACs. After a certain decomposition level,
more and more useful information would be eliminated, contributing to noisy signals and declining
information content of canopy reflectance spectra [59]. In contrast, we found that ACs in decomposition
level 1 to 5 preserved almost 100% of the information features for the canopy spectra (Figure 5). Our
results also illustrated that LNC was much better correlated with the main information in ACs, not
DCs (Table 5; Table 6), so the ACs in L1 to L5 could be used directly to predict the LNC, instead of
using the whole reflectance spectra, while ignoring the high-frequency DCs.

Energy value achieved a further data compression of canopy spectral signals. Pu and Gong
(2004) [28] indicated that the energy value features extracted by the WT method were the most effective
way of mapping forest crown closure (CC) and leaf area index (LAI). The mapped accuracy for CC
was 84.90% and for LAI was 75.39%. In this study, the EVs at AC4 with PLS regression could explain
83% (Rc

2 = 0.83) of the variability in LNC. EVs had a poorer performance and ability to estimate LNC
compared with the ACs. This might be due to excessive dimensionality reduction, resulting in a loss of
some sensitive information in the canopy spectrum.

Our results showed that the wavelet coefficients were different depending upon whether they
were derived from the reflectance spectra or transformed spectra. The differences indicated that
transformed spectra were more sensitive to LNC than original reflectance spectra (Tables 5–8). The
LOG-transformation was more useful in extracting additional information that was more difficult to
obtain from other transforms of reflectance spectra.

4.4. Estimation Models of LNC

The results of this study indicated that the combination of multi-spectral bands generally improved
the accuracy of LNC estimation (Table 4). The hyper-spectral narrow-band index (mSR705) explained
4% more variability in LNC estimation than the best performing single sensitive band CRS725.
The advantage of multi-variable regression was obvious (Table 9). Approximation coefficients at
decomposition level 4 using LOG-transformed spectra had the best prediction accuracy in PLS-LNC
models. The prediction accuracy of the RF-LNC model with LOGS at L4 was similar to the PLS-LNC
model, while the R2, RMSE, RPD and RE of validation set were slightly worse than the PLS regression
(Tables 8 and 9). That is, the prediction and verification accuracy of the PLS model was more stable
than that of the RF model. This is likely because the accuracy of the RF model was greatly influenced
by the undefined input parameters, although it was efficient for large input variables and non-linear
problems [42–45].

All the RPD values of validation models in Table 9 being greater than 2.0 indicated good
LNC prediction models were built with different approaches. However, the OLS model based
on the sensitive band reflectance should be noted that higher LNC values were underestimated
(Figure 4). Considering the difficulty of feature extraction with wavelets, spectral index mSR705 might
alternatively be suggested to predict LNC, especially in multi-spectral remote sensing applications.
Wavelet analysis of a reflectance spectrum was performed by scaling and shifting the wavelet function
to produce wavelet coefficients that were assigned to different frequency components. It made the
DWT analysis to have the potential to capture much more of the information contained within the
canopy hyper-spectra [25,28,30,57–59]. Our results showed that using DWT coefficients and PLS
regression together could overcome the limitations of individual variable technology and offer a
practical approach to LNC detection. The model produced by using AC4 with PLS regression had the
best performance (RPDc = 3.97 and RPDv = 3.95) and was recommended for LNC estimation across all
growth stages.
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4.5. Research Challenges

In this study, the performance of SR-LNC and VI-LNC models were analyzed in detail and
compared with models by DWT analysis combing with PLS and RF regression. The LOGS combined
with DWT ACs and PLS regression made good use of the full canopy reflectance spectra and produced
good prediction accuracy of LNC, but it was difficult to interpret exactly which wavelength was
contributing to the best performing models. It remains a particular challenge to test the performance
of more mother wavelets. We also need to find whether this method could be successfully applied and
whether it works well across various growth stages, varieties and eco-sites for estimation of LNC, and
whether canopy spectra information can be used to detect the LNC status of the crop as precisely as
the nitrogen nutrition index (NNI) approach.

5. Conclusions

Canopy spectra measurements were useful for estimating the nitrogen status of a wheat crop,
thereby providing information to help decide on nitrogen fertilizer application in precision farming
systems. The results of this study demonstrated that sensitive band reflectance of transformation canopy
spectra and spectral indices gave a better correlation for LNC than the correlation using the original
canopy spectra. DWT analysis accomplished feature extraction successfully from the narrow-band
hyperspectral canopy spectrum across VIS and NIR wavelengths on the basis of keeping original
spectrum information quality and reducing canopy spectral data space dimensions. Combining LOGS
and the sym8 mother wavelet, approximation coefficients at the 4th decomposition level provided
the best approach for estimating LNC by a PLS regression. This approach could explain 11% more
variability in LNC than the corresponding best performing spectral index mSR705 and was more stable
in LNC estimation than the RF regression.
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Abstract: The analysis of chlorophyll concentration based on spectroscopy has great importance
for monitoring the growth state and guiding the precision nitrogen management of potato crops
in the field. A suitable data processing and modeling method could improve the stability and
accuracy of chlorophyll analysis. To develop such a method, we collected the modelling data by
conducting field experiments at the tillering, tuber-formation, tuber-bulking, and tuber-maturity
stages in 2018. A chlorophyll analysis model was established using the partial least-square (PLS)
algorithm based on original reflectance, standard normal variate reflectance, and wavelet features
(WFs) under different decomposition scales (21–210, Scales 1–10), which were optimized by the
competitive adaptive reweighted sampling (CARS) algorithm. The performances of various models
were compared. The WFs under Scale 3 had the strongest correlation with chlorophyll concentration
with a correlation coefficient of −0.82. In the model calibration process, the optimal model was
the Scale3-CARS-PLS, which was established based on the sensitive WFs under Scale 3 selected by
CARS, with the largest coefficient of determination of calibration set (R2

c ) of 0.93 and the smallest
R2

c −R2
cv value of 0.14. In the model validation process, the Scale3-CARS-PLS model had the largest

coefficient of determination of validation set (R2
v) of 0.85 and the smallest root–mean–square error of

cross-validation (RMSEV) value of 2.77 mg/L, demonstrating good prediction capability of chlorophyll
concentration. Finally, the analysis performance of the Scale3-CARS-PLS model was measured using
the testing data collected in 2020; the R2 and RMSE values were 0.69 and 3.36 mg/L, showing
excellent applicability. Therefore, the Scale3-CARS-PLS model could be used to analyze chlorophyll
concentration. This study indicated the best decomposition scale of continuous wavelet transform
and provided an important support method for chlorophyll analysis in the potato crops.

Keywords: standard normal variate (SNV); continuous wavelet transform (CWT); wavelet features
optimization; competitive adaptive reweighted sampling (CARS); partial least square (PLS)

1. Introduction

Potato (Solanum tuberosum) is the world’s fourth-largest food crop following rice, wheat,
and maize [1,2]. Chlorophyll, as the essential photosynthetic pigment of potato leaves, reflects growth
information about plant health [3] and photosynthetic rate [4], and its content is also significantly
correlated with the concentration of nitrogen [5]. Therefore, the accurate analysis of the chlorophyll
concentration of potato plants is of great importance for nitrogen management in precision agriculture.
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Compared with the time-consuming and laborious chemical analysis of chlorophyll
concentration [6,7], the modern spectroscopy analysis, as a non-destructive and rapid monitoring
method, has advantages in the inversion of chlorophyll concentration of crops due to the principle
of light absorption by molecular or chemical bonding [8,9]. At present, the crop analysis method
based on spectroscopy primarily includes proximal spectroscopy analysis and remote sensing [10].
The former has advantages of high resolution and accurate data sampling [11]. Thus, it is suitable
for the spectroscopy mechanism studies (e.g., the characteristic absorption bands of some material
components) and the development of analysis algorithms, thereby laying a foundation for methods
of large-scale and large-area remote sensing [12]. Thus, the motivation of this study is to accurately
analyze the chlorophyll concentration in potato crops based on proximal spectroscopy.

Three major problems of crop chlorophyll content analysis based on proximal spectroscopy
methods include spectral signal-noise reduction, characteristic variable analysis, and analysis model
establishment [13,14]. Among them, the noise reduction of spectral data is the primary step to
improve the spectral data performance. During spectral data collection, especially in the field
environment, noises such as high-frequency noises [15] and scattering effects [16] are inevitably
introduced [17]. Accordingly, previous studies have reported that the standard normal variate (SNV)
can effectively correct the scattering effect resulting from different light reflection paths to improve the
predictive capability of spectral data [18]. The Savitzky–Golay (S-G) smoothing method can reduce
the high-frequency noise of spectral data resulting from instrument vibration or electromagnetic
interference [19]. However, the main disadvantage of the S-G method is that the smoothing window
size is not fixed, which requires complex optimization according to specific spectral data to select the
optimal window size [20,21].

Regarding characteristic variable analysis, many methods have been developed to improve
accuracy of chlorophyll concentration analysis [22]. One technique is to build a spectral reflectance index;
for instance, the normalized difference vegetation index [23], chlorophyll index [24], weighted-difference
vegetation index [25], and structural independent pigment index [26] are used to estimate the leaf
chlorophyll concentration. Yu [27] reported that the reflectance ratio vegetation index could eliminate
the influence of structural difference of wheat canopy on chlorophyll analysis. Another method is to
select sensitive wavelengths; for instance, the red edge and characteristic absorption wavelengths are
used to analyze chlorophyll concentration. Sun et al. [28] analyzed the spectral migration characteristics
of winter wheat at jointing, booting, flowering, and milk-ripening stages. The wavelengths at red
edge positions were extracted to establish the chlorophyll analysis models. Five sensitive wavelengths,
namely, 680, 716, 1104, 1882, and 1920 nm, were selected to establish the model for chlorophyll and
water-content detection.

However, the above methods cannot completely remove noises and present the features of the
spectra [29]. Continuous wavelet transformation (CWT) has outstanding quality of time and frequency
domain and can decompose a spectrum into numerous wavelet features (WFs) to effectively characterize
spectral signals and eliminate high-frequency noises of spectral data [30]. Previous studies [31–33]
have reported that continuous wavelet analysis achieves good performance on crop growth-parameter
estimation. Li [32] indicated that WFs under 23, 24, and 25 (middle- and low-frequency) scales could
reduce the phenomenon of “fingerprint spectrum” with serious vibration noises to improve the analysis
accuracy for the leaf nitrogen concentration of wheat and rice crops. The analysis accuracy was higher
than the normalized difference vegetation index. Lu et al. [34] indicated that the sensitive WFs of stripe
rust and powdery mildew of wheat are distributed in the 22, 23, and 24 scales, and that the WFs could
capture the pigment and water content in wheat leaf. These studies show that WFs under middle- and
low-frequency scale factors can capture the peak and valley of an absorption feature of physical and
chemical materials [33].

In terms of CWT application, some points remain unclear, especially chlorophyll concentration
analysis of potato crop during different stages by using spectroscopy combined with the CWT
method. Meanwhile, the partial least-square (PLS) regression model is used to explore and evaluate
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the relationship between scales of WFs and chlorophyll concentration [35,36], which can solve
multicollinearity problems [37] among variables by executing a principal component analysis on
the independent and dependent variable matrices. Occasionally, the PLS regression model contains
uninformative variables, which result in poor prediction accuracy, overfitting phenomenon [38],
and further lowering of the model stability. Some studies have reported that in contrast to the
correlation analysis [39] and successive projection algorithm [40] methods, the competitive adaptive
reweighted sampling (CARS) algorithm, serving as a sensitive wavelength-selection algorithm [41],
can improve the performance of the PLS regression model by eliminating invalid variables [42,43].
Thus, we attempt herein to establish a high-performance chlorophyll content analysis model using the
CARS-PLS method.

Accordingly, the study aimed to discuss the improvement in spectral data analysis performance
by CWT. We focused on the effect of WFs under different decomposition scales on identifying valuable
spectral variables and reducing high-frequency noise to enhance the analysis accuracy of potato
chlorophyll concentration during growth periods. Combined with SNV correction, we proposed a
CWT-CARS-PLS method to establish the high-performance chlorophyll content analysis model. In this
model, CWT was used to eliminate the high-frequency noise and extract the valuable spectral variables,
and CARS was applied to select WF variables. The effectiveness of CWT in the analysis ability of
dynamic estimation of potato chlorophyll concentration was highlighted by comparing and analyzing
the model results of original reflectance (Ref) and SNV reflectance (SNV).

The objectives of this study were to (1) determine the dynamic relationships between chlorophyll
concentration and canopy spectra at different growth stages; (2) compare the chlorophyll concentration
analysis capability of the WFs under different decomposition scales, Ref, and SNV reflectance; (3) use
CARS to select sensitive variables and establish various CARS-PLS analysis models; and (4) validate
and evaluate the performance of PLS and CARS-PLS models established by Ref, SNV, and different
scale WFs.

2. Materials and Methods

2.1. Data Acquisition

2.1.1. Spectral Data Collection

Experiments were conducted in 2018 and 2020, respectively. Collected data in 2018 were used to
develop the spectral variable optimization method and propose the chlorophyll analysis model by
CWT. Measured data in 2020 were used to test the proposed method for potato chlorophyll analysis.

In 2018, field experiments were conducted at the National Precision Agriculture Experiment
Station in Xiaotangshan, Beijing, China (40◦16′25” N, 116◦44′03” E). The potato crop was planted on
10 April 2018. According to management practices by farmers, the total N rate was 400 kg N ha−1,
with 12% applied at tillering stage, 33% at tuber formation stage, 38% at 127 tuber expansion stage,
and the remaining 12% N at tuber maturation stage. Although the growth period of the Atlantic cultivar
is about 90 days in Beijing, the canopy changes greatly from the tillering to the tuber maturation stages,
after that the leaves of the crop turns to yellow. In order to establish a chlorophyll analysis model to
analyze the chlorophyll concentration of potato canopy, as shown in Table 1, spectra data were collected
at four growth stages on May 15, May 24, June 7 and June 19, respectively, which were the tillering
stage with appearing flower buds (S1), tuber formation stage with flowers (S2), tuber expansion stage
after flowers fell (S3), and tuber maturation stage during leaves turning yellow (S4). Eighty plots
with a size of 1 m × 1 m were used. Figure 1 shows the location of the field and photos of potato
crops for different growth stages. From each growth stage, 80 groups of data were collected, in which
6 groups were invalid because of the influence of low vegetation coverage. Thus, 74 groups of data
were retained at S1. Thus, the modeling dataset had a total of 314 groups of reflectance spectra.
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Table 1. Information of potato crop samples.

Growth Stage Potato-Crop Characteristics
Samples

Modelling Testing

S1 Appearing flower buds, having about 12 leaves 74 40
S2 Appearing flowers 80 40
S3 Flowers falling, stems and leaves aging 80 40
S4 Stems and leaves withering, upper leaves turning yellow 80 40

Figure 1. Location of the field and photos of potato crops for different growth stages.

In 2020, the testing experiment was conducted at the Shang Zhuang Experiment Station of China
Agricultural University in Beijing, China (40◦08′12” N, 116◦10′44” E), as shown in Figure 1. The cultivar
of the potato crop was Dutch. Due to the epidemic influence in the spring of 2020, the potato crop
was planted on 5 June 2020, almost two months later than in 2018, and spectral data were collected on
July 11, July 21, July 30 and August 12, respectively. N application and field management practices
were similar to experiments in 2018. In addition, the sampling and data collection methods were also
the same as in 2018. Although the growth stages of experiments might not exactly match the stages
in 2018, collected data could be used to test the effectiveness of proposed methods on the analysis of
chlorophyll concentration in potato canopy. Thus, a total of 160 samples were collected from four
growth stages as a testing dataset in this paper. Details about the potato growth stages and sampling
dates are given in Table 1.

Regarding spectral measurements and leaf sampling, one potato plant was randomly selected
in each plot, for which canopy spectral data were collected three times and the average value was
calculated to represent the canopy spectrum of the sample. The reflectance spectra were measured by
using a ASD FieldSpec-HandHeld-2 spectrometer (Analytical Spectral Devices, Boulder, CO, USA),
whose measured wavelength range is 325–1075 nm with step interval of 1 nm, spectral resolution
< 3 nm, integration time ≥ 8.5 ms, and standard field-of-view of 25◦. There were 751 wavelength
variables per spectrum. During data collection, the ASD device was located directly above the
sample plant canopy, and the vertical distance from sensor to canopy was about 30 cm. According to
geometric operation, the sensor footprint on the potato plant canopy was about 0.02 m2. The spectral
reflectance was corrected by a standard calibration whiteboard (Spectralon Standard Correction Board,
Labsphere Co., Ltd., North Sutton, NH, USA) every 10 min to eliminate the interference of variation in
solar-illumination intensity spectral data.

2.1.2. Chlorophyll Content Measurement

Three leaves in each sample plant canopy were randomly collected and were put into a freshness
protection bag, which was numbered and stored in a portable thermal insulation box. Then, the chlorophyll
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concentration was determined based on the standard chemical methods in the laboratory [44]. Each potato
leaf was cut into pieces. About 0.04 g pieces of each leaf were placed in a 25 mL mixture of acetone and
anhydrous ethanol to extract chlorophyll. The volume ratio of acetone to anhydrous ethanol was 2:1.
The extraction solution was placed in darkness for 24 h. The absorbance at 645 and 663 nm of extraction
solution was then measured using a visible-infrared spectrophotometer (UV-752, Shimadzu, Kyoto, Japan)
that could measure in the wavelength range of 200–1000 nm based on single beam optical system with step
interval of 0.1 nm, optical system of a single beam, light source of a tungsten lamp and deuterium lamp,
and spectral bandwidth of 4 nm. Chlorophyll concentration was calculated by the following equations:

Ca = 12.72A663 − 2.59A645 (1)

Cb = 22.88A645 − 4.67A663 (2)

Ct = Ca + Cb (3)

where A645 and A663 are the absorbance at 645 and 663 nm, respectively; Ca and Cb are the concentrations
of chlorophyll-a and chlorophyll-b, respectively; and Ct is the total chlorophyll concentration, whose unit
is mg/L in the study.

2.2. Data Analysis

The main data-processing steps are shown in Figure 2. The first part was to convert original
reflectance spectra (Ref), which included SNV reflectance (SNV) data obtained from original reflectance
by standard normal variate correction, and the wavelet features (WFs) were obtained by continuous
wavelet transform (CWT). The second part was to establish analysis models, including PLS models
based on the full spectral wavelengths and CARS-PLS models based on the sensitive wavelength
variables selected by the CARS algorithm. The third part was to compare the chlorophyll analysis
performance of various models.

Selecting sensitive variables 
(C

A
R

S algorithm
)

 M
odeling     (PLS regression)

Original reflectance 

(Ref)

SNV reflectance 

(SNV)

Wavelet features
(WFs)
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Spectral data 
and  conversion Sensitive Ref 
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Sensitive SNV 
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Spectral features
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 SNV-CARS-PL model
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CARS-PLS models

 Ref-PLS model
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by CWT-CARS-PLS method

Comparing various models 

and selecting the optimal 
model 
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the optimal model using 
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Figure 2. Flowchart of the main data processing.

2.2.1. SNV Correction

SNV is a certified method that can remove both additive and multiplicative effects in spectral
data [45,46]. In SNV, each spectrum was being centered and then scaled by the corresponding standard
deviation. It could be calculated with Equation (4):

zi =
xi − μ
σ

(4)

where xi is the reflectance of the i nm, μ is the average reflectance of a spectrum, σ is the standard
deviation of a spectrum, zi is the reflectance after SNV of the i nm. In this work, the reflectance spectra
corrected by SNV were denoted as SNV reflectance (SNV).
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2.2.2. CWT

Mathematically, CWT is a liner operation that performs the convolution of reflectance spectrum
with a scaled and shifted mother wavelet. The transform process is shown as Equation (5):

W f (a, b) =
1√
a

∫ +∞

−∞
f (λ)•ψ(λ− b

a
)•dλ (5)

whereψ(λ) is the mother wavelet function, f (λ) is the reflectance spectrum, and W f (a, b) is the wavelet
coefficient (denoted as WFa,b) for the scaling factor a and the shifting factor b. The scaling factor
indicates the width of the scaled mother wavelet. The scaling factor used in this study was at dyadic
scales 2n(n = 1, 2, · · · , 10), denoted as scale 1, scale 2, . . . , scale 10, sequentially. The shifting factor
was the central wavelength of the shifted mother wavelet. The physical and chemical components
of crops had characteristic spectral absorption. b could be used to capture the peak and valley of an
absorption feature, and the scaling factor a could be comparable with the width of an absorption feature.
A crop leaf reflectance spectrum in the 325–1075 nm range consisted of a background continuum
on which a number of absorption features attributable to pigments, water, and dry matter were
superimposed [30]. Previous research had suggested that the shape of the absorption features is similar
to that of the Gaussian function [47] or a combination of multiple Gaussian functions [48]. Thus,
the second derivative of Gaussian, also known as the Mexican Hat, was used as the mother wavelet
function in this study. All CWT operations were accomplished using the IDL 6.3 Wavelet Toolkit
(ITT Visual Information Solutions, Boulder, CO, USA).

The one-dimensional SNV spectra were transformed into two-dimensional wavelet power map
data composed of scaling (frequency scale) and shifting (spectral wavelength) factors by using the CWT.
According to previous literature, the scaling factor from 1 to 3 belongs to low frequency, the scaling
factor from 4 to 7 belongs to middle frequency, and the scaling factor from 8 to 10 belongs to high
frequency [30–34]. The sensitive spectral variables of potato chlorophyll could be selected from these
wavelet coefficients.

2.2.3. CARS

CARS, proposed by imitating the "survival of the fittest" principle of the Darwinian theory of
evolution, is an efficient strategy to select sensitive variables depending on the absolute values of
regression coefficients (|α|) [43]. The steps of CARS can be summarized as follows [49,50]. First,
|α| values are computed and used as indices to evaluate the importance of each variable. Second, the N
subsets are selected by N Monte Carlo sampling runs based on the |α| of each variable. Third, a two-step
procedure involving an exponentially decreasing function (EDF) and adaptive reweighted sampling
(ASR) is used to select sensitive variables. In this step, EDF is utilized to remove the variables whose
regression coefficients are relatively small in each sampling run. Following a decrease in EDF-based
enforced variables, ARS is used to further eliminate the variables through a competitive way. Finally,
the above three steps are repeated until the standard error of cross-validation is obtained, and then the
optimal subset of variables is selected.

2.2.4. PLS Method

The PLS regression method proposed by Geladi [51] was used to solve multicollinearity problems
among variables. PLS regression simultaneously executed principal component decomposition on the
spectral reflectance matrix and the leaf chlorophyll concentration matrix [52], which were correlated in
the decomposition process. A linear regression model was then established between them to analyze the
chlorophyll concentration of potato leaves. To prevent model overfitting, internal interaction verification
was performed by leave-one-out cross-validation (LOOCV), and the optimal latent variation was
selected based on the largest coefficient of determination of the cross-validation set (R2

cv). The program
package of SNV, CARS, and PLS algorithms is available at the http://www.libpls.net/index.php.
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2.2.5. CWT-CARS-PLS

A new spectral data analysis method named CWT-CARS-PLS was proposed in this study.
The sensitive variables selected by CARS can remove the uninformative variables and enhance the
PLS model performance. Thus, CARS combined with PLS regression (CARS-PLS) was an effective
algorithm to establish the quantitative analysis model. CWT can also transform the one-dimensional
SNV spectra into two-dimensional wavelet coefficients. Regarding decomposition, CWT can reduce the
high-frequency noises of spectral data and extract the valuable spectral variables. Then, CWT combined
with CARS-PLS (CWT-CARS-PLS) can deeply identify sensitive WFs and establish a high-performance
analysis model. The proposed CWT-CARS-PLS algorithm is briefly introduced in Figure 3. All data
calculations including SNV correction, PLS, CARS-PLS, and CWT-CARS-PLS were completed using
MATLAB R2018a software.

 

Figure 3. Flowchart of Continuous wavelet transformation-competitive adaptive reweighted sampling-
partial least-square (CWT-CARS-PLS) algorithm.

2.3. Model Evaluation Indicators

To establish the analysis model, the modelling dataset was divided into a calibration and a
validation set through sample-set partitioning based on the joint X-Y distance (SPXY) algorithm.
This algorithm can comprehensively differentiate independent and dependent variables among
samples [53,54].

The calibration set (200 samples) was used to train the PLS model. The validation set (114 samples)
was used to verify the established analysis model’s performance. The performance of the PLS model
was evaluated with the determination coefficient of validation set (R2) and the root–mean–square error
(RMSE) as follows:

R2= 1−
∑n

i=1 (yi − y∗i )
2∑n

i=1 (yi − y)2 (6)

RMSE =

√∑n
i=1 (yi − y∗i )

2

n
(7)

where yi and y∗i are the measured and predicted chlorophyll concentrations for sample i, respectively.
y is the average value of measured chlorophyll, and n is the number of samples applied for the
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calibration or validation set. The difference value (R2
c −R2

cv) between the R2 of calibration set (R2
c ) and

R2 of cross-validation (R2
cv) can be used as an indicator to judge the model stability, and a smaller value

of R2
c −R2

cv value implies a more stable model. Furthermore, the R2 of validation set (R2
v) and the RMSE

of validation set (RMSEV) can be utilized to evaluate the PLS model accuracy, and a higher R2
v and

smaller RMSEV indicate a better model with stronger predictive capability.

3. Results

3.1. Statistics on Chlorophyll Concentration of Modeling Data

Chlorophyll concentrations were measured from S1 to S4. The average value at each stage was
calculated and used to indicate the dynamic changes of potato growth. Results are shown in Figure 4.
Chlorophyll concentration increased from 28.12 mg/L at S1 to 31.04 mg/L with the highest value at S2,
and then decreased gradually to 15.36 mg/L at the S4 stage.

Figure 4. Statistical box line graph of chlorophyll concentration during potato growth stage for
modeling dataset collected in 2018.

The results of the dataset partitioned by the SPXY algorithm were shown in Table 2, which shows
the statistical description of the sample set for each growth stage and the combination of data from all
four stages. Samples from all growth stages were combined to represent the changes in chlorophyll
concentration. The modelling dataset for the chlorophyll concentration analysis model consisted
of calibration and validation sets with 200 and 114 samples, respectively. The maximum value
of the calibration set (41.20 mg/L) was larger than that of the validation set (37.46 mg/L), and the
minimum value of the calibration set (7.66 mg/L) was smaller than that of the validation set (8.20 mg/L).
The division result by SPXY was reasonable, and the calibration set could strongly represent the
entire dataset.

222



Remote Sens. 2020, 12, 2826

Table 2. Chlorophyll concentration statistics of modeling dataset.

Samples Data Set Sample Number Max (mg/L) Min (mg/L) Mean (mg/L) STD (mg/L)

S1
All 74 40.77 17.64 28.12 5.05

Calibration 50 40.77 17.64 28.27 5.31
Validation 24 33.12 19.64 27.48 3.86

S2
All 80 41.20 16.30 31.04 5.81

Calibration 50 41.20 16.30 30.23 6.29
Validation 30 37.46 25.26 33.45 3.04

S3
All 80 35.63 13.70 22.00 4.18

Calibration 50 35.63 13.70 22.04 4.65
Validation 30 26.47 16.39 21.86 2.36

S4
All 80 32.25 7.66 15.36 5.45

Calibration 50 32.25 7.66 15.73 5.93
Validation 30 20.69 8.20 14.24 3.55

All stages
All 314 41.20 7.66 24.05 7.95

Calibration 200 41.20 7.66 24.07 7.95
Validation 114 37.46 8.20 24.00 8.00

3.2. Spectral Data Analysis

3.2.1. Analysis of Spectral Response during Growth

Figure 5a shows the Ref curves of the potato crop canopy. Serious scattering effects were observed
in the Ref spectra among samples because of the different collection times and light reflection paths.
After SNV correction, the noise caused by the scattering effects was significantly eliminated, and the
dispersion among spectral curves was significantly reduced, as shown in Figure 5b. Accordingly,
the SNV spectra were used for subsequent continuous wavelet transformation and modeling analysis.

 

(a) 
 

(b) 

Figure 5. Reflectance spectra of potato-crop canopy of four growth stages. (a) Original reflectance (Ref)
spectra; (b) standard normal variate (SNV) reflectance spectra.

Furthermore, we examined the dynamic changes between different stages based on the average
SNV spectrum of each stage. Figure 6 shows the reflectance of each stage. Their trends were
similar in the visible (400–760 nm) and near-infrared (761–1000 nm) regions. In the visible region,
the minimum reflectance appeared near 400 and 680 nm due to a strong absorption by the pigment.
In the near-infrared region, the reflectance sharply increased from 711 nm to 760 nm because a reflective
surface cavity existed in the spongy structure of the mesophyll. Although strong reflection existed in
761–1000 nm as a horizontal platform, a weak reflectance valley appeared near 970 nm because of the
weak absorption of leaf water content.
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Figure 6. Average SNV spectral curve of potato crop canopy per growth stage.

However, significant changes were observed in some specific bands during growth.
Within 530–640 nm, the SNV spectral reflectance increased with growth. The average SNV reflectance
at S4 was significantly lower than that at the others, whereas the average SNV reflectance of S2 and S3
were very close. Within 740–880 nm, the SNV spectral reflectance decreased gradually. Small reflectance
peaks were observed near 763 nm at S2–S4 stages. In the bands of 910–960 nm, the average value at S1
was significantly lower than those at the other stages.

3.2.2. Analysis of Wavelet Coefficient Curves under Different Decomposition Scales

The SNV spectral curves were decomposed into wavelet coefficients by CWT under
10 decomposition scales. The CWT results for some of the samples are shown in Figure 7. We observed
that with increased scale, the wavelet coefficients gradually enlarged and the high-frequency noises
were gradually reduced. Thus, the spectral curves were smoothed, and some characteristic absorption
peaks were amplified under suitable decomposition scales, as shown in Scales 1–6 (Figure 7). However,
when the decomposition scales were too large, the spectral curve became excessively smoothed and
caused the the specific characteristic absorption peaks to disappear, which was not conducive to
quantitative analysis, as shown in Scales 7–10 (Figure 7).

 

Figure 7. Wavelet coefficient curves under different decomposition scales.

3.3. Correlation of Spectra and Wavelet Features with Chlorophyll Concentration

3.3.1. Correlation Analysis between Chlorophyll Concentration and Spectra

Figure 8 shows the correlation coefficient curves between the chlorophyll concentration and Ref
and SNV. Compared with Ref, the correlation coefficient between SNV and chlorophyll concentration
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was higher overall, illustrating that SNV correction reduced the noise of the original spectra and
improved the analysis performance of spectral data. Furthermore, the correlation relationship between
the chlorophyll concentration and SNV was analyzed. Within the ranges of 387–509, 519–633,
and 744–844 nm, the absolute values of the correlation coefficient (|r|) were higher than 0.6. The peak
value of the positive correlation occurred at 678 nm, and the r was 0.411. The peak value of negative
correlation occurred at 702 nm, and the r was −0.715. Within 845–917 nm, the positive correlation
gradually decreased before becoming a negative correlation, and then |r| gradually increased.

 
Figure 8. Correlation coefficient curve between chlorophyll concentration and spectra.

To further understand how the spectra changed with potato growth, correlation analysis was
conducted between SNV and chlorophyll concentration from S1 to S4. Figure 9 shows the correlation
coefficient curves. The chlorophyll concentration was correlated positively with the reflectance spectra
within the range of 400–500 and 650–700 nm. However, a negative correlation existed between them
within 510–630 and 701–750 nm. Furthermore, four band regions were highly correlated, including
400–510, 521–610, 701–740, and 761–920 nm. Overall, the correlation coefficients of S1–S4 had significant
differences within 400–600, 601–620, and 700–902 nm. Conversely, the curve trend of the correlation
coefficients of S2 and S3 was very similar.

 
Figure 9. Correlation coefficient curve between chlorophyll concentration and SNV.

3.3.2. Correlation Analysis between Chlorophyll and Wavelet Features

The correlation coefficients between the chlorophyll and wavelet coefficients were calculated in the
decomposition Scales 1–10 to draw the correlation coefficient distribution map, as shown in Figure 10.
The correlation coefficient was represented by different colors and color values of each pixel in the
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map, which could help select the high correlation WFs. We observed that the correlation coefficients
varied in different decomposition scales (scaling factors) and wavelength locations (shifting factors).

 
Figure 10. Correlation coefficient map between wavelet features and growth stages.

3.3.3. Comparison of Correlation Coefficient

The highest correlation coefficients of Ref, SNV, and WFs are shown in Table 3. We observed
that the correlation coefficient of SNV (r = 0.75) was higher than Ref (r = 0.50), which revealed that
SNV correction could effectively remove the noise of spectral data. For WFs, the correlation coefficient
gradually increased form Scale 1 to Scale 3, and then the correlation coefficient gradually decreased.
The strongest correlation was found in Scale 3 located in 524 nm (r = −0.82), and the Ref had the
weakest correlation (r = −0.50) located in 698 nm.

Table 3. Correlation coefficient (r) between chlorophyll and original reflectance, SNV reflectance, and
wavelet features.

Feature Location
Highest r

Wavelength (nm)

Ref 698 −0.50
SNV 761 0.75

Scale 1 687 −0.78
Scale 2 739 0.81
Scale 3 524 −0.82
Scale 4 744 0.78
Scale 5 755 0.79
Scale 6 786 0.75
Scale 7 547 −0.74
Scale 8 515 −0.71
Scale 9 400 0.70
Scale 10 1038 −0.70

Moreover, the correlation coefficients of WFs in Scales 1–6 were higher than those of SNV,
illustrating that CWT could enhance the correlation of chlorophyll by decomposing spectral data.
The correlation coefficients of WFs in Scales 7–10 were also lower than those of SNV, further revealing
that spectral data decomposing in too large scales were no longer helpful for quantitative analysis.
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3.4. Establishment and Comparison of Chlorophyll Analysis Models

3.4.1. Sensitive Chlorophyll Variables Selected Using CARS

For the CWT-CARS-PLS, the sensitive WFs in each decomposition scale were selected, and the
chlorophyll analysis PLS models were established for every scale. For comparison with CWT-CARS-PLS,
the sensitive wavelengths were selected from Ref and SNV data to establish the Ref-CARS-PLS and
SNV-CARS-PLS, respectively. The LOOCV was always operated to obtain the optimal principle
components (PCs) in establishing the PLS models. The number of variables and PCs of various PLS
models are shown in Table 4. For the chlorophyll analysis models, the maximal number of variables
was 227 in Scale5-CARS-PLS model, and the minimal number of variables was 31 in Scale1-CARS-PLS.
However, the minimal number of PCs was three in Scale3-CARS-PLS.

Table 4. Variable information of various CARS-PLS models.

Models Variables Number PCs Models Variables Number PCs

Ref-CARS-PLS 61 21 Scale 5-CARS-PLS 227 21
SNV-CARS-PLS 64 17 Scale 6-CARS-PLS 48 17

Scale 1-CARS-PLS 31 12 Scale 7-CARS-PLS 33 15
Scale 2-CARS-PLS 61 13 Scale 8-CARS-PLS 54 18
Scale 3-CARS-PLS 57 3 Scale 9-CARS-PLS 57 17
Scale 4-CARS-PLS 178 19 Scale 10-CARS-PLS 33 28

The location of sensitive variables selected from Ref, SNV, and WFs in Scales 1–10 by using CARS
algorithm are shown in Figure 11. All sensitive wavelengths selected by CARS were distributed
in the visible and near-infrared regions. However, for the calibration model established by various
sensitive variables, the predictive accuracy of Scale3-CARS-PLS model was the optimum, as shown
in Figure 12a. Furthermore, the sensitive WFs of Scale3-CARS-PLS were analyzed through the leaf
information. The number of variables of Scale3-CARS-PLS was 57. These sensitive WFs were located at
346, 389, 419, 425, 426, 431, 435, 436, 437, 520, 523, 535, 546, 547, 563, 579, 580, 590, 591, 620, 625, 661, 662,
667, 684, 685, 688, 690, 693, 698, 716, 717, 733, 739, 742, 751, 752, 767, 781, 811, 824, 825, 848, 857, 858,
875, 890, 909, 919, 929, 939, 948, 960, 963, 968, 973, and 985 nm. Among them, the WFs located in the
visible region could reflect the leaf pigment. The WFs located in near-infrared regions could reflect the
leaf structure and other leaf substance; for instance, the WF at 929 nm reflected the leaf fat, the WF at
973 nm near 970 nm reflected the leaf water content, and the WF at 985 nm reflected leaf starch.

 
Figure 11. Location of sensitive variables selected from Ref, SNV, and wavelet features (WFs) in Scales
1–10 by using the CARS algorithm.
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(a) (b)  

Figure 12. Comparison of model performance (R2
c ,R2

c −R2
cv ) between PLS and CARS-PLS established

by Ref, SNV, and WFs in Scales 1–10. (a) R2
c of PLS and CARS-PLS; (b) R2

c −R2
cv of PLS and CARS-PLS.

3.4.2. Comparison of the Performance of PLS and CARS-PLS Models

The chlorophyll analysis models were established using the CARS-PLS method, and the modeling
results (R2

c and R2
c − R2

cv) are shown in Figure 12. To highlight the advantages of selecting sensitive
variables by CARS, the analysis models were also established using the PLS method. Figure 12a shows
that for all variable categories, the R2

c of CARS-PLS was higher than that of PLS, illustrating that CARS
could effectively eliminate uninformative variables and improve model accuracy. The R2

c − R2
cv of

CARS-PLS was lower than that of PLS, as shown in Figure 12b, which revealed that CARS could reduce
model complexity and enhance model stability.

Furthermore, the R2
c of SNV-CARS-PLS was higher than that of Ref-CARS-PLS. The R2

c of
CWT-CARS-PLS models established based on WFs was higher than those of models based on Ref and
SNV. For CWT-CARS-PLS, the R2

c gradually increased from Scale 1 to Scale 3 and then R2
c gradually

decreased. Based on the value of R2
c −R2

cv, the stability of SNV-CARS-PLS was stronger than that of
Ref-CARS-PLS. For CWT-CARS-PLS models, stability gradually strengthened from Scale 1 to Scale 3
and then gradually weakened. The stability of CARS-PLS models based on Scales 1–6 was stronger
than those of Ref-CARS-PLS and SNV-CARS-PLS, which was consistent with the correlation analysis
in Section 3.3. The above results demonstrated that the CWT could deeply identify spectral data to
improve model performance.

3.5. Validation of Chlorophyll Analysis Models

The validation results of various chlorophyll analysis models are shown in Figure 13. The same as
the calibration models, the CARS-PLS models had a higher determination coefficient of validation
set (R2

v) than the PLS models, and the CARS-PLS models had a smaller RMSEV than the PLS
models primarily because the invalid variables were removed by the CARS algorithm. Furthermore,
CWT-CARS-PLS models under Scales 2–6 had higher R2

v values (R2
v > 0.81) and smaller RESEV values

(RMSEV < 3.34 mg/L) than the Ref-CARS-PLS (R2
v = 0.65, RMSEV = 4.11 mg/L) and the SNV-CARS-PLS

(R2
v = 0.75, RMSEV = 3.55 mg/L) models. Moreover, Scale3-CARS-PLS showed the highest R2

v value
of 0.85 and the smallest root–mean–square error of cross-validation (RMSEV) value of 2.77 mg/L,
as shown in Figure 14. These chlorophyll concentration values were evenly distributed on both sides
of the 1:1 line, further illustrating that the proposed Scale3-CARS-PLS model had good stability.
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(a)  

 
(b)  

Figure 13. Validation results of PLS and CARS-PLS established by Ref, SNV, and WFs in Scales 1–10.
(a) R2

v of PLS and CARS-PLS models; (b) root–mean–square error of cross-validation (RMSEV) of PLS
and CARS-PLS.

 

Figure 14. Predicted value of validation set for Scale3-CARS-PLS model.

3.6. Testing of the Developed Scale3-CARS-PLS Model

The testing set data collected in 2020 were used to test the stability and applicability of the
developed Scale3-CARS-PLS model. The chlorophyll concentration of testing set data ranged from
8.81 mg/L to 39.59 mg/L, and the average content was 19.18 mg/L. The chlorophyll concentration range
of the test set was smaller than that of the modeling set, which ranged from 7.66 mg/L to 41.20 mg/L.

The canopy reflectance spectra of the testing dataset (160 samples) were corrected by standard
normal variate to obtain the SNV reflectance, then the CWT was performed on the SNV reflectance
and the CARS algorithm was used to select the sensitive WFs under scale 3, and then the WFs
were substituted into the Scale3-CARS-PLS model to predict chlorophyll concentration. In order to
highlight the performance of Scale3-CARS-PLS, the reflectance spectra of the testing dataset were
substituted into Ref-PLS and Ref-CARS-PLS models, and the SNV reflectance data were substituted
into the SNV-CARS-PLS model. The scatter plot of 1:1 was created, as shown in Figure 15, to visually
demonstrate the chlorophyll concentration prediction results. The performance of Ref-CARS-PLS was
better than Ref-PLS, which showed that CARS could eliminate the valueless variables to improve
the model analysis ability. The model performance of SNV-SCAR-PLS was further enhanced due
to the SNV pre-processing by correcting the scattering effect. Then, the Scale3-CARS-PLS model
showed the strongest R2 of 0.69 and the smallest RMSE value of 3.36 mg/L, which illustrated that the
Scale3-CARS-PLS model possessed good analysis capability, and the spectral analysis method had
good applicability. Figure 15d shows that these chlorophyll values were evenly distributed on both
sides of the 1:1 line, further illustrating that the proposed Scale3-CARS-PLS model had good stability.
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(a)  
 

(b) 

(c)
 

(d)  

Figure 15. Testing results of the various models. (a) Ref-PLS; (b) Ref-CARS-PLS; (c) SNV-CARS-PLS;
(d) Scale3-CARS-PLS.

4. Discussion

Spectroscopy is a rapid and non-destructive method of gathering crop-pigment information [55,56].
In this study, the spectral characteristic response and chlorophyll concentration change at different
stages were analyzed and discussed. Results demonstrated that the average reflectance was close
in S2 and S3, and that the correlation curves between the reflectance and chlorophyll concentration
of S2 and S3 had similar change trends. According to the potato phenology, a new tuber forms by
stolons after the plant flowers at S2 and the tuber expands at S3. Consequently, nutrient availability
and balance are transferred from aboveground stems and leaves to underground tubers during these
periods. This phenomenon may explain why some of the plants have similar physiology status and
spectral responses than others [57].

4.1. Abilities of Denoising and Sensitive-Variable Mining of CWT at Different Decomposition Scales

SNV can effectively reduce scattering noise to enhance the analysis performance of spectral data [45,46].
After SNV correction, dispersion among spectral curves was significantly reduced (Figure 5), and the
correlation between spectral data and chlorophyll concentration was enhanced (as shown in Figure 8).
Accordingly, SNV spectra were used for further CWT and modeling analysis.

After CWT, the spectral reflectance was transformed into the wavelet coefficients, as shown
in Figure 7. With increased decomposition scales from 1 to 6, the wavelet coefficient curve was
smoothed, and some characteristic absorption peaks amplified. Then, the curve was excessively
smoothed, resulting in the disappearance of the characteristic absorption location. The above content
was consistent with previous literature reporting that WFs in the middle- and low-frequency scales
could capture the absorption characteristics of the physical and chemical substances of crops [33,58]
and effectively eliminate the high-frequency noise of spectral data [36,59]. High-frequency WFs could
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remove the absorption features and could not efficiently analyze the physiological and biochemical
compositions [60].

The absolute value of the highest correlation coefficient between chlorophyll concentration and
WFs under Scales 1–6 was higher than SNV (0.75), illustrating that the CWT could enhance the
correlation of chlorophyll concentration by decomposing spectral data. Previous studies [30,34,59–61]
have reported the same results, such as Wang [59] who indicated that the correlation between
wavelet coefficients and pigments was significantly higher than that of vegetation index and sensitive
wavelengths. Furthermore, with increased decomposition scales from 1 to 3, the absolute value of
the highest correlation coefficient of WFs increased from 0.78 to 0.82 and then gradually decreased to
0.70, illustrating that high-frequency WFs were not conducive to quantitative analysis [32,33,60,61].
WFs under Scale 3 exhibited the strongest correlation relationship with chlorophyll concentration.

4.2. Uninformative Variable Elimination by CARS Algorithm

Given that a spectrometer collects reflectance data based on near-contiguous spectral bands,
the selection of sensitive wavelengths or variables is one of key steps in the chlorophyll analysis to
solve multiple mutual lineal problems of overfitting and redundancy [62]. Thus, wavelengths and
WFs need be selected by effective algorithms to remove the uninformative variables and to enhance
model performance [59,63]. The CARS developed based on the model population analysis strategy [64]
can be used to consider the contribution of each variable to the analysis model to select informative
spectral variables. Relative to the PLS models, the number of input variables of CARS-PLS models was
reduced significantly, and the CARS-PLS models possessed more excellent prediction ability, as shown
in Figures 12a and 13. Overfitting frequently occurred during the modeling process, caused by the
increasing number of model variables, which affected the stability and accuracy of the PLS model [65].
Accordingly, internal cross-validation was performed in this study. The difference in the determination
coefficient of calibration and cross-validation sets (R2

c −R2
cv) was used as an indicator to determine the

model stability [66]. As shown in Figure 12b, the R2
c −R2

cv values of the CARS-PLS models were lower
than those in the PLS models, further illustrating that the CARS can effectively eliminate redundant
variables and improve the analysis of the model’s stability.

4.3. Chlorophyll Content Analysis Capability of WFs under Different Decomposition Scales

We further analyzed the performance of various CARS-PLS models. From the point of view of
model stability, the R2

c −R2
cv values of the CARS-PLS models based on Scales 1–6 were smaller than

those of Ref-CARS-PLS and SNV-CARS-PLS, and the R2
c −R2

cv value of Scale3-CARS-PLS model was
the smallest, showing that Scale3-CARS-PLS model had the strongest stability. From the point of view
of prediction capability of the model, the RMSEV values of CARS-PLS models based on Scales 2–6
were smaller than those of SNV-CARS-PLS model, and Scale3-CARS-PLS showed the strongest R2

v
value of 0.85 and the smallest RMSEV value of 2.77 mg/L, as shown in Figure 14. For WFs under Scale
3, 57 sensitive WFs were selected by the CARS algorithm, whose locations were evenly distributed
in the visible (37 variables) and near-infrared (20 variables) region, as shown in Figure 11. Previous
studies have reported that the spectral data in the visible region can analyze pigment content [67].
Moreover, the spectral data in the near-infrared region can reflect other substances’ information and
crop-canopy structure, which can improve the robustness of the chlorophyll analysis model [68].

Moreover, previous studies reported the detection of chlorophyll concentration in crops based on
spectral wavelengths or/and spectral indices. Sun [28] selected 11 sensitive wavelengths for analyzing
the chlorophyll concentration of potato leaf, with the R2

v of the model of 0.77. Tao [69] screened the red
edge position using the linear extrapolation method for estimating the chlorophyll concentration of
potato with R2

c of 0.87. However, the R2
c and R2

v of the analysis model developed by coupling CWT
with CARS methods in this paper is 0.93 and 0.86, respectively. Above content demonstrated that CWT
could deeply identify spectral data to improve model performance, and that the sensitive WFs under
Scale 3 possessed the best excellent prediction capability for chlorophyll concentration of potato crops.
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4.4. Generalizability of This Study to Future Works

A comprehensive analysis of testing results showed that spectral data could be processed using
CWT. Sensitive variables were selected using CARS, which was suitable for model-variable optimization
and prediction-capability improvement. Finally, the analysis performance of the Scale3-CARS-PLS
model was tested using another variety of potato crop, the R2, and RMSE was 0.69 and 3.36 mg/L,
as shown in Figure 15, which demonstrated that the Scale3-CARS-PLS model possessed good stability
and excellent applicability. Previous studies reported that the chlorophyll concentration is significantly
correlated with the concentration of nitrogen [5,70]. Therefore, the study could provide a theoretical
support for precision nitrogen management in the potato field, and a method reference for large-scale
remote sensing analysis of potato chlorophyll concentration.

However, this method was based on specific spectral data for potato crops. The restrictions
were based on the existence of other datasets or potato varieties [22,71]. Therefore, more datasets
from wide-ranging potato varieties, planting patterns, and experimental fields should be collected to
develop a stable and accurate classification model using CWT-CARS-PLS method.

5. Conclusions

We presented an effective method for analyzing the chlorophyll concentration of potato plants
through canopy spectroscopy. The dynamic responses of canopy spectra at different growth stages
were analyzed. The spectral characteristics were found to significantly differ between S1, S2–S3, and S4.
However, the SNV spectral reflectance curves in S2 and S3 were similar. The performances of Ref, SNV,
WFs under different decomposition scales, CARS-PLS, and CWT-CARS-PLS in analyzing chlorophyll
concentration were compared based on the model results. The CARS-PLS model established by WFs
under different scales obtained by CWT exhibited the most excellent analysis ability and reliability.
Scale3-CARS-PLS model had fewer variables, smallest R2

c −R2
cv value, strongest R2

v, and weakest RMSEV
for chlorophyll analysis. The analysis performance of the Scale3-CARS-PLS model was tested using
another variety of potato crop with a satisfactory result. Based on spectral data, the WFs under Scale 3
showed excellent chlorophyll-content prediction capability. Thus, the proposed CWT-CARS-PLS was a
potentially accurate and efficient method of analyzing the chlorophyll concentration of potato crops.
This study could provide a method reference for large-scale remote sensing analysis of chlorophyll
concentration and a theoretical support for precision nitrogen management of potato crops.
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Abstract: Rapid and accurate measurement of high-resolution soil total nitrogen (TN) information can
promote variable rate fertilization, protect the environment, and ensure crop yields. Many scholars
focus on exploring the rapid TN detection methods and corresponding soil sensors based on spectral
technology. However, soil spectra are easily disturbed by many factors, especially soil moisture and
particle size. Real-time elimination of the interferences of these factors is necessary to improve the
accuracy and efficiency of measuring TN concentration in farmlands. Although, many methods
can be used to eliminate soil moisture and particle size effects on the estimation of soil parameters
using continuum spectra. However, the discrete NIR spectral band data can be completely different
in the band attribution with continuum spectra, that is, it does not have continuity in the sense of
spectra. Thus, relevant elimination methods of soil moisture and particle size effects on continuum
spectra do not apply to the discrete NIR spectral band data. To solve this problem, in this study,
moisture absorption correction index (MACI) and particle size correction index (PSCI) methods were
proposed to eliminate the interferences of soil moisture and particle size, respectively. Soil moisture
interference was decreased by normalizing the original spectral band data into standard spectral
band data, on the basis of the strong soil moisture absorption band at 1450 nm. For the PSCI
method, characteristic bands of soil particle size were identified to be 1361 and 1870 nm firstly. Next,
normalized index Np, which calculated wavelengths of 1631 and 1870 nm, was proposed to eliminate
soil particle size interference on discrete NIR spectral band data. Finally, a new coupled elimination
method of soil moisture and particle size interferences on predicting TN concentration through
discrete NIR spectral band data was proposed and evaluated. The six discrete spectral bands (1070,
1130, 1245, 1375, 1550, and 1680 nm) used in the on-the-go detector of TN concentration were selected
to verify the new method. Field tests showed that the new coupled method had good effects on
eliminating interferences of soil moisture and soil particle size.

Keywords: discrete NIR spectral band data; soil total nitrogen concentration; moisture absorption
correction index; particle size correction index; coupled elimination

1. Introduction

Excessive application of commercial fertilizers has been cited as a source of contam-
ination of surface and groundwater [1–4]. As one of the important parts of precision
agriculture (PA), based on the needs of the plant and the soil nutrients state, variable rate
(VR) fertilization can reduce the overuse of manure in the farmlands to protect the soil
and environment [5–8]. Rapid, real-time, and accurate acquisition of high-resolution soil
parameter information is the basis of applying VR fertilization operation [9].

As the main nutrient for plant and soil, soil total nitrogen (TN) is one of the key
factors that determine plant nutrient levels and soil fertility [10,11]. The estimation of TN
concentration status is crucial from agricultural and environmental points of view [12–14].
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Traditional wet chemical methods of measuring TN concentration are time-consuming,
costly, have low efficiency, and also cause environmental pollution due to their consumption
of harmful chemicals [15–17]. Spectral analysis technology is a fast, nondestructive, on-
line, and free pollution method that shows an increasing development potential in TN
concentration measurement [18–21]. Many researchers focused on exploring rapid TN
detection methods and corresponding soil sensors based on spectral technology in the
past four decades. In the 1980s, Dalal and Henry [22] showed it is possible to measure
TN concentration through near-infrared (NIR) reflectance spectroscopy. Since then, many
scholars have succeeded to predict TN concentration based on NIR reflectance spectroscopy
in the laboratory [23–25].

However, collecting soil samples in the field requires a lot of human labor. It will
also take a relatively long time to obtain the measurement results [17]. Thus, estimation of
TN concentration through NIR reflectance spectroscopy in the laboratory does not satisfy
the requirement of VR fertilization operation. Simultaneously, many scholars focus on
developing soil parameter sensors to supply rapid and high-resolution acquisition of soil
parameters. Sudduth and Hummel [26] designed and tested a portable, NIR spectropho-
tometer intended for in-field use. Mouazen et al. [27,28] developed a soil sensing device
with the measuring range of the spectrometer from 306.5 to 1710.9 nm. Decreasing the
capital is significant for the development of soil sensors. Thus, cheaper light-emitting
diodes (LEDs), laser diodes, and tungsten halogen light sources are used as the alternative
component of the spectrometer to develop soil sensors [29–31]. Tang et al. [32] developed
a portable SOC analyzer using 850 nm as a sensitive wavelength. An et al. [31] devel-
oped a portable TN sensor based on six discrete NIR bands (940, 1050, 1100, 1200, 1300,
and 1550 nm) to detect TN content, which used the LEDs as the detection light source.
Zhou et al. [30] developed an in-situ TN detector with seven discrete NIR bands (1260,
1330, 1360, 1430, 1530, 1580, and 1660 nm) based on the laser diodes, which realized in-situ
detection of TN concentration in the farmlands. Li et al. [33] developed the portable TN con-
centration detector with six discrete NIR bands (1108, 1248, 1336, 1450, 1537, and 1696 nm),
which used the tungsten halogen light sources as the detection light source.

However, several problems remain through spectral technology to predict soil param-
eters. First, the soil spectra are easily affected by interactions with various soil constituents
(e.g., minerals and soil nutrients) [34,35]. Especially, field soil samples have more vari-
ations in soil moisture and other physical conditions (i.e., soil particle size, and water).
Water and hydroxyls (O-H) have strong influences in the NIR region. Overtones of O-H
stretching absorb near 1450 nm, and it conceals the absorption information of soil N-H
bonds in the NIR spectroscopy, resulting in the spectral curve only reflecting the changing
trend of soil moisture. However, the absorption information of soil N-H bonds reflects
the concentration of TN. Reflectance from a soil sample varies with its soil particle size
in the NIR regions of the electromagnetic spectrum. As the soil particle size decreased,
the reflectance also gradually increased. It also conceals the absorption information of soil
N-H bonds in the NIR spectroscopy. Thus, the soil moisture and particle size effects on the
NIR spectroscopy must be eliminated before performing the estimation of TN by the NIR
spectroscopy [36–38].

Many scholars have analyzed the interferences of soil particle size and moisture on
soil parameter prediction, and several studies have proposed methods to eliminate these
disturbances. For the soil moisture, Tekin et al. [39] used NIR reflectance spectroscopy to
study the effects of different soil moisture contents on soil organic matter (SOM) prediction.
The root mean square error of validation (RMSEP) and the residual prediction deviation
(RPD) for dry soil samples reached 1.26% and 2.83, respectively, and the soil samples with
the highest moisture content had values of 1.55% and 2.29, respectively. Zhang et al. [23]
studied the real-time NIR spectra of soil samples without artificial drying and sieving,
and six sensitive bands were determined for predicting TN concentration through wavelet
analysis and continuum removal techniques. Prediction models of TN concentration were
established through partial least squares regression (PLSR) and support vector machine
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(SVM), respectively. For the PLSR model, the coefficient of determination of calibration
(R2

c ) was 0.602, and the coefficient of determination of prediction (R2
v) was 0.634. For the

SVM model, R2
c reached 0.823, and R2

v reached 0.810. It revealed that the soil moisture
interference was removed from the real-time soil NIR reflectance spectroscopy during
TN prediction using the proposed method of wavelet analysis and continuum removal.
External parameter orthogonalization, direct standardization, global moisture modeling,
slope bias correction, and selective wavelength modeling have also been applied to elim-
inate the effect of soil moisture on soil NIR reflectance spectroscopy [40]. For the soil
particle size, Barthès et al. [41] analyzed the NIR reflectance spectroscopy of sandy soils
with different particle sizes in Burkina Faso and Congo and established the prediction
models of TN concentration under different soil particle sizes. The results showed that
the model with less than 2 mm soil particle size was better than the model established
using other soil particle sizes. Bogrekci and Lee [42] investigated the effects of soil particle
size on the prediction of soil rapid available phosphorus (P) using ultraviolet, visible,
NIR spectroscopy. They found that for the sandy soil, with the decrease in soil particle
size, the soil reflectivity increased and the absorbance decreased. The individual prediction
method for each soil particle size produced better soil P predictions with lower standard
errors of prediction for coarse, medium, and fine sand particles than the method that
removed the effect of particle size on absorbance spectra and predicted P concentration of
the soil samples.

Summarizing the above research, there was no relevant research on the elimination of
soil moisture and particle size effects on predicting soil parameters through the discrete NIR
spectral band data. Soil parameter detectors developed based on discrete NIR spectral band
data also face serious interferences caused by soil moisture and particle size. The methods
used in the laboratory to eliminate the interference of soil particle size and moisture by
sieving after grinding and drying cannot be applied to the discrete NIR spectral band data
in the field sensing. The above elimination methods of soil particle size and moisture are
not suitable for discrete NIR spectral band data acquisition in the field sensing. An et al. [36]
studied the effects of soil moisture and particle size on the prediction of TN concentration
using a portable TN detector developed based on six discrete NIR bands (940, 1050, 1100,
1200, 1300, and 1550 nm). The moisture absorption index and mixed calibration set
were proposed to eliminate the soil moisture and particle size interferences, respectively.
However, the mixed calibration set method entailed a complicated process and could not
perform real-time elimination of the interference of soil particle size.

The combination effects and real-time elimination methods of soil moisture and
particle size on predicting TN concentration through the discrete NIR spectral band data
have rarely been explored. The discrete NIR spectral band data can be completely different
in the band attribution with continuum spectra, it does not have continuity in the sense of
spectra. Therefore, the study of methods for eliminating the effects of soil particle size and
moisture on the discrete NIR spectral band data has important theoretical significance and
practical application value for improving the performance of detectors based on the discrete
NIR spectral band data. The main goal of the paper is to establish an on-line elimination
method of soil moisture and particle size interferences, which could be used in the discrete
NIR spectral band data to improve the measurement accuracy of soil parameters. Thus,
in this study, six discrete NIR spectral bands (1070, 1130, 1245, 1375, 1550, and 1680 nm)
used in the on-the-go detector of TN concentration were chosen as the object to perform
the research [29]. A new coupled elimination method of soil moisture and particle size
interferences on predicting TN concentration through discrete NIR spectral band data was
proposed and evaluated.

2. Materials and Methods

2.1. Major Steps of the Study

Figure 1 shows the major procedures in this research, which included three stages.
During stage 1, 60 soil samples were collected from Field 1. In order to research the effect

239



Remote Sens. 2021, 13, 762

of soil moisture on discrete NIR spectral band data, the soil particle size was eliminated by
artificial sieving. Additionally, the moisture absorption correction index (MACI) method to
eliminate the disturbance of soil moisture on discrete NIR spectral band data was proposed
and validated. During stage 2, 24 soil samples were collected from Field 2. Before per-
forming analysis, soil moisture disturbance was eliminated through drying by the oven.
Next, four groups of soil samples with different particle sizes were obtained, each group
contained six TN concentration levels, and each TN concentration level contained four soil
samples. A total of 96 soil samples with different particle sizes and TN concentrations were
generated from the 24 soil samples. Next, the effect of soil particle size on discrete NIR
spectral band data was explored and the characteristic wavebands of soil particle size were
determined. The particle size correction index (PSCI) method was proposed and validated
to eliminate the effect of soil particle size on discrete NIR spectral band data.

Figure 1. Flow chart of major steps adopted in this study. In the diagram, MACI refers to the moisture absorption correction
index and PSCI is the particle size correction index.

During stage 3, a field experiment was performed in Field 3 to evaluate the cou-
pled elimination method through the on-the-go detector, which included five processing
methods. Finally, five models of TN concentration were calibrated and compared.

2.2. On-The-Go Detector of TN Concentration

An on-the-go detector of TN concentration was previously developed through discrete
NIR spectral band data. This detector was reported in our early research [29]. Figure 2
shows the structure of the on-the-go detector, which consisted of mechanical, optical,
and control units. The mechanical unit was the basis of the entire detector and supplied a
downward force for the work of the subsoiler. Thus, the electrical control cabinet of the
mechanical unit was designed as a three-tier structure to integrate the optical and control
units. The optical unit is used for sensing soil in the soil detection trench and a control
unit embedded into an SVM model for obtaining real-time readings of TN concentration.
A tungsten halogen light source was a better choice for the vehicle equipment than LED
light and laser sources with respect to light intensity and stability, which provided a
broadband source over the 300–2500 nm range. The selected performance parameters of
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the tungsten halogen light were as follows: <25% of radiation uniformity, <1% of unstable
time, 20 × 20 mm radiation area, adjustable radiation intensity, 150 W of maximum power,
and 2000 h of average life. The light had to be transmitted to the soil surface with minimal
light loss. Therefore, an NIR optical fiber with a transmission range of 800–1900 nm
was used. The diameter of the selected filter was 5 mm, and the average full width at
half maximum (FWHM) bandwidth was 20 nm. The selected photoelectric sensor was
InGaAs with a responding range of 800–1800 nm and a spectral responsiveness of 0–0.9.
The sapphire glass attached to the bottom of the sensor mounting plate was used to
ensure that the sensors and the filters were free from soil pollution. When the on-the-go
detector performed detection of TN concentration in farmland, it was mounted on the
tractor through a three-point suspension structure. The depth of the subsoiler that pushed
into the soil exceeded 200 mm, which was used to loosen the soil and smash large soil
particles. The flattener made the soil more flat and suitable for spectrum detection. The NIR
light emitted by the tungsten halogen light source was transmitted through an NIR fiber
to the flat detection soil surface. The diffused reflection light of the detected soil was
changed into a single-band light by each optical filter, and each photoelectric detector
converted the single-band light into an electrical signal. All detected electrical signals were
amplified, filtered, and digitized into absorbance data, and then all data were collected and
displayed in real-time by the data receiving software embedded with the whiteboard data,
by which and detected spectral data the absorbance data were calculated at each sensitive
wavelength. For this on-the-go detector, the group of the discrete NIR spectral bands
of 1070, 1130, 1245, 1375, 1550, and 1680 nm was selected as the sensitive wavebands to
predict TN concentration. Furthermore, the on-the-go detector was used to embed the new
coupled elimination method of soil moisture and particle size interferences on predicting
TN concentration through discrete NIR spectral band data.

Figure 2. Structure of the on-the-go detector. (a) Working scene of the on-the-go detector; (b) subsoiler and optical path of
the detection unit.

2.3. Experimental Materials and Methods

During stages 1 and 2 (Figure 1), soil samples were collected from the experimental
farm of China Agricultural University on the outskirts of Beijing to perform the research of
soil moisture and particle size interference elimination method. The soil type was common
brown soil in northern China. The experimental area is in the range of north latitude
40.15395721–40.1534362 and east longitude 116.2155061–116.2150130. Since the fertilization
usually occurs from the soil surface to the soil depth of 30 cm, soil samples were collected
from 5 to 30 cm after removing 5 cm of the topsoil [43]. A total of 60 soil samples used
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to study the effect of soil moisture were collected at Field 1 (F1, 10 ha). Corn and wheat
were cropped in F1 with tillage. In total, 24 soil samples were collected from the Field 2 (F2,
6 ha), which was a standard field without fertilization (the soil nutrient concentration is
almost zero). The soil textural fractions (clay, silt, and sand) of F2 were the same with F1,
both the two fields were sandy loam. In total, 2–2.5 kg of soil at each sampling point was
collected and put it into double-layer cowhide bags for sealing to prevent the loss of soil
moisture. A total of 84 soil samples were collected.

The first set of soil samples (N = 60) was used to study the effect of soil moisture.
All soil samples were sieved under laboratory conditions using a 20-mesh sifter (0.9 mm)
to produce pretreated samples with consistent particle sizes [36].

Another set of soil samples (N = 24) was used to study the effect of soil particle
size. In order to obtain soil samples with different TN concentration, the standard soil
samples were first dried in a drying box, the temperature was set to 85 °C, and the time
for drying was 24 h [44,45]. The air-dried soil samples were randomly divided into six
groups, four in each group. The soil nitrogen solution was configured with urea [46–48].
The concentration gradient of the soil nitrogen solution is divided into 1–6 grades, grade 1
nitrogen concentration is 0 g·kg−1, grade 2 nitrogen concentration is 0.04 g·kg−1, grade 3
nitrogen concentration is 0.08 g·kg−1, grade 4 nitrogen concentration is 0.12 g·kg−1, grade 5
nitrogen concentration is 0.16 g·kg−1, and grade 6 nitrogen concentration is 0.2 g·kg−1.
When configuring the soil samples, we simulated the average summer soil moisture content
(7%) of the cultivated layer of the Shangzhuang Experimental Station to configure the soil
samples. After the soil configuration was completed, the drying process was carried out,
and all the soil samples were sieved, respectively, 10-mesh sieves (2.0 mm), 20-mesh sieves
(0.9 mm), 40-mesh sieves (0.45 mm), and 80-mesh sieves (0.2 mm). Finally, four groups
of soil samples with different particle sizes were obtained, each group contained six TN
concentration levels, and each TN concentration level contained four soil samples. A total
of 96 soil samples with different particle sizes and TN concentrations were generated from
the 24 soil samples.

During stage 3 (Figure 1), soil samples for verification were used to evaluate the new
coupled elimination method. A verification experiment was conducted on the experimental
farm of China Agricultural University. The soil type was common brown soil in northern
China Field 3 (F3, 5.5 ha) which was one long-term research site located within 1.0 km of
F1. Corn and wheat were cropped in F3 with tillage. The soil textural fractions (clay, silt,
and sand) of F3 were the same as that of F1, which were sandy loam. Figure 3 shows the
location and soil samples collection point in Field 3.

Figure 3. Soil sampling locations and treatments of the experiments at Field 3 (a) in Beijing (b) of China (c).

The experiment consisted of two parts which were data of discrete NIR spectral
band data acquisition and soil samples collection. The experimental plot was 240 × 190 m,
which was divided into 108 sampling cells. Each cell had a dimension of 5 × 20 m.
Data and soil samples were collected every 10 m in each cell, blue cells in Figure 3 show the
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location of acquiring data and soil samples. All samples were placed in a double-thickness
sampling bag to prevent moisture dispersion and then sent to the laboratory for optical
and chemical measurements.

2.4. Laboratory Measurement

For each soil sample, it was divided into two parts, one was used for TN concentration
measurement, and another was used for NIR reflectance spectroscopy. The TN concen-
tration was tested with the FOSS Kjeltec™2300 Nitrogen Analyzer produced by FOSS,
Sweden [49]. After grinding each soil sample, weighing 2.0 g, was put into a long test tube.
The long test tube was also filled with 6.2 g catalyst. K2SO4:CuSO4.5H2O was mixed and
ground at 30:1. Finally, 20 mL of concentrated sulfuric acid was added to the long test tube
for nitrification. The temperature of the nitration furnace was set to 420 ◦C for 2.5 h [50].
After nitrification, it was cooled down and the total nitrogen concentration was measured
with the FOSS Kjeltec™2300 nitrogen analyzer. The NIR reflectance spectroscopy of soil
samples was collected by the MATRIX-I Fourier Transform NIR Spectroscopy Analyzer
produced by Bruker, Germany. Before soil spectra collection, the analyzer parameters
needed to be set. The spectrum collection range, spectrum sampling interval, and scan
times were set to 780–2550 nm, 3 nm, and 64 times, respectively. Approximately 20 g of soil
samples were put into a quartz cuvette with a diameter of 50 mm, and put into the rotating
sample cell of the analyzer for spectrum detection [17,51].

2.5. Model Accuracy and Methodology

In addition to the coefficient of determination (R2), the root mean square error of
validation (RMSEP), and the residual prediction deviation (RPD) were used to evalu-
ate the prediction model of TN concentration [52]. Equations (1) and (2) present their
calculation Equations.

RMSEP =

√√√√∑
np
j = 1

(
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)2

np − 1
, (1)
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∑
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(
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)2
/
(
np − 1

)
/

√√√√ np

∑
i = 1

(
yj − ŷpj

)2/
(
np − 1

)
, (2)

where j is the number of soil samples, yj is the TN concentration measured with the FOSS
Kjeltec™2300 Nitrogen Analyzer, ŷcj is the TN concentration predicted by the modeling
set, ŷpj is the TN concentration predicted by the validation set, yj is the average value of
the TN concentration measured with the FOSS Kjeltec™2300 Nitrogen Analyzer, nc is the
model set sample number, and np is the validation set sample number.

3. Results

3.1. Research on Eliminating the Interference of Soil Moisture
3.1.1. Interference of Soil Moisture on Discrete Spectral Band Data

The first set of 60 calibration samples with consistent particle sizes were measured
through the developed on-the-go detector. To analyze the effect of soil moisture on soil
discrete NIR spectral band data quantitatively, the spectral data of a soil sample with
TN concentration of 0.1135 g·kg−1 was used as the research object. Figure 4 shows the
absorbance values at seven sensitive wavelengths under different soil moisture contents.
The absorbance curve obtained by the on-the-go detector from 1070 to 1680 nm showed
a consistent trend, indicating that the curve was a good reflection of the soil spectral
information [53]. Taking the soil absorbance at 1450 nm as an example, when the soil
moisture content increased from 3.18% to 14.16%, the soil absorbance increased from 0.79
to 1.11, and the soil spectral absorbance increased by 40.51%. Absorbance data analysis
indicated that along with the soil moisture content increase, the absorbance of the soil
spectrum increased rapidly. Soil moisture had a serious influence on soil discrete NIR
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spectral band data [54–56]. The effects of soil moisture must be decreased when predicting
TN concentration.

Figure 4. Absorbance curves of soil samples with different soil moisture contents.

Our goal is to eliminate the influence of soil moisture on the prediction of TN con-
centration through the on-the-go detector. Soil NIR spectroscopy indicates that three
distinct moisture absorption peaks are present in the soil NIR spectroscopy at 1450, 1940,
and 2210 nm [57,58]. However, in our research, we only focused on the absorption peak of
O-H in H2O at 1450 nm. O-H have strong influences in the NIR spectroscopy. Overtones
of O-H stretching absorb near 1450 nm, and it conceals the absorption information of soil
N-H bonds, resulting in the spectral curve only reflecting the change trend of soil moisture.
However, the absorption information of soil N-H bonds reflects the concentration of TN.
If the raw spectrum of the measured soil can be normalized to a standard spectrum with
the same soil moisture content, the absorption information of soil N-H bonds on the NIR
spectroscopy could be effectively extracted. Thus, the interference of soil moisture on
predicting TN concentration could be decreased. However, when using the on-the-go
detector to measure soil discrete NIR spectral band data, we were unable to directly obtain
the soil moisture content in the fields. Thus, an alternative method must be explored to
solve this problem.

3.1.2. Eliminating the Interference of Soil Moisture on Discrete NIR Spectral Band Data

To eliminate the interference of soil moisture, we need to classify different soil samples
based on soil moisture content. The previous analysis revealed the difficulty of obtaining
soil moisture content in real-time. Therefore, the MACI method was proposed to eliminate
the effect of soil moisture on predicting TN concentration through the on-the-go detector.
It was used to convert raw soil spectral data into standard spectral data. The MACI value
of the on-the-go detector was calculated using Equation (3).

MACI =
1 − A1450

1 + A1450
× 100, (3)

where A1450 is the spectral absorbance value of the soil samples at 1450 nm and MACI is the
soil moisture absorption index correlation. Soil samples with different moisture contents
can be divided into groups based on MACI values; thus, we divided the detected soil
samples into five types based on MACI values. Table 1 shows the five MACI values when
the MACI value is used to represent the soil moisture level. Their corresponding ranges of
soil moisture content and accuracy are also shown. When the soil moisture was between
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0% and 3.0%, the MACI value was less than 8.66. When the soil moisture was 3.0–6.0%,
6.0–10.0%, and 10.0–13.0%, the MACI values were 8.66–12.66, 12.66–14.66, and 14.66–16.66,
respectively. When the soil moisture content was higher than 13%, the MACI value was
greater than 16.6.

Table 1. Accuracy of MACI classification and correction factors.

Serial Number Soil Moisture Content Grade MACI Accuracy Rate (%) Wj

1 Low level (0–3.0) >9.11 100 1
2 Low-medium level (3.0–6.0) 9.11–6.05 88 0.92
3 Middle level (6.0–10.0) 6.05–2.03 86 0.86
4 High-medium level (10.0–13.0) 2.03–1.12 81 0.76
5 High level (>13.0) <1.12 100 0.68

Note: MACI = moisture absorption correction index.

The classification of soil samples was the best according to the classification of MACI
values. Although the soil moisture content could not be directly obtained in real-time when
the on-the-go detector was used to measure soil in the fields, the soil samples could be
classified by MACI.

Each classification group required a correction factor to normalize the spectral data,
and Equation (5) was used to calculate the correction factor. In this equation, j (j = 1, 2,..., 5)
is the serial number of the taxonomic group, Wj is the correction factor for the taxonomic
group j, Aavgj is the soil sample average absorbance of group j, and Aavgs is the soil sample
average absorbance of group 1. The soil sample average absorbance value of group 1 was
used as the reference absorbance value. Table 1 also shows all five correction factors.

Wj =
Aavgj

Aavgs
(4)

After determining the correction factor Wj (j = 1, 2, . . . , 5), the raw absorbance data
were corrected according to

Ajc = Aj × Wj, (5)

where Aj is the soil sample original absorbance value of group j, Ajc is the soil sample
corrected normalized absorbance value, and Wj is the correction factor.

Absorbance data at 1070, 1130, 1245, 1375, 1450, 1550, and 1680 nm were detected using
the on-the-go detector. Using the proposed MACI method to eliminate the interference of
soil moisture, the wavelength absorbance at 1450 nm was selected to calculate the MACI
value, and the raw spectral data were normalized to eliminate the interference caused by
soil moisture content. Figure 5 shows the different absorbance curves for the change in
soil moisture content after normalization. When the soil moisture content was 3.18% and
14.16%, the absorbance values at 1450 nm were 0.72 and 0.75, respectively; the absorbance
value only increased by 4.16%. Compared with the soil spectrum without correction by
the MACI method, the effect of soil moisture on soil discrete NIR spectral band data was
greatly reduced, and the MACI method proposed in this study was proven to be effective
in reducing soil moisture on the discrete NIR spectral band data.

3.2. Research on Eliminating the Interference of Soil Particle Size
3.2.1. Eliminating the Interference of Soil Moisture on Discrete NIR Spectral Band Data

Table 2 statistically analyzes the 96 soil samples prepared. The TN concentration in the
soil was detected by the FOSS Kjeltec™2300 Nitrogen Analyzer [49]. The TN concentration
value shows that the TN concentration of the prepared soil sample is distributed in the
range of 0.003–0.206 g·kg−1, with approximately 0.04 g·kg−1 as the TN concentration inter-
val, divided into six TN concentration grades, the gradient distribution of TN concentration
grade is reasonable.
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Figure 5. Corrected absorbance at seven discrete NIR spectral bands.

Table 2. Statistics of 96 soil samples prepared. The range of soil total nitrogen (TN) represents the
measured TN of soil samples prepared.

Soil
Particle Size

TN Level
g·kg−1

Range of TN
g·kg−1 Particle Size

TN Level
g·kg−1

Range of TN
g·kg−1

2.0 mm

0 0.005–0.012

0.9 mm

0 0.003–0.012
0.04 0.036–0.047 0.04 0.029–0.037
0.08 0.071–0.077 0.08 0.076–0.091
0.12 0.109–0.123 0.12 0.119–0.133
0.16 0.162–0.171 0.16 0.153–0.176
0.2 0.186–0.194 0.2 0.191–0.206

0.45 mm

0 0.006–0.02

0.2 mm

0 0.009–0.018
0.04 0.031–0.042 0.04 0.026–0.04
0.08 0.063–0.071 0.08 0.060–0.067
0.12 0.119–0.131 0.12 0.128–0.138
0.16 0.142–0.153 0.16 0.153–0.169
0.2 0.178–0.190 0.2 0.187–0.199

Note: TN = soil total nitrogen.

According to the analysis in Table 2, although the soil samples are collected from
standard fields that are not fertilized all year, there is still TN in the soil samples, which will
affect the TN concentration of the prepared soil samples.

Using the drying oven at 80 ◦C for 24 h, the second set of 96 soil samples was dried to
eliminate the influence of soil moisture [17]. Subsequently, all soil samples in the second
set were sieved by sifters of different meshes, and discrete NIR spectral band data were
obtained by the on-the-go detector. Figure 6 shows the absorbance value of a single soil
sample at six discrete NIR spectral bands with the TN concentration of 0.086 g·kg−1,
including five curves, which are the original soil spectrum, the soil spectra with soil particle
sizes of 2.0, 0.9, 0.45, and 0.2 mm. When the soil particle size decreased from 2 to 0.2 mm,
the corresponding soil samples’ average absorbance also decreased from 0.74 to 0.63,
and the overall absorbance changed by 14.86%. The results showed that soil particle size
had a considerable effect on the soil discrete NIR spectral band data. When the soil particle
size was between 0.45 and 0.9 mm, the absorbance of soil discrete NIR spectral band data
was relatively stable. Larger and smaller particle sizes will cause a large difference on soil
absorbance. Figure 6 also shows that the air-dried method could significantly decrease the
interference of soil moisture on the spectral band of 1450 nm. Therefore, no absorption
peak was observed at 1450 nm.
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Figure 6. Absorbance curves of soil samples with different soil particle sizes.

3.2.2. Identification of Characteristic Wavebands of Soil Particle Size

Figure 7 shows the spectral standard deviation curves of four different soil particle
sizes. It can be concluded from Figure 7 that the standard deviation value in the range of
850–1000 nm was smaller than in the spectral range of 1000–2500 nm. As each spectral
standard deviation curve is under the same particle size, the interference of soil particle size
is eliminated, and only the TN concentration is different. Thus, the 1000–2500 nm range
is the sensitive spectral region of TN concentration. Simultaneously, the black curve in
Figure 7 is the spectral standard deviation curve of all 96 soil samples, by the comparative
analysis between the five standard deviation curves in the spectral range of 1000–2500 nm.
After adding the difference in soil particle size, the black standard deviation curve in the
spectral range between 1340–1420 nm and 1795–1955 nm changed up and down. In order
to show the changes between different spectral standard deviation curves, spectral ranges
1340–1420 and 1795–1955 nm of the spectral standard deviation curve were extracted in
Figure 7. Obviously, this change indicates that the above two spectral regions are closely
related to the change of soil particle size and are sensitive spectral regions of soil particle
size. Therefore, in this study, the extreme points 1361 and 1870 nm of the two spectral
regions were selected as the characteristic wavebands of soil particle size.

Figure 7. Standard deviation spectra. (a) Standard deviation spectra curve in the range 850–2500 nm;
(b) standard deviation spectra curves in the ranges 1340–1420 nm and 1795–1955 nm.
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3.2.3. Research on the Classification of Soil Particle Size

The 96 soil samples were divided into two groups, with 48 soil samples in each group.
Each group of soil samples includes four soil particle size categories, each soil particle size
category includes six TN concentration grades, and each soil concentration grade includes
two soil samples. The two characteristic wavebands 1361 and 1870 nm were used to classify
the soil particle size. The normalized index Np was used as a single variable to predict the
soil particle size, and the Np is calculated by Equation (6). The soil classification model
is constructed by the support vector machine (SVM) algorithm. After many attempts,
the penalty parameter c of the SVM classification model is 2 and the kernel function is 1 to
obtain the optimal classification result. Figure 8 shows the prediction results of soil particle
size based on SVM. The overall classification accuracy rate of the four soil categories is
97.92%. Among the four soil categories, the classification accuracy rate when the soil
particle sizes are 2.0, 0.45, and 0.2 mm is 100%, and the classification accuracy rate when
the soil particle size is 0.90 mm is 91.67%.

Np =
A1870 − A1361

A1870 + A1361
, (6)

Figure 8. Classification of soil particle size based on support vector machine (SVM).

In Equation (6): A1870 and A1361 are the absorbance of the soil at 1870 and 1361 nm.

3.2.4. Eliminating the Interference of Soil Particle Size

Based on the soil particle size classification model established by SVM, the normalized
index Np was used as a single input to classify the soil particle size. The results show that
the method is feasible. Based on the above results, a soil particle size correction coefficient
Pc was proposed to correct the origin discrete NIR spectral band data. The soil particle size
correction coefficient Pc is obtained by Equation (7),

Pc =

(
A1870−A1361
A1870+A1361

)
Np

, (7)

In Equation (7): A1870 and A1361 are the absorbance of the corrected soil spectrum at
1870 and 1361 nm, and Np is the normalized index of the absorbance of the 0.20 mm soil
at 1870 and 1361 nm as the reference value. It is generally believed that the smaller soil
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particle size can eliminate the influence of soil particle size to the greatest extent, so the
spectrum data with a particle size of 0.20 mm was determined as the reference spectrum.

The absorbance Ac of discrete NIR spectral band data corrected by the Np was obtained
by Equation (8),

Ac = A × Pc, (8)

In Equation (8): A is the soil absorbance of discrete NIR spectral band data before
correction, and Ac is the soil absorbance after correction. In this study, the absorbance at six
discrete NIR bands (1070, 1130, 1245, 1375, 1550, 1680 nm) of the on-the-go detector were
used to verify the PSCI method. Figure 9 shows the absorbance of discrete NIR spectral
band data after soil particle size correction. A comparative analysis of Figures 6 and 9 was
computed. For example, at 1245 nm, the difference between the absorbance value with a
soil particle size of 0.2 mm and the absorbance value with soil particle sizes 2.0, 0.9, 0.45 mm,
and original spectrum were 0.0737, 0.0506, 0.0361, and 0.0607, respectively. After correction
with the PSCI method, the difference was 0.0263, 0.0111, −0.0011, and 0.0228, and the
difference was reduced by 64.31%, 78.06%, 103.04%, and 62.43% after correction. The results
show that the soil particle size correction coefficient can significantly reduce the interference
of soil particle size to a greater extent.

Figure 9. Corrected absorbance at six discrete NIR spectral bands.

3.3. Coupled Elimination Method of Soil Moisture and Particle Size Interferences

In order to achieve on-line coupled elimination of soil moisture and particle size
interferences on predicting TN concentration through discrete NIR bands data, we per-
formed detection of TN concentration through the soil sensors developed based on discrete
spectral bands in the farmlands. MACI was firstly used to decrease the interference of
soil moisture on discrete spectral band data. Then, PSCI was calculated to decrease the
effect of soil particle size on the discrete spectral band data after corrected with the MACI
method. Finally, TN concentration was obtained through the discrete spectral band data
with coupled elimination of soil moisture and particle size interferences. Figure 10 shows
the flowchart of the coupled elimination method.
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Figure 10. Flowchart of the coupled elimination method.

3.4. Evaluation of the New Coupled Elimination Method

Discrete NIR spectral band data was obtained used the on-the-go detector by in-
field and laboratory measurement. The spectral data after different moisture and particle
size removal processes were used to establish the TN prediction model. The elimination
effects of different soil particle size and moisture removal methods on the prediction of
TN concentration by discrete NIR spectral band data were evaluated. Figure 11 showed
the comparison of elimination effects. The data used for prediction models included (a)
raw discrete NIR spectral band data, model 1; (b) discrete NIR spectral band data using
the proposed MACI correlation method to eliminate soil moisture disturbance, model 2;
(c) discrete NIR spectral band data using the proposed PSCI method to eliminate soil
particle size disturbance, model 3; (d) discrete NIR spectral band data using the proposed
new coupled elimination method to eliminate soil moisture and particle size disturbances,
model 4; (e) discrete NIR spectral band data on dried and ground soil samples, model 5.
SVM was used to establish a prediction model for TN concentration based on data treated
by different methods. In the established SVM model, the kernel function is the radial basis
kernel function, three parameters affecting model regression results: penalty parameter
C, radial basis kernel function γ parameter λ, and loss parameter ε, and they are 1.3, 0.25,
and 0.01, respectively. Table 3 and Figure 10 show the calibration results. For the raw
discrete NIR spectral band data, the prediction R2 was 0.65. However, when the model
was established by discrete NIR spectral band data after eliminating soil moisture and
soil particle size interference, the RPD value of prediction model 4 reached 2.59, and the
prediction R2 reached 0.84, respectively. For models 2 and 3, there is only soil moisture or
particle size disturbance eliminated by the MACI or PSCI method, respectively. However,
both of them have an improvement of prediction R2 for 12.3% and 9.2% compared with
model 1. The above analysis shows that the effects of soil moisture and soil particle size
on the discrete NIR spectral band were serious. Further, the TN concentration prediction
model 5 was established under laboratory conditions through the discrete NIR spectral
band data obtained from the soil samples after drying and grinding. The prediction
accuracy of model 4 is still below that of model 5. Although, the proposed MACI and
PSCI methods were quantitatively proven to have good effects on eliminating soil moisture
and soil particle size interferences on predicting TN concentration through discrete NIR
spectral band data. However, the 8.5% decrease of prediction was R2 between models 4
and 5, which means that the effects of soil moisture and particle size were not eliminated
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using the new coupled elimination method. Thus, it is necessary to continue to explore
other elimination methods of soil moisture and particle size effects on predicting TN
concentration through discrete NIR spectral band data.

Figure 11. Comparison of elimination effects. (a) Estimation of TN concentration with raw discrete
NIR spectral band data; (b) estimation of TN concentration with discrete NIR spectral band data
through the proposed MACI correlation method to eliminate soil moisture disturbance; (c) estimation
of TN concentration with discrete NIR spectral band data through the proposed PSCI method to
eliminate soil particle size disturbance; (d) estimation of TN concentration with discrete NIR spectral
band data through the proposed MACI and PSCI methods to eliminate soil moisture and particle
size disturbances; (e) estimation of TN concentration with discrete NIR spectral band data on dried
and ground soil samples.
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Table 3. Comparison of elimination efforts.

Elimination Method R2
v RMSEP(g·kg−1) RPD

Model 1 0.64 0.278 1.59
Model 2 0.71 0.221 2.06
Model 3 0.73 0.202 2.12
Model 4 0.82 0.166 2.53
Model 5 0.89 0.121 2.72

Note: R2
v = coefficient of determination of validation; RMSEP = root mean square error of validation;

RPD = residual prediction deviation; model 1 = raw discrete NIR spectral band data; model 2 = discrete NIR
spectral band data using the proposed MACI correlation method to eliminate soil moisture disturbance; model 3
= discrete NIR spectral band data using the proposed PSCI method to eliminate soil particle size disturbance;
model 4 = discrete NIR spectral band data using the proposed new coupled elimination method to eliminate
soil moisture and particle size disturbances; model 5 = discrete NIR spectral band data on dried and ground
soil samples.

4. Discussion

4.1. Role of New Coupled Elimination Method in Predicting TN through Discrete NIR Spectral
Band Data

From the perspective of cost, the development of real-time rapid soil parameter
detectors based on discrete NIR spectral band has become a current research hotspot [29–33].
However, for discrete NIR band data, adjacent spectral data can be completely different
in the attribution of the bands, and they do not have continuity in the sense of spectrum.
Thus, there is no theoretical basis for direct differentiation of a set of discrete NIR spectral
band data that has no connection in the spectral sense [59]. In addition, due to the lack
of discrete NIR spectral data, it does not meet the requirements of the Savitzky-Golay
convolution derivation method for the number of window points, and its operation cannot
be performed [60,61]. Soil particle size and moisture will cause serious interference with
discrete NIR band data and affect its use [36]. Therefore, the study of effective correction
methods to eliminate the interference of soil particle size and moisture on discrete NIR
spectral band data has important theoretical significance and practical application value
for improving the performance of instruments developed based on discrete NIR spectral
band data.

There is no relevant research on the elimination of soil moisture and particle size effects
on predicting soil parameters through the discrete NIR spectral band data. This study
analyzes the effects of soil moisture and soil particle size on the discrete NIR spectral
band data using qualitative and quantitative methods. The absorbance of soil samples
increased with the increase in soil moisture content at the same TN concentration level.
As the soil particle size decreased, the absorbance of soil samples decreased gradually
at the same TN concentration level [36]. Correspondingly, we proposed a method to
eliminate the effects of soil moisture and soil particle size on discrete NIR spectral band
data. A field experiment also was conducted to evaluate the elimination effects of the
proposed MACI and PSCI methods. When the model was established by discrete NIR
spectral band data after eliminating soil moisture and soil particle size interference, the RPD
value of prediction model 4 reached 2.59, and the prediction R2 reached 0.84, respectively.
The results showed that the new coupled elimination method could effectively reduce the
interferences of soil particle size and moisture on the prediction of TN concentration.

From the perspective of actual use, the new coupled elimination method can be
applied to other on-the-go and portable soil parameter testing equipment developed based
on discrete NIR spectral band data. This study facilitates the development of soil sensors
based on discrete NIR spectral band data.

4.2. Comparison of the New Coupled Elimination Method to the Similar

Table 4 shows the comparison results of the new coupled elimination method to
the similar. According to the evaluation parameters (R2

v and RMSEP), our study obtains
slightly high estimation accuracies compared to the similar in Table 4. Even though the
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new coupled elimination method was not applied to the on-the-go detector, the estimation
accuracies of TN were higher than the portable detector and the Veris P4000. Applying the
new coupled elimination method to the on-the-go detector, the estimation accuracy was
improved significantly. The R2

v increased from 0.64 to 0.82, and the RMSEP decreased from
0.278 to 0.166. For the portable detector, the R2

v was 0.76 with the moisture absorbance
correction method and mixed calibration set used in the portable detector. Compared to
the similar, the new coupled elimination method achieved better elimination effects of soil
particle size and moisture on NIR spectroscopy. These comparison results further verify the
validity of the new coupled elimination method in eliminating the effects of soil particle
size and moisture on discrete NIR spectral band data.

Table 4. Validation results of soil total nitrogen (TN) concentration.

N
Spectral

Measuring
Equipment

Spectral
Range

Elimination
Factor

Elimination
Method

Calibration
Algorithm

R2
v RMSEP References

48 Portable detector
940, 1050, 1100,

1200, 1300,
and 1550 nm

/ / BPNN 0.45 0.215 [36]

48 Portable detector

940, 1050, 1100,
1200, 1300,

1450,
and 1550 nm

Soil
moisture
and soil

particle size

PMAI and
mixed

calibration set
BPNN 0.76 0.030 [36]

90
FT-NIR analyzer

(MATRIX-I, Bruker
corp., Germany)

800–2564 nm Soil
moisture

Wavelet de-
compositions SVM 0.81 0.053 [23]

140

AgroSpec portable
VIS-NIR

spectrophotometer
(Tec5 Technology
for Spectroscopy,

Germany)

305–2200 nm

Soil
moisture
and soil

particle size

FD
transformation

with 31
smoothing

points
and SNV

Cubist
method 0.73 0.071 [62]

708
Veris P4000 (Veris
Technologies, Inc.,
Salina, KS, USA)

343–2202 nm Soil
moisture EPO PLS 0.63 0.024 [63]

108 On-the-go detector

1070, 1130,
1245, 1375,

1550,
and 1680 nm

/ / SVM 0.64 0.278 This study

108 On-the-go detector

1070, 1130,
1245, 1361,
1375, 1450,

1550, 1680, and
1870 nm

Soil
moisture
and soil

particle size

New coupled
elimination

method
SVM 0.82 0.166 This study

Note: N = number of samples; R2
v = coefficient of determination of validation; RMSEP = root mean scheme.

4.3. Uncertainty in Current Work and Future Work

Although the new coupled elimination method was quantitatively proven to have
good effects on eliminating soil moisture and soil particle size interferences on predicting
TN concentration using discrete NIR spectral band data, the 8.5% decrease of prediction R2

was between models 4 and 5, which means that the effects of soil moisture and particle size
were not eliminated using the new coupled elimination method. Thus, it is necessary to
continue to explore other elimination methods of soil moisture and particle size effects on
predicting TN concentration through discrete NIR spectral band data.

Additionally, the experimental conditions in fields are complex, and different regions
and soil types also will affect the measurement of discrete NIR spectral band data of soil.
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Moreover, field vehicle-mounted detectors are still limited in terms of coving large
fields in a short time. The unmanned aerial vehicles (UAVs) have provided the potential
alternative to the quick estimation of soil properties coving large fields in a short time. Thus,
the hyperspectral cameras or the soil detectors based on the discrete NIR spectral band data
mounted on the UAVs will be explored in future research. Therefore, further experiments
are needed to verify the effectiveness and practicability of the proposed methods.

5. Conclusions

Commercialized soil nutrients detectors developed based on discrete NIR spectral
band data cannot perform on-line elimination of soil moisture and particle size distur-
bances on predicting TN concentration. Bringing the detected data back to the laboratory
for particle size and moisture interferences’ elimination is necessary. This process severely
restricts the efficiency of field testing and cannot achieve a quick estimation of TN concen-
tration in the farmlands. This paper reports on the online coupled elimination method of
soil moisture and particle size interferences on predicting TN concentration through the
discrete NIR spectral band data. The field test also was performed to evaluate the proposed
coupled elimination method through the on-the-go detector.
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Abstract: A sufficient nitrogen (N) supply is mandatory for healthy crop growth, but negative
consequences of N losses into the environment are known. Hence, deeply understanding and
monitoring crop growth for an optimized N management is advisable. In this context, remote sensing
facilitates the capturing of crop traits. While several studies on estimating biomass from spectral and
structural data can be found, N is so far only estimated from spectral features. It is well known that N
is negatively related to dry biomass, which, in turn, can be estimated from crop height. Based on this
indirect link, the present study aims at estimating N concentration at field scale in a two-step model:
first, using crop height to estimate biomass, and second, using the modeled biomass to estimate
N concentration. For comparison, N concentration was estimated from spectral data. The data
was captured on a spring barley field experiment in two growing seasons. Crop surface height
was measured with a terrestrial laser scanner, seven vegetation indices were calculated from field
spectrometer measurements, and dry biomass and N concentration were destructively sampled.
In the validation, better results were obtained with the models based on structural data (R2 < 0.85)
than on spectral data (R2 < 0.70). A brief look at the N concentration of different plant organs showed
stronger dependencies on structural data (R2: 0.40–0.81) than on spectral data (R2: 0.18–0.68). Overall,
this first study shows the potential of crop-specific across-season two-step models based on structural
data for estimating crop N concentration at field scale. The validity of the models for in-season
estimations requires further research.

Keywords: terrestrial laser scanning; spectrometer; plant height; vegetation indices; biomass; nitrogen
concentration; precision agriculture

1. Introduction

Nitrogen (N) is a fundamental component of proteins and thus essential for any kind of living.
Its relevance for the nutrition of plants and for the photosynthesis process is indisputable [1]. Plants
consist of a metabolic part with a high N concentration, such as leaves which are mostly responsible
for photosynthetic processes, and a structural part with a low N concentration, such as the stem which
is necessary for the plant architecture [2]. During early growing stages, crop N demand primarily
results from the leaf area expansion to initiate growth [3]. When canopy closure is reached, plants
compete for light and invest more N in stem elongation to place their leaves to the better-illuminated
top layers [4,5]. Another role for the crop development can be attributed to the stem, as plants use
stem N as source for grain N later in the growing season [3]. If this storage is insufficient and further
sources are missing, such as N released by natural leaf senescence or soil N, plants let leaves die off
for the required N [3]. This is likely to reduce the photosynthetic activity and inhibit growth. Hence,
N plays the most important role in the fertilization of arable and forage cropping systems [6].
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The rapidly growing world population requires an increasing food production, which goes along
with a rising use of N fertilizers [7]. The global use of N fertilizer increased from ~10 Tg/year in the 1960s
to ~80 Tg/year around 1990 [8] and might reach ~190 Tg in 2020 [9]. While aiming at increasing yield, it is
frequently neglected that plants can assimilate N only up to a certain value. N losses into the environment
has negative consequences, such as nitrous oxide emissions, nitrate leaching, or eutrophication [8,10,11].
A strong research interest can hence be observed on the general N cycle, the N use efficiency (NUE) of
plants, and the improvement and optimization of fertilization practices [12–18].

A benchmark for quantifying the plant status at field scale is the crop-specific nitrogen nutrition
index (NNI), defined as ratio between actual and critical N concentration [19,20]. The critical N
concentration of dry biomass is defined as minimum N required for maximum growth [21]. If N
supply is not limited, the N concentration generally decreases while dry biomass increases across
a growing season. This allometric relation can be expressed with a negative power function [20].
A sequence of critical N concentration values can be plotted against dry biomass, which is then defined
as crop-specific critical N dilution curve (NDC) [19,22,23]. The NNI and NDC concept hence requires
knowledge about dry biomass and N. Both values can either be determined destructively [24] or,
what is more common, estimated from proximal or remote sensing. Due to their non-destructive
characteristics, these tools are highly attractive for precision agriculture or site-specific management
and extensively investigated since the 1980s [25,26].

Remotely sensed spectral reflectance properties are known to be worthwhile for investigating
vegetation [27]. Numerous studies investigated the usability for determining NNI [28,29] or calculated
vegetation indices (VIs) for estimating crop N [30–34]. Dry biomass can also be estimated from VIs,
but measurements are known to be affected by saturation effects at later growing stages [35–37].
Major disadvantages of all passive spectral measurements are the dependency on solar radiation
and the influence through atmospheric conditions, which require repeated calibrations during a
campaign [38,39]. These problems can be avoided by using bidirectional spectrometers or active
sensors [30,40,41]. Further limiting factors are, however, the influence of differing soil properties,
which is particularly important in the early growing period due to the low vegetation fraction [42],
and plant properties, such as the leaf inclination angle [43]. Measurements with field spectrometers
can also cover only small parts of the crop canopy. Based on their extensive research, Gastal et al. [4]
concluded that the NNI is more a research than a management tool and non-invasive, cost-effective
methods are required. They suggest chlorophyll measurements with a SPAD meter as promising
tool for determining the N status. Various studies show its usability [44] and propose it as tool for
fertilizer recommendations [45]. The amount of SPAD measurements is limited due to its handheld
characteristics, which reinforces the general weakness of spectral measurements. An alternative robust
approach for determining crop N at field scale is hence desirable.

The limitations of spectral sensing approaches, led to new research activities in crop monitoring,
namely the sensing of structural properties such as crop height and crop density [46–48]. At field
scale, these traits can be derived by sensing methods which produce 3D data such as terrestrial
laser scanning (TLS) [49,50] or photogrammetric processing using Structure from Motion (SfM) and
Multi-View Stereopsis (MVS) [51]. Other field studies measure with light curtains [52] or ultrasonic
sensors [36,53]. In a comparative study on different sensors, best results were achieved with laser
scanning in comparison to an ultrasonic sensor and drone-based imaging [54]. Several studies showed
that dry biomass can be estimated from structural crop traits captured with TLS, drone-based imaging,
or oblique stereo image acquisition [55–63]. Only a few studies compared biomass estimations based
on different sensors so far [64]. From the existing ones, it can be summarized that structural estimators,
such as crop height, outperform spectral ones [47,59,65]. TLS and SfM/MVS approaches allow capturing
large areas in a high spatial resolution. Hence, in-field variabilities can be detected.

In summary, it is widely accepted that understanding processes and traits, which are involved
in the N cycle of plants, are extremely important to optimize crop production [4,66]. Plant height
is recognized as relevant trait [67,68], but until recent developments in proximal sensing, structural
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traits were hardly measurable in a sufficient spatial and temporal resolution at field scale. Manual
measurements were laborious and prone to errors [54]. The literature shows that dry biomass is
estimable either from 3D or spectral measurements, considering the limitations for the latter. In contrast,
to the best of the authors’ knowledge, crop N at field scale is only estimated from spectral information.
Structural traits, determined from 3D data, are neglected so far. According to Seginer et al. [69] the light
competition among individual plants occurs early in the growing season, as canopy closure is rapidly
reached in typically dense agricultural fields. Hence, potential height differences among individual
plants or in-field variations, which affect the amount of biomass, should be discernible. Along with the
allometric relation between dry biomass and N concentration, the arising research question can be
formulated as: Can the crop-specific N concentration at field scale be estimated from its indirect link to
structural traits?

In a comprehensive study, Tilly et al. [65] found that TLS-derived plant height is a strong estimator
for dry barley biomass (R2 < 0.85) in contrast to VIs, which showed varying performance (R2: 0.07–0.87).
This new study further investigates this data set in terms of the stated research question as on the
one hand, the quality and suitability of the data set was proven, but on the other hand, a so far
unconsidered data set of destructively measured N was available. The overall aim of this study is
to investigate whether the indirect link between structural traits and N concentration can be used
for robust estimations at field scale. Two novel model designs are developed which investigate the
interrelations between TLS-derived crop surface height, dry biomass, and N concentration. Another
VI-based model is established for comparison. A brief look is thrown on the relation of the estimators
to the dry biomass and N concentration of individual plant organs.

2. Materials and Methods

2.1. Data Acquisition

During the growing seasons 2013 and 2014, the data sets for this study were captured on a spring
barley (Hordeum vulgare L.) field experiment, conducted at the experimental station Klein–Altendorf
of the University of Bonn, Germany (50◦37′N, 6◦59′E, altitude 186 m). The exact locations of the
fields varied slightly between the years due to crop rotation. Soil and climatic conditions were almost
equal with a flat surface, a clayey silt luvisol, an average yearly precipitation of ~600 mm, and a daily
average temperature of 9.3 ◦C [70,71]. The soil available N and organic matter was determined in
early spring each year (2013: 42 kg/ha Nmin and 1.7% organic matter; 2014: 44 kg/ha Nmin and
1.8% organic matter). The field was subdivided into 36 small-scale plots (3 × 7 m). For half of the
plots, a farmer’s common rate of 80 kg/ha N fertilizer was applied, for the other half a reduced rate of
40 kg/ha. The fertilizer was applied 1 and 5 days after seeding in 2013 and 2014, respectively. In 2013,
each fertilization scheme was carried out once for 18 cultivars. In 2014, the number of cultivars was
reduced to 6 and each fertilization scheme was repeated three times. This study considers only these
cultivars (Barke, Beatrix, Eunova, Trumpf, Mauritia, and Sebastian). Aasen and Bolten [72] present the
randomized block design in the field plan of 2014. TLS and spectral measurements were carried out
for monitoring plant development across the growing seasons. Plant height and dry biomass were
manually measured as reference. The proximal sensing and reference measurements were carried
out within a maximum timespan of three days per campaign. The main details are outlined in the
following. For an extended description it is referred to Tilly et al. [65].

2.1.1. Terrestrial Laser Scanning

The time-of-flight scanner Riegl LMS-Z420i was used (near-infrared laser beam; beam divergence
of 0.25 mrad; and measurement rate of up to 11,000 points/sec). Its field of view is up to 80◦ in the
vertical and 360◦ in the horizontal direction and resolutions between 0.034◦ and 0.046◦ were used for
this study. A Nikon D200 was mounted on top for colorizing the point clouds in the post-processing.
The scanner was mounted on a hydraulic platform of a tractor (sensor height ~4 m above ground).
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During each campaign, the field was scanned from its four corners to lower shadowing effects and to
attain an almost uniform spatial coverage. The coordinates of all scan positions were measured with
the RTK DGPS system Topcon HiPer Pro. The position of a highly reflective cylinder arranged on a
ranging pole was measured with the DGPS system and detected in each scan. An exact georeferencing
and co-registration can thus be achieved with the DGPS-derived coordinates of the scan positions.

The main steps of the TLS data processing can be summarized to merging and cleaning of the
point clouds, filtering of the highest points, which are regarded as crop canopy, and spatially resolved
calculation of CSH. Crop surface models (CSMs), which represent the crop surface, were established.
Crop surface height (CSH) is then calculated by spatially subtracting the digital terrain model (DTM)
height from the CSM. A detailed description is given by Tilly et al. [60]. The result is a raster data set
for each campaign with pixel-wise stored CSH. The CSH was averaged plot-wise to achieve a common
spatial base with the other measurements (Figure 1).

[A] [B] [C] 

Calculating CSH Averaging 
 (m):  0.36  0.37  0.52  0.39 

 

 

 (m):  0.51  0.40  0.37  0.42 

Figure 1. Steps from point cloud to plot-wise averaged crop surface height (CSH): [A] Filtered point
cloud representing the crop surface; [B] Raster data set of CSH; [C] Plot-wise averaged CSH values.

2.1.2. Spectral Measurements

The ASD® FieldSpec3 was used (measurement range from 350 to 2500 nm; sampling interval of
1.4 nm and 2 nm in visible-near-infrared and short-wave infrared, respectively; spectra are resampled
to 1 nm resolution). A cantilever with a pistol grip was used to avoid shadows and a water level
ensured a nadir view. Samples were taken from 1 m above canopy and no fore optic was used. Thus,
the field of view was 25◦, resulting in a circular footprint area with a radius of ~22 cm on the canopy.
Six positions were taken for each plot and averaged for the analysis. Ten measurements per position
were carried out and instantly averaged. The spectrometer warmed up for at least 30 min prior to
measurements. It was calibrated with a spectralon calibration panel every 10 min or after illumination
change. Measurements were carried out around noon to ensure the sun was at its highest.

In the post-processing, six VIs were calculated by Tilly et al. [65] for estimating biomass. These VIs
were now further investigated regarding their relation to N concentration. The NIR-based simple ratio
index R760/R730 was added for this study, as it was powerful for indicating the N status of wheat [40]
and performed well for grain yield prediction with similar cultivars of spring barley as the here
investigated [73]. The formulas of the VIs are given in Table 1. Different wavelength domains were
covered by choosing two VIs in the near-infrared (NIR), three VIs in the visible-near-infrared (VISNIR),
and one VI in the visible (VIS) domain.

Table 1. Vegetation indices. Table modified from Tilly et al. [65].

Wave-Length Domains Vegetation Index Formula References

NIR

GnyLi (R900×R1050−R955×R1220)/(R900×R1050+R955×R1220) [74]
NRI (R874−R1225)/(R874 + R1225) [75]

R760/R730 R760/R730 [40]

VISNIR

NDVI (R798−R670)/(R798 + R670) [76]
RDVI (R798−R670)/

(√
R798 + R670

)
[77]

REIP 700 + 40 ∗ (
R670+R780

2 )−R700
R740−R700

[78]

VIS RGBVI (Rgreen
2 −Rblue ×Rred)/(Rgreen

2 + Rblue ×Rred) [59]
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2.1.3. Reference Measurements

The BBCH scale was used to describe phenological stages and steps of plant development
(Acronym BBCH is derived from the funding members: Biologische Bundesanstalt (German Federal
Biological Research Centre for Agriculture and Forestry), Bundessortenamt (German Federal Office of
Plant Varieties), and Chemical Industry) [79,80]. The campaign-wise averaged BBCH codes are plotted
against day after seeding (DAS) in Figure 2. According to these codes, the campaigns covered the
main vegetative phase, between stem elongation (Code 31) and end of fruit development (Code 79).
In each campaign, the height of ten plants per plot was measured and averaged. The main stem height
including ears was measured. Thin awns were excluded, as it is unlikely that they are captured by the
laser scanner. In the defined sampling area of each plot, the aboveground biomass of a 0.2 × 0.2 m
square was destructively taken each time and used to determine dry biomass in the laboratory. Each
plant was previously divided into its individual organs (stem, leaf, and ear) and separately treated.

Figure 2. Campaign-wise averaged codes for the developmental steps (BBCH).

The dry biomass of the individual plant organs was further used for determining N concentration
with the elemental analyzer vario EL cube [81]. For each plot, 2 to 3 mg dry biomass from stem,
leaf, and ear were pulverized and homogenized. Each sample was catalytically combusted at 950 ◦C.
The gas is separated through selective trap columns for determining the elemental composition by
a thermoconductivity detector. The values of the stem, leaf, and ear samples were combined and
averaged for each plot. The values of the entire plant were used in this first approach, as the entire
crop surface and hence the whole plant is captured by the laser scanner. A brief overview about the
values of individual plant organs will be given.

2.2. Estimation Models

This study aims at investigating whether the crop-specific indirect link between structural traits
and crop N concentration (%N) can be used for robust estimations at field scale. The data set was split
into four subsets for a leave-one-out cross validation. All possible combinations of the subsets for
calibration and one subset for validation were calculated. For a first model run, subset 1 contained the
data sets of all campaigns from 2013 (n = 48). Each other subset contained the measurements of all
campaigns from one repetition from 2014 (each n = 48). For a second and third model run, the data
sets were split according to the levels of N fertilization, reducing the number of values per subset for
each of these runs (n = 24).

Dry biomass (DBio) was first investigated as potential estimator for %N, based on the allometric
relation between DBio and %N. A two-step model was designed as shown in Figure 3 [A]. The first
step of the model aims at determining DBio from crop surface height (CSH). An exponential biomass
regression model (BRM) was calibrated from two subsets, since this performed best for the observed
period of the growing season [65]. DBio of the other two subsets was then separately determined
and validated. The determined values are hereinafter referred to as DBiomod. In the second step, one
subset of DBiomod and %N was used for calibrating a nitrogen regression model (NRM). As NRMs
are newly investigated here, linear, exponential, and power function models were established. These
NRMs were then applied to the remaining subset and validated. All calibrations were evaluated with
the coefficient of determination (RC

2). The formula is given in (1). For each validation, besides the
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coefficient of determination (RV
2), the root mean square error (RMSE), and relative RMSE (rRMSE)

were determined. The formulas are given in (2) to (4). All statistics are calculated for each run.

R2
c =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑n

i=1(x− x)(y− y)√∑n
i=1(x− x)2 ∑n

i=1(y− y)2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
2

(1)

where x refers to the estimator (CSH, DBiomod, or VI) and y refers to the value which is estimated
(DBio or %N).

R2
v =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑n

i=1(x− x)(y− y)√∑n
i=1(x− x)2 ∑n

i=1(y− y)2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
2

(2)

where x refers to the estimated values (DBio or %N) and y refers to the measured values (DBio or %N).

RMSE =

√∑n
i=1(xi − yi)

2

n
(3)

where x refers to the estimated values, y refers to the measured values, and n is the number of samples.

rRMSE =
RMSE

M
(4)

where
–

M is the across season mean value of the validation subset (DBio or %N).

Figure 3. Concept of the two-step (A) and one-step (B) models (BRM: biomass regression model; NRM:
nitrogen regression model; CSH: crop surface height; VI: vegetation index; DBio: dry biomass; DBiomod:
modeled dry biomass; %N: nitrogen concentration; %Nmod: modeled nitrogen concentration).

Considering the physiological principles of plant responses to light competition, CSH is suggested
as potential estimator for crop N status. Similar to the two-step model, linear, exponential, and power
function NRMs were established as one-step model (Figure 3 [B]). As only one subset was needed for
the validation, three subsets were used for the calibration. Again, three model runs were carried out,
for the entire data set and for the common and reduced level of N fertilization. The calibrations were
evaluated by the RC

2 and the validations by the RV
2, RMSE, and rRMSE.
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In addition, NRMs based on spectral data were established. In a pre-test, the R2 was calculated for
each of the seven VIs vs. %N based on linear, exponential, and power function regressions. Based on
the results, VIs were selected for the further considerations in the one-step model. The model design is
equal to the NRMs based on CSH (Figure 3 [B]).

2.3. Relationship Between Crop Traits and Plant Organs

In this first approach DBio and %N of the entire plant were used for the estimation models.
Nonetheless, a brief look is taken at the relationship between the estimators and the individual plant
organs. As outlined in the introduction, N is required by different plant organs depending on the
growing stage. The competing for light among neighboring plants influences the N dilution [19,69],
which is observable in various environments [82,83]. Scatterplots of CSH or VI vs. DBio and %N per
plant organ were established to get a first impression. Furthermore, ear DBio was plotted against stem
%N and leaf %N, since these storages are important for the ear and grain development.

3. Results

3.1. Crop Traits

The following is a brief description of the captured crop traits. Table 2 shows the statistics of
CSH, DBio, and %N. The values were calculated for the four campaigns of 2013, acting as subset 1
in the model design, and for the four campaigns of 2014 separately for subset 2 to 4. The subsets
show similar patterns within each growing stage and comparable developments across the growing
season. All values are additionally plotted against DAS in Figure 4 [A] to [C]. As a first approximation,
the temporal development of all crop traits can quite good be explained by a linear trend (R2: 0.82–0.86).
Better results can be achieved with a logarithmic function for CSH (R2: 0.88) and exponential functions
for DBio (R2: 0.86) and %N (R2: 0.89). DBio is plotted against CSH in Figure 4 [D]. The relation between
these traits was intensively discussed by Tilly et al. [65]. Considering the aim of this study, %N is
plotted against DBio in Figure 4 [E] and against CSH in Figure 4 [F]. A linear regression explains the
trend of DBio vs. %N quite well (R2: 0.70), but a power function works better (R2: 0.77). For CSH
vs. %N the linear trend fits slightly better (R2: 0.81) then the exponential one (R2: 0.75). These values
confirm the quality of the obtained data. The rather good link of %N to DBio and CSH should be noted,
which supports the idea of using the indirect link for the estimation models.

Table 2. Statistics for the plot-wise averaged crop surface height (CSH), the destructively taken
dry biomass (DBio), and nitrogen concentration (%N) measured in the laboratory. The values were
calculated for subset 1 of 2013 and subsets 2, 3, and 4 of 2014 (DAS: Day after seeding; n: number of
samples; mean: mean value; SD: standard deviation).

DAS Subset n
CSH (m) DBio (g/m2) %N (g/kg)

Mean SD Mean SD Mean SD

2013

49 1 12 0.22 0.13 168.31 59.11 39.91 6.19
64 1 12 0.46 0.17 415.31 152.51 20.56 3.73
78 1 12 0.76 0.11 883.38 343.55 17.83 2.99
92 1 12 0.78 0.07 1258.88 229.69 14.04 1.83

Mean 0.56 0.12 681.47 196.22 23.09 3.68

2014

41 2 12 0.17 0.03 86.69 31.22 39.94 3.82
41 3 12 0.17 0.03 100.81 24.29 40.79 3.96
41 4 12 0.17 0.03 79.54 26.14 39.37 3.78
56 2 12 0.41 0.04 304.02 63.80 35.51 4.45
56 3 12 0.42 0.05 290.90 77.10 35.69 3.94
56 4 12 0.41 0.05 274.56 61.47 35.13 3.89
70 2 12 0.63 0.03 487.73 82.10 22.02 3.11
70 3 12 0.64 0.04 482.81 102.39 22.04 2.41
70 4 12 0.62 0.04 425.95 107.53 23.07 2.69
97 2 12 0.76 0.04 1247.56 285.68 11.13 2.13
97 3 12 0.79 0.04 1138.10 296.94 11.33 1.86
97 4 12 0.77 0.04 1113.50 263.13 10.73 1.62

Mean 0.50 0.04 502.68 118.48 27.23 3.14
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Figure 4. Blue triangles and green dots represent the values of 2013 and 2014, respectively, with linear
(light grey) and the best-fitting (black) regression lines. [A]–[C]: Scatterplots of the crop traits vs. day
after seeding (DAS). [D]–[F]: Crop traits plotted against each other.

3.2. Nitrogen Estimation

A two-step model was designed for investigating whether the indirect link between CSH, DBio,
and %N can be used for estimating %N from structural traits. The reason for this assumption was that
%N is negatively related to DBio, which, in turn, can be estimated from CSH. Further one-step models
based on CSH and VIs were established for comparison.
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3.2.1. Two-Step Models

In the first step, two subsets of CSH and DBio were used for calibrating the BRM and applied
to the other two subsets, separately. 18 exponential BRMs were established, as every possible subset
combination was calculated in three runs. The mean values for the calibration and validation are given
in Table 3, summarized per model run. The statistics for each possible subset combination are shown
in the appendix (Table A1). As comparative value for the RMSE, it is referred to the across-season
mean DBio of 681.47 g/m2 and 502.68 g/m2 for 2013 and 2014, respectively (Table 2). The differences
between the model runs are negligible with quite high mean RC

2 values of 0.86–0.87. In the validation,
the run with the commonly fertilized plots performed slightly better (RV

2: 0.81). The other runs
yielded comparable good results (RV

2: 0.74 and 0.72 for the entire data set and the reduced fertilized
plots, respectively).

Table 3. Summarized mean values for biomass regression models (Calibration: RC
2: coefficient of

determination; Validation: RV
2: coefficient of determination, RMSE: root mean square error (g/m2),

rRMSE: relative root mean square error; Entire: entire data set; Common: common N fertilization;
Reduced: reduced N fertilization). The statistics for each possible subset combination are shown in the
appendix (Table A1).

RC
2 RV

2 RMSE rRMSE

Entire 0.86 0.74 238.00 0.43
Common 0.86 0.81 213.81 0.40
Reduced 0.87 0.72 256.93 0.45

In the second step, one subset of DBiomod and %N was used for calibrating the NRM. The remaining
subset was used for the validation. NRMs based on linear, exponential, and power function regressions
were calculated for investigating the type of regression between DBio and %N. 36 NRMs were
established, since this step is again performed for every possible subset combination in three runs.
The mean values are given in Table 4. The statistics for each possible subset combination are shown in
the appendix (Table A2). As comparative value for the RMSE, it is referred to the across-season mean
%N values of 23.09 g/kg and 27.23 g/kg for 2013 and 2014, respectively (Table 2). The differences between
the model runs are again almost negligible. The best results were achieved with the exponential NRM
for the data set of the commonly fertilized plots (RC

2: 0.84 and RV
2: 0.80). The power function NRM

for the entire data set performed weaker. However, these results are also far from poor with a mean
RC

2 of 0.76 and RV
2 of 0.71. The RMSE is also similar for the linear and exponential NRM, but slightly

higher for the power function NRM.

Table 4. Summarized mean values for nitrogen regression models (NRMs) based on two-step models
(Calibration: RC

2: coefficient of determination; Validation: RV
2: coefficient of determination, RMSE:

root mean square error (g/kg), rRMSE: relative root mean square error; Entire: entire data set; Common:
common N fertilization; Reduced: reduced N fertilization). The statistics for each possible subset
combination are shown in the appendix (Table A2).

Linear NRM Exponential NRM Power Function NRM

RC
2 RV

2 RMSE rRMSE RC
2 RV

2 RMSE rRMSE RC
2 RV

2 RMSE rRMSE

Entire 0.77 0.71 7.90 0.31 0.76 0.81 7.32 0.28 0.76 0.71 8.75 0.33
Common 0.82 0.69 8.10 0.30 0.84 0.80 6.96 0.25 0.80 0.70 10.05 0.36
Reduced 0.76 0.76 8.32 0.35 0.75 0.82 7.67 0.31 0.76 0.74 7.44 0.30

3.2.2. One-Step Models

Similar to the second step of the two-step model, NRMs based on linear, exponential, and power
function regressions were established with CSH as estimator. 12 NRMs were established, since the
models are again performed for every possible subset combination in three runs. The mean values
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are given in Table 5. The statistics for each possible subset combination are shown in the appendix
(Table A3). As comparative value for the RMSE, it is again referred to Table 2. The differences between
the three model runs are almost negligible. The best results were achieved with the linear NRMs (RC

2:
0.81–0.83 and RV

2: 0.82–0.85) followed by the exponential NRMs (RC
2: 0.75–0.78 and RV

2: 0.78–0.80).
Slightly worse performed the power function NRMs (RC

2: 0.58–0.66 and RV
2: 0.58–0.68). The RMSE is

again similar for the linear and exponential NRM, but slightly higher for the power function NRM.

Table 5. Summarized mean values for nitrogen regression models (NRMs) based on crop surface height
(Calibration: RC

2: coefficient of determination; Validation: RV
2: coefficient of determination, RMSE:

root mean square error (g/kg), rRMSE: relative root mean square error; Entire: entire data set; Common:
common N fertilization; Reduced: reduced N fertilization). The statistics for each possible subset
combination are shown in the appendix (Table A3).

Linear NRM Exponential NRM Power function NRM

RC
2 RV

2 RMSE rRMSE RC
2 RV

2 RMSE rRMSE RC
2 RV

2 RMSE rRMSE

Entire 0.81 0.82 5.05 0.19 0.76 0.78 5.84 0.22 0.60 0.58 15.81 0.58
Common 0.82 0.82 4.68 0.19 0.75 0.79 5.06 0.21 0.66 0.68 6.43 0.26
Reduced 0.83 0.85 4.89 0.18 0.78 0.80 6.17 0.23 0.58 0.63 21.53 0.84

As comparative data to the estimations from structural traits, the usability of the calculated VIs
for estimating %N was investigated. The R2 of each plot-wise averaged VI vs. %N was calculated for
each of the seven VIs based on a linear, an exponential, and a power function regression as a pre-test.
Based on these results (Table 6), four VIs were selected for further analysis. The GnyLi and NRI were
chosen as they performed best (R2: 0.47–0.68). Even though the REIP and the R760/R730 yielded far
poorer results (R2: 0.04–0.18), they were further investigated, as these VIs are known from literature
for its usefulness for estimating %N [30,32,40]. The NDVI, RDVI, and RGBVI were neglected due to
their poor performance (R2: 0.10–0.19).

Table 6. Pre-test: Coefficient of determination (R2) between the plot-wise averaged vegetation indices
and the nitrogen concentration.

Linear Exponential Power Function

GnyLi 0.66 0.59 0.48
NDVI 0.11 0.06 0.06
NRI 0.68 0.61 0.47

RDVI 0.19 0.12 0.13
REIP 0.18 0.10 0.10

RGBVI 0.10 0.05 0.05
R760/R730 0.11 0.12 0.05

Similar to the one-step models based on CSH, NRMs based on linear, exponential, and power
function regressions were established with GnyLi, NRI, REIP, and R760/R730 as estimators. The mean
values are given in Table 7. The structure of the table is equal to Table 5. The statistics for each possible
subset combination are shown in the appendix (Table A4). As it could be assumed from the pre-test,
the R760/R730 and REIP showed the overall worst performance with mean RC

2 of 0.02–0.18 and RV
2 of

0.15–0.27 and RC
2 of 0.06–0.28 and RV

2 of 0.23–0.35, respectively. The GnyLi and NRI yielded better
and among themselves comparable results. The differences between the model runs can again be
neglected. Mean RC

2 values between 0.45 and 0.68 were obtained with both VIs. The linear models
performed best; closely followed by the exponential NRMs and the power function provided the
worst results. A similar pattern can be stated for the validation. The linear NRMs showed the best
performance with RV

2 of 0.67–0.70. They are closely followed by the exponential ones (RV
2: 0.58–0.61).

The power function models performed slightly weaker (RV
2: 0.47–0.63). For all VIs, the RMSE is again

lower for the linear and exponential models than for the power function models.
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Table 7. Summarized mean values for nitrogen regression models (NRMs) based on vegetation indices
(Calibration: RC

2: coefficient of determination; Validation: RV
2: coefficient of determination, RMSE:

root mean square error (g/kg), rRMSE: relative root mean square error; Entire: entire data set; Common:
common N fertilization; Reduced: reduced N fertilization). The statistics for each possible subset
combination are shown in the appendix (Table A4).

Linear NRM Exponential NRM Power Function NRM

RC
2 RV

2 RMSE rRMSE RC
2 RV

2 RMSE rRMSE RC
2 RV

2 RMSE rRMSE

GnyLi
Entire 0.66 0.67 6.66 0.25 0.59 0.61 7.57 0.29 0.49 0.50 10.70 0.40

Common 0.66 0.67 6.73 0.24 0.61 0.59 8.12 0.29 0.46 0.47 11.46 0.41
Reduced 0.67 0.69 6.32 0.25 0.58 0.67 6.54 0.26 0.53 0.63 7.46 0.30

NRI
Entire 0.68 0.68 6.47 0.24 0.61 0.62 7.47 0.28 0.47 0.48 9.87 0.37

Common 0.68 0.68 6.58 0.24 0.63 0.60 7.90 0.29 0.45 0.46 10.30 0.37
Reduced 0.69 0.70 6.07 0.24 0.60 0.66 6.60 0.26 0.52 0.59 8.40 0.33

REIP
Entire 0.19 0.23 10.56 0.39 0.10 0.25 137.22 5.07 0.10 0.25 10.59 0.39

Common 0.28 0.33 10.25 0.37 0.18 0.35 88.71 3.47 0.19 0.35 10.12 0.37
Reduced 0.14 0.24 10.22 0.41 0.06 0.25 178.00 6.98 0.06 0.25 10.37 0.42

R760/R730

Entire 0.11 0.15 10.96 0.42 0.05 0.16 11.25 0.43 0.06 0.18 11.11 0.42
Common 0.18 0.24 10.63 0.38 0.11 0.26 10.74 0.39 0.03 0.17 13.06 0.52
Reduced 0.07 0.15 10.58 0.43 0.02 0.16 10.83 0.44 0.12 0.27 10.63 0.38

3.3. Relationship Between Crop Traits and Plant Organs

DBio and %N of the entire plant were used for the models in this first approach, as the entire
crop surface and hence the whole plant is captured by the laser scanner. At this point, a brief look is
thrown on the relation between the used estimators and individual plant organs. Figure 5 shows DBio
[A] and %N [B] per plant organ plotted against CSH. It is rather obvious that stem DBio depends on
CSH (R2: 0.84), whereas leaf DBio shows a weaker R2 of 0.36. CSH and ear DBio show a moderate
relation (R2: 0.68). From a plant physiological point of view, the stem has a key role in the plant
growth process. While competing for light with their neighboring plants, a large stem length alias high
CSH, accompanied by high biomass, supports the plant to place their leaves to the better-illuminated
top layers. Furthermore, plants use stem N for the grain development [3]. As it can be seen in
Figure 5 [B], stem %N is rather strong related to CSH (R2: 0.81). It is also visible that generally more
N is allocated to the metabolic actives leaves in comparison to the stem. Even more interesting is,
however, the similar negative slope of leaf %N and stem %N vs. CSH. All investigated VIs provided
poorer results. As shown for the NRI in Figure 5 [C], slightly weaker values were achieved for stem
DBio (R2: 0.34) and leaf DBio (R2: 0.83). Rather poor values can be stated for ear DBio (R2: 0.24).
Considerably lower values were achieved for NRI vs. %N of the individual organs as shown in
Figure 5 [D]. Only R2 of 0.57, 0.68, and 0.18 were reached for stem, leaf, and ear %N, respectively.

During the growing season, ear DBio can be used for quantitatively predicting the expected yield,
which is most important for crop production. How well the grain develops depends on the available
N, with stem N as main source, followed by leaf N, released through natural senescence, and soil
N [3]. Since plants let their leaves die off if these sources are too low, a sufficient N storage can prevent
this process, which would inhibit photosynthesis. During the early growing season, before ears are
present, and where crop development can mainly be influenced, stem and leaf %N are hence most
important. Ear DBio vs. stem %N and leaf %N are plotted in Figure 6 to investigate this relation.
A slightly higher coefficient of determination was reached for stem %N (R2: 0.78) compared to leaf %N
(R2: 0.77). Moreover, the scattering of the values is higher for leaf %N.
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Figure 5. Scatterplots of dry biomass and N concentration per plant vs. crop surface height ([A] and [B])
or NRI ([C] and [D]) with best-fitting regression lines. Blue dots, green triangles, and orange rhombs
represent the values of leaf, stem, and ear, respectively.

Figure 6. Scatterplots of the ear dry biomass vs. N concentration of stem [A] and leaf [B] with
best-fitting regression lines.

4. Discussion

A first investigation of crop-specific models based on structural traits for indirectly estimating N
concentration (%N) at field scale can be stated as overall aim of this study. Crop biomass and %N are two
of the most important traits under investigation in precision agriculture. The usability of TLS-derived
crop surface height (CSH) or rather plant height as estimator for biomass has been demonstrated by
several authors [57–63]. An increasing number of studies on estimating biomass highlight the benefits
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of crop height as structural trait in comparison to spectral measurements [47,59,65]. In contrast, %N
is commonly estimated from spectral data [4,31–33]. It is well known that N is negatively related to
biomass during the growing season, which, in turn, can be estimated from CSH. Based on this indirect
link, a two-step model was designed for determining DBio based on CSH in the first step, followed
by estimating %N with a nitrogen regression model (NRM) from the determined DBio in the second
step. In addition, CSH was examined as estimator in one-step NRMs and similar NRMs based on VIs
were established.

The development of CSH, DBio, and %N across the growing season showed that each crop trait
has a certain pattern, which can be expressed with mathematic functions (R2: 0.82–0.89). The relation
between DBio and %N can be expressed with a power function (R2: 0.77). Similar patterns were shown
for winter barley [24] and corn [29]. That the allometric relation of %N vs. DBio during the vegetative
growth can be expressed with a negative power function has early been recognized [20] and is the
fundament of the NNI and NDC concept. As shown in Figure 4 [F], CSH vs. %N appears to be linearly
(R2: 0.81) or exponentially (R2: 0.75) related, which supports the idea of using this structural trait as
estimator for the N status of crops. Unfortunately, no comparable studies at field scale were found.

The applicability of biomass regression models (BRMs) based on CSH was demonstrated by
Tilly et al. [65]. In contrast, crop-specific NRMs are newly developed in this study and thus examined
more closely with linear, exponential, and power functions. Since the NRMs of all approaches were
similarly designed, the results can well be compared. A point in common of all NRMs is that only
negligible differences between the three runs could be observed. This might be explained by the minor
difference between the fertilizer treatments of only 40 kg/ha. In contrast, in the literature differences of
70 to 220 kg/ha can be found for common field experiments [30,41,73,84] or single experiments with
extremely high rates of up to 420 kg/ha [30].

Spectral approaches for determining %N are presented in different studies [30–34]. In these
studies, R2 values between 0.50 and 0.80 were reached for different crops. The best performing VI
in this study reached comparable results (R2 < 0.70). Good results achieved with the R760/R730 and
REIP in other studies [30,32,40] could not be confirmed here (RV

2 < 0.35). Even though these VIs will
be excluded from the model comparison, some explanations for their weak performance should be
formulated. First, all other studies investigated wheat not barley. Furthermore, Erdle et al. (2011) [40]
and Baresel et al. [30] investigated measurements within one growing stage and used bidirectional
radiometer or active sensors. Similar to this study, Li et al. [32] investigated different growing stages
with a field spectrometer but obtained beside the quite good R2 of 0.55 also weak results of 0.21 for
the REIP. It can be summarized that the R760/R730 and REIP might be suitable for estimating crop %N.
It should, however, be further investigated how prone these VIs are to effects such as saturation [37],
multiangular reflection [85], leaf inclination angle [43], or general atmospheric conditions. Further
research should involve additional VIs, which were investigated for N content and N uptake, such
as the red edge-based canopy chlorophyll content index [86] or the optimum multiple narrow band
reflectance model [31]. Another approach that can be found in the literature are contour plot analyses.
Conclusions of two studies are, however, that it is challenging to obtain the necessary information
with two-band VIs due to the N dilution effect [31] and that it will be difficult to develop a simple
sensor that can determine the N concentration of plants with two or three bands for different growth
stages [32]. The presented approach based on structural data shall introduce an alternative method.

The power function produced the poorest results of the three function types, with the lowest R2

and highest RMSE values. Furthermore, the weakest results were achieved with the two remaining VIs.
For both VIs, best results were obtained with linear models, whereas the NRI performed slightly better
(RV

2: 0.68–0.70) than the GnyLi (RV
2: 0.67–0.69). The NRMs based on DBiomod yielded better results

and performed best with exponential functions (RV
2: 0.81–0.82). The best and most robust results were

obtained with the NRMs based on CSH (RV
2: 0.78–0.85). It should be further investigated whether

the fusion of CSH and VIs in multivariate models improves the estimation, as it was observed for
the BRMs [65]. The benefit of the fusion of spectral and structural traits are also highlighted by other
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studies. The yield prediction of drought stressed barley for example could be improved [73]. Acquiring
3D and spectral data with one sensor could therefore be worthwhile, which might be realizable with
recently emerging hyperspectral laser scanners [87]. First approaches of estimating rice leaf %N from
multispectral and hyperspectral scanners can already be found [88,89]. These studies, however, only
investigated the spectral information. Further research on the fusion of structural and spectral traits
is required.

Quality, usability, and robustness of models can be assessed according to their accuracy and
precision. Widely used metrics are the RC

2, RV
2, RMSE, and rRMSE. In case of the NRMs, RC

2 shows
if CSH-based DBio models, CSH or VIs can express variations of %N and hence if it is a suitable
indicator. RV

2 shows whether this relation is robust and transferable to independent data. It can
well be used to compare the models among each other. RMSE and rRMSE are suitable for comparing
the precision between the models. However, for evaluating the accuracy of NRMs for estimating
%N, actual measurements must be considered. A major issue of across-season estimations is the
very varying %N. The rRMSE refers to the across-season mean value, which can obviously hardly be
used as reliable reference for the accuracy of the NRM at a certain point in time. As shown for the
BRMs [90], more credible values can be obtained with campaign-wise separated analyses. Similar
results are very assumable for the NRMs, which requires further research. The validity of the RMSE
for time-specific models must be further investigated to evaluate the usability of the approach for
site-specific management. Beyond that, studies are needed on the transferability of the models to
other field locations, years, or crops. Good results have already been achieved for the transferability
of BRMs for paddy rice [91]. However, it is known from the literature that the relationship between
biomass and nitrogen is very different depending on the crop [24,92]. Accordingly, it can be assumed
that NRMs must be calibrated crop-specific, as is the case for approaches with the nitrogen nutrition
index (NNI). Novel machine learning approaches and algorithms, summarized as artificial intelligence,
should also be taken into account for estimating crop traits [93–95]. Approaches of estimating grass
sward biomass [96], quantifying rice N status [97], or monitoring wheat leaf %N [98] can already be
found. As mentioned, an important point for site-specific management is the applicability of models at
certain stages within the growing season. Analyses within one campaign were not very reliable with
the available data set, due to the amount of data. Accordingly, further analyses with more extensive
data sets are desirable for verifying the time-specific applicability of this approach.

The brief look at the relation between the estimators and individual plant organs suggests that
CSH might be useful for estimating stem DBio and %N. The observed relation between CSH and leaf
%N supports findings of Yin et al. [99]. They found a good relationship between plant height of corn
and leaf %N. Beside the known fact that more N is allocated to the metabolic actives leaves than to
the stem, a similar negative slope of leaf %N and stem %N vs. CSH was found. As the quantification
of metabolic and structural N demand of individual plant organs is required for example for growth
simulation models [5], further research on this is desirable. Moreover, this research can make an
important contribution to understand the processes and traits, which are involved in the growth and
N cycle of plants. For some crops, such as wheat, barley, and maize, the pre-anthesis ear and stem
growth are somehow interlinked [100]. From the rather good relation between ear DBio and stem %N
(R2: 0.78) or leaf %N (R2: 0.77), it can be interpreted that these individual plant organs might be useful
for yield approximations during the growing season. Further research on this is required.

Considering finally the applicability in the field, the main benefits of capturing structural traits
in comparison to spectral measurements were stated in the introduction. A main disadvantage of
acquiring spectral data with handheld spectrometers is the limitation to several discrete measurements.
It has to be mentioned that in recent years several robotic system were developed as high-throughput
mobile field platform [101,102]. Such platforms can accelerate the capturing process or even enable an
autonomous data acquisition. Furthermore, approaches of a spatially resolved acquisition of spectral
data can be found [72,103]. As these attempts are all quite new, the applicability and validity of the
results has still to be investigated. Besides the development of appropriate sensors, the emergence
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of unmanned aerial vehicles (UAVs) as platform was a major milestone. As reviewed by several
authors [104–106], various studies attach digital cameras and multi- or hyperspectral imagers to UAVs
for a nadir acquisition of surface properties. The size, payload, and stability of UAVs were rapidly
improved through technical developments across recent years, which allows attaching heavier sensors,
such as laser scanners. So far, such systems are occasionally used for capturing structural traits in
forestry such as canopy height [107], tree stem diameter [108], or crown base height [109]. Major
disadvantages are the high cost and large data processing [105]. Nevertheless, such UAV-based laser
scanners would be beneficial for the acquisition of agricultural fields, as the nadir perspective should
allow a deeper penetration of the vegetation and hence a more detailed capturing of the crop surface
and structural traits. Crop density could also be captured from a nadir perspective. This is important in
particular for the here investigated research question, as crop density influences the light competition
process. This major process of plant growth can hence be examined more closely. Combining crop
height and density information might allow precise and robust biomass and %N estimations. Finally,
this research can have an influence on conventional agriculture, as sowing densities and fertilizer
applications could be optimized.

5. Conclusions

Non-destructively estimating and monitoring crop biomass and nitrogen (N) concentration can
support site-specific management. Studies show that dry biomass can be estimated by remotely
sensing 3D or spectral information. In contrast, N estimations at field scale so far only base on
spectral measurements, which are biased by illumination changes, vegetation fraction, plant properties,
or saturation effects. This survey pursued a novel approach of estimating N concentration based on the
indirect link to structural data. This link is based on the negative relationship between N and biomass,
which can be estimated from crop height.

In two subsequent years, crop surface height was measured by terrestrial laser scanning (TLS),
seven vegetation indices (VI) were calculated from field spectrometer measurements, and destructive
measurements of dry biomass and N concentration were carried out. Based on the indirect link between
crop surface height and N concentration, novel nitrogen regression models were established in three
designs. The models based on modeled dry biomass and crop surface height reached R2 values of up
to 0.85 and 0.82, respectively, and thereby outperformed the VIs (best R2: 0.70). The relation between
crop surface height and N concentration of individual plant organs revealed that stem N showed a
stronger dependency (R2: 0.81) in comparison to leaf N (R2: 0.69) and ear N (R2: 0.40). With the best
performing VI, the NRI, considerably weaker results were achieved (R2 for stem, leaf, and ear N were
0.57, 0.68, and 0.18, respectively). This stem N is particularly important for plant growth, as it is one N
source for the grain development.

In summary, these first results open perspectives for indirect models based on structural data as
indicator for crop N concentration at field scale. Due to the crop-specific relationship between dry
biomass and N concentration, it can be assumed that the models will have to be calibrated crop-specific.
Furthermore, the time-specific applicability of the models must be further investigated. Capturing
3D data with proximal sensing can be regarded as being more robust and comfortable to carry out
in comparison to spectral measurements. Beside the data acquisition, the analysis of 3D data and
determination of structural traits could be designed more user-friendly than the interpretation of
spectral data. Hence, beside the usability as a research tool, TLS or photogrammetric approaches
should be considered for improving non-invasive and cost-effective N fertilizer management tools for
farmers. For research purposes, such as monitoring plant-internal dynamics, investigating particular
processes, or detecting diseases, the value of spectral information is indisputable. The fusion of 3D and
spectral data can therefore be very beneficial.
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Appendix A

Table A1. Statistics for each run of the biomass regression models (Calibration: RC
2: coefficient of

determination; Validation: Rv
2: coefficient of determination, RMSE: root mean square error (g/m2),

rRMSE: relative root mean square error).

Calibration Subset Validation Subset RC
2 RV

2 RMSE rRMSE

Entire data set
1 and 2 3 0.83 0.79 189.74 0.38
1 and 2 4 0.83 0.75 204.09 0.43
1 and 3 2 0.84 0.81 232.62 0.44
1 and 3 4 0.84 0.75 207.14 0.44
1 and 4 2 0.81 0.81 229.79 0.43
1 and 4 3 0.81 0.79 190.90 0.38
2 and 3 1 0.90 0.61 322.25 0.47
2 and 3 4 0.90 0.75 202.88 0.43
2 and 4 1 0.89 0.60 343.49 0.50
2 and 4 3 0.89 0.79 191.64 0.38
3 and 4 1 0.89 0.61 313.03 0.46
3 and 4 2 0.89 0.81 228.41 0.43

Common N fertilization
1 and 2 3 0.80 0.89 148.80 0.33
1 and 2 4 0.80 0.79 196.42 0.42
1 and 3 2 0.82 0.78 278.95 0.53
1 and 3 4 0.82 0.78 205.86 0.44
1 and 4 2 0.80 0.79 260.68 0.49
1 and 4 3 0.80 0.89 133.74 0.29
2 and 3 1 0.91 0.78 241.05 0.36
2 and 3 4 0.91 0.79 192.90 0.41
2 and 4 1 0.91 0.79 227.57 0.34
2 and 4 3 0.91 0.91 140.50 0.31
3 and 4 1 0.92 0.78 261.10 0.39
3 and 4 2 0.92 0.79 278.15 0.53

Reduced N fertilization
1 and 2 3 0.85 0.77 220.80 0.40
1 and 2 4 0.85 0.72 203.87 0.43
1 and 3 2 0.86 0.85 171.58 0.32
1 and 3 4 0.86 0.72 204.06 0.43
1 and 4 2 0.83 0.85 184.17 0.35
1 and 4 3 0.83 0.77 231.74 0.42
2 and 3 1 0.92 0.53 412.87 0.60
2 and 3 4 0.92 0.71 210.76 0.44
2 and 4 1 0.88 0.52 371.16 0.54
2 and 4 3 0.88 0.76 322.87 0.58
3 and 4 1 0.89 0.53 388.46 0.56
3 and 4 2 0.89 0.86 160.78 0.30
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Table A2. Statistics for each run of the nitrogen regression models (NRMs) based on two-step model.
(Calibration: RC

2: coefficient of determination; Validation: RV
2: coefficient of determination, RMSE:

root mean square error (g/kg), rRMSE: relative root mean square error).

Linear NRM Exponential NRM Power Function NRM
Calibration

Subset
Validation

Subset
RC

2 RV
2 RMSE rRMSE RC

2 RV
2 RMSE rRMSE RC

2 RV
2 RMSE rRMSE

Entire data set
3 4 0.88 0.79 5.97 0.22 0.88 0.86 6.86 0.25 0.80 0.65 12.90 0.48
4 3 0.88 0.77 6.40 0.23 0.87 0.85 6.11 0.22 0.77 0.73 7.71 0.28
2 4 0.88 0.79 7.18 0.27 0.87 0.86 5.49 0.20 0.77 0.62 15.14 0.56
4 2 0.88 0.74 8.61 0.32 0.87 0.86 6.35 0.23 0.77 0.60 13.84 0.51
2 3 0.88 0.77 7.46 0.27 0.87 0.87 6.00 0.22 0.77 0.73 7.57 0.28
3 2 0.88 0.74 7.49 0.28 0.88 0.85 6.10 0.22 0.80 0.62 11.61 0.43
1 4 0.44 0.79 6.98 0.26 0.46 0.86 8.94 0.33 0.72 0.72 6.34 0.23
4 1 0.87 0.54 9.66 0.42 0.87 0.65 7.00 0.30 0.77 0.79 5.08 0.22
1 3 0.42 0.77 7.84 0.29 0.44 0.85 10.30 0.38 0.72 0.79 7.52 0.27
3 1 0.86 0.54 8.58 0.37 0.87 0.65 6.70 0.29 0.80 0.79 4.87 0.21
1 2 0.44 0.74 7.30 0.27 0.46 0.85 9.62 0.35 0.72 0.69 7.25 0.27
2 1 0.87 0.54 11.34 0.49 0.87 0.73 8.37 0.36 0.77 0.79 5.22 0.23

Common N fertilization
3 4 0.88 0.79 6.20 0.22 0.90 0.87 6.61 0.23 0.82 0.64 11.66 0.41
4 3 0.95 0.74 6.25 0.22 0.95 0.82 7.49 0.26 0.82 0.73 8.08 0.28
2 4 0.93 0.79 7.31 0.26 0.93 0.89 5.50 0.19 0.80 0.62 17.09 0.61
4 2 0.95 0.71 11.42 0.40 0.95 0.85 6.90 0.24 0.82 0.56 21.11 0.74
2 3 0.93 0.74 6.41 0.22 0.93 0.82 7.31 0.25 0.80 0.74 7.37 0.25
3 2 0.88 0.71 8.84 0.31 0.90 0.83 6.60 0.23 0.82 0.60 15.63 0.55
1 4 0.56 0.79 5.63 0.20 0.59 0.87 6.73 0.24 0.77 0.72 6.74 0.24
4 1 0.94 0.53 10.72 0.43 0.96 0.67 6.99 0.28 0.82 0.79 5.85 0.24
1 3 0.54 0.74 6.97 0.24 0.57 0.82 8.56 0.30 0.77 0.78 8.51 0.29
3 1 0.85 0.53 8.38 0.34 0.89 0.67 6.52 0.26 0.82 0.80 5.33 0.22
1 2 0.56 0.71 7.48 0.26 0.59 0.83 7.35 0.26 0.77 0.67 7.51 0.26
2 1 0.92 0.53 11.62 0.47 0.94 0.67 6.95 0.28 0.80 0.79 5.67 0.23

Reduced N fertilization
3 4 0.93 0.80 5.58 0.21 0.92 0.85 7.19 0.28 0.83 0.64 11.43 0.44
4 3 0.85 0.81 6.78 0.26 0.82 0.89 4.77 0.18 0.75 0.74 7.37 0.28
2 4 0.90 0.80 6.64 0.26 0.89 0.84 5.32 0.21 0.79 0.63 12.71 0.49
4 2 0.85 0.84 5.25 0.20 0.82 0.89 5.28 0.21 0.75 0.68 7.97 0.31
2 3 0.89 0.81 9.60 0.37 0.89 0.89 5.66 0.22 0.79 0.73 7.73 0.30
3 2 0.93 0.84 5.35 0.21 0.92 0.88 6.06 0.24 0.83 0.68 7.66 0.30
1 4 0.38 0.80 7.98 0.31 0.38 0.76 17.15 0.66 0.65 0.72 5.85 0.23
4 1 0.84 0.58 8.05 0.38 0.82 0.69 6.41 0.30 0.75 0.85 3.81 0.18
1 3 0.37 0.81 7.90 0.30 0.37 0.89 10.66 0.41 0.65 0.80 8.40 0.32
3 1 0.92 0.58 17.41 0.81 0.92 0.69 6.87 0.32 0.83 0.85 5.45 0.25
1 2 0.37 0.84 8.38 0.33 0.37 0.87 9.33 0.36 0.65 0.75 6.90 0.27
2 1 0.89 0.58 10.92 0.51 0.89 0.76 7.33 0.34 0.79 0.85 3.98 0.19

Table A3. Statistics for each run of the nitrogen regression models (NRMs) based on crop height
(Calibration: RC

2: coefficient of determination; Validation: RV
2: coefficient of determination, RMSE:

root mean square error (g/kg), rRMSE: relative root mean square error).

Linear NRM Exponential NRM Power Function NRM
Calibration

Subset
Validation

Subset
RC

2 RV
2 RMSE rRMSE RC

2 RV
2 RMSE rRMSE RC

2 RV
2 RMSE rRMSE

Entire data set
1, 2, and 3 4 0.80 0.85 4.51 0.17 0.75 0.77 5.55 0.21 0.59 0.65 7.19 0.27
1, 2, and 4 3 0.80 0.87 4.54 0.17 0.74 0.79 5.69 0.21 0.58 0.65 7.48 0.28
1, 3, and 4 2 0.80 0.84 4.74 0.18 0.75 0.76 5.76 0.21 0.59 0.63 7.49 0.28
2, 3, and 4 1 0.85 0.73 6.41 0.24 0.78 0.81 6.36 0.24 0.63 0.41 41.10 1.52
Common N fertilization
1, 2, and 3 4 0.81 0.89 3.98 0.14 0.77 0.80 5.20 0.18 0.56 0.68 7.54 0.27
1, 2, and 4 3 0.82 0.87 4.76 0.16 0.77 0.79 5.94 0.21 0.56 0.68 8.28 0.29
1, 3, and 4 2 0.82 0.86 4.30 0.15 0.77 0.76 5.72 0.20 0.56 0.63 7.77 0.27
2, 3, and 4 1 0.87 0.78 6.53 0.26 0.81 0.85 7.84 0.32 0.65 0.52 62.51 2.53
Reduced N fertilization
1, 2, and 3 4 0.81 0.84 4.36 0.17 0.74 0.77 5.24 0.20 0.67 0.64 7.06 0.27
1, 2, and 4 3 0.78 0.92 3.37 0.13 0.72 0.84 4.52 0.17 0.66 0.68 7.14 0.28
1, 3, and 4 2 0.81 0.87 4.54 0.18 0.74 0.80 5.18 0.20 0.67 0.66 6.99 0.27
2, 3, and 4 1 0.88 0.65 6.46 0.30 0.79 0.74 5.31 0.25 0.64 0.75 4.53 0.21
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Table A4. Statistics for each run of the nitrogen regression models (NRMs) based on vegetation indices
(Calibration: RC

2: coefficient of determination; Validation: RV
2: coefficient of determination, RMSE:

root mean square error (g/kg), rRMSE: relative root mean square error).

Linear NRM Exponential NRM Power Function NRM
Calibration

Subset
Validation

Subset
RC

2 RV
2 RMSE rRMSE RC

2 RV
2 RMSE rRMSE RC

2 RV
2 RMSE rRMSE

GnyLi
Entire data set
1, 2, and 3 4 0.67 0.64 6.99 0.26 0.61 0.55 8.84 0.33 0.53 0.30 18.22 0.67
1, 2, and 4 3 0.66 0.68 6.77 0.25 0.59 0.60 7.75 0.28 0.48 0.51 8.75 0.32
1, 3, and 4 2 0.69 0.58 7.64 0.28 0.62 0.51 8.77 0.32 0.51 0.40 9.89 0.36
2, 3, and 4 1 0.63 0.76 5.24 0.23 0.54 0.79 4.91 0.21 0.43 0.77 5.94 0.26
Common N fertilization
1, 2, and 3 4 0.68 0.64 7.31 0.26 0.64 0.52 9.64 0.34 0.52 0.28 19.32 0.68
1, 2, and 4 3 0.66 0.68 6.77 0.23 0.60 0.58 7.84 0.27 0.45 0.48 9.14 0.32
1, 3, and 4 2 0.70 0.55 7.55 0.26 0.64 0.45 9.28 0.32 0.48 0.36 9.97 0.35
2, 3, and 4 1 0.61 0.82 5.29 0.21 0.55 0.81 5.75 0.23 0.40 0.77 7.39 0.30
Reduced N fertilization
1, 2, and 3 4 0.67 0.65 6.46 0.25 0.58 0.58 7.60 0.29 0.56 0.51 10.17 0.39
1, 2, and 4 3 0.66 0.68 6.48 0.25 0.58 0.63 7.26 0.28 0.54 0.55 7.99 0.31
1, 3, and 4 2 0.70 0.59 7.61 0.30 0.61 0.57 8.03 0.31 0.56 0.54 8.37 0.33
2, 3, and 4 1 0.63 0.83 4.74 0.22 0.53 0.89 3.27 0.15 0.47 0.90 3.31 0.15
NRI
Entire data set
1, 2, and 3 4 0.69 0.66 6.74 0.25 0.62 0.56 8.22 0.31 0.49 0.41 10.50 0.39
1, 2, and 4 3 0.67 0.71 6.45 0.24 0.61 0.61 7.68 0.28 0.47 0.46 9.11 0.34
1, 3, and 4 2 0.71 0.61 7.35 0.27 0.64 0.52 8.83 0.33 0.51 0.31 13.17 0.49
2, 3, and 4 1 0.65 0.74 5.33 0.20 0.58 0.78 5.14 0.19 0.42 0.75 6.69 0.25
Common N fertilization
1, 2, and 3 4 0.69 0.66 6.83 0.25 0.65 0.55 8.09 0.29 0.46 0.36 9.76 0.35
1, 2, and 4 3 0.67 0.68 6.66 0.23 0.62 0.57 8.01 0.28 0.44 0.41 9.39 0.32
1, 3, and 4 2 0.70 0.59 7.27 0.25 0.66 0.49 9.47 0.33 0.49 0.32 14.22 0.50
2, 3, and 4 1 0.64 0.80 5.59 0.23 0.59 0.80 6.05 0.24 0.40 0.73 7.84 0.32
Reduced N fertilization
1, 2, and 3 4 0.69 0.66 6.40 0.25 0.61 0.58 8.01 0.31 0.55 0.47 12.89 0.50
1, 2, and 4 3 0.67 0.73 5.96 0.23 0.59 0.65 6.91 0.27 0.51 0.55 7.96 0.31
1, 3, and 4 2 0.72 0.61 7.34 0.29 0.63 0.57 8.00 0.31 0.54 0.50 8.61 0.34
2, 3, and 4 1 0.66 0.78 4.60 0.21 0.56 0.85 3.46 0.16 0.46 0.86 4.14 0.19
REIP
Entire data set
1, 2, and 3 4 0.19 0.17 11.16 0.41 0.10 0.19 25.28 0.93 0.10 0.19 10.81 0.40
1, 2, and 4 3 0.20 0.15 10.94 0.40 0.11 0.17 12.91 0.48 0.11 0.17 11.57 0.43
1, 3, and 4 2 0.21 0.12 11.20 0.41 0.12 0.14 93.14 3.44 0.12 0.14 11.41 0.42
2, 3, and 4 1 0.14 0.47 8.94 0.33 0.06 0.49 417.55 15.42 0.06 0.50 8.58 0.32
Common N fertilization
1, 2, and 3 4 0.30 0.21 10.46 0.37 0.21 0.23 27.47 0.97 0.21 0.23 10.20 0.36
1, 2, and 4 3 0.31 0.19 11.44 0.39 0.21 0.20 29.25 1.01 0.21 0.20 11.35 0.39
1, 3, and 4 2 0.30 0.19 10.19 0.36 0.20 0.22 27.72 0.97 0.21 0.22 10.24 0.36
2, 3, and 4 1 0.19 0.73 8.91 0.36 0.11 0.74 270.41 10.94 0.11 0.75 8.70 0.35
Reduced N fertilization
1, 2, and 3 4 0.13 0.14 10.17 0.39 0.06 0.15 26.21 1.01 0.06 0.15 10.52 0.41
1, 2, and 4 3 0.14 0.14 10.93 0.42 0.07 0.15 11.07 0.43 0.07 0.15 11.37 0.44
1, 3, and 4 2 0.16 0.08 11.65 0.45 0.08 0.09 653.62 25.51 0.08 0.09 11.44 0.45
2, 3, and 4 1 0.11 0.60 8.15 0.38 0.04 0.62 21.11 0.98 0.04 0.61 8.15 0.38
R760/R730
Entire data set
1, 2, and 3 4 0.12 0.08 10.91 0.40 0.05 0.10 11.31 0.42 0.06 0.11 11.12 0.41
1, 2, and 4 3 0.13 0.08 11.48 0.42 0.06 0.09 12.09 0.44 0.07 0.10 11.97 0.44
1, 3, and 4 2 0.13 0.06 11.42 0.42 0.06 0.07 11.73 0.43 0.07 0.09 11.63 0.43
2, 3, and 4 1 0.07 0.39 10.04 0.43 0.02 0.40 9.87 0.43 0.03 0.42 9.72 0.42
Common N fertilization
1, 2, and 3 4 0.20 0.12 10.84 0.38 0.13 0.14 10.75 0.38 0.14 0.16 10.59 0.38
1, 2, and 4 3 0.21 0.11 11.27 0.39 0.12 0.12 11.55 0.40 0.13 0.13 11.51 0.40
1, 3, and 4 2 0.21 0.10 10.76 0.38 0.12 0.12 10.82 0.38 0.13 0.14 10.72 0.37
2, 3, and 4 1 0.11 0.65 9.64 0.39 0.05 0.66 9.82 0.40 0.06 0.67 9.70 0.39
Reduced N fertilization
1, 2, and 3 4 0.07 0.06 10.57 0.41 0.02 0.06 11.23 0.43 0.03 0.06 20.24 0.78
1, 2, and 4 3 0.08 0.06 11.02 0.42 0.02 0.06 11.59 0.45 0.03 0.07 11.58 0.45
1, 3, and 4 2 0.09 0.04 11.42 0.45 0.03 0.04 11.76 0.46 0.03 0.05 11.74 0.46
2, 3, and 4 1 0.05 0.46 9.34 0.44 0.01 0.47 8.75 0.41 0.01 0.49 8.66 0.40
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Abstract: Plant nitrogen (N) information has widely been estimated through empirical techniques
using hyperspectral data. However, the physical model inversion approach on N spectral response
has seldom developed and remains a challenge. In this study, an N-PROSAIL model based on
the N-based PROSPECT model and the SAIL model canopy model was constructed and used for
retrieving crop N status both at leaf and canopy scales. The results show that the third parameter
(3rd-par) retrieving strategy (leaf area index (LAI) and leaf N density (LND) optimized where other
parameters in the N-PROSAIL model are set at different values at each growth stage) exhibited the
highest accuracy for LAI and LND estimation, which resulted in R2 and RMSE values of 0.80 and
0.69, and 0.46 and 21.18 μg·cm−2, respectively. It also showed good results with R2 and RMSE values
of 0.75 and 0.38% for leaf N concentration (LNC) and 0.82 and 0.95 g·m−2 for canopy N density
(CND), respectively. The N-PROSAIL model retrieving method performed better than the vegetation
index regression model (LNC: RMSE = 0.48 − 0.64%; CND: RMSE = 1.26 − 1.78 g·m−2). This study
indicates the potential of using the N-PROSAIL model for crop N diagnosis on leaf and canopy scales
in wheat.

Keywords: leaf nitrogen concentration; canopy nitrogen density; radiative transfer model; hyperspectral;
winter wheat

1. Introduction

Nitrogen (N) is a critical nutrient element for maintaining photosynthesis, enhancing production,
and improving grain quality in crops, but the excess use of N fertilizer also results in a series of plant
and environmental problems (e.g., vigorous growth, and eutrophication) [1,2]. Precision farming,
which considers the crop spatial N distribution, plays an important role in solving these problems,
whereby the accurate crop N estimation by remote sensing technology has the potential to precisely
manage N by supplying a crop’s N requirement at the right place and right time [3,4].

Remote Sens. 2018, 10, 1463; doi:10.3390/rs10091463 www.mdpi.com/journal/remotesensing
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Various sensitive spectral features and vegetation indices have been analyzed for crop N estimation.
Kokaly proposed that leaf N concentration (LNC, %) in rice can be estimated by two reflectance
absorptions at 2054 nm and 2172 nm [5]. Niu et al. showed that fresh LNC could be estimated using first
derivative reflectance spectrum at 2120 nm and 1120 nm [6]. Cho and Skidmore reported on extracting
two optimal red edge region equations (REP = − (c1 − c2)/(m1 − m2), where c1 and c2 are the intercepts
of a far-red line connected between 679.65 and 694.30 nm, and near-infrared line connected between
732.46 and 760.41 nm or 723.64 and 760.41 nm, respectively; m1 and m2 are the corresponding slope of
c1 and c2, respectively) with high N sensitivity [7]. Previous studies demonstrated that spectral indices
have a high correlation with crop N status [8–16], and many spectral indices centered on crop N were
proposed. Normalized Difference N Index (NDNI = [log(1/R1510) − log(1/R1680)]/[log(1/R1510) +
log(1/R1680)] was used to estimate LNC in native shrub vegetation [9]. Elshikha et al. presented the
Canopy Chlorophyll Content Index [CCCI = (NDRE − NDREmin)/(NDREmax − NDREmin), where
NDRE = (R790 − R720)/(R790 + R720)] as an effective indicator to monitor cotton N when the canopy
cover reached above 30% [17]. Yao et al. found the model for canopy N density (CND, g·m-2)
estimation based on NDSI (R860, R720), RSI (R990, R720), NDSI (FD736, FD720), and RSI (FD725, FD516)
performed well in wheat [15]. Chen et al. developed a new index named Double-peak Canopy N
Index [DCNI = (R720 − R700)/(R700 − R670)/(R720 − R670 + 0.03)] to estimate plant N concentration
(PNC) in corn and wheat [13]. Feng et al. created a Water Resistance N Index [WRNI = (R735 − R720)
× R900/Rmin(930-980)/(R735 + R720)] to improve the accuracy of the LNC model by minimizing water
effects at different growth stages [16].

Moreover, the application of artificial intelligence methods in crop N estimation has been reported
in many recent studies and has been proved to be a better predictor than using only sensitive spectral
features or vegetation indices [3,4,18–24]. Among these, Hansen et al., Ecarnot et al., and Li et al.
showed that partial least square regression (PLSR) could accurately predict LNC in winter wheat and
winter oilseed rape [18–20]. Miphokasap et al. indicated that estimaing PNC by stepwise multiple
linear regression (SMLR) performed a higher estimation than the model by vegetation indices [4].
Zhang et al. demonstrated that an artificial neural network (ANN) improved the prediction of LNC
with consistently higher R2 values, and was better than that by SMLR [21]. Xu et al. proposed that
the optimal combination principle (OCP) method to monitor LNC in barley would exhibit better
performance than the vegetation indices methods [22,23]. Yao et al. and Li et al. compared the method
of SMLR, PLSR, ANN, and support vector machines regression (SVR), to monitor LNC, and showed
PLSR and SVR to be preferred choices for estimating LNC, and ANN was also recommended when
sufficient sample size was available [1,24].

Much research on crop N estimation has been reported, and some results were satisfactory.
However, a statistical relationship between spectral information and crop N status cannot be expected
everywhere and every time, even for a particular sensor [25,26]. The physical model inversion
approach on N spectral response has rarely been developed, except for an N-based PROSPECT model
(N-PROSPECT) which was extended from a PROSPECT model by replacing the specific absorption
coefficients of chlorophyll in the model with equivalent N absorption coefficients, and which could
accurately simulate and retrieve leaf N density (LND) at the leaf scale [27]. Thus, crop N status both at
leaf and canopy scales could be retrieved through integrating the N-PROSPECT model and the SAIL
canopy model [28], to be defined as the N-PROSAIL model in this study. In addition, an ill-posed
problem, also called inaccurate inversion, existed and is unavoidable in model parameters inversion,
which could be attributed to: (1) multiple solutions in the process of the inversion and (2) uncertainties
from measurements and model assumptions [25,26]. Using prior information has been demonstrated
as a very efficient solution to this problem [29,30].

To develop an N estimation model based on physical model and explore the suitable strategies for
estimating leaf and canopy N status, the objectives of this research were: (1) to develop the N-PROSAIL
model to simulate canopy reflectance responses to leaf N density (LND); (2) to assess N status both
at leaf and canopy scales, i.e., LNC and canopy N density (CND, g·m−2 soil), in winter wheat using
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the N-PROSAIL model; (3) to reduce the ill-posed inversion and improve the accuracy of related
N variables by setting prior parameters values in the N-PROSAIL model at different growth stages;
and (4) to evaluate the performance of the N-PROSAIL model method by comparing it with LNC and
CND estimated by vegetation index methods.

2. Materials and Methods

2.1. Experimental Design

The experiments were conducted over four growing seasons, 2012–2013, 2013–2014, 2014–2015,
and 2015–2016, at the Xiaotangshan National Experimental Station for Precision Agriculture, (40.17◦N,
116.43◦E) in Beijing, China (Figure 1). The test variables included various cultivars, different N
fertilization rates and irrigation amounts (Table 1). Experiment (Exp.) 1 was carried out in 2012–2013
as a completely randomized design with two replications of four wheat cultivars and four N fertilizer
applications rates. Exp. 2 and 3 were conducted in 2013–2015 with an orthogonal experimental design
with three replications of two wheat cultivars, four N fertilizer applications rates, and three irrigation
amounts. Exp. 4 was designed in 2015–2016 as a completely randomized design with three replications
of two wheat cultivars and four N fertilizer applications rates. Other management procedures such
as pest management, weed control, and phosphate and potassium fertilizer followed local standard
practices for winter wheat production.

 
Figure 1. Study site and experiment plot.

Table 1. Summary of cultivar, soil characteristics and treatments for the four experiments.

No. Season Cultivar Treatments Dataset

Exp. 1 2012–2013 Nongda211, Zhongmai175,
Jing9843, Zhongyou206

N rate (kg N ha−1):
0, 110, 220, 440

Calibration

Exp. 2 2013–2014 Jing9843, Zhongmai175

N rate (kg N ha−1):
0, 90, 180, 270;
Irrigation rate

(mm):
0, 146, 292

Calibration

Exp. 3 2014–2015 Jing9843, Zhongmai175

N rate (kg N ha−1):
0, 90, 180, 270;
Irrigation rate

(mm):
0, 192, 384

Validation

Exp. 4 2015–2016 Lunxuan167, Jingdong18 N rate (kg N ha−1):
18, 90, 180, 270;

Calibration
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2.2. Data Acquisition

2.2.1. Canopy Spectral Data

Canopy hyperspectral reflectances were obtained at four key growth stages (Zadoks growth stage:
31, 47, 65, 75 of winter wheat) [31] (Table 2). Canopy reflectances were measured by an ASD FieldSpec
Handheld spectrometer (Analytical Spectral Devices Inc., USA) with a spectral range of 350–2500 nm.
Under clear sky conditions between 10:00 and 14:00 Beijing time, the spectrometer was held at a height
of 1.0 m above the canopy to ensure the same corresponding at different growth stages. A 40 cm by
40 cm BaSO4 calibration panel served as a black, baseline reflectance. To reduce the possible effects of
sky and field conditions, spectral measurements were taken at four sites in each plot and then averaged
to represent the canopy reflectance of each plot. Vegetation and panel radiance measurements were
taken as the average of 20 scans at an optimized integration time, with a dark current correction for
each spectrometry measurement. A panel radiance measurement was taken before and after each
vegetation measurement by two scans. Bare soil refelectance was also acquired at each growth period
so that it could be used as the input of the N-PROSAIL model.

Table 2. List of acquired experiment data in the four wheat experiments.

Growth Stage Zadoks Date No. LAI Cm LND LNC CND Spectral

Exp. 1: 2012–2013

Stem elongation 31 23 Apr. 32 � � � � � –
Booting 47 6 May 32 � � � � � �
Anthesis 65 19 May 32 � � � � � �

Milk development 75 1 Jun. 32 � � � � � �
Exp. 2: 2013–2014

Stem elongation 33 11 Apr. 48 � � � � � �
Booting 45 20 Apr. 48 � � � � � �
Anthesis 65 7 May 48 � � � � � �

Milk development 75 20 May 48 � � � � � �
Exp. 3: 2014–2015

Stem elongation 31 14 Apr. 48 � � � � � �
Booting 47 26 Apr. 48 � � � � � �
Anthesis 65 12 May 48 � � � � � �

Milk development 75 26 May 48 � � � � � �
Exp. 4: 2015–2016

Stem elongation 31 15 Apr. 24 � � � � � �
Booting 47 29 Apr. 24 � � � � � �
Anthesis 65 11 May 24 � � � � � �

Milk development 75 26 May 24 � � � � � �

2.2.2. Plant Measurements

The aboveground vegetation at spectral measurement positions was collected immediately by
randomly cutting 0.25 m2 in each plot, and the number of tillers counted. Then, plant samples of
20 representative wheat tillers were randomly selected from the collected cut plants. All green leaves
were separated from the stems. A laser leaf area meter (CI-203, CID Bio-Science Inc., WA, USA)
was used to measure the leaf area, and electronic scales (±0.01 g) and drying oven were used to
get the leaf dry mass, wet matter weight and dry matter weight (Cm, g·m−2) [26]. Equivalent water
thickness (Cw, g·cm−2 or cm) was calculated based on wet matter weight and dry matter weight [32].
A Carlo-Erba NA 1500 dry combustion analyzer (Carlo Erba, Milan, Italy) [33] was used to measure
leaf N concentration (LNC, %). Finally, leaf N density (LND, μg·cm−2 leaves) was calculated as the

284



Remote Sens. 2018, 10, 1463

LNC multiplied by the Cm, and canopy N density (CND, g·m−2 soil) was acquired by leaf area index
(LAI) multiplied by LND [27,34].

2.3. Model and Methods

2.3.1. Inversion Procedure of LNC and CND Estimation

The inversion procedure of LNC and CND estimation with the N-PROSAIL model is shown in
Figure 2. Specific steps were as follows:

 
Figure 2. Flowchart of estimating leaf N concentration (LNC) and canopy N density (CND) with
the N-PROSAIL model and the Shuffled Complex Evolution method developed at the University of
Arizona (SCE-UA) method.

(1) Prior parameters initialization: parameters in the N-PROSAIL model (see Section 2.3.2) were
initialized and simulated references can be simulated based on these set parameters. Three strategies
of parameter (par) setting were tested and are as follows:

(i) 1st-par: LAI, LND and Cm were optimized and the other six parameters in the N-PROSAIL
model (Table 3) were set as fixed values in the whole growth period;

(ii) 2nd-par: LAI, LND and Cm were optimized and the other six parameters in the N-PROSAIL
model (Table 3) were set as fixed values at each growth stage;

(iii) 3rd-par: LAI and LND were optimized and Cm was also set as fixed values at each growth
stage since it has low variation in specific crop cultivar at one growth stage [35,36]. The other six
parameters in the N-PROSAIL model were set as 2nd-par.

(2) Vegetation indices calculation: simulated and measured vegetation indices (see Section 2.3.3)
were computed and the optimal vegetation indices correlative with LAI, LND and Cm were chosen to
construct cost function in optimization method.

(3) SCE-UA optimization: the SCE-UA method (see Section 2.3.4) was used to optimize parameters
in the N-PROSAIL model. Parameters of the SCE-UA method were set and parameters in the
N-PROSAIL model were updated until the number of optimization iterations was more than the
maximum number of trials (maxn) allowed before optimization was terminated.

(4) Validation: the end LAI, LND and Cm were considered as optimized values and they were used
to calculate LNC and CND. Three strategies were validated by comparing measured and simulated
values. In addition, the inversion performance by the N-PROSAIL model was compared with LNC
and CND estimation modeled by vegetation indices.
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Table 3. Specific ranges and setting for input parameters in the N-PROSAIL model.

Parameters 1st-par Setting
2nd-par/3rd-par Setting

Z.S. 3.1 Z.S. 47 Z.S. 65 Z.S. 75

Leaf N density (LND, μg·cm−2) 60–230 75–230 70–200 80–200 60–200
Leaf area index (LAI, m2·m−2) 0.4–8.5 1.5–6.5 1.0–8.5 0.5–7.0 0.3–4.5

Dry matter content (Cm, g·m−2) 40 23–60 #; 40 ## 28–45 #; 36 ## 30–54 #; 39 ## 30–70 #; 46 ##

Equivalent water content (Cw, cm) 0.010 0.0138 0.0127 0.0098 0.0085
Leaf structure parameter (Ns) 1.5 1.24 1.07 1.03 1.16

Leaf inclination distribution (LID, deg) 50 50.5 47.2 45.0 43.8
Soil brightness parameter (Rsoil) 0.44 0.49 0.73 0.62 0.35

Hot spot parameter (SL) 0.15 0.24 0.10 0.12 0.21
Solar zenith angle (θs, deg) 45 30 25 22 18

# The ranges of Cm at the 2nd-par setting according to calibration dataset; ## the ranges of Cm at the 3rd-par setting
according to calibration dataset.

2.3.2. The N-PROSAIL Model

The N-PROSAIL model is a combination of the N-PROSPECT leaf model [27] and SAILH canopy
model [28]. At the leaf scale, PROSPECT uses a leaf structure parameter and leaf biochemical
contents to simulate directional-hemispherical reflectance and transmittance of various leaves [37].
The N-PROSPECT model was developed from the PROSPECT model by replacing the specific
absorption coefficients of chlorophyll in the PROSPECT model with equivalent N absorption
coefficients [27,37]. LNC can be estimated according to LND and Cm. At canopy scale, SAILH considers
canopy structures (LAI, leaf angle distribution (θs)), soil brightness, and other angle information to
generate canopy reflectance [28]. LAI can be retrieved according to the SAIL model. Then, CND
can be calculated by multiplying LAI and LND. During the inversion of the N-PROSAIL model to
retrieve crop parameters, nine parameters needed to be determined (Table 3). These parameters were
determined at different growth stages. LAI and LND were the main retrieval parameters and they were
given intervals based on calibration dataset. Cw, Cm and Soil brightness parameter (Rsoil) values were
obtained by averaging measured values at different growth stages. The solar zenith angle (θs) was
calculated for the time in the experiment when the hyperspectral data was measured. Leaf structure
parameter (Ns), hot spot parameter (SL) and leaf inclination distribution (LID) values were firstly
optimized by the SCE-UA method using the 2012–2013, 2013–2014 and 2015–2016 wheat experiment
data, where parameters of LAI, LND, Cw, Cm, Rsoil, θs were known inputs. Then the mean values of
Ns, LID at different growth stages were the final results. Finally, we got the parameter set of Cw, Cm,
Rsoil, θs, Ns, SL and LID at each growth stage, respectively (Table 3).

2.3.3. Selection of Spectral Index

Fifteen vegetation indices correlated with agronomic parameters in previous results were
calculated using the equations listed in Table 4. Using these vegetation indices has the following two
purposes. (1) Selecting the best vegetation index correlation with LAI, LND and Cm to establish the
cost function, an equation to evaluate the consistency between simulated and measured target, in the
N-PROSAIL model (see Section 2.3.4). (2) Establishing regression equations of LNC and CND, which
were used to validate the inversion performance using the N-PROSAIL model.

2.3.4. SCE-UA Algorithm for LNC and CND Estimation

The SCE-UA method (the abbreviation for the Shuffled Complex Evolution method developed
at the University of Arizona) proposed by Duan et al. is a general purpose global optimization
program [50]. The method has the advantages of search efficiency at high-parameter dimensionality,
convergence speed and computational efficiency, and global searching stability [51,52], and it has
been proved to be a useful and effective optimization method in past studies [53–55]. Duan et al. [51]
and Wang et al. [54] give a detailed description of the steps of the SCE-UA method. There are many
parameters in the SCE-UA method, but most of them were set as default in the method. The number
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of complexes in a sample population (ngs) and the maximum number of trials (maxn) were determined
by the actual condition and they are 2 and 1000 in this study, respectively [54]. The cost function used
to compare simulated with measured vegetation indices in this study was selected as follows:

J =
N

∑
i=1

√
(VImi − VIsi)

2

VImi
(1)

where J is the value of cost function and N is the determined number of vegetation indices. VIm and
VIs are the measured vegetation indices and simulated vegetation indices by the N-PROSAIL model,
respectively. In this study, three vegetation indices respectively correlated with LAI, LND, and Cm,
were selected into the cost function. In the process of iterative inversion, the minimum of J value (minJ)
was given as 5% to avoid model overfitting. Thus, the terminal condition happens when the iterative
number is larger than maxn or the J value is less than minJ.

Table 4. Summary of vegetation indices studied for the N-PROSAIL inversion and N estimation.

Vegetation Index Formulation Reference

CIred edge (R750/R720) − 1 Gitelson et al. [38]
GNDVI (R750 − R550)/(R750 + R550) Baret et al. [39]

MCARI/MTVI2

MCARI/MTVI2;
MCARI: (R700 − R670 − 0.2(R700 − R550))(R700/R670);

MTVI2: 0.5(1.2(R800−R500)-2.5(R670 − R550))/
sqrt (2(R800 + 1)2 − (6R800 − 5sqrt(R670)) − 0.5)

Eitel et al. [40]

mND705 (R750 - R705)/(R750 + R705 − 2R445) Sims et al. [41]
MSR (R800/R670 − 1)/sqrt(R800/R670 + 1) Chen [42]

ND705 (R750 − R705)/(R750 + R705) Sims et al. [41]
NDVI (R890 − R670)/(R890 + R670) Pearson et al. [43]

NDLMA (R2260 − R1490)/(R2260 + R1490) Le Maire et al. [44]
DCNI (R720 − R700)/(R700 − R670)/(R720 − R670 + 0.03) Chen et al. [13]

WDRVI (0.1R890 − R670)/(0.1R890 + R670) Gitelson et al. [45]
sLAIDI s(R1050 − R1250)/(R1050 + R1250), s = 5 Delalieux et al. [46]

GI R551/R677 Zarco-Tejada et al. [47]
SPVI 0.4(3.7(R800 − R670) − 1.2abs(R550 − R670)) Vincini et al. [48]

NDVIcanste (R760 − R708)/(R760 + R708) Steddom et al. [49]
NDRE (R790 − R720)/(R790 + R720) Fitzgerald et al. [12]

2.3.5. Statistical Analysis

Data collected from 2012–2013, 2013–2014, and 2015–2016 (n = 384) were mainly used for analyzing
the correlation between vegetation indices and agronomic variables, calibrating the parameters of
N-PROSAIL model, and developing the regression models by vegetation indices. Data collected from
2014–2015 (n = 192) were used to validate the estimating performance by N-PROSAIL model and
regression models.

Pearson Correlations (r) between vegetation indices and agronomic variables (LAI, LND, LNC,
and CND) were analyzed using Microsoft Office Excel (Microsoft Corporation, Washington, DC, USA).
The determination coefficient (R2) and root mean square error (RMSE) were used to test the general
performance of different models in this study. All calculations were made using the MATLAB (v2007,
MathWorks Inc., Natick, MA, USA), and all graphs were made using the R statistical software RStudio
(v1.0.44, RStudio Inc., Boston, MA, USA).

3. Results

3.1. Correlations among LAI, Cm, LND, LNC, and CND

Correlation coefficients between agronomic variables were analyzed using the calibration set
(Table 5). The results showed highly significant differences (p-value < 0.01) between agronomic
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variables, but correlation (r) values showed high differences. CND had the highest correlation with
LAI and LND, with r values of 0.90 and 0.84, respectively. LND calculated from LNC showed a
strong correlation (r = 0.73) with LNC, while LAI also demonstrated a high correlation with LNC
(r = 0.66) although the two variables were acquired separately. Cm exhibited negative correlations
with LAI, LNC, and CND and a positive correlation with LND, with r values of −0.55, −0.19, −0.30,
and 0.45, respectively.

Table 5. Correlations between agronomic variables (n = 384).

Variable LAI Cm LND LNC

Cm −0.55 **
LND 0.22 ** 0.45 **
LNC 0.66 ** -0.19 ** 0.73 **
CND 0.90 ** -0.30 ** 0.52 ** 0.84 **

** Model significance at the 0.01 probability level (p < 0.01).

3.2. Correlations between Agronomic Variables and Vegetation Indices

Fifteen vegetation indices correlated with agronomic values were analyzed (Table 6). The results
showed that all spectral indices were highly significantly related to LAI (p-value < 0.01) except NDLMA

which had a correlation significant at the 0.05 level. The fourteen spectral indices except DCNI had
correlations greater than 0.68, and MSR had the highest correlation with LAI, with r value of 0.80.
Correlation coefficients between Cm and the spectral indices showed that fifteen vegetation indices,
except DCNI, indicated highly significant differences (p-values < 0.01), but the absolute r values were
only from 0.14 to 0.35, which were lower than the r values between LAI and the corresponding spectral
indices. All spectral indices were highly significantly related to LND (p-value < 0.01). The maximum
and minimum correlations were with MCARI/MTVI2 and NDLMA, with r values of −0.56 and −0.19,
respectively. According to the correlations analysis, MSR, GI, and MCARI/MTVI2 were first used to
develop the cost function in the N-PROSAIL model.

Table 6. Correlations between agronomic variables and vegetation indices (n = 384).

Variable LAI Cm LND LNC CND

CIred edge 0.76 ** −0.22 ** 0.49 ** 0.70 ** 0.81 **
GNDVI 0.77 ** −0.21 ** 0.49 ** 0.70 ** 0.79 **

MCARI/MTVI2 −0.69 ** 0.14 ** −0.56 ** −0.71 ** −0.75 **
mND705 0.74 ** −0.21 ** 0.52 ** 0.73 ** 0.78 **

MSR 0.80 ** −0.28 ** 0.41 ** 0.67 ** 0.81 **
ND705 0.76 ** −0.23 ** 0.50 ** 0.71 ** 0.79 **
NDVI 0.74 ** −0.23 ** 0.47 ** 0.68 ** 0.75 **

NDLMA 0.12* −0.26 ** −0.19 ** 0.00 # 0.06 #

DCNI 0.40 ** −0.01 # 0.45 ** 0.48 ** 0.49 **
WDRVI 0.79 ** −0.27 ** 0.44 ** 0.68 ** 0.80 **
sLAIDI 0.68 ** −0.20 ** 0.38 ** 0.56 ** 0.69 **

GI 0.79 ** −0.35 ** 0.30 ** 0.61 ** 0.76 **
SPVI 0.79 ** −0.28 ** 0.44 ** 0.71 ** 0.82 **

NDVIcanste 0.76 ** −0.22 ** 0.51 ** 0.72 ** 0.79 **
NDRE 0.74 ** −0.19 ** 0.52 ** 0.71 ** 0.79 **

* Model significance at the 0.05 probability level (p < 0.05); ** Model significance at the 0.01 probability level
(p < 0.01); # Model with no significance.

Correlations of LNC and CND to the fifteen vegetation indices were also analyzed (Table 6).
The results showed that all vegetation indices, expect NDLMA, were identified as significantly correlated
with LNC and CND, respectively. In particular, CIred edge, GNDVI, MCARI/MTVI2, mND705, ND705,
SPVI, NDVIcanste, and NDRE showed relatively higher correlations with LNC (r ≥ 0.70) than the
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others, while CIred edge, GNDVI, MSR, ND705, WDRVI, SPVI, NDVIcanste, and NDRE exhibited higher
correlations with CND (r ≥ 0.79) than the others. Therefore, these vegetation indices could be used to
further establish regression models with the purpose of comparing and evaluating the performance of
LNC and CND estimation using the N-PROSAIL model.

3.3. LAI, LND, and Cm Estimation Using the N-PROSAIL Model Inversion

The N-PROSAIL model using the SCE-UA method was first applied to retrieve LAI, Cm, and LND
in this study. Three parameter settings, 1st-par setting, 2nd-par setting, and 3rd-par setting, were tried
in this process in order to get the best estimation of LNC and CND. The retrieved results of each
agronomic variable with each parameter setting are shown in Figure 3 and Table 7.

Figure 3. Comparison of measured and estimated values of leaf area index (LAI) (a–c), Cm (d–f),
and LND (g–i) based on the N-PROSAIL model in winter wheat across the calibration set.

The results showed that a high consistency between the measured LAI and simulated LAI by the
N-PROSAIL model inversion with the three parameter setting (Figure 3a–c). At different growth stages,
the R2 and RMSE values between the simulated LAI and measured LAI for the 1st-par setting, the
2nd-par setting, and the 3rd-par setting ranged from 0.45–0.69 and 0.56–0.93, 0.45–0.68 and 0.61–1.46,
and 0.59–0.70 and 0.55–0.88, respectively (Table 7). The 3rd-par setting exhibited a relatively higher
R2 and lower RMSE than the other two parameter settings. The relationships between the simulated
and measured LAIs at all growth stages were analyzed together, and the results showed that LAI
estimation by the N-PROSAIL model inversion with the 3rd-par setting (R2 = 0.75 and RMSE = 0.73)
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was superior to the LAI estimation with the 1st-par setting (R2 = 0.67 and RMSE = 0.74) and the 2nd-par
setting (R2 = 0.67 and RMSE = 1.08). The independent data of 2014–2015 was used to test the estimation
performance, and LAI estimation with the 3rd-par setting (R2 = 0.80 and RMSE = 0.69) appeared stable
compared with LAI estimation with the 1st-par setting (R2 = 0.81 and RMSE = 0.64) and the 2nd-par
setting (R2 = 0.76 and RMSE = 0.93). These results indicated that the 3rd-par setting to retrieve LAI
had the best estimation accuracy.

Table 7. Comparison of different agronomic parameters estimation with different parameter setting.

Parameter
Setting

Statistical
Categories

No.
LAI (m2·m−2) Cm (g·m−2) LND (μg·cm−2) LNC (%) CND (g·m−2)

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

1st-par

Z.S.31 72 0.45 ** 0.76 0.02 # 26.43 0.29 ** 42.24 0.00 # 1.10 0.36 ** 1.66
Z.S.47 104 0.56 ** 0.93 0.07 # 25.50 0.48 ** 70.07 0.49 ** 1.99 0.69 ** 3.19
Z.S.65 104 0.69 ** 0.66 0.00 # 21.84 0.42 ** 64.42 0.47 ** 2.32 0.74 ** 2.61
Z.S.75 104 0.67 ** 0.56 0.00 # 21.86 0.25 ** 48.33 0.11 ** 0.64 0.68 ** 1.78

Calibration 384 0.67 ** 0.74 0.00 # 23.79 0.30 ** 58.49 0.21 ** 1.69 0.66 ** 2.45
Validation 192 0.76 ** 0.93 0.00 # 27.93 0.34 ** 62.86 0.18 ** 1.23 0.76 ** 1.47

2nd-par

Z.S.31 72 0.45 ** 0.82 0.00 # 18.51 0.34 ** 18.53 0.03 # 1.24 0.20 ** 2.16
Z.S.47 104 0.50 ** 1.46 0.06 # 8.21 0.61 ** 18.60 0.38 ** 0.52 0.68 ** 2.57
Z.S.65 104 0.68 ** 1.15 0.04 # 11.85 0.51 ** 17.57 0.21 ** 0.65 0.73 ** 2.15
Z.S.75 104 0.67 ** 0.61 0.00 # 22.68 0.25 ** 26.55 0.02 # 1.00 0.68 ** 1.24

Calibration 384 0.67 ** 1.08 0.05 # 16.12 0.45 ** 20.80 0.14 ** 0.87 0.67 ** 2.08
Validation 192 0.81 ** 0.64 0.18 ** 18.50 0.39 ** 24.15 0.51 ** 0.94 0.82 ** 1.03

3rd-par

Z.S.31 72 0.59 ** 0.57 0.00 # 4.81 0.57 ** 15.16 0.34 ** 0.41 0.44 ** 1.31
Z.S.47 104 0.67 ** 0.88 0.00 # 6.35 0.65 ** 17.29 0.64 ** 0.65 0.76 ** 1.52
Z.S.65 104 0.70 ** 0.81 0.00 # 6.09 0.56 ** 16.14 0.74 ** 0.47 0.76 ** 1.40
Z.S.75 104 0.66 ** 0.55 0.00 # 6.64 0.48 ** 20.08 0.67 ** 0.30 0.69 ** 1.00

Calibration 384 0.75 ** 0.73 0.13 ** 6.10 0.59 ** 17.43 0.62 ** 0.48 0.75 ** 1.32
Validation 192 0.80 ** 0.69 0.47 ** 8.19 0.46 ** 21.18 0.75 ** 0.38 0.82 ** 0.95

* Model significance at the 0.05 probability level (p < 0.05). ** Model significance at the 0.01 probability level
(p < 0.01). # Model with no significance.

Cm estimations with the 1st-par setting and the 2nd-par setting in the N-PROSAIL model were
achieved (Table 7 and Figure 3d–f). The results showed no significant difference between measured
Cm and estimated Cm with the 2nd-par setting across the validation set and with the 3rd-par setting
across the calibration and validation set. In the 1st-par setting, the interval of Cm at different growth
period was not considered, and the limited range of Cm was set the same at all growth periods.
Many estimation results were ranged on both sides of the interval, and there were relatively high
deviations, with RMSE values of 23.79 and 27.93 g·m−2 for the calibration set and validation set,
respectively (Figure 3d). The deviation between the measured Cm and estimated Cm was decreased
to 16.12 and 18.50 g·m−2 for the calibration set and the validation set in the 2nd-par setting, where
the interval of Cm values were based on the statistical results of the calibration set at different growth
periods. However, many estimated values ranged on both sides of the interval as well (Figure 3e).
Cm estimations with the 3rd-par setting in the N-PROSAIL model showed relatively lower RMSE than
that of the 1st-par and 2nd-par setting, with RMSE values of 6.10 and 8.19 g m-2 for the calibration set
and validation set, respectively. The results showed that Cm inversion using the optimizing algorithm
of this study had a high deviation even given the limited ranges at different growth stages, and one
Cm value at each growth stage had the lowest deviation in this study.

Finally, LND estimations with the three parameters setting in the N-PROSAIL model were
compared (Table 7 and Figure 3g–i). The retrieval accuracy of LND was effectively improved after
considering the optimizing parameters (the 2nd-par and 3rd-par settings), with R2 and RMSE values
of 0.45 and 20.80 μg·cm−2 for the 2nd-par setting, and 0.59 and 17.43 μg·cm−2 for the 3rd-par
setting, respectively. However, the R2 and RMSE values for the 1st-par setting were 0.30 and
58.49 μg·cm−2, respectively. The improvements at different growth stages were also significant
compared with the 1st-par setting, with an increase in R2 by 0–0.13 and 0.14–0.28, and a decrease
in RMSE by 21.78–51.47 μg·cm−2 and 27.08–52.78 μg·cm−2 for the 2nd-par setting and the 3rd-par
setting, respectively. The phenomenon of overestimation at LND estimation by the N-PROSAIL
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model with the 1st-par setting was clear (Figure 3g). LND estimation with the optimized parameters
setting (the 2nd-par setting and the 3rd-par setting) reduced the problem of LND overestimation.
According to the above comparison, LND estimation with the 3rd-par setting had a slightly better
performance than that with the 2nd-par setting (Figure 3h,i). The validation results showed that the
best performance was produced by the 3rd-par setting (R2 = 0.46 and RMSE = 21.18 μg·cm−2), followed
by the 2nd-par setting (R2 = 0.39 and RMSE = 24.15 μg·cm−2), and finally the 1st-par setting (R2 = 0.34
and RMSE = 62.86 μg·cm−2). Therefore, the LND estimation confirmed the operational potential of
the N-PROSAIL model inversion with optimizing parameters, and the retrieval without considering
Cm inversion had the best LND estimation.

3.4. LNC and CND Estimation Based on LAI, LND, and Cm

The following estimations were to acquire LNC calculated by LND and Cm, and CND calculated
by LAI and LND, respectively. The retrieved results of each agronomic variable with default parameters
and optimized parameters were also compared in Figure 4 and Table 7.

Figure 4. Comparison of measured and estimated values of LNC (a–c) and CND (d–f) based on the
N-PROSAIL model in winter wheat across the calibration set.

Relative to the N-PROSAIL model inversion by the 1st-par and the 2nd-par setting, LNC
estimation using the 3rd-par setting performed relatively better, with R2 and RMSE values of 0.62%
and 0.48% for the calibration set. The inversion of the N-PROSAIL model by the 3rd-par setting at
different growth stages was also estimated better than by the 1st-par and the 2nd-par setting (Table 7).
Many LNC estimations were overestimated, which resulted from the overestimation of LND and Cm
(Figure 3d,g and Figure 4a). The 2nd-par setting considering the parameter settings at different growth
stages mitigated the overestimation of LNC, but LNC estimation did not performed well (R2 = 0.14
and RMSE = 0.87%). The independent data of 2014–2015 was used to validate the model stability,
and the inversion of the N-PROSAIL model by the 3rd-par setting exhibited a superior result for LNC
estimation with R2 and RMSE values of 0.75 and 0.38%. This study further showed that calibrating
parameters at different growth stages is necessary, and the retrieval without considering Cm inversion
achieved a satisfactory estimation for LNC.

Together, using the N-PROSAIL model, it was able to get CND on the basis of LAI and LND
(Figure 4d–f). The R2 and RMSE values for the 1st-par setting at different growth stages ranged from
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0.36 to 0.74 and 1.66 to 3.19 g·m−2, respectively, and their values at all growth stages were 0.66 and
2.45 g·m−2 (Table 7). CND estimations for the 2nd-par setting across different growth stages ranged
from 0.20 to 0.73 and 1.24 to 2.57 g·m−2, respectively, and their values at all growth stages were 0.67
and 2.08 g·m−2 (Table 7). CND estimations for the 3rd-par setting showed a good performance, with a
higher R2 values and lower RMSE values across different stages, and the R2 and RMSE values across
different growth stages were 0.75 and 1.32 g·m−2, respectively. Then, the validation dataset was
used to validate the model stability, and the model inversion with the 3rd-par setting (R2 = 0.82 and
RMSE = 0.95 g·m−2) also performed better than the inversions with the 1st-par setting (R2 = 0.76 and
RMSE = 1.47 g·m−2) and the 2nd-par setting (R2 = 0.82 and RMSE = 1.03 g·m−2). The results of this
study suggest that the 3rd-par setting in the N-PROSAIL model inversion is the best choice.

3.5. Comparison of the N-PROSAIL Model Method with the Vegetation Index Method

To evaluate the performance of LNC and CND estimation by the N-PROSAIL method with
parameter optimization (estimations of LNC and CND with the 3rd-par setting were using in the
following comparison), the estimation results using the N-PROSAIL model method were compared
with the estimation results by the vegetation index method. Fourteen spectral indices with significant
relationships were used to fit the regression models (Linear model, Power model, Exponential model,
and logarithmic) of LNC, and the best regression model was selected as optimal regression models
(Table 8). In these regression models, ten indices with R2 values for LNC and vegetation indices were
greater than 0.50, seven were greater than 0.55, and CIred edge, mND705 and NDVIcanste had the highest
R2 values of 0.58, 0.58, and 0.57, respectively (Figure 3a–c). Compared with LNC estimation using the
N-PROSAIL model, the R2 value between the estimated LNC and measured LNC was 0.62, which
was better than all the regression models by vegetation indices. The validation set was used to test
the model accuracy, the estimated values and measured values were compared based on the RMSE
(Table 8 and Figure 4a–d). The regression model between LNC and MCARI/MTVI2 had the lowest
RMSE value of 0.48% among the fourteen regression models with the RMSE values ranging from 0.48%
to 0.65% (Figure 5). The RMSE value from measured LNC and predicted LNC by the N-PROSAIL
model was 0.38%, which was lower than the values from all regression models by vegetation index
(Tables 7 and 8). The results also showed that the consistency between the estimated values and the
measured values of the N-PROSAIL method performed better than any vegetation index methods.
The results showed that the N-PROSAIL model inversion could be a good method to estimate LNC.

Figure 5. The relationships between measured and estimated values of LNC (a–d) and CND (e–h) in
winter wheat by using data from 2014–2015 (n = 192).
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Table 8. Relationships between LNC and vegetation indices (n = 384).

Vegetation
Index

LNC Model # R2 RMSE
(%)

CND Model R2 RMSE
(g·m−2)

CIred edge y = 3.224x0.274 0.58 0.52 y = 3.005x1.107 0.79 1.34
GNDVI y = 4.654x0.837 0.54 0.51 y = 13.583x3.464 0.78 1.32

MCARI/MTVI2 y = 4.802e-5.938x 0.56 0.48 y = 14.41e23.28x 0.73 1.38
mND705 y = 4.320x0.589 0.58 0.49 y = 0.206e4.230 0.80 1.26

MSR y = 2.550x0.274 0.53 0.55 y = 1.121x1.134 0.78 1.34
ND705 y = 1.870e0.977x 0.57 0.52 y = 0.325e4.061x 0.80 1.26
NDVI y = 1.399e1.087x 0.52 0.55 y = 0.0925e4.518x 0.77 1.34
DCNI y = 0.935x0.411 0.27 0.52 y = 0.894e0.0604x 0.30 1.73

WDRVI y = 1.345x + 3.335 0.48 0.55 y = 3.181e1.738x 0.75 1.33
sLAIDI y = 2.648e0.415x 0.35 0.65 y = 1.226e1.827x 0.59 1.78

GI y = 2.746x0.405 0.44 0.64 y = 1.496x1.718 0.67 1.67
SPVI y = 4.954x0.426 0.57 0.62 y = 16.354x1.675 0.75 1.63

NDVIcanste y = 1.889e1.004x 0.57 0.52 y = 0.342e4.069x 0.80 1.29
NDRE y = 4.968x0.438 0.56 0.52 y = 17.04x1.758 0.77 1.42

#: Linear and nonlinear regression (power regression, exponential regression and logarithmic regression) were
conducted and listed are the optimal regression model of each vegetation indices. x: vegetation index; y: LNC
or CND.

Similar comparisons were obtained for CND estimation between the N-PROSAIL model and
vegetation indices methods. A highly significant regression relationship between measured CND
and estimated CND was demonstrated both for the N-PROSAIL model method and the vegetation
indices methods. The R2 value between the estimated CND by the N-PROSAIL model and measured
CND was 0.75. For the regression model by vegetation index, ten regression models with R2 values
for CND estimation were greater than 0.75 (Table 8), and three regression models by mND705,
ND705 and NDVIcanste were up to 0.80 (Figure 6d–f). The results of model validation from the
validation set showed that the N-PROSAIL method (RMSE = 0.95 g·m−2) performed better than
the vegetation indices methods (RMSE = 1.26 − 1.78 g·m−2) for estimation of CND (Table 8 and
Figure 6). An advantage of stability using the N-PROSAIL model inversion was demonstrated.
Furthermore, there are underestimations at high CND values using vegetation indices estimation,
but the N-PROSAIL method could mitigate the phenomenon of underestimation. Overall, our results
indicated that using the N-PROSAIL model with parameters optimizing has great potential for LNC
and CND estimation in winter wheat.

Figure 6. The best three regression models by vegetation index for LNC (a–c) and CND (d–f) estimation
in winter wheat across the calibration set (n = 384).
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4. Discussion

The N-PROSAIL model integrating the N-PROSPECT model and the SAILH model were
developed to retrieve N status at leaf scale (LNC) and canopy scale (CND) [27,28]. LAI, Cm, and LND
were retrieved from the N-PROSAIL model, and LNC and CND were calculated according to these
relationships. LND had more variability on LNC than Cm. LNC showed a strong correlation with LND
(r = 0.73) and relative low correlation with Cm (r = −0.19). This is because Cm is mainly determined by
the plant cultivars and growth stage, and has little change when certain other conditions change [35].
But LND composed of two compartments, high N concentration in metabolic tissues and low N
concentration in plant architecture, changes dynamically with plant growth [56]. Therefore, the results
indicated the effect of LND on LNC estimation to be more sensitive to the effect from Cm. At the
canopy scale, CND strongly reflects the variability of LAI (r = 0.90) as LND was relatively stable
(r = 0.52). At different growth stages, canopy information, e.g., LAI, varied significantly, especially the
variation between two growth stages [22,30]. This is explained by the lower coefficient of variation of
LND compared to LAI (Table 5). This conclusion is in agreement with the study of Darvishzadeh [30],
who found that canopy chlorophyll content was more related to LAI with an r value of 0.94.

According to the results of LAI, Cm, and LND estimations, the relationship between measured
LAI and its estimation reflects more consistence and accuracy than LND and Cm (Figure 3). The main
reasons are as follows: (1) LAI is the canopy characteristics and one of the variables most affected by
canopy reflectance, while Cm and LND are variables at leaf level and their variations were lower than
LAI; (2) the most correlated vegetation indices between these three variables were selected to build
the cost function. LAI showed best correlation with MSR (r = 0.80) and was also highly correlated
with MCARI/MTVI2 (r = −0.69) and GI (r = 0.79) (Table 6). The deviation was also relatively lower
than with the other two variables. The study result is in line with the findings of previous studies by
Feret et al. [57], Darvishzadeh et al. [30], and Li et al. [26].

In this study, three inversion strategies of estimating LNC and CND were tried in order to improve
the estimation accuracy. In the 1st-par setting, LAI, Cm, and LND were considered for retrieval, and the
other parameters in the N-PROSAIL model were set default values. The results showed that many
Cm values were estimated at both sides of the interval and overestimations of LND were obvious.
The estimations of these three variables were improved by prior parameters initialization, which is to
limit the interval of the three values and assigning different values to the other parameters at different
growth stages (the 2nd-par setting). The RMSE of Cm between estimated and measured values greatly
decreased from 27.93 to 18.50 g·m−2, and the overestimation of LND was eliminated (Figure 3 and
Table 7). These resulted in the improvement of LNC and CND estimation, with higher R2 values
of 0.51 and 0.82 and lower RMSE values of 0.94% and 1.03 g·m−2 for LNC and CND, respectively.
The results indicated the necessity of giving different values of non-optimizing parameters in the
N-PROSAIL model at different growth stages. As shown in this study, the statistical values of Cw

and calibrating solar zenith angle varied as plant growth progressed, and N and LID also showed
difference at different growth stages (Table 3). The uncertainties of model inversion were reduced
through giving the different values to these parameters at different growth stages. In the 3rd-par
setting, we attempted not to retrieve the Cm value and set the mean values of Cm at each growth
stage as the model input. The 3rd-par setting showed more improvement than the 2nd-par setting.
The lower RMSE, 8.19 g·m−2, for Cm between estimated and measured values demonstrated the
lower certainty than the above two parameters setting, and the inversion of LAI and LND were
also improved (Table 7). It has two explanations for this: (1) one parameter decreased can reduce
the ill-posed problem in model parameters inversion (Figure 3d–f) [29,30]; (2) Cm is an important
parameter in the crop growth model and has one initial value for specific crop cultivars and changes as
growth goes on [35,36]. Jacquemoud indicated that Cm was first assumed a constant for one plant in
the PROSPECT model construction [37]. Thus, the 3rd-par setting considered as a default value at each
growth stage is reasonable. The estimated performance for every variable with the 3rd-par setting also
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exhibits the highest accuracy. Therefore, using the 3rd-par setting in the N-PROSAIL model is a better
strategy for estimating plant N status.

CIred edge, mND705 and NDVIcanste were selected as the best three vegetation indices to estimate
LNC. They all showed overestimation at low LNC and these samples were mainly measured at Z.S. 75.
CND estimation by mND705, ND705, and NDVIcanste demonstrated the same phenomenon, with CND
estimation at a high value and at Z.S. 31 showed underestimation. Estimated LNC and CND using the
N-PROSAIL model showed a higher accuracy than using vegetation indices. Two advantages of using
the N-PROSAIL model can explain the situation. Firstly, estimating LAI and LND by the N-PROSAIL
model are interactional. The two parameters are retrieved all at once and adjusted according to changes
to each other, and are acquired relatively accurately in the end. So LNC and CND estimations were
taken into account the results of LAI and LND. Secondly, different parameters, except LAI and LND in
N-PROSAIL, were calibrated as different values at various growth stages, which greatly reduced the
deviation of model. The improvement of this step was significant according to the compared results of
1st-par setting and 3rd-par setting (Figure 4).

The results showed the potential of a priori information (setting different parameters values
at various growth stages) in using N-PROSAIL model for LNC and CND retrieval in winter wheat,
which is also suitable to apply in other crops (rice, maize, cotton, etc.) by giving corresponding
crop parameters values. However, it is still necessary to define this information as accurately as
possible. Four critical growth stages in winter wheat were selected in this study and parameters
in the N-PROSAIL model at different growth stages were set respectively. Further studies should
focus on considering more growth stages or a high temporal resolution [58], and in this situation,
the considered fixed parameters set across different growth stage will increase. The estimation accuracy
will be influenced if the growth stage was determined inaccurately. Moreover, fixed parameters were
determined in the study area. Further studies should verify whether these parameters change across
different regions. Future research should also focus on validating the model using multi-platforms,
such as unmanned aerial vehicle and satellite platform. The study should finally point that accurate
plant N estimation is an important step towards precision N management, and more studies
are needed to develop N-PROSAIL model-based in-season N recommendation algorithms and
management strategies.

5. Conclusions

In this study, the N-PROSAIL model was established to retrieve winter wheat LNC and CND at
different growth stages. The results suggested that:

(1) The 3rd-par setting retrieval strategies with LAI and LND optimized and other parameters in
the N-PROSAIL model fixed at each growth stage exhibited the highest accuracy. The retrieved LAI
(R2 = 0.80 and RMSE = 0.69) and LND (R2 = 0.46 and RMSE = 21.18 μg·cm−2) were consistent with the
measured LAI and LND, respectively.

(2) LNC and CND were accurately estimated using the N-PROSAIL model, with R2 and RMSE
values of 0.75 and 0.38%, and 0.82 and 0.95 g·m−2, respectively.

(3) Compared with vegetation indices regression model, the N-PROSAIL model results reduced
the problems of overestimation at low LNC and underestimation at high CND, and showed
better performance than any vegetation index regression model (LNC: RMSE = 0.48−0.64%;
CND: 1.26−1.78 g·m−2). The N-PROSAIL model shows a great potential to estimate canopy N status
at leaf and canopy scales in winter wheat.
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Abstract: Commercially available digital cameras can be mounted on an unmanned aerial vehicle
(UAV) for crop growth monitoring in open-air fields as a low-cost, highly effective observation system.
However, few studies have investigated their potential for nitrogen (N) status monitoring, and the
performance of camera-derived vegetation indices (VIs) under different conditions remains poorly
understood. In this study, five commonly used VIs derived from normal color (RGB) images and two
typical VIs derived from color near-infrared (CIR) images were used to estimate leaf N concentration
(LNC). To explore the potential of digital cameras for monitoring LNC at all crop growth stages,
two new VIs were proposed, namely, the true color vegetation index (TCVI) from RGB images and the
false color vegetation index (FCVI) from CIR images. The relationships between LNC and the different
VIs varied at different stages. The commonly used VIs performed well at some stages, but the newly
proposed TCVI and FCVI had the best performance at all stages. The performances of the VIs with
red (or near-infrared) and green bands as the numerator were limited by saturation at intermediate to
high LNCs (LNC > 3.0%), but the TCVI and FCVI had the ability to mitigate the saturation. The results
of model validations further supported the superiority of the TCVI and FCVI for LNC estimation.
Compared to the other VIs derived using RGB cameras, the relative root mean square errors (RRMSEs)
of the TCVI were improved by 8.6% on average. For the CIR images, the best-performing VI for LNC
was the FCVI (R2 = 0.756, RRMSE = 14.18%). The LNC–TCVI and LNC–FCVI were stable under
different cultivars, N application rates, and planting densities. The results confirmed the applicability
of UAV-based RGB and CIR cameras for crop N status monitoring under different conditions, which
should assist the precision management of N fertilizers in agronomic practices.

Keywords: leaf nitrogen concentration; leaf nitrogen accumulation; unmanned aerial vehicle (UAV);
digital camera; vegetation indices
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1. Introduction

Nitrogen (N) is a component of many important compounds in plants, and thus plays an important
role in plant growth [1,2]. Plant growth dominantly depends on the N supply [3]. A deficiency in N
would reduce crop photosynthesis, whereas higher rates of N fertilization do not necessarily improve
crop yield and can lead to serious water pollution [4–6]. Furthermore, leaf N concentration (LNC) is
related to the photosynthetic capacity of leaves, and thus allows N fertilizer applications and grain
quality to be modeled [7,8]. Therefore, timely quantification of LNC is a prerequisite for fertilization
guidance and environmental quality [9,10].

Unmanned aerial vehicle (UAV) platforms have become a promising approach in precision
agricultural assessments because they enable the non-destructive measurement of crop growth status,
with a very high spatio-temporal resolution [11,12]. Due to their advantages of low cost, light weight,
convenient operation, and simple data processing, digital cameras have been commonly deployed
on UAVs in crop phenotype research [13]. Compared to other sensors, digital cameras can operate
successfully in a range of working environments. Given that adequate image exposure can be set
based on the weather conditions, data can be collected under both sunny and cloudy conditions [13].
Therefore, color images can be instantly acquired for researchers and farmers to monitor crop growth
status [14].

A consumer-grade RGB camera is an “off-the-shelf” device, with red, green, and blue channels.
Because each pixel value in color images can be calculated from the digital number (DN) values of
specific bands, color indices can be extracted to accentuate a particular vegetation greenness and
identify the vegetation features [14,15]. Hunt et al., [16] used the normalized green–red difference
index (NGRDI) from RGB images to estimate the biomass of corn, alfalfa, and soybean, and found
a linear correlation between the NGRDI and biomass. Kawashima and Nakatani [17] used a video
camera to analyze the color of wheat leaves for estimating chlorophyll content. Woebbecke et al. [18]
investigated the capability of several color indices to distinguish vegetation from the background,
and found that the excess green vegetation index (ExG) could provide a near-binary intensity image
outlining a plant region of interest. Moreover, color indices from RGB cameras containing a large
amount of information regarding crop status can be used to estimate the vegetation fraction, plant
height, biomass, and yield [19–21]. However, many vegetation indices (VIs) proposed for crop status
monitoring contain the near infrared (NIR) bands [22–24]. Therefore, RGB cameras with a Bayer-pattern
array of filters have been modified by replacing either the blue or red channel with a NIR channel to
obtain color near-infrared (CIR) images [25]. Based on a newly-developed digital CIR camera system,
Hunt et al., [25] found a strong correlation between the green normalized difference vegetation index
(GNDVI) and leaf area index (LAI) in winter wheat. This CIR camera system has also been used
to assess winter crop biomass [26]. Four VIs, the normalized difference vegetation index (NDVI),
enhanced NDVI (ENDVI), GNDVI, and ExG, derived from UAV-based RGB and CIR images, have been
shown to be reliable to assess experimental plots [27].

Previous studies have indicated that it is feasible to estimate crop growth status using RGB and
CIR images, but few studies have investigated their usability for N status monitoring [12,28]. Firstly,
the capability of digital cameras to monitor wheat LNC at different growth stages remains poorly
understood. Since the composition of canopy components (e.g., leaves, tassels) and background
materials (e.g., soil) varied sharply during whole growth stages of winter wheat [29], the performance
of digital cameras on estimating LNC is necessary to be tested across different growth stages. Secondly,
it is crucial to investigate the saturation problem of VIs, with varying LNC values. Because the
application of N fertilizer has increased recently in China, it is important to effectively monitor LNC
under middle to high application levels. Thirdly, the capability of digital cameras for LNC estimation
under different conditions is unclear. The relationships among VIs and LNC in cereal crops have been
investigated in terms of the mechanisms involved based on hyperspectral remote sensing. Many studies
have proposed effective VIs that can be adjusted to variations in growth stage [30] and geographic
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location [31], and that can reduce the effects of the soil background [32]. Therefore, there is also a need
to assess the capability of digital cameras for estimating wheat LNC under different conditions.

The overall objective of this study was to evaluate whether digital cameras mounted on UAVs
could be applied to monitor LNC in winter wheat. Five typical VIs derived from RGB images and two
widely used VIs derived from CIR images were selected to estimate LNC. Additionally, we developed
the true color vegetation index (TCVI) and the false color vegetation index (FCVI) from RGB and CIR
images, respectively. Experiments with different wheat varieties, planting densities, and N application
rates were conducted in the field to: (1) quantify the relationship between LNC and the VIs from digital
imagery at different growth stages, (2) evaluate the saturation sensitivity of the VIs under various LNC
levels, and (3) validate the applicability of the LNC estimation models under different treatments.

2. Materials and Methods

2.1. Study Site and Experimental Design

The study site was located in Rugao City, Jiangsu Province, China (120◦45′ E, 32◦16′ N), as shown
in Figure 1. The regional annual precipitation of this area is around 927.53 mm, with an average
annual temperature of 16.59 ◦C. Two field experiments using winter wheat (Triticum aestivum L.) were
designed that included three N application rates, two planting densities (D), and two varieties (V) in
two growing seasons (Table 1). In each experiment, a split design was used with three replications and
there were 36 plots, each with a plot area of 35 m2 (Figure 1). The basal fertilizer included 120 kg/ha
P2O5 and 120 kg/ha K2O and there were three N application rates (0, 150, and 300 kg/ha as urea)
applied at the end of October 2013/2014. Compound fertilizer was applied in early March 2014/2015,
including N applications at the three different rates. The N fertilizers were applied in 50% as basal
fertilizer at the sowing day and in 50% at the jointing stage. All other agronomic management was
undertaken according to local wheat production practices.

 

Figure 1. The study site of field experiments with two winter wheat varieties (V1, V2), two planting
densities (D1, D2) and three nitrogen application rates (N0, N1, N2) in Rugao City, Jiangsu Province, China.
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Table 1. Experimental Designs and Sampling Dates.

Experiment Year Wheat Varieties
N Application
Rates (kg/ha)

Plot Area
(m2)

Planting Density
(plants/ha)

Sampling
Dates

Exp.1 2013–2014 V1: Yangmai 8
V2: Shengxuan 6

N0: 0
N1: 150
N2: 300

7 × 5 D1: 3.0 × 106

D2: 1.5 × 106
9/15/23 April

6 May

Exp.2 2014–2015 V1: Yangmai 8
V2: Shengxuan 6

N0: 0
N1: 150
N2: 300

7 × 5 D1: 2.4 × 106

D2: 1.5 × 106
8/17/25 April

6 May

2.2. Data Acquisition and Processing

2.2.1. Color Images from Unmanned Aerial Vehicle (UAV)

In this study, an eight-rotor ARF-MikroKopter UAV (Figure 2a) was used as the platform for the
UAV-camera system and its specifications are listed in Table 2. A Canon 5D Mark III (Canon Inc.,
Japan) commercial digital camera (Figure 2b) was mounted on the UAV and took RGB images in
continuous mode. The CIR camera was modified from a Canon SX260HS camera (Canon Inc.) by
changing the original red channel to a near-infrared channel. The main parameters of the two cameras
are described in Table 3. An MC-32 remote control module and a ThinkPad laptop were used to
control the autonomous UAV flight. During each flight, the camera was fixed on a two-axis gimbal,
with the lens positioned vertically downward at 50 m altitude. Considering the lighting conditions,
the exposure time and shutter speed were fixed for each campaign. UAV campaigns were conducted
at noon in clear weather under stable light conditions. The spatial resolution of the RGB and CIR
imagery was 3 cm. The acquisition dates of these images are listed in Table 4.

 

Figure 2. The unmanned aerial vehicle (UAV) camera system: (a) ARF-MikroKopter UAV, (b) normal
color (RGB) camera (Canon 5D Mark III) and (c) color near-infrared (CIR) camera (Canon SX260HS).

Table 2. Specifications of ARF-MikroKopter Unmanned Aerial Vehicle (UAV).

Parameter Value

Weight (without batteries) 2050 g
Size 73 (width) × 73 (length) × 36 (height) cm

Battery Wight (4s/5000) 520 g
Maximum payload 2500 g

Flight duration 8~41 min
Temperature range −5 ◦C ~ 35 ◦C
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Table 3. Main Parameters of Normal Color (RGB) and Near Infrared (NIR-G-B) Cameras.

Parameter
Value

RGB Camera CIR Camera

Blue Channel Visible blue light Visible blue light
Green Channel Visible green light Visible green light
Red Channel Visible red light
NIR Channel 670–770 nm

Geometric Resolution 5760 × 3840 pixel 4000 × 3000 pixel
Focal Length 24 mm 4 mm

Table 4. Acquisition Dates of Unmanned Aerial Vehicle (UAV)-Based Digital Camera Images.

Date Growth Stage RGB Imagery CIR Imagery

Exp. 1 (2014)

9 April Booting � �

15 April Heading � �

23 April Anthesis � �

6 May Filling � �

Exp. 2 (2015)

8 April Booting � �

17 April Heading � �

25 April Anthesis � �

6 May Filling � �

Before image pre-processing, the original digital images were screened. We selected images with
a heading overlap rate of ~70% and a side overlap rate of ~30%, and excluded images with excessive
repetition. The selected images were then pre-processed, including a lens distortion correction, image
mosaicking, image registration, and ortho-rectification. First, lens distortion was corrected based on
the Brown Model and the correction coefficients were calculated by an Agisoft Lens. Second, image
mosaicking was conducted in Photoscan (Airsoft LLC, Russia). Third, image registration was referred
to ground control points (GCPs) in the experimental area (see Figure 1). The GCPs were painted
on a road surface as black annuluses, with inner and outer diameters of 10 and 50 cm, respectively.
The geographic coordinates of the GCPs were determined using a real time kinematic (RTK) GPS
system, with an error less than 2 cm in the horizontal direction and less than 3 cm in the vertical
direction. Finally, ortho-rectification was automatically performed using Photoscan. Figure 3 shows
the processed images from RGB and CIR cameras at the four growth stages.

 

Figure 3. The digital images from normal color (RGB) (a–d) camera and color near-infrared (CIR)
(e–h) at the booting (a,e), heading (b,f), anthesis (c,g) and filling (d,h) stages. Red-green-blue and near
infrared (NIR)-red-green channels are presented as RGB for RGB and CIR cameras.
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2.2.2. Determination of Leaf N Concentration (LNC)

Common measures of crop LNC are either area-based (LNCarea, g/m2) or mass-based (LNCmass, %).
LNCarea is the N mass per unit leaf area and LNCmass is the ratio of N mass to leaf dry mass. These
two measures can be converted between each other through the leaf mass per area (LMA), i.e.,
LNCarea = LNCmass × LMA [33]. Therefore, LNCarea should be determined based on both LNCmass

and LMA measures, while LNCmass can be measured directly in the laboratory. Given its strong
connection with photosynthetic capacity [34] and its widespread use in fertilization management [35,36],
LNCmass has received more attention and has been estimated from remotely sensed data more often
than its counterpart LNCarea [37–40]. The term LNC hereafter refers to LNCmass.

Ground destructive samplings were taken at critical growth stages of winter wheat (Table 1) on
the same dates as the UAV campaigns. Thirty hills of wheat plants were randomly cut above the
ground surface of each plot and separated into leaves, stems, and panicles. All leaves were oven-dried
at 105 ◦C for 30 min and then at 80 ◦C until a constant weight. We then grounded and stored all
samples in plastic bags for chemical analysis. The LNC was determined based on the micro-Keldjahl
method [41] with SEAL AutoAnalyzer 3 HR (SEAL Analytical, Ltd., German).

2.2.3. Derivation of Vegetation Indices (VIs)

The main VIs derived from digital camera images are summarized in Table 5. For RGB cameras,
five widely used color indices were chosen in this study: the NGRDI [42], Kawashima index (IKaw) [17],
red green ratio index (RGRI) [43], visible atmospherically resistance index (VARI) [42], and ExG [18].
For the CIR camera, we used the GNDVI [44] and enhanced normalized difference vegetation index
(ENDVI), because GNDVI is related to chlorophyll concentration, while the ENDVI was recommended
by the company that manufactured the modified cameras (www.maxmax.com) and also can monitor
vegetation vigor [27]. The VIs could be categorized into two groups according to the number of
channels used. Some were constructed by two channels, such as NGRDI, IKaw, RGRI, and GNDVI.
The others (i.e., VARI, ExG, and ENDVI) were established using three channels.

Table 5. Formulas and References of Possible Vegetation Indices (VIs).

Camera VI Name Formula

RGB NGRDI Normalized green red difference index (G−R)/(G+R)
IKaw Kawashima index (R−B)/(R+B)
RGRI Red green ratio index R/G
VARI Visible atmospherically resistance index (G−R)/(G+R−B)
ExG Excess green vegetation index (2G−R−B)/(G+R+B)

TCVI 1 True Color Vegetation Index 1.4*(2R−2B)/(2R−G−2B+255*0.4)
CIR GNDVI Green normalized difference vegetation index (NIR−G)/(NIR+G)

ENDVI Enhanced normalized difference vegetation index (NIR+G−2B)/(NIR+G+2B)
FCVI 2 False Color Vegetation Index 1.5*(2NIR+B−2G)/(2G+2B−2NIR+255*0.5)

1 TCVI is the True Color Vegetation Index derived from RGB images. 2 FCVI is the False Color Vegetation Index
from CIR images. They are newly conducted in this paper.

Color vegetation index (CVI) derived from digital imagery is often calculated as ratios of DN
values. However, the previous VIs listed in Table 5 were proposed without considering background
material, such as soil in the field. Previous studies have suggested that the influence of the soil
background can be reduced by adjusting the VIs with a term representing soil brightness [22,28]. Based
on the ratio form and an equivalent soil adjustment, the commonly used CVIs from digital cameras
can be expressed as:

CVI =
(1 + L)(a1R + a2G + a3B)
(a4R + a5G + a6B + 255 ∗ L)

(1)

where G and B are the DN values of the green and blue channels, respectively; R represents the red
component of RGB imagery or the near-infrared component of CIR imagery; ai is the coefficient of each
channel; and L is a soil background adjustment parameter.
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To explore the capability of digital cameras for estimating LNC in wheat, we constructed new CVI
from both RGB and CIR images. They were determined by optimizing the values of ai and L based on
the cost function J defined as:

J = 1−
∑n

i=1 (LNCm,i − LNCp,i)
2∑n

i=1 (LNCm,i − LNCm,i)2
(2)

where LNCm is the measured LNC. LNCp was predicted by the best fitted function of CVI and LNCp is
the average value of LNCp. According to the imaging principle of a Bayer filter, we set the value of ai
as an element of {−2, −1, 0, 1, 2}. Based on the setting rules of a soil background adjustment parameter
in [22], L ranges from 0 to 1, with intervals of 0.1. The value of L varies by the amount or cover of green
vegetation: in very high vegetation regions, L = 0; and in areas with no green vegetation, L = 1. Given
that the maximum value of the DN was 255, L was multiplied by 255 in the denominator. All data from
Exp. 2 were used in Equation (2). All possible combinations of variables (i.e., ai and L) were traversed,
and the corresponding values of J were compared. The values of ai and L in Equation (1) that yield the
best J were the optimal variables. Consequently, the TCVI from RGB images and the FCVI from CIR
images were determined as follows:

TCVI =
(1 + 0.4) ∗ (2R− 2B)

(2R−G− 2B + 255 ∗ 0.4)
(3)

FCVI =
(1 + 0.5) ∗ (2NIR + B− 2G)

(2G + 2B− 2NIR + 255 ∗ 0.5)
(4)

2.3. Data Analysis and Evaluation

The channel information from digital cameras that constituted the VIs was first analyzed based on
the data from Exp. 2. We analyzed how the DN values of different channels changed with the changes
of LNC in wheat. To compare and evaluate the performances of different VIs for estimating LNC,
the quantitative relationship between the VIs and LNC was analyzed at different growth stages. For all
growth stages of winter wheat, the LNC–VI models from both RGB and CIR images were calibrated
and validated with a 10-fold cross-validation procedure using the data from Exp. 2. The whole dataset
was randomly divided into three equal-sized sub-datasets with two sub-datasets used as the calibration
(training) dataset and the rest as the validation (testing) dataset. The process was repeated 10 times [45].
For the CIR cameras, the estimation models were also validated independently with the data from Exp.
1. The performance of the different VIs and models were evaluated using the determination coefficient
(R2) and the relative root mean square error (RRMSE).

R2 = 1−
∑n

i=1 (Oi − Pi)
2∑n

i=1 (Oi −Oi)2
(5)

RRMSE =

√
1
n

∑n

i−1
(Oi − Pi)

2 × 1

Oi
× 100% (6)

where n is the number of samples; Oi is the observed LNC value; and Pi is the estimated value.
The saturation sensitivity of the VI versus LNC was evaluated using the index of noise equivalent
(NE
LNC) [46,47].

NEΔLNC =
RMSE{VIvs.LNC}

d(VI)/d(LNC)
(7)

where RMSE{VIvs.LNC} is the root mean square error (RMSE) of the best fit function and the actual
LNC value, and d(VI)/d(LNC) is the first derivative of VI with respect to LNC. A higher NE
LNC
indicates a lower sensitivity to LNC. The accuracies of the optimal estimation models from RGB and
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CIR images were compared under different treatments (i.e., different varieties, N application rates,
and planting densities) using RRMSE.

3. Results

3.1. Changes of Digital Number (DN) Values in Different Channels

Figure 4 shows the changes of DN values in different channels with the variation in LNC for
images from the RGB and CIR cameras. The DN values of all channels from the RGB camera decreased
when the LNC increased to 3.0%, and then became flatter as the LNC continually increased (Figure 4a).
Conversely, the DN values of the near infrared channel from the CIR camera increased as the LNC
increased (Figure 4b). The variations of the DN values in the blue and green channels from both
cameras were similar, but the values were different. For the RGB camera, the values of the green
channel were higher than those of the blue channel. For the CIR camera, the DN values of the green
and blue channels were similar.

 

Figure 4. Changes of digital number values in different channels of (a) normal color (RGB) images and
(b) color near-infrared (CIR) images with leaf N concentration (LNC) in winter wheat.

3.2. Leaf N Concentration (LNC) Estimation Model Constraction and Validation

3.2.1. Quantitative Relationships between Leaf N Concentration (LNC) and Vegetation Indices (VIs) at
Different Growth Stages

Figure 5 shows the relationship between LNC and the VIs determined from both RGB and CIR
images at different growth stages of winter wheat. For the VIs derived from RGB images, the results
were quite different (Figure 5a–f). When the LNC increased, the NGRDI, VARI, and ExG increased,
while the IKaw, RGRI, and TCVI decreased. The exponential relationship between the ExG and LNC
was weak at all four stages (Figure 5e). The relationship between the NGRDI and LNC (Figure 5a)
was similar to that between the VARI and LNC, but the fitting curves of the VARI and LNC at the
booting and heading stages were stronger than those of the NGRDI and LNC (Figure 5d). Unlike
the other VIs, the relationship between the TCVI and LNC was almost identical at all four stages
(Figure 5f). For the VIs derived from CIR images, the GNDVI, ENDVI, and FCVI all increased as the
LNC increased (Figure 5g–i). The results for the GNDVI and FCVI at each growth stage were similar
(Figure 5g,i). The sample points for the relationship between the ENDVI and LNC were distributed
along the fitting curves at the booting, anthesis, and filling stages, but at the heading stage the results
were scattered (Figure 5h). At intermediate to high LNC levels, the NGRDI, RGRI, VARI, and GNDVI
were not sensitive to changes in LNC > 3.0%, especially at the heading stage.
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Figure 5. Leaf N concentration (LNC) (%) plotted against different vegetation indices (VIs) at different
growth stages of winter wheat. (a) normalized green-red difference index (NGRDI), (b) Kawashima
index (IKaw), (c) red green ratio index (RGRI), (d) visible atmospherically resistance index (VARI),
(e) excess green vegetation index (ExG), (f) true color vegetation index (TCVI), (g) green normalized
difference vegetation index (GNDVI), (h) enhanced normalized difference vegetation index (ENDVI),
(i) false color vegetation index (FCVI). Statistics are given in Table 6.
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To quantitatively analyze the ability of the VIs to estimate LNC at different growth stages, the R2

and RRMSE values at each growth stage and over all four stages are listed in Table 6. Generally,
the results at the filling stage were much worse than at the other three stages, with an RRMSE higher
than 15%. In the first three stages, the RRMSE values of most VIs were around 10%. However,
the performances of the ExG and ENDVI were much poorer than those of the other VIs, especially at
the heading and filling stages. The results for the TCVI and FCVI were not remarkably better than the
other VIs at each growth stage, but they were obviously better for all four stages combined. For the
RGB camera, the IKaw performed best at the booting and heading stages, and the VARI had the highest
R2 and lowest RRMSE values at the anthesis stage. Although the TCVI results were not the most
accurate in the first three stages, they were superior to those of the other VIs derived from RGB images
at the filling stage. For the CIR camera, the performance of the ENDVI was much poorer than that of
the GNDVI and FCVI. The FCVI performed best at each stage, although the RRMSE of 9.5% at the
booting stage was slightly higher than the value of 9.1% for the GNDVI. Compared to the VIs from
RGB images, the FCVI results were less accurate than those of the IKaw at the first two stages, but
were the most accurate at the anthesis and filling stages. For all four stages combined, the performance
of the TCVI was remarkable, with an R2 value of 0.852 and RRMSE of 12.1%, followed by the FCVI
with an R2 value of 0.792 and RRMSE of 14.0%.

3.2.2. Validation of the Leaf N Concentration (LNC) Models for Wheat

The validation statistics for the LNC models constructed from the different VIs are presented in
Table 7. According to the results of the 10-fold cross-validation, the estimation models constructed
from the TCVI had the highest accuracy. Compared to the other VIs from the RGB camera, the RRMSEs
were improved by 6.32% to 15.76% for LNC based on the TCVI. For CIR images, the statistical values
of the FCVI were the best for LNC, followed by the GNDVI. The independent validation indicated that
the FCVI was capable of producing accurate LNC estimations at all stages.

Table 7. Validation statistics for the leaf N concentration (LNC) estimation models from different
vegetation indices (VIs). The bold values mean the most accurate result of normal color (RGB) and
color near-infrared (CIR) cameras for each term.

Camera VI
Cross-Validation Independent Validation

R2 RRMSE (%) R2 RRMSE (%)

RGB Normalized Green Red Difference
Vegetation Index (NGRDI) 0.591 18.24

IKaw 0.618 17.79
Red green ratio index (RGRI) 0.608 18.66

VARI 0.603 18.37
Excess green vegetation index (ExG) 0.150 27.23
True color vegetation index (TCVI) 0.848 11.47

CIR Green normalized difference
vegetation index (GNDVI) 0.720 16.13 0.523 23.66

Enhanced normalized difference
vegetation index (ENDVI) 0.492 20.62 0.207 37.99

False color vegetation index (FCVI) 0.756 14.18 0.627 13.61

3.3. Saturation Sensitivity of Vegetation Indices (VIs) at Different Leaf N Concentrations (LNCs)

As shown in Figure 6, the saturation of the selected VIs was tested under the LNC range of 0 to
5%. The NE
LNC of ExG increased sharply as the LNC increased. The ExG was the VI with the fastest
and largest increase, followed by the ENDVI. When LNC < 3%, the NE
LNC of the IKAW, RGRI,
and VARI were similar. However, when LNC > 3%, the NE
LNC of the IKAW increased more slowly
than that of the RGRI and VARI. Compared to the other VIs, the NE
LNC of the TCVI and FCVI were
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much lower, with that of the TCVI being the smallest. The NE
LNC of the TCVI was still the lowest of
all the VIs at high LNCs.

 

Figure 6. Sensitivity of the selected vegetation indices (VIs) to leaf N concentration (LNC).

3.4. Applicability of the Leaf N Concentration (LNC) Models under Different Treatments

According to the results in Table 6, the optimal LNC estimation models for the whole season
from RGB and CIR images were constructed by the TCVI and FCVI, respectively. Table 8 shows a
comparison of the optimal estimation models from RGB and CIR images under the different treatments.
Generally, the RRMSE values of LNC estimations under the various treatments were lower than 15%.

Table 8. Relative root mean square error (RRMSE, %) values for leaf N concentration (LNC) estimations
based on normal color (RGB) and color near-infrared (CIR) cameras under different treatments.

Treatment RGB Imagery CIR Imagery

Variety Yangmai 8 13.95 14.69
Shengxuan 6 9.88 13.34

N rates (kg/ha)
0 13.01 16.41

150 11.23 12.61
300 11.64 13.35

Planting Density (plants/ha) 3.0 × 106 9.01 14.17
1.5 × 106 14.49 13.87

For the different wheat varieties, the RRMSE values of LNC estimations from RGB images were
lower than those from CIR images, with the lowest RRMSE of 9.88% for Shengxuan 6. Under the
different N application rates, the LNC models from RGB images performed better than those from
CIR images. For both RGB and CIR images, the RRMSE values for N application rates of 150 kg/ha
were lower than for the other N application rates. As planting density decreased, the accuracy of LNC
estimation from RGB images decreased, while for CIR images it increased. The best results for the
lowest planting density were obtained from CIR images, and the lowest RRMSE values for the highest
planting density were obtained from RGB images.
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4. Discussion

4.1. Performance of the Vegetation Indices (VIs) Derived from Digital Imagery in Estimating Wheat Leaf N
Concentration (LNC)

The estimation of VIs is the most common and simplest way to extract information on crop growth
status from digital images [27]. Different VIs calculated from different wavelengths highlight various
vegetation properties [48–50]. Due to the different band combinations and different formulas used,
the accuracy of N status estimation varies between the different VIs.

In this study, seven commonly used VIs (i.e., NGRDI, IKAW, RGRI, VARI, ExG, GNDVI, and
ENDVI) and two new VIs (i.e., TCVI and FCVI) derived from both RGB and CIR images for estimating
LNC were analyzed in wheat. As shown in Table 9, the numerator of the VIs from RGB images consisted
of two channels, except ExG. Among them, the numerator of IKaw and TCVI contained the red and
blue bands, while the red-green VIs (i.e., NGRDI, RGRI, and VARI) used the red and green bands as
the numerator. The results in Figures 5 and 6 indicated that the ability to mitigate the saturation of
the red-green VIs under high LNC levels was weakest for IKaw and TCVI. This might be because
the red and blue bands are the chlorophyll and carotenoid absorption bands [51]. Given that crops
respond to N status mainly by a change in chlorophyll concentration in the leaves [52], VIs using ratios
or normalized differences of values acquired in the red and blue bands were significantly related to the
N status of crops [53–55]. The GNDVI, which is calculated from the normalized difference between
values of the green and NIR bands, was also limited by the saturation under intermediate to high LNC
levels (Figures 5g and 6). Unlike the GNDVI, the proposed FCVI acquired information in the blue
band, which reduced the saturation. Although the ENDVI also used all three bands, its performance
in estimating LNC was relatively poor. Therefore, we cannot conclude that a VI incorporating more
bands is able to produce more reliable LNC results. The accuracy is dependent on both the band
configuration and VI formulation.

Table 9. Coefficients for Different Vegetation Indices (VIs).

VI
Coefficients for Different Channels Channels

L
a1 a2 a3 a4 a5 a6 R G B

Normal
color (RGB)

Normalized green red difference
vegetation index (NGRDI) −1 1 0 1 1 0 DNred DNgreen 0

IKaw 1 0 −1 1 0 1 DNred DNblue 0
Red green ratio index (RGRI) 1 0 0 0 1 0 DNred DNgreen 0

VARI −1 1 0 1 1 −1 DNred DNgreen DNblue 0
Excess green vegetation index (ExG) −1 2 −1 1 1 1 DNred DNgreen DNblue 0
True color vegetation index (TCVI) 2 0 −2 2 −1 −2 DNred DNgreen DNblue 0.4

Color
near-infrared

(CIR)

Green normalized difference vegetation
index (GNDVI) 1 −1 0 1 1 0 DNnir DNgreen 0

Enhanced normalized difference
vegetation index (ENDVI) 1 1 −2 1 1 2 DNnir DNgreen DNblue 0

False color vegetation index (FCVI) 1 −2 1 −2 2 2 DNnir DNgreen DNblue 0.5

4.2. Accuracy and Universality of Leaf N Concentration (LNC) Estimation Models in Wheat

In this study, the LNC estimation models constructed with the TCVI and FCVI were sensitive
under varying LNCs (from 0 to 5%) and had a better accuracy under the different treatments. Moreover,
they were generalizable from the booting to filling stages of wheat. As the growth stage progressed,
dramatic changes in the composition of canopy components and background materials can occur.
These changes pose a critical challenge for the timely monitoring of crop N status. For the late stages
(booting to filling) in the reproductive period, a single LNC–TCVI or LNC–FCVI model could be
fitted, with a high efficiency and low error (Figure 5 and Table 6). Although ExG is mainly used to
extract vegetation from different backgrounds and has been widely cited [12,42,56], its performance for
estimating N status was very poor, which was consistent with previous results [12]. Previous studies
have suggested that adjusting VIs with a term representing soil brightness could reduce the effect of
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the soil background [22,28]. Given that a soil background adjustment parameter (L) was added to the
TCVI and FCVI, they had the potential to reduce the significant effect of soil background during the
early stages of the vegetative period.

Due to the limited experiment, we only made an independent validation for the LNC–VI models
from CIR images based on Exp. 1, and the LNC–VI models from both RGB images were calibrated and
validated with a 10-fold cross-validation procedure using the data from Exp. 2. Since the FCVI and
TCVI were developed based on the relationships between CVI and LNC from Exp.2, there is a need to
validate their performance with independent measurements under different conditions (i.e., varied
crop types, different site conditions and other cameras). Although the coefficients of FCVI and TCVI
had been modified, the accuracy of LNC–TCVI or LNC–FCVI models was not always the highest (see
Table 6). For example, the IKaw performed best at the booting and heading stages, and the VARI had
the highest R2 and lowest RRMSE values at the anthesis stage. However, these relationships may
vary with crop type, site condition, and growth stage as influenced by the variation in physiological
processes. Therefore, the universality of the LNC estimation models needs to be further verified during
the early growth stages and under various conditions.

4.3. Capability of Commercial Digital Cameras for Wheat Leaf N Concentration (LNC) Estimation

The development of simple but efficient methods to monitor crop growth across a wide range
of LNCs is urgently needed for precision agriculture in China. This is because the application of
N fertilizer has increased in recent years in an attempt to boost production. Therefore, the timely
monitoring of crop N status under intermediate to high N application levels is essential to maximize
yield. In addition, easy-to-operate and low-cost equipment is required to help the owners of large
farms or smallholders with fertilization management. Due to the low price and convenient operation
of digital cameras, they have potential application prospects. In this study, UAV campaigns were
conducted at noon in clear weather under stable lighting conditions. However, radiation correction
should be considered in the future work, especially when experiencing changeable light intensity
(e.g., for rice monitoring in summer).

To explore the capability of commercial digital cameras to estimate LNC in wheat, we constructed
new VIs (i.e., TCVI and FCVI) from both RGB and CIR images. Because the TCVI and FCVI were based
on large amounts of field experimental data under different conditions, they performed reliably in
indicating the LNC in wheat. It is suggested that commercial digital cameras have the capability to
derive optimum VIs for LNC monitoring in winter wheat. In addition, the performance of RGB images
was generally better than that of CIR images (see Table 8). This study supported the widespread
agreement that digital cameras are powerful tools for assessing crop growth status and further proved
the applicability of UAV-based RGB and CIR cameras for the monitoring of crop N status.

5. Conclusions

The applicability of digital cameras mounted on UAVs for monitoring the LNC of winter wheat
was evaluated in this study. Seven commonly used VIs (i.e., NGRDI, IKaw, RGRI, VARI, ExG, GNDVI,
and ENDVI) and two proposed VIs (i.e., TCVI and FCVI) were used to estimate LNC at different
growth stages of winter wheat. The performances of NGRDI, RGRI, VARI, and GNDVI were limited
by saturation at intermediate to high LNCs (i.e., LNC > 3.0%). The accuracy of LNC estimation using
ExG was the poorest among the VIs tested, while the optimal models were constructed by the TCVI
and FCVI for all stages. The models were then cross-validated with datasets from different cultivars,
N application rates, and planting densities. Compared to the other VIs derived from the RGB camera,
the RRMSE values of the TCVI were improved by 6.32% to 15.76% for LNC. For the CIR camera,
the statistical values of the FCVI were the best for determining LNC (R2 = 0.756, RRMSE = 14.18%).
The independent validation also indicated that the FCVI was capable of accurately estimating LNC
at all growth stages. In summary, commercial digital cameras mounted on an UAV are feasible for
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monitoring wheat LNC at the farm-scale, especially under the high N fertilizer applications and
different treatments typically used in fields in modern China.

In practical terms, commercial digital cameras are low-cost and easy to operate for researchers
and farmers. Although the equipment is applicable, the LNC–VI relationship may vary with crop
type, site condition, and growth stage, and may be influenced by variations in physiological processes.
Therefore, additional calibrations are needed for different conditions before extending this method to
other crops. For example, the use of UAV-based digital cameras for crop N status monitoring should
be further investigated during the early stages of the vegetative period. Moreover, fluctuating ambient
lighting conditions are an issue that should be addressed in future studies.
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Abstract: Compared to conventional laboratory testing methods, crop nitrogen estimation methods
based on canopy spectral characteristics have advantages in terms of timeliness, cost, and practicality.
A variety of rapid and non-destructive estimation methods based on the canopy spectrum have
been developed on the scale of space, sky, and ground. In order to understand the differences in
estimation accuracy and applicability of these methods, as well as for the convenience of users
to select the suitable technology, models for estimation of nitrogen status of winter wheat were
developed and compared for three methods: drone equipped with a multispectral camera, soil
plant analysis development (SPAD) chlorophyll meter, and smartphone photography. Based on the
correlations between observed nitrogen status in winter wheat and related vegetation indices, green
normalized difference vegetation index (GNDVI) and visible atmospherically resistant index (VARI)
were selected as the sensitive vegetation indices for the drone equipped with a multispectral camera
and smartphone photography methods, respectively. The correlation coefficients between GNDVI,
SPAD, and VARI were 0.92 ** and 0.89 **, and that between SPAD and VARI was 0.90 **, which
indicated that three vegetation indices for these three estimation methods were significantly related
to each other. The determination coefficients of the 0–90 cm soil nitrate nitrogen content estimation
models for the drone equipped with a multispectral camera, SPAD, and smartphone photography
methods were 0.63, 0.54, and 0.81, respectively. In the estimation accuracy evaluation, the method of
smartphone photography had the smallest root mean square error (RMSE = 9.80 mg/kg). The accuracy
of the smartphone photography method was slightly higher than the other two methods. Due to the
limitations of these models, it was found that the crop nitrogen estimation methods based on canopy
spectrum were not suitable for the crops under severe phosphate deficiency. In addition, in estimation
of soil nitrate nitrogen content, there were saturation responses in the estimation indicators of the
three methods. In order to introduce these three methods in the precise management of nitrogen
fertilizer, it is necessary to further improve their estimation models.

Keywords: canopy spectrum; non-destructive nitrogen status diagnosis; drone; multispectral camera;
SPAD; smartphone photography

1. Introduction

Since the Green Revolution, chemical fertilizers have been widely applied in agricultural
production to greatly increase the crop yield [1]. Nowadays, about half of the crop growth depends
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on nitrogen (N) fertilizer, and global agriculture consumes more than 50% of the total chemical N
fixation each year [2]. However, the N use efficiency (NUE, the ratio of output N in yield to input N in
fertilizers) in agriculture is generally low, and the NUEs of cereal crops are only about 33% [3]. This
leads to an increased production cost. Furthermore, agricultural N pollution becomes a major problem
and threatens the environment and human health [4].

As a management model of modern agriculture and an effective way for sustainable development
of agriculture, precision agriculture has high potential in economic and ecological benefits of agricultural
production through specific inputs of various elements, such as water, fertilizers, and pesticides. In order
to implement precise management of N fertilizer, field sampling and laboratory testing methods are
often adopted to determine the content of various forms of N in plants and soil, so that the amount of
N fertilizer is recommended accordingly [5,6]. Although the laboratory testing methods are accurate,
they are time-consuming, labor-intensive, and costly. It is a challenge to conduct large-scale sample
monitoring while it is especially necessary for areas where farmland has large spatial variability [7].
Therefore, there is an urgent need to develop rapid, non-destructive, simple, and low-cost N estimation
techniques to meet the demands for agricultural production.

When a crop is subjected to N deficiency stress, its canopy reflectance spectrum will change in
certain bands. Consequently, using spectral diagnostic techniques, researchers have developed a
variety of rapid and non-destructive methods to estimate N status of crops on three scales: space,
sky, and ground. In space, satellite remote sensing can obtain spectral information of crops on a
relatively extensive area. Satellites with high spatial resolution, such as QuickBird, IKONOS, and
RapidEye, improved the ability to identify spatial heterogeneity of crop N status (CNS) [8,9]. It was
found that the green normalized difference vegetation index (GNDVI) of wheat (Triticum aestivum L.)
obtained by QuickBird image was significantly correlated with the N concentration of its flag leaves,
and GNDVI can be used to monitor the N status of wheat [10]. Eitel et al. [11] verified the ability of
RapidEye in wheat N estimation based on ground-based spectral observations. However, affected
by various factors such as the temporal resolution of remote sensing, cloud interference, and the cost
of commercial remote sensing images, satellite remote sensing often fails to meet the data needs for
N fertilizer management. In the sky, high-resolution ground information can be quickly obtained
at low cost and in real-time by using a multi-channel spectrometer or digital camera mounted on a
drone, which compensates for the shortcomings of the satellite remote sensing [12–14]. Using the
multispectral image or color image obtained by aerial photography, many vegetation indices (VIs)
can be calculated. Using these VIs, the N status of the crop can be estimated [15,16]. On the ground,
portable hyperspectral instruments and the soil plant analysis development (SPAD) chlorophyll meter
are widely used in crop N diagnosis and yield prediction by monitoring the spectral characteristics of
crops [17–20]. In recent years, digital cameras and smartphones have also been used in the research and
application for the crop N status estimation [21,22]. By combining the camera function of a smartphone
with the image analysis software installed on the smartphone, estimation of the crop N status and
fertilization recommendation can be implemented on-site. The convenience of the smartphone gives
this method a good application prospect [23,24].

The development of non-destructive estimation methods for CNS provides producers with a
variety of techniques to choose from in implementing precise management for N fertilizer. However,
these estimation methods differ in terms of equipment requirements, estimation accuracy, and
application limitations. Studies have reported that some kinds of VI (e.g., normalized difference
vegetation index, NDVI) can reach saturation in dense vegetation canopy, and the SPAD chlorophyll
meter has a saturation response at higher leaf chlorophyll content [25]. Facing different non-destructive
estimation methods, producers need to know how to make a smart choice suitable for a particular crop.
In addition, the comparison of various non-destructive estimation methods is beneficial to know their
limitations and meet different production demands through technical complementarity. Therefore,
the objective of this research was to compare the three methods of non-destructive estimation of
winter wheat N status, namely, a drone equipped with a multispectral camera (hereinafter referred
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to as UAVMC), SPAD, and smartphone photography (hereinafter referred to as PHONEP) methods.
By performing this inter-comparison, it is expected to clarify the applicability and limitations of these
three methods in the precision management of N fertilizer for winter wheat and provide a basis for the
improvement for these methods and simplify the selection of estimation methods for the producer.

2. Materials and methods

2.1. Field Experiments

The fertilizer level experiment was conducted at the Luancheng Agro-Ecosystem Experimental
Station (37.8897◦N, 114.6935◦E) of the Chinese Academy of Sciences. This area has loam soil and is
situated in the temperate semi-humid monsoon climate. The main crop rotation system is winter wheat
and maize (Zea mays L.), and all their straws after harvest are returned to the field. The experiment
has been established since 1997. There were 4 levels of N fertilizer applications: 0, 200, 400, and
600 kg(N)·ha−1·a−1 (marked as N0, N1, N2, and N3, respectively), 3 levels of phosphorus (P): 0, 32.5,
and 64 kg(P)·ha−1·a−1 (marked as P0, P1, and P2, respectively), and 2 levels of potassium (K): 0 and
50 kg(K)·ha−1·a−1 (marked as K0 and K2, respectively). 1/4 of the total amount of N fertilizer was
applied as winter wheat base fertilizer, and 1/4 was applied as a top dressing at the jointing stage of
winter wheat, with the other 1/2 being applied as a top dressing for maize. 1/2 of the total K fertilizer
was applied as the base fertilizer for winter wheat, and the other 1/2 was applied as the top dressing
for maize. All P fertilizers were applied as base fertilizer for winter wheat. A total of 16 treatments
were selected from the orthogonal incomplete design. A randomized 48 plots (8 × 14 m2 each) with
3 replications of each treatment were arranged (as shown in Figure 1 and Table 1). The variety of the
winter wheat used was “Kelong199”.

 

1 2 3 4 5 6 7 8 9 10 11 12

24 23 22 21 20 19 18 17 16 15 14 13

25 26 27 28 29 30 31 32 33 34 35 36

48 47 46 45 44 43 42 41 40 39 38 37

Figure 1. The arrangement of the fertilizer level experiment (aerial photography on 4 April 2019).

Table 1. The treatments of N, P, and K.

Treatment
Plot Number

in Figure 1
Treatment

Plot Number
in Figure 1

Treatment
Plot Number

in Figure 1
Treatment

Plot Number
in Figure 1

N3P1K1 1, 2, 3 N2P2K1 4, 5, 6 N1P1K1 7, 8, 9 N0P0K1 10, 11, 12
N3P0K0 22, 23, 24 N2P0K0 19, 20, 21 N1P0K0 16, 17, 18 N0P0K0 13, 14, 15
N3P1K0 25, 26, 27 N2P1K0 28, 29, 30 N1P1K0 31, 32, 33 N0P1K0 34, 35, 36
N3P2K0 46, 47, 48 N2P2K0 43, 44, 45 N1P2K0 40, 41, 42 N0P2K0 37, 38, 39

2.2. Aerial Photography of UAVMC and the Reference VIs

All of the experimental campaigns were conducted during the standing stage of the winter wheat
on 12 April 2018 and 4 April 2019, before topdressing in the jointing stage. The weather conditions were
all suitable for acquiring aerial photography (cloud-free without strong winds). Time was selected from

319



Remote Sens. 2020, 12, 95

10:00 a.m. to 2:00 p.m. with a relatively high solar altitude. Parrot Sequoia was used as a multispectral
camera in this study, which had two sensors: a multispectral sensor and a sunlight sensor, with a total
weight of 105 g. Spectral band parameters of the Parrot Sequoia are shown in Table 2. The sensors were
mounted on an unmanned aerial vehicle DJI Phantom 4 quadrotor drone to acquire aerial photography.

In order to cover all the experimental area with enough overlaps, the aerial routes were
programmed by the drone ground station software (DJI Ground Station Pro, an iPad app). The flight
altitude was set to 50 m, and the frontal and side overlaps were all set to 80%. Before each flight,
the multispectral images of a calibration target provided by the manufacturer were recorded for the
radiometric calibration in post-processing. After uploading the aerial route to the drone, the drone
completed the programmed flight and the spectrum camera took the images automatically. Pix4D
software was used for the post-processing of the multispectral images to obtain an entire image of
the experimental area and its reflectance data for the 4 bands. Figure 2 shows the pseudo color
multispectral image of the experimental area.

Table 2. Specification of the Sequoia multispectral sensor used in this study.

Band Band Width(nm) Wave Width(nm) Image Resolution Field of ViewH◦ × V◦

Green 40 550 1280 × 960 62.2 × 48.7
Red 40 660 1280 × 960 62.2 × 48.7

Red edge 40 735 1280 × 960 62.2 × 48.7
Near Infrared 40 790 1280 × 960 62.2 × 48.7

 

Figure 2. Pseudo color multispectral image of the experimental area on 4 April 2019 (Red-Green-Near
Infrared).

Referring to the related research in remote sensing monitoring of CNS, 11 commonly used VIs
(see Table 3) that can be retrieved using the multispectral image were selected as reference VIs. The most
sensitive VI will be selected from them to establish the estimation models for N status for winter wheat.

Table 3. VIs derived from the multispectral image used in this study.

Name of VI Abbreviation Equation Reference

Difference vegetation index DVI DVI = RNIR −RRED [26]
Green normalized difference

vegetation index GNDVI GNDVI = (RNIR −RGRE)/(RNIR + RGRE) [27]

Modified non-linear vegetation
index MNLI MNLI =

(
1.5R2

NIR − 1.5RGRE
)
/
(
R2

NIR + RRED + 0.5
)

[28]

The second modified
soil-adjusted vegetation index MSAVI2 MSAVI2 =

2RNIR+1−
√
(2RNIR+2)2−8(RNIR−RRED)

2
[29]

Modified simple ratio MSR MSR =

(
RNIR
RRED

−1
)

(√
RNIR
RRED

+1
) [30]
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Table 3. Cont.

Name of VI Abbreviation Equation Reference

Normalized vegetation index NDVI NDVI = (RNIR −RRED)/(RNIR + RRED) [31]
Non-linear vegetation index NLI NLI =

(
R2

NIR −RRED
)
/
(
R2

NIR + RRED
)

[32]
Optimized soil-adjusted

vegetation index OSAVI OSAVI = (RNIR −RRED)/(RNIR + RRED + 0.16) [33]

Renormalized difference
vegetation index RDVI RNDVI = (RNIR −RRED)/

√
(RNIR + RRED) [34]

Ratio vegetation index RVI RVI = RNIR/RRED [35]
Soil-adjusted vegetation index SAVI SAVI = 1.5(RNIR −RRED)/(RNIR + RRED + 0.5) [36]

Where RRED, RGRE, and RNIR are reflectances of the red, green, and near-infrared bands, respectively.

2.3. Taking Photos of Winter Wheat with a Smartphone and the Reference Color-Based VIs

Studies have shown that there were no significant differences in the color parameters of the canopy
photos obtained by different mobile phones [22]. Based on the previous research on the changes in
canopy color parameters caused by different photographing methods, winter wheat was photographed
by a smartphone at a height of 1 meter above the canopy and a 60◦ angle to the ground [22]. Using
automatic exposure mode, photos were taken at three different locations in each plot and saved as JPG
format. Figure 3 shows the winter wheat canopy photos from plots with different N fertilizer levels.

 

(b) (a) 

(c) (d) 

Figure 3. Winter wheat canopy photos. (a–d) Are from the plots with N3, N2, N1, and N0, respectively.

A variety of color-based VIs can be obtained by combining calculations using the Red (R), Green
(G), and Blue (B) color channel values of the crop canopy photo. Referring to the related research on
the estimation of CNS using canopy photo, 10 color-based VIs were selected as reference VIs for the
establishment of estimation models (Table 4).
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Since the photos of winter wheat in the field were taken at different time points, the values of the
R, G, and B channels were susceptible to the intensity of the sun’s illumination, suggesting that the
absolute values of the single-color channels of the photos were not suitable for the estimation of CNS.
To eliminate the effects of solar illumination changes, color-based VIs are often calculated using the
ratio of different color channels or standardized form [37,38]. Therefore, this study normalized the
original calculation equations of EXG and GMR in Table 4 by dividing (2G − R − B) and (G − R) by
(R + G + B), respectively, in order to eliminate the influence of solar illumination changes.

Table 4. Color-based VIs used in this study.

Name of VI Abbreviation Equation Reference

The dark green color index DGCI DGCI = ((H− 60)/60 + (1− S) + (1− B))/3 [39]
Excess green index EXG EXG = (2G−R− B)/(R + G + B) [40]

Green leaf index GLI GLI = (2G−R− B)/(2G + R + G) [41]
The difference between green and red GMR GMR = (G−R)/(R + G + B) [42,43]

Green-red vegetation index GRVI GRVI = (G−R)/(G + R) [41]
Normalized blueness intensity NBI NBI = B/(R + G + B) [44]

Normalized greenness intensity NGI NGI = G/(R + G + B) [44]
Normalized redness intensity NRI NRI = R/(R + G + B) [44]

SAVI green SAVIGreen SAVIGreen = 1.5(G−R)/((G + R + 0.5)) [45]
Visible atmospherically resistant index VARI VARI = (G−R)/(R + G− B) [46]

The dark green color index DGCI DGCI = ((H− 60)/60 + (1− S) + (1− B))/3 [39]

Where, R, G, and B are the values of the red, green, and blue channels, respectively.

2.4. Measurements of Nitrogen (N) Status of Winter Wheat

Conventional laboratory testing methods were adopted to measure the N status of winter wheat
on 12 April 2018 and 4 April 2019. The above-ground part of winter wheat was sampled from 1 m2 in
each plot, and total N (TN) was measured using the Kjeldahl method. Winter wheat root zone soil
layers in each plot were collected at the depths of 0–30 cm, 30–60 cm, and 60–90 cm, respectively. These
soil samples were extracted with 1 mol·L−1 KCl and the nitrate nitrogen content was measured using
the ultraviolet (UV) spectrometry method. 30 winter wheat samples were randomly selected in each
plot. The SPAD value of the first fully expanded leaf of each sample was measured in the field with a
SPAD-502 chlorophyll meter, and the average value was recorded as the SPAD value for this plot.

2.5. Analytical Methods

Considering the wide application of soil testing and formula fertilization technology in precision
agriculture, the estimation models for soil nitrate nitrogen content were developed for the methods of
UAVMC, SPAD, and PHONEP in this study respectively, with the nitrate nitrogen content of winter
wheat root zone soil layers being the inversion targets.

For the UAVMC method, the first step was to remove pixels of bare soil from the multispectral
images to avoid the contamination of bare ground on the analysis. To achieve this goal, the NDVI
of this area was calculated using the multispectral image according to the equation listed in Table 3.
Winter wheat and bare soil were distinguished to obtain the mask files for winter wheat in 2018 and
2019 based on the threshold for bare soil NDVI. The 11 VIs of winter wheat listed in Table 3 were
calculated using multispectral images and the mask files for winter wheat. Correspondingly, the
average value of these VIs for each plot was obtained using the map for the 48 plots. Based on the
correlation analysis between the 11 VIs, TN of winter wheat, and the soil nitrate nitrogen content of
each layer (excluding the data for the P0 plots, as for the other two methods), the VI with the largest
correlation coefficient was selected to establish the estimation models for the inversion of soil nitrate
nitrogen content in root layers.

For the SPAD method, the correlations between SPAD values, TN of winter wheat, and the soil
nitrate nitrogen content of each layer were analyzed. Then, the estimation models were established
based on the regression equations of SPAD values and soil nitrate nitrogen content in root layers.
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For the method of PHONEP, the analysis procedures were similar to the UAVMC method.
To remove the non-vegetation pixels in each photo, SAVIGreen and GMR were calculated using the R,
G, and B of the winter wheat canopy photos referring to the equations in Table 4. According to the
threshold (SAVIGreen > 0 and GMR > 0), the leaf mask for each photo was obtained [44,45]. Using
the corresponding leaf mask, the average values of 10 VIs of winter wheat in Table 4 were calculated
for each canopy photo. There were 3 photos for each plot, and the average value of the 10 VIs in the
3 photos was taken as the value for this plot. Similarly, based on the correlations between the 10 VIs,
the TN of winter wheat, and the soil nitrate nitrogen content for each layer, the VI with the largest
correlation coefficient was selected to establish estimation models of soil nitrate nitrogen content in
root layers.

All the data from 2018 and half of the data from 2019 (data of plots numbered 1 to 24 as shown
in Figure 1) were used for the development of estimation models. The remaining data (data of plots
numbered 25 to 48 in 2019) were used to evaluate the estimation accuracy of the three methods by
the parameters of determination coefficient (R2) and root mean square error (RMSE). The RMSE was
calculated from:

RMSE =

√
1
n

∑n

i=1
(ŷi − yi)

2 (1)

where n was the number of plots, and ŷ, yi were the estimated and measured values, respectively. The
correlations between the measured CNS (TN and nitrate nitrogen content at different soil layers) and
reference VIs were analyzed using SPSS software. The calculation and spatial statistics of the VIs using
multispectral images and canopy photos were implemented by the ERDAS IMAGINE software.

3. Results

3.1. Variation of CNS in the Fertilizer Level Experiment

The N supply for winter wheat was routinely determined by the nitrate content in root zone soil
from the jointing stage to the harvest of winter wheat (0–90 cm) [47]. This practice was usually used in
order to determine the amount of N fertilizer needed. The level of TN for winter wheat could also
reflect the N status of the crop and was closely related to the N supply capacity of the root zone soil.
Therefore, the nitrate nitrogen content in the 0–90 cm soil layer and the TN of winter wheat were
measured in this study. As shown in Figure 4, due to the water, fertilizer, and other managements
that were identical every year in the variable fertilizer level experiment, the two parameters measured
during the same period in 2018 and 2019 were very close to each other. The biggest inter-annual
differences of the nitrate nitrogen content of 0–90 cm soil and the TN of winter wheat were 28.20 mg/kg
and 0.52%, respectively.

The distributions of the two parameters were consistent with the setting of the N fertilizer levels.
With the increase of N fertilizer application, both parameters showed an upward trend. It is worth
noting that the two parameters for the plots where P was 0 (numbered 10 to 24 in Figure 1). The content
of soil nitrate nitrogen showed a rapid increase, while the TN of winter wheat in plots 16 to 24 stayed
at around 3.05%. The severe shortage of P fertilizer inhibited the absorption of N fertilizer by winter
wheat, and the accumulation of N fertilizer in the soil made the content of nitrate nitrogen of these plots
significantly higher than that of other plots. Therefore, the data from these P0 plots were excluded
during analysis.
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Figure 4. The distribution of TN of winter wheat and 0–90 cm soil nitrate nitrogen content in different
fertilizer level experimental plots (2018 and 2019).

3.2. Estimation Models for the Method of UAVMC

The correlations between the 11 spectral VIs of winter wheat, TN of plant, and the nitrate nitrogen
content in 0–30 cm, 30–60 cm, 60–90 cm, and 0–90 cm soil layers were analyzed, and all the correlation
coefficients are listed in Table 5. All the 11 spectral VIs of winter wheat were significantly and positively
correlated to the TN of their plants. Among these VIs, the correlation coefficient between GNDVI and
TN of plants was the highest, reaching to 0.90 **. Although the correlation coefficient between RVI and
TN of plants was the lowest, it still reached to 0.83 **. The N status of winter wheat was closely related
to its spectral characteristics.

During the standing stage of winter wheat, 92.7% of its total root length was concentrated in the
soil root layer of 0–40 cm [48]. Therefore, the N status of winter wheat should be closely related to
the N supply capacity of the upper soil layer. The correlation coefficients between 11 spectral VIs
and the 0–30 cm soil nitrate nitrogen content were the highest. With the increase of soil depth, the
correlation coefficients decreased gradually. Among all the spectral VIs, the correlation coefficients
between GNDVI and soil nitrate nitrogen content of the three layers were the highest. They were
0.52 **, 0.48 **, and 0.42 ** from the top to bottom layers. For the whole soil layer (0–90 cm), the
correlation coefficient was 0.52 **.

Table 5. Correlation coefficients between spectral VIs and nitrogen status of plant and soil.

Spectral VIs With TN of Plants
With Soil Nitrate Nitrogen Content

0–30 cm 30–60 cm 60–90 cm 0–90 cm

DVI 0.88 ** 0.49 ** 0.46 * 0.38 * 0.50 **
GNDVI 0.90 ** 0.52 ** 0.48 ** 0.42 ** 0.52 **
MNLI 0.87 ** 0.51 ** 0.47 ** 0.38 * 0.51 **

MSAVI2 0.87 ** 0.50 ** 0.46 ** 0.37 * 0.51 **
MSR 0.89 ** 0.51 ** 0.48 ** 0.39 ** 0.52 **

NDVI 0.88 ** 0.47 ** 0.43 ** 0.37 * 0.48 **
NLI 0.89 ** 0.44 ** 0.39 * 0.34 * 0.44 **

OSAVI 0.89 ** 0.45 ** 0.39 * 0.34 * 0.45 **
RDVI 0.89 ** 0.51 ** 0.43 ** 0.37 * 0.50 **
RVI 0.83 ** 0.50 ** 0.38 * 0.26 * 0.46 **

SAVI 0.88 ** 0.45 ** 0.40 ** 0.35 * 0.45 **

* Correlation is significant at the 0.05 level. ** Correlation is significant at the 0.01 level. (Data from 2018 and 2019).
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Correlation analysis showed that GNDVI was the most sensitive spectral VI with N status of
winter wheat. Therefore, GNDVI was selected as the estimation indicator, and the estimation models
were established for the inversion of soil nitrate nitrogen content in different root depths of winter
wheat. The models were:

Estimation model for 0–30 cm:

Y0–30 = 659.65GNDVI4.667 R2 = 0.61 (2)

Estimation model for 30–60 cm:

Y30–60 = 218.88GNDVI5.033 R2 = 0.60 (3)

Estimation model for 60–90 cm:

Y60–90 = 782.74GNDVI7.747 R2 = 0.54 (4)

Estimation model for 0–90 cm:

Y0–90 = 415.16GNDVI4.984 R2 = 0.63 (5)

3.3. Estimation Models for the SPAD Method

The correlation coefficients between the SPAD value of winter wheat leaves and TN of plants,
nitrate nitrogen content in 0–30 cm, 30–60 cm, 60–90 cm, and 0–90 cm soil layers are shown in
Table 6. SPAD and all winter wheat N status parameters were significantly correlated. The correlation
coefficients between the SPAD value and soil nitrate nitrogen content decreased gradually with the
increase of soil depth.

Table 6. Correlation coefficients between SPAD value and N status of plant and soil.

With TN of Plants
With Soil Nitrate Nitrogen Content

0–30 cm 30–60 m 60–90 cm 0–90 cm

SPAD 0.85 ** 0.57 ** 0.50 ** 0.43 ** 0.55 **

** Correlation is significant at the 0.01 level (Data from 2018 and 2019).

Taking the SPAD value as the estimation indicator, the estimation models for soil nitrate nitrogen
content in 0–30 cm, 30–60 cm, 60–90 cm, and 0–90 cm layers were:

Estimation model for 0–30 cm:

Y0–30 = 3.79 ∗ 10−5SPAD3.530 R2 = 0.55 (6)

Estimation model for 60–30 cm:

Y30–60 = 6.52 ∗ 10−6SPAD3.639 R2 = 0.45 (7)

Estimation model for 60–90 cm:

Y60–90 = 5.19 ∗ 10−9SPAD5.360 R2 = 0.45 (8)

Estimation model for 0–90 cm:

Y0–90 = 1.11 ∗ 10−5SPAD3.676 R2 = 0.54 (9)
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3.4. Estimation Models for the PHONEP Method

The correlation coefficients between 10 color-based VIs of winter wheat, TN of plants, and the
nitrate nitrogen content in 0–30 cm, 30–60 cm, 60–90 cm, and 0–90 cm soil layers are shown in Table 7.
All the color-based VIs were significantly correlated with the TN of the plants. Among them, EXG,
GLI, NGI, and NRI were negatively correlated, and the rest were positively correlated. Affected by
the distribution characteristics of winter wheat roots, the correlation coefficients between color-based
VIs and soil nitrate nitrogen content decreased with the increase of depth. Among the 10 color-based
VIs, VARI had the best correlation with TN of plants, and its correlation coefficient was 0.91 **. The
correlation coefficients between VARI and the soil nitrate content in 0–30 cm, 30–60 cm, and 0–90 cm
soil layers were the largest. In the soil layers 60–90 cm, the correlation coefficient of VARI was slightly
lower than that of DGCI. Considering that the correlation coefficients between VARI and TN of plant,
0–30 cm, 30–60 cm, and 0–90 cm soil nitrate nitrogen content were the largest, VARI was selected as the
most sensitive color-based VI to establish the estimation model. Similarly, VARI was also selected by
other researchers to develop the crop N estimation models [22,48].

Table 7. Correlation coefficients between color-based VIs and nitrogen status of plant and soil.

Color-Based VIs With TN of Plants
With Soil Nitrate Nitrogen Content

0–30 cm 30–60 cm 60–90 cm 0–90 cm

DGCI 0.70 ** 0.64 ** 0.63 ** 0.62 ** 0.66 **
EXG −0.71 ** −0.65 ** −0.64 ** −0.59 ** −0.64 **
GLI −0.54 ** −0.64 ** −0.61 ** −0.56 ** −0.61 **

GMR 0.68 ** 0.45 ** 0.33 * 0.21 * 0.40 **
GRVI 0.83 ** 0.55 ** 0.55 ** 0.53 ** 0.57 **
NBI 0.65 ** 0.67 ** 0.60 ** 0.60 ** 0.64 **
NGI −0.49 ** −0.57 ** −0.54 ** −0.50 ** 0.54 **
NRI −0.77 ** −0.64 ** −0.62 ** −0.54 ** 0.65 **

SAVIGreen 0.68 ** 0.54 ** 0.48 ** 0.38 * 0.52 **
VARI 0.91 ** 0.72 ** 0.67 ** 0.60 ** 0.72 **

* Correlation is significant at the 0.05 level. ** Correlation is significant at the 0.01 level (Data from 2018 and 2019).

Taking the VARI as the estimation indicator, the estimation models for soil nitrate nitrogen content
in 0–30 cm, 30–60 cm, 60–90 cm, and 0–90 cm layers were:

Estimation model for 0–30 cm:

Y0–30 = 4311.7VARI2.1796 R2 = 0.82 (10)

Estimation model for 30–60 cm:

Y30–60 = 2580.3VARI2.4889 R2 = 0.71 (11)

Estimation model for 60–90 cm:

Y60–90 = 6750.4VARI3.286 R2 = 0.67 (12)

Estimation model for 0–90 cm:

Y0–90 = 2904.2VARI2.3097 R2 = 0.81 (13)

3.5. Validation

In view of the guiding role of root zone soil nitrate nitrogen content in the precise management
of N fertilizer, the accuracy of the estimation models for the 0–90 cm soil nitrate nitrogen content
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by using the methods of UAVMC, SPAD, and PHONEP were evaluated. Figure 5 shows the linear
correlations between nitrate nitrogen content in the 0–90 cm soil obtained by the laboratory testing
method and that estimated by the three methods. The PHONEP method had the best estimation
accuracy (R2 = 0.93 and RMSE = 9.80 mg/kg). The SPAD method had the lowest estimation accuracy
(R2 = 0.61 and RMSE = 19.80 mg/kg). For the method of UAVMC, R2 is 0.86 and RMSE is 12.40 mg/kg.
As shown in Figure 5, all three methods had relatively high estimation accuracy in the low-value
areas of soil nitrate nitrogen content. While in the high-value areas of soil nitrate nitrogen content, the
estimated values of the three methods were significantly lower than the measured values.
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Figure 5. Correlations between nitrate nitrogen content in the 0–90 cm soil layers (mg/kg) obtained by
the laboratory testing method and estimated by the methods of UAVMC, SPAD, and PHONEP.

4. Discussion

4.1. Comparison of the Three Estimation Methods

In this study, GNDVI, SPAD, and VARI were selected as estimation indicators for the three
methods to establish estimation models for soil nitrate nitrogen content. The correlation coefficients
between GNDVI, SPAD, and VARI were 0.92 ** and 0.89 ** respectively, and that between SPAD and
VARI was 0.90 **. The significant correlation between these three indicators showed a high similarity
of the three methods in the estimation of soil nitrate nitrogen content.

For the estimation models, the determination coefficients of the estimation equations for the
PHONEP method were 0.82, 0.71, 0.67, and 0.81 for the soil layers of 0–30 cm, 30–60 cm, 60–90 cm, and
0–90 cm respectively, which were all slightly higher than the other two methods. The determination
coefficients and RMSEs in the estimation accuracy evaluation indicated that the PHONEP method was
the best, while the SPAD method was the worst method in terms of the estimation accuracy.

4.2. Effect of P Fertilizer Shortage on CNS Estimation

Considering the synergistic effects of N, P, and K in the nutrient intake of crops, the severe shortage
of P fertilizer could inhibit the absorption of N by crops, and therefore, the P0 plots were excluded from
the analyses. In order to analyze the impact of P fertilizer shortage on the diagnosis of CNS, taking
VARI as an example, the estimation models with and without the data from P0 plots were compared.

In the fertilizer level experiment, plots with P0 contained four levels of N fertilizer, N0, N1, N2,
and N3. As shown in Figure 6a, the points with P0 are concentrated at the lower left of the figure. This
finding indicated that even if the N fertilizer was sufficient (such as N3), the TN of winter wheat plant
was still generally low. If the points with P0 were removed, the correlation between VARI and TN of
winter wheat plants was significantly improved (Figure 6b). The smaller VARI was correlated with
the lower nitrate nitrogen content in the soil layer of 0–90 cm as shown in Equation (13). However,
in Figure 6c, there were some points with low VARI and high soil nitrate nitrogen content in the
0–90 cm soil layer. This could be attributed to the shortage of P fertilizer. When this happened, the
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NUE of winter wheat was reduced, leading to the retention of applied N in the soil. If these P0 points
were excluded, the determination coefficient of the fitted equation for VARI and the 0–90 cm soil
nitrate nitrogen content was significantly increased (Figure 6d). Results showed that the estimation
method based on the canopy spectrum of winter wheat was not suitable for the estimation of N status
of crops under a severe P fertilizer shortage. In actual production, the amount of P fertilizer applied
was generally not too low to affect the absorption of N fertilizer by crops. Nevertheless, we should pay
attention to the existence of this phenomenon.
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Figure 6. The impacts of P fertilizer shortage on N estimation model for the PHONEP method.
(a,b) Are the distributions between VARI and TN of plant for the data including and excluding P0 plots,
respectively. (c,d) Are the distributions between VARI and nitrate nitrogen content in the 0–90 cm soil
layer for the data including and excluding P0 plots, respectively.

Due to the fact that more than 80% of the K absorbed by crops was stored in its straw, these K
could be quickly released into the soil by straw returning [49]. In this way, plots with K0 in the fertilizer
level experiment could get enough K to support the growth of winter wheat. Therefore, data from
plots with K0 were involved in the development of estimation models.

4.3. The Saturation Response of the Estimation Indices

Some VIs (such as NDVI) might reach saturation in high-density vegetation areas [50], and the
SPAD method had this limitation when N supply was sufficient for the crop as well [51]. Taking
the measurements in this study as an example (excluding P0 plots), the saturation response of the
estimation VIs (GNDVI, SPAD, and VARI) of the three methods in inversion of the 0–90 cm soil nitrate
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nitrogen content was analyzed and is shown in Figure 7. The distributions of the three VIs were similar
to each other. In the low-value region of soil nitrate nitrogen content in the 0–90 cm depth, all the
three VIs and the soil nitrate nitrogen content showed the quadratic polynomial correlations. With the
increase of soil nitrate nitrogen content, the three VIs rapidly increased and reached their maximum
values, i.e., their saturation points. After the saturation points, the three VIs did not significantly
increase with the increase of nitrate nitrogen content in the soil. As shown in Figure 7a,b, the values
of GNDVI and SPAD were hardly changed after their saturation points. Figure 7c showed that the
value of soil nitrate nitrogen content at the saturation point of VARI was greater than that of GNDVI
and SPAD. Moreover, after its saturation point, with the increase of soil nitrate nitrogen content, VARI
tended to increase slowly. This indicated that the PHONEP method was relatively better than the
other two methods. Therefore, it is necessary to pay attention to the saturation response of VIs for the
estimation of CNS, or to improve the estimation accuracy by using the method of segmentation.
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Figure 7. Analyses of the saturation response of GNDVI, SPAD, and VARI. (a–c) Show the saturation
response for the method of GNDVI, SPAD, and VARI, respectively.
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5. Conclusions

Fertilizers play irreplaceable roles in agricultural production, making it possible to provide more
food from limited arable land for a growing population. However, excessive application for fertilizers
and low use efficiency have increased the production cost and environmental pollution. It is crucial to
implement rational use of chemical fertilizers under the premise of ensuring substantial grain yields.
In order to achieve this goal, practical crop nutrient estimation methods and fertilization techniques
are needed, especially for the N fertilizer that has the largest application amount. Compared to the
laboratory testing method, rapid non-destructive estimation methods of CNS based on the canopy
spectrum have more advantages in terms of timeliness, cost, practicality, and thus, have received
extensive attention and research.

Based on the fertilizer level experiment conducted during 2018 and 2019, GNDVI and VARI were
selected as the sensitive VIs for the methods UAVMC and PHONEP, respectively. The correlation
coefficients between GNDVI and SPAD, VARI were 0.92 ** and 0.89 **, and the correlation coefficient
between SPAD and VARI was 0.90 **. The estimation VIs for the three methods were significantly
correlated with each other. The determination coefficients of the 0–90 cm soil nitrate nitrogen content
estimation models for the UAVMC, SPAD, and PHONEP methods were 0.63, 0.54, and 0.81, respectively.
Moreover, the PHONEP method had the smallest RMSE (9.8 mg/kg) in the estimation accuracy
evaluation. Therefore, in terms of estimation accuracy, the PHONEP method was slightly higher than
the other two methods. In addition, it was found that CNS estimation methods based on canopy
spectrum were not suitable for crops under severe P deficiency due to the synergistic effects between
different nutrients. At the same time, the estimation VIs of the three methods had a saturation response
in the estimation of soil nitrate nitrogen content. The method of UAVMC is suitable for rapid CNS
estimation for large-area crops, and SPAD and PHONEP are convenient for the random sampling and
monitoring of crops. All three methods have good application prospects, but their estimation models
still need to be further improved in order to achieve an efficient application in the precise management
of N fertilizer.
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Abstract: Unmanned aerial system (UAS)-based remote sensing is one promising technique for
precision crop management, but few studies have reported the applications of such systems on
nitrogen (N) estimation with multiple sensors in rice (Oryza sativa L.). This study aims to evaluate
three sensors (RGB, color-infrared (CIR) and multispectral (MS) cameras) onboard UAS for the
estimation of N status at individual stages and their combination with the field data collected from a
two-year rice experiment. The experiments were conducted in 2015 and 2016, involving different N
rates, planting densities and rice cultivars, with three replicates. An Oktokopter UAS was used to
acquire aerial photography at early growth stages (from tillering to booting) and field samplings were
taken at a near date. Two color indices (normalized excess green index (NExG), and normalized green
red difference index (NGRDI)), two near infrared vegetation indices (green normalized difference
vegetation index (GNDVI), and enhanced NDVI (ENDVI)) and two red edge vegetation indices
(red edge chlorophyll index (CIred edge), and DATT) were used to evaluate the capability of these
three sensors in estimating leaf nitrogen accumulation (LNA) and plant nitrogen accumulation
(PNA) in rice. The results demonstrated that the red edge vegetation indices derived from MS
images produced the highest estimation accuracy for LNA (R2: 0.79–0.81, root mean squared error
(RMSE): 1.43–1.45 g m−2) and PNA (R2: 0.81–0.84, RMSE: 2.27–2.38 g m−2). The GNDVI from CIR
images yielded a moderate estimation accuracy with an all-stage model. Color indices from RGB
images exhibited satisfactory performance for the pooled dataset of the tillering and jointing stages.
Compared with the counterpart indices from the RGB and CIR images, the indices from the MS
images performed better in most cases. These results may set strong foundations for the development
of UAS-based rice growth monitoring systems, providing useful information for the real-time decision
making on crop N management.

Keywords: UAS; multiple sensors; vegetation index; leaf nitrogen accumulation; plant
nitrogen accumulation

1. Introduction

Nitrogen (N) plays a key role in crop growth and yield formation. Rice (Oryza sativa L.) is
one of the largest consumers of N fertilizers [1]. Crop nitrogen accumulation (NA), as a product of
nitrogen content (NC) and biomass includes not only information on the N status, but also canopy
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capacity during crop growth [2,3]. Therefore, the estimation of leaf nitrogen accumulation (LNA) and
plant nitrogen accumulation (PNA) is not only useful for evaluating crop production capability and
predicting grain quality, but also supporting diagnosis of N status in crop production.

Remote sensing (RS) techniques have been proved to be a promising approach for crop growth
monitoring [4], nutrition diagnosis [5] and yield prediction [6] in different crops. RS data is widely
used to monitor crop N status, including satellite imagery [7,8], aerial photographs [9] and canopy
reflectance spectra [5,10]. For example, Yao et al. [5] used ground-based hyperspectral data to detect
the leaf N concentration of various growth stages in winter wheat. Huang et al. [8] used FORMOSAT-2
satellite data to estimate aboveground biomass and plant N uptake at the panicle initiation stage of
rice in northeast China. Boegh et al. [9] used airborne multispectral (MS) data to quantify canopy N
concentration in agriculture. Although ground-based RS sensors are easy to operate and can be used
to obtain high estimation accuracy for crop growth parameters, they are costly and labor intensive.
Satellite imagery often provides insufficient spatial resolution to monitor crop growth status for
smallholders and is easily affected by cloud conditions. Manned airborne platforms can be used to
obtain imagery with high spatial and temporal resolutions, but they are limited by high operational
complexity and costs.

Unmanned aerial systems (UAS) have become prevalent and offer numerous advantages in
precision agriculture, such as the ultra-high spatial resolution (e.g., centimeters), relatively low
operational costs and the near real-time image acquisition [11,12]. However, they also have a
significantly low payload capacity, so light-weight compact sensors are required, and these sensors
have been developed and mounted on various UAS for remote sensing applications [13–16]. The
most affordable sensors are off-the-shelf digital cameras with red, green and blue bands. One of the
successful applications of UAS in agricultural management was reported by Hunt et al. [11], who used
a digital camera attached to a model aircraft to estimate the biomass of corn, alfalfa and soybean. They
found a linear correlation between biomass and the normalized green–red difference index (NGRDI)
derived from the RGB images. Zhu et al. [17] investigated the possibility of using digital imagery
collected by a UAS to monitor N status in paddy fields. Córcoles et al. [18] measured canopy cover in
an onion crop with RGB images from UAS and determined the relationship between canopy cover
and leaf area index (LAI). However, reflectance in the near infrared (NIR) wavelengths varied most
across the growing season due to increasing biomass at the canopy level [19], and numerous vegetation
indices (VIs) proposed for biomass or LAI estimation included NIR bands [20–22]. Therefore, a few
studies have attempted to modify RGB cameras by replacing the red or blue channel with a NIR
filter to obtain color near-infrared (CIR) images. For instance, Hunt et al. [23] developed a digital CIR
camera system and found a good correlation between LAI and green normalized difference vegetation
index (GNDVI) from the imagery of winter wheat. This CIR camera system has also been used by
Hunt et al. [24] to estimate the biomass of winter cover crops. Lebourgeois et al. [25] used a UAS
equipped with two digital cameras (RGB and CIR cameras) to investigate sugarcane N status and
determined the optimal VI to estimate leaf and canopy N content. Recently, mounting MS cameras has
become a new alternative approach for precision agriculture. More complex analysis has been done
using MS cameras with more spectral bands, allowing advanced vegetation studies. They were applied
to water stress detection [26], disease detection [27] and vigor monitoring [28,29]. The UAS images in
the aforementioned studies have been used to estimate the agronomic parameters LAI [30–32] and
biomass [24,33]. N status, as one of the most important agronomic parameters in precision farming,
needs to be addressed with UAS due to the low efficiency of other RS techniques.

Whether a UAS platform could be applied to monitor N status needs to be evaluated. Furthermore,
the performance of multiple sensors onboard UAS for the same purpose has rarely been compared.
Von Bueren et al. [34] evaluated the spectral quality of four different types of optical UAS-based
sensors (RGB camera, CIR camera, six band MS camera and a high resolution spectrometer) and
found that a MS camera can collect imagery with high radiometric quality in the red edge region.
Although RGB and CIR cameras have been widely applied in precision agriculture, the stability of
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the models established with indices from RGB and CIR images needs to be validated with the test set.
Most importantly, in order to better apply UAS to precision agriculture, we need to clarify how far
these cameras can be used during the whole season or at a certain growth stage, and how to choose
a proper camera for N status monitoring in terms of cost, data processing efficiency and study area
size. Therefore, the objective of the present study was to evaluate the performance of different sensors
onboard UAS on LNA and PNA estimation in rice. The anticipated results would provide guidance on
how to choose a proper camera for N accumulation estimation, and lay foundations for developing
non-destructive and rapid monitoring of N status with UAS in rice crops.

2. Materials and Methods

2.1. Experimental Design

Two field experiments were designed, involving different N rates, planting densities and rice
cultivars. All the experiments were conducted in the experimental station of the National Engineering
and Technology Center for Information Agriculture (NETCIA) located in Rugao city, Jiangsu province,
China (120◦45’E, 32◦16’N) (Figure 1). In 2015, one japonica rice cultivar Wuyunjing24 (V1) and one
indica rice cultivar Yliangyou1 (V2) were seeded at day of year (DOY) 136 and transplanted into the
paddy field at DOY 166. Four N rates (0 (N0), 100 (N1), 200 (N2) and 300 (N3) kg N ha−1 as urea) were
applied with one density (0.30 m × 0.15 m) for the minimum and maximum N rates and two densities
(0.30 m × 0.15 m and 0.50 m × 0.15 m) for the intermediate N rates. The N fertilizers were applied
in the form of urea: 40% as basal fertilizer before transplanting, 10% at the tillering stage, 30% at the
jointing stage and 20% at the booting stage. The plot size was 30 m2 with 6 m in length and 5 m in
width. In 2016, the experiment was conducted with the same plot size and rice cultivars. The two rice
cultivars were seeded at DOY 138 and transplanted with two planting densities (0.30 m × 0.15 m and
0.50 m × 0.15 m) into the paddy field at DOY 168. Three N rates (0 (N0), 150 (N1) and 300 (N2) kg N
ha−1 as urea) were applied with 40% as basal fertilizer before transplanting, 20% at the tillering stage,
20% at the jointing stage and 20% at the booting stage.

Figure 1. Study site: rice experiment at the NETCIA experimental station in 2015. GCPs, ground
control points used for band to band registration.

2.2. Field Measurements

The UAS flight dates were adjusted to the field sampling dates as much as weather conditions
allowed (Table 1). Due to the poor weather conditions, we could only take high quality UAS images on
5 August, 2015. Although this was three days after the fertilization application, we believe significant
N uptake by the rice plants has not yet occurred [35]. For the field destructive sampling, 3 hills of rice
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plants were randomly selected from the sampling region of each plot and separated into leaves and
stems. All the samples were oven-dried for 30 min at 105 ◦C and later at 80 ◦C to a constant weight,
then weighted, ground and stored in plastic bags for chemical analysis. The total N content in the leaf
and stem tissues was determined using the micro-Keldjahl method [36]. The N accumulation (g m−2)
of leaves (LNA) and plants (PNA) was calculated as the product of N content (%) and dry biomass
(t ha−1) of leaves and whole aboveground plants, respectively.

Table 1. Synthesis of field management and data acquisition calendar.

Year Seedling N Fertilizer
UAS Flight

Date

Field
Sampling

Date

Growth
Stage

Image Acquisition

MS RGB CIR

2015 16 May 23 June 21 July 21 July Tillering
√ √ √

2 August 5 August 31 July Jointing
√ √ √

14 August 14 August 15 August Booting
√ √ √

2016 18 May 25 June 21 July 21 July Tillering -
√ √

4 August 6 August 6 August Jointing
√ √ √

14 August 14 August 14 August Booting
√ √ √

Note: MS, RGB and CIR represent multispectral, red–green–blue and color infrared.

2.3. UAV Campaigns and Sensors

The UAV used in this study was the Mikrokopter OktoXL [37], an eight-rotor aircraft with a
maximum payload capacity of 2.5 kg. This UAV has a flight duration of 8–25 min, depending on the
battery and actual payload. Three cameras were mounted onboard the UAV separately for image
collection and their technical specifications were listed in Table 2. The Tetracam mini-MCA6 (Tetracam
Inc., Chatsworth, CA, USA) MS camera has six channels and was evaluated in the literature for other
purposes [32,38–40]. The camera has user configurable band pass filters (Andover Corporation, Salem,
NH, USA) of 10-nm full-width at half-maximum and center wavelengths at blue (490 nm), green
(550 nm), red (680 nm), red edge (720 nm), NIR1 (800 nm) and NIR2 (900 nm). The camera was run
on a 3 s shutter release interval and collected images in a 10 bit RAW format. The other two cameras
collected true color and CIR images in JPEG format, respectively. The true color camera was a Canon
5D Mark III (Canon Inc., Tokyo, Japan) with a 22.1 megapixel (MP) CMOS sensor. The CIR camera
was a NIR–green–blue camera, which was a modified Canon PowerShot SX260 with a 12.1 MP CMOS
sensor (www.maxmax.com). After filter modification, the red channel became near-infrared and the
other two channels remained the same. These two cameras were set to continuous data capturing at 1
frame per second (fps), with an exposure time manually set for each flight according to light conditions.

Table 2. Technical specifications of the three cameras and image captures from the UAS.

Camera Version
Field of

View
Image Size Altitude (m)

Coverage (Single
Image) (ha)

Pixel Size (on the
Ground) (mm)

RGB Canon 5D Mark III 74◦ × 53◦ 3840 × 5760 50 0.75 13
Color infrared Canon PowerShot SX260 72◦ × 52◦ 3000 × 4000 100 1.41 36
Multispectral Mini-MCA 38◦ × 31◦ 1024 × 1280 100 0.38 54

The UAS was flown over the paddy field on three dates at the heights of 50 m and 100 m above
ground level during the 2015 and 2016 growing seasons (Table 2). Flight speed and route planning
were fixed during the whole season. Additionally, all flights were carried out in stable ambient light
conditions between 11:00 a.m. and 1:30 p.m. when the sun elevation angle was in the range of 56–72◦.

2.4. Image Processing

2.4.1. Image Preprocessing

After the flights, the MS images were downloaded from the memory cards and processed in
the IDL/ENVI environment (Exelis Visual Information Solutions, Boulder, CO, USA). The image
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preprocessing workflows followed Kelcey and Lucieer [41]. In short, the following three corrections
were applied: (i) noise reduction using dark current imagery; (ii) lens vignetting correction based
on spatially dependent correction factors; and (iii) removal of lens distortion with a modified
Brown–Conrady model. To reduce the band-to-band misalignment, the six bands were co-registered
with a total of 25 ground control points marked on the concrete roads within the study area (Figure 1).
Six spectrally flat calibration canvases (1.2 × 1.2 m) with reflectance intensities at 3%, 6%, 12%, 22%,
48% and 64% were placed within the UAS flight overpass. With these calibration canvases, the digital
number (DN) values of the images were transformed into reflectance values by applying an empirical
line correction method [37,42]. The empirical line correction coefficients established between the
convoluted ASD-FieldSpec4 and the six acquired mini-MCA spectral bands were then applied per
pixel to the MS images. The reflectance of each plot was represented by the average of the reflectance
values over the non-sampling area of the plot.

RGB and CIR cameras are consumer-grade sensors and there is no rigorous pre-processing
procedure for them. Dark offset imagery was generated for the two cameras in a totally dark
environment and there is no need to do noise correction due to extremely low noise. The effect
of lens vignetting and distortion could be ignored since the RGB and CIR images covered a large
area and the photos with the sampling plots in the nadir area were selected for subsequent analysis.
The DN values of the RGB and CIR images were not radiometrically corrected to surface reflectance
using the calibration canvas due to the complexity of determining the spectral sensitivity for each
channel. As the RGB and CIR images had higher spatial resolutions than the MS image, they were
down-sampled to the same spatial resolution as that of the MS image (Figure 2). The DN value of each
plot was represented by the average of DN values over the non-sampling area of the plot.

 

Figure 2. UAS images acquired from three cameras: MS image (a), CIR image (b) and RGB image (c)
and their corresponding VI maps: red edge chlorophyll index (CIred edge) map (d), GNDVI map (e) and
NGRDI map (f). Study area (36 plots) was extracted from the three images. MS image is displayed
with NIR, G and B bands.

2.4.2. Calculation of Vegetation Indices

Given the specific band configurations of the three cameras, six VIs were examined for the
estimation of LNA and PNA (Table 3). From the RGB images, we calculated two color indices, the
normalized excess green index (NExG) [43] and NGRDI [44], because NExG has been proved to possess
the ability to quantify crop responses under different conditions [45], and NGRDI was originally
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proposed for vegetation fraction estimation and found to be related to crop biomass before canopy
closure with RGB imagery from UAS [11]. From the CIR images, we chose two NIR VIs, GNDVI [46]
and enhanced NDVI (ENDVI), because GNDVI was shown to be linked to chlorophyll concentration,
and ENDVI was recommended by the company that converted the cameras (www.maxmax.com) and
also shown to detect vegetation vigor well [45]. For the MS images, we had more options for VIs due
to the multiple bands. Except for the color indices and NIR VIs, two red edge VIs (CIred edge [47] and
DATT [48]) were employed for N accumulation estimation, because they both had a strong capability
in chlorophyll contents estimation in higher plants. The VIs from the MS images were calculated with
reflectance values and those from the RGB and CIR images were with DN values.

Table 3. Spectral vegetation indices evaluated in this study.

Index Name Formula References Camera

NExG Normalized Excess green index (2*G − R − B)/(G + R + B) [43,45] MS, RGB

NGRDI Normalized green-red difference
index (G − R)/(G + R) [21,44] MS, RGB

GNDVI Green normalized difference
vegetation index (NIR − G)/(NIR + G) [46] MS, CIR

ENDVI Enhanced normalized difference
vegetation index

(NIR + G − 2*B)/(NIR + G
+ 2*B) (www.maxmax.com) MS, CIR

CIred edge Red edge chlorophyll index NIR/RE-1 [47] MS
DATT DATT (NIR − RE)/(NIR − R) [48] MS

Note: For RGB and CIR images, NIR, R, G and B are the radiometric normalized pixel values of the NIR, red, green
and blue band, respectively. For multispectral images, NIR, RE, R, G and B are the reflectance values of the near
infrared, red edge, red, green and blue bands, respectively.

2.5. Data Analysis

The correlations between agronomic parameters and VIs were analyzed using MATLAB R2010b
software (The MathWorks, Inc., Natick, MA, USA). The experimental data collected in 2015 were used
to develop the regression models and data collected in 2016 were subsequently used to validate the
regression models. Generally, the estimation performance of the model was evaluated by comparing
the differences in coefficient of determination (R2) and root mean square error (RMSE). The model
performance was more accurate with an R2 near to 1, and an RMSE near to 0.

3. Results

3.1. Variation of Agronomic Variables over the Three Growth Stages

Figure 3 shows the overall trend of leaf or plant N status and biomass from the 2015 field dataset.
Leaf N concentration kept decreasing from the tillering stage (2.55%) to the booting stage (2.28%). Plant
N concentration decreased from tillering (1.85%) to jointing (1.37%) and remained stable following
the application of the second top-dressing fertilizer. Leaf biomass increased consistently as the rice
plants developed (from 0.62 t ha−1 to 2.52 t ha−1). Plant biomass increased from 1.27 t ha−1 at the
tillering stage to 2.95 t ha−1 at the jointing stage and then doubled after the second top-dressing. LNA
and PNA were close at the tillering and jointing stages, but became significantly different after the
second fertilization.

3.2. Comparison between Counterpart Indices from MS and RGB Images

Two counterpart indices (NExG and NGRDI), computed from the MS and RGB images, were
employed to evaluate the capability of these two cameras in LNA and PNA estimation. Figure 4 shows
that NExG-RGB had comparable performance to NExG-MCA in LNA and PNA estimation at the
tillering and jointing stages. With regard to the pooled datasets across all growth stages, NExG-RGB
performed slightly better than NExG-MCA. NGRDI-RGB was superior to NGRDI-MCA at individual
stages, explaining 19% and 15% more variability of LNA and PNA for all growth stages, respectively.
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Obviously, the relationships between color indices and N accumulation exhibited a higher scattering of
data points for the booting stage than for the tillering and jointing stages. Therefore, the correlation for
the combination of the tillering and jointing stages (LNA: R2 = 0.71; PNA: R2 = 0.71) was significantly
higher than that for all three stages (LNA: R2 = 0.44; PNA: R2 = 0.56). Additionally, color indices from
both types of images exhibited the best performance in LNA and PNA estimation for the jointing stage
(Figure 4).

Figure 3. Average measurements of leaf or plant N concentration (a), biomass (b) and N accumulation
(c) derived from the 2015 field dataset. Vertical bars denote standard deviation; arrows indicate dates
of N top-dressing fertilization. DAT denotes days after transplantation.

Figure 4. Leaf N accumulation (LNA, g m−2) and plant N accumulation (PNA, g m−2) plotted against
vegetation indices from RGB and MS images: NExG-MCA (a,e), NExG-RGB (b,f), NGRDI-MCA (c,g)
and NGRDI-RGB (d,h). The black solid line is for pooled data and the dashed lines are for individual
stages. All regressions are statistically significant (p < 0.01).

3.3. Comparison between Counterpart Indices from MS and CIR Images

To compare the capability of the MS and CIR cameras in estimating N accumulation, two
counterpart VIs (GNDVI and ENDVI) were computed from the MS and CIR images and their
performance is shown in Figure 5. Compared with GNDVI-CIR, GNDVI-MCA performed slightly
better in the LNA and PNA estimation for individual stages and exhibited more consistent relationships
with LNA (R2: 0.78–0.81) and PNA (R2: 0.72–0.83) across the three stages (Figure 5a,e). In contrast,
when the data from all stages were pooled, GNDVI-CIR explained 10% and 7% more variation in LNA
and PNA, respectively (Figure 5b,f). ENDVI-MCA was superior to ENDVI-CIR in LNA and PNA
estimation across all three growth stages. Among the three growth stages, the best performance of
LNA and PNA estimation was observed for the jointing stage with all the evaluated VIs.

339



Remote Sens. 2018, 10, 824

Figure 5. Leaf N accumulation (LNA, g m−2) and plant N accumulation (PNA, g m−2) plotted against
vegetation indices from CIR and MS images: GNDVI-MCA (a,e), GNDVI-CIR (b,f), ENDVI-MCA (c,g)
and ENDVI-CIR (d,h). The black solid line is for pooled data and the dashed lines are for individual
stages. All regressions are statistically significant (p < 0.01).

3.4. Evaluation of Red Edge Indices from Multispectral Images

Figure 6 exhibits that CIred edge and DATT performed consistently well in LNA (R2: 0.82–0.89)
and PNA (R2: 0.82–0.88) estimation across different growth stages. An all-stage model of DATT could
explain 89% of LNA variability and 86% of PNA variability, which was slightly higher than that of
CIred edge. However, the relationship of LNA and PNA with CIred edge was linear, but that with DATT
was nonlinear. Compared with the best performing index from the CIR images (GNDVI-CIR), DATT
was slightly superior to GNDVI in LNA and PNA estimation. Specially, DATT could explain more
than 30% of the variation in LNA and PNA compared to the best performing indices from RGB images
(NGRDI-RGB).

Figure 6. Leaf N accumulation (LNA, g m−2) and plant N accumulation (PNA, g m−2) plotted against
red edge indices from MS images: CIred edge (a,c) and DATT (b,d). The black solid line is for pooled
data and the dashed lines are for individual stages. All regressions are statistically significant (p < 0.01).

3.5. Model Validation

The derived regression models from the calibration datasets were validated with the test set for
all models (Table 4). Color indices (NExG and NGRDI) from the MS and RGB images exhibited low
estimation accuracies for LNA (R2 ≤ 0.58 and RMSE ≥ 0.92 g m−2) and PNA (R2 ≤ 0.66 and RMSE ≥
1.18 g m−2) for both the individual stages and the all-stage group. The highest accuracy for LNA and
PNA estimation was produced by NGRDI-RGB (R2 = 0.52 and RMSE = 1.61 g m−2) and NGRDI-MCA
(R2 = 0.47 and RMSE = 2.44 g m−2) at the jointing stage, respectively. Compared with the counterpart
indices from the RGB images, VI-MCA performed better in most cases (Figures 7 and 8). However, the
estimation accuracy improved significantly when only the tillering and jointing stages were considered.
The NGRDI and NExG yielded satisfactory performance in LNA (R2 = 0.64 and RMSE = 1.16 g m−2)
and PNA (R2 = 0.69 and RMSE = 1.95 g m−2), respectively (Figure 9a,b).
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Figure 7. The 1:1 relationship between the estimated and measured leaf N accumulation (LNA, g m−2)
in rice based on NGRDI-MCA (a), GNDVI-MCA (b), CIred edge (c), NGRDI-RGB (d), GNDVI-CIR (e),
and DATT (f). Only RGB and CIR images have tillering data. The solid line indicates the 1:1 line and
the dashed line indicates the regression line.

Figure 8. The 1:1 relationship between the estimated and measured plant N accumulation (PNA, g m−2)
in rice based on NGRDI-MCA (a), GNDVI-MCA (b), CIred edge (c), NGRDI-RGB (d), GNDVI-CIR (e),
and DATT (f). Only RGB and CIR images have tillering data. The solid line indicates the 1:1 line and
the dashed line indicates the regression line.
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Figure 9. The 1:1 relationship between the estimated and measured leaf N accumulation (LNA, g m−2)
and plant N accumulation (PNA, g m−2) in rice based on two-stage (tillering and jointing) model using
color indices derived from the RGB images: NGRDI-LNA model (a) and NExG-PNA model (b). The
solid line indicates the 1:1 line and the dashed line indicates the regression line.

The GNDVI-CIR and ENDVI-CIR models performed poorly for both individual stages and the
all-stage group. Only GNDVI-CIR obtained moderate estimation accuracy for LNA (R2 = 0.71 and
RMSE = 0.75 g m−2) and PNA (R2 = 0.65 and RMSE = 3.12 g m−2) at the jointing stage and in the
all-stage group, respectively. However, compared with VI-CIR, the counterpart indices from the MS
images performed significantly better. GNDVI-MCA produced the highest estimation accuracy of
LNA (R2 = 0.79 and RMSE = 1.36 g m−2) and PNA (R2 = 0.84 and RMSE = 1.67 g m−2) for the booting
and jointing stages, respectively. Moreover, the two-stage group (booting and jointing) model of
GNDVI-MCA yielded satisfactory performance in LNA and PNA estimation (Figures 7b and 8b).

Obviously, the estimation accuracy of CIred edge and DATT was comparable and highest among
all the evaluated indices across all growth stages except for the jointing stage in LNA estimation
(Table 4). The two-stage model (jointing and booting) based on the CIred edge exhibited satisfactory
performance in LNA (R2 = 0.79 and RMSE = 1.43 g m−2) and PNA (R2 = 0.81 and RMSE = 2.38 g m−2)
estimation (Figures 7c and 8c). Figure 10 shows the spatial distribution of LNA and PNA estimated by
CIred edge in the study area for the jointing and booting stages. These figures highlight an increase of N
accumulation between the two dates, and the spatial variability in N accumulation across N treatments.

Figure 10. N accumulation maps using the derived generic relationship between CIred edge and N
accumulation at different growth stages, LNA at jointing stage (a) and booting stage (b); PNA at
jointing stage (c) and booting stage (d).
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4. Discussion

4.1. Feasibility of Fitting a Single VI-LNA or VI-PNA Model for All Growth Stages

Agronomic parameters (e.g., biomass and plant N uptake) were often estimated at the individual
growth stage or stage groups separated by pre-heading and post-heading, and the model for the early
stages performed better than the latter or the whole season [13,49–51]. In this study, we established
both stage groups and individual stage models for LNA and PNA estimation. Color indices (NExG
and NGRDI) from RGB images performed poorly in N accumulation estimation with pooled data
from different stages, but the performance improved significantly when excluding the booting stage
(Figure 9). Similar results were found in wheat plant N uptake [52] and barley biomass [13] estimation,
because the reflectance in the visible region was easily saturated when the chlorophyll content
was relatively higher at the booting stage [19]. The NIR VIs from the CIR images yielded better
performance with the all-stage model than the individual-stage model, especially for GNDVI-CIR
(Figures 7c and 8c). Hunt et al. [24] also used GNDVI derived from CIR images to estimate winter
cover crop biomass, but the correlations were not high due to much greater biomass variation within
experimental strips than among strips.

For MS images, two red edge indices (CIred edge and DATT) produced quite satisfactory
performance at the individual stage and stage groups. As shown in Figures 7 and 8, the estimates
of the red edge indices with two-stage models were closest to the 1:1 line, because N accumulation
was dominated by biomass and biomass could be more accurately estimated with red edge indices
than the NIR or visible VIs at a high canopy density [49,53,54]. Moreover, this MiniMCA camera
could deliver MS imagery of high radiometric quality in the red edge region [34]. Considering the
linear relationship with LNA and PNA, CIred edge could be considered a suitable indicator for rice N
accumulation estimation from the UAV platform.

4.2. Performance of Counterpart Indices from Different Sensors

In this study, the counterpart VIs from MS images performed significantly better than that from
RGB or CIR images (Table 4). That is partly due to the lack of radiometric correction for RGB and CIR
images. The established models from RGB and CIR images had poorer stability in DN values than
reflectance between the two years, because the DN values were significantly affected by the exposure
sets on the digital cameras based on overall light intensity [11].

Although the DN-based models were presented in this study, they were also compared with the
reflectance-based models, and the latter did not show a consistent improvement with radiometric
calibration (data not shown). This is probably due to the inaccuracy in the spectral response function
and the quality of the RGB and CIR cameras, which were not as well calibrated in-house as the MS
cameras. In addition, radiometric calibration was difficult for the RGB and CIR cameras in this study
due to the complexity of obtaining their spectral response functions for each channel. The use of a
calibration canvas may not be practical when multiple flights are needed to cover a large area and
solar illumination varies between flights [24]. On the other hand, the RGB and CIR cameras possessed
much broader bandwidth (over 50 nm) than that of the MS camera (10 nm). Previous studies have
also shown that narrow-band vegetation indices were superior to broad bandwidth indices in LAI [55]
and N [56] estimation. Future work could focus on improving the stability and transitivity of models
established with RGB and CIR images through different fields and years.

These VIs are structural indices, which are more related to biomass than N concentration, thus
we found the VIs were weakly correlated with N concentration (data not shown), which corresponds
with the findings in other studies [2,52]. Because N concentration monitoring is affected by many
factors, such as canopy structural parameters (e.g., LAI, biomass). Knyazikhin et al. [57] proposed
directional area scattering factor (DASF) to eliminate the influence of canopy structural parameters
with hyperspectral data. However, DASF could not be obtained due to the limited bands in these
sensors. N accumulation composed of N concentration and biomass, contains information on canopy
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structure and N status, thus it can be taken as a good indicator for a N nutrition assessment [2,58,59].
However, the only stress for rice growth in this study was N deficiency, because other practical
management was the same for all the plots. Treatments within N stress were labeled with low N
concentration and biomass, thus the low N accumulation provides a real statement of the N deficit.

4.3. Choice of an Appropriate Camera for Precision Agriculture

UAS have proven to be an ideal technique in precision agriculture for crop growth mapping [60,61]
and monitoring [13,14,33]. Simultaneously, many aspects of sensor selection should be taken into
consideration, such as band configuration and price. Digital cameras (both RGB and CIR cameras)
are easy to use and are affordable for most researchers. Additionally, RGB and CIR images could be
used after being downloaded from a memory card without any preprocessing (e.g., band registration)
and a number of sophisticated commercial softwares (e.g., Agisoft Photoscan and Pix4D) have been
developed to process the RGB and CIR images. These advantages make it more efficient to process
the image data and easier to cover a large experimental area [34]. Furthermore, digital cameras could
collect images with ultra-high spatial resolution to construct a high density point cloud, which has
been used to estimate plant height [13,62]. Therefore, digital cameras are widely used for precision
agriculture, as stated in the review by Zhang and Kovacs [63].

Crop growth condition at the early stages is very important for the yield formation and N
management is practiced at the tillering and jointing stages [64], thus it is essential to provide farmers
with N status in order to supply appropriate rate of fertilizer [65]. Given the low cost of RGB and CIR
cameras and satisfactory performance in N accumulation estimation, we believe RGB cameras could
be used to monitor N status for the two early stages of rice growth. CIR cameras would be a good
choice for N accumulation estimation for all three stages, if the demand on estimation accuracy is not
so strict and financial budget is tight. Besides, the CIR camera was also suited for LAI estimation in
winter wheat [23].

Compared with the digital cameras, the MS camera performed significantly better in LNA and
PNA estimation. However, the miniMCA (700 g) is much heavier than the commercial digital camera
(270 g), which is a great burden for UAS energy supply [66]. Though MS images could be processed
with the Pix4D and Photoscan software packages, the spatial coverage is not as efficient as that of the
RGB images due to the narrow field of view. In addition, the channels in new MS cameras such as
RedEdge are still designed in arrays, and much effort is still needed to correct for the band-to-band
misalignment. New products may have better performance in hardware design, but we still face
similar challenges in image collection and preprocessing. In this study, only one image was used for
the small study area and whether or not the result from the small plot experiments could be applied to
a larger area needs to be investigated with more data in the future.

Although a limited number of VIs was selected to estimate rice N accumulation in this study, they
were a proper representation of the function of these sensors in N status monitoring. We would like to
extend our study to use more VIs with the three sensors on this topic. Moreover, the emerging compact
hyperspectral sensors (e.g., UHD 185, Rikola) might provide a better choice for UAS to monitor crop
growth status, because they have been successfully applied to estimate aboveground biomass [67] and
leaf N content [68] in winter wheat. In addition, N accumulation is composed of N concentration and
biomass, and biomass could be related to N stress but also to many other stresses. Our future work
will focus on detecting the N concentration directly to find a real statement of the N deficit with VIs.

5. Conclusions

In this study, we evaluated three sensors (RGB, CIR and MS cameras) onboard UAS for the
estimation of LNA and PNA in rice. UAS images were acquired in two continuous years at the early
three growth stages (tillering, jointing and booting). Six VIs (NExG, NGRDI, GNDVI, ENDVI, CIred edge
and DATT) computed from the corresponding images were employed to estimate LNA and PNA for
individual stages and stage groups, and the established VI-LNA and VI-PNA models were evaluated

345



Remote Sens. 2018, 10, 824

with the test set. The results demonstrated that both NGRDI-RGB and GNDVI-CIR had satisfactory
performance in model calibration for the early two (tillering and jointing) and all three growth stages,
respectively. NGRDI-RGB and EXG-RGB exhibited moderate estimation accuracy in LNA and PNA
model validation for the early two stages (tillering and jointing), respectively. GNDVI-CIR yielded
moderate estimation accuracy for all three stages. Red edge indices (CIred edge and DATT) from the
MS images performed consistently well in model calibration and validation. Therefore, RGB and
CIR cameras are good avenues for the qualitative monitoring of N status, due to their satisfactory
performance in model calibration. Additionally, in consideration of their low cost and highly efficient
data processing they are also good alternatives for quantitative N estimation only for the early two
stages (tillering and jointing), due to the moderate estimation accuracy. The MS camera could be taken
as a proper sensor for quantitative analysis of N status monitoring with red edge indices. These results
further prove that UAS is a reliable approach for monitoring N accumulation, which is a good indicator
for N diagnosis and subsequent N management. Future work should be directed to examining these
established models with multi-year datasets to improve robustness and applicability.
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Abstract: The traditional method of measuring nitrogen content in plants is a time-consuming and
labor-intensive task. Spectral vegetation indices extracted from unmanned aerial vehicle (UAV)
images and machine learning algorithms have been proved effective in assisting nutritional analysis in
plants. Still, this analysis has not considered the combination of spectral indices and machine learning
algorithms to predict nitrogen in tree-canopy structures. This paper proposes a new framework to
infer the nitrogen content in citrus-tree at a canopy-level using spectral vegetation indices processed
with the random forest algorithm. A total of 33 spectral indices were estimated from multispectral
images acquired with a UAV-based sensor. Leaf samples were gathered from different planting-fields
and the leaf nitrogen content (LNC) was measured in the laboratory, and later converted into the
canopy nitrogen content (CNC). To evaluate the robustness of the proposed framework, we compared
it with other machine learning algorithms. We used 33,600 citrus trees to evaluate the performance of
the machine learning models. The random forest algorithm had higher performance in predicting
CNC than all models tested, reaching an R2 of 0.90, MAE of 0.341 g·kg−1 and MSE of 0.307 g·kg−1.
We demonstrated that our approach is able to reduce the need for chemical analysis of the leaf tissue
and optimizes citrus orchard CNC monitoring.
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1. Introduction

Remote sensing of agricultural fields is important to assist its management through a low-cost
and non-destructive approach. The usage of remote sensing systems supports data acquisition in
a more frequent and faster manner, being more valuable to evaluate plants than most traditional
agronomic procedures [1,2]. In the nutritional analysis, different remote sensing techniques were
evaluated recently [3–7]. Regardless of the conducted approach, the spectral analysis of the vegetation
is viewed as a reasonable alternative to estimate plant health conditions.

One important issue to correctly manage agricultural fields is to know the nitrogen (N2) content
in plants. N2 is one of the main nutrients required for foliar development and photosynthetic activity,
influencing plant productivity [7]. However, applications of excessive amounts of fertilization in
agricultural fields are still a common but erroneous practice [8]. This practice negatively impacts
plants, provoking their intoxication, and the environment through the leaching and the volatilization
processes of the non-absorbed part [9]. Consistent monitoring of the nutrient in leaf-tissue is essential
to improve the management of crops and orchards.

The traditional agronomic methods to determine N2 rely on the chemical analysis of the leaf-tissue.
Those methods are normally labor-intensive, time-consuming, and highly costly and they produce
environmentally dangerous residuals [10]. As a non-destructive, clean and fast approach, remote
sensing data like multispectral imagery obtained from unmanned aerial vehicles (UAV)-based sensors
are often being used to monitor the nitrogen content in plants [11,12]. The wide market availability of
UAV, the high-spatial-resolution and the potential of multispectral imagery are some of the reasons
behind it [13]. Yet, because of the amount of data produced, remote sensing techniques in combination
with high-resolution images are requiring more robust techniques to be evaluated.

Recently, machine learning algorithms have been used for different remote sensing
applications [14–18]. Algorithms like artificial neural networks (ANN), support vector machine (SVM),
decision trees (DT), random forests (RF), and others are powerful tools in assisting in UAV-based image
analysis [19]. These algorithms performed quite well in current approaches involving plant conditions
such as nutritional status [20], water-quantity [21], biomass [19], and chlorophyll content [22]. These
studies have also considered the contribution of individual bands and spectral vegetation indices in
their evaluations.

To estimate N2 in plants, many studies evaluated the potential of spectral vegetation indices
in crops such as wheat, maize, rice, corn, and others [12,23–26]. They can be applied at different
scales, such as leaf or canopy level [27] and mitigate anisotropy effects, background shadows, and soil
brightness contributions [27–29]. Nevertheless, these advantages over individual spectral bands have
yet to be further explored with machine learning algorithms.

Combining machine learning algorithms with spectral vegetation indices is a fairly new practice
since these algorithms ensure good performance even with several variables as input features [20].
As the spectral indices are generally simple to be computed and may reduce interference from other
non-plant surface targets, they can be considered a feasible practice into measuring N2 in tree-canopy
scales. Agricultural fields such as citrus orchards may benefit from this type of analysis, as spectral
indices are known to mitigate anisotropic effects from the tree-canopies.

In citrus plants, few studies evaluated the canopy nitrogen content (CNC) with remotely sensed
data, and no study was found, up to the moment, involving the use of spectral indices with machine
learning models. Since machine learning models can use additional information obtained directly from
spectral indices, our hypothesis is that this combined information may result in an interesting outcome
for the N2 prediction in tree-canopy structures. Although machine learning algorithms have been
employed in the leaf nitrogen content (LNC) analysis, there are still few studies that have incorporated
a large dataset of spectral indices into their data-set. To the best of our knowledge, these have not been
evaluated at a canopy-structure level.

In this paper, we propose a new framework to infer nitrogen content in citrus-tree at a canopy
level using spectral vegetation indices calculated from UAV-imagery and the RF algorithm. First,
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we investigate the individual spectral indices performances and their relation to the CNC. Second,
we combined the spectral indices into an RF model and evaluated its performance. We compared the
proposed framework with other machine learning methods to prove the robustness of our approach.
This paper is organized as follows: Section 2 presents related works. Section 3 describes the method
employed in the analysis. Sections 4 and 5 present and discuss the results, respectively. Finally,
Section 6 concludes this research.

2. Related Work

With the high availability of UAVs, the evaluation of nutritional condition in plants with
high-spatial-resolution images has turned into common practice. Often used statistical methods like
the principal component analysis (PCA), partial least square regression (PLSE), stepwise multiple
linear regression (SMLR), and others were already implemented in the nitrogen content analysis [30,31].
However, these methods presented different predictions accuracies in this task. This demands for
more robust and intelligent algorithms, such as machine learning models. The use of machine
learning into predicting nitrogen content is fairly new in remote sensing applications and already
presented interesting findings. Though, none incorporated these models to evaluate nitrogen content
at a canopy-level.

Regarding the LNC assessment, a study [32] calculated the nitrogen nutrition index (NNI) and
evaluated it with machine learning models using RGB images. The authors used a potted pakchoi
experiment in a greenhouse and compared the performance of different algorithms in two different
stages. Random forest presented the best overall performance, reaching prediction accuracies of 0.82
and 0.94 in the seedling and harvest stages, respectively. Another study [33] evaluated LNC prediction
in EO-1 Hyperion hyperspectral data and reached an R2 of 0.67 for LNC in sugar-cane using the
RF model.

The practice of combining several spectral vegetation indices with machine learning models is
unusual. To estimate LNC, up until now, only two studies achieved this task, and both concluded that
the RF model is a valid approach [20,34]. The first study [34] used 26 spectral indices of WorldView-2
images as input features into an RF model. In this study, red-edge based vegetation indices were the
most significant variables for predicting LNC, and their combination with the algorithm returned
an R2 of 0.89 for grass LNC. The second study [20] evaluated LNC in wheat crops with 19 spectral
vegetation indices derived from hyperspectral UAV-based images. First-derivative indices were better
related to LNC and predicted it with an R2 of 0.72 using the RF model.

In citrus plants, until this moment, no machine learning model was implemented to predict CNC.
Still, one approximation was conducted with hyperspectral measurements in orange-leaves [31]. The
authors applied a PLSR in a 350 to 2500 nm spectrum and discovered that the 448, 669, 719, 1377, 1773,
and 2231 nm wavelengths were better correlated with LNC, and returned an R2 of 0.83 and an RMSE
of 0.122% for the validation dataset. In UAV-based images, a past study evaluated the performance of
PLSR into predicting LNC and returned an R2 of 0.647 [35]. The authors, however, indicated that new
approaches should be conducted to improve the LNC prediction in citrus-trees trough UAV images.

In a previous study, we used spectral wavelengths recorded with a field spectroradiometer to
classify a UAV-image with different spectral algorithms [36]. This study was conducted in the same
experimental area as the study presented here and returned a classification accuracy of 85.7% and a
kappa index of 0.75 for the spectral angle mapper (SAM) algorithm. Still, this method only returned
a classified map with three N2 classes (low, medium, and high), not being suitable to produce more
detailed information. This approach also needed a field spectroradiometer to construct the spectral
library used by the algorithm, which discourages its replication by low-budget models.

The use of spectral vegetation indices, derived from UAV-images, in conjunction with machine
learning algorithms, has yet to be explored in the evaluation of tree-canopies such as citrus orchards.
The random forest learner already demonstrates high potentials to predict LNC in other crops, and it
indicated what spectral indices better contributed to its performance. Though, no machine learning
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method is universally appropriate, requiring comparison against others in order to test its robustness.
For that, we present a methodological approach to consider the usage of the random forest algorithm
into prediction CNC in citrus-trees at a canopy-level based on spectral vegetation indices data.

3. Materials and Method

The proposed method consisted of three phases (Figure 1). Phase 1 describes the survey method
performed to collect field data from a Valencia-orange orchard. Here we acquired aerial images
with a multispectral Parrot Sequoia camera embedded in a UAV platform and collected leaf samples
in the experimental area. Phase 2 focuses on image processing procedures. They were conducted
in commercial software named Pix4DMapper, and sampling points were created in a geographical
information system (GIS) environment with the open-source software QGIS 3.4. Phase 3 was separated
into two stages. Primarily, we selected the available spectral indices for the Parrot Sequoia bands and
compared the CNC with them. After that, we used these spectral indices as input parameters for our
RF approach and evaluated it with a cross-validation method.

 

Figure 1. The workflow of the steps of the proposed method.

3.1. Data Survey

The study was conducted in a commercial orchard of Valencia orange (Citrus sinensis Valencia)
trees planted on a Citrumelo swingle rootstock. The trees had reached their maturation stages at the
period of the survey, with 5 years from their initial planting. The survey was carried out on 22 March
2018, when the plants were in their vegetative phase. The experiment was conducted in an area of
71.4 ha divided into 24 field-plots containing 752 plants per hectare, at 7 m × 1.9 m spacing (Figure 2).
The area was previously fertilized with 250 kg.ha−1 of saturated nitrogen in ammonium nitrate.
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Figure 2. Study area and points used in the evaluation of the spectral indices.

The flight was conducted between 13:00 and 14:00. (local time), at 120 m high, resulting in a
12.9 cm ground sample distance (GSD) image. An eBee SenseFly UAV equipped with the Parrot
Sequoia camera was used. This camera records images in the following spectral regions: green
(530–570 nm), red (640–680 nm), red-edge (730–740 nm), and near-infrared (770–810 nm). Before the
flight, a calibration plaque unique for the Sequoia equipment was recorded with the Parrot Sequoia
camera to normalize the local illumination. The main characteristics of the UAV-mounted sensor used
are summarized in Table 1.

Table 1. Parrot Sequoia camera details and flight conditions.

Band Wavelength (nm) Spectral Resolution 10 Bits Flight High 120 m

Green 550 (± 40) Spatial Resolution 12.9 cm Flight Time 01:30 P.M.
Red 660 (± 40) HFOV 70.6◦ Weather Partially cloudy

Red-edge 735 (± 10) VFOV 52.6◦ Precipitation 0 mm
Near-infrared 790 (± 40) DFOC 89.6◦ Wind At 1–2 m/s

Horizontal field of view (HFOV); vertical field of view (VFOV); displayed field of view (DFOC).

The study area was separated into 27 field-plants (Figure 2). In each field, we collected an n
amount of leaves from n number of trees. Both numbers variated according to plant-field size and
the number of trees per field. In total, approximately 4000 leaf samplings were gathered in this area.
The method applied here followed standard recommended procedures. For each citrus-tree sampled,
we collected the 3rd or 4th leaf of a fruit-branch, at a medium canopy height. The leaves were all
visually health with no signs of diseases or damage. They were separated and identified in plastic
bags and submitted to the laboratory analysis.

In the laboratory, leaf area (cm2) was measured for each sample using a digital analysis method [37].
Later, they were washed and dried in an oven at 60–65 ◦C for 48 h, and then crushed. The Kjeldahl
titration method was applied to determine the LNC. This method is divided into three stages:
(1) digestion, (2) distillation in a nitrogen distiller, and (3) titration with sulfuric acid (H2SO4) [38].
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After this, the averaged LNC values were associated with their correspondent field-plant. In our
studied area, we obtained LNC between 23.2 and 29.5 g·kg−1, with a variance of 2.33 g·kg−1.

3.2. Image Pre-Processing and Sampling Points

The image pre-processing was performed in the Pix4DMapper software, in which we divided
two mosaic blocks to optimize it (Figure 2). We first optimized the interior and exterior parameters
and generated the sparse dense cloud based on the structure-from-motion (SfM) method. Later, we
generated the point clouds based on MVS (multi-view stereo) approach. For the SfM, we used a
total of nine control points in cross-format with approximately 50 cm × 50 cm in size, distributed
equally in the experimental area. We measured the coordinates of these targets with a Leica Plus GS15
Global Navigation Satellite System (GNSS), dual-frequency in real-time kinematic (RTK) mode, with a
3 mm precision.

The UAV flight was approved by the Department of Airspace Control (DECEA), responsible for
the Brazilian airspace. The images were acquired with an 80% longitudinal and 60% lateral overlaps.
The orthomosaic was composed of 2389 scenes altogether. We converted the digital number (DN)
values to surface reflectance values using the calibration parameters described in the Parrot Sequoia
manual [39]. Finally, an orthorectified surface reflectance image was generated for each band at each
block (I and II). Both image blocks were used to create a unique mosaic.

In a GIS environment, we manually identified 33,600 citrus-trees in our experimental area (Figure 2).
This was performed in the QGIS 3.4 open-source software and used photointerpretation techniques to
delineate point-features to mark the location of each tree. We attributed a radius (1.1–1.4 m) for each
tree-canopy in order to calculate their respective leaf area index (LAI) in relation to the ground area.
The mentioned variation in radius was used because of the difference in canopy sizes.

Light interaction at the canopy level is dominantly affected by canopy structure, and the leaf
properties may be canceled out. Since our image data is at a landscape level, spectral vegetation
indices should only be linked to LNC after considering this detail. To correctly compare average LNC
measured in the laboratory with data extracted from the UAV-based image, we scaled up the LNC
from leaf to canopy level (CNC). To do this, we multiplied the averaged LNC of each plant-field with
the calculated LAI. This process can be described by Equation (1) [40]. This procedure resulted in
33,600 trees with known scaled up nitrogen content.

CNC = LNCl × LAI, (1)

where LNCl is the averaged value measured in the laboratory and LAI is given by the ratio between
the leaf area and ground area. LNC was measured in g·kg−1, while LAI is dimensionless. The resulting
CNC was also in g·kg−1. This equation is based on a canopy development model that considered the
relationship between nitrogen content and the LAI at different growth stages [40,41]. In our study case,
the citrus-trees were evaluated during their intermediate phase (i.e., with neither young or old leaves),
so a linear relationship can be assumed [41].

We separated the trees into training and testing data-sets (Figure 2). The training points consisted
of 90% (80% train and 10% validation) of the entire data-set, while the testing points were represented
by the remaining 10%. We evaluated the distributions for the validation and testing data to determine
if there was a significant difference between samples (Figure 3). This prior evaluation returned a
normal distribution for both datasets (Shapiro–Wilk p-value equal to 0.77 and 0.79) and no statistical
difference between both means (test t student p-value of 0.5144).
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Figure 3. Distribution of spectral sampling points as a function of leaf nitrogen content (LNC).

3.3. Spectral Vegetation Indices

To gather the available spectral vegetation indices to this study, we based our selection on the
Index Database [42]. We considered the spectral indices associates with the Parrot Sequoia band ranges
(Table 2). We identified them according to their purpose (variable) and scale (canopy and/or leaf level).
The values of parameters such as soil-lines (L), which are required by some spectral indices, were
adopted based upon literature recommendation.

Table 2. The spectral vegetation indices associated with the Sequoia camera used in this study.

Index Equation Variable Scale

ARVI2 (Atmospherically Resistant
Vegetation Index 2) −0.18 + 1.17 ∗

[
(Rλnir− Rλred)
(Rλnir+ Rλred)

]
Vitality Canopy

CCCI (Canopy Chlorophyll
Content Index)

(Rλnir− Rλrededge)/(Rλnir+ Rλrededge)
(Rλnir− Rλred)/(Rλnir+ Rλred)

Chlorophyll Leaf/Canopy

CG (Chlorophyll Green) (Rλnir/Rλgreen)
−1 Chlorophyll Leaf/Canopy

CIgreen (Chlorophyll Index
Green) (Rλnir/Rλgreen) − 1 Chlorophyll/LAI Leaf/Canopy

CIrededge (Chlorophyll Index
RedEdge) (Rλnir/Rλrededge) − 1 Chlorophyll/LAI Leaf/Canopy

Ctr2 (Simple Ratio 695/760
Carter2) Rλrededge/Rλnir Chlorophyll/Stress Leaf

CTVI (Corrected Transformed
Vegetation Index)

NDVI+0.5
|NDVI+0.5| ∗

√
NDVI + 0.5 Vegetation Leaf/Canopy

CVI (Chlorophyll Vegetation
Index) Rλnir ∗ (Rλred/Rλgreen

2) Chlorophyll Canopy

GDVI (Difference NIR/Green
Difference Vegetation Index) Rλnir − Rλgreen Vegetation Leaf

GI (Simple Ratio 554/677
Greenness Index) Rλgreen/Rλred Chlorophyll Leaf

GNDVI (Normalized Difference
NIR/Green NDVI)

(
Rλnir − Rλgreen

)
/
(
Rλnir + Rλgreen

)
Chlorophyll Leaf

GRNDVI (Green-Red NDVI) Rλnir−(Rλgreen+ Rλred)
Rλnir+ (Rλgreen+ Rλred)

Vegetation Leaf/Canopy

GSAVI (Green Soil Adjusted
Vegetation Index)

(1+L)∗(Rλnir− Rλgreen)
(Rλnir+ Rλgreen+L)

Vegetation Canopy

IPVI (Infrared Percentage
Vegetation Index)

Rλnir(
Rλnir+ Rλred

2

)
∗(NDVI+1)

Vegetation Canopy

MCARI1 (Modified Chlorophyll
Absorption in Reflectance Index 1) 1.2 ∗

[
2.5 ∗ (Rλnir −Rλred) − 1.3 ∗

(
Rλnir − Rλgreen

)]
Chlorophyll Leaf/Canopy

MSAVI (Modified Soil Adjusted
Vegetation Index)

[
2∗Rλnir+1−

√
(2∗Rλnir+1)2−8∗(Rλnir− Rλred)

]
2

Vegetation Canopy

MSR (Modified Simple Ratio) (SR− 1)/
√
(SR + 1) Vegetation Leaf
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Table 2. Cont.

Index Equation Variable Scale

MTVI (Modified Triangular
Vegetation Index) 1.2 ∗

[
1.2 ∗

(
Rλnir −Rλgreen

)
− 2.5 ∗

(
Rλred − Rλgreen

)]
Vegetation Leaf/Canopy

ND682/553 (Normalized
Difference 682/553)

(
Rλred − Rλgreen

)
/
(
Rλred + Rλgreen

)
Vegetation Leaf/Canopy

NDVI (Normalized Difference
Vegetation Index)

(Rλnir − Rλred)/(Rλnir + Rλred) Biomass/Others Leaf/Canopy

Norm G (Normalized G) Rλgreen/
(
Rλnir + Rλred + Rλgreen

)
Vegetation Leaf/Canopy

Norm NIR (Normalized NIR) Rλnir/
(
Rλnir + Rλred + Rλgreen

)
Vegetation Leaf/Canopy

Norm R (Normalized R) Rλred/
(
Rλnir + Rλred + Rλgreen

)
Vegetation Leaf/Canopy

OSAVI (Optimized Soil Adjusted
Vegetation Index)I

(1+0.16)∗(Rλnir− Rλred)
(Rλnir+ Rλred+0.16)

Vegetation Canopy

RDVI (Renormalized Difference
Vegetation Index) (Rλnir − Rλred)/

√
(Rλnir + Rλred) Chlorophyll Leaf/Canopy

SAVI (Soil-Adjusted Vegetation
Index)II

(1+L)∗(Rλnir− Rλred)
(Rλnir+ Rλred+L)

Biomass Canopy

SR672/550 (Simple Ratio 672/550
Datt5) Rλred/Rλgreen Chlorophyll Leaf

SR750/550 (Simple Ratio 750/550
Gitelson and Merzlyak 1) Rλrededge/Rλgreen Chlorophyll Leaf/Canopy

SR800/550 (Simple Ratio 800/550) Rλnir/Rλgreen Chlorophyll/Biomass Leaf

TraVI (Transformed Vegetation
Index)

√
NDVI + 0.5 Vegetation Leaf/Canopy

TriVI (Triangular Vegetation
Index) 0.5

[
120

(
Rλrededge −Rλgreen

)
− 200

(
Rλred − Rλgreen

)]
Chlorophyll Leaf/Canopy

SR (Simple Ratio) Rλnir/Rλred Vegetation Leaf

WDRVI (Wide Dynamic Range
Vegetation Index)

(0.1∗Rλnir − Rλred)/(0.1∗Rλnir + Rλred) Biomass/LAI Leaf/Canopy

L = 0.5; NDVI = normalized differential vegetation index; SR = simple ratio; LAI = leaf area index. The variable
“Vegetation” indicates that the applicability of the index occurs in a general sense, and is not specific like the others;
NIR = near-infrared. Central wavelengths are indicated in Table 1.

The relation between the spectral indices and the CNC was calculated using linear and
exponential regressions. The metrics used to evaluate them were the regression coefficient (R2),
the root-mean-squared error (RMSE), and the correlation coefficient (r) values. This prediction returned
a statistical comparison for the individual spectral indices and helped evaluate their performance. For
both regression and correlation analysis, we adopted a coefficient interval of 95%.

3.4. Analysis

The RF algorithm is based on regression trees and relies on the hypothesis that the overall accuracy
can be improved by implementing the prediction results of combined independent predictors [20]. As
previously stated, we distributed the 33,600 trees into training (80% train and 10% validation) and
testing (10%) datasets. In a computational environment, we needed to define the number of trees,
the number of nodes and the stop criteria for the RF model. To avoid overfitting, we performed a
hyperparametrization process.

To define the most appropriate hyperparameter, we used a cross-validation stochastic approach,
where we separated our dataset into 10 folds. One-fold was used to validate the model performance,
while the remaining nine folds were used to train the model. This test was repeated until all the 10 folds
were evaluated individually. In our study, the number of nodes did not interfere with the prediction
accuracy, so a fixed parameter was adopted after initial tests. We determined the number of trees to be
equal to 200 since it did not result in any practical gains with higher quantities (Figure 4).
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Figure 4. Training accuracy with the difference in accuracy for the random forest (RF) model.

We implemented an extreme gradient boosting (XGBoost) model to verify its impact on the RF
performance. The XGBoost uses a forward-learning ensemble method to obtain predictive results in
gradually improved estimations. This model computes second-order gradients of the loss function
and an advanced regularization (L1 and L2) type [43]. We then performed an evaluation of the models’
accuracy when implementing less spectral indices. For this, we selected the 5 and 10 spectral indices
that presented a higher contribution to our model. Lastly, since our RF model consisted of 200 trees,
we evaluated its trees by a Pythagorean plot. As shorter trees are better in contributing to prediction
values, we plotted one example of its first five levels to ascertain the relationship between the spectral
indices in the RF model.

The compiled dataset was also used in other machine learning algorithms, like ANN, SVM, DT and
LR [44]. These algorithms are considered standard approaches in machine learning evaluation and
therefore were compared against RF to test its robustness. We applied the same conjunction of training
and test data and performed their hyperparameterization. For this, we used a cross-validation stochastic
approach, and data folds implemented in the RF evaluation were also used for these algorithms. The
RF and the remaining machine learning algorithms were processed with the open-source RapidMiner
9.5 software, which runs in its own Python library [45]. The parameters of all methods have been set to
the library default values except those described in this section.

The hyperparameterization process considered the individual characteristics of the evaluated
algorithms. The stop criteria were defined once it did not reduce the MAE since it only increased the
processing time needed. For the ANN algorithm, we adopted one hidden layer with 500 neurons and
applied a linear activation function to the output layer. We also adopted the Adam Optimizer with
a regularization (α) equal to 0.0001. The SVM was applied with a radial basis function (RBF) kernel
exp(−g|x − y|2), where the gamma (g) value was set automatically, with a regression loss equal to 50.00,
a tolerance of 0.001 and an interaction limit of 500. For the DT method, we determined the number of
leaves to be equal or higher than 2 and adopted a maximum tree-depth of 100. Finally, we applied
two regression models using the Ridge (L2) regularization and a Lasso (L1) regularization, with both
strengths (α) equal to 0.015.

The proposed approach was evaluated with the following metrics: mean squared error (MSE);
coefficient of variance of the root mean square error (CVRMSE); mean absolute error (MAE); and
R2. We then qualitatively evaluated the RF predictions by plotting it in a regression graphic and also
calculating the individual contribution of each spectral vegetation index for the model. Finally, we
loaded the prediction results in a map, indicating the nitrogen content at each tree-canopy. For that,
we created a new column feature in our tree dataset. This map was used to evaluate qualitatively the
CNC through the experimental area.
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4. Results

Spectral indices were computed to evaluate the direct relation with CNC in citrus-tress (Table 3).
At least 12 of the tested spectral indices (total of 33) presented a regression coefficient above 0.5 and
only 05 had a correlation coefficient higher than 0.7 in linear and exponential regressions. In literature,
lower correlation values (0.5) have been used to determine regions favorable to the estimation of
nitrogen content in citrus trees [31]. Though, in our study, most of these spectral indices presented
RMSE higher than 1 g·kg−1, which is a considerable discrepancy for the CNC in our experimental area.

Table 3. Regression analysis between the spectral vegetation indices and the canopy nitrogen
content (CNC).

Index R2 RMSE Equation r

ARVI2 0.12 2.014 y = 67.36x − 31.18 0.3504
CCCI 0.57 1.145 y = 86.55x − 0.004121 0.6954
CG 0.57 1.123 y = 3.008x − 5.782 0.6796

CIgreen 0.26 1.853 y = 3.008x − 2.774 0.4796
CIrededge 0.57 1.223 y = 26.13x + 6.714 0.6072

Ctr2 0.11 2.031 y = −125.5x + 34.09 −0.2282
CTVI 0.12 2.020 y = 178.9x − 184.1 0.2430
CVI 0.51 1.359 y = 3.572x + 0.2191 0.6424

GDVI 0.43 1.515 y = −698.6x2 + 607.1x − 104.9 0.5996
GI 0.30 1.797 y = −23.09x + 62.69 −0.3493

GNDVI 0.42 1.431 y = 186x − 126.6 0.5853
GRNDVI 0.26 1.821 y = 82.78x − 33.62 0.3996
GSAVI 0.52 1.279 y = −1608x2 + 1989x − 588.1 0.6690

IPVI 0.13 2.006 y = 87.83x − 51.58 0.2607
MCARI1 0.45 1.188 y = −394.2x2 + 523.7x − 46.9 0.5731
MSAVI 0.62 1.013 y = −1748x2 + 2431x − 817.1 0.7626

MSR 0.23 1.887 y = 6.52x + 2.101 0.3792
MTVI 0.45 1.288 y = −394.2x2 + 523.7x − 46.9 0.5731

ND682/553 0.11 2.029 y = 37x + 33.79 0.2319
NDVI 0.12 2.014 y = 78.81x − 43.3 0.2504

Norm G 0.47 1.134 y = −438.4x + 63.11 −0.6188
Norm NIR 0.32 1.621 y = 165.6x − 116.4 0.4996

Norm R 0.11 2.030 y = −168.6x + 35.29 −0.2288
OSAVI 0.39 1.529 y = 68.43x − 25.89 0.5032
RDVI 0.54 1.154 y = −2168x2 + 2671x − 795.3 0.6028

SAVI 0.58 1.045 y = −2123x2 + 2747x − 861.5 0.6813

SR672/550 0.10 2.175 y = −881.4x2 + 1197x − 379.4 0.0982
SR750/550 0.61 1.022 y = 7.301x − 18.77 0.7991
SR800/550 0.57 1.083 y = 3.008x − 5.782 0.7296

TraVI 0.12 2.020 y = 178.9x − 184.1 0.2430
TriVI 0.63 1.001 y = −0.782x2 + 24.49x − 164.3 0.8012
VIN 0.27 1.832 y = 0.9866x + 9.754 0.3238

WDRVI 0.58 1.076 y = −466.2x2 + 238.9x − 3.666 0.7166

Indices highlighted showed a regression coefficient (R2) above 0.50. All spectral indices returned a p-value under 0.05.

In our machine learning analysis, the proposed framework considering the RF model performed
better than most of the other machine learning algorithms (Table 4) and individual spectral indices
(Table 3). The algorithm returned a prediction with an MSE of 0.307 g·kg−1, and MAE of 0.341 g·kg−1

and an R2 equal to 0.90. The XGBoost model implemented also returned similar metrics.
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Table 4. Performance results of each selected algorithm prediction evaluated in this study.

Model MSE CVRMSE MAE R2

Support Vector Machine 2.055 5.149 1.011 0.65
Decision Tree 0.347 2.225 0.462 0.85

Random Forest 0.307 2.098 0.341 0.90
Random Forest (XGBoost) 0.300 2.043 0.327 0.90
Artificial Neural Network 1.676 4.168 0.865 0.70
Linear Regression (Ridge) 2.041 5.895 0.984 0.63
Linear Regression (Lasso) 2.010 5.790 0.965 0.65

Other algorithms like DT presented interesting results, being closer to the predictions of the RF
model. This is to be expected since the random forest is based on the idea of multiple decision trees.
Algorithms such as SVM, ANN, and LR had lower performances. However, they were still better than
the previous individual spectral indices analysis.

The CNC predicted by the proposed framework with the RF was evaluated in a plot considering
the measured CNC in comparison with the returned CNC from the prediction (Figure 5). Although the
graphic shows some predictions distancing from the 1:1 relationship (dashed line), the high amount of
data used (n = 3360) helped to estimate the result in a regression coefficient of 0.90. A slight decline in
the line suggests that our approach was better at predicting CNC between 26 and 28 g·kg−1.

 

Figure 5. Random forest model prediction for the CNC in citrus (23–30 g·kg−1).

The contribution of each spectral index for the RF model (Figure 6) showed how the highest
related spectral indices with CNC (Table 2) assisted the model into the prediction. This information
should be considered when analyzing the performance of the model, since it may help future research
to reduce the amount of data incorporated into the algorithm. For the prediction of CNC in citrus-trees,
the returned results indicate a higher contribution of spectral vegetation indices like SR750–550 (8.2%),
TriVI (7.3%), and CI (Red-edge; 6.2%). The first 10 spectral indices composed more than 55% of the
contribution value (Figure 6).
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Figure 6. Individual contribution (in %) of each spectral vegetation index for the RF model.

By implementing the best five and 10 spectral indices into the RF model, we verified a slight
decrease in its performance (Table 5). This is indicative of how even lower contributions may assist the
model. Regardless, this decrease was relatively small, and a tradeoff between the number of spectral
indices used and the obtained accuracy is something that should be considered. Another observation
is that the XGBoost model presented better results, which may consist of an alternative to reduce the
number of spectral indices while improving the performance of the algorithm.

Table 5. Performance results of the random forest model with less spectral indices as input.

Model Indices (n) MSE CVRMSE MAE R2

Random Forest 5 0.376 2.342 0.477 0.83
Random Forest (XGBoost) 5 0.350 2.253 0.412 0.85

Random Forest 10 0.345 2.215 0.401 0.85
Random Forest (XGBoost) 10 0.318 2.127 0.357 0.88

A qualitative evaluation of one of the most representative trees returned by the random forest model
helped ascertained the relationship between the spectral indices (Figure 7). An evaluation of shorter trees
demonstrated that the best individual spectral indices (Figure 6) returned the strongest contributions.

 

Figure 7. Example of one short tree (initial 5-levels) of the RF model applied.
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The predictions returned by the proposed approach were incorporated into the map dataset. This
procedure resulted in a qualitative map where a field technician can evaluate the CNC in each known
citrus-tree with a prediction R2 of 0.90 (Figure 8).

 
Figure 8. High-detailed image example of the CNC predicted with the RF model loaded in the
entire dataset.

5. Discussion

The proposed framework of this study predicted, with high accuracy (R2 of 0.90 and MSE of
0.307 g·kg−1), the amount of CNC present in citrus trees. In a previous study in the same area, we
applied the SAM algorithm while submitting simulated spectral curves as input data, reaching an
accuracy of 85.7% [36]. The method employed here allowed us to determine if machine learning
models, specifically RF, were capable of performing this task. A contribution of this study is the use of
spectral vegetation indices as input variables in a machine learning model to predict the amount of N2

at a tree-canopy level. The method presented here can be replicated to other orchards and cultivars
once specifics such as sensor type and available spectral indices are considered.

As related, spectral indices have proved to be an important mechanism in the evaluation of N2 in
other crops [22–25]. However, our results showed a low prediction accuracy (R2 below 0.7) by relating
them directly to the CNC in the citrus-trees. Regardless, in the RF model, spectral indices developed
considering red-edge bands generally performed better than other spectral indices. This observation
was also found in the evaluation of the LNC in another study [33]. The majority of the high-relation
indices also observed here were developed at the canopy level (Table 2).

The combination of spectral vegetation indices with machine learning models proved to be a
suitable approach to predict CNC. The RF algorithm performed better than others, with decision
tree being closely related. Other algorithms such as SVM and LRs showed similar accuracy to the
individual spectral indices’ regression values. The ANN, although had a superior advantage over
SVM and LRs, returned values far below the RF and DT algorithms. This comparison indicates how
appropriate the regression analysis with RF is to predict CNC. This finding was also observed in other
related studies [19,32–34].

The distribution of predicted values versus measured values (Figure 5) demonstrated how effective
our approach was. Despite presenting errors in the extreme CNC ranges (23–24 and 29–30 g·kg−1), the
model was able to reduce most errors in the intermediary values (26–28 g·kg−1). The high accuracy
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obtained can be explained because of the way the regression was calculated within the model since it
considered the individual contribution of independent variables by combining its results. Still, it was
recommended that future research always compare it against other machine learning algorithms.

We considered a total of 33 spectral indices, which was more than previous similar studies have
used [19,33]. The individual contribution of each spectral index (Figure 6) demonstrated that the first
10 indices accounted for more than 55% of the total contribution for RF. Additionally, we performed
evaluation tests considering the first five and 10 spectral indices (Table 5), in which also returned high
accuracies. An evaluation of the shorter trees (Figure 7) corroborated the information shown by the
individual spectral indices rank (Figure 6). Lastly, the XGBoost model helped to improve the accuracy
of the algorithm when using a smaller number of spectral indices (Table 5). This indicates that it is
possible to reduce the number of spectral indices used and still obtain highly accurate results. This
information is important since it helps new researches to reduce the amount of processed data, which
impacts training and testing time performances.

An adverse condition mentioned by other studies is the contribution of soil brightness to CNC
evaluation. As spectral indices are directly obtained from reflectivity, it makes it difficult to avoid
background effects [19]. However, in this study, since our data consisted only of delineated tree-canopies
(Figures 2 and 8), the soil-brightness contribution was considered minimal. Another possible impact is
the anisotropy effect of the trees. Although spectral indices are known to reduce these effects, the fact
that we scaled the leaf-measured LNC in the laboratory to an N2 in canopy-level should contribute to
reducing this factor.

Finally, another contribution of our study was the construction of a map indicating the nitrogen
content at a canopy level with an accurate prediction of 0.90 and an MSE of 0.307 g·kg−1. This type
of map is effective as it may offer farmers and agronomic technicians the opportunity to evaluate
individual plants. The agronomical method of collecting leaf-tissue and performing its chemical
analysis in the laboratory is spatially limited due to practical reasons. Since our approach returned a
high prediction for each individual tree, it is safe to assume that remotely sensed data outperforms
the traditional method in relation to trees covered per area. This can positively impact fertilization
methods and promote better yield predictions.

6. Conclusions

This study proposed a new framework to infer the nitrogen content at canopy-level in citrus trees.
We evaluated the performance of the RF algorithm associated with spectral indices and compared it
with other machine learning algorithms. Our approach demonstrated that the combination of spectral
vegetation indices and the random forest algorithm is a powerful tool for CNC estimation. While
a regression between the spectral indices and the CNC returned low coefficients (R2 at 0.10–0.63),
the combined indices into the RF model resulted in an R2 of 0.90 and an MAE of 0.341 g·kg−1. This
accuracy was higher than previous research, in which we evaluated spectral analysis algorithms for
the same experimental field. In conclusion, we recommend the integration of spectral indices with
machine learning algorithms like RF to assess CNC in citrus-trees.
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Abstract: Optimizing nitrogen (N) management in rice is crucial for China’s food security and
sustainable agricultural development. Nondestructive crop growth monitoring based on remote
sensing technologies can accurately assess crop N status, which may be used to guide the
in-season site-specific N recommendations. The fixed-wing unmanned aerial vehicle (UAV)-based
remote sensing is a low-cost, easy-to-operate technology for collecting spectral reflectance imagery,
an important data source for precision N management. The relationships between many vegetation
indices (VIs) derived from spectral reflectance data and crop parameters are known to be nonlinear.
As a result, nonlinear machine learning methods have the potential to improve the estimation
accuracy. The objective of this study was to evaluate five different approaches for estimating rice
(Oryza sativa L.) aboveground biomass (AGB), plant N uptake (PNU), and N nutrition index (NNI) at
stem elongation (SE) and heading (HD) stages in Northeast China: (1) single VI (SVI); (2) stepwise
multiple linear regression (SMLR); (3) random forest (RF); (4) support vector machine (SVM); and (5)
artificial neural networks (ANN) regression. The results indicated that machine learning methods
improved the NNI estimation compared to VI-SLR and SMLR methods. The RF algorithm performed
the best for estimating NNI (R2 = 0.94 (SE) and 0.96 (HD) for calibration and 0.61 (SE) and 0.79
(HD) for validation). The root mean square errors (RMSEs) were 0.09, and the relative errors were
<10% in all the models. It is concluded that the RF machine learning regression can significantly
improve the estimation of rice N status using UAV remote sensing. The application machine learning
methods offers a new opportunity to better use remote sensing data for monitoring crop growth
conditions and guiding precision crop management. More studies are needed to further improve
these machine learning-based models by combining both remote sensing data and other related soil,
weather, and management information for applications in precision N and crop management.

Keywords: fixed-wing UAV remote sensing; nitrogen status diagnosis; random forest; precision
nitrogen management; machine learning

1. Introduction

Rice (Oryza sativa L.) is one of the most important crops in the world, consumed by more than
60% of China’s population as a staple food. Rice production in China is a major consumer of nitrogen
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(N) fertilizers, but the N use efficiency (NUE) is less than 30% [1]. Uniform fertilizer application
across the fields according to experience or regional guidelines is the common practice and can lead to
over-application of N at low yielding areas. The over-application of N fertilizers can result in enhanced
reactive N losses to the environment, affecting human health, ecosystem services, biodiversity, climate
change, and sustainability [1,2]. Precision N management (PNM) has the potential to effectively
improve NUE, reduce soil and groundwater pollution, and increase farmers’ income [2]. Efficient
tools for rapid and in-season diagnosis of rice N status over large areas are essential for the practical
implementation of the PNM strategies.

When N fertilizers are applied in the fields, they need to be converted to plant available forms
(nitrate (NO3

−) or ammonium (NH4
+)) before they can be used by plants. The time they take for these

conversions depends on the fertilizer type, soil temperature, soil moisture, soil pH, and soil aeration,
etc. [3]. In rice production, N fertilizers are recommended to be applied in several splits to improve
NUE, including application before planting or transplanting (called basal N fertilizer), at tillering stage
(called tiller N fertilizer), at panicle initiation or stem elongation stage (called panicle N fertilizer),
and at heading stage (called grain N fertilizer). It is important to diagnose rice N status during the
growing season at different key N application stages, so topdressing N rates can be adjusted to better
meet crop N needs. N nutrition index (NNI) is a reliable N status indicator and is defined as the ratio of
plant N concentration (PNC) over critical N concentration (Nc), which is the minimum PNC that will
achieve maximum aboveground biomass (AGB) production [4–6]. NNI > 1 indicates surplus N supply,
while NNI < 1 indicates N deficiency, and NNI around 1 represents optimal N nutritional status [6].
However, NNI determination requires destructive sampling and chemical analysis, which limits its
application in PNM. Therefore, the interests in technologies allowing nondestructive estimation of
NNI over large areas are increasing.

Proximal and remote sensing technologies are commonly used for estimating crop N status
nondestructively and at low cost [7–11]. A number of studies have used proximal canopy sensors
to estimate NNI of various crops [12–17]. However, the usage of proximal sensors is not efficient
for large production fields and mounting the sensors on the ground vehicles is not suitable for rice
production. Satellite remote sensing has also been used for monitoring crop growth and N status
in large areas. The FORMOSAT-2 satellite images were used to estimate rice NNI and diagnose N
status and the results indicated that a practical approach was to use the satellite images to estimate
rice AGB and plant N uptake (PNU), which were then used to calculate Nc and NNI (R2 = 0.52) [2].
The potential of using FORMOSAT-2, RapidEye, and WorldView-2 satellite data to estimate rice NNI
were also evaluated and the results indicated that WorldView-2 satellite data performed the best [18].
However, in rice production areas, complete overcast weather conditions are very common, and it
is very challenging to obtain satellite image data at the growth stages needed for guiding in-season
topdressing N recommendations.

In recent years, unmanned aerial vehicle (UAV)-based remote sensing has developed rapidly,
due to its low cost, ease of operation, and wide field of view [19,20]. The advances in data processing
software have followed, allowing for automated development of image products [21]. A number of
studies have used UAV remote sensing for crop N status diagnosis in various crops [22–27]. Most of
these studies focused on identifying the optimum vegetation index (VI) and used linear regression
method to estimate NNI or other N status indicators. The research should advance towards including
more significant VIs and using nonlinear methods to improve the N status diagnosis with UAV
remote sensing.

Over the past decade, machine learning (ML) methods have been widely adopted in complex
and data-intensive areas such as medicine, astronomy, biology, and precision agriculture, due to their
capability to discover information hidden in the data [28]. One of the main advantages of ML is that
they are capable of solving significant nonlinear problems using datasets from multiple sources [29].
Agricultural remote sensing inversion is a typical nonlinear problem, and ML has been applied to solve
it with satisfactory results [30,31]. For example, Han et al. used UAV remote sensing data and ML to
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estimate maize (Zea mays L.) biomass (R2 = 0.70) [32]. Ali et al. developed a model for the estimation
of grassland biomass by using adaptive neuro-fuzzy inference system and multi-temporal remote
sensing (R2 = 0.85) [33]. Pantazi et al. developed an artificial neural network (ANN)-based wheat yield
prediction model using normalized difference VI (NDVI) derived from satellite imagery and eight
soil parameters [34]. Liu et al. estimated wheat leaf N content using a multilayer perceptron neural
network model and hyperspectral image data [35]. Zheng et al. compared different ML methods
for estimating winter wheat leaf N content using UAV multispectral images and found that the fast
processing random forest (RF) algorithm performed the best among the tested methods (R2 = 0.79,
RMSE = 0.33) [36].

The literature of using ML on the UAV-borne reflectance data for rice crop N status is limited.
Therefore, the objective of this study was to evaluate five different approaches for estimating rice
aboveground biomass (AGB), plant N uptake (PNU), and N nutrition index (NNI) at stem elongation
(SE) and heading (HD) stages in Northeast China: (1) single VI (SVI); (2) stepwise multiple linear
regression (SMLR); (3) random forest (RF); (4) support vector machine (SVM); and (5) artificial neural
networks (ANN) regression. Our hypothesis is that the machine learning methods can analyze both
linear and nonlinear relationships between a dependent variable and multiple independent variables
and can improve the prediction of rice N status indicators using multiple VIs than methods using
single VI or multiple linear regression method using multiple VIs. This paper is organized in the
following sections: Section 1 provides an introduction of the background and objective of this research.
Section 2 describes the field experiments, data collection and analysis methods. Section 3 presents the
results, and Section 4 discusses the results. Section 5 concludes this research.

2. Materials and Methods

2.1. Study Site

The study site is located at the Jiangsanjiang Experiment Station of the China Agricultural
University (47.2◦N, 132.6◦E) in the Sanjiang Plain of Heilongjiang Province, Northeast China (Figure 1).
Sanjiang Plain belongs to a typical cool-temperate sub-humid continental monsoon climate zone.
Japonica rice is the main planting crop in this cold region. The average sunshine hours are about
2300–2600 per year, the frost-free period is only about 110–135 days per year. The mean annual
temperature is about 2 ◦C, and the average daily temperature is 19.9 ◦C during the growing
season. The average rainfall is 500–600 mm per year, about 72% of which occurs between June
and September [4]. The primary soil type in the Sanjiang Plain is Albic soil, classified as Mollic
Planosols in the FAO-UNESCO system and Typical Argialbolls in Soil Taxonomy [37].

2.2. Experimental Setup

Ten plot experiments were conducted in 2017 and 2018 involving two Japonica rice cultivars
Longjing 31 (with 11 leaves) and Longjing 21 (with 12 leaves), five N rates (0, 40, 80, 120, and 160 kg
N ha−1), two different planting densities (27 and 33 hills m−2). All of the experiments adopted the
randomized complete block design with three replicates (Figure 1). The size of each plot was 7 × 9 m
and did not change during the study period. The N fertilizer was applied with three splits in the N
rate experiments: 40% as basal application before transplanting, 30% at the tillering stage, and 30% at
the stem elongation (SE) stage. Phosphorus and potassium fertilizers were applied uniformly across
the plot experiments at the rates of 50 kg P2O5 ha−1 and 105 kg K2O ha−1, respectively. Phosphorus
was applied in a single rate before transplanting and potassium was applied in two equal splits before
transplanting and at the SE growth stage.

In addition to the plot experiments, three on-farm experiments were conducted in cooperation
with three selected farmers of Qixing Farm in 2017 and 2018 in order to compare different precision
rice management systems (Figure 1). The soil organic matter (OM) content was 30.2, 37.5, and 43.2 g
kg−1 for Fields 1, 2, and 3, respectively. Treatments in each experiment included (1) Farmer’s Practice
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(FP); (2) Regional Optimal Management (ROM); (3) Precision Rice Management 1 (PRM1) with remote
sensing-based N recommendation at stem elongation stage; (4) PRM2; and (5) PRM3. PRM2 and 3 used
two different rates of controlled-release fertilizer as basal fertilizer. The plot size for each treatment
varied from 20 × 8 m to 30 × 10 m, depending on the farmer’s field situation. The rice cultivar was
Longjing 31 (an 11 leaf cultivar), and each treatment was performed in triplicate. The details of planting
density and N application rates are given in Table 1.

These plot and on-farm experiments were conducted for other objectives, but this study took
advantage of the variable N status in these experiments to evaluate different UAV remote sensing-based
N status estimation methods.

Figure 1. The location of the study sites (left) and a Red Green Blue (RGB) image of the N rate
experimental plots (right).

Table 1. Fertilizer application rate and timing for different treatments in the on-farm experiments
conducted in 2017 and 2018 at Qixing Farm.

Treatment *
Planting Density

(plants m−2)
Total N Rate

(kg ha−1)
Base N

(kg ha−1)
Tiller N

(kg ha−1)
Panicle N
(kg ha−1)

FP 24 120 79 21 20
ROM 27 120 79 21 20
PRM1 27 ? 71 21 ?
PRM2 27 ? 80 - ?
PRM3 27 ? 80 - ?

Note: * FP: Farmer’s Practice; ROM: Regional Optimum Management; PRM1–3: Precision Rice Management
Strategy 1, 2, and 3. To be determined by sensor-based in-season N recommendation algorithm.

2.3. Field Data Collection and NNI Parametrization

After spectral data collection at the SE and heading (HD) growth stages, three hills of rice plants
were randomly selected according to the average tillering numbers in each plot and removed with
roots. They were washed with clear water, and the roots were removed with scissors. The cleaned
samples were separated into leaves, stems, and panicles (at heading), put into the oven under 105 ◦C for
30 min to deactivate the enzymes, and then dried to a constant weight at about 80 ◦C to determine dry
AGB. N concentrations for leaves, stems, and panicles were determined using the standard Kjeldahl
method [38]. PNC was determined based on the weighted average of the N content of all rice organs.
The PNU was determined by multiplying PNC with AGB.

The critical N dilution curve of rice in Northeast China developed by Huang et al. [8] shown in
Equation (1) was used in this research for AGB larger than 1 t ha−1:

Nc = 27.7W − 0.34, (1)
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where Nc is the critical N concentration (%) in the AGB, and W is the shoot dry weight expressed in
t ha−1. For AGB less than 1 t ha−1, the Nc was set to a concentration of 2.77%.

The NNI was calculated using Equation (2)

NNI = Na/Nc, (2)

where Na is the measured N concentration.
The NNI was also alternatively calculated using PNU, as given in Equation (3)

NNI = PNU/(Nc × AGB), (3)

where PNU is plant N uptake (kg ha−1), and AGB is the aboveground biomass in t ha−1.

2.4. UAV Image Acquisition and Preprocessing

This study utilized the eBee SQ fixed-wing UAV system (SenseFly, Cheseaux-sur-Lausanne,
Switzerland) with Parrot Sequoia camera onboard. This camera includes a four-band multispectral
camera (1.2 MP, 1280 × 960 pixels) with a green band (550 + 20 nm), red band (660 + 20 nm), Red edge
band (735 + 5 nm), the near-infrared band (790 + 20 nm) and Red Green Blue (RGB) camera (16 MP,
4608 × 3456 pixels). The unit is equipped with the upwards-oriented irradiance sensor for automated
control of the integration time on the detectors. The camera system was referenced for the current
downwelling radiation before each flight mission using a white Spectralon® panel (Labsphere, Inc.,
North Sutton, NH, USA). The UAV missions were conducted between 10:00 and 14:00, under windless
and clear-sky conditions.

The UAV mission control and image acquisition were performed by the flight control software
eMotion Ag 3.5.0 (SenseFly, Cheseaux-sur-Lausanne, Switzerland). The flight altitude was 106 m,
the ground sampling distance was about 0.1 m per pixel and the images were taken with the forward
overlap and the side overlap of 85% and 75%, respectively [39]. After the data acquisition, the geotagged
images were mosaicked using Pix4Dmapper Ag software (Pix4D SA, Prilly, Switzerland) to obtain the
spectral reflectance image of the entire scene, covering the whole experimental area. The mosaic was
later orthorectified in ENVI 5.1 software (ENVI, Harris Geospatial Solutions, Inc., Boulder, Colorado,
USA), using the ground control points referenced by a survey-grade GNSS receiver (CHCNAV, LT500,
Shanghai, China) [39]. A total of four UAV reflectance orthoimages were obtained at the SE and
HD growth stages in 2017 and 2018. The plot boundaries were digitized and used as regions of
interest to select and average image pixels at a given sampling point in order to relate them to the
groundtruth data.

2.5. Data Analysis

In this study, the reflectance data from the four spectral bands were used to calculate 72 VIs
(Table A1) and both raw reflectance data of the three wavebands and VIs were used in the analyses.
The calculated VIs were ranked by R2 for their relationships with AGB, PNU, and NNI and the top
performing indices were further investigated.

The data collected in 2017 and 2018 were pulled together and then randomly divided into training
dataset (70%) and test dataset (30%). A total of 381 observations were obtained in 2017 and 2018,
266 of which were used as training dataset and 115 as test dataset (Table 2). Among the analyzed
crop properties, the AGB was the most variable parameter, with coefficient of variation (CV) being
37.54% for training and 42.37% for the test dataset, followed by PNU (CV% of 34.31% and 39.59%).
PNC and NNI had similar variability, with CV of 6.03% and 16.42% in the training dataset and 15.47%
and 17.86% in the test dataset, respectively. NNI ranged from 0.57 to 1.28 in the training dataset,
and 0.58 to 1.21 in the test dataset. The data range of all training datasets encompassed the test dataset
range, which ensured that the test data would not exceed the scope of the trained models. The training
dataset was used to establish the simple regression models using linear, quadratic, power, exponential,
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and logarithmic functions or SMLR models between the VIs and AGB, PNU, and NNI. Established
models were evaluated using the test dataset. The coefficient of determination (R2), root mean square
error (RMSE), and relative error (RE) were used to assess the models. The higher the R2 and the
lower the RMSE and RE, the higher was the precision and accuracy of the model for predicting the N
status indicators. The scikit-learn [40,41], a Python machine learning library, was used in this study to
establish models for estimation of AGB, PNU, and NNI using three conventional ML methods: RF,
SVM, and ANN regressions. Tenfold cross-verification and grid search were used to find the optimal
parameters during model development. The test dataset and R2, RMSE, RE were used to evaluate the
accuracy of the models.

Table 2. Descriptive statistics of rice aboveground biomass (AGB), plant nitrogen concentration (PNC),
plant nitrogen uptake (PNU), and nitrogen nutrition index (NNI) across nitrogen treatments, varieties,
and years.

Minimum Maximum Mean SD CV (%)

Training dataset (n = 266)

AGB (t ha−1) 0.98 10.86 5.28 1.98 37.54
PNC (g kg−1) 8.75 20.99 15.65 2.51 16.03

PNU (kg ha−1) 15.73 154.10 80.60 27.74 34.41
NNI 0.57 1.28 0.97 0.16 16.42

Test dataset (n = 115)

AGB (t ha−1) 1.51 10.45 5.25 2.22 42.37
PNC (g kg−1) 9.36 20.04 15.53 2.40 15.47

PNU (kg ha−1) 23.83 154.09 79.62 31.53 39.59
NNI 0.58 1.21 0.95 0.17 17.86

Note: SD: standard deviation of the mean; CV: coefficient of variation (%).

3. Results

3.1. Single Spectral Band Analysis

The coefficient of determination for the relationships between the reflectance of each of the four
wavebands and rice N status indicators at different growth stages are shown in Figure 2 for both
training and testing datasets. The NIR band consistently had the highest R2 for AGB and PNU,
while for PNC and NNI, the sensitivity of different wavebands changed with growth stages. In general,
the relationships between reflectance of different wavebands and PNC were weaker than other N
status indicators.
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Figure 2. Coefficients of determination (R2) for the relationships between reflectance of unmanned
aerial vehicle (UAV) camera bands and aboveground biomass (a), plant N concentration (b), plant N
uptake, (c) and nitrogen nutrition index (d) at different stages (SE, stem elongation stage; HD, heading
stage; All, across stages) for both training and test datasets.

3.2. Vegetation Index Analysis

The three top performing VIs for estimating rice N status indicators based on the training dataset
are given in Table 3. At best, a single VI could explain 65%, 65%, and 74% of AGB variation at the
SE, HD, and across growth stages, respectively. The corresponding R2 was 0.61, 0.69, and 0.73 for
PNU at SE, HD, and across stages, respectively. For NNI, 43%, 63%, and 39% of the variabilities were
explained by the best VI at SE, HD, and across growth stages, respectively. All these relationships were
significant at p < 0.01.

The VIs with the highest R2 were selected to establish the regression models for prediction of
AGB, PNU, and NNI, which were validated using the test dataset and the results are shown in Figure 3.
The models performed worse for AGB and PNU at SE and HD stages compared with calibration
models, but slightly better across growth stages. For NNI, the models performed better with the test
dataset. The indirect estimation of NNI performed slightly better than the direct approach at SE and
HD stages, but somewhat worse across growth stages (Figure 4).
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(a) VI Predicted AGB 

   

(b) VI Predicted PNU 

   

(c) VI Predicted NNI 

Figure 3. Relationships between predicted and observed AGB (a), PNU (b), and NNI (c) using the
vegetation index approach within the test dataset at stem elongation (SE), heading (HD), and across
growth stages (ALL). The red line is the 1:1 line.
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Figure 4. Relationships between observed and indirectly predicted NNI based on predicted AGB and
PNU within the test dataset at SE (a), HD (b), and ALL (c). The red lines are 1:1 lines.

3.3. Stepwise Multiple Linear Regression (SMLR) Analysis

The SMLR analysis results indicated that the models could explain 69%, 62%, and 68% of AGB
variation at SE, HD, and across stages using 2–4 VIs, respectively (Table 4). Similar results were
obtained for PNU. These models explained 54%, 75%, and 40% of the NNI variability at the SE, HD,
and across stages, respectively. These models performed better than models based on single VI in
terms of R2, RMSE, and RE.

The test results given in Table 5 indicate that the SMLR performed better at estimating AGB and NNI
than models using single VI, while for PNU estimation, the two modeling methods performed similarly.
Moreover, the results of indirect prediction of NNI were similar to the results of direct prediction.

Table 4. Stepwise multiple linear regression (SMLR) models based on unmanned aerial vehicle (UAV)
data for estimation of rice AGB, PNU, and NNI at SE, HD, and ALL with data from training the dataset.

Stage Regression Equation R2 RMSE RE (%)

AGB (kg ha−1)
SE −4.053 + 4.384*GNDVI + 0.211*RESR + 16.482*MTCAR/OSAVI 0.69 0.51 14
HD −5.475 + 8.159*MCARI3 + 1.106*MSR 0.62 0.97 14
All 7.906 + 81.541*MGSAVI − 90.222*GSAVI − 3.516*MCARI2*OSAVI 0.68 1.11 21

PNU (kg ha−1)
SE −198.601 + 353.387*GOSAVI + 132.397*MNDRE2 − 91.552*MCARI1 0.63 10.32 16
HD −267.115 + 579.684*GOSAVI − 206.772*RE 0.69 15.18 16

All 6.614 + 613.62*MGSAVI − 1711.01*SAVI + 248.331*REDVI +
1237.866*RDVI 0.73 14.38 18

NNI

SE −7.976 + 32.438*NNIR − 15.718*NNIRI + 16.493*RE −
7.852*MGSAVI + 0.038*SAVI*SR 0.54 0.09 9

HD −36.417 + 39.501*GNDVI + 103.241*NGI − 2.601*MNDI 0.75 0.09 9
All 0.983 + 0.776*MNDRE2 − 7.632*NGI + 7.384*R 0.40 0.13 13

Note: R, RE, are the red and red edge bands, respectively. The vegetation index abbreviations are explained in
Table A1.
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Table 5. Validation results of the SMLR models for estimating rice AGB, PNU, and NNI at SE, HD,
and ALL.

Parameter
SE HD ALL

R2 RMSE RE (%) R2 RMSE RE (%) R2 RMSE RE (%)

AGB (t ha−1) 0.61 0.51 14 0.52 1.09 16 0.77 1.05 20
PNU (kg ha−1) 0.60 11.60 19 0.65 16.96 18 0.80 13.76 17

NNI 0.52 0.10 10 0.74 0.09 10 0.53 0.11 12
NNI_Indirect 0.51 0.10 11 0.74 0.10 10 0.49 0.11 12

3.4. Performance of Machine Learning Models

For estimating AGB and PNU, the RF and ANN models consistently performed better than
the SVM models, while for NNI, the RF model consistently performed the best at different growth
stages, based on the calibration dataset (Table 6). The validation results indicated that the RF models
performed consistently the best among the tested methods, including the indirect estimation of NNI
(Table 7). Some models, especially those based on the ANN method, did not validate well with the test
dataset, indicating the problem of overfitting.

Table 6. The calibration result of random forest (RF), support vector machine (SVM), and artificial
neural networks (ANN) modeling algorithms at SE, HD, and ALL for rice AGB, PNU, and NNI.

Parameter
SE HD Subset ALL

R2 RMSE RE (%) R2 RMSE RE (%) R2 RMSE RE (%)

AGB
(t ha−1)

RF 0.87 0.33 9 0.85 0.6 9 0.92 0.54 10
SVM 0.74 0.47 13 0.62 0.79 11 0.88 0.69 17
ANN 0.88 0.32 9 0.77 0.74 11 0.97 0.31 19

PNU
(kg ha−1)

RF 0.93 4.59 7 0.93 7.05 7 0.90 8.59 16
SVM 0.65 10.05 16 0.70 15.07 15 0.73 14.38 18
ANN 0.71 9.1 14 0.73 13.53 14 0.95 6.47 8

NNI
RF 0.94 0.03 3 0.96 0.03 3 0.93 0.04 4

SVM 0.65 0.08 8 0.79 0.08 8.52% 0.75 0.08 8.08%
ANN 0.73 0.07 7 0.81 0.08 8.66% 0.55 0.11 10.61%

Table 7. The validation result of RF, SVM, and ANN model algorithms at SE, HD, and ALL for rice
AGB, PNU, and NNI.

Parameter
SE HD ALL

R2 RMSE RE (%) R2 RMSE RE [%] R2 RMSE RE (%)

AGB
(t ha−1)

RF 0.64 0.58 16 0.61 1.00 15 0.83 0.58 16
SVM 0.38 0.76 22 0.59 1.01 15 0.81 0.95 18
ANN 0.60 0.62 17 0.39 1.24 18 0.65 1.31 25

PNU
(kg ha−1)

RF 0.62 11.52 19 0.69 16.45 17 0.83 12.81 16
SVM 0.55 11.92 19 0.49 20.98 22 0.79 14.16 18
ANN 0.57 12.13 9 0.63 17.89 18 0.74 15.88 20

NNI
RF 0.58 0.09 10 0.79 0.09 9 0.72 0.09 9.34

SVM 0.46 0.10 11 0.70 0.11 11 0.62 0.11 11
ANN 0.56 0.10 10 0.79 0.09 9 0.61 0.11 11

NNI_Indirect
RF 0.54 0.10 10 0.64 0.10 10 0.64 0.10 11

SVM 0.37 0.11 12 0.49 0.15 16 0.50 0.12 13
ANN 0.34 0.17 18 0.58 0.14 15 0.46 0.15 16
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3.5. Random Forest Models Based on Selected Vegetation Indices

For practical applications, the RF models were optimized by removing VIs not important for
the performance of the model. This resulted in simpler models, yet with comparable performance
to the models based on all the tested VIs (Table 8). Models established at the SE stage, although
outperforming the models based on single VI or SMLR models, performed worse in comparison with
the models at the HD stage and across stages. The indirect NNI estimation approach gave worse
results than the direct approach, which was similar to the results obtained with SMLR analysis.

Depending on the analyzed subset, from 17 to 23 VIs were selected by the RF models at different
growth stages and the top five VIs are listed in Table 9. The relative importance of different VIs changed
with growth stages or dependent variables. Green Optimized Soil Adjusted Vegetation Index (GOSAVI)
was consistently selected among the top five indices at SE, HD, or across growth stages for both AGB
and NNI prediction, and at SE and HD stages for PNU prediction. Normalized near-infrared (NNIR)
and red edge difference vegetation index (REDVI) were among the top five indices for AGB and PNU
at the SE stage, and for NNI at both SE and HD stages.

Table 8. The calibration and validation results of RF models based on selected vegetation indices at SE,
HD, and ALL for rice AGB, PNU, and NNI.

Parameter
SE HD ALL

R2 RMSE RE R2 RMSE RE R2 RMSE RE

AGB
(t ha−1)

Calibration 0.91 0.28 7.66 0.95 0.35 5.06 0.97 0.36 6.90
Validation 0.66 0.58 16.45 0.69 0.88 13.15 0.83 0.92 17.54

PNU
(kg ha−1)

Calibration 0.94 4.11 6.52 0.96 5.32 5.46 0.94 7.35 9.12
Validation 0.66 11.13 18.10 0.69 16.39 16.94 0.85 12.37 15.55

NNI_direct
Calibration 0.94 0.03 3.33 0.96 0.04 3.65 0.93 0.04 4.45
Validation 0.61 0.09 9.98 0.79 0.09 9.06 0.74 0.09 8.72

NNI_indirect Validation 0.53 0.10 10.77 0.72 0.10 10.60 0.67 0.10 10.13

Table 9. The relative importance of top five vegetation indices selected by RF models at SE, HD, and
ALL for rice AGB, PNU, and NNI.

AGB (t ha−1) PNU (kg ha−1) NNI

SE N = 21 N = 21 N = 22
NNIR 0.09 NNIR 0.22 REDVI 0.21
REDVI 0.09 REDVI 0.20 NNIR 0.13
MSR_G 0.0 GOSAVI 0.12 MERIS 0.06
GOSAVI 0.07 NLI 0.05 MTCARI/OSAVI 0.05

CIg 0.06 REOSAVI 0.04 GOSAVI 0.05
HD N = 17 N = 20 N = 23

OSAVI 0.30 GOSAVI 0.49 GNDVI 0.53
MCARI3 0.23 GWDRVI 0.18 NNIR 0.09

VIopt 0.10 NRI2 0.04 GOSAVI 0.09
GOSAVI 0.07 NRI 0.04 NGI 0.04

MCARI1/MRETVI 0.05 Green 0.03 REDVI 0.02
ALL N = 19 N = 23 N = 23

GRDVI 0.37 GRDVI 0.49 CIg 0.24
GOSAVI 0.30 GRVI 0.14 GOSAVI 0.10

NLI 0.06 NNIR 0.05 Red 0.06
MNDRE 0.04 SAVI*SR 0.05 RETVI 0.05
OSAVI 0.04 GSAVI 0.04 MDD 0.04

Note: N—number of variables selected by the respective models. The vegetation index abbreviations are explained
in Table A1.
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3.6. Nitrogen Status Diagnosis at the Farm Scale

The N status diagnosis maps for the study area were created based on the predicted NNI using
the fixed wing UAV remote sensing images and the RF models at the SE (Figure 5) and HD (Figure 6)
stages in 2017. At the SE stage, the majority fields had optimal or surplus N status, with less N deficient
areas (Figure 3). At the HD stage, the majority fields had deficient or surplus N status, with less areas
having optimal N status (Figure 4). For the N plot experiments, most of the plots receiving less than
120 kg N ha−1 were classified as N deficient, while most plots receiving 160 kg N ha−1 were classified as
surplus N, whereas parts of these plots were also categorized as optimal N and parts of plots receiving
120 kg N ha−1 were also classified as N surplus.

Figure 5. The N status diagnosis maps of the study area and N rate experimental plots based on NNI
predicted by the RF model at SE stage of 2017.

Figure 6. The N status diagnosis maps based on the predicted NNI using the RF model for the study
area and N rate experimental plots at HD stage in 2017.
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4. Discussion

4.1. Estimating Rice N Status Indicators Using Single Vegetation Index

Using UAV-based remote sensing for in-season crop N status diagnosis and guiding variable rate
N application is very attractive. The reflectance of single spectral bands can be used to estimate crop N
status, as indicated by the results of this study. However, this approach only uses the reflectance of only
one spectral band. A common approach to use reflectance information from more than one spectral
band is to develop VIs, which are mathematical combinations of reflectance from two or more spectral
bands. VIs are expected to perform better than single spectral wavebands. Many different factors
may influence the performance of VIs, including soil and water backgrounds, weeds, cover crops in
the interrow, the types of plants, and the growth stages of crops, etc. [42]. Growth stage can have
a strong influence on the sensitivity and performance of different wavelengths and VIs for estimating
crop parameters [43,44]. For rice, soil and water background can have a strong influence on canopy
reflectance at early growing season before rice canopy closure (e.g., tillering stage or SE stage). At later
growth stages with canopy closure (e.g., HD stage), some VIs like normalized difference vegetation
index (NDVI) can become saturated [44]. In addition, the emergence of panicles makes the canopy
reflectance more complicated, increasing the reflectance in visible spectral region but decreasing
reflectance in the NIR region [45]. As a result, many different VIs have been developed for different
applications [42]. It is necessary to evaluate the published VIs and identify the best performing VIs for
a particular application (e.g., estimation of rice N status indicators).

The results of this study indicated that GOSAVI, Nonlinear Index (NLI), and Modified Green
Soil Adjusted Vegetation Index (MGSAVI) performed best, explaining 65%, 65%, and 74% of rice
AGB variability at SE, HD, and across growth stages, respectively. The GOSAVI explained 61%, 69%,
and 73% of PNU variability at the SE, HD, and across growth stages, respectively. However, at best
63% of the NNI variability could be explained by Green Normalized Difference Vegetation Index
(GNDVI) at the HD stage, but only 43% and 39% of NNI variability could be explained at the SE and
across stages. The results of Cao et al. using active canopy sensor Crop Circle ACS-470 indicated that
54%–79%, 59%–83%, and 59%–77% of rice AGB, PNU, and NNI variabilities could be explained by the
best performing VIs, respectively [46]. This study gave similar results for AGB and PNU, however
the NNI estimations at SE and across growth stages were worse than the results obtained by Cao et
al. [46]. This may be due to the fact that the UAV image sampling included the entire areas of the
plots. The soil and water background may have more influence on the reflectance when compared
with handheld canopy sensor in the study of Cao et al. [46]. As a result, using UAV remote sensing and
VI-based approach could not achieve acceptable NNI estimation at the SE stage before canopy closure.
In a similar research with winter wheat across smallholder farmer fields, Chen et al. explained 72%,
64%, and 46% variation in winter wheat (Triticum aestivum L.) AGB, PNU, and NNI at the SE stage
using single VI-based approach with eBee SQ UAV remote sensing [39]. Their results were comparable
to our results, with AGB and PNU being better predicted than NNI.

4.2. The Performance of Different Machine Learning Modeling Methods

In addition to single VI, SMLR and three different ML algorithms were applied to predict rice N
status indicators in this study. The SMLR model performed significantly better than models based
on single VI. Our results are consistent with the results of previous studies with winter wheat [47].
SMLR models use more VIs with spectral information related to the variables of interest and are flexible
and easy to perform [48–51].

The SMLR models can only model linear combination of predictors [52], while the ML models can
also model nonlinear relationships. The RF regression algorithm is an ensemble-learning algorithm that
combines a broad set of regression trees. A regression tree represents a set of conditions or restrictions
that are hierarchically organized and successively applied from a root to a leaf of the tree [53–55].
The SVM algorithm is based on statistical learning theory and can be regarded as the same type of
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network, can also be used for both classification and regression problems [56]. ANN regression is
based on the gradient learning method. It is a nonparametric nonlinear model that uses neural network
spreading between layers and simulates human brain receivers and information processing [57,58].
All three ML models performed better than models based on single VI. The three ML models all
achieved better results than SMLR models in calibration, but in the validation analysis, only the RF
models performed consistently better than SMLR. The possible reason for such results is that ML
modeling often results in an over-fitting phenomenon, and the robustness and generalization ability of
RF are stronger than the other ML methods [31,36,58–60].

The results of NNI indirect estimation approach were generally worse than the direct estimation
approach. This is possibly due to the estimation of AGB and PNU in the indirect estimation approach
that led to the accumulation of errors.

In summary, the results of this study indicated that the RF algorithm could be used to predict NNI
directly at different growth stages. It performed better than other evaluated approaches. The NNIR
and REDVI indices were the most important predictors at the SE stage, GNDVI and NNIR were most
important at the HD stage, while green chlorophyll index (CIg) and GOSAVI were the most important
predictors across growth stages. The relative importance of different VIs varied with growth stages and
N status indicators. NNIR, REDVI, and other VIs containing red edge and near-infrared bands were
more important for NNI estimation. Some of the VIs were significantly correlated. When the model
needs to select input parameters, if the correlation between two VIs is very high, the RF model tends to
select only one VI and abandons the other. Many of the VIs with small weights were selected in the
models, because these algorithms need to use more dimensions to explain the variation of the data.

4.3. Challenges and Future Research Needs

In this study, multispectral data and VIs were obtained using fixed-wing UAV remote sensing,
and the rice NNI distribution maps at different growth stages were created based on RF model
prediction. The NNI map at the SE stage can be used to guide farmers to apply N fertilizers at the
variable rates. The use of fixed-wing UAV remote sensing can effectively overcome the limitations
of satellite remote sensing and proximal crop canopy sensing, and provide a reliable data source for
diagnosis of the rice N nutritional status and in-season variable rate recommendation.

At present, most UAVs for remote sensing are powered with batteries, and the operation time is
still quite short. For example, the eBee SQ system can only fly about 40 min, which limits the data
acquisition ability of a single UAV operator. If UAVs adopt larger battery capacities and more effective
battery charging in the future, effectively solving the problem of insufficient power, it will greatly
increase the operational efficiency and the area monitored by a single unit. In addition, the field
preparation for setting up ground control points, reflectance panels, and flight design is also very time
consuming. The advances in technology have made it possible to achieve similar precision without the
use of ground control points, to get rid of ground reflectance panels by using incident light sensors
and greatly simplify flight design [61]. UAV remote sensing is also significantly affected by weather
conditions, like winds, rain, or clouds [61,62]. Mounting active canopy sensors on UAV may provide
a practical solution to such weather limitations [63].

In this study, UAV image-based rice crop reflectance was the single data source used in the ML
models. This alone showed that nonlinear ML models improved NNI estimation compared to the simple
VI-based methods. In addition to the commonly used red, green, blue, red edge, and near-infrared
bands, other spectral regions should be studied for N status diagnosis, like shortwave infrared
(SWIR)-based indices [45,64] or using hyperspectral cameras [62]. Studies found that a combination
of multispectral and thermal images using relevance vector machines improved the estimation of
plant chlorophyll concentration [65] and has the potential to simultaneously identify N and water
stress. In the future, meteorological data, soil data, terrain attributes, and the information about crop
management can be used together with remote sensing data to improve the performance of the ML
models and NNI estimation [66].
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5. Conclusions

In this study, eBee SQ UAV images were used to evaluate the VI, SMLR, and three ML algorithms
(RF, SVM, and ANN) to estimate rice AGB, PNU, and NNI at the SE, HD, and across stages, and the
NNI maps were created to diagnose N nutritional status of rice fields at the study site in Northeast
China. The results indicated that ML methods could significantly improve the estimation of rice NNI
compared to single VI and SMLR models, especially using an optimized RF algorithm, with 94%
and 96% of the NNI variability being explained for the calibration dataset at the SE and HD stages,
respectively, and 61% and 79% of NNI variability being explained for the test dataset at the SE and
HD stages, respectively. The RMSE was 0.09, and RE was less than 10%. It is concluded that the RF
modeling method can significantly improve the prediction of rice NNI using UAV remote sensing.
The application machine learning methods offers a new opportunity to better use remote sensing data
for monitoring crop growth conditions and guiding precision crop management. More studies are
needed to further improve these machine learning-based models by combining both remote sensing
data and other related soil, weather, and management information for applications in precision N and
crop management.
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Appendix A

Table A1. The vegetation indices evaluated in this study. G, R, RE, and NIR indicate green red, red edge,
and near infrared band reflectance.

Index Formula Reference

Green Ratio Vegetation Index (GRVI) NIR/G [67]
Green Difference Vegetation Index (GDVI) NIR − G [68]

Green Normalized Difference Vegetation Index (GNDVI) (NIR − G)/(NIR + G) [69]
Green Wide Dynamic Range Vegetation Index (GWDRVI) (a*NIR − G)/(a*NIR + G) (a = 0.12) [46]

Green Chlorophyll Index (CIg) NIR/G − 1 [70]
Modified Green Simple Ratio (MSR_G) (NIR/G − 1)/SQRT(NIR/G + 1) [46]

Green Soil Adjusted Vegetation Index (GSAVI) 1.5*[(NIR − G)/(NIR + G + 0.5)] [71]

Modified Soil Adjusted Vegetation Index (MSAVI) 0.5*[2*NIR + 1 − SQRT((2*NIR + 1)2 −
8*(NIR − G))] [72]

Green Optimal Soil Adjusted Vegetation Index (GOSAVI) (1 + 0.16)(NIR − G)/(NIR + G + 0.16) [73]
Green Re-normalized Different Vegetation Index (GRDVI) (NIR − G)/SQRT(NIR + G) [46]

Normalized Green Index (NGI) G/(NIR + RE + G) [71]
Normalized Red Edge Index (NREI) RE/(NIR + RE + G) [46]

Normalized Red Index (NRI) R/(NIR + RE + R) [14]
Normalized NIR Index (NNIR) NIR/(NIR + RE + G) [71]

Modified Double Difference Index (MDD) (NIR − RE) − (RE − G) [14]
Modified Normalized Difference Index (MNDI) (NIR − RE)/(NIR − G) [46]

Modified Enhanced Vegetation Index (MEVI) 2.5*(NIR − RE)/(NIR + 6*RE − 7.5*G + 1) [46]
Modified Normalized Difference Red Edge (MNDRE) [NIR − (RE − 2*G)]/[NIR + (RE − 2*G)] [46]

Modified Chlorophyll Absorption In Reflectance Index1 (MCARI1) [(NIR − RE) − 0.2*(NIR − R)](NIR/RE) [46]
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Table A1. Cont.

Index Formula Reference

Modified Chlorophyll Absorption In Reflectance Index 2 (MCARI2) 1.5[2.5(NIR−R)−1.3(NIR−RE)]√
(2NIR+1)2−(6NIR−5

√
R)−0.5

[14]

Normalized Difference Vegetation Index (NDVI) (NIR − R)/(NIR + R) [74]
Ratio Vegetation Index( RVI) NIR/R [75]

Difference Vegetation Index (DVI) NIR − R [68]
Renormalized Difference Vegetation Index (RDVI) (NIR − R)/SQRT(NIR + R) [76]
Wide Dynamic Range Vegetation Index (WDRVI) (a*NIR − R)/(a*NIR + R) (a = 0.12) [77]

Soil-Adjusted Vegetation Index (SAVI) 1.5*(NIR − R)/(NIR + R + 0.5) [78]
Optimized SAVI (OSAVI) (1 + 0.16)*(NIR − R)/(NIR + R + 0.16) [73]

Modified Soil-adjusted Vegetation Index (MSAVI) 0.5*[2*NIR + 1 − SQRT((2*NIR + 1)2 −
8*(NIR − R))] [72]

Transformed Normalized Vegetation Index (TNDVI) SQRT((NIR − R)/(NIR + R) + 0.5) [79]
Modified Simple Ratio (MSR) (NIR/R − 1)/SQRT(NIR/R + 1) [80]

Optimal Vegetation Index (VIopt) 1.45*((NIR2 + 1)/(R + 0.45)) [81]
MERIS Terrestrial Chlorophyll Index (MTCI) (NIR − RE)/(RE − R) [82]

Nonlinear Index (NLI) (NIR2 − R)/(NIR2 + R) [83]
Modified Nonlinear Index (MNLI) 1.5*(NIR2 − R)/(NIR2 + R + 0.5) [84]

NDVI*RVI (NIR2 − R)/(NIR + R2) [84]
SAVI*SR (NIR2 − R)/[(NIR + R + 0.5)*R] [84]

Normalized Difference Red Edge (NDRE) (NIR − RE)/(NIR + RE) [85]
Red Edge Ratio Vegetation Index (RERVI) NIR/RE [86]

Red Edge Difference Vegetation Index (REDVI) NIR − RE [46]
Red Edge Re-normalized Different Vegetation Index (RERDVI) (NIR − RE)/SQRT(NIR + RE) [46]
Red Edge Wide Dynamic Range Vegetation Index (REWDRVI) (a*NIR − RE)/(a*NIR + RE) (a = 0.12) [46]

Red Edge Soil Adjusted Vegetation Index (RESAVI) 1.5*[(NIR − RE)/(NIR + RE + 0.5)] [46]
Red Edge Optimal Soil Adjusted Vegetation Index (REOSAVI) (1 + 0.16)(NIR − RE)/(NIR + RE + 0.16) [46]

Modified Red Edge Soil Adjusted Vegetation Index (MRESAVI) 0.5*[2*NIR + 1 − SQRT((2*NIR + 1)2 −
8*(NIR − RE))] [46]

Optimized Red Edge Vegetation Index (REVIopt) 100*(lnNIR − lnRE) [87]
Red Edge Chlorophyll Index (CIre) NIR/RE − 1 [88]

Modified Red Edge Simple Ratio (MSR_RE) (NIR/RE − 1)/SQRT(NIR/RE + 1) [14]
Red Edge Normalized Difference Vegetation Index (RENDVI) (RE − R)/(RE + R) [89]

Red Edge Simple Ratio (RESR) RE/R [90]
Modified Red Edge Difference Vegetation Index (MREDVI) RE − R [46]

MERIS Terrestrial Chlorophyll Index (MTCI) (NIR − RE)/(RE − R) [82]
DATT Index (DATT) (NIR − RE)/(NIR − R) [91]

Normalized Near Infrared Index (NNIRI) NIR/(NIR + RE + R) [14]
Normalized Red Edge Index (NREI) RE/(NIR + RE + R) [14]

Normalized Red Index (NRI) R/(NIR + RE + R) [14]
Modified Double Difference Index (MDD) (NIR − RE) − (RE − R) [14]
Modified Red Edge Simple Ratio (MRESR) (NIR − R)/(RE − R) [14]

Modified Normalized Difference Index (MNDI) (NIR − RE)/(NIR + RE − 2R) [14]
Modified Enhanced Vegetation Index (MEVI) 2.5*(NIR − R)/(NIR + 6*R − 7.5*RE + 1) [14]

Modified Normalized Difference Red Edge (MNDRE2) (NIR − RE + 2*R)/(NIR + RE − 2*R) [14]
Red Edge Transformed Vegetation Index (RETVI) 0.5*[120*(NIR − R) − 200*(RE − R)] [14]

Modified Chlorophyll Absorption In Reflectance Index 3 (MCARI3) [(NIR − RE) − 0.2*(NIR − R)](NIR/RE) [14]
Modified Chlorophyll Absorption In Reflectance Index 4 (MCARI4) 1.5[2.5(NIR−G)−1.3(NIR−RE)]√

(2NIR+1)2−(6NIR−5
√

G)−0.5
[14]

Modified Transformed Chlorophyll Absorption In Reflectance Index
(MTCARI) 3*[(NIR − RE) − 0.2*(NIR − R)(NIR/RE)] [14]

Modified Red Edge Transformed Vegetation Index (MRETVI) 1.2*[1.2*(NIR − R) − 2.5*(RE − R)] [14]
Modified Canopy Chlorophyll Content Index (MCCCI) NDRE/NDVI [92]

MCARI1/OSAVI MCARI1/OSAVI [14]
MCARI2/OSAVI MCARI2/OSAVI [14]
MTCARI/OSAVI MTCARI/OSAVI [14]

MCARI1/MRETVI MCARI1/MRETVI [14]
MTCARI/MRETVI MTCARI/MRETVI [14]
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Abstract: Under ideal conditions of nitrogen (N), maize (Zea mays L.) can grow to its full potential,
reaching maximum plant height (PH). As a rapid and nondestructive approach, the analysis of
unmanned aerial vehicles (UAV)-based imagery may be of assistance to estimate N and height.
The main objective of this study is to present an approach to predict leaf nitrogen concentration
(LNC, g kg−1) and PH (m) with machine learning techniques and UAV-based multispectral imagery in
maize plants. An experiment with 11 maize cultivars under two rates of N fertilization was carried
during the 2017/2018 and 2018/2019 crop seasons. The spectral vegetation indices (VI) normalized
difference vegetation index (NDVI), normalized difference red-edge index (NDRE), green normalized
difference vegetation (GNDVI), and the soil adjusted vegetation index (SAVI) were extracted from
the images and, in a computational system, used alongside the spectral bands as input parameters for
different machine learning models. A randomized 10-fold cross-validation strategy, with a total of
100 replicates, was used to evaluate the performance of 9 supervised machine learning (ML) models
using the Pearson’s correlation coefficient (r), mean absolute error (MAE), coefficient of regression
(R2), and root mean square error (RMSE) metrics. The results indicated that the random forest (RF)
algorithm performed better, with r and RMSE, respectively, of 0.91 and 1.9 g.kg−1 for LNC, and 0.86
and 0.17 m for PH. It was also demonstrated that VIs contributed more to the algorithm’s performances
than individual spectral bands. This study concludes that the RF model is appropriate to predict both
agronomic variables in maize and may help farmers to monitor their plants based upon their LNC
and PH diagnosis and use this knowledge to improve their production rates in the subsequent seasons.

Remote Sens. 2020, 12, 3237; doi:10.3390/rs12193237 www.mdpi.com/journal/remotesensing

391



Remote Sens. 2020, 12, 3237

Keywords: UAV; random forest; nitrogen; maize

1. Introduction

Remote sensing techniques aligned with precision agriculture practices are being investigated
in researches with different farmlands [1]. In recent years, the increase of market-availability of
unmanned aerial vehicles (UAV) encouraged multiple applications in this field. Agriculture remote
sensing is a promising field as it supports a multidisciplinary view of different problems related to crop
mapping [2] and has been implemented in multiple subjects, such as environment control [3], temporal
analysis [4], phenology [5], yield-prediction [6–9], and nutritional analysis [10–12]. These studies
revealed the importance of evaluating techniques and sensing data to deal with such tasks.

A relevant topic for farmers and technicians is the correct monitoring of their farmlands, as nutrient
absorption rates are connected with plant-growth and yield estimates. An important nutrient related
to plant-growth is Nitrogen (N). N benefits leaf development and photosynthetic activity in plants,
influencing their productivity [13]. Plants that have nutritional deficiencies related to N show visual
symptoms in their leaves, known as chlorosis [14,15]. This nutrient is commonly applied in agricultural
areas and it is one of the most contributive nutrients to global production. However, the incorrect
diagnosis may be a problem from both economic and environmental point-of-views [16,17].

To circumvent the aforementioned problem, agronomic technicians rely on traditional methods of
chemical leaf tissue analysis to determine the amount of N absorbed by the plant [18]. However, this
practice is viewed as a destructive, time-consuming, and highly-priced approach. Thus, it is difficult
to adopt the traditional analysis as a recurrent procedure to monitor multiple areas and stages [19].
As a rapid, nondestructive, and highly-replicable method, UAV-based image analysis may be of
assistance to perform plant nutrient content and growth-status estimate [20–24].

As an alternative method, multispectral data analysis collected with sensor systems represents
a promising approach to increase the precision in area monitoring [20]. Predicting nutrient content
and plant height with remote systems and automated intelligent methods is gaining attention in
agriculture practices. With multispectral sensors, at canopy or leaf levels, different studies predicted
leaf nitrogen concentration (LNC) in maize (Zea mays L.) [16], winter-wheat (Triticum aestivum) [21],
cotton (Gossypium hirsutum) [22], rice (Oryza sativa) [23], citrus (Citrus sinensis) [18,24], among others.
Although hyperspectral sensors stand out in their ability to characterize the spectral response with
high accuracies [25,26], multispectral sensors are used more frequently in agriculture remote sensing
since they are economically viable and accessible to most of the front-end users.

Predicting agronomic variables with multispectral data is a common practice in remote sensing
applications. However, performing this task with machine learning techniques is still a recent
and relevant topic in agriculture remote sensing since it provides a robust and direct approach to
evaluate different agronomic variables. Machine learning is considered a subgroup inside of the artificial
intelligence area in which algorithms can learn from data and then discover patterns in the dataset,
deciding on new and similar information. The algorithms have the potential to model several types of
datasets using linear and parametric and nonlinear and nonparametric approaches [12,27,28], including
multispectral images [29]. Different machine learning algorithms like random forests (RF), decision
trees (DT), artificial neural network (ANN), support vector machines (SVM), among many others, have
been adopted to attend various applications in agriculture remote sensing [5,30–32].

Machine learning has helped to increase not only the prediction’s accuracy of some agronomic
variables but also assisted in solving complex problems related to data heterogeneity. A revision
study on yield and N content prediction [33] concluded that advances in remote sensing technologies
and machine learning techniques will result in more cost-effective and comprehensive solutions for
a better crop state assessment. The combination of machine learning techniques and vegetation indices
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(VI) is also an important subject in agricultural applications and has been adopted in different studies,
some of which are related to maize characteristics predictions [34,35].

Under ideal conditions of N, maize plants can grow to their full potential reaching maximum
height [36,37]. Considering that, implementing different approaches to estimate height and N with
UAV-based remote systems is essential to optimize the monitoring of areas with multiple varieties.
Currently, one of the main objectives of maize breeding programs is to identify genotypes with high
efficiency in N usage [38,39]. Obtaining rapid predictions with an alternative approach like machine
learning and UAV-based image may enable programs, technicians, and farmers to evaluate multiple
genotypes each year, allowing them to optimize the selection of the most promising plants concerning
N use efficiency. In this matter, the main idea behind this proposal is to present a feasible alternative to
monitor N and plant height (PH) with machine learning techniques in UAV based imagery.

By implementing the aforementioned approach, farmers can monitor their LNC in maize plants
and select the areas or maize varieties (based upon their location or plots) that are most promising based
upon their diagnosis and use this knowledge to improve their production rates in subsequent seasons.
As machine learning has been proved [23–30] to be a robust approach to evaluate heterogeneous data,
it could return important results when considering different genotypes of maize plants. In this paper
the following questions are addressed: (1) which machine learning models are most suitable to predict
LNC and PH in maize (Zea mays L.) plants with spectral data from UAV-based image? and (2) amongst
all predictor variables (spectral indices, bands, and the combination of both), which one is the most
useful for mapping LNC and PH based on the machine learning approach?

2. Materials and Methods

The proposed method was divided into 4 main phases: (1) the description of in-field experiments
and how the experimental design was mounted, (2) the extraction of variables LNC and PH, (3) the image
preprocessing and calculation of the VIs investigated, and (4) the experimental protocol implemented.
Each main phase is described in detail in the following subsections.

2.1. Field Trials

The experiment was carried out in the municipality of Chapadão do Sul, State of Mato Grosso
do Sul, Brazil (18◦46′26′′ S, 52◦37′28′′ W, and an average altitude of 810 m), during the 2017/2018
and 2018/2019 crop seasons. In this experiment, 11 maize cultivars cultivated under two rates of
nitrogen fertilization in topdressing, 60 kg ha−1—considered as low and 180 kg ha−1—considered as
high, were investigated, with four replicates of each plot. The cultivars used in the experiment were:
Caimbé; CatiVerde; Gorotuba; AlAvaré; BRS106; BRS4103; BRS4104; Diratininga; SCS154; SCS155;
and SCS156. The dimensions of each plot were five rows, spaced at 0.45 m each, with a 5 m length.
Because it corresponds to a relatively small experimental area, the soil here presents similar conditions.
This area is constantly monitored and soil corrections are conducted whenever necessary.

The corn cultivars and N rates were allocated in the same plots in both seasons. The use of
several cultivars and two rates of N aimed to create different situations promoted by farmers in Brazil.
Thus, the models tested can estimate the variables for these conditions in both seasons. The integration
between multiple varieties also was important to provide enough samples for the machine learning
models to learn the necessary features: LNC and PH. It was also necessary to build a dataset heterogeneous
enough to demonstrate the feasibility of these techniques. The geographic location of the area, along
with the experiment plots, is displayed in Figure 1.
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Figure 1. The geographic location of the study area. (a) Corresponds with the location of the municipality
within the Mato Grosso do Sul State in Brazil; (b) represents the plots in the experimental site;
and (c) is the scheme concerning the experimental fertilization rates used.

2.2. Evaluated Variables

Maize plants were evaluated at the V12 stage. The images were collected at this stage because
plants have reached their full potential in terms of growth and nitrogen absorption in this phase.
The average third of five leaves of maize plants were collected in each experimental unit. The LNC
(g kg−1) was obtained by the methodology described in [40]. In this regard, N was evaluated with
in-field measurements and following agronomical standard procedures. For this, the Kjeldahl titration
technique was applied, which is divided into (1) digestion, (2) distillation in an N distiller, and,
(3) titration with sulfuric acid (H2SO4). On this same date, PH (m) was obtained with an average of five
plants chosen at random in each plot. For this, a measuring tape was used, positioned from the base of
the plant to its apex (i.e., the highest point of the plant; at the top of the canopy). A tracking GNSS
with high precision accuracy was used to map the crop plots (yellow-grids in Figure 1), ensuring that
the collected data was representative of each plot.

This provided a total of 176 in-field observations of LNC and PH. The measure mean-values
of LNC and PH, for both seasons (2017/2018 and 2018/2019), did not result in statistical differences
at a p-value under 0.05. For this, a Shapiro-Wilk test followed by a pairwise t student test was
used. When calculating the variance for LNC, values of 21.33 g.kg−1 and 20.21 g.kg−1 in 2017/2018
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and 2018/2019 crop seasons were obtained, respectively. As for PH, the variance obtained was 0.107 m
and 0.101 m for 2017/2018 and 2018/2019 crop seasons, respectively. This information, alongside with
the p-value under 0.05 for both LNC and PH in each year, indicated that the seasons returned similar
conditions for both analyses.

2.3. Image Acquisition and Vegetation Indices

The following spectral regions were used for calculating the VIs: green (G), red (R), red-edge (RE),
and near-infrared (NIR). The described wavelength (nm) is the bands’ center on both sensors. The area
was recorded during the first crop season (2017/2018) with a MicaSense Red-Edge multispectral
sensor (G: 560 nm, R: 668 nm, RE: 717 nm, and NIR: 842 nm) embedded in a UAV-multirotor X800.
For the second crop season (2018/2019), a Sensefly eBee RTK fixed-wing remotely piloted aircraft was
used. The eBee was equipped with the Sensefly Parrot Sequoia multispectral sensor (G: 550 nm, R:
660 nm, RE: 735 nm, and NIR: 790 nm).

Both sensors acquired spectral data in the aforementioned wavelengths and used a luminosity
sensor allowing the calibration of the acquired values. The two overflights were performed at 100 m
altitude, returning a spatial image resolution (ground sample distance—GSD) of 0.10 m, and were
conducted at 10:00 h (local time). Figure 2 summarizes the climatic and atmospheric conditions of
each crop season (2017/2018 and 2018/2019). As described, both flights occurred at the V12 stage of
each season.

 
Figure 2. The climatic and atmospheric conditions registered during the crop seasons of 2017/2018
and 2018/2019.
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For the image preprocessing, the Pix4DMapper was used, optimizing the interior and exterior
parameters of the image. A sparse dense cloud based on the structure-from-motion (SfM) technique
and point clouds based on the MVS (multi-view stereo) with multiple control points collected were
used. These points were collected with a global navigation satellite system (GNSS), dual-frequency
in real-time kinematic (RTK) mode. Images were acquired with 80% longitudinal and 60% lateral
overlaps, and the digital number (DN) was converted to surface reflectance using the calibration
parameters described in the manual of both sensors. The calibration and luminosity corrections were
also necessary to minimize the influence of soil brightness. Because spectral indices were used in this
study, this interference was also minimized. The plantation itself also was in a stage fully developed
and covered most of the soil in the spatial resolution registered, making its contribution minimal to
the spectral behavior of the plants.

During an experimental phase, multiple VIs were calculated with the aforementioned spectral
bands. However, most of the indices did not return promising results and also presented redundancy
over the tests. Because of that, only four main VIs were implemented in the machine learning
models: normalized difference vegetation index (NDVI) [41], normalized difference red-edge index
(NDRE) [42], green normalized difference vegetation (GNDVI) [43], and soil adjusted vegetation
index (SAVI) [44]. These VIs are among the most commonly used indices to predict plant health
and conditions. The equations arranged below demonstrate the spectral data used to obtain these
VIs, respectively.

NDVI = (NIR - R)/(NIR + R) (1)

NDRE = (NIR - RE)/(NIR + RE) (2)

GNDVI = (NIR - G)/(NIR + G) (3)

SAVI = (1 + 0.5)(NIR - R)/(NIR + R + 0.5) (4)

2.4. Data Analysis

The pixel values for each plantation plot were extracted from the images. These values were
used as input to estimate the measured in-field values of LNC and PH in their corresponding
plot. A randomized 10-fold cross-validation sampling strategy, with a total of 10 repetitions, was
used to evaluate the performance of 9 supervised machine learning models (Table 1). To evaluate
the performance of each model as well as the relationship between the predicted and observed variables,
the root mean squared error (RMSE) and mean absolute error (MAE) metrics were used.

The number of samples implemented was similar to others presented in previous research [12,28],
which also discussed the required quantities of input data to train these types of algorithms.
With the cross-validation approach, 90% of the 176 samples were used to train the models and 10% to
test it. Because this process was repeated, 100 randomized test-sets were constructed. In summary,
this type of validation is repeated sequentially, constantly changing the folder used for validating
the algorithm [12,18,27,45]. In this manner, the algorithm is always validated with data not used at its
training phase. In this experiment, the entire procedure was also repeated 100 times, which means that
the models were built from scratch in every repetition.

Two decision tree-based machine learning algorithms were used here: the reduced error pruning
tree with backfitting, and the random forest method with 100% of the training set as bagging size.
A K-nearest neighbor was also used with three different K values: 1, 5, and 10. Support vector machines
adopting sequential minimal optimization (SMO) have been tested under 2 different kernels: radial
based functions and polynomial. Finally, a linear and a kernel-based regressor were also included for
comparison. The linear regression uses a grid-search strategy for model selection based on the Akaike
information criterion and the kernel-based regressor is a radial basis function network.
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Table 1. Machine learning algorithms and input data variation used in this study.

Test Order ML Model Reference

#1 REPTree—REPT Saha et al. [46]
#2 Random Forest—RF Belgiu et al. [47]
#3 K-Nearest Neighbor (K=1)—1NN Ali et al. [48]
#4 K-Nearest Neighbor (K=5)—5NN Ali et al. [48]
#5 K-Nearest Neighbor (K=10)—10NN Ali et al. [48]
#6 SVM-RBF—SVMR Nalepa et al. [49]
#7 Support Vector Machine-Polynomial—SVMP Nalepa et al. [49]
#8 Linear Regression—LR Štepanovský et al. [50]
#9 RBF Regression—RBF Cheshmberah et al. [51]

The library default values were adopted for the number and depth of trees, nodes, and leaves in
the decision tree models, as well as a different number of neighbors (1, 5, and 10) for the KNN algorithm.
As stated, two functions (RBF and polynomial) were considered for SVM, the exp(-gamma*|u-v|2)
and the (gamma*u’*v + coef0)2, respectively. Each value regarding the described variables was set to
be calculated automatically considering the overall best predictions with an epsilon loss curve equal to
0.1. Last, a grid search approach was used to fine-tune the linear regression model (RBF Regression),
thus performing a hyperparametrization of this particular model.

All the models have been tested using three sets of variables: (#1) a set with spectral-bands only
(SB), (#2) a set only with Vis, and (#3) a set including both SB and VIs together. During the experimental
phase, different hybrid combinations of the adopted models were evaluated. However, the combinations
are not discussed in this manuscript mainly because they did not result in interesting outcomes as well
as the separation between SBs and VIs. After determining the best overall algorithm, an inference
model was calculated to produce a prediction map over the UAV image. This map was used to ascertain
the relationship between the predicted variables and help discuss the implications of the proposal of
this study.

Additionally, based on the overall best algorithm, the most contributive input data used by
the learner were also identified. For this, a classifier attribute evaluation that estimates the worth of
an attribute by using this specified classifier (in our case, the overall best algorithm) was implemented
with the rank search as a selection method. The evaluated rank metric was based on a merit score
obtained with the ZeroR regressor. This merit corresponds with the relative increase in the performance
of the model in relation to the ZeroR classifier. The ZeroR was used since it takes the average value
of the target variable and uses this value as a prediction. In this regard, the rank method can return
a merit number even greater than 1 (since relative increase may exceed 100%). This procedure was
important to determine the significance of each SB or VI to infer LNC and PH in maize crops.

3. Results

3.1. Relationship among the Agronomic Variables

To present the relationship among the evaluated variables, Figure 3 was prepared to display
the Pearson’s correlations between LNC and PH with the SBs and VIs evaluated in this study.
The magnitude of the correlations was different for each N fertilization rate (high and low).
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3.2. Models’ Performances for LNC and PH Prediction

Figures 4 and 5 display the boxplots for the RMSE using 100 runs (10 repetitions of 10-fold cross-validation)
of each machine learning algorithm under the 3 data input configurations: SB, VI, and SB+VI. Figure 4 displays
the boxplot for LNC, whereas, in Figure 5, PH is displayed. Regarding the LNC estimate, the RMSE indicates
a higher averaged performance of the RF model with a smaller interquartile range for the VI and SB+VI
configuration. The performance of RF using only the SBs is lower than using the other configuration sets for
both LNC and PH. The three KNN models also showed lower values of RMSE for VI alone than SB+VI, with
a clear advantage for higher K sets (e.g., 5 and 10).

Figure 4. Boxplot for the root mean squared error (RMSE) for leaf nitrogen concentration (LNC) (g kg−1)
estimation using 9 machine learning algorithms, over 100 runs, and 3 input configurations: (1) spectral
bands (SBs), (2) vegetation indices (VIs), and (3) SB+VI. The point plots indicate outliers encountered
during the phase of the 100 different test repetitions.

In the boxplots for PH, there is a slightly lower averaged RMSE for RF when comparing it against
the other models, but the combination of SBs + VIs seemed to lower the performance of the model.
Beyond RF, the REPT and KNN models presented good results for the VIs dataset alone. Although
some outliers were detected in the estimations, each box-plot was constructed over a 95% confidence
interval. The overall performance of the best model (RF) presented an RMSE equal to 1.9 g.kg−1

and 0.17 m, for both LNC and PH, respectively.
To better ascertain the relationship between predictions and measured variables, the regression of

the overall three best methods for each variable (PH and LNC) was plotted. It used the configuration
set #2 containing only the VIs as input variables (Figure 6).

The PH scatterplot in Figure 6 demonstrates how consistent the RF model was when predicting
this variable. As for the LNC prediction, it is possible to notice that the two topdressing conditions of
N fertilization rates are separated by the model. This is an important observation since it demonstrates
that the RF approach was able to separate distinctly the low and high rate levels.
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Figure 5. Boxplot for the root mean square error (RMSE) for plant height (PH) (m) estimation using
9 machine learning algorithms, over 100 runs, and 3 input configurations: 1) spectral bands (SBs), 2)
vegetation indices (VIs), and 3) SB+VI. The point plots indicate outliers encountered during the phase
of the 100 different test repetitions.

 

Figure 6. Relationship between the predicted and observed variables (LNC and PH) using the overall
best models and configuration. The dashed-line corresponds with a 1:1 linear-fit.
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To better demonstrate the feasibility of the proposal, a map of the predicting values for both LNC
and PH was constructed with the RF model using the VIs as input parameters (Figure 7). This map can
provide a qualitative approach for the result. Once trained, a machine learning model can calculate or
perform inference over the image data, returning a visual representation of the area.

 

Figure 7. Prediction map over the 2018/2019 crop season indicating the LNC and PH related to every
pixel in the unmanned aerial vehicle (UAV)-based image. The model used for inference was the random
forest (RF) and only the VIs were used as input data to calculate it.

Table 2 ranks the contribution of individual attributes for RF for estimating LNC and PH.
This metric was estimated with configuration #3 (VIs + SBs), considering all input data to confront both
spectral bands and spectral indices’ importance to the model. The merit for each attribute indicated that
VIs like NDVI, NDRE, and SAVI were more contributive than SBs. This result supports the observation
over previous analysis, that the VIs configuration returned better accuracy than the SBs configuration.
The merit score was obtained from the ranking-based approach in the method section.

Table 2. Ranking order describing the merit of each machine learning model used in this study.

Order Attribute Merit (avg.) - LNC Merit (avg.) - PH

1 NDVI 1.018 ± 0.043 0.939 ± 0.045
2 NDRE 1.004 ± 0.039 0.897 ± 0.048
3 SAVI 0.912 ± 0.047 0.862 ± 0.046
4 Red-Edge 0.88 ± 0.049 0.802 ± 0.046
5 Near-Infrared 0.842 ± 0.04 0.734 ± 0.046
6 Red 0.828 ± 0.047 0.719 ± 0.043
7 Green 0.714 ± 0.052 0.596 ± 0.046
8 GNDVI 0.454 ± 0.044 0.499 ± 0.045

4. Discussion

The evaluation of multiple cultivars and different quantities of N fertilizer was implemented to
simulate the characteristics encountered in most maize-crops around Brazil. With this experimental
design, using the spectral data in three distinct configurations, we investigated the performance of a set
of machine learning algorithms, like the REPT, RF, KNN, SVM (with RBF and polynomial kernels),
and LR. The leaners returned similar predictions according to the respective configuration set when
predicting both LNC and PH. The adopted configurations were indicative of the importance of VIs in
the prediction of these agronomic variables. In a direct analysis regarding the relationship between
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each variable (Figure 3), a negative correlation of LNC with NIR and VIs and a positive correlation
with R was found. This observation differentiates from the literature [10–17] since the LNC is closely
related to chlorophyll influence over these spectral variables. Still, this could configure a particular case
related to field conditions raised in this study. The same observations were also noted in a previous
study, conducted in a Citrus orchard, which also observed the same spectral bands from the Parrot
Sequoia embedded sensor [11].

The RF algorithm may share a similar trend in the nutrient analysis since different and recent types of
research concluded that this learner is obtaining optimal and balanced results with different spectral data.
In similar research [52], an experiment conducted with maize and multispectral imagery from the orbital
scale demonstrated that VIs showed strong performance. Another research [34], aiming to estimate
maize, stated that the RF learner returned the highest accuracies among the evaluated algorithms. For N
content, although not conducted in maize crops, multiple types of research [25,33,53–56] also concluded
that the RF learner, as well as other types of regressors based on decision trees, were appropriate to
model LNC. In the presented approach, the errors encountered with this model are relatively lower or
similar when in comparison to the aforementioned studies.

RF is one of the most powerful methods in the current literature related to machine learning
tasks [57–62]. The increase in data dimensionality is often seen as a problem for most traditional
methods. In this study, the increase in dimensionality was also necessary to improve the overall
accuracy of this model. As for limitations, the major difficulty associated with this method, as well
as the other machine learning approaches, is the small amount of data [63]. However, as agronomic
variables are onerous to obtain, tests with multiple repetitions and configurations sets were conducted
to ensure the accuracy of this proposal. The strategy of adopting different configurations and repetitions
should be further explored in future research, where the number of instances is relatively small.

The performance of each algorithm was, as discussed, evaluated with different configurations.
This analysis returned interesting outcomes, as the accuracy of the learners were better with the VIs
as attributes (Figures 4 and 5). The importance of VIs as estimators of N and PH was evaluated in
previous papers [18,52,64–67]. This is mainly because the VIs enhance some characteristics related to
biological variables, such as chlorophyll content and biomass, which are highly correlated with LNC
and PH. Nonetheless, when implemented in machine learning methods, it is difficult to understand
the exact function in the model’s predictions. However, when considering different scenarios, as well
as implementing the rank-based approach presented here, it is possible to shine some light onto this
process. The rank demonstrated that most contributions are provided by the VIs, and, to a lesser extent,
the SBs with their respective surface reflectance values. This type of evaluation is important since it
provides a matter to indicate which input variables are more suitable to model the evaluated problem,
which can reduce the amount of data input, resulting in an accurate and more rapid estimative.

As for the image itself, the major limitation of a UAV image data collection is the low capacity
to compensate and analyze larger areas. However, this type of aerial remote sensing is important
when considering the spatial resolution and highly detailed information obtained on the vegetation
cover, permitting an analysis at a plant or crop-plot level [68–71]. Additionally, by evaluating crop at
an aerial view, it is easier to ascertain the relationship between spectral data and biophysical variables,
since the end-user can reduce the amount of noise introduced in the system by extracting only pixels
corresponding with the canopy itself.

The approach presented here may also be implemented with different datasets over diverse
areas, crops, and sensors. The approach of adopting multiple machine learning models and VIs
could also be used to predict agronomic variables like other macronutrients and micronutrients.
Previous experiments already suggest the possibility of inference other nutrients with spectral data from
proximal sensors [12,62,72]. In this regard, additional experiments could consider multispectral data
from sensors embedded in UAVs. Here, the particular objective was to investigate the contribution of
multispectral data in machine learning methods to nutrient content (N) and height (PH). The advantage
of LNC and PH prediction with UAV-based images is that it promotes a rapid and cost-efficient manner
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to the recurrent monitoring of the agricultural landscapes. However, the traditional agronomic method
should not be substituted but assisted by remote sensing technologies and computational techniques
such as the ones indicated here.

5. Conclusions

In this study, a machine learning approach was implemented to estimate LNC (g kg−1) and PH (m)
for maize plants. It was tested whether the models are impacted by data input regarding different
combinations of SBs and VIs. It also demonstrated which one of the implemented learners is more
suitable to predict both parameters (LNC and PH). The conducted experiment showed that the RF
algorithm performed better, with RMSE equal to 1.9 g.kg−1 and 0.17 m, for LNC and PH, respectively.
The VIs contributed more to the algorithm’s performances than the SBs. This paper concludes that
the proposed approach of machine learning models is appropriate to predict these agronomic variables.
This method may be used in research that intends to evaluate different types of crops or applied in
precision agriculture practices and assist in decision-making models. Regardless, future experiments
should be conducted in more practical conditions.
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Abstract: Assessment of the nitrogen status of grapevines with high spatial, temporal resolution
offers benefits in fertilizer use efficiency, crop yield and quality, and vineyard uniformity. The primary
objective of this study was to develop a robust predictive model for grapevine nitrogen estimation at
bloom stage using high-resolution multispectral images captured by an unmanned aerial vehicle
(UAV). Aerial imagery and leaf tissue sampling were conducted from 150 grapevines subjected to five
rates of nitrogen applications. Subsequent to appropriate pre-processing steps, pixels representing
the canopy were segmented from the background per each vine. First, we defined a binary
classification problem using pixels of three vines with the minimum (low-N class) and two vines
with the maximum (high-N class) nitrogen concentration. Following optimized hyperparameters
configuration, we trained five machine learning classifiers, including support vector machine (SVM),
random forest, XGBoost, quadratic discriminant analysis (QDA), and deep neural network (DNN)
with fully-connected layers. Among the classifiers, SVM offered the highest F1-score (82.24%) on the
test dataset at the cost of a very long training time compared to the other classifiers. Alternatively,
QDA and XGBoost required the minimum training time with promising F1-score of 80.85% and
80.27%, respectively. Second, we transformed the classification into a regression problem by averaging
the posterior probability of high-N class for all pixels within each of 150 vines. XGBoost exhibited
a slightly larger coefficient of determination (R2 = 0.56) and lower root mean square error (RMSE)
(0.23%) compared to other learning methods in the prediction of nitrogen concentration of all vines.
The proposed approach provides values in (i) leveraging high-resolution imagery, (ii) investigating
spatial distribution of nitrogen across a vine’s canopy, and (iii) defining spatial zones for nitrogen
application and smart sampling.

Keywords: grapevine; hyperparameter optimization; machine learning; multispectral imaging;
nitrogen; precision viticulture; UAV

1. Introduction

The United States of America is the seventh largest table grape (Vitis vinifera L.) producing country
in the world with 100 million 9 kg-boxes produced annually since 2012. Approximately 99% of the
USA’s table grapes are produced in California, primarily in the southern San Joaquin Valley (SJV) [1].
One of the most common table grape cultivars in the SJV, and worldwide, is Flame Seedless [1].
Production of Flame Seedless, like other table grapes, is particularly capital-intensive, so it is imperative
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to maximize yield and quality to ensure profitability [2]. An important factor that contributes to grape
yield and quality is vine mineral nutrition [3,4]. In SJV vineyards, nitrogen (N) is the mineral element
that most often needs to be supplemented by fertilization [5]. Insufficient N limits vine vigor [6,7].
On the other hand, unnecessary application of N fertilizers needlessly increases the production cost,
may cause unintended nutrient imbalances, contributes to environmental contamination [8]), stimulates
excess vegetative growth, and reduces grape quality [9]. In fact, excessive application of nitrogen
to crop plants has led to significant nitrate groundwater pollution in the SJV [10]. To help prevent
further nitrate contamination to groundwater, growers in the SJV are required to implement nitrogen
management plans.

Laboratory analyses of plant tissue samples can help determine if supplemental fertilizer treatments
are necessary and are thus a fundamental component of N management plans [11]. Petioles are the
most commonly sampled tissue of grapevines, but leaf blades may be used instead [11]. Tissue nutrient
content changes markedly over the course of each season, hence samples are collected at particular
growth stages to facilitate the comparison of data collected in other seasons or different locations.
Bloom (anthesis) is the earliest standard sample collection time, and petioles or leaf blades collected at
bloom are generally considered a reliable indicator of grapevine nutrient status and are thus widely
used by commercial growers [12]. The collection of tissue samples is laborious, the analyses are
relatively expensive, and care must be taken to ensure the samples collected are representative of the
management area [4].

The increased availability and affordability of unmanned aerial and ground vehicles and advanced
non-contact sensing technologies (e.g., hyper/multispectral sensors) has prompted research on remote
sensing as a complimentary or alternative approach for estimating nitrogen status in specialty crops
such as grape [4,13], apple [14], citrus [15], and almond [16]. An effective remote sensing protocol might
offer some advantages over conventional testing, particularly with respect to spatial resolution and
cost. For example, remote sensing could potentially reveal spatial variation of N status in grapevines,
which can assist in identifying hot spots for smart sampling (i.e., directed sampling) and generating
precise maps to develop a variable rate N fertilization program. However, the use of remote sensing
for N estimation in crops has been constrained by issues associated with data analysis, such as
overfitting, the curse of dimensionality, and developing robust, scalable, and generalizable predictive
models. These large image-based datasets, often having high spatial, spectral, and temporal resolution,
may require more sophisticated data analytics techniques to fully capitalize on the data, whereas
conventional methods have previously relied on spectral indices [17].

Spectral indices have some significant limitations as analytical tools. For instance, normalized
difference vegetation index (NDVI) saturates when vegetation coverage is dense [18], and atmospherically
resistant vegetation index (ARVI) saturates when chlorophyll concentration reaches a certain level [19].
Previous studies have recommended a wide range of spectral indices and electromagnetic regions for
predicting nitrogen content in crops. Pacheco-Labrador et al. [20] summarized more than 80 spectral
indices from the literature for N content estimation. They achieved a strong coefficient of determination
(R2 = 0.76) between a spectral index composed of three spectral bands (1310, 1720, and 730 nm) and
leaf nitrogen concentration in Holm oak. In addition, they identified red edge as a region with a high
correlation to leaf N concentration. A number of studies reported electromagnetic regions suitable
for N estimation including shortwave infrared (SWIR) [21], green, red edge, and near-infrared [20],
visible region, mainly blue region [22], blue, green, and red edge [23], and red edge position [24].
While red edge has been frequently suggested as one of the most relevant spectral regions, Hansen and
Schjoerring [22] questioned the importance of red edge as it was not identified as a significant band
related to the N content of two winter wheat cultivars in their study. After calculating all possible
normalized ratio indices for wavebands between 350 and 2200 nm aimed at predicting N content of
five species, Ferwerda et al. [25] did not identify an optimal normalized ratio index that correlated
well with the N content of five plant species. Considering the limitations of spectral indices, there is
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a need for advanced data analytics techniques to develop mathematical predictive models through
harnessing the power of big data and computer processing.

The emergence of advanced machine learning techniques, along with high-performance
computational power, has provided new opportunities to translate image-based datasets into novel
insights. In agriculture, machine learning and deep learning have been recently implemented to
analyze images captured for various applications, such as biotic stress detection [26,27], abiotic
stress detection [28,29], nitrogen estimation [30,31], spectral features selection for high-throughput
phenotyping [32], weed detection [33,34] and yield prediction [17,35].

Although the capability of machine learning has been verified in the agricultural domain, its full
potential has been restricted by the limited number of ground truth data while developing a robust
and generalizable predictive model demands a large and diverse dataset to capture the inherent
large spatial and temporal variability in complex biological problems. Ground truth data collection
is generally expensive, labor-intensive, and time-consuming. In addition, collecting ground truth
data in agriculture often requires destructive experiments, like tissue sampling for nitrogen content
measurements. A limited number of ground truth data confines the efficient use of advanced machine
learning algorithms because it limits the tuning of the model’s hyperparameter and learning of the
model’s parameters. Configuration of hyperparameters and parameters of a model is required for
developing an underlying function that effectively maps the input variables to the desired output
variables and maintains its performance on unseen datasets.

This study was motivated by the desire to develop a data-driven, decision-support tool to facilitate
grapevine nitrogen management. The overarching goal of this study was to leverage high-resolution
aerial multispectral imagery and advanced machine learning techniques to develop robust predictive
models for grapevine nitrogen estimation at the bloom (anthesis) stage when tissue sampling is often
performed. The specific objectives were to (i) develop predictive models through the optimized
configuration of hyperparameters and parameters for accurate nitrogen concentration estimation at
bloom, (ii) compare the performance of trained models in pixel-based binary classification and in
vine-based prediction of nitrogen concentration, and (iii) investigate the spatial distribution of nitrogen
across a canopy through pixel-based soft classification (i.e., calculating the posterior probabilities
of classes).

2. Materials and Methods

2.1. Experimental Site

The research was conducted in a commercial table grape vineyard near Kingsburg, California.
Vitis vinifera L. cv. Flame Seedless table grapes grafted onto Freedom rootstock were planted in 2012.
Vine and row spacing was 1.83 and 3.66 m, respectively. The vines were trained to quadrilateral
cordons and supported by a 3.05 m wide, Y-shaped, open gable trellis system.

All vines within the experimental portion of the vineyard were subjected to regular cultural
practices performed by the grower with the exception of nitrogen fertilization. Vines in the study area
were not fertilized or received different amounts of N as part of an N fertilization trial. Specifically,
the effects of three levels of N (0, 19.2, or 48 g/vine) and two levels of split applications (2 versus
10 applications/season) were tested in a split-plot design where the level of N was the main plot factor
(replicated five times), and the number of split applications was the subplot factor. This design required
a total of 30 plots (3 levels of N × 2 split application treatments × 5 replications), each containing five
individual vines, resulting in a study with 150 vines. Due to the combination of main plot factors
(levels of N) and subplot factors (levels of split applications), at bloom, the time tissue samples were
collected, the various plots had received a fraction of the total seasonal amount of N to be applied.
Depending on the N and split application treatments to which the plots were assigned, the vines had
received 0.0, 3.9, 9.6, 9.7, or 24.2 g N/vine (Figure 1A). The differential application of N affected leaf N
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concentration, which made the site an appropriate place to evaluate the potential of remote sensing to
estimate leaf N concentration of table grapes.

 
Figure 1. (A) Experimental site composed of 150 vines with five nitrogen application treatments at
Selma, California. Each plot contained five consecutive vines in a row. Depending on the nitrogen and
split application treatments assigned to the plots, the vines had received 0, 3.9, 9.6, 9.7, or 24.2 g N/vine
at the time the data were collected (bloom). (B) Segmentation process of canopy pixels using excess
green index (EGI) and normalized difference vegetation index (NDVI). The extent of each vine within a
plot was determined based on the markers’ location, spatial resolution (~1 cm/pixel), and vines spacing
(1.83 m).

Leaf tissue samples were collected from each of the five vines within each experimental plot
immediately after aerial imagery at bloom. We collected one shoot at random from each of the 150 vines.
Entire shoots were thoroughly rinsed in deionized water, and all of the leaf blades on each shoot were
clipped from their petioles with shears, dried in a forced-air oven, ground into a fine powder, and then
submitted to a commercial laboratory (Dellavalle Laboratory, Inc., Fresno, CA, USA) for determination
of total N using the automated combustion method [36]. Nitrogen concentration values are expressed
as a percentage of leaf dry weight. We followed a similar protocol except that the vine that each shoot
was collected from was noted and considered a separate sample.

2.2. Airborne Multispectral Imaging System

The images were collected with the RedEdge 3 camera system (MicaSense, Inc., Seattle, WA, USA),
which simultaneously captures five discrete spectral bands, including blue, green, red, red edge,
and near-infrared. The field of view of the lens for all bands was 47.2 degrees. The size of the images
was 1280 × 960 pixels, and they were saved with 16-Bit TIFF. Table 1 summarizes the specification of
the multispectral camera.

Table 1. Specification of MicaSense RedEdge 3 multispectral camera.

Bands Center Wavelength (nm) Bandwidth FWHM *

Blue 475 20
Green 560 20
Red 668 10

Red Edge 717 10
Near-infrared 840 40

* full width at half maximum.
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2.3. Aerial Imagery Campaign

Multispectral images were collected from the experimental plots during the bloom stage on
8 May 2019. The multispectral camera system was mounted on the dual downward gimbal mount
of DJI Matrice 210 (Shenzhen, China) UAV using a 3D-printed mounting bracket. The multispectral
images were captured individually from each single plot in a hovering state at an altitude about 15 m
above ground level using the camera’s manual capture functionality through the WIFI interface to
achieve sufficient spatial resolution (about 1 cm/pixel) for minimizing the number of mixed pixels.
An automatic exposure setting was used during aerial multispectral imagery to leverage the sensor’s
full dynamic range while avoiding saturation. The images were captured around solar noon with clear
sky conditions.

2.4. Pre-Processing of Multispectral Images

A python-based framework called Micasense_preprocessing (version 1.0.0) was developed to
automate all pre-processing steps, including radiometric calibration, unwarping (removing lens
distortion for better image alignment), and bands alignments [37].

At the first step of radiometric calibration, raw images were converted to radiance to
account for sensor-dependent factors such as gain, exposure setting, and vignette effects [17].
The Micasense_preprocessing uses information embedded in the header file of images for
radiance conversion. Afterwards, the radiance images were converted to reflectance to account
for the time-dependent factor, which is mainly variation in the intensity of incident light.
The Micasense_preprocessing converted the radiance images to reflectance using incoming irradiance
measured by a five-band incident light sensor integrated with the camera. The incident light
sensor was mounted on the top of the aircraft using a 3D-printed mounting bracket while pointing
upward to measure downwelling irradiance at each band per each captured image. In addition,
the Micasense_preprocessing unwarped the images, aligned, and cropped each image to the common
frame among all five bands.

2.5. Grapevine’s Canopy Segmentation

Two markers were placed on top of the first and last vine’s trunk in each plot to facilitate the
identification of each plot extent. Afterwards, the extent of each vine within a plot was determined
based on the markers’ location, spatial resolution (~1 cm/pixel), and vines spacing (1.83 m). Lastly,
pixels representing the canopy were segmented from the background using a binary mask obtained
from applying empirical thresholds on the excess green index (EGI) and NDVI (i.e., multiplying EGI
and NDVI binary masks) [29] (Figure 1B). The canopy pixels located in the shaded area were removed
during the segmentation process.

2.6. Analysis of Multispectral Dataset

Prediction of nitrogen at the vine-scale was essentially a regression problem in which we have a
continuous output variable (i.e., nitrogen concentration). While we had a single value for nitrogen
concentration per a given vine, there were thousands of pixels (i.e., samples) for each vine. One common
approach is to average across all of the pixels for an individual vine to generate one feature vector
(i.e., spectral response) per each output. Although this approach is widely used to address ill-matched
problems, when there is only one output variable representing several samples, it can be a naïve
solution because it ignores the variability of N concentrations within vines. This spatial variability,
however, can be revealed by using an appropriate approach for analysis of high-resolution imagery.

In the first step of the analysis, a binary classification problem was defined at the pixel level
to leverage the large number of pixels obtained through high-resolution imagery. In addition,
this approach enabled us to investigate the distribution of nitrogen concentration across the top of the
canopy. However, since the finest resolution at which nitrogen management decisions can be made is
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at the vine scale, we converted the pixel-based soft classification problem into a vine-based regression
problem. The details of the proposed methodology are described hereinafter.

2.6.1. Training Machine Learning Classifiers

Based on the nitrogen concentration measured through tissue sampling for each vine, we defined
two classes, low-N class and high-N class, such that a balanced dataset was generated with an
approximately equal number of observations per each class. The low-N class entailed three vines
(n = 42,604 pixels) with the minimum amount of nitrogen concentration, and the high-N class comprised
two vines (n = 41,817 pixels) with the maximum amount of nitrogen concentration among all 150 vines
(Figure 2A). Therefore, the matrix of features had 84,421 rows (i.e., pixels) and five columns (i.e., spectral
bands), and the target array with the length of 84,421 contained the class labels (low-N or high-N)
corresponding to each of the samples. The averaged spectral response of low-N and high-N classes are
presented in Figure 2B.

Figure 2. (A) Stacked histogram of measured leaf nitrogen concentration (% dry weight) showing
the contribution of individual nitrogen fertilizer rate (the amount of nitrogen that vines received
until bloom) in each bin. Three vines with minimum nitrogen concentration were used as the low-N
class, and two vines with maximum nitrogen concentration were used as the high-N class. The mean
and standard deviation of the measured nitrogen concentration for 150 vines were 2.98% and 0.34%,
respectively. (B) Averaged spectral response of the low-N class (three vines with 42,604 pixels) and the
high-N class (two vines with 41,817 pixels).

After shuffling the dataset, about 10% of the data from each class was held out as a test dataset
(4190 pixels for high-N and 4253 pixels for low-N class) for an unbiased evaluation of the prediction
models, and the rest of the dataset (90%) was used for hyperparameter tuning and learning the
model’s parameters.

The training dataset was standardized using the z-score technique such that each new feature had
a zero-mean and unit-variance distribution. The mean and standard deviation of the training dataset
was used for standardizing the test dataset [17].

In this study, we implemented five machine learning algorithms, including support vector
machine (SVM), random forest, XGBoost, quadratic discriminant analysis (QDA), and deep neural
network (DNN) with fully-connected layers. These classifiers were selected to examine various types
of classifiers in terms of objective function, interpretability, scalability, sensitivity to outliers and noise,
and ability to handle collinearity among the input features.

All models were developed in Python (version 3.7.3) using the scikit-learn library (version 0.22) [38],
XGBoost library (version 0.90) [39], and TensorFlow library (version 2.1.0) [40].
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2.6.2. Hyperparameter Optimization

The performance of machine learning models is largely influenced by the configuration of
their internal parameters, so-called hyperparameters [41]. The aim of optimizing hyperparameters,
which should be defined upfront by model developers, is to identify an optimal set of hyperparameters
that offers the best performance on a validation dataset based on a desired validation metric such as
F1-score or prediction error. Through hyperparameter optimization, as a key step in the development
process of machine learning models, we attempt to develop a model that could generalize its
performance on an unseen test dataset.

The most widely used approaches for optimizing hyperparameters have been grid and random
search, among which random search tends to outperform [42]. However, grid and random search suffer
from ignoring the past results observed during previous search iteration; hence they are inefficient
in terms of required processing time to explore search space. Recently, the Bayesian optimization
approach has been applied for hyperparameter tuning of machine learning models [43,44]. Using this
approach, the history of previously evaluated trials is leveraged to strategically navigate the next
hyperparameter search in search space in a more time-efficient manner. It has been shown that
hyperparameter optimization techniques based on Bayesian optimization could significantly outstrip
random search in terms of lower validation error and required computation time [43,45].

In this study, we utilized Tree Parzen Estimator [43], a similar method to Bayesian optimization,
yet faster [46]. An optimal set of hyperparameters for each machine learning classifier was
identified using the Optuna library (version 1.3.0) [47] in python. This library is a define-by-run
application programming interface (API) that provides an automated framework to dynamically
search hyperparameter space for the identification of an optimal set of hyperparameters through
strategic searching and pruning method [47]. The list of hyperparameters optimized for each classifier
is presented in Table A1.

2.7. Comparing Classifiers on Test Dataset

The performance of classifiers was evaluated on the test dataset using several metrics such as
F1-score, precision, recall, and area under the curve (AUC) in the receiver operating characteristics
curve [48]. In addition, the performance of the classifiers was also compared using a 10-fold
cross-validation (CV) on the training dataset. The required time for training and testing the classifiers
was also recorded to compare the scalability of the models.

2.8. Transforming Classification into Regression

The ultimate goal for developing machine learning predictive models was to predict the nitrogen
concentration at the vine-scale at which fertilizer decision and application are performed. The classifiers
were developed to return posterior class probability—a soft classification approach rather than a
hard-binary classification. The posterior probability of high-N given spectral data (P(high_N

∣∣∣X) )
for all pixels representing each of 150 vines was averaged to calculate the probability of high-N
at the vine scale. Then, the coefficient of determination between P(high_N

∣∣∣X) and the measured
nitrogen concentration was computed for each predictive model. Root mean square error (RMSE)
was also calculated as another metric for prediction error. SVM was omitted for this step as the
standard SVM does not offer per-class posterior probability [49]. In this approach, the performance
of models trained on pixels of five vines was evaluated on a large dataset, including vines with N
concentration distribution outside of the training dataset composed of pixels of five vines with extreme
nitrogen concentration.

The entire process from data collection to data analysis and interpretation is summarized as a
flowchart in Figure A1.
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3. Results

3.1. Bands Pairwise Correlation

Patterns and relationships between the features (spectral bands) for the two classes (low-N and
high-N) were investigated through exploratory data analysis (EDA) in which bands were mutually
plotted against each other in the shape of a rectangular 5 × 5 matrix (Figure 3).

 
Figure 3. Multispectral bands pair plot in the shape of a rectangular 5 × 5 matrix. Upper diagonal
plots show scatter plots of pixels in two-dimensional feature spaces; each spanned by a pair of bands.
Diagonal plots illustrate the probability density function of two classes estimated with the univariate
kernel density estimate (KDE) technique. Lower diagonal plots depict the probability density function
of each class estimated by bivariate KDE across the 2-dimensional feature space spanned by a pair of
bands. The regions shown with a darker color refer to a denser area.

The upper triangle of the grid in Figure 3 illustrates the scatter plots of pixels in two-dimensional
feature spaces, each spanned by two bands. These scatter plots provide information about the
correlation between bands, distribution of the pixels, and the extent of low-N class deviation from
high-N class. In general, spectral bands exhibited positive correlation mutually. The scatter plots in
Figure 3 indicate that red edge has a strong correlation with both near-infrared (NIR) and red bands,
whereas green band exhibits relatively less correlation with other bands. In addition, scatter plots
depict how different pair-band combinations differentiated low-N and high-N classes. For instance,
NIR and green bands, which were less correlated, offered better discrimination of the two classes
compared to the other pairs. It also appears that the NIR-RedEdge scatter plot is the other feature
space in which the two classes are more separated while there is a strong correlation between the NIR
and red edge bands.

Pixels representing low-N class tend to scatter more in the feature space, indicating more variation
among pixels. Alternatively, pixels of the high-N class tend to cluster with less variation, generating
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denser area in the scatter plots. However, the regions with a higher density per each class are not
noticeable in the scatter plots due to a large number of pixels and a high degree of overlapping.
Therefore, the bivariate kernel density estimate (KDE) is shown in the lower triangle of the grid
in Figure 3. The bivariate KDE plots illustrate the variability of the underlying probability density
function of each class across the two-dimensional feature space spanned by two bands. While the
scatter plots provide information about the distribution of the pixels from the two classes, the bivariate
KDE plots demonstrate the probability density of the pixels per each class—regions with higher
probability density are shown with a darker color in Figure 3. Similar to the scatter plots, bivariate
KDE plots indicate the positive correlation between spectral bands as the major axis of the ellipsoid in
pairwise plots has a positive slope.

The diagonal plots in Figure 3 show the underlying probability density function of two
classes estimated with univariate KDE—a nonparametric technique with a Gaussian kernel function.
The univariate KDE plots provide insight into the reflectance pattern of pixels representing the two
classes. For instance, the low-N pixels tended to reflect more in green and red bands, which explains
why the leaves with low N concentration appear to have a light green-yellow color.

3.2. Hyperparameter Tuning

The goal of hyperparameter tuning was to assure an optimal set of the model’s hyperparameters
that returns the best performance is used during the training step of the model. Figure 4 shows
the variation of classification accuracy for SMV as a function of hyperparameter values for more
than 100 trials, where the accuracy reached a plateau. For this dataset, the “radial basis function”
tended to result in a higher accuracy; therefore, it was selected as the kernel for the SVM classifier.
The optimal values for the regularization parameter (C = 52.07) and kernel coefficient (gamma = 0.21)
were identified based on the SVM performance across the trials. The list of hyperparameters, search
space domain per each hyperparameter, and the selected optimal hyperparameters are shown in
Table A1 per each classifier.

Figure 4. Hyperparameters optimization for support vector machine (SMV) classifier. The optimal
hyperparameters set, which returns the maximum accuracy (0.82), includes: C = 52.07 (regularization
parameter), gamma = 0.21 (kernel coefficient), Kernel = “radial basis function”.

3.3. Performance of Classifiers

The performance of five classifiers was examined in this study. Once the classifiers were trained on
the training dataset (n = 75, 978) with the optimal hyperparameters, their performance was evaluated
on the test dataset (n = 8443) using several metrics including F1-score, precision, recall, and area under
the curve (AUC) in receiver operating characteristics (ROC) curve.

Table 2 presents the performance of classifiers on the test dataset as well as the training dataset
using a 10-fold cross-validation. Among the classifiers, SVM offered the best performance at the cost
of long training time compared to the other classifiers. Alternatively, QDA and XGBoost required
the minimum training time. While F1-mean and AUC provide information about the ability of
the classifiers in learning from the training dataset and generalization on an unseen test dataset,
the required time for training and testing of classifiers indicates the scalability of the classifiers to larger
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datasets. QDA needed a small fraction of a second (0.02 s) to return a promising F1-mean (80.85%),
which was about 1.4% lower than the highest F1-mean obtained by SVM (82.24%). It should be noted
that AUC was not calculated for SVM because the SVM classifier does not return the probability of
belonging to classes for a given sample.

Table 2. Comparing the performance of classifiers on test (n = 8443) and training datasets (n = 75,978).
The result of the training dataset was obtained using 10-fold cross-validation.

Classifier

Test Dataset Training Dataset

F1 1 (%)
Precision

(%)
Recall

(%)
AUC 2

(%)
Threshold 3 Training

time (s)
Prediction
time (s)

F1 –mean
(%)

F1 StD 4

SVM 82.24 82.35 82.25 _ _ 128.59 3.45 82.25 0.32
QDA 80.85 80.96 80.86 89.01 0.54 0.02 0.01 80.40 0.30

Random
Forest 81.81 81.81 81.81 90.25 0.51 91.39 0.62 81.55 0.23

XGBoost 80.27 80.29 80.27 88.29 0.51 7.29 0.02 80.94 0.31
DNN 81.68 81.79 81.69 89.90 0.52 316.09 0.57 81.34 0.52

Ensemble 82.24 82.31 82.25 90.31 _ 543.37 4.66 _ _
1 Average of F1-scores weighted by samples of each class; 2 Area under the curve in receiver operating characteristics
curve; 3 Optimal decision threshold for classification; 4 Standard deviation of F1-score among 10 folds.

To aggregate the benefits of each classifier, an ensemble classifier was constructed by combining
the prediction made by the classifiers. For a given test sample, all trained classifiers were used to
predict its class label. Using the voting approach, a class label with the maximum of votes was assigned
to the test sample. The ensemble classifier was not able to improve the performance of classification.
This might suggest there are pixels in the test dataset that the majority of the classifiers were not able to
classify them correctly; hence, the ensemble approach did not enhance the classification performance.
For instance, some of the pixels in high-N class might present a very similar reflectivity to low-N class
and vice versa.

The high F1-score averaged among the 10-folds of the training dataset and its low standard
deviation across the folds for each classifier, indicated the performance of the classifiers was consistent
regardless of which folds of samples were used as training and test datasets. In addition, it suggested
a similar F1-score can be expected by deploying the trained classifiers using all training dataset to
predict the class labels of the test dataset. This observation that the F1-scores obtained for 10-fold
CV and test dataset were very close to one another might suggest the optimal hyperparameters were
identified for each classifier.

3.4. Nitrogen Prediction of Vines

Once the classifiers had been trained on the training dataset using the optimal hyperparameters,
they were utilized to predict the probability of high-N class for all pixels of other vines. The predicted
probability values were then averaged across the pixels of a vine to compute one probability value
(P(high_N

∣∣∣X) ) per each vine. Figure 5 shows the coefficient of determination (R2) and root mean
square error (RMSE) for nitrogen prediction of four classifiers capable of predicting the class label
as a probability. XGBoost exhibited a slightly larger coefficient of determination and lower RMSE
compared to other learning methods in the prediction of N concentration of vines.
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Figure 5. Performance of four learning models in prediction of nitrogen (N) concentration for all
150 vines. For a given vine, N concentration was measured through tissue sampling and predicted
N was obtained by averaging the posterior probability of high_N class for all pixels of the vine.
The coefficient of determination (R2) and root mean square error (RMSE) are reported as two metrics
representing the goodness of fit per each learning method.

4. Discussion

4.1. Influence of Leaf Nitrogen Concentration on Spectral Characteristics

A mechanistic understanding of how incident light interacts with leaves of different N
concentrations is required for a meaningful interpretation of remote sensing data, such as aerial
multispectral images. In this study, the observed differences between the spectral responses of low-N
and high-N classes might be the result of physiological changes, such as leaf chlorophyll concentration,
which is correlated with the N concentration of fully expanded leaf blades [13].

4.1.1. Visible Bands (Blue, Green, and Red)

A healthy (i.e., non-stressed) leaf has a tendency to absorb a larger extent of incident light in
blue and red bands for photosynthesis activities. Therefore, the higher reflectivity of low-N pixels in
blue and red bands can be an indication of a decline in chlorophyll content. Compared to red band,
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the reflectivity of low-N class at blue band was less affected by the N concentration—a larger alteration
was observed in the red band (Figure 2B and diagonal plots in Figure 3). This observation may suggest
that chlorophyll in grape leaves, with high absorption at blue and red bands, was more sensitive to N
deficiency compared with carotenoids, which have high absorption in blue regions. The ratio between
carotenoid and chlorophyll has been previously reported to increase in plants under stress or with
senescing leaves [50]. Based on this alteration in the relative ratio between carotenoid and chlorophyll,
spectral indices such as the normalized pigments chlorophyll ratio index (NPCI) [51] and normalized
difference plant senescence index (NDPSI) [17] have been developed to assess N deficiency in leaves
and to segment senescent leaves in aerial imagery, respectively. In the green band, pixels representing
low-N class tended to show a greater reflectance (Figure 2B and diagonal plots in Figure 3) in response
to a decrease in leaf chlorophyll concentration [52,53].

4.1.2. Red Edge Band

Red edge is historically known to be an indirect estimator of plant N status as red edge position
was shown to shift to a shorter wavelength in response to a decline in chlorophyll content [54,55],
and chlorophyll content itself was shown to be correlated with N content in grapes [13,50]. Although
an accurate calculation of red edge position is not possible in multispectral imaging due to its coarse
spectral resolution, the higher reflectivity of low-N class in red and red edge suggests the red edge
position has shifted towards shorter wavelengths (Figure 2B).

4.1.3. Near-Infrared Band

Healthy leaves tend to have a high reflectivity in near-infrared due to their internal cellular
structure [56]. Pixels of low-N class tended to have lower reflectance in near-infrared band compared
to the pixels representing the high-N class (Figure 2B). The reduction in near-infrared reflectance of
leaves with low nitrogen concentration may indicate that the internal cellular structure of the leaves
sustained damages as previous studies demonstrated the reflectance of leaves in near-infrared is largely
influenced by leaf structure [57,58].

In summary, the near-infrared band exhibited the largest absolute difference between the spectral
reflectance of low-N and high-N class, followed by the red edge, green, red, and blue bands. This is in
agreement with a previous study that showed that near-infrared, red edge, and green bands have the
highest coefficient of determination between leaf reflectance from 400 to 2500 nm and leaf nitrogen
concentration in Holm oak [20]. However, if we sort the multispectral bands based on the absolute

values of percentage difference
(∣∣∣∣ρhighN−ρlowN

ρhighN

∣∣∣∣× 100
)
, the order will become green (10.41%), near-infrared

(9.02%), red (8.63%), red edge (6.09%), and blue (2.61%).

4.2. Significance of the Proposed Data-Driven Method

Prediction of leaf N concentration was inherently a regression problem, which requires
the prediction of a continuous variable (i.e., N concentration) given multiple input variables
(i.e., multispectral images). One of the novel contributions of this study was to deploy machine
learning classifiers for this type of regression problem. The process started with training supervised
binary classifiers on pixels of vines with extreme N concentration. Once a classifier was trained with
its optimal set of hyperparameters, it was utilized to predict N concentration of a given vine in the
form of probability of belonging to either of classes (i.e., low-N or high-N).

The alternative approach was to train a regression algorithm for the direct prediction of N
concentration at the vine scale. In this approach, the spectral response of pixels representing vine
canopy should be averaged per vine to obtain one input feature vector per ground truth data, which was
the vine’s N concentration measured through tissue sampling. Therefore, substantial spatial and
spectral information is diminished through the averaging process across the thousands of pixels in a
vine [17]. In addition, to train a robust regression algorithm for learning a complex problem such as
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nitrogen prediction, more substantial ground truth data are required in this approach since the total
number of samples is limited to the number of vines, which was 150 in this study.

The proposed method in this study, on the other hand, offers several advantages which are
discussed here.

4.2.1. Appropriate Use of High-Resolution Imagery

One of the benefits of the proposed framework is to leverage thousands of samples in the form of
pixels attained through high-resolution aerial imagery. Although a dataset with a large number of
samples, compared to the number of features, does not necessarily assure developing accurate learning
models, it allows having (i) an adequate training dataset to develop a robust mapping function for
mapping from an input space to an output space, (ii) a validation dataset with a sufficient number
of samples to identify an optimal set of hyperparameters and better tuning the parameters of the
learning model, and (iii) a test dataset with more diverse samples to reliably evaluate the generalization
performance of the model.

The results demonstrated the efficiency in learning from large training data and the reliability
of the trained models in predicting the class labels of unseen test samples. The high F1-mean and
low F1-std achieved by the 10-fold CV on the training dataset indicated low bias and variance error,
respectively (Table 2). Moreover, the F1-mean of CV can be used as an estimation for the expected model
accuracy on unseen data. This was verified by the results obtained on the test dataset, indicating the
generalization ability of the trained classifiers on new datasets. In addition, the promising regression
results confirmed the validity of the proposed approach in predicting N concentration in grapevines.

4.2.2. Spatial Distribution of N Across the Vine’s Canopy

Nitrogen is a significant determinant for the photosynthetic activity of plants, and its distribution
within the canopy is a key element of photosynthesis and carbon gain at the canopy level [59].
The pixel-based probability, (P(high_N

∣∣∣X) or P(low_N
∣∣∣X) ), estimated by the trained predictive models

can assist in the mechanistic understanding of the N distribution at the surface of the canopy in a
non-invasive and quantitative manner.

Figure 6A shows the distribution of the posterior probability of high-N class (P(high_N
∣∣∣X) ) at

the pixel level, obtained by a XGBoost classifier and two widely used spectral indices, normalized
difference vegetation index (NDVI) and normalized difference red edge index (NDRE), for two vines
one with the lowest N concentration (2.41%) and the other with the highest N concentration (4.19%)
among all vines. While the distribution of P(high_N

∣∣∣X) for the two vines are well-separated, there is a
high degree of overlap between the distribution of NDVI and NDRE for these two vines with low and
high N concentrations. This highlights the ability of the predictive models in distinguishing vines with
low N concentrations from vines with high N concentrations.

Figure 6B illustrates pixel-based probability (P(high_N
∣∣∣X) ) obtained by XGBoost classifier along

with NDVI and NDRE, represented with a colormap, for two plots with zero and 24.2 g applied
nitrogen per vine. Figure 6B demonstrates how the results achieved by XGBoost could capture the
variability of N across the plots—a vine with a high N concentration exhibits more dark green pixels,
whereas a vine with low N concentration displays more light yellow pixels. Similar to the histograms,
there is a distinct difference between the vines with low and high N concentration for the P(high_N

∣∣∣X)

compared to NDVI and NDRE. In essence, machine learning algorithms provide a wider dynamic
range, which is visually more appealing for human sensory comparison. Furthermore, machine
learning can be used as a practical tool to spot hot zones with low nitrogen concentration in a large
commercial orchard. Among the two indices, NDRE performed better in discrimination of the vines
with extreme N concentration.
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Figure 6. Comparing the results obtained by one of the machine learning techniques (posterior
probability of the high-N class, P(high_N

∣∣∣X) , obtained by XGBoost) with two widely used spectral
indices, normalized difference vegetation index (NDVI) and normalized difference red edge index
(NDRE). (A) Histogram of P(high_N

∣∣∣X) for two vines with minimum and maximum nitrogen
concentration among all 150 vines compared with NDVI histogram and NDRE histogram. A distinct
separation exists in P(high_N

∣∣∣X) histogram for the pixels of vines with the two extreme nitrogen
concentrations compared with NDVI and NDRE. (B) Pixel-base P(high_N

∣∣∣X) , NDVI, and NDRE
represented with a colormap for two plots with zero, and 24.2 g of nitrogen applied per vine. Each plot
contains five vines, and the nitrogen concentration measured through leaf sampling is shown at the top
of each vine. P(high_N

∣∣∣X) obtained by XGBoost captures the spatial variability of N across the plots,
offers a wider dynamic range, which is visually more appealing for human sensory comparison and is
more useful in spotting hot zones suffering from low nitrogen in a vineyard.

According to P(high_N
∣∣∣X) calculated for vines in the plot with 24.2 g of N applied per vine,

pixels representing the leaves at the apical portion of the shoots (edge of the canopy toward the
middle of the row) were classified as low-N, most probably because these are young leaves with less
chlorophyll content than more mature leaves. Grapevine leaves at the shoot apex have been shown
to have significantly lower chlorophyll and N (when expressed per unit leaf area) than those located
further down the shoot (mid and basal positions) at bloom, however, the N concentration (expressed
per unit dry weight) of the apical leaves are significantly greater than those of the more mature
leaves [60]. In this study, pixels representing apical leaves in the high N plot (i.e., 24.2 g/vine) exhibited
similar spectral responses to leaves with decreased N in the zero applied N plots, even though their
N concentration may be high. This agrees with the conclusions of Friedel et al. [13] who reported a
disconnect between chlorophyll and N in young grape leaves. Consequently, the predictive models
classified the pixels representing apical leaves as the low-N class (Figure 6B).
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4.2.3. Adjustable Decision Threshold for Spatial Zoning of Nitrogen

In this study, the optimal decision threshold for classifying low-N and high-N classes was
calculated based on the maximum weighted F1-score. However, the proposed framework in this study
offers flexibility in the discretion of decision thresholds to define N management zones according
to various vineyard-specific conditions and management strategies. For example, in a conservative
N management approach, large threshold values for P(high_N

∣∣∣X) can be defined to determine N
management zones, aimed to assure minimum N stress. Alternatively, in an environmentally friendly
approach, smaller threshold values can be defined to reduce the risk of environmental contamination
caused by excessive N application. Therefore, in the proposed method, agronomic expert knowledge
can be integrated with machine learning to define optimal N management zones.

4.2.4. Directed Sampling from Hot Spot in Vineyard

The proposed data-driven method can help growers collect tissue samples in a more intelligent
and efficient manner. The descriptive N status map generated by the proposed method (similar to
Figure 6) can be used to efficiently identify vines with a various N status aimed at directed sampling.
The conventional random or grid sampling techniques, or sampling based on vineyard history, can be
replaced by the directed sampling technique, which can provide insights into N spatial variability.

4.3. Limitation of Multispectral Imaging

As discussed above, young leaves with less chlorophyll may exhibit a spectral response similar to
leaves with low N concentration. In addition, many other stresses or diseases can lead to chlorophyll
degradation in leaves, resulting in spectral patterns similar to leaves with low N concentration [61].
For instance, leaves with water stress in grapevine may exhibit similar spectral characteristics to
leaves suffering from N deficiency as they tend to have a lower reflectivity in near-infrared and higher
reflectivity in red edge and red bands compared to well-irrigated leaves [62]. Therefore, multispectral
imaging with a limited number of typical bands (blue, green, red, red edge, and near-infrared) may
not serve as the best tool for N assessment, in particular for a commercial vineyard where other
stress/diseases inducing chlorophyll degradation might be prevalent. In such cases, hyperspectral
imaging may be used to identify the most informative spectral bands aimed at developing a
custom-designed multispectral sensor for particular stress/disease detection, such as N deficiency in
grapevines [32,63].

5. Conclusions

This study proposed an innovative method for the analysis of high-resolution aerial multispectral
images captured at the bloom stage to assess nitrogen concentration in vines. A supervised binary
classification problem was defined to, (i) benefit from a training machine learning on a larger dataset
obtained through high-resolution imagery, (ii) provide insight on spatial variability of nitrogen
concentration within a single vine as well as across the grape vineyard, and (iii) accommodate
diverse points of view, benefit-oriented or environmental-oriented perspectives, in defining an optimal
threshold for fertilizer management decisions. For this purpose, five commonly used machine learning
classifiers were trained with an optimal set of hyperparameters. The highest F1-score (82.24%) on test
dataset was achieved by SVM with maximum training time, whereas QDA and XGBoost required
the minimum training time with promising F1-scores of 80.85% and 80.27%, respectively. Afterwards,
we transformed the classification problem into a regression problem to predict N concentration
at vine scale. Through implementing a soft classification approach, the posterior probability of
high-N class given spectral data (P(high_N

∣∣∣X) ) for all pixels of a vine was averaged to be used
as an indication of nitrogen concentration at vine scale. Among the predictive models, XGBoost
performed slightly better in terms of coefficient of determination and RMSE in the prediction of nitrogen
concentration. The findings of this study can offer immediate practical applications for sustainable
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nitrogen management, such as (i) providing insights on nitrogen variability in vineyards, which could
be useful for variable rate management, (ii) identifying hot zones with low nitrogen content for a
more informed and efficient tissue sampling. In addition, we investigated the impact of low nitrogen
concentration on the spectral characteristics of leaves in five bands. Based on the percentage difference
between the averaged spectral response of low-N and high-N class, the largest difference was observed
for green, near-infrared, red, red edge, and blue. To identify the most informative bands for nitrogen
estimation, a sensor, like a hyperspectral camera, with a higher spectral resolution, is required along
with advanced feature selection techniques.
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Appendix A

Table A1. List of hyperparameters, search space, and optimal values per each classifier. Optimized
configuration of hyperparameters was identified using five-fold cross validation in Optuna library
(version 1.3.0) in python (version 3.7.3).

Classifier Hyperparameters Search Space Domain Optimal Parameter

support vector machine
(SMV)

“kernel” (“poly”, ”rbf”, “sigmoid”) “rbf”
“C” (1 × 10−2, 1 × 102) 52.07

“gamma” (1 × 10−3, 1 × 100) 0.21

discriminant analysis “classifier” (QDA, LDA) QDA
“reg_param” (QDA) (0, 1 × 10−3) 5.27 × 10−7

random forest

“n_estimators” (100, 1000) 496
“criterion” (“gini”, “entropy”) “entropy”

“min_samples_split” (2, 100) 38
“min_samples_leaf” (2, 50) 3

“max_features” (2, 5) 2
“max_depth” (10, 1000) 110
“bootstrap” (True, False) TRUE

XGBoost

“num_boost_round” (100, 1000) 292
“learning_rate” (0.01, 0.5) 0.45

“feature_fraction” (0.1, 1.0) 0.9
“subsample” (0.1, 1.0) 0.94

“booster” (“gbtree”, “gblinear”, “dart”) “gbtree”
“lambda” (1 × 10−8, 1.0) 1.90 × 10−4

“alpha” (1 × 10−8, 1.0) 3.60 × 10−7

“max_depth” (1, 9) 9
“eta” (1 × 10−8, 1.0) 0.02

“gamma” (1 × 10−8, 1.0) 3.28 × 10−5

“grow_policy” (“depthwise”, “lossguide”) “lossguide”

deep neural network
(DNN)

“n_hidden_layers” (1, 10) 6
“weight_decay” (1 × 10−10, 1 × 10−3) 4.44 × 10−8

“activation” (“relu”, “sigmoid”, “tanh”) “tanh”
“n_units_in_hidden_layers” (4, 10) (6, 6, 5, 6, 6, 5)

“optimizer” (“RMSprop”, “Adam”, “SGD”) “Adam”
“learning_rate” (1 × 10−5, 1 × 10−1) 4.38 × 10−3

“batch_size_power” (5, 9) 25
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Figure A1. Workflow consisted of all steps from data collection to data analysis.
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Abstract: With the rapid development of unmanned aerial vehicle (UAV) and sensor technology,
UAVs that can simultaneously carry different sensors have been increasingly used to monitor nitrogen
status in crops due to their flexibility and adaptability. This study aimed to explore how to use
the image information combined from two different sensors mounted on an UAV to evaluate leaf
nitrogen content (LNC) in corn. Field experiments with corn were conducted using different nitrogen
rates and cultivars at the National Precision Agriculture Research and Demonstration Base in China
in 2017. Digital RGB and multispectral images were obtained synchronously by UAV in the V12, R1,
and R3 growth stages of corn, respectively. A novel family of modified vegetation indices, named
coverage adjusted spectral indices (CASIs (CASI = VI/(1 + FVcover), where VI denotes the reference
vegetation index and FVcover refers to the fraction of vegetation coverage), has been introduced to
estimate LNC in corn. Thereby, typical VIs were extracted from multispectral images, which have
the advantage of relatively higher spectral resolution, and FVcover was calculated by RGB images
that feature higher spatial resolution. Then, the PLS (partial least squares) method was employed to
investigate the relationships between LNC and the optimal set of CASIs or VIs selected by the RFA
(random frog algorithm) in different corn growth stages. The analysis results indicated that whether
removing soil noise or not, CASIs guaranteed a better estimation of LNC than VIs for all of the three
growth stages of corn, and the usage of CASIs in the R1 stage yielded the best R2 value of 0.59, with a
RMSE (root mean square error) of 22.02% and NRMSE (normalized root mean square error) of 8.37%.
It was concluded that CASIs, based on the fusion of information acquired synchronously from both
lower resolution multispectral and higher resolution RGB images, have a good potential for crop
nitrogen monitoring by UAV. Furthermore, they could also serve as a useful way for assessing other
physical and chemical parameters in further applications for crops.

Keywords: RGB; multispectral; coverage adjusted spectral index; vegetation index; vegetation
coverage; random frog algorithm

1. Introduction

Nitrogen is a critical nutrient element for crop growth. The proper application of
nitrogen fertilizer has a significant influence on final crop yield and quality. Leaf nitrogen
in crop canopies is an important indicator that characterizes the nitrogen nutrition status
in crops. Accurate and dynamic estimation of crop leaf nitrogen is of significance for
rationally managing nitrogen fertilization [1,2].

Conventional methods for detecting crop nitrogen usually involve outdoor sampling
and indoor testing, which is not only time-consuming and laborious but also destructive
and lagging. With the development of spectral detection technology, non-destructive
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remote sensing has become an attractive tool for crop nitrogen assessment. For regional-
scale monitoring of crop nitrogen, satellite-based optical remote-sensing technology is
widely used, but at a field scale it is often hindered by cloud cover and high cost [3].
In recent years, family farms have gradually become an important mode of operation
in Chinese agriculture, and there is a great demand for new technologies. As a rapidly
developing technology, with the advantages of high efficiency, low cost, and convenience of
use [4–6], UAVs (unmanned aerial vehicle) have begun to play an active role in agricultural
field management [7–9]. The spatial resolution of UAV images can reach centimeter or
even millimeter scales, which has unparalleled advantages on the field scale for diagnosing
crop nitrogen nutrition in family farms. Recently, there have been many reports on crop
nitrogen assessment using UAVs. Some vegetation indices (VI) and spectral bands from
UAV-based multispectral imagery have been used with machine learning methods to
effectively predict leaf nitrogen content (LNC) in maize [10], and have also been employed
to evaluate the nitrogen accumulation in corn canopies, and map the spatial nitrogen
variation in corn fields [11]. UAV-based hyperspectral data with plenty of shallow bands
had a good performance for evaluating LNC in the different growth stages of wheat [12].
The combined features of vegetation coverage and VIs extracted from UAV-based RGB
images could show some potential for estimating LNC in maize [13]. In addition, UAV-
based images from RGB, multispectral, and thermal sensors have been used to acquire
vegetation and temperature parameters for assessing nitrogen use efficiency in crops [14].

It is noted that UAV images have a higher spatial resolution compared with conven-
tional satellite images, and the problem of soil background affecting crop canopy spectra
is more prominent. Knowing how to decrease the influence of soil noise as much as
possible is vital to the accurate estimation of crop nitrogen by remote sensing [15]. A
few vegetation indices (VIs) have been developed to eliminate or minimize the effects
of soil background. Huete et al. [15] proposed the soil adjusted vegetation index (SAVI)
to describe soil–vegetation systems, and lessen the sensitivity of vegetation indices (VIs)
to soil background. Rondeaux et al. [16] recommended the optimized SAVI (OSAVI) to
increase the response to vegetation, while decreasing the variability from the soil. Due
to changes of soil humidity and solar incidence angle, Major et al. [17] suggested three
modified SAVIs (SAVI2, SAVI3, and SAVI4) to alleviate the influence of soil background. In
the above studies, these VIs were designed to generally decrease soil noise by adding an ad-
justing factor into the combination of both red and near-infrared reflectance bands, usually
suitable for remote sensing images with relatively low spatial resolution or more mixed
pixels. Liu et al. [18] used three threshold methods with RGB digital images from UAV
to separate wheat from soil, and then evaluate nitrogen status in wheat with RGB-based
VIs. Yao et al. [19] developed a coverage adjustment spectral index (CASI), into which
fractional vegetation cover (FVcover) was introduced to monitor LNC in winter wheat with
ground hyperspectral measurements under different soil backgrounds, and obtained a
better accuracy of LNC estimation. In the existing reports on crop nitrogen assessment, the
selected VIs are usually calculated only using the UAV images from a single sensor, even if
there are multi-sensor images acquired synchronously from an aerial platform, and it is
seldom considered that, in terms of the complementary advantages of different sensors
in spatial and spectral resolution, the multiple-sensor images could be simultaneously
applied to extract some VIs for crop nitrogen evaluation. Possibly, VIs using a fusion of
information will have a better performance in assessing nitrogen status in crops.

The above mentioned CASI (CASI = VI/(1 + FVcover)) could decrease the influence
of soil noise, and has been proved to be effective in estimating LNC in wheat, but both
the VI and FVcover in CASI were calculated by ground canopy spectral measurements and
digital pictures, respectively, not using UAV remote sensing images [19]. Hence, it is worth
discussing whether CASI is also adaptable to estimate LNC in corn when using UAV-based
multi-sensor images, and at present little research on this has been conducted. In this study,
CASI was tested to evaluate LNC in corn using UAV multi-sensor images. Digital RGB
and multispectral images were acquired synchronously from UAV sensors at three growth
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stages of corn. Considering that multispectral images have the advantage of relatively
higher spectral resolution, and RGB images are characterized by higher spatial resolution,
the two inputs, VI and FVcover, into CASI were extracted from multispectral and RGB
images, respectively. Thereby, CASI could make use of the complementary advantages of
different sensors in spatial and spectral resolution, and integrated the useful information
from two sensors. This might be helpful to effectively assess nitrogen status in crops.

This study focuses on the potential applications of both UAV multi-sensor images and
the modified vegetation index, CASI, for LNC assessment. The objectives of this study
were: (i) to evaluate the potential performance of CASI for LNC estimates using UAV-based
data; (ii) to compare the ability of the selected existing VI and the corresponding CASI
to reduce the influence of soil noise; (iii) to provide a new concept and method reference
using UAV multi-sensor images to monitor nitrogen status in crops.

2. Materials and Methods

2.1. UAV System

In this present study, an eight-rotor electric UAV carrying digital RGB and multispec-
tral cameras was used to collect images in the study area. A DJI-S1000+ (DJI, Guangdong,
China) was chosen as the UAV flight platform, which weighs 4.4 kg, and has an automated
flight control system allowing for user-defined waypoint operations and custom mission
planning, a maximum flight time of 20 min, and a LiPo battery (6S, 10,000~20,000 mAh).
The digital RGB imager carried by the UAV was equipped with a high-definition Cyber-
shot DSC-QX100 camera (Sony, Minato, Tokyo, Japan) that weighs 179 g and uses an Exmor
R CMOS sensor with an effective 20 megapixels. A Parrot Sequoia (Parrot, USA) multispec-
tral camera which consists of four single-band photoreceptors with 1.2 megapixels was
also mounted on the UAV; the Sequoia camera weighs 107 g and has built-in 64 GB storage
and SD expansion slots. More details about the parameters of the sensors are in Table 1.

Table 1. Main parameters of the sensors mounted on the UAV in this study.

Sensor Name Sensor Type
Spectral Band

(nm)
Resolution

(pixels)
FOV (H◦ × V◦) Shutter Type Weight (g)

Parrot Sequoia MS 550, 660, 735, 790 * 1280 × 960 62.2 × 48.7 Global 107

Cyber-shot
DSC-QX100 RGB N/A 5472×3648 82.0 × 64.5 Global 179

MS: multispectral, FOV: field of view, H: horizonal, V: vertical. * for convenience, the 550 nm band is denoted by GRE, 660 nm RED, 735 nm
REG, and 790 nm NIR in the subsequent analyses.

2.2. Data Collection and Acquisition
2.2.1. Study Site and Experimental Design

The experiment was conducted at the National Precision Agriculture Research Demon-
stration Base in 2017. The base is located in the northeast of Xiaotangshan Town, Changping
District, Beijing (40◦00′–40◦21′N, 116◦34′–117◦00′E, 36 m). There is a temperate conti-
nental monsoon climate in this area, and the soil is a moist and heavy loam, with a ni-
trate N (NO3-N) content of 3.2–14.8 mg/kg, an ammonium nitrogen (NH4-N) content of
10.2–12.3 mg·kg−1, an available phosphorus content of 3.1–21.2 mg·kg−1, an effective potas-
sium content of 86.8–120.6 mg·kg−1, and an organic matter content of 15.8–20.2 g·kg−1.

The experiment involved 48 plots, among which 24 plots concerned different cultivars
(P) in the north and the other 24 were linked with nitrogen (N) rates in the south, each plot
was 6 × 10 m, with a 1 m isolation zone (Figure 1). Eight cultivars were selected for sowing,
with three repetitions for each cultivar in the northern experiment field, and among the
eight cultivars: four (JK9681, JK528, JK9689, and JK665) belong to the JingKe (JK) corn
family in China; two (NK718 and JNK728) are widely cultivated in Northeast China and
the northern regions of North China, and have some differences in disease resistance and
maturity; and another two (JD58 and XY335) are high-yielding and early-maturing varieties
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in North China. For 24 plots in the north of the experiment field, N fertilizer treatment was
the conventional N rate (N2): 193 kg·ha−1. In the southern half of experiment field, the
24 plots were treated with the following N rates: no nitrogen application (N0), 97 kg·ha−1

(N1), 193 kg·ha−1 (N2), and 289 kg·ha−1 (N3), each N treatment was repeated six times,
and the two cultivars (JK968 and ZD958) that are the most widely cultivated in North
China were selected to sow in the 12 plots (Figure 1). Management procedures, such as
pest management, weed control, and phosphate and potassium application in all plots
were carried out according to local practical standards.

 

Figure 1. Location of the study area and experimental design.

2.2.2. Determination of Leaf Nitrogen Concentration

This experiment covered the three important growth stages, the V12, R1, and R3 stages
of summer corn. V12 is a critical stage during corn vegetative growth, the twelfth leaf
of the corn plant is fully unfolded, and the female ear begins floret differentiation in the
V12 stage. R1 belongs to the transition period from vegetative growth to reproductive
growth, and in this stage the filament of the female ear emerges from the bract. R3 is an
important stage during corn reproductive growth, and the corn seeds turn yellow in the
R3 stage [20]. In the three stages, the differences of corn canopy structure are relatively
obvious and representative, which can result in different influences of the soil background
on canopy spectra.

The collections of ground samples were conducted on 7 and 18 August, and 1 Septem-
ber in 2017. Three representative corn plants were selected in each of the forty-eight plots,
and the aboveground corn plants were collected for subsequent analysis. In laboratory
conditions, the green leaves of the three corn plants from each plot were separated from
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stems and de-enzymed at 105 ◦C for 30 min, and then dried at 80 ◦C to constant weight
for chemical analysis. LNCs (g 100 g−1, %) for the dried leaf samples were determined
by a Kjeldahl meter (Buchi B–339, FOSS, Sweden). Table 2 shows the statistics for the
measured LNC.

Table 2. Descriptive statistics for measured corn leaf nitrogen content (LNC) from three growth stages.

Growth Stage Sample Number Max Min Mean SD CV

V12 48 3.17 1.42 2.38 0.43 0.18
R1 48 3.49 1.17 2.63 0.35 0.13
R3 48 3.36 1.37 2.36 0.45 0.19

SD: standard deviation, CV: coefficient of variation.

2.3. Methods and Principles
2.3.1. Image Acquisition

UAV surveys with two camera sensors collecting digital RGB and multispectral im-
agery were conducted under clear and cloudless weather conditions from 10:00 a.m. to
14:00 p.m. on 7 and 18 August, and 1 September in 2017. The UAV missions investigat-
ing the 48 plots were performed at a flight height of 60 m and a flight speed of 6 m·s−1,
with a tilt angle of 0◦ for the two cameras, and a shortest interval of 2 s between imagery
acquisitions. Both the front overlap and the side overlap of UAV flights were set to 80%.

2.3.2. Image Processing

It has been proven that high-definition digital images can be transformed into new
color spaces by HSV (hue saturation value), and it is very easy to distinguish soil from
vegetation in the HSV-based images [21,22]. In this study, the colors (red, green, blue) of
digital RGB images from the UAV were converted into hue, saturation, and value by HSV,
and then threshold segmentation was used to differentiate between vegetation and soil in
the images. Figure 2 shows the spatial color transformation distribution of the study area.
It can be seen that after the original RGB images have been transformed by HSV two times,
the soil is able to be clearly distinguished from crop vegetation in the HSV2 images.

Some existing studies have demonstrated that random forest classification (RFC)
can be well adopted for medical disease classification, habitat identification in ecological
environments, and land cover classification based on multispectral images [23–25]. For the
UAV multispectral images in this study, RFC was implemented to differentiate between
vegetation and soil, and then created a vector including corn vegetation and soil.

2.3.3. Vegetation Coverage

Fractional vegetation coverage (FVcover), which refers to the percentage of vertical
projection area of vegetation per ground surface area, is a critical parameter for assessing
crop density and soil factor. Ground-based RGB images have been used to effectively extract
vegetation coverage by methods of color transformation and threshold segmentation [26,27].
By comparison, UAV-based RGB images have the distinct advantages of monitoring a large-
scale area, as well as high spatial resolution, which facilitate the acquisition of vegetation
coverage and the evaluation of crop growth in fields. In the present study, RGB images
derived from UAV were converted into new image data via two HSV transformations, so
as to identify background soil and corn canopy area more easily [21]. Identified corn pixels
in each plot were then divided by the total number of pixels in the same plot to acquire
FVcover. Vegetation coverage is calculated as follows:

FVcover =
Aveg

Atotal
(1)

where FVcover is the coverage of vegetation, Aveg is the number of corn pixels in each plot,
and Atotal is the total number of pixels in the same plot.
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Figure 2. Spatial distribution maps of RGB images with color transformation in three different stages
(V12, R1, and R3): (1) original RGB images in the study area, (2) hue saturation value (HSV) primary
transformation, and (3) HSV secondary transformation, respectively.
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Yao et al. [19] proposed the novel index, CASI, to quantitatively correct for the effect
of changing vegetation density and soil cover on wheat LNC estimates, on the basis of
understanding the L parameters of SAVI previous studied. Namely, FVcover factor was
added to VIs as follows: CASI = VI/(1 + FVcover). However, the two inputs of CASI in the
study of Yao et al., VI and FVcover, were calculated by ground-based canopy spectra and
digital RGB pictures in wheat fields, respectively. In the present study, the extraction of
CASI was performed by using UAV-based images in the following framework (Figure 3).

Average over soil and 
vegetation pixels

 

Figure 3. Flowchart illustrating the extraction of coverage adjusted spectral indices (CASI) with unmanned aerial vehicle
(UAV) multispectral and RGB images.

2.3.4. Spectral Variables

Reflectance bands (green, red, red-edge, and near-infrared) from multispectral images
derived from UAV were used as canopy spectral features, which were variably linked with
plant activity, canopy structure, and nutrient situation [28–30]. Vegetation indices that can
indicate crop nutrition and growth status have been widely used in agricultural fields. In
this study, multispectral images were utilized to extract a set of VIs and the corresponding
CASIs for LNC estimation. Table 3 lists the selected VIs that are related to the nitrogen
status in crops.

2.3.5. Random Frog Algorithm

The random frog algorithm (RFA) is an effective tool for variable selection on the basis
of the reversible jump Markov chain Monte Carlo method [44]. Generally, the RFA works in
three steps: (1) randomly give an initial subset V0 with Q variables; (2) propose a candidate
subset V* containing Q* variables based on V0, take V* with a certain probability as V1,
and then replace V0 with V1. Loop this step until N iterations; (3) calculate a selection
probability of each variable, which will be used as a measure of variable importance and a
criterion of variable selection [44–46]. In the present study, RFA was used to select the better
variables among both four bands and a set of VIs or CASIs from UAV-based images for
LNC estimation. First, all spectral variables were ranked in descending order, according to
the selection probabilities computed by RFA, and then the top five variables were selected
as the optimal features for evaluating N status in corn.
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Table 3. Vegetation indices from UAV-based multispectral images in the study.

VIs Name Formula Reference

DVI Difference Vegetation Index DVI = RNIR − RRED [31]
GNDVI Green NDVI GNDVI = (RNIR − RGRE)/(RNIR + RGRE) [32]

MNLI Modified Non-linear
Vegetation Index MNLI = 1.5

(
RNIR

2 − RRED
)
/
(

RNIR
2 + RRED + 0.5

)
[33]

MSAVI Modified SAVI MSAVI =
(

2RNIR + 1 −
√
(2RNIR + 1)2 − 8(RNIR − RRED)

)
/2 [34]

MSR Modified Simple Ratio MSR = (RNIR/RNIR − 1)/
√

RNIR/RNIR + 1 [35]

MTVI2 Modified Triangular
Vegetation Index 2 MTVI2 =

1.5(1.2(RNIR−RGRE)−2.5(RRED−RGRE))√
(2RNIR+1)2−(6RNIR−5

√
RRED)−0.5

[36]

NDVI Normalized Difference
Vegetation Index NDVI = (RNIR − RRED)/(RNIR + RRED) [37]

NLI Non-linear Vegetation Index NLI =
(

RNIR
2 − RRED

)
/
(

RNIR
2 + RRED

)
[38]

OSAVI Optimization of Soil-Adjusted
Vegetation Index OSAVI = 1.16(RNIR − RRED)/(RNIR + RRED + 0.16) [16]

R_M Red Model R_M = RNIR/RREG − 1 [39]

RDVI Renormalized Difference
Vegetation Index RDVI = (RNIR − RRED)/

√
RNIR + RRED [40]

RVI Ratio Vegetation Index RVI = RNIR/RRED [41]
RVIgreen Green Ratio Vegetation Index RVIgreen = RNIR/RGRE [42]

TVI Triangular Vegetation Index TVI = 0.5(120(RNIR − RGRE)− 200(RRED − RGRE)) [43]

Note: RGRE denotes green band reflectance, RRED red band reflectance, RREG red-edge band reflectance, and RNIR near-infrared reflectance.

2.3.6. Partial Least Squares Regression

Partial least squares regression (PLSR) is a widely used technique for studying the
relationships between multiple dependent variables and multiple independent variables.
PLSR integrates the merits of principal component analysis (PCA), canonical analysis
(CCA), and linear regression analysis, and can efficiently obtain the dominant factors with
the strongest explanatory power for dependent variables. Especially, it is very useful for
solving problems such as with obvious multicollinearity between variables, or when the
number of variables is greater than the number of samples [47].

2.3.7. Data Evaluation

In this study VIs were extracted from UAV-based multispectral images before and
after removing soil noise, and their correlations with LNC were analyzed, as well as the
corresponding CASIs. The coefficient of determination (R2), root mean square error (RMSE),
and normalized RMSE (NRMSE, %) were used to explain and quantify the relationship
with LNC, and the three metrics can be expressed as follows:

R2 = 1 − Σn
i=1(xi − yi)

2/Σn
i=1(xi − x)2 (2)

RMSE =
√

Σn
i=1(xi − yi)

2/n (3)

NRMSE =
RMSE

x
∗ 100 (4)

where xi and yi are the measured and predicted LNC in corn, x is the mean of measured
LNC, and n is the total number of samples.

3. Results

3.1. Relationship between VIs, CASIs, and LNC

Table 4 shows the correlation coefficients between LNC in corn, VIs, and CASIs from
the UAV images before and after removing background soil. Correspondingly, both larger
fractions and darker colors of the pie charts within the red rectangle area indicate stronger
correlations between LNC, Vis, and CASIs in Figure 4.
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Figure 4. Relationships between VIs, CASIs, and LNC in the three stages of V12, R1, and R3. (a,b) denote the correlations
between VIs and LNC before and after removing the soil background, respectively. (c,d) refer to the correlations between
CASIs and LNC before and after soil removal, respectively.

It can be seen from Table 4 that whether eliminating soil noise or not, the four bands
(GRE, RED, REG, and NIR) in the R3 stage are more stably and strongly correlated with
LNC in comparison with the V12 and R1 stages. On the other hand, most of the VIs in the
V12 stage show worse relationships with LNC, while some VIs in the R1 and R3 stages
have significant correlations with LNC, especially GNDVI, R_M, and RVI. As a matter of
fact, due to the relatively low vegetation cover in the corn fields in the V12 stage, the soil
background had a great influence on the crop canopy reflectance, which directly impacts
the sensitivity of spectral vegetation indices to nitrogen status to a greater or lesser extent.
However, on account of increasing vegetation cover in the R1 and R3 stages, vegetation
indices usually displayed a closer relationship with LNC.

From Figure 4, it can be noticed that CASIs have a similar behavior to VIs. Namely,
CASIs in the V12 stage generally show a relatively weak correlation with LNC, and in the
R1 and R3 stages the CASIs have closer relationships with LNC. Nevertheless, most of
CASIs into which the factor of FVcover was added have a slightly better correlation than
the corresponding Vis, whether removing soil noise or not in the latter two stages. This
indicates that CASI with the vegetation adjusting factor might have a better performance
than VI under high cover conditions. From Table 4 and Figure 4, it can also be seen that in
the V12 stage CASIs show no better correlations with LNC in comparison with VIs before
removing the soil background, but the CASI’s relationships with LNC are similar to VI’s
after eliminating soil noise.

3.2. Selection of Vegetation Features by RFA

To estimate LNC in corn, first the random frog algorithm (RFA) was used to search for
optimal features among the selected VIs and CASIs, and then a PLSR analysis was carried
out by using the five optimal features in each of the three growth stages. Table 5 lists the
features selected by RFA under different soil removal conditions in the three growth stages
of corn. It can be observed from Table 5 that the features selected by RFA from VIs or CASIs
show stability, and have no changes after removing soil for the same growth stage, and
that the selected features from CASIs also exhibit a greater consistency than those from VIs
in the three stages of corn; for instance there are the same features in the V12 and R3 stages.
In addition, Table 5 also shows that most of the optimal five features selected by RFA from
VIs and CASIs are the same for the same growth stage, and only one or two features are
different, which will make it comparable to estimate LNC with optimal VIs and CASIs in
this way.
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Table 5. Features selected by random frog algorithm (RFA) under different soil-removing conditions
in the three stages.

Types Conditions Stages Features

VIs

Not removing soil
V12 REG, NLI, DVI, MNLI, R_M
R1 NLI, NIR, NDVI, RDVI, OSAVI
R3 GNDVI, NIR, GRE, DVI, MNLI

Soil removal
V12 REG, NLI, DVI, MNLI, R_M
R1 NLI, NIR, NDVI, RDVI, OSAVI
R3 GNDVI, NIR, GRE, DVI, MNLI

CASIs

Not removing soil
V12 REG, NIR, GRE, DVI, MNLI
R1 REG, NIR, NDVI, RDVI, OSAVI
R3 REG, NIR, GRE, DVI, MNLI

Soil removal
V12 REG, NIR, GRE, DVI, MNLI
R1 REG, NIR, NDVI, RDVI, OSAVI
R3 REG, NIR, GRE, DVI, MNLI

It was also noticed that the red-edge (REG) and near infrared (NIR) band features
are significantly selected for LNC estimates under different soil-removing conditions in
the three stages. As a matter of fact, the famous red edge feature has been widely used to
assess vegetational parameters, such as nitrogen and chlorophyll content [39,48–50], while
the near infrared band is also the key component of most VIs [16,31–43].

3.3. Estimation of LNC in Corn Using CASIs and VIs

Based on the above optimal features selected by RFA in each growth stage, PLSR was
used to estimate LNC in corn. Figure 5 shows the relationships between the predicted and
measured LNC using VIs without and with removing soil noise in the different stages. It
can be seen that the estimations of LNC with removal of soil noise are generally better than
those without eliminating soil noise, which indicates it is necessary for assessing nitrogen
status to take soil influence into account.

 

Figure 5. Relationships between the predicted and measured values of LNC using optimal VIs and CASIs selected by RFA
before and after removing soil noise in the three stages of V12, R1, and R3.
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Unlike VIs using only multispectral images from UAV, CASIs which were constructed
by adding the factor, FVcover, to VIs were extracted to estimate LNC in corn using UAV
RGB and multispectral images in this study. Figure 5 shows that the CASIs had a better
performance after soil elimination than before soil removal, with the best R2 of 0.59, RMSE
of 22.02%, and NRMSE of 8.37% in the R1 stage. What is more, it can be seen from Table 6
that the CASIs generally exhibited the better capability for estimating LNC than the Vis,
whether removing background soil or not.

Table 6. Comparison using optimal CASIs and VIs to evaluate LNC in different growth stages, with
different processing for the soil background.

Conditions Stages
CASI VI

R2 RMSE NRMSE R2 RMSE NRMSE

No removal
of soil

V12 0.41 32.72% 13.77% 0.49 30.61% 12.88%
R1 0.50 24.39% 9.27% 0.42 26.29% 10.00%
R3 0.41 34.22% 14.50% 0.40 34.59% 14.66%

Soil removal

V12 0.50 30.22% 12.71% 0.50 30.32% 12.76%
R1 0.59 22.02% 8.37% 0.50 24.35% 9.26%
R3 0.45 33.06% 14.01% 0.40 34.39% 14.57%

3.4. Mapping LNC Based on UAV Images at Plot Scale

VIs at different growth stages of corn were extracted from UAV multispectral images
covering the 48 plots. The best five were selected by RFA from VIs to establish the PLSR
model for LNC estimates, and then the LNC distributions at plot scale were mapped for
each stage (Figure 6). The mapping analysis results show that although there was the same
nitrogen treatment (N2) at the 24 plots in the northern study area, LNC in the three stages
still ranges from 2.00% to 3.14% due to trait differences among cultivars, and this situation
is similar whether soil noise is removed or not. In addition, it can also be noticed that the
LNC at the same cultivar plots shows an obvious consistency in the R1 stage, which also
happens in this stage after soil elimination. This may be because corn in the R1 stage is the
most vigorous, vegetation coverage is also the largest, and soil has the least influence on
the corn canopies.

At the 24 plots in the southern study area, the different nitrogen application rates resulted
in distinct differences in corn growth. LNC ranged greatly from 1.71% to 2.75% in the V12
and R3 stage, and only from 2.00% to 2.75% in R1 stage. It can be seen from Figure 6 that after
eliminating soil background, LNC changes at plot scale were more consistent with nitrogen
treatments in comparison with no soil removal.

The five sensitive CASIs using UAV RGB and multispectral images were selected by
RFA to construct the models for estimating LNC based on PLSR, and LNC distributions
for each stage were mapped at plot scale (Figure 7). Like VI-based LNC distributions,
LNC using CASI at the northern 24 plots in the three stages ranged greatly from 1.69% to
3.22% due to cultivar differences, even if there was the same nitrogen treatment; this was
particularly evident in the V12 and R3 stages, and only in the R1 stage LNC shows some
consistency at the same cultivar plots. Comparing with no soil removal, LNC with soil
elimination at the northern plots slightly increased.

In the southern plots, corn growth in the three stages was closely related to nitrogen
treatment. High nitrogen application rates (N2 and N3) indicated better growth with high
LNC for corn, no nitrogen treatment (N0) showed the worst growth. From Figure 7, it can
be seen that LNC changed at plot scale, consistent with nitrogen treatments generally, and
it was more distinct in the R1 stage after soil removal. In addition, corn growth in the R1
stage was the most vigorous among the three stages, which was well reflected by the LNC
distribution in the R1 stage.
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Figure 6. LNC distribution maps of corn using VIs from UAV multispectral images at plot scale in
the three stages of V12, R1, and R3. The distribution maps of LNC without soil removal are shown in
the red dotted box, those with eliminating soil are in the blue dotted box.

Figure 7. Distribution maps of LNC in corn based on CASIs using UAV RGB and multispectral
images at plot scale in the three stages of V12, R1, and R3. The maps of LNC without soil removal are
shown in the red dotted box, and those with soil removal are in the blue dotted box.
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4. Discussion

4.1. Partial Soil or Shadow Removal on UAV Images

Compared with satellite remote-sensing images, the low-altitude UAV images have a
higher spatial resolution, and the vegetation textures in images are also more prominent,
however, there is also much more soil or shadow background in UAV-based images. Low-
altitude UAV remote-sensing images are strongly affected by planting density, row distance,
canopy structure, and other factors, but these factors are usually linked with the soil [16,51].
For instance, lower crop planting density will lead to lower vegetation coverage, and the
soil background and shadow will certainly increase in images. Hence, the problem of how
to alleviate the influence from soil or shadow noise must inevitably be considered in UAV
applications. In previous studies, RGB images have been usually converted into HSV color
space for soil and shadow detection [52–54]. In this study, HSV color transformation was
applied for the elimination of soil and shadow background from UAV RGB images, and
this indicates that it is very effective to remove soil or shadow by HSV. Particularly, HSV
was consecutively used two times in this study, and the soil and shadow could be clearly
identified in the HSV2 images (Figure 2), which may have a certain significance for the
other related studies.

4.2. Vegetation Features for LNC Evaluates

Vegetation indices (VIs) derived from the combination of characteristic bands in
multispectral data can highlight the properties of vegetation, and be widely used for
estimating crop parameters, such as nitrogen and chlorophyll content [48,49,55]. However,
VIs are usually affected by many factors, and exhibit different traits. Some have great
potential for suppressing soil noise [16,34], and others are good at anti-saturation for
vegetation spectra [36,41]. Therefore, effectively selecting sensitive features from VIs to
assess nitrogen status should be considered [10,56,57]. In the present study, the random
frog algorithm (RFA) was implemented to select a set of the sensitive features from UAV
images to estimate LNC in the V12, R1, and R3 stages of corn. Among the sets of sensitive
features for the three stages, the red-edge (REG) and near infrared (NIR) band features
were significantly selected for LNC estimates; the two features had also been used to
predict maize LNC in an existing report [10]. In practice, REG is one of the most widely
used spectral features for evaluating crop parameters [39,55–59] and NIR is also the key
component for most typical VIs [16,31–43].

CASI is actually a kind of VI, just adding the parameter of vegetation cover, FVcover,
to the conventional VI. Compared with VIs, CASIs had generally better correlations with
LNC in this study, which is in line with a previous study [19]. The existing research has
demonstrated that soil background can greatly influence the relationships between canopy
spectra and N status [19,60–62]. The Addition of FVcover to the basis of VI should be a good
method for eliminating the influence of soil, which should make CASI more sensitive to
nitrogen status in crops. In addition, it should be noted that in this study the elimination
of soil noise was applied only for UAV multispectral images with relatively low spatial
resolution. Despite soil removal from multispectral images by threshold segmentation,
there were still mixed pixels with soil and vegetation cover derived from UAV RGB images
with higher spatial resolution; CASIs integrating VI with FVcover should be able to further
eliminate some noise after removing soil noise.

4.3. Advantages and Disadvantages of UAV Data Applications

There have been some reports where UAV images from multiple sensors were simul-
taneously implemented to estimate crop parameters, and in these studies the images from
different sensors were often used to individually extract a variety of spectral variables,
then the variables were directly input into various models for evaluating crop growth
status, while little attention has been paid to the application of a fusion of information from
images of different sensors [10,14,63]. In this study, high-definition RGB images were used
to efficiently extract vegetation coverage (FVcover) in plots, and multispectral images for the
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calculation of typical vegetation indices (VIs), then CASIs that integrate VIs with FVcover
were acquired to estimate LNC in corn. CASIs can make good use of the complementary
advantages from two types of UAV images, and are a simple and effective method of
information fusion. In fact, it is a developing trend to use a fusion of information for crop
growth assessment [64].

However, there are still some deficiencies that need to be improved further. Due to
the influence of the shooting angles and solar-irradiance angles on low-altitude UAV, some
soil and shadow could not be completely removed. The training models constructed in this
study only used data in three stages of one year. Thus, further validation will be needed
using data from many years or different areas in the future.

5. Conclusions

This study explored how to use digital RGB and multispectral images from two
sensors mounted simultaneously on a low-altitude UAV to assess nitrogen status in three
growth stages of corn. CASIs that connect VIs with vegetation cover (FVcover) used the
UAV images from two sensors to estimate LNC in corn based on the PLS with RFA methods.
The results proved that CASIs exhibited the better estimation of LNC in comparison with
VIs in all of the three growth stages of corn, regardless of soil removal. It is concluded that
CASIs fusing useful information from both digital RGB and multispectral images acquired
synchronously by UAV appear very promising, and have potential for remotely monitoring
leaf nitrogen content in crops. The preliminary research of using CASIs can also provide
new ideas and referential methods for UAV monitoring of other biochemical parameters.
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Abstract: Unmanned aerial vehicle (UAV)-based remote sensing (RS) possesses the significant
advantage of being able to efficiently collect images for precision agricultural applications. Although
numerous methods have been proposed to monitor crop nitrogen (N) status in recent decades,
just how to utilize an appropriate modeling algorithm to estimate crop leaf N content (LNC) remains
poorly understood, especially based on UAV multispectral imagery. A comparative assessment
of different modeling algorithms (i.e., simple and non-parametric modeling algorithms alongside
the physical model retrieval method) for winter wheat LNC estimation is presented in this study.
Experiments were conducted over two consecutive years and involved different winter wheat
varieties, N rates, and planting densities. A five-band multispectral camera (i.e., 490 nm, 550 nm,
671 nm, 700 nm, and 800 nm) was mounted on a UAV to acquire canopy images across five critical
growth stages. The results of this study showed that the best-performing vegetation index (VI)
was the modified renormalized difference VI (RDVI), which had a determination coefficient (R2)
of 0.73 and a root mean square error (RMSE) of 0.38. This method was also characterized by a
high processing speed (0.03 s) for model calibration and validation. Among the 13 non-parametric
modeling algorithms evaluated here, the random forest (RF) approach performed best, characterized
by R2 and RMSE values of 0.79 and 0.33, respectively. This method also had the advantage of full
optical spectrum utilization and enabled flexible, non-linear fitting with a fast processing speed (2.3 s).
Compared to the other two methods assessed here, the use of a look up table (LUT)-based radiative
transfer model (RTM) remained challenging with regard to LNC estimation because of low prediction
accuracy (i.e., an R2 value of 0.62 and an RMSE value of 0.46) and slow processing speed. The RF
approach is a fast and accurate technique for N estimation based on UAV multispectral imagery.

Keywords: UAV; multispectral imagery; LNC; vegetation index; non-parametric regression; radiative
transfer model
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1. Introduction

Nitrogen (N) is one of the most important nutrients required for plant growth and is therefore
critical for crop production. A deficiency in N significantly reduces crop photosynthetic yields while
the excessive use of fertilizers for this element leads to both resource waste and environmental
pollution [1,2]. Furthermore, leaf N content (LNC) at early growth stages (e.g., jointing and booting) is
a good indicator for N fertilizer application [3], and LNC at late growth stages (e.g., after heading) is
highly related to the final grain quality [4]. Quantification of LNC is therefore a prerequisite for the
production of high-yield and good-quality crops while causing minimal environmental impact.

Remote sensing (RS) has become an attractive technique in precision agricultural assessment as
it can be used to monitor crop growth status rapidly and nondestructively. The main RS platforms
currently in use include satellite, manned airborne, and ground-based approaches, which can all be
equipped with various kinds of sensors. Although satellite images can be used to monitor N status
across large areas [5,6], they cannot provide sufficient accuracy because of their low spatio-temporal
resolution. Even though manned airborne platforms are able to capture images at high spatio-temporal
resolution, this approach is limited by both high operational complexity and cost [7].

In contrast, ground-based RS platforms are able to attain high N status estimation monitoring
accuracy [8,9], but this approach remains inefficient when used over large areas, while unmanned
aerial vehicle (UAV)-based RS platforms provide a low-cost alternative for collecting RS data at high
spatio-temporal resolution [10,11]. This platform has been widely applied in precision agriculture
and has been utilized for LAI [12] as well as biomass estimations [10,13], but few studies to date
have discussed N status detection using this approach [14,15]. It therefore remains an open question
whether, or not, UAV images can be used to monitor N status.

A range of methods have so far been proposed that use spectral data to model N content, including
statistical and chemometric algorithms alongside physical models. The statistical method has been used
most commonly to monitor N content based on optical measurements from different platforms [8,16].
Empirical relationships between LNC and canopy optical properties have also been calibrated using
experimental datasets, an approach that has proven to be both efficient and accurate [8,9,17]. It is
also the case, however, that retrieval algorithms based on vegetation indices (VIs) tend to exhibit
poor model portability because they are easily influenced by band configuration, index formulation,
and fitting function [18]. Besides, most VIs are easily saturated at high N content levels [8,19].

An additional set of techniques that have been commonly applied to identify variables for N
modeling comprise non-parametric algorithms, including partial least square regression (PLSR),
artificial neural networks (ANNs), random forest (RF), and support vector machines (SVMs) [3,20,21].
These approaches make full use of all spectral data and avoid multicollinearity that is inherent to
multiple linear regressions [20]. As these methods have also been shown to be very efficient for
processing nonlinear data, it is likely that they are also able to deal with high-dimensional data [21]
although performance remains an issue [22,23]. In the earlier study, Verrelst et al. [23] investigated
the efficiency of four machine learning regression algorithms at estimating leaf chlorophyll content
(LCC), LAI, and fractional vegetation cover (FVC), specifically neural networks (NN), support vector
regression (SVR), kernel ridge regression (KRR), and Gaussian processes regression (GPR). As the
results of this study showed that the latter was more efficient compared to the other three [23],
it will also be worthwhile to investigate the performance of different non-parametric algorithms for
LNC estimation.

It remains challenging to quantify LNC differences based on small-plot experiments using several
cultivars as well as N application levels and planting densities. As differences in N content under
experimental conditions are generally limited, established models might be unstable in practical
applications. It is also the case that a significant component of variations in canopy optical properties
are also due to changes in sun zenith angles, canopy structures, and background. As these differences
significantly affect the relationships between spectral parameters and N content, a model based
on physical parameters should enable us to clearly explain these potentially confounding factors.
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Although a PROSAIL radiative transfer model (RTM) [24] used in combination with hyperspectral
reflectance has been shown to provide an effective method for estimating crop LAI [25,26] and LCC [27],
it remains unclear how this approach can be utilized to offer enough LNC estimation accuracy with
UAV multispectral imagery.

The different modeling algorithms discussed above were studied here using a range of species and
sites. One key aim of this research was to comprehensively compare these approaches and determine
the optimal retrieval method for a particular objective, especially when using UAV images. A range of
questions remains to be addressed, including which VI is optimal for wheat LNC estimation? Which
non-parametric algorithm provides the best estimates? How well do physical models perform for LNC
retrieval when based on UAV multispectral images? Additionally, which is the best approach when
all three modeling algorithms are compared in terms of processing efficiency, model simplification,
and estimation accuracy? The objective of this study was therefore to evaluate the performance of these
three different retrieval methods for winter wheat LNC estimation using UAV multispectral imagery.

2. Materials and Methods

2.1. Experimental Design

Three field experiments were conducted over two growing seasons (2013–2014 and 2014–2015) in
Rugao City (120◦45′E, 32◦16′N) within Jiangsu Province in eastern China. The predominant soil type
is loam and the soil organic matter was 18.9–24.6 g/kg, available N was 140.56–150.41 mg/kg, total
nitrogen was 1.87–2.07 g/kg, available phosphorus was 50.12–57.84 mg/kg, and available potassium
was 90.32–96.76 mg/kg. These experiments involved different N rates, planting densities, and wheat
cultivars, and comprised a randomized complete block design with three replicates, thus there were
36, 30, and 36 treatments for Exp. 1, Exp. 2, and Exp. 3, respectively. A mixture of 120 kg/ha P2O5

and 120 kg/ha K2O was applied to all treatments prior to seeding. Crop management followed local
standard practices for wheat production; additional details regarding these three experiments are
provided in Table 1.

Table 1. Details of the three field experiments.

Experiment Year Cultivar
N Rate
(kg/ha)

Planting
Density

(plants/ha)
Sampling Date Growth Stage N

Exp. 1 2013–2014 Yangmai 18
Shengxuan 6 0, 100, 300 1.5 × 106

3.0 × 106

14 March
9/15/23 April

6 May

Jointing, Booting,
Heading,

Anthesis, Filling
159

Exp. 2 2013–2014 Xumai 30
Ningmai 13

0, 75, 150,
225, 300 2.4 × 106

14 March
9/15/23 April

6 May

Jointing, Booting,
Heading,

Anthesis, Filling
135

Exp. 3 2014–2015 Yangmai 18
Shengxuan 6 0, 100, 300 1.5 × 106

2.4 × 106

26 March
8/17/25 April

6 May

Jointing, Booting,
Heading,

Anthesis, Filling
164

2.2. Data Collection

2.2.1. UAV System and Image Acquisition

An eight-rotor MK-Oktokopter UAV (Mikrokopter Inc., Moormerland, Germany) was used to
carry a six-channel multispectral Tetracam mini-MCA6 camera (Tetracam Inc., Chatsworth, CA, USA)
to collect images in this study (Figure 1). The specific parameters of this UAV and camera are shown
in Table 2. This multispectral camera was equipped with five spectral channels (i.e., 490 nm, 550 nm,
671 nm, 700 nm, and 800 nm) with a 10 nm bandwidth, and had an incident light sensor (ILS). All UAV
campaigns were undertaken in stable ambient light conditions (between 11:00 and 13:30) at five critical
growth stages (Table 1). The UAV was flown at a height of 150 m, and images were collected with
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spatial resolution of 8.125 cm. After each flight, only one image with high quality was selected for
image analysis due to the small study area (50 m × 35 m).

 
Figure 1. The UAV equipped with multispectral camera used in this study.

Table 2. Specifications of UAV and Mini-MCA multispectral camera.

UAV Camera

Weight (g) 2050 Weight (g) 700
Battery weight (g) 520 Geometric resolution (pixel) 1280 × 1024

Maximum payload (g) 2500 Radiometric resolution (bit) 10
Flight duration (min) 8–41 Speed (frame/s) 1.3

Radius (m) 1000 Focal length (mm) 9.6

2.2.2. Ground Sampling

A total of 30 wheat plant samples were randomly collected from each plot subsequent to each
UAV campaign in order to determine LNC values (%). All the green leaves from each sample were
separated from stems, oven-dried at 80 ◦C to a constant weight, and then weighed. Dried leaf samples
were ground to pass through a 1 mm screen and stored in plastic bags for subsequent chemical analysis.
Total leaf N concentration was determined using the micro-Kjeldahl method. Leaf chlorophyll content
(Cab) was measured using a soil and plant analyzer development (SPAD) 502 (Minolta Camera Co.,
Osaka, Japan) with sub-samples (five plants) randomly selected and the first, second, and third fully
expanded leaves chosen from three layers encompassing the base, middle, and top parts of wheat
leaves. Averaged SPAD readings were taken as sample values in each case. Absolute leaf chlorophyll
content (LCC) was then obtained using an equation that expresses the relationship between SPAD
readings and LCC values [28].

2.3. Image Processing

The pre-processing UAV image workflows used in this analysis followed those proposed
by [12,29], and included noise reduction, veginetting, and lens distortion correction as well as band
registration and radiometric calibration. Thirty ground control points (GCPs) were evenly distributed
in the experimental area, and the geographic coordinates were determined by X900 GNSS (Huace
Inc., Beijing, China). The GCPs were used for band registration and georeferencecing processed
in the ENVI/IDL environment (Exelis Visual Information Solutions, Boulder, CO, USA). After that,
radiometric calibration was conducted by the empirical line method [30] with four standard calibration
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canvas with different reflectance values (3%, 22%, 48%, and 82%). Reflectance was then extracted from
each radiometrically corrected image using a region of interest (ROI) from each plot.

2.4. Retrieval Techniques

2.4.1. Parametric Modeling Algorithms

The parametric modeling algorithm used in this analysis was based on VI calculated with
reflectance from UAV multispectral images. Thus, 19 kinds of VI formulations, including two-band,
three-band, and four-band indices, encompassing all possible combinations were used to develop
correlations versus wheat LNC (Table 3). Linear regression between LNC and all VIs was utilized to
eliminate the impact of functions as opposed to band selection and index formulation.

Table 3. Commonly used vegetation indices.

Index Formula Reference

Two-band
Ratio VI (RVI) Rλ1/Rλ2 [31]
Difference VI (DVI) Rλ1 − Rλ2 [31]
NDVI (Rλ1 − Rλ2)/(Rλ1 + Rλ2) [32]
Renormalized difference VI (RDVI) (Rλ1 − Rλ2)/(Rλ1 + Rλ2)0.5 [33]
Soil adjusted VI (SAVI) 1.5(Rλ1 − Rλ2)/(Rλ1 + Rλ2 + 0.5) [34]
Optimized soil adjusted VI (OSAVI) (1 + 0.16)(Rλ1 − Rλ2)/(Rλ1 + Rλ2 + 0.16) [35]
Optimized VI (VIopt) (1 + 0.45)(Rλ1

2 + 1)/(Rλ2 + 0.45) [36]
Modified sample ratio (MSR) ((Rλ1/Rλ2) − 1)/(SQRT((Rλ1/Rλ2) + 1)) [37]

Three-band
Enhanced VI (EVI) 2.5(Rλ1 − Rλ2)/(Rλ1 + 6Rλ2 − 7.5Rλ3 + 1) [38]
Modified normalized difference (mND) (Rλ1 − Rλ2)/(Rλ1 + Rλ2 − 2Rλ3) [39]
Modified sample ratio (mSR) (Rλ1 − Rλ2)/(Rλ3 − Rλ2) [39]
Modified chlorophyll absorption in RI (MCARI) (Rλ1 − Rλ2 − 0.2(Rλ1 − Rλ3))(Rλ1/Rλ2) [40]
Transformed chlorophyll absorption in RI (TCARI) 3((Rλ1 − Rλ2) − 0.2(Rλ1 − Rλ3)(Rλ1/Rλ2)) [41]
Three-band index 1 (TBI1) (Rλ1 − Rλ2 − Rλ3)/(Rλ1 + Rλ2 + Rλ3) [42]
Three-band index 2 (TBI2) (Rλ1 − Rλ2 + 2Rλ3)/(Rλ1 + Rλ2 − 2Rλ3) [17]

Four-band
Vogelmann index (VOG) (Rλ1 − Rλ2)/(Rλ3 + Rλ4) [43]
MERIS terrestrial chlorophyll index (MTCI) (Rλ1 − Rλ2)/(Rλ3 − Rλ4) [44]
TCARI/OSAVI TCARI/OSAVI [41]
MCARI/OSAVI MCARI/OSAVI [40]

Rλ1, Rλ2, Rλ3, and Rλ4 denote the reflectance of spectral bands randomly selected from 490 nm, 550 nm, 671 nm,
700 nm, and 800 nm.

2.4.2. Non-Parametric Modeling Algorithms

The SimpleR toolbox [45] was used in this study to implement 13 non-parametric modeling
algorithms and to develop models. A comprehensive description of these algorithms was presented
in [46]. These non-parametric approaches can be further subdivided into linear and non-linear
regressions; of these, three fall into the former category-least-squares linear regression (LSLR),
principal component regression (PCR), and partial least-squares regression (PLSR)-while 10 fall into
the latter-artificial neutral networks (ANN), decision trees (DT), regression trees (RT), bagging trees
(BaT), and boosting trees (BoT) as well as random forest (RF), relevance vector machine (RVM), kernel
ridge (KRR), and Gaussian processes regressions (GPR) alongside variational heteroscedastic GPR
(VH-GPR) and extreme learning machines (ELM).

2.4.3. Physical Based Modeling

The widely used PROSAIL radiative transfer model comprises a combination of the SAIL canopy
reflectance and PROSPECT leaf optical properties models. The combined approach was utilized here
to retrieve canopy parameter data and was generated via both the latter two methods, PROSPECT-5
and 4SAIL. A look-up-table (LUT) was then applied; these efficient inversion algorithms are commonly
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used for agronomic parameter retrieval [46,47]. The imposed boundaries and distributions of PROSAIL
input variables used in this study are summarized in Table 4; these values were obtained from field
measurements and other studies that have utilized the same crops [47,48]. Thus, uniform distributions
of LCC and normally distributed LAI were sampled 100 times, uniform carotenoid distributions were
sampled 50 times, and all other variables were held constant. A resultant LUT dataset comprising
500,000 parameter combinations was chosen for this analysis; a total of 22 cost functions, including the
insertion of up to 50% Gaussian noise into simulated data and multiple best solutions, were considered
to optimize the LUT inversion strategy to address radiative transfer model issues [49]. After LCC was
retrieved from the PROSAIL model, LNC was indirectly obtained on the empirically linear relationship
between LCC and LNC.

Table 4. PROSAIL model input parameters.

Parameters Units Range Distribution

Leaf: PROSPECT-5
Leaf structure index (N) Unitless 1.2–1.8 Gaussian
Leaf chlorophyll content (LCC) [μg/cm2] 25–75 Gaussian
Leaf dry matter content (Cm) [g/cm2] 0.013
Leaf water content (Cw) [cm] 0.018

Canopy: 4SAIL

Leaf area index (LAI) [m2/m2] 0–7 Gaussian
Soil scaling factor (αsoil) Unitless 0.3
Average leaf angle (ALA) [◦] 60
Hotspot parameter (HotS) [m/m] 0.2
Diffuse incoming solar radiation (skyl) [%] 10
Sun zenith angle (θs) [◦] 25
View zenith angle (θv) [◦] 0
Sun-sensor azimuth angle (Φ) [◦] 0

2.5. Model Calibration and Validation

Table 5 lists the calibration and validation of models on different methods. Data collected
from all experiments were pooled to examine the relationship between VIs and LNC with linear
regression, and then the optimal bands’ configurations were determined. Both the LNC-VI model and
non-parametric model were calibrated and validated with a k-fold (k = 10) cross-validation procedure.
The whole dataset was randomly divided into 10 equal-sized sub-datasets. Nine sub-datasets were
used as the calibration (training) dataset and the rest was used as the validation (test) dataset, then this
procedure was repeated 10 times [48]. For the physical-based modeling method, predicted LNC
values, after being retrieved from the empirical model, were compared with the field measured
values. The predictive capability of those models with different methods was then assessed using the
determination coefficient (R2) and root mean square error (RMSE). All the above procedures were
implemented using MATLAB 2014a (The MathWorks Inc., Natick, MA, USA).

Table 5. Calibration and validation of the models on different methods.

Method Calibration Validation

Parametric 10-fold cross validation, nine sub-datasets used for calibration (training), the rest for
validation (test), repeated 10 timesNon-parametric

Physical-based model

LCC retrieved from PROSAIL, LNC
obtained through the empirically linear

model between LCC and LNC with
measured data

All retrieved LNC values compared
with measured LNC values
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3. Results

3.1. Optimal VI Determination

Relationships between LNC and 19 different formulas with random bands were established, and
the best-performing VIs in each case are listed in Table 6. Results show that both RDVI and SAVI
performed equally well in the case of two-band indices (R2 = 0.73 and RMSE = 0.38, respectively),
outperforming other examples. In addition, optimal VI values for each formulation comprising two
bands were constructed with a red edge (720 nm) and a near infrared band (800 nm); results show that
EVI was superior to others in terms of LNC estimation in the case of three-band indices yielding an R2

and RMSE of 0.73 and 0.38, respectively. Data show that all four-band indices exhibited similar LNC
estimation efficiency even when encompassing different band combinations, but performed worse than
optimal two-band and three-band VI variations. It is also clear that formulation type exerts a significant
influence on VI performance even when the same bands are employed. In addition, this modeling
method is characterized with an extremely fast speed (within 0.05 s) under the MATLAB. From the
scatter plots shown in Figure 2, the saturation at high LNC values still exists despite a relatively high
R2, resulting in low estimation accuracy at high values.

Table 6. Cross-validation statistics and processing speed for the best-performing vegetation index (VI)
under each formulation.

VI Optimal Bands R2 RMSE
(%)

Processing
Speed (s)

Two-band

RVI λ1: 700; λ2: 800 0.49 0.52 0.029
DVI λ1: 800; λ2: 700 0.67 0.41 0.029

NDVI λ1: 800; λ2: 700 0.49 0.52 0.046
RDVI λ1: 800; λ2: 700 0.73 0.38 0.029
SAVI λ1: 800; λ2: 700 0.73 0.38 0.030

OSAVI λ1: 800; λ2: 671 0.70 0.40 0.029
VIopt λ1: 800; λ2: 671 0.69 0.40 0.029
MSR λ1: 700; λ2: 800 0.48 0.52 0.028

Three-band

EVI λ1: 800; λ2: 700; λ3: 490 0.73 0.38 0.031
mND λ1: 800; λ2: 700; λ3: 490 0.69 0.40 0.029
mSR λ1: 700; λ2: 490; λ3: 800 0.68 0.41 0.026

MCARI λ1: 550; λ2: 700; λ3: 800 0.69 0.41 0.029
TCARI λ1: 550; λ2: 700; λ3: 800 0.68 0.41 0.028

TBI1 λ1: 671; λ2: 700; λ3: 550 0.56 0.48 0.028
TBI2 λ1: 800; λ2: 490; λ3: 671 0.55 0.49 0.028

Four-band

VOG λ1: 490; λ2: 700; λ3: 800; λ4: 671 0.70 0.40 0.027
MTCI λ1: 671; λ2: 800; λ3: 700; λ4: 490 0.69 0.40 0.027

TCARI/OSAVI λ1: 550; λ2: 700; λ3: 800; λ4: 490 0.66 0.42 0.028
MCARI/OSAVI λ1: 550; λ2: 700; λ3: 800; λ4: 490 0.66 0.42 0.028

The row in bold type denotes the best-performing VI.
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Figure 2. Comparison between measured and estimated LNC values with the best performing VI.

3.2. Optimal Non-Parametric Modeling Algorithm Determination

A total of 13 non-parametric modeling algorithms were utilized in this study to estimate wheat
LNC (Table 7); data show that all outperformed optimal VI, with the exception of RT. Indeed,
the best-performing regression method was RF, which yielded an R2 of 0.79 and an RMSE of 0.33
and had a fast processing speed of 2.28 s. In addition, we found that the majority of nonlinear
non-parametric modeling algorithms were superior to their linear counterparts. Albeit yielding
accurate estimates, RVM, ELM, VH-GPR, and NN approaches all proceeded very slowly. In contrast,
the linear non-parametric regression models of LSLR, PCR, and PLSR were all extremely fast, more
rapid even than their parametric counterparts.

The data presented in Figure 3a comprise scatter plots of measured LNC values versus estimated
ones derived from the optimal non-parametric RF algorithm. In this case, estimated values at the high
level turned out to be closer to the 1:1 line than those generated from RDVI. Thus, after measuring the
importance of predictor variables using the mean squared error (MSE) [50], it is clear that these values
for NIR (800 nm) bands were the largest among the five, followed by the red (671 nm) band (Figure 3b).
The red (671 nm) and NIR (800 nm) bands are therefore more important for LNC estimation than any
of their counterparts.

Table 7. Performance of different non-parametric modeling algorithms in LNC estimation ranked
according to RMSE values.

Non-Parametric Algorithm R2 RMSE (%) Processing Speed (s)

Random Forest (RF) 0.79 0.33 2.284
Bagging Trees (BaT) 0.78 0.34 2.700

Kernel Ridge Regression (KRR) 0.78 0.35 1.934
Neural Network (NN) 0.77 0.35 10.406

VH Gaussian Process Regression (VH-GPR) 0.77 0.35 17.059
Gaussian Process Regression (GPR) 0.77 0.35 4.265
Extreme Learning Machine (ELM) 0.76 0.36 20.068

Least-Squares Linear Regression (LSLR) 0.75 0.36 0.007
Boosting Trees (BoT) 0.75 0.37 2.301

Relevance Vector Machine (RVM) 0.75 0.37 268.473
Partial Least-Squares Regression (PLSR) 0.74 0.37 0.016
Principal Component Regression (PCR) 0.73 0.38 0.009

Regression Trees (RT) 0.69 0.40 0.616
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Figure 3. Comparison of measured and estimated LNC values derived using the RF modeling algorithm
(a) and MSE values for this model at different spectral bands (b).

3.3. Performance of LUT-Based PROSAIL Inversion Performance

The data presented in Table 8 illustrate the performance of the LUT-based PROSAIL model with
different cost functions, noise proportions, and multiple solutions. In this case, however, as LNC
could not be retrieved directly from the PROSAIL model, LCC was initially estimated. The optimal
inversion strategy for LCC retrieval used in this study was K(x) = log(x)2 with R2 and RMSE values of
0.81 and 7.05, respectively. LNC was then indirectly estimated subsequent to LCC inversion via the
relationship between LCC and LNC (Figure 4a). The PROSAIL model performance in LNC inversion
was not particularly satisfactory with an R2 value of 0.62 (Figure 4b); thus, compared to both VIs
and non-parameter modeling methods, the LUT-based PROSAIL approach actually performed worse
although the processing speed in this case was comparable with those of non-linear non-parametric
regression algorithms.

Table 8. Performance of different regularization strategies used in the PROSAIL model ranked
according to RMSE values.

Cost Function
Noise
(%)

Multiple
Solutions (%)

R2 RMSE
(μg/cm2)

Processing
Speed (s)

K(x) = log(x)2 29 9 0.81 7.05 2.04
K(x) = x(log(x)) − x 41 41.5 0.75 8.24 1.85
Neyman chi-square 37 10.5 0.74 8.74 1.86

W Kagan 37 10.5 0.74 8.74 1.85
Kullback-Leibler 45 11.5 0.81 8.98 1.92

Jeffreys-Kullback-Leibler 45 19.5 0.80 9.17 1.76
Bhattacharyya divergence 45 19.5 0.81 9.26 2.03

Pearson chi-square 50 43 0.78 9.33 1.85
L-divergence Lin 47 20.5 0.81 9.35 2.16
Shannon (1948) 47 20.5 0.81 9.35 1.98

Shannon entropy 50 21.5 0.81 9.45 1.82
Harmonique toussaint 50 21 0.81 9.50 1.85

K-divergence Lin 50 30.5 0.80 9.54 1.96
Negative exponential disparity 48 20.5 0.79 9.65 1.92

Exponential 50 48 0.59 11.84 1.98
Normal distribution-LSE 50 50 0.47 13.10 1.74

Geman and McClure 50 50 0.46 13.16 1.79
K(x) = −log(x) + x 39 50 0.79 13.19 1.98

Least absolute error 50 50 0.34 15.16 1.75
K(x) = log(x) + 1/x 50 50 0.07 17.61 1.96
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Figure 4. Empirical linear relationship between LCC and LNC values (a). Measured versus estimated
LNC values derived from the most effective LUT-based inversion scheme (Table 8) (b).

3.4. Effects of Growth Stage, Cultivar, and Cultivation Factors on Estimation Accuracy

The data presented in Table 9 summarize the effects of growth stage, cultivar, planting density,
and year on the estimation accuracy of different methods. These records show that for different growth
stages, both RDVI and LUT-based methods performed better in the middle of the season (i.e., booting,
heading, and anthesis) compared to either early (i.e., jointing) or late (filling) stages. An RF approach
was able to obtain accurate estimates from jointing to anthesis stages alongside lower ones at the
filling stage.

The results of this study reveal varied RDVI performance depending on the wheat cultivar;
the most accurate estimates were recovered for Ningmai 13 (RRMSE = 10.4%) while the worst were
seen for Shenxuan 6 (RRMSE = 14.0%). The RF approach also generated satisfactory and stable values
for different cultivars with RRMSE ranging between 10.7% and 12.0%, while the LUT-based retrieval
method also performed equally in all cases.

As planting density increased, LNC estimation accuracy gradually decreased based on RDVI and
the best performance was obtained at the lowest density. At the same time, the LUT-based retrieval
method yielded highest accuracies at the lowest density while the RF approach led to comparable
performance at different planting densities. All three methods performed better for 2014 than for 2015.
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Table 9. Relative RMSE (RRMSE, %) values for different wheat LNC estimation methods under
different conditions.

Sub-Group Treatment
Different Modeling Algorithms

RDVI RF LUT

Growth stage

Jointing 16.0 11.4 16.53
Booting 8.8 8.8 12.60
Heading 10.0 9.9 12.80
Anthesis 11.7 11.7 14.03

Filling 17.9 16.2 22.92

Variety

Yangmai 18 13.1 11.3 16.34
Shengxuan 6 14.0 12.0 16.43

Xumai 30 13.4 11.9 16.51
Ningmai 13 10.4 10.7 15.41

Plant density
1.5 × 106 plants/ha 12.1 12.1 13.41
2.4 × 106 plants/ha 12.4 11.7 16.30
3 × 106 plants/ha 14.4 11.1 16.34

Year
2014 12.0 11.2 0.14
2015 14.6 12.2 0.18

4. Discussion

Although ground-based spectral data and satellite images have been widely utilized to monitor
the N status of crops [9,16,51], few studies to date have assessed the capabilities of UAV platforms.
We evaluated the performance of UAV images using different modeling algorithms and demonstrate
that this approach provides a reliable technique for winter wheat leaf N content estimation.

The results of this analysis show that in terms of parametric approaches, use of an RDVI
modified with NIR and red edge bands provides optimal VI values for LNC estimation (i.e., R2

= 0.73; RMSE = 0.38); this result is in close agreement with the previous findings of Inoue et al. [20]
and Yao et al. [52], who noted that a combination of NIR and red edge bands provides an efficient
approach for N status monitoring. The RDVI is also advantageous because it optimizes the vegetation
signal and therefore has an improved degree of sensitivity in high-biomass regions; this approach is
able to enhance vegetation monitoring via decoupling of the canopy background signal and reducing
atmospheric influence [38].

However, even though results of sufficient accuracy were obtained in this analysis using a simple
model, a number of drawbacks remain, including the fact that this approach becomes saturated at
high N rates and canopy densities; it is easily affected by the growth stage, and information is lost at
other spectral bands. Indeed, the RDVI performed poorly at both jointing and filling stages (Table 8),
a result that might be explained by the fact that the canopy was mixed with soil background during
the early stage and then panicles later in development. Furthermore, the accuracy of estimation
decreased from the booting to filling stage, which might be due to the differences of the leaf biomass
at varied stages [53]. The use of the VI incorporating more bands was also unable to generate higher
accuracy than a two-band approach; furthermore, different formulas with the same bands performed
significantly in LNC estimation, which indicated that both band configuration and VI formulation
played an important role in LNC estimation. It is also crucial to consider the applicability of VI-LNC
models as the performance of these approaches often depends on the ecological site, crop type,
and growth stage [54]. The RDVI-LNC model should therefore be tested using additional datasets so
as to extend its capability in the future.

It is well known that vegetation canopy spectral signatures are dominated by numerous
biophysical and biochemical variables [55,56]. Thus, compared with parametric methods,
most non-parametric algorithms tend to perform better because this regression family makes full
use of all spectral information and so are able to better handle confounding factors when compared
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to VI values [20,22]. Although linear non-parametric algorithms performed lightly worse than their
nonlinear counterparts in this analysis, these approaches possessed an extremely fast processing speed;
this attribute indicates that these methods comprise a promising technique that can be integrated into
crop monitoring systems.

Previous studies have also shown that linear non-parametric algorithms, such as PLSR, are able
to generate satisfactory estimates for crop biomass [3] as well as N [20] and chlorophyll content [22].
The results of this study show that amongst non-parametric algorithms, the RF approach was both
the most accurate and stable method under different conditions because RF provides a nonlinear
regression with LNC and has the advantage of dealing with a large dataset with high speed and
efficiency [50,57]. Furthermore, RF also has the ability to rank the importance of variables [50,57].
We therefore recommend that the RF approach would be a reliable technique for crop N estimation,
even though many software packages do not yet include this algorithm.

The LUT-based retrieval method used in this study had the lowest LNC estimation accuracy of
the three approaches tried, in contrast to previous research results [27,58]. Indeed, as some variables
(e.g., LAI and chlorophyll content) could be retrieved directly from the PROSAIL model while LNC
was generated indirectly from the empirical relationship between LNC and LCC [59,60], estimation
accuracy was influenced by retrieval equation accuracy. We also note that the LUT-based retrieval
method has a number of drawbacks, including the need for too many input parameters, large data size,
and long processing times, and the fact that only parameters inherent to the model can be retrieved.
However, a physical model has the advantage of offering uncertainty estimates, which provide
information on model transplantation possibilities.

Although previous studies have attempted to employ UAV-based images to monitor crop N
status [14,15], the datasets used was small and so estimation accuracy was unsatisfactory. In contrast,
the results of this study show that the RDVI generated higher estimates while the non-parametric
RF regression method led to a higher degree of accuracy under different conditions. These results
suggest that UAV-based multispectral images provide a promising approach that can be applied to
crop N status monitoring. However, even though a high predictive accuracy was obtained in this
study, the established LNC model will still need to be tested with data from other ecological sites and
crop types as the variables used here came from just one site. We also show that the PROSAIL model
is not suitable for LNC retrieval because of its low predictive accuracy unless the relationship between
this variable and LNC can be made more robust.

5. Conclusions

A range of modeling algorithms (i.e., parametric, non-parametric, and physical retrieval) were
employed in this study to estimate winter wheat LNC using UAV-based multispectral images.
Estimation models were then cross-validated with datasets from different growing seasons, including
different stages, cultivars, N rates, and planting densities. In terms of parametric regressions, modified
RDVI with a red edge and NIR bands turned out to comprise the best-performing index with the most
accurate cross-validated result (i.e., R2 = 0.73, RMSE = 0.38). This method was also characterized by an
extremely high processing speed and a saturation effect at high LNC levels. In terms of non-parametric
regression approaches, we showed that the RF method comprised the best-performing algorithm
(i.e., R2 = 0.79, RMSE = 0.33), also with a fast processing speed. The use of a physical retrieval
method remains challenging for LNC estimations because of undeterminable input variables and low
prediction accuracies.
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Abbreviations

UAV unmanned aerial vehicle
RS remote sensing
LNC leaf nitrogen content
LAI leaf area index
LCC leaf chlorophyll content
SPAD soil and plant analyzer development
RVI ratio vegetation index
DVI difference vegetation index
NDVI normalized difference vegetation index
RDVI renormalized difference vegetation index
SAVI soil adjusted vegetation index
OSAVI optimized soil adjusted vegetation index
VIopt optimized vegetation index
MSR modified sample ratio
EVI enhanced vegetation index
MCARI modified chlorophyll absorption in reflectance index
TCARI transformed chlorophyll absorption in reflectance index
TBI three-band index
VOG Vogelmann index
MTCI MERIS terrestrial chlorophyll index
LSLR least-squares linear
PCR principal component
PLSR partial least-squares regression
ANN artificial neutral networks
DT decision trees
RT regression trees
BaT bagging trees
BoT boosting trees
RF random forest
RVM relevance vector machine
KRR kernel ridge
GPR Gaussian processes regressions
VH-GPR variational heteroscedastic GPR
ELM extreme learning machines
RTM radiative transfer model
LUT look-up-table
R2 determination coefficient
RMSE root mean square error
RRMSE relative root mean square error
ILS incident light sensor
GCP ground control point
ROI region of interest
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Abstract: The ability to predict spatially explicit nitrogen uptake (NUP) in maize (Zea mays L.) during
the early development stages provides clear value for making in-season nitrogen fertilizer applications
that can improve NUP efficiency and reduce the risk of nitrogen loss to the environment. Aerial
hyperspectral imaging is an attractive agronomic research tool for its ability to capture spectral data
over relatively large areas, enabling its use for predicting NUP at the field scale. The overarching goal
of this work was to use supervised learning regression algorithms—Lasso, support vector regression
(SVR), random forest, and partial least squares regression (PLSR)—to predict early season (i.e., V6–V14)
maize NUP at three experimental sites in Minnesota using high-resolution hyperspectral imagery.
In addition to the spectral features offered by hyperspectral imaging, the 10th percentile Modified
Chlorophyll Absorption Ratio Index Improved (MCARI2) was made available to the learning models
as an auxiliary feature to assess its ability to improve NUP prediction accuracy. The trained models
demonstrated robustness by maintaining satisfactory prediction accuracy across locations, pixel sizes,
development stages, and a broad range of NUP values (4.8 to 182 kg ha−1). Using the four most
informative spectral features in addition to the auxiliary feature, the mean absolute error (MAE) of
Lasso, SVR, and PLSR models (9.4, 9.7, and 9.5 kg ha−1, respectively) was lower than that of random
forest (11.2 kg ha−1). The relative MAE for the Lasso, SVR, PLSR, and random forest models was
16.5%, 17.0%, 16.6%, and 19.6%, respectively. The inclusion of the auxiliary feature not only improved
overall prediction accuracy by 1.6 kg ha−1 (14%) across all models, but it also reduced the number of
input features required to reach optimal performance. The variance of predicted NUP increased as the
measured NUP increased (MAE of the Lasso model increased from 4.0 to 12.1 kg ha−1 for measured
NUP less than 25 kg ha−1 and greater than 100 kg ha−1, respectively). The most influential spectral
features were oftentimes adjacent to each other (i.e., within approximately 6 nm), indicating the
importance of both spectral precision and derivative spectra around key wavelengths for explaining
NUP. Finally, several challenges and opportunities are discussed regarding the use of these results in
the context of improving nitrogen fertilizer management.

Keywords: cross-validation; feature selection; hyperparameter tuning; image processing; image
segmentation; nitrogen fertilizer recommendation; supervised regression

1. Introduction

Nitrogen (N) fertilizer inputs are crucial for achieving high crop yields, but the loss of reactive
N from agricultural systems leads to atmospheric, surface water, and groundwater pollution [1–3],

Remote Sens. 2020, 12, 1234; doi:10.3390/rs12081234 www.mdpi.com/journal/remotesensing
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ultimately diminishing environmental quality and human well-being [4,5]. Despite the potential
environmental consequences to society, the pressure on producers to increase productivity oftentimes
leads to N fertilizer applications in excess of crop requirement [6,7]. Without more efficient N fertilizer
applications, the increasing global population and subsequent rising demand for food are expected to
cause an increase in the loss of reactive N in the future [8].

A strategy to reduce the likelihood of reactive N loss is to apply part of the crop’s N requirement
after emergence, delaying the application until crop demand is near its maximum. Grain yields and
crop N use are not uniform across seasons [9], so this delayed application also provides the opportunity
to adapt N fertilizer rates in a dynamic manner based on the influence of weather and N cycle processes
on early season crop growth or stress. Maize N requirement typically varies spatially [10], so this
strategy can be more effective with variable rate/site-specific applications [11].

The fundamental barrier to our ability of making reliable site-specific N fertilizer recommendations
is the lack of understanding and inability to accurately quantify soil N supply and how it is expected
to change throughout the season [12]. This is particularly challenging because both natural N supply
(i.e., non-fertilizer) and crop N requirement are dynamic in both space and time and are difficult
to predict [13]. Determination of early season crop N uptake (NUP) can be helpful for making N
fertilizer recommendations due to its connection with natural N supply (e.g., mineralization) and crop
N requirement. Remote sensing offers the opportunity to capture near real-time information about
crop N status [14], and it can be an efficient way to assess the spatial variability across an entire field
or farm. With the availability of robust, reliable unmanned aircraft and low payload hyperspectral
line-scanning imagers in recent years, there is now the opportunity to use high-resolution, aerial
hyperspectral imagery to predict early season NUP in maize. As a research tool, aerial hyperspectral
imaging is attractive for its ability to scale, especially compared to other methods that use ground-based
hyperspectral point measurements for N fertilizer management [15].

There are tradeoffs in pixel size related to the approach for which remote sensing imagery is
captured. It is typically preferred to capture images with finer spatial resolution, but this comes with a
tradeoff of larger data storage and processing requirements, as well as longer acquisition time and
battery/fuel requirement for a given spatial extent. Academic research is commonly conducted on
small plot areas that do not cover a large extent, and a low flight altitude (e.g., approximately 20 m)
may be practical for covering the extent of the experimental area. However, this is rarely suitable at the
field scale (including on-farm research) because of the large areas that must be imaged. This leads to a
likely dilemma where much of the data used for research and development is inherently different from
the data used by practitioners (e.g., the inherent pixel size differs). Therefore, it is important to develop
prediction models that are either scale-agnostic or that are specifically tailored to the conditions for
which practitioners will be able to practically implement them.

The objectives of this work were to: (i) compare supervised learning techniques for their ability to
predict maize NUP at the early- to mid-vegetative development stages (i.e., V6 to V14) using spectral
features from high-resolution aerial hyperspectral imagery, (ii) quantify the potential model improvement
by including an auxiliary feature derived before the segmentation process, and (iii) evaluate how the
difference in pixel size at image capture affects prediction accuracy based on the inherent ability to
segment pixels most influenced by soil and/or shadow.

2. Materials and Methods

2.1. Field Experiments

Data from three experiments in southern Minnesota were used to evaluate the objectives of this
study. The Wells experiment (43.85437, –93.72977) was conducted near Wells, Minnesota in 2018, and the
two Waseca experiments were conducted at the Agroecology Research Farm (44.063635, –93.540281) near
Waseca, Minnesota in 2019 (hereby referred to as the Waseca “small plot” and “whole field” experiments).
Weed, pest, and disease management were carried out by farm managers using approaches typical
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for the areas. The N fertilizer rate across all experiments ranged from 0 to 231 kg ha−1. Experimental
treatments included conventional and sidedress N applications, whereby the conventional treatments
had all N applied around the time of planting, and the sidedress treatments had 45 kg ha−1 N applied at
planting and the remainder applied as sidedress close to the V8 development stage.

2.1.1. Wells Experiment

The Wells, Minnesota dataset was acquired from a broader experiment that evaluated the effect
of tillage (conventional tillage, strip-till, and no-till) and tile drainage (drained and undrained) on
N response and contained 144 experimental plots across four replications. The previous crop (i.e.,
in 2017) was soybeans, and the Marna silty clay loam (fine, smectitic, mesic Vertic Endoaquolls) and
Nicollet silty clay loam (fine-loamy, mixed, superactive, mesic Aquic Hapludolls) soils were the two
predominant soil series at the site. The crop was planted (Pioneer hybrid P9929AMXT) on 17 May
2018 at a population of 86,400 plants ha−1. Nitrogen was applied as urea + N-(n-butyl) thiophosphoric
triamide (NBPT; urease inhibitor) on 21 May 2018. Phosphorus and potassium fertilizers were applied
on 25 May 2018 at rates that ensure optimum soil fertility for maize production in Minnesota [16].

2.1.2. Waseca Experiments

The experimental boundaries for both the small plot and whole field experiments near Waseca,
Minnesota are illustrated in Figure 1 [17]. The previous crop (i.e., in 2018) was soybeans, and the
Nicollet clay loam (fine-loamy, mixed, superactive, mesic Aquic Hapludolls) and Webster clay loam
(fine-loamy, mixed, superactive, mesic Typic Endoaquolls) soils were the two predominant soil series
at the site. Both the small plot and whole field experiments were planted (Channel hybrid 199-1VT2P
RIB) on 3 June 2019 at a population of 87,722 plants ha−1 immediately following a tillage pass. Preplant
N was applied to the small-plot experiment as urea +NBPT on 17 May 2019. The preplant N treatment
was applied to the whole field experiment in two phases: the first phase was applied as a urea +
NBPT/ammonium sulfate blend (45 kg N ha−1) on 16 May 2019, and the second phase was applied
as urea + NBPT at a rate of 179 kg nitrogen ha−1 on 3 June 2019. Sidedress N was applied as urea +
NBPT on 3 July 2019 (at the V7 development stage) with a 4.6 m applicator (Gandy Orbit-Air, Gandy
Company; Owatonna, Minnesota; application width of eight crop rows) equipped with a variable rate
controller (Viper version 3.2.0.0, Raven Industries, Inc.; Sioux Falls, South Dakota).

2.2. Crop Nitrogen Uptake

To convert biomass from a per-plant basis to a per-area basis, a plant emergence of 83,361 plants
ha−1 was assumed for the Wells experiment (96.4% emergence), and plant emergence of 85,251 plants
ha−1 was assumed for both Waseca experiments (97.0% emergence). These emergence assumptions
were based on average stand count observations conducted shortly after emergence. Within two days
of capturing hyperspectral imagery, tissue samples were collected to measure tissue N concentration
in the above-ground biomass and above-ground total NUP. Plants were sampled by cutting the base
of the stem just above the soil surface. Additional details regarding sample acquisition (i.e., date,
development stage, number of samples, etc.) are listed in Table A1. Plant samples were oven-dried
at 60 ◦C to constant weight, weighed, and ground to pass a 1 mm sieve. Total N concentration was
determined for each sample using Kjeldahl digestion [18] (Wells experiment) or dry combustion [19]
(Waseca experiments).
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Figure 1. Waseca “small plot” and “whole field” experimental boundaries. The whole field sample
areas, whole-field hyperspectral image extents, and sidedress N fertilizer rates are also illustrated.

2.3. Airborne Spectral Imaging System

Hyperspectral images were captured via an airborne spectral imaging system (Resonon, Inc.,
Bozeman, Montana). The airborne system included a flight computer (Resonon NUMI, flight code
version 1.36) that integrated the following hardware for seamless data capture: (i) a pushbroom (i.e., line
scanning) hyperspectral imaging spectrometer (Resonon Pika IIg VNIR), (ii) an inertial measurement
unit (IMU; Ellipse2-N, SBG Systems, Carrières-sur-Seine, France), (iii) a single band GNSS (Global
Navigation Satellite System) antenna (TW2410, Tallysman, Inc., Ottawa, Ontario) surface mounted
and lifted 15 cm away from the unmanned aerial vehicle flight controller, and (iv) a 240 GB solid-state
hard drive for data storage (Intel S3500 Series). The specifications of the spectral imager are presented
in Table 1. The flight computer and spectral imager were powered by a designated lithium polymer
battery (Ronin 4350 mAh, DJI, Inc., Shenzhen, China), and they were rigidly mounted to a three-axis
gimbal (Ronin-MX, DJI, Inc., Shenzhen, China) on board an unmanned aerial vehicle (DJI Matrice 600
Pro, DJI, Inc., Shenzhen, China).

Table 1. Specifications of the hyperspectral imaging spectrometer.

Spectral Range
(nm)

Spectral Resolution
(nm)

Spectral
Channels

Spatial
Channels

Bit Depth
Field of View

(Degrees)

400–900 2.1 240 1 640 12 33.0
1 Although 240 spectral channels were available, many were clipped out because of high noise.

2.4. Airborne Image Capture

Resonon Ground Station software (version 3.123) was used to program the flight computer before
each flight campaign. The “bright areas of interest” auto-exposure setting was used, which adjusted the
gain and exposure time based on ambient lighting conditions and the general brightness of the target
when each image began to be captured. A moderate framerate of 109 (frames per second) was used for
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each image campaign because it was suitable for the desired ground speeds and altitudes for achieving
spatial integrity (i.e., pixels captured with a 1:1 aspect ratio in the cross-track and along-track directions).

A polygon that delineated the desired area for image capture, together with real-time location
data from the GNSS receiver of the airborne system, dictated whether the spectral imager was to
capture data at a particular location. Image capture commenced when the airborne system entered the
polygon boundary and ceased when it exited the polygon boundary.

The gimbal was programmed to maintain the position of the spectral imager at nadir, which
involved real-time gimbal adjustments (pitch and roll), due mostly to UAV movement and wind
force. The gimbal maintained the heading of the spectral imager relative to the heading of the UAV
so that the spectral image array (640 spatial channels) remained approximately perpendicular to the
heading of the UAV flight direction. Autonomous flight missions were created and executed using
DJI Ground Station Pro (iOS app version 1.8.2 + for 2018 flights and iOS app version 2.0.2 + for 2019
flights). The altitude, speed, and resulting image pixel size (i.e., ground-resolved distance) for each
experimental site are presented in Table 2.

Table 2. Spatial description of aerial image campaigns at each experimental site. The cropped plot size
refers to the spatial extent of cropped image at each sample location.

Site Altitude Ground Speed Ground Swath Pixel Size Area Captured Cropped Plot Size

m m s−1 m cm ha m
Wells 40 4.0 23.7 4.0 4.5 6.2 × 1.8

Waseca small-plot 1 20–25 2.0–2.5 11.8–14.8 2.0–2.5 0.7 1.8 × 1.8
Waseca whole-field 80 8.0 47.4 8.0 11.2 10 × 10

1 Altitude was 20 m on the V6 and V8 development stages, but it was 25 m at the V14 stage to increase the ground
swath. The corresponding cropped plot size at V14 was 1.8 m × 2.3 m.

2.5. Reference Panels

Reference panels were constructed by applying a 50/50 mixture of gray paint and barium sulfate
(BaSO4) by weight to high-density fiberboard (60 cm× 60 cm× 3.2 mm). Painted BaSO4 diffuses incoming
solar irradiance in various directions to minimize specular reflection and has less than a 5% difference
from a Lambertian surface for 0 to 55 degree zenith angles [20]. The spectral profile of the reference
panels from approximately 400 to 900 nm was nearly flat, with an average reflectance of 42.1% (σ = 1.1%;
measured with a spectroradiometer; ASD FieldSpec 4; Analytical Spectral Devices, Inc., Longmont,
Colorado). Immediately before spectral image acquisition, the reference panels were strategically placed
throughout the experimental area so that images containing reference panels were captured at least every
90 s to account for temporal variation in solar illumination.

2.6. Image Pre-Processing

All image pre-processing steps were carried out using Spectronon software (version 2.134; Resonon,
Inc., Bozeman, Montana). Raw hyperspectral images were corrected to radiance (μW sr−1 cm−2 μm−1)
in a two-step process using the Radiance Conversion plugin (Equations (1) and (2)) and gain and offset
files supplied by the manufacturer of the spectral imager. The Radiance Conversion plugin first scaled
the gain file (denoted as a) to the integration time and gain of the data cube (denoted as x):

a = a ∗
(

aτ ∗ aρ
xτ ∗ xρ

)
(1)

where a is the scaled gain file, aτ is the integration time of the gain file, aρ is the gain of the gain file, xτ
is the integration time of the data cube, and xρ is the gain of the data cube. The raw data cube was then
corrected to radiance:

Xrad =
(Xdn

a
− b

)
∗R (2)
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where Xrad is the radiance corrected data cube in units of μW sr−1 cm−2 μm−1, Xdn is the raw data cube,
b is the offset file with the closet match to xτ and xρ, and R is the calibrated radiance source that was
used to illuminate the integrating sphere.

Following radiometric correction, images were georectified (using the Georectification plugin) based
on time-synced data collected by the GNSS receiver and IMU of the airborne system (i.e., latitude,
longitude, altitude, yaw, pitch, and roll). A 1.0 m digital elevation model image was used as the basis
for projecting each image line to the appropriate elevation above mean sea level. The line-scanning
imager sometimes fails to capture data when it passes over the target area too quickly, and it conversely
captures duplicate data when it passes too slowly. The Georectification plugin used a linear interpolation
method to adjust pixel values where there was missing or duplicate data.

Then, georectified radiance images were converted to reflectance by applying a single spectrum
correction to each image [21] based on the relationship between the radiance of the reference panels
from the imagery and the average measured reflectance. Radiance pixels were manually extracted,
taking care to avoid pixels near the edges of panels. If there was no reference panel present in an image,
radiance data extracted from the reference panel captured closest in time were used for reflectance
conversion instead.

2.7. Image Post-Processing

All image post-processing was performed in Python (version 3.7.3) using the hs_process package
(version 0.0.3) [22]; the hs_process package leverages Spectral Python (version 0.20) [23] and the Geospatial
Data Abstraction Library (version 2.3.3) [24]. Post-processing steps included cropping, spectral clipping
and smoothing, and segmentation.

2.7.1. Cropping

To allow for seamless batch processing on all subsequent processing and analysis steps, spectral
images were spatially subset to exclude all areas outside the plot boundary by cropping the images to
plot boundaries. The image size following the spatial cropping step for each experimental location is
summarized in Table 2.

2.7.2. Spectral Clipping and Smoothing

Since there was low signal-to-noise, the spectral bands shorter than 430 nm (n = 13) and longer
than 880 nm (n = 3) were clipped (i.e., removed) from every image cube. The spectral bands near the
O2 absorption region [25] (760–776 nm; n = 7) and H2O absorption region [26] (813–827 nm; n = 7)
were also clipped because of relatively high noise. In total, 210 spectral bands were kept for analysis.
Following spectral clipping, the Savitzky–Golay smoothing procedure (11-band moving window,
second-order polynomial fitting) was applied to the spectral domain of each image pixel [27]. Following
these steps, at least one cropped spectral image existed for every plot used for analysis.

2.7.3. Choice of the Auxiliary Feature and Image Segmentation

The MCARI2 (Modified Chlorophyll Absorption Ratio Index Improved) spectral index (Equation (3))
was applied to each image to segment the vegetation pixels from those that represent soil and shadow.
MCARI2 was chosen because it incorporates a soil adjustment factor (based on the concept developed
by Huete [28]) that was optimized with the constraint of preserving the sensitivity of MCARI2 to leaf
area index and insensitivity to chlorophyll influence [29].

MCARI2 =
1.5[2.5(λ800 − λ670) − 1.3(λ800 − λ550)]√
(2 ∗ λ800 + 1)2 −

(
6 ∗ λ800 − 5 ∗ √λ670

)
− 0.5

(3)
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Before segmentation was carried out, a preliminary analysis was conducted to identify an auxiliary
feature that could be made available to the learning models to accomplish the objectives of this study.
Specifically, the goal of the preliminary analysis was to find a metric sensitive to above-ground biomass
and/or chlorophyll concentration across the range of development stages evaluated in this study. Many
pre-segmentation MCARI2 descriptive statistics (e.g., mean, median, standard deviation, various
percentiles, etc.) were calculated and evaluated for their relationship with above-ground biomass
and chlorophyll concentration. Following the analysis, the 10th percentile MCARI2 was the auxiliary
feature chosen because of its relatively strong linear relationship with above-ground biomass across
development stages.

Since the leaf area index was expected to differ across N treatments at the development stages
evaluated in this study, the most appropriate MCARI2 segmentation threshold was also expected
to vary. To account for these differences, the upper MCARI2 threshold was dynamically calculated
as the 90th percentile within each cropped image. All pixels in the data cube with MCARI2 values
below the 90th percentile threshold were masked out and excluded from any subsequent analyses.
The remaining unmasked pixels were assumed to be the pixels that were most likely to represent pure
vegetation and were least influenced by soil and shadow (i.e., as mixed pixels).

2.8. Cross-Validation

There were 247 NUP observations across four development stages (V6, V8, V10, and V14), two growing
seasons (2018 and 2019), and four pixel sizes available for testing the hypotheses of this experiment (Table 2;
Table A1). This full dataset was used for model training and testing, and it represented a robust combination
of sampling and acquisition conditions during the early- to mid-vegetative development stages.

A stratified sampling approach was used to assign observations to the training and test sets
because of the varying number of observations for each experiment and the robust combination of
sampling and acquisition conditions. Stratification ensured that the training and test sets followed
the same approximate probability distribution, which reduced the likelihood of model overfitting.
Stratification was performed within the experiment and development stage, whereby 60% of the
observations were assigned to the training set (n = 148) and the remaining 40% were assigned to the
test set (n = 99). The test set was held out during training and tuning and was only used to assess the
final prediction performance of the regression models. A stratified random sample from the training
set (75%; n = 111) was used for feature selection. For hyperparameter tuning, a repeated stratified
k-fold cross-validation technique was applied to the full training set. The cross-validation used for
hyperparameter tuning implemented three repetitions and four splits (a different randomization was
applied in each repetition), and hyperparameter combinations were evaluated using the mean of the
12 validation scores.

A Yeo-Johnson power transformation was applied to the NUP response measurements to minimize
the inherent heteroscedasticity of the dataset [30].

2.9. Feature Selection

When limited to a fixed, small number of observations to train a model, model accuracy tends to
decrease as the dimensionality of the input dataset increases. For the small number of observations
in this experiment relative to the 210 original input bands, it was wise to reduce the dimensionality
on the hyperspectral dataset before training the model. The aim of dimensionality reduction was to
minimize multicollinearity while preserving the critical information necessary to accurately predict the
response variable.

Feature selection was used as a means of dimensionality reduction and was performed before and
independent of training the prediction models using the Lasso (least shrinkage and selection operator)
algorithm. Lasso is a supervised regression-based model that performs regularization and identifies the
most informative, least redundant features for predicting the response variable [31]. Mathematically,
Lasso solves the minimization of the least-squares penalty with an added 
1 regularization term.
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Feature selection is possible with Lasso because its 
1 regularization term induces sparsity by forcing
the sum of the absolute value of the feature coefficients to be less than some fixed constant (controlled
by the α parameter), effectively forcing coefficients to be exactly zero for features that are collinear
and otherwise uninformative. Upon model convergence, features with coefficients equal to zero are
neglected, and features with non-zero coefficients are such because they contain the richest information
and are therefore allowed to contribute to the prediction model.

Lasso was implemented in Python (version 3.7.3) using the Lasso function of the sklearn.linear_model
module (scikit-learn version 0.22) [32]. A coordinate descent algorithm was implemented to fit the
feature coefficients. Since the α parameter controls the degree of regularization on the cost function
(i.e., the penalty term) and effectively controls the number of features whose coefficients are forced to
zero, α was adjusted from 1.0e+00 to 1.0e−04 in a logarithmic manner to explore the effect of feature
number on training and cross-validation scores. The root mean squared error (RMSE) of prediction
(Equation (4)) was the objective function used for scoring:

RMSE =

√√
1
n

n∑
i=1

(yi − ŷi)
2 (4)

where n is the number of observations, yi is measured NUP for the i-th observation, and ŷi is the
predicted NUP for the i-th observation. As α becomes smaller and approaches zero, the cost function
becomes more similar to that of linear regression, resulting in more features having non-zero coefficients.
It was common for multiple α values to yield a similar number of features. In such cases, the feature
set with the lowest cross-validation error (i.e., the best score) was ultimately used for model testing.

2.10. Model Tuning and Prediction

Four supervised regression models were used to predict early season NUP: Lasso, random forest,
support vector, and partial least squares. All models were fit and tuned using the scikit-learn Python
package (version 0.22). Each of these models has hyperparameters that must be set before the learning
process because they are not directly learned during model training. It was necessary to tune these
hyperparameters to ensure that they were set to optimum values to avoid underfitting and to accurately
test the final prediction performance of the trained model. Tuning was performed using a grid-search
cross-validation technique that exhaustively searched over explicit hyperparameter ranges (implemented
using the GridSearchCV function of the sklearn.model_selection module). The hyperparameter ranges
evaluated for each regression model are described in the following sections. The hyperparameters that
had the lowest cross-validation error (i.e., RMSE) were ultimately used for model testing.

Lasso regression is an attractive prediction model because it tends to perform well with a relatively
small number of features, ultimately resulting in a simpler and more interpretable model. Lasso was
tuned for its only hyperparameter, α (ranged from 1.0e+00 to 1.0e−04).

Support vector regression models are popular prediction models because they are typically
effective in high-dimensional spaces (including those where the number of features is greater than
the number of samples), they are memory efficient during training, and they are versatile in that
different kernel functions can be specified as their decision function. SVR is unique in that it aims
to find a function f (x) that deviates from yi by no more than ε, while simultaneously remaining as
flat as possible [33,34]. The SVR model was tuned for both the linear and radial basis kernel functions.
The linear kernel function was tuned on the ε (ranged from 1.0e+00 to 1.0e−03) and C (ranged from 200
to 800) hyperparameters, and the radial basis kernel function was tuned on the ε (ranged from 1.0e+00 to
1.0e−03), C (ranged from 10 to 70), and γ (ranged from 1 to 20) hyperparameters.

Random forests are attractive because they are invariant to scaling and transformations of feature
values, they are robust to the inclusion of irrelevant features, and they produce models that can be
inspected [35]. The random forest model uses an ensemble learning method in which many decision
trees are learned in parallel (i.e., there is no interaction between the various trees during the learning
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process) [36]. The random forest model was tuned for the maximum number of features to consider (ranged
from nfeatures to nfeatures/20) and the minimum number of samples required to split an internal node (ranged
from 2 to 10).

Partial least squares regression (PLSR) transforms input features into a new feature space by
forming a linear combination of features (i.e., components) that maximizes the covariance between its
components and the response variable(s). As a result of this dimensionality reduction (i.e., feature
extraction), PLSR can be used with any number of features [37]. It is especially useful when there are
more features than observations, or when the features are highly collinear (e.g., in hyperspectral image
analysis). The PLSR model was tuned for two hyperparameters: the number of components (ranged
from 2 to 10) and whether scaling was implemented.

Model accuracy was evaluated using both the RMSE (Equation (4) and mean absolute error (MAE)
of prediction (Equation (5))):

MAE =
1
n

∑n

i=1

∣∣∣yi − ŷi
∣∣∣. (5)

3. Results

3.1. Image Segmentation and MCARI2 Analysis

The MCARI2 histograms illustrate the approximate distribution of the vegetative fraction in each
image before segmentation (Figure 2). The range of the MCARI2 distribution decreased as development
stage progressed, and the 90th percentile MCARI2 generally increased. Images captured from the
Waseca whole field experiment that had a coarser 8 cm pixel size (Figure 2d–f) showed a consistently
increasing trend in the 90th percentile MCARI2 up to the V14 development stage, whereas images
captured from the Waseca small-plot experiment that had a finer 2–2.5 cm pixel size (Figure 2a–c)
peaked by the V8 development stage. The histograms generally shifted from a skewed right distribution
at the V6 development stage to a skewed left distribution at the V14 development stage, indicating an
increase in vegetative cover as the crop developed. This trend is especially apparent for the finer pixel
size, providing clear evidence that the image pixel size affects the distribution of MCARI2 values.

In general, there is a higher likelihood that unmasked pixels represent pure vegetation as the
90th percentile MCARI2 increases. Imagery captured at a coarser pixel size showed a consistently
lower 90th percentile MCARI2 across the mid- to late-vegetative development stages (Figure 3b).
Alternatively, the larger pixel size showed a consistently higher 10th percentile MCARI2 (Figure 3a).
Across all development stages, the mean difference between the smaller and larger pixel sizes was 0.12
and –0.09 for the MCARI2 10th and 90th percentiles, respectively.

The 90th percentile MCARI2 could adequately segment pure vegetation (Figure 2), but it had
a weak relationship with above-ground biomass due to saturation after the V10 development stage
(Figure 4b). The coefficient of determination (R2) and root mean squared error (RMSE; smaller is better)
improved moderately when considering only the V6, V8, and V10 development stages (the best fit
from ordinary least squares regression is represented by the dashed line in Figure 4b), but it is not ideal
to have a model that is constrained by development stage. However, the 10th percentile MCARI2 did
not saturate out as extensively and had a strong relationship with above-ground biomass (Figure 4a;
R2 of 0.73 and RMSE of 907 kg ha−1).

471



Remote Sens. 2020, 12, 1234

Figure 2. Aerial hyperspectral images (represented as a true color render) for the Waseca small plot
(a–c) and Waseca whole field (d–f) experiments before and after segmentation at the V6 (a and d), V8 (b
and e), and V14 (c and f) development stages. The histograms illustrate the 90th percentile MCARI2
values (Modified Chlorophyll Absorption Ratio Index Improved) for each image, which was used as
the threshold for segmentation.

Figure 3. Effect of pixel size on (a) MCARI2 (Modified Chlorophyll Absorption Ratio Index Improved)
10th and (b) 90th percentile MCARI2 values at the V6, V8, and V14 development stages before image
segmentation. The pixel size was 2.0 cm at the V6 and V8 development stage, but 2.5 cm at the V14
development stage.
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Figure 4. Relationship between above-ground biomass and MCARI2 (Modified Chlorophyll Absorption
Ratio Index Improved) 10th (a) and 90th (b) percentile values. Best fit lines from ordinary least squares
linear regression are illustrated, as well as their respective coefficient of determination (R2) and root
mean squared error (RMSE). The dashed line in (b) represents the best fit from ordinary least squares
regression when considering only data from the V6, V8, and V10 development stages. The MCARI2
10th percentile was chosen as the auxiliary feature to complement the spectral features for model
training because it did not saturate out as extensively as the MCARI2 90th percentile.

3.2. Feature Selection

Adjusting the α parameter from 1.0e+00 to 1.0e−04 in the Lasso algorithm governed the number of
non-zero feature coefficients from 1 to 79, respectively (Figure 5). Few selected features were in the
visible spectral region, and all features came from the red edge and near-infrared regions when less
than 10 features were selected. The spectral areas of particular significance for NUP were from 735 to
744 nm and from 867 to 879 nm (as indicated by the features that were selected when the number of
features was less than five). It is unclear why exactly adjacent features (i.e., within just a few spectral
bands) were oftentimes selected by Lasso, but this may suggest that the change in spectral reflectance
between adjacent bands (i.e., derivative spectra) is meaningful for explaining NUP.

Figure 5. Hyperspectral features selected by the Lasso algorithm (the colored areas indicate selected
features). The color indicates the ranking of the feature coefficients determined by the regularization
term (yellow color corresponds to a ranking with higher feature coefficients). The top five features
from 735 to 744 nm and from 867 to 879 nm are outlined to emphasize the most significant spectral
regions for NUP. The mean hyperspectral reflectance across all segmented images used in this study
(i.e., mean vegetation) is overlaid for reference.
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3.3. Hyperparameter Tuning

The most common hyperparameter values across all training instances (i.e., for varying numbers
of selected features) for each prediction model are listed in Table 3. The frequency of the mode indicates
the proportion of training instances for which the listed hyperparameter value was optimal. Lower
frequencies correspond to hyperparameters whose optimal value varied across the range of tuning
values, whereas higher frequencies correspond to hyperparameters that were not particularly variable.

Table 3. The mode and frequency of the mode across all training instances for the tuned hyperparameters
in each of the prediction models. Hyperparameter tuning results are listed for the analysis that used
spectral features only, as well as the analysis that used spectral features in addition to the auxiliary
feature. The hyperparameters and their values are listed according to the conventions of the scikit-learn
function arguments [32].

Spectral Features Only With Auxiliary Feature
Model Parameters Modal Value Frequency Modal Value Frequency

Lasso
alpha 0.001 61% 0.0001 100%

Support vector regression
kernel “rbf” 82% “linear” 92%

Gamma 1 5 40% - -
C 1 30 38% 200 84%

epsilon 1 0.01 48% 0.01 86%
Random forest

min_samples_split 2 82% 2 46%
max_features 0.3 70% 0.9 61%

Partial least squares
n_components 7 39% 7 61%

scale 1 77% 1 79%
1 The denoted support vector regression hyperparameters are summarized across only the training instances with
the modal kernel function.

Lower Lasso α values (i.e., 1.0e−03 to 1.0e−04) were optimal, probably because lower α values offer
less restriction on the number of selected features. In SVR, the radial basis kernel function was optimal
when only spectral features were used, but the linear kernel function was optimal with the addition
of the 10th percentile MCARI2 from the image segmentation step. In random forest, the minimum
number of samples required to split an internal node was usually optimal at two, and the maximum number
of features to consider at each tree node was typically either 30% or 90% of the total number of features.
In PLSR, the optimal number of components generally increased as the number of features increased
(data not shown). Although the optimal number of components was seven across all training instances,
the number of components never exceeded five with less than 12 features (however, note that there
cannot be more components than features in PLSR).

As the number selected features increased, the training and validation errors of the optimally
tuned models generally decreased and the R2 values increased (Figure 6). Most of the error reduction
occurred in the addition of the first few features, and improvement in model fit usually plateaued by
approximately 10 selected features (PLSR plateaued at approximately 30 features; data not shown). Of the
four models evaluated, random forest showed more overfitting during hyperparameter tuning than
Lasso, SVR, or PLSR as illustrated by the greater difference between the training and validation errors/R2

values. This difference tended to increase as the number of selected features increased (although the
magnitude and consistency of this observation varied among models), indicating overfitting with an
increasing number of selected features. As a result of a more overfit model, the subsequent validation
error in the random forest model was greater than that of Lasso, SVR, and PLSR, whose validation errors
were all comparable. The standard deviation (σ) of error across the four folds and three repetitions
of the repeated k-fold cross-validation (i.e., the shaded region of Figure 6) remained fairly constant
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as the number of selected features increased, and it was comparable across all four models (σ was
approximately 2 kg ha−1).

Figure 6. Influence of feature number on the mean absolute error (MAE) and coefficient of determination
(R2) during hyperparameter tuning. The MAE and R2 are illustrated for both the training and validation
datasets for nitrogen uptake predicted by the (a) Lasso, (b) support vector regression, (c) random
forest, and (d) partial least squares models evaluated in this study. The shaded region surrounding the
validation error represents the standard deviation (σ) of error across the four folds and three repetitions
of the repeated k-fold cross-validation applied during hyperparameter tuning.

3.4. Nitrogen Uptake Predictions

Across the three experimental sites, NUP between the V6 and V14 development stages ranged
from 4.8 to 181.5 kg ha−1 (mean measured NUP in the test set was 57.1 kg ha−1; Figure 7). There was a
clear improvement in NUP prediction performance when the 10th percentile MCARI2 was available as
an auxiliary feature (Figure 7e–h). All predictions in Figure 7 used five input features (predictions
from Figure 7a–d used only spectral features, whereas predictions from Figure 7e–h used the 10th
percentile MCARI2 auxiliary feature in addition to four spectral features). By adding the auxiliary
feature, the average MAE and RMSE across the four prediction models were reduced by 1.6 (14%)
and 1.8 (11%) kg ha−1, respectively. Overall, the performance among Lasso, SVR, and PLSR was
comparable, while the performance of random forest was substantially inferior as indicated by the
higher error values. Among the models that used only spectral features (Figure 7a–d), the MAE of
SVR was marginally lower than Lasso and PLSR (however, the RMSE was comparable). Comparing
among the models that used the 10th percentile MCARI2 (Figure 7e–h), the MAE of Lasso and PLSR
were marginally lower than SVR. The best-fit lines of all models are remarkably similar to the 1:1 line,
especially for the models that used only spectral features, indicating that there was no tendency to
under- or overpredict across the observational range of NUP. Among the three image capture pixel
sizes, there does not appear to be a trend in the contribution of error by pixel size (i.e., the larger pixel
size does not appear to have higher error, per se). Across all models, the relative MAE improved from
20.3% to 17.5% and the relative RMSE improved from 28.0% to 24.8% by adding the auxiliary feature
(Table A2).

The Yeo-Johnson power transform served its purpose, as the variance of predicted NUP increased
proportionally to the increase in NUP itself. This is illustrated by the increasing deviation of the
points from the 1:1 line as measured NUP increased, and it is apparent by observing the increase
in stratified error values shown along the right axis of each subplot. The SVR model with spectral
features only performed particularly well at predicting low and very low NUP values (i.e., NUP <
50 kg ha−1) as indicated by the low stratified MAE (i.e., 3.5 kg ha−1) compared to the other models
(average MAE of 4.6 kg ha−1). SVR was the only learning model among the four that did not show
an improvement in prediction error at the very low NUP level (i.e., NUP < 25 kg ha−1) by making
use of the 10th percentile MCARI2 feature. The SVR stratified MAE actually increased from 3.5 to
3.9 kg ha−1 (all others decreased at the very low NUP stratification), but they were still the lowest
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among the other learning models. Although the random forest models had higher overall MAE, they
performed satisfactory at the very low NUP level (i.e., fairly similar to the other models). Although
there were small differences in MAE within the medium and high NUP levels (NUP ≥ 50 kg ha−1),
neither Lasso, SVR, or PLS clearly emerged as the best performer. The NUP stratifications reported in
Figure 7 roughly coincide with the four observed development stages. In general, the MAE increased
as the development stage progressed (data not shown), which was largely attributed to the increasing
variance in measured NUP with the increase in NUP itself.

Figure 7. Measured and predicted nitrogen uptake (NUP) values from each of the four learning models
using the test dataset (n = 99). Plots in the top row (a–d) used five spectral features (739, 741, 801, 867,
and 873 nm), and plots in the bottom row (e–h) used four spectral features (737, 739, 867, and 871 nm)
in addition to the 10th percentile MCARI2 (Modified Chlorophyll Absorption Ratio Index Improved)
before image segmentation. The mean absolute error (MAE) and root mean squared error (RMSE)
correspond to the prediction error (i.e., deviation from the 1:1 dashed line), whereas the coefficient
of determination (R2) corresponds to the best-fit line. MAE values stratified by measured NUP are
shown along the right axis of each plot (“very low”, “low”, “medium”, and “high” groups are stratified
as: NUP < 25 kg ha−1; 25 ≥ NUP < 50 kg ha−1; 50 ≥ NUP < 100 kg ha−1; and NUP ≥ 100 kg ha−1,
respectively).

For any number of input features, the NUP prediction performance improved when the 10th
percentile MCARI2 was available as an auxiliary feature (Figure 8). Across all models, the MAE of
prediction was reduced by 1.2 kg ha−1 when considering the 10th percentile MCARI2 (summarized
data not shown). Average improvements within models ranged from 0.96 kg ha−1 (SVR model) to
1.4 kg ha−1 (Lasso model). The number of input features required to reach optimal performance was
reduced with the 10th percentile MCARI2 feature available (optimal performance is indicated by the
minimum MAE across all number of input features). The Lasso, SVR, and PLSR models reached
optimal performance with less than 10 input features with the 10th percentile MCARI2 auxiliary
feature available. If using spectral features only, Lasso, SVR, and PLSR did not usually reach optimal
performance until at least 20 input features were used. This evidence indicates that the inclusion of the
10th percentile MCARI2 value before segmentation not only improved overall prediction accuracy, but
it also reduced the number of input features required to reach optimal performance (optimal prediction
errors were usually reached with only three features).
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Figure 8. Influence of feature number on the mean absolute error (MAE) of the test dataset for Lasso
(a), support vector regression (b), random forest (c), and partial least squares (d) models. The error
designated by optimal hyperparameters indicates that the model hyperparameters were adjusted for each
input feature number based on the results of the hyperparameter tuning, and the error designated by
modal hyperparameters indicates that the hyperparameters were fixed for all number of features. Errors
are presented for models that used spectral features only (solid lines), as well as well as for models that
used the 10th percentile MCARI2 (Modified Chlorophyll Absorption Ratio Index Improved) auxiliary
feature in addition to spectral features (dashed lines).

Unlike the other learning models, the random forest prediction error continued to decrease as the
number of features increased, and it was not clear if the optimal performance was ever reached with
the range of input features evaluated. Furthermore, random forest errors were noisy (i.e., they had a
tendency to change abruptly as the number of features increased), and they were clearly higher than
the other three models across all the features evaluated.

There was not a clear advantage in using the optimal hyperparameters compared to using the
modal hyperparameters from Table 3 (note that the optimal hyperparameters were determined during
hyperparameter tuning individually for each group of selected features). In general, as the number of
features increased, the error trend was usually smoother when the modal hyperparameters were used.

4. Discussion

4.1. Model Comparison

Although all four supervised regression models (Lasso, SVR, random forest, and PLSR) had
satisfactory prediction errors, errors from random forest were consistently higher (+10% average MAE
across all input features). It was beyond the scope of this study to assess the computational efficiency
of the models, but it may be worth noting that the SVR model took substantially more time to train
than the other models. This was especially apparent during hyperparameter tuning, because the grid
search method required that each model be trained for all possible hyperparameter combinations and
all input features. If considering the computational requirement in addition to prediction accuracy,
Lasso and PLSR generally emerged as the preferred models among those evaluated for predicting
maize NUP using hyperspectral imagery.

There are many studies that correlate active or passive remote sensing with NUP in maize [14],
but it seems rare that NUP predictions are evaluated with proper cross-validation techniques. The only
report of cross-validated NUP prediction errors in maize was a study that used spectral indices from
an active canopy sensor to predict NUP in the early vegetative development stages using simple
linear regression [38]. Xia et al. [38] reported NUP RMSE as low as 16.6 kg ha−1 across development
stages (V5 to V10). The current study showed NUP RMSE as low as 13.6 kg ha−1 across development
stages (Figure 7), which was an 18% improvement compared to Xia et al. [38]. This improvement was
observed despite the fact that predictions were made across a broader range of development stages
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(V6 to V14) and NUP values (4.8 to 182 kg ha−1) in the current study, for which larger errors can be
expected due to increasing NUP variability for observations at later development stages.

Building cross-validated prediction models offers the advantage of interpreting remote sensing
data in a way that is more extensible for practitioners. Rather than focusing on comparing interpretations
of remote sensing information [14,39], remote sensing can instead be used to directly predict N status
indicators familiar to agronomists (e.g., crop NUP, chlorophyll content, etc.). These N status indicators
likely differ in their fundamental importance for making site-specific fertilizer recommendations, and
thus the challenge of improving N recommendations can be broken down so research objectives focus
instead on improving our fundamental understanding of N dynamics in maize (e.g., relating N status
indicators to crop N demand). The value of comparing the accuracy and practicality of various remote
sensing approaches [14] should not be diminished. Rather, we identify two independent requirements
for making site-specific N recommendations using remote sensing: (i) the ability to reliably predict
crop N status indicators familiar to agronomists, and (ii) having a clear understanding of how various
N status indicators relate to soil N supply [12] and/or crop N requirement [13]. Thus, to improve
the ability to provide reliable site-specific N fertilizer recommendations, we must not only be able
to predict maize crop NUP, but we must understand how N supply and maize N requirement are
expected to change throughout the season.

4.2. Segmentation

The goal for segmentation in this N study was to remove the pixels least likely to represent pure
vegetation without having a bias against low chlorophyll plants. The MCARI2 spectral index was
ideal for segmentation because it is sensitive to leaf area index and resistant to chlorophyll, which
were important considering that plants with low N rates were expected to exhibit low chlorophyll.
Shadowed pixels also tend to be problematic during segmentation, which MCARI2 handled especially
well compared to other common spectral indices. Image pixel size slightly affected the range of
MCARI2 histograms (Figure 2; a wider histogram corresponds to a higher coefficient of variation),
even across the relatively small pixel sizes used in this study. The decreased variability observed
for coarser pixel sizes tends to provide less specific biophysical crop information [40], but this issue
was not severe for the small range in pixel sizes used in this study (i.e., 2.0–8.0 cm). Although early
season weed control was not problematic at any of the sites used in this experiment, we do not expect
basic segmentation methods (such as those used for this analysis) to discern differences between crop
and weeds. Thus, from a practical perspective, the use of remote sensing for predicting biophysical
parameters such as NUP requires suitable weed control, or perhaps a more sophisticated segmentation
method that is capable of masking out weed pixels.

4.3. Inclusion of an Auxiliary Feature

A drawback of segmenting soil, shadow, and mixed pixels from the purest vegetation pixels is
that information describing the canopy cover may be lost. It may be detrimental to segment generally
unwanted pixels because their contribution may have a positive influence in explaining variability after
averaging spectra from all pixels within a plot/region of interest and passing it to the regression model
for training or validation. Therefore, it was desirable to identify a metric from the segmentation process
that could be recorded and passed on to the subsequent steps for model evaluation so the benefits
of segmentation could be exploited without sacrificing information about canopy cover. The 90th
percentile MCARI2 was a suitable metric for segmenting pure vegetation, but it had a weak relationship
with above-ground biomass due to saturation after the V10 development stage (Figure 4b). Since
the 10th percentile MCARI2 did not saturate out as extensively (Figure 4a; i.e., there was a linear
relationship across the range of biomass values), it was considered a more suitable metric for improving
NUP prediction accuracy. This notion was supported by the improved overall prediction accuracy
with the inclusion of the 10th percentile MCARI2 auxiliary feature. If segmentation of soil, shadow, or
mixed pixels is possible (i.e., when using high-resolution aerial imagery), it is recommended to identify
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a metric before the segmentation process that can be used as an auxiliary input feature, because it may
improve overall model accuracy.

At any particular development stage, it was not surprising that the 90th percentile MCARI2 was
lower for the larger pixel size—this simply illustrates that the larger pixel sizes are more influenced by
the nearby soil and have a greater degree of mixing. The more interesting question is perhaps whether
this greater degree of mixing observed with the coarser pixels translated to a bias and/or increased
NUP prediction error from the models. Unfortunately, there was an offset in timing between image
acquisition and tissue sampling for the Waseca whole field experiment at the V6 development stage, so
prediction data are limiting for the 8.0 cm pixel size. However, with the data available, there is no
evidence of a bias or increased prediction error from plots that had larger inherent pixel sizes. As long
as the models are trained using data that are representative and within the constraints of data that
will be used for predictions, these results show that imagery with up to 8.0 cm pixel size can be used
during the early development stages (i.e., up to V14) without sacrificing NUP prediction accuracy.

4.4. Spectral Feature Selection

Hyperspectral sensors are incredible research tools because they offer hundreds of spectral bands,
but the results of this study show that optimal prediction accuracy was usually achieved with only a
few features. Features in the red edge (near 740 nm) and near-infrared (near 870 nm) regions were
particularly important spectral regions for NUP (Figure 5). Reflectance in the red edge region changes
rapidly due to the transition from strong pigment absorption in the red region to light scattering in
leaves in the near-infrared region [41]. The Lasso algorithm oftentimes selected spectral features that
were adjacent to each other (i.e., within approximately 6 nm). This not only illustrates the apparent
importance of spectral precision and bandwidth of the sensor, but it also suggests that the slope in
reflectance (i.e., derivative spectra) between adjacent bands is especially meaningful for explaining NUP.
The inflection point in the red edge region is known to shift to shorter wavelengths as a consequence
of reduced chlorophyll content [42], and perhaps the selection of adjacent spectral features is capturing
this phenomenon.

4.5. Ongoing Challenges

The ability to predict spatially explicit NUP during the early- to mid-vegetative development
stages has a clear value to maize producers that wish to make in-season N applications. Hyperspectral
imagery is undoubtedly a promising tool for such an endeavor, but several technical and logistical
challenges remain as described more fully below.

4.5.1. Cost of Specialty Sensors

First, the cost of deploying an unmanned hyperspectral imaging unit is not likely to be practical for
commodity crops such as maize. Until the cost of high-resolution, hyperspectral imaging substantially
decreases, this technology is unlikely to be implemented. Only 2–5 features were typically required
to achieve optimal or near-optimal NUP prediction performance regardless of the prediction model
used in this study (Figure 8). Given the relatively few number of features needed for predicting NUP,
it may be interesting for sensor engineers and manufacturers to explore the possibility of designing
and building specialized narrowband sensors (i.e., up to five specific spectral bands with 2–3 nm
bandwidth) that are useful for specific applications such as N management. Although hyperspectral
imagery is a great research tool for identifying the most useful spectral bands, it certainly may not be
required for satisfactory NUP prediction accuracy. Instead, more simple multispectral aerial sensors,
satellite sensors, and active ground-based sensors may be sufficient for adequately predicting NUP.
Considerable research has been conducted to predict early season maize NUP using these various
sensors and/or platforms [14]. However, it is rare that prediction accuracy is reported using proper
cross-validation techniques, making it challenging to compare among sensors, platforms, or prediction
models to draw sound conclusions about the most satisfactory methods.
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4.5.2. Timeliness

Second, it may be challenging sometimes to acquire, process, train, and analyze data in the time
required to make a timely management recommendation. The burden of the acquisition process
can be ameliorated with hardware that is fully integrated (e.g., spectral sensor that works well
with an unmanned platform) and is efficient (e.g., battery capacity, flight time, read/write speeds,
etc.). Pre-processing (e.g., radiometric calibration, reflectance conversion, georeferencing, etc.) and
post-processing tasks can generally be improved with software, although customized solutions may
have to be designed and built for specific applications and/or processing methodologies. Supervised
models are only as good as their training and validation accuracies, and it would be wise to continually
add new training data over time to incorporate data from different environments to improve the
robustness of the models. While this study quantified the improvement in NUP prediction performance
by including the 10th percentile MCARI2 as an input feature, it did not address the value of segmentation
in the first place. This same notion could be said for many of the oftentimes subjective methods within
the meticulous image processing workflow (e.g., spectral smoothing, spectral binning, segmentation,
etc.). Furthermore, it is rare that a practitioner using the methods described in this study would be
able to access the same resources used in this study (e.g., an imager with similar specifications and
calibration protocol, processing software, etc.). For these reasons, more attention should be given
toward quantifying the overall effect on prediction accuracy after mimicking the specifications of
various popular image sensors or modifying thresholds used during processing (e.g., 90th percentile
MCARI2 used as a segmentation threshold).

4.5.3. Making a Fertilizer Recommendation

Third, the scientific understanding of how early season crop NUP should be used to make a N
fertilizer recommendation is poorly understood. Precision N management aims to match the N supply
with crop demand in both space and time to ensure optimal grain yield while reducing the risk of
environmental pollution from excess N. Thus, the prediction of early season crop NUP as demonstrated
in this study is only useful for practical purposes when there exists a known relationship between
observed NUP and future crop demand. Although there are cases when the relationship between
plant-based spectral measurements and optimal N rate can be weak to non-existent [43], there is
considerable evidence suggesting the contrary [44–48]. This indicates that remote sensing observations
during the growing season can perhaps be used to determine crop N requirements, at least in part.

Future crop demand is itself subject to uncertainty because of the close relationship between the
state of the soil environment (e.g., temperature, moisture, biological activity, etc.) and N additions (e.g.,
mineralization) or losses (e.g., leaching, denitrification, etc.). This is especially true in higher rainfall
regions such as Minnesota and is largely driven by uncertainty in weather. Indeed, it is common that
the economic optimum N rate (EONR) varies within a particular field and across years [10], but it is
not always clear what drives these differences [39]. The lack of understanding of future crop demand
together with uncertainty in the weather introduces a general distrust in any N recommendation that is
derived from remote sensing [39]. Although there is always expected to be some degree of uncertainty
in crop N demand, a planned in-season N fertilizer application can reduce the risk of N loss before
the advent of increased demand and rapid crop uptake [39], ultimately improving NUP efficiency.
However, the risk of an in-season application is that wet weather conditions can delay the planned
application timing, which can subsequently lead to reduced grain yield and and/or increased residual
soil N in some environments [49].

Future research should investigate the relationships between early season NUP and the EONR.
Specifically, we must critically assess how spatially explicit, early season NUP is helpful for understanding
the contributions to various parts of the N mass balance. Our understanding of net mineralization in
soils is especially limiting [39], perhaps most fundamentally because of challenges with our ability to
consistently estimate mineralizable N that varies due to soil properties, weather, sample collection timing,
etc. [50]. However, there is perhaps an opportunity to use soil temperature and moisture sensors [51],
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as well as other factors such as topography and soil physical and chemical properties, to estimate
trends in mineralization somewhat reasonably throughout the season. The potential for incorporating
process-based models to calculate EONR using readily available data also shows considerable promise [52]
and should be explored for its ability to relate EONR with early season crop NUP.

5. Conclusions

As implemented in this study, supervised regression using hyperspectral remote sensing offers
the opportunity to observe N supply spatially during the early- to mid-vegetative development stages,
albeit in the form of crop N uptake rather than soil N supply. Introducing an auxiliary feature to
the supervised regression models substantially improved N uptake prediction accuracy for all the
models evaluated. Although hyperspectral imagery captured at a larger pixel size (i.e., up to 8.0 cm)
demonstrated a greater degree of mixing (i.e., between soil, shadow, and vegetation), there did not
appear to be evidence that this larger inherent pixel size translated to a bias or increased prediction
error. The N uptake predictions from this study are superior to other reports in the literature that use
various passive and active remote sensing techniques. As exciting and promising as this may be for
making progress toward improved N management in agriculture, it has limited practical value for
precision N management without additional efforts in three critical areas: (i) the cost of this specialty
spectral data should be reduced, (ii) the timeliness from data acquisition to prediction should be
improved, and (iii) the relationship between early season N uptake and upcoming crop N demand
must be predicted with some degree of certainty.

To take the next step of making fertilizer recommendations, and to do so with greater confidence, it is
imperative that remote sensing research in precision N management begins to encompass data-driven
predictions of spatially explicit crop N demand and/or estimated optimum N rate. In continuing this
journey, prediction accuracy must be reported habitually using proper cross-validation techniques,
which is a practice that is rarely demonstrated in the relevant literature to date. Aside from preventing
model overfitting, cross-validated results allow more authentic comparisons to be made among
experiments that demonstrate the use of remote sensing for predicting N uptake and other biophysical
crop parameters. Further research may conclude that narrowband or hyperspectral imagery is not a
necessity for satisfactory prediction results (after all, optimal prediction accuracy was usually achieved
with only a few spectral features). However, this must be properly quantified using various sensor
configurations (e.g., spectral features, bandwidths, etc.), acquisition methods (e.g., altitude, platform,
etc.), and/or processing methods.
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Abstract: Accurate and efficient monitoring of pasture quality on hill country farm systems is crucial
for pasture management and optimizing production. Hyperspectral imaging is a promising tool for
mapping a wide range of biophysical and biochemical properties of vegetation from leaf to canopy
scale. In this study, the potential of high spatial resolution and airborne hyperspectral imaging for
predicting crude protein (CP) and metabolizable energy (ME) in heterogeneous hill country farm
was investigated. Regression models were developed between measured pasture quality values
and hyperspectral data using random forest regression (RF). The results proved that pasture quality
could be predicted with hyperspectral data alone; however, accuracy was improved after combining
the hyperspectral data with environmental data (elevation, slope angle, slope aspect, and soil type)
where the prediction accuracy for CP was R2

CV (cross-validated coefficient of determination) = 0.70,
RMSECV (cross-validated root mean square error) = 2.06%, RPDCV (cross-validated ratio to
prediction deviation) = 1.82 and ME: R2

CV = 0.75, RMSECV = 0.65 MJ/kg DM, RPDCV = 2.11.
Interestingly, the accuracy was further out-performed by considering important hyperspectral and
environmental variables using RF combined with recursive feature elimination (RFE) (CP: R2

CV = 0.80,
RMSECV = 1.68%, RPDCV = 2.23; ME: R2

CV = 0.78, RMSECV = 0.61 MJ/kg DM, RPDCV = 2.19).
Similar performance trends were noticed with validation data. Utilizing the best model,
spatial pasture quality maps were created across the farm. Overall, this study showed the potential
of airborne hyperspectral data for producing accurate pasture quality maps, which will help farm
managers to optimize decisions to improve environmental and economic benefits.

Keywords: pasture quality; airborne hyperspectral imaging; random forest regression

1. Introduction

Pasture quality is a growing concern because it is a critical constraint for achieving optimal
growth and performance for animal production [1]. To meet the nutritional requirements of animals,
high quality pasture needs to be maintained on farms. Therefore, being able to accurately assess
pasture quality is essential to maintain high quality feed throughout the year. Typically, the assessment
of pasture quality, crude protein (CP) and metabolisable energy (ME), is derived from laboratory
analysis; however, this method takes significant time and expense, which means these variables are
not often measured.

The wider application of remote sensing techniques for precision grassland management is
restricted due to heterogeneous pasture [2]. However, substantial progress has been made with
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sensors and analytical techniques in recent years that can provide comprehensive, site-specific,
quantitative information for grasslands. Full range hyperspectral sensors utilize contiguous narrow
spectral measurements of reflected light, which has the potential to capture strong narrow absorptions
features caused by chemical bonds present in biochemicals of interest [3,4]. Subsequently, it has proved
a powerful tool to quantify a wide range of grassland biophysical; biomass [5], dead vegetation
fraction [6], and biochemical attributes such as: biomass, leaf area index [7,8], nitrogen [9–11],
phosphorus [12], fiber [13,14], polyphenols [15], and cellulose [16].

Although a great variety of vegetation indices (VI’s) are widely used to estimate various
vegetation properties from reflected light, their potential is limited in the quantification of biochemicals
under heterogeneous grassland systems [17]. Compared to the full spectrum-based models,
the performance of models based on VI’s was inconsistent due to different canopy characteristics [18].
Subsequently, multivariate statistics have been proposed to extract comprehensive information.
For instance, Biewer et al. [19] found that compared to VIs, a full spectrum approach had shown
strong correlation with forage quality variables such as CP, ME, ash, and acid detergent fibre (ADF) in
mixed swards. Utilizing full spectrum data yielded higher accuracy than optimal narrowband VIs for
estimating N concentration and biomass yield in bioenergy cropping systems [18]. Partial least squares
regression (PLSR) is a widely used chemometric approach for quantifying pasture macronutrients [20]
and quality [14,19] from hyperspectral data because it effectively addresses the problems of overfitting
and collinearity. However, canopy reflectance data may be confounded by factors such as soil
background, canopy structure, illumination, and viewing geometry, which leads to non-linear
and complex relationships [21]. Consequently, Ramoelo et al. [22] suggested the use of non-linear
algorithms and showed that kernel-based PLS (KPLS) is more powerful than traditional/linear PLS for
estimating N and P concentrations of grass in heterogeneous savannah ecosystems. Verrelst et al. [23]
highlighted the importance of non-linear regression methods to retrieve vegetation properties from
remote sensing data. In recent years, machine-learning approaches gained in popularity because of
their flexibility in explaining non-linear complex relationships without considering any statistical
assumptions. Among the machine learning algorithms, random forest (RF) gained more importance in
hyperspectral remote sensing due to its capability to deal with complex relationships [24].

The relationships could be improved if the hyperspectral data was combined with the environmental
variables, as pasture quality is influenced by environmental factors [22]. Soil fertility is a key driver
for pasture growth and quality; therefore, adequate supplies of nutrients through regular and balanced
fertilization is essential to maintain high quality pasture. In addition to soil fertility, pasture quality varies
spatially on hill country farms due to the impact and interactions of multiple influencing conditions,
including topography (elevation, slope angle, and slope aspect), environmental factors (temperature,
solar irradiation, rainfall, soil type, and soil moisture), and botanical composition [25]. Pasture quality
is also dependent on agronomic management practices, such as stocking rate, pasture cover at set
stocking, the shearing policy, and weaning date [26].

Since hyperspectral data carries redundant information, selecting relevant spectral variables in the
modelling process could improve prediction accuracy and model robustness [27,28]. Although several
approaches have been proposed for selecting the best features, Grenitto et al. [29] highlighted that
recursive feature elimination (RFE) combined with RF could provide unbiased and stable results with
improved accuracy. However, to our knowledge, this method was not investigated for estimating
pasture quality attributes, motivating the present study, which aims to test the potential of multiple
source information combined with RF–RFE to describe pasture quality (CP and ME) information.
Also, the important hyperspectral and environmental variables will be screened using RF–RFE.

2. Materials and Methods

The study area, Limestone Downs, was located at Port Waikato (37◦28.665′S, 174◦45.540′E) in the
northwest of New Zealand where mixed pasture is grown throughout the year (Figure 1). The total study
area comprises approximately 3148 ha which classified into 190 paddocks with different sizes ranging from
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1.5 to 41 ha. Perennial ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.) are the dominate
species, and a small proportion of kikuyu grass (Cenchrus clandestinus), dandelion (Taraxacum officinale),
and catsear (Hypochaeris radicata) are also present. The study area is conventionally used for sheep
and beef production. The mean annual precipitation and temperature ranges between 1250–1500 mm
and 14.1–16 ◦C for the period 1971–2000. This study was conducted during the spring season where
optimal conditions (temperature, rainfall, and sunshine) prevail for pasture growth.

Figure 1. Location of the study area (Limestone Downs) in northwest New Zealand and the
sampling plots. The inset map shows the RGB colour composite of the hyperspectral image over
Limestone Downs.

A full-spectrum, pushbroom AisaFENIX (Specim Ltd., Oulu, Finland) hyperspectral imaging
system was used in the study. The sensor measures upwelling radiance from 370 to 2500 nm as
Digital Numbers (DN) with a spectral interval of 3.5–12.2 nm. The AisaFENIX sensor (Specim, Oulu,
Finland) has a Field of View (FOV) of 32.2◦, as well as an Instantaneous Field of View (IFOV) of
0.084◦. The hyperspectral imaging system was mounted on a single-engine, fixed-wing aircraft
which was flown at an elevation around 660 m to ensure ground sampling distance of approximately
1 m. To know the position of each pixel, the hyperspectral imaging system was coupled with an RT
Oxford Survey+ Ltd., Global Navigation Satellite System (GNSS) and an Inertial Measurement Unit
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(IMU). The image was collected between 10:30 and 12:00 New Zealand local time on 24th October
2014. The digital numbers (DN) were converted into radiance (W m−2 sr−1) using factory provided
radiometric calibration coefficients in CaliGeoPRO software (Specim, Finland). Surface reflectance
values were obtained from radiance data using ATCOR4 (ReSe Ltd., Wil, Switzerland), which used
geographic, temporal, and atmospheric parameters [30].

Within the study area, based on the access, 150 sites were selected for pasture using stratified
random sampling. Elevation and slope angle variables were used as strata, and random sites were
then selected from each strata. Since paddocks were not used as a basis for selecting the sites,
the total sites came from 72 paddocks, where some of the sites fall under individual paddocks and
the remainder from multiple locations of a paddock. Following the aerial campaign, at each of the
150 sites, a 0.5 × 0.5-m quadrat was placed on the ground and a pasture sample harvested to ground
level using battery-powered hand shears. The cut samples were immediately placed in a labelled
polythene bag, sealed, and stored in a chiller box. These boxes were then transported to an analytical
laboratory (Analytical Research Laboratories Ltd., Napier, New Zealand) for immediate determination
of CP and ME.

In addition to hyperspectral data, site elevation, slope angle, slope aspect, as well as soil type
(Figure 2) were included in the analysis. Elevation, slope angle, and slope aspect maps were generated
with a linear filter [31] on a low resolution (5 m) Light Detection And Ranging (LiDAR) Digital Terrain
Model, captured in 2010. Soil type information was gathered from Massey University soil map archives.
Based on the evolution of New Zealand soils, soil taxonomy, and local knowledge, a new classification
was developed [32]. This study included 16 soil types: oxidic granular, allophanic brown, deep orthic,
humic gley, humic organic, mottled orthic recent, orthic allophanic, orthic brown, orthic gley, orthic gley
and sandy brown, rendzic melanic, sandy brown, sandy gley, sandy raw, sandy recent and typic oxidic
granular (Figure 2). Allophanic soils are low density and low fertile which has ability to retain
phosphorus in high. Brown soils dominated with clay minerals cover 43% of New Zealand. Gley soils
are highly fertile and rich in organic matter. Similar to gley soils, organic soil is rich in organic
matter and extremely acidic. Granular soils developed from andesitic to rhyolitic volcanic deposits
with a moderate amount of weathering products, such as kaolinite. Melanic soils are highly fertile,
with large populations of microorganisms. Oxidic soils are well-developed soils weathered from
volcanic deposits, which are dominated with iron and aluminum oxides. Recent soils cover 6% of New
Zealand, which is developed on volcanic tephra, and these soils are dominated by secondary illite
minerals. The auxiliary data were resampled and co-registered with the hyperspectral image using a
nearest neighbor interpolation method.

The spectral and environmental data in the corresponding sampling locations were extracted
from a window size of 3 × 3 (9 m2). The mean value from each window was considered as
a response variable. The reflectance data was converted into first derivative reflectance (FDR)
using Savitzky-Golay filter to highlight the subtle overlapping absorption peaks. Following the
transformation, random forest regression (RFR) was applied to develop relationships between pasture
quality and hyperspectral and environmental data. The soil data was converted into binary and stacked
with the remaining variables. Since the full data contains different data types, scaling was performed,
where each variable value was divided by its standard deviation. For the model development,
60% (n = 90) of total samples were selected, and the remaining 40% (n = 60) were used for validating
the model performance. RF is an ensemble learning technique proposed by Brieman and Leo [32].
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(a) (b) 

 
(c) (d) 

Figure 2. Topographic and soil variables used in this study: (a) elevation (b) slope angle (c) slope
aspect (d) soil types of the Limestone Downs area.

RF is a collection of several decision trees where each tree is constructed independently with
random samples (n) from the training data. Random samples were drawn with the replacement from
the training data using a bootstrap aggregating (bagging) method, which was found to be a more
robust method for obtaining a stable model and helped to avoid overfitting [33]. Usually, 64% of
training data is selected as in-bag data, and the remaining 36% were referred to as out-of-bag (OOB)
data. At each node, a random subset of variables were selected. RFR learns the behaviour of the
selected m variables and finally selects best performing variables using least square error criteria.
The final prediction results were obtained by averaging the predicted results from all trees.

For constructing the model, it is necessary to tune two important parameters: the number of
variables at each split and the number of trees. Each split of the tree is determined using a randomized
subset of the variables (the default is 1/3 of the total number of variables) at each node [34]. The number
of trees was optimized using root mean square error (RMSE) and tested on different population of
trees ranging from 50 to 448 using every 10th interval.

The RFE is a wrapper-based feature-ranking algorithm that searches within the space for
optimal subset by performing optimization algorithms [35]. The construction of the model
initiates with training data, and variables are then ranked according to their importance (Figure 3).
While constructing the decision trees, each variable in the OOB data is randomly permuted. After this,
RMSE values were calculated for OOB data, and the permuted variables were estimated (Figure 3).
Based on the RMSE values, one variable was removed, and a new RF model was created using
the remaining variables. This process was recursively applied until only one variable remained as
input [36]. During the process of elimination, 10-fold cross validation was implemented to optimize the
variable selection and to ascertain the standard deviation of error. In the recursion process, the model
with minimum RMSE and with least standard deviation error was set as the optimum model; if it finds
another model with a different subset of variables, it automatically updates and ranks. Finally, it selects
the best variables yielding the smallest RMSE.
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Figure 3. The workflow of the proposed procedure for creating pasture-quality maps.

The goodness of fit of the developed regression models were evaluated by calculating the
cross-validated coefficient of determination (R2

CV), cross-validated root mean square error (RMSECV),
and cross-validated ratio to prediction deviation (RPDCV).

RMSECV =

√√√√ N

∑
i=1

(ŷi − y)2

N

RPDCV =
SD(y)

RMSECV

where ŷ is the predicted values, y is the observed value, and N is the number of samples. SD(y) refers
to standard deviation of measured y. Models with RPD ≥ 2 predict well with reliable estimates [14].
Pasture quality maps were generated using the best model.

The final maps were created using masking. For this, the land surface cover maps were created
by classifying the hyperspectral image. The land cover types included in this study are forest, bush,
pasture, and non-vegetation areas. The classification was performed using supervised algorithm,
support vector machine (SVM). SVM is a robust classification method widely used for hyperspectral
imagery [37]. We have used radial basis function; their parameters (cost and gamma) were optimized
using 5-fold cross-validation. High-resolution RGB images were used as a georeference for selecting
the training pixels from the hyperspectral image. The training model was then used to extrapolate
the hyperspectral image across the landscape. Model development, creating pasture-quality maps,
and classification of hyperspectral image was performed in MATLAB® environment.
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3. Results

The pasture quality attributes were estimated from the samples collected in the field.
The descriptive statistics of pasture quality values for the calibration model are summarized in Table 1.
The collected pasture samples had high variability for CP (CV = 23.05%) with a range from 6.06 to 25.64
and high standard deviation (std = 3.76). In contrast, ME exhibited low variability (CV = 12.55%) and
a small range (6–12.50) of samples. As expected, a wide range of pasture variability, particularly with
CP, exists on hill country farms due to diverse environmental conditions [38].

Table 1. Descriptive statistics: mean, standard deviation (std), minimum (min), maximum (max),
and coefficient of variation (CV) pasture quality data was used to build a calibration model.

Pasture Quality Mean std Min Max CV (%)

Crude protein (%) 16.31 3.76 6.06 25.64 23.05
Metabolisable energy (MJ/kg DM) 10.91 1.37 6.00 12.50 12.55

Note: std- standard deviation; CV- coefficient of variation.

FDR of corresponding pasture samples extracted from the AisaFENIX were presented as a function
of pasture quality attributes (CP and ME) in Figure 4.

(a) 

CP % 

(b) 

ME MJ/ kg DM 

Figure 4. First derivative reflectance of pasture as a function of spectral wavelength. The color of the
spectra indicates the content of CP (a) and ME (b).
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The magnitude of absorption features are highly variable and complex with relevant pasture
quality values. In Figure 4, there are a few distinctive spectral features of high and low pasture
quality that can be seen around 1230 nm, 1340 nm, 1550 nm, and 1800 nm. The relationships
between spectral data and measured values of CP and ME were shown in Table 2. The results
from this study indicate that CP was predicted with high accuracy from hyperspectral data using
RF technique (R2

CV = 0.66, RMSECV = 2.24, RPDCV = 1.68). However, the accuracy was slightly
improved (R2

CV = 0.70, RMSECV = 2.06, RPDCV = 1.82) by adding environmental variables (elevation,
slope angle, slope aspect, and soil type) (Table 2). The pasture ME was predicted with an R2

CV of
0.61, RMSECV = 0.85, and RPDCV = 1.62 with hyperspectral data alone. The prediction accuracy of
ME increased dramatically after including environmental variables (R2

CV = 0.75, RMSECV = 0.65,
and RPDCV = 2.11). Separate regression models were also created to assess the impact of only
environmental variables on both CP and ME. This resulted in a relatively low accuracy models
(0.35 ≥ R2

CV ≤ 0.31).
When feature selection was performed using RF–RFE, the accuracy was further improved for

both CP and ME. It is worth noting that the improvement was higher in the case of the CP model when
compared to the ME model. The calibration model prediction results were consistent with validation
results, though the validation results were slightly lower than the calibration results. Only 7–8% of
hyperspectral variables were selected as important for describing CP and ME, which are present across
the electromagnetic spectrum, though the majority of them are concentrated in the short wave infrared
(SWIR) region. The selected important wavebands by RF–RFE for each pasture quality attribute are
shown in Figure 5. For CP, the sensitive spectral bands are 505–554, 609, 612, 784, 787, 818, 822, 842,
932, 939, 946, 959, 1000, 1500, 1935, 2013, 2018, 2035, 2107, 2178, 2234, 2344, and 2420 nm. The sensitive
spectral bands for ME are 517–520, 643, 653, 684, 691, 753, 849, 890, 939, 963, 1017, 1276, 1512–1520,
1618, 1785, 1796, 1802–1808, 1935, 1996, 2013, 2051, 2090, 2123, 2173, 2239, 2305, 2415, and 2420 nm.
The pasture attributes CP and ME have moderate intercorrelation (R2 = 0.38) and are found with few
common bands (939, 1935, 2013, 2420 nm).
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Figure 5. Important wavelengths selected using recursive feature selection-random forest regression
for (a) crude protein (CP) (b) metabolizable energy (ME).
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Table 2. Regression model results for crude protein (CP) and metabolizable energy (ME)
using airborne hyperspectral imaging. Regression metrics are R2

CV-cross-validated coefficient of
determination, RMSECV-cross-validated root mean square error, and RPDCV- cross-validated ratio to
prediction deviation.

Pasture
Quality

Variables R2
CV RMSECV RPDCV R2

P RMSEP RPDP

CP Full-spectrum 0.66 2.24 1.68 0.63 2.20 1.65
CP Elevation, slope and aspect and soil type 0.31 3.13 1.20 0.27 3.81 0.95
CP FS, elevation, slope, aspect and soil type 0.70 2.06 1.82 0.70 2.01 1.80
CP Selected variables a 0.80 1.68 2.23 0.78 1.72 2.11
ME FS 0.61 0.85 1.62 0.61 0.86 1.64
ME Elevation, slope and aspect and soil type 0.35 1.10 1.24 0.32 1.22 1.15
ME FS, elevation, slope, aspect and soil type 0.75 0.65 2.11 0.77 0.63 2.23
ME Selected variables b 0.78 0.61 2.25 0.79 0.60 2.35

Note: FS—Full spectrum; a elevation, slope, soil type, and spectral features from Figure 5a. b slope, soil type and
spectral features from Figure 5b.

In both CP and ME, the included environmental variables were found to have significant influence
on model performance with improved accuracy.

The prediction models with the highest R2
CV values were to create raster maps, depicting the

spatial pattern of pasture quality (Figure 6). The spatial maps of CP and ME were masked using the
land surface classification map from SVM, which is as accurate as 93.4% (overall accuracy). The pasture
areas were highlighted with colored pixels and non-pasture areas left empty with a background of RGB
image. The range of predicted CP is from 6.32 to 25.60% with high values in the east and west sides of
the study area, while the south was dominated with low CP pasture (Figure 6). Compared with CP,
ME was less variable across the area with the majority of the area dominated by moderate ME values
(Figure 6).

(a) 

Figure 6. Cont.
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(b) 

Figure 6. Pasture quality spatial maps produced from fusion of hyperspectral, topographic, and soil
data using recursive feature selection–random forest regression (a) crude protein (CP) concentration
map (b) metabolizable energy map. Predictions are only shown for pasture areas.

4. Discussion

Airborne hyperspectral imaging has potential for estimating CP and ME accurately and over
large spatial extents which enables continuous spatial maps to be created. In this study, a hill country
farm was imaged with an airborne hyperspectral system which produced accurate estimates for CP
(RPDCV = 2.23) and ME (RPDCV = 2.25) of heterogeneous mixed pasture. The successful application of
this technology in pasture quality is not surprising, as pointed out by previous studies [14,16,19,39];
however, the approach used in this study improved the prediction results by integrating the
hyperspectral and environmental data-combined machine-learning algorithms. Such knowledge
of the landscape could inform pasture and herd management decisions to improve animal production
and assist in land stewardship efforts.

In Figure 4, the pasture quality relevant features were not very distinct. This is due to the fact
that the variation in canopy reflectance was primarly influenced by direct and indirect confounding
factors such as canopy structure, solar/viewing geometry, soil background, broad water absorptions,
while the contribution from vegetation chemistry is very small (2–4%) [40]. These multiple factors also
impede the attribute estimation to some extent, though the proposed approach produced accurate
estimates. Further investigation is required to break down the individual influence from these factors
on pasture quality.

Although the pasture was characterized by heterogeneity, RF has accounted for maximum
explanation on pasture quality from the hyperspectral data. Many studies suggest that RF may
be more powerful than the traditional multivariate regression methods as it extracts complex,
non-linear information from the spectral data [24,27]. In this study, RF accounted for >70%
of the variability in CP and ME from the hyperspectral data alone. When combined with the
topographic and soil data, the RF–RFE approach showed an improvement in the prediction accuracy.
The latter indicates the importance of considering environmental data for estimating pasture quality.
Similarly, Ramoelo et al. [22] attempted to combine proximal hyperspectral data with environmental
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data to predict nitrogen and phosphorus concentration of grass in a savannah ecosystem using
non-linear-PLSR, and the researchers found improved results over the hyperspectral data alone.
From the results obtained in this study, we recommend the use of spectral and environmental variables
together to provide improved prediction accuracy.

RF–RFE is capable of selecting important spectral and environmental features that are sensitive
to pasture quality and improved the accuracy levels. Similarly, Granitto et al. [29] used RF–RFE for
analysing high dimensional data and found it to be an efficient feature selection method, far better
than traditional methods. Other researchers [21,41] found that considering noisy variables could
interfere with model performance, which leads to over-fitting. Therefore, important relevant features
need to be selected for robust estimates. As seen in Figure 5, the selected spectral bands are scattered
over the whole spectrum indicating the importance of full-spectrum. The selected bands for each
quality attribute are different because of the contrasting chemical composition of each attribute.
However, bands at 939, 1935, 2013, and 2420 nm are mutually selected in both cases. This might be due
to the presence of common functional bonds; hence, both quality attributes are noticed with correlation
(Table 2). The band 1935 nm is influenced by broad water absorption centered at 1940 nm [40].
With both quality attributes, the spectral region from 500–770 nm related electronic transitions caused
by pigment absorptions, such as chlorophyll, xanthophyll, and carotenoids. Clustering of sensitive
bands are located in the SWIR region, which are mainly characterized by fundamental overtones and
harmonics of O–H, C–C, C–H, and N–H [3,42]. In CP, the majority of the selected bands (932, 1000, 1500,
1935, 2035, 2178, 2234 and 2344 nm) are closely assigned with bond vibrations of protein and nitrogen
molecules [3]. Fundamentally, ME is mainly composed of crude fibre [43]; therefore, the majority of
the selected bands (1017, 1276, 1512–1520, 1618, 1785, 1796, 1802–1808, 1935, 2090, 2123, 2239, 2305,
2415 and 2420 nm) are associated with vibrations of lignin, cellulose, and hemicellulose [3].

Pasture quality appeared to be correlated with topographic variables and soil type, which indicates
that these variables are also one of the key drivers to influence pasture quality (Table 2). This leads to
improved accuracy by combining the hyperspectral and environmental data (Table 2). In this study,
a wide range of soil types with different nutrient levels are present across the farm, which directly
support changes of pasture quality (CP and ME). For example, in Figures 2 and 6, gley soils dominated
paddocks distributed with high quality pasture (high ME and optimal CP values) because of high
fertility of soils. In contrast, paddocks with allophanic soils show low quality pasture (low ME and CP).
Slope variables also positively influenced the pasture quality. Generally, flat regions were associateded
with high fertility soils, while hilly regions lost soil fertility due to surface run-off [22]. Although the
current study proves the feasibility of mapping pasture quality at local scale, under large-scale
environments, the influence of topography and soil type might be different due to the presence of
different soil types and environments. Moreover, the relationships might change with seasons due to
variable weather conditions and pasture response. Therefore, further investigation is required before
utilizing this model for large-scale environments.

Understanding the spatial variability of pasture quality in hill country farms allows for more
efficient use of natural resources and improving agronomic management. Both CP and ME exhibited
different spatial patterns, reflecting the different factors that influence each attribute. Fertilizer is
a key input in hill country farms, as it helps to maintain high quality pasture. Traditional blanket
application of fertilizer ignores spatial variability and can result in the application of excessive fertilizer
on high-fertility zones and vice-versa on low fertility which can result in the loss of fertilizer into the
environment; with fertilizer being such a large investment for farmers, it is important to ensure that the
value of that investment is realized as fully as possible. In 2006, Murray and Yule [44] conducted an
experiment to test the performance variable rate fertilizer (VRF) over blanket application at Limestone
Downs based on broad scale annual pasture production. The single super phosphate was applied
through aerial top-dressing aircraft with a controlled ground resolution of 18 m2. They reported that
the annual pasture production could be increased between 6.5–24.4% by VRF. They also conducted
an economic analysis on implementing VRF over the blanket application where they found that this
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technique could increase 26% annual cash returns per hectare [45]. These findings clearly indicate
the potential to improve fertilizer use efficiency and the economic benefits, as well as to reduce the
risk of fertilizer wastage contaminating the environment from VRF [38]. From the current research,
we are able to quantify pasture quality attributes more accurately at fine scale, which are the better
indicators of spatial variability within field over the annual pasture production. These pasture quality
maps can provide the necessary inputs for VRF applications. In addition, these comprehensive spatial
information quality maps enable the farm managers to ensure proper mineral nutrition of ruminant
animals [46].

5. Conclusions

This study evaluated the feasibility of combing the hyperspectral, topography, and soil data
to retrieve pasture quality attributes of heterogeneous pasture using RF–RFE. Since the pasture
quality variation is driven by many environmental and management factors, our results showed that
combining hyperspectral data with generally available environmental factors (elevation, slope angle,
and soil type) improved the prediction accuracy in comparison with hyperspectral data alone.
This result also confirmed that RF-RFE markedly improved the estimates of pasture quality
(RPD = 2.11–2.35) by selecting the most sensitive variables across the spectrum and environmental
data. Elevation, slope, and soil type were found as important variables to predict CP while for ME,
the same variables with the exception of elevation were found to be significant. The applicability
of the proposed approach needs to be investigated on a large-scale where highly variable soil
types exist. Overall, the final accurate pasture quality spatial maps allow farmers to optimize their
agronomic decisions.
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Abstract: Mid-season nitrogen (N) application in rice crops can maximize yield and profitability.
This requires accurate and efficient methods of determining rice N uptake in order to prescribe
optimal N amounts for topdressing. This study aims to determine the accuracy of using remotely
sensed multispectral data from satellites to predict N uptake of rice at the panicle initiation (PI)
growth stage, with a view to providing optimum variable-rate N topdressing prescriptions without
needing physical sampling. Field experiments over 4 years, 4–6 N rates, 4 varieties and 2 sites were
conducted, with at least 3 replicates of each plot. One WorldView satellite image for each year was
acquired, close to the date of PI. Numerous single- and multi-variable models were investigated.
Among single-variable models, the square of the NDRE vegetation index was shown to be a good
predictor of N uptake (R2 = 0.75, RMSE = 22.8 kg/ha for data pooled from all years and experiments).
For multi-variable models, Lasso regularization was used to ensure an interpretable and compact
model was chosen and to avoid over fitting. Combinations of remotely sensed reflectances and
spectral indexes as well as variety, climate and management data as input variables for model
training achieved R2 < 0.9 and RMSE < 15 kg/ha for the pooled data set. The ability of remotely
sensed data to predict N uptake in new seasons where no physical sample data has yet been obtained
was tested. A methodology to extract models that generalize well to new seasons was developed,
avoiding model overfitting. Lasso regularization selected four or less input variables, and yielded R2

of better than 0.67 and RMSE better than 27.4 kg/ha over four test seasons that weren’t used to train
the models.

Keywords: rice; nitrogen management; remote sensing; multispectral imagery; reflectance index;
multiple variable linear regression; Lasso model

1. Introduction

Nitrogen (N) is a key input for plant development due to its role in the production of chlorophyll,
which is crucial for photosynthesis [1]. It has a significant role in attaining crop yield potential [2] and
quality [3]. However, excessive N fertilization results in pollution, leading to negative environmental
outcomes [4]. Further, N use efficiencies are often low, which leads to non-optimal production costs [5].

Rice N application can be optimized to meet desired targets [6], such as yield, financial return
on N cost [7], quality and protein content [8]. If too little N is available to the plants, the crop will
not reach its yield potential [9]. If too much N is applied, there is a risk that the crop will lodge,
thus decreasing yield and increasing the time needed to harvest [10]. Excess N also increases the risk
of low temperature induced floret sterility, thereby reducing yield [11] and also increases the risk of
disease [10]. Rice protein is determined by N status, with high levels of N resulting in lower cooked
rice quality [8].
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A single pre-season N application is less effective than split application with mid-season
topdressing [12]. The Oryza-0 crop model has been used in simulations to optimize N application splits
to optimize yield [7]. The most effective time for a mid-season application is at the panicle initiation
(PI) stage [13], which occurs at the start of the reproductive phase of rice development, when the
panicle begins to form in the base of the stem [14]. Typically, a base N rate is applied at the start of the
season, then tissue tests are done mid-season to determine additional N top-dressing rates [15].

Pre-season soil tests have not proven to be a reliable way to determine paddy soil N
requirements [16,17]. Detailed recommendations of N top-dressing rates as a function of PI N uptake
and rice variety have been developed, utilising physical samples of plants at PI [15,18]. Site-specific
management of rice N application has been shown to both improve yield [19] and reduce total N
applied [20]. This improves farming profitability (due to reduced input costs and increased revenue)
and environmental outcomes (due to reduced N loss to the atmosphere and water systems) [21].
N requirements also vary spatially within paddies [22], which motivates the application of spatially
varying N at PI to match requirements. Studies of the application of such precision agriculture
variable-rate techniques in wheat [23] and sugarcane [24] have shown improvement in N use efficiency.

There are a number of methods to determine N uptake at PI, with varying degrees of
cost-effectiveness, practicability, accuracy and spatial resolution. Plant tissue samples can be collected
and analyzed, however growers have little time and motivation to perform this task [15]. When they
do take samples, they are often only at a few points and so may not encompass the variability in
their paddies. In addition, sample sizes are small in size (typically 0.2 m2), so sampling location
can have a large impact on the degree to which the samples accurately represent the variation
of N uptake across a site. Point measurements of rice N status can also be made using in-field
sensors, such as SPAD meters [1]. However, measuring individual leaves results in limited accuracy
due to leaf-to-leaf variation, and many leaves must be sampled to represent plant N uptake
adequately [12]. These point sampling methods are labour intensive and therefore have seen limited
adoption. Therefore, developing an operational remote sensing based method to determine N uptake
is of great interest, as it captures spatial variation and may eliminate the need for field sampling.
Typically industry desires variable N prescription maps with rates separated into 30 kg/ha classes
(as aerial spreaders are probably not much more accurate than this and there is minimal impact on
yield at PI topdressing rates less than 30 kg/ha [15]). Therefore, N uptake prediction errors of less than
30 kg/ha are required [18].

Canopy chlorophyll content has strong relationships with remotely sensed reflectances,
and canopy nitrogen (N) content is strongly related to chlorophyll content [25]. Thus, remotely sensed
data can be used to predict canopy nitrogen content. Vegetation indexes using bands in the red-edge
(740 nm), near infrared (790 nm) and green (550 nm) regions are particularly important to predict
canopy N status [26]. Chlorophyll content is strongly related to the red-edge and green absorption of
leaves, while near infrared characteristics are related to structure and leaf thickness [26].

Sensor types include optical cameras (3 bands—red, green blue) [27], multispectral sensors
(often adding near-infrared and red-edge bands to optical bands) [21] and hyperspectral sensors [28],
which capture reflectance at over many narrow bands. Hyperspectral data was used to investigate
determining N content at the heading stage [29], and at the panicle formation stage [28,30].
Significantly different relationships between plant N status and hyperspectral data (measured in field
with hyperspectral spectroradiometers) were found before and after heading [31], explained by rice
plant morphological differences. They found linear combinations of reflectance bands resulted in better
prediction than ratio indexes or normalized difference indexes. The derivatives of reflectance with
respect to wavelength may give greater accuracy across varieties, regions and seasons as shown in [28].
Despite the accuracy and predictive power available from hyperspectral measurements, there are
significant drawbacks including the cost of the sensors and data processing power required to derive
useful models [32]. These limit the current applicability of hyperspectral sensors to monitor rice crops
for industry-wide commercial applications. However, these studies using hyperspectral sensors have
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shown the most important wavelengths for sensing N status, and therefore what wavelengths would be
desired in multispectral sensors for this application. Multispectral sensors are relatively cost-effective,
and have been used to predict rice N uptake with reasonable accuracy [27], particularly when the
sensor includes detection of the red-edge part of the spectrum.

Some studies have used hand-held or proximal sensors [31]. Mounting sensors on unmanned
aerial vehicles (UAVs) allows collecting within-field variability data in much less time than using
proximal sensors [21,33,34]. Some proximal sensing systems use active sensors, where the incident
radiation is generated by the device. In contrast, most UAV systems utilise passive sensors, which rely
on incident radiation from the sun and measure reflected radiation. Thus they require irradiance
measurement or measurement of a known reflectance target in order to generate radiometrically
corrected reflectance data [35]. Thus, to generate accurate data, it is crucial to ensure sensors are
calibrated accurately for current radiance conditions [36], which may limit widespread grower
adoption. The restrictive regulations on UAV operations, including line-of-sight and non-autonomous
requirements, and the costs of acquiring images over larger areas currently render UAVs un-economical
for large-area industry-wide application [37]. Satellite-based multispectral data for rice N sensing is an
alternative [38,39].

To achieve the goal of an operational remote-sensing based model to predict N uptake, a crucial
factor is the stability of models over seasons, locations, varieties and management practices such as
planting dates. Significant seasonal variation in models has been observed, attributed to differences in
environmental conditions [29]. These drivers, such as cumulative temperature and solar radiation,
affect the dynamics of N uptake in rice [40]. Soil N is also dynamic, and models that seek to address
this were discussed in [41]. Thus, it may be necessary to account for date differences between image
captures and the dates that the actual N uptake is required.

Relatively few reports [29,30] train models on one or more seasons and test the model’s prediction
accuracy on a separate season. If a model is required to predict future seasons N uptake from past
data, it is important to separate model training, validation and testing data based on season, rather
than randomly selecting points from all available seasons data. Another important factor for models is
that they be interpretable and easily integrated into geographic information system (GIS) platforms.
These goals may not be achieved if black-box machine learning methods are used, such as support
vector machine (SVM) models and neural networks. Similar to [21], we employed multi-variable linear
regression using the Lasso regularization technique to select a subset of the most important predictors,
while discarding less important predictors.

Our work is part of a project to provide an operational tool to Australian rice growers, to generate
spatial maps of optimal N prescription rates to be applied at panicle initiation using remote sensing.
It aims to provide a viable alternative to manual plant sampling, which has suffered limited industry
adoption due to the time and effort required. Plant sampling also provides limited spatial resolution
so is not useful for potential variable-rate applications. We assessed the stability of remotely sensed
data over four seasons, two sites, four varieties and different sowing dates. Optimal combinations
of data input variables to best predict N uptake were found, using data from WorldView satellite
multispectral sensors, as well as climate, variety and management data. The WorldView sensors were
chosen as they offer a combination of high spectral and spatial resolution. They are thus able to test
our methodology of generating multi-season models of N uptake with fewer limitations from the
sensors themselves. We draw conclusions on the best performance that can be expected in the study
environment, and discuss potential transfer of the methodology to other, more cost effective, sensors.

2. Materials And Methods

2.1. Experiments

The study was based in Leeton, NSW, Australia. A list of all the experiments used in this work
is given in Table 1. It includes data from four rice growing seasons (harvest in autumn each year
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from 2015–2018), four rice varieties (Reiziq™, Sherpa™, Langi and Topaz™), multiple sowing dates
and two sites with differing soil types (Yanco Agriculture Institute (YAI) [146.425E, 34.618S] and
Leeton Field Station (LFS) [146.361E, 34.606S]). The soil types of these sites according to the definitions
in [42] are red-brown earth at YAI, and self-mulching clay at LFS. Further soil properties at these sites
are described in [30]. Sowing date is usually a day before the date of first flush shown in Table 1.
One image per season was acquired from the WorldView-2 (2015 and 2016) or WorldView-3 (2017 and
2018) satellites, with image dates close to PI dates. The study area is shown in Figure 1, together with
the satellite image capture areas and field sites.

All experiments were drill sown at 0.19 m row spacing and flush irrigated until the 3 to 4 leaf
growth stage (see growth stage definitions in [43]). Several nitrogen rates were applied at this
stage with urea spread on the dry soil surface prior to the application of permanent water to the
experiments. Table 1 shows the WorldView image dates, first flush (FF) date, permanent water (PW)
date, and physical sampling dates. It also shows the number of plots, rice varieties (R = Reiziq™,
S = Sherpa™, L = Langi, T = Topaz™) and N rates for each experiment. N rates were within the range
0 to 300 kg/ha, with rates per season and experiment indicated in Table 1. There are at least three
replicates of each N × variety treatment in each experiment. Plot sizes ranged from 6.3 × 5.7 m2 to
10.5 × 11.4 m2. Each plot was sampled on a number of dates, only the sample date closest to the image
date is shown in Table 1.

Figure 1. WorldView image areas. 21 December 2014 and 30 December 2015 (red), 7 January 2017 (green)
and 9 January 2018 (blue). The red-green-blue image of the 2014 capture is also shown. The study sites
are shown in yellow (LFS in the center and YAI on the right).
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Table 1. Table of experiments, indicating management dates and N rates, rice varieties and number of
plots. For experiments with multiple sowing dates, the early date is denoted SD1 and the later SD2.

Year Site Exp N Rates (kg/ha) Varieties Plots First Flush Perm Water Sample Image

2015 LFS 0, 60, 120, 180, 240 R, S, L, T 80 16 Oct 2014 20 Nov 2014 29 Dec 2014 21 Dec 2014
2015 YAI SD1 0, 60, 120, 180 R, S, L, T 48 10 Oct 2014 19 Nov 2014 30 Dec 2014 21 Dec 2014
2015 YAI SD2 0, 60, 120, 180 R, S, L, T 48 27 Oct 2014 27 Nov 2014 5 Jan 2015 21 Dec 2014

2016 LFS SD1 75, 150, 225, 300 R, S, L, T 48 21 Oct 2015 26 Nov 2015 30 Dec 2015 30 Dec 2015
2016 LFS SD2 75, 150, 225, 300 R, S, L, T 48 5 Nov 2015 4 Dec 2015 31 Dec 2015 30 Dec 2015
2016 YAI 0, 60, 120, 180, 240 R, S, L, T 60 15 Oct 2015 20 Nov 2015 30 Dec 2015 30 Dec 2015

2017 LFS 0, 60, 120, 180, 240, 300 R, S, L, T 72 31 Oct 2016 2 Dec 2016 6 Jan 2017 7 Jan 2017
2017 YAI 0, 60, 120, 180, 240 R, S, L, T 60 20 Oct 2016 1 Dec 2016 9 Jan 2017 7 Jan 2017

2018 LFS 0, 60, 120, 180, 240, 300 R, L, T 54 30 Oct 2017 30 Nov 2017 6 Jan 2018 9 Jan 2018
2018 YAI 0, 60, 120, 180 R, L, T 36 27 Oct 2017 1 Dec 2017 6 Jan 2018 9 Jan 2018

2.2. PI N Sampling Methodology

Panicle initiation (PI) occurs at the start of the reproductive phase in rice growth. There are
methods to predict the timing of PI using environmental variables [44]. Field sampling was used to
determine the exact time of PI, defined as the time when three out of ten main stems have a panicle
1–3 mm long [14].

Above ground plant samples were collected from each plot at PI from an area of six plant
rows (0.19 m row spacing) by one metre. Five whole plant grab samples including leaves and stems
(approximately 20 g each) were collected from each sample to create a 100 g subsample which was dried
in a microwave oven before being dried overnight in a conventional oven at 60 ◦C. This subsample was
ground and analysed for N concentration by Dumas combustion [45] and multiplied by the measured
dry matter weight to calculate PI nitrogen uptake.

2.3. Climate Data

In order to assess the possibility that climate variation from season-to-season could affect the
relationship between rice N uptake at PI and remotely sensed data, weather data for each of the
seasons was obtained and processed. Aggregated climate parameters between critical management
and measurement days were calculated, these days being the first flush (FF), the date permanent water
(PW) was applied, the date the N uptake was sampled and the date the satellite image was captured.

Growth degree days [46] was calculated. The base temperature was set to 10 ◦C, which is
commonly used in the Australian rice growing system [44]:

GDD =
tN

∑
t0

(Tmax+Tmin)/2 − 10, (1)

where t0 and tN are the beginning and end days of the GDD summation, and Tmax and Tmin are the
daily maximum and minimum temperatures, respectively.

The sum of solar radiation between dates was calculated by accumulating daily solar radiation.
Reference evapotranspiration (ETo) in mm was calculated from weather observations using the
standardized ASCE equation [47]. In this work, the sum of these parameters between two dates will
be indicated using nomenclature such as GDD(image-FF) for the accumulated growth degree days
between the image date and first flush date.

2.4. Worldview Satellite Data

The 21 December 2014 and 30 December 2015 images were from the WorldView-2 satellite,
with 2 m resolution for the multispectral bands. The 7 Januar 2017 and 9 January 2018 images were
from the WorldView-3 satellite, with 1.2 m multispectral resolution. All imagery was acquired under
cloud-free conditions. The band definitions of the sensors on both platforms are shown in Table 2.
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Table 2. WorldView-2 and WorldView-3 band definitions.

Abbreviation Band Band Edges (nm)

c Coastal 400–450
b Blue 450–510
g Green 510–580
y Yellow 585–625
r Red 630–690
re Red edge 705–745
nir Near infrared 770–895
nir2 Near infrared 2 860–1040

The satellite images were imported into Google Earth Engine [48] where subsequent image
analysis was performed. The at-sensor pixel data were converted to top-of-atmosphere reflectance
using the metadata supplied with the images, and the procedure given by the image provider at
https://www.digitalglobe.com/resources. Then, atmospheric haze correction was applied using the
Dark Object Subtraction method [49].

Shapefiles of each of the trial plots for each season, site and experiment were created and overlaid
on the satellite imagery. The averages of each of the eight band reflectances for each plot were
calculated (with plot boundaries internally buffered by 1 m to avoid edge effects), and exported as
a data table for further analysis.

2.5. Data Pre-Processing

Data analysis was performed using the Python programming language in Google’s Colaboratory
cloud-based environment. Extensive use was made of tools such as Pandas [50], and the scikit-learn [51]
and StatsModels [52] packages for statistical modeling. Data from the various sources was merged:

• Satellite remote sensed data (average band reflectances per plot).
• Aggregated climate (GDD, Solar, ETo) data and number of days between dates of first flush,

permanent water, sample collection, image capture.
• Field rice sample data (N uptake per plot). For most experiments in Table 1, the plots were

sampled numerous times to correspond with dates of image capture and growth stage. So the
dataset had a row for each of these samples (i.e., multiple rows per plot).

As well as the raw reflectances, ratio and normalized difference indexes were calculated. It is
commonly understood that taking ratios of remotely-sensed reflectances provides some normalization
against the effects of variable radiance and atmospheric absorption between image captures.
Therefore, as well as investigating the relationship between the band reflectances and N uptake, 2-band
ratio spectral indexes (RSIs) and normalized difference spectral indexes (NDSI) from the 8 reflectance
bands were investigated, defined as [28]:

RSI(b1, b2) = b1/b2 (2)

NDSI(b1, b2) = (b1 − b2)/(b1 + b2) (3)

For example, the widely used normalized difference vegetation index (NDVI) is NDSI(nir,r),
and the normalized difference red edge (NDRE) is NDSI(nir,re). All possible RSIs and NDSIs from
all independent combinations of the eight reflectance bands in Table 2 were calculated and added to
the dataset.

A number of additional vegetation indexes that aren’t RSIs or NDSIs were also trialled. These were
shown to be significant for predicting N uptake in previous works [25,28]:
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CIre = nir/re − 1 (4)

CIg = nir/g − 1 (5)

SAVI(nir,re) = (1 − 0.08)× (nir − re)/(nir + re − 0.08) (6)

2.6. N Uptake Models

2.6.1. Single-Variable Models

Data from all the experiments was pooled. As the N uptake was sampled on multiple dates for
each experiment, data from the sample dates closest to the image dates was chosen for preliminary
analyses, which are the sample dates shown in Table 1.

Correlation analysis was performed of all RSI and NDSI bands against N uptake, to determine
which are likely to be the dominant predictors. This indicates how well a linear model can describe the
relationship between N uptake and spectral indexes:

y = a × x + b (7)

where a and b are the slope and intercept of the model, y is N uptake and x is the spectral index being
assessed. This nomenclature is used throughout this paper. The coefficient of determination R2 was
used to quantify the power of each index to explain the variance in the N uptake:

R2 = 1 − ∑N−1
i=0 (yi − ŷi)

2

∑N−1
i=0 (yi − y)2

(8)

where N is the number of observations, ŷi is the i-th model prediction and yi is the i-th observation,
and y is the mean of the observations.

Models were further evaluated using the root mean squared error (RMSE):

RMSE =

√√√√N−1

∑
i=0

(yi − ŷi)2/N (9)

RMSE is an easily interpretable measure of model performance as it retains the units of the
quantity being observed and predicted. In our case, this is kg/ha of N uptake. Note, in other studies,
N uptake or plant nitrogen accumulation (PNA) is reported in g/m2, which can be converted to N
uptake in kg/ha by multiplying by ten.

Model coefficients were tested for significance at the p = 0.05 level using the StatsModels Ordinary
Least Squares methods (statsmodels.regression.linear_model.OLS).

Following this, nonlinear transformations were investigated to enable models to better fit N
uptake. These included the exponential transformation:

y = b expa×x (10)

ln y = a × x + ln b (11)

where a and b are the regression coefficients. N uptake is denoted by y in this and following equations,
and x is the vegetation index being used (for example, NDRE). The second line indicates that by
taking the logarithm of both sides of the equation, the model can be fit using linear regression.
The disadvantage of this formulation is that the predicted variable, ln y, no longer has units of kg/ha.

A second transformation involved squaring the unitless input vegetation index. It will be shown
that this linearizes the N uptake vs. index relationship, when the selected index is NDRE, and also
renders the y-intercept insignificant. This squared transformation is:
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y = a × x2 + b ≈ a × x2 (12)

where a is the slope of the N uptake vs. x2 line, and b is the intercept.
In order to assess the effect of secondary factors (such as season, variety, site, sowing date) on the

models, Equation (12) was fit to subsets of the data. The regression lines for each subset were assessed
for significant difference from the regression line of the whole dataset by first dividing the N uptake by
a × NDRE2 (with a set to the extracted coefficient for the whole dataset), then applying the Tukey HSD
test at the alpha = 0.05 level (using the statsmodels.stats.multicomp.pairwise_tukeyhsd component of
the StatsModels package in Python [52]).

2.6.2. Multi-Variable Models

The analysis then proceeds to multi-variable linear regression, to investigate how much more
accurate the N uptake model can be across seasons, varieties, sites, management with more complex
models. The possible inputs to the model are: reflectances, RSIs, NDSIs, varieties, all combinations
of dates between [first flush, permanent water, image, sample], as well as the growth degree days,
solar radiation, rain and evapotranspiration over these days.

Relationships between N uptake and input variables often followed a squared rather than linear
trend. In addition, interaction between many of the input variables was found to be significant,
as evidenced by variable selection methods (described below) making use of these interaction terms.
Therefore, the input variables were transformed with a second-order polynomial so that squared
terms of all input variables, and cross terms between all combinations of input variables were
generated. As a simple example, if the raw input variables were [NDRE, NDVI], the transformed
variables would be [NDRE2, NDRE × NDVI, NDVI2]. In practice, we considered models with up
to 33 variables (including remotely sensed bands, variety, climate parameters, important dates),
giving 594 transformed variables. The input variables were then scaled using the standard scaler in
scikit-learn (sklearn.preprocessing.StandardScaler). This centers and normalizes the variances of each
of the input variable data, which is important for fitting models with regularization (described below).

In order to produce models that are interpretable and straightforward to implement in
a variety of GIS platforms, black-box models such as SVM models and neural networks were
avoided. Instead, we used linear regression with Lasso regularization from the scikit-learn package
(sklearn.linear_model.Lasso). This has the advantage of selecting the most important input variables
and setting all others to 0, because it uses L1 regularization [53]. The Lasso objective is to minimize the
following, with wj being the coefficient of each input variable xj and i denoting observation number:

∑
i
(yi − ∑

j
xijwj)

2 + α ∑
j
|wj| (13)

The Lasso α parameter multiplies the L1 term, so larger values of α result in more compact models
(more coefficients wj set to 0). The relative importance of the input variables can be assessed by
examining the magnitude of the remaining coefficients.

Three-fold cross validation was used to select the best Lasso α using the GridSearchCV tool in
scikit-learn (sklearn.model_selection.GridSearchCV [51]). This splits the training/validation data into
three groups, training a model on two and validating (assessing the accuracy of model predictions using
a score such as RMSE) on the third. The procedure is illustrated in Figure 2a. This is done three times,
first with groups 1 & 2 as training data and group 3 as validation data, then groups 1 & 3 as training
data and group 2 as validation data, then groups 2 & 3 as training data and group 1 as validation data.
The average of the validation scores (RMSE of N uptake prediction) is taken. This process is repeated
as the Lasso α was swept. The α that gives the best average RMSE score is selected. The model is then
re-trained with this best α with all the training/validation data. Finally, this model was evaluated on
it’s ability to predict the held back test data.
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(a)

(b)

(c)

(d)

Figure 2. Training-validation-test model extraction methods with multi-season data. (a) The three-fold
cross validation procedure used to select the best Lasso α and evaluate the model against held-back
test data. (b) Randomly assigning training/validation and test data points from all seasons data.
(c) Randomly assigning training/validation and test data points from three seasons data and testing
the extracted model on the fourth season. (d) Training a model on two seasons data and validating on
a third season (repeating this three times for all combinations of training/validation data), then testing
the extracted model on the fourth season. Note, only the first of the three folds in the cross validation
procedure of (a) is shown in (b,d).
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2.6.3. Multi-Season Models

Three ways of splitting the multi-season data into training, validation and test sets were evaluated.
The first is shown in Figure 2b. The entire data set was split randomly into training/validation and
test data, with 30 % of the data held for test.

However, for operational use, models need to be trained on previous season data to predict N
uptake at PI for a new season, so that topdressing can be applied soon after an image is captured.
To assess the ability of the remotely sensed data to achieve this aim, a second method of splitting data
took the training data from three seasons and the extracted model was tested on the fourth season data,
as shown in Figure 2c. Three-fold cross validation was used with Lasso regression to select the best α,
with randomly selected training and validation points from three season’s data. Then this model’s
prediction was tested on the remaining season’s data. The WorldView 8-band reflectances were used
as the input variables, with the NDRE2 band added, which was found to increase accuracy. It will be
shown that this method overfits the model to the three training seasons, and so does not generalize
well to the fourth test season.

To seek to solve this overfitting issue, a different cross-validation method was used to select the
optimal Lasso α from the three training seasons, shown in Figure 2d. Rather than randomly assigning
points from the three training seasons to model training and validation sets over three folds, the training
and validation sets included two seasons and one season respectively. This was implemented using
the Leave One Group Out method in scikit-learn (sklearn.model_selection.LeaveOneGroupOut) [51].
For example, for testing the model on the 2018 season, the cross validation for Lasso model training
used [training, validation] folds of [2015 + 2016, 2017], [2015 + 2017, 2016], [2016 + 2017, 2015] to
select α, before testing the final model on the 2018 data. Because the model training process is validating
performance against a held out season data in each of the cross validation folds, the model can then
generalize better to a totally new season, as overfitting to within-season data is avoided.

3. Results

3.1. Correlation between Remotely Sensed Data and N Uptake

The correlation between each of the RSIs and NDSIs and N uptake for the pooled data from all
experiments was assessed using the coefficient of determination (R2). The results are shown in Figure 3.
The best ratio index is RSI(nir2,re) with R2 = 0.78, closely followed by RSI(nir,re) with R2 = 0.74.
For the normalized difference indexes, the best index is NDRE = NDSI(nir,re), with R2 = 0.73.
These results indicate ratio indexes are at least as good as normalized difference indexes for predicting
N uptake. The single-variable linear regression analysis that follows uses NDRE as the input variable.
The performance using other combinations of bands will be described in following sections.

NDVI (R2 = 0.26) does not perform as well as NDRE (R2 = 0.73), as seen in Figure 3. The reason for
this is indicated in Figure 4. NDVI saturates at large values of N uptake. In contrast, NDRE continues
to increase at high values of N uptake, making it a better predictor.

There is a nonlinear relationship between NDRE and N uptake, evident in Figure 4b.
Fitting a linear model leads to large residuals at high and low values of N uptake. Various equations
were used to attempt to capture this relationship. Two are shown in Figure 5. An exponential
relationship appears to fit the trend of the data closely, as seen in Figure 5b. This is described by
Equation (10). The disadvantage of this formulation is that the predicted variable (logarithm of N
uptake) no longer has units of kg/ha, making evaluation statistics such as RMSE difficult to interpret.

Another possibility to describe the nonlinear relationship between NDRE and N uptake is shown
in Figure 5c, where instead of transforming the predicted variable (N uptake), we square the unitless
input variable NDRE. This model is described by Equation (12). This transformation linearizes the
N uptake vs. index relationship. It also gives a lower RMSE than the linear or ln(N) options and the
predicted variable retains physical units of kg/ha.
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(a) (b)

Figure 3. Coefficient of determination R2 between sampled nitrogen uptake and derived image indexes.
(a) Ratios of image bands (b1/b2). (b) Normalized difference ratios of image bands ((b1 − b2)/(b1 + b2).

(a) (b)

Figure 4. Nitrogen uptake vs. NDVI (a) and NDRE (b).

(a) (b) (c)

Figure 5. Comparison of fitting equations, (a) N vs. NDRE. (b) ln(N) vs. NDRE. (c) N vs. NDRE2.
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The y-intercept of the N uptake vs. NDRE2 model was not significant at p < 0.05, so was omitted.
The slope was significant at p < 0.05. The resulting model equation fit to the four-season dataset
is y = a × x2 = 457 × NDRE2. The residuals were examined and followed a normal distribution.
Maps of modeled N uptake were generated using this equation and NDRE computed from the satellite
images. Figure 6 shows the measured and predicted N uptake map from the 2017 season at the LFS
site. Good agreement is observed, with R2 = 0.88 and RMSE = 21.3 kg/ha.

(a) (b) (c)

Figure 6. Comparison of sampled and predicted N uptake from the 2017 experiment at the LFS site.
Red indicates 0 kg/ha, green indicates 200 kg/ha N uptake. (a) Sampled. (b) Predicted. (c) Graph
showing sampled vs. predicted N uptake per plot.

3.2. Effect of Secondary Variables On Models

The dataset was split into batches, based on (i) year, (ii) variety, (iii) site and (iv) sowing date;
in order to assess the effect of these factors on the relationship between remotely sensed data and
N uptake. Equation (12) was fit to each of the subsets of data. The results are shown in Table 3.
The statistically significant differences in the subsets are indicated in the Group column of the table.
There are significant differences in the model slopes (a) between different years, from 387 (2018) to
528 (2016). The regressions per year are shown in Figure 7. There are significant differences between
the Reiziq™model and the other variety models. There are no significant differences between sites or
sowing time (before or after 25-October).

Table 3. Linear regression results for N uptake vs. NDRE2, with separate regression coefficients for
different groupings of experiments.

Variable Value Points a R2 RMSE (kg/ha) Group

ALL ALL 554 457 0.75 22.8

Year

2015 176 450 0.71 15.5 b
2016 156 528 0.69 19.2 c
2017 132 473 0.85 23.1 bc
2018 90 387 0.80 22.7 a

512



Remote Sens. 2019, 11, 1837

Table 3. Cont.

Variable Value Points a R2 RMSE (kg/ha) Group

Variety

Sherpa™ 116 491 0.81 19.5 b
Reiziq™ 146 409 0.76 22.9 a

Langi 146 464 0.79 21.2 b
Topaz™ 146 499 0.79 20.5 b

Site LFS 302 452 0.83 20.0 a
YAI 252 463 0.61 25.6 a

Sow date Early 296 485 0.77 21.0 a
Late 258 431 0.77 22.9 a

Figure 7. Regression of N uptake vs. NDRE2 per year.

3.3. Effect of Different Sampling and Image Dates

There were multiple sample dates for each of the experiments (see Section 2.5), though the analysis
up until now has only made use of the sample data closest to the date where the satellite image was
captured. Nitrogen uptake is dynamic, so it is reasonable to expect the actual N uptake at the image
date will be different to the sampled N uptake if the sample was taken on a different date. To test the
effect of different sampling and image dates, sample data from all dates was used, and the data was
separated into buckets of 10 days between image and sample date. The model of Equation (12) was
fit to each bucket. The results are shown in Table 4. As expected, generally when the N uptake was
sampled after the image capture (negative Days(image-sample)), the regression slope is steep, as the N
uptake would have increased relative to NDRE2. The best relationship is observed when the sampling
date is close to the image date, as indicated by the highest R2 = 0.76 with Days(image-sample) = 0.

Table 4. Linear regression results for N uptake vs. NDRE2, with separate regression coefficients for
different number of days between N uptake sampling and image capture, binned into 10 day buckets.

Days (Image-Sample) Points a R2

−30 176 586 0.59
−20 48 492 0.27
−10 284 534 0.64

0 600 451 0.76
10 36 336 0.63
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3.4. Improving the Accuracy of The Model

Up until now, a single input variable model has been used (Equation (12) with x = NDRE). In this
section, more complex multi-variable linear regression models are explored, using Lasso regression to
avoid overfitting and to eliminate insignificant variables, as described in Section 2.6.2.

First, data for training/validating and testing the models are randomly chosen from all four
seasons, as shown in Figure 2b. The results are shown in Table 5. Models with different numbers and
combinations of input variables were tested. Many multispectral sensors have less bands than the
8 bands of the WorldView sensors (Table 2). Therefore, models were generated using only 4 out of the
8 possible bands to test degradation in accuracy expected with less capable sensors. These four bands
are g, r, re, nir.

The first group of models at the top of Table 5 shows results from single input variable models
(Lasso α = 0 as no variable selection is needed). The second group of models in the middle of the table
includes all RSIs and NDSIs formed by combinations of all reflectance bands. Results are shown for all
combinations of 4 bands b, g, r and nir (RSI4 and NDSI4), as well as all combinations of WorldView
sensor’s 8 bands (RSI8 and NDSI8). The third group of models are for combinations of the raw
reflectance bands without taking ratios or normalized differences (R4 and R8). The final models also
add variety and climate data. The model in the last row adds in all sample data, with multiple sample
dates per image capture (see Section 2.5).

For each combination of input variables, the table indicates the best Lasso α, which gave the
lowest validation RMSE. It also shows the number of raw input variables (# X), the total number of
input variables after processing with a second-order polynomial (# (X)2), and the number of variables
that were retained after Lasso regularization (# selected X). The last column in the table shows the 3
most significant input variables used in the model.

For the single-input variable models, NDRE2 is the best predictor of N uptake, with test RMSE of
23.7 kg/ha.

Models using combinations of RSIs and NDSIs achieve similar performance, with 8 bands
improving RMSE by 1–2 kg/ha relative to 4 bands. NDSIs using 8 bands yielded N uptake RMSE of
18.9 kg/ha.

Using the raw reflectances (R4 and R8 in the third section of Table 5) instead of RSIs or NDSIs yields
lower errors by around 3 kg/ha. Adding variety data does not improve the model. Adding climate and
management date variables (R8 × climate) does improve the model by around 1.5 kg/ha to 14.6 kg/ha.
The most important bands in the models are re, nir and nir2.

The final row in Table 5 shows the results from the model extracted using N uptake data from
all sample dates. The Lasso regularization selected 110 input variables and achieved an R2 of 0.90
and RMSE of 14.2 kg/ha on the test data. An example of the training and test RMSE and the number
of selected model features as a function of the Lasso alpha is shown in Figure 8, corresponding to
this last row in Table 5. The figure demonstrates that reducing alpha increases the number of input
variables, which gives lower RMSE on the training data, but results in overfitting so that RMSE on
the test data is degraded. The optimum alpha is chosen as the one giving the lowest test RMSE,
in this case, 0.004. This model is significantly better than the simple single input variable models.
However, the model becomes difficult to interpret because of the large number of input variables. It is
also questionable if the model will fit future season’s data accurately, a consideration that will be
explored in the following section.

514



Remote Sens. 2019, 11, 1837

T
a

b
le

5
.

R
es

u
lt

s
fr

om
m

u
lt

i-
va

ri
ab

le
re

gr
es

si
on

m
od

el
s

w
it

h
al

ls
ea

so
n

d
at

a
p

oo
le

d
,a

nd
tr

ai
n/

te
st

p
oi

nt
s

ra
nd

om
ly

se
le

ct
ed

(a
s

sh
ow

n
in

Fi
gu

re
2b

).
#X

is
th

e
nu

m
be

r
of

ra
w

in
pu

tv
ar

ia
bl

es
.#

(X
)2

is
th

e
nu

m
be

r
of

in
pu

tv
ar

ia
bl

es
af

te
r

th
e

po
ly

no
m

ia
li

s
ap

pl
ie

d
.#

se
le

ct
ed

X
is

th
e

nu
m

be
r

of
va

ri
ab

le
s

se
le

ct
ed

af
te

r
L

as
so

re
gu

la
ri

za
ti

on
.M

os
ti

m
po

rt
an

tX
sh

ow
s

th
e

th
re

e
m

os
ti

m
po

rt
an

tv
ar

ia
bl

es
.

In
p

u
t

V
a

ri
a

b
le

s
B

e
st

α
#

X
#

(X
)2

#
S

e
le

ct
e

d
X

T
ra

in
R

2
T

e
st

R
2

T
ra

in
R

M
S

E
T

e
st

R
M

S
E

T
h

re
e

M
o

st
Im

p
o

rt
a

n
t

X

N
D

V
I

0
1

1
1

0.
24

0.
30

38
.1

41
.4

N
D

V
I

N
D

R
E

0
1

1
1

0.
72

0.
74

23
.2

25
.5

N
D

R
E

N
D

R
E2

0
1

1
1

0.
74

0.
77

22
.3

23
.7

N
D

R
E2

C
Ir

e
0

1
1

1
0.

73
0.

77
22

.8
23

.8
C

Ir
e

C
Ig

0
1

1
1

0.
63

0.
67

26
.7

28
.5

C
Ig

SA
V

I
0

1
1

1
0.

62
0.

67
26

.9
28

.5
SA

V
I(

ni
r,r

e)

R
SI

4
0.

01
6

27
19

0.
83

0.
82

18
.2

20
.8

R
SI

(r
,g

)×
R

SI
(r

e,
g)

,R
SI

(r
,g

),
R

SI
(r

e,
g)

R
SI

8
0.

1
28

43
4

24
0.

86
0.

85
16

.2
19

.5
R

SI
(n

ir
2,

re
) ×

R
SI

(n
ir

2,
ni

r)
,

R
SI

(b
,c

)×
R

SI
(r

e,
r)

,R
SI

(n
ir

2,
c)
×

R
SI

(n
ir

2,
re

)
N

D
SI

4
0.

04
6

27
10

0.
82

0.
82

18
.4

21
.0

N
D

SI
(n

ir,
re

)2 ,N
D

SI
(r

,g
)×

N
D

SI
(r

e,
g)

,
N

D
SI

(r
,g

)2

N
D

SI
8

0.
1

28
43

4
21

0.
86

0.
85

16
.2

18
.9

N
D

SI
(n

ir
2,

re
)2 ,N

D
SI

(r
e,

c)
2 ,

N
D

SI
(y

,c
) ×

N
D

SI
(r

,b
)

R
4

0.
00

4
4

14
13

0.
87

0.
87

15
.7

17
.7

ni
r2 ,r

e
×

ni
r,

r
×

re
R

8
0.

00
4

8
44

29
0.

90
0.

90
13

.9
16

.0
b
×

r,
c
×

b,
c2

R
8
×

va
ri

et
y

0.
02

12
90

36
0.

91
0.

89
13

.3
16

.2
ni

r2
2 ,g

×
re

,g
×

ni
r

R
8
×

cl
im

at
e

0.
02

29
46

4
39

0.
92

0.
91

12
.7

14
.6

ni
r2

2 ,r
e
×

ni
r,

ni
r
×

R
ai

n(
im

ag
e-

PW
)

R
8
×

va
ri

et
y
×

cl
im

at
e

0.
02

0
33

59
4

61
0.

93
0.

91
11

.7
14

.9
re

×
r,

ni
r
×

So
w

_w
ee

k,
ni

r
×

R
ai

n(
im

ag
e-

PW
)

A
s

ab
ov

e,
al

ls
am

pl
e

da
te

s
0.

00
4

33
59

4
11

0
0.

93
0.

90
12

.4
14

.2
y
×

So
w

_w
ee

k,
ni

r
×

So
la

r(
im

ag
e-

PW
),

g
×

re

515



Remote Sens. 2019, 11, 1837

Figure 8. RMSE for the Lasso model as a function of α including all variables (last row of Table 5).

3.5. Model Consistency with Season

Previous sections have pooled data from all seasons, with models trained on randomly selected
training and test data points from the pooled data. It was seen that using this method, where model
training data includes points from seasons being predicted, quite good absolute accuracy can be
achieved (RMSE < 20 kg/ha). Now we examine the ability of models trained on three known seasons
to predict results in a fourth unknown season, using the methods described in Section 2.6.3.

The first method randomly selects training and validation data from three seasons, then tests
on the fourth, as shown in Figure 2c. The results are shown in Table 6. The models use the eight
raw bands and NDRE2 as input variables. All combinations of training/validation and test years are
evaluated. The resulting models are quite complex with small α and more than 29 input variables
selected. When the model is trained on 2016–2018 data, and tested on the 2015 data, reasonable
performance is achieved (RMSE = 17.2 kg/ha). However, for other test seasons, the predictions are
poor. The models with 2017 and 2018 test seasons give a negative R2. This is possible with R2 defined
as in Equation (8), and indicates the models are not generalizing to the test data. These results indicate
that when models are tested on data from unseen seasons using the model training methodology in
Figure 2c, generated models may overfit the training/validation data and so will be unlikely to predict
future season N uptake accurately.

To seek to solve this overfitting issue, a different cross-validation method was used to select
optimal Lasso α. This is shown in Figure 2d, and proceeds by holding out one of the training
seasons for model validation, and repeating over three combinations of training/validation seasons in
three-fold cross validation, before testing on the remaining season from which the model has not seen
data. The results using this method are shown in Table 7. Now Lasso regularization has selected quite
simple models, with relatively high α and only three or four input variables selected. The worst RMSE
across the four test seasons is 27.4 kg/ha, and worst R2 is 0.67. In all seasons the most important input
variable is nir2 × NDRE2 with strong similarity between models from all four groups of seasons.

In order to assess the simple NDRE2 model of Equation (12) using this same multi-season model
training strategy (Figure 2d), this model was fit to three years data, then tested against the remaining
year. The worst case RMSE was 36.0 kg/ha for the 2018 test year. Thus, we confirm Lasso regression
with multiple input variables produces better models (worst case RMSE 27.4 kg/ha for the 2018
test year).
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Table 6. Lasso regression with one year held out as test data, and the other three years as training data
with randomized cross validation (as shown in Figure 2c).

Test Year Best α # X # (X)2 # Selected X Train R2 Test R2 Train RMSE Test RMSE

2015 0.002 9 54 43 0.93 0.65 13.2 17.2
2016 0.001 9 54 53 0.92 0.38 13.5 27.2
2017 0.001 9 54 48 0.89 −27.04 12.6 311.1
2018 0.004 9 54 29 0.91 −6.47 13.5 140.4

Table 7. Lasso regression with one year held out as test data, and the other three years as training data
with cross validation splits based on training data years (as shown in Figure 2d).

Test Year Best α # X # (X)2 # Selected X Train R2 Test R2 Train RMSE Test RMSE Three Most Important X

2015 10.0 9 54 3 0.79 0.67 22.5 16.8 nir2 × NDRE2, nir22, g
2016 4.0 9 54 4 0.85 0.67 19.0 19.9 nir2 × NDRE2, r × NDRE2, c × re
2017 4.0 9 54 4 0.80 0.78 17.2 27.4 nir2 × NDRE2, nir22, g
2018 4.0 9 54 3 0.84 0.72 17.5 27.4 nir2 × NDRE2, NDRE2, g

4. Discussion

This study has demonstrated the accuracies that can be obtained using multi-spectral satellite
data to predict the N uptake of rice at panicle initiation. This is an essential pre-requisite to developing
an operational mid-season N topdressing recommendation tool for the rice industry, based on
remote sensing.

Table 8 gives a summary of results from a selection of papers on predicting rice N uptake using
remote sensing, for papers that report predicted N uptake root mean squared error (RMSE). The table
assumes N uptake at jointing is similar to that at PI, and it shows the results for the best model
formulation. The last column shows the worst case test season RMSE for the limited number of studies
that test models on different seasons than those used to train the models.

Table 8. Published research investigating prediction of N uptake of rice. Root mean squared error
(RMSE) of the N uptake is given for cases when training and test data come from the same season,
and when the test data comes from a different season (worst case is shown). T = tillering, PI = panicle
initiation, H = heading, F = filling, MS = multispectral, HS = hyperspectral, PLSR = partial least squares
regression, IPLSR = interval PLSR, MLR = multiple linear regression, VI = vegetation index.

Ref Stage Platform Sensor Model Seasons
RMSE (kg/ha) RMSE (kg/ha)
Same Seasons Test Season

[54] T, PI, H, F Handheld MS VI 2 7.07 -
[28] PI Handheld HS IPLSR 4 11.7 -
[30] PI Handheld HS PLSR 3 17.4 34.9
[27] PI UAV MS VI 2 11.5 -
[29] H Airborne HS PLSR, MLR 3 11.98 67.1
This PI Satellite MS MLR 4 14.6 27.4

Our work indicates that the model generation strategy critically depends on whether in-season
sampling data is available. Complex multi-variable models predicting N uptake from remotely sensed
data can be very accurate, providing in-season physical samples and remote sensing data is available
for the season being predicted. In this case, previous studies have shown N uptake prediction errors
as low as 7 kg/ha [54], and many others around 12 kg/ha [27–29]. However, these don’t consider
the practically important application of predicting N uptake in new seasons for which sampling data
is not yet available. With this limitation, we found N uptake RMSEs of better than 19 kg/ha with
remote sensing data from four seasons as shown in Table 5. Addition of management and climate data
enabled prediction RMSE better than 15 kg/ha.

However, it is rarely the case that in-season data is available by the time predicted N uptake is
needed to generate topdressing requirements, a factor which isn’t considered in most previous studies.
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The timing and logistics from image acquisition with simultaneous physical N uptake sampling,
to model extraction from this data, to N uptake prediction, to N recommendation and finally to
applying the top-dressing necessitates applying models extracted from previous data to new seasons.
However, seasonal variability in models leading to inaccuracy in extrapolating models to new seasons
was tested and noted by [29] and [30]. We likewise showed that simply extracting models using
randomly selected training and validation data points from other seasons can result in very poor
prediction of N uptake in a new season, with RMSEs greater than 100 kg/ha in some cases, as shown
in Table 6.

To solve this issue, we proposed a cross-validation procedure that uses training and validation
data sets from separate seasons, which results in better generalization of N uptake prediction to new
seasons. Testing across the four seasons of this study, we obtained RMSEs between 16.8–27.4 kg/ha.
Notably, this was using multispectral sensors and from satellite platforms, which makes the
methodology suitable for industry adoption.

The results illustrated a number of additional challenges to producing accurate N uptake models.
The days between image acquisition and N uptake sampling affects model parameters, shown in
Table 4. Ideally, sampling should occur at the same time as image acquisition. This result shows
the importance of having image capture close to the date at which N uptake is required if possible.
It also motivates developing models for the dynamic change of N uptake with time and environmental
conditions in case image acquisition must occur on a date significantly differently than the PI date.
Ultimately, a model for the dynamics of N uptake with climate and time is desirable, so that the
calculated N uptake from the image can be extrapolated to PI date. Models predicting soil N in flooded
systems were reviewed in [41]. These could be coupled with rice crop models to determine N uptake.
The time and climate-dependent behavior of remotely sensed vegetation indexes that predict N uptake
were shown in [40]. Bringing remote sensing, environmental data and crop models together to improve
accuracy of N uptake predictions may be an approach to improving N recommendations.

There are differences in the model of N uptake from remote sensed data from season to season that
are difficult to model. More work is needed to determine the causes of these differences and how they
can be incorporated into a model to improve the absolute accuracy to new seasons before sample data
is available. Possible avenues for investigation include soil chemistry differences, water management
differences, ponded water temperature differences, leaf area index differences at the image date (as
ponded water may interact with canopy reflectance) and un-modelled climate effects [55].

We investigated different combinations of remote sensing bands and spectral indexes.
An important band for predicting N uptake on the WorldView satellites is nir2, at 860–1040 nm.
Most multispectral sensors do not have an nir band with wavelengths this large, and some accuracy
is lost using the lower wavelength nir band (770–895 nm) which is more common in a variety of
sensors. We found models generated using four multispectral bands commonly found in sensors
(green, red, red edge, near infrared) produced prediction errors 1–2 kg/ha higher than if all eight
multispectral bands of the WorldView sensors were used. We found, in agreement with other works,
the NDVI is a poor predictor of high values of N uptake, and indexes including the red-edge band are
able to predict a greater range of values [26]. We also showed that squaring the NDRE index follows
the trend of N uptake closely.

We now consider the prospects of implementing a viable methodology of generating PI N uptake
maps covering the rice industry in a given area. The cost of WorldView imagery is relatively high
(though less in $/ha than airborne data), and the minimum capture area is large. It may be feasible
for commercial use if a large number of paddies are grouped in a small area (so the minimum area
capture covers many fields), but may not be feasible for more sparsely distributed fields. Therefore,
extending our multi-season N uptake prediction methodology to more cost-effective platforms is
desirable. An additional consideration is that image acquisition needs to be arranged well in advance,
so models forecasting PI date need to be accurate [44]. There is also the risk of cloud cover on the
selected acquisition date. Aerial platforms will remove limitations of image acquisitions on days
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with cloud cover and may offer more flexibility with late adjustments of image dates. UAVs offer
an alternative for small areas, provided an experienced operator is available, who follows calibration
protocols strictly. It would be useful to investigate the integration of models from various platforms
and sensors in order to mitigate issues related to lack of availability of quality images from a single
platform in a given season.

Following determination of N uptake at PI, recommendations of optimal N topdressing rates are
needed. These recommendations may be generated using studies such as the one described in [15],
where plots were sampled for PI N uptake, and various topdressing rates were applied across plots.
Then final grain yield results are used to generate tables of optimal PI N application as a function
of PI N uptake. Variable rate topdressing resolution using aerial application is around 30 kg/ha.
The multi-season model RMSE is as high as 27.4 kg/ha when predicting N uptake in an unseen season.
However, given the remote sensing approach removes the labour associated with sampling, and the
fact that it is unfeasible to sample enough points to adequately represent spatial variability, the remote
sensing approach remains an attractive solution.

5. Conclusions

This work has demonstrated the ability of multi-spectral satellite images to predict absolute
N uptake in rice at the panicle initiation growth stage, using data from four seasons, two sites,
four varieties, and multiple sowing dates. A simple single variable model using the NDRE2 index
was shown to give reasonable performance, with N uptake RMSE of 22.8 kg/ha and R2 of 0.75
when all four season’s data were pooled. More complex models incorporating combinations of
input bands, climate and management date data achieved R2 of 0.91 and RMSE of 14.6 kg/ha.
However, this methodology requires physical samples to be available for model training for each
season that the N uptake is to be predicted. We developed a model fitting methodology to
predict future seasons, that avoids model overfitting providing multiple previous seasons data are
available. Using this methodology, prediction performance ranged from R2 of 0.67–0.78 and RMSE of
16.8–27.4 kg/ha over four test seasons for which the model had seen no data. Model regularization
limited the complexity to four or less input variables. This accuracy is sufficient for operational use in
prescribing variable-rate application of N at the panicle initiation growth stage.
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Abstract: RapidSCAN is a portable active canopy sensor with red, red-edge, and near infrared
spectral bands. The objective of this study is to develop and evaluate a RapidSCAN sensor-based
precision nitrogen (N) management (PNM) strategy for high-yielding rice in Northeast China. Six rice
N rate experiments were conducted from 2014 to 2016 at Jiansanjiang Experiment Station of China
Agricultural University in Northeast China. The results indicated that the sensor performed well
for estimating rice yield potential (YP0) and yield response to additional N application (RIHarvest)
at the stem elongation stage using normalized difference vegetation index (NDVI) (R2 = 0.60–0.77
and relative error (REr) = 6.2–8.0%) and at the heading stage using normalized difference red edge
(NDRE) (R2 = 0.70–0.82 and REr = 7.3–8.7%). A new RapidSCAN sensor-based PNM strategy was
developed that would make N recommendations at both stem elongation and heading growth
stages, in contrast to previously developed strategy making N recommendation only at the stem
elongation stage. This new PNM strategy could save 24% N fertilizers, and increase N use efficiencies
by 29–35% as compared to Farmer N Management, without significantly affecting the rice grain
yield and economic returns. Compared with regional optimum N management, the new PNM
strategy increased 4% grain yield, 3–10% N use efficiencies and 148 $ ha−1 economic returns across
years and varieties. It is concluded that the new RapidSCAN sensor-based PNM strategy with
two in-season N recommendations using NDVI and NDRE is suitable for guiding in-season N
management in high-yield rice management systems. Future studies are needed to evaluate this
RapidSCAN sensor-based PNM strategy under diverse on-farm conditions, as well as to integrate it
into high-yield rice management systems for food security and sustainable development.

Keywords: RapidSCAN sensor; nitrogen recommendation algorithm; in-season nitrogen management;
nitrogen use efficiency; yield potential; yield responsiveness
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1. Introduction

As one of the major cereal crops in the world, more than half of the world’s population takes rice
(Oryza sativa L.) as the staple food [1]. The area under rice cultivation in Asia accounts for 90% of the
world’s total rice area [2]. At the same time, inappropriate nitrogen (N) fertilizer application rates and
timing result in low N use efficiency (NUE) in this area [3]. Northeast China is a major rice production
region in China and the abovementioned management problems are common [4–6]. Facing these
challenges, Chinese agricultural scientists have developed regional optimum N management (RONM)
systems, aiming to obtain higher yields with less resources and N losses suitable for different
regions [4,6,7]. The RONM system using fixed N rates and timing optimum for a region may not
be optimal for a specific site, year, and variety in that region [8,9]. Precision N management (PNM)
strategies consider both spatial and temporal variability in soil N supply and crop N demand. They have
the potential to further improve NUE over the RONM strategy [8].

Active crop canopy sensors have been increasingly used to develop in-season site-specific
N management strategies, allowing non-destructive real-time diagnosis of crop N status and N
recommendations. They have their own light sources and are not affected by environmental light
conditions [8]. The GreenSeeker active canopy sensor (Trimble Navigation Limited, Sunnyvale,
CA, USA) is a commonly used sensor for guiding in-season N management [8]. It has red (R) and
near-infrared (NIR) spectral wavebands and two default vegetation indices (VI): normalized difference
vegetation index (NDVI) and ratio vegetation index (RVI) [8]. A GreenSeeker sensor-based PNM
strategy has been previously developed to improve NUE while maintaining rice yield in Northeast
China [10]. In this strategy, basal and tillering N rates were the same as RONM, while panicle fertilizer
rates at the stem elongation stage were adjusted based on N fertilizer optimization algorithm using the
GreenSeeker sensor [10]. The key components of this strategy include in-season estimation of yield
potential without additional topdressing N application (YP0) and N response index (RIHarvest) [10–12].
The potential yield with sufficient topdressing N application (YPN) can be estimated by multiplying
YP0 and RIHarvest [11] and then the N topdressing requirement is estimated by dividing the yield
increase (YPN−YP0) by the average NUE [10]. Because of the saturation problem of NDVI at moderate
to high biomass conditions, the estimation of YP0 and RIHarvest using GreenSeeker NDVI was not very
satisfactory across all stages [10] or at later growth stages (e.g., the heading stage) [13]. A previous
study using the Crop Circle ACS 470 sensor (Holland Scientific, Inc., Lincoln, NE, USA) indicated
that red edge-based VIs had the potential to overcome the NDVI saturation problem and improve the
estimation of YP0 and RIHarvest, especially at later rice growth stages [13].

The RapidSCAN CS-45 sensor (Holland Scientific Inc., Lincoln, Nebraska, USA) is a relatively
new alternative active crop canopy sensor available in the market. It is a lightweight and convenient
portable sensor with built-in global positioning system and red edge (RE) band in addition to red and
near infrared bands. Another advantage of the RapidSCAN sensor is that the sensor data collection is
not influenced by measurement height in the range of 0.3 to 3 m [14]. It provides NDVI and normalized
difference red edge (NDRE) as two default VIs, in addition to the R, RE, and NIR waveband reflectance.
Besides NDVI and NDRE, many different VIs can be calculated. This sensor was found to perform
well for estimating rice N status indicators at different growth stages [14]. Zhang et al. [15] reported
that NDRE had a better rice yield prediction accuracy than NDVI from stem elongation to booting
stage using the RapidSCAN sensor. More studies are needed to develop RapidSCAN sensor-based
PNM strategies for rice.

To ensure both food security and agricultural sustainable development, integrated precision rice
management systems have been developed to increase rice yield and NUE simultaneously [16]. In such
systems, in addition to N applications before transplanting, at the tillering and stem elongation stages,
grain N fertilizer was also applied at the heading stage to better meet the N demand of high-yielding
rice. The previously developed GreenSeeker-based PNM strategies did not perform well to guide grain
N fertilizer application at the heading stage because of the NDVI saturation [13]. The RapidSCAN
sensor has the potential to overcome the saturation problem of NDVI and research is needed to develop
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a RapidSCAN sensor-based PNM strategy for high-yielding rice management systems that will guide
topdressing N applications at both stem elongation and heading stages.

Therefore, the objectives of this study are to (i) evaluate the potential of in-season estimation of the
rice yield potential and the response to N application at different growth stages using the RapidSCAN
CS-45 sensor, (ii) develop a RapidSCAN sensor-based PNM strategy for high-yielding rice, and (iii)
evaluate the RapidSCAN sensor-based PNM strategy for different varieties, N status, and years in
Northeast China.

2. Materials and Methods

2.1. Study Site

The study was conducted in Sanjiang Plain, Heilongjiang Province, Northeast China (47.2◦N,
132.6◦E). The main soil type in this area is Albic soil, classified as Mollic Planosols in the FAO-UNESCO
system, and typical Argialbolls in the soil taxonomy [17]. The study site is located in a cool-temperate
sub-humid continental monsoon climate zone. The temperature ranges from −41 ◦C in the winter to 38
◦C in the summer, with a mean annual temperature of 1.9 ◦C. About 72% of its annual precipitation
(500–600 mm) occurs from June to September. The annual frost-free period is about 120–140 days
long [16].

2.2. Calibration and Validation Experiments

Six plot experiments (Exp.) were conducted from 2014 to 2016 at Jiansanjiang Experiment
Station of China Agricultural University, involving two different varieties, N rates and sensor-based N
management strategies (Table 1). Each experiment had the same five N rates (0, 40, 80, 120, and 160
kg N ha−1). In addition, the experiments in 2015–2016 consisted of a sensor-based PNM treatment
using the RapidSCAN sensor. The N fertilizer was applied in five N rate treatments (except the control
treatment without N application) as three splits: 40% as basal N before transplanting, 30% at tillering
stage, and the remaining 30% N at the stem elongation stage. According to previous studies [6,9],
the N rate treatment for 120 kg N ha−1 was used as RONM system in this region. The sensor-based
PNM treatments were also based on the RONM system, with the same basal (48 kg ha−1) and tillering
(36 kg ha−1) N rates. The panicle and grain fertilizer rates were determined according to active
canopy sensor-based N recommendation algorithm and applied at the stem elongation and heading
stages, respectively.

Table 1. The details about the crop growth and crop sensing within the experiments performed in
this study.

Experiment Year Variety Transplanting Date Harvest Date
Stem Elongation Stage Heading Stage

Sensing Date DAT Sensing Date DAT

Exp. 1 2014

Longjing 31

19 May 29 September 3 July 45 26 July 68

Exp. 2 2015 20 May 4 October 6 July 47 30 July 71

Exp. 3 2016 19 May 25 September 5 July 47 25 July 67

Exp. 4 2014

Longjing 21

19 May 29 September 7 July 49 26 July 68

Exp. 5 2015 20 May 4 October 7 July 48 2 August. 74

Exp. 6 2016 19 May 25 September 5 July 47 25 July 67

Note: DAT: the number of days from transplanting to sensing.

Exp. 1 to 3 used Longjing 31, which is an 11-leaf variety requiring about 130 days to reach maturity.
Exp. 4 to 6 used Longjing 21, which is a 12-leaf variety that needs about 133 days to maturity. All plot
experiments were replicated three times in a randomized complete block design. The N source was
granular urea. To evaluate the potential of the crop canopy sensors to estimate rice YP0 and RIHarvest at
the stem elongation and heading stages, each plot of all experiments (except the 0 kg N ha−1 treatment)
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was divided into two parts: 4.5 × 9 m as the main plot and 2.5 × 9 m as the subplot without receiving
the third N application. For all the treatments, 50 kg P2O5 ha−1 in the form of Ca(H2PO4)2 was applied
before transplanting and 105 kg K2O ha−1 in the form of KCl was applied as two splits: 50% before
transplanting and 50% at the stem elongation stage. Rice seedlings were prepared in a greenhouse
and transplanted into the experimental fields in mid-May. The field and crop management in these
experiments followed the regional recommendations.

2.3. Proximal Sensing Data Collection

The RapidSCAN CS-45 sensor was used to collect reflectance data in this study. The sensor
with modulated light emitting diodes irradiates the crop canopy and determines a portion of the
radiation reflected from the crop canopy, without being affected by ambient illumination. The internal
polychromatic light source includes three spectral bands centered at R (670 nm), RE (730 nm), and NIR
(780 nm) wavelengths. According to the manufacturer, the sensor has the unique feature of Pseudo Solar
Reflectance measurements that are independent of height in the range of 0.3 m to 3 m. Considering the
potential influence of viewing angle and measurement area on sensor readings, the sensor footprint
was parallel to the plant rows with the beam of light being perpendicular to rice canopy about 0.7–0.9
m above the canopy. The sensor was carried at a consistent speed to collect sensor readings from four
different rows (3 m per row) in the middle of each plot. The reflectance values were then averaged to
represent the reflectance for each plot.

Following the methodology established in the previous study on the RapidSCAN sensor [14],
fifty-one VIs were evaluated in this study for estimating YP0 and RIHarvest and the best performing VIs
for calibration and validation are listed in Table 2. NDVI and NDRE were provided as two default
indices for this sensor (see Table 2). Reflectance data were collected at stem elongation and heading
stages, which were the key stages for panicle and grain fertilizer applications.

Table 2. NDVI, NDRE, and the best performing vegetation indices for calibration and validation from
RapidSCAN used in this study.

Index Formula Reference

Normalized difference vegetation index (NDVI) (NIR − R)/(NIR + R) Rouse et al. [18]
Normalized difference red edge (NDRE) (NIR − RE)/(NIR + RE) Barnes et al. [19]

Ratio vegetation index (RVI) NIR/R Jordan [20]

Modified soil-adjusted vegetation index (MSAVI)
[
(2 × NIR + 1) −

√
(2 × NIR + 1)2 − 8(NIR − R)

]
/2 Qi et al. [21]

Modified simple ratio (MSR) (NIR/R − 1)/
√

NIR/R + 1 Chen [22]
Optimal vegetation index (VIopt) 1.45 ×

(
NIR2 +1

)
/(R + 0.45) Reyniers et al. [23]

Nonlinear index (NLI)
(
NIR2 − R

)
/
(
NIR2+R

)
Goel and Qin [24]

NDVI*RVI
(
NIR2 − R

)
/
(
NIR + R2

)
Gong et al. [25]

Red edge wide dynamic range vegetation index (REWDRVI) (0.12INIR − RE)/(0.12RNIR + RE) Cao et al. [26]
Red edge optimal soil adjusted vegetation index (REOSAVI) (1 + 0.16)(NIR − RE)/(NIR + RE + 0.16) Cao et al. [26]

Modified red edge soil adjusted vegetation index (MRESAVI)
[
(2 × NIR + 1) −

√
(2 × NIR + 1)2 − 8(NIR − RE)

]
/2 Cao et al. [26]

Optimized red edge vegetation index (REVIopt) 100 × (lnNIR − lnRE) Jasper et al. [27]
Normalized near infrared index (NNIRI) NIR/(NIR + RE + R) Lu et al. [14]

2.4. Plant Sampling and Measurements

At the stem elongation, heading, and maturity stages, 3 hills with tillers representative of each plot
were randomly selected for assessing the aboveground biomass. After cleaning with water, all roots
were removed. The plant samples were then oven dried for 30 min at 105 ◦C and then at 70 ◦C until
constant weight, and weighed to determine their biomass. They were later ground to pass a 0.5 mm
sieve. Plant N concentration was determined using the Kjeldahl-N method.

Rice was harvested at the end of September or early October. Grain yield was determined by hand
harvesting three 1 m2 areas in each plot where spectral reflectance data were collected. Grains were
separated from straw using a small grain thresher and then weighed. Grain moisture was determined
immediately after weighing. The rice grain weight was adjusted to a moisture content of 140 g kg−1.
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Agronomic efficiency of N (AEN) and partial factor productivity of N (PFPN) were calculated
using the following equations:

AEN (kg kg−1) =
Grain yield − Grain yield at control

N rate
× 100 (1)

PFPN

(
kg kg−1

)
=

Grain yield
N rate

(2)

2.5. Development and Evaluation of RapidSCAN-Based Precision Nitrogen Management Strategies

Based on Yao et al. [10], the RapidSCAN-based PNM strategy in this study was developed by first
establishing the models to estimate YP0 and RIHarvest using in-season estimate of yield (INSEY) and
in-season N response index based on VI (RI-VI), respectively. INSEY can be regarded as an estimate of
average daily biomass production from the time of transplanting to the day of sensing [11]. It was
calculated as NDVI divided by the number of growing degree days > 0 [10]. In this study, however,
the number of days from transplanting to sensing was used instead of growing degree days to calculate
INSEY, similarly to the method of Cao et al. [13]. With respect to their study, the selected RapidSCAN
VIs were used here to replace the GreenSeeker NDVI or RVI. RIHarvest indicates the actual crop yield
response to additional N within a given year [28,29] and was calculated as follows [13]:

RIHarvest =
Yield_Nrich

Yield_CK
(3)

where Yield_Nrich is the average yield of plots receiving sufficient N application (the 160 kg N ha−1

treatment in this study), and Yield_CK is the average yield of plot without receiving the third N
application at the stem elongation stage or the fourth N application at the heading stage.

RI-VI was calculated in the same way as RIHarvest, with the exception that VIs derived from
RapidSCAN sensor were used instead of yield. YPN was calculated by multiplying YP0 and RIHarvest.
Finally, the N topdressing requirement is estimated by dividing the yield gap (YPN − YP0) by the
average AE of topdressing N (AEtopdressing) [10]. The AEtopdressing should be higher than the one for
the whole season, and will be predicted during the growing season using the predicted RIHarvest [30].

To ensure sufficient N supply for grain filling and higher NUE in high-yield rice management
systems, a strategy for in-season site-specific N management of rice using RapidSCAN at stem
elongation and heading stages was developed in this study (Figure 1). First, the topdressing N
application rate (Nrate) at stem elongation stage was determined as mentioned above, and then this
rate was split in two doses, 2/3 as panicle fertilizer at stem elongation stage (SE_Nrate) and 1/3 for grain
fertilizer at the heading stage. Second, the RapidSCAN sensor was used to estimate the potential
yield with added N application at the heading stage (HD_YPN). The difference between estimated
YPN at stem elongation and heading stages (HD_YPN - SE_YPN) was used to adjust the remaining 1/3
Nrate to match the crop N demand at the heading stage. Therefore, the recommended N topdressing
application rate at the heading stage (HD_Nrate) can be determined as follows (Figure 1):

HD_Nrate =
HD_YPN − SE_YPN

AEtopdressing
+

1
3

Nrate (4)

where HD_Nrate is the topdressing N application rate at heading stage, HD_YPN is the predicted yield
potential with topdressing N application at heading stage, SE_YPN is the predicted yield potential
with topdressing N application at the stem elongation stage, and AEtopdressing is the topdressing N
agronomic efficiency.
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Figure 1. RapidSCAN sensor-based in-season N recommendation algorithm developed for determining
topdressing N rates at stem elongation stage and heading stage of high-yielding rice in this study.
VIN: vegetation index at plots with sufficient N fertilization plots; VI0: vegetation index at plots
without additional N topdressing application; RI-VI: in-season N response index based on vegetation
index; RIHarvest: N response index based on yield; DAT: the number of days from planting to the
date of sensing; INSEY: in-season estimate of yield; YP0: the potential yield without additional
topdressing N application; Nrate: recommended topdressing N application rate at stem elongation
stage; AEtopdressing: agronomic efficiency of topdressing N; SE_YPN or HD_YPN: the potential yield
with added topdressing N application at the stem elongation stage or heading stage, respectively;
SE_Nrate or HD_Nrate: recommended topdressing N application rate at the stem elongation stage or
heading stage, respectively.

In addition, two restrictions were applied after considering the rice production situation in
Northeast China:

YPN ≤ YPmax
(
12 t ha−1

)
(5)

Nmin

(
0 kg ha−1

)
≤ Nrate ≤ Nmax

(
48 kg ha−1

)
(6)

where YPmax is the maximum obtainable yield, Nmin and Nmax are the minimum and maximum
topdressing N rates.

According to the definition and the methods of Raun et al. [11] and [12], the YPmax in the study
region was set to 12 t ha−1 based on previous studies and farmer survey data in this region [10,13,16,31].
The topdressing N application rates at the stem elongation stage was set to 0 to 48 kg ha−1 based on
farmer surveys and previous studies in this region [10,16,31].

In order to determine whether the restrictions applied to the rice PNM strategies were suitable,
three N rate treatments (80, 120, and 160 kg ha−1) from Exp. 1–6 were chosen to represent three rice N
status before topdressing (deficient, optimal, and surplus, respectively). They were used to evaluate
the RONM and the developed PNM strategies by calculating the differences between economically
optimum N rate (EONR) and N rates recommended by RONM or PNM strategies. In order to evaluate
the potential of the developed PNM strategy, the RapidSCAN-based PNM treatment in Exp. 2–3 and
5–6 was compared for yield, N rate, and NUE with the control treatment (0 kg N ha−1), the 160 kg N
ha−1 treatment reflecting the farmer N management (FNM) and the 120 kg N ha−1 identical with the
RONM. For the RapidSCAN sensor-based PNM treatment, the topdressing N rate was estimated based
on the PNM strategy developed in this study using NDVI at the stem elongation stage and NDRE at
the heading stage (Exp. 2 and 5 using data up to 2015; Exp. 3 and 6 using data up to 2016).

Economic return to N (E, $ ha−1) was used to evaluate the profitability of different N management
systems, and was calculated as follows:

E =(YN−Y0)×PY − Ntotal×PN (7)
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where YN (kg ha−1) is the rice grain yield with N application, Y0 (kg ha−1) is the rice grain yield of the
check treatment without any N application, PY is rice grain price (0.44 $ kg−1). Ntotal is the total N
fertilizer application rate (kg ha−1). PN is the N fertilizer price (0.54 $ kg−1).

2.6. Statistical Analysis

Data collected from the three-year experiments were pooled together and then randomly divided
into calibration dataset (67% of the observations) and validation dataset (33% of the observations)
for the estimation of YP0 and RIHarvest using RapidSCAN sensor. The coefficients of determination
(R2) for the relationships between VIs and agronomic parameters were calculated using SPSS 18.0
(SPSS Inc., Chicago, Illinois, USA), and the models with the highest R2 were selected. In addition to
R2, the performance of the models for predicting YP0 and RIHarvest was also evaluated using the root
mean square error (RMSE) and relative error (REr). Analysis of variance were conducted using the
SAS software package Version 9.0 (SAS Institute Inc., Cary, NC, USA). The means for treatments were
compared with least significant difference (LSD) test at the 0.05 probability level (at p < 0.05).

3. Results

3.1. Changes in NDVI vs. NDRE among Different N Rates, Varieties, Stages, and Years

Rice grain yield was significantly affected by the factors of N rates, varieties, and years,
and RapidSCAN-based NDVI and NDRE also showed similar results (Table 3). Except for the
variation of year, NDVI was significantly affected across different N rates, varieties, and growth
stages. NDRE was significantly affected by these factors, except for variety. The changes in NDVI
vs. NDRE were also shown in Figure 2. YP0, NDVI, and NDRE all increased with N rates (Figure 3).
The average NDVI showed significant difference between Longjing 31 (0.68) and Longjing 21 (0.72)
across years, growth stages, and N levels.

Figure 2. The relationships between yield without additional topdressing N application (YP0) and
in-season estimate of yield (INSEY) calculated with NDVI, NDRE, MSAVI, and NDVI*RVI across all
varieties at stem elongation stage and heading stage.
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Table 3. Significance of mean squares in the analysis of yield without additional topdressing N
application (YP0), RapidSCAN NDVI, and NDRE under five N rates (0, 40, 80, 120, 180 kg ha−1)
combined at two stages (stem elongation and heading stage), across three years (2014-2016) for two
varieties (Longjing 31 and Longjing 21).

Source of Variation Degree of Freedom
Significance of Mean Square

NDVI NDRE YP0

N level 4 *** *** ***
Variety 1 ** ns ***
Stage 1 *** *** ***
Year 2 ns *** ***

Note: *, **, and *** indicate significance at 0.05, 0.01, and 0.001 probability levels, respectively. ns = non-significant.

 
Figure 3. Rice yield without additional topdressing N application (YP0) or NDVI (a; c; e; g) and YP0

or NDRE (b; d; f; h) obtained by RapidSCAN at the stem elongation (a–d) and heading (e–h) stages
as affected by different N rates for Longjing 31 (a; b; e; f) and Longjing 21 (c; d; g; h) in 2014–2016,
respectively. Different color bars represent the value of NDVI or NDRE in different years. Different dots
represent YP0 in different years. The red curves were the curves of rice yield potential without
additional topdressing N application (YP0). Vertical bars represent the LSD value (p = 0.05) among
different N levels.
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3.2. Yield Without Additional Topdressing N Application

The performance of the INSEY calculated with NDVI, NDRE, and best performing VIs to estimate
rice YP0 varied with different growth stages across N rate treatments, sites, and years (Table 4 and
Figure 2). At the stem elongation growth stage, two varieties performed similarly. INSEY-NDVI
explained 72–76% of YP0 variability, which was better than INSEY-NDRE (60–66%). The INSEY
calculated with best performing VIs (nonlinear index (NLI) (INSEY_NLI), modified simple ratio (MSR)
(INSEY_MSR), and modified soil-adjusted vegetation index (MSAVI) (INSEY_MSAVI)) performed
similarly (R2 = 0.74–0.78) to INSEY_NDVI.

Table 4. Calibration and validation results for predicting yield without additional topdressing N
application (YP0) using the in-season estimate of yield (INSEY) calculated with the RapidSCAN’s
default indices (NDVI and NDRE) and the best performing vegetation indices for two varieties at the
stem elongation (SE) and heading (HD) stages in 2014–2016.

Variety Stage
Calibration Results Validation Results

Index Model R2 R2 RMSE REr

Longjing 31

SE
INSEY_NDVI E 0.76 0.70 0.49 7.7
INSEY_NDRE P 0.66 0.62 0.55 8.5

INSEY_NLI E 0.78 0.70 0.49 7.6

HD
INSEY_NDVI Q 0.59 0.54 0.74 9.9
INSEY_NDRE Q 0.89 0.76 0.54 7.3

INSEY_REOSAVI Q 0.89 0.76 0.55 7.3

Longjing 21

SE
INSEY_NDVI E 0.72 0.66 0.39 6.3
INSEY_NDRE P 0.62 0.34 0.54 8.7
INSEY_MSR E 0.74 0.63 0.41 6.5

HD
INSEY_NDVI Q 0.28 0.64 0.93 12.1
INSEY_NDRE Q 0.77 0.75 0.66 8.5

INSEY_ MRESAVI Q 0.78 0.72 0.69 9.0

Across varieties

SE
INSEY_NDVI E 0.73 0.66 0.47 7.4
INSEY_NDRE P 0.60 0.49 0.56 8.8
INSEY_MSAVI E 0.74 0.65 0.47 7.4

HD
INSEY_NDVI Q 0.41 0.59 0.81 10.7
INSEY_NDRE Q 0.73 0.70 0.65 8.6

INSEY_NDVI*RVI P 0.75 0.70 0.66 8.7

Note: Q, E, and P: stand for quadratic, exponential, and power models. RMSE: root mean square error. REr: relative
error (%).

At the heading stage, however, INSEY_NDVI did not perform very well, explaining only 28-59%
of the YP0 variability. Moreover, INSEY_NDRE performed consistently better than INSEY_NDVI,
explaining 73–89% of the YP0 variability (Table 4). The INSEY calculated with red edge optimal
soil adjusted vegetation index (REOSAVI) (INSEY_REOSAVI), modified red edge soil adjusted
vegetation index (MRESAVI) (INSEY_MRESAVI), and NDVI*RVI (INSEY_NDVI*RVI), did not perform
significantly better than INSEY_NDRE (Table 4). Furthermore, the YP0 was better estimated using
INSEY for Longjing 31 than for Longjing 21.

The validation results were similar to the calibration results (Table 4). At the stem elongation
stage, the INSEY_NDVI and INSEY calculated with best performing VI had similar performance for
predicting YP0, with R2, RMSE, and REr of 0.65–0.66, 0.47, and 7.4% across both varieties. At the
heading stage, INSEY_NDRE and INSEY calculated with best performing VI performed similarly for
predicting YP0, with R2, RMSE, and REr of 0.70, 0.65–0.66, and 8.6–8.7%, respectively.
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3.3. The Responsiveness to Topdressing N Application

The performance of the RI_VI calculated with NDVI (RI_NDVI), NDRE (RI_NDRE), and best
performing VIs to estimate rice RIHarvest varied with growth stages across N rate treatments, sites,
and years (Table 5 and Figure 4). At the stem elongation stage, RI_NDRE and RI calculated with
best performing VIs (optimal vegetation index (VIopt), red edge wide dynamic range vegetation
index (REWDRVI) and RVI) did not perform significantly better than RI_NDVI (R2 = 0.67–0.78).
The RIHarvest was estimated better for Longjing 31 (R2 = 0.71–0.79) than for Longjing 21 (R2 = 0.68–0.71)
or across varieties (R2 = 0.64–0.68). The validation results showed similar pattern to the calibration
results (Table 5). The prediction of RIHarvest for Longjing 31 (R2 = 0.72–0.78, RMSE = 0.08–0.09 and
REr = 6.1–6.8) was better than for Longjing 21 (R2 = 0.60–0.67, RMSE = 0.10–0.11 and REr = 7.0–7.4) or
across varieties (R2 = 0.61–0.63, RMSE = 0.11 and REr = 7.8–8.0).

Table 5. Calibration and validation results for the response index calculated with yield (RIHarvest)
predicted by response index calculated with NDVI, NDRE, and the best performing vegetation indices
for two varieties at stem elongation stage (SE) and heading stage (HD) in 2014–2016.

Variety Stage
Calibration Results Validation Results

Index Model R2 R2 RMSE REr

Longjing 31

SE
RI_NDVI Q 0.78 0.77 0.08 6.2
RI_NDRE Q 0.71 0.72 0.09 6.8
RI_VIopt Q 0.79 0.78 0.08 6.1

HD
RI_NDVI Q 0.92 0.65 0.12 10.2
RI_NDRE Q 0.92 0.75 0.10 8.4
RI_NNIRI Q 0.95 0.73 0.10 8.7

Longjing 21

SE
RI_NDVI Q 0.68 0.60 0.11 7.3
RI_NDRE Q 0.69 0.63 0.11 7.4

RI_REWDRVI Q 0.71 0.67 0.10 7.0

HD
RI_NDVI E 0.67 0.60 0.16 13.4
RI_NDRE Q 0.79 0.82 0.10 8.7

RI_REVIopt Q 0.79 0.82 0.10 8.7

Across varieties

SE
RI_NDVI Q 0.67 0.61 0.11 8.0
RI_NDRE Q 0.64 0.62 0.11 8.0

RI_RVI Q 0.68 0.63 0.11 7.8

HD
RI_NDVI Q 0.79 0.62 0.14 11.5
RI_NDRE Q 0.85 0.78 0.10 8.3

RI_REOSAVI Q 0.85 0.78 0.10 8.3

Note: Q, E, and P stand for the quadratic, exponential, and power models. RMSE: root mean square error. REr:
relative error (%).

At the heading stage, RI_NDRE and RI calculated with best performing VIs (normalized NIR index
(RI_NNIRI), red edge optimal VI (RI_REVIopt), REOSAVI (RI_REOSAVI)) performed similarly for the
prediction of RIHarvest (Table 5). They worked better than RI_NDVI (R2 = 0.79–0.85 vs. R2 = 0.67–0.79) for
Longjing 21 or across varieties based on the calibration results. However, they performed similarly for
Longjing 31 (R2 = 0.92–0.95). With validation, RI_NDRE (R2 = 0.75–0.82, RMSE= 0.10 and REr= 8.3–8.7)
and RI calculated with best performing VIs (R2 = 0.73–0.82, RMSE = 0.10 and REr = 8.3–8.7) were better
than RI_NDVI (R2 = 0.60–0.65, RMSE = 0.12–0.16 and REr = 10.2–13.4) for a specific variety or across
varieties (Table 5). The RI calculated with best performing VIs performed better at the heading stage
than the stem elongation stage for either calibration or validation.
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Figure 4. The relationships between response index calculated with yield (RIHarvest) and response
index calculated with NDVI, NDRE, RVI, and REOSAVI across all varieties at stem elongation stage
and heading stage.

3.4. In-Season Prediction of Nitrogen Use Efficiency

AEtopdressing varied significantly between Longjing 31 (39.5 kg kg−1) and Longjing 21 (59.0 kg kg−1)
(Figure 5a). RIHarvest had a strong positive relationship with AEtopdressing, with the correlation being
stronger for Longjing 21 (R2 = 0.76) than for Longjing 31 (R2 = 0.61) (Figure 5b). Therefore, in-season
predicted RIHarvest was used to predict AEtopdressing for side-dress N fertilizer recommendations in
this study.

Figure 5. The difference in AEtopdressing between Longjing 31 and Longjing 21 (a) and its relationship
with RIHarvest (b). The red indicates the average of AEtopdressing in Figure 5a. The red lines are the
different regression models for Longjing 31 and Longjing 21 in Figure 5b; *** indicates significance at
the level of p < 0.001.

3.5. Evaluating Different Precision Nitrogen Management Strategies Under Variable Nitrogen Status Using
Scenario Analysis

Based on the abovementioned results (Tables 4 and 5), different PNM strategies were developed,
as explained in Methods and Figure 3. To evaluate the performance of these strategies under different
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N status, the N rate treatments (80, 120, and 160 kg ha−1) in Exp.1–6 were selected for scenario analysis
to determine the difference between recommended N rates (ΔNrate) based on PNM strategies and
EONR calculated using the N responses in each variety-year (Figures 6–8). The RONM strategy did
not consider the variation of years, varieties, and rice N status, and used a fixed N topdressing rate
(36 kg N ha−1). Four RapidSCAN sensor-based PNM strategies were evaluated. The tested PNM
strategies all had the same basal and tillering N application rates as RONM, but panicle fertilizer at the
stem elongation stage was recommended using NDVI or the best performing VIs or panicle and grain
fertilizer rates at the stem elongation and heading stages were recommended using NDVI and NDRE
or the best performing VIs.

Figure 6. The difference of recommended topdressing N application rate (ΔNrate) from economically
optimal N rates (EONR) between RONM strategy and RapidSCAN sensor-based PNM strategies for the
rice varieties of Longjing 31 (a) and Longjing 21 (b) under deficient N status before topdressing (N80)
in 2014–2016. RONM: the regional optimum N management topdressing N rate (36 kg N ha−1 in this
study). SE-NDVI and SE-VItop indicated recommended topdressing N application rate calculated by
the models based on NDVI and the top performing VIs (VItop) for different varieties at stem elongation
stage, respectively. SE&HD-NDVI&NDRE and SE&HD-VItop indicated recommended topdressing N
application rates calculated by the models with NDVI (at stem elongation stage) and NDRE (at heading
stage), and VItop at stem elongation and heading stage, respectively. Vertical bars represent the LSD
value (p = 0.05). Different letters indicate significant difference at p < 0.05 level within the same year.
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Figure 7. The difference of recommended topdressing N application rate (ΔNrate) from economically
optimal N rates (EONR) between RONM strategy and RapidSCAN sensor-based PNM strategies for
the rice varieties of Longjing 31 (a) and Longjing 21 (b) under optimal N status before topdressing
(N120) in 2014–2016. RONM: the regional optimum N management topdressing N rate (36 kg N ha−1 in
this study). SE-NDVI and SE-VItop indicated recommended topdressing N application rates calculated
by the models using NDVI and the top performing VIs (VItop) for different varieties at stem elongation
stage, respectively. SE&HD-NDVI&NDRE and SE&HD-VItop indicated recommended topdressing
N application rates calculated by the models using NDVI (at stem elongation stage) and NDRE (at
heading stage), and VItop at stem elongation and heading stage, respectively. Vertical bars represent
the LSD value (p = 0.05). Different letters indicate significant difference at p < 0.05 level within the
same year.

There were significant differences between RONM and N rates recommended by different
RapidSCAN sensor-based PNM strategies under different years, varieties, and rice N status. The N
topdressing rate of RONM was consistently lower than EONR under deficient N status (Figure 6),
but higher than EONR under surplus N conditions (Figure 8). Under relatively optimum N conditions,
RONR was slightly higher than EONR for Longing 31, but lower for Longjing 21 (Figure 7).

All the four PNM strategies recommended higher N rates than RONM under deficient N conditions
and lower N rates under surplus N conditions, while under relatively optimal N conditions, the PNM
strategies would recommend slightly higher, lower or similar N rates depending on the year, variety,
and PNM strategy. In a specific year across different N conditions, the ΔNrate for the PNM strategies
was in a range of 0–15 kg N ha−1. Among all the four PNM strategies, the PNM strategies based on
in-season N recommendations at both stem elongation and heading stages (with 3-year cumulative
ΔNrate of 40-50 kg N ha−1) performed better than the PNM strategies making N recommendation only
at the stem elongation stage for Longjing 21 under different N conditions (with 3-year cumulative
ΔNrate of 68-69 kg N ha−1). For Longjing 31, the PNM strategies making N recommendations at both
stem elongation and heading stages performed much better under deficient N conditions, with 3-year
cumulative ΔNrate (46-48 kg N ha−1) being lower than the PNM strategies making N recommendations
only at the stem elongation stage (63-64 kg N ha−1). Irrespective of the varieties, using NDVI and

535



Remote Sens. 2020, 12, 1440

NDRE for panicle and grain N fertilizer recommendations had better or similar performance as the
best performing VIs.

Figure 8. The difference of recommended N topdressing application rate (ΔNrate) from economically
optimal N rates (EONR) between RONM strategy and RapidSCAN sensor-based PNM strategies for
the rice varieties of Longjing 31 (a) and Longjing 21 (b) under surplus N status before topdressing
(N160) in 2014–2016. RONM: the regional optimum N management topdressing N rate (36 kg N ha−1 in
this study). SE-NDVI and SE-VItop indicated recommended topdressing N application rates calculated
by the models using NDVI and the top performing VIs (VItop) for different varieties at stem elongation
stage, respectively. SE&HD-NDVI&NDRE and SE&HD-VItop indicated recommended topdressing
N application rates calculated by the models using NDVI (at stem elongation stage) and NDRE (at
heading stage), and VItop at stem elongation and heading stage, respectively. Vertical bars represent
the LSD value (p = 0.05). Different letters indicate significant difference at p < 0.05 level within the
same year.

3.6. Evaluation Experiments

Based on the above results, we chose NDVI and NDRE for panicle and grain fertilizer
recommendation to evaluate the potential of RapidSCAN sensor-based PNM strategy in the evaluation
experiments. These experiments included the 0 kg N ha−1 treatment as control (CK), the 160 kg N ha−1

treatment as FNM treatment, the 120 kg N ha−1 treatment as RONM treatment, and RapidSCAN-based
PNM treatment in Exp. 2–3 and 5–6 (Table 6). The RapidSCAN sensor-based PNM treatment in
evaluation experiments had the same N rate as RONM (N120) before topdressing and made two
in-season adjustments at the stem elongation and heading growth stages.
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Table 6. N application rate (Nrate), grain yield, agronomy efficiency of N (AEN), partial factor
productivity of N (PFPN), and economic returns of different rice N management strategies in the
evaluation experiments conducted in 2015 and 2016.

Treatment
2015 2016 Across Two Years

Longjing 31 Longjing 21 Longjing 31 Longjing 21 Longjing 31 Longjing 21 Average

Nrate (kg ha−1)

CK 0 0 0 0 0 0 0
FNM 160 160 160 160 160 160 160

RONM 120 120 120 120 120 120 120
PNM 118 119 122 127 120 123 121

Yield (t ha−1)

CK 5.26 b 5.46 b 5.25 b 5.17 c 5.25 c 5.31 c 5.28 c
FNM 8.19 a 8.60 a 8.40 a 8.90 ab 8.30 a 8.75 ab 8.52 a

RONM 7.78 a 8.36 a 8.05 a 8.68 b 7.91 b 8.52 b 8.22 b
PNM 8.14 a 8.59 a 8.43 a 9.06 a 8.29 a 8.83 a 8.56 a

AEN (kg kg−1)

CK - - - - - - -
FNM 18.3 b 19.6 c 19.7 c 23.3 b 19.0 c 21.5 c 20.3 c

RONM 21.0 ab 24.2 b 23.3 b 29.3 a 22.2 b 26.8 b 24.5 b
PNM 24.4 a 26.4 a 26.1 a 30.8 a 25.3 a 28.6 a 26.9 a

PFPN (kg kg−1)

CK - - - - - - -
FNM 51.2 c 53.7 c 52.5 c 55.6 b 51.9 c 54.7 b 53.3 c

RONM 64.8 b 69.7 b 67.1 b 72.3 a 65.9 b 71.0 a 68.5 b
PNM 68.9 a 72.4 a 69.1 a 71.6 a 69.0 a 72.0 a 70.5 a

Economic return ($ ha−1)

CK - - - - - - -
FNM 1205 a 1297 a 1300 a 1556 a 1253 a 1426 a 1339 a

RONM 1045 a 1214 a 1166 a 1481 a 1106 b 1348 b 1227 b
PNM 1205 a 1315 a 1334 a 1647 a 1269 a 1481 a 1375 a

Note: CK: the control treatment with no N application; RONM: regional optimum N management; FNM: farmer
N management; PNM: RapidSCAN-based precision N management strategy. Within a column for parameter,
values followed by different letters are significantly different (p < 0.05).

Making two in-season N recommendations to better meet rice N requirements,
the RapidSCAN-based PNM strategy recommended different N rates for different years and varieties.
For Longjing 31, the total recommended N rates by the PNM strategy were 118–122 kg N ha−1,
which were similar to the rates of the RONM strategy but 24–26% lower than the N rates of the FNM
strategy. For Longjing 21, the total N rates recommended by the PNM strategy were similar to or
higher than the rates given by the RONM strategy but 21–26% lower than the N rate of the FNM
strategy (Table 6).

The RapidSCAN-based PNM strategy resulted in higher yield than RONM strategy across years
and varieties. For Longjing 31, the yield of the PNM strategy was not significantly different from
FNM and RONM strategies in a specific year, but it was significantly higher (5%) than the RONM
strategy across two years. For Longjing 21, the PNM strategy significantly increased grain yield by 4%
with respect to the RONM strategy in 2016 or across two years, but the increase was not significantly
different from the FNM strategy.

The PNM strategy led to the highest AEN and PFPN across years and varieties. For Longjing 31,
the PNM strategy increased AEN and PFPN by 14% and 5% over the RONM strategy and both by 33%
over the FNM strategy across two years, respectively. For Longjing 21, the PNM strategy increased
AEN by 33% and PFPN by 32% over the FNM strategy across two years. Compared with RONM,
the PNM strategy increased AEN by 7%, but did not improve PFPN significantly. Across varieties and
years, the PNM strategy increased AEN and PFPN by 32–33% over FNM and by 3–10% over RONM.

The PNM strategy consistently increased economic returns compared with RONM by 101–168
$ ha−1 for specific year-variety combination or across years and varieties. The PNM strategy
increased economic returns by 0-91 $ ha−1 over the FNM strategy, but none of the increase was
statistically significant.
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4. Discussion

4.1. Selection of Vegetation Indices for Precision N Management Strategy Development

NDVI and NDRE are two widely used VIs in precision agriculture and have good relationships
with aboveground biomass and plant N uptake [14,32]. They are the default VIs of the RapidSCAN
sensor, and increased with N application rates in this study, which was in agreement with Aranguren
et al. [33]. Besides NDVI and NDRE, many other VIs can be calculated from the three wavebands of
RapidSCAN [13,34]. It is important to know if any other VI will perform consistently better than the
default VIs and should be selected for PNM strategy development.

In this study, we found that the two default indices (NDVI and NDRE) were sufficient for
estimating key parameters to develop the PNM strategy at different key growth stages and other VIs
would not be needed.

The stem elongation stage is the key stage to apply panicle fertilizer for rice in Northeast China.
The rice canopy was not closed at this stage, and the biomass was not very high yet. The NDVI values
were not saturated and achieved similar performance for predicting YP0 (R2 = 0.66-0.70; REr = 6.3-7.7%)
and RIHarvest (R2 = 0.60–0.77; REr = 6.2–8.0%) as best performing VIs (R2 = 0.63–0.70 and 0.63–0.78; REr
= 6.5–7.6% and 6.1–7.8%, respectively). The recommended N rates using NDVI were also similar to
the best performing VIs across both varieties based on the scenario analysis results. This agreed with
many studies achieving good results with GreenSeeker NDVI-based PNM systems at early growth
stages [10,12,34–38].

The heading stage is the key stage to apply grain fertilizer for rice in Northeast China in high-yield
rice management systems [13,16]. GreenSeeker NDVI become saturated at this stage and cannot
be used to make N recommendations [10,13,16,34,39]. As a result, the PNM strategy making two
in-season N recommendations at stem elongation and heading stages only using NDVI had the worst
performance among all the PNM strategies evaluated in the scenario analysis. One approach to
overcome the NDVI saturation problem is to combine NDVI with relative plant height data [30].
Another approach is to replace NDVI with other VIs that can overcome the saturation effect [32].
The RapidSCAN sensor has a RE band in addition to the R and NIR bands, which can be used to
calculate more RE-based VIs to overcome the saturation problems of NDVI [13,14,40]. In this study,
good relationships between RE-based VIs and YP0 or RIHarvest were found at the heading stage, with R2

being 0.75–0.95 for calibration, and R2 and REr being 0.70–0.82 and 7.3–9.0% for validation, respectively.
Encouragingly, the NDRE index achieved similar performance for predicting YP0 (R2 = 0.70–0.76; REr
= 7.3–8.6%) and RIHarvest (R2 = 0.75–0.82; REr = 8.3–8.7%) as best performing VIs (R2 = 0.70–0.76 and
0.73–0.82; REr = 7.3–9.0% and 8.3–8.7%, respectively). Furthermore, the N rates recommended by the
PNM strategy using NDVI at the stem elongation stage and NDRE at heading stage were very similar
to the N rates recommended by the PNM strategy using best performing VIs at the stem elongation
and heading stages.

4.2. In-Season Prediction of Agronomic Efficiency of Topdressing Nitrogen

The NUE is an important parameter for developing crop sensing-based PNM strategies, and can
directly influence the final recommended N rates. Previous crop sensor-based PNM strategies generally
used a constant NUE value. Raun et al. [12] used the expected recovery efficiency to calculate the
N topdressing rate for wheat with the range of 0.5 to 0.7 in America. Cao et al. [34] used 0.4 as the
expected recovery efficiency in developing PNM strategy for winter wheat in North China Plain.
According to the multi-site-year data in N plot experiments, Yao et al. [10] used fixed AEtopdressing

(26.79 kg kg−1) for the development of rice PNM strategy.
Studies indicated that NUE is influenced by environmental factors (e.g., soil fertility, water supply,

sunshine, accumulated temperature, etc.) and the plant genotypes (e.g., ability to absorb N,
photosynthetic rate, stress resistance, root system structure, etc.) [41–44]. Wang et al. [30] considered
the influence of early N application and soil types on AEN and used in-season predicted RIHarvest
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with GreenSeeker sensor to predict AEN for developing crop sensor-based PNM strategy for spring
maize in Northeast China. Following their idea, this study found that early N application and rice
variety were two key factors influencing the AEtopdressing of rice in the study region. If early season N
application rate is low, N deficiency will lead to a higher efficiency of N use, while a high N application
rate during the early growth stage will result in N surplus conditions before topdressing, which will
lead to a lower use efficiency of the topdressing N fertilizer. RIHarvest is an indicator of crop N response
to additional N application. If early season N status is deficient, the crop will be more responsive to
additional topdressing or side-dressing N application. On the other hand, if the early season N status
is surplus, the crop will not be responsive to additional N application, and the NUE for the topdressing
or side-dressing N application will be lower. Therefore, the RIHarvest and AEtopdressing should be
positively correlated, as found in this study (R2 = 0.61 ~ 0.76). This finding was consistent with the
results of Wang et al. [30] for spring maize (R2 = 0.72 ~ 0.74). On the other hand, the big difference of
AEtopdressing between Longjing 31 (39.5 kg kg−1) and Longjing 21 (59.0 kg kg−1) is shown in Figure 5a.
The variety with longer growing period will require more N supply and the photosynthetic utilization
will be higher. Therefore, in-season prediction of AEtopdressing can be based on crop N status using
in-season active sensor predicted response index and variety- or variety group-specific models should
be developed.

4.3. Evaluation of Different Precision N Management Strategies

In scenario analysis, the four PNM strategies for N rate recommendations performed much better
than the RONM strategy, especially under deficient or surplus N status. The PNM strategies making
two in-season N recommendations at both stem elongation and heading stages performed better
than PNM strategies making only one in-season N recommendation at the stem elongation stage,
and their recommended N rates were 15-28 kg N ha−1 closer to EONR under deficient N status across
years and varieties. For the longer-growing variety (Longjing 21), the PNM strategy making two N
recommendations performed consistently better under different N conditions, being 2-28 kg N ha−1

closer to EONR across years. However, no significant difference was found under optimal or surplus
N status for Longjing 31, the shorter-growing variety. One of the reasons might be that Longjing 21
typically required a higher N rate and more time (3-7 days) to booting and grain filling than Longjing
31 [9]. The PNM strategy with two in-season N recommendations can give us two opportunities to
adjust N application rates according to in-season crop growth and weather conditions, and can better
meet rice N needs to increase grain yield. This is more important for the long-season variety Longjing
21 than the shorter-season variety of Longjing 31 [45].

In the evaluation experiments, the RapidSCAN-based PNM strategy could achieve similar rice
yield as the FNM strategy, save 24% N fertilizers, and increase NUE by an average of 32–33% across
years and varieties (Table 6). Because of the low N fertilizer prices under agricultural subsidies by the
government in China, the difference of economic return between PNM and FNM was small (average 36
$ ha−1 annually) across varieties. These results agreed with the results of Yao et al. [10], who reported
that PNM strategies based on GreenSeeker or chlorophyll meter increased PFPN by 48-65% without
significantly increasing the yield in comparison to FNM.

Although the total N rates of PNM and RONM strategies in the evaluation experiments were
not significantly different, the PNM strategy allowed us to better adjust N distribution for different
varieties and plant N status, resulting in the increased grain yield, AEN, PFPN, and economic return
by an average of 4%, 10%, 3%, and 148 $ ha−1,respectively (Table 6). Zhao et al. [16] found that a
chlorophyll meter-based PNM with two in-season N recommendations at the same growth stages as
the PNM strategy developed in this study had higher N accumulation at later growth stages to achieve
higher yield, and larger panicle size and grain fill percentage. Wang et al. [45] integrated a GreenSeeker
sensor-based PNM strategy making one in-season N recommendation at stem elongation stage into
a high-yield management system (with optimized transplanting density and water management)
increased rice grain yield and NUE by 10% and 1–33% over regional optimum rice management,
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respectively. Future studies are needed to integrate the RapidSCAN sensor-based PNM strategy
developed in this study into similar high-yield management systems to further evaluate its potential to
simultaneously improve rice yield, NUE, and economic returns over the regional optimum management
system under diverse on-farm conditions.

5. Conclusions

The RapidSCAN sensor has the potential to predict rice grain yield and response to additional
N application in Northeast China at the stem elongation and heading stages during the growing
season, with R2 and REr being 0.63–0.82 and 6.1–9.0%, respectively. At the stem elongation stage,
NDVI could be used to predict YP0 and RIHarvest (R2 = 0.66–0.70 and 0.60–0.77; REr = 6.3–7.7% and
6.2–8.0%) with similar performance as the best performing indices (R2 = 0.63–0.70 and 0.63–0.78; REr =
6.5–7.6% and 6.1–7.8%, respectively). At the heading stage, NDRE could be used to predict YP0 and
RIHarvest (R2 = 0.70–0.76 and 0.75–0.82; REr = 7.3–8.6% and 8.3–8.7%, respectively) as accurately as
the best performing indices (R2 = 0.70–0.76 and 0.73–0.82; REr = 7.3–9.0% and 8.3–8.7%, respectively).
The combination of the two default indices (NDVI and NDRE) of the RapdiSCAN sensor was sufficient
for rice PNM strategy development without the need of incorporating other indices. Across the two
tested varieties under deficient N conditions or for Longjing 21 under different N conditions, the PNM
strategy making two in-season N recommendations performed better than the PNM strategies making
only one in-season N recommendation at the stem elongation stage. The RapidSCAN sensor-based
PNM strategy with panicle and grain fertilizer recommendations could lead to similar yield as FNM,
save 24% N application rate, and increase AEN and PFPN by an average of 33% and 32% across years
and varieties, respectively. Compared with RONM, the PNM strategy increased grain yield, AEN,
PFPN, and economic return by an average of 4%, 10%, 3%, and 148 $ ha−1 across years and varieties,
respectively. Future studies are needed to further evaluate the RapidSCAN sensor-based PNM strategy
under diverse on-farm conditions, and integrate it into high-yield rice management systems.
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Abbreviations

Abbreviation English Full Name Unit

AEtopdressing The topdressing nitrogen agronomic efficiency %
AEN Agronomic efficiency of nitrogen %

EONR Economically optimum nitrogen rate kg N ha−1

FNM Farmer nitrogen management -
HD_Nrate The recommended nitrogen topdressing application rate at the heading stage kg N ha−1

HD_YPN The potential yield with added nitrogen topdressing application at the heading stage kg ha−1

INSEY In-season estimate of yield -
N Nitrogen -

NDRE Normalized difference red edge -
NDVI Normalized difference vegetation index -
NIR Near infrared -
Nrate The recommended N topdressing application rate kg N ha−1

NUE Nitrogen use efficiency -
PFPN Partial factor productivity of nitrogen kg kg−1

PNM Precision nitrogen management -
Q, E or P The quadratic, exponential, or power fit -

R Red -
R2 The coefficients of determination -
RE Red edge -
REr Relative error %

RIHarvest Yield responsiveness to additional nitrogen fertilizer applications -
RI-VI In-season nitrogen response index based on vegetation index -

RMSE The root mean square error
Same units as

statistical data used
RONM Regional optimum nitrogen management -

RVI Ratio vegetation index -
SE_Nrate The recommended nitrogen topdressing application rate at the stem elongation stage kg N ha−1

SE_YPN The potential yield with added nitrogen topdressing application at the stem elongation stage kg ha−1

SE-NDVI
The recommended nitrogen rate using normalized difference vegetation index at the stem

elongation stage
kg N ha−1

VI0 Vegetation index at plots without additional nitrogen topdressing application -
VIN Vegetation index at plots with sufficient nitrogen fertilization plots -
VIs Vegetation indices -
YP0 The yield potential without additional nitrogen application kg ha−1

YPmax The maximum obtainable yield kg ha−1

YPN The potential yield with added nitrogen fertilization kg ha−1

ΔNrate The difference between recommended nitrogen rate and economically optimum nitrogen rate kg N ha−1
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Abstract: Rice (Oryza sativa L.) farmers in Mediterranean regions usually apply organic or mineral
fertilizers before seeding that are supplemented with mineral nitrogen (N) later in the season.
In general, the midseason N is applied without consideration of the actual crop N status, which may
lead to over-fertilization and associated environmental problems. Thus, the purpose of this study
was to design and evaluate a N recommendation approach using aerial images for Mediterranean
paddy rice systems. A two-year rice field experiment was established in northeastern Spain,
with different rates of pig slurry (PS) and mineral N fertilizer. Multispectral aerial images were
taken at the rice booting stage, and several vegetation indices (VIs) were calculated. The VIs showed
strong relationships with yield and the relations significantly differed between the PS and mineral
fertilization treatments. The strongest relations with yield were obtained with gMCARINIR, proposed
in this study, (R2 = 0.67), GNDVI (R2 = 0.64) and MCARINIR (R2 = 0.64), indicating the importance
of including the green band information. The N recommendation approach generated using the
VIs information showed a high success (87.5%) in the preliminary evaluation. The economic and
environmental analysis showed that this approach provides a useful tool when compared to the
usual farmer practices.

Keywords: flooded rice; pig slurry; aerial remote sensing; vegetation indices; N recommendation
approach; Mediterranean conditions

1. Introduction

Rice (Oryza sativa, L.) is the staple food for nearly half of the world’s seven billion people [1].
Nitrogen (N) is an essential element that is required to obtain high rice yields. Although N application
increases rice productivity, poor N use efficiency is characteristic of irrigated rice systems, due to rapid
losses of applied N; hence, adjusting N rates and the time of application to crop N requirements is
crucial for optimizing N use efficiency and avoiding environmental problems, such as emission of
greenhouse gases or surface and groundwater nitrate pollution [2].

In Europe, rice is mostly cultivated in Mediterranean countries, and 17% of the total area is
cultivated in Spain [3]. The rice extension in northeastern Spain (Aragon and Catalonia regions)
represents 24% [4] of the rice lands in the country. Besides, half of the national pig production is
concentrated in this area [5]; thus, it is necessary to integrate pig slurry (PS) in the N fertilization
schedule for rice fields. The most common practice of local farmers is to apply PS or chemical fertilizers
before seeding (~70% of crop N requirements) and to complement it with mineral N-topdressing
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at the end of the tillering stage or during stem elongation. However, N is typically applied during
mid-season without consideration of the crop N status at that time.

Although some studies have shown that a single optimum N application before flooding could
allow maximum yield [6–8], estimation of the potential yield at the beginning of the season is difficult,
because it is strongly influenced by yearly variation in weather conditions, mainly temperature and
wind [9]; thus, this N management presents a high risk for over-fertilization. However, if N rates are
reduced before seeding and later complemented with topdressing N rates that are adjusted to the crop
N status at that time, over-fertilization and related environmental problems can be reduced or avoided
and N use efficiency may be increased, as reported by Nishikawa et al. [10] and Xie et al. [11].

One of the most common tools for real-time N management in cereals is a chlorophyll meter
(SPAD 502, Minolta Corp., Ramsey, NJ, USA; N-tester, Yara International ASA, Oslo, Norway). This tool
has been used successfully to monitor leaf N status and guides N fertilization during the crop season
in different cereals [12,13], including rice [14,15]. However, this method involves measurements at
the leaf level; thus, it is inadequate for large-scale applications. Other approaches include the use of
active crop canopy sensors, such as the GreenSeeker (Trimble Navigation Limited, Sunnyvale, CA,
USA) or Crop Circle (Holland Scientific Inc., Lincoln, NE, USA), which measure the amount of light
reflected by the canopy [16]. These sensors reduce the measurement time and are more suitable for
field applications; nevertheless, it is still necessary to enter the field and perform the measurements in
different areas to obtain a representative value. Aerial or satellite remote sensing images improve these
measurements, because they can provide spectral information for whole fields and large areas [17],
although they also have limitations [18]. Satellites have improved their spatial and temporal resolution
over the last years, and cover larger areas at the same time, but are subject to fixed scheduling and
strongly depend on cloud cover. Unmanned aerial vehicles (UAVs) offer very high spatial resolution,
flexibility on scheduling, and its acquisition are independent on cloud cover conditions, however they
are limited for the use in extensive areas and during wind conditions and the cost of a great effort
for mosaicking and geocoding. The aircraft platform sits in between satellites and UAVs with more
flexibility than satellite and better facility to cover the whole scene than UAVs [18].

Different authors have proposed different approaches for determining the rice N requirements
in-season by using the relationships between canopy spectral information (vegetation indices; VIs) and
different crop parameters [15,19–21]. The key to the success of these approaches is the prediction of
yield responsiveness to additional N fertilization. Therefore, the establishment of strong relationships
between spectral information and yield or other crop parameters is necessary for generating sound
topdressing N recommendations.

The Normalized Difference Vegetation Index (NDVI), which integrates information in the red (R)
and near-infrared (NIR) bands, is one of the most widely applied vegetation indices (VIs). The NDVI
has been related to the leaf area index (LAI), biomass or yield in rice [22–24] and other crops [25–27],
and it is the most widely used VI for N recommendation approaches [15,20,21,28]. However, for high
chlorophyll (Chl) concentration or large vegetation coverage values, NDVI losses sensitivity and
saturates [16,29]. Different authors have tried to handle this saturation phenomenon. Gitelson et
al. [30] proposed the Green NDVI (GNDVI), that considers the green (G) instead the red (R) band in its
formulation, and found that GNDVI was much more sensitive to Chl concentration, in a wide range of
Chl variations, than the original NDVI. Lately, this index has been applied to rice [16]. Other authors
have proposed three-band VIs to solve the saturation issue [16,31].

Other indices have been formulated to evaluate responses to variation in chlorophyll and N
content. One example is the Modified Chlorophyll Absorption in Reflectance Index (MCARI) that
was designed to be responsive to chlorophyll variation [32]; later this index was modified by different
authors by integrating the NIR wavelength to increase the sensitivity to LAI and aboveground biomass
changes [31,33] and was applied to rice [16,33].

Most studies focused on the use of canopy reflectance for estimating crop parameters or adjusting
mid-season N in rice paddy fields have been conducted in Asia, and different agricultural practices
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are used in this region compared to the Mediterranean areas of Europe. Under Mediterranean
conditions, Gilabert and Meliá [24] established yield prediction based on VIs obtained from satellite
images in Valencia (Spain), and Casanova et al. [22] estimated LAI and biomass from VIs obtained
from radiometer measurements in the Ebro Delta (Spain). Recently, efforts have been underway to
integrate multispectral information into farm advisory systems. The Earth obseRvation Model based
RicE information Service (ERMES) project is being developed in Spain, Italy, and Greece with the
primary aim of rice yield prediction [34,35]. This project also includes the support of rice growers for
fertilization or pest control and management, and two applications (PocketLAI and PocketN) have
been developed for estimating in-season the crop status (LAI, leaf and plant N content) from digital
photographs acquired with commercial smartphones [36,37]. However, although the perspectives
based on spectral information to improve N management and increase N use efficiency in rice are
promising, more studies focusing on the development of approaches to estimate the N topdressing
needs in season are needed, with a special emphasis on the effects of organic fertilizers, such as PS
on rice spectral information. Knowledge of the spectral response sensitivity to differences between
mineral and organic fertilization is essential to develop sound approaches for N recommendations.
Moreover, the use of aerial images, that cover large areas, should be studied, so that recommendations
can be made to different farmers or for large farm areas.

Therefore, the main purpose of this study was to design and evaluate a N recommendation
approach using multispectral images in a Mediterranean paddy rice system under organic and mineral
fertilization. To achieve this goal, three sub-objectives were proposed:

1. To establish and compare the relationships between different VIs derived from aerial multispectral
information and yield at the rice booting stage, and evaluate possible differences in these
relationships due to organic and mineral fertilization.

2. To design and evaluate the agronomic performance of a N topdressing recommendation approach
based on the information obtained in sub-objective 1.

3. To compare economically and environmentally different scenarios for N adjustment based on the
recommendation approach defined in sub-objective 2.

The work has been developed as a pilot study on the japonica rice cultivar, Guadiamar,
which accounts for 70% of the rice surface in the Aragon region in Spain.

2. Materials and Methods

2.1. Experimental Design and Agricultural Practices

The study was conducted in a flooded rice field (41◦45′31.87′ ′ N, 0◦2′18.16′ ′ W), with three
fertilization strategies during two consecutive years (2012 and 2013) [7]. The climate of the region is
semiarid continental Mediterranean with high temperatures during the summer and low precipitation
(15.0 ◦C annual average temperature and 349 mm annual precipitation; average period 1980–2010).

The experimental design was a split plot with four repetitions (Figure 1). The main plots were
assigned to three basal fertilization strategies consisting of two rates of pig slurry (PS) equivalent to
120 kg NH4-N·ha−1 (PS120) and 170 kg NH4-N·ha−1 (PS170) (Table 1, Pig slurry treatments, PS) and a
mineral treatment (ammonium sulfate) at different rates (Table 1, Mineral treatments, M). Secondary
plots included different topdressing N rates applied as ammonium sulfate. The experimental plots
were 6 m wide by 12 m long for the PS treatments and 6 m wide by 5 m long for the M treatments
(Figure 1). The total N rates ranged between 0 and 320 kg N·ha−1 and were applied as basal fertilization
or as a combination of basal and topdressing fertilization for a total of 22 treatments (Table 1).

Pig slurry was band-spread on 15 May 2012 and 9 May 2013, and PS rates were established
according to the ammonium N concentration of the PS, which was measured in situ by a Quantofix®

N-volumeter [38] and by conductimetry [39]. On the same days, the basal mineral N fertilizer
(ammonium sulfate) was applied to the plots of the M treatments at the corresponding rates together
with P (100 kg P2O5·ha−1) and K (100 kg K2O·ha−1) to avoid P or K deficiency.
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The japonica rice cultivar, Guadiamar, was broadcast-seeded on 16 May 2012 and 15 May 2013 at
a seed rate of 180 kg·ha−1. In 2012, the field was immediately flooded after seeding; however, in 2013,
flooding preceded rice seeding. Topdressing N was applied at the end of the tillering stage on 4 July
2012 and 29 July 2013 as ammonium sulfate. The field remained flooded until approximately one
month before harvest, except for occasional drainages for the application of herbicides, pesticides and
fungicides according to habitual practices in the area.

Rice was harvested from 15–17 October 2012 and 25 October 2013. Grain moisture (PM-600 grain
moisture tester, Keller, Japan) was measured to adjust the yield to a moisture content of 140 g·kg−1.

Figure 1. Experimental plots layout (yellow lines) superimposed on the images (false color RGB:
Near-Infrared band/ Green band/ Red band) taken with a multispectral camera at the booting stage,
30 July 2012 (a) and 13 August 2013 (b). The shaded areas represent additional treatments excluded
from the analysis in this paper.

548



Remote Sens. 2018, 10, 1908

Table 1. Amounts of N applied (kg N ha−1) before seeding (BS) and topdressing (TS) in the different
treatments. For the PS treatments, amount indicates target N rates.

Pig Slurry Treatments (PS) Mineral Treatments (M)

BS TP BS TP
kg NH4-N·ha−1 kg N·ha−1 kg N·ha−1

PS120M0 120 - M120M0 120 -
PS120M30 120 30 M120M30 120 30
PS120M60 120 60 M120M60 120 60
PS120M90 120 90 M120M90 120 90
PS120M120 120 120 M120M120 120 120
PS120M150 120 150
PS170M0 170 - Control (M0) - -
PS170M30 170 30 M30 30 -
PS170M60 170 60 M60 60 -
PS170M90 170 90 M90 90 -

PS170M120 170 120 M120 =
M120M0 120 -

PS170M150 170 150 M150 150 -

2.2. Spectral Information

Spectral information was collected using a spectral camera from a manned plane (RS Servicios de
Teledetección SL, Lleida, Spain). The spectral camera collected data at four wavelengths. The center
wavelengths were as follows: Band 1 (blue-B): 450 nm; band 2 (green-G): 550 nm; band 3 (red-R): 675 nm;
and band 4 (near infrared-NIR): 780 nm; the bandwidth was 20 nm (for the four bands). The images
were collected at solar noon, to minimize shadows effects in the spectral response, on 30 July 2012
and 13 August 2013 at the rice booting stage, a few days before heading. The images were provided
pre-processed by SpecTerra Services (WA, Australia) with the differential illumination effect corrected
and were ortho-rectified and mosaicked. The spatial resolution was 0.1 m and the radiometric
resolution was 16 bits. The spectral information was provided in digital values, thus adimensional VIs
were chosen for the study.

Different VIs were evaluated for their relationship to rice yield (Table 2). The indices RVI, GRVI,
NDVI and GNDVI were included because they were consistently shown to be related to agronomic
parameters, such as yield, and have been used in the development of approaches to recommend N
topdressing in different crops. Furthermore, we included three indices, MCARI1, MCARINIR and
gMCARINIR, which were derived from the Modified Chlorophyll Absorption in Reflectance Index,
that was originally developed to be responsive to chlorophyll variation [32].

Haboudane et al. [31] modified the MCARI and proposed the MCARI1 with suppression of
the R700/R670 ratio to lower the sensitivity to chlorophyll effects and replacement of the red-edge
wavelength (R700) by the near-infrared wavelength (R800) to increase the sensitivity to green
LAI variation.

Cao et al. [33] modified the MCARI to work with the Crop Circle ACS-470 active sensor.
The MCARI modified by Cao et al. [33], also denoted MCARI1 retained the formula of the MCARI,
but the R700 and R670 were replaced by RNIR (R760) and Rred edge (RE, R730), respectively. This index
showed consistent relations with rice aboveground biomass (R2 = 0.79) and plant N uptake (R2 = 0.83)
across growth stages [33]. In our study, we have adapted this index to the available bands, NIR 780 nm
and red 675 nm, and we have denoted the index as MCARINIR (Table 2).
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Table 2. Vegetation indices (VIs) evaluated in this study (Green-G: 550 nm, Red-R: 675 nm and Near
Infrared-NIR: 780 nm).

Indices (VIs) Formula Reference

RVI Ratio Vegetation Index NIR/R [40]
GRVI Green Ratio Vegetation Index NIR/G [41]

NDVI Normalized Difference Vegetation Index (NIR-R)/(NIR+R) [42]
GNDVI Green Normalized Difference

Vegetation Index (NIR-G)/(NIR+G) [30]

MCARI1 Modified Chlorophyll Absorption in
Reflectance Index1 1.2[2.5(NIR-R)-1.3(NIR-G)] [31]

MCARINIR Modified Chlorophyll Absorption in
Reflectance IndexNIR

[(NIR-R)-0.2(NIR-G)](NIR/R) Adapted from Cao et al. [33]

gMCARINIR Green peak Modified Chlorophyll
Absorption in Reflectance IndexNIR

[(NIR-R)-(G-R)](NIR/R) = (NIR-G)(NIR/R) Proposed in this study

The index gMCARINIR, proposed in this work, retains the MCARI structure, includes the
near-infrared wavelength to increase the sensitivity to biomass changes as proposed by Haboudane et
al. [31] and incorporates the green reflectance peak information (G-R) to account for the sensitivity to
chlorophyll concentrations (Table 2). This index is the product of Green Difference Vegetation Index
(NIR-G; [43]) and the Ratio Vegetation Index (NIR/R; [40]).

These vegetation indices have been successfully applied to monitor field crops at different
spatial resolutions; spatial resolution of centimeters using field devices, as radiometers or Crop Circle
sensors [16,21–23,33], spatial resolution of meters with aerial imagery [18,31], or spatial resolution of
several meters with satellite images [17,18,24,25].

The VIs were calculated for each pixel and the average values for each plot were extracted.
The extraction was performed using a mask for each plot that excluded a width of 1 m from the borders
to avoid edge effects. In 2013, due to adverse meteorological conditions, rice seed germination was
hindered and five plots were removed from the analyses because of bad emergence.

2.3. Relationship between Yield and Vegetation Indices

Many studies have reported improvements in yield estimation of irrigated rice after relativization
of VIs with respect to overfertilized plots [21] to obtain sufficiency indices. Although some authors
have obtained strong relationships between vegetation indices and yield in different years without
converting the yield to relative value [20,21,24,44], in our study, it was not possible to obtain an
equation to predict absolute yield values, due to high interannual yield variability. The variability in
yield between years (7.8 Mg·ha−1 in 2012 and 5.9 Mg·ha−1 in 2013 in this study) in the study area is
high for two reasons. Firstly, the area is at the low limit of temperature for adequate rice cultivation.
Secondly, there is strong variability in meteorological conditions between years. Hence, relative yield
(R_yield) and the relative VI (R_VI) were calculated for each year (Equations (1) and (2)).

R_yield(plot) =
Yield(Plot)

Yieldmax
(1)

R_VI(plot) =
VI value(Plot)

VImax
(2)

Linear-plateau equations ([7,45]; Equation (3)) were adjusted to model the response of yield to N
rates in the PS and the M treatments for each of the two years in order to get Yieldmax and VImax.

I f N < C; Y = a + b·N
I f N ≥ C; Y = a + b·C (3)

where Y (Mg·ha−1) is the yield; N is the applied nitrogen rate (kg N·ha−1) (this rate is the sum of N
applied before seeding and topdressing); a (intercept) is the yield at 0 kg N·ha−1; b is the increase in
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yield per unit increase in N; and C is the critical (or optimum) N rate, i.e., the minimum N rate above
which the maximum yield is obtained. Yieldmax is the maximum yield or plateau of Equation (3), i.e.,
the yield for N ≥ than the critical N rate (C). The maximum VI (VImax) for each year was calculated as
the average VI value of treatments with N rates equal to, or higher than, the critical N rate (N ≥ C).

The relationships between relativized yield and relativized vegetation indices were established
by regression analysis for the years 2012 and 2013 and the pooled data (using 100% of the data).
The models tested were linear, multiplicative, logarithmic and exponential. The coefficient of
determination and the root mean square error (RMSE) of the regressions were used to evaluate
the performance of the seven VIs.

The differences between years and between PS and M treatments were evaluated by a test of
equality for regression lines across groups [46].

2.4. N Topdressing Recommendation Approach

2.4.1. Design

The N topdressing recommendation approach was based on the calculation of a N sufficiency
index (NSI) as indicator of the crop N status, i.e., as quantifiers of N nutrition index. This approach
was defined by Denuit et al. [12] using the HydroAgri N-Tester sensor and corrects the readings of
the sensor with the readings of the N over-fertilized plot to obtain sufficiency indices (in this case
relativized VIs, i.e., NSI is R_VI, Equation (4)). Thus, a NSI value below 0 means the plot could
present a nutritional deficit, and NSI values of 1 or above 1 means the plot presents ‘a priori’ a good
nutritional status. This type of approach has been successfully tested in rice by Chen et al. [19] or Xue
and Yang [20].

The approach is based on the relationship between the variables Delta NSI and Delta N
(Equation (5)). Delta NSI (Equation (6)) is the difference between NSI and 1. Thus, conceptually
if Delta NSI is 0 or positive, the plot should have a good nutritional status, and if it is negative, the plot
might present a N deficit. Delta N (Equation (7)) is the difference between the N applied in the
treatment (NT) and the critical N rate (C) obtained in the yield response to N (Equation (3)).

This approach was selected because it does not require absolute yield predictions; instead, N deficit
or additional N required for raising NSI from a current level to a target level is calculated based on the
relationship of NSI with N rate [20].

NSI = R_VI(Plot) =
VI value(Plot)

VImax
(4)

Delta N = f (Delta NSI) (5)

Delta NSI = NSI − 1 (6)

Delta N = NT − C (7)

If Delta N estimate from spectral information is positive, topdressing N fertilization is not
necessary; and on the other hand, if Delta N estimate is negative, the plot must be fertilized. In this
case, Delta N gives the N deficit, i.e., the amount of N that needs to be applied to obtain maximum yield.

Three of the four replicates (75% of the data) of the experiment were used for establishing the
model (Equation (5)). The fourth replicate was used for performance evaluation. The replicate used in
the evaluation process was not the same for all treatments and was determined by random draw in
each treatment.

Among the seven VIs evaluated, the two indices that presented the strongest relation to yield
were chosen for the establishment of the N recommendation model. These two indices were GNDVI
and gMCARINIR, (see Section 3.1.2).
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2.4.2. Validation Process

In the validation process, the values of R_GNDVI and R_gMCARINIR for the validation plots
(25% data) in each year (2012 and 2013) were obtained dividing the VIs values obtained in each plot by
the average values of the over-fertilized plots of the corresponding year (2012 and 2013). Plots from
PS120M150 and PS170M150 were considered overfertilized for PS treatments and plots from M120M90
and M120M120 for M treatments (Table 2). Then, the values of Delta N were obtained using Equation
(5). The performance of the model was evaluated by the percent of success. The sign of Delta N and
the actual R_yield were compared in the validation plots and the plots were assigned to one of the
following three options.

• Success: Delta N was negative (i.e., the plot would have needed additional N fertilization) and
the actual R_yield was below 1; or Delta N was positive (i.e., the plot would not have needed
additional N fertilization) and the actual R_yield was equal or higher than 1.

• Failure by excess: Delta N was negative, but the actual R_yield was equal or above 1 (the approach
would have recommended additional N fertilization, but the plot had reached the optimum yield).

• Failure by defect: Delta N was positive, but the actual R_yield was below 1, (the approach would
not have recommended additional N fertilization, but the plot had not reached the optimum
yield).

Success and error percentages were calculated considering four strategies:

• The use of GNDVI
• The use of gMCARINIR

• The combination GNDVI & gMCARINIR: The plot will only be fertilized if both VIs recommend
additional N fertilization.

• The combination GNDVI or gMCARINIR: If one of the VIs recommends N fertilization, the plot
will be fertilized even if the other index does not recommend N fertilization.

The fertilization treatments varied from 0 to 240 kg N·ha−1 and hence, some of the plots presented
a high N deficiency. These plots with high N deficiency do not represent a real field situation and
give an easy success in the validation; therefore, plots with R_yield below 0.7 were eliminated of the
validation. Therefore, the set of 24 plots used for validation represents a real scenario.

2.4.3. Economic and Environmental Analysis

The net benefit due to N topdressing application was calculated according to Equation (8).

Net bene f it =
(
YNtop − Yreal

)·Pricegrain − PriceN ·Nrate − CostNapplicattion (8)

where YNtop (t·ha−1) is the yield hypothetically reached (according to response equation) if the plot
had been fertilized; Yreal (t·ha−1) is the actual yield in the plot, Pricegrain is the rice grain price ($·t−1);
PriceN is the N (ammonium sulfate) price ($·kg−1); Nrate (kg·ha−1) is the N rate established for each
scenario; and CostNapplication ($·ha−1) is the price for N application (fuel + man labor). Prices of the
local market (year 2015) [47] were considered for the calculation. The net benefit did not include the
costs of the image acquisition and further processing. The net benefit was calculated for each of the
24 plots used in the validation process.

Different scenarios were economically compared to a reference scenario.

• Reference: All plots are fertilized with a fixed predefined N rate (Nfix) without using any
recommendation approach. This practice is currently used by farmers in the study area and
will be considered as the reference scenario.
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• Scenario 1: Plots are fertilized according to Delta N estimates. Topdressing N is applied to the
plots when Delta N is negative. The N rate is given by Delta N, (i.e., if Delta N = −30, N rate will
be 30 kg N·ha−1) (Equation (9)).

I f Delta N ≥ 0; N rate = 0
I f Delta N < 0; N rate = |Delta N| (9)

• Scenario 2: Is a variation of scenario 1, but a minimum topdressing N rate (Nm) is established
(Equation (10)). This option was considered since machinery is not prepared to apply fertilizers at
low rates and farmers do not usually go inside the field to apply small N rates.

I f Delta N ≥ 0; N rate = 0
I f Delta N < 0 and |Delta N| ≥ Nm; N rate = |Delta N|
I f Delta N < 0 and |Delta N| < Nm; N rate = Nm

(10)

• Scenario 3: Is a variation of scenario 2. Plots are fertilized according to Delta N approach
establishing a fixed predefined N rate (Nfix), i.e., if Delta N estimate is positive, the plots will not be
fertilized, if the Delta N estimate is negative, the plots will be fertilized with Nfix (Equation (11)).

I f Delta N ≥ 0; N rate = 0
I f Delta N < 0; N rate = Nf ix

(11)

To consider the environmental impact of overfertilization, N excess was also evaluated. For the
plots that would be fertilized according to the different scenarios, N excess was calculated as the
difference between the N rate applied and the N rate that would be necessary according to yield
response to N equations (Equation (3)).

For all scenarios, different predefined N rates (Nfix) and minimum N rates (Nm) were evaluated
in the range 0–200 kg N·ha−1 and the net benefit and the N excess were represented graphically.

3. Results

3.1. Relationships between Yield and Vegetation Indices

3.1.1. Influence of the Year and TYPE of fertilizer

Significant relationships were observed between R_yield and the seven R_VIs and those
relationships did not significantly differ between the two years (Table 3).
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Thus, information from years with different crop development and yield potential could be
joined if both yield and the indices are relativized to the maximum values of each year. However,
the relationship between R_yield and R_VIs significantly differed between the PS and M treatments
(Table 3; Figure 2a for NDVI). For example, for the NDVI, for a fixed value of the R_NDVI, the PS
treatments had a higher expected yield than the M treatments (Figure 2a), i.e., the PS treatments
reached that maximum yield with a lower value of the R_NDVI than in the M treatments.

Figure 2. Relationship between R_yield and R_NDVI (relativized to maximum values of each year) in
the PS and M treatments (a) and relationship between R_yield (relativized to maximum value of each
year) and R_NDVI (relativized to maximum value of each year and within each year individually for
the PS and M treatments) for PS and M treatments (b); 2012 and 2013 pooled data.

These results suggest that the VIs need to be relativized considering the PS and M treatments
separately. Therefore, the R_VIs were recalculated using maximum VI values separately for the PS and
M treatments within each year. After this process, the relationship between R_yield and R_VIs did not
significantly differ between the PS and M treatments (Figure 2b).

3.1.2. Performance and Comparison of the Indices

The R_yield and the seven R_VIs for each year individually and for the pooled data over the
two years (2012&2013) were significantly related (Table 4). Linear models fitted well the relationships
between R_yield and the R_RVI, R_GRVI, R_NDVI, R_GNDVI and R_MCARI1 (Figure 3a–d) (Table 4).
For the R_MCARINIR and R_gMCARINIR (Figure 3e,f), the increase in R_yield per unit increased in the
indices decreased as the value of the indices increased, indicating that the relationship was not linear.
For these two indices, the best fit was obtained with the multiplicative model (R_yield = a·R_VIb).
The residuals from all regressions were independent and normally distributed.

Table 4. Coefficients of determination (R2) of the relationships between R_yield and R_VIs for years
2012 and 2013 and the pooled data, and RMSE for the pooled data.

Model Type †
2012

n = 88
2013

n = 83
Pooled 2012+2013

n = 171

R2 R2 R2 RMSE

R_RVI L 0.70 *** 0.56 *** 0.62 *** 0.149
R_GRVI L 0.74 *** 0.53 *** 0.61 *** 0.151
R_NDVI L 0.74 *** 0.56 *** 0.63 *** 0.148

R_GNDVI L 0.77 *** 0.56 *** 0.64 *** 0.144
R_MCARI1 L 0.69 *** 0.40 *** 0.52 *** 0.168
R_MCARINIR M 0.74 *** 0.58 *** 0.64 *** 0.145
R_gMCARINIR M 0.77 *** 0.61 *** 0.67 *** 0.139

*** p < 0.001. † L = linear, M = multiplicative.
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Figure 3. Relationship between R yield and R_VIs (R_RVI (a), R_GRVI (b), R_NDVI (c), R_GNDVI (d),
R_MCARINIR (e), and R_gMCARINIR (f)) for the pooled data over the two years.

The coefficients of determination ranged between 0.40 and 0.77 (Table 4); in general, the R_NDVI
and R_GNDVI improved the relationships in comparison to the R_RVI and R_GRVI (all of them
including two bands in their definition). R_gMCARINIR, which includes information on three bands,
slightly improved the relationship in comparison to the two-band VIs.

In 2012, R_GNDVI and R_gMCARINIR explained 77% of the R_yield variability and performed
better than the other indices. For 2013, R_gMCARINIR was the index that explained the highest
percentage (61%) of the R_yield variability.

When data from both years were pooled, R_gMCARINIR, R_MCARINIR and R_GNDVI showed
the highest coefficients of determination (R2 = 0.67, 0.64 and 0.64 respectively) and the lowest RMSE
(0.139, 0.145, 0.144) and all of them included the green band information in their definition.

3.2. N Topdressing Recommendation Approach

3.2.1. Design of the N Topdressing Recommendation Approach

The indices that presented the strongest relation to yield were GNDVI, MCARINIR and
gMCARINIR. The index gMCARINIR was selected for the design of the model because it showed
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the best relation to yield. GNDVI was selected versus MCARINIR (both with the same strength in
their relation to yield) with the aim to test two different functions (linear and multiplicative) and two
different indices (two and three bands VIs).

The equations adjusted (Figure 4) to estimate Delta N from Delta NSI (GNDVI) and Delta NSI
(gMCARINIR) were Equations (12) and (13):

Delta N = 2.843 + 211.491·Delta NNI(GNDVI) (12)

Delta N + 200 = 207.291·(Delta NNI(gMCARINIR) + 1)0.517 (13)
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a) Delta N=2.843+211.491·Delta NSI(GNDVI)
R2=0.56, p<0.001
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b) Delta N+200=207.291·(Delta NSI(gMCARINIR)+1)0.517

R2=0.51, p<0.001

Figure 4. Relationship between Delta N (N increased or decreased compared with the optimum
treatment) and Delta NSI(GNDVI) (a) or Delta NSI(gMCARINIR) (b) (R_GNDVI-1 or R_gMCARINIR-1)
(pooled data of the two years, 75% data).

3.2.2. Assessment of the N Topdressing Recommendation Approach

The N recommendation approach designed had a high success rate (higher than 83%) and
performed better with gMCARINIR, with an 87.5% of success, than with the GNDVI with an
83.3% success (Table 5). The percentage of failure by excess was lower for gMCARINIR than for
GNDVI; however, the percentage of failure by defect was higher for gMCARINIR than for GNDVI.
The combination of both VIs did not improve the ability for N recommendation prediction (Table 5).
The GNDVI & gMCARINIR strategy showed the same percentages of success and failure than
gMCARINIR, and the GNDVI or gMCARINIR possibility showed the same results than GNDVI.
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Since the combination of VIs did not improve the ability of N recommendation in comparison to
using only one VI, gMCARINIR (the VI with the highest percentage of success) was considered the best
option and it was evaluated in the economic and environmental analysis.

Table 5. Percentage of success and failure by excess and defect using the indices GNDVI, gMCARINIR

and the combinations GNDVI & gMCARINIR and GNDVI or gMCARINIR (25% data, excluded plots
with R_yield below 0.7, total number of plots used for validation: 24).

Strategy SUCCESS EXCESS DEFECT

R_GNDVI 83.3 12.5 4.2
R_gMCARINIR 87.5 4.2 8.3

R_GNDVI&R_gMCARINIR 87.5 4.2 8.3
R_GNDVI or R_gMCARINIR 83.3 12.5 4.2

In the framework of the four scenarios analyzed in this work, the net benefit due to topdressing
N fertilization ranged between −50 $·ha−1 and 132 $·ha−1 (the additional benefit if these plots had
been fertilized with additional N) (Figure 5).

Figure 5 shows the net benefit (a) and N excess (b) according to the fixed predefined N rate (Nfix)
for the reference scenario and scenario 3 or to the minimum N rate (Nm) in the case of scenario 2.
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Figure 5. Net benefit ($·ha−1) (a) and N excess (kg N·ha−1) (b) according to the fixed predefined N
rate (Nfix, kg N·ha−1) or minimum N rate (Nm, kg N·ha−1). Each point is the average of the 24 plots
used in the economic analysis.
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The reference scenario (current farmers’ practice), where all plots are fertilized, obtains the lowest
net benefit, with a maximum of 84 $·ha−1 for a rate of 75 kg N·ha−1 (Figure 5a), and the highest
N excess of the four scenarios reaching 45 kg N excess·ha−1 for the N rate of maximum net benefit
(Figure 5b).

The use of the N recommendation approach (Scenario 1) shows a net benefit of 97 $·ha−1 and
a N excess of 2.3 kg N·ha−1. The net benefit and N excess associated with this strategy have been
represented as a horizontal green line in Figure 5 for comparative purposes with the rest of scenarios.

The establishment of a threshold minimum N rate (Nm) in Scenario 2, shows a higher net benefit
than Scenario 1, reaching 132 $·ha−1 for a threshold N rate of 90 kg N·ha−1 (Figure 5a). However, the
increase of the net benefit (35 $·ha−1) is counterbalanced with an increase in N excess (20 kg·N·ha−1

for the highest benefit versus 2.3 kg N·ha−1 in Scenario 1) (Figure 5b).
In the case of fixing a predefined N rate (Scenario 3), the maximum net benefit (132 $·ha−1) is equal

to that in Scenario 2 for the rate of 90 kg·ha−1 (Figure 5a). In this scenario, the net benefit dramatically
decreases as the Nfix decreases; therefore, the election of the optimum Nfix rate is a key factor, i.e.,
if Nfix is too low, the net benefit could be dramatically reduced. For the optimum Nfix rate of this study
(90 kg·ha−1), the N excess was 20 kg·N·ha−1, the same as in Scenario 2 (Figure 5b).

4. Discussion

4.1. Relationships between Yield and Vegetation Indices

4.1.1. Influence of the Type of Fertilizer

The relationship between R_yield and R_VIs showed differential effects for the PS and M
fertilization treatments for the seven VIs analyzed (Figure 2a). Although studies focusig on the
differences in spectral information between different types of fertilization in rice fields are lacking,
there are some studies in other crops that support these results. Zhao et al. [48] measured the canopy
apparent photosynthesis (CAP), the photosynthetic rate of flag leaves, LAI and yield in a winter wheat
experiment in plots fertilized with cow manure, urea and a mixed application. The results showed that
during the early growth period, a single application of urea promoted better crop development and
resulted in higher values of CAP or LAI; however, during the late growth stage, a single application
of cow manure and the mixed application delayed the leaf senescence process compared to a single
application of urea. The results suggested that mixed application of organic and inorganic fertilizers
delayed leaf senescence and maintained better canopy structure and higher photosynthetic capability
at the late grain filling stage, which resulted in a higher grain yield. In our study, we found the
same type of behavior as Zhao et al. [48], i.e., for the same value of the R_VIs at the booting stage,
the PS treatments reached a higher yield compared to the M plots. This better development during
the late stage is usually related to higher availability of micronutrients provided by the organic
fertilizers [49–51].

The observed differences between the type of fertilization is an important result for the
development and use of N recommendation approaches. This result implies that it is necessary
to establish over-fertilized plots for each type of fertilization.

4.1.2. Performance and Comparison of the Indices

The R_VIs showed good relationships with R_yield (Table 4). Other studies have also found good
relationships between these indices and rice yield [15,16,24,29,52]. The coefficients of determination
are in the range reported by the abovementioned studies at the same growth stage (booting) [15,16].

One common problem with the two-band VIs is that they become saturated under high values
of biomass [16,29] and different authors have proposed three-band VIs to handle this saturation
phenomenon. In our study, the R_MCARI1 (three-band VI) did not improve the R_yield prediction
in comparison with the traditional two-band indices and the relationship even worsened; this result
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contrasts the study reported by Haboudane et al. [31] in which the MCARI1 was less sensitive to the
saturation phenomenon, although these findings were for different crops than rice (i.e., corn, wheat and
soybean). However, the R_MCARINIR and R_gMCARINIR had a strong relationship with R_yield and
performed equal to or better than the traditional R_NDVI and R_GNDVI (Table 4). The index proposed
in this study (R_gMCARINIR) was the best for R_yield prediction and improved the relationship
obtained with the R_MCARINIR.

Although the relationships between R_yield and the R_MCARINIR or R_gMCARINIR (three-band
VIs) were stronger than for the two-band VIs, there was only a 1–7% increase in the variability
explained by these indices in comparison to two-band VIs, such as the R_NDVI and R_GNDVI
(Table 4). These results contrast with those from the study reported by Cao et al. [16] in which the
yield potential variability explained by the three-band indices was between 21 and 26% higher than
the variability explained by the NDVI or RVI at the rice booting stage.

These differences in yield prediction improvement with three-band indices may be related to
potential yield. The highest yield in this study was approximately 8000 kg·ha−1; however, yields
reached 10,000 kg·ha−1 in the study conducted by Cao et al. [16] and 14,000 kg·ha−1 for the study
conducted by Harrell et al. [29] in which the saturation phenomenon was also observed. Therefore,
the saturation phenomenon can be attributed to high biomass conditions in high-yield systems. In these
systems, two-band VIs do not perform well, especially at later stages with high biomass conditions;
however, three-band VIs can overcome this saturation problem.

Thus, in low-yielding rice systems similar to our system, two-band indices, such as the NDVI and
GNDVI, are not subject to the saturation phenomenon, due to low crop biomass. This hypothesis is in
agreement with the results of Xue et al. [21], who found strong relationships between the NDVI and
rice yield potential across the growing season from tillering to grain filling, with yield levels lower than
8000 kg·ha−1 (similar to this study); thus, the saturation phenomenon, due to high biomass conditions
was not observed.

Thus, in our study, the best indices to predict R_yield were the R_GNDVI, R_MCARINIR and
R_gMCARINIR, both incorporate the green band. This result supports the findings of Cao et al. [16],
which demonstrated that the best VIs for estimation of the response index at harvest (R_yield) were
green band-based VIs.

4.2. Assessment of the N Topdressing Recommendation Approach

The approach evaluated in this study showed success percentages higher than 80% and reaching
87.5% for the best options (Table 5). Thus, these options confer an advantage over the application
of N topdressing without any advice. Nevertheless, it is important to point out that this validation
process means only a preliminary evaluation of the approach, since it is based on the comparison of the
approach’s recommendation and the actual yield harvested in the same experiment where the models
(equations) were obtained. The approach should be tested further in real field situations, fertilizing
the fields following the recommendations of the models and evaluating the yield obtained [15,20,21]
compared to other fields with a standard fixed N rate.

In contrast to other studies where only one index was used in the development of these approaches,
in our study, the combination of two indices at the same time was tested (the plot is fertilized when both
VIs recommend N topdressing or when one of the VIs recommends N fertilization even if the other
index does not recommend N fertilization). Although these options did not increase the percentage
of success under the studied conditions, it should be considered in further studies, because in other
situations it could increase the percentage of success.

The results show that the Reference Scenario, in which all plots are fertilized without spectral
information consideration, is the least recommended scenario of the four evaluated scenarios (Figure 5).
This scenario shows the lowest net benefit and the highest N excess, suggesting that this option is
neither economically nor environmentally viable when compared to the other scenarios. Therefore,
the use of a decision tool for in season topdressing N recommendation is clearly advantageous.
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The N recommendation approach evaluated in this study seems to be a good strategy.
Three possibilities were evaluated: Fertilizing with the N rate according to the approach, Delta N,
(Scenario 1), establishing a minimum N rate, Nm, (Scenario 2) or establishing a fixed predefined N
rate, Nfix, (Scenario 3). When a minimum N rate is established (Scenario 2), the maximum net benefit
increases in comparison to Scenario 1, the maximum difference is 35 $·ha−1, for a minimum N rate
of 90 kg N·ha−1, but the N excess increases in 18 kg N·ha−1 (Figure 5). Combining net benefit and
environmental impact, we would recommend a N rate of 60 kg N·ha−1 with an increase in net benefit
of 27 $·ha−1 and an increase in N excess of 6.1 kg N·ha−1 in comparison to Scenario 1. On the other
hand, when a fixed predefined N rate is established (Scenario 3), the maximum net benefit obtained is
the same as that obtained in Scenario 2. However, in Scenario 3, a careful selection of the Nfix rate is
crucial, since the net benefit can dramatically lower with small modifications of the N rate (Figure 5);
this N rate will depend on the year and it is difficult to estimate. Hence, Scenario 1 and Scenario 2
seem to be better than Scenario 3. Scenario 2 was considered because farmers do not usually enter the
field to apply small N rates or even machinery is not able to apply tiny amounts of fertilizer, thus a
minimum N rate should be considered. This option allows increasing the net benefit under a large
interval of Nm rates (from 0 to 150 kg N·ha−1) (Figure 5), in which the net benefit is the same or higher
than in Scenario 1. Therefore, in Scenario 2 the net benefit is not at risk; however, the N excess increases
as Nm increases. The cost of the risk for contamination, the N excess, has not been considered in the
economic analysis and should be incorporated in future works. As a first approach in Scenario 2,
Nm rates between 50–60 kg N·ha−1 are believed to be optimal considering both economic return and
N excess.

Thus, the economic analysis suggests that the best option is the use of the N recommendation
approach fertilizing with the recommended N rate (Scenario 1) or establishing a minimum N
rate (Scenario 2) in order to increase the net benefit, although the increase of N excess should be
economically evaluated.

These findings should be validated in a different set of field experiments, where some of the plots
were fertilized according to the approach’s N recommendation and other plots according to the local
practices in order to evaluate the real benefits.

The inclusion of the cost of the images’ capture and further processing is crucial to evaluate
whether these tools are economically feasible, although multispectral information arises as a useful
tool for increasing net benefit and decreasing N excess in the agro-systems of Northeast Spain.

5. Conclusions

The seven studied VIs showed good relationships with yield. However, differences between
the PS and M treatments were detected, i.e., fields fertilized with pig slurry had a different spectral
response than those fertilized with synthetic fertilizers. This is an important result for the development
and use of N recommendation approaches since it is necessary to establish over-fertilized plots for
each type of fertilization.

The best relationships between yield and the VIs were obtained with indices including the
green band. Additionally, three-band VIs performed better than the traditional two-band VIs, but the
improvement was minor compared to other studies with higher yields when the saturation of two-band
indices was observed. The best relationships were obtained with GNDVI, MCARINIR and gMCARINIR;
the latter was proposed in this study, all three included the green band, and the MCARINIR and
gMCARINIR included 3 bands.

The N recommendation approach evaluated was useful for N recommendation. The best option
was the use of the index gMCARINIR achieving an 87.5% of success and the combination of VIs did
not improve the ability for N recommendation prediction. The economic analysis showed that the
use of a N recommendation approach clearly increases the net benefit and lowers the N excess in
comparison to fertilization without any recommendation. The best option in this study was the use
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of the recommended N rate (Delta N) or establishing a minimum N rate (optimum minimum N rate
between 50 and 60 kg N·ha−1).

Therefore, the use of aerial remote sensing is a promising tool for developing strategies for
advising rice farmers. However, more research is needed, including a validation of this approach to
field level, the inclusion of the cost of the recommendation system in the evaluation of the net benefit
and the response of yield to spectral information in earlier crop development stages to adjust the N
topdressing as much as possible to the usual practices in the area.
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Abstract: It is difficult to predict the crop-available nitrogen (N) from farmyard manures applied to
soil. The aim of this study was to assess the usefulness of the proximal sensors, Yara N-TesterTM and
RapidScan CS-45, for diagnosing the N nutritional status of wheat after the application of manures at
sowing. Three annual field trials were established (2014–2015, 2015–2016 and 2016–2017) with three
types of fertilizer treatments: dairy slurry (40 t ha−1 before sowing), sheep manure (40 t ha−1 before
sowing) and conventional treatment (40 kg N ha−1 at tillering). For each treatment, five different
mineral N fertilization doses were applied at stem elongation: 0, 40, 80, 120, and 160 kg N ha−1.
The proximal sensing tools were used at stem elongation before the application of mineral N.
Normalized values of the proximal sensing look promising for adjusting mineral N application rates
at stem elongation. For dairy slurry, when either proximal sensor readings were 60–65% of the
reference plants with non-limiting N, the optimum N rate for maximizing yield was 118–128 kg N ha−1.
When the readings were 85–90%, the optimum N rate dropped to 100–110 kg N ha−1 for both dairy
slurry and conventional treatments. It was difficult to find a clear relationship between sensor
readings and yield for sheep manure treatments. Measurements taken with RapidScan C-45 were
less time consuming and better represent the spatial variation, as they are taken on the plant canopy.
Routine measurements throughout the growing season are particularly needed in climates with
variable rainfall. The application of 40 kg N ha−1 at the end of winter is necessary to ensure an
optimal N status from the beginning of wheat crop development. These research findings could be
used in applicator-mounted sensors to make variable-rate N applications.

Keywords: precision N fertilization; chlorophyll meter; NDVI; NDRE; NNI; canopy reflectance
sensing; N mineralization; farmyard manures; Triticum aestivum

1. Introduction

Few cereal agroecosystems supply enough nitrogen (N) to sustain satisfactory crop production
without fertilizers. To ensure that the potential yield is reached each year, fertilizers are often applied
in excessive quantities, causing N loss to the atmosphere and water. In agricultural systems, mineral
N is mainly lost through ammonia volatilization, denitrification and leaching [1]. Correct dose and
application timing of N fertilizer is important so that crops make best use of the N applied with
minimum risk of losses and adverse environmental impacts.

Agronomic decisions in cereals are implemented by using a growth-stage key which provides
a common reference for describing crop development. Management by growth stage is critical to
optimize N fertilization strategies. The Zadoks Cereal Growth-Stage Key [2] is the most commonly
used growth-stage key for cereals, in which the development of the cereal plant is divided into 10
distinct development phases covering 100 individual growth stages. Individual growth stages are
denoted by the prefix GS (growth stage). The principle Zadoks growth stages used in relation to N
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management are the beginning of tillering (GS21) and beginning of stem elongation (GS30). GS21 is
the stage when tillers (lateral shoots emerging at the base of the main stem of the plant) start emerging.
Each tiller has the potential to produce a spike. GS30 is the stage in which the final spikelet can be
observed within the stem of the main tiller.

The application of fertilizers consists of two methods, basal application and topdressing application.
In the former, fertilizers are distributed over the field and mixed with soil before sowing. In the
latter, fertilizers are applied in the soil surface. In cereal crops, local farmers commonly apply organic
manures as basal fertilizers rotationally every two or three years. Organic manures are typically applied
as a basal dressing before sowing due to the humid climate in winter and spring that usually hinders
the entrance of machinery to fields. The application of organic fertilizers is generally combined with
the application of mineral fertilizers. Conversely, when organics are not applied as initial fertilizers,
mineral N is applied in two topdressing applications: 40 kg N ha−1 at GS21 to encourage tillering and
a second and greater application at GS30.

Organic manure is a heterogeneous material collected from livestock raising facilities. The manure’s
physical status depends on farm practice and storage conditions. Farmyard manures are solids that are
commonly mixed with lignocellulosic bedding materials. Slurries are liquids generated by mixing the
solid manures with wastewater, washing water or urine. In recent decades, with the rise in livestock
industry, the disposal of these farmyard manures and slurries has increased [3]. There is an excess of
manure in many regions around the world, and the amount of manure available for land application
is increasing [4]. The application of these manures into agricultural soil allows the recycling of their
nutrient value for fertilizing crops and increasing soil fertility, making better use of resources and
economic sense [5]. However, organic manures can pose a considerable environmental risk if they
are not carefully treated and applied. It is important to point out that the N applied with the organic
manures is generally less available to crops than N in mineral fertilizers [5]. In addition, it is difficult to
predict the amount of available N from organic manures for crops since nutrient mineralization from
manures is influenced by manure characteristics, soil and environmental temperature, soil moisture,
soil properties and microbial activity [1]. The capacity of the soil itself must be taken into account in
order to provide N to crops and to improve cereal N fertilizer recommendations. In this sense, soil
organic matter (SOM) is one of the most relevant soil compounds, as it has been reported that SOM
accounted for 78% of the variation in mineralizable N, whereas other soil properties only accounted
for 8% [6]. N mineralization in SOM is enhanced by increasing temperature [7] and when soil moisture
is near field capacity [8]. It must not be forgotten that the weather varies considerably from year to
year, causing large differences in yield potential in the same site [9,10]; consequently, crop N fertilizer
demand widely varies.

In Western Europe, a soil test for estimating available mineral N (ammonium plus nitrate) in the
soil profile has been widely used to measure the quantity of N fertilizer which needs to be applied.
The technique is called Nmin-method. Generally, for winter wheat (as for many other crops), crop N
need is calculated at the end of winter or early spring based on a target yield. The recommended rate
of N fertilizer is calculated by the predicted N demand for the target yield minus the measured soil
Nmin value at the end of winter, where the rapid period of crop growth starts. Even if soil analysis
should give reliable information, it is often perceived as imprecise for several reasons [11]. In fact,
translating a few values of the soil samplings to a heterogeneous field makes the method imprecise.
Apart from that, both the sampling and the determination of Nmin require time-consuming procedures.

The plant itself is considered a relevant indicator of N availability from any origin (organic manure,
soil N supply or mineral fertilizer) within the growing season. Strategies based on plant indicators
have been developed for the adjustment of N fertilizer application during the growing season. Ravier
et al. [11] showed some decision rules for determining N fertilizer application on the basis of the crop
Nitrogen Nutrition Index (NNI). The NNI is calculated relative to the critical N concentration of the
aerial parts of the crop defined as the minimal concentration required for the maximum production
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of aerial dry matter [12]. However, NNI determination requires destructive and time-consuming
procedures of the plant N content and crop biomass which make it impractical for farmers.

Various types of optical sensing tools have been developed for assessing the N status of plants
within the growing season [13,14]. However, these tools are unable to measure N content of the crop
directly [15], therefore they are based on the measurement of compounds, such as chlorophyll [12].
Optical crop sensing is relatively easy to perform, and a range of sensing techniques and sensors are
commercially available [13]. Regarding transmission or absorption sensors, hand-held chlorophyll
meters such as Yara N-TesterTM can provide rapid results for diagnostic purposes [14,16]. Chlorophyll
meter readings have been widely proven to be well correlated with leaf chlorophyll and N concentrations
in wheat; therefore, chlorophyll content can be used to diagnose the N status of plants [17–19], making
them interesting tools for modulating the N rate. Furthermore, they can be used to decide whether a
supplementary dose is to be applied in order to increase grain N content [8,20]. The use of chlorophyll
meter measurements as an alternative to the NNI has been tested [21–23].

When considering reflectance sensors, ground-based active crop canopy reflectance sensors have
been identified as potentially valuable tools for site-specific N management in cereals [24–26], because
these sensors are not affected by clouds, unlike aerial or satellite sensing. Ground-based sensors have
been developed to assess the plant nutritional status and guide variable-rate N application for different
grain crops [15,23,27]. Spectral data collected by RapidScan CS-45 is converted into canopy green area
measurements by calculating vegetation indices such as the Normalized Difference Vegetation Index
(NDVI) or Normalized Difference Red Edge (NDRE). Marti et al. [28] found significant correlations
between the NDVI, yield and biomass in wheat. Lu et al. [29] determined that RapidScan CS-45 was
useful for non-destructively estimating the NNI of rice and Li et al., 2018 [30] showed a great potential
for monitoring rice leaf N status. Similarly, Bonfil et al., 2017 [31] showed that the use of RapidScan
CS-45 allows rapid and accurate crop monitoring and yield estimation. Zhang et al., 2019 [32] predicted
grain yield based on RapidScan CS-45 measurements. In a previous study, we demonstrated that the
normalized readings of the proximal sensing tools, Yara N-TesterTM (chlorophyll meter) and RapidScan
CS-45 (ground-based active-light proximal sensor), were good indicators of the N nutritional status of
the plant, as the NNI or Nmin. The mineral fertilizer rate applied at stem elongation (GS30, following
Zadoks et al., 1994 [2]) could be modulated with the use of those tools [33].

In this study, we annex a third year when the weather conditions in spring after the second and
greater N application at GS30 were very dry (it did not rain in the following 20 days after application)
in comparison with the first two years. The climate of the area is Temperate–Mediterranean according
to the temperature regime of the Papadakis classification and humid Mediterranean according to the
water regime [34], with an average rainfall of 779 mm year−1 and an average annual temperature of
11.5 ◦C. This climate covers a great portion of the territory of Araba (The Basque Country, norther
Spain) and, although it is classified as Mediterranean, maritime and temperate characteristics are
very evident [35]. In this area, three of the ten years have dry periods around the second and greater
application at GS30 (media 1978–2017; period 15 March–1 May), as in the third year of this study.
Weather conditions are variable from year to year [33] and the mineralization of nutrients from SOM
and farmyard manures is influenced by many factors such as manure characteristics, soil and air
temperature, soil moisture, soil properties and microbial activity [8]. Therefore, making the prediction
of the N needed by the crop in different situations is necessary but complicated. Yara N-TesterTM and
RapidScan CS-45 have shown promise for making N recommendations [17,19,20,29,30,32] and provide
a practical and affordable option for on-farm implementation. The aim of this study was to assess
the usefulness of the proximal sensing tools, Yara N-TesterTM and RapidScan CS-45, for adjusting the
optimum N rate at GS30 when farmyard manures are applied before sowing in the variable humid
Mediterranean climate conditions. We also aimed to decide whether the 40 kg N ha−1 rate at GS21 is
necessary when organic manures are applied as basal fertilizers. In addition, the utility of a reference
area on the field with non-limited N supply is questioned [14], making the diagnosis more complicated
for farmers.
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2. Materials and Methods

Three field trials were established in Arkaute (Araba, Basque Country, Spain) at NEIKER-Tecnalia
facilities (42 ◦85′N, 2 ◦62′W; elevation 515 m above sea level) in three consecutive wheat-growing
seasons: 2014–2015, 2015–2016 and 2016–2017 (defined as 2015, 2016 and 2017) in different fields under
rainfed conditions. There was a 130-meter (m) distance between the three field trials. In the field trial
carried out in 2015, a soil pit was made and after describing and analyzing its horizons, the soil was
classified as Hypercalcic Kastanozem [36]. The mineralogical properties of the soil were analyzed by
X-ray diffraction. The soil contained 40% clay (clay < 2 μm: Illite (%) = 30; Kaolinite (%) = 12; Smectite
(%) = 58). In the field trials carried out in 2016 and 2017, several prospective holes were observed,
verifying that the three soils had similar characteristics. The three fields were flat.

Representative soil samples were taken from each field trial to analyze the physical and chemical
properties before wheat sowing from depths of 0–30 and 30–60 centimeter (cm). Soil texture was
analyzed by the Pippete method [37] and classified (0–30 cm, sandy clay loam and 30–60cm, clay
loam) [38]. Soils that had high pH values (1:2.5 soil:water using a pH-Meter CG840; 8.0–8.5), were
calcareous (3.6–58% according to soil depth) [39] and had moderate organic matter content [40] in the
upper layer (2–2.5%).

2.1. Experimental Setup and Treatments

In the area (Figure 1) where this study was carried out (Araba, Basque Country, norther Spain),
the application of organic fertilizers is generally combined with the application of mineral fertilizers.
Farmyard manures are typically applied as a basal dressing before sowing. For mineral fertilizers,
an application is made at GS21 [2] and the last and greater mineral N dressing application is made at
GS30 [2].

Figure 1. Location of the study (Arkaute, Araba) in the Basque Country, northern Spain. Letters “A”,
“B” and “C” represent the field trials in the 2015, 2016 and 2017 wheat-growing seasons, respectively.

Three kinds of initial fertilization were applied: dairy slurry (40 tons per hectare t ha−1), sheep
farmyard manure (40 t ha−1) and conventional treatment (no organic fertilizer basal dressing and
40 kg N ha−1 at tillering). These three types of fertilization were combined with five N rates (calcium
ammonium nitrate, NAC 27%) in the topdressings applied at GS30 (0, 40, 80, 120 and 160 kg N ha−1).
Apart from the treatments, two controls were established: a control without N fertilization (0N) and an
overfertilized control plot (80 kg N ha−1; 80 kg N ha−1 applied at tillering and 200 kg N ha−1 applied at
GS30; Table 1). The experiment was a factorial randomized complete block design with three factors
(year, initial fertilization and N rate at GS30) and four replicates. The area of each plot was 4 m in
width and 8 m in length.
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Organic amendments were applied on 13 November 2014, 4 November 2015 and 17 November
2016. Slurry and manure were sampled and analyzed for total N and NH4

+–N (Table 1). We decided
to apply manure at 40 t ha−1 and slurry at 40 t ha−1 because this is the usual rate at which organic
amendments are applied as initial fertilizers in Araba, Basque Country, Spain.

Wheat (Triticum aestivum var. Cezanne) was sown on 24 November 2014, 06 November 2015 and
18 November 2016, and was harvested on 21 July 2015, 2 August 2016 and 2 August 2017. The sowing
rate was 220 kg seed ha−1. The preceding crops were flax (Linum usitatissimum), rapeseed (Brassica napus)
and wheat (Triticum aestivum), respectively.

2.2. Mineral N Samples (Nmin) and Biomass Samples for the Nitrogen Nutrition Index (NNI)

Three soil samples from replicates I, II and III (there were four replicates per treatment) and three
rows of aboveground biomass of wheat of one meter in length (four replications) were taken for each
kind of initial fertilization treatment (dairy slurry, sheep farmyard manure and conventional treatment),
in 40N+ 0N, DS+ 0N and SM+ 0N treatments (Table 1) at 0–30 at two times: (1) At GS21 (09 March 2015,
19 January 2016 and 02 March 2017) just before mineral N fertilization in the conventional treatment;
(2) at GS30 (04 April 2015, 17 March 2016 and 06 April 2017) just before mineral N fertilization. The soil
samples were analyzed for soil mineral nitrogen (NH4

+–N plus NO3
−–N) by spectrophotometry [41,42].

Fresh biomass samples were weighed and oven dried, and the dried biomass samples were again
weighted for dry matter content determination. Biomass was estimated and N concentration was
determined by Kjeldahl’s method [43] to calculate the NNI (1) following Lemaire et al. [17]:

NNI = Na/Nc (1)

The NNI was calculated as a ratio of plant N concentration (Na) and the critical N concentration
(Nc) in aerial biomass (shoots). Nc (2) is defined as the minimum concentration of N necessary
to achieve maximum aerial biomass at any stage of vegetative growth [44]. For the wheat critical
N concentration, dilution curves were developed for winter wheat in France [43] as a universal
relationship. In 2012, another was built in China [45] with the aim of adjusting the original to the
conditions in China. Since we did not have sufficient data to develop a specific function for our region,
we used the original dilution curve developed by Justes et al. [46] due to the proximity to France.

Nc = 5.35 ∗DM−0.442 (2)

where DM is the amount of dry matter accumulated in the aerial biomass expressed in t ha−1. Nc is
expressed in % DM.

2.3. Proximal Sensing Tools for Adjusting the Optimum N Rate at GS30

The proximal sensing tools for the diagnosis of the N nutritional status tested were Yara N-TesterTM

(Yara International ASA, Oslo, Norway) and RapidScan CS-45 (Holland Scientific, Lincoln, NE, USA).
Yara N-TesterTM is a clip-on hand-held chlorophyll meter which measures light transmitted by the plant
leaf at two different wavelengths, 650 (red light) and 940 nm (near infrared light, NIR). The ratio of the
light transmitted at these wavelengths, in addition to the ratio determined with no sample, is processed
by the instrument to produce a digital reading. The measurement point should be in the middle of
the blade of the youngest, fully developed leaf. The values obtained are unitless and they express
relative chlorophyll content. Thirty random measurements are recorded to get the representative value
in each sampling point. RapidScan CS-45 is a portable entirely self-contained ground-based active
crop canopy sensor that integrates a data logger, graphical display, GPS, active crop sensor and power
source into a small and compact instrument. It measures crop reflectance at 670, 730 and 780 nm and
provides the NDVI and NDRE. The measurements with RapidScan CS-45 were taken as the sensor was
passed over the crop surface at approximately 1 m at constant walking speed. The sensor´s unit was
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handheld and two rows per elemental plot were scanned. NDVI and NDRE values were averaged to
generate a value for that plot.

Measurements with the proximal sensing tools were taken in four replications in each kind of
initial fertilization treatment (dairy slurry, sheep farmyard manure and conventional treatment) just
before applying the topdressing at GS30. Measurements were taken in 40N + 0N, DS + 0N and SM + 0N
treatments (Table 1). In addition, samples were taken in the control (0N) and overfertilized treatments
(280N). We will refer to the Yara N-TesterTM absolute values as abs_NTester and the RapidScan CS-45
absolute values as abs_NDVI and abs_NDRE. The measurements with Yara N-TesterTM and RapidScan
CS-45 were taken as described in Aranguren et al. [33].

Normalized values for the Yara N-TesterTM and RapidScan CS-45 measures were calculated to
avoid the noise encountered by variables other than N fertilizer. These values were calculated as a
percentage by assigning the 100% value to the overfertilized treatment (280N) described previously,
similar to the technique suggested by Follett and Follett [47]. We will refer to the Yara N-TesterTM

normalized values as nor_NTester and the RapidScan CS-45 normalized values as nor_NDVI and
nor_NDRE.

2.4. Grain Yield

Yields were recorded at crop maturity using a plot harvester (1.5 × 8 m; Wintersteiger AG, Ried,
Austria). For comparisons between fields, yields were converted to a 12% dry matter basis.

To show grain yield response to N fertilization at GS30, the grain yield was determined by
fitting a Quadratic Plateau Function. It has been shown to best describe the yield response to N
fertilization in humid Mediterranean climate conditions of Araba (Basque Country, northern Spain)
after comparison with other models (quadratic and square root) as was shown by Ortuzar-Iragorri
et al. [48], who selected those models because other authors reported that they were frequently used
for studying the relationship between yield and N fertilization. Ortuzar-Iragorri et al. [48] used
the NLIN procedure (SAS Institute 1998 [49]) to adjust the data to the proposed models to obtain
statistical parameters. The most important attribute of the function is where yield becomes relatively
insensitive to increases in N fertilizer addition at GS30. The optimum N rate was determined following
Ortuzar-Iragorri et al. [48]. In the neighborhood region of Navarra (northern Spain), with similar
climatic conditions, Arregui et al. [9] also used a Quadratic Plateau Function for wheat yield response
to N fertilization. In the case of corn, a Quadratic Plateau Function was also shown to be the best
model for yield response to N fertilization [49–52]. A Quadratic Plateau Function (3) was used to
indicate the optimum N rate at GS30 to achieve the maximum yield (yield vs. N fertilizer rate at GS30):

y = a + bN + cN2 (3)

where y is the dependent variable (yield, kg ha−1), N is the N rate applied at GS30 (kg N ha−1) and a, b
and c are coefficients.

The equations obtained with the Quadratic Plateau Function were used to determine the
economically optimal dose of N (4), following the technique suggested by Aizpurua et al. [53].
According to their findings, the revenues obtained can be calculated as:

Revenue yield = w Y − f N (4)

where w is the wheat price (€ kg−1), f is the fertilizer price (€ kg−1), N is the nitrogen rate (kg ha−1) and
Y is the quadratic plateau function.

When the revenue yield is derived with respect to the N rate and equals to zero, maximum
revenues would be obtained, and that would be the economical optimum rate based on yield. The wheat
grain price used was 0.18 € kg−1, and the fertilizer price was 1.19 € kg N [54].
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2.5. Statistical Analysis

The Quadratic Plateau Function was used for the wheat yield response. A nonlinear regression
procedure was carried out using R 3.2.5’ software [55] to plot curves that best described the yield
response to N fertilizer application.

Both soil mineral nitrogen (Nmin) and NNI measurements were conducted before applying the N
fertilization rates at GS21 and at GS30. The proximal sensing tool (Yara N-TesterTM and RapidScan
CS-45) measurements (abs_NTester, abs_NDVI and abs_NDRE) were conducted before applying the N
fertilization rate at GS30. Overfertilized plots were used to normalize absolute values (nor_NTester,
nor_NDVI and nor_NDRE). The factors analyzed for statistical analysis in all cases were growing
season and initial fertilization by analyses of variance (ANOVA) using ‘R 3.2.5’ software [55]. There was
a significant interaction between growing season and initial fertilization for all these measurements.
Therefore, an ANOVA was performed to analyze differences among initial fertilization treatments
in each growing season. Another ANOVA was performed to analyze the differences among the
wheat-growing seasons in each initial treatment. To separate the means, the Tukey test was used
(p ≤ 0.05), utilizing the R package agricolae [56].

3. Results

3.1. Grain Yield

Optimum N Rate at GS30

The optimum N rate at GS30 was different for each kind of initial fertilizer (conventional treatment,
slurry or sheep manure) in each wheat-growing season. In 2015 (Figure 2a), the optimum N rate at
GS30 was 98 kg N ha−1 in the conventional treatment (plus 40 kg N ha−1 at tillering). In the organic
treatments, the optimum N rate at GS30 was approximately 118 kg N ha−1. Maximum wheat grain
yields were 8456, 8240 and 8356 kg ha−1 for conventional treatments, slurry and manure, respectively.

In 2016 (Figure 2b), the optimum N rate at GS30 in the conventional treatment was 109 kg N ha−1

(plus 40 kg N ha−1 at tillering). In the organic treatments, the optimum N rate in the slurry treatment
was 98 kg N ha−1 and in the manure treatment was 147 kg N ha−1. Maximum wheat grain yields were
10,227, 10,271 and 10,723 kg ha−1 for the conventional, slurry and manure treatments, respectively.

In 2017 (Figure 2c), the optimum N rate at GS30 in the slurry treatment was 128 kg N ha−1 and
in the manure treatment, it was 156 kg N ha−1. In the conventional treatment, the maximum yield
was not achieved. Therefore, the maximum rate applied at GS30 (160 kg N ha−1) was taken as the
optimum N rate at GS30. Maximum wheat grain yields were 5841 and 6205 kg ha−1 for slurry and
manure treatments, respectively.
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(a) (b) 

 
(c) 

Figure 2. Effect of the N fertilization rate at stem elongation (GS30) on yield (kg ha−1) in 2015 (a),
2016 (b) and 2017 (c); wheat-growing seasons with respect to initial fertilization: conventional treatment,
dairy slurry, sheep manure. A quadratic plateau model was used to study the yield response.
The arrow marked with C represents the N fertilization rate when the maximum yield was achieved by
conventional treatment. S represents the N fertilization rate when the maximum yield was achieved
by dairy slurry treatment, and M represents the N fertilization rate when the maximum yield was
achieved by sheep manure treatment.

3.2. Economically Optimal Dose

In 2015 and 2016, the economically optimal dose at GS30 was almost the same as the optimum N
rate at GS30. In 2015, the economically optimal dose was 98 kg N ha−1 for conventional treatment
and 117 kg N ha−1 for organic amendments. In 2016, the economically optimal dose was 110, 100 and
141 kg N ha−1 for conventional, slurry and manure initial treatments, respectively. However, in 2017
the economically optimal dose at GS30 was lower than the optimum N rate at GS30 (131, 111 and
130 kg N ha−1 for conventional, slurry and manure initial treatments, respectively).

3.3. Soil Mineral Nitrogen (Nmin) and Total Rainfall

Before sowing, soil Nmin in 2015 was 50 kg N ha−1; in 2016, it was 42 kg N ha−1 and in 2017,
it was 34 kg N ha−1 (Table 2). At GS21, Nmin values (Table 2) were lower in 2015 than in 2016 and
2017 in organic fertilization treatments. During the 2016 and 2017 wheat-growing seasons, the lower
rainfall (Figure 3) allowed higher Nmin values (around 30 kg N ha−1) at GS21 (Table 2). In 2015 at
GS21, conventional treatment had significantly higher Nmin values than dairy slurry and sheep manure
(Table 2). At GS30, 0N and conventional treatment presented higher values in 2017 than in 2015 and in
2016. Nmin values in 2016 were extremely low in all cases (Table 2). No differences among treatments
were detected at GS30 in any growing cycle.
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Table 2. Soil Nmin content (kg N ha−1; 0–30 cm) at the beginning of the three wheat-growing seasons
(2015, 2016 and 2017), beginning of tillering (GS21) and beginning of stem elongation (GS30) in Arkaute.

Growing Season Treatments

Nmin (0–30cm; kg N ha−1)

Initial GS21 GS30

Mean Values Mean Values sd Mean Values sd

2015

0N

50

22 A 5 12 b 5
40 + 0N 22 A 5 13 b 4
DS + 0N 4 B b 1 13 9
SM + 0N 9 B b 3 12 5

2016

0N

42

30 9 1 c 1
40 + 0N 30 9 3 b 1
DS + 0N 32 a 4 4 0
SM + 0N 30 a 2 1 4

2017

0N

34

33 12 26 a 3
40 + 0N 33 12 32 a 13
DS + 0N 36 a 11 16 3
SM + 0N 16 ab 12 14 11

Means followed by a different capital letter indicate significant differences among initial treatments
for each year (Tukey, p ≤ 0.05). Means followed by a different lower-case letter indicate differences
among each initial treatment for different years (Tukey, p ≤ 0.05). Both 0N and 40 + 0N have the same
value at GS21 because the measurement was taken before topdressing application in 40 + 0N at GS21.

Figure 3. Total rainfall (mm) and growing degree days (GDD, ◦C) between wheat growth stages [2] in
three wheat-growing seasons (2015, 2016 and 2017) in Arkaute. Sow, sowing.

3.4. NNI

NNI values at GS21 (Table 3) in 2016 were significantly higher than in 2015 and 2017, and dairy
slurry and sheep manure treatments had significantly higher values than the treatments without
organics as initial fertilizer. However, there were no differences in 2015 and 2017 among initial
fertilization treatments.

At GS30 (Table 3), in treatments with organics as initial fertilizer and in 0N, NNI values were
significantly higher in 2016 than in 2015 and 2017. However, conventional treatment presented higher
values in 2016 and 2017 than in 2015. There were significant differences in 2016 and 2017 among
initial fertilization treatments. In 2017, the overfertilized plot presented the highest NNI followed by
the conventional treatment and 0N and organic treatments. There were no differences between 0N
and organic treatments. In 2016, the overfertilized plot presented the highest NNI and there were
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no differences among the rest of the treatments. In 2015, there were no differences among initial
fertilization treatments.

Table 3. Nitrogen Nutrition Index (NNI) at the beginning of tillering (GS21) and at stem elongation
(GS30) for three initial fertilization treatments, as well as control (0N) and overfertilized (280), in three
field trials (2015, 2016 and 2017) in Arkaute.

Growing Season Treatments

NNI

GS21 GS30

Mean Values sd Mean Values sd

2015

OverFert 0.37 b 0.02 ND ND
0N 0.37 b 0.02 0.26 b 0.03

Conventional 0.37 b 0.02 0.35 b 0.09
Dairy Slurry 0.34 b 0.05 0.37 0.08

Sheep manure 0.38 b 0.06 0.29 b 0.02

2016

OverFert 0.60 B a 0.08 0.77 A a 0.10
0N 0.60 B a 0.08 0.42 B a 0.04

Conventional 0.60 B a 0.08 0.55 B a 0.01
Dairy Slurry 0.67 A a 0.03 0.51 B 0.03

Sheep manure 0.68 A a 0.05 0.51 B a 0.07

2017

OverFert 0.23 c 0.02 0.80 A 0.05
0N 0.23 c 0.02 0.33 C b 0.03

Conventional 0.23 c 0.02 0.53 B a 0.05
Dairy Slurry 0.26 c 0.02 0.38 C 0.04

Sheep manure 0.23 c 0.04 0.37 C b 0.05

Means followed by a different capital letter indicate significant differences among initial treatments
for each year (Tukey, p < 0.05). Means followed by a different lower-case letter indicate differences
among each initial treatment for different years (Tukey, p < 0.05). ND means no data. sd means
standard deviation. 0N, 40 + 0N and OverFert treatments have the same value at GS21 because the
measurement was taken before topdressing application in 40 + 0N and OverFert at GS21.

3.5. Proximal Sensing Tools

3.5.1. Absolute Values

The absolute values of RapidScan CS-45 (abs_NDVI and abs_NDRE) at GS30 were significantly
higher in 2016 than in 2015 and 2017 in all treatments (Table 4). The absolute values of Yara N-TesterTM

(abs_NTester) were significantly higher in 2016 than in 2015 (Table 4) in dairy slurry and sheep manure
treatments. In the conventional treatment, there were no significant differences among years (Table 4).
Finding values to adjust the optimum N rate with absolute values was complicated because variability
among years was high.

Means with different lower-case letters (a, b) represent significant differences among initial
treatments in Yara N-TesterTM (abs_NTester) measurements for each year (Tukey, p ≤ 0.05); means
with different capital letters in italics (A, B) represent significant differences among initial treatments in
NDVI RapidScan CS-45 measurements (abs_NDVI) for each year (Tukey, p ≤ 0.05); means with different
underlined capital letters (A, B) represent significant differences among initial treatments in NDRE
RapidScan CS-45 measurements (abs_NDRE) for each year (Tukey, p ≤ 0.05); means with different
lower-case letters (y, z) represent significant differences among the three years in Yara N-TesterTM
measurements (abs_NTester) for each treatment (Tukey, p ≤ 0.05); means with different capital letters
in italics (Y, Z) represent significant differences among the three years for NDVI RapidScan CS-45
measurements (abs_NDVI) in each treatment (Tukey, p ≤ 0.05) and means with different underlined
capital letters (Y, Z) represent significant differences among the three years for NDRE RapidScan CS-45
measurements (abs_NDRE) in each treatment (Tukey, p ≤ 0.05).
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Table 4. Absolute values obtained with tools for the diagnosis of the N nutritional status (Yara
N-TesterTM and RapidScan CS-45) at stem elongation (GS30) for three initial fertilization treatments
and control (0 N) in three wheat-growing seasons (2015, 2016 and 2017) in Arkaute.

Growing Season Treatments
abs_Ntester

RapidScan CS-45

abs_NDVI abs_NDRE

Mean Values sd Mean Values sd Mean Values sd

2015

0N 304b z 34 0.35 B Z 0.04 0.12 B Z 0.01
40N 460 a 22 0.54 A Z 0.04 0.20 A Z 0.02
DS 334 b z 16 0.39 B Z 0.04 0.14 B Z 0.02
SM 332 b z 10 0.39 B Z 0.05 0.13 B Z 0.02

2016

0N 403 c y 8 0.55 B Y 0.05 0.18 B Y 0.02
40N 477 a 14 0.67 AY 0.02 0.24 A Y 0.15
DS 438 b y 15 0.65 AY 0.04 0.23 A Y 0.02
SM 442 b y 28 0.66 AY 0.03 0.23 A Y 0.02

2017

0N 377 b z 13 0.39 C Y 0.06 0.12 B 0.01
40N 507 a 54 0.59 A Z 0.03 0.19 A 0.01
DS 382 b z 53 0.43 B Z 0.04 0.13 B 0.01
SM 389 b z 12 0.41 C Z 0.04 0.13 B 0.01

3.5.2. Normalized Values

The normalized values of RapidScan CS-45 and Yara N-TesterTM (as a percentage compared to
the overfertilized (280 N) treatment) were significantly higher in 2016 (Figure 4b) than in 2015 and
2017 (Figure 4a,c) in all treatments with the exception of nor_NTester values in the conventional
treatment. In 2015 (Figure 4a), the normalized measurements of both tools agreed with each other for all
treatments, showing differences between the conventional treatment (88%), initial organic fertilization
treatments (65%) and 0N (57%). In 2016 (Figure 4b), Yara N-TesterTM showed differences between the
conventional treatment (92%), control (78%) and both organic treatments (85%). RapidScan CS-45
showed differences between the conventional treatment (88%) and 0N (72%), but the tool did not detect
differences between the conventional treatment and organic treatment (84–87%). In 2017 (Figure 4c),
the measurements of both proximal tools detected differences between the conventional treatment
(83–87%) and the remaining treatments (control and organics). In 2017, only nor_NDRE detected
differences between control and organic treatments.

It was possible to find a relationship between normalized values of RapidScan CS-45 and
Yara N-TesterTM and optimum N rate at GS30 to achieve the maximum yield in the conventional
treatment and in the slurry treatment (Table 5). When both proximal sensing tool values were 60–65%,
the optimum N rate at GS30 to achieve the maximum yield was 118–128 kg N ha−1 in dairy slurry
treatment (Table 5). When the readings were 85–90%, the optimum N rate was 100–110 kg N ha−1

in dairy slurry and conventional treatment (Table 5). In the sheep manure treatment, there was no
clear relationship between sensor values and the optimum N rate. When values were 60–65%, the N
recommendation was 117 or 155 kg N ha−1 and 147 kg N ha−1 for readings around 89%.
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Figure 4. Relation between initial fertilization (conventional treatment (40N), dairy slurry (DS) and
sheep manure (SM)) and control (0N) and values obtained with tools for the diagnosis of the N nutritional
status (RapidScan CS-45, Yara N-TesterTM) at stem elongation (GS30) in the 2015 (a), 2016 (b) and 2017
(c) wheat-growing seasons. Values were normalized assigning the 100% value to the overfertilized
(280N) plot. Means with different lower-case letters (a, b) represent significant differences among initial
treatments in Yara N-TesterTM (nor_NTester) measurements for each year (Tukey, p ≤0.05); means with
different capital letters in italics (A, B) represent significant differences among initial treatments in
NDVI RapidScan CS-45 measurements (nor_NDVI) for each year (Tukey, p ≤0.05); means with different
underlined capital letters (A, B) represent significant differences among initial treatments in NDRE
RapidScan CS-45 measurements (nor_NDRE) for each year (Tukey, p ≤0.05); means with different
lower-case letters (y, z) represent significant differences among the three years in Yara N-TesterTM

measurements (nor_NTester) for each treatment (Tukey, p ≤ 0.05); means with different capital letters
in italics (Y, Z) represent significant differences among the three years for NDVI RapidScan CS-45
measurements (nor_NDVI) in each treatment (Tukey, p ≤ 0.05) and means with different underlined
capital letters (Y, Z) represent significant differences among the three years for NDRE RapidScan CS-45
measurements (nor_NDRE) in each treatment (Tukey, p ≤ 0.05).

Table 5. Normalized values (nor_Ntester, nor_NDVI, nor_NDRE) obtained with tools for the diagnosis
of the N nutritional status (Yara N-Tester and RapidScan CS-45) at stem elongation (GS30) and their
corresponding optimal N application at GS30 for dairy slurry and conventional treatments.

Initial Fertilization
Proximal Tool Readings at GS30

(%)
Optimal N Application at GS30

(kg N ha−1)

Dairy Slurry 60–65 118–128
Dairy Slurry/Conventional 85–90 100–110
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4. Discussion

Studies focused on the use of proximal sensing tools for adjusting topdressing N in wheat have
been conducted in other climates. In this region with variable rainfall, it was necessary to study the
usefulness of proximal sensing tools for an optimum N mineral rate application when organic manures
had been applied as basal fertilizers.

4.1. Mineral N Fertilizer Reduction When Organic Fertilizer Was Applied before Sowing

In this study, maximum wheat grain yields were different in each growing season with 2016 being
the year with the highest yields. Within each year for 2015 and 2016, maximum yields between the
conventional treatment and organics as initial fertilizers treatment were comparable (Figure 2a,b).
However, in 2017, there were differences among initial fertilization treatments, with the conventional
treatment being 1300–1700 kg ha−1 more productive than the organic treatments depending on each
individual N rate at GS30 (Figure 2c). In this regard, the optimum N rate at GS30 was different for
each growing season and for each initial fertilization treatment. In fact, the application of organic
manures as initial fertilizers reduced the mineral N rate used at GS30 in 2015 and 2016. In 2015, when
organic manures were used as initial fertilizers, approximately 20 kg N mineral ha−1 less than in the
conventional treatment was necessary to achieve the maximum wheat grain yield. In 2016, when
applying slurry as an initial fertilizer, 51 kg N mineral ha−1 less than in the conventional treatment was
necessary to achieve the maximum wheat grain yield. In 2016, when using manure as initial fertilizer,
the same mineral N dose as in the conventional treatment was necessary to achieve the maximum
wheat grain yield. However, in the manure treatment, the maximum yield was 500 kg ha−1 higher
than in the conventional treatment. According to results shown in 2015 and 2016, the 40 kg N ha−1

application at the GS21 could be avoided when organic manures were applied even when Nmin at
GS21 was very low (4–9 kg N ha−1) as in 2015 (Table 2). In 2017, following mineral N application at
GS30, it did not rain until leaf flag emergence (GS37 [2]; Figure 3). In 2017, yields were higher in the
conventional treatment where 40 kg N ha−1 had been applied at GS21 even if Nmin values at GS21
were high (Table 2).

Both economic and environmental costs are key considerations when N fertilization management
strategies are being developed [53]. The economically optimum N rate at GS30 was similar to the
optimum N rate in 2015 and 2016. However, in 2017, when mineral fertilizer price and wheat prices
are considered, the N rate is lower than the optimum N rate. The low precipitation after the mineral N
application at GS30 did not allow N absorption by the wheat crop until one month later, negatively
affecting N use efficiency, hence reducing the economic N rate and the economic benefit of the fertilizer.

4.2. Soil N Availability

As the Nmin values showed, the soil N supply in soils amended with animal manure may be very
variable (Table 2). The recommended rate of N fertilizer is calculated by the predicted N demand
for the target yield minus the measured Nmin at the end of winter. However, some factors make this
technique imprecise. On the one hand, using a target yield is not feasible because, each growing season,
yields vary depending on the weather (Figures 2 and 3). On the other hand, soil Nmin at GS21 depends
not only on the mineralization (SOM, applied organic compounds and weather conditions) but also on
crop uptake. Although Nmin values at GS21 in 2016 and 2017 were similar, yields achieved in 2016
(10,200–10,700) were higher than yields in 2017 (5800–6200; Figure 2). As the results showed (Tables 2
and 3), it is possible to have high N availability in soil and plants with low N nutritional status (as in
2017), as well as low N availability in soil and acceptable N nutritional statuses in plants (as in 2016).

The weather has a significant effect on yield. Since the weather can be difficult to predict in
the long term, predicting the mineralization of organic forms of N and other nutrients into plant
available mineral forms and the wheat demand remains a challenge [57]. Many factors control the
decomposition of SOM and the mineralization of nutrients, rendering the prediction difficult [58].
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Arregui and Quemada [59], in similar climate conditions (humid Mediterranean), showed that due to
the high rainfall, low evapotranspiration and low crop demand, from sowing to mid-tillering (GS25),
most of the mineral N present in the soil before sowing was lost by nitrate leaching, as could have
happened in 2015. The lower Nmin values in the treatments where organics were applied in 2015
could be explained by immobilization [57]. Basso et al. [10] showed that wheat yield production in the
Mediterranean environment is highly affected by spring rainfall and the amount of soil water stored
in soil before and during the growing season. In the area where the study was carried out (humid
Mediterranean) [34], three of the ten years have dry periods (media 1978–2017; period 15 March–1 May)
when N fertilizer topdressing is applied at GS30 at the stage of highest N uptake by the wheat crop.
It should be mentioned that applying organics as initial fertilizers will probably not synchronize with
the highest N demand by the crop because a long period of time passed between application and plant
N uptake. However, the wet conditions in winter in Araba hinder the entrance of machinery to fields
in spring. The unique alternative being their application in autumn, likely causing N loss by leaching.

Soil characteristics also have an effect on N mineralization. In our study, the soil presented 40%
clay (58% Smectite). Chantigny et al. [60] suggested that clay fixation may have a negative effect on N
availability during the crop growing season. Other studies also demonstrated that there is a significant
interaction between manure and soil regarding the net mineralization and that the net N mineralization
of cattle manures, cattle slurry and plant recovery is lower in clay soils is associated with the clay
fixation of NH4

+–N [61].
It is also remarkable that, in 2016, the preceding crop was rapeseed (Brassica napus). It has been

shown that in the humid Mediterranean region of Spain, including rapeseed in the crop rotation
increases wheat yields by about 10% [62]. Gallejones et al. [63] concluded that rapeseed as the preceding
crop for wheat probably caused higher N mineralization.

Many factors affect soil N mineralization and soil N availability, making it difficult to estimate the
amount of N mineralized from SOM to adjust the rate of N fertilizer required to optimize crop yield
and also quality, even if soil Nmin is known at the end of winter. Otherwise, fields are heterogeneous,
and it implies laborious and expensive sampling and analysis [64]. Ravier et al. [11] highlighted many
sources of uncertainty in soil N analysis (lack of standardized procedure for soil sampling or the
choice of the sampling zone and extrapolation) that led to the exclusion of decision rules based on
the monitoring of soil mineral content. Recommendations for the start of the crop cycle are usually
based on soil parameters, and the recommendations for later stages in the crop cycle are based on
plant indicators. Plants integrate soil variability, climate, crop management and other environmental
influences, which are good indicators of the nutrient needs.

4.3. Nitrogen Nutrition Index (NNI)

The topdressing N fertilizer recommendation rate can be adjusted according to the NNI, which
can indicate the magnitude of the N surplus or deficiency [17]. In our experiment, all treatments were
under N deficiency (NNI < 0.9), even the overfertilized ones. However, the NNI was able to detect
differences among treatments in the same growing season and differences among the wheat-growing
seasons for the same treatment. Different thresholds of the NNI have been proposed in on-farm
applications to diagnose the N status of plants [12,65–67]. Ravier et al. [23] determined the NNI
threshold that the wheat crop can tolerate in different growing stages without reducing the maximum
yields. Thus, they consider NNI values <0.4 as situations that should be avoided, and when the NNI
is between 0.4 and 0.7 before ear has reached 1 cm in length (before GS30, following Zadoks et al.,
1994 [2]), they recommend the application of 40 kg N ha−1 at that stage. In our case, in 2016 at GS21,
NNI values were 0.60–0.68. In 2016, yields were comparable between the conventional treatment
(where 40 kg N ha−1 was applied at GS21) and treatments where organics were applied as initial
fertilizers without N application at GS21. This fact suggests that increasing the N rate at GS30 can
reverse the N deficiency at GS21 and organics could match the conventional treatment (where 40 kg
N ha−1 was applied at GS21). In 2015 at GS21, NNI values were lower than 0.4 (0.34–0.38), which
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means that the crop had a severe deficiency and that the yields will be reduced. In 2015, yields were
lower than in 2016 but as in 2016, yields between the conventional treatment (where 40 kg N ha−1

was applied at GS21) and organics treatment were comparable. In 2017, NNI values were 0.23–0.26
at GS21 and it did not rain after N application at GS30 until GS37, causing low yields. In 2017, the
application of 40 kg N ha−1 at GS21 in the conventional treatment had a significant effect on the yield,
allowing higher yields in the conventional treatment than in the organic treatment. Those events in
2015 and 2016 suggested that the tolerable N deficiency in GS21 could be lower (0.3) than the one
identified by Ravier et al. [23] and that crop yield can be restored with the topdressing N application
at GS30 when the N deficiency is not very severe, as in 2017. However, they also concluded that the
extent of tolerable N deficiencies in the early stages is less clear than in more advanced stages. In fact,
a low NNI occurring during tillering can lead to a low number of stems, but a higher NNI during
GS30 can lead to an increase in the number of grains per ear [17]. It is important to highlight that
tolerating N deficiency gives the crop the opportunity to absorb the available soil mineral N before
applying fertilizer [11]. The determination of the NNI requires representative samples to be taken, the
determination of dry matter content and the determination of N concentration by laboratory analytics,
making the determination of the NNI difficult and time-consuming. Moreover, as with soil sampling,
farmers cannot instantly know the N status of plants.

4.4. Proximal Sensing Tools and Vegetation Indices

Abs_NTester readings increased as NNI values increased. For NNI = 1 values, Ziadi et al. [68]
determined an absolute chlorophyll meter reading with Minolta SPAD-502 of 42.5 at GS30 in wheat.
Similar absolute chlorophyll meter readings (ranging from 39 to 45, depending on the site-year) for
NNI = 1 in wheat were also reported by Peltonen et al. [69] and Bundy and Andraski [70]. The crop
sensor performance for N status diagnosis is influenced by many other variables apart from N: seasonal
variation, plant water status, diseases and pests, plant growth stage, genotype, etc. [31]. Normalized
readings have been recommended to reduce the year effect [21,23] and the noise promoted by other
variables other than N fertilization [18].

In normalized values, chlorophyll meter readings have been correlated with the NNI [21,22].
Ziadi et al. [68] established the critical relativized chlorophyll meter readings ranging from 0.89 to 0.95
for NNI = 1. However, the normalization of the chlorophyll meter readings does not entirely remove
the year effect [71], but these readings better predict the NNI [68]. Prost and Jeuffroy [21] suggested
that the overfertilized plot should have an NNI higher than 1, indicating that N is not limiting. Ravier
et al. [72] concluded that the use of normalized values is problematic because it is essential to ensure
that a well-fertilized strip is not N deficient. They determined that using relativized values from an
N-deficient overfertilized plot (NNI < 0.9) may lead to an error of 0.34%. The overfertilized treatments
of our dataset did not obtain NNI ≥ 0.9 (Table 3) even after the application of large amounts of N.
Yao et al. [73] showed that normalized values were more correlated with the NNI at later stages
of development than at early stages. In our results, both absolute values and normalized values
were able to similarly detect differences among treatments. However, finding values to adjust the
optimum N rate was complicated with absolute values because variability among years was higher
than with relativized values. Regarding normalized values, in dairy slurry treatment, when both
proximal sensing tool values were 60–65%, the optimum N rate at GS30 to achieve the maximum yield
was 118–128 kg N ha−1 (Table 5). In dairy slurry and conventional treatments, when the readings
were 85–90%, the optimum N rate was 100–110 kg N ha−1 (Table 5). In the sheep manure treatment,
there was no clear relationship between sensor values and the optimum N rate. When values were
60–65%, the N recommendation was 117 or 155 kg N ha−1 and 147 kg N ha−1 for readings around
89%. That may be due to the heterogeneous nature of manures that makes it difficult to predict how
quickly and how much N will be transformed in plant-available N during the wheat-growing season.
The composition of manures depends on animal diet, the amount of bedding, water and nutrient loss
during storage and land application [4]. However, in this study, the main factor that brings variability
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is the maturation (curing) phase. Thus, sheep manure characteristics were different depending on the
year: in 2016, the sheep manure was “fresh”, containing NH4

+ (0.33% of total N; Table 1), whereas in
2015 and 2017, it was “old” and the manures did not present any NH4

+. In dairy slurry treatments,
the NH4

+ content in the three wheat-growing seasons was around 0.55% of total N, having lower
variability compared to sheep manure. In 2016, the N availability in sheep manure treatment was high
when the crop N demand was high, allowing greater tool values than in 2015 and 2017 (Table 4 and
Figure 4). However, the N recommendation at GS30 was much higher in sheep manure treatments than
in treatments with dairy slurry as initial fertilizer, even if tools’ values were similar at GS30 (Table 4 and
Figure 4). Manures also contain organic N that becomes available to crops after enzymatic hydrolysis.
The amount of N mineralized from organic N depends on its physical–chemical characteristics, soil
properties and climatic conditions [74]. Typically, slurries are more susceptible to enzymatic hydrolysis
than solid manures that have bedding materials made of lignified compounds [4]. This can also justify
the higher and variable N required by the crop when sheep manure was applied than when slurry was
applied, especially when crop N requirements were high, as in 2016. Moreno-García et al. [75] and
Zhao et al. [76] found that the higher availability of micronutrients provided by the organic fertilizers
allowed higher yield than in conventional treatment and suggested that it is necessary to establish
overfertilized plots for each type of fertilization.

These results look promising in order to adjust the N application rate at GS30 with the Yara
N-TesterTM and RapidScan CS-45 normalized readings when applying dairy slurry before sowing.
However, in the sheep manure treatment, it is more difficult to find a relationship between sensor
readings and yield. Both handheld N diagnostic tools were able to detect differences among N
nutritional status in plants. Siband et al. [77] suggested that the NNI responded faster to N applications
than chlorophyll meters, which is probably related to the time between N uptake and chlorophyll
synthesis [22]. Ziadi et al. [68] saw that the whole plant can be less N deficient than the uppermost
collared leaf. In this sense, evaluating the whole plant would be more precise than just a leaf. At early
growth stages, evaluating the NDVI would be more accurate, although some authors such as Broge
and Mortensen [78] highlighted that, when the wheat canopy is not closed, soil background exposure
reduces the reliability of using reflectance for the estimation of crop N status. However, at the end of
the growing cycle, the use of a chlorophyll meter is suitable [20], as 35% of N in the grain comes from
the last developed leaf [79]. The utility of proximal tools to detect the N nutritional status of plants was
supported by Arregui et al. [9] and Ortuzar-Iragorri et al. [18] who observed that chlorophyll meters
enabled the prediction of the N status of plants. Furthermore, Mullen et al. [80] showed that in-season
N demand for added N fertilizer in winter wheat could be detected using NDVI readings collected
at GS30. Moreover, algorithms using crop canopy reflectance sensing to make N recommendation
for wheat have been identified, and it has been shown that active canopy sensors could be used in
determining variable N rate applications in wheat from the mid-growing season [81,82]. Marti et al. [28]
found significant correlations between the NDVI, yield and biomass in wheat. On the other hand,
Sylvester-Bradley et al. [64] developed an alternative strategy for signaling soil N status and observed
that the NDVI of young canopies can signal soil N status where Nmin is lower than 120–140 kg N ha−1.
In our conditions, generally Nmin values were lower than 120–140 kg N ha−1. In our case, both proximal
tools showed a greater sensitivity than Nmin when differentiating the initial fertilization treatments
applied in the field trial. All of these findings were very promising because the type of fertilization
could be changed to achieve a more precise N rate adjusted to the wheat crop demand. It should
be noted that measurements taken with RapidScan CS-45 were less time consuming than with Yara
N-TesterTM and were taken on the plant canopy and not just in the uppermost fully expanded leaf,
as with chlorophyll meters. Thus, samples taken with RapidScan CS-45 can better represent the spatial
variation of the crop N status.

These hand-held tools are used during the wheat growth period (GS30), but many environmental
variables (rainfall, temperature or relative humidity) affect crop growth and development after this
stage until harvest [83]. However, any method of diagnosing N nutritional status at a particular
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stage has the same limitation. Furthermore, it has been shown that it is always possible to correct
N deficiency until the end of the cereal growth season (GS65) [23] if soil is wet [84]. Since remote
sensing measurements are not invasive and can be repeated several times during the growth period,
information obtained on N status dynamics of plants can be used for decision making in N fertilizer
management. What is more, ground-based remote sensing tools can be applied to satellite or airborne
remote sensing.

5. Conclusions

Experimental findings to date have shown that Yara N-TesterTM or Rapidscan CS-45 normalized
readings look promising in order to adjust the N application rate at GS30 under rainfed conditions in
humid Mediterranean climate conditions. For dairy slurry, when either proximal sensor readings were
60–65% of the reference plants with non-limiting N, the optimum N rate for maximizing yield was
118–128 kg N ha−1. When the readings were 85–90%, the optimum N rate dropped to 100–110 kg N
ha−1 for both dairy slurry and conventional treatments. However, in the sheep manure treatment, it is
more difficult to find a relationship between sensor readings and yield due to the variable composition
of the manure and subsequently, the available N.

When rainfall conditions between mid-March and April are as usual (seven out of ten years),
a low N status (60–65%) can be recovered with no adverse effect on yield when mineral N is applied
at GS30. However, during those years in which dry periods occur (three of ten), when mineral N is
applied at GS30, the N deficiency is not recovered because the lack of soil moisture prevents proper
N uptake by the crop. In these cases, the application of 40 kg N ha−1 at GS21 leads to higher yields.
As the N rate at GS30 can be modulated with the proximal tools, the application of 40 kg N ha−1 at
GS21 is necessary to ensure an optimal N status from the beginning of wheat crop development.

These hand-held tools are used during the wheat-growing period (GS30), but many environmental
variables may affect crop development until harvest. In order to address this, given that remote sensing
measurements are not invasive, these measurements should be taken periodically to monitor crop N
status in an effective way. Routine measurements throughout the growing season are particularly
needed in climates with variable rainfall. Measurements taken with RapidScan C-45 were less time
consuming and better represent the spatial variation as they are taken on the plant canopy.

While Yara N-TesterTM or Rapidscan CS-45 look promising for adjusting N application rates,
further research is needed to improve the use of these sensors. These research findings could be used
in applicator-mounted sensors to make variable-rate N applications.
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