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Emerging and Advanced Green Energy Technologies for
Sustainable and Resilient Future Grid

Surender Reddy Salkuti

Department of Railroad and Electrical Engineering, Woosong University, Daejeon 34606, Korea;
surender@wsu.ac.kr; Tel.: +82-10-9674-1985

1. Introduction

Future grid refers to the next generation of the electrical grid, which will enable smart
integration of conventional, renewable, and distributed power generation, energy storage,
transmission and distribution, and demand management. Renewable energy is crucial in
transitioning to a less carbon-intensive economy and a more sustainable energy system. The
high penetration and uncertain power outputs of renewable energy poses a great challenge
to the stable operation of energy systems. The deployment of the smart grid is revolutionary
and also imperative around the world. It involves and deals with multidisciplinary fields
such as energy sources, control systems, communications, computational, generation,
transmission, distribution, customer, operations, markets, and service provider. Smart
grids are emerging in both developed and developing countries, with the aim of achieving
a reliable and secure electricity supply. Smart grids will eventually need standards, policy,
and a regulatory framework for successful implementation.

This Special Issue invited original contributions on, but not limited to, themes and
topics related to: renewable power and clean energy technologies; design and operation of
sustainable energy systems; smart grid architectures and cyber and physical security; smart
grid and green energy integration; operation and control of renewable energy sources; smart
grid and smart cities modeling; forecasting techniques for renewable energy sources and
loads; electric vehicle systems for smart grid; distributed generation and distributed storage;
agent-based smart grid simulation; decision support approaches for smart grids; electricity
market modeling and simulation for the integration of renewable sources; intelligent
approaches for smart grid management; multi-agent applications for smart grids; smart
grid energy management system; computational intelligence technologies for sustainable
energy; machine learning, IoT, and big data applications for energy systems; and demand
side management.

2. Special Issue Content

This Special Issue on “Emerging and Advanced Green Energy Technologies for Sus-
tainable and Resilient Future Grid” includes 18 papers presenting various advanced tech-
nologies related to the future grid. The first paper, by Battula et al. [1], provides an in-depth
review on energy management in microgrid; its components, control techniques, commu-
nication technologies in the use, architecture, auxiliary services, structure, and standards
available for implementation and future scope in the area of energy management system
(EMS). The prime aspects that are covered in this review are on the prospects, solutions, and
opportunities of the objective functions of the EMS using efficient strategies. This article
introduces the microgrid, its architecture composing of an AC microgrid, a DC microgrid,
and a hybrid microgrid. The microgrid components composing of distributed generators,
storage elements, loads and their composition, integration of electrical vehicles (EVs) and
their applications, demand response, and electricity market pricing. The main focus of the
review is on the different techniques adopted, which are classified as classical methods,
meta-heuristic methods, and intelligent methods used to solve different objective functions
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considering cost, active power loss, voltage stability, and emission of greenhouse gasses
with usage on non-renewable generators. The review further broadened with the structure
of control such as centralized, decentralized, and distributed control with multiple distribu-
tion generation sources, integration of EVs, and utilization of demand response and their
mode of operation which is either in islanded mode or grid connected mode. The areas
such as customer confidentiality regulations, management of communication systems, and
reliability studies with depth of discharge of the batteries, effect of the conventional grid
on greenhouse gas emissions, and demand response, active and reactive losses along with
resilience and customer management for effective and efficient operation of microgrids
have scope to emphasize in future studies.

Soliman et al. [2] proposed a robust tracking (servomechanism) controller for linear
time-invariant (LTI) islanded (autonomous, isolated) microgrid voltage control. The studied
microgrid (MG) consists of many distributed energy resources (DERs) units, each using
a voltage-sourced converter (VSC) for the interface. The optimal tracker design uses
the ellipsoidal approximation to the invariant sets. The MG system is decomposed into
different subsystems (DERs). Each subsystem is affected by the rest of the system that
is considered as a disturbance to be rejected by the controller. The proposed tracker
(state feedback integral control) rejects bounded external disturbances by minimizing the
invariant ellipsoids of the MG dynamics.

Malik et al. [3] designed and fabricated a novel thermal energy storage system using
phase change material. The concept of utilizing phase change materials (PCMs) has
attracted wide attention in recent years. This is due to their ability to extract thermal
energy when used in collaboration with photovoltaic (PV), thus improving the photoelectric
conversion efficiency. The aim of this study was to design and study a latent heat thermal
energy storage system which can store solar energy for a reasonable amount of time. This
stored energy is environmentally friendly and can be used for any indoor heating purpose
such as cooking, water, and room heating applications in the absence of sunlight. The
experimental results of the designed system show that the system is capable of storing
enough energy during sunshine hours that can later be used for any heating application in
the absence of sunlight. In the current study, potash alum was identified as a phase change
material combined with renewable energy sources that can be efficiently and effectively
used in storing thermal energy at comparatively lower temperatures that can later be used
in daily life heating requirements. A parabolic dish which acts of a heat collector is used to
track and reflects solar radiation at a single point on a receiver tank.

Swain et al. [4] presented a smart city energy model along with a comprehensive state-
of-the-art overview of blockchain-powered energy systems with an objective to transform
traditional cities into smart communities. It aims to increase the energy efficiency and
network security of smart grids with the help of nature-inspired algorithms and blockchain
technology. This work also identifies some of the major issues associated with the energy
grids and provides solution to overcome these challenges. Focusing mainly on the intelli-
gent management of energy systems, it introduced wireless sensor networks, microgrid,
prosumers, and blockchain technology in this energy model to generate and consume clean
energy on a decentralized trading system. The smart grid network consists of several
wireless sensor nodes that come with various challenges such as limited computational
capabilities, huge consumption of energy by the sensors in longer communication distances
resulting in decreased network lifespan, and increased communication costs. This led to
the introduction of nature-inspired algorithms such as particle swarm optimization (PSO)
and genetic algorithm which provided optimal solutions for these challenges. This work
presents the properties and mechanisms of biological systems and deployed PSO and
genetic algorithm for energy-efficient selection of cluster head in a group of sensor nodes
and achieved optimal routing in the communication system, respectively, for faster trans-
mission of data in less processing time. In order to improve energy distribution capability
in the smart community and maintain security of the systems, the blockchain-based smart
microgrid technology is deployed using a decentralized application to enable peer-to-peer
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energy trading. This is done by implementing Web3 technologies and Ethereum smart
contract to maintain energy records in a decentralized, transparent, and cost-effective way.

Kim et al. [5] proposed a photovoltaic (PV) string-level isolated DC–DC power op-
timizer with wide voltage range. A hybrid control scheme in which pulse frequency
modulation (PFM) control and pulse width modulation (PWM) control are combined with
a variable switching frequency is employed to regulate the wide PV voltage range. By
adjusting the switching frequency during the PWM control process, the circulating current
period can be eliminated and the turn-on period of the bidirectional switch of the dual-
bridge LLC (DBLLC) resonant converter is reduced compared to that with a conventional
PWM control scheme with a fixed switching frequency, resulting in better switching and
conduction loss. Soft start-up control under a no-load condition is proposed to charge
the DC-link electrolytic capacitor from 0 V. A laboratory prototype of a 6.25 kW DBLLC
resonant converter with a transformer, including integrated resonant inductance, is built
and tested in order to verify the performance and theoretical claims.

Yoo et al. [6] presented a demonstration and validation of primary frequency control
(PFC) and secondary frequency control (SFC) with a vehicle-to-grid (V2G)-capable Nissan
leaf EV using a commercially available supervisory control and data acquisition (SCADA)
and MATLAB/Simulink, based on droop characteristics designed for PFC and the dispatch
of area control error (ACE) signals for SFC at a V2G testing facility of the National Research
Council (NRC), Canada. The simulation models derived, implemented, and described
in this work are based on time-domain dynamic analysis using the phasor modeling
technique. Then, model-based simulations of PFC and SFC with an intelligent optimal
control algorithm, including a coordinated control of the state of charge (SOC) and charging
schedule for five aggregated EVs with different departure times and SOC management
profiles, are presented to validate the effectiveness of frequency control using the integrated
fleet of V2G-capable EVs and to verify its relevant technical issues.

Veeramsetty et al. [7] uses a stochastic gradient descent optimizer to update the
parameters in the regression models. Simple linear regression and polynomial regression
models were used to predict the active power load. A new approach, i.e., predict the active
power load based on load at last three hours and load at one day before was used with
various regression models and dimensionality reduction technique was used to reduce the
complexity of the model so that overfitting problem was removed. Data analytic tools were
used to process the data before feeding it to the model.

Musengimana et al. [8] proposed a method that uses the DC-link voltage error devi-
ation to generate the additional reactive current reference. The obtained compensating
reactive current is added to the reactive current reference from the point of common cou-
pling (PCC) voltage control loop. By updating the reactive current reference with respect
to the DC-link voltage, the instability issues induced by the control loops coupling are
overcome. Further, the proposed control strategy also benefits from easy implementation
and good robustness against AC voltage control (AVC), DC bus voltage control (DVC), and
phase-locked loop (PLL) bandwidth variation, as well as the grid strength variation. The
performance of the proposed method is evaluated by using the small-signal stability analy-
sis based on the derived small-signal model. The comparative evaluation of the proposed
control method with the conventional control method is also performed in this work.

Devarapalli et al. [9] proposed an approach to measure the true power factor (TPF)
using a four-term minimal sidelobe cosine-windowed enhanced dual-spectrum line inter-
polated Fast Fourier Transform (FFT). The proposed method was used to measure the TPF
with a National Instruments cRIO-9082 real-time (RT) system, and four different low-power
consumer electronic appliances (LPCEAs) in a smart home were considered. The RT results
exhibited that the TPF uniquely identified each usage pattern of the LPCEAs and could use
them to improve the TPF by suggesting an alternative usage pattern to the consumer. A
positive response behavior on the part of the consumer that is in their interest can improve
the power quality in a demand-side management application.
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Benbouhenni et al. [10] designed the third-order sliding mode (TOSM) command to
control and minimize the ripples of current, reactive power, torque, and active power of
asynchronous generators (ASGs)-based variable-speed contra-rotating wind power (CRWP)
systems. A TOSM technique to overcome the undulations power problem is designed
for the direct field-oriented control (DFOC) technique of variable-speed CRWP systems.
A DFOC control strategy with TOSM controllers is employed to enable avoidance of the
power undulations and improve the response time. The system states can be ensured
to improve in variation parameters. The principle of the proposed TOSM controllers
is detailed in the work. Validation of the designed technology is carried out by digital
simulations using MATLAB software.

Gunda et al. [11] explored an extended Kalman filter (EKF) algorithm to predict
primary side currents of the transformer, using the nonlinear state-space transformer
model. A residual signal is derived from the difference of measured and estimated currents
on the primary side winding of the transformer. When the transformer is under normal
conditions, the residual signal becomes zero based on the EKF estimation. If the transformer
is in a faulty condition, large residual currents are generated. The residual signal amplitude
is compared with the threshold value in order to classify the magnetic inrush current and
internal fault current. In this work, the diagonal elements of the covariance matrix are
utilized to analyze the severity of the fault occurrence in the transformer. The simulation
results are presented to evaluate the EKF for different conditions of the transformer.

Bayati et al. [12] proposed an analytical expression of the current of a DC microgrid
(MG) cluster under fault conditions. First, the analytical model of the fault current of
the AC/DC converter between the grid and DC MG is presented. Second, the analytical
model of a bidirectional interlink DC/DC converter of the interconnection line between
two adjacent DC microgrids in a clustered DC MG is derived in detail. Then, a DC fault
clearing strategy is proposed based on using a DC fault current limiter (FCL) in series
with a DC circuit breaker. Finally, the performance of the proposed method is evaluated
based on time-domain simulation studies on a test DC MG cluster in MATLAB/Simulink
environment. The simulation results are also compared with the results of the proposed
analytical model. The obtained results verify the analytical expression of the fault current
and prove the effectiveness of the proposed DC fault current limiting and clearing strategy.

Dubey et al. [13] proposed a multiobjective model capable of finding a set of trade-off
solutions for the joint optimization problem, considering the cost of reserve and curtailment
of power from renewable sources. Managing a hybrid power system is a challenging
task due to its stochastic nature mixed with the objective function and complex practical
constraints associated with it. This work focuses on profit-based multiobjective scheduling
with the objectives are profit maximization by selling electricity generated through various
sources and minimizing emissions by conventional (thermal) sources. The generation
sources include solar photovoltaic (PV), wind, and conventional plants. The optimization
problem addressed has practical constraints, including power balance, generation limits,
and ramp limits. The conflicting objectives: profit and emission, are aggregated using the
fuzzy-min ranking method. Thermal sources are modeled as quadratic polynomial; solar
PV units use probabilistic modeling, and wind power uses Weibull distribution for wind
velocity variation. The PV and wind power costs use overestimation and overestimation
to balance renewable power generation uncertainty. A novel metaheuristic Equilibrium
Optimizer (EO) algorithm is used for computing the optimal schedule and impact of
renewable energy integration on profit and emission for different optimization objectives.

Javed et al. [14] analyzed an effective scheduling of a battery energy storage system
(BESS) and the effects of PV systems for a campus microgrid to minimize the energy
operating costs for a prosumer microgrid with the implementation of actual load data. The
suggested system utilized solar energy, a BESS, and diesel generators in several scenarios
and their consequences were investigated. The optimal scheduling was implemented
in MATLAB and formed as a mixed-integer linear programming (MILP) problem. The
time-of-use (TOU) pricing-based demand response (DR) was investigated here as part of a
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financial and economic analysis, and the energy storage system (ESS) was used as a flexible
DR framework that could be charged or discharged wisely at various times to meet the
budget target without compromising its durability. Without the distributed generation
(DG) or ESS, the utility grid supplied all the campus microgrids required energy, leading to
higher operational expenses.

Pothireddy et al. [15] addressed the complication of solutions, merits, and demerits
that may be encountered in today’s power system and encompasses DR and its impacts
in reducing the installation cost, the capital cost of DGs, and total electricity tariff. To
achieve this, an objective function was formulated and an optimal sizing method has been
proposed by considering the impact of DR for finding the optimal size of DGs, i.e., wind
turbine, PV, and diesel generator. Further, the proposed algorithm clusters the load into
interruptible loads (ILs) and non-interruptible loads (NILs) and assigns a priority to the
non-essential loads with the order of scheduled times by using time of use pricing (TOU)
pricing. In addition, this work suggests a limit on the amount of load shift to avoid the
issues like rebound effect, increase in marginal price, and operational cost of the MG due to
load recovery. The future extension of this work is studying the impact of DR programs
in optimal sizing of DGs by considering the uncertainty in renewable energy sources.
Finding the elasticity and cross elasticity matrix of load with respect to price changes can
be performed.

Romero-Ramirez et al. [16] introduced a methodology for the detection and quan-
tification of stationary frequency components in the electrical signals of a smart building,
and fusing the spectral kurtosis (SK) with the fast Fourier transform (FFT). The use of the
proposed methodology presents some advantages against the conventional approaches,
for instance, the ease of its implementation since the mathematics behind this methodol-
ogy are simple. This situation results in a technique that is efficient and demands a low
computational burden. Moreover, it is possible to perform a time tracking of a specific
stationary frequency component (SFC) without problems, such as the mode mixing in-
troduced by time-frequency transforms, such as wavelet transform (WT) and empirical
mode decomposition (EMD), this way it is possible to perform a quantification of how
every SFC contributes to detriment the quality of the power grid. Although SK is a widely
explored technique, its use is more extended in the identification of transient events. Addi-
tionally, the combination of SK and FFT represents a novel solution for the time tracking
and quantification of SFC. The proposed methodology aims to be a helpful tool to perform
an estimation of the types of loads that appear in the grid and how they impact the quality
of the supply. This way it is possible to propose actions in order to mitigate the undesired
effects associated with a specific type of load.

Lee et al. [17] defined the life-cycle cost for an ESS in detail based on a life assessment
model and used for scheduling. The life-cycle cost is affected by four factors: temperature,
average state-of-charge (SOC), depth-of-discharge (DOD), and time. In the case of the
DOD stress model, the life-cycle cost is expressed as a function of the cycle depth, whose
exact value can be determined based on fatigue analysis techniques such as the Rainflow
counting algorithm. The optimal scheduling of the ESS is constructed considering the
life-cycle cost using a tool based on reinforcement learning. Since the life assessment cannot
apply the analytical technique due to the temperature characteristics and time-dependent
characteristics of the ESS SOC, the reinforcement learning that derives optimal scheduling
is used. The results show that the SOC curve changes with respect to weight. As the weight
of life-cycle cost increases, the ESS output and charge/discharge frequency decrease.

Menniti et al. [18] illustrated the main enabling technologies, smart meter, ESS, DC
Nanogrid (DCNG) and Energy Community Management (ECM) platform that must be
used to support the growth of renewable energy communities (RECs). The innovative
settlement of the Advanced End-User (AEU) is introduced, defined as an active and pro-
active end-user equipped with the above-mentioned enabling technologies. Additionally,
some use cases and the associated performance indexes have been identified and defined,
respectively. The numerical results performed both, considering the operation of a single
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AEU and four AEUs operating as an REC, are illustrated, and discussing when flexibility
service requests are sent or not, highlighting how it is possible to both maximize the self-
consumption and satisfy the flexibility service request in the case of an REC consisting of
AEUs as members.

3. Closing Remarks and Future Challenges

The papers in this Special Issue reveal an exciting research area, namely the “Fu-
ture Grid” that is continuing to grow. This Special Issue addresses the emerging and
advanced green energy technologies for a sustainable and resilient future grid, and pro-
vides a platform to enhance interdisciplinary research and share the most recent ideas.
Various high-priority areas of smart grid technologies are addressed including informa-
tion and communication technology integration, transmission enhancement applications,
distribution and management, advanced metering infrastructure, charging infrastructure,
sharing of energy storage, demand flexibility to the grid, and trading of renewable energy.
Therefore, I believe that the published papers will have practical importance for the devel-
opment of the future grid. Finally, I would like to thank all our authors, reviewers, and
editorial staff who have contributed for the publication of this Special Issue. I am sure
all readers of this Special Issue of Energies will find the scientific articles interesting and
beneficial to their research work.

Funding: This research work was funded by “WOOSONG UNIVERSITY’s Academic Research
Funding-2022”.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: To sustain the complexity of growing demand, the conventional grid (CG) is incorporated
with communication technology like advanced metering with sensors, demand response (DR), energy
storage systems (ESS), and inclusion of electric vehicles (EV). In order to maintain local area energy
balance and reliability, microgrids (MG) are proposed. Microgrids are low or medium voltage
distribution systems with a resilient operation, that control the exchange of power between the main
grid, locally distributed generators (DGs), and consumers using intelligent energy management
techniques. This paper gives a brief introduction to microgrids, their operations, and further, a review
of different energy management approaches. In a microgrid control strategy, an energy management
system (EMS) is the key component to maintain the balance between energy resources (CG, DG,
ESS, and EVs) and loads available while contributing the profit to utility. This article classifies the
methodologies used for EMS based on the structure, control, and technique used. The untapped
areas which have scope for investigation are also mentioned.

Keywords: renewable energy sources; microgrid; energy management system; communication
technologies; microgrid standards

1. Introduction

Over the last few decades, with an increasing population, the world has gone through
an exponential consumption of energy which has led to the depletion of conventional
resources like coal, crude oil, and natural gas. The exploitation of these resources has
a severe impact on the environment with an increase in greenhouse gases [1,2]. To mit-
igate these effects, a policy has been adopted by different countries to introduce non-
conventional/renewable sources to support the fields of electrification and transportation.
In electrification, the existing power grid uses conventional sources for generation and lacks
power quality. The poor power quality of supply leads to load shedding and blackouts,
thereby interrupting the day-to-day activities of the consumers. The conventional grid uses
one-third of the total generation fuel to convert into electricity and, with an eight percent
loss in transmission lines of the generated electricity, is used to meet the peak demand that
also has a five percent probability of occurring, with reduced reliability [3]. Conventional
generation does not utilize the heat produced by itself for any application. These drawbacks
of the conventional grid could be compensated with penetration of renewable sources
at local areas or distributed generation (DG) there by reducing the transmission losses
and maximum utilization of the output including heat generated [4–6]. Integration of dis-
patchable energy sources like wind and PV introduces the problem of intermittent power
generation as they generally depend on climatic and meteorological conditions. A hybrid
energy system consisting of storage elements and renewable energy sources is used for the
continuous supply of power. The future power grid needs to be intelligent to maintain a
reliable supply of economical and sustainable power for consumers [7–10]. To overcome
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the existing challenges in the grid, a smart grid needs to be adopted which controls the
complex process of power exchange and plans as well for the growing energy demand.
The future grid requires the support of communication technologies and local microgrids
(MG) for efficient control of the system. The integration of renewable energy resources at
the load side requires a two-way flow of power and data with the capability of adapting to
management applications that can leverage the technology [11]. During a fault condition,
the local microgrid isolates itself from the main grid, creating a standalone/islanding mode
of supply to the consumers [12,13]. This feature is known as plug and play, which allows
the local generation to meet the demand by balancing the energy available. The microgrid
consists of a microgrid control center (MGCC) and local controllers (LCs) to balance the
energy demand. The microgrid takes the inputs from forecasted parameters (weather,
generation, and market prices) to meet the uncertain load demand and also participates in
the energy market. The MGCC is supported by communication technologies and equipped
with processing algorithms to overcome the challenges in the generation–demand bal-
ance [14–17]. The energy management in microgrids controls the power supply of storage
elements, demand response, and local controllers/local generation sources. Figure 1 shows
a typical structure of a microgrid.

Figure 1. Structure of a typical microgrid.

The contributions of this paper are shown as below:

• This paper provides a brief introduction about the architecture of microgrids, different
classifications in microgrids, components of a microgrid, communication technologies
used, standards available for the implementation, and auxiliary services required.

• This paper provides a review of the recent analysis of the different energy management
strategies consisting of classical, heuristic, and intelligent algorithms. The article
analyzes each approach and its applications in that methodology.

• The paper addressed applications in energy management which include forecasting,
demand response, data handling, and the control structure.

• This article provides insight on areas in which the scope of research and their contri-
bution to energy management is in the nascent stage.

The energy management strategies proposed for the microgrid in the paper are struc-
tured into six sections. Section 1 is the introduction to microgrids and energy management.
Section 2 provides a brief overview of microgrid elements, architecture, classification,
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and communication. Section 3 gives an overview of different control structures in energy
management. Section 4 provides reviews on different numerical algorithms used in energy
management strategies in microgrids based on the classification, control, and methods of
approach. Remarks on each paper for different controls of the EMS application are given.
Section 5 discusses the support infrastructure of microgrids for their efficient operation.
Section 6 provides the conclusion of the paper.

2. Overview of Microgrid

2.1. Microgrid Components

A microgrid is a small or medium distribution system comprised of smart infras-
tructure capable of maintaining equilibrium in demand–supply while providing security,
autonomy, reliability, and resilience. Sourced distributed generations (DGs) like photo-
voltaics (PV), wind turbines (WT), microturbine (MT), fuel cells (FC), and energy storage
units (ESU) are expected to deliver electricity without interference from the main grid.
This high penetration of DGs can cause challenges in the performance of power system
stability in large areas. To minimize the risks, the concept of microgrids is proposed [18,19].
A microgrid is a small-scale low- or medium-level voltage distribution system consisting
of distributed energy resources (DERs), intermittent storage, communication, protection,
and control units that operate in coordination with each other to supply reliable electricity
to end-users [20].

2.1.1. Distribution Generations (DGs)

Conventional generation (CG), such as coal-based thermal power plants, hydro power
plants, wind-generation farms, and large-scale solar and nuclear power plants, are central-
ized to supply electricity for long distances. A decentralized generation is energy generated
by the end-users by using small-scale energy resources [21,22]. Local generation when
compared with the conventional power system reduces the transmission losses and the
cost associated with it. The generation could be from 1 kW to a few 100 MW; the generation
units are mostly used to support the peak load of the demand. Distributed generation
sources consist of both renewable and non-renewable sources, i.e., wind generators, PV
panels, small hydro power plants, and diesel generators [23]. Combined heat and power
(CHP) is where heating is added along with electricity in the application. The sources
that are being used in CHP systems are Stirling engines, internal combustion engines, and
micro-turbines (MT) using biogas, hydrogen, and natural gas [24]. CHP technology stores
excess allowing optimum performance, thereby attaining efficiency of more than 80%,
to that of about 35% for centralized power plants [25]. Table 1 shows characteristics of
distributed generation sources.

Table 1. Characteristics of distributed generation sources.

Characteristics Solar Wind Micro-Hydro Diesel CHP

Availability Location-Based Location-Based Location-Based Anywhere Source-Based
Output DC AC AC AC AC

Carbon emission Nil Nil Nil High Source-Based
Interface Converter Converter + IG/SG IG/SG Generator Generator

Flow control MPPT/DC Voltage MPPT/Torque and Pitch Controllable Controllable AVR and Governor

DC—Direct current, AC—Alternate current, MPPT—Maximum power point tracking, AVR—Automatic voltage regulator.

2.1.2. Energy Storage System (ESS)

Energy storage is a device that is capable of converting the electrical energy to a
storable form and converting it back to electricity when it is needed. Based on the form of
stored energy, there are four main categories for energy storage technologies: mechanical
energy storage (MES), thermal energy storage (TES), chemical energy storage (CES), and
electrical energy storage (EES). The key components for the working of MG EMS are the
energy storage units, which regulate the supply–demand balance during the operation of
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DGs. In [26–28], a conclusion is drawn that a system with several micro sources is modeled
to support an island mode where storage systems are needed to maintain the balance of the
intermittent sources. The energy storage devices that are included in microgrid systems
that provide continuous power supply are batteries, flywheels, and supercapacitors [29].
In terms of the current economy, batteries are less expensive and have a high negative
environmental effect compared to other storage devices. Storage in fuel cells is also another
option that converts the fuel into electricity through a chemical process. These fuel cells
require oxygen and hydrogen for continuous supply without discharge. A variety of fuels
available for the fuel cell are propane, natural gas, anaerobic digester gas, methanol, and
diesel hydrogen [30], while hydrogen has become prominent in recent years for its clean
and safe operation. Table 2 shows commonly used energy storage and their characteristics.

Table 2. Different energy storage systems in microgrids.

Characteristics
Charge/Discharge

Rate (MW)
Discharge
Duration

Response
Time

Energy
Density
(Wh/kg)

Power
Density
(W/kg)

Environmental
Impact

Service
(Years)

Efficiency
(%)

Battery 0–40 msec–hours msec 10–250 70–300 High 5 70–90
Flywheel 0.001–0.005 msec–1 h msec 0.005–5 500–10,000 Low 20 75–95

Supercapacitor 0.002–0.25 msec–15 min instantaneous 5–130 400–1500 Low >10 90–95
Fuel Cell 0.001–50 sec-day+ m sec 800–10,000 500–1000 Moderate >15 20–90

CES 0.1–300 Hour–day+ min 3–60 - Low 15 40–90
SMES 0.1–10 msec–10 sec instantaneous 0.5–5 500–2000 Low 10 >95

Pumped
storage

0.1–5000 Hour–day+ Sec–min 0.5–1.5 - Low 25 >85

2.1.3. Loads and Their Classification

Loads can be categorized as residential, commercial, industrial, and others (agriculture
and public offices) from the statistical data of feeder consumption in the distribution
system. Measurement-based and component-based approaches are considered for load
model identification [31]. The measurement-based approach needs the measured data
from the smart meters or measuring devices which derives into load model structure. The
capturing of data for load characteristics needs to be composed of different environmental
conditions. The data obtained from the smart devices are used to form the load model
structure as static, ZIP (constant impedance-resistive components or heating, constant
current-street lighting, and constant power motors), and exponential [32,33]. Then, the
structure is estimated and validated with field measurements by correcting the errors
using intelligent detection techniques (artificial intelligence and pattern detection). The
component-based approach aggregates the load model by combining the load consumption
of individual components, acquired by the information or rating of each load in the load
composition. This approach needs three different datasets: (i) individual component load
model, (ii) percentage of each component’s load consumption, and (iii) share of the load
contribution from each load class—residential, commercial, and industrial. The individual
component model parameters are obtained from experiments [34–37]. Figure 2 has shown
different loads classification is based on identification and control.

The above-discussed techniques and classifications are the key structures for the smart
loads. Smart loads are energy-efficient sensor-based controllable load infrastructures that
have real-time access to energy usage data. Smart houses control the appliances according
to users’ preferences, using the intelligence of the appliances to enable the consumer to use
real-time energy budgeting to manage in any given day, which allows smart loads to tune
the consumer’s energy consumption to their daily lifestyle consumption [38,39].
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Figure 2. Loads classification is based on identification and control.

2.1.4. Integration of Electric Vehicles

Increased pollution led the world to move away from conventional fossil-powered
vehicles to electric vehicles. Electric vehicles have untapped potential in both environ-
mental and energy applications. A few of the applications of the electric vehicle are the
vehicle-to-grid (V2G), vehicle-to-vehicle (V2V) supply of power [40,41]. The connection of
EV connected to the grid through the charging station is shown in Figure 3.

Figure 3. Electric vehicle connected to a charging station.

V2G is a process where an electric-powered vehicle supplies power to the regional
local grid to meet the demand during peak demand or participate in the energy market by
reducing the overall cost of bidding during peak rise in the price of power. This requires
communication with the power grid to return the electricity or by controlling the charging
rate which enables the EV to support the renewable energy sources from fluctuating, as they
cannot be governed [42]. A few of the EVs that support the V2G are battery electric vehicles
(BEV), plug-in hybrid vehicles (PHEV), and fuel cell electric vehicles (FCEV). When the
electric car batteries are not in use, they can be used to provide electricity to the grid or to
charge other storage devices. With an estimated increase in usage of electric vehicles in the
future, it is assured to improve the storage capability to balance the demand–supply of the
MG. Thus, it provides improved performance in the stability and reliability of the system.
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2.2. Classifications of Microgrids

A microgrid is generally connected to the grid at the point of common coupling (PCC)
through STS (static transfer switch), where voltage and frequency stability is managed by
the power grid. When disturbance or failure in the grid occurs, MG maintains the system
stability by isolating itself from the main power grid, forming an islanded condition. The
renewable energy sources (solar, hydro, wind, and bio), which are not continuous, are
connected through power electronic converters (PEC) for good power quality of output;
these converters provide a resilient, reliable, continuous, and efficient power supply [43,44].
By the nature of the output obtained, MGs are classified into AC source microgrid, DC
source microgrid, and (AC/DC) hybrid microgrid.

An AC microgrid is a common topology of its flexible voltage level transmission using
transformers. An AC supply bus is introduced where all DERs, either with DC or AC
sources, are connected using PECs to AC loads [45,46]. Almost all the loads in the power
system are of AC nature; AC-MG is most sorted. Figure 4 represents a structure of an
AC microgrid.

Figure 4. Structure of an AC microgrid.

In the DC-MG network, a DC bus connects both AC and DC sources from where
the output is taken by the loads [47]. The concept to supply the DC supply is to reduce
the number of PEC used, as the DC sources are more available compared to AC sources,
which also eliminates the possibility of harmonics due to PEC, as it is not present in DC
supply [48]. Increasing popularity in the usage of DC sources like mobiles, laptops, and
also household items for isolated places instigated the DC-MG into existence. Figure 5
represents a typical DC microgrid structure.
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Figure 5. Structure of a DC microgrid.

An AC/DC hybrid MG is proposed to effectively introduce both AC and DC sources
and consumers in a system. AC sources and DC sources are connected to their respective
buses where the outputs are given to the consumers accordingly [49]. The idea of AC/DC
hybrid MG is to simultaneously use the supply from both DC and AC sources and thereby
reduce the overall power consumption [50]. This is possible by the PEC at both supply
buses that support the bi-directional exchange of power from source end to load and
vis-à-vis. Figure 6 represents a hybrid microgrid.

Figure 6. Structure of a hybrid microgrid.

2.3. Control Structure of a Microgrid

As a small-scale electrical distribution network, an MG has many variables and con-
straints to control. An energy management system plans, supervises, and manages the
system’s supply–demand balance while assuring dependable, cost-effective, and efficient
operation [51–53]. The management of a microgrid needs to deal with different technical
and economical areas, timescales, and infrastructure levels, which requires a control struc-
ture to operate the variables. One such control structure for the microgrid is the hierarchical
control scheme, which is a generally accepted standardized solution [54].

The hierarchical control structure consists of three different levels operating with
individual operating time, data inputs, and control equipment. The different levels in
hierarchical control schemes are: (i) primary level, which supervises the control of the DER
units; (ii) secondary level, which is responsible for the voltage and frequency modification
of the system in coordination with the primary level; (iii) tertiary level, which is the core
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control of the system like demand–supply management, storage management, renewable
integration, power flow control, optimization of parameters, and control strategies. The
tertiary level can also be termed as the energy management system [55]. Figure 7 shows a
typical hierarchal control of a MG.

Figure 7. Hierarchal control of a microgrid.

2.4. Communication of the Microgrid

Communication is an important tool that converts the conventional power network
into an intelligent system, connecting generation, transmission, distribution, and utilization
systems to the central management center to maintain stability by processing the real-time
data. There are several wires and wireless technologies available in the market but the
selection of technologies depends on features like data rate, latency, coverage area, reliabil-
ity, and consumption of power [56]. Table 3 presents various communication technologies
used in microgrid. Communication equipment could increase the MG implementation
cost with an increased number of communication devices like the repeater and routers for
feasible and fast co-collection of data in an area. Increase data collection by the sensors and
monitors in the smart homes and smart cities to compensate for the cost and the dire need
to reduce the communication infrastructure while maintaining the reliable operation [57,58].
With recent trends in MG’s integration and to incorporate internet of things (IoT) devices
for measuring, it is better to consider wireless communication technology for its wider
applications [59].
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Table 3. Communication technologies in a microgrid.

Technology Spectrum Data Rate Range

GSM 900–1800 MHz 14.4 Kb/s 1–10 km
GPRS 900–1800 MHz 170 Kb/s 1–10 km

3G 1.92–1.98 GHz 2 Mb/s 1–20 km
4G 2.11–2.6 GHz 100 Mb/s 1–10 km
5G 3–90 GHz 10 Gb/s >1 km

WiMAX 2.5–5.8 GHz 75 Mb/s 10–50 km
PLC 1–30 MHz 2–3 Mb/s 1–3 km

Zigbee 800 MHz–2.4 GHz 250 Kb/s 30–50 m
Bluetooth 2.4–2.483-GHz 2.1 Mb/s 0.1–1 km

3. Energy Management System Control Structure

3.1. Structure of EMS

According to the International Electro-Technical Commission (IEC) standard appli-
cation program about power systems, IEC-61,970 defines an energy management system
as a “computer system comprising a software platform providing basic support services
and a set of applications providing the functionality needed for the effective operation
of electrical generation and transmission facilities to assure adequate security of energy
supply at minimum cost” [60].

Different operations of EMS are data analytics, forecasting, optimization, and human–
machine interface (HMI), and network reconfiguration for real-time interface with the EMS.
Figure 8 shows the structure of the EMS of an MG.

Figure 8. Structure of energy management system.

Energy management in microgrids is a complex automated system that is aimed
at optimal scheduling of available resources (CG, DGs, ESS) to meet the day-to-day de-
mand while considering the meteorological data and market price. There are three control
approaches in energy management of the microgrid which are: (i) centralized, (ii) decen-
tralized, and (iii) distributed.

The centralized control is at the core of the control in this method MGCC, which
collects the information from the local controllers and analyzes it to control the system
actions [61]. This process requires end-to-end communication between all local controllers
to the central controller. Different EMS structures are shown in Figure 9.
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Figure 9. Types of EMS control: (a) centralized, (b) decentralized, (c) distributed.

With an increase in the geographical area, the system control in centralized mode
becomes difficult due to the delay or lag in the communication, which leads to delay control.
This process is not feasible as well as not economical; hence, we choose the decentralized
mode of control. In decentralized control, each unit has its own local controller that
works in an autonomous state where it receives the voltage and frequency data [62].
Here, the decentralized control does not provide the all the information to the other local
controllers, but rather exchanges the global information to make the decisions of the
overall system. The exchange of information is allowed in a few controllers to take action
spontaneously in a state of emergency. A third approach, obtained with a combination
of the above two control approaches, is the distributed control [63]. This mode of control
scheme provides control to both centralized as well to decentralized property up to a
certain degree of control. In this control scheme, each local controller unit uses the local
information like voltage and frequency from the neighbors, which helps to obtain a global
solution by the central controller while using the two-way communication link by the local
controllers. Characteristics of different types of controls in the energy management system
are presented in Table 4.

Table 4. Characteristics of different types of controls in the energy management system.

Centralized Decentralized Distributed

Information Accessed
Microgrids pass information to

the central controller

Independent control is provided
with data from the other local

controllers

Interoperability and data
exchange between every device

Communication Information
Synchronized information from

the device to the central controller
Information among local

controllers is asynchronized
Communication is both locally

and globally asynchronized

Function in real-time Complex Acceptable Easy

Feature of Plug and play
The central controller needs to

be instructed
Can be accessed by
central controller Available by the peers

Expenditure More Less Less

Structure of Grid Centrally controlled Locally controlled Both centrally and
locally controlled

Tolerance during fault Less tolerance capability One router fault—tolerated
N router fault—expensive

N router fault—tolerated,
Possible self-healing feature

Infrastructure
Needs suggestion
integrating DERs

Integration is modular
and possible No change while integration

Size (Number of nodes) Less IPv4-212

IPv6-2128 >2128

Final Nodes No identification Unique identification IP Global unique identifier

Operation Flexibility Very less Available Very much needed

Bandwidth & Latencies Low and high Both are great High and low

QoS Not allowed Allowed Inherent

Connectivity EPA (Physical) TCP/IP (Physical) TCP/IP (Virtual)

Safety measures Less Available High

Individuality No No Possible
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3.2. Data Handling in EMS

Data handling and clustering are the prominent steps towards system management,
as many intelligent measuring and sensing devices have been integrated with the MG,
which generates a large amount of data per unit (hour, minutes, or seconds). The complex
structure of MG system requires it to be equipped with different sensors and monitoring
equipment which bring varied kinds of data, like structured data from the conventional
power system, semi-structured data from the system like images (camera), unstructured
data from meteorological data, network structure, and maps [64]. Figure 10 shows different
data types available in EMS.

Figure 10. Data availability in a microgrid.

Usage of a wide variety of applications of communication and network has improved
the speed of the data generated from the units while applications like big data are used to
access the information [65]. Intelligent networks help in unfolding the unknown patterns
from the data collected. Analytical software technologies like Hadoop, HBase, and Storm
are used as data centers to support the vast collection of the data in a structured format by
the sensors and the other measuring devices such as smart meters.

3.3. Network Reconfiguration

Network reconfiguration is an optimization problem that identifies the optimal radial
topology of the distribution network based on all topologies. Network reconfiguration is
generally carried out with the aim to reduce the power loss, harmonize voltage profile,
and unify network loading through a multi-objective framework. The multi-objective
optimal solution problem uses deterministic and stochastic methods for reconfiguration.
Much work on reconfiguration is presented using the meta-heuristic method in distribution
systems considering radial topologies by interchanging of tie lines [66,67].

3.4. Forecasting in EMS

EMS proceeds with data available towards analyzing different forecasting parameters
like electricity price market, energy purchase, weather, demand response management,
and financial planning using forecasting techniques.

Forecasting is a prominent part of energy management, which is classified in different
categories concerning the period of forecast required [68]. These classifications are: (i) very
short-term (seconds– 1

2 h), which is used for the dynamic control of renewable energy
sources according to the load requirements; (ii) short-term ( 1

2 –6 h), which is used for energy
scheduling among the sources and the storage devices; (iii) medium-term (6 h–1 day),
which is used for market pricing; and (iv) long-term (1 day–1 week), which is used in load
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dispatch and maintenance [69]. Figure 11 shows types of forecasting techniques available
in EMS of microgrid.

Figure 11. Forecasting techniques in EMS.

3.5. Demand Management in Microgrid

Load balance acts as a constraint between generation and demand. Load demand
balance problems can be categorized in two ways: the supply-side and the demand-
side [70]. Supply-side balance can be obtained by using the hierarchical control scheme
for the economic scheduling for consumption by the end-users. Load control can be
categorized as: (i) controllable loads, which are the loads that are managed according
to the price, and (ii) shiftable loads, also known as deferrable loads, such as charging of
electric vehicles, washing machines, dryers, which can provide scheduling flexibility for
demand response.

The demand-side balance needs to be carefully accessed by modeling the generation
in renewable energy, i.e., by forecasting for the supply to the users in the system. Demand-
side control is sub-categorized into direct load control (or the demand side management)
and price-based load control (or the demand response). Demand-side control is performed
by the central controller by the consumer agreement to mainstream the economic agenda.
In the price-based load control, the consumer is provided with options to choose their
energy consumption according to the market price available. Figure 12 shows different
supply and demand classification in EMS.
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Figure 12. Supply and demand management classification.

4. Numerical Methodologies of EMS

Different EMS techniques are differentiated according to the numerical methods used
for controlling the energy management system. These methods are broadly classified into
three categories: (i) classical methods, (ii) metaheuristic methods, and (iii) intelligent methods.

4.1. Classical Methods

Classical methods are the mathematical programming or classical programming
methods that choose certain variables to maximize or minimize a given function subject
to a given set of constraints. Branch and bound are the classic components that are used
for solving the classical method approach to find the optimal solution in an iterative
process without integer constraints. Classical methods use both linear and nonlinear
optimization models to solve the problem. The classical methods are divided into certainty-
and uncertainty-constrained problems.

Under certainty linear programming (LP) are mixed integer programming (MIP) and
nonlinear programming (NLP). A combination is mixed-integer non-linear (MINLP) and
mixed-integer linear programming (MILP) [71–73]. Uncertainty constraints are decision
theory (rule-based and deterministic-based), where the output of the model is fully deter-
mined by the parameter values and the initial values; whereas probabilistic (or stochastic)
models incorporate the randomness in their approach such as dynamic programming (DP)
and stochastic programming (SP) [74]. An optimization algorithm is an algorithm that
uses the physical deterministic method of solving the solution without any random nature
being known as deterministic. Table 5 shows a review of MG EMS by classical methods.

Table 5. A review on classical mathematical programming methods used in EMS.

Ref No. Method
Power

Sources
Ev Dr Grid/Island Ems Remarks

[75] MILP-LP PV, BT, FC G/I C A mixed-mode of EMS is proposed with
ON/OFF and continuous run mode.

[76] MILP PV, WT, BT * I C
Cost reduced by reducing the ESS with
advantageous demand response (DR)
determination.

[77] MILP PV, BT, DE * G/I C
EMS proposed to minimize the fuel cost while
optimizing the diesel generators and battery
sizing using a piecewise linear function.

[78] MILP PV, WT * I C
Optimizing the day-to-day energy scheduling
with DR and EVs using multiobjective
constraints.
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Table 5. Cont.

Ref No. Method
Power

Sources
Ev Dr Grid/Island Ems Remarks

[79] MILP PV, WT, DE,
MT, FC, BT * G/I C

EMS is modeled to optimize while determining
the capital cost, cost of the fuel, energy cost, and
penalization for emission. Energy sources and
storage are considered in economical dispatch
for techno-economic analysis.

[80] MILP PV, BT G/I C A three-phase EMS model is proposed with load
shedding considering outage constraints.

[81] MINLP PV, WT, MT,
FC, BT I C

EMS is developed for a three-phase system to
minimize the fuel, startup, and shutdown
expenditure.

[82] MINLP PV, BT G/I C
Stable operation of hybrid MG with clean water
supply while reducing the overall daily
operating costs.

[83] NLP PV, FW, MT,
FC, BT G/I C Energy market operational cost and its profit are

determined by the MG management application.

[84] NLP PV, FC, BT * G/I C
Maximization of the cost benefiting
charge–discharge scheduling of the battery
considering the customers’ load shifting events.

[85] DP DE, BT G/I C

EMS is modeled to optimize the operational cost
of the conventional grids considering the penalty
cost. Computational time is reduced using
Pontryagin’s Principle.

[86] DP WT, DE, BT G/I C

Minimization of the total cost of operations by
scheduling the available units while predicting
the wind speed by short-term forecasting and
determining the real-time pricing.

[87] Approx.
DP WT, BT G/I C

Optimization of the MG is proposed considering
the cost function of the unit commitment and
economic dispatch operations along with daily
energy scheduling.

[88] Rule
based

PV, UC, MT,
BT I C

To perform power scheduling with day-ahead
forecasting for the conventional, PV generators
and gas turbine are used in a deterministic
power optimization.

[89] Rule-
based PV, WT, BT G/I C

To configure switches operation to model
different configurations considering SOC of the
battery and load imbalance.

[90] Rule
based PV, UC, BT G C

An energy management strategy with PV
generator and SOC-based battery hierarchical
structure for electricity regulation and
continuous operation of the microgrid.

[91]
Determinist-

ic
based

PV, WT, MT,
BT * G/I C

Proposed to minimize the overall running cost of
the system by reducing the industrial loads,
considering TOU rate of demand response
programs executed.

[92] NP-Hard PV, BT * G/I C

Proposes polynomial–time algorithms for
approximating optimal solutions and robust
supplier networks of group energy communities
in terms of a black start while minimizing the
operational costs.

PV—Photo voltaic; WT—Wind Turbine; MT—Micro Turbine; FW—Flywheel; DE—Diesel; FC—Fuel Cell; UC—Ultra Capacitor; G—Grid;
I—Islanded; C—Centralized, DC—Decentralized, DT—Distributed, *—Availability.
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4.2. Metaheuristic Methods in EMS

A metaheuristic is a branch of random search and generation algorithms. These
algorithms select a path through a search algorithm such as a heuristic (random) to find an
optimal solution in an optimization problem with or without constraints. Metaheuristic al-
gorithms perform computation when incomplete data or limited capacity are provided [93];
the sample set of random values are considered and explored for an optimal solution.
Metaheuristic approaches use a separate search strategy to generate a random selection or
assumption of the problem variables, which can be advantageous in a variety of situations.

An optimal solution can be found in the distinct search space as used in combinatorial
optimization. Metaheuristic method is an iterative method that is unlikely to guarantee
a global optimum solution due to its convergence properties. This can be compensated
with finding the mean of the solutions; the use of Monte Carlo simulation improves the
convergence of the solution. Stochastic implementation of optimization is dependent on
the random variables created [94]. The metaheuristic approach works on two concepts,
namely intensification and diversification. Intensification is searching a local area to find
an optimal solution when we know that solution could be found in the prescribed region.
The diversification process is searching the space on a global scale with no limits in the
search pattern using the randomly generated variables, while randomization increases the
diversity of solution when the search space exceeds the local optima. To find the global
optimal or the best solution, both the intensification and diversification processes need to
be in proper balance, which increases the rate of convergence in the algorithm [95–99]. A
few metaheuristic algorithms are particle swarm optimization (PSO), genetic algorithm
(GA), modified PSO (MOPSO), non-dominated sorting genetic algorithm II (NSGA-II),
enhanced velocity differential evolutionary PSO (EVDEPSO), priority PSO, multi-voxel pat-
tern analysis (MVPA), grey wolf optimization (GWO), artificial bee colony (ABC), adaptive
differential evaluation (ADE), crow search algorithm (CSA), rule-based bat optimization
(BO), gravitational search algorithm (GSA), alternating direction method of multipliers
(ADMM) using modified firefly algorithm (MFA), teaching–learning optimization (TLA),
social spider algorithm (SSO), and whale optimization algorithm (WOA). Table 6 provides
a critical review of the metaheuristic methods used in EMS.

Table 6. A review of metaheuristic methods used in EMS.

Ref No Method
Power

Sources
Ev Dr Grid/Island Ems Remarks

[100] NSGA-II PV, WT, BT G/I C

A multi-objective optimization problem is
proposed to maximize the economy. Intelligent
power marketing is adapted to improve the
economic dispatch of the microgrid.

[101] NSGA-II PV, WT, BT * G/I C

This paper establishes an integral objective
function considering the demand response and
user satisfaction constraints, which has an effect
on the economy and operation of the system
with the DR strategy.

[102] PSO PV, MT, BT,
TES G/I C

An optimal energy planning is proposed for the
recently modeled energy hub. An efficient
microgrid structure is discussed along with
technical and economic prospects with
optimization.

[103] CVCPSO PV, WT, DE * G/I C

Minimizing the operating costs while
maximizing the utility benefit using the
CVCPSO algorithm, which yielded the
Pareto-optimal set for each objective, and the
fuzzy-clustering technique was adopted to find
the best compromise solution.
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Table 6. Cont.

Ref No Method
Power

Sources
Ev Dr Grid/Island Ems Remarks

[104] MPVA PV, WT, MT,
BT G/I C

A sports metaheuristic algorithm to minimize
the overall running cost of MG while studying
four different MG scenarios.

[105] GWO PV, WT G/I C

A sine cosine optimizer is used to optimally
participate in the trading of energy, i.e., selling or
buying the power while bringing the capital cost
of the microgrid.

[106] ABC PV, WT, DE,
BT, FC * G/I C

An EMS application of the V2G economic
dispatch problem is optimized in the MG while
converting the multi-objective problem to a
single objective using the judgment matrix
methodology.

[107] EBC PV, WT, MT,
BT G/I C

Different TOUs are evaluated to minimize MG
operational costs and to analyze the efficiency of
a typical distribution system, considering all
relevant technical constraints.

[108] ADE DG, BT G C

An ADE-based optimization is proposed for the
DC microgrid modeling the active power
sources under real-time pricing to minimize the
total operating cost.

[109] MOPSO PV, MT, BT,
TES * G/I C

EMS application is proposed to reduce the
carbon dioxide emissions and payback period of
the microgrid structure.

[110] EVDEPSO PV, BT * * G/I C

A day-ahead planning schedule is determined to
improve the energy market trading while
managing the resources available. Includes the
electric vehicles participating in the energy
market, G2V and V2G.

[111] Rule base
BO

PV, WT, MT,
FC, BT * G C

A bat algorithm is used to optimize the MG
operation by forecasting the load power and
uncertainties in RES using probabilistic methods.
The weight factors are taken for tuning.

[112] CSA PV, FC, DE,
HY * G/I C

The Pareto front is considered to investigate the
operating cost, solar power uncertainty, carbon
emission, and the cost of the parameters.
Hydrogen fuel is considered in reducing
operating costs.

[113] GSA PV, WT, BT * * G/I C
Optimization of the overall cost considering the
carbon emission and weekly generation
scheduling for the small dispatchable systems.

[114] ADMM-
MFA

PV, WT, MT,
FC, BT * G/I C

EMS is modeled for the MG to optimize the
electricity price by considering the load profile,
PV irradiance, and market prices with certain
constraints.

[115] TLA PV, WT, MT,
FC * * G/I C

Hybrid MG reducing the operating cost
considering thermal power recovery and
hydrogen generation; V2G technology helps to
convert the PEVs into active storage.

[116] SSO PV, WT, DE,
FC * I C

Optimal sizing of the renewable energy sources
with conventional sources to minimize the cost
of energy (COE) and power loss supply
probability while analyzing the reliability.

[117] WOA PV, WT, DE,
BT * I C

EMS is proposed to optimize the load demand of
the MG by minimizing the operating cost with
improved reliability of the power.

PV—Photo voltaic; WT—Wind Turbine; MT—Micro Turbine; TES—Thermal energy storage; DE—Diesel; FC—Fuel Cell; HY—Hydro;
C—Centralized, DC—Decentralized, DT—Distributed, *—Availability.
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4.3. Intelligent Methods in EMS
4.3.1. Fuzzy Control and Neural Networks

For the computation of a large amount of numerical processing data like signals or
images, fuzzy logic systems and neural networks (NN) are used. These methods are
computational nonlinear algorithms with the flexibility to use a range from small software
programs to large hardware systems. Through continuous decision-making by the system,
learning takes place and the knowledge acquired is stored in as weights. These weights are
the internal parameters of knowledge. A fuzzy logic system, when used to control a system
through a set of rules considering the constraints, is known as fuzzy logic control (FLC).
Applications of FLC are used to improve battery state of charge (SOC), smooth voltage
profile, and grid-to-vehicle (G2V) charge transfer [118].

Neuro-fuzzy is a combination of fuzzy approach and neural network, where fuzzy
inference system (FIS) is adjusted by the data provided to NN learning rules. Improved
speed, accuracy, and strong learning skills along with simple execution are the advantages
of this approach [119].

A neural network is an interconnection of neurons, when used in a physical system to
control using different layers of connection, which are also known as an artificial neural
network (ANN). These artificial NN are used for adaptive control and model predictive
analysis. Applications of ANN are provided with training via a dataset. From experience or
the outputs of the model, self-learning takes place. Using ANN for MG, EMS can perform
complex operations such as forecasting DR and control of MG [120].

Recurrent neural network (RNN) is a classification in ANN which allows it to provide
temporal dynamic behavior and the structure of RNN connects the temporal sequence
through the graph between the nodes. Similar to feed forward neural networks or ANN,
which process variable-length sequences using internal memory, RNN has an internal
state memory to process the sequence of inputs using short-term memory (STM) or long
short-term memory (LSTM) for predictions of energy and economy. A review on fuzzy and
ANN-based applications in EMS are described in Table 7.

Table 7. A review on fuzzy and ANN-based applications in EMS.

Ref No. Method
Power

Sources
Ev Dr Grid/Island Ems Remarks

[121] Fuzzy
logic PV, WT, BT * G/I C

EMS for distributed generations DGs in AC MG.
An adaptive neuro-fuzzy inference system
(ANFIS) is developed to manage the available
energy in ACMG.

[122] Fuzzy PV, WT, FC,
BT I C

The system is controlled by a low complexity
fuzzy system, with only 25 base rules which give
better results in terms of control and
energy-saving efficiency, that has
been improved.

[123] Fuzzy
logic

PV, WT, DE,
BT * * G/I C

Studies different fuzzy techniques for the
charging/discharging of the electric vehicle
while ensuring the optimal demand
management from the vehicle-to-grid (V2G).

[124] Fuzzy PV, FC, BT * G/I C

EMS is developed to manage the operating
conditions with economic constraints.
Operations of grid ON/OFF connections are also
discussed using the fuzzy logic controller and a
predictive controller.
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Table 7. Cont.

Ref No. Method
Power

Sources
Ev Dr Grid/Island Ems Remarks

[125] FLC PV, BT * G/I C

A fuzzy logic-based energy management system
is developed to minimize the power-sharing
error between renewable energy sources
and demand.

[126] Neuro-
fuzzy

PV, WT, MT,
FC, BT * G/I C

A neuro-fuzzy Laguerre wavelet control
(FRNF-Lag-WC) architecture scheme is
validated for various stability, quality, and
reliability factors obtained through a simulation
testbed implemented.

[127] Neuro-
fuzzy PV, FC, BT * I C

A battery cycle is improved by reducing the
charging/discharging period and ensuring
optimal power-sharing in the microgrid.

[128] RNN. PV, BT * I C

A control strategy is developed to maximize
consumption and minimize electricity pricing by
using an LSTM forecasting method for
supply–demand management.

[129] ANN PV, WT, DE,
BT * I C

A real-time scheduling problem is developed for
an MG with a finite horizon model using the
ADP approach. The ADP approach is modeled
using the RNN technique.

[130] RNN PV, BT * I C

Discussed many algorithms for scheduling
including the maximum time lap scheduling and
day-ahead forecasting for a building of its
energy consumption with PV installation.

[131] ANN PV, WT, MT,
DE, BT * G C

EMS application to optimize the economic
dispatch and to minimize the operating cost in a
hybrid microgrid using Lagrange programming
neural network.

PV—Photo voltaic; WT—Wind Turbine; MT—Micro Turbine; FW—Flywheel; DE—Diesel; FC—Fuel Cell; UC—Ultra Capacitor;
C—Centralized, DC—Decentralized, DT—Distributed, *—Availability.

4.3.2. Model Predictive and Multi-Agent EMS

Model predictive control (MPC) is an algorithm that regulates or controls the system
based on the moving or rolling horizon approach as specified in Unnikrishnan et al. [129].
The role of MPC is to make the system less sensitive to the variables and control the physical
process. MPC can be performed online with uncertainty constraints. In online methods,
the current system parameter and forecasted parameters help in updating the decision
variables at any instant [132,133]. The optimum solution could be obtained by updating
decision variables with current system parameters with ease, and gets complex with an
increase in variables. Hence, it is used in smaller systems.

In the multi-agent system (MAS), the objectives of the system are obtained by in-
telligent agents communicating with other nearby agents while participating to form a
configuration. MAS is an online/offline approach used in MG applications as shown
in [134]; this approach is utilized in the control of EMS, optimization, and managing of the
energy market. In [135,136], the application of MAS is used to control the architecture of
the MG while using optimization techniques for the configuration of renewable resources.
Table 8 presents the review on MPC and MAS based on EMS.
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Table 8. A review on MPC and MAS based on EMS.

Ref No. Method Power Sources Ev Dr Grid/Island Ems Remarks

[137] MPC PV, FC, SC, DE,
BT * I DT

Energy scheduling is proposed using the MPC to optimize
the dwell time of the high SoC state of the battery and to
smoothen the set point deviation of the fuel cell for
regenerative capability. Compared with fuzzy-based
heuristic in generation and load demand.

[138] MPC PV, WT, BT * G/I DT

MPC-based decision-making is developed by the
optimization algorithm for participation in the grid
electricity market with excess generation to support ancillary
services of the main grid.

[139] MPC PV, BT * G/I DT

A real-time microgrid from Athens is developed in the
laboratory to study the day-ahead market and the control
management of the energy profile with the energy market.
User interface with the market interactions is performed for
an enhanced microgrid.

[140] Adaptive
MPC PV, DE, BT * I DC

An EMS application is developed to optimize the cost
function of the fuel in a diesel generator for economic
dispatch using the Lagrange multiplier and lambda iteration
method with battery operation constraints.

[141] MPC PV, BT * * G/I DT

An MPC-based control strategy is developed to sell or store
the excess generated power from the solar panels while
managing the overall conditions like heating, ventilation, air
conditioning system, time of use pricing, and to reduce
economic constraints.

[142] MPC PV, BT * G DC
By installing an ESS at the end of the feeder, the capacity of
PVs and EV connected to the bus are extended up to twice
the capacity of the main power source.

[143] MPC PV, WT, DE, BT * G/I DC

A proximate scenario is taken by the optimizer at each step,
and the optimal supply of system capacity is accessed based
on the scenario selected and the possible variations in
the future.

[144] MAS PV, WT, MT,
FC, BT, DE * I DC

MAS-based agent optimization is developed to optimize the
operation of the distribution system with DG in energy
scheduling and generation. EMS is performed for the system
by considering the constraints, such as generation cost and
emission of carbon.

[145] MAS PV, BT * * I DC

A MAS-based two-stage energy management system is
developed using the Kantorovich method for the energy
generation scenario considering the self-healing strategy by
the decentralized restoration technique and coordinated
management.

[146] MAS-
CNN PV, WT, DE, BT * G/I DC

MAS-based energy management is proposed for the
generation management of the PV, wind, and load. Balancing
is maintained using the CNN (convolution neural
network)-based load forecasting technique for the
load demand.

[147] MAS PV, DE, BT * * I DC

This paper proposes a MAS-based intelligent energy
management system to operate a hybrid microgrid in
islanding mode while effectively minimizing the peak
demand of the system using the V2G and LED savings.

[148] MAS PV, WT, FC, BT G/I DC

This paper proposes a communication rule for sharing the
local information of the agents and getting access to the
global information was based on an average consensus
algorithm (ACA), and a restoration decisions strategy based
on the discovered global information was developed.

[149] MAS-RL PV, WT, BT * G/I DC

A multi-agent-based EMS is developed to manage the
objectives of the system. Reinforced learning is imbibed with
MAS to improve the decision-making capability by learning
using the sets for the participation in the energy
trade marketing.

[150] MAS PV, WT, BT * G/I DC

Experimental results show the ability of the proposed
multiagent T-Cell-based RT-EMS in maintaining the stability
and smooth operation of the MG with modularity and fault
tolerance features implemented through the MAS
JADE platform.

PV—Photo voltaic; WT—Wind Turbine; MT—Micro Turbine; DE—Diesel; FC—Fuel Cell; SC—Supercapacitor; G—Grid; I—Islanded;
C—Centralized, DC—Decentralized, DT—Distributed, *—Availability.
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4.3.3. Game Theory and Deep Learning

Deep reinforcement learning (DRL) is an intelligent algorithm approach to solve
complex problems like decision-making through training or learning. It is a combination
of reinforced learning (RL) and deep learning (DL) where agents perform the decision-
making task to a wide variety of applications. DRL is a sub-category of intelligent machine
learning, which is also a part of artificial intelligence where a system learns from the actions
it performs as a human learning experience [151,152]. The agent learns by a reward and
penalty system on their decision policy.

Game theory (GT) brings multiple decision variables to interact using a mathematical
model to analyze the environment. The objectives of the problem are achieved by introduc-
ing each strategic decision-making variable to participate in the game. Nash equilibrium is
a prominent solution concept for game theory, where the actions of other players are set to
constant while there is no change to the unilateral strategy by any player to change their
revenue strategy. Thereby, it is possible to arrive at an optimum mutual response from all
the players [153]. To find the optimal solution in the non-cooperative game theory when
there is evidence that no leader–follower relationship is found, Nash equilibrium strategy
is used to improve the utility parameter by making every player compete against each
other. A review on game theory and deep reinforced learning in EMS has been presented
in Table 9.

Table 9. A review on game theory and deep reinforced learning in EMS.

Ref No. Method Power Sources Ev Dr Grid/Island Ems Remarks

[154] DRL WT, DE, BT * I DC

An EMS is proposed for energy storage management and
load shedding management with dual control policy to
manage the utility of the system dual control to improve
resilience. The dual controls are the energy storage and load
shedding policies.

[155] DRL BT * G DC
EMS is developed to manage fuel efficiency compared to the
rule-based approach. The EMS developed makes decisions
by itself from the actions of the states.

[156] DRL PV, WT, BT * I DC
DRL-based energy management is proposed to minimize the
operating cost and to improve the economic performance of
the islanded microgrid by controlling the energy reserve.

[157] DRL PV, WT, MT,
FC, BT * G/I DC

An EMS is modeled with DRL and the Markov decision
process (MDP) strategy to satisfy the objective function, i.e.,
by minimizing the overall operating cost of the MG system.

[158] RL WT, BT * G/I C
An EMS application for the consumer-based intelligent
method is developed for the consumer to explore and control
the stochastic nature of the generation and load actions.

[159] DRL PV, WT, MT,
FC, BT G/I DC

Paper proposes a scheduled strategy to minimize the daily
operating cost of the MG using DRL architecture for
addressing the problem of operating an electricity MG in a
stochastic environment.

[160] Game
Theory PV, WT G C

A game-theory-based EMS is modeled to minimize the
utilization cost of the system using the coalition theory, the
EMS is proposed to reduce the utilization cost while
improving the market profit of the sellers.

[161] Game
Theory

PV, WT, BT,
HYD * * G/I DC

A Nash equilibrium-based game theory EMS is modeled for
controlling the power exchange and minimizing the
operating cost. An optimal operation can be achieved by
maximizing the preferences of the agents using the
Nash equilibrium.

[162] Game
Theory PV, BT * G/I DC

An MG-based non-cooperative game theory EMS is modeled
to optimally decide the electricity price for the consumers by
regulating the storage capacity of the system. A mechanism
for the price regulation is developed for the modeled EMS.

[163] Game
Theory PV, BT * I DC

Optimal scheduling of the energy and storage management
is proposed by the continuous non-cooperative
game-theory-based energy management system by
considering the energy consumption scenario to reduce the
overall cost.
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Table 9. Cont.

Ref No. Method Power Sources Ev Dr Grid/Island Ems Remarks

[164] Game
Theory PV, WT, BT * * I DC

An EMS is developed by forecasting the generation of the
short-term wind power plant using big data. The optimal
payment period is decreased by finding the prediction error
of the MG.

[165] Game
Theory PV, WT, FC, BT * G/I DT

The paper gives cooperation between the agents as a
non-cooperative or a cooperative game theory approach.
Nash equilibrium is used for exploring the optimum
solutions of games with energy management.

PV—Photo voltaic; WT—Wind Turbine; MT—Micro Turbine; FW—Flywheel; DE—Diesel; FC—Fuel Cell; UC—Ultra Capacitor; G—Grid;
I—Islanded; C—Centralized, DC—Decentralized, DT—Distributed, *—Availability.

4.4. Problem-Based Classification

The microgrid energy management strategies are discussed in previous sections, and
objectives considered in the review can be further classified into problems addressed.
The review methodologies that are classified based on problems addressed are shown
in Table 10.

Table 10. The problem addressed in microgrid energy management.

Problems Addressed References

Optimal storage management [76,98,112,123]
Demand response program [77,92,95,151,163]

On vehicle-to-grid system (V2G) [78,108,113,118,124]
Cost minimization [79,81,82,84,91,93,94,99,100,105,106,110,111,127,141,151,152,161,163]
Energy schedulling [80,87,89,90,102,104,107,109,114,115,121,136,139,142,154,156,157,160]

Operating time [85,126,150]
Reliability of operation [116,117,143,165]

Communication and information exchange [129,134,140]
Based on forecasting [119,129,138,146,162,164]

Data collection and scenario generation [125,147,155,158,159]
Based on market participation [83,88,101,132,137,141,146,149,153]

Time response [96,97,128,130,131]
Stability analysis [86,120,136,145,148,150]

Generate energy with lower emissions [103,144]

5. Microgrid Standards

Standards are the parameters or the process which ensure the product’s performance
levels to satisfy the safety and quality for the implementation according to utility market
requirements. The standards are developed to set a standard in the market for the safety of
consumers [166,167], introducing a set of verification procedures to test the performance of
the quantification and their comparison with a minimum set of requirements. Standards
for microgrids are set to provide configuration, topology, and laws to control the microgrid
and its integration to renewable sources. Different configurations can be implemented with
microgrid blocks to perform different operations. A set of testing procedures is carried out
in the distributed network operator [168] (DNO) and microgrid operator with parameters
to compare their control functions. These metrics or parameters are designed to test the
endurance of the system. Standards that exist for the smart grid distribution network
are the Institute of Electrical and Electronics Engineers (IEEE 1547) with identification
code 1547, which provides guidelines for interconnecting dispatchable sources into the
electric power grid; and IEEE 2030, which provides the inter-operability guide between
smart grids and microgrids [169]. International Electro-Technical Commission (IEC) is
another standardization for microgrids in which IEC 62,898 provides design and imple-
mentation of the microgrid. For electric vehicles in IEEE 2030.1, IEC 61851, and ISO 15118-1
give the guidelines for electric transportation and its interconnection to the power system.
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IEEE 1646 and IEC 61850-7-420 provide the standards of communication in the electric
network. IEEE 2413 and IEC 61,968 give the standards for connecting IoT into the system
and data exchange between devices and the network, respectively. Table 11 presents the
standards for microgrid and electric vehicles.

Table 11. Standards for microgrids and electric vehicles.

Standards Description

IEEE 1547 The standard for interconnecting distributed resources with an electric power system

IEEE 1547.1 Test procedures for equipment interconnecting distributed resources

IEEE 1547.2 Application guide for IEEE 1547 for interconnecting distributed resources

IEEE 1547.3 Monitoring, information exchange, control of distributed resources

IEEE 1547.4 Design operation and integration of distributed resources

IEEE 1547.6 Interconnecting of distributed resources for distribution system secondary networks

IEEE 1547.7 Guide to conducting distribution impact studies for distributed resources interconnection

IEEE 1547.8 The practices identified in P1547.8 should lead to the development of advanced hardware and software and
help streamline their implementation acceptance, resulting in higher penetration levels of DER

IEEE 2030 Guide for smart grid interoperability

IEEE 2030.1 Guide for electric power sourced transport infrastructure

IEEE 2030.2 Guide for interoperability of energy storage systems integrated with electric power infrastructure

IEEE 2030.3 The standard for test procedures of energy storage systems integrated with electric power applications

IEEE 2030.4 Guide for control and automation installations applied to the electric power infrastructure

IEEE 2030.5 The standard for smart energy profile 2.0 application protocol

IEEE 2030.6 Guide for the benefit evaluation of electric power grid customer demand response

IEEE 2030.7 The standard for the specification of microgrid controllers

IEEE 2030.8 Standard testing of microgrid controllers

IEEE 2030.9 Recommended practices for the planning and design of the microgrid

IEEE 1646 Communication requirements in substation

IEEE 2413 The standard for an architectural framework for the Internet of Things

IEC 62898-1 Guidelines for planning and design of microgrids

IEC 62898-2 Technical requirements for operation and control of microgrids

IEC 62898-3-1 Technical requirements for the protection of microgrids

IEC 62898-3-2 Technical requirements of microgrid EMS

IEC 62898-3-3 Technical requirements of self-regulation of dispatchable loads in microgrids

IEC 62257-9-2 Recommendations for renewable energy and hybrid systems for rural electrification—Part 9-2: Integrated
systems—Microgrids

IEC 61850-7-420 Communication between devices in transmission, distribution, and substation automation

IEC 61968 Data exchange between devices and networks in the power distribution domain

IEC 61851-1 Electric vehicle on-board charger EMC requirements for conductive connection to AC/DC supply

IEC 61851-23 DC electric vehicle charging station

IEC 61851-24 Digital communication between a DC EV charging station and an electric vehicle for control of DC charging

ISO 15118-1 Vehicle-to-grid communication interface—Part 1: General information and use-case definition

ISO 15118-2 Network and application protocol requirements

ISO 15118-3 Physical and data link layer requirements

ISO 15118-4 Network and application protocol conformance test

ISO 15118-8 Physical layer and data link layer requirements for wireless communication
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6. Auxiliary Infrastructure

In order to make a smart distribution system operable, a complex of networks and
devices needs to get together for a reliable system. IoT and smart meters technologies are
the primary components to make the conventional connection between the prosumer and
operator into a smart interdependent system with faster and reliable communication [170].

6.1. IoT Sensors

Advancements in wireless technology with improved sensing devices using embedded
processing technology have led to the Internet of Things [171], which provides efficient
monitoring, measuring, and control services.

IoT connects the physical and digital components without any mediation of the
operator. The connection of each network device is possible through foolproof protocols.
Unique identifier (UID) is a unique identification number for each IoT device that makes it
recognizable to others or the control network.

According to Gartner, the number of IoT devices in use by the year 2020 is estimated
to be 20 billion. Figure 13 shows the graph of the rate of increase in IoT devices by the
year. IoT devices are used in health care sectors (popular IoTs are fitness band and health
monitoring devices), the industrial sector (sensing and measuring devices), security sector
(cameras and positioning systems), and general devices are used in smart homes for the
monitoring and control of loads. Microgrids come into this cross-industry sector: this
sector specifies special devices that improve the efficiency of other network devices that
include improvements in quality of monitoring and reducing the losses through effective
control of failure rate in production [172]. Figure 14 shows the IoT based support to the
microgrid applications.

Figure 13. Internet of things (IoT) rate of increase in usage in different applications.
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Figure 14. IoT support to the microgrid.

6.2. Smart Meters

For the last few years, disc-type meters have been replaced by electronic integrated
circuit embedded meters which are used effectively by the distribution utility companies
in providing authentic and electronic billing for the customers [173]. The necessity for
refined flexible billing and control of billing information for two-way power flow proposes
the implementation of smart meter technology. Smart meter technology provides the
day-to-day of market prices of the power demand to the customer in commercial situations
and industries. Previously existing automated meter reading (AMR) technology collects
the energy consumption data from the customers to the utility, which is a one-way flow
in power and communication. The AMR, an advanced metering infrastructure (AMI)
developed in recent years, provides two-way communication and power flow between the
meter and the central control system [174]. The improved functionality characteristics from
the AMR to the AMI are shown in Figure 15.

Figure 15. AMR and their functionalities in the microgrid.

In the aspect of both transmission and distribution, a smart grid is a revolutionary
approach and the smart meters play a significant role as an integral part of the smart
grid in communicating with the customers and data collection. Supposedly, the smart
meter consists of three main components, which are communication network management,
advanced metering element, and data management unit. The smart meter is equipped
with a memory device that allows consumers to monitor their energy usage via a software
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interface, allowing it to communicate in two ways. The smart meter controls the operation
distribution system switches and reclosers which provide an efficient delivery system and
maintain reliability. The availability of two-way communication and the energy interface
in the smart meter allows the control of distribution infrastructure by sending commands
to the control center, which is also known as the distribution automation at the load end.
The advantage of the smart meter is that it enables the central control to take action when
tampering happens with the available rapid report sent from the smart meter as a part
of collecting data [175]. This helps in reducing power theft while improving the power
system security. Availability of day-to-day billing reports to the consumers helps them to
manage the loads and reduce their bills through the smart meter.

The data from every meter can be collected, processed, and stored using applications
like big data [176]. This makes the utility companies go towards the implementation of
smart meters where two-way communication plays a prominent role.

7. Conclusions

This paper gives a detailed review of the recent analysis of the different energy manage-
ment strategies proposed for the microgrid, consisting of classical, heuristic, and intelligent
algorithms. Furthermore, this paper provides a brief introduction about the architecture of
microgrids, different classifications in microgrids, components of a microgrid, communica-
tion technologies used, standards available for the implementation, and auxiliary services
required in the microgrid. It discusses key applications in energy management, which
include forecasting, demand response, data handling, and the control structure. This article
also presents an insight on areas in which the scope of research and their contribution to
energy management is in the nascent stage.

Optimization in cost minimization, operation control, reliability, energy scheduling,
emission control, and load forecasting is the objective functions of the EMS in both the
modes of microgrid operation for sustainable development. This makes the MG energy
management a multi-objective optimization problem considering the economic, technical,
and emission aspects as key constraints. The prime aspects that are covered in this review
are on prospects, solutions, and opportunities of the objective functions of the EMS using
efficient strategies. Based on the practicability, suitability, and tractability of the methods,
the techniques are considered to find global solutions to the operations of the system. The
microgrid energy management objectives depend on its mode of operation, whether it is
centralized, decentralized, or distributed operation, several economical constraints, and the
dynamic nature of dispatchable energy sources. Furthermore, few authors have considered
greenhouse gas emissions as an additional objective function apart from non- renewable
generators, batteries’ health status, integration of active demand response, active and
reactive losses along with resilience and customer management.

Many research articles have been published on the energy management of microgrids
on different applications, yet the reviewed papers have been considered based on diversity
of the objective functions. The areas such as customer confidentiality regulations, manage-
ment of communication systems, and reliability studies on islanded mode have further
scope to emphasize in future studies. Potential areas as mentioned above needed to be fo-
cused in detail along with the depth of discharge of the batteries, effect of the conventional
grid on greenhouse gas emissions, and demand response integration to obtain effective
and efficient operation of microgrids.
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Abstract: An energy management system (EMS) was proposed for a campus microgrid (μG) with
the incorporation of renewable energy resources to reduce the operational expenses and costs. Many
uncertainties have created problems for microgrids that limit the generation of photovoltaics, causing
an upsurge in the energy market prices, where regulating the voltage or frequency is a challenging task
among several microgrid systems, and in the present era, it is an extremely important research area.
This type of difficulty may be mitigated in the distribution system by utilizing the optimal demand
response (DR) planning strategy and a distributed generator (DG). The goal of this article was to present
a strategy proposal for the EMS structure for a campus microgrid to reduce the operational costs while
increasing the self-consumption from green DGs. For this reason, a real-time-based institutional
campus was investigated here, which aimed to get all of its power from the utility grid. In the proposed
scenario, solar panels and wind turbines were considered as non-dispatchable DGs, whereas a diesel
generator was considered as a dispatchable DG, with the inclusion of an energy storage system (ESS)
to deal with solar radiation disruptions and high utility grid running expenses. The resulting linear
mathematical problem was validated and plotted in MATLAB with mixed-integer linear programming
(MILP). The simulation findings demonstrated that the proposed model of the EMS reduced the grid
electricity costs by 38% for the campus microgrid. The environmental effects, economic effects, and
the financial comparison of installed capacity of the PV system were also investigated here, and it was
discovered that installing 1000 kW and 2000 kW rooftop solar reduced the GHG generation by up to
365.34 kg CO2/day and 700.68 kg CO2/day, respectively. The significant economic and environmental
advantages based on the current scenario encourage campus owners to invest in DGs and to implement
the installation of energy storage systems with advanced concepts.

Keywords: smart grid; campus microgrid; batteries; prosumer market; energy management system;
distributed generation; renewable energy resources; energy storage system

1. Introduction

Power systems have been facing a lot of issues and challenges, including greenhouse
gas (GHG) emissions, complicated network overloading, and rising consumption costs.
The conventional power system is not capable enough to handle these challenges and
issues effectively, but the developing microgrid systems with distributed generators (DGs)
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integrated with automated distribution systems and energy storage technologies have the
potential to alleviate such issues by applying demand-responsive solutions. A campus
microgrid (μG) is made up of energy storage, onsite DGs, and a scheduled load [1].

In addition, it can operate in islanded mode and grid connection mode [2]. The
advancement in the microgrids provides an efficient solution for the intelligent monitoring
of the system, with an automatic recovery system, persuasive demand control, and high-
tech controlling capabilities that are controlled with the help of efficient and intelligent
sensors [3]. It also provides a variety of energy-saving and renewable energy integration
opportunities for the microgrid for energy producers and consumers through the integrated
energy management system (EMS). The energy management strategy requires secure
communication between producers and consumers and utilities to operate smart control
equipment [4].

The benefits described above are particularly evident for μGs with large loads. Due to
the variable nature of their loads, university campuses are one of the large-load microgrid
users that come under the category of mixed-load consumers. Because of the availability of
onsite power generation, these buildings can export excess electricity to the power grid as a
prosumer [5]. Similarly, when local DGs and energy storages are inadequate in fulfilling the
overall load demand, they can import electricity from the utility grid [6]. The involvement
of these μGs in power systems lowers their operating energy costs, with the focus on the
benefits of the distribution system [7]. The grid operator additionally provides different
price-based and incentive-based DR schemes to entice such large-scale users to actively
participate in energy markets [8].

Energy management solutions are used in accordance with conventional resources
to assist in the optimal dispatch to fulfill the load demand at a lower cost and to ensure
their active involvement in the microgrid operations [9]. This study concentrated on
the optimization of an energy management system for a campus μG with onsite DGs
and a battery storage facility attached. The presented EMS concept could efficiently and
effectively control the bidirectional power flow between utility networks and the μG, and
appropriately schedule the battery charging or discharging patterns for the ESS to decrease
the energy costs. The actual load of an existing campus commonly known as UET Taxila,
as shown in Figure 1, was taken into account for a comprehensive analysis. The proposed
campus μG currently has a national grid network link from a local energy market entitled
the Islamabad Electric and Supply Company (IESCO) and also has an additional standby
diesel generator and wind energy as an external source. In this study, the economic and
environmental impact of solar PV with battery storage and electricity generation with
different kinds of renewable energy resources were also addressed.
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Figure 1. Proposed EMS structure.

2. Recent Research Work: A Detailed Review

A microgrid model was developed for the Malta University Campus by [10]. In
this study, the design factor of such a microgrid was developed. It was analyzed under
different functional controlling modes, such as peak controlling mode and continuous
power mode. This design was demonstrated for the 3D Micro-Grid project [11]. The
results were evaluated under different operating modes that analyzed the performance of a
microgrid. It showed that the microgrid delivered a constant 50 kW of power between 8 am
and 1 pm and it reduced the peak power flow between 5:35 pm and 10 pm in which its
consumption was 90 kW. Another microgrid model is presented in [12] for the University
of Coimbra, Portugal, which consisted of a PV plant, Li-ion batteries, uni/bi-directional
charging of EV, and controllers. The main objective of this microgrid system was to achieve
sustainable energy, install the RER resources, and maximize the economic benefit. The
results show that it achieved less energy consumption (50 kWh/m2) and the PV system
covered 22.3% of the yearly electricity demand.

A system was proposed by [13] that comprised PV, energy storage cells, and a gas-
operated small microturbine to effectively control the number of electric vehicles while
making it compatible with the transformers that were also coupled with the microgrid.
In the proposed system, LOL calculations were performed, which calculated the number
of electric vehicle charges during the 24 h while the supporting transformer was also
connected. Using this proposition, the transformer was compatible and supported 17.4 kW
on average and had the charging capacity of 30 electric vehicles during a 24 h timespan.
This system increased the capacity by about 33% compared with the system that was not
connected with μG. The results showed that this system accomplished demand response
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strategies, energy management scheduling, and maintaining the level of PV through V2G
(vehicle-to-grid) technology. Furthermore, advancement was needed in demand response
management on the utility side where utility cost reduction was concerned.

The authors of [14] also proposed a distributed DR (demand response)-based algo-
rithm to control the load at the peak time for the Connecticut Campus microgrid, USA.
The campus microgrid consisted of a co-generating power plant. The ADMM (alternating
directional multiplier method)-based strategy was implemented to analyze the energy
consumption scenarios for multiple buildings on campus. The results show that it reduced
the energy consumption ratio for multiple buildings (10 buildings here) and it improved the
satisfaction level among customers. Fahad et al. [15] presented a cost-effective microgrid
solution with the consideration of many feasible cases to optimally schedule the energy for
the University AMU (Ali Garh Muslim University), India. They devised the most optimal
solution for the AMU campus using HOMER software in which a wind, PV, and grid
combination system was the final solution. They calculated the NPC (net present cost) as
$17.3 million/year and the CO2 emissions for the system as 35,792 kg/year.

A novel integrated design was proposed for the size of batteries in [16]. In this study,
the exhaustion method was used to obtain the energy management design parameter “d”,
which mainly focuses on profit maximization. The effects of the SOC (state of charge) and
non-operation time “T” were also calculated for the lead-acid battery. The results derived
from a utility power company for the interval of 1 min from a PV plant with actual load
data showed that using lithium-ion batteries maximized the profit by a 6% margin compared
with the lead-acid battery, which had a negative profit margin. Franz et al. [17] initiated a
microgrid project at the Siemens campus, Vienna, Austria. The microgrid campus consisted
of solar PV panels (1600 m2), a Siemens controller, Siemens building management systems,
Siemens EV charging stations, and 500 kWh battery storage. The project’s main objective
was to facilitate researchers in the research activities in their respective areas and to optimize
the microgrid with the updated energy management systems. It resulted in a peak output of
312 kW and reduced GHG emissions by almost 100 metric tons of CO2/year.

Furthermore, Abhishek et al. [18] considered a solar PV system, a bio-gas plant
diesel generator, and a BESS storage system for multiple universities based in different
countries. This study demonstrated the technical aspects, architecture, and load types of
different universities based in Iran, the USA, Saudi Arabia, India, China, etc. The techno-
financial analysis of this proposed hybrid system was undertaken using the HOMER
Pro software. The results showed that the levelized cost for the grid system was in the
range of 0.18–1.39 INR/kWh in contrast to the off-grid range of 11.96–18.47 INR/kWh.
Moreover, in [19], Dongshin University initiated a self-sufficient smart grid system that
contained 1 MW solar PV, a CHP system, an energy storage system, and fuel cells. The
main objective was to monitor the power flow information in real time, to monitor the
energy consumption, and to stabilize the energy for the campus microgrid. The results
showed that this combined energy management system was an optimal solution for the
Dongshin Campus.

The majority of these studies were focused on the EMS of μGs and on optimal PV,
ESS, and system scheduling. Some studies concentrated only on the economic viability
of solar with an ESS as a campus μG, whilst it also estimated the cost savings from PV
integration and a properly scheduled ESS. As demonstrated in Table 1, the economic
analysis determined the LCOE while including the power interchange between utility,
batteries, the ESS, photovoltaic uncertainty, and DRs. This study considered all of this
research work in parallel and it provides a structural explanation of the EMS of a campus
μG with an optimal sizing and the uncertainties of a photovoltaic system that was deployed
in a grid exchange environment to use its real power and load data for different seasons.
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Table 1. Comparison of multiple studies with various approaches.

Ref
Power

Balance DR

Grid-Connected
(Bi-Directional

Supply)

Generation Optimal Strategy

GHG
EmissionsPV Wind DG ESS

Optimal
Scheduling

of ESS

Optimal
Sizing

Energy
Manage-

ment

[20] � � � × � × × × × × ×
[21] � � � × � � � � × × �
[22] × � � � � � � � × � �
[23] × � � � × � � � � � �
[24] � � × � � � � � × × �
[25] × � � � � × × × × × ×
[26] � � � � � � � � × × ×
[27] � × × × � � � � × × �
[28] � � × � � � � � � � ×
[29] × � � � � � � � × � ×
[30] × � × × � × � × � � �
[31] × � � × � × � � � � �
[32] × � × � � × � � × × �
[33] � � � � � × × × × × �
[34] � � × × � � � × × × �
[35] � � � × � � × × × × ×
[36] × × � � � � � � × × ×

Proposed
Model � � � � � � � � � � �

This study’s key contributions may be summarized as follows:

(1) A smart energy management system was suggested to optimize the scheduling process
of onsite DGs, ESSs, and grid energy utilizing MILP with the consideration of the
TOU-based demand response to enhance the consumption from RERs and to lessen
operating electricity costs and the system load during the peak consumption hours.

(2) Degrading costs of the battery are also considered with stochastic PV production that
was employed in a campus prosumer μG.

(3) An economic and financial analysis was also conducted here to observe the techno-
economic effects of different sizes with an environmentally friendly DG and an optimal
ESS was also investigated here, which focused on a net-metering-based TOU environment.

The rest of this paper is laid out as follows. The system model and solution technique
are described in Section 2. In Section 3, the detailed problem formulation is provided.
Section 4 contains several case studies, as well as numerical findings. Finally, Section 5
contains the concluding thoughts, as well as some recommendations for further research.

3. Proposed Formulation of the μG System

3.1. Proposed Conceptual Model

The structural description of the proposed framework is illustrated in Figure 1, which
constituted an EMS, a prosumer μG, and a utility grid. The campus prosumer μG comprised
a variety of academic loads and storages facility, as well as two energy supplies (solar and a
diesel engine). The prosumer, on the other hand, had a net-metering-based agreement with
the electricity provider and was able to trade any excess energy back to the utility grid.

The proposed energy management structure at the prosumer building collected the
load demand consumption data, weather forecast statistics, TOU pricing data, the ESS
primary condition, as well as its feed-in constraints as input conditions and identified the
best way to satisfy the load demand using available resources while staying within the
operational and design limitations. The control scheduler used these optimal solutions
to allocate the available resources. A facility for storing data of some significant param-
eters was indeed accessible for the suggested energy management system that will be
manipulated for countless future profits. Energy trade data, TOU price data, and pro-
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sumer loading information was stored in a real-time database, marketplace database, and
prosumer database. The formulation of the proposed approach is given in the next sections.

3.2. Problem Formulation

This suggested mathematical system model is presented with the linear optimization
method with the aim to reduce the prosumer operational cost while considering the lifespan
of the battery system.

3.3. Objective Function

The goal of the suggested model was to minimize the operating cost (J) of a microgrid
that incurred costs related to the energy exchange, WT, DG, and electricity storage degra-
dation (Equations (2)–(5)). The total costs are represented in Equation (1). As illustrated
in Equations (4)–(6), the battery life is determined by a variety of parameters, including
the number of cycles utilized, capital expenditures, and total system capacity, whereas the
storage is expressed by ηch, ηdch, Pch

t , and P(b), which are separately denoted in Equation (7).

CT = J = min ∑24
t=1(C

E
it + CDG

it + CES
it + CWT

it + CBESS
it ) (1)

where
CE

it = PG
(t)γt (2)

CDG
it = αTGen + βpDG

(t) (3)

CWT
it = Sc·Prated($) (4)

CES
it =

(
Ccost

n × CT × 2

)
×
⎛
⎝η(chrg)pchrg

(t) +
pdchrg
(t)

η(dchrg)

⎞
⎠ (5)

CBESS
it = SBESS

(
CES

it + CESS
m fom

)
(6)

P(b) = η(chrg)· pchrg
(t) −

pdchrg
(t)

η(dchrg)
(7)

where CE
it , CWT

it , CES
it , and CDG

it [37] are the costs of the energy exchange, WT, diesel genera-
tors, and battery degradation at any particular time t. IESCO’s time-of-use (TOU) pricing
tariff was acquired from the university. The energy trade with the utility and their unit
prices are indicated with PGrid

(t) and γt during any hour t. CDG
it was calculated with the

help of the diesel generator nominal rated capacity (TG = 600 kW), fuel intercept curve
(α = 0.0166 L/h per kW), nominal fuels slope curve given by β = 0.277 L/h per kW, and
the overall power generation from DG given by PDG

(t) . Sc denotes the specific cost and Prated

denotes the rated power [38]. The frequent battery charging efficiency, charging power
of the battery, discharging efficiency, and battery discharging powers are characterized
by η(chrg), pchrg

(t) , η( dchrg ), and pdchrg
(t) , respectively [39], while Ccost denotes the specific cost

of energy storage indicated in Equation (5). In Equation (6), SBESS denotes the size of the
battery, CESS

m denotes the maintenance cost of the ESS, and fom denotes the maintenance
factor. The total battery power is given by P(b), which is indicated in Equation (7).

3.4. Load-Balancing Equality Constraint

The load-balancing constraint basically expresses the supply–demand equilibrium con-
straints. Equation (8) should be met and satisfied in order to achieve this equilibrium. Ppv

t and
Pl

t [40] are the output of the solar power generation (kW) and the prosumer load, respectively.

PG
(t) + PPV

(t) + Pb
(t) + PDG

(t) + PWT
(t) + PBESS

(t) = Ptotal
(t) (8)
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3.5. ESS Constraints

The ESS should not be overlooked in energy management, as it supports the control
of the electrical load, mostly in the occurrence of a grid inability and grid failures [41].
Because the ESS is typically difficult to charge or discharge rapidly, its power limit was
considered in the limitations (Equations (9)–(13)). The battery charge in the ESS relies on its
earlier state BSOC(t−1), which was integrated into Equation (14) at any time t (BSOCt). The
BSOC maximum and minimum limits, denoted with BSOC(minimum) and BSOC(maximum),
were included in Equation (15) to avoid the ESS overloading and complete discharge [42].
The battery’s state-of-charge (BSOCt) at the day’s end is equivalent to the start of the
battery state (BSOC0) at the beginning of the day, as indicated in Equation (16).

BSOCt−1 − BSOCmax

100
Ces ≤ Pb

(t) (9)

Pb
(t) ≤

BSOC(t−1) − BSOC(min)

100
Ces (10)

0 ≤ η(ch)P
chrg
(t) ≤ Ychrg

t Pb
(chrg, max) (11)

0 ≤
Pdchrg
(t)

η(dchrg)
≤ Ydchrg

t Pb
(dchrg,max) (12)

Ych
t + Ydch

t ≤ 1∀t (13)

BSOC(t) = BSOC(t−1) −
100 × η(dchrg)P

dchrg
(t)

Ces −
100 × Pdchrg

(t)

Cesη(dchrg)
(14)

BSOC(minimum) ≤ BSOC(t) ≤ BSOC(maximum) (15)

BSOC (t) = BSOC (0) (16)

To properly schedule the energy usage in the EMS, the battery output power Pb
t was

included in the equality constraint stated in Equation (8). ESS charging/discharging are
represented by the simulated values of Pb

t . The two integer variables μ
chrg
t and μ

dchrg
t

represent the ESS charging/discharging, respectively, in just about any interval “t”. To
simply avoid the BESS charging/discharging issue for the equivalent durations, the binary
pattern characteristics that are shown in Equations (11)–(13) may not be “1” at the regular
intervals. For most of these variables, a value equal to “1” expresses the activation mode.
The power output gradient of its battery storage is provided below:∣∣∣PBattery

(t) − PBattery
(t+1)

∣∣∣ ≤ ΔPBattery (17)

3.6. Limitations of the Diesel Generator and Grid

As all utility companies integrate their components depending on the load demand,
users continuously sign peak periods agreements with customers. Any request that exceeds
the terms of this contract will result in fines or a termination of the power supply. Diesel
generators, similarly, cannot handle loads that exceed their rated capacity. Expressions are
used to account for power supply constraints for the diesel generator and grid connection
(Equations (18) and (19)) [43].

PG
(min) ≤ PGrid

(t) ≤ PG
(max) (18)

PDG
(min) ≤ PDG

(t) ≤ PDG
(max) (19)
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3.7. Energy Exchange between the Grid and Prosumer

The power system energy (eg
n) transacted with the grid in a day is shown below, where

power import minus export from and to the grid are denoted by pg
(t):

EGrid
n = ∑t24

t1
PG
(t) × h (20)

3.8. Probabilistic PV Model

The energy generation of wind and solar energy is unpredictable and highly depen-
dent on the environment and solar irradiance. The data from the entire year was evaluated
under random situations. This analysis used a previously constructed solar irradiance
model [44]. It also evaluated the variables of the probability density function (PDF). A
total of 365 scenarios may be created in 24 h utilizing the Latin hypercube (LHS) universal
sampling approach [45]. As previously stated, the goal was to reduce the calculation or
computation load [46]. The fast-forwarding method was utilized to lessen the randomly
produced scenarios to about 40 [47].

F0=
1

σ
√

2π
(e−(

1−μ

2σ2 )
2

(21)

Ppv
t = ηPV · (jαPV ·I) (22)

In Equation (21), the normal distribution function, or Gaussian function, was applied
to analyze the uncertainty model for solar irradiation [48], where ηPV , J, I, and αPV are the
solar panel’s efficiency (17%), total operational cost, the solar irradiance pattern (kW/m2),
and the solar panel’s area (m2), respectively, while μ and σ indicate the normal distribution
mean and standard deviation, respectively. Equation (22), which is based on the solar
irradiation of a specific region, indicates the output of solar PV and is given above as Ppv

t .
Figure 2 illustrates the normal distribution with the standard deviation for the photovoltaic
irradiance’s predictable pattern in the region of Taxila in Pakistan. The Taxila region’s
latitude and longitude are 33.746◦ N and 72.839◦ E, respectively, corresponding to a daily
irradiance value of 5.3 kWh/m2 [49].

 
Figure 2. Mean and standard deviation curves.
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3.9. Grid Energy Exchange: Wind Turbine Operation

Equation (23) expresses the wind power output POutput
(t) exchanged with the utility grid:

POutput
(t) =

0, V(t) < Vci

PWT
rated ×

(
vw−vci
vr−vci

)
, vci < v(t) < vr

PWT
rated +

(
Yw−Vr
Vci−Vr

)
× (

PWT
co − PWT

r
)
, vr < vw < vco

0, vco < vw

(23)

where νci is the minimal cut-in speed necessary for the WT to generate electricity. The
maximal cut-out speed at which optimal electricity may be produced is indicated as vco; if
this speed is surpassed, the turbine is switched off in order to avoid damage.

3.10. Levelized Cost of Energy (LCOE)

The levelized energy cost is assessed in different scenarios when performing a fair
and equitable analysis for the systems. It is defined as the ratio of the entire system cost of
installation (USD) to the total energy generated (kWh). The LCOE of storage or a particular
energy source is stated in USD per kilowatt-hour. It covers all the associated expenses,
which include the cost of installation, operating costs, maintenance, and capital investments.
It can also be defined as the lowest possible price at which electricity is generated and used
during the lifetime of a particular energy source or storage equipment in order to attain the
breakeven point [50]. The LCOE formula may be expressed mathematically as follows:

LCOE
Lifespan Cost(USD)

Lifetime Energy Generation (kWh)
(24)

3.11. Solution Methodology

Because the suggested system’s model’s objective function and its related constraints
are generally linear models with many integer variables, MILP programming was imple-
mented since it is excellent for solving linear programming problems. This same MILP
technique is widely used globally as an optimization method for resolving various kinds
of optimization problems associated with marketing and optimal scheduling [51]. Further-
more, it is compared to various metaheuristic approaches that yield inferior results, while
MILP yields the most optimal results. As a result, the MILP method is widely used in EMS
optimization [52]. The basic structure of a mixed-integer problem is described as follows:

min
x

f tx (25)

t0

⎧⎨
⎩

B· x ≤ b
Beq·x = beq

xb ≤ x ≤ yb

⎫⎬
⎭ (26)

In Equations (25) and (26), xb, yb, x, b, beq, and f are vectors, where Beq and B are
matrixes. The main flow diagram for controlling the proposed campus μG is given in
Figure 3. Initially, one hour before each day’s arrival, all of the input data that is required for
the day is loaded; the forecasted irradiance, load patterns, temperature, ESS starting state,
TOU tariff information, and its related parameters are all part of the data. The simulation
of the provided optimization method was based on a regular period of each hour prior to
usage. The suggested technique was emulated in MATLAB software, version R2017a, with
an Intel (R) core (TM) i7-7700 @ 2.80 GHz processor with 8 GB RAM.
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Figure 3. Proposed solution methodology flowchart.

4. Results and Discussion

The concept shown here is used for the prosumer microgrid in Section 3 of the Punjab
province. There are eight hostel residences for university students, fourteen departments
for different fields, and six faculties. At the moment, the university’s load is fed by a
2 MW grid interconnection. The capability of the university rooftop solar panel installation
is measured as being 4 MW using a concise assessment of the available space for the
university rooftop.

Since NEPRA (National Electric Power Regulatory Agency, Pakistan) enables only
1 MW of energy exchange for an electricity grid, we had a capacity constraint of 4 MW
for the campus due to limited resources. In our situation, as compared to the distributed
generation sizing, we concentrated on the method applied in [53]. An onsite 2 MW solar
photovoltaic setup was taken into consideration for extensive economic and technical
analysis. Additional effects highlighted here include utilization of the existing backup
generator in the case of a power grid breakdown.

Furthermore, the proposed framework was planned to have an effective net-metering
infrastructure that permitted power outflow regulated up to 1 MW to offset the cost of
prosumer energy use while fulfilling charging/discharging constraints. The campus load
varied constantly due to the loads of the hostels, academic buildings, administrative offices,
and housing colonies on campus in summer and winter, which were incorporated into the
constraints, as shown in Figure 3.

According to the report of [54], Pakistan generates 5100 kWh of energy production
per day through a 1 MW solar facility. As a result, in this study, we found a solution by
constructing a photovoltaic system for the campus μG. Further, in our approach, a BESS
system was also proposed. In this approach, Li-ion batteries were presented, with the
benefits of their extended lifetime, exceptional performance, good power output, high
dependability, and minimal self-discharge [55].
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4.1. Case Study

In the given scenario, an optimal scheduling strategy was given for the university
microgrid with different peak timings and off-peak timings year-round. Variance in the
load patterns was commonly observed here in this study, and for the convenience of this
study, these patterns were assumed equivalent for all seasons. In Pakistan, the maximum
energy consumption periods are May–August, but the data were analyzed for the whole
year [56]. Peak load statistics for all months are studied here for the economic analysis,
with worst-case scenarios included. Choosing the worst-case scenario yielded the best
potential result in terms of cost reduction. To maximize the benefit, the energy produced
by solar can be transferred to the grid.

The actual power consumption of the institution was taken into account in regular
periods and data from a nearby grid was used to assess the electricity generation expenses
on a regular basis.

The load fluctuation behavior that was observed for different seasons is illustrated in
Figure 4, while the load allocation patterns between academic blocks, hostels, and campus
office buildings are presented in Figure 5.

 
Figure 4. Campus weekdays summer and winter load behavior patterns.

 
Figure 5. Average campus load demand among buildings.
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The loads of the administrative and academic blocks were scheduled to be higher is
when the university is on, while the peak electricity demands in the hostels and resident
colonies were monitored until midnight. Table 2 represents the numerous factors that
were interconnected with the system, whereas Table 3 describes the TOU agreement’s
power-pricing information [57]. The comprehensive solar irradiance patterns analyzed
here were acquired from [58], and the data features were modeled and evaluated using the
previously described probability density function (PDF) in Equation (19). The primary goal
of using the PDF was to create regular irradiance patterns, while the previously generated
solar irradiance pattern predicted the PV production power consumption patterns using
Equation (20). Table 4 provides the case study data.

Table 2. System parameters.

Parameters Value Parameters Value

Ppv
rated 2000 kW CES 800 kWh

PG
(t,max) 2000 kW PG

(t,min) −1000 kW

Pb
(t,max) 800 kW Pb

(t,min) −800 kW

BSOCb
(max) 90% BSOCb

(min) 10%

BSOC0 50% PDG
(t) 600 kW

Table 3. Electricity prices in peak and off-peak times.

Cases Only Grid Solar PV ESS
Diesel

Generator
Wind

Power
Load

Case 1 � × × × ×
Multiple

Load
Variations

Case 2 � � × × ×
Case 3 � � � × ×
Case 4 � � � � ×
Case 5 � � � � �

Table 4. Different case study profiles.

Seasons/Parameters Spring Summer Autumn Winter

Months March–April May–August September–October November–February
Peak times 11:00 AM–5:00 PM 8:00 AM–6:00 PM 9:00 AM–5:00 PM 12:00 AM–4:00 PM

Unit prices in peak times (d) 0.11 0.146 0.11 0.10
Off-peak times Rest of the day Rest of the day Rest of the day Rest of the day

Unit prices in off-peak times
(USD) 0.09 0.126 0.08 0.10

4.2. Different Seasons Case Study

In this case scenario, the energy exchange evaluation among the grids and energy
demand were analyzed using the price-based data presented in Table 3. Several strategies
were developed here to better understand the energy consumption for different seasons.
These case scenarios were developed to maximize the dependability of solar PV, where
the daily hours of sunlight were 8–10 h in summer and 6–8 h in winter; different case
scenarios were implemented to get the most economical result by optimally scheduling the
different resources to minimize the dependence on the grid and to minimize the campus
grid electricity cost.

Case (1) (energy received from the grid): In the first case, the campus’s energy demands
were fulfilled completely by the utility. For the campus, no solar PV, ESS, wind, or DG were
considered in this case. The operating costs of the electricity were determined using the
time-of-use (TOU) rate, which was USD 1430.8. In this scenario, the LCOE was determined
as 0.0988 USD/kWh.
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The analysis indicated that the energy operational cost in the first case was exception-
ally expensive, but this was utilized as a study case for comparison with other cases for
evaluation regarding each season.

Case (2) (energy exchange between PV and grid): In the second case, solar PV was
connected with a prosumer microgrid as shown in Figure 6, and this was interconnected to
manage both the import of necessary energy from and export of surplus energy to the grid.
The rooftop PV system produced 8925.7 kWh, indicating the PV’s performance throughout
the peak periods of the year, especially in summer. The LCOE for the rooftop PV was 0.055
USD/kWh here. Therefore, the grid power net cost for 24 h dropped by 43.6% relative to
the baseline to USD 798.5.

 

Figure 6. Case (2): Energy exchange with solar PV and the grid.

Case (3) (ESS integration with PV and the grid): In the third case, the ESS was
connected with the solar and the grid. The proposed methodology was used to calculate
the net electricity costs of USD 819.9 and to best plan for the behavior of battery charge–
discharge patterns while taking into account all related associated costs. The LCOE was
determined to be 0.056 USD/kWh using TOU-based pricing and optimal BESS scheduling,
as presented in Table 5. When compared to the baseline scenario (case 1), it decreased the
electricity net cost by 42.8%. Figure 7 represents the energy exchange with the electricity
grid, with upper positive and lower negative values representing the energy import
and export. The optimal scheduling outcome of the ESS demonstrated that the battery
terminated operation at the same amount of SOC, i.e., it continued to operate at 50%
precisely based on what it began the current day with. Furthermore, as shown in Figure 8,
the ESS intelligently saved excess electricity during off-peak and peak hours and released it
proportionately to decrease the operating cost of electricity where Figure 9 state-of-charge
of a battery with unit prices with respect to time.

Table 5. Proposed system calculation using LCOE.

Different
Scenar-

ios

Imported
Utility
Power

(kWh/Day)

Prosumer
Electricity

Genera-
tion

(kWh/Day)

Grid
Electricity
Net Cost

(USD/Day)

Carbon
Credit

(USD/Day)
(A)

Electricity
Net Cost

without CC
(USD/Day)

(B)

Electricity
Net Cost of

CC
(USD/Day)
(C = B − A)

LCOE
(USD/kWh)

Saving
(%)

Case 1 14,472.5 - 1430.8 - 1430.8 1430.8 0.0988 -
Case 2 5546.8 8925.7 610.7 165 963.5 798.5 0.055 43.6
Case 3 5546.7 8925.7 711.5 165 984.9 819.9 0.056 42.8
Case 4 4983.2 8925.7 768.2 155 970.5 843.5 0.058 40.2
Case 5 4763.2 9295.9 546.4 145 995.9 850 0.060 38.3
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Figure 7. Case (3): Energy exchange with the ESS and grid.

 

Figure 8. Case (3): Energy exchange with the ESS, grid, and PV.

 

Figure 9. Case (3): State-of-charge of a battery with unit prices.

Case (4) (DG integration with the PV, ESS, and grid): In the fourth case, the campus
microgrid combined a diesel generator (DGen) with rooftop solar and a BESS structure
to minimize the potential peak demand of energy from the utility grid, even during the
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summer season (8:00 AM–6:00 PM). The grid consumed electricity up to 50 kW, which was
the limit for the smart grid, while the DGen’s output power consumption was restricted to
400 kW only in peak hours, as illustrated in Figure 10.

 

Figure 10. Optimal scheduling in case (4).

After the optimal BESS scheduling, the net cost of power was determined to be USD 843.5
each day. In this case, the measured LCOE was 0.058 USD/kWh, which when compared with
the baseline (case (1)), was 40.2% lower with the 2.2 s execution time during the respective
seasons, especially in summer because it experienced the lengthy peak periods.

Case (5) (proposed scheduling): The wind turbine system (100 kW) was combined
with the PV, ESS, diesel generator, and grid connection in the proposed case, as shown
in Figure 11. The wind turbine’s power and wind speeds are often 3–5 times greater in
August and September. The campus μG used a wind turbine with a power rating of 10 kW
and a height of 36.6 m, a rating speed of 9 m/s, a wind cut-in velocity of 3.6 m/s, and a
wind cut-out velocity of 26 m/s as the best option among the wind turbines examined.
The LCOE computed for wind energy was 0.060 USD/kWh, which was 38.3% less than
the baseline case (and better than the 35% found by [53]), which was calculated for a
hot or windy weather condition. It was estimated that by integrating the wind turbine
system with the ESS, solar PV, DG, and national grid (WAPDA), the UET Taxila university’s
campus energy net cost will be reduced by 3%.

4.3. Effects of the Sizing of Solar PV on Electricity Cost and Reduction in GHG Emissions with
Financial Feasibility

The impact of various solar PV sizes on the obtaining cost of electricity with the utility
and the decrease of carbon emissions each day were investigated. When the PV integration
was doubled, greenhouse gas emissions were reduced by half, as well as the costs, as
illustrated briefly in Table 6.

Figure 12 contains a bar graph that includes the solar PV incorporation in the proposed
scenario and the cost consequences for the electricity obtained from the utility. We evaluated
the differences in the operational costs of electricity based on the figures acquired in the
prior cases. Table 7 depicts the techno-economic assessment data with various components
utilized for the proposed system; this assessment included all of the suggested system’s
maintenance, operating, and capital expenses.
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Figure 11. Grid scheduling for the proposed case (5).

Table 6. Profile of the case studies on the grid electricity cost.

Case
Solar PV

Penetration Level

Electricity
Imported from

Utility (kWh/24 h)

Solar PV
Electricity

Generation
(kWh/24 h)

Net Cost of Grid
Electricity

(USD/Day)

GHG Emissions
Reduction
(kg/24 h)

Summer
1000 kW 10,037.23 4462.85 1843.20 365.34
2000 kW 5546.8 8925.7 798.5 700.68

Summer

Pattern of Load
Consumption

Electricity Import
from Grid
(kWh/24 h)

Electricity
Generated from

Solar PV
(kWh/24 h)

Grid Electricity
Net Cost

(USD/day)

LCOE
(USD/kWh)

Lowest 3545.2 8925.7 553.7 0.044
Average 4986.3 8925.7 697.6 0.050

Peak 5546.8 8925.7 798.5 0.055

 

Figure 12. Cost analysis of electricity net cost (USD) in different scenarios.
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Table 7. Techno-economic price comparison of different types of components connected with the
proposed system.

Sr No.
Objective

Components
Parameters Values Units

1 Solar PV

PV Rating 1 kW
Capital Expenses for PV 933.33 USD
Replacement Cost for PV 800.00 USD

Maintenance and
Operation Cost 13.33 USD/kW

Derating Factors 88 %
PV Lifetime 20 Years

2 Converter

Power Ratings 1 kW
Converter Capital Cost 133.3 USD
Converter Replacement

Cost 106.7 USD

Maintenance and
Operation Cost 160 USD/kW

Converter Efficiency 90 %
Converter Lifetime 20 Years

3 BESS

Capital Cost of the Battery 133.3 USD
Replacement Costs 56 USD

Battery Size 2.1 kW
Minimum State of Charge 30 %
Maximum State of Charge 100 %

Efficiency 95.5 %
Battery Life 5 Years

4 WT

Wind Turbine 1 kW
WT Capital Expenses 15,000 USD
WT Replacement Cost 800.00 USD

Maintenance Costs 13.33 USD/kW
Derating Factors 88 %

WT Lifetime 20 Years

5 DGs

Net Capital Expenses 9467 USD
Replacement Costs 28.35 USD
Operational Costs 2449.5 USD/kW
Overall Efficiency 80 %

Lifetime 25 Years

6 Grid Supply Cost 10 USD

7 Other
Discount 6 %

Project Lifetime 20 Years

Table 8 shows the cash flow analysis of the respective campus microgrids with the
consideration of a year-wise comparison for up to 10 years. It gives a brief comparison for
investments, feed-in/export tariff, electricity savings, annual cash flow, and accrued cash
flow (cash balance). In Figure 13, a financial analysis was freshly proposed here in this
study to observe the financial performance of the campus microgrid. The cash balance was
generated with a year-wise comparison to illustrate the accrued cash flow up to almost
20 years. In Figure 14, the financial feasibility was calculated for up to almost 20 years; it
shows the annual energy cost for solar PV before and after the installation.
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Table 8. Cash flow (USD) analysis of the campus microgrid.

Years Year 2021 Year 2022 Year 2023 Year 2024 Year 2025

Investments (7020.00) 0 0 0 0
Feed-in/Export Tariff 0.00 218.55 449.84 445.39 440.98

Electricity Savings 766.29 773.88 781.54 789.28 797.09
Annual Cash Flow (6253.71) 992.42 1231.38 1234.67 1238.07
Accrued Cash Flow

(Cash Balance) (6253.71) (5261.29) (4029.91) (2795.24) (1557.17)

Years Year 2026 Year 2027 Year 2028 Year 2029 Year 2030

Investments 0 0 0 0 0
Feed-in/Export Tariff 436.61 432.29 428.01 423.77 419.58

Electricity Savings 804.98 812.95 821.00 829.13 837.34
Annual Cash Flow 1241.60 1245.24 1249.01 1252.90 1256.92
Accrued Cash Flow

(Cash Balance) (315.58) 929.67 2178.68 3431.58 4688.50

The research showed that incorporating distributed generating systems offered sev-
eral advantages, including self-consumption, load demand flexibility, cost savings, and
minimized GHG emissions. Therefore, due to these consequences, the proposed approach
may be used to reduce the operational costs of campus energy consumption. To properly
regulate the distributed generators, a control facility is required. Furthermore, unloading
the grid enhances the grid efficiency by incorporating renewable sources. In other situa-
tions, capital and installation expenses will be distributed, enabling campus investors to
invest further in storage installations and in DG. Grid outages (organized load shedding)
are rather common in developing nations due to a variety of difficulties. When the grid
is unavailable, diesel generators and the energy storage system can be utilized as back-
ups. Scheduled high load shedding is typical throughout peak times. As a result, diesel
generators are employed at peak periods in those specific situations.

 
Figure 13. Cash balance comparison—year-wise comparison.
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Figure 14. Financial analysis of solar PV—year-wise comparison.

The proposed model shown in Table 9 achieved the optimal results for our campus
microgrid due to the utilization of demand response strategies, utilization of renewable
energy resources, and optimal scheduling such that it achieved a 38.3% economic benefit
to our microgrid, which is the most economical up-to-date.

Table 9. Proposed methodology comparison with the current works.

Ref. Years Applications Methods Comments Savings

[59] 2017 IEEE-14 bus system BBSA Reliability, energy losses 18.26%

[60] 2018 Campus μG MILP ESS degradation Cost,
peak demand 5.32%

[61] 2018 (IEEE-15)
bus system

NA and
conic

technique
Financial feasibility 3.3%

[62] 2018 Residential
level MILP Frequency regulation 7%

[63] 2019 Residential
μG LP Grid outage 16%

[53] 2020 Campus μG MILP DR, ESS degradation 29%, 35%

Proposed
model 2021 Campus μG MILP

Self-consumption, ESS
degradation, demand

response, optimal
scheduling, economic
and financial analysis

38.3%

5. Conclusions

In this study, the effective scheduling of a BESS and the effects of PV systems were
analyzed for a campus μG to minimize the energy operating costs for a prosumer microgrid
with the implementation of actual load data. The suggested system utilized solar energy, a
BESS, and diesel generators in several scenarios and their consequences were investigated.
The optimal scheduling was implemented in MATLAB and formed as a MILP problem. The
TOU pricing-based DR was investigated here as part of a financial and economic analysis,
and the ESS was used as a flexible DR framework that could be charged or discharged
wisely at various times to meet the budget target without compromising its durability.
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Without the DG or ESS, the utility grid supplied all the campus μG’s required energy,
leading to higher operational expenses. However, when the solar PV, DGen, WT, and
especially ESS were combined into the prosumer μG, the daily benefits in different seasons
was an approximate 38.3% cost reduction. The environmental effects of various sizes of the
installed capacity of the PV system were also investigated here, where it was discovered
that installing 1000 kW rooftop solar in hot months may save between 365.34 kg CO2/day.
If 2000 kW of rooftop solar was incorporated in the network, the savings were improved
by 700.68 kg CO2/day. The cost of energy was reduced based on a variety of factors, such
as energy consumption, feed-in tariff (FIT), and region. In Pakistan, the FIT has separate
prices for importing and exporting energy to those in several other countries, although
the cost of supplying energy to the utilities was considerably cheaper than the cost of
purchasing energy from the utilities. As a consequence, by investing in on-site solar PV and
ESS systems using an appropriate timetable that depends on FIT, location, and load usage,
investors may expect their electricity prices to rise by 20–30%. As a result, the optimal
charge–discharge method for the ESS plays an important role in the economic performance
of prosumer μG with internal RER installations. In a future study, DG uncertainty will be
investigated using more advanced mathematical models with many power systems and
DR kinds.
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Nomenclature and Acronym

The following acronyms and nomenclature are used in this manuscript:

A Acronyms
BSOC Battery state of charge
BESS Battery energy storage system
BBSA Binary backtracking search algorithm
DG Distributed generator
DERs Distributed energy resources
DR Demand response
ESS Energy storage systems
DSM Demand-side management
MILP Mixed-integer linear programming
GHG Greenhouse gas
FIT Feed-in tariffs
LP Linear programming
TOU Time of use
RERs Renewable energy resources
PV Photovoltaic
WT Wind turbine
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B Constants and Variables
BSOCmin Minimum BSOC level (%)
BSOCmax Maximum BSOC level (%)
BSOCt BSOC value at time t
BSOC0 The starting value of BSOC at time 0 (%)
Ces

t Cost of storage degradation (USD)
CES Rated capacity of energy storage (kWh)
Ce

t Net cost of energy (USD)
Cdg

t Cost of diesel generator (USD)
CWT

t Net cost of wind energy (USD)
I Solar irradiance
J Overall operations cost
μG Microgrid
Eg

net Net energy exchange with the grid
Pbat

t The output power of the battery storage system (kW)
Pch

t Charging power of the battery (kW)
Ppv

t Solar PV output power (kW)
Pdg

t Diesel generator output power
T Time interval (hour)
Pg

t Power taken from grid (kW)
Pg

max Maximum power exchange limit of utility grid (kW)
Pg

min Minimum power exchange limit of utility grid (kW)
Pl

t Load demand of prosumer (kW)
TG Diesel generator rated capacity
Sc Specific cost
μch

t
μdch

t
Storage charging integers/storage discharging integers

λt Electricity rate (USD/kWh)
μ Solar irradiance mean value
σ Solar irradiance standard deviation value
βpv Area of a solar panel
ηpv The efficiency of solar panel
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Abstract: Recently, due to the ever-increasing global warming effect, the proportion of renewable
energy sources in the electric power industry has increased significantly. With the increase in
distributed power sources with adjustable outputs, such as energy storage systems (ESSs), it is
necessary to define ESS usage standards for an adaptive power transaction plan. However, the
life-cycle cost is generally defined in a quadratic formula without considering various factors. In this
study, the life-cycle cost for an ESS is defined in detail based on a life assessment model and used
for scheduling. The life-cycle cost is affected by four factors: temperature, average state-of-charge
(SOC), depth-of-discharge (DOD), and time. In the case of the DOD stress model, the life-cycle
cost is expressed as a function of the cycle depth, whose exact value can be determined based on
fatigue analysis techniques such as the Rainflow counting algorithm. The optimal scheduling of
the ESS is constructed considering the life-cycle cost using a tool based on reinforcement learning.
Since the life assessment cannot apply the analytical technique due to the temperature characteristics
and time-dependent characteristics of the ESS SOC, the reinforcement learning that derives optimal
scheduling is used. The results show that the SOC curve changes with respect to weight. As the
weight of life-cycle cost increases, the ESS output and charge/discharge frequency decrease.

Keywords: energy storage system; life-cycle cost; optimal scheduling; reinforcement learning

1. Introduction

Recently, consumers’ perception of energy has changed due to the development and
demonstration of an operating system for regional power grids characterized by VPP
and MG. Under the influence of economic factors, such as decreasing installation costs of
renewable energy and technological advances, consumers have become energy prosumers
who can trade their own electricity through distributed power systems [1,2]. Because
the power surplus can be sold to neighbors, the energy flow in the energy market has
changed from one-way to two-way. In addition, the existing hierarchical market structure
has transformed into a network structure.

With the adoption of distributed energy, the need to establish usage standards is
increasing with an increasing use of ESSs. When conducting trading through ESSs, cer-
tain usage standards, such as the fuel cost function of the generator, must be considered.
The life-cycle cost of the ESS can be considered as one of these standards. As research
on the ESS life-cycle, Ref. [3] proposed the total capital cost and life-cycle cost models
for ESSs. The cost function was introduced and modeled for the system, and a learning
model that can accurately estimate the life-cycle cost based on various battery types was
built. Reference [4] proposed an analytical optimization for the capacity and sizing of solar
power and ESSs connected to the grid. Ref. [5] studied the efficiency difference between
HESS and LESS in an independent microgrid. The constraint variable was set by combining
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the SOC with the cost function, and the stability of the system was considered in prepara-
tion for the surge currents of LIB and LAB. Ref. [6] proposed an ESS life-cycle definition
using SOC and SOH models. They established an equation via correlation analysis and
introduced a cycle depth variable. Ref. [7] introduced an overall cost evaluation model for
ESS and used fuzzy comprehensive evaluation theory to analyze the model, considering
basic facility and operating costs. Ref. [8] proposed a life assessment method for ESS in dis-
tributed energy systems and established an evaluation method classified into four scenarios.
Ref. [9] introduced a P2P energy sharing scheme using ESSs. In their study, scheduling was
set to maximize system profits depending on the existence of an ESS. Ref. [10] conducted a
comparative study on single/hybrid ESSs to examine stable energy transfer capabilities
of these systems. This model considered the charge/discharge rate function of the bat-
tery, and data analyses were performed for situations with varying supply and demand.
Ref. [11] defined a cycle life model of a battery considering the SOC, DOD, average C-rate,
and aging of the lithium-ion battery. A comparative analysis was performed on the battery
temperature, output, and resistance values with varying parameters. Ref. [12] introduced
an ESS life-cycle cost optimization method through an energy consumer scheduling scheme.
The battery life was calculated using the Rainflow counting algorithm for maximizing
battery life. Scheduling was configured based on unstable PV and WT output data and the
composed ESS life results. Ref. [13] introduced an improvement in the prediction accuracy
of lithium-ion batteries. A BP neural network was used to predict the life-cycle cost of
the battery, and the weights were set using the DE algorithm. Ref. [14] analyzed the ESS
life-cycle cost using various forecasting techniques, such as the RVM and CNN models.
Ref. [15] conducted a study on the battery output considering the life-cycle cost of an ESS
used in the grid. Their study, conducted on the stability of the system, included measuring
the frequency fluctuations over time. Moreover, a scheduling scheme for an ESS used in the
auxiliary service market was established. Ref. [16] presented a methodology for the optimal
location, selection, and operation of battery energy storage systems (BESSs) and renewable
distributed generators in medium- to low-voltage distribution systems. Ref. [17] proposed
a new formulation of the battery degradation cost for the optimal scheduling of BESSs. This
paper defined a one-cycle battery cost function based on the cycle life curve and an auxiliary
state of charge (SOC) that tracks the actual SOC only upon discharge. Ref. [18] proposed a
mixed-integer nonlinear programming (MINLP) model for the PV-battery systems which
aims to minimize the life-cycle cost (LCC), and solved LCC Problem by a novel two-layer
optimization, and Ref. [19] studied the multi-objective operation of BESS in AC distribu-
tion systems using a convex reformulation. Ref. [20] proposed a two-stage multi-objective
optimal operation scheduling method to improve the operation efficiency and reduce the
emission of a solar-power-integrated hybrid ferry with shore-to-ship (S2S) power supply,
and Ref. [21] addressed the problem associated with economic dispatch of BESSs in alter-
nating current (AC) distribution networks. Ref. [22] addressed the problem of the optimal
operation of BESSs in AC grids from the point of view of multi-objective optimization.
Ref. [23] proposed a distributed multi-agent consensus-based control algorithm for multiple
BESSs, operating in a microgrid, for fulfilling several objectives, including: SOC trajectories
tracking control, economic load dispatch, active and reactive power sharing control, and
voltage and frequency regulation. Ref. [24] proposed an optimal BESS scheduling for
MGs to solve the stochastic unit commitment problem, considering the uncertainties in
renewables and load.

In summary, most previous studies derive their results by defining the life-cycle cost
in a quadratic manner or simplifying it. This study aims to define it in detail based on
a life-cycle cost assessment method and utilize it for scheduling. Because the defined
life-cycle cost cannot be derived analytically and explicitly, a solution is derived using
reinforcement learning techniques.

The contributions of this study are as follows:

(1) By defining the life-cycle cost of an ESS, and deriving and utilizing it for optimal
scheduling, prosumers with ESSs can make the best choice between incurring life-
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cycle costs due to ESS use and profiting from transactions. In addition, because of the
active adjustment of prosumers with ESSs, it is possible to reduce the line loss inside
a system.

(2) Through analysis of the trading tendency of flexible prosumers with respect to changes
in ESS life-cycle cost weights, prosumers who own an ESS have the choice of partici-
pating in P2P energy trading to make profits.

2. Life Degradation Model for ESSs Based on a Life-Cycle Assessment Method

This chapter presents the design of an ESS life-cycle cost metric for prosumer partic-
ipation in P2P energy trading with ESSs. ESSs can be classified according to the type of
battery they use. In this study, lithium-ion batteries, which are commonly used in ESSs,
are chosen, and their life-cycle cost is designed. The life-cycle cost was designed based on
existing studies related to battery life assessment. The life assessment model consists of
four stress models: temperature, average state-of-charge (SOC), depth-of-discharge (DOD),
and time Ref. [25].

The degradation ratio of the battery life-cycle is determined by the corresponding
stress models, and it can be evaluated using the corresponding degradation ratio. The
degradation ratio, four stress models, and the consumption life-cycle ratio are formulated
as follows:

fd,1 = [Sδ(δ) + St(tc)]Sσ(σ)ST(Tc) (1)

ST(Tc) = ekT(Tc−Tre f )(
Tre f
Tc ) (2)

Sσ(σ) = ekσ(σ−σre f ) (3)

Sδ(δ) = kδ,q1δkδ,q2 (4)

St(t) = ktt (5)

L = 1 − αseie−βsei fd − (1 − αsei)e− fd (6)

where fd is the degradation ratio, and ST , Sσ, Sδ are the stresses for temperature, aver-
age SOC, and DOD, respectively. Tc is the battery cell temperature, Tre f is the reference
temperature, and kT is the temperature stress coefficient. σ is the average SOC, σre f is the
reference average SOC, and kσ is the average SOC stress coefficient. St is the stress for time,
δ is the cycle depth, and k δ,q1, k δ,q2 are the DOD coefficients. t is time, kt is the time stress
coefficient, L is the consumed life-cycle, and αsei, βsei are the solid electrolyte interphase
(SEI) film formation coefficients.

In the case of a DOD stress model, various models such as linear, exponential, poly-
nomial, and power are applicable, but the power function is used according to references.
Stress models for average SOC and time can be used immediately for life-cycle cost design
because they are explicit. The same does not hold for DOD and temperature stress models.

First, in the case of the DOD stress model (4), which is expressed as a function of the
cycle depth, the exact value of the cycle depth can be determined through a post evaluation
based on fatigue analysis techniques, such as the Rainflow counting algorithm. In the
case of the temperature stress model (2), additional analysis is required because a model
for the internal battery temperature is required with respect to the output ESS. Therefore,
additional design stages for these two models are required. The model for temperature
is designed by analyzing the relationship between battery output and temperature using
the thermoelectric model of the battery. Furthermore, for the DOD model in this case,
an approximation that considers one charge or discharge of the battery as a half cycle
is assumed.

2.1. Temperature Stress Model Formulation

A thermoelectric model is used as the temperature stress model, which is categorized
into two types: an electric circuit model and a thermal model Refs. [26–29].
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2.1.1. Electric Circuit Model

The electric circuit model of the battery used in the temperature stress model is shown
in Figure 1 Ref. [28]. The open circuit voltage (OCV) can be expressed as a function of
the SOC and internal temperature of the battery. OCV, characteristically, rises during
charging and falls during discharging, and this tendency varies according to SOC. The
internal resistance Rin can also be expressed as a function of SOC and temperature. The RC
network located to the right of the internal resistance is a secondary model and represents
the diffusion resistance and capacitance. R1 and C1 are related to the charge transfer
processes occurring in the middle frequency range, whereas R2 and C2 are responsible
for reproducing the diffusion processes. Vh is an additional voltage component caused by
the hysteresis characteristics of the RC network, which refers to the fluctuations on the
open voltage during charge/discharge. This component is ignored, assuming its effect is
relatively small. Moreover, the corresponding model for life-cycle cost analysis does not
require detailed dynamic characteristics of the battery.

Figure 1. Battery electric circuit model.

The function for the SOC of the OCV (7) is based on the parameters listed in Table 1.

OCV = f (SOC) = ae(b·SOC) + ce(d·SOC) (7)

Table 1. Battery OCV curve parameters.

Parameter a b c d

Value 3.263 0.02451 −0.2297 −7.666

Regarding the effect of temperature on the OCV, Equation (8) shows the correlation
between the OCV bias component and temperature. It can be expressed as a polynomial
with the following related parameters in Table 2:

bOCV = g(SOC, Tin)
= p00 + p10·SOC + p01·Tin + p20·SOC2 + p11·SOC·Tin + p02·Tin

2 + p31·SOC3

+p21·SOC2·Tin + p12·SOC·Tin
2 + p40·SOC4 + p31·SOC3·Tin + p22·SOC2·Tin

2

+p50·SOC5 + p41·SOC4·Tin + p32·SOC3·Tin
2

(8)

Table 2. Correlation parameters between OCV bias component and temperature/SOC.

Parameter p00 p10 p01 p20
Value −0.001202 0.2458 8.558 × 10−5 −1.248

Parameter p11 p02 p30 p21
Value −0.007113 1.552 × 10−5 2.328 0.03044

Parameter p12 p40 p31 p22
Value −1.063 × 10−5 −1.899 −0.04233 −7.069 × 10−5

Parameter p50 p41 p32
Value 0.569 0.01919 8.263 × 10−5
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Finally, the open circuit model is constructed as a linear sum of the OCV model for
SOC in Equation (9).

OCV = f (SOC, Tin) = f (SOC) + g(SOC, Tin) (9)

The SOC is updated according to the output current, whose unit can be set as
% (or p.u.). The sign of the discharge current was set to positive. The discrete equation can
be described as:

SOC(k) = SOC(k − 1)− i(k − 1)
Cn

Ts

3600
(10)

where Ts is the sampling time (unit: second [s]), Cn is the battery capacity (unit: Ampere
hour [Ah]), i is the output current, and k is a time index.

The internal resistance is also configured as a function of the internal temperature
and SOC, similar to the OCV. However, the internal resistance remains constant without
significant changes over the general battery SOC usage period and is dominantly affected
by the internal temperature Ref. [19]. Therefore, the internal resistance is expressed as a
function of the internal temperature with the battery internal resistance curve parameters
in Table 3 and formulated as follows:

Rin = fR(Tin) = aebTin + cedTin (11)

Table 3. Battery internal resistance curve parameters.

Parameter a b c d

Value 0.0003448 −0.2954 0.01771 −0.008504

The relationship between voltage, resistance, and current in an RC network can be
represented as

v1(k) = a1v1(k − 1) + b1i(k − 1), a1 = e−( Ts
R1C1

), b1 = R1(1 − a1) (12)

v2(k) = a2v2(k − 1) + b2i(k − 1), a2 = e−( Ts
R2C2

), b2 = R2(1 − a2) (13)

where Ts is the sampling time, and k is the discrete time index. The second network time
constant does not change Ref. [28]; thus, what remains to be estimated are the resistance
and time constant of the first RC network and the resistance of the second RC network.
If R1 and τ1 are known, then using the time constant relational expression (τ = RC) C1
can be calculated, and C2 can be calculated in a similar manner if R2 and τ2 are known.
Network resistances are based on a polynomial model, whereas the first time constant is
based on an exponential equation. The equations are stated below and parameters are
shown in Tables 4–6.

R1 = fR1(SOC, Tin)
= p00 + p10·SOC + p01·Tin + p20·SOC2 + p11·SOC·Tin

+p02·Tin
2 + p21·SOC2·Tin + p12·SOC·Tin

2 + p03·Tin
3

(14)

R2 = fR2(SOC, Tin)
= p00 + p10·SOC + p01·Tin + p20·SOC2 + p11·SOC·Tin

+p02·Tin
2 + p30·SOC3 + p21·SOC2·Tin + p12·SOC

·Tin
2 + p03·Tin

3 + p31·SOC3·Tin + p22·SOC2·Tin
2 + p13

·SOC·Tin
3 + p04·Tin

4

(15)

τ1 = fτ1(SOC) = aeb·SOC (16)
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Table 4. Correlation parameters between RC Network R1 and SOC/internal temperature.

Parameter p00 p10 p01 p20
Value 0.04375 −0.05367 −0.000974 0.01182

Parameter p11 p02 p21 p12
Value 0.0005085 7.661 × 10−6 0.0004819 −6.957 × 10−6

Parameter p03
Value 1.993 × 10−8

Table 5. Correlation parameters between RC Network R2 and SOC/internal temperature.

Parameter p00 p10 p01 p20
Value 0.05018 −0.1373 −0.002979 0.1224

Parameter p11 p02 p30 p21
Value 0.005049 0.0001103 −0.02099 −0.001888

Parameter p12 p03 p31 p22
Value −9.877 × 10−5 −2.118 × 10−6 −0.001455 5.704 × 10−5

Parameter p13 p04
Value 2.744 × 10−7 1.708 × 10−8

Table 6. Correlation parameter between RC Network first time constant and SOC.

Parameter a b

Value 53.99 −1.573

2.1.2. Lumped Thermal Model

As shown in Figure 2, the battery thermal model is affected by the temperature values at
three points: the cell inside the battery shell, shell surrounding it, and environment Ref. [19].

Figure 2. Configuration of battery internal system.

Therefore, the battery thermal model can be modeled in two ways: the heat generation
that occurs inside the battery and heat transfer from the inside to the battery shell and from
the shell to the environment. In general, heat generated by the cell is considered only as the
heat generated by the internal resistance.

However, the heat generated due to the overpotential of the RC network and entropy
change also need to be considered. The total heat generated by the cell is given by

Q = Rini2 + v1i + v2i + i × Tin
dOCV
dTin

(17)

In general, the heat transfer in and out of a battery includes three mechanisms: con-
duction, convection, and radiation. Before modeling the heat transfer, both the battery shell
temperature and internal temperature must be uniform, and the thermal characteristics
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must also be uniformly distributed inside the battery. Only the heat conduction between
the inside and shell of the battery and between the shell and environment is considered.
The heat transfer model is expressed as follows:

Cq1
dTin
dt

= Q − k1(Tin − Tsh) (18)

Cq2
dTsh
dt

= k1(Tin − Tsh)− k2(Tsh − Tamb) (19)

where Tin is the battery internal temperature, Tsh is the battery shell temperature, and Tamb
is the ambient temperature. Cq1 and Cq2 are the internal and shell thermal capacities of
the battery, respectively, and k1 and k2 are the heat conduction coefficients between the
battery internal and the shell, and between the battery shell and the ambience, respectively.
Because Equations (18) and (19) are continuous, they are discretized as follows:

Cq1
z − 1

Ts
Tin = Q − k1(Tin − Tsh) (20)

Cq2
z − 1

Ts
Tin = k1(Tin − Tsh)− k2(Tsh − Tamb) (21)

Finally, the formulae for the internal temperature and shell temperature are as given by

Tin(k + 1) =
1 − Tsk1

Cq1
Tin(k) +

Tsk1

Cq1
Tsh(k) +

TsQ(k)
Cq1

(22)

Tsh(k + 1) =
Tsk1

Cq2
Tin(k) +

1 − Ts(k1 + k2)

Cq2
Tsh(k) +

Tsk2Tamb
Cq2

(23)

The heat capacity coefficients and internal heat capacity are constant. The heat capacity
coefficient k2 used in this model has time-varying characteristics; and the following relation
holds Ref. [28]:

k2 = k21 + k22(Tsh − Tamb) (24)

The k2 certainly depends on the heat dissipation condition, such as cooling wind
speed and temperature. k2 also increases with this temperature gradient Tsh − Tamb. To
take this effect into consideration, two cases are compared here: Constants k21 of k2 and
time-varying k22 of k2.

2.1.3. Coupled Thermoelectric Model

By combining the two previously defined thermal/electrical models into one,

x(k + 1) = Ax(k) + B(k) (25)

v(k) = OCV(k) + v1(k) + v2(k)− i(k)Rin (26)

where,
x(k) = [SOC(k), v1(k), v2(k), Tin(k), Tsh(k)]

T

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 a1 0
0 0 a2

0 0
0 0
0 0

0 0 0
0 0 0

1 − k1
Ts

Cq1
k1

Ts

Cq1

k1
Ts

Cq2
1 − (k1 + k2)

Ts

Cq2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

B(k) =

[
−i(k)

Ts

Cn
,−b1i(k),−b2i(k), Q(k)

Ts

Cq1
, k2Tamb

Ts

Cq2

]T
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2.2. Cycle Depth Stress Model Formulation

The cycle depth is derived after fatigue analysis using the Rainflow counting algo-
rithm, as mentioned earlier in the study related to the life-cycle cost evaluation of the ESS.
Therefore, it is impossible to determine the cycle depth before scheduling is configured.
The first step in solving this problem is deriving it through dynamic programming when
composing the ESS schedule. However, in dynamic programming, a cost or reward should
be calculated at the transition time between states. It is necessary to define a state, which
can be the SOC of the ESS. However, because SOC is a continuous variable, it cannot be
determined discretely; however, the state can be defined by dividing it into a specific unit
as a simplification to reduce the burden of calculation. For example, if the state is defined
in units of 0.1, when the minimum SOC is 0.1 and the maximum SOC is 0.9, nine states can
be defined in one time period (Stage). When the total schedule interval is T, the number of
cases composed by states is 9T−1. This refers to the number of cases when searching for a
path from the first to the last stage in the dynamic plan. That is, the computational power
required to search for an optimal point is quite large. To solve this problem, a reinforcement
learning-based approach is introduced, and the cycle depth to be used in this approach
is approximated. Therefore, for the cycle depth, the same half cycle was applied for all
charging/discharging cycles. To check whether this approximation is appropriate, we
created a random SOC candidate group and compared the difference between the complete
and approximate life-cycle cost analysis results.

Figure 3 shows a flowchart depicting this process. Figure 4 shows the SOC graph
where the difference between the two results is maximum and minimum when the life-cycle
costs for the approximated and total cycle depths are calculated. As a result, when charging
and discharging are repeatedly performed, the difference between the two life costs is
small, as shown in the blue graph, whereas when charging and discharging are sequentially
performed in one large cycle depth, the difference is the largest.

Figure 5 shows the approximated cycle depth for 20 candidates and the life-cycle cost
for the total cycle depth, as well as the ratio between the two life-cycle costs. Although there
is a difference in the ratio for each candidate group, we confirmed that even if the life-cycle
cost is calculated using the approximated cycle depth, the effect could be similar to the
lifetime cost calculated using the total cycle depth. When the life-cycle cost is included in
the actual objective function, it may be lower than the actual expected life-cycle cost owing
to the approximated cycle depth. However, this can be avoided because the life-cycle cost
is used for weight and not directly converted into an actual financial cost.

Figure 3. Life-cycle cost comparison flowchart for cycle approximation.
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Figure 4. SOC difference (max/min) of the two lifetime costs.

 
Figure 5. Comparison of two life-cycle costs regarding the SOC candidates.

2.3. ESS Life-Cycle Cost Formulation

Considering the temperature and DOD stress models, the ESS life-cycle cost can be
expressed as

fd = 0.5[Sδ(δ) + St(tc)]Sσ(σ)ST(Tc) (27)

ST(Tc) = e
kT(Tc−Tre f )(

Tre f

Tc
)

(28)

Tc = f (Pbat) (29)

Sσ(σ) = e
kσ(σt+

ηPbat
2CESS

−σre f )

(30)

Sδ(δ) = kδ,q1

(
ηPbat
CESS

)kδ,q2

(31)

St(t) = ktt (32)

L = 1 − αseie−βsei fd − (1 − αsei)e− fd (33)

where Pbat and CESS are the output and capacity of the ESS, respectively. η is the ESS
charging/discharging efficiency, and σt is the SOC at time t. Because the consumed
life-cycle L presented in Equation (33) is a cumulative expression of the battery aging,
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the difference in L values reflects the actual shortened lifespan. For example, if the life-
cycle L1 consumed on the first day and life-cycle L2 consumed on the second day are
determined through life assessment, the actual life-cycle consumed on the second day
becomes L2 − L1. If this is applied in the dynamic programming method mentioned
above, complex calculations, such as the number of cases for the path by the SOC state,
must proceed. Therefore, to maintain the tendency of the life-cycle cost and lower the
computational complexity, the initially consumed life-cycle value is initialized at 0. The
calculation complexity can be reduced using only the degradation ratio and life-cycle cost.

Finally, the life-cycle cost of the ESS is treated as a concept of depreciation cost by
multiplying the investment cost for the battery, as shown in Equation (34).

fbat(t) = Inbat × L(t) (34)

fbat is the life-cycle cost, and Inbat is the investment cost for the battery. The DOD
stress model can be solved analytically through half-cycle approximation. However, the
temperature stress model cannot be directly used for optimization problems because it is
derived through dynamic characteristic analysis. Therefore, this problem is solved through
a reinforcement learning approach.

3. ESS Scheduling Formulation Considering the Life-Cycle Cost

The basic optimization problem regarding a prosumer who owns an ESS is the summa-
tion of the cost of electricity purchased from the grid and life-cycle cost of the ESS, which
can be expressed as follows:

f ESS
pros =

T

∑
t=1

[ωESS IESSLt
ESS + (1 − ωESS)π

t
gridPt

grid] (35)

Pt
grid + Pt

dch − Pt
ch = Pt

load − Pt
PV (36)

SOCt+1 = SOCt +

(ηe f f Pt
ch −

(
Pt

dch
ηe f

)
)

CESS
Δt (37)

SOC0 = SOCinit (38)

SOCt = SOCend (39)

Lt
ESS = 1 − αseie−βsei f t

d − (1 − αsei)e− f t
d (40)

f t
d = F

(
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δ, St
t, St
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T
)
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t
)
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σ St

T (41)

St
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(
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ηe f f Pt

ch + Pt
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St
t = ktt (44)

St
σ = ekσ(σt−σre f ) (45)
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0 ≤ Pt
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bat (48)

0 ≤ Pt
ch ≤ Prated

bat (49)
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SOCmin ≤ SOCt ≤ SOCmax (50)

0 ≤ Pt
grid ≤ Pmax

grid (51)

In (35), weights are applied to both the ESS life-cycle cost and system purchase cost to
reflect the subjective preference of the ESS operator regarding the life-cycle cost. The larger
this weight is, the larger the ESS life-cycle is, which is reduced when operating the ESS,
whereas the system purchase cost is considered relatively low. Regarding this problem, the
state and stage for the ESS SOC are defined as shown in Figure 6, and a reward table for
state transition is constructed for reinforcement learning.

 
Figure 6. Conceptual diagram of status and stage definitions for SOC of ESS.

Figure 7 shows a flowchart for deriving a solution that applies reinforcement learning
to the optimization problem considering the life-cycle cost of the ESS. Figures 8 and 9 show
examples of internal reward tables for reinforcement learning. Because this problem is a
cost minimization problem, the cost value is treated with a negative sign.

Figure 7. Flow chart of the optimization problem solution considering the life-cycle cost of ESS.
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(a) (b) 

  
(c) (d) 

Figure 8. (a) Table configured for cycle depth; (b) Table configured for temperature; (c) Table
configured for ESS output; (d) Table configured for average SOC.

Figure 9. Example of a reward table constructed on MATLAB.

All problems subject to reinforcement learning can be expressed as a Markov decision
process (MDP) model, and this MDP is based on the Markov process (MP). The purpose of
reinforcement learning is to solve the Bellman Equations below.

Vπ(s) = ∑a∈Â π( a|s)Qπ(s, a) (52)

Vπ(s) = ∑a∈Â π( a|s)(Ra
s + γ ∑s′∈Ŝ Pa

ss′Vπ

(
s′
)
) (53)

Qπ(s, a) = Ra
s + γ ∑s′∈Ŝ Pa

ss′ ∑a′∈Â π
(

a′
∣∣s′)Qπ

(
s′a′

)
(54)

V∗
π(s) = max(Vπ(s)) , Q∗

π(s, a) = max(Qπ(s, a)) (55)

Q(s, a) = Q(s, a) + αlrΔQ (56)

(52)–(54) are the Bellman Expectation Equations. If the optimal value of Q is found
as in (55), the action state a∗ can be obtained and π∗ can be obtained accordingly. In (54),
Ra

s , the reward of action a in state s is the sum of the negative values of the cost for energy
consumption and the life-cycle cost as shown in Figure 9. Pa

ss′ , the probability of transition
from s to s′ is set to 1 in this problem. For example, when SOC 0.5 is state s and 0.4 is s′,
the action is a discharge corresponding to the amount of energy for SOC 0.1 which is a
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difference. As a result, when the action of discharging from SOC 0.5 to 0.4 is selected, the
probability of the transition becomes 1 because another state cannot exist according to this
action. The discount factor γ is used to evaluate future rewards at the point in time. When
determining the optimal scheduling, the γ is set to 1 in this problem because the reward
is not discounted. The function approximator solves the problem by finding the value
function value in the reverse order from the final state through (54) and updating the Q(s,a)
value as shown in (56).

4. Simulation Results

The MDP object is defined through the configured table, and the problem is solved us-
ing the reinforcement learning toolbox of MATLAB 2019a. Figure 10 shows the battery open
circuit voltage fitting curve and Figure 11 shows the bias model for temperature and SOC.
Figure 12 shows the battery internal resistance/temperature curve and Figures 13 and 14
show RC network R curves and surface with respect to SOC/Internal Temperature. Table 7
shows the settings for the agent and training options.

 
Figure 10. Battery open circuit voltage fitting curve.

 
Figure 11. Bias of open circuit voltage (V).
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Figure 12. Battery internal resistance/temperature curve.

  
(a) (b) 

Figure 13. (a) RC Network R1 curves with respect to SOC/Internal Temperature; (b) RC Network R1

surface with respect to SOC/Internal Temperature.

  

(a) (b) 

Figure 14. (a) RC Network R2 curves with respect to SOC/Internal Temperature; (b) RC Network R2

surface with respect to SOC/Internal Temperature.
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Table 7. Setting parameters for the Q-learning agent and training options.

Q-Learning
Agent Options

Learning Rate
Epsilon Greedy

Exploration Probability
Epsilon Decay

Parameter value 0.1 0.9 0.01
Trading Options Max steps per episode Max episodes
Parameter Value 20,000 20,000

For the optimal scheduling of ESS, the power system’s architecture is shown as
Figure 15a and is behind the meter. Figure 15b shows the load power curve and PV output
curve. In the case of the ESS used in this paper, the load and PV were modeled in the
behind the meter (BTM) method. Figure 16 demonstrates the process of finding the path to
the SOC through reinforcement learning.

By changing the weight for the life-cycle cost through reinforcement learning, we checked
whether the effect of the life-cycle cost is reflected in the ESS SOC results in Figure 17.

The results in Figure 17 compare the optimal ESS SOC results when the life-cycle cost
is not reflected and when it is reflected. In the figures, the green graphs represent the price
curve. In Figure 17a, when the initial life-cycle cost is not considered, the ESS repeats a
charging/discharging pattern due to the price difference and discharging during the most
expensive time period to maximize profits.

However, in Figure 17b–e, when the life-cycle cost is considered, frequent charg-
ing/discharging is reduced. As the life-cycle cost weight increases, discharge is not
performed even in a time period when the price is low. It was also confirmed that no
charging/discharging was performed when the weight of the life-cycle cost increased by
more than a certain amount in Figure 17f. This is because the investment cost value of the
ESS itself dominates the difference between the system purchase cost and absolute size.

 
(a) 

 
(b) 

Figure 15. (a) The power system architecture; (b) The Load power curve and PV Output curve.
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Figure 16. An example of solving an ESS optimization problem through Q-learning.

  
(a) (b) 

  
(c) (d) 

Figure 17. Cont.
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(e) (f) 

Figure 17. (a) SOC graph when life-cycle cost is not considered; (b) SOC graph when life-cycle cost
weight is 0.1; (c) SOC graph when life-cycle cost weight is 0.4; (d) SOC graph when life-cycle cost
weight is 0.5; (e) SOC graph when life-cycle cost weight is 0.6; (f) SOC graph when life-cycle cost
weight is 0.8.

5. Conclusions

In this study, the life-cycle cost for an ESS is defined in detail based on a life assessment
model and is used for scheduling. Prosumers with ESSs can make an assessment on the
price of P2P energy transactions based on the defined ESS life-cycle cost. The life-cycle cost
is affected by four factors: temperature, average SOC, DOD, and time. Among the four
stress models, the temperature and DOD cannot be approached analytically; therefore, they
are solved by approximation and reinforcement learning. The life-cycle cost of an ESS is
verified through the reinforcement learning toolbox of MATLAB. Regarding the life-cycle
cost, it is confirmed that the SOC result curve changes according to the weight, and as the
weight of life-cycle cost increases, the ESS output and charge/discharge frequency decrease.
When the initial life-cycle cost is not considered, the ESS repeats a charging/discharging
pattern due to the price difference and the ESS discharges during the most expensive time
period to maximize profits. However, when the life-cycle cost is considered, frequent
charging/discharging is reduced. As the life-cycle cost weight increases, discharge is not
performed even in a time period when the price is low. It was also confirmed that no
charging/discharging was performed when the weight of the life-cycle cost increased by
more than a certain amount. In the future, we shall investigate the connection between the
community grid, general distribution system and a real-time P2P energy trading strategy
that considers real-time uncertainty.
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Nomenclature

The following Nomenclatures are used in this manuscript:

fd The degradation ratio
ST , Sσ, Sδ The stresses for temperature, average SOC, and DOD
Tc The battery cell temperature
Tre f The reference temperature
kT The temperature stress coefficient
σ The average SOC
σre f The reference average SOC
kσ The average SOC stress coefficient
St The stress for time
δ The cycle depth
k δ,q1, k δ,q2 The DOD coefficients
t Time
kt The time stress coefficient
L The consumed life-cycle
αsei, βsei The solid electrolyte interphase (SEI) film formation coefficients
Ts The sampling time (unit: second [s])
Cn The battery capacity (unit: Ampere hour [Ah])
i The output currents
k Time index
Tin The battery internal temperature
Tsh The battery shell temperature
Tamb The ambient temperature
Cq1, Cq2 The internal and shell thermal capacities of the battery
k1, k2 The heat conduction coefficients
Pbat The output of the ESS
CESS The capacity of the ESS
η The ESS charging/discharging efficiency
σt The SOC at time t
fbat The life-cycle cost
Inbat The investment cost for the battery
Vπ(s) The value of state s
Qπ(s, a) The value of action a in state s
π( a|s) The policy of action a in state s
Ra

s The reward of action a in state s
Pa

ss′ The probability of transition from state s to state s′ by action a
γ The discount factors
αlr The learning rates
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Abstract: Due to the surge in load demand, the scarcity of fossil fuels, and increased concerns
about global climate change, researchers have found distributed energy resources (DERs) to be
alternatives to large conventional power generation. However, a drastic increase in the installation of
distributed generation (DGs) increases the variability, volatility, and poor power quality issues in
the microgrid (MG). To avoid prolonged outages in the distribution system, the implementation of
energy management strategies (EMS) is necessary within the MG environment. The loads are allowed
to participate in the energy management (EM) so as to reduce or shift their demands to non-peak
hours such that the maximum peak in the system gets reduced. Therefore, this article addresses the
complication of solutions, merits, and demerits that may be encountered in today’s power system
and encompassed with demand response (DR) and its impacts in reducing the installation cost, the
capital cost of DGs, and total electricity tariff. Moreover, the paper focuses on various communication
technologies, load clustering techniques, and sizing methodologies presented.

Keywords: distributed energy resources; demand response; microgrid; load clustering techniques;
sizing methodologies; communication technologies

1. Introduction

The ever-increasing population has led to a plethora of electricity needs in the country.
Existing power systems got overstressed to meet the increased load demands. Though
the power generation by the conventional fossil fuel-fired generators is flexible, control-
lable, and dispatchable, the demerits of these sources are not economic, environmentally
unfriendly, and non-sustainable [1]. Moreover, the triple bottom line [2] approach suggests
the reduction in global emissions, increasing profits, and achieving maximum benefits for
the people. It encourages people to develop in a sustainable manner. Its main objective is
to enhance the economic, environmental, and social development of a home or community
or organisation. A possible solution is to ameliorate the existing system with the DERs [3],
but the output of these sources is stochastic and uncertain in nature. Another possible
solution is to deploy a battery energy storage system (BESS) into the existing MG to meet
the power balance condition, but it is a costly solution. A localized grouping of DGs, BESS,
and scattered loads form a MG [4]. Two modes of operation of MGs exist, namely, isolated
MG or off-grid modes or autonomous mode and grid-connected mode or on-grid mode.
Further, the MG has three topologies, namely, alternating current MG (AC-MG), direct
current MG (DC-MG), and hybrid MG. In AC-MG and DC-MG, the sources may be AC or
DC but the converters convert them into one form. In the case of AC-MG the converters
convert the power into AC, whereas, in case of DC-MG the converters convert all the
generations to DC. This process increases the number of converter operations. Hybrid MG
enhances the performance and reduces the redundancy of converters required. MG can be
operated in grid-connected mode and isolated or stand-alone mode based on the system
type. The higher the peak load demand on the system, the more the generation capacity
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to be installed is, which increases the capital cost of MG. To mitigate the present issues
such as load increment, fossil fuel deficit, and environmental degradation, steps have been
taken to reshape existing power systems into green and efficient systems. Therefore, an
EM system [5] is essential in a MG system for achieving efficient operation. Other factors
that drive the EM of MG are economic benefits [6], environmental benefits [7], energy secu-
rity [8], and energy integration [9]. Developments in power systems are due to advances
in technology and an increase in electricity usage. Figure 1 shows various stages of the
evolved power system from a source point of view.

Figure 1. The evolution of power systems before DR implementation.

EM can be done in two ways: supply-side management and demand-side management
(DSM). DSM focuses on DR, so as to improve the energy efficiency of the MG. DR can be
stated as changes in electricity consumption by end-users based on market price fluctuation
(Rs/kWh) without jeopardizing power system security. Response of the loads in accordance
with the proper way benefits both the utility and the consumer. By adjusting a part of peak
load to other time horizons results in reduced peak demand on the system, reduces the
peak to average ratio of the load demand, and increases the load factor.

Therefore, the proposed work addresses the complication of solutions, merits, and
demerits that may be encountered in today’s power system and encompasses demand
response (DR) and its impacts in reducing the installation cost, the capital cost of DGs, and
total electricity tariff. To achieve this an objective function was formulated and an optimal
sizing method has been proposed by considering the impact of DR for finding the optimal
size of DGs, i.e., WT, PV, and diesel generator. Further, the proposed algorithm clusters
the load into ILs and NILs and assigns a priority to the non-essential loads with the order
of scheduled times by using TOU pricing. In addition, the paper suggests a limit on the
amount of load shift to avoid the issues like rebound effect, increase in marginal price,
and operational cost of the MG due to load recovery. Three penetration levels of demand
responsive loads were considered, namely, 0%, 5%, and 10%, for studying the impact of DR
programs on optimal sizing of the DGs and on consumer tariffs.

2. Literature and Contributions of the Work

Figure 2 shows a general layout of hybrid MG systems where the DC bus and AC
bus are connected using a bi-directional converter. The EM achieved in grid-connected
mode [10] is as follows: all the DGs, i.e., wind turbine (WT) and photo voltaic (PV) operate
in maximum power point tracking (MPPT), and the dispatchable sources in the main grid
supply the surplus load demand if any. During the energy surplus from MG, the BESS gets
charged based on SOC. If the maximum SOC level is met, then the DGs supply the main
grid and all dispatchable sources control their outputs as shown in Figure 3.

Pdisp = PLoad − PWind − PPV − PBESS (1)
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Figure 2. A general layout of hybrid MG.

Figure 3. (a) Power dispatch mode in connected grid, (b) Un-dispatched power mode in iso-
lated modes.

In isolated mode [11], based on the level of SOC, the DGs may or may not operate in
MPPT. BESS supplies the surplus load if any. In off-MPPT, the DGs output is controlled by
derating its power where PVs operate in voltage-controlled mode and WT output power
operates with the pitch control mechanism. During MPPT operation, the DGs work in
MPPT and the BESS charges/discharges based on the energy surplus/deficit.

PBESS = PLoad − PWind − PPV (2)

The stochasticity produced by DGs and loads injects high frequency switching tran-
sients within the MG which degrades the life of the BESS, because of its low frequency and
low power density capability. A super capacitor (SC) has low energy and high density;
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therefore, to enhance the life of the BESS [12], the BESS operates with a SC and forms a
hybrid storage energy system. Proper EM is needed to boost the efficiency of the power
system and manage the ever-increasing peak demand. Deployment of new sources for
meeting the shortage of electrical power is not a key solution. A promising solution to
overcome the above challenges is the active participation of customers in electricity usage.
In the last few decades, the power system has been in a situation where the sporadic nature
is at the customer end and the generation should meet the fluctuations in the load demand.

The modern power system is quite complex, and the sporadic nature is also shifted
towards the source side [13]. Therefore, it is necessary for the implementation of DR
programs in the existing environment so as to manage the energy flow and control the
stochasticity of loads, sources, and electricity price as shown in Figure 4.

Figure 4. Stochasticity in MG.

Large integration of intermittent sources and loads into the MG needs proper EM.
EM can be done at both ends, either at the source side or at the load side depending on
the method of control. Optimal scheduling of DERs, optimal sizing of DERs, and optimal
sizing of BESS perform supply-demand balance from the source end side, DR programs
perform supply-demand balance from the end-user side. Uncertainty in RES, uncertainty
in loads, and uncertainty in price require effective control. The former is mitigated by
deploying fast-acting sources, the latter two addressed by performing DR programs. Power
system restructuring leads to the usage of advanced metering infrastructure (AMI) which
helps customers to monitor the electricity prices continuously. There can be effective
scheduling of their interruptible loads (ILs) as per the charges of the real-time market
by safeguarding the security of the power system. The paradigm shift from the way
customers buy or sell energy has been enabled by the creation of a common marketplace or
platform which establishes both energy transfer and transaction settlement on both sides. A
significant change in the technologies of transmission networks is essential so as to uphold
the reliability and security of the microgrid. To overcome the above challenges, there is
a need to incorporate communication technologies into the distribution network such as
smart metering infrastructure, supervisory control and data acquisition (SCADA), etc.

Moreover, the incorporation of EMS into the distribution network leads to the active
participation of customers. The basic inputs for managing the energy in the MG are load
and weather forecasting, state of charge (SOC) levels of BESS, operational, security, and
reliability constraints, and the possible solutions from the EM algorithm are the schedule
of DERs, load shedding/load growth, and optimal sizing of DERs. There are mainly two
EMS viz., demand-side management and supply-side management and the control may
be either centralized or decentralized. It is necessary to model the loads for applying the
above two methods. Based on the elasticity and cross elasticity behavior of consumers, they
are categorized into agricultural, industrial, residential, and commercial loads.

DR is well-defined as variations in electricity consumption by end-users based on
market price fluctuation (Rs/kWh) without jeopardizing power system security [14]. DR
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contributes to the system reliability, security, efficiency, and economic operation of the
MG. Further, DR provides a dynamic balance between supply and demand in all instances.
DR is seen as one of the cornerstones of future MG for addressing the above-concerned
challenges, it can be noted that resilient control can be incorporated at this stage to deal
with faults [15]. Moreover, customer comfort [16] should be ensured while performing the
DR operations. The load consumption pattern should match the generation profile. Loads
should be diversified so that the diversity factor gets improved. DR alleviates the load
profile by shifting the peak load, filling the valley point which decreases the operational
cost of the MG. Various researchers are working in this field as DR techniques have the
potential to solve the majority of existing power system problems. This paper focuses on the
impact of DR programs on sizing problems and consumer price. Moreover, a brief review of
aggregator functions, load clustering methods, and various trading models are mentioned.

Figure 5 shows the function of DSM. The collaboration between the BESS and DR
programs will enhance the performance of the power system due to the uncertainty present
in generation, loads, and electricity price. Decomposition algorithm with three scheduling
patterns employed in [17], namely day ahead (DA) scheduling to optimize the expected
operational cost of MG, an hour ahead (HA) scheduling to reduce the gap between DA, and
real-time (RT) scheduling, and RT scheduling is employed to reduce the real power imbalance.

Figure 5. Functions of DSM in MG.

A review on DR programs and EMS is presented in [18]. A review on integration of
DGs with the BESS, utilizing the demand side resources for increasing the flexibility of MG,
and various market rules have been proposed in [19]. A review on DR strategies and EM in
smart environments is presented in [20]. A detailed review on various artificial intelligence
(AI)-based algorithms to forecast the energy requirement during peak hours is presented
in [21], in which home energy management system (HEMS) is considered for the course
of study. The forecast and EMS can be applied on any of the issues such as DGs output
power, electricity price, and on loads [22–26]. A review [27] on EM in buildings based
on reinforcement learning (RL) algorithms is applied for responsive sources in buildings,
i.e., PV, BESS, electric vehicles (EVs), and heating, ventilating and air conditioning (HVAC)
systems. Figure 6 shows various EM techniques at source side.

The deployment of RES causes a drop in the overall inertia of the modern power
system. This poor inertia subsequently leads to frequency oscillations [28]. Frequency
stability [29] can be analyzed by simulating a loss of a generator or a loss of the majority
of a load under an aggregator or a balanced fault on the steady-state system. At present,
supervision of distribution networks has become more difficult due to the penetration of
intermittent renewable energy in large amounts. Volatility and uncertainty in renewable
energy sources (RES) increase the burden on independent system operators (ISO) to match
the generation and demand. Large-size thermal generators do not have an immediate
ramp-up capability. BESS provides sufficient power balance with high speed compared to
other DGs; however, it is costly. Therefore, there is a necessity to find alternate solutions.
The literature and the case studies considered depict the influence of DR programs on the
sizing and on consumer’s tariff.
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Figure 6. Long-term methods to perform EM in the MG system from source end.

In [30], a real-time hardware prototype is developed to manage the energy flow
between the MG and the main grid efficiently. Three cases have been considered, namely,
peak hours on the conventional grid, off-peak mode on the main grid, and isolated mode
where MG is disconnected from the main grid. A peak EMS is proposed by scheduling the
PV and the BESS in order to mitigate the stress developed on the main grid during peak
hours and optimize the battery status based on SOC and grid status based on load profile.
The failure rate on the system is a function of the number of devices connected. As the type
of sources considered is of a DC nature, redundancy of equipment should be limited by
considering the DC-MG to improve the reliability and reduce the conversion losses of the
MG system. Therefore, the number of devices required to integrate DC sources with the
AC grid gets reduced which ultimately decreases the failure rate of the system.

By performing the above two strategies as shown in Figures 6 and 7, the system
operators increase the energy efficiency and improve the reliability of the MG. The area
under the curve before and after valley filling should be identical to each other. Basically,
the type of tariff should be simple and easy to understand by every consumer. There
should be a minimum number of price updates. Depending on the number of updates and
duration for each price, pricing-based tariffs are classified into three types. Table 1 shows
the key differences between price-based techniques.

Table 1. Differences between various price-based tariffs [31].

S.No. Parameter Time of Use (TOU) Tariff [32] Critical Peak Pricing (CPP) Tariff [33] Real Time Pricing (RTP) [34]

1 Volatility in
prices Fixed prices during the same season. High price during the event. Dynamic prices.

2 Complexity Easy to use. Moderate and event-driven to ensure
reliability. Imposed by the utility.

Complex and it needs a robust
hardware setup.

3 Operation
There is no curtailment of load
demand. Only shifting in time
horizon takes place.

Either curtailment or shifting of load
takes place.

Shifting of loads is difficult since
consumers may not be able to see
their incentives.

4 Frequency of
imposition Imposed on daily basis. Not imposed on daily basis. Imposed on hourly or minutes or

seconds basis.

5 Efficiency Highly efficient in reducing the
energy cost and carbon emissions.

Less efficient in reducing the energy
cost and carbon emissions.

Moderate efficient in reducing the
energy cost.
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Figure 7. Methods to perform EM in the MG system from the load end.

Incentive-based tariffs are clustered into two types, namely, direct load curtailment
(DLC) and indirect load curtailment. In the former one, utilities directly control the con-
sumer appliances, therefore there is a possibility to secure threat and customer confiden-
tiality, whereas, in the latter, customers control their loading based on the price signals
displayed. Customer baseline load is used for deriving the compensations received by the
consumers. However, it requires sophisticated metering infrastructure. Figure 8 shows
some of the DR strategies performed by the system operator for effective management of
the load whereas Figure 9 shows the benefits of applying DR strategies.

Figure 8. DR strategies.
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Figure 9. Merits of DR strategies.

2.1. A Brief Introduction on Optimal Scheduling in a MG

The operational cost of a MG is a function of fuel and operating crew and the amount
of fuel required is a function of available load demand on the system. Therefore, proper
scheduling of DERs is mandatory for reducing the operational cost of MG. Table 2 presents
a brief introduction to various problem definitions for the optimal scheduling of DERs in
a MG.

Table 2. Optimal scheduling of DERs in a MG.

Ref
No.

Size of
Distribution
Network

Isolated (I) or
Grid
Connected (G)

Approach Objective Function Remarks

[35] 33 bus and 69 bus
radial networks *

Population-based
incremental
learning method

To minimize the
power losses, improve
voltage profile

Optimal power flow analysis has
been done for yielding power
losses and voltage profiles.

[36]
33-bus, 69-bus, and
78-bus
radial networks

* Hybridized meta-
heuristic method

To optimize the active
and reactive
power losses

Hybridized gray wolf
optimization (GWO) and particle
swarm optimization (PSO)
algorithms. The load power is
considered as 3.715 MW and
reactive power as 2.3 MVAR.

[37] * I

Improved
multi-objective
grey wolf optimiza-
tion (IGWO)

To optimize the
annualized cost of the
system and deficiency
of power
supply probability

EM system is used to achieve
the requirement.

[38] IEEE 33 and 69 bus G Firefly algorithm To minimize the
power losses

Applied firefly algorithm for
optimal sizing and siting the DGs
in a radial network.
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Table 2. Cont.

Ref
No.

Size of
Distribution
Network

Isolated (I) or
Grid
Connected (G)

Approach Objective Function Remarks

[39] IEEE 33 and 69 bus G

Sine cosine
algorithm (SCA) +
second-order cone
program-
ming (SOCP)

To minimize the real
power losses

Effective placement and sizing
of DGs.
Placement by using sine cosine
algorithm and sizing by using the
second-order cone programming.

[40] IEEE 33 bus G Multi-leader PSO Active power loss
reduction To optimally site and size DGs.

[41] IEEE 115 bus G
Genetic algorithm
(GA) has
been used

Power loss reduction,
improved voltage
level, and short
circuit level

Proper selection and placement of
DGs certainly improve the
EM system.

[42] IEEE 33 and 69 bus *
Adaptive shuffled
frog leaping
algorithm (ASFLA)

Power loss
minimization and
voltage stability index
improvement

Novel adaptive technique is used
for solving the problem. The
performance of the algorithm is
compared with the firefly, cuckoo
search, and shuffled frog leaping
algorithm. Results suggest that
ASFLA outperforms
other algorithms.

[43]
33-bus radial
distribution
network

*

Modified
differential
evolution
algorithm

To minimize DA
composite economic
cost, i.e., operation,
economic, and
transmission loss cost

The problem is modeled as a
non-linear problem and
scheduling has been done to
optimize the fuel cost.

[44] Loads, PV, and
BESS * Time decision

algorithm
To optimize the peak
power cost

The model yields the per day load
and generation capabilities
further, a decision is made for
BESS dispatch.

[45] * G
Improved particle
swarm optimiza-
tion (IPSO)

To achieve
economic scheduling

Uncertainty in wind and solar
generation and electricity prices
has been considered and a
two-stage stochastic model is
solved to optimize the operating
cost of the MG.

[46] IEEE 33-bus
system G

Optimal power
flow calculation is
carried out and
hierarchical
distribution
network
integration method

To achieve optimal
consumption of energy
by effective economic
scheduling

Effective coordination between
prosumer and grid is required for
the well operation of the power
system. An increase in residential
loads will make the power flow
calculations complex. To
overcome the above concern
residential customers are
clustered into a single
residential MG.

* Not specified.

2.2. The Necessity of Optimal Sizing of DERs in a MG

For effective functioning of the power systems, there should be a dynamic balance
between the supply and the demand occurring on the system. Though the peak loads on
the system occur rarely, there is a need to meet the peak load demand by increasing the
supply of electricity. Therefore, the size of DGs is a function of the peak load demand.

Figure 10 depicts the various costs involved while solving the optimal size problem of
BESS where the trade-off point is taken between the operational, emission, and installation
cost of BESS. As the size increases, the installation cost of BESS increases but the operational
cost of MG decreases. The emission cost reduces to a certain point and then increases as
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the size of BESS increases. The underlying fact is that as the size of BESS increases the
recycling cost also increases. Table 3 represents a brief study on various problem definitions
for optimal sizing of DERs in a MG.

Table 3. BESS sizing for achieving EM in a MG.

Ref
No.

Isolated (I) or
Grid
Connected (G)

Sources
Considered

Objective Function Approach
Problem
Modelled as

Remarks

[47] G BESS alone

To improve the load
factor by decreasing
the peak value to
valley point difference

The net energy
in the BESS is
considered as
the initial value
of the day

Mixed-integer
programming

DR strategies improve
the load profile which
certainly improves the
load factor.

[48] G PV and BESS
To increase the annual
net profits, PV
consumptive rate

Non-
dominated
sorting genetic
algorithm 2

Multi-objective
problem

For optimal sizing of
BESS, the constraints
considered are
reliability constraints,
BESS performance
constraints, and user
purchasing
electricity cost.

[49] G
Solar, WT,
and fuel
cell (FC)

To reduce electricity
costs. In this study,
uncertainty in the cost
of electricity and load
uncertainty is
considered for
robust sizing

Decision theory
approach
is applied

BESS is
considered as a
cluster of loads.

In this study,
decision-making is
based on three issues,
namely, minimization
of expected cost,
min-max regret,
and stability.

[50] G Solar, WT,
and FC

To reduce the total
harmonic distortion
(THD), active power
losses, and to reduce
the overall cost
of DERs

Size is a
function of the
amount of
operational cost
decrement

BESS supplies
the deficit
power and
maintains
the balance

Sizing of DERs in an
IEEE 31 bus
distribution network
was performed to
reduce the total cost for
installing DERs.

[51] G PV, grid,
BESS, and WT

The aim is to optimize
the overall operational
cost of the MG

A quasi
oppositional
swine influenza
model
is applied

The load
difference is
supplied by
the grid

Sizing of both rooftop
PV and BESS has
been done

[52] G PV, WT, grid,
BESS

The objective is to
minimize the net
operational cost and
installation of BESS

GWO
algorithm
is used

The load
difference is
supplied by
the grid

The fuel cost is reduced
so that the size of the
BESS is reduced.

[53] I

PV, WT, BESS,
FC, and micro
turbine (MT)
are
considered

The objective is to
reduce the size of BESS

The problem is
formulated as a
mixed integer
linear program-
ming (MILP)

Grid is not
present so BESS
is essential

Sizing of BESS varies
when the uncertainty
of DERs is considered.
Three cases have been
considered: no BESS,
BESS with no initial
charge, and BESS with
an initial stored charge
equal to the total
capacity of BESS.
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Figure 10. Trade-off points in sizing of BESS.

2.3. Functions of DR Aggregator

Customers approach a DR aggregator if they wish to participate in DR programs.
Then, the DR aggregator forms a single large load by aggregating the small load demands
and establishes linkage with a distributed network operator (DNO) for maximizing the
profits. The aggregator acts as a mediator between loads and the ISO and the direction of
data flow is bi-directional as shown in Figure 11. The below equation represents the load
profiles of ‘n’ individual customers with ‘m’ load profiles submitted to the load aggregator
customers, aggregates it, and changes the load pattern as per the electricity price elasticity,
and submits the aggregated load data to the ISO. ISO is considered as an information hub
when seen from both ends of the power system. The decision variables in DR programs are
the electricity price and the incentive cost.

Figure 11. Function of DR aggregator.
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The profit obtained by aggregators depends on the level of penetration of responsive
loads. Moreover, high penetration of DERs will offer a benefit to reduce the energy price
in the local community and address the undesirable line congestion issues. In [54], a
framework was proposed to introduce the competition between the prosumers in which an
aggregator plays as a local market operator. In [55], an aggregator model was proposed
for reducing the issues in line congestion and voltage deviation, arising in response to
flexible resources such as ILs, intelligent electronic devices (IEDs), and various sensors to
the external price signals.

The response of loads is uncertain and the consumers participating in the DR programs
should be bound to the agreed amount of curtailment or shifting of load. In [56], a method
was proposed to assign priority to the reliable loads by reliability analysis. The registration
period for the consumers participating in the DR is one month. During this, the aggregator
derives the priority based on the consumer response in the scheduled period. Moreover,
the aggregator verifies the performance of the reliable customers during the course of
action by evaluating the difference between the agreed load curtailment and the actual
load curtailment and changes the priority levels based on the response. Disputes in energy
trading are inevitable which arises due to the multiple market players of different conflicts
of interest. There should be a third party for negotiations or mediations between the
prosumers and the upstream grid for suppressing the dispute. Transparency in the supply
of electricity and price policies mitigates disputes.

The potential of residential consumers in DR events is increasing because the portion
of load consumed by the residential loads when compared with other types of loads gets
increased. In [57], the authors proposed a framework for optimal bidding strategy by
considering the uncertainty in willingness to participate in DR programs of residential
consumers. Table 4 represents the function of the aggregator in a MG whereas, Figure 12
indicates the functions of ISO. In general, the below Equation (3) is a function of time. It
may change its shape from time to time, either in minutes, hours, or a greater number of
frequent updates depending on the type of load connected, scheduled time to run, and
duration of run.

[
Pt

aggregated

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

pt
1 . . . pt

1,m
pt

2 . . . pt
2,m

... . . .
...

pt
n−1 . . . pt

n−1,m
pt

n · · · pt
n,m

⎤
⎥⎥⎥⎥⎥⎥⎦

(3)

Figure 12. ISO function in load data collection, processing, and scheduling.
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Table 4. Need for aggregator operations.

Ref
No.

Islanded (I)
(or) Grid
Connected
Mode (G)

Loads Are
Aggregated (A)
(or) No
Aggregation (N)

Users Objectives Outcome

[58] G
Aggregated
plug-in-electric
vehicle (PEV) fleet

Low volatage
MG (LV-MG)

Three objective functions
have been considered:
Reduction of power loss,
reduction of voltage
deviated. and current
through the lines should
be optimized

The problem is modeled as a
multi-objective problem in which
the results are not a single value but
of sequence which is called Pareto
solutions therefore, it is necessary
to take trade-off points which are
called as Pareto optimum.

[59] G Clustered loads
aggregated

Residential cold
climate heat
pump (CCHP)
MG

To optimize the operating
cost of the MG

A two-stage optimal dispatch
problem was proposed for
obtaining low operating costs.

[60] G EVs Residential and
commercial

Aims to reduce the
running cost of the MG

A non-linear optimization problem
was solved by
day-ahead scheduling.

[61] G
Residential loads
within the MG
were aggregated

Residential loads To maximize the
aggregator’s profit

Day-ahead scheduling of DERs was
considered and to mitigate the
sporadic behavior a
risk-constrained stochastic model
was framed.

[62] G N IEEE 24 bus
To achieve the economic
profit, security, and
stability of the MG

A multi-objective problem was
solved to assess the
dynamic stability.

[63] * A *

To maximize the
aggregator’s profit by
balancing the real-time
deficit of power

Optimal bidding strategy of
aggregator and real-time balancing
at the local level.

[64] * A *
Profit maximization of all
the market players within
the power system

Bender’s decomposition is applied.

[65] * A
Smart
distribution
system

To maximize the operating
cost of the agents
(aggregators and
prosumers) by optimally
scheduling the resources
and maximizing the profit
of energy suppliers

Multi-follower bi-level
programming is applied. The
objective function is linearized and
KKT is applied.

[66] I EVs aggregated MG To improve the frequency
stability of the MG

In autonomous mode of operation
of the MG, there is a need for the
deployment of storage devices to
support the frequency regulation.
EVs are the active resources similar
to BESS and they enhance the
frequency regulation.

* Not specified.

2.4. Recap of Energy Trading Models

A novel approach for energy trading is proposed in [67], where a group of MGs
has been clustered into individual MGs. In each individual cluster, the deficit power or
excess power is taken from/supplied to the neighboring MGs or main grid. The price
for supplying excess power is fixed in between the grid buy power and grid sell power.
In [68], a fuzzy logic-based model was presented to assess the willingness of customers
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to participate in DR programs, and then by using the queuing method, a decision was
obtained to maximize the profit of the aggregator. In [69], a method was proposed in
order to directly control the heating and cooling loads as these loads have the ability to
maintain the temperature within tolerable limits for subsequent hours if proper insulation
is provided. A two-stage bidding strategy derived from the DA market is suggested to
address the uncertainties in the electricity price.

In the majority of European Union (EU) countries, the application of DR programs is
restricted to industrial applications. A method named DR-blocks of a building (DR-BOB) is
proposed in [70] to apply DR programs to the BOB and aggregate many such buildings
for effective bidding in electricity markets. For dynamic balance between the generation
and the load, for effective monitoring of voltage levels, frequency, and phase angles at
every instant and every point of MG, there is a need to incorporate fast and accurate data
transferring technologies. Communication devices are ubiquitous these days in power
systems because of their speed and precise data transfer. The data are bulk because more
intelligent devices are connected to the distribution network. The centralized controller
governs the entire MG by gathering information from all the devices. Therefore, if the
size of the data is large then the time taken by the central controller to issue the governing
signals gets delayed whereas, in the case of decentralized control, each agent, i.e., customer,
DGs, and BESS, defines their own load schedule which employs a multi-agent system
(MAS) is presented in [71]. Buildings consume 40% of the total load [72], therefore, Nikos
Kampelis et al. [73] implemented a genetic algorithm (GA)-based optimization technique
for EM in a building and used artificial neural networks (ANNs) prediction model for
yielding DA power requirements of the customer. Time of use (TOU) pricing is used in
this literature.

There is a need for a protocol [74] in order to effectively monitor, communicate,
optimize, and control the information flow between the loads, distributed generators,
intelligent devices, and ISO. The automation system should fetch data from the sensors,
process, and be able to give necessary feedback signals to all the essential infrastructure to
which it is connected. Implementation of DR-BOB by using DR-technology readiness level
(DR-TRL) is proposed in [75]. The distribution system can be made smarter only when
the data regarding the states of operation available at all nodes should be transferred by
using a wireless communication link as shown in Figure 13. A great amount of information
is generated by metering, detecting, and monitoring devices. Therefore, the MG needs
dedicated and advanced communication technologies for holding, integrating, processing,
and transferring the data. The function of smart meters here is to monitor, troubleshoot, and
analyze the energy usage and billing for each period concerned and transfer to the grid as
well as to the consumer through a mobile application for effective control. Communication
infrastructures such as 5G technology are espoused seamlessly in modern power systems
because of their speed, low power consumption, security, and large frequency spectrum
presented in [76]. A real example for application of 5G technology in power systems is in
2019, China had carried out a pilot project in establishing protection of distribution network
by using 5G technology on China southern power grid [77].

The information and communication technology (ICT) in [78] should have low latency
and be able to transfer large market data for the effective operation of power systems. The
below Figure 13 shows data flow in a simple MG. A low-cost and low power consumption
device named Zig-bee communication in a home area network (HAN) [79–81]. Zig-bee,
because of its limited range constraint, cannot be used in neighboring area networks (NAN).
Wireless fidelity (Wi-Fi) can be used in HAN, NAN, and field area network (FAN). WiMAX
has maximum coverage distance compared to all wireless data transfer techniques.
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Figure 13. A detailed communication framework for effective monitoring.

In [82], a pilot project is considered for effective demand-side management and green
technology improvements. Game theory is all about achieving the equilibrium point so
as to maximize the profit of all the market players. Each and every agent participating
in the game gets profit. The profit of each agent depends on the strategy applied by that
agent and the strategy of opponents participating in the game. The market players are
DSO, aggregator, and the customers. The objective function of each player is considered
as the pay-off function. Consider two market players where player 1′s strategy to get
maximum payoff is A and player 2′s strategy to get maximum payoff is B and no other
strategy for player 1 will yield better outcome other than strategy A, similar for player B;
then this equilibrium point is said to be NASH equilibrium. This is used in order to analyze
the outcome of the tactical interaction of several choice makers. Table 5 represents a brief
introduction to various trading models in a MG.

Each order (either buy or sell option) consists of TAP (time period for energy trade,
amount of energy to be traded, and price of energy to be traded). After successful placement
of orders, they may be modified or canceled by the same peer until the gate closure time.
Once the time lapses, then the individual peer cannot alter the data; only the system
operator has the right to alter the list to ensure smooth operation of the power system. A
penalty should be imposed on those market players who do not meet their quoted amount
of energy listed in the order.

Energy these days has become more or less a commodity. Therefore, it can be related
to the stocks. The fundamental difference between them is that electricity cannot be stored,
there should be a continuous balancing of supply and demand. There is a need for a flagship
trading platform for placing bids and offers. The platform should encompass the following
provisions: order placed, the status of orders (pending or executed), portfolio window to
check the amount of energy consumed/generated with the amount to be paid/received.
There should be a watchlist with all energy participants’ data such as quantity, offer price,
bid price, and expected time for price dip: ratings and reviews for each participant should
be provided. A hierarchical decision-making trading model is proposed in [83], so as to
reduce the DR contract cost at the market operator level and to reduce the incentives at the
DR aggregator level so as to maximize social welfare.
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Table 5. Energy trading models.

Ref
No.

Size of Distribution
Network

Energy Trading Model
Impact of
Aggregator

Remarks

[84] 33-bus radial network Bottom-up approach No An iterative algorithm was proposed for energy trade.

[85] * Block-chain model Yes The objective is to improve the reliability and user
security in trading a blockchain approach.

[86] * Block-chain model Yes
Developing multi-directional trading is of significance.
In this paper, the authors proposed a parallel
trading model.

[87] * Energy broker model Yes

This method is for maximizing the energy trading
between the grid and the consumer. The energy broker
decides the demand and the price of electricity by using
dual optimization. The problem is modeled as a convex
optimization problem.

* Not specified.

2.5. A Combined Literature Survey on Various EMS

Table 6 represents various EM methods for achieving lower operational costs and
reducing the installation cost and capital cost of a MG.

Table 6. A literature survey on various EMS.

Ref
No.

Size of
Distribution
Network

Approach Objective Function Remarks

[88] 118-bus radial
network

Unit commitment
method

To minimize the total
expected cost

A two-stage stochastic model for achieving effective wind
power integration.

[89] Korean electricity
market

Mean-variance
portfolio method

To increase expected
return and
to increase the profitability
of the aggregator

A mean-variance portfolio method is used to avoid the risk of
the DRR portfolio.

[90] 20,310 customers,
548 DGs

Resource
scheduling,
aggregation

To minimize the
operating cost K-means algorithm for clustering loads.

[91] 180-bus
Economic dispatch
problem is taken
into account

To minimize the
running cost

A two-stage scheduling problem is solved to optimize the fuel
cost of the test system.

[92]

218 consumers
and load profile
analyzed at
96-time slots.

Economic dispatch
of DER

To minimize the
operating cost

The allowable maximum load shift by using the DR program
is less than or equal to the base load on the system.
Optimization problem modeled as a linear problem. Figure 14
shows the problem associated with unjustified shifting of
flexible loads.

[93] DISCOMs Optimal scheduling
is done

To minimize the Expected
cost of MG

Conditional value at risk (CVAR) index is used to analyze the
uncertainty of WT. Objective function modeled as MILP.
General algebraic modeling system (GAMS) and IBM ILOG
CPLEX optimization studio named simply as CPLEX are used.

[94] * A Bayesian game
model is proposed

To optimize the
bidding strategy

To compensate for the power deficit/excess due to customer
breach by placing auxiliary services like BESS.

[95]
20,000 heat
pumps with a
capacity of 1 MW.

* Techno-economic
feasibility study

Two scenarios are considered always available and
always reliable.

[96] South Korea
Capacity 10 MW

Demand-side
management
system (DSMS)

To minimize the electricity
price, energy conservation

A strategy of DSMS is proposed for calculating the customer
baseline load.

[97] * Improved elephant
herd optimization

To optimize the fuel cost
of operation

A multi-objective problem has been formulated. Three cases
were considered, namely scheduling to reduce operational
cost, scheduling to reduce operational cost and variance, and
the impact of penetrating EVs on operational cost.

* Not specified.
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Figure 14. Impact of DR on rebound effect.

If the level of penetration of flexible or non-critical loads increases, there is a chance of
occurrence of payback or rebound effect. Figure 14 shows the impact of load shifting on
the rebound effect. The formation of local peaks at low electricity price zones due to the
shifting of flexible loads. As the consumer’s participation in DR events increases, the level
of peak increases at non-peak hours. The operational cost of the MG also changes because
of the load recovery. Further, the system marginal price (SMP) depends on the incremental
fuel cost of the marginal generator. Hence, the SMP increases as the demand on the system
increases. Therefore, unjustified shifting of non-essential load from peak duration to the off
peak should be avoided to reduce the burden on the power systems.

2.6. Load Clustering and Its Significance

The first step in the application of DR programs by the ISO is load clustering. Therefore,
there is a need to develop robust clustering models for avoiding the demerits of existing
algorithms. There are various clustering mechanisms, among all the clustering algorithms
partitional clustering is mostly used. Load clustering can be done by using optimization
techniques such as ant colony optimization (ACO), bee colony optimization (BCO), and
modified bee colony optimization (MBCO). There are mixed clustering methods where K-
means clustering and BCO can be used for hybridization. In K-means clustering, the loads
are split into K-clusters and the centroid of each cluster is found. The cluster is grouped with
the nearest centroid and the process continued until the centroid gets constant. A K-means
algorithm effectively works when the dataset is large. The demerit of this clustering is that
there is a need to specify the number of cluster centers before starting the trial run. However,
it is also to be noted that complex systems often indicate an intrinsic cluster number if an
appropriate tool is chosen [98]. It further explained the necessary and sufficient conditions
for cluster consensus of discrete time linear systems. Table 7 shows a brief survey on
various clustering methods.

The switching signal obtained from EMS turns on or off the non-essential loads. The
increment in load shift from peak to non-peak hours should be strictly controlled by the
EMS to avoid the rebound effect. EMS plays a significant role in effective and efficient
management of these flexible loads. Figure 15 shows the function of HEMS in a home.
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Table 7. A survey on various clustering methods.

Ref.
No.

Test System
Considered

Clustering Method Remarks

[99] Residential electric
water heaters

K-means clustering method is used
for clustering the loads. To find the
number of clusters, required
Silhouette method is applied.

The goal is to reduce the impact on the availability of hot
water when a DR strategy is applied. The success rate of
such clustering methods is more dependent on the accuracy
in load forecast.

[100] 751 residential
customers Dwelling’s clustering Based on the spot market price the decision-making

algorithm shifts the load demand.

[101] Non-residential
customers Ant colony clustering The original electrical pattern is applied to the optimization

algorithm named the ant colony clustering algorithm.

[102] * The spectral clustering method
is applied.

By using the Euclidean function and load curve, the method
performs a similarity check on all the load profiles
considered. This algorithm is robust to data size.

[103] Real-world smart
meter data Hierarchical clustering Performs dissimilarity check.

[104] * Fuzzy K-means clustering The global criterion method and Bellman–Zadeh’s
maximization principle are used.

[105] Domestic customers Fuzzy subtractive clustering
is applied.

With the proposed method of load shedding and valley, the
filling can be accomplished.

* Not specified.

Figure 15. Home energy management system (HEMS) in a home.

2.7. Noteworthy Points

The following are the key conclusions obtained from a detailed literature survey.

• Effective load clustering is required to avoid unnecessary compromise in consumers’
satisfaction and lifestyle.

• The size of DGs is proportional to the peak load demand which has to be supplied by
the sources.

• The consumer’s tariff is a direct function of electricity price, therefore, if there is any
change in the consumers’ load pattern in accordance with the electricity price, it may
reduce the consumers’ tariff.

• Occurrence of payback or rebound effect during low electricity price zone.
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2.8. Contributions of the Work

A test system is considered and the impacts of DR programs on the supply-side and
demand side analyzed. With the basic load profile and the electricity price in the area
considered, the optimal size of DGs has been proposed and the electricity tariff burden
on the consumer was reduced by the mentioned methods. All the loads are considered as
residential loads and clustered into essential and non-essential loads without compromising
the lifestyle and satisfaction of the customer. There will be no shifting of essential loads
which are scheduled at a particular time. The non-essential loads may or may not be
shifted based on the availability of load demand at that instant. Priority is assigned to the
non-essential loads with the order of scheduled times by using TOU pricing. An objective
function was formulated and an algorithm was proposed for avoiding the rebound effect
during load shift. Various sizing methods have been proposed in order to optimally size
the DGs with and without considering the uncertainty in PV and WT. The TOU pricing
method has been applied for load shifting in DR programs in order to reduce the electricity
tariff of the customer.

3. Objective Function Modeling

To reduce the above-mentioned concerns such as capital and installation cost mini-
mization and reduction of consumers tariff, the objective function can be modeled which
clusters the load as follows.

The following are the objectives to be solved.

• Minimize the size of DGs in the power system.
• Minimize the consumer’s electricity bill and improve the load factor.

Minimize, Cost f unction =
(

Fcapital + Finstallation + Fcustomers bill

)
(4)

Minimize total cost of installation:

f1 = TC =
n

∑
i=1

Ccap + Cmaintenance + Creplacement (5)

∅
t =

⎧⎨
⎩

∅o f f , i f t ∈ To f f
∅mid, i f t ∈ Tmid
∅on, i f t ∈ Ton

∀ T ∈ 1, 2, . . . . . . . 24 (6)

where Ccap is the capital cost, Cmaintenance is the cost involved in maintenance, ∅t is the
electricity price at time ‘t’, ∅o f f , ∅on, and ∅mid are the price during off-peak (To f f ), on-peak
(Ton), and mid-peak (Tmid) hours, respectively.

f2 = min(TETcustomer) = min
24

∑
t=1

N

∑
i=1

Pt
i ∅

t (7)

‘N’ indicates the number of sources available for dispatch and Pt
i is the consumed power

by the consumer ‘i’ at time horizon ‘t’. The problem formulation for minimizing the
consumer’s tariff is represented in Equation (7). For achieving the objectives, the loads on
the system are effectively clustered into essential (EL) and non-essential loads (NEL) [106]
by considering all the loads as residential loads as they are sharing 25% of load demand on
the system.

Total load demand, TL = EL + NEL (8)

NEL = W1L1 + W2L2 + W3L3 (9)

Allocation of priorities to the non-essential loads or curtailable loads in such a way
that there should not be any compromise in customer comforts and lifestyle.

L1 Air conditioners, heating loads.
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L2 Washing machines
L3 EV’s

L1, L2, and L3 are the non-essential loads and the order of priority based on importance
is L1 > L2 > L3. The higher degree of charging flexibility associated with EVs makes it
less prioritized when compared to the other loads in the MG. Therefore, to represent the
importance of each load according to its priority, the weights added to the loads should
be of different values, where, W1 = 0.66, W2 = 0.33, W3 = 0.13 such that all the loads
should be met on the same day with some shift in time without violating the customer’s
satisfaction.

Subjected to the following constraints:

N

∑
n=1

Pgen
(n,t) =

L

∑
l=1

Pdem
(l,t) −

S

∑
s=1

Pshi f t
(s,t,i) +

S

∑
s=1

Pshi f t
(s,i,t) (10)

The energy recovered during peak load is shifted or re-distributed to the other time horizons
where the electricity price is low. Total energy curtailed has been re-distributed to other
time horizons where electricity price is low. Therefore, the total area before curtailment
and after curtailment becomes identical.

The generation should meet the load demand before and after shifting. The above
Equation (10) represents the equality constraint, i.e., energy balance equation. Equation (11)
shows the simplified version of the energy balance equation, where the difference between
generation (by all the ‘N’ generators) and load demand (at all the ‘L’ loads) on the system
should be dynamically balanced throughout the considered period, i.e., 24 h. to avoid any
frequency drops. The response in loads can be modeled as an ideally flexible negative
generation. ∑S

s=1 Pshi f t
(t,i) is the amount of load that has been shifted from ‘t’ to ‘i’ and

∑S
s=1 Pshi f t

(s,i,t) is the amount of load that has been shifted from ‘i’ to ‘t’, ∑L
l=1 Pdem

(l,t) is the

amount of load demand and ∑N
n=1 Pgen

(n,t) is the total generated power.

∑N
n=1 Pgen

(n,t) − ∑L
l=1 Pdem

(l,t) = 0 ∀ T ∈ 1, 2, . . . . . . . 24 (11)

∑S
s=1 Pmax shi f t

DR(s,t,i) ≤ 110 %(Pbase) ∀ s ∈ 1, 2, . . . . . . . S (12)

‘T’ represents time in h and ‘S’ represents number of shifting intervals. The generator
limits should not be violated while solving DR programs. The increased percentage of
load shift by DR programs creates local peaks which occur due to rebound or payback
phenomenon [107], at the non-peak hours. Here, Pbase is considered an average load on
the system. The maximum limit on the amount of load shift depends on the shape of
load duration curves. The maximum allowable load shift by using DR programs for this
considered system should be 110% of base load power, represented in Equation (12) as

∑S
s=1 Pmax shi f t

DR(s,t,i) . This constraint is included in order to avoid payback effect or rebound
effect. The operational cost of the MG also changes because of the load recovery. Further,
the system marginal price (SMP) depends on the incremental fuel cost of the marginal
generator. Hence, the SMP increases as the demand on the system increases.

Pbase = avg
24

∑
t=1

PL (13)

Pmin ≤ Pt ≤ Pmax (14)

PDiesel
size = max (dispatched energy by that generator in 24 hours) (15)

ECMG with DR ≤ ECMG without DR (16)
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Optimal sizing of DGs without considering the impact of uncertainty is proposed.
ECMG with DR, ECMG without DR are the emission costs of MG with DR and without DR
program, the total load demand on the system during 24 h. Pmin, Pmax are the minimum
and maximum limits on generated power ′P′

t from a generator ‘t’. Aggregated load demand
is calculated based on the following Equation (17).

Pagg =
1
T

24

∑
t=1

Pt (17)

LF =
Pagg

PL,max
(18)

where Pagg is average of aggregated load demand, LF is the load factor of the MG, and
PL,max is the peak load demand that is occurring on the system over 24 h.

4. Proposed Methodology

The solution methodology for reducing the total cost of the system is represented
as follows:

• Read the load data, electricity price in each hour, generator data such as the minimum
and maximum capacity, operating costs, and maintenance cost of each generator.

• Analyze the load profile and check whether the peak load is occurring at a high
electricity price zone or not.

• As the total load on the system is considered as residential loads, cluster them as
depicted in Equation (8), based on their priority without sacrificing the customer’s
satisfaction and lifestyle.

• If yes, shift a part of non-essential loads from the peak-occurring instant to the non-
peak zone. Therefore, cluster the loads on the basis of an order of priority and based
on electricity price, the clustered loads are allocated or dispatched at a particular time
instant where the electricity price is low. Priority is added by giving large weight
to the highest priority load. If the load on the system is less than the average of the
aggregated load, no need to cluster. Shift a part of the peak load to those intervals
where the available load is less than the average aggregated load.

• There should be an upper limit imposed on the amount of load shift on the system to
overcome the rebound effect, which is represented in Equation (12).

• If yes, shift the loads to another time horizon. If no, size the sources, i.e., the sizes
of WT, PV, and diesel generators that have to be installed to supply the available
load demand in the area without considering the impact of uncertainty based on
the peak load demand. Moreover, a portion of generator capacity allocated for any
further increment on load demand is represented in Equation (19). The total capacity
of generators installed is the sum of all the DGs capacity.

PDGs
size = x % (PMT

size + PDiesel
size + PRenewales

size ) (19)

• Calculate the capital cost, installation cost, and maintenance cost of each generator by
using Table 8.

TC = ∑n
S=1 CPVSPV + CWTSWT + CdieselSdiesel (20)

• CPV , CWT , and Cdiesel are the total costs including capital and installation costs of PV,
WT, and diesel. SPV , SWT , and Sdiesel are the sizes of various sources yielded from
the simulations.

• Dispatch or schedule the load on the available generators that are committed to supply
and calculate the tariff of the consumer by using Equation (7).

• Calculate the load factor of the MG by using Equation (18). As the amount of load shift
increases, the load curve becomes more uniform thereby improving the load factor.
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Table 8. Various costs and lifetime of sources involved in installing the MG.

Source Type Capital Cost ($/kW)
Fixed Maintenance
Cost ($/kW)

Life (Years)

WT 1000 15 20

PV 1300 30.330 20

DG 800 0.012 15

MT 850 2.000 15

Figure 16 shows the proposed methodology for achieving the optimal total cost of
installation and optimal consumer tariff.

Figure 16. Methodology for analyzing the impact of load clustering on DGs sizing and tariff.

5. Results and Discussions

A test case has been considered to assess the influence of DR programs on optimal
sizing of DGs and on the consumer’s tariff. The IEEE-34 bus system is considered whose
average load demand is 466.5 kW and the peak demand occurring on the system is 830.3 kW.
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The case studies are considered simulated with a 24-h load profile and the TOU tariff is
taken into consideration. In general, among all the available price-based tariffs, TOU tariff
is a simple one, easy to understand, and most customers show interest in this type of tariff.

For the considered test system, the customers are charged with a time of use (TOU)
tariff where the hours in a day are clustered into peak, off-peak, and moderate peak hours,
and the price is fixed. The prices are fixed DA, therefore, there is no ambiguity to the
customer to enter into DR programs. Figure 17 shows the variation of DA electricity price
and time. The electricity price is high from hours 10:00 to 21:00 and the peak load occurring
zone is also at the same time; this results in huge customer bills. One way is to curtail the
loads during peak hours to control the tariff where customers’ load demand is not met.
Another way is to shift the load demand from the peak load time horizon to off-peak hours.
Figure 18 shows the load demand for the three cases considered. Executing DR strategies
will benefit not only customers but also the suppliers too. Three cases have been considered,
i.e., no penetration of ILs and 5% and 10% penetration of ILs, to analyze the impact of DR
programs on consumer electricity bills and load factor. The load has shifted on the time
horizon and the total demand on the system per day remains the same. Figure 18 shows
the different levels of penetration of loads, i.e., 0%, 5%, and 10%.

Figure 17. Time of use pricing.

Figure 18. Load demand for three cases considered.
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Depending on the objective function and the constraints considered the structure of
search space changes. Therefore, to avoid this, we considered three scenarios, namely
0% penetration, 5% penetration, and 10% penetration. The algorithm is valid for all the
considered scenarios even though the constraints change.

A local peak is created in the load demand curve at non-peak hour instant with a
demand of 600 kW. In fact, the load demand before publishing DA tariff is 300 kW at
that instant. This occurrence of local peaks at low price time horizon is considered as the
rebound effect. If all the utilities supply this local peak demand, the generating companies
will run in loss. Further, the emissions increase due to turning on of inefficient generators.
To overcome the occurrence of the rebound effect, here, the maximum allowable load shift
by using DR programs should be 110% of base load power. Hence, for the load profile
considered, the average load is 466.5 kW and the maximum load that can be allowed during
the non-peak hour should be less than 515 kW in the beginning hours where electricity
price is minimal. Hence, ISO is responsible for maintaining the load profile within the
specified limits.

5.1. Influence of DR Strategy on Optimal Sizing of DGs

The peak load on the system occurs occasionally and the generation and load demand
balance should be met. The sizing of DGs will be based on the peak load that has to be
supplied by the grid at any instant. Moreover, there is no need for installing new sources for
supplying the occasional load. Therefore, this section investigates the impact of DR strategy
in deciding the optimal capacity of DGs. It has been said that the DR program will reduce
the peak demand on the system which obviously reduces the capacity of the individual
generators. The lower and upper limits on the decision variables are set as [0, 500] for
all the generators considered. The inputs are initialized to the algorithm; it will yield the
optimal sizing of each DG, capital cost, installation cost, and total cost of each DG for the
proposed size. As seen from Figure 19 and from Table 9, if the penetration of non-critical
loads or flexible loads increases, then the size and cost of deploying the DGs get reduced.
This is due to the fact that DR makes the load profile near flat and the peak demand on the
system gets reduced, which reduces the size of DGs. Therefore, the costs involved such as
installation cost and capital cost get reduced. The difference in the total cost of installing
DGs in case of 0% penetration of ILs and 5% penetration of ILs is 50,675.21 $/day and
of 0% penetration of ILs and 10% penetration of ILs is 93,042.89 $/day. The reduction in
installation cost is large in the case of 10% penetration but the chances of getting peaks
during the non-peak hours are also higher. Therefore, to nullify the occurrence of rebound
effect for the considered case study, it is suggested that 5% penetration of ILs is advisable
compared to 10% penetration of ILs.

Figure 19. Sizing of sources without considering the uncertainty in RESs.
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Table 9. Capital cost involved in various sources for the percentage of ILs penetration.

Percentage of
ILs Penetration

Capital Cost of
PV $/Day

Capital Cost of
WT $/Day

Capital Cost of
DG $/Day

Total Cost of
MG $/Day

0% 279,374.621 216,914.635 325,225.678 821,514.900

5% 221,426.776 243,299.560 306,113.391 770,839.700

10% 196,888.840 248,550.155 283,033.045 728,472.000

5.2. Effect of DR Strategy on Consumer Electricity Bill and on Load Factor

The demonstrated work relates to the optimization of various costs, explicitly capital
cost [108], installation cost, operational cost, and consumer tariff. To maintain the reliability
in a heavily routed line, the ISOs basically charge more compared to the other prices. Under
this scheme, the customers will get incentives for shifting [109] their loads to non-peak
hours or curtailing their loads. This program is event-based, its fundamental focus is to
maintain reliability in the MG. Dynamic pricing techniques alone may not fetch the feasible
results as proposed in [110].

Figure 20 depicts that while increasing the level of penetration of the customer elec-
tricity bill gets reduced and the load factor gets increased. The reduction in customer bill
from 0% penetration of ILs to the 5% penetration of ILs is 3709.26 Rs/day and from 0% to
10%, the reduction is 6059.025 Rs/day. Table 10 represents the reduction of electricity price
and improvement in load factor for the system considered. Further, it also depicts that the
reduction in peak demand from 830.300 kW to 747.270 kW from 0% penetration to 10%
penetration, where the load factor is increased from 0.561957 to 0.624397.

Figure 20. Electricity price of consumers for three cases considered.

Table 10. Comparison of peak demands, electricity price, and load factor with penetration of ILs.

S.No.
Penetration of
ILs in %

Peak Value of
Load, kW

Electricity Price,
Rs/Day

Load Factor

1 0% 830.300 131,952.7 0.561957

2 5% 788.785 128,243.5 0.591540

3 10% 747.270 125,893.7 0.624397
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As the level of penetration increases, the load profile becomes flat and the electricity
tariff gets reduced and is clearly depicted in Figure 18 at 00:00 to 08:00 a.m. However,
there is a chance of the local peak occurring in case 3 where 10% penetration of flexible or
non-critical loads allowed it to penetrate the MG system. As a greater number of customers
participate in the DR program, the level of peak increases. Therefore, unjustified shifting
of a portion of the load from global peak to the off-peak should be avoided to reduce the
burden on the power systems. Hence, there should be an upper limit on the amount of load
shift. ISO should focus not only on possible reduction of consumer tariff but also ensure to
overcome the rebound effect.

6. Conclusions

A detailed literature survey on various effects of DR programs for EM in the MG was
done. A test system with three scenarios considered, namely no penetration of ILs (i.e., 0%
load shift), 5% penetration of ILs, and 10% penetration of ILs, showed total daily load
demand of 11,198.2 kW and maximum peak on the system on an hourly basis is 830.3 kW.
The capacity of DERs is a function of peak load occurring on the system and the system
load factor is a function of uniformity of load curve. Therefore, with the reduction in peak
demand on the system, the load curve gets more uniform which reduces the size of DERs
and improves the load factor of the system which further reduces the customer tariff. The
reduction in peak demand for the MG from 0% penetration to 5% penetration is 41.515 kW
and from 0% penetration to 10% penetration is 83.03 kW and the reduction in the cost
of installation of DGs is 50,675.21 $/day. A time of use pricing model is considered and
the loads are clustered based on the prices at each interval. From the results, it is shown
that the reduction in customer electricity tariff from 0% penetration to 5% penetration is
3709.26 Rs/day. The results show that, with the deployment of DR programs into the MG,
there is a huge impact on the above-considered test systems.

The maximum load shift constraint is a function of shape of the load curve, therefore,
for the addressed test case, the maximum shift in load is 110% of base load. This 110%
is not fixed for other problems. In the future, an effective objective function in which the
maximum constraint on amount of load shift can be modeled to avoid the rebound effect
for any type of load curve considered. A new meta-heuristic algorithm can be developed
for effective load clustering. Further, researchers can define a new set of rules for reducing
the conflicts between the consumer and aggregator and between the aggregator and ISO
such that there should be an imposition of penalty for violation of code of conduct. New
wireless technologies can be proposed for reducing the time lapse between the IEDs and
the smart meter or protection devices. One more future direction is impact of DR programs
in optimal sizing of DGs by considering the uncetainty in RES. Finding the elasticity and
cross elasticity matrix of load with respect to price changes can be performed.

Future researchers can further address the problems associated with load recovery, i.e.,
increase in production cost, increase in SMP, and increase in stress of already committed
generators. In addition, there is a difference in gross load curtailed and the net load
curtailed; this problem arises when the load curtailment of one customer overlaps with
the load recovery period of another customer. The aggregator has to pay incentives for
the gross load curtailed but the net load curtailed on the system is less. Therefore, a loss
in monetary value arises. Reasearchers may develop an effective framework to avoid
this situation.
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Abbreviations

DR program Demand response program AMI Advanced metering infrastructure
MG Microgrid DA scheduling Day-ahead scheduling
TOU Time of use pricing HA scheduling Hour ahead scheduling
RTP Real-time pricing RT scheduling Real-time scheduling
CPP Critical peak pricing AI Artificial intelligence
DG Distributed generation SOC State of charge
BESS Battery energy storage system DLC Direct load curtailment
HEMS Home energy management system BEMS Building energy management system
RES Renewable energy system DNO Distribution network operator
DR Demand response ISO Independent system operator
DERs Distributed energy resources ICT Information and communication technology
G Grid-connected MAS Multi-agent system
I Isolated EMS Energy management strategies
EM Energy management THD Total harmonic distortion
ILs Interruptible loads IEDs Intelligent electronic devices
HVAC Heating, ventilating, and air conditioning RL Reinforcement learning techniques
GAMS General algebraic modeling system PSO Particle swarm optimization
GWO Grey wolf optimization GA Genetic algorithm
ACO Ant colony optimization BCO Bee colony optimization
MBCO Modified bee colony optimization DISCOMS Distribution companies
ANN Artificial neural networks LV-MG Low voltage microgrid
MILP Mixed integer linear programming CCHP Cold climate heat pump
DSMS Demand side management system CVAR Conditional value at risk
SCA Sine cosine algorithm NILs Non-interruptible loads
HAN Home area network MPPT Maximum power point tracking
PV Photovoltaic WT Wind turbine
MT Micro turbine FC Fuel cell
AC-MG Alternating current microgrid DC-MG Direct current microgrid
SOCP Second order cone programming ASFLA Adaptive shuffled frog leaping algorithm
AI Artificial intelligence DLC Direct load curtailment
SCADA DR-BOB Demand response blocks of buildings
KKT Karush Kuhn Tucker SC Super capacitor
DR-TRL Demand response technology readiness level MAS Multi-agent system
NAN Neighboring area network FAN Field area network
Wi-Fi Wireless fidelity SMP System marginal price
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Abstract: Due to increasing concern over global warming, the penetration of renewable energy in
power systems is increasing day by day. Gencos that traditionally focused only on maximizing their
profit in the competitive market are now also focusing on operation with the minimum pollution
level. The paper proposes a multiobjective model capable of finding a set of trade-off solutions
for the joint optimization problem, considering the cost of reserve and curtailment of power from
renewable sources. Managing a hybrid power system is a challenging task due to its stochastic nature
mixed with the objective function and complex practical constraints associated with it. A novel
metaheuristic Equilibrium Optimizer (EO) algorithm incepted in the year 2020 utilizes the concept of
control volume and mass balance for finding equilibrium state is proposed here for computing the
optimal schedule and impact of renewable energy integration on profit and emission for different
optimization objectives. In this paper, EO has shown dominant performance over well-established
metaheuristic algorithms such as particle swarm optimizer (PSO) and artificial bee colony (ABC).
In addition, EO produces well-distributed Pareto-optimal solutions and the fuzzy min-ranking is
used as a decision maker to acquire the best compromise solution.

Keywords: multi-objective; renewable energy; profit-based scheduling; Equilibrium Optimizer

1. Introduction

The electricity demand is increasing day by day due to the growth and evolution
of industrial establishments and changing lifestyles. A substantial part of the demand is
still being met by thermal power generation, which depends on fossil fuels such as coal,
natural gas and petroleum, which are considered the main sources of harmful emissions
and air pollution. The burning of fossil fuels releases harmful gases into the atmosphere.
Globally, the power generation sector contributes more than 30% of carbon dioxide emis-
sions to the atmosphere [1]. These pollutant gases affect not only humans but are also
responsible for the destruction of other lifeforms. Due to growing concern over envi-
ronmental considerations, there is a demand for sufficient and secured electricity at the
lowest price along with a minimum level of pollution to stabilize the environment. It is
possible by multi-objective optimization that considers power generation cost and emission
both for minimization. Economic emission dispatch (EED) is a key optimization problem
of the power system. The objective is to schedule the committed generator optimally,
so that generation cost and emission are minimized simultaneously while satisfying all
operational constraints associated with it [2]. Various solution approaches have been
reported for the EED problem, broadly categorized into classical, metaheuristic and hybrid
approaches [3]. As a practical EED problem, is a highly nonlinear, complex constrained
optimization problem, and it is not easy to find the optimal solution to such a problem
by classical methods. The metaheuristic approach can overcome the difficulties, but its
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computational time is more. Metaheuristic and hybrid approach includes evolutionary
algorithm (EA) [2], genetic algorithm (GA) [4], non-dominating sorting genetic algorithm
(NSGA) [5–7], particle swarm optimization (PSO) [8–10], harmony search (HS) [11,12], dif-
ferential evolution (DE) [13], hybrid bat algorithm (HBA) [14], kernel search optimization
(KSO) [15], time-varying acceleration coefficient particle swarm optimization (TVAC-PSO)
with exchange market algorithm (EMA) [16], interior search optimization (ISO) [17], grass
shopper optimization (GSO) [18], sine cosine algorithm (SCA) [19], hybrid bacterial forag-
ing with Nelder-mead [20] and many more. A detailed review metaheuristics approach for
the solution of the EED problem can be found in references [21,22].

Creating new efficient power plants or identifying and expanding existing ones that
produce low emission is time-consuming and require significant capital investment to fulfill
the ever-increasing power demand. Another way is to integrate renewable energy resources
(RER) such as wind and solar power into the existing grid. However, the integration of RER
in the existing power grid creates several operational issues due to the unpredictable nature
of wind speed and solar irradiation. Therefore, fluctuation in the wind and solar power
generation needs more consideration. Further load demand is a random variable, and we
cannot predict it accurately. The system operator can anticipate the uncertainty associated
with wind power generation/solar power generation/load demand using the forecast.
Generally, the probability distribution function is used to modeling the uncertainty related
to RER integration. Consequently, integration of RER complicates the formulation of the
EED problem significantly [21].

Simultaneous minimization of cost, emission and loss for the wind-thermal system
with complex operational constraints such as valve point loading (VPL) effect, ramp rate
limits (RRL), prohibited operating zones (POZ) and spinning reserve (SR) are available
in reference [23]. Here, the time-varying fuzzy selection mechanism is used to rank the
conflicting objective. Wind-based combined economic emission dispatch (WCEED) has
been investigated in reference [24] to acquire Pareto optimal solution. Here piecewise linear
approximation method is used to model wind power. The multi-area dynamic economic
emission dispatch (MADEED) of the complex system comprises a cascaded hydro system,
uncertain wind power and thermal generator system investigated in reference [25]. Here
Weibull pdf is used for wind power calculation.

CEED of a grid comprising of wind and PV generation systems is presented in [26].
Here, a linear relationship between day-ahead forecasted output power by wind and PV
system with operation and maintenance cost is used to model the objective function. Opti-
mal generation scheduling of a hybrid generation system comprised of thermal, wind and
solar has been investigated in reference [27]. Here Weibull pdf and bimodal distribution are
separately used to handle the uncertainty associated with wind speed and solar irradiation.
The scenario-tree technique was used to model the uncertainties associated with solar
radiation, wind speed and load demand [28]. This approach is found to be effective while
handling uncertainties but requires heavy calculation. An optimal generation scheduling
strategy with total contributions of wind farms, solar parks and thermal plants for eco-
nomic benefit and environmental impact is presented in reference [29]. Here uncertainty
associated with wind, solar power and few coal units is described by fuzzy numbers.

The techno-economic analysis under distinct scenarios has been investigated with
different combinations of renewable energy resources. Results show that integrating
multiple RER and its appropriate scheduling helps minimize cost and emission [30]. A
detailed review of various computation methods for planning a hybrid renewable system is
presented in reference [31]. Inspired by distinct work carried out by various researchers, in
this paper, a novel optimization method incepted in 2020, Equilibrium Optimizer (EO) [32],
inspired by dynamic and equilibrium states of physics, is used to solve the complex multi-
objective problem with and without integration of RES. The schematic diagram of the
proposed model is shown in Figure 1.
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Figure 1. The grid with RES under deregulated environment.

The main contribution in the paper is as follows: (i) Equilibrium Optimizer (EO) is
implemented to solve the multi-objective problem in a dynamic environment, (ii) impact of
RER integration was analyzed in terms of reduction in operational cost and emission (iii)
fuzzy-min ranking method is used to aggregate two conflicting objectives and finally, (iv)
profit achieved by the reduction in operational cost due to RER integration were analyzed.

The remaining paper organization is as follows: problem formulation is given in
Section 2, the optimization method is described in Section 3, results and discussion are
presented in Section 4 and the conclusions are summarized in Section 5.

2. Formulation of the Profit-Based Multi-Objective Scheduling Problem

2.1. Objective Function I: Profit Maximization

The difference between revenue (RV) collected from the sale of electricity and the total
cost of electrical power generation (TC) is taken as profit [33]. The objective is to maximize
the profit defined as (1):

Max(Pro f it) = Max (RV − TC) (1)

where,

RV =
24

∑
t=1

(
NT

∑
j=1

Gthjt +
NS

∑
k=1

Gskt +
NW

∑
l=1

Gwlt

)
.SPt (2)

TC =
24

∑
t=1

(
NT

∑
j=1

C(Gth)jt +
NS

∑
k=1

C(Gs)kt +
NW

∑
l=1

C(Gw)lt

)
(3)

The first part of (3) is the generation cost of thermal units defined in (4) as:

C(Gth)jt =
(

aj × Gth2
jt + bj × Gthjt + cj

)
(4)

where Gthjt is generated power by jth thermal unit at tth time interval, aj, bj, cj are fuel
coefficients of jth thermal unit, SPt is the selling price at tth time interval, NT, NS and NW,
are the number of thermal, solar and wind units present in the hybrid system [34]. Total
24-time steps representing 24 h in a day are considered.

The second part represents the generation cost of the solar PV system. Solar power
output depends on incident solar radiation (Rt) and the difference of ambient (θamb) and
reference temperature (θre f ). Therefore, it increases the uncertainty in computing the
availability of the solar power output. Thus, underestimation and overestimation cost is
added here to balance the variation due to uncertainty.

The solar power output of kth plant at time t, (Gskt) is given as [34]:

Gskt = Pr
{(

1 +
(

θamb − θre f

)
ξ
)
× (Rt/1000)

}
(5)
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Total solar cost function at any time t is calculated as [34]:
NS

∑
k=1

C(Gskt) =
NS

∑
k=1

(DCs × Gskt) +
NS

∑
k=1

kp(Gsavkt − Gskt) +
NS

∑
k=1

kr(Gskt − Gsavkt) (6)

where,

kp × (Gsavkt − Gskt) = kp ×
Pr∫

Gskt

(s − Gskt) fs(s)ds (7)

kr × (Gskt − Gsavkt) = kr ×
Gskt∫
0

(Gskt − s) fs(s)ds (8)

kp, kr represents the penalty cost factor for overestimation and underestimation, Gskt, Gsavkt
are the generated and available power for kth solar plant at tth time, respectively, and fS(s) is
probability density function (pd f ) of solar power.

The third part of (3) represents the cost due to wind power integration. Wind power
depends on wind velocity, and at any given location, it is observed to follow the Weibull
probability distribution [35], as shown in Figure 2. The random wind speed variable can be
computed using the Weibull pd f as:

fv(v) =
(

k
c

)(v
c

)k−1
e−(vc)k

0 < v < ∞ (9)

Figure 2. The Weibull probability distribution for wind velocity.

Wind power (Gw) at different velocities is calculated as:

Gw =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 f or 0 ≤ v < vci

Wr
(

v−vci
vr−vci

)
f or vci ≤ v < vr

Wr f or vr ≤ v < vco
0 f or v > vco

(10)

where, v, vci, vco and vr, are the wind velocity at any instant, cut-in speed, cut-out speed
and rated wind turbine speed in m/s, respectively. Wr is the rated power of wind turbine in
MW [36]. The wind speed cost has three terms; the first term is a fixed cost term while the
second and third terms arise due to the uncertainty involved with wind power generation.

After including the over and under estimation costs, the total cost of lth wind plant at
time t can be mathematically expressed as:

NW

∑
l=1

C(Gwlt) =
NW

∑
l=1

(DCw × Gwlt) +
NW

∑
l=1

kp(Gwavlt − Gwlt) +
NW

∑
l=1

kr(Gwlt − Gwavlt) (11)

The second and third terms in (11) represent the penalty cost due to underestimation
and reserve cost due to overestimation and are expressed as (12) and (13), respectively.
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kp × (Gwavlt − Gwlt) = kp ×
Wr∫

Gwlt

(w − Gwlt) fW(w) (12)

kr × (Gwlt − Gwavlt) = kr ×
Gwlt∫
0

(Gwlt − w) fW(w)dw (13)

2.2. Objective Function II: Emission Minimization

The total emission (TE) emitted from the thermal power plant [37] can be symbolically
represented as:

Min(TE) = Min
{
∑NT

j=1 E(Gth)
}

(14)

where,
E(Gth)j =

(
αj × Gth2

j + β j × Gthj + γj

)
(15)

Here αj, β j, γj are the emission coefficients of jth thermal unit.

2.3. Objective Function III: Simultaneous Optimization of Profit and Emission

The multi-objective problem of optimization of profit and emission can be formulated as:

Min
{(

1
Pro f it

)
, TE

}
= u

∑24
t=1

(
∑NT

j=1 Gthjt+∑NS
k=1 Gskt+∑NW

l=1 Gwlt

)
.SPt−∑24

t=1

(
∑NT

j=1 C(Gth)jt+∑NS
k=1 C(Gs)kt+∑NW

l=1 C(Gw)lt

)+
(1 − u).pp f . ∑NT

j=1 E(Gth)
(16)

where pp f is the price penalty factor which is assumed to be 1 for simplicity and u is
the weight factor. Maximization of profit is an objective function I and minimization of total
emission is objective function II. Profit and cost of generation are two cornerstones of the
electrical market. A decrease in the cost of generation will increase profit. This reciprocal
relation between cost and profit is modelled as objective function III or simultaneous
optimization of profit and emission.

It is subjected to the following operational constraints:

2.3.1. Real Power Balance: Power Demand at Any Instant (t) Must Be Equal to the Sum of
the Power Output of Associated Generation Units

PD(t) =
NT

∑
j=1

Gthj +
2NS

∑
k=1

Gsk +
NW

∑
l=1

Gwl (17)

2.3.2. Generation Limit: The Power Produced by Each Thermal, Wind and the Solar Unit
Must Always Be between Their Respective Specified Bounds, as Given by

Gthmin
j ≤ Gthj ≤ Gthmax

j (18)

Gsmin
k ≤ Gsk ≤ Gsmax

k (19)

Gwmin
l ≤ Gwl ≤ Gwmax

l (20)

2.3.3. Ramp-Rate Limit Constraints: The Thermal Units Have Limited Ramping (Up as
Well as Down) Capacity, and Therefore the Output of a Unit between two Consecutive
Time-Intervals Must Obey the Inequality Constraint Given by

Gthjt − Gthj(t−1) ≤ URj (21)

Gthj(t−1) − Gthjt ≤ DRj (22)

Here, URj, DRj are the up and down rates of the jth thermal unit.
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Combining the ramp rate limits of generating units given by (21) and (22) with
the thermal generation limits provided by (18), the modified binding constraints can be
written as:

Max
(

Gthmin
j , Gthj(t−1) − DRj

)
≤ Gthjt ≤ Min

(
Gthmin

j , Gthj(t−1) + URj

)
(23)

2.4. Ranking Approach

The fuzzy-min ranking method is used to aggregate two conflicting objectives: profit
and emission [38]. Linear membership function, μi,r (rth is the objective function for the ith

solution) is described for each objective function in (24) as [22].

μi,r =

⎧⎪⎨
⎪⎩

1 i f Fi,r ≤ Fmin
r

Fmax
r −Fi,r

Fmax
r −Fmin

r
i f Fmin

r ≤ Fi,r ≤ Fmax
r

0 i f Fi,r ≥ Fmax
r

(24)

For ith solution with n number of objectives, the rank is computed as:

f uzzy_ranki = min(μi,r) f or r = 1, 2 . . . .n (25)

The solution with the maximum value of f uzzy_rank for ∀r is considered as the best
compromise solution.

3. Equilibrium Optimization

Equilibrium Optimization is a physics-based algorithm that follows the concept of
dynamic mass balance is given control space. The first-order differential equation, which
relates the mass-generated in a dynamic system with mass entering and mass leaving the
system, can be expressed as:

V
dC
dt

= QCeq − QC+ G (26)

where, C is the concentration in volume (V), V dC
dt is the rate of change in mass, Q is the flow

rate, Ceq is the concentration at equilibrium state and G represents the rate of generation
of mass. The equilibrium state is supposed to be achieved whenever V dC

dt reaches zero.

The derivative dC
dt , can be solved as a function of

(
Q
V

)
. The ratio Q

V = μ is called the
turnover rate.

Equation (26) can be rearranged and written as:

dC
μCeq − μC+ G

V
= dt (27)

and,
C∫

Co

(
dC

μCeq − μC+ G
V

)
=
∫ t

to
dt (28)

The final concentration update equation after rearranging and integrating becomes [32]:

C = Ceq +
(
Co −Ceq

)F +
G

μV
(1 −F ) (29)

where,
F = exp{−μ(t − to)} (30)

Equation (29) provides the search mechanism for finding an optimal solution during
the optimization process of EO. Here Ceq, is a solution that is selected randomly from a pool
consisting of 3 to 5 best solutions collected after solving the problem for different conditions.
The second term

(
Co −Ceq

)
is the difference in the position of a solution and the randomly

selected equilibrium state. This term provides direct search and persuades particles to
conduct a global search and explore the solution space extensively and effectively. The
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third term
{

G
μV (1 −F )

}
is the term associated with the generation rate and turnover

rate. This term improves/updates the solution through exploitation; hence the steps are
small, resulting in small changes to fine-tune the solution; however, sometimes, it allows
exploration. EO follows five steps during the optimization process described as follows:

3.1. Initialization

The initialization procedure in EO is similar to other population-based metaheuristics.
The initial population is created by randomly generating concentrations within the mini-
mum and maximum limits for each dimension of the vector. The ith population vector can
be constructed as follows:

C
initial
i = Cmin + rand(Cmax −Cmin) (31)

Here Cmax and Cmin, represents vectors representing maximum and minimum con-
centrations of the different dimensions of the solution vector. The generated particles
(solutions) are evaluated, and their fitness value is determined. Then the equilibrium pool
is set up by using 3 to 5 best solutions.

3.2. Equilibrium Pool and Candidates

The equilibrium state is the global best solution of the problem, which is obtained
after convergence. The equilibrium pool is created by storing the best solutions of runs
conducted under different conditions. The arithmetic mean of these best solutions is also
stored in the pool as shown:

→
Ceq,pool =

{→
Ceq,1,

→
Ceq,2,

→
Ceq,3,

→
Ceq,4,

→
Ceq,ave

}
(32)

For updating the position of a particle using (29), one of these best solutions from
(32) is randomly selected. The probability of selection is uniform for all equilibrium
concentrations of the pool. Suppose there are 5 candidate solutions as shown above. In that
case, the new solution will be generated by exploration if any of the first four equilibrium
states/solutions in the pool are selected for the position update mechanism. On the other
hand, if the fifth candidate is chosen for position update, then exploitation is carried out to
generate a new solution/state.

3.3. Exponential Term

The third term in the concentration update Equation (29) is the exponential term (F ).
This term is designed to provide an effective balance between exploration and exploitation
in the EO algorithm.

→
F = exp

(
−→

μ (t − t0)
)

(33)

The turnover rate (μ) is a random number ranging from 0 to 1. Time is represented by
t, which decreases with iteration, as expressed below.

t =
(

1 − Iter
Max_iter

)a2× Iter
Max_iter

(34)

→
t0 =

1
→
μ

ln
{
−a1sign

(→
r − 0.5

[
1 − e−

→
μ t
])

+ t
}

(35)

Substituting of (35) in (33) gives the final expression for the exponential term (F )
presented in Equation (36). The plot of F for four different combinations of a1 and a2
is shown in Figure 3. The exponential term (F ) variation with iteration can be seen to
decrease (in both directions) and finally converge to zero for all four combination cases.
The nature of variation indicates the effectiveness of this term in conducting exploration
and exploitation.

→
F = a1sign

(→
r − 0.5

)[
e−

→
μ t − 1

]
(36)
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Figure 3. Variation of the exponential term for different combinations of a1 and a2.

In EO exploration and exploitation are controlled by the constants a1 and a2, respec-
tively. Other than these two, the term sign

(→
r − 0.5

)
affects the direction of exploration

and exploitation during the search.

3.4. Generation Rate

This term constitutes the third term of the concentration update equation given by
(29). The generation rate ensures the convergence of the algorithm to the optimal global

solution (
→
G ) which facilitates smooth convergence by tuning the solutions using small

updates. By modeling the generation rate using an exponential decay term of the first order
and assuming the decay constant to be equal to the turnover rate [32], the generation rate
can be expressed to be decreasing from an initial value (G0) as:

→
G =

→
G0e−

→
μ (t−t0) =

→
G0

→
F (37)

→
G0 =

→
λ

( →
Ceq −→

μ
→
C

)
(38)

The generation rate control parameter (λ) decides what role will be played by the
generation rate term in updating the particle position in (29). This parameter is designed
to controls the exploitation and exploration of the particle as follows:

→
λ =

{
0.5r1 r2 > ρ

0 r1 < ρ
(39)

The probability of using the generation rate term by the particle while updating its
concentration using (29) is also determined by the generation probability expressed by (ρ).

Here r1 and r2 are uniformly distributed random numbers in [0, 1]. If the first condition
in (39) is true, then the generation rate parameter will be small, and the update step size
will be small, causing exploitation. But if the second condition is true, then the particle is
updated without any contribution from the generation rate term as (λ) and (G) both become
zero. Experiments have shown that when (ρ) is set at 0.5, the search undergoes balanced
exploitation and exploration. As the generation probability ρ is increased beyond 0.5,
exploration increases, and as ρ is decreased below 0.5, exploitation is observed to increase.

3.5. Particle’s Memory Saving

In random operator-based optimization algorithms, some kind of memory mechanism
must be used to avoid losing a better solution during the process. EO also has a procedure
somewhat similar to the pbest in PSO, where the best position and corresponding fitness
of each particle are stored and updated whenever there is an improvement in subsequent
iterations. The flow chart of EO is shown in Figure 4.
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Figure 4. Flow chart of Equilibrium Optimization.

3.6. Steps for Implementation of EO for Profit Based Generation Scheduling

Step 1: Define population size, the maximum number of iterations and the number of
runs for the algorithm.

Step 2: Initialize the population within lower and upper concentration limits following
(31) and check the constraints (18)–(20) and (23).

Step 3: Select the equilibrium candidates from the initial population assign a1, a2, ρ
and evaluate the values of each equilibrium candidate.

Step 4: Compare the fitness of equilibrium candidates with that of each particle in the
updated population. Replace the equilibrium candidate and corresponding fitness value
with that of the particle from the population, if fitness is better.

Step 5: Continue step 4 in loops equal to the number of particles in the population. At

the end of the loop, one will acquire the Equilibrium pool
→
Ceq,pool as in (32)

Step 6: Accomplish memory saving
Step 7: Construct ‘t’ as per (34)
Step 8: Run a loop equal to the number of particles in the population and randomly

choose one candidate from the equilibrium pool (vector).

Step 9: Construct
→
μ , r1,

→
F ,

→
G ,

→
G0,

→
λ using (36)–(39)

Step 10: Update concentrations using (29) till the number of iterations is less than the
maximum number of iterations. After the loop is finished, the final concentrations are the
power output for the thermal generators for the given time period of 24 h.

Step 11: Apply a Fuzzy selection mechanism to find out the best compromise solution
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Step 12: Store the best compromise solution.

4. Results and Discussion

The performance of the EO algorithm is tested on standard test cases under dynamic
constraints [38–40]. Impact on operational cost and emission due to RER integration are
also investigated here. The objective function is written in MATLAB R2013a environment
and executed on Intel core i7 processor with 2 GB RAM and 3.40 GHz speed.

4.1. Description of Test Cases

Test Case 1 has six thermal power generating unit system. Its selling cost, minimum
and maximum power limits and cost/emission coefficients are listed in Table A1 [40], along
with power demand and hourly selling prices on a particular day.

Test Case 2 is a modified test case created by adding two solar PV units to test
case 1. The data of solar plants are listed in Table A2. Its data related to radiation and
corresponding temperature are shown in Figure 5.

Figure 5. Solar PV data of Temperature (◦C) and Radiation (W/m2).

Test Case 3 is also a modified test case obtained by the addition of two wind generators
to test case 1. The data for wind generators are listed in Table A2.

Test Case 4 is a hybrid thermal-wind-solar PV system that integrates two wind gener-
ators and two solar PV systems with thermal units of Test case 3, Test case 2 and Test case 1,
respectively.

4.2. Effect of Number of Particles

To analyze optimal particle size (NP), experiments are conducted on Test Case 1
with different values of NP. Its effect on optimal generation cost is plotted in Figure 6.
Here, it is observed that with an NP of 200, the mean operation cost is the lowest. By
increasing NP beyond it, no significant change was observed; however, computational time
increases. Hence, a particle size of 200 is considered for further analysis of the problem. The
performance of EO is also validated by the comparison of results obtained by simulation
of two well-established algorithms: particle swarm optimization (PSO) and artificial bee
colony (ABC) algorithm, keeping the same population size. The statistical results in terms of
operational cost are tabulated in Table 1 over 30 repeated runs. The cost convergence curve
of the three algorithms is compared in Figure 7. The above two results show the superiority
of EO over the other two in terms of better search capability and fast convergence.
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Figure 6. Effect of Number of particles (NP).

Table 1. Comparison of EO with ABC and PSO for Test Case 1.

Method Parameters
Min Cost

($)
Mean Cost

($)
Max Cost

($)
SD

CPU Time/Iter.
(s)

PSO c1 = c2 = 2.1 wmin = 0.4
wmax = 0.9

309,125.58 309,133.97 309,170.86 5.3818 0.0215

ABC Limit=100 309,126.34 309,154.07 309,164.77 10.05 0.0203
EO a1=2, a2=1, ρ=0.5 309,117.20 309,125.54 309,139.91 0.9103 0.0188

Figure 7. Cost Convergence curve of ABC, PSO and EO for test case 1.

4.3. Effect of Control Parameters on the Performance of EO

EO has three control parameters:

• constants a1 and a2 which control the exploration and exploitation, and
• generation probability (ρ) decides whether exploration or exploitation of search space

will occur.

To analyze the impact of the above three control parameters, various tests are con-
ducted on Test Case 4 with the variation of parameters in the prescribed range, and obtained
results are tabulated in Tables 2 and 3. In Table 2, the value of ρ is kept at 0.5, and results are
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computed for different combinations of constants a1 and a2. Here, it is observed that best
results are obtained when a1 = 2 and a2 = 1. Further ρ is varied from 0.1 to 0.9, keeping
a1 = 2 and a2 = 1 fixed and obtained simulation results are summarised in Table 3. It is
evident that the best result, with the highest profit and lowest emission content, is obtained
with ρ = 0.5 where the exploration and exploitation have an equal chance of occurrence.
Therefore, these combinations of control parameters are considered for further analysis.

Table 2. Best Compromise Solution with the variation of parameters a1, a2 for Test Case 4 (ρ = 0.5).

Parameters
Total Cost ($) Profit ($) Emission (Kg)

a1 a2

1 1 301,550.07 337,807.18 24,412.00
1 2 309,167.46 330,189.73 28,484.83
2 1 297,031.57 342,325.68 24,763.26
2 2 297,620.53 341,736.72 26,759.37

Table 3. Best Compromise Solution with variation of generation probability ‘ρ’ for Test Case 4 (a1 = 2
and a2 = 1).

ρ Total Cost ($) Profit ($) Emission (Kg)

a1 = 2, a2 = 1

0.1 298,680.22 340,677.03 28,639.24
0.2 298,215.49 341,141.76 27,678.89
0.3 298,261.84 341,095.41 27,217.14
0.4 298,310.80 341,046.45 28,180.66
0.5 297,031.57 342,325.68 24,763.26
0.6 297,845.79 341,511.46 27,399.93
0.7 297,553.80 341,803.45 26,343.26
0.8 297,624.74 341,732.51 26,728.33
0.9 298,367.13 340,990.12 26,233.64

4.4. Effect of RER Integration on Profit Maximization

The simulation results for different test cases under the scenario of cost minimiza-
tion/profit maximization given by (1) are shown in Figure 8. Comparing test case 1 and
test case 2 shows a reduction in power generation cost by 3883.3 $ (≈1.26%), and hence the
profit is increased by 3883.3 $ (≈1.18%). While comparison of test case 1 and test case 3, it
is observed that the reduction in power generation cost is found to be 13,461.09 $ (≈4.35%),
and hence the profit is increased by 13,461 $ (≈4.08%). Similarly, a comparison of test
case 1 and the hybrid test case 4, shows that the power generation cost is reduced by
14,285.21 $ (≈4.62%) and the profit increased by 14,285.18 $ (≈4.32%). Hence, it is clear
that the higher the integration of RER, the higher the profit even after the inclusion of cost
due to uncertainty.

Figure 8. Comparison of cost, profit and emission for profit maximization.
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The optimum generation schedule for test cases 1 and 4 are shown in Figures 9 and 10,
where operational constraints are fully satisfied. Profit and emission for these two cases
are compared and listed in Table 4.

Figure 9. Optimal generation schedule under the scenario of Cost minimization (Test Case 1).

Figure 10. Optimal generation schedule under the scenario of Cost minimization (Test Case 4).

Table 4. Cost, Selling price, Profit and Emission under the scenario of profit maximization.

ThC ($) WC ($) PVC ($) TC ($) SP ($) Profit ($) Emission (Kg)

Test Case 1 309,117.20 – – 309,117.20 639,357.25 330,240.05 31,581.41
Test Case 4 276,906.41 6290.20 11,635.38 294,831.99 639,357.25 344,525.26 28,422.29

4.5. Effect of RER Integration on Emission Minimization

For minimization of emission (14), all the test cases under consideration are carefully
analyzed to find the impact of the integration of (i) solar, (ii) wind and (iii) both solar and
wind resources. The objective is to determine the optimal schedule for all four test cases,
which will produce minimum emission content. The results for each test case are presented
in Figure 11.

Comparing test case 1 and case 2, the reduction in emission content is 2255.94 kg
(≈8.92%) due to the solar share of 975.71 MW (4%). While Comparing test case 1 and test
case 3, the reduction in emission content is 3216.74 kg (≈12.72%) due to 1463.08 MW (5%)
of wind share. Similarly, while comparing test case 1 and test case 4, emission reduction is
5524.63 kg (≈21.84%).

Comparing all the cases, it is observed that there is a significant reduction in pollution
by integration of RER.
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Figure 11. Comparison of cost, profit and emission under the scenario of emission minimization.

4.6. Effect of RER Integration for the Multiobjective Case

For the simultaneous optimization of profit and emission both, formulated in (16) with
the help of the fuzzy min approach (24), the best compromise solution is obtained. Pareto
front for all test cases obtained by EO is plotted and compared in Figure 12 and the top 10
optimal solutions and their fuzzy min rank are tabulated in Table 5. The best-compromised
solution with the highest fuzzy rank is indicated for each test case.

Figure 12. Pareto-front of all the non-dominated solutions obtained for different cases.
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Table 5. Top 10 optimal solutions and their fuzzy min rank.

Test Case 1 Test Case 2

Profit Emission μ1 μ2 min (μ) Profit Emission μ1 μ2 min (μ)

328,508.692 27,878.429 0.705 0.712 0.705 329,500.761 26,224.344 0.725 0.672 0.672
328,312.919 27,759.219 0.684 0.725 0.684 329,502.218 26,226.754 0.725 0.672 0.672
328,312.663 27,759.160 0.684 0.725 0.684 329,503.106 26,227.526 0.725 0.672 0.672
328,311.440 27,758.630 0.684 0.725 0.684 327,594.083 24,734.770 0.524 0.825 0.524
329,335.245 28,738.401 0.792 0.616 0.616 327,593.259 24,733.423 0.524 0.825 0.524
329,336.053 28,739.487 0.792 0.616 0.616 327,591.770 24,732.427 0.524 0.826 0.524
329,336.009 28,739.710 0.792 0.616 0.616 330,805.950 28,204.049 0.862 0.468 0.468
327,479.749 27,313.518 0.596 0.775 0.596 330,805.924 28,204.710 0.862 0.468 0.468
327,478.885 27,312.756 0.596 0.775 0.596 330,805.931 28,205.116 0.862 0.468 0.468
327,478.002 27,312.382 0.596 0.775 0.596 330,689.142 28,348.341 0.849 0.454 0.454

Test Case 3 Test Case 4

Profit Emission μ1 μ2 min (μ) Profit Emission μ1 μ2 min (μ)

341,716.684 26,517.776 0.760 0.567 0.567 342,325.682 24,763.258 0.827 0.542 0.542
341,716.956 26,518.660 0.760 0.567 0.567 342,325.842 24,763.330 0.827 0.542 0.542
341,717.139 26,518.991 0.760 0.567 0.567 342,477.714 25,040.173 0.839 0.516 0.516
341,708.322 26,549.079 0.759 0.564 0.564 342,478.170 25,040.791 0.839 0.516 0.516
341,708.646 26,549.144 0.759 0.564 0.564 342,532.703 25,090.462 0.843 0.512 0.512
341,708.329 26,549.322 0.759 0.564 0.564 342,533.058 25,090.864 0.843 0.512 0.512
341,960.680 26,683.972 0.791 0.550 0.550 338,289.653 21,279.033 0.510 0.862 0.510
341,960.976 26,684.062 0.791 0.549 0.549 338,288.413 21,278.272 0.510 0.862 0.510
341,961.230 26,684.330 0.791 0.549 0.549 342,585.154 25,130.773 0.847 0.508 0.508
341,924.268 26,723.629 0.786 0.545 0.545 342,584.919 25,130.786 0.847 0.508 0.508

The optimal power generation schedule for test case 1 and hybrid thermal-wind-solar
PV system, i.e., test case 4 with cost, selling price, profit and corresponding emission are
listed in Tables 6 and 7. In addition, a comparison of cost, profit and emission for all four
cases is presented in Figure 13. Here it is seen that the cost is reduced by 992.07 $ (≈0.32%)
after integration of two solar units in test case 2. The cost was reduced by 13,207.97$
(≈4.25%) in test case 3 when two wind power units were added and by 13,816.99 $ (≈4.44%)
for test case 4 when two solar and wind units, respectively, were integrated with the existing
thermal system. The profit is found to increase by 992.07 $ (≈0.30%), 13,208$ (≈4.02%),
13,816.66 $ (≈4.21%), respectively, for test cases 2, 3 and 4.

The emission content is observed to reduce by 1654.09 kg (≈5.93%) in case 2, by
1360.65 kg (≈4.88%) in case 3, and by 3115.17 kg (≈11.17%) in case 4 with respect to test
case 1 where only thermal units are present.

Figure 13. Comparison of cost, profit and emission under the scenario of emission minimization.
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Table 6. Optimal generation schedule, cost, selling price and profit for Test Case 1 (Best Compromise Solution).

Hour P1
(MW)

P2
(MW)

P3
(MW)

P4
(MW)

P5
(MW)

P6
(MW) TC ($) SP ($) Profit

($)
Emission

(Kg)

1 267.18 116.94 189.30 137.60 125.15 118.82 11,431.4097 21,630.75 10,199.34 884.64
2 290.12 120.26 180.63 108.07 135.22 107.69 11,208.0562 20,724.00 9515.94 900.50
3 273.65 147.61 201.12 89.01 122.96 118.66 11,357.6823 21,537.80 10,180.12 920.34
4 258.12 147.41 159.08 113.96 146.97 104.46 11,145.9213 20,553.00 9407.08 831.10
5 282.57 118.86 190.11 87.82 156.66 98.97 11,113.801 21,505.00 10,391.20 894.89
6 268.65 134.94 188.96 131.20 133.12 106.13 11,506.8602 22,293.45 10,786.59 903.10
7 282.25 110.86 200.46 116.44 161.67 117.31 11,814.661 24,329.40 12,514.74 943.67
8 318.19 126.99 194.56 113.38 162.78 107.09 12,181.5529 25,830.73 13,649.18 1047.15
9 324.15 164.39 226.84 118.69 198.86 93.06 13,471.5765 27,936.05 14,464.47 1239.81

10 344.50 155.59 211.73 122.96 196.45 118.77 13,786.5861 30,475.00 16,688.41 1265.30
11 350.92 183.98 240.31 139.40 167.58 118.81 14,416.1753 32,607.14 18,190.97 1395.27
12 386.77 178.95 231.68 148.91 169.39 119.30 14,838.8277 37,420.49 22,581.67 1501.13
13 358.79 159.28 228.62 149.05 174.61 119.65 14,275.8021 35,342.99 21,067.19 1368.31
14 379.97 165.36 249.43 146.40 190.98 118.86 15,041.8218 35,778.61 20,736.78 1522.54
15 387.37 178.49 247.30 148.43 182.26 119.15 15,195.1235 31,890.75 16,695.63 1558.50
16 364.96 197.62 245.53 132.81 189.51 119.58 15,050.0093 31,000.00 15,949.99 1499.40
17 358.21 169.93 256.18 129.27 189.03 118.39 14,658.0997 28,754.55 14,096.45 1450.01
18 360.92 172.60 225.78 148.92 174.26 119.51 14,434.0764 27,465.70 13,031.62 1390.41
19 322.15 154.47 229.83 133.87 199.14 119.54 13,920.6668 26,714.95 12,794.28 1255.61
20 335.55 147.30 209.25 108.47 172.87 118.56 13,035.613 25,389.00 12,353.38 1174.63
21 296.40 167.11 206.24 121.43 142.45 89.38 12,187.7462 24,040.49 11,852.75 1055.36
22 275.73 153.09 199.98 95.28 164.90 95.01 11,732.3309 22,887.84 11,155.51 959.52
23 267.59 160.44 225.76 94.03 156.50 70.68 11,596.8066 21,937.49 10,340.69 996.03
24 295.98 99.08 185.82 115.74 144.14 119.23 11,447.352 21,312.00 9864.65 921.21

Total 7650.70 3631.54 5124.51 2951.15 3957.45 2656.65 310,848.56 639,357.25 328,508.69 27,878.43

Table 7. Optimal generation schedule, cost, selling price and profit for Test Case 4 (Best Compromise Solution).

A. Optimal Generation Schedule for Test Case 4 (Best Compromise Solution)

Hour P1 (MW)
P2

(MW)
P3 (MW)

P4
(MW)

P5 (MW)
P6

(MW)
TS (MW)

Emission
(Kg)

WS
(MW)

PV Share
(MW)

1 326.45 101.35 186.46 98.17 150.86 91.71 955.00 991.51 0.00 0.00
2 303.95 107.68 198.92 101.68 128.74 101.03 942.00 947.51 0.00 0.00
3 281.69 119.22 232.89 81.07 143.44 94.68 953.00 975.98 0.00 0.00
4 258.20 135.39 186.99 102.72 149.44 88.95 921.69 849.56 8.31 0.00
5 268.76 145.56 193.86 86.33 139.38 80.16 914.06 882.95 20.31 2.63
6 292.74 121.33 177.03 93.73 132.47 101.55 918.84 885.64 32.31 13.85
7 291.77 131.62 183.65 96.06 121.16 90.69 914.93 900.13 44.31 30.76
8 298.97 120.68 193.18 90.61 119.46 80.31 903.21 916.65 56.31 63.48
9 324.98 125.01 202.09 118.72 136.55 88.13 995.48 1056.59 68.31 62.22

10 327.58 135.25 204.20 106.08 142.04 61.42 976.57 1070.75 80.31 93.12

11 352.28 112.17 217.72 103.03 122.32 74.72 982.24 1134.22 92.31 120.00
12 347.07 122.85 186.34 108.57 144.80 89.03 998.66 1086.44 104.31 120.00
13 314.33 127.82 176.08 116.53 143.55 76.50 954.81 975.73 116.31 118.88
14 335.61 146.32 213.07 112.85 143.72 79.95 1031.51 1143.19 120.00 99.49
15 322.65 155.12 241.44 96.25 142.49 99.82 1057.76 1180.47 120.00 85.24
16 334.44 157.54 226.78 108.63 139.08 86.81 1053.29 1185.25 120.00 76.71
17 342.95 162.21 186.79 125.49 159.30 78.16 1054.91 1161.91 120.00 56.09
18 351.52 163.81 180.67 101.87 156.07 102.82 1056.77 1161.48 120.00 26.23
19 306.51 160.14 194.76 120.31 150.81 101.95 1034.48 1057.68 120.00 6.52
20 331.46 140.31 196.15 92.82 129.68 81.58 972.00 1055.65 120.00 0.00
21 351.75 122.82 222.79 98.26 135.87 91.50 1023.00 1168.49 0.00 0.00
22 327.44 136.26 204.65 92.46 144.33 78.86 984.00 1066.00 0.00 0.00
23 302.88 129.99 188.70 97.67 170.58 85.18 975.00 980.05 0.00 0.00
24 265.65 140.16 211.95 95.83 154.01 92.41 960.00 929.40 0.00 0.00

Total 7561.66 3220.61 4807.17 2445.70 3400.14 2097.93 23,533.20 24,763.26 1463.08 975.72
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Table 7. Cont.

B. Cost, Selling Price and Profit for Test Case 4 (Best Compromise Solution)

Hour Th Cost ($) WC ($) PV Cost ($) TC ($) SP ($) Profit ($)

1 11,313.10 26.59 0.00 11,339.69 21,630.75 10,291.06

2 11,163.59 26.59 0.00 11,190.18 20,724.00 9533.82

3 11,300.92 26.59 0.00 11,327.51 21,537.80 10,210.30

4 10,982.15 30.71 0.00 11,012.86 20,553.00 9540.14

5 10,848.76 55.33 7.55 10,911.64 21,504.92 10,593.28

6 10,907.79 102.07 141.28 11,151.14 22,293.51 11,142.37

7 10,840.90 157.43 354.88 11,353.21 24,329.42 12,976.21

8 10,666.11 214.29 757.03 11,637.43 25,830.68 14,193.25

9 11,798.47 271.29 741.92 12,811.68 27,936.16 15,124.48

10 11,535.66 328.29 1110.51 12,974.46 30,474.88 17,500.42

11 11,585.74 385.29 1507.91 13,478.94 32,607.17 19,128.22

12 11,834.05 442.29 1574.49 13,850.83 37,420.41 23,569.58

13 11,321.05 499.29 1417.69 13,238.03 35,342.89 22,104.87

14 12,224.89 516.83 1186.46 13,928.18 35,778.49 21,850.31

15 12,566.34 516.83 1016.51 14,099.68 31,890.71 17,791.02

16 12,496.84 516.83 914.82 13,928.49 30,999.90 17,071.41

17 12,556.04 516.83 549.59 13,622.46 28,754.62 15,132.16

18 12,588.57 516.83 300.88 13,406.28 27,465.67 14,059.40

19 12,338.22 516.83 53.85 12,908.90 26,715.04 13,806.14

20 11,488.50 516.83 0.00 12,005.33 25,389.00 13,383.67

21 12,101.88 26.59 0.00 12,128.47 24,040.50 11,912.03

22 11,634.79 26.59 0.00 11,661.38 22,887.84 11,226.46

23 11,583.47 26.59 0.00 11,610.06 21,937.50 10,327.44

24 11,428.16 26.59 0.00 11,454.75 21,312.00 9857.25

Total 279,105.98 6290.22 11,635.37 297,031.57 639,357.25 342,325.68

4.7. Analysis and Discussion

The EO algorithm is employed to analyze the optimal generation schedule for a hybrid
thermal-solar PV-wind system under the deregulated environment with the objective is to
maximize the profit of the operator and to minimize emission content for the given power
demand and tariff. The cost due to uncertainty of RER in meeting the load demand is also
included in the model. The effect of integrating solar and wind power units is studied under
(i) profit maximization, (ii) emission minimization and (iii) profit-emission optimization.

According to the results mentioned in Sections 4.4–4.6, it is observed that profit
increases when more and more renewable units are added to the thermal system. On the
other hand, emission content becomes reduced with the addition of more renewable units.
For the multiobjective profit-emission optimization case, the improvement in both profit
and emission can be seen to lie between the conditions (i) and (ii).

5. Conclusions

In this paper Equilibrium Optimization (EO) is applied for the solution of the optimal
generation schedule problem of a hybrid thermal-solar-wind test system such that the
profit is maximized and the pollution content becomes reduced. The practical constraints
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of non-convexity, non-linearity associated with the thermal unit, probabilistic terms due
to wind and solar system are included in the cost function and analyzed under dynamic
conditions. The performance of EO is also compared and validated with well-known PSO
and ABC algorithms.

The simulation results indicate that:

• The EO is not significantly dependent on algorithm-specific control parameters. The
results are found to vary in a very narrow band with variations in control parameters.

• As the population size increases, EO gives more promising results. However, an
increase in population size leads to increased computational time too.

• EO has a unique embedded mechanism for exploration and exploitation which leads
to the global best solution.

• The increase in profit and decrease in emission are computed for the integration of
solar, wind and wind-solar units in the existing thermal power generation system.

• It is verified that the higher the integration of RER, the greater is the profit, even after
including the uncertainty costs of the renewable energy in the model.

• EO is found to produce well-distributed Pareto-optimal solutions for the multiob-
jective problem. For all the tested cases it is observed that EO is capable of deal-
ing with complex operational constraints under the dynamic environment in an
efficient manner.

• The proposed work is beneficial for designing hybrid renewable power systems with
optimal capacities for given conditions to achieve desired profit and to reduce emission.
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Appendix A

Table A1. Cost and emission coefficients and generation limits of thermal units, power demand and respective market
selling price.

Unit ai($/MW2h) bi($/MWh) ci($/h)
Pmin
(MW)

Pmax
(MW) αi(Kg/MW2h) βi(Kg/MWh) γi(Kg/h)

UR
(MW/h)

DR
(MW/h)

1 0.007 7 240 100 500 0.00419 0.32767 13.8593 80 120
2 0.0095 10 200 50 200 0.00419 0.32767 13.8593 50 90
3 0.009 8 220 80 300 0.00683 −0.54551 40.2669 65 100
4 0.009 11 200 50 150 0.00683 −0.54551 40.2669 50 90
5 0.008 10.5 220 50 200 0.00461 −0.51116 42.8955 50 90
6 0.0075 12 190 50 120 0.00461 −0.51116 42.8955 50 90

Hour 1 2 3 4 5 6 7 8 9 10 11 12

PD
(MW)

955 942 953 930 935 963 989 1023 1126 1150 1201 1235
SP

($/MW)
22.65 22 22.6 22.1 23 23.15 24.6 25.25 24.81 26.5 27.15 30.3

Hour 13 14 15 16 17 18 19 20 21 22 23 24

PD
(MW)

1190 1251 1263 1250 1221 1202 1159 1092 1023 984 975 960
SP

($/MW)
29.7 28.6 25.25 24.8 23.55 22.85 23.05 23.25 23.5 23.26 22.5 22.2
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Table A2. Data for Solar PV units and wind farm.

Type of
System

No. of
Units

Rated
Power

(MW/Unit)
DC ($/MWh) kp kr k c Vci (m/s2) Vr (m/s2) Vco (m/s2)

Solar
PV

2 60 12
1.5 3

- - - - -

Wind 2 60 1.75 2 10 3 16 25
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Abstract: Energy efficiency and data security of smart grids are one of the major concerns in the
context of implementing modern approaches in smart cities. For the intelligent management of
energy systems, wireless sensor networks and advanced metering infrastructures have played an
essential role in the transformation of traditional cities into smart communities. In this paper, a smart
city energy model is proposed in which prosumer communities were built by interconnecting energy
self-sufficient households to generate, consume and share clean energy on a decentralized trading
platform by integrating blockchain technology with a smart microgrid. The efficiency and stability
of the grid network were improved by using several wireless sensor nodes that manage a massive
amount of data in the network. However, long communication distances between sensor nodes
and the base station can greatly consume the energy of sensors and decrease the network lifespan.
Therefore, bio-inspired algorithm approaches were proposed to improve routing by obtaining the
shortest path for traversing the entire network and increasing the system performance in terms of
the efficient selection of cluster heads, reduced energy consumption, and extended network lifetime.
This was carried out by studying the properties and mechanisms of biological systems and applying
them in the communication systems in order to obtain the best results for a specific problem. In this
comprehensive model, particle swarm optimization and a genetic algorithm are used to search for
the optimal solution in any problem space in less processing time.

Keywords: microgrid; bio-inspired algorithms; wireless sensor network; genetic algorithm; particle
swarm optimization; advanced metering infrastructure; blockchain; Ethereum

1. Introduction

A smart city is an idealistic city where the quality of life and quality of services
for citizens is significantly improved by promoting innovative solutions. By integrating
information and communication technology (ICT) and the Internet of Things (IoT), the
efficiency and effectiveness of city functionality is impressively improved. Over the years,
urban life within smart cities had undergone many challenges and transformations so as to
contribute to a better quality of life. In recent developments of smart cities, the quality of
power has been improved significantly by developing smart grids and by the emergence of
smart communities, despite the high level of energy consumption in smart cities.

Smart grids are intelligent and flexible power grids that use two-way communication
technologies which enable safe, efficient and sustainable energy consumption, unlike
electro-mechanically controlled conventional electric grid. Information and communication
technology is used for aggregating and analyzing large amounts of data generated by
various sources, such as sensor networks, wearable devices, and IoT devices deployed
across the city [1]. Within this smart network, consumers can actively participate in
renewable energy production and consumption at individual and community levels and
finally, store the surplus energy for later use. Due to its robustness, self-healing capabilities,
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and cost-effective energy generation, distribution, and consumption, the usage of smart
grid technology is highly encouraged in smart city transformation.

One of the key applications of smart grids is microgrids that significantly contribute
to the level of reliability and resiliency of the smart grid. These are small, localized grids
that can operate either as standalone systems or grid-connected ones [2]. During power
disturbances or blackouts, the microgrid disconnects from the main utility network and
operates autonomously in islanded mode. It consists of distributed energy sources (solar
panels, wind turbines, microturbines, etc.), energy storage systems, and the cluster of
loads, all of which are connected through a bidirectional, and efficient communication
network. It can greatly reduce the capacity costs and energy losses during transmission
and distribution, thus increasing the efficiency of the energy delivery system [3]. It can
provide energy independence to individual communities who aim to manage their own
power generation and distribution as well as fulfill the energy demands in remote areas.

The significant boost in the energy demand across the world has led to the formation
of a new type of electricity consumers known as “prosumers” [4], who can both produce
and consume electricity from renewable sources and share it within the energy community
or supply the surplus energy production back to the grid if required. This is facilitated by
the installation of smart microgrids, which is characterized by renewable energy integra-
tion, advanced metering infrastructure (AMI), bi-directional communication technology,
distribution automation, and the monitoring and control of the entire power grid system. In
order to improve the efficiency and stability of the grid network and achieve the intelligent
management of smart microgrids, a large number of monitoring devices such as wireless
sensors are used in the communication network [5]. A wireless sensor network (WSN)
is a self-configured network of spatially dispersed sensor nodes that are used to monitor
various environmental conditions such as pressure, temperature, humidity, motion, etc.
and collect their data in real-time to process and forward them to the base station or sink
node that acts as an interface between sensor nodes and end-users.

Sensor nodes are deployed in large numbers for a wide range of applications in the
fields of IoT, smart grids, healthcare, military, surveillance, industrial sector, agriculture,
transportation, and logistics, etc. However, there are still several issues and challenges
associated with WSNs such as limited power, storage, and computational capabilities,
localization of nodes, routing, poor maintenance, network security, and communication
costs. Due to limited power supply in nodes and long communication distances, network
lifetime maximization has been a critical issue in WSNs, for which certain optimization
techniques are required in order to reduce data redundancy and energy consumption and
increase network lifespan.

With the handling of a massive amount of data in WSNs, the privacy and security of
the systems have become a major concern, since communications take place over an open
channel, that is, the internet. Additionally, the systems cannot be protected beyond a certain
range, since the sensor nodes operate on the limited power supply and computational
resources. A large number of security solutions have been designed for the existing
infrastructure, which is normally based on centralized control. There are many issues
associated with centralized control, such as the involvement of intermediaries and third
parties, leading to an increase in operational and transactional costs and lack of security,
which makes the system vulnerable to unauthorized data tampering. Additionally, due
to the rapid digitalization of the energy market, it is essential to keep track of energy
transaction records in a secure and decentralized way. This can be achieved by introducing
a blockchain-based energy monitoring system in which blockchain technology can be
integrated with an advanced metering infrastructure (AMI), which is generally equipped
with various software and hardware components such as WSNs that collect energy usage
data from the smart meter and transmit them to the base station in real time. Blockchain
systems can provide real-time digitally maintained energy records and make information
available instantly and securely to authorized users [6].
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This paper presents a smart city energy model in which smart microgrid technology
is incorporated with blockchain technology to improve the energy distribution capability
between citizen houses in a smart community. Since WSNs form an essential component
of an AMI, this paper presents a technique using two population-based bio-inspired
algorithms, i.e., particle swarm optimization (PSO) and genetic algorithm (GA), to obtain an
energy-efficient strategy for cluster head selection and achieve the optimal route connecting
the sensor nodes to minimize total communication distance for transmission of data in
less processing time. This helps in preventing data loss and maximizing energy efficiency
and lifetime of the system. The strategies used in these algorithms are simple, robust, and
adaptive since they imitate the nature of biological systems to solve real-world problems.

For the secure transmission of information in the network, blockchain technology
is used to maintain the security and privacy of the systems [7,8]. In this paper, this
technology is mainly used in the context of peer-to-peer energy trading in microgrids,
which allows prosumers to sell excess energy directly to other households in the community
in a transparent and cost-effective way. A blockchain-based solution is implemented, which
enables local consumers to purchase electricity directly with cryptocurrency without any
third-party intervention and maintain energy transaction records in a decentralized manner
in blockchain.

The remainder of this paper is organized as follows. Section 2 is divided into three
sub-sections. Section 2.1 presents an overview of the literature related to wireless sensor
network optimization and blockchain-based systems. The papers have been referenced as
well as their authors and works are highlighted in this section. Section 2.2 provides the
background study necessary to understand the concepts involved. Section 2.3 presents the
proposed methodology, working, as well as its possible implementation. Section 3 contains
the results and Section 4 contains the analysis of the implementation. Section 5 concludes
the paper.

2. Materials and Methods

2.1. Literature Review

As the theme of the article is based on blockchain-based energy systems and optimiza-
tion techniques in smart grid using bio-inspired algorithms, the entire literature review is
based on two broad divisions: bio-inspired algorithms and blockchain technology for the
smart energy system. Being an important building block of the smart grid technology, the
wireless sensor network (WSN) has always attracted significant interest in both industries
as well as research areas in recent years. In this context, much recent research has been
conducted to optimize WSNs in order to improve the performance of the smart energy
grid. Various applications and issues associated with the WSN in smart grids are dis-
coursed in [9]. Several algorithms have been implemented with respect to the localization
of nodes, the formation of clusters and selection of cluster heads, optimal routing, network
lifetime, energy constraints, data compression and aggregation, network security, and
self-organization, which are the current focus areas of research in the field of WSNs. The
quality of service (QoS) protocols, energy efficiency, bandwidth utilization, and secured
routing in WSN are the major areas of concern discussed in [10,11].

Several metaheuristic algorithms used for optimizing various aspects in WSNs to
provide sufficiently good solutions in acceptable time constraints are presented in [12]. A
firefly-based approach to perform the clustering of nodes in the WSN and the optimization
of packet delivery ratio and network lifetime is proposed in [13]. In [14], the ant colony
optimization (ACO) algorithm is combined with the harmonic search algorithm (HSA) to
find the optimal cluster head with minimum routing path and achieve a faster transmission
of packets without losing data accuracy, which results in a higher network throughput
and reduced energy consumption. A novel nature-inspired algorithm named the salp
swarm algorithm (SSA) is presented in [15] for accurate node localization in WSNs and is
compared with four other optimization algorithms, namely the firefly algorithm, butterfly
optimization algorithm, particle swarm optimization, and grey wolf optimizer based on its
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performance and simulation results [16]. An energy-efficient routing technique based on
the artificial cee colony (ABC) algorithm that mimics the foraging behavior and waggle
dance of bees is proposed in [17].

Different routing protocols in WSN are discussed and analyzed in terms of perfor-
mance, limitations, and security issues in [18]. A survey based on the multipath routing
techniques is presented along with its fundamental challenges and future guidelines in [19].
It also emphasizes the relevant pros and cons associated with the routing protocols which
can be used as a road map for further research. An improved genetic algorithm technique is
presented in [20], which optimizes the performance of mobile agents in finding the shortest
route for traversing the sensor network. A hybrid GA is implemented in heterogeneous
WSNs, which integrates greedy initialization and bidirectional mutation operation in order
to achieve full coverage of the monitoring area and prolong the network lifetime [21]. In
research conducted in [22], genetic algorithm-based clustering and routing are proposed
in which both clustering and routing methods are combined into a single chromosome
to construct a fitness function that improves the energy efficiency in the network. In this
work, the best load balancing is achieved, which results in the lowest average energy
being consumed by the cluster heads. In [23], a GA-based classification method is used
to categorize the DOA (direction-of-arrival) estimates for multiple sources’ position of
each sensor node in a three-dimensional space. It is seen that this method could lower
the computational burden to a greater extent as compared to other conventional methods
without reducing the accuracy of the estimation. In [24], a multi-objective GA is proposed
to optimize the problem of node deployment in WSNs based on topology, environment,
the specifications of various applications and network designers’ preferences.

A precise technique based on the GA-NSGAII (non-dominated sorting genetic algo-
rithm) algorithm is designed in [25] to develop a framework for a smart cyber physical
energy system which is used to manage the energy sources for electric vehicles. The cloud
computing is also implemented to gather the sensing information through a Wi-Fi system
from the various sensors which are deployed in the EV (electric vehicles) to realize the
health monitoring system of EVs. In [26], the PSO is integrated with a multi-hop routing
protocol to obtain uneven dynamic clustering in a WSN that makes the cluster distribution
change dynamically upon the failure of some nodes. This improves the energy efficiency
of multi-hop transmission between the base station and cluster head nodes and increases
the scalability for various sizes of the network. In [27], a PSO approach is implemented
to produce energy-aware clusters by the optimal selection of cluster head nodes, which is
based on residual energy, least average distance from member nodes and head count of
possible head nodes. The performance of this algorithm is compared with other protocols
such as LEACH-C (low energy adaptive clustering hierarchy centralized) and PSO-C (par-
ticle swarm optimization centralized). In [28], a PSO technique is proposed for improving
the network lifespan by forming clusters and selecting the cluster head, and the results are
compared with previously proposed LEACH algorithm. Traditional clustering algorithms
such as the LEACH algorithm are presented in [29], in which uniform clustering results in
high communication costs in single-hop inter-cluster routing, whereas in the EEUC (energy
efficient unequal clustering) algorithm [30], non-uniform clustering results in a lack of the
node’s residual energy consideration during the cluster head selection phase. This leads
to the premature death of cluster head nodes present far away as well as near to the sink
node because of the high communication cost and insufficient energy to forward data,
respectively, thus affecting the overall network lifecycle. Taking the drawbacks of LEACH
and EEUC algorithms into account, the PSO algorithm is presented, which considers the
node’s residual energy, the number of neighbors, and distance from the base station to
select the cluster head node in an energy-efficient manner that can improve the quality of
network monitoring and extend the network lifespan. In this paper, we mainly focus on
the two nature-inspired metaheuristic algorithms, i.e., particle swarm optimization and
genetic algorithm, to solve the optimization problems in WSNs for smart grid applications.
GA-based route optimization is presented to obtain the shortest path connecting the cluster
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head nodes to the base station for the cost-effective transmission of data in less processing
time. This significantly reduces the energy consumption by sensor nodes and enhances the
performance and lifetime of the network.

Data security is also achieved in this work along with the enrichment of node lifetime.
With the handling of the massive amount of data in WSNs, the privacy and security
of energy systems also need to be achieved, since communications take place over the
energy internet. Moving up to blockchain technology, different sectors such as power,
energy, electrical network, and smart grid are the key areas. The literature from [31–38]
focuses on the application of blockchain technology to power sectors. A vision with
analysis is offered in [31] for a networked microgrid by utilizing blockchain technology
for the optimum use of a power distribution system. This also suggests an additional
smart contract for secured energy operation amongst local grids and network microgrids.
A virtual power plant model based on blockchain technology is proposed in [32] for a
distributed energy resource to reduce the cost and a secure grid connection and similarly
in [33], to improve energy efficiency and power quality in a power grid blockchain expertise
is implemented. The work [34] represents the optimal utilization of a power distribution
energy system using blockchain technology where multiple control, operation, planning
are mainly addressed, and [35] proposes the blockchain application in the electric power
system area with the latest technology and innovative applications. An overview and
classification of blockchain technology for the power industry is discussed with some
notable projects in [36]. The appositeness and outlook of blockchain technology in the
energy sector are discussed in [37] by considering the socio-technical aspects related to
trading, information storage, energy flow, and service in the energy sector. In [38], the
utilization of blockchain technology is discussed to form the energy communities where
energy is exchanged among the prosumers.

Regarding the electrical network in a smart city, the notion of a grid consisting of
many hybrid micro grids for a smart city is presented in [39] where many advantageous
characteristics such as better power quality, consistency, safety, low cost etc. over a general
power grid are illustrated. Pertaining to the application of blockchain towards the power
grid, reference [40] proposes blockchain-based hierarchical bidding with a transaction
structure for local electricity networks with the use of the Bayesian theorem and the Nash
equilibrium for the accurate probability of cost and optimum quotation, respectively, and
the double auction mechanism along with blockchain technology is combinedly realized
in [41] for a decentralized microgrid. The blockchain (Hyperledger) with IoT devices
(Raspberry Pi) are combinedly realized in [42] to generate the bill with smart metering
for an electrical network. A state-of-art regarding the security issues of a blockchain-
based smart city is discussed in [43] where different issues related to medical facilities,
conveyance, smart grid, logistics network are focused.

Pertaining to blockchain technology in the field of the microgrid, this is discussed
in [44–49]. A centralized blockchain-controlled system with advanced metering infras-
tructures is discussed in [44] with a bandwidth requirement comparison for a microgrid
infrastructure. It is found that an about 10 times higher demand in bandwidth is found in
the blockchain-based solution as compared with an advanced metering type structure. A
holistic exploration is proposed in [45] about the different challenges faced in the practical
implementation of blockchain-based peer-to-peer (P2P) microgrid networks. The arti-
cle [46] presents a solution of double energy spending in a microgrid by applying hybrid
blockchain technology by sharing a secure environment for energy exchange between the
consumer and prosumer. A smart transaction is performed in [47] using the blockchain
technology in the smart grid and a smart contract. In [48], a microgrid design problem is
addressed by blockchain technology for a real time-based demand response program. A
fuzzy optimization approach is proposed for the localization and determination of renew-
able generation units with dynamic pricing. This study reveals a profitable growth of 1.68%
and increased consumer satisfaction of 2.61% in the area of Vietnam. The estimation of
power and price with an optimum power loss for a microgrid using blockchain technology
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with some differential evolution algorithms is aimed in [49]. In this, the blockchain is
mainly involved in reactive power pricing which is acquired from service providers.

2.2. Background Study
2.2.1. Particle Swarm Optimization

The particle swarm optimization (PSO) algorithm is a metaheuristic population-based
algorithm that was proposed by James Kennedy and Russell Eberhart in 1995. It helps in
obtaining the optimal solution of an optimization problem by simulating the movement
and foraging of a bird flock or school of fish [11]. In this algorithm, a population of
candidate solutions, named particles, explores the search landscape by initiating with a
random direction and following a search strategy that results in finding the best solution.
Every particle stochastically traverses a certain distance towards the personal best location
(pbest) and global best location (gbest) to reach a new location (shown in Figure 1), where
it updates its velocity vector and position vector for the next iteration, only if the pbest and
gbest values of the current iteration are better than those of the previous iteration.

Figure 1. Particle swarm optimization (PSO) search strategy.

The particle’s position and velocity are updated by using the following equation:
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i ) is the social component, where r1 and r2 are random components lying
in the range [0, 1] and k1 and k2 are acceleration coefficients. Tuning the parameters such
as k1, k2 and ω will affect the movement of particles and the exploration and exploitation
of the search space. As the swarm keeps track of the best solution in the problem space
and searches around them only, the time complexity of performing a search operation is
greatly reduced and the probability of finding the global optimum increases, as compared
to other deterministic algorithms.

2.2.2. Genetic Algorithm

The genetic algorithm (GA) is one of the first evolutionary algorithms, proposed by
John Henry Holland in 1992, which mimics the Darwinian theory of evolution [16]. It was
inspired by the natural selection or survival of the fittest in the biological evolution of living
beings, in which genes having desirable traits are selected by nature and passed to the
next generation through inheritance. In the genetic algorithm, a chromosome represents a
candidate solution, and a set of candidate solutions represents a population, as shown in
Figure 2. The GA is applied to an optimization problem by using the genetic representation
of candidate solutions known as genes, and a fitness function or objective function. Each
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gene is represented by an array of bits or bit string and evaluated by the fitness function
to obtain a unique value that determines the fitness of a given combination of bits with
respect to the problem in consideration.

Figure 2. Representation of a population of chromosomes.

The initial population is generated with random solutions and subjected to changes in
subsequent generations by applying four genetic operators to every individual solution
with a certain probability, i.e., selection, crossover, mutation, and elitism. The natural
selection is simulated by a roulette wheel mechanism which is implemented by first
creating a sorted array of normalized fitness values of all individuals, calculating their
cumulative sums, and then generating a random number in the interval [0, 1] and looping
through the array of cumulative sums to find the first value greater than the random
number. Each cumulative sum in the array represents the probability of the corresponding
individual getting selected. Thus, individuals having cumulative sums nearly equal to
1 have greater chances of being selected since they occupy larger parts in the simulated
roulette wheel.

Crossover or recombination is used to combine the genetic information of two parents
by swapping their genes before and after a point which is chosen randomly in each
generation, to generate a new population with a fixed number of chromosomes. The rate
of crossover is determined by using the probability of crossover (Pc).

Mutations are small random changes in the genetic sequence of a chromosome that
result in the addition of new features to the population and increasing its genetic variation.
It also helps in preventing the GA from converging to local optima. Mutated genes that
result in less fit solutions are eliminated by selection and crossover in each generation. A
predefined parameter named the probability of mutation (Pm) is used to determine the rate
of mutation by generating a random number in the range [0, 1] and comparing it with Pm.
A gene is mutated only if Pm is greater than the random number generated.

The fourth operator, i.e., elitism, is used to preserve a small portion of the best
individuals in a population, known as elites, and transfer them unchanged to the next
generation in order to prevent the loss of good traits due to crossover and mutation
operators. The portion of elite individuals is determined based on the elitism ratio (Er),
which can then be utilized in the process of selection, recombination, and mutation in
the next generation for improving the quality of solutions. This is how the evolutionary
mechanisms in the genetic algorithm are used to maximize the fitness of the population
through each generation.

2.2.3. Blockchain Technology

Blockchain is one of the most cutting-edge technologies, which is a highly secure,
immutable and decentralized database that stores transactional data in an encrypted
manner in the form of blocks. It is a distributed ledger system consisting of a chain of
blocks that keeps growing every time a transaction is carried out by users and validated by
network engineers. These blocks are linked to each other through cryptographic hashing [7],
as shown in Figure 3. The basic advantage of blockchain is that it is a decentralized system
that operates as a layer on top of the internet, which reduces the expenses of buying servers,
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eliminates the intermediaries and third parties and ensures autonomy, data integrity and
security to various systems [8].

Figure 3. Structure of a block.

The encryption in the blockchain is implemented using a 256-bit hashing algorithm, for
example, SHA-256 in the case of Bitcoin and ETHash in the case of Ethereum cryptocurrency,
for providing a high level of security. Since each block contains the unique transaction
hash of the previous block (Figure 3), tampering with the data of one block will completely
change the transaction hash of that block as well as all subsequent blocks, which will require
immense computing power to break all the encryptions, making it extremely difficult for
attackers to manipulate the information. In order to initiate transactions as well as decrypt
the secured information by the users, every blockchain user is provided with unique public
and private keys which form a digital signature of the user. Blockchain also provides
security at the node level. A node is a participating computer in a peer-to-peer (P2P)
network in which a ledger or blockchain is stored. In a distributed ledger system, each
node is provided with a copy of the ledger in order to achieve transparency and consensus
among other nodes within the network at the time of mining and adding a new block to
the ledger. Mining is the process of verifying and validating the transactions by solving
the proof of work (PoW) consensus algorithm before adding them to the blockchain. In
the case of data tampering in one node, the ledger in that node will automatically become
invalid and get discarded by other nodes, due to the presence of a copy of the ledger in
every node that will create an inconsistency with the tampered node.

One of the popular and leading blockchain-based platforms is Ethereum, which is an
open-source, public blockchain, developed by Vitalik Buterin in 2015, that features smart
contract functionality. The smart contract is an immutable computer program written
mainly in Solidity programming language in case of Ethereum, which cannot be changed
once deployed on the blockchain and is executed only upon meeting a certain predefined
set of instructions or conditions written in the program [40]. It enables users to build
and deploy decentralized applications (dApps) on top of the Ethereum blockchain, which
are controlled by the logic written into the smart contract. Hence, every process in the
application is automated and the system verifies and validates all the transactions without
any third-party intervention.

The decentralized digital currency of Ethereum is ‘Ether’ (ETH) which is currently
worth INR 123,743.91. It is used to carry out all the transactions on a P2P network and
to deploy smart contracts and run dApps. In order to perform a transaction or execute
certain tasks, a smaller unit of the Ethereum token, known as “Gas” (1 Gwei = 10−9 ETH),
is used as a fuel to drive the process of adding a block to the public ledger so as to
compensate for the computational power spent by the miners to verify and validate the
transactions. This is how the consensus mechanism and hence a trustless computation
works in blockchain technology.
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2.3. Proposed Work

In order to promote renewable energy adoption in households and optimize their
local energy resources efficiently, a smart energy community model is proposed in which a
coalition of neighboring prosumers is formed based on an agreed sharing mechanism which
is implemented as a smart contract on blockchain. In this model, blockchain technology is
integrated with the smart microgrid for clean and decentralized energy trading between
potential prosumers and consumers within the community, as shown in Figure 4. It
mainly consists of energy-independent households in an interconnected energy network
and decentralized storage systems that are coupled with distributed renewable energy
generations of each prosumer. For the intelligent management of the microgrid, it is
incorporated with a wireless sensor network and advanced metering infrastructure which
monitor the generation, transmission, and consumption of electricity in real-time and send
energy transaction information to the blockchain via smart contract.

Figure 4. A smart energy community model. AMI: advanced metering infrastructure.

In this model, the microgrid acts as a small energy market in which prosumers can
change their roles to sellers or buyers, depending on their net energy profiles in different
time periods. For example, if the load demand of prosumers is not met by their own power
generation, they can buy electricity from other prosumers in the network who have surplus
energy production. The excess energy can also be exported to the utility grid for which
prosumers are incentivized in the form of a feed-in tariff for generating electricity from
renewable sources. The rate at which energy is shared among the households is determined
by the amount of energy produced by PV prosumers on a daily basis. The energy pricing
will be based on the availability of generation sources, demand, economic cost and pricing
regulations, considering the power consumption flexibility of prosumers. The smart
contract regulates the energy sharing activities by taking into account the energy prices
agreed among all the prosumers and managing their energy supply in the community. This
peer-to-peer energy trading mechanism results in sharing energy economically among the
households and maximizing the consumption of power from distributed energy systems,
while reducing the impact on utility grid.

Apart from managing the P2P energy sharing, it is required to handle the complexities
in energy systems and uncertainty of renewable energy by monitoring and reporting the
instantaneous energy flows in real time. In the proposed system, a blockchain-based
advanced metering infrastructure is considered, which consists of various sensor nodes
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that collect energy usage data from the smart meters installed in all the houses and transmit
it to the blockchain database system in the decentralized data and control center (DCC)
by means of a two-way communication network in real-time, as shown in Figure 5. The
energy information and transactions are securely stored in the blockchain ledger to track
the electricity usage for analysis and management of energy systems without the aid of a
central authority. It also enables secured access to authorized users, in this case prosumers
and consumers, participating in the blockchain network.

Figure 5. Blockchain-based AMI. DCC: data and control center.

In order to regulate the peer-to-peer energy trading in our smart city model, a wireless
sensor network is extensively used for monitoring the energy systems and disseminating
the data in a timely manner to the base station. Since energy and lifetime are two major
constraints in developing a sensor network, an optimization technique is proposed for the
optimal selection of cluster heads and energy-efficient routing in the network that extends
node lifetime and improves the performance of the network.

Initially, the sensor nodes are deployed in random locations within an area and each
node is equipped with a finite energy supply. The base station is located outside the sensing
area and it is grid powered, for which it has an unlimited supply of energy. In our proposed
methodology, it is assumed that the WSN is a homogeneous network, the sensor nodes,
and base station are stationary after deployment and all the nodes, except the sink node,
have the same amount of initial energy and are left unattended once deployed. These
nodes interact with each other to aggregate data and transmit it to the target nodes at
regular intervals. Due to limited energy constraints, these nodes are grouped into clusters,
where the most resourceful node in each cluster is selected as the cluster head (CH) for
energy-efficient communication within the network, as shown in Figure 6.

Figure 6. Cluster formation and optimal routing. CH: cluster head.
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Each node in the network can operate as both sensors as well as a cluster head. A
cluster head is selected based on the node’s residual energy, number of neighbor nodes,
and the Euclidean distance to the base station. The member nodes in a cluster transmit
their data to the CH which then processes the information and forwards it to the base
station directly or through multiple CHs by using the shortest path from the CH to the
base station. This is carried out to minimize the cost of communication and the draining of
energy during data transmission. In the proposed approach, an energy-efficient selection
of the CH in a cluster of nodes is carried out by using the PSO algorithm, and the optimal
route connecting the CHs to the base station is achieved by using the genetic algorithm.

The PSO algorithm is implemented by creating a cost function or objective function
for the efficient selection of a cluster head. An ideal cluster head must have the highest
residual energy, least average distance from the neighbor nodes, and minimum distance
from the base station. So, the structure of the cost function is as follows:

Cost function, f = α * dm + β * Er + γ * db (3)

where, dm is the average Euclidean distance of a node from all other member nodes in

a cluster, i.e., dm =
√
(xi − xj)2 +(yi − yj)2 , db is the distance from the base station

and Er is the total residual energy of all alive member nodes divided by the residual
energy of node in consideration. The residual energy of a node will be maximum if
the factor [sum of residual energy of all memner nodes/residual energy of current node]
is minimum. α, β and γ are the constants having values equal to 0.38, 0.38 and 0.18
respectively. So, all the three factors sum-up to the structure of the cost function. The aim is
to minimize the cost function that will give the optimal location of the cluster head which
has the maximum residual energy and minimum distance from the member nodes and
base station. The steps involved in the PSO algorithm are as follows:

1. Initialization of a set of particles and their position, velocity, and residual energy;
2. Initialization of PSO parameters such as swarm size, number of iterations, inertia

weight, personal acceleration, and social acceleration coefficients;
3. Calculation of the cost function of each particle;
4. Finding the personal best and global best location;
5. Updating particles’ position, velocity and energy lost in each iteration;
6. Updating the particle with the least value of cost function as the cluster head in every

iteration;
7. Repeating steps 3 to 6 till all the nodes become dead.

After nominating the cluster heads, data packets are needed to be sent from the cluster
head node to the base station directly or through a series of other cluster heads in the
network. Therefore, the optimal route is needed to be determined to reduce the cost of
communication of data packets across the nodes and balance the energy and data load in
the network. For this, we have used the genetic algorithm to find the shortest route that
connects a set of sensor nodes from the source node to the sink node and visits every node
exactly once.

In order to implement the genetic algorithm, a set of points representing sensor nodes
(CH) are randomly placed on a 2-D space. The Euclidean distance between consecutive
nodes serves as the fitness function for the algorithm. A population of random solutions is
generated in which each candidate solution or chromosome represents a route. The steps
involved in the genetic algorithm to find the shortest route connecting all the points are as
follows:

1. Initialization of population;
2. Calculation of fitness value of each chromosome;
3. Selection of best chromosomes as parents for the next generation using the roulette

wheel mechanism;
4. Crossover of parent chromosomes;
5. Mutation of chromosomes;
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6. Evaluating fitness of each chromosome in the new population;
7. Repeating steps 3 to 6 until the shortest path is established.

With the optimization of wireless sensor networks, we will be able to monitor the
energy consumption in urban households in order to regulate decentralized energy trading
within the community. To implement P2P energy trading in our model, prosumers are
equipped with residential PV panels and energy storage systems to produce and store clean
energy and supply the excess energy to local consumers by using a P2P energy trading
platform. Therefore, a blockchain-based web application powered by smart contracts is
developed, which enables houses to sell and purchase clean energy without any third-party
intervention. It enables authorized users’ easy access to the Ethereum blockchain network
and provides each node with a copy of the ledger. Thus, secured communication between
energy suppliers and buyers is achieved through the AMI and distributed ledger feature of
the blockchain under a decentralized keyless signature scheme.

The blockchain web application is a prototype for decentralized trading systems that
allows local consumers to purchase energy directly from prosumers with Ether cryptocur-
rency on the web app. A model of this web app is shown in Figure 7.

Figure 7. Blockchain web app model.

The front end of the web app is built using the HTML5 and React library of JavaScript
that creates an interactive user interface for the web app. The web3.js library is used to
develop a website that can interact with the Ethereum blockchain. A smart contract, which
contains a predefined set of rules and agreement between buyer and seller embedded
into lines of code, is created using Solidity programming language and deployed on
Ethereum. In this web app prototype, we have used “Ganache” that creates and runs a
virtual Ethereum node on our PC and allows us to develop, deploy and test decentralized
applications (or dApps) without spending any real money. The Ganache user interface
contains a list of user accounts, each credited with a balance of 100 ETH, along with
unique public and private key for each account, as shown in Figure 8. These accounts are
considered as the Ethereum accounts of prosumers and consumers, which can be used for
transactions in the web app.
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Figure 8. Ganache console.

In order to access our dApp and interact with the Ganache blockchain from the web
app, we have used the “MetaMask” browser extension that serves as an Ethereum wallet
and works as a bridge between regular web browsers (such as Chrome, Firefox, etc.) and
Ethereum blockchain. To connect MetaMask to our virtual Ethereum blockchain, all the
Ganache accounts are imported into the MataMask wallet using the private key of each
user, and the default Main Ethereum Network of MetaMask is changed to Localhost 7545.

3. Results

This section describes the experimental setup and various parameters of the proposed
protocol and also demonstrates their results. The proposed method of WSN optimization
is implemented in the MATLAB 2020b environment using a Windows 10-based PC with
2.71 GHz, Intel Core i5 processor, and 8 GB RAM. In order to implement the PSO algorithm
for the optimal selection of a cluster head, the following parameter settings are considered;

• Maximum number of iteration = 30,
• Swarm size = 10,
• Inertia coefficient = 0.9,
• Personal acceleration coefficient = 2,
• Social acceleration coefficient = 2,
• Initial energy of a node = 45 units,
• Location of the base station on the graph = (40, 40).

The inertia coefficient is varied from 0.9 to 0.3 over 30 iterations. The particles explore
the search landscape, optimizing the objective function for finding the best location of
cluster head and in every iteration, the best particle and its corresponding cost function
value are obtained, as shown in Figure 9. The node nearest to the optimal location of
the best particle is selected as the cluster head, which has the highest residual energy,
maximum number of neighbor nodes, and the smallest distance from the base station.
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Figure 9. Location of the CH and its corresponding cost function value.

Due to energy dissipation by both cluster head and non-cluster head nodes caused by
the transmission of data, the total energy consumed by the alive nodes gradually decreases
in every round, as shown in Figure 10.

Figure 10. Decrease in total residual energy of alive nodes with the iterations as per the PSO
algorithm.

It is evident from the above results that with a swarm size of 10 particles and 30 itera-
tions, all the nodes die, or the total residual energy becomes zero on iteration number 25. In
contrast to the EEUC algorithm which does not consider the node’s residual energy during
the cluster head selection phase, the proposed PSO technique gives better results, since
EEUC’s non-uniform clustering technique leads to the premature death of cluster head
nodes present far away as well as near to the sink node due to the high communication
cost and insufficient energy to forward data, which affects the overall network lifecycle.
The proposed PSO algorithm selects a cluster head node in an energy-efficient manner that
can improve the quality of network monitoring and extend the network lifespan.

After selecting the cluster head nodes using the PSO algorithm approach, an optimal
path is established connecting all the CH nodes to the base station for faster transmission
of data from sending node to receiving node. This is carried out by using the genetic
algorithm to find the shortest route in the network. To implement this algorithm, initially,
a group of 20 sensor nodes is randomly placed on a 50 × 50 sq. unit area, assuming each
node except the last node is a cluster head, as shown in Figure 11.
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Figure 11. Position of sensor nodes.

The following parameter settings are considered for the proposed algorithm;

• Size of population = 75,
• Number of generations = 100,
• Mutation rate = 0.04,
• Crossover rate = 0.78.

The genetic algorithm improves the individual solutions in every generation by using
selection, crossover, and mutation operators and creates a sequence of new populations.
The algorithm thus establishes the shortest route in the network, as shown in Figure 12.

Figure 12. Shortest path obtained by the genetic algorithm (GA).

The GA determined the optimal path of length 174.27 m in only 86 generations. The
performance of this algorithm can be visualized from the path length versus generations
graph shown in Figure 13.
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Figure 13. Distance versus generation graph.

After successfully optimizing the wireless sensor networks, P2P energy trading can be
carried out between households by implementing a real-time decentralized application
using the blockchain-based web app. The user interface of our web application is shown in
Figure 14. In this application, it is assumed that the average energy produced by a single
PV prosumer on a good day of 5 h of direct sunlight is 38 kW-h. As per the survey by the
US Energy Information Administration (EIA) in 2019, the cost of 1 kW-h of electricity is
USD 0.14 (i.e., 0.0000938 ETH) for households and their average power consumption in a
day is 29 kW-h. Based on this information and our assumption, the energy pricings and
supply are produced accordingly on this web app.

Figure 14. Web App UI in MetaMask browser.

Using this web application, prosumers can sell clean energy by adding the price of
electricity supplied by them in the given field and selling it on the web app by clicking on
the “sell” button. A block will be created containing the digital signature of the seller and
the energy information in the Ganache blockchain and consequently a record containing
the electricity price in Ether and the public key of the owner will be added in the web app.
A “buy” button will be added across each record for other users to buy electricity directly
from the web app. As soon as a consumer purchases energy from a prosumer, the public
key of the seller will change into the consumer’s public key, which indicates a transfer of
ownership of energy from prosumer to consumer. The “buy” button is the payment link
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that will redirect to the MetaMask wallet when clicked by respective consumers due to
contract interaction, where they have to sign their transactions in order to confirm payment
of Ethers. Thus, blocks with encrypted transaction details will be created and added to
Ganache blockchain and the red “buy” buttons will automatically change to green “sold”
marks, as shown in Figure 15, which signifies the successful transaction of Ethers from
the consumer’s account to the seller’s account. The smart contract is written in a way that
restricts sellers from buying their own energy; it will throw a transaction error in MetaMask
which means the block is discarded and the transaction is not successful.

Figure 15. Energy transaction record in the web app.

We can view a list of transactions in the form of blocks wrapped with a transaction
hash in the Ganache blockchain, as shown in Figure 16. With this method, we can securely
store the history of transactions, which is beneficial for audit.

Figure 16. Blocks encrypted with 256-bit transaction hash.
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We can also implement the proposed model on a public blockchain network such as the
“Kovan test network” where the households can pay real Ethers for grid energy transactions
directly through the web app if they are connected to a public blockchain network.

4. Discussion

It is evident from the above work on WSN optimization that the framework of both
the GA and the PSO is similar, in that they initiate with a population of random solutions,
explore and exploit the search space with specific parameters and estimate the global
optimum for a given optimization problem. The control parameters of each algorithm
depend on the nature of a problem and thus, selecting their appropriate values can have
a great impact on the performance of the algorithms. In our proposed methodology, the
population size in the GA should not be very large since it can slow down the algorithm,
increasing the computational time significantly. The diversity of the population should be
maintained in order to avoid premature convergence. For this, the mutation rate should be
kept small to search locally around the promising regions found by the crossover operator
without affecting the convergence of GA. Similarly, choosing appropriate values for the
initial and final inertia weight in the PSO can tune its global and local searchability. Addi-
tionally, smaller values of acceleration constants c1 and c2 may result in the termination of
the algorithm before finding a good solution and larger values can increase the acceleration,
resulting in the abrupt movement of particles over the search space. So, the summation
of c1 and c2 should be maintained less than or equal to 4 for the smooth trajectories of
particles. Therefore, the parameters in these stochastic algorithms should be set carefully.
Even though the genetic algorithm is easy to implement and uses less computational
resources, it might not give the best results in the case of complex problems. In the case of
PSO, the algorithm is simple, efficient, and robust, however, it is computationally expen-
sive as it consumes a lot of memory, which can limit its usage in high-speed applications.
Based on these limitations, future work can be carried out by developing more efficient
computational intelligence strategies that can improve data aggregation and transmission
and prolong network lifetime in heterogeneous sensor networks.

From the proposed work on blockchain technology in smart grid applications, it
is seen that the use of decentralized energy trading platform ensures data security and
immutability and offers tamper-proof transactions. The use of smart contracts in this
system makes end-to-end power delivery efficient and simpler by making executed trades
automatically validated and recorded in the blockchain, thereby significantly reducing
delays and cost of the settlement. It empowers consumers with transparency and flexibility
over transactions by eliminating intermediaries and third parties and enables prosumers
to actively participate in the energy market. However, the optimal usage of blockchain
technology is prevented due to its nascent stage of evolution and experimental stage
of blockchain-based projects. Hence, future work can be carried out by increasing the
scalability in the blockchain, introducing incentive mechanisms for using blockchain-based
applications, encouraging decentralized power generation, and making this technology
commercially viable.

5. Conclusions

The main goal of a smart city is to improve the quality of life of urban residents by
making better utilization of resources while reducing energy usage and operational costs.
In this work, an optimized and decentralized energy model for smart cities is presented that
deals with the optimization of wireless sensor networks in the smart grid and facilitates
peer-to-peer energy sharing among prosumers in a decentralized energy trading system.
A bio-inspired approach for energy-efficient routing in a wireless sensor network is also
realized by using particle swarm optimization and the genetic algorithm, which can greatly
minimize the energy consumption by sensor nodes and extend network lifetime. This
also helps in disseminating the data in a timely manner to the base station by finding the
shortest path connecting the cluster head nodes in the network for data transmission. The
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privacy of a massive amount of data and security of communication networks is achieved
by integrating blockchain technology with the smart grid. With the aid of smart contracts,
energy transactions are maintained securely on the blockchain in a consensus manner. The
proposed model for a peer-to-peer energy trading system not only promotes the sustainable
use of energy but also encourages the use of renewable energy sources in microgrids.
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Abstract: The increased penetration of renewable energy sources (RES) and electric vehicles (EVs) is
resulting in significant challenges to the stability, reliability, and resiliency of the electrical grid due to
the intermittency nature of RES and uncertainty of charging demands of EVs. There is a potential for
significant economic returns to use vehicle-to-grid (V2G) technology for peak load reduction and
frequency control. To verify the effectiveness of the V2G-based frequency control in a microgrid,
modeling and simulations of single- and multi-vehicle-based primary and secondary frequency
controls were conducted to utilize the integrated components at the Canadian Centre for Housing
Technology (CCHT)-V2G testing facility by using MATLAB/Simulink. A single-vehicle-based model
was validated by comparing empirical testing and simulations of primary and secondary frequency
controls. The validated conceptual model was then applied for dynamic phasor simulations of
multi-vehicle-based frequency control with a proposed coordinated control algorithm for improving
frequency stability and facilitating renewables integration with V2G-capable EVs in a microgrid.
This proposed model includes a decentralized coordinated control of the state of charge (SOC) and
charging schedule for five aggregated EVs with different departure times and SOC management
profiles preferred by EV drivers. The simulation results showed that the fleet of 5 EVs in V2B/V2G
could effectively reduce frequency deviation in a microgrid.

Keywords: coordinated control; vehicle-to-grid; primary frequency control; secondary frequency
control; state of charge; decentralized; Simulink model; microgrid

1. Introduction

The increased penetration of renewable energy sources (RES) and electric vehicles
(EVs) has led to significant challenges to the stability, reliability, and resiliency of the
electrical grid due to the intermittency nature of RES and uncertainty of charging demands
of EVs. It is expected that 54% of new car sales and 33% of the global car fleet will be
electric by 2040 [1]. Such a large-scale integration of EVs into power grids poses risks to
the grid safety and power quality, especially when EVs are uncontrollably charged at peak
demand. Vehicle grid integration (VGI) can play an important role in resolving several
issues. For example, a mobile distributed energy storage system can be resolved by the
operation of the power grid while minimizing the electricity infrastructure upgrading
cost. The energy stored in electric vehicles (EVs) would be made available to homes,
buildings, and the electrical grid to actively manage energy consumption and costs, known
as vehicle grid integration (VGI) or vehicle-to-X (V2X) (where X = home (H), building (B),
or grid (G)) technologies. Vehicle-to-home/grid (V2H/V2G) or vehicle-to-building/grid
(V2B/V2G) has the potential to provide a storage capacity for the benefit of owners of EVs
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and homes/buildings, aggregators, and utilities by reducing EV cost and home/building
energy cost, and enhancing grid reliability and resilience [2].

Previous studies [3–6] have shown that there is potential for significant economic
returns to use vehicle-to-grid (V2G) technology for peak load reduction and frequency
control. The daily electricity bill of an industrial building or a commercial unit is the
summation of energy charge and peak demand charge. The peak demand charge is based
on the maximum power consumption, and it is calculated from a running average of
power consumption over 15 or 30 min. Peak demand charges can significantly increase the
electricity bill. Smoothing these peak demands represents one of the best approaches to
reducing electricity costs. Each EV has a mobile battery energy storage system (MBESS),
which can be connected to the electricity grid via a fast bidirectional charger installed in
locations, such as commercial buildings parking lots. The MBESS can discharge energy to
the grid when it is connected, and electrical demand is high, and charge at other times to
smooth the building’s energy consumption profiles [7].

Since frequency is one of the most important indexes of power system stability, the
MBESS in EV can also be used for frequency regulation as a tool employed by power grid
operators. They can be used for maintaining the balance between supply and demand of
active power in cases when the system frequency has deviated from its nominal value (50
or 60 Hz) [8]. When supply exceeds demand, the grid frequency increases; when demand
exceeds supply, the grid frequency decreases [9]. When over-frequency or under-frequency
events happen, the recovery of the system frequency to its nominal value involves three
phases, which are collectively known as “frequency control”. These include the primary
frequency control (PFC), secondary frequency control (SFC), and tertiary frequency control
(TFC), and these three phases are triggered within the first few seconds, within tens of
seconds, and within a few minutes, respectively after the events [8].

V2G-capable EV chargers can provide PFC because of their fast response and seamless
bidirectional power flow capabilities. This means they cannot only draw energy from the
grid to charge EV batteries, but they could also provide power back to a high voltage grid
or an islanded low voltage microgrid as energy becomes available and the V2G controller is
enabled. Since the electric power from a single EV is too weak to provide frequency control,
a small or large fleet of EVs should be aggregated to act as a virtual power plant [10,11]. SFC
or load frequency control (LFC), which is also a part of the automatic control system and the
PFC, can also be provided by V2G-capable EVs. PFC is to bring a deviated frequency back
to an acceptable value in the short-term, leaving a frequency error due to a proportional
droop control, but SFC or LFC is to compensate for the remaining frequency error after
providing the PFC [10].

For V2X applications, the charging and discharging of EV batteries can be achieved
through bidirectional AC onboard or DC off-board chargers. The impact of bidirectional
charging on the electrical grid should be investigated in detail to identify the technical
issues of grid connection and interactions of EVs, determine its interoperability with
the grid, and develop optimized control algorithms and strategies that can be validated
by simulation.

Recently, various vehicle-to-grid (V2G) control strategies have been proposed in
the literature [12–15] for both PFC and SFC. In [12], a simple frequency control droop
loop with a dead-band function was adopted to adjust the active power set-points of
a smart EV charging interface that responds locally to frequency changes. In [13], an
adaptive decentralized V2G control strategy was proposed to simultaneously control
the EV charging schedule and system frequency. The droop coefficient was adjusted
according to the frequency deviation and the state of charge (SOC) of EV batteries. In [14],
an aggregate model of EV fleets with a participation factor was proposed to evaluate
the dynamic response in PFC, incorporate EV’s technical constraints flexibly, and reduce
computational complexity based on an average technique. The participation factor was
proposed to identify the participation of each EV in PFC according to EV’s operating modes
of disconnected, charging, or idle. In [15], a state-of-the-art V2G control strategy, consisting
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of frequency droop control and scheduled charging, was proposed to simultaneously
suppress frequency fluctuation and satisfy the charging demands of EV drivers in frequency
regulation. However, none of the control strategies simultaneously reflected more detailed
preferences of EV drivers and potential prevention of unnecessary EV battery degradation
in the practical V2G operation, including the departure time, maximum allowable C-rate
for charging and discharging of EV batteries, maximum usable EV battery energy capacity,
initial and end SOCs, and upper and lower SOC limits.

Therefore, it is required to develop an intelligent optimal control algorithm for coordi-
nated control of SOC and charging schedule of aggregated EVs with different departure
times, allowable ranges of C-rate and EV battery capacity, and SOC management profiles.
In addition, most of the simulation validation of these V2G control studies was based on
a frequency-domain two-area power system with a transient response stability analysis.
Its frequency simulation was characterized only by a sudden change in load or circuit
condition. There is a lack of dynamic analysis, which is dependent on the oscillation
characteristics of generating units under continuous small disturbances that occur due
to random fluctuations in loads and generation levels, to examine the system stability,
particularly of the grid frequency on a timescale of several hours.

This paper presents a demonstration and validation of PFC and SFC with a V2G-
capable Nissan leaf EV using a commercially available supervisory control and data
acquisition (SCADA) and MATLAB/Simulink, based on droop characteristics designed
for PFC and the dispatch of area control error (ACE) signals for SFC at a V2G testing
facility of the National Research Council Canada (NRC). The simulation models derived,
implemented, and described in this paper are based on time-domain dynamic analysis
using the phasor modeling technique. Then, model-based simulations of PFC and SFC
with an intelligent optimal control algorithm, including a coordinated control of the SOC
and charging schedule for five aggregated EVs with different departure times and SOC
management profiles, are presented to validate the effectiveness of frequency control using
the integrated fleet of V2G-capable EVs and to verify its relevant technical issues.

2. Methodology

2.1. Vehicle-to-Grid (V2G) Testing Facility

The framework of the V2G experimental operation for this study was conducted using
the V2G testing facility located at the Canadian Centre for Housing Technology (CCHT)
within the Montreal Road Campus in Ottawa, ON, Canada. Power system components,
such as a 10 kW bidirectional off-board EV DC fast charger (DCFC), a V2G-capable Nissan
Leaf EV, a 15 kVA grid simulator, two 4.5 kW AC/DC electronic loads, and a 5 kW PV
simulator combined with a 5 kW grid-tied micro-inverter, were integrated at the CCHT
and controlled and monitored by SCADA. A commercially available supervisory control
software, InduSoft Web Studio, was utilized for operating these components through
Modbus, Ethernet, RS-232, and GPIB communication protocols. Schneider Electric’s Won-
derware InduSoft Web Studio® is a powerful collection of automation tools that provide all
the automation building blocks to develop human–machine interfaces (HMIs), SCADA
systems, and embedded instrumentation solutions [16]. However, the utilized SCADA
has a limited time interval for communication and data collection in the range of one to a
few seconds.

To perform the real time-based simulation and validation of the dynamic performance
and steady-state operation of the integrated system components under the real electrical
grid environments, a real-time simulator connected to the grid simulator as an amplifier and
the integrated system components were installed, as shown in Figure 1. This integration
enabled performing software-in-the-loop (SIL), hardware-in-the-loop (HIL), and power
hardware-in-the-loop (PHIL) simulations.
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Figure 1. An integrated validation system based on power hardware-in-the-loop (PHIL) simulation for Vehicle-to-Grid
(V2G) and microgrid at the Canadian Centre for Housing Technology (CCHT)-V2G testing facility.

2.2. Primary Frequency Control (PFC)

The PFC is provided by fast-reacting conventional generating units by increasing
or decreasing their power production depending on detecting under-frequency or over-
frequency on the grid. The PFC of EVs is a decentralized V2G control that directly responds
to the system frequency deviation [17]. This PFC test requires using a grid simulator
(MX-15, Ametek, Berwyn, PA, USA), a power analyzer (WT332E, Yokogawa, Tokyo, Japan),
DCFC, EV, and SCADA, as well as droop characteristics to control the bidirectional power
flow based on the deviations from the nominal frequency of 60 Hz. The local grid frequency
was measured by the power analyzer connected to the output of the grid simulator. The
frequency data detected were transferred to SCADA through Ethernet for controlling the
bidirectional power flow of DCFC.

This PFC test was successfully conducted by utilizing real grid frequency data collected
from the input grid at the NRC campus on 15 May 2018, at 08:30 for 100 min, as shown
in Figure 2a. The frequency data collected from the NRC campus was rounded as input
values to the grid simulator for PFC simulation testing, as shown in Figure 2b. Figure 3 below
shows a histogram of the frequency data plotted with the Gaussian distribution, a normal
distribution as a type of continuous probability distribution. The normal distribution function
has a median value of 60.005 Hz and a standard deviation of 0.015297 Hz.

The grid simulator generated the rounded frequency data in AC mains, as shown
in Figure 2b and its output frequency data. They were collected by the power analyzer
connected to the grid simulator. The power analyzer transferred the output frequency data
to a supervisory computer through Ethernet for controlling the bidirectional power flow of
DCFC based on a droop characteristic designed for grid simulation purposes at the CCHT-
V2G testing facility, as shown in Figure 4. The typical droop setting (R) for the existing
conventional generator fleet is less than 3–5%, with a dead-band of ±16.67 mHz [18]. In
this study, a specific droop setting with 0.083% (R = (0.05 Hz/60 Hz) × 100%), a dead-band
of ±10 mHz, and a constant droop coefficient Kp of 200 kW/Hz were designed and used
for testing and simulating the primary frequency control of the integrated V2G validation
system because the range of frequency deviation from 60 Hz at the input grid of the NRC
campus was less than ±50 mHz, as shown in Figure 2a.
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(a) (b) 

Figure 2. Frequency data (a) collected from the input grid at the NRC campus at 08:30 for 100 min on 15 May 2018, and (b)
rounded as for the inputs to the grid simulator for primary frequency control (PFC) simulation testing.

Figure 3. Histogram of frequency data collected from the input grid at the NRC campus at 08:30 for
100 min on 15 May 2018.

Figure 4. Droop-control characteristic designed for grid simulation on primary frequency control
using V2G at the NRC-CCHT.

2.3. Secondary Frequency Control (SFC)

The SFC, also known as the secondary frequency regulation (SFR) or load frequency
control (LFC), is also a part of the automatic control system together with the PFC. The
purpose of the PFC is to bring the frequency back to acceptable values in the short term,
leaving a frequency error due to the fully proportional control law. On the other hand, the
SFC is employed to compensate for the remaining frequency error after the primary control
has acted and to ensure the same frequency levels between interconnected systems [10].
The PFC is a deviating type of regulation as it can only moderate the change in the grid
frequency and cannot make the frequency return to the nominal value. However, the SFC
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is a non-deviating adjustment and can further reduce the requirements of the controllable
power supply capacity of a microgrid and reduce the dynamic frequency deviation [19].
The SFR of EVs is a dispatched-based V2G control for which the charging/discharging
power of EVs is determined based on the regulation signal from the control centre [17].

In this study, a 2 h average standard deviation signal as a part of the frequency
regulation duty-cycle signal in a Sandia National Lab’s report (SAND2013-7315P [20]) was
chosen and used for testing and simulating the SFC at the CCHT-V2G facility, as shown in
Figure 5. The duty cycle was determined by analyzing the PJM balancing signal between
1 April 2011 and 31 March 2012 [21].

Figure 5. Normalized 2 h average standard deviation signal as a part of the 24 h frequency regulation
duty cycle determined by Sandia National Laboratories [20].

3. Modeling, Simulation, and Validation

To verify the effectiveness of the proposed coordinated control strategy for V2G-based
frequency control in a microgrid or V2B/V2G application, modeling and simulations of
single- and multi-vehicle-based primary and secondary frequency controls are conducted
to utilize the integrated validation system components at the CCHT-V2G testing facility
in the MATLAB/Simulink software environment. A single-vehicle-based model with a
simplified V2G control method is presented for PFC and SFC in V2H/V2G application. This
time-domain phasor model is validated by comparing the empirical testing and simulation
results. After validating the conceptual models of the integrated system components,
Simulink-based dynamic phasor simulations of multi-vehicle-based frequency control with
the proposed coordinated control algorithm are performed to validate the improvement of
the frequency stability and to facilitate renewables integration with V2G in a microgrid or
V2B application as a virtual power plant (VPP).

3.1. Single-Vehicle-based Vehicle-to-Grid (V2G)

As shown in Figure 6, a simplified single-vehicle V2H/V2G model based on the
integrated EV and power system components at NRC’s CCHT-V2G testing facility was
designed to conduct PFC and SFC dynamic simulations with and without solar PV and
house loads on MATLAB/Simulink. The comparison of power outputs resulting from
the empirical testing and simulation was conducted to validate the effectiveness of the
simulation model. The single vehicle-based model consists of four sub-models, including
control for power quality and bidirectional power flow, PV renewables, DCFC/EV, and
house loads.
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Figure 6. Simulink model of single-vehicle-based vehicle-to-home/grid (V2H/V2G).

3.1.1. Simulated Profiles of Photovoltaic (PV) Renewables and House Loads

Both rooftop solar PV panels and PV simulators were installed and operated at NRC’s
CCHT-V2G testing facility. For this simulation, daily PV predictive profiles were generated
by using machine learning based on PV datasets collected from the existing PV panels on
the roof of the CCHT InfoCentre facility in 2011–2012. A maximum power point tracker
(MPPT) connected to the PV panels comprising of 14 thin-film amorphous silicon laminated
modules can produce the maximum power of 2 kW.

15 May 2012, a sunny day, was selected as a sample day for this predictive PV profile,
as shown in Figure 7. For this prediction, a neural network (NN) with one hidden layer and
6 neurons was utilized. The neural network has 6 inputs, including temperature, irradiance,
PV power at time t − 1, day of the month, hour, and minute. Its output is PV power at
time t. The PV historic datasets were manually divided into two subsets: 93% of the data
for the training set and the remaining 7% for the testing set. Any missing historic data
on the day was included in the testing/prediction set. Bayesian regularization algorithm
was employed to predict a PV profile to be generated on the sunny day selected as the
sample. The highest peak of PV power of 2.3 kW shown at around 15:00 in the measured
profile seems to be an error in the monitoring device. ML-based prediction smoothed the
erroneous peak, as shown in Figure 7b.

 
(a) (b) 

Figure 7. (a) Simulation result of a neural network with one hidden layer and 6 neurons and (b) machine learning (ML)—
based prediction of photovoltaic (PV) power generation profile for 24 h on 15 May 2012, at the CCHT facility in Ottawa,
ON, Canada.
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Figure 8 shows the simulated load profile based on average weekday load profiles
at the CCHT facility. The energy consumption rate is 5 kWh per day, and the maximum
allowable load is 1 kW at the facility. However, to observe clear bidirectional power
flow from the grid in the single EV model-based simulation, the house load level was
intentionally increased to 10 kWh energy consumption per day and 2 kW maximum load.
In the real scenarios, V2H/V2G includes various additional usage of bidirectional power
flow from EV batteries, such as PV smoothing, peak shaving, and emergency back-up;
however, this simulation work mainly focuses on frequency control during the day time.

Figure 8. Simulated house load profile (24 h).

3.1.2. Primary and Secondary Frequency Control

Figure 9 shows a combined primary and secondary frequency control droop loop
adopted to adjust the active power set-point of the EV battery storage for single- and
multi-vehicle-based V2G simulation in this work [10,13]. The PFC is based on an open-
loop where the dead-band block is added to the frequency deviation signal to reduce the
charging/discharging operations of EV batteries. When the system frequency deviation is
out of the predefined dead-band, the power is exchanged between the EV and the power
grid to suppress the frequency fluctuation. Then, the resulting signal is multiplied by the
PFC droop constant KP followed by a saturation block with upper and lower values to
limit the bidirectional power according to the designed droop characteristics described
in Section 2.2. Constant charging power is also added to the PFC loop to achieve the
scheduled charging to reach the SOC set-point desired by the EV driver during the plug-in
period. Once frequency deviation is out of the dead-band, both scheduled charging power
and PFC droop control are applied for V2G simulation. On the other hand, the SFC uses
normalized standard deviation signals without any droop control characteristic designed
for grid simulation, as described in Section 2.3.

Figure 9. Combined primary and secondary frequency control droop loop and electric vehicle (EV) battery model.

The power conversion efficiencies of an off-board DCFC between AC and DC are
practically varied as a function of power levels, but in this work, 92% and 95% were
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applied as for AC-to-DC and DC-to-AC power conversion efficiencies, respectively, for the
simplified simulation. In addition, 99% and 100% were used for the energy conversion
efficiencies of the Li-ion EV batteries for charging and discharging steps, respectively, in
this simulation.

The EV frequency control consists of four blocks, including primary frequency control,
secondary frequency control, DCFC, and EV batteries. The droop control in the PFC and
SFC blocks was utilized for estimating DCFC target power values converted from grid
frequency deviation in PFC and normalized automatic gain control (AGC) signals in SFC.
Time delay blocks are used in PFC and DCFC models to simulate the latency in transferring
the frequency and power signals. The EV battery model also includes rate and charge
limiter blocks to restrict the maximum allowable rate and amount of active bidirectional
power flow.

The V2G control of the DCFC and EV battery blocks includes the control of bidirec-
tional power flow and the adjustment of SOC, as shown in Equation (1):

SOCn,k = SOCi
n + (1/Er

n) × ΔEn (1)

3.2. Multi-Vehicle-Based V2G
3.2.1. Models

Figure 10 shows a multi-vehicle V2B/V2G model developed based on the intelligent
optimal control algorithm, including a coordinated control of the state of charge (SOC)
and charging schedule for five aggregated EVs with different departure times and SOC
management profiles. It was assumed that a commercial building would have a daily
electricity consumption of 50 kWh and a maximum load of 20 kW. 5 EVs with an EV battery
energy capacity in the range of 24~40 kWh are individually connected to bidirectional
off-board DCFCs with a power rating of 10~60 kW. It is expected that bidirectional onboard
chargers can be introduced in the EV markets soon. For this multi-vehicle-based V2B/V2G
simulation on the above-mentioned commercial building, it was also assumed that the
maximum renewable power of 20 kW would be produced from PV panels on the roof of
the building or a PV tracker in the parking lot. The multi-vehicle-based model consists of
four sub-models, including control for power quality and bidirectional power flow, PV
renewables, EVs/DCFCs, and building loads.

Figure 10. Simulink model of multi-vehicle-based vehicle-to-building/grid (V2B/V2G).

3.2.2. Coordinated Control Strategy and Algorithm

One of the most challenging aspects of the control of power flow from integrated
system components in V2B/V2G is to reflect the preferences of EV drivers, such as the
departure time, maximum allowable C-rate for charging and discharging of EV batteries,
maximum usable EV battery energy capacity, and initial and end SOCs during V2B/V2G
operations. Therefore, it is required to develop an intelligent optimal control algorithm
for coordinated control of SOC and charging schedule of aggregated EVs with different
departure time and SOC management profiles.

Table 1 shows detailed V2B/V2G operational conditions and schedule of 5EVs based
on the assumed preferences of EV drivers. Each EV driver has his or her own preferred
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conditions. The aggregator or building energy system operator may have their own
guidance on V2B/V2G operations; however, this simulation study utilizes EV driver’s
preferences. The maximum C-rate options depend on the power rating of DCFC available
in the building or V2G service zone. The specified operational conditions include 7 input
parameters, such as the initial SOC, end SOC, ΔSOC, departure time, EV battery energy
capacity, maximum C-rate allowable, and maximum usable charging/discharging battery
energy capacity. To prevent unnecessary battery degradation during V2B/V2G operations,
the upper and lower limits of SOC with 90% and 30%, respectively, were applied for this
simulation regardless of input parameters.

Table 1. Vehicle-to-building/grid (V2B/V2G) operational conditions and schedule of 5 electric vehicles (EVs) based on the
preferences of EV drivers.

No Conditions EV-1 EV-2 EV-3 EV-4 EV-5 Remarks

1 Initial SOC (%) 40 80 50 90 70 - When EV is connected to
DCFC

2 End SOC (%) 60 80 80 70 60 - Specified by EV driver
for departure

3 ΔSOC 20 0 30 −20 −10 - End SOC (SOCe) minus
Initial SOC (SOCi)

4 Departure time 15:00 16:00 18:00 17:00 16:00 - Specified by EV driver

5 EV battery energy
capacity (kWh) 24 30 40 24 30 - Depending on EV

model-year

6 Max. C-rate allowable 0.5 2.0 1.0 0.5 0.8
- Permitted by EV driver

- Options 1/2/3/4:
0.5/0.8/1.0/2.0C

7

Max. usable
charging/discharging

battery energy
capacity (kWh)

10 15 15 10 15 - Specified by EV driver
for PFC/SFC

Figure 11 shows a flowchart of the coordinated control algorithm proposed for multi-
vehicle-based V2B/V2G operations. Initially, monitoring devices installed in the microgrid
are checking if the coordinated control strategy mode is activated to perform V2G. If V2G
is deactivated or there is any fault occurring in the system, then this disturbance must be
eliminated first by the existing resources in the microgrid without any frequency regulation,
which may unbalance the microgrid. However, if V2G mode is active, then this control
algorithm estimates the energy capacity required for the PFC and SFC before participating
in ancillary services and automatically receives the power adjustment instructions from
the decentralized controller based on the feedback information of various parameters, such
as the initial SOC, end SOC, ΔSOC, departure time, EV battery energy capacity, maximum
C-rate allowable, maximum usable charging/discharging battery energy capacity, and
the plug-in-state of EVs. Then this control algorithm determines the current SOC of EV
batteries and predicts an EV charging schedule based on the informed various parameters.
This process enables selecting an EV operational mode between frequency control and EV
charging/discharging for departure. Frequency measurement in the grid is continuously
performed to determine frequency deviations during the EV’s plug-in period.
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Figure 11. Coordinated control algorithm for frequency control.

The electrical energy production from PV renewables, the energy consumption for
building loads, and bidirectional power flow for frequency control as a function of time
can be estimated at the initial step based on predicted and simulated profiles of PV, load,
and primary/secondary frequency control. In this simulation, it was assumed that the
EV operational time for frequency control would be maximized to benefit the building
energy system operator. The latest time to start charging EVs using PV renewables and/or
grid power for preparing EV departure can be determined by energy capacities estimated
for PV/loads/frequency control and operational conditions preferred by EV drivers. The
maximum C-rate allowable for charging each EV using PV and/or grid power depends on
the specifications of DCFC connected and the EV driver’s preferences.

4. Results and Discussion

4.1. Experimental Frequency Control Testing and Simulation on Single-Vehicle-Based Frequency Control

Figure 12a shows frequencies produced by the grid simulator in AC mains at the CCHT
and monitored by the power analyzer. The output frequencies measured by the power
analyzer are transferred to the supervisory computer through Ethernet for controlling
the bidirectional power flow of DCFC/EV based on the droop characteristic designed
for grid simulation purposes at the CCHT-V2G testing facility, as shown in Figure 4.
In addition, input frequencies rounded for the grid simulator are identical to output
frequencies generated, as shown in Figures 2b and 12a.

Figure 12b shows the droop control-based AC target power for DCFC/EV and AC
output actual power responding from DCFC/EV for primary frequency control at the
CCHT-V2G facility. The positive and negative values in Figure 12b indicate power flow
for charging and discharging, respectively. There is a very small discrepancy between
the target power and actual response under the charging power of 5 kW, whereas the
discrepancy increases over 5 kW; therefore, it seems that target values in the utilized DCFC
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are slightly less accurate for charging power control when over the range of 5 kW than
those for discharging power control.

 
(a) (b) 

Figure 12. (a) Frequencies produced by grid simulator in AC mains and monitored by power analyzer and (b) droop
control-based AC target power for DCFC/EV and AC output actual power responding from DCFC/EV (positive: charging,
negative: discharging) for PFC at the CCHT-V2G facility.

Empirical measurements and Simulink-based simulation on AC output from DCFC/EV,
frequency deviation, and SOC variation for PFC using grid input data, droop characteristics,
and response from DCFC/EV were conducted in single-vehicle-based V2H/V2G, as shown
in Figure 13. Various profiles resulting from the empirical testing and the single-vehicle-
based Simulink model are compared to verify the effectiveness of the Simulink model built
for single-vehicle-based V2H/V2G. The empirical and simulated profiles on AC output
from DCFC/EV, frequency deviation, and SOC variation in Figure 13 are well-matched,
indicating that the proposed simulation model can be used to verify electrical interactions
among the integrated power system components and further for the multi-vehicle-based
V2G simulation.

Figure 13c compares frequency deviation simulated in AC mains with or without
bidirectional power flow provided by DCFC/EV in PFC operation. To simulate the fre-
quency deviation variation with V2G power flow in the AC mains, it was assumed that
the frequency deviation would be increased or decreased by discharging or charging EV
batteries via DCFC based on the following Equations (2)–(5):

PCH or PDISCH = ΔfPFC × KP (2)

if Δf PFC > 0.01 Hz, Δf V2G = Δf PFC − (PCH/KP) (3)

if 0.01 Hz ≥ ΔfPFC ≥ −0.01 Hz, Δf V2G= Δf PFC (4)

if Δf PFC < −0.01 Hz, Δf V2G = Δf PFC + (PDISCH/KP) (5)

where Δf PFC = frequency deviation (Hz) simulated in AC mains for PFC operation without
V2G power flow, Δf V2G = frequency deviation (Hz) simulated with V2G power flow,
PCH = AC power input (kW) for charging DCFC/EV, PDISCH = AC power output (kW) from
DCFC/EV during discharging, and KP = PFC droop gain (kW/Hz), that is 200 kW/Hz.

As shown in Figure 13c, by introducing V2G power flow from DCFC/EV in AC
mains, the resulting frequency deviation would be effectively reduced; however, this
simulation was conducted based on the above-mentioned assumption to utilize the droop
characteristic designed for the CCHT-V2G facility. The real frequency deviation reduction
depends primarily on the electrical capacities of integrated power system components and
the droop gain chosen for the designed droop characteristic.

As shown in Figure 13d, the variation of SOC values was automatically monitored
and collected by using both SCADA and DCFC for 100 min. The SOC change of a real
EV battery pack in the empirical charging or discharging step is slower than that in the
simulation because it takes time to reach an electrochemical equilibrium state in a high-
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capacity battery pack. In addition, SOC percentages in the utilized DCFC are monitored in
rough and irregular steps, such as 76.8%, 78.0%, 78.8%, and 80.0%. However, the simulated
SOC profile obtained from the Simulink model reflects instantaneous energy variations
based on the theoretical energy capacity change with rapid charging and discharging
power fluctuation and much smaller time steps in the simulation. The initial SOCs for the
empirical PFC testing and its simulation were equally set to 78.8% for the comparative
purpose. It can be seen that the initial and end SOCs, as well as SOC variation profiles in
empirical testing and simulation, are well-matched.

 
(a) (b) 

  
(c) (d) 

Figure 13. Comparison of (a) AC output from DCFC/EV (positive: charging, negative: discharging), (b) frequency deviation
without V2G or (c) with V2G, and (d) state of charge (SOC) variation obtained from empirical testing and simulation on the
single-vehicle-based PFC for 100 min (starting SOC: 78.8%).

Figure 14 shows Simulink-based simulation on AC output from DCFC/EV and SOC
variation obtained from empirical testing and simulation using a normalized 2 h average
standard deviation signal on single-vehicle-based SFC operation for 2 h. The initial SOCs
for the empirical SFC testing and its simulation were equally set to 80% for the comparative
purpose. In the case of SFC, the bidirectional power produced from DCFC/EV based on
the ACE signals required for regulation up and regulation down, should be fed to the grid.
The empirical and simulated profiles of AC output from DCFC/EV and SOC variation in
Figure 14 are relatively well-matched, indicating that the proposed simulation model can
be used to verify electrical interactions among the integrated power system components
for SFC.
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(a) (b) 

Figure 14. Simulink-based Simulation of (a) AC output from DC fast charger (DCFC)/EV (positive: charging, negative:
discharging) and (b) SOC variation obtained from empirical testing and simulation using a normalized 2 h average standard
deviation signal on single-vehicle-based SFC operation for 2 h (starting SOC: 80.0%).

Even if the profiles of SOC variation measured and simulated are quite similar, there
is a slight discrepancy of end SOCs between measurements and simulation, as shown in
Figure 14b. The energies used for the increase (regulation up) and reduction (regulation
down) of active power generation are symmetric in SFC; therefore, the initial and end
SOCs should be identical. However, the efficiencies of AC-to-DC (92%) and DC-to-AC
(95%) conversion in the utilized DCFC, as well as charging (99%) and discharging (100%)
of Li-ion EV batteries are different, resulting in a SOC that is slightly lower than the initial
SOC during SFC operation. As mentioned above in Figure 13d, SOC percentages in the
utilized DCFC are monitored in rough and irregular steps, such as 76.8%, 78.0%, 78.8%,
and 80.0%. It seems that the SOCe of 78.8% obtained from DCFC in the empirical SFC
testing could be between 78.8% and 80.0%. Therefore, it is required to utilize a DCFC
with more precise SOC steps and a higher conversion efficiency over 95% in bidirectional
power conversion to avoid any significant annual electrical energy loss to be potentially
compensated with the financial benefits to be obtained from ancillary services.

After validating the proposed single-vehicle-based V2H/V2G model in PFC and SFC
operations, as shown in Figures 13 and 14, further detailed simulation was performed to
determine the impact of EV charging power and schedule on power quality and bidirec-
tional power flow management in PFC operation at a residential house or a small facility
with an integrated PV/Load and single EV system.

Simulink-based simulation on AC output from DCFC/EV, frequency deviation, SOC
variation, and various power flow in PV, load, PV-to-grid, and grid-to-nanogrid was
conducted for PFC operation using grid input data, droop characteristics, the response
from DCFC/EV, and simulated PV power and house load demands in the single-vehicle-
based V2H/V2G, as shown in Figure 15. Various parameters applied for this simulation can
be found in Table 2. For each simulation scenario, the predicted PV power and simulated
load data were utilized for nanogrid-level simulations. If the system frequency drops
below its nominal value, the EV acts as a source by producing power to the grid to prevent
further frequency drop. On the other hand, EV acts as a load by absorbing power from the
grid to prevent further frequency increase.
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Table 2. Operational conditions and schedule of single-vehicle-based V2H/V2G.

No Parameters Values Remarks

1 Initial SOC (%) 80 - When EV is connected to DCFC

2 End SOC (%) 90 - For EV departure

3 Starting time of PFC
operation 9:00

4 Ending time of PFC
operation

Same with starting
time for charging EV

- Starting time for charging EV is
determined by calculating minimum

time to charge EV with allowable
power for preparing EV departure.

5 EV departure time 16:00

6 EV battery capacity
(kWh) 40

7 DCFC power rating
(kW) 10

8 EV charging power
(kW) 5 or 10 - For SOC adjustment to prepare EV

departure

9 Daily schedule on
simulation 6:00 ~ 19:00 - 13 h

The scheduled charging power of the EV is estimated by the following Equation (6):

Pi
c = (SOCe − SOCi) · Er/(tout − tin) (6)

where Pi
c (in kW) is the constant charging power at the EV battery side for obtaining the

charging demand to reach the expected SOCe at the plug-out time tout, SOCi is the initial
SOC at the plug-in time tin, and Er (in kWh) is the rated capacity of the EV battery. Both
the plug-out time and the expected SOC should be provided by the EV driver in advance.
It should be noted that the EV does not participate in PFC during the scheduled charging.

To prepare the end SOC of an EV for its departure at 16:00, the starting time for
charging EV is determined by calculating the minimum time to charge EV with an allowable
power specified in DCFC and EV batteries for preparing EV departure in time. It was
assumed to use 2 kW PV power and 6 kWh house load demands for 13 h from 06:00
until 19:00, which is 10 kWh in a whole day. The initial and end SOCs are 80% and 90%,
respectively, and two EV charging power levels with 5 kW and 10 kW are applied for
preparing EV departure conditions.

As shown in Figure 15b, by introducing V2G power flow from DCFC/EV under PV
power generation and house load demands in AC mains, the resulting frequency deviations
are effectively reduced. The lower- and upper-frequency values in the stabilized period
from 09:00 until 15:00 are around 59.9 Hz and 60.018 Hz that are very close to the nominal
frequency, 60 Hz. It is evident that the V2G mode can contribute significantly to stabilize
grid frequencies.

When the excess solar PV power is fed to the grid, over-frequency may occur in AC
mains; however, the resulting frequency deviations are also well-maintained without any
significant negative effect on the nanogrid. Simulation results prove that the proposed
bidirectional charging strategy may contribute effectively towards frequency regulation.
The frequencies are well regulated when the V2G mode is enabled, except for the period
to conduct scheduled EV charging to prepare its departure at the end of PFC operation.
The higher the EV charging power at the end of PFC operation, the larger the frequency
deviation in AC mains, resulting in lowered power quality.
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(e) (f) 
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Figure 15. Simulink-based simulation of (a) AC output from DCFC/EV (positive: charging, negative: discharging), (b)
frequency deviation, (c) SOC variation, (d) PV power, (e) house load, (f) power flow from PV to the external grid after the
supporting load and V2G, (g) power flow from combined PV and V2G to external grid, and (h) power flow from external
grid to nanogrid for PFC operation in single-vehicle-based V2H/V2G (starting SOC: 80%, duration: 13 h from 06:00 to 19:00).
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As shown in Figure 15c, real-time SOC is built into the EV battery model to acquire the
dynamic change of the battery energy capacity during the V2G operation and scheduled
charging, where the actual charging duration is estimated based on the actual plug-in duration.

In this simulation, AC-to-AC coupled PV and EV were used; therefore, PV power
generated was used first to directly charge EV during the charging steps of EV batteries
in PFC operation. In addition, the PV power generated was also used for the increase
of SOC to prepare EV departure and for the supporting load demands. As shown in
Figure 15f, any excess PV power remaining is fed to the external grid because there is no
stationary battery energy storage system (BESS) employed in this simulation. Figure 15h
shows the power flow from the external grid to the nanogrid for PFC operation in single-
vehicle-based V2H/V2G. The total net electrical energies supplied from the external grid
are 3.13 kWh and 3.60 kWh for 5 kW and 10 kW EV charging scenarios, respectively, during
the simulation period. The scenario to charge EV with 5 kW enabled to utilize more PV
power because of earlier EV charging schedule than that of 10 kW EV charging scenario.
To reduce the electricity cost, the increase of PV power and using a stationary BESS should
be considered.

4.2. Simulation of Multi-Vehicle-based Frequency Control

A multi-vehicle V2B/V2G model based on the intelligent optimal control algorithm
was developed to include a coordinated control of the SOC and charging schedule for five
aggregated EVs having different departure time and SOC management profiles, as shown
in Figure 10. In this model, it was assumed to utilize a commercial building with daily
electricity consumption of 50 kWh and a maximum load of 10 kW. For multi-vehicle-based
V2B/V2G simulation, 5 EVs with an EV battery energy capacity in the range of 24~40 kWh
were individually connected to bidirectional off-board DCFCs with a power rating of
10~60 kW. It was also assumed to use the maximum renewable power of 20 kW from PV
panels on the roof of the building or a PV tracker in the parking lot.

The control of power flow from integrated system components in V2B/V2G requires
to reflect the preferences of EV drivers, such as the departure time, maximum allowable
C-rate for charging and discharging of EV batteries, maximum usable EV battery capacity,
and initial and end SOCs during V2B/V2G operations. Therefore, it is required to develop
an intelligent optimal control algorithm for coordinated control of SOC and charging
schedule of aggregated EVs with different departure times and SOC management profiles.

Detailed V2B/V2G operational conditions and schedule of 5 EVs based on the assumed
preferences of EV drivers, shown in Table 1, were fully reflected into the proposed multi-
vehicle V2B/V2G model. This simulation has 7 input parameters, including the initial SOC,
end SOC, ΔSOC, departure time, EV battery energy capacity, maximum C-rate allowable,
and maximum usable battery energy capacity as EV driver’s preferences and operational
conditions. The upper and lower limits of SOC with 90% and 30%, respectively, were
applied for this simulation regardless of input parameters to prevent unnecessary battery
degradation during V2B/V2G operations.

The coordinated control algorithm proposed for multi-vehicle-based V2B/V2G op-
erations, as shown in Figure 11, was applied to verify the effectiveness of the developed
model and its impact on bidirectional power flow control and power quality. Figure 16
shows Simulink-based simulation of AC output from each DCFC/EV, frequency deviation,
SOC variation, PV power, building load demands, and various power flow of PV-to-grid,
PV&V2G-to-grid, and external grid-to-microgrid for PFC operation using the coordinated
control algorithm with 5 EVs.

The estimation on the electrical energy production from PV renewables, the energy
consumption for building loads, and bidirectional power flow for frequency control as a
function of time was conducted at the initial step based on predicted and simulated profiles
of PV, load, and primary/secondary frequency control. The maximized EV operational
time for frequency control was applied for providing economic benefits to the building
energy system operator. The latest time to start charging EVs using PV renewables and/or
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grid power for preparing EV departure was determined by energy capacities estimated
for PV/loads/frequency control and operational conditions preferred by EV drivers. The
maximum C-rate allowable for charging each EV using PV and/or grid power depends on
the specifications of DCFC connected and EV driver’s preferences.

To prepare the SOCe of each EV with a different departure time, the starting time
for charging EV is determined by calculating the minimum time to charge EV with an
allowable power specified in DCFC, EV batteries, and EV driver’s preferences for preparing
EV departure in time. It was assumed to use 20 kW PV power and 30 kWh house load
demands for 13 h from 06:00 until 19:00, which is 50 kWh in a whole day. The initial and
end SOCs of each EV are specified by its own EV driver, as shown in Table 1.

The proposed decentralized coordinated control algorithm using 7 input parameters
was applied for the detailed multi-vehicle-based V2B/V2G simulation with 5 EVs in
Figure 16. In [12–15], various vehicle-to-grid (V2G) control strategies were proposed for
both PFC and SFC. However, none of the control strategies simultaneously reflected
detailed preferences of EV drivers and potential prevention of unnecessary EV battery
degradation in the practical V2G operation. This included the departure time, maximum
allowable C-rate for charging and discharging of EV batteries, maximum usable EV battery
energy capacity, initial and end SOCs, and upper and lower SOC limits.

The scheduled charging of 5 EVs is shown in Figure 16a,c. Each EV was operated in
a synchronized control from 09:00 until 14:00, and then its control was desynchronized
from 14:00 until 16:00 for the intelligent coordinated control to continue PFC operation as
long as possible. The fleet of 5 EVs in V2B/V2G can effectively reduce frequency deviation
in a microgrid, as shown in Figure 16b. The frequencies are stabilized at around 60 Hz
after starting the PFC. Small frequency vibrations resulting from the excess solar PV being
fed to the grid are observed between 11:00 and 12:00. In addition, frequencies slightly
decrease between 14:00 and 15:00 due to charging demands from the grid. The lower-
and upper-frequency values during the PFC period and scheduled charging are around
59.99 Hz and 60.02 Hz that are very close to the nominal frequency, 60 Hz.

The frequency stabilization can be enhanced by maintaining the power balance be-
tween supply and demand in the microgrid. Further frequency deviation reduction can be
achieved by using a perfectly linear PFC droop characteristic with a narrower dead-band
like ±5 mHz and any DCFC with higher AC-to-DC and DC-to-AC power conversion effi-
ciencies. To improve frequency stabilization further without significant peaks, a stationary
battery energy storage system (BESS) may be considered to store the excess solar PV energy
instead of injecting it into the power grid. Then, the utilization of the stored energy in the
BESS for scheduled EV charging would effectively improve the under-frequency frequency
values of 59.99 Hz. Interestingly, the significant under-frequency frequencies observed
during scheduled charging in single-vehicle-based V2G simulation in Figure 15b disappear
in the period of combined PFC operation and scheduled charging for multi-vehicle-based
V2G simulation, as shown in Figure 16b. The simulation results clearly depict that the
increasing number of vehicles in the EV fleet may not bring a negative impact on the power
quality in the microgrid.

According to the end SOC specified by each EV driver, the controlled operation of
PFC and EV charging for preparing its departure can be conducted, as shown in Figure 16c.
Any PV power remaining after supporting building load demands and charging EV during
both charging steps to decrease frequencies in PFC and the preparation of EV departure
should be fed to the external grid because there is no stationary battery energy storage
system (BESS) integrated into this simulation, as shown in Figure 16f.
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Figure 16. Simulink-based simulation of (a) AC output from DCFC/EV (time interval: 5 min, positive: charging, negative:
discharging), (b) frequency deviation, (c) SOC variation, (d) PV power, (e) building load demands, (f) power flow from PV
to the external grid after the supporting load and V2G, (g) power flow from combined PV and V2G to the external grid, and
(h) power flow from the external grid to microgrid for PFC operation using the coordinated control algorithm with 5 EVs
(duration: 13 h from 06:00 to 19:00).
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Figure 16g shows power flow from the external grid to microgrid for PFC operation,
EV charging, and building load demands in multi-vehicle-based V2B/V2G simulation.
During the simulation period, the electrical energy produced from PV and the building
load demands are 90 kWh and 30 kWh, respectively. The total electrical energies fed from
the microgrid to the external grid and supplied from the external grid to the microgrid are
78.8 kWh and 28.4 kWh, respectively. The use of electricity supplied from the grid can be
further reduced by more effectively utilizing PV renewables, bidirectional power flow from
EVs, and any additional stationary BESS for storing excess PV renewables in the microgrid.

Figure 17 shows a Simulink-based simulation of the total V2G power flow for PFC
operation with or without the proposed coordinated control algorithm with 5 EVs. The
proposed coordinated control algorithm utilizes all 7 input parameters for controlling the
SOC and charging schedule of 5 EVs with different departure times and SOC management
profiles. There may be various comparative cases not being able to simultaneously utilize
all the specified input parameters, resulting in the early termination of PFC operation,
delay of EV departure, and unmatched SOCe preferred by EV drivers.

 
Figure 17. Simulink-based simulation of the total V2G power flow for PFC operation with or without
the proposed coordinated control algorithm with 5 EVs.

One of the key objectives of the coordinated control in this simulation study is to
perform PFC or SFC operation as long as possible to maximize benefits to EV and building
owners, while each EV with the specified SOCe is ready for its departure in time. At the
beginning of PFC operation, the V2G power flow of all 5 EVs is synchronized to provide
the total V2G power based on the designed droop characteristic for the aggregated EVs.
However, each EV has a different departure schedule and different charging conditions, so
that intelligent desynchronized control may be required to adjust the power level of EVs
participating in PFC, while other EVs prepare its departure or after the departure of any
EVs based on a schedule. Otherwise, the PFC operation should be stopped when any EV
needs to stop PFC and start charging for its departure.

The comparative case without the coordinated control in Figure 17 is that each EV
keeps the originally assigned synchronized power flow from 09:00 until 16:00 for PFC
operation. The EV charging process starts from 14:00 for the departure of EV1 at 15:00 and
15:00 for the departure of EV2 and EV5 at 16:00 as specified in Table 1. The continuous
synchronized power flow from each EV for PFC operation inevitably results in the reduced
V2G total power flow after 14:00. The PFC operation cannot continue after 14:00 due to the
reduced total V2G power flow unmatched with the droop characteristic. PFC operation
case without the coordinated control results in 2 h shorter than the PFC operation case with
the intelligent decentralized coordinated control.
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5. Conclusions

To verify the effectiveness of V2G-based frequency control in a microgrid, modeling
and simulations for single- and multi-vehicle-based primary and secondary frequency
controls were conducted to utilize the integrated components at the CCHT-V2G testing
facility by using MATLAB/Simulink. The single-vehicle-based model was validated by
comparing the empirical testing and simulation results of primary and secondary frequency
controls. The validated conceptual model was then applied for dynamic phasor simulations
on multi-vehicle-based frequency control with the proposed coordinated control algorithm
for improving frequency stability and facilitating renewables integration with V2G-capable
EVs in a microgrid. This proposed model includes a decentralized coordinated control of
the SOC and charging schedule for five aggregated EVs with different departure times and
SOC management profiles preferred by EV drivers.

The comparison of power outputs resulting from the empirical testing and simulation
was conducted to validate the effectiveness of the simulation model comprising of four sub-
models, including control for power quality and bidirectional power flow, PV renewables,
EV/DCFC, and house loads. The empirical and simulated profiles on AC output from
DCFC/EV, frequency deviation, and SOC variation were well-matched; therefore, the
proposed simulation model was used to verify electrical interactions among the integrated
power system components and further multi-vehicle-based V2G simulation.

After validating the conceptual models of integrated single EV and power system com-
ponents, a multi-vehicle V2B/V2G model based on the coordinated control algorithm was
developed and applied for Simulink-based dynamic simulations. To reflect the assumed
preferences of EV drivers, detailed V2B/V2G operational conditions and schedule of 5EVs
were applied for V2B/V2G simulation, including 7 input parameters of the initial SOC,
end SOC, ΔSOC, departure time, EV battery energy capacity, maximum C-rate allowable,
and maximum usable EV battery energy capacity. To prepare EV departure in time, each
EV should be charged up to the required SOCe in a different departure time. The starting
time for charging EV was determined by calculating the minimum time to charge EV with
an allowable power specified in DCFC, EV batteries, and EV driver’s preferences.

This multi-vehicle-based V2B/V2G simulation showed that the fleet of 5 EVs in
V2B/V2G could effectively reduce frequency deviation in the microgrid. It was determined
that the total net electrical energy supply from the external grid would be reduced by using
PV renewables and bidirectional power flow from EVs. To utilize PV renewables more
effectively, using a stationary BESS should be considered in the microgrid.
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Nomenclature

f k Grid frequency at time k
f o Reference (nominal) frequency
Δfk Frequency deviation at time k
ηac-to-dc AC-to-DC conversion efficiency
ηdc-to-ac DC-to-AC conversion efficiency
Er

n Rated capacity of the nth EV battery
ΔEn Energy variation of the nth EV battery
SOCi

n Initial state of charge of the nth EV battery
SOCn,k State of charge of the nth EV battery at time k
Pc

n Constant scheduled charging power of the nth EV for achieving the charging demand
Pn,k V2G power at the nth EV at time k
AGC Automatic generation control
tin Plug-in time
tout Plug-out time
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Abstract: The proliferation of low-power consumer electronic appliances (LPCEAs) is on the rise in
smart homes in order to save energy. On the flip side, the current harmonics induced due to these
LPCEAs pollute low-voltage distribution systems’ (LVDSs’) supplies, leading to a poor power factor
(PF). Further, the energy meters in an LVDS do not measure both the total harmonic distortion (THD)
of the current and the PF, resulting in inaccurate billing for energy consumption. In addition, this
impacts the useful lifetime of LPCEAs. A PF that takes the harmonic distortion into account is called
the true power factor (TPF). It is imperative to measure it accurately. This article measures the TPF
using a four-term minimal sidelobe cosine-windowed enhanced dual-spectrum line interpolated
Fast Fourier Transform (FFT). The proposed method was used to measure the TPF with a National
Instruments cRIO-9082 real-time (RT) system, and four different LPCEAs in a smart home were
considered. The RT results exhibited that the TPF uniquely identified each usage pattern of the
LPCEAs and could use them to improve the TPF by suggesting an alternative usage pattern to the
consumer. A positive response behavior on the part of the consumer that is in their interest can
improve the power quality in a demand-side management application.

Keywords: demand-side management; low-power consumer electronic appliances; low-voltage
distribution system; non-intrusive identification of appliance usage patterns; power quality; smart
home; true power factor; total harmonic distortion

1. Introduction

Clean and affordable energy—Goal no. 7 of United Nations’ Sustainable Development
Goals (SDGs)—is targeted for achievement by 2030. Demand-side management (DSM)
plays a vital role in accomplishing this goal [1]. Clean energy is normally interpreted as
green energy that is generated with renewable non-fossil fuels to reduce climate pollution.
Interestingly, in its policies, the Government of India has articulated very well that both
green energy and electrical power quality (PQ) are essential and need to be in balance
without any ambiguity [2,3]. In this article, the authors consider the latter part of the
interpretation of clean electrical energy.

1.1. Perspectives on Demand-Side Management

Consumers must be cognizant of unnecessary consumption and conscious of not
polluting the power supply. To achieve the latter part of SDG 7—affordable energy—a wide
range of technologies, such as compact fluorescent lamps (CFLs) and light-emitting diode
(LED) lamps, have been deployed on a large scale by all nations across the globe, including
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India. This has led to indiscriminatory usage of consumer electronic appliances (smart
TVs, smart phones, smart fridges, etc.) and computers with SMPS. This pervasive usage of
low-power consumer electronic appliances (LPCEAs) is defeating the very purpose of SDG
7—clean energy with quality electric power. The traditional approach to DSM is primarily
focused on energy conservation, and improvements in the true power factor (TPF) could
effectively be achieved by way of a human-in-the-loop DSM [4]. The purpose of this paper
is to ensure affordable power and to ensure that LPCEAs do not cause issues of poor PQ in
low-voltage distribution system (LVDSs).

The PQ in an LVDS is multi-dimensional and includes both the current harmonics
and the power factor (PF). The ill effects of current harmonics have been discussed in
detail [5–7]. While current harmonics themselves are not healthy, they also result in a poor
PF due to the bidirectional exchange of reactive power between the source and the load.
The current harmonics and the poor PF negatively affect the accuracy of electricity meters
and the PQ of the distribution system’s supply [8–10]. The existing smart energy meters in
our distribution systems are not designed to measure the TPF and reactive power; hence,
they are not billed to the consumers. So, the need to bill consumers for poor PQ caused by
their behavior is not recognized, and hence, the requirement of compensation of reactive
power has gone unnoticed [11–13]. Therefore, the authors feel strongly that the DSM for
the PQ is the need of the hour, and serious attention is required in order to measure and
address issues of poor PQ in LVDSs and to meet SDG 7—affordable, clean, and quality
energy for all.

1.2. Non-Intrusive Monitoring of the Usage of Appliances

While homes use several electric and electronic appliances, the energy consumption
is measured at a single point of common coupling (PCC) of the supply mains from the
distribution system. Several techniques have been explored by various researchers since
G.W. Hart explored the idea of the disaggregation of electric loads and identified the usage
of individual appliances in order to prompt responsible energy consumption and healthy
consumer behavior [14]. A cooperative response from consumers to the insights from this
critical objective analysis will help in achieving the energy conservation targets set by the
United Nations. Hart’s work was performed at a time when energy availability was not
in abundance. With the advent of energy-efficient smart appliances, the average energy
consumption has come down significantly. Yang H. et al. articulated in detail that the DSM
in smart homes is focused on the PQ issues introduced by smart appliances, including
power savers, in addition to energy conservation [15]. Due to harmonics, the displacement
PF is not equal to the TPF. Because household appliances are considered to have low-power
consumer electronic loads, their effect on the PQ will be significant when too many of
them are in use [10]. The effects of harmonics on the displacement PF and %THD are not
additive, so it is not right to ignore the effects of harmonic distortion when metering energy
for both consumers and utilities [13].

A typical home uses multiple appliances at different times and for different durations,
thus forming different load patterns; their usage is uniform neither over a day nor over
a season. As a household might have numerous load points, there are unknown loads
that could be connected in open sockets, and several load patterns could possibly reach
an unwieldy number (factorial N; N is the number of loads, and some of the loads are
unknown), but in practice, they would usually follow a very small number of appliance
usage patterns. It is not common for a modern household to use single loads at any point
in time [5]. Therefore, it is clear that the focus of DSM should be on appliance usage
patterns (a combination of loads), and the usage of individual loads becomes irrelevant.
The recommendation to the consumer should be to switch from an appliance usage pattern
with a low PQ to an appliance usage pattern with a better PQ, thereby ensuring clean
power in the LVDS.
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1.3. Feature Selection for NILM

The harmonic interactions among several nonlinear appliances change the PQ indexes
significantly. For instance, the PF, distortion factor (DF), and current THD are directly
impacted; these indexes influence the billing of the electrical energy depending on the ap-
pliance usage patterns. Therefore, from the perspective of PQ, a combination of appliances
that improve the PQ can determine the amount to be billed. Two different experiences
were cited: One suggested the use of fundamental signals (displacement factor) to calculate
the surplus of reactive power in electrical grids. Another suggested the use of the TPF. This
fact shows that this work is important for the industry in the discussion of the problems
caused by nonlinear appliances on electrical energy billing systems in order to rectify PQ
issues [12].

R. Gopinath et al. researched the development of robust NILM techniques for the
effective management of the energy of appliances in order to support reliable and sus-
tainable DSM [16]. A significant improvement in the system efficiency can be realized if
the improvement of the PF and the elimination of harmonics can be applied in the whole
network [17].

Therefore, the authors proposed the use of aggregated measures of the PQ, such as the
percentage of the total harmonic distortion (THD) and the TPF, in order to understand the
appliance usage patterns and for consumers to adapt to PQ-sensitive behaviors. Devarapalli
et al. discussed how the percentage THD can be applied in order to disaggregate load
patterns and to suggest appropriate load patterns, thus reducing the harmonic pollution
produced in the system [5].

This article presents the use of the TPF as a unique feature for identifying appliance
usage patterns and for helping consumers by providing them with insights in order to
switch from low-PF appliance usage patterns to high-PF appliance usage patterns and
to become responsible consumers. The schematic of the non-intrusive identification of
appliance usage patterns in smart homes with the TPF is depicted in Figure 1.

 

Figure 1. Schematic of demand-side management with the non-intrusive identification of appliance
usage patterns in smart homes with the TPF.

1.4. The Major Contributions and Organization of the Article

• TPF measurement of real-world LPCEAs as per the IEEE 1459-2010 standard [18]
by using the four-term minimal sidelobe cosine window (4MSCW)-based enhanced
dual-spectrum line interpolated FFT (EDSLIFFT).

• Development of a virtual instrumentation-based measurement system for TPF measurements.
• Recommendation of appliance patterns for improvement of the TPF and DSM by

using a lookup table in order to improve the utilization indexes of consumers.

This paper is organized into five sections; Section 2 describes the TPF measurement
method. Section 3 elaborates on the real-time measurement of the TPF with the 4MCSW-
based EDSLIFFT in the NI-cRIO (compact reconfigurable input–output)-based virtual
instrumentation environment for various combinations of LPCEAs. Section 4 deliberates
on the results and demonstrates that the TPF is a reliable single feature for identifying
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appliances’ consumption patterns. Section 5 discusses the insights of the results, and
Section 6 concludes with a summary of the proposed research work.

2. Measurement of the TPF Using the Four-Term MSCW-Based EDSLIFFT

In this section, the measurement of the TPF by using the 4-term MSCW-based ED-
SLIFFT. The 4-term MSCW-based EDSLIFFT was proposed in [19] for the accurate estima-
tion of the harmonics of LPCEAs. In this article, it is further extended for the computation
of the TPF as per the IEEE 1459-2010 standard [18].

2.1. Overview of the Four-Term MSCW

Given the better main lobe, sidelobe, and sidelobe roll-off rate of the 4MSCW and the
accuracy of the EDSLIFFT algorithm with the RT current harmonic signal analysis [19], they
are further extended to measure the TPF in real time. Initially, the 4-term MSCW-based
EDSLIFFT was used to measure the spectral amplitude and phase of an LPCEA’s harmonic
current signal. A brief overview of the 4MSCW is given in the following.

The discrete-time 4-term MSCW is expressed as:

w(n) = ∑M−1
m=0 (−1)hahcos

(
2πmn

N

)
f or n = 0, 1, . . . , N − 1 (1)

where n denotes the sample index, N denotes the total number of samples, m represents
the window item index, M is the maximum window item number, and ah denotes the
window coefficients.

The spectral window corresponding to the 4MSCW is written as:

W(n) =
M−1
∑

m=0

ah
2

[
e
−jπ(n−m)(N−1)

N
sin( n−m)π

sin
(
(n−m)π

N

) + e
−jπ(n+m)(N−1)

N
sin(n+m)π

sin
(
(n+m)π

N

)
]

f or n = 0, 1, . . . , N − 1
(2)

2.2. Processing with the 4MSCW-Based EDSLIFFT Algorithm

Generally, in digital signal processing, the harmonic signal is represented as [20]:

x(nTs) = x(t) = ∑hmax
h=1 Ah sin(2π fhnTs + ϕh) where n = 0, 1, . . . , N − 1 (3)

where the signal amplitude is denoted as Ah, and the signal frequency and phase are
represented by fh and ϕh. The harmonic signal sampling time is denoted as Ts. The
harmonic order is denoted as h, which starts from 1 and reaches the maximum harmonic
order of hmax. The traditional FFT has the issue of spectral leakage due to non-synchronous
sampling because of the unstable fundamental frequency. To mitigate the spectral leakage
effect, the signal is weighted by window functions.

The mathematical representation of the windowed sample signal under non-synchronous
sampling is given as:

X(k) =
hmax

∑
h=1

Ah
2j

[
ejϕhW(k − kh)− ejϕh W(k + kh)

]
(4)

where k = 0, 1, . . . , (N − 1), W indicates the 4-term MSCW function, and kh denotes the
division factor of the signal frequency and the frequency resolution, which is expressed as:

kh =
fhN
fs

= lh + ξh (5)

where fs is the sampling frequency of the harmonic signal, lh is an integer value, and ξh
(0 ≤ ξh ≤ 1) is the fractional part caused by the non-synchronous sampling. The spec-
tral line corresponding to the hth harmonic lies between the two highest spectral lines—
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explicitly, either the leng
th and the (lh + 1)th or the lhth and the (lh – 1)th. The value of lh

is determined by the peak location index search algorithm, and the fractional part ξh is
determined by using the EDSLIFFT algorithm, as shown in [19]. The computation process
of the EDSLIFFT algorithm using 4MSCW is illustrated in Figure 2.

Figure 2. Computation process of the EDSLIFFT algorithm using 4MSCW.

The frequency spectrum expression used in the EDSLIFFT algorithm is given as follows:

X(ξh) =
Ah
2j

[
ejϕhW(ξh − kh)

]
for ξh = 0, 1, . . . , N − 1 (6)

The two spectral lines represent the hth harmonic amplitude, and they are represented
by lh1 and lh2 (where lh1 = I, lh2 = I + 1, lh1 < kh < lh2). The peak locations of the harmonic
amplitudes are obtained by using the peak location index search method described in [19].

Consider y1 = |X(I)| and y2 = |X(I + 1)|; then, y1 and y2 are given as follows:

y1 = |X(I)| = |Ah|·|W(2π(I − kh)/N| (7)

y2 = |X(I + 1)| = |Ah|·|W(2π((I + 1)− kh)/N| (8)

The spectral amplitudes are determined with the least-square curve-fitting technique.
The symmetrical coefficient α is considered in terms of lh and kh as follows:

α = kh − lh1 − 0.5 f or − 0.5 ≤ α ≤ 0.5 (9)

The even spectral lines in EDSLIFFT, y1 and y2, are represented as:

y1 = |X(I)| = |Ah|·|W(2π(−α + 0.5)/N| (10)

y2 = |X(I + 1)| = |Ah|·|W(2π(−α − 0.5)/N| (11)

A symmetrical coefficient β in terms of α is considered in order to calculate the
harmonic parameters; the expression of β is as follows:

β = g(α) =
(y2 − y1)

(y2 + y1)
(12)

From Equations (10) and (11), β can be represented as:

β = g(α) =
|W(2π(−α − 0.5)/N)| − |W(2π(−α + 0.5)/N)|
|W(2π(−α + 0.5)/N)|+ |W(2π(−α − 0.5)/N)| (13)
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The value of α is determined with two maximum spectral lines and the fitting polyno-
mial g−1(α). Thereby, the amplitude, frequency, and phase values of the given signal are
obtained based upon the following interpolated formulas:

kh = α + I + 0.5 (14)

Ah =
2y1

|W(2π(I − kh))/N| (15)

fh =
kh fs

N
(16)

ϕh = arg(X(I))− arg
[

W
(

2π(I − kh )

N

)]
+

π

2
(17)

An LPCEA’s input voltage, appliance current fundamental, and harmonic amplitudes
are computed by using Equations (15)–(17). Under nonlinear loading conditions, it is
necessary to measure the fundamental and harmonic content accurately; the conventional
FFT has issues of spectral leakage and experiences the picket fence effect, and hence, the
4-term MSCW-based EDSLIFFT is adopted in this article. The measurement of the TPF by
using the fundamental and harmonic amplitudes is discussed in Section 2.3.

2.3. TPF Measurement as per the IEEE 1459-2010 Standard

After measuring the fundamental and harmonic amplitudes of the voltage and current
by using Equation (15) from the 4-term MSCW-based EDSLIFFT, the root mean square
(RMS) values of the voltage and current are determined as follows:

VRMS =
√

V2
1RMS + V2

2RMS + V2
3RMS . . . + V2

hmaxRMS (18)

IRMS =
√

I2
1RMS + I2

2RMS + I2
3RMS . . . + I2

hmaxRMS (19)

The fundamental to higher-order harmonic voltages are represented by V1RMS, V2RMS,
V3RMS, . . . , VhmaxRMS in Equation (18), and the fundamental and harmonic currents are
denoted as I1RMS, I2RMS, I3RMS, . . . , IhmaxRMS in Equation (19). As per the IEEE 1459-2010
standard [18], the RMS of the voltage and current can be decomposed into fundamental
and harmonic components as follows:

V2
RMS = V2

1RMS +
hmax

∑
h>1

V2
hRMS = V2

1RMS + V2
HRMS (20)

I2
RMS = I2

1RMS +
hmax

∑
h>1

I2
hRMS = I2

1RMS + I2
HRMS (21)

One of the most significant parameters for efficient power consumption with a good
PQ is the PF. If the PF at the supply mains is at unity or close to unity, then it is designated
as having a high PQ. On the contrary, a low PF means that the system is operating with a
low efficiency and poor PQ. Under nonlinear appliance conditions, the PF is represented by
the TPF, which is computed from the distortion factor and displacement PF. The distortion
factor is determined from the current THD (THDI).

The voltage and current THDs are determined with the following equations:

THDV =

√
∑hmax

h>1 V2
hRMS

V1RMS
(22)

THDI =

√
∑hmax

h>1 I2
hRMS

I1RMS
(23)
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The voltage THDV is negligible compared to the current THDI; hence, the current
THD is considered in the distortion factor computation, as given below:

DF = 1√
1+THD2

I

= I1RMS
IRMS

(24)

The displacement factor is determined as follows:

DPF =
P
S

(25)

where P represents the active power consumed by the LPCEAs and S denotes the to-
tal apparent power. The computation of the active, reactive, and apparent powers is
discussed below.

The active power consumption of the LPCEAs given as:

P = V1RMS I1RMS cos(θ1 − δ1) +
hmax

∑
h>1

VhRMS IhRMS cos(θh − δh) (26)

The reactive power consumption of the LPCEAs is represented as:

Q = V1RMS I1RMS sin(θ1 − δ1) +
hmax

∑
h>1

VhRMS IhRMS sin(θh − δh) (27)

Based on the definitions of the voltage and current RMS values as functions of their
fundamental and harmonic components, the total apparent power is expressed as:

S2 = (VRMS IRMS)
2 =

(
V2

1RMS + V2
HRMS

)(
I2
1RMS + I2

HRMS

)
(28)

Using Equation (8), the fundamental and non-fundamental components of the appar-
ent power are written as follows:

S2 =
(

V2
1RMS I2

1RMS

)
+
(

V2
1RMS I2

HRMS

)
+
(

V2
HRMS I2

1RMS

)
+ (V2

HRMS I2
HRMS

)
(29)

S2 = (V1RMS I1RMS)
2 + (V1RMS IHRMS)

2 + (VHRMS I1RMS)
2 + (VHRMS IHRMS)

2 (30)

S2 = S2
1 + S2

N (31)

S =
√

S2
1 + S2

N (32)

In Equation (31), SN is the non-fundamental apparent power because of the occurrence
of harmonic frequencies in the voltage or current waveforms. The fundamental apparent
power S1 is represented by:

S1 = V1RMS I1RMS (33)

The non-fundamental apparent power has three distinct terms, as shown in Equation (34).

S2
N = D2

1 + D2
V + S2

H (34)

The term D1 denotes the current distortion power and comprises the fundamental
voltage (V1RMS) and the harmonic current (IHRMS). It is determined as a function of the
fundamental apparent power (S1) and the current total harmonic distortion (THDI):

DI = V1RMS IHRMS = S1(THDI) (35)
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Similarly, the voltage distortion power, DV, encompasses the harmonic voltage (VHRMS)
and the fundamental current (I1RMS):

DV = VHRMS I1RMS = S1(THDV) (36)

Eventually, the harmonic apparent power, SH, is determined from both the voltage
and the current terms, and it contains the total harmonic distortion of the voltage and
current, as given below:

SH = VHRMS IHRMS = S1(THDV) (THDI) (37)

By substituting the active power given in Equation (26) and the total apparent power
represented in (33), the displacement power factor is computed by using Equation (26).
Then, the TPF is computed using the following equation:

TPF = DF × DPF (38)

Thus, the TPF is measured by using the 4-term MSCW-based EDLIFFT. The real-time
(RT) validation of the proposed method of TPF measurement for identifying appliance
usage patterns for DSM is presented in the next section.

3. Real-Time (RT) Measurement of the TPF

The real-time measurement of the TPF by using the 4-term MSCW-based EDSLIFFT
for non-intrusive appliance usage pattern identification for DSM is described in this section.
A compact reconfigurable input–output system (cRIO 9082)-based virtual instrumentation
testbed from National Instruments (NI) was developed in order to deploy the proposed
non-intrusive identification of appliance usage patterns. As per the authors’ observation,
it is prospective hardware for RT measurement of the TPF as per the requirements of
international standards, such as IEEE 1459 [18], 1159 [21], and IEC 61000-4-60 [22]. Table 1.
Summarizes the standards compliance of the proposed RT-based measurement method.

Table 1. Summary of the standards compliance of the proposed RT-based measurement method.

Standard Electrical Parameters Compliance

IEEE 1459-2010: Standard Definitions
for the Measurement of Electric
Power Quantities Under Sinusoidal,
Non-Sinusoidal, Balanced, or
Unbalanced Conditions

Instantaneous Power, Active
Power, Reactive Power, Apparent
power, Non-Active Power,
Voltage THD, Current THD, PF

Yes

IEEE 1159-2019: IEEE Recommended
Practice for Monitoring Electric
Power Quality

RMS voltage, RMS Current,
Frequency Yes

IEC 61000-4-60: Testing and
measurement techniques—power
quality measurement methods

Power Frequency, Flicker, Voltage
Magnitude, Unbalance,
Harmonics, Interharmonics

Yes

The NI-cRIO 9082 was equipped with a field-programmable gate array (FPGA) archi-
tecture, which was detailed in [23]. The voltage and current signals were acquired by the
NI-cRIO 9082 with the NI-9225 (voltage) [24] and NI-9227 (current) modules [25]. Then,
they were processed with the 4-term MSCW-based EDSLIFFT, which was deployed in a
LabVIEW-configured desktop computer system. The desktop computer was interfaced
with the NI-cRIO 9082 through a TCP/IP link, as depicted in Figure 3.
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Figure 3. Hardware/lab setup for the measurement of the TPF.

CFLs, LEDs, exhaust fans, and SMPSs of personal computers are the LPCEAs that
are most commonly used by consumers in developing countries; they were used here
to showcase the severity of the problem for the readers, as every home that uses these
appliances knowingly or unknowingly causes harmonic pollution.

The measurement hardware was coupled at the single-phase 230 V, 50 Hz utility
supply mains for the TPF measurements. These TPF values were used for non-intrusive
identification of appliance usage patterns. This non-intrusive appliance usage pattern
identification approach took advantage of signal processing to reduce the hardware effort
associated with systems intended for the identification of intrusive appliances with multiple
dedicated sensors.

The TPFs of the different appliance usage patterns were measured by turning the
connected appliances on or off, as shown in Figure 2. The detailed flowchart of the non-
intrusive identification of appliance usage patterns with the TPF is shown in Figure 4.

Figure 4. Flowchart for the non-intrusive identification of appliance usage patterns with the TPF.

4. RT Results

The supply voltage and appliance current waveforms acquired with the NI-cRIO 9082
for various real-world appliance combinations are illustrated in Figures 5–8. The RT values
of the average TPF, active, reactive, and apparent power, and percentage THD over 24 h
that were obtained from NI-cRIO at 50 kS/s are tabulated in Tables 2 and 3. The figures
depict the phase differences between the input voltage and the harmonic current. The RT
data values for P, Q, S, S1, SN, TPF, and %THD were observed and are tabulated in Table 4.
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Figure 5. The voltage and current waveforms of a single real-world appliance: (a) CFL, (b) LED, (c) exhaust fan, and (d)
SMPS of a PC.

Table 2. TPFs for all 15 appliance patterns in real time.

S.No Combinations of Different Appliances CODE TPF

1 CFL 1 0 0 0 0.59887
2 LED 0 1 0 0 0.92228
3 Exhaust Fan 0 0 1 0 0.97801
4 SMPS of PC 0 0 0 1 0.69738
5 CFL + LED 1 1 0 0 0.63145
6 CFL + Exhaust Fan 1 0 1 0 0.75781
7 CFL + SMPS of a PC 1 0 0 1 0.64612
8 LED + Exhaust Fan 0 1 1 0 0.97925
9 LED + SMPS of a PC 0 1 0 1 0.72841
10 Exhaust FAN + SMPS of a PC 0 0 1 1 0.84232
11 CFL + LED + Exhaust Fan 1 1 1 0 0.77422
12 CFL + LED + SMPS of a PC 1 1 0 1 0.66289
13 LED + Exhaust Fan + SMPS of a PC 0 1 1 1 0.85390
14 CFL + Exhaust Fan + SMPS of a PC 1 0 1 1 0.73836
15 CFL + LED + Exhaust Fan + SMPS of a PC 1 1 1 1 0.74947
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Figure 6. The voltage and current waveforms of combinations of two real-world appliances: (a) CFL and LED; (b) CFL and
exhaust fan; (c) CFL and SMPS of a PC; (d) LED and exhaust fan; (e) LED and SMPS of a PC; (f) exhaust fan and SMPS
of a PC.

The combinations of two real-world appliances were observed by turning on the
combinations of the different two appliances. The voltage and current waveforms of the
combinations of the two real-world appliances acquired with the NI-cRIO 9082 are depicted
in Figure 6.
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Figure 7. The voltage and current waveforms of combinations of three real-world appliances: (a) CFL + LED + exhaust fan;
(b) CFL + LED + SMPS of a PC; (c) LED + exhaust fan + SMPS of a PC; (d) CFL + exhaust fan + SMPS of a PC.

The combinations of three real-world appliances were examined by turning on the
combinations of three appliances; the corresponding voltage and current waveforms of the
CFL, LED, exhaust fan, and SMPS of a PC are illustrated in Figure 7.

 

Figure 8. The voltage and current waveforms of the combination of the four real-world appliances:
CFL + LED + exhaust fan + SMPS of a PC.

The voltage and current waveforms when all of the appliances were turned on are
depicted in Figure 8.
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Pertaining to the TPF values obtained from the operation of a single appliance to the
operation of all four appliances, all were unique. Therefore, the TPF can be effectively used
to identify appliance usage patterns. The TPFs measured with the four-term MSCW-based
EDSLIFFT in the RT NI-cRIO 9082 system environment are depicted in Figure 4 and are
tabulated in Table 2.

The performance of the experimentation demonstrated that the TPF could be uniquely
identified for all combinations of the appliances. The standard deviation of the TPFs
indicated that they were all unique and different. Hence, is the TPF can be used as a key
feature of a lookup table in order to discern the appliances being operated.

Table 3. Actionable insights for DR management using the TPF.

Actionable Insights and Benefits

Demand Response Benefits

S.No CODE TPF Actionable Insights S.No CODE TPF Change in TPF%
1 1 0 0 0 0.59887 Turn off CFL 2 0 1 0 0 0.92228 −54.0033
2 0 1 0 0 0.92228 NR 1 NR 0 1 0 0 0.92228 0
3 0 0 1 0 0.97801 NR NR 0 0 1 0 0.97801 0
4 0 0 0 1 0.69738 Turn off LED for daytime 9 0 0 0 1 0.72841 −4.4495
5 1 1 0 0 0.63145 Turn off CFL 2 0 1 0 0 0.92228 −46.0574
6 1 0 1 0 0.75781 Turn off CFL 8 0 1 1 0 0.97925 −29.2210
7 1 0 0 1 0.64612 Turn off CFL for daytime 9 0 0 0 1 0.72841 −12.7360
8 0 1 1 0 0.97925 Turn off LED for daytime 3 0 0 1 0 0.97801 0.1266
9 0 1 0 1 0.72841 NR NR 0 1 0 1 0.72841 0

10 0 0 1 1 0.84232 NR NR 0 0 1 1 0.84232 0
11 1 1 1 0 0.77422 Turn off CFL 8 0 1 1 0 0.97925 −26.4821
12 1 1 0 1 0.66289 Turn off CFL 9 0 1 0 1 0.72841 −9.8839
13 0 1 1 1 0.85390 Turn off LED for daytime 10 0 0 1 0 0.84232 1.3561
14 1 1 0 1 0.73836 Turn off CFL 13 0 1 1 1 0.85390 −15.6481
15 1 1 1 1 0.74947 Turn off CFL 13 0 1 1 1 0.85390 −13.9338

Standard Deviation 0.1214 Standard Deviation 0.099
1 NR = No recommendation.

The TPF variations of the appliance usage patterns according to demand are depicted
in Figure 9a. The load patterns 1, 4, 5, 6, 7, 9, 12, 14, and 15 are in the region of poor TPF
values. The TPFs of the appliance usage patterns after executing the recommendations
given by the actionable insights in Table 3 are illustrated in Figure 9b, which demonstrates
the improvement of the TPF. Further, it is necessary to adopt mitigation devices in order to
improve the TPF as per the requirements of the IEEE 519-2014 standard [26].

  
(a) (b) 

Figure 9. The TPFs of appliance usage patterns according to: (a) demand; (b) responses to the insights.
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The actionable insights for DR management are tabulated in Table 3, which establishes
the opportunity to improve the TPFs in smart homes. Utilities can benefit from the reduced
malfunctioning of the equipment in their distribution systems, and consumers can benefit
from the enhanced lifetimes of their LPCEAs.

5. Discussion

This section discusses the analysis of the results and the scope of future research.

5.1. Analysis of the Results

• The harmonics are non-additive, and the cumulative TPF takes both the inductive and
capacitive factors of various appliance combinations into consideration.

• Individual PFs are of no consequence, and the TPF is the value to consider in order
to compare the impacts of appliance usage patterns with the impacts of individual
appliances, as in our article. Therefore, the TPFs of appliance combinations are
nonlinear, making the appliance patterns in use uniquely identifiable.

• The TPF can be improved by selecting alternative appliance patterns, as suggested in
Table 4.

• Highly nonlinear appliances, such as CFLs, SMPSs, and their combinations, consume
more reactive power, which results in a poor TPF.

• The standard deviation of the TPF from the experimental results was 0.1271 for
the demand, and it was reduced to 0.099 according to the recommended consumer
responses. Thus, the consumer utilization index improved, as illustrated in Table 4,
and the quality of the power was enhanced.

• According to the results, it is necessary to adopt current harmonic mitigation devices,
such as active power filters and PF correction devices in LVDSs, in order to minimize
the malfunctioning of the utility equipment, such as failures of the transformers, false
tripping of the circuit breakers, etc., as well as to safeguard LPCEAs from overheating.

• It is necessary to develop smart energy meters in order to measure the THD and TPF
and to recommend PQ-sensitive measures, with a provision in the power tariffs for
better consumer behavior.

The quantitative metrics tabulated in Table 5 demonstrate the efficacy of the proposed
deterministic method over non-deterministic methods.

Table 5. Quantitative metrics for the non-intrusive identification of appliance usage patterns in comparison with those of
statistical methods.

Quantitative Metric Category Quantitative Metrics TPF Statistical Methods

Feature Sampling rate Medium High
Method Process of Execution Experimental Empirical
Accuracy Disaggregation percentage (D) 100 <100

Disaggregation Error (DE) 0 >0
Precision(P)—TP 1/(TP + FP 2) 1 <1
Recall (R)—TP/TP + FN 1 <1
Accuracy = (TP + TN 3)/(TP + TN + FP + FN 4) 1 <1
F-measure (f1) 2 × P × R/(P + R) 1 <1

Training User interface Simple Complex
Real-Time Implementation Deployment capability High Low
Scalability Pace of deployment High Low
Identification Factor The standard deviation of the TPF 0.1271 NA
Generalization Generalization over unseen homes High Medium

1 TP = true positive; 2 FP = false positive; 3 TN = true; 4 FN = false negative.
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5.2. Future Research

This paper offers a simple way of identifying appliance usage patterns, but there are a
few challenges before taking this concept to market. The authors propose the following as
the scope for future research.

• A smart home may have very sophisticated appliances that could be programmed and
operated remotely or controlled through a mobile application. How demand-response
systems can take advantage of appropriate communication is of practical interest
to explore.

• The physical/thermal characteristics of electronic appliances may change over time
and may, in turn, change the THD and TPF values. The accommodation of these
adaptabilities in the demand-side management systems must be considered.

• The compensation of the reactive power must be studied so that a power factor at
unity can be achieved at all times and all nodes in a distribution system.

6. Conclusions

The goal of this research was to save energy with good PQ in order to meet SDG
7. Due to the huge penetration of LPCEAs and their resultant current THD, the TPFs in
LVDSs are poor, and consequently, the energy efficiency and PQ are heavily deteriorated.
In LVDSs, poor PFs and LPCEAs are not penalized, which results in losses to the DISCOMs.
This article illustrated a deterministic approach that uses the TPF in order to identify
the consumption patterns of LPCEAs by using the 4-term MSCW-based EDSLIFFT in a
virtual instrumentation environment for various combinations of LPCEAs in real time.
It was depicted that the TPF values could be used to effectively identify various LPCEA
combinations. This method of the non-intrusive identification of appliance usage patterns
is essential for responsible electricity consumption with TPF that are close to unity. It is
necessary to streamline the tariff structure based on the PQ. It is also necessary to mandate
the correction of the PF to maintain PF that is at unity in an LVDS as per CEA regulations
(2010) and to holistically comply with SDG 7. The standard deviation of the TPF is impres-
sive, but is not sufficient to comply with the IEEE 519-2014 standard, which requires the
installation of compensation devices in LVDSs when appropriate. The actionable insights
recommended in this article highlight the reduction in the active power consumption and
kVA requirement; they also demonstrate the improvements in the consumer utilization
index. The Republic of India does not specify requirements for domestic requirements
at the 230 V level, and hence, no PF penalties are imposed. Hence, the TPF is not even a
concern of consumers at this moment. This work intends to highlight the deficiencies in
the distribution system that must be fixed.
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Nomenclature

n Sample index
m Window item index
M Maximum window item number
h Harmonic order
hmax Maximum harmonic order
ah Minimal sidelobe cosine window (MSCW) coefficients
W Four-term MSCW function
N Total number of samples
Ts Sampling time
t Time period
Ah Amplitude of the hth harmonic component
fh Frequency of the hth harmonic component
ϕh Phase of the hth harmonic component
k Four-term MSCW sample points (k = 0, 1, . . . , N − 1)
kh Division factor of signal frequency
fs Sampling frequency
lh Integer value of greatest spectral line
ξh Fraction part of greatest spectral line
lh1 Spectral line 1 representing the hth harmonic amplitude
lh1 Spectral line 2 representing the hth harmonic amplitude
I Spectral line peak index location value
y1 Amplitude of the spectral line 1
y2 Amplitude of the spectral line 2
α Symmetrical coefficient 1
β Symmetrical coefficient 2
VRMS Total input voltage RMS value
IRMS Total load current RMS value
V1RMS Input fundamental Voltage RMS value
VhRMS hth order harmonic voltage RMS value
I1RMS Load fundamental current RMS value
IhRMS hth order harmonic load current RMS value
P Active power consumed by the LPCEAs
Q Reactive power consumed by the LPCEAs
θ1 Fundamental voltage phase angle
δ1 Fundamental load current phase angle
θh hth order harmonic voltage phase angle
δh hth order harmonic load current phase angle
VHRMS Summation of all of the harmonic voltages
IHRMS Summation of all of the harmonic currents
S Apparent power
S1 Fundamental apparent power component
SN Non-fundamental apparent power component
D1 Current distortion power
DV Voltage distortion power
SH Harmonic apparent power
THDV Voltage total harmonic distortion
THDI Current total harmonic distortion
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Abbreviations

CEA Central Electricity Authority
CFL Compact fluorescent lamp
c-RIO Compact reconfigurable input–output
DF Distortion factor
DPF Displacement power factor
DR Demand response
DSM Demand-side management
DSICOMs Distribution companies
EDSLIFFT Enhanced dual-spectrum line interpolated FFT
FFT Fast Fourier transform
FPGA Field-programmable gate array
IEEE Institute of Electrical and Electronics Engineers
LED Light-emitting diode
LPCEA Low-power consumer electronic appliance
LVDS Low-voltage distribution system
MSCW Minimal sidelobe cosine window
NI National Instruments
NILM Non-intrusive load monitoring
PC Personal computer
PCC Point of common coupling
PF Power factor
PQ Power quality
RMS Root mean square
RT Real time
SDG 7 Sustainable Development Goal 7
SMPS Switch-mode power supply
THD Total harmonic distortion
TPF True power factor
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Abstract: It is known that the energy transition can be achieved not only with the use of renewable
energy sources but also with a new conception and management of the electricity system. Renewable
energy communities are then introduced as organizations for maximizing the self-consumption of
energy produced from renewable energy sources. To ensure that these energy communities can
operate, there is a need for enabling technologies that allow for monitoring, data and algorithms
processing as well as the enabling of the same algorithms. There exists a huge confusion in the
actual technologies useful to implement the energy communities. This paper first describes and
groups the main enabling technologies, analyzing the services that can be offered. The scope is to
emphasize the importance of having accurate, efficient and effective technologies that allow the
implementation of such communities, underlining how such technologies interact with each other.
Using such technologies is important to observing the possible technical and energetic results; indeed,
use cases concerning the use of these enabling technologies are proposed and analyzed, showing
their operating and their good environmental and energy impact.

Keywords: enabling technologies; energy community; smart meter; nanogrid; platform; power cloud

1. Introduction

The energy transition implies a new model of social organization based on the pro-
duction and consumption of energy from Renewable Energy Sources (RESs). The RESs are
playing and will play an increasingly important role. It is essential to take into account
their characteristics: non-programmability, uncertainty in the predictability of generation
capacity, the lack of temporal coincidence between production and the final uses of energy
demand and limited possibility of supplying regulation services.

Storage systems will play a central role for conventional uses (energy time shift; conti-
nuity service) and the network integration of RESs (synthetic inertia, Fast reserve, secondary
and tertiary reserve, network congestion resolution, voltage regulation), system, network
(transmission, distribution, local) and operator (producer/consumer) needs. The functional
characteristics of storage systems can be divided into energy and power applications: the
first one with a large capacity to exchange power for long periods (hours), the second one
to exchange high power for short periods (seconds, minutes).

1.1. Motivation and Incitement

In this framework, different business models to better manage such sources (generation
and storage) have been introduced. Among such models, the energy community or, in
general, the end-user’s aggregation represents a solution to optimally manage the energy
production of renewable energy sources, maximizing their use.

The European Commission, in 2016, to place the consumer at the heart of the energy
transition, introduced the energy communities as part of the Clean Energy for all European
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Package (CEP). With the recent renewable energy directive (RED II) and the recent electricity
market directive (EMD), a legal framework for “citizen energy communities” (CEC) and
“renewable energy communities” (REC) was introduced to be interpreted and adopted
into the member states’ national legislation. Although energy communities constitute now
a legally defined and recognized entity by the institutions of the European Union, the
directives that have been promoted and voted on at an energy community level do not
appear to have been transposed yet into national law in most of the member states. Even in
cases where there is a sufficiently defined national legal framework, there are low rates of
energy communities’ development.

1.2. Literature Review and Related Works

Energy communities can be seen as an opportunity for citizens to actively participate
not only in the community but also in the energy market [1].

In [2], the Local Renewable Energy Organizations are defined as organizations initiated
and managed by actors from civil society, with the aim to educate or facilitate people on
efficient energy use, enable the collective procurement of renewable energy or technologies
or provide energy from renewable resources.

This definition, which anticipates the energy community one, highlights how the role
of the citizen is central and how it is essential.

Indeed, the REDII gives a first definition of what RECs could be. Starting from the
definition of renewables self-consumers and jointly acting renewables self-consumers [3],
the energy Community is defined. A renewables self-consumer is defined as a final
customer who generates renewable electricity for their own consumption and who may
store or sell self-generated renewable electricity activity. According to the RED II, an
REC can be considered as a legal entity based on open and voluntary participation, and
autonomous, controlled by its shareholders or members. Such shareholders or members
are in the proximity of renewable energy projects owned and developed by that legal entity.
Its primary purpose is to provide environmental, economic, and social community benefits
rather than financial profits.

Moreover, the CECs are defined. The differences from RECs are that they may engage
in generation, including from renewable sources, distribution, supply, consumption, aggre-
gation, energy storage, energy efficiency services or charging services for electric vehicles
or provide other energy services. Another main difference seems to be the proximity aspect
that characterizes the RECs [3] instead of the participation of CECs that can be spread over
the territory.

The RECs aim for the participation of individuals to improve the local acceptance of
renewable energy, local investment and improved participation of citizens in the energy
transition [3]. The RECs will produce, consume, store and sell renewable energy, share
produced renewable energy within the community and access energy markets in an integral
way [3].

One of the open questions related to the RECs is the optimal number, the power plant
size and the optimal mix of the several kinds of end-users to obtain the best environmental
and economic results.

In [4], the main advantages of energy communities are underlined:

- cost reduction in the energy vector procurement;
- improvement of reliability and quality supply;
- active participation of citizens and use of local resources.

If an energy community, both REC and CEC, must be implemented, to obtain the
aforementioned benefits, enabling technologies have to be considered. Such technologies,
in some features, can be compared to the Demand Response (DR) enabling technologies.

In [5], an analysis of the enabling technologies for the DR has been carried out and
has been divided into technologies for the Utility Domain and those for the End-User
Domain. They are divided into four categories: metering and monitoring devices, control
devices, communication systems and software programs. The same consideration about
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the enabling technologies can also be taken into account for the technologies used for
the implementation and management of energy communities, even considering that DR
(implicit or explicit) is one of the management methods of the energy communities. The
technologies for both utility and end-user domains should provide a platform for the
control and management of users’ data with the aim to keep them informed on their
behavior. There is the necessity of measuring and monitoring infrastructure for the several
present devices of a control infrastructure, a communication system and of several software
programs for managing the various data according to algorithms and the control of the
field devices.

In [6], the different technologies that currently play a significant role in the transition to
a Smart community were analyzed, not only considering energy aspects. Some of them are
also important and are used as enabling technologies for energy communities. Among such
technologies, there are the IoT devices, the cloud computing, the platforms and the sensors.
From such devices, there is a huge quantity of data that must be analyzed as well as stored,
so issues related to big data interest also affect the Energy Community implementation.

In [7], it is shown how the aspects related to enabling technologies, even in different
fields, concern various sectors, ranging from sensors to security protocols, to problems
relating to big data, to the information communication and technology systems.

Starting from this, both for smart cities but also in other areas such as energy communi-
ties, they lead to various challenges and solutions concerning the technical, environmental
and socio-economic aspects.

In [8], a review of enabling technologies to develop a smart building is reported.
Additionally, in this case, the different involved fields are analyzed, and the issues are
underlined. Considering the particularity of IoT technologies, the necessity of network,
cloud, system analytics, actuators and user interface is underlined.

In [9,10], a platform for energy communities is implemented, and the structure is
presented. It is useful to collect and analyze the data inside the Energy Communities with
the purpose to encourage the users to have aware behavior. This platform has to integrate
a huge quantity of data deriving from the enabling technologies such as smart meters.

An aim of the platform is to manage the users of energy communities, providing them
with useful services, as implemented in [11]. Among the services that can be provided
using an opportune platform, there are those associated with blockchain that allow users
to trade energy in a community [12]; when local energy trading and in particular renew-
able energy exchange are considered, the smart contract assumes a fundamental role, as
described in [13–15]. This allows both to operate the day ahead and in a quasi-real-time
way, providing services to the grid.

1.3. Contribution and Paper Organization

The enabling technologies presented in this paper are:

- the smart meter, to measure and monitor the production and the load consumption
for the end-user’s engagement, awareness and empowerment [16];

- the DC Nanogrid (DCNG), for real-time management of power flows among several
types of generation and storage units and to maximize the shared energy in an Energy
community framework [17];

- a platform for Energy Community management and so to support their creation,
constitution and development.

The contribution of the paper is:

1. A review of the principal enabling technologies;
2. A specific settlement of the “advanced end-user”, illustrating its technological configu-

ration and identifying the necessary enabling technologies (smart meter, smart energy
storage system, DCNG and the Energy Community Management platform (ECM));

3. The DCNG as the main enabling technology for the cooperation of more advanced
end-users in the context of energy communities to maximize the shared energy;
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4. The definition of some use cases and corresponding performance indexes to evaluate
how a single advanced end user can operate and when it operates in an REC with the
DCNG as the grid interface;

5. Demonstration test cases.
6. One of the issues of the related works is that the enabling technologies are described for

a particular scope of an energy community or in general for an aggregation. There is no
literature on such technologies relating to Renewable Energy Communities. Moreover,
such technologies are not utilized in the context for which they are described. In the
present paper, such technologies are described from a system point of view, then an
example of such technologies is implemented and utilized, showing the performance
both of such technologies and of their operation in an energy community.

2. Principal Enabling Technologies for the Rec Implementation

To meet the objectives of decarbonization and to allow the energy transition to be effec-
tive, cultural changes based on energy saving and consumption efficiency must be started.

A change in producing, storing, consuming and exchanging energy is needed to be
self-sufficient; at the same time, the energy is shared, and citizens are involved in the
sustainable development of their city.

Therefore, a series of enabling technologies that allow all of this to be possible become
necessary, allowing the integration of different resources that would otherwise be difficult to
integrate. At the same time, they allow and facilitate the implementation and management
of energy communities.

In the paper, the attention is focused on the smart meter (SM), energy storage system
(ESS), DCNG and Energy Community management platform (ECM).

2.1. Smart Meter Description and Peculiarities

Among the various enabling technologies for the Energy community, there are tech-
nologies that allow us to measure and monitor the power exchanged by the end-user with
the grid; this is allowed by the smart meter (SM).

It consists of an energy monitoring system, which allows us to analyze electricity
consumption and production both for residential and industrial end-users. This can allow
the end-user to optimize the use of RES generation and change their behavior to reduce
energy consumption.

The SM, in addition to having the purpose of making the end-user aware of their
behavior, is used to monitor and acquire the various data that will be used for the energy
management and optimization platform for the REC.

The end-users are monitored, including consumers, producers and prosumers, and,
according to these data, it is possible to proceed to manage energy to maximize the self-
consumption to provide flexibility services to the grid, as well as to balance the energy
within the aggregation.

In [18], it is highlighted how, with the introduction of SMs, it is possible to offer new
services: providing more detailed information on electricity, using ad hoc applications or
simply informing how to save energy.

At the level of DSO, and in particular of the energy provider, the use of the SM is
an essential tool to limit energy fraud, alongside that of the development of smart grids,
including a variety of different components.

In [19], an analysis of the SMs and their different uses is carried out.
In [20], the role of SMs in monitoring the network and providing services for en-

ergy communities is analyzed, highlighting how time resolution is a parameter that
must be taken necessarily into consideration according to the services and the purpose of
such technologies.

In [21], it is highlighted how the use of an efficient monitoring system, especially
of reactive power, is also useful in compensating for the power factor in a system where
reactive power represents a problem. It is also highlighted how the use of the saved data
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allows for the improvement in the compensation operations of this power factor. The
utilization of such data allows in fact to carry out an accurate analysis of the users.

In [22], it is highlighted that a high temporal resolution is necessary to be able to
develop models for the management of domestic users. This is underlined also in this paper,
where a particular SM with a high temporal resolution for management and monitoring
purposes is utilized.

The SM has brought advanced functionalities oriented to smart grid and end-user
needs such as the Demand Side Management (DSM) for unregulated market trading and
real-time information. The proposed SM, as depicted in Figure 1, is realized to change a
normal citizen into an active smart citizen with its energy behavior.

 

Figure 1. Smart meter.

Smart citizens changing their lifestyle routines and energy consumption can provide
energy services and consumption flexibility, also reducing their energy costs. A smart
citizen becomes part of a ‘smart energy community’ and helps to ensure the quality of
supply and environment preservation.

The SM’s functionalities are understandable, user-friendly and standardized and pro-
vide a broad range of technical functionalities to inform end-users about their consumption,
helping to increase awareness of energy consumption and, furthermore, engage them
actively to participate in the electricity (and gas, water, heat) supply market.

Smart Meter Communication

To allow the acquisition of measurement data recorded by SMs, a software prototype
has been developed on the cloud and stores the data on a MySQL relational Data Base (DB).
The software communicates with the SMs from which it acquires electrical measurements.

The data stored on a DB are appropriately aggregated and analyzed to be used as
input for any dashboard for the users or for the aggregator.

Such SMs obviously need a reliable internet connection to send the measured data
every required time step (5 s in this case) and thus avoid their dispersion in order not to
affect the operation of the same optimization and energy management models.

This Smart Meter is a combination of both hardware and software. The hardware part
was designed and built on an electronic board that must condition electrical quantities to
create an intelligent monitoring tool. The software management of the smart meter was
implemented using a TM4C1294 Texas Instruments microcontroller.

All the electrical quantities to be monitored are suitably transduced and conditioned
to be acquired by the ADCs of the microcontroller.

For simplicity, an HTTP-based communication has been adopted. APIs that the smart
meter invokes have been developed.
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The data stored on the DB are appropriately aggregated and analyzed to be used as
input for any dashboard for users or for the aggregator.

The data are measured with a granularity of 5 s, which allows both to see details that
otherwise would not have been visible and to perform a more precise power control, as
explained in [16].

In Figure 2 the difference between a profile with a time step of 5 s and 15 min is
reported, where it is possible to see how the 5 s profile allows to provide more detailed
control and management.

 

 

Figure 2. Comparison between a 15 min time step profile and a 5 s profile.

2.2. Energy Storage Systems

Electric storage systems include a broad category of devices. A classification of ESSs
frequently adopted in the literature refers to the specific form of energy and distinguishes
the storage systems in:

• electrochemical storage (lead acid batteries, lithium-ion batteries, zebra, nickel-metal
hydride etc.).

• mechanical-type storage (CAES compressed air storage, high- and low-speed mechan-
ical flywheels, pumping hydroelectric basins).

• electrostatic storage (supercapacitors).
• electromagnetic storage (superconductive magnetic energy storage—SMES).
• chemical storage (hydrogen).

The storage systems are generally chosen based on the service they are required to
perform, the power service and/or the energy service.

Energy storage systems can serve at various locations in which electricity is produced,
transported, consumed and held in reserve (backup). Depending on the location, storage
can be large-scale (GW), medium-sized (MW) or it can use micro and local systems (kW).

The most used technologies are the Li-ion batteries, super-capacitor and PEM-based
power-to-hydrogen.

These ESSs can achieve very high performance in terms of response speed and the
modulation of power. The impact will be as incisive as possible to implement an aggregate
and coordinated management as Virtual Storage. In this perspective, the virtual ESSs repre-
sent an important resource for the national electricity system, with the aim of providing
synthetic inertia services (very intense response lasting a few seconds) and fast reserve
(delivery time up to fractions of an hour), i.e., regulation services to the frequency variation,
as well as peak shaving and load leveling functions, i.e., functions for the reduction in
power peaks and flattening of the load curve.

The need for some of these services, in particular, that of the fast reserve, has led
European TSOs, including TERNA, to promote pilot projects. To date, the storage tech-
nologies present on the market, in particular, the electrochemical ESS, are interfaced with
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the network through converters and control and management systems that are not easy to
integrate and coordinate with each other.

The new storage capacity, appropriately controlled and managed, would allow the
supply of synthetic inertia services to the network to restore the system inertia of fast
reserve to speed up the response of the primary regulation to restore the nominal frequency
value in the network, peak shaving and/or the load-leveling services necessary to support
the penetration of the RES into the electrical system.

Therefore, the installation of storage systems is a promising solution to support the
integration of RESs, particularly when devices are intelligently coordinated, such as virtual
storage plants (VSPs), to provide a wide range of energy services.

Energy storage can supply more flexibility and balance to the grid, providing a backup
to intermittent renewable energy. Locally, it can improve the management of distribution
networks, reducing costs and improving efficiency. More in general, energy storage can
provide many valuable services across the whole energy system. Indeed, energy storage
is essential to balance supply and demand. Peaks and troughs in demand can often be
anticipated and satisfied by increasing or decreasing generation at short notice. In a low-
carbon system, intermittent RESs mean it is more difficult to vary output, and rises in
demand do not necessarily correspond to rises in RES generation. Higher levels of energy
storage are required for grid flexibility and grid stability and to cope with the increasing
use of intermittent wind and solar electricity [23].

2.3. DC Nanogrid

To support this energy transition, it will be necessary to use system management,
exploiting new flexible resources such as the previous mentioned smart storage systems to
ensure adequate levels of system stability, safety and resilience, and so a new paradigm in
terms of small-scale hybrid systems to integrate and coordinate decentralized distributed
flexible resources is needed.

The DCNG is a hybrid system to maximize the self-consumption, accumulation and
sharing of energy from renewable sources.

It can integrate different power sources and storage systems supplying uninterruptible
and interruptible loads. It can operate when interconnected to the electricity grid but at the
same time also in islanded mode (see Figure 3).

It represents a change in the plant engineering paradigm, interposing a DCNG as an
interface between the end-user loads and the grid, behind the meter.

It is a complex and modular hybrid system of conversion and energy control systems
capable of simultaneously managing multiple types of generation sources and/or storage
systems of different technologies, as well as exchanging power with the electricity grid.

Under regular operating conditions, the DCNG operates to satisfy the critical load’s
demand, maximizing the use of RES generation when it is not required to follow a given
power profile to be exchanged with the electricity grid (required by a central energy
management system).

On the contrary, when it is required to exchange a given power with the electricity
grid, the DCNG operates to exploit the integrated RESs and storage units, but at the same
time guaranteeing continuity in supplying the critical loads.

The DCNG energy management is based on the DC Bus Signaling (DBS) strategy. The
voltage of the DC bus on which the various RES and storage units are integrated is used as
the only control signal. Indeed, there is no communication between the different sources,
generation, storage system and loads. They operate independently with the voltage of the
DC bus as a reference, through which the power flows are managed [17].

This hardware and software configuration, therefore, allows the management of the
DCNG in an automated manner, reducing the interaction with other components. This
enables the automated participation of the end-users.

The DCNG has a modular architecture capable of being extended both “locally”, by
connecting various devices to the base module (see Figure 4), consisting of a PV plant
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and a conventional battery ESS, and in a widespread manner, by physically connecting
multiple DCNGs via their DC bus or even by virtually interconnecting different DCNGs
through an internet connection (Figure 3), managed by the EMP based on the Power Cloud
approach [23].

Figure 3. DCNG general configuration.

Figure 4. DCNG base module.
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In this way, an advanced end-user (AEU) is defined: an aware and active end-user,
which is a consumer with an installed smart meter, a PV plant (prosumer) and a smart stor-
age system (prosumager) coordinated by the DCNG, configured as illustrated in Figure 5.

 
Figure 5. Advanced end-user configuration.

Several AEUs can cooperate among them so as to create an energy community
(Figure 6) in compliance with actual and future regulations and technical and market
rules. Coordinating the various AEUs, it is possible to maximize the economic return of the
members of the whole energy community, maximizing the self-consumption rate until it
tends to assume the behavior of a “Nonsumer” and at the same time supports the network
when required to provide flexibility services.

Figure 6. Advanced end-user energy community configuration.
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2.4. Energy Community Management Platform

To manage the various AEUs in a coordinated manner, it is necessary to implement an
Energy Community Management (ECM) platform that allows the exchange of data and,
therefore, allows monitoring, communication and control.

2.4.1. The Communication Architecture

The data flow scheme for communication between the ECM platform, the DCNG and
the smart meters is illustrated in Figure 7. In addition to the integration and management
of PV generation and storage systems, the DCNG can communicate with the ECM platform.
An aggregator, with the help of the energy management platform, manages the REC. The
aggregator, in real time, monitors the power exchanged with the grid by end-users with
SMs (User Data) and the status of the DGNG (NG Data). In addition, the aggregator can
send to each DCNG a set of values, as set points, which translates into the power profile
exchanged with the grid, which the DCNG must try to follow.

Figure 7. Communication architecture.

The communication by the aggregator takes place on a broadcast channel, so the AEUs,
“members” of the REC, are enabled to receive the set points.

2.4.2. Platform Communication Protocol

The data communication protocol between DCNGs and SMs with the ECM platform
is a Machine-To-Machine communication, using Message Queue Telemetry Transport
(MQTT), assuming that the channel is encrypted using SSL, for which an MQTTS protocol
was used.

The SM is only able to issue messages, while the DCNG can issue messages and
receive/issue commands. Two types of messages have been foreseen in the communication:
active and reactive. A message is said to be active if it is transmitted by the DCNG without
a request from the aggregator (for example, the transmission of a malfunction alarm),
while a message is reactive (synchronous type) when it follows a request–response-type
scheme, the aggregator requests specific information from the DCNG or when sending
specific commands.

The communication architecture, in terms of the MQTT protocol, is represented in
Figure 8, where the Broker is represented by the energy management platform while the
Server is the DCNG.

It should be emphasized that the exchange of information takes place on a broadcast
application channel, which is 1:n. Each DCNG and SM enabled to communicate on the
broadcast channel represents the members of the community.

The communication architecture used is the Publishers/Subscribers type and includes:

- a broker server that queues messages from various community members;
- a client able to subscribe and publish messages on a particular channel made available

by the Broker;
- one or more “listeners” such as DCNGs which receive messages published on the

Broker’s channels and perform certain functions.

The communication provides for a flow control for authentication based on a username
and password registered in the DCNG and in the SM. Both DCNGs and SMs send messages
with state-type operations containing information on the status of the DCNG (#NG/data)
or the measurements taken by the SM installed by the user (#User/data). Finally, in
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the communication flow, there are also messages with action-type operations, where the
aggregator sends the setpoint to be followed to the individual DCNGs.

Figure 8. Data flow control summary of the communication protocol among the DCNG, SM
and aggregator.

The data are encapsulated in a string message encoded according to the JavaScript
Object Notation (JSON) format, and its content is divided into a header and a body. In the
header, in addition to useful information for flow control (Sequence number, Request ID),
there is the “operation” key, which indicates the type of operation to which the body of
the message refers. There are two types of operation, type “action” and type “state”. An
action-type operation is used to send commands to the DCNGs (for example, the aggregator
sends the set points to the DCNGs), while a state-type operation is used by the DCNGs
themselves and by the SMs to send data (for example, measurements taken by the SMs
and/or other information such as the state of charge of the ESS).

2.4.3. ECM Platform Description and Operation

The ECM platform allows the management of the data coming from the various
AEUs (DCNGs and SM), the provision of services and the elaboration of any management
algorithms implementing the ECM platform processes, as follows.

ECM Platform processes

1. Day-ahead self-consumption optimization: The process aims to optimize the power
flows exchanged with the energy storage system to maximize self-consumption using
deterministic equations that also consider production and load forecasts such as those
relating to the storage system. This algorithm, using the SOC forecasts for the ESS,
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divides the energy surplus among the different ESSs and at the same time uses the
stored energy to supply the loads. Power swaps are scheduled the day before.

2. Day-ahead dispatching services: Through this process, the scheduled availability of
the day before is provided for individual AEUs (equipped with an energy storage
system) to change their profile, therefore, to provide services to the network if required.
Starting from the previous process, the SOC of the various ESS is evaluated and, if it
is greater than a reference SOC, the availability to provide services to the network is
scheduled/communicated. Using the availability of individual AEUs determines the
availability for the entire REC.

3. The real-time management of requests to modify the exchange power profile: starting
from what was programmed the day before, this process calculates in real time the
power that the AEUs must exchange with the storage systems to provide the services
requested if necessary [8]. If the grid operator sends a new request in terms of the
power profile to exchange with the grid, according to the communication of the day
before, this must be provided by the REC. This request is distributed among the AEUs,
as REC members, according to the previously determined availability.

4. Real-time balancing profile process: since the previous processes are based on fore-
casts, there could be errors in the forecasts. For this purpose, through this process, it
is possible to balance the power between what is programmed and the real power
profiles, opportunely charging and/or discharging the energy storage system [8]. In
particular, the comparison was drawn between the forecasts and the power measure-
ments and, according to the real SOC ESS, the power is modified.

ECM Platform Services

1. Day-Ahead User Load Prediction: This service predicts the day-before hourly load
for the different end-users in the aggregation.

2. Forecast of the day-ahead AEU production: This service allows the forecast of
the hourly production of the day ahead for end-users to be equipped with a
photovoltaic system.

3. Forecast of the day-ahead ESS state of charge: This service is used for the forecast of
the SOC of the different ESS which is useful for providing the energy planning of the
day ahead.

4. Day-ahead ESS charge/discharge profile: through this service, the energy that the
ESS must exchange is scheduled the day ahead.

5. Forecast of the day-ahead AEU trading power profiles: it determines the power
(injection and absorption) that the AEU will exchange with the network.

6. Day-ahead AEU dispatching service availability: this service is useful for calculating
the availability of the individual AEUs to modify your profile and provide flexibility
services to the grid.

7. Availability of day-ahead dispatching services: starting from the AEUs’ availabil-
ity to provide services to the grid, the willingness to provide services of the REC
is determined.

8. Real-time forecast of the ESS state of charge: it determines the power that the aggrega-
tion must exchange to provide services to the grid in real time.

9. Real-time state of charge of the user’s energy storage system: this service divides
the power to provide services to the grid among the various end-users, previously
determined for the REC.

10. Real-time AEU energy storage system charge/discharge: using the day-ahead sched-
ule and real-time services, the power that the ESSs need to exchange is determined.

11. Real-time AEU exchange power profile: it determines the power that the end-user
must exchange with the network, considering both the real-time and the previous
day’s planning.

12. End-users real-time power balance services: the last service determines the power that
the AEUs must exchange to limit the imbalance between the programmed day-ahead
power profiles (injection and absorption) and the real-time ones.
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2.4.4. Utilized Management Method

In [17,24], the authors present the model to optimally manage the power flow, pro-
viding services to the grid. The proposed control strategy is utilized not only to locally
control the energy needs of a single AEU but also to manage more than one AEU, which
constitutes a Renewable Energy Community. They also provide services to the grid, in
particular, balancing services. To this scope, the power surplus has been injected into the
grid or into the storage system, as requested by the operator.

The method can be used for more days and different time intervals. The objective
function (OF) allows several optimization aims for the exchanged power with the grid. The
minimization of the overall exchanged energy, maximum power and power peak for a
defined time interval can be requested:

OF : min

⎛
⎜⎝

D
T

∑
t=1
d=1

f
(

Pg
d
t

)⎞⎟⎠

where Pg
d
t is the exchanged power with the grid for a single user, for the time interval t

and for the day d. This method is subject to several constraints that concern the exchanged
power with the grid, the stored energy, the power exchanged with the storage systems and
other conditions, as defined in [17,24].

3. REC Performance Indexes

The REC performances can be evaluated using some specific indexes. They have been
defined considering both the H2020 research projects on this theme, the Italian national
directives [25–27], what has been proposed in the literature [28] and based on the data
stored in the ECM platform.

3.1. Indexes for the Single AEU and for the REC Performance: Self-Consumption and
Self-Sufficiency Indexes

The aim is to identify indexes, in addition to the AEU’s local energy self-sufficiency, to
have information regarding the quality of the self-consumption carried out inside the REC.

The indexes used to evaluate the degree of individual or shared/collective self-
consumption can be measured with reference to different time intervals (hour, day, month,
year), although the most useful is the hourly, as considered in this paper.

The collective self-consumption index must be “normalized”, comparing the amount
of energy consumed in a time interval with the amount of renewable energy produced
and available to evaluate the benefits related to the shared self-consumption in the
energy communities.

The aim is to individuate and reward the AEUs most virtuous in terms of self-
consumption and shared self-consumption, that is, concentrated in the hours of maximum
RES production. It is necessary to build an index that returns information that is not only
quantitative but also qualitative.

For this reason, in the calculation of shared self-consumption, it was decided to
compare local consumption with the total consumption of the aggregation, normalizing
the index.

The following variables will be used in the formulation of the proposed indexes:

- h: 1, 2, . . . , 24 index representing hours;
- i: 1, 2, . . . , n index representing the REC AEU number;
- g: 1, 2, . . . , Ng index representing the month day;
- E h

p,i : energy produced by the AEU i in the hour h;

- Eh
p: energy produced from all RES generation plants inside the REC in the hour h;

- Eh
i : energy absorbed by the AEU i in the hour h;

- Eh
L = ∑n

i=1 Eh
i : energy absorbed by all REC AEUs;
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- Eh
AC = min

(
Eh

p; Eh
L

)
: energy shared by the REC, according to the ARERA definition,

provided in the regulation 318/2020/R/eel. It is defined as the minimum between
the hourly value of energy produced by renewable sources and the sum of the energy
adsorbed by all the loads of the community.

- Eh
AL, i = min

(
Eh

i ; Eh
p,i

)
: locally self-consumed energy or energy self-sufficiency, it is

represented by the minimum value between the AEU’s production and consumption
on the same site.

3.1.1. Hourly Shared Community Self-Consumption Index (IAC)

The index refers to the shared self-consumption of the REC in relation to the total
amount of energy produced in the same hour (Eh

p) from all RES generation plants. It ex-
presses the relationship between the energy shared in the hour and all the energy produced
in the same hour. The index varies between 0 and 1 and is formulated as follows:

IACh =
Eh

AC
Eh

p
, (1)

3.1.2. Individual AEU Hourly Local Self-Consumption Index (IAS)

It is the ratio between the hourly, locally self-consumed energy and the energy pro-
duced in the same hour by the same AEU (when production is greater than zero).

IASh =
Eh

AL,i

Eh
p,i

, (2)

3.1.3. Single AEU Hourly Shared Self-Consumption Index (IAC)

The index refers to the self-consumption of the single AEU and corresponds to
the percentage of the collective shared energy that is consumed by the AEU when it
is produced (the energy stored in local storage for AEU is also counted as instantly
self-consumed energy).

Considering the renewable self-produced energy given by the self-consumption in-
dex IACh and the locally consumed energy compared to the total energy (Eh

i /Eh
L), the

index is normalized with the hourly production E h
p,i compared to the maximum gener-

ation contribution of the user (maxg E h
p,i). The index varies between 0 and 1 and can be

calculated as:

IACh
i =

Eh
i

Eh
L
×
⎛
⎝IACh ×

Eh
p, i

maxg

(
Eh

p, i

)
⎞
⎠, (3)

The first term is the load power of the AEU in the hour compared to the total REC
load in the same hour. The second term represents the normalized self-consumption index,
that is, the product between the collective self-consumption index and the normalized
AEU’s production. It is possible to determine the shared self-consumption indexes, both
individual and collective, on other time scales (daily, monthly or yearly) using the same
formulas reported above appropriately scaled over the correct time horizon.

3.1.4. Services Request Reliability Index (ISRR)

The index refers to the ability of the AEU to satisfy a flexibility service request. It can
be defined for each day, for the community or for the single AEU. It is the ratio between
the error valuated as the difference between the averaged actual exchanged power (Ph

act)
and the averaged request power (Ph

sched), and the averaged actual exchanged power (Ph
act).

ISRR =
Ph

act − Ph
sched

Ph
act

× 100 (4)
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4. Experimental Use Cases

The aim of the experimental use cases is to demonstrate the need for accurate, efficient
and effective technologies for the implementation of RECs. In particular, it is shown how
these technologies can interact with each other to achieve different results. For example,
maximizing the self-consumption of the single AEU with or without the provision of
flexibility services. These goals are achieved by exploiting local generation from RESs
and ESSs.

The implemented and analyzed use cases consider a REC of four AEUs, as illustrated
in Figure 9. Each AEU is equipped with a 3 kW PV plant, an ESS, a converter to supply
the critical loads and a converter for the interface with the grid; other external loads are
monitored through an SM. The difference consists of the capacities of the ESS, which,
respectively, are: 18 kWh, 6 kWh, 14 kWh and 26 kWh.

Figure 9. Community of four AEUs.

The AEUs are interfaced through the ECM platform using the communication archi-
tecture before described.

Firstly, the analysis is carried out considering only one AEU operation and after
the REC one. Three use cases are identified and analyzed, as illustrated in Table 1 and
below described.

Table 1. Experimental Use Cases.

Use Case Description Goal of the Use Case

UC_1 AEU self-consumption without any flexibility service request
To demonstrate that the AEU can maximize the use of local generation and
the local self-consumption, therefore minimizing the CO2 production and

the energy costs at the single AEU level.

UC_2 AEU self-consumption with a flexibility service request To demonstrate that the AEU can maximize the use of local generation and
the local self-consumption and promptly satisfy a flexibility service request.

UC_3 REC self-consumption without and with a flexibility service request To show the AEU behavior without and with a flexibility service request
when different AEUs work in an REC.
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(a) Use case 1(UC_1): AEU self-consumption without any flexibility service request.
This use case interests the single AEU. Its aim is to demonstrate that the AEU, through

the DCNG with its control and management system of the RES generation and storage
units, can maximize the use of local generation and the local self-consumption, therefore
minimizing the CO2 production and the energy costs at the single AEU level.

For the performance evaluation of this use case, the IAS, hourly local self-consumption
index, is used.

(b) Use case 2 (UC_2): AEU self-consumption with a flexibility service request.
This use case interests the single AEU. Its aim is to demonstrate that the AEU, through

the DCNG with its control and management system of the different RES generation and
storage units, can maximize the use of local generation and the local self-consumption and
promptly satisfy a flexibility service request.

In this use case, the grid operator (TSO/DSO) or an intermediary operator (such as
Balancing Service Provider—BSP) sends the flexibility request to the AEU, which operates
through the DCNG to follow such a request. The DCNG operates by controlling its internal
flexibility resources to follow the required power profile, minimizing the difference between
the requested profile and the real-time power profile.

In this use case, the IAS and ISRR indexes are evaluated.
(c) Use case 3 (UC_3): REC self-consumption without and with a flexibility service request.
In this use case, we observe the real-time operation of the AEUs operating as an REC.
In this case, we first observe how each AEU behaves when a flexibility service is

not requested and, therefore, when they operate in the community simply to increase the
self-consumption of the same.

Subsequently, a request for a flexibility service is assumed, and then the behavior of
each AEU is analyzed.

In this use case, the hourly IAC and ISRR indexes are evaluated.

5. Numerical Results

The numerical results have been obtained using the AEU laboratory prototypes imple-
mented in a LASEER laboratory (see Figure 10). Each AEU is configured as illustrated in
Section 4 and uses the DCNG with its own control and management system for the RES
generation and storage units.

5.1. Test–UC_1

In its operation, without any external flexibility request, thanks to the DBS strategy,
the DCNG maximizes the use of local generation and at the same time minimizes the CO2
emissions, reducing the energy exchanged with the grid [17].

The PV, the load power profiles and the power exchanged between the grid and the
AEU are reported in Figures 11–13. The power exchanged between the grid and the grid
should be equal to zero (Figure 13). In some time instances, such a net power profile is
different from zero, due in particular to the exchanged ESS power. The ESS power profile
and SOC are reported in Figures 14 and 15.

In Figure 16 the net power profile that the AEU would have exchanged with the grid
without the use of the DCNG is reported. It has been numerically evaluated. It is lower
than zero when there is a power surplus that has to be injected into the grid and vice versa
when there is a power deficit. Therefore, power is required to supply the loads.

From Figure 13, it can be observed that for almost the whole day, the AEU exchanges
a power equal to zero with the grid. Only at the beginning of the day and at the end of the
day are there withdrawals from the grid due to insufficient energy in the ESS.

In addition, there is a peak of absorption from the grid around 8.30 a.m. due to the
high load power in that time interval and the reduced PV production, as the power that the
ESS can supply is also limited.
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Figure 10. AEUs Laboratory prototypes.

Figure 11. PV power production.
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Figure 12. Load power profile.

 

Figure 13. Exchanged grid net power.
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Figure 14. ESS exchanged power profile.

Figure 15. ESS state of charge.

During the day, the PV-produced energy is equal to 14.04 kWh. The stored energy is
equal to 6.66 kWh, while the supplied energy from the battery is equal to 7.37 kWh. The
energy absorbed by the loads is equal to 13.17 kWh. The energy absorbed from the grid
that is not supplied by the DCNG is equal to 3.23 kWh. The surplus of PV-produced energy
that is not stored in the ESS or used to supply the load is equal to 0.19 kWh.

With the proposed AEU configuration and the control and management performed by
the DCNG, considering the actual grid energy generation mix, the emitted equivalent CO2
is equal only to 1.32 kg with respect to 5.4 kg emitted without the use of DCNG.

If the IAS is evaluated for the hours when there is PV generation, its average value is
equal to 67%, with hourly peak values also equal to 100%.

Therefore, we can affirm that, when comparing Figures 13 and 16, the AEU equipped
with DCNG is able to minimize energy exchanges with the grid and take advantage of the
available resources, and CO2 emissions can also be reduced.
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Figure 16. Exchanged power with the grid without the use of the DCNG.

5.2. Test–UC_2

The UC_2 starts considering the AEU operating as described in the UC_1: the first
aim is to maximize the self-production, but at the same time, the AEU communicates a
flexibility availability equal to 200 W for every time (a quarter of an hour) of the day.

Based on that AEU availability, the grid operator sends the flexibility day requests as
reported in Table 2, where the reduction power request (upward flexibility) is reported with
a negative sign, and vice versa for the increased power requests (downward flexibility).

Table 2. Flexibility services requested to the AEU.

Time (Considered Quarter) Flexibility Request [W]

0:45 −150
1:45 200
2:00 200
3:30 −100
3:45 200
5:30 −200
8:45 200
9:00 200
11:15 −200
11:30 −150
14:00 −200
17:00 100
20:45 −100
21:00 −50
23:15 100

In this UC, the AEU must operate accordingly, modifying its grid exchange power
profile to satisfy as much as possible the flexibility service requests.

In Figure 17, the power profile exchanged is reported. It can be observed that in the
first part of the day, the net exchanged power is different from zero. This is due to the
low SOC of the ESS, which does not allow to supply all loads. The flexibility requests are
satisfied using the ESS; in particular, the required power is injected or absorbed by the ESS.
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Figure 17. Exchanged grid net power with flexibility service.

In Figures 18 and 19, the ESS power and the SOC profile are reported. The ESS is
unable to follow the load profile at the beginning of the day because of the low SOC; in the
same way, it is unable to perform any requests for flexibility.

Figure 18. ESS power profile with flexibility service.

During the day, the total power for downward and upward flexibility requests are,
respectively, 0.3 kWh and 0.287 kWh. All the upward flexibility requests have been satisfied,
while the downward flexibility requests are satisfied only at about 61%. This is an extreme
case, but still possible, in which the AEU storage system is not ready to be able to satisfy
the flexibility requests.

A way to avoid such problems is to reserve a capacity of ESSs only for these services
or to use several AEUs operating in a REC as illustrated in UC3. In this way, the different
requests can be provided by the other AEUs.

In this use case, evaluating the IAS for the hours when there is PV production, there is
not an evident difference between the case where services are required and where services
are not required; its average value is about 75%, with hourly peak values also equal to 100%.
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Figure 19. ESS SOC with flexibility service.

The ISRR has been also calculated and it is equal to about 1.2%, which means that
most of the flexibility requests have been satisfied.

Therefore, with this use case, the authors want to demonstrate that an AEU equipped
with DCNG that manages an RES plant and a storage system is able to provide flexibility
services. In fact, to demonstrate it, we can compare Figure 17 starting from 11:00 am
onwards with Table 2. It is observed that the power exchange with the grid is zero (or
almost) when there is no flexibility service request, while it is equal to the flexibility service
requested in the other instances of time. However, to be able to respond to these services,
it is necessary to have a storage system that does not have to be completely charged or
discharged (see first hours of Figure 17 and compare it with Table 2; the flexibility service is
not satisfied).

5.3. Test–UC_3

In this use case, four AEUs are assumed to be part of an REC. The main goal is to
maximize the self-consumption. It is assumed that flexibility services are also requested
from the grid operator, as illustrated in Table 3.

Table 3. Flexibility services requested to the REC.

Time (Considered Quarter) Flexibility Request [W]

0:45 400
3:30 −550
9:30 −700
13:0 200
15:45 600
17:30 −350
20:45 −200
22:45 −250

In Figures 20–23, the load, the PV generation, the ESS power profiles of the four AEUs
and the REC net power profile exchanged with the grid are reported. The last one is equal
to zero when no flexibility request is present. Otherwise, it is equal to the request.

Each specific flexibility request is distributed to each AEU by dividing the power
request in proportion to the capacity of the ESS associated with each single AEU.

As can be seen from the numerical results, in terms of the power exchanged with the
grid, the operation of AEUs as an REC allows to maximize the self-consumption as well as
to satisfy flexibility requests using the ESSs appropriately.
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Figure 20. Load power profile for the different AEUs: AEU1 (blue), AEU2 (orange), AEU3 (grey),
AEU4 (yellow).

Figure 21. PV power production profiles for the different AEUs: AEU1 (blue), AEU2 (orange), AEU3
(grey), AEU4 (yellow).

This is evident from Figure 23. In fact, this profile is null (or almost) when there is no
request for a flexibility service, as the REC maximizes self-consumption, while the profile is
non-zero when there is a service request, and the profile is equal to the request (see Table 3).
This is possible by exploiting all the resources, RES Figure 21 and ESS Figure 22, of the REC.

The hourly IAC has been evaluated for the hours where the PV production is greater
than zero: it ranges between 93.7% and 100%; its average value is about 99.3%. These
values are due to the optimal operation of the storage systems.

The ISRR is quite null, which means overall flexibility requests at the REC level have
been satisfied.
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Figure 22. Exchanged power with the storage system for the different AEUs: AEU1 (blue), AEU2
(orange), AEU3 (grey), AEU4 (yellow).

 

Figure 23. Exchanged net power for the community with flexibility services requests.

6. Conclusions

Globally, many states, including Italy, are committed to undertaking an effective and
sustainable path of deep decarbonization in all sectors through a profound restructuring of
energy systems. This has led to the need for new management models to maximize the
use of energy produced from renewable sources, ensuring safety conditions, continuity of
service and resilience of the electricity system itself.

Possible reference models are that of the Renewable Energy Communities (REC) and
the Citizen Energy Communities (CEC). In particular, the model based on CERs was
taken as a reference by the European Commission—with the Directive (EU) 2018/2001
(called RED II) recently implemented by the Italian Government on 15 December 2021 with
Legislative Decree 199—to allow participation active consumer in the energy transition
through the sharing of electricity produced from renewable sources, the promotion of
energy efficiency and, therefore, the spread of electric mobility. CERs have been introduced
to maximize the use of energy from renewable sources and minimize energy costs for users.

This paper, in this contest, illustrates the main enabling technologies, smart meter,
ESS, DCNG and ECM platform, that must be used to support the growth of RECs. The
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innovative settlement of the Advanced End-User is introduced, defined as an active and
pro-active end-user equipped with the above-mentioned enabling technologies.

Finally, some use cases and the associated performance indexes have been identified
and defined, respectively. The numerical results performed both, considering the operation
of a single AEU and four AEUs operating as an REC, are illustrated, and discussing
when flexibility service requests are sent or not, highlighting how it is possible to both
maximize the self-consumption and satisfy the flexibility service request in the case of an
REC consisting of AEUs as members.

Through the analysis and comparison of the different considered UCs, it was possible
to demonstrate the importance of the individual technologies and their combined use as
enabling elements for RECs. UC1 shows how the use of the proposed technologies increases
self-consumption. This increase is measured through IAS which goes from a virtual average
value of 15% to that of 67%. On the other hand, the comparison between UC1 and UC2
shows that, in the case of a single AEU, there is not an obvious difference between the cases
where services are required and where services are not required. Finally, UC3 demonstrates
that the community use of the above technologies enables further performance measured
by means of IAC, of which the average value is about 99.3%.
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Abstract: The increasing use of nonlinear loads in the power grid introduces some unwanted effects,
such as harmonic and interharmonic contamination. Since the existence of spectral contamination
causes waveform distortion that may be harmful to the loads that are connected to the grid, it is
important to identify the frequency components that are related to specific loads in order to determine
how relevant their contribution is to the waveform distortion levels. Due to the diversity of frequency
components that are merged in an electrical signal, it is a challenging task to discriminate the relevant
frequencies from those that are not. Therefore, it is necessary to develop techniques that allow
performing this selection in an efficient way. This paper proposes the use of spectral kurtosis for the
identification of stationary frequency components in electrical signals along the day in a sustainable
building. Then, the behavior of the identified frequencies is analyzed to determine which of the
loads connected to the grid are introducing them. Experimentation is performed in a sustainable
building where, besides the loads associated with the normal operation of the building, there are
several power electronics equipment that is used for the electric generation process from renewable
sources. Results prove that using the proposed methodology it is possible to detect the behavior of
specific loads, such as office equipment and air conditioning.

Keywords: digital signal processing; green buildings; total harmonic distortion; spectral analysis;
spectral kurtosis

1. Introduction

In a world that needs to evolve towards energy sustainability, smart buildings that
are energy efficient are a necessity. These buildings are characterized by energy flexibility,
renewable energy production and user interaction [1], and must be designed for near-
zero energy, which is accomplished by managing renewable energy sources, advanced
monitoring and control systems, energy storage and demand flexibility. Climate and
user responses along with monitoring and supervision are some of the basic functions of
smart buildings [1], which adapt to climatic conditions to minimize energy demand and
generate energy to supply their energy consumption [2], and monitoring and supervision
are necessary to control loads and set comfort settings [3]. However, to achieve the aim
of adequate energy efficiency it is necessary to use modern lighting systems (LED and
compact fluorescent lamps) [4,5], as well as numerous types of non-linear loads or DC
appliances that need individual rectifiers to facilitate the connection of the equipment
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to the AC grid [6], and of course, to integrate the use of renewable energies, especially
photovoltaic technology.

However, despite the advantages that the introduction of these elements brings when
it comes to achieving a smart building, power quality (PQ) problems can arise in the
electrical networks of these buildings that generate distortions, overloads, unbalances
and voltage fluctuations [7–13] Within these PQ problems, the generation of harmonics
and interharmonics are a particularly important concern in the electrical grid, as they
arise precisely due to the operation of interconnected electricity producers (cogeneration,
photovoltaics, etc.) [14] and the use of converters based on power electronics as an interface
between distributed generation and the electricity grid [15], as well as the numerous non-
linear loads existing in this type of buildings, thus causing energy losses, reduction of the
life cycle and malfunctioning of equipment and installations. For this reason, research into
power quality has increased a lot in recent times, especially in its detection, and since a dis-
turbance can appear in the power grid at any time, it is important to develop techniques that
allow continuous monitoring of electrical signals to determine the existence of anomalous
behavior. In this sense, techniques that focus on the detection of PQ disturbances can be
classified into two sets: transform-based (non-parametric) methodologies and model-based
(parametric) methodologies [16], with the first group being the most observed in recent
literature. Among all the non-parametric methodologies, the fast Fourier transform (FFT) is
yet the most used technique when it is necessary to carry out an analysis in the frequency
domain [17]. Notwithstanding, the FFT presents some drawbacks: it can only be used when
the signal to analyze is stationary, and the spectral leakage that appears when a frequency
component is not an integer multiple of the resolution of the transform. Thus, several
techniques have been proposed for dealing with the issues related to the use of the FFT.
Most of these alternative techniques extend their analysis to the time-frequency domain
allowing studying both stationary and transient disturbances. Examples of these techniques
are the short-time Fourier transform (STFT), wavelet transform (WT), S-transform (ST),
Hilbert–Huang transform (HHT), empirical mode decomposition (EMD), multiple signal
classification (MUSIC), among others [12,18,19]. Although these techniques deal with some
of the concerns regarding FFT, they present other non-desired effects as mode mixing and
high computational effort.

On the other hand, the parametric approaches aim to develop an accurate mathe-
matical model that describes the behavior of any PQ disturbance [20,21]. These methods
require an a priori knowledge of the parameters that describe the disturbance (severity,
duration, spectral content, among others); however, they do not provide information re-
garding how these parameters are obtained. Thus, the use of methodologies that involve
time and frequency domain high order statistic (HOS) have gained popularity, not only
for parameter identification but also for working along with artificial intelligence tools,
such as artificial neural networks (ANN) and support vector machines (SVM) to detect and
classify a large set of PQ disturbances [22]. Within parametric approaches and given that
spectral contamination with harmonics and interharmonics is probably the most common
issue related to the existence of non-linear loads and distributed generation, the use of
frequency-domain features, such as spectral kurtosis (SK), has gained popularity. Recently,
the SK has been widely explored to perform a feature extraction that provides information
about the existence of specific spectral components in electric signals [23,24]. The effective-
ness of the spectral kurtosis relies on the fact that it is insensitive to Gaussian noise, and
the computational burden and execution time associated with this feature are low. The
works reported so far, using SK [25,26] or other techniques [27], have been demonstrated to
be effective for detecting the presence of harmonics and interharmonics with a constant
amplitude trend, even when their energy is low. However, they do not provide a time
tracking of the detected spectral components to see their behavior along the day. The
presence of non-linear loads is inherent in every smart building, not only for the existence
of office or residential equipment but also for the use of self-generation systems mainly
based on renewable energies. Therefore, smart buildings are likely to experience high levels
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of spectral distortion due to the large number of non-linear loads they have to handle. In
this sense, it is important to develop techniques that allow performing a complete detection,
quantification, and tracking of the most significant spectral components in the grid to
determine how they evolve and be able to take actions when required to guarantee a proper
quality for the final users.

The contribution of this work is developed in this line, introducing a methodology
for the detection and quantification of stationary frequency components (harmonics and
interharmonics) in the electrical signals of a smart building, and fusing the SK with the FFT.
The use of the proposed methodology presents some advantages against the conventional
approaches, for instance, the ease of its implementation since the mathematics behind this
methodology are simple. This situation results in a technique that is efficient and demands
a low computational burden. Moreover, it is possible to perform a time tracking of a
specific stationary frequency component (SFC) without problems, such as the mode mixing
introduced by time-frequency transforms, such as WT and EMD, this way it is possible to
perform a quantification of how every SFC contributes to detriment the quality of the power
grid. Finally, it is important to mention that, although SK is a widely explored technique, its
use is more extended in the identification of transient events. Additionally, the combination
of SK and FFT represents a novel solution for the time tracking and quantification of SFC.
The proposed methodology aims to be a helpful tool to perform an estimation of the types
of loads that appear in the grid and how they impact the quality of the supply. This way it
is possible to propose actions in order to mitigate the undesired effects associated with a
specific type of load. To validate this methodology, measurements have been carried out
in a smart building located in the northeast of Spain, using two weeks of data from two
different years. Since the proposed methodology performs a time tracking of the harmonics
and interharmonics in the electric signals, it can be used as a tool for monitoring the levels
of distortion associated with any frequency component along the day. This is helpful to
determine when the distortion levels are beyond the admissible levels and take corrective
actions when required. Moreover, with the proposed methodology, it is possible to perform
an analysis of the power consumption habits that are presented in the building and how
they influence the PQ of the building.

2. LUCIA Nearly Zero Energy Building

The building under analysis is named LUCIA (Lanzadera Universitaria de Centros de
Investigación Aplicada, in Spanish for University Shuttle of Applied Research Centers) [28].
Founded in 2015 by the University of Valladolid, Spain, with the purpose of working as an
applied research building that incorporates scientific centers from different disciplines and
applied research laboratories through the creation of spin-off companies from enterprises
with a technological base. The building presents a flexible distribution that allows several
simultaneous uses to meet a changing demand from the users.

LUCIA is a Nearly Zero Energy Building (NZEB) and a ZERO CO2 building that has
obtained some certifications that endorse it as the most sustainable building in Europe and
in the entire northern hemisphere, and it is also ranked second in the same category all
over the world. It is the second building in the world with the best score in the LEED certi-
fication (the first in the northern hemisphere), and it has the LEED Platinum certificate with
98 points. LEED is a worldwide voluntary certification system for sustainable buildings; it
was developed by the U.S. Green Building Council and it is the certification in matter of
sustainable buildings with the highest global recognition [29]. Additionally, the LUCIA
building holds the highest rating (5 leaves) in the VERDE certification, a voluntary national
certification that evaluates the reduction of the environmental impacts regarding the build-
ing under test, compared with those associated with another hypothetical building that
is limited to meet the requirements specified by the local regulations [30]. Moreover, the
LUCIA building has been awarded and recognized in different competitions and forums for
the sustainable solutions that have been implemented in it. This building has been designed
as a base for investigating the social aspects of sustainable buildings; it is a prototype for
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verifying the hypothesis that sustains the methods for environmental evaluation and one
of its main tasks is the investigation on topics that have not been parameterized so far by
using only renewable energies.

The building has an area of 7500 m2, distributed over 4 floors: three of them are located
above the ground level and the fourth consists of a basement with a fully open parking
space with natural lighting and ventilation (see Figure 1).

 

Figure 1. General view of the LUCIA building.

With the aim of minimizing the water and energy consumption, as well as the environ-
mental impact, a series of systems and strategies have been implemented in the building
to incorporate renewable energies in order to satisfy the requirements of air conditioning,
heating and all the electrical services and lighting. These strategies can be categorized into
two groups: active and passive strategies. The passive strategies are related to the building
design, such as quality thermal isolation, sunlight control through skylights, a geothermal
energy system for ventilation among others. In the case of the active strategies, they are
described in more detail below since their importance is bigger due to the purpose of the
present work:

(a) Solar photovoltaic energy: A part of the electric energy consumption is covered by
two photovoltaic generation systems that are installed in the building. One of them is
compounded by several photovoltaic modules that are located on the outer face of the
double curtain wall in the central area of the southeast side of the building (Figure 2a).
This first system (herein called the south system) delivers a rated power of 10 kW.
The second system consists of photovoltaic glasses incorporated in two skylights
(Figure 2b) above each one of the stairwells in the two communication blocks of the
building; therefore, this system fulfills a double function: it provides natural lighting
as a part of the roof structure, and it also produces energy delivering a rated power of
about 5 kW.

  
(a) (b) 

Figure 2. View of the photovoltaic installations (a) south system; and (b) skylight.
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(b) Trigeneration system: There is a biomass cogeneration installation with a nominal
power of 100 kWe and about 180 kWt. It is a gasifier that transforms biomass and
wood chips, into syngas that feeds some internal combustion engines. The thermal use
of the system, when there is a demand for cooling, is completed with the installation
of an absorption chiller that allows the air conditioning installation to provide cold.

(c) Installation of air conditioning and ventilation: it is a mixed air-water system with
four-pipe fan coils as terminal units that allow to provide heating and cooling si-
multaneously in different parts of the building. The air is treated in the primary air
conditioning system, equipped with a high-efficiency adiabatic heat recovery unit
before it is delivered to the different locations inside the building through the fan coils.

(d) Both, the motors of the pumps from the hydraulic circuits and the motors from the
fans of the air conditioner, are connected to variable frequency drives (VFD) that
allow achieving the maximum efficiency by adjusting the operating conditions to the
instantaneous needs. This way, only the required water flow is handled.

(e) Intelligent building management through a supervision, control and monitoring sys-
tem of the facilities that allow configuring the different elements of the air conditioning
and lighting systems for an efficient operation.

• For lighting control, there are light intensity sensors that regulate and adjust the
luminosity of the lamps in the workspaces when they need to be turned on. In the
common areas, there are also presence detectors to limit the lamp activation to
the necessary moments and when the levels of natural lighting are not sufficient.

• For air conditioning, there are thermostats in each space that allow to indepen-
dently regulate and control the contribution of heath or cold in each room.

• The building is fully monitored in terms of thermal and electrical parameters;
it counts with 97 grid analyzers that allow knowing the consumption of each
workspace in the facility as well as the energy that is being produced by gener-
ation systems located in the building. It also integrates seven thermal energy
meters at different locations within the air conditioning installation; temperature
sensors in offices, laboratories and common spaces and even a weather station
on the roof of the building to know different environmental and meteorologi-
cal parameters.

Additionally, it must be mentioned that the LUCIA building incorporates its own
electrical substation to manage the building energy consumption. This substation uses an
800 kVA dry-type transformer from Merlin Gerin. The main specifications of the substation
are presented in Table 1.

Table 1. Specifications for the substation in the LUCIA building.

Specification Value

Voltage ratio 13.2–20 kV/0.42 kV
Secondary voltage 420 V

Short Circuit Voltage 6%

Although all the aforementioned technology allows the building to generate its own
energy and ensures more efficient performance of the overall tasks that must be carried
out, the use of cogeneration with renewable energies, such as solar photovoltaic and
biomass, along with the intelligent systems for the building management, introduces
some challenges for the power grid. Since all these systems require nonlinear elements
for proper functioning, a considerable number of spectral components (harmonics and
interharmonics) are introduced to the power grid. Therefore, it is important to perform
a continuous tracking of these components in order to guarantee that the power quality
of the grid remains at acceptable levels that allow the proper operation of the numerous
sensitive equipment operating in the technology laboratories that make up this building.
Moreover, since the building possesses its own substation, a degradation in the power
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quality of the grid must be associated only with loads and processes that are performed
inside the building, because the transformer acts as a filter for all the disturbances that may
come from the outside.

3. Methodology

This paper presents a methodology for the detection and quantification of stationary
frequency components (harmonics and interharmonics) in the electrical signals of a smart
building, fusing SK with FFT, and the assessment of their impact on the electrical network
of a building.

Figure 3 shows a general block diagram of the proposed methodology that is intended
to develop two main tasks:

• A spectral analysis, which is in charge of the identification and quantification of station-
ary frequency components (SFC) in electrical signals and will, in turn, be performed
in three stages. First, the SK is used for the detection of SFC in current signals in order
to identify specific frequency components that are related to consumption habits in
the building. Then, since there are frequency components that are irrelevant to the
study, discrimination of non-significant SFC is performed based on characteristics,
such as amplitude variability throughout the day, and persistence during working
hours. Finally, FFT is performed on the current signal to quantify the SFC detected by
the SK.

• A PQ analysis, which aims to assess the impact of SFCs on the smart building network.
A PQ analysis is performed with the current and voltage signals to calculate the power
consumption and THD associated with the loads inside the building.

Figure 3. Description of the proposed methodology.

These two analyses are designed to provide a reliable estimate of the nature of the
loads introducing pollution into the network to assist network maintainers. The voltage
and current signals from the smart building are measured at the low voltage panel and are
used in both the spectral analysis and the PQ analysis.

In a first step, the SK assesses all the spectral components that appear in the electric
signals and separate the stationary components from those that sporadically appear. Then
the FFT is computed to measure the energy of the frequency components that are selected
by the SK. Additionally, a general PQ analysis is performed to complement the evaluation
of the smart building. Finally, results are analyzed to determine the impact of harmonics,
inter-harmonics, and PQ in the electric grid of the smart building. This process is itera-
tively carried out to obtain a timestamp of the daily behavior of the stationary frequency
components (SFC) that are present in the electric signals.
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3.1. Spectral Analysis

As indicated above, the main task of the spectral analysis consists of the detection and
quantification of the SFCs appearing in the current signals of the building, considering the
fusion of two different techniques: SK and FFT. This analysis has been set up in three phases.

3.1.1. Detection of the SFC

The first step in the spectral analysis consists of the detection of the SFC and the SK is
the technique that allows achieving this goal. SK is a technique that uses statistical tools for
identifying spectral components that may be transient or stationary. These last are those
that concern this work. To perform the computation of the SK the Welch estimation is used
according to (1):

SK( f ) =
M4( f )
M2( f )2 − 2 (1)

where SK( f ) is the frequency domain series that contain the SK values; M4( f ) and M2( f )
are the spectra of the fourth and the second order moment of the signal, respectively, and
they are obtained as described by (2) and (3):

M4( f ) = E{|X( f )|4} (2)

M2( f ) = E{|X( f )|2} (3)

where E{ } is the expected value of time-series from the signal spectrum X( f ).
Although the estimation of the SK presented in (1) is mainly used for the identification

and characterization of non-stationary series [31], it can also be suitable for the identification
of stationary components since it considers the presence of both: Gaussian and non-
Gaussian components in a signal. The parameters for computing the algorithm are selected
as follows: 8192 samples for computing FFT with an overlap of 3072 points. Additionally,
a Hann window of 4082 points is used to reduce the spectral leakage. The obtained
spectra are averaged every 10 min and the fourth and the second moment of the signal are
computed over these averaged values. The resulting values are substituted in (1) and a total
of 144 values are obtained to represent the behavior of everyday analysis. It is important to
mention, that the average spectrum is stored to be used later to obtain the energy of the
identified stationary components.

As aforementioned, SK is a powerful tool for detecting non-stationary and stationary
frequency components as well. This detection is characterized by positive values for non-
stationary frequencies and negative values for stationary frequencies, the rest of spectral
components, such as Gaussian noise, present a zero (or close to zero) value. Thus, to start
with the identification task, all the frequency components with an SK value lower than
−0.89 are isolated and considered as preliminary results. This process is carried out on the
144 SK values obtained for each day of analysis.

3.1.2. Discrimination of the Non-Significant SFC

Since the purpose of this work is to identify those frequencies that show a consistent
amplitude behavior along the day, it is important to track those frequencies that repeatedly
appear as stationary in the SK computation. Moreover, it is desirable to identify the
frequency components that can be related to the building occupation during working
hours. In order to separate the SFC that significantly contributes to the harmonic and
interharmonic contamination of the grid, a discrimination of the non-significant SFC is
conducted. Therefore, the frequencies that are present in at least 8 h of the day (i.e.,
frequencies that appear in 48 of the SK computation), are selected. The rest of the frequency
components are discarded because they appear just for short time periods during the day.
Furthermore, in this analysis, it is expected that frequencies, such as the fundamental
frequency and some of its harmonics appear as stationary frequencies.
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Even though a Hann window is applied to reduce the spectral leakage related to
the calculation of the FFT, this effect can still be present in the results and it may lead
to a misinterpretation of the stationary frequencies. Thus, the tracking of the stationary
frequencies is performed searching for frequency values within a threshold instead of
looking for a specific frequency. All the frequencies within the threshold are considered to
be the same and they are addressed with the central value of the threshold.

3.1.3. Quantification of the SFC

For the quantification of the SFC, the spectrum calculated for the SK values is used.
However, only the energy of those frequencies selected in the previous stage is considered.
The energy of each frequency is stored to visualize its behavior and trend amplitude during
each day. Furthermore, the quantification presents a form to visualize the results of the
identification of the SFC in graphs showing amplitude variability along each day.

3.2. Power Quality Analysis

To complement the results delivered by the SK-FFT methodology and to make an
overview of the occupation patterns in the sustainable building, a PQ analysis is performed.
Since the main purpose of this work is related to the existence of frequency components
different than the fundamental one, harmonic analysis is performed using the THD as
the parameter to measure the levels of distortion during the days of analysis. The THD is
calculated according to the standard IEEE 1159-2019 [32] using (4):

THD = 100

√
∑50

i=2 X2
i

X1
, (4)

where THD represents the total harmonic distortion as a percentage of the energy of the
fundamental frequency component; X represents the electric magnitude under analysis
(voltage or current signal); X1 is the energy of the fundamental frequency component, and;
Xi is the energy of the i-th harmonic. The THD index is obtained for the current and for the
voltage signals. The THD is obtained for time windows of 200 ms and then the average per
minute is calculated and reported.

Additionally, the power consumption related to the building is calculated to show the
difference in the occupation level for the two years of analysis. This way it is also possible
to determine how the increase of the loads attached to the grid influence the quality of the
power supply. In this work, the instantaneous power is computed as the product of the
instantaneous values of the voltage and current signals as presented in (5):

S(t) = v(t)i(t), (5)

where S(t) is the instantaneous apparent power as a time function; v(t) and i(t) are
the instantaneous value of the voltage and current signals, respectively. Since the data
acquisition systems work at a sampling rate of 8000 Hz, a total of 8000 values per second
are computed for the apparent power. However, the obtained power values are separated
into one-minute windows and the average per minute is delivered as result. Additionally,
to obtain a more reliable analysis of the power that is effectively used in the building, the
active power is obtained considering (6):

P(t) =
1
T

∫ T

0
S(t)dt, (6)

where: P is the active power and T is the time interval over the active power computation
is carried out. In order to keep the consistency of the data, T is also selected as 1 min. Since
the calculation of the active power is performed over discrete signals, the discretization of
(6) presented in (7) is used:

P(t) =
1
T ∑n

j=1 vnin, (7)
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where n is the number of samples and vn and in are the n-th samples of the voltage and
current signals, respectively. Finally, the reactive power Q(t) is calculated using (8) to
provide an overview of the energy that is not effectively used in the building.

Q(t) =
√

S(t)2 − P(t)2 (8)

The 1-min window used in the power consumption computation is selected so there
exists consistency between the values for the THD and the power consumption. THD and
power provide information about the change in the consumption habits in the building
and determine the existence of an increment in the PQ contamination, and distortion levels
between the days and years analyzed. This information gives a general picture of the
status of the building each year, but it does not provide specific information, such as which
harmonics or interharmonics are stationary or how they behave along the day. Then, the co-
operation between the SK-FFT methodology for the identification of stationary frequencies
and the PQ analysis delivers a more complete study of the building consumption along
the time.

4. Experimental Setup

4.1. Description of the Data Acquisition System

Experimentation is performed in the facilities of the LUCIA building. Here, the con-
sumptions of the complete building are measured at the low voltage distribution panel
using a proprietary data acquisition system (DAS). The DAS uses a Field Programmable
Gate Array (FPGA) device as the main processor and it is able to acquire signals from seven
simultaneous channels (three for voltage signals and four for current signals) with a 16-bit
resolution and at a sampling frequency of 8000 Hz. The data acquisition is carried out
following a series of steps as depicted in Figure 4. In the first stage, the current and voltage
from the probes are received by the DAS. Then, the signals are carried through a condi-
tioning and isolation process. The conditioning mainly consists of an impedance coupling;
therefore, a resistive element of 10 kΩ is selected to work along with the inductive elements
associated with current probes, whereas a 250 kΩ resistive element is incorporated for the
voltage probes. It must be mentioned that the values of the voltage and current signals
must remain within ±2 VDC. In order to avoid security risks, the physical ground must be
decoupled; thus, an isolation amplifier is used to accomplish this purpose. Additionally, the
same amplifier allows obtaining a differential amplification with a gain of 8. Next and with
the aim of avoiding signal aliasing, a filtering stage is performed. Here, a passive low-pass
filter with a cutoff frequency of 3.2 kHz is implemented. At this point, the signals have
been properly conditioned so they can be used in the data conversion process. To perform
this conversion, an 8-channel analog to digital converter (ADC) is used. The selected ADC
includes a programmable gain amplifier (PGA) and an electromagnetic interference (EMI)
filter specially designed for PQ applications. The responsible for the configuration and the
proper operation of the ADC is an FPGA-based processor. This processor is also in charge
of establishing the sampling frequency, that in this particular case is selected to be 8000 Hz.
Finally, the data storage is performed using an external micro SD module that allows easily
changing the memory card once it is full. The DAS incorporates Bluetooth communication;
thus, a personal tablet can be used as a user interface (see Figure 5a). Voltage signals are
directly measured with cables from the secondary of the power transformer in the low
voltage panel of the building whereas the current measurements are performed using
the SCT-013-010 sensors by YHDC (see Figure 5b) installed in the secondary winding of
measurement current transformers. The data are collected for two years with different
consumptions. During the first year, the building works at about 50% of its capacity,
whereas in the second year the installation operates at 100% of its capacity. One week of
each year is selected for applying the proposed methodology to determine the existence of
spectral components that constantly appear in the power grid and that may be related to the
building operation. Additionally, a power quality analysis is performed on the voltage and
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current signals for the two weeks to determine how the SFC identified by the methodology
impacts the grid.

 

Figure 4. Functional diagram for the DAS.

Figure 5. Description of the (a) Proprietary DAS with user interface; and (b) placement of the current
clamps in the secondary winding of measurement current transformers.

4.2. Description of the Experimentation Dates

Two different data sets are selected in this work. The first data set is formed by
the voltage and current signals from a complete week comprised between the months of
February and March during the year 2018. The selected week goes from 24 February to
2 March. These days are selected because they are winter days but they are also working
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days; therefore, it is possible to observe the effect of important loads associated with
climatization. The second data set is selected to be a week from the year 2019. In this case,
the selected dates start on 15 May and end on 21 May. This week was chosen to take into
account the effects of air-conditioning systems. The one-year separation between the two
data sets is intended to present a view of the change in the consumption patterns inside the
building from one year to another.

5. Results and Discussion

As mentioned in the experimental setup, a week of data is acquired in different years
(2018 and 2019) from the described smart building. The proposed methodology is used for
detecting stationary frequency components (SFC) and performing the power quality (PQ)
analysis on the acquired data. Then, an analysis is performed to estimate the relationship
between the SFC detected and loads of the smart building. Due to the nature of the loads in
the smart building and the implemented strategies for control and energy generation, it is
expected that the signals present harmonic and interharmonic contamination; therefore, the
proposed methodology is suitable for finding the spectral component that is contaminating
the power supply. Several SFC are identified by the methodology in the two years of
analysis. The methodology identifies SFC until the range of 4 kHz (half the sampling
frequency); however, this work analyzes frequencies until 1 kHz. A total of 39 SFC are
identified in 2018 whereas 44 SFC are found in 2019. It is worth noticing that most of the
SFC detected by the methodology are interharmonics; notwithstanding, the fundamental
frequency and its harmonics are also detected as SFC. Figure 6 shows the amplitude
behavior of the 3rd harmonic for each monitored day in the years 2018 and 2019. The 3rd
harmonic in both years shows a constant amplitude all the week, but a different amplitude
between the two years. This difference is related to the weather, 2018 data are acquired in
winter and 2019 data are acquired in spring. Therefore, most of the loads used in the smart
building are weather dependent, for instance, climatization.

(a) (b) 

Figure 6. Amplitude behavior for the 3rd harmonic of the current signal (a) in 2018; and (b) in 2019.
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The result of the spectral analysis and the PQ analysis are shown below.

5.1. Stationary Frequency Components and Loads Estimation

The amplitude behavior of the SFC detected in the current signals has a direct rela-
tionship with the loads connected to the electric grid in the smart building. Figure 6 shows
some of the detected SFC in the electric current; these frequencies present changes in their
energy values at specific hours during the weekdays. For the week taken from the year
2018, it is observed that the appearance of the frequencies of 32 Hz, 133 Hz and 167 Hz is
consistent for different workdays (see Figure 7a,b). Moreover, the behavior of these three
components is very similar so it can be inferred that all of them are produced for loads
with similar characteristics. It is observed that the amplitude of the fluctuations in these
frequency components presents a magnitude between 30 and the 70 dB and they occur
at the beginning of the day, around 7:00, and at the end of the day, nearly 19:00 h. This
schedule represents the period of the maximum occupancy of the building and it also
corresponds with the start-up and the shutdown of the climatization systems. It is expected
that these types of loads introduce a noticeable SFC since around 80% of the building
consumption, because of the climatization (fan coils) and a Data Processing Centre (DPC).
On the other hand, during the weekend the energy values of these spectral components
remain constant (see Figure 7c,f). Additionally, it is worth noticing the fact that during the
weekend, the amplitude values for the 32 Hz, 132 Hz and 167 Hz components are not only
constant but low, indicating that the loads that cause the existence of such components
are not operating during these days. Moreover, the climatization system is not started
during the weekend; therefore, it cannot introduce SFC to the power grid. Some of the
SFC that appear in the year 2018, still remain in the year 2019. This is the case for the
32 Hz and the 132 Hz components (see Figure 7d,e). Although in 2018 the identified SFC
corresponds with a 133 Hz frequency and in the year 2019 the reported value is 132 Hz,
these frequencies are so close to each other that it can be assumed that they are the same.
Another important situation is the fact that harmonics always appear as SFC because they
present a constant behavior for all the days. Notwithstanding, Figure 7d–f presents the
temporal behavior of the 7th harmonic and it is observed that it behaves the same during
weekdays as on weekends. This is an important situation because it shows that most
loads of the building impact the generation of interharmonics instead of harmonics. This
is an expected situation since many of the loads associated with sustainable buildings
are nonlinear. In contrast, in Figure 7e it is observed that an increment in the amplitude
of the 132 Hz starts at 0:00 h and finishes at 5:00 h. This time lapse coincides with the
operation of the air purification system. At this point, it is worth noticing that the existence
of frequency components different from the fundamental component causes a waveform
distortion of the voltage and current signals. Such waveform distortion is harmful to the
loads attached to the power grid because it reduces the lifetime of the internal components
of every electric and electronic device. In industrial facilities, this kind of situation may
lead to unexpected stops in the production process representing financial losses. On the
other hand, at residential facilities, the presence of waveform distortions can be traduced
in the malfunctioning of home appliances. Therefore, in order to propose solutions for
mitigating the detrimental effects associated with harmonic and interharmonic components,
it is necessary to develop robust and reliable methodologies that allow quantifying and
identifying the specific components that cause waveform distortion. This turns out to be
the main purpose of the proposed methodology.
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Figure 7. SFC for the current signals: (a) frequencies 32 Hz, 133 Hz and 167 Hz for Monday
26 February 2018, (b) frequencies 32 Hz, 133 Hz and 167 Hz for Friday 2 March 2018, (c) frequencies
32 Hz, 133 Hz and 167 Hz for Saturday 3 March 2018, (d) frequencies 32 Hz, 132 Hz, and 350 Hz
for Monday 20 May 2019, (e) frequencies 32 Hz, 132 Hz, and 350 Hz for Friday 17 May 2019, and
(f) frequencies 32 Hz, 132 Hz, and 350 Hz for Saturday 18 May 2019.

It is reported that freezers and cool rooms represent between 20% to 25% of the building
power consumption, whereas the consumption related to loads, such as illumination and
office equipment, is almost imperceptible. The freezers and cool rooms can turn on at
any time of the day. Figure 8a,d,g shows the 850 Hz component detected as SFC on
different days of the year 2018, and the 340 Hz component detected as SFC on some other
days of the year 2019 (see Figure 8b,e,h). These frequencies show a random variability in
their amplitude that can be related to the operation of freezers and cool rooms. At this
point is important to mention that these two frequencies present similar behavior during
all the workdays. However, some frequency components behave differently depending
on the weekday. For instance, during the year 2019, it is found that 668 Hz is an SFC.
On Monday 20 May 2019 this frequency component presents a rising at 6:00 and then a
falling at around 18:00 (see Figure 8c). Notwithstanding, on Friday 17 May the amplitude
behavior is different since it presents several minor variations at night (see Figure 8f).
Thus, it can be inferred that an atypical load was started during the night of 17 May 2019.
During the weekend these SFC remain in very low values, but the 850 Hz component
found on 3 March 2018 shows several variations (see Figure 8g). This situation can be easily
explained due to the fact that the vending machines and some of the freezers in the building
remain working even at weekend.
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Figure 8. SFC for the current signals: (a) frequency 850 Hz Monday 26 February 2018, (b) frequency
340 Hz Monday 20 May 2019, (c) frequency 668 Hz Monday 20 May 2019, (d) frequency 850 Hz Friday
2 March 2018, (e) frequency 340 Hz Friday 17 May 2019, (f) frequency 668 Hz Friday 17 May 2019,
(g) frequency 850 Hz Saturday 3 March 2018, (h) frequency 340 Hz Saturday 18 May 2019, (i) frequency
668 Hz Saturday 18 May 2019.

In addition, the detected SFC can cause long-term problems to the grid and the loads
attached to it, because these frequencies cause waveform distortion that compromises the
correct functioning of the loads attached to the grid. The proposed methodology brings
information that makes it possible to take more specific corrective actions to mitigate the
undesired effects. For instance, by knowing the frequencies that are mainly contributing to
the detriment of the power quality in the grid, it is possible to correctly tune a filter that
helps to attenuate the amplitude of the harmonic and interharmonic components. This way,
the waveform distortion due to harmonic and interharmonic contamination can be reduced
and the power quality can be improved.

It is important to mention that there are some other techniques that can also perform
identification of SFC in an electrical signal, for instance, the FFT can perform this identi-
fication by itself. However, by using only the FFT it is not possible to perform the time
tracking that is achieved by the proposed methodology. Some other techniques, such as
WT and EMD could provide a solution that brings information regarding the temporal
behavior of certain frequencies. Notwithstanding, these techniques deliver information for
frequency bands rather than for specific frequencies. The proposed approach identifies and
quantifies single frequency components delivering more accurate data since it avoids the
mode mixing that can cause the contribution of a frequency component to be considered
more than one time for the same analysis. Finally, there is some commercial equipment that
allows performing an analysis of the harmonic distortion in an electrical signal. However,
this equipment provides information regarding the total contribution of all the existent
harmonics and it is not possible to obtain data about any specific harmonic. Moreover, only
harmonics are considered and interharmonics are left aside. By using the methodology
proposed in this work, it is possible to perform an analysis of both: harmonics and interhar-
monics. Additionally, information regarding specific frequencies is available for being used
as a tool to cope with the methodologies for harmonic and interharmonic mitigation.

Since there are some other works and methodologies that try to address the same or
similar issues to the methodology proposed in this work, Table 2 presents a comparison
of the previously reported works against this work (The x indicates the capabilities of the
different methodologies).
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Table 2. Comparison of the proposed methodology with previous works.

Methodology
Identification of

Stationary
Harmonics

Identification of
Stationary

Interharmonics

Tracking
Behavior over

Time

Relationship
with Possible

Loads

SK [25] x - 1 h -
AVMD + HT [27] x - - -

RLS-IEKF [32] x x - -
WT [33] x - - x

SK-FFT (this work) x x Weekly x

From Table 2, it is observed that the SK by itself has been previously used for the
identification of stationary frequency components; however, its use has been reported only
for the identification of harmonics, and interharmonics are left aside. Moreover, the SK also
performs a time tracking of the frequency components but only on a 1-h basis and it does
not provide information regarding the nature of the load that causes the existence of certain
harmonics. On the other hand, the technique reported in [27] fuses adaptive variational
mode decomposition (AVMD) with the Hilbert transform (HT). Although this methodology
delivers good results on the identification of stationary harmonics, interharmonics are not
analyzed and no time tracking of the behavior of the harmonic is presented. An explanation
of the loads that may cause the detected harmonics is not provided either. Besides the
proposed methodology, in [32] it is proposed the use of recursive least squares (RLS) and
an iterated extended Kalman filter (IEKF) for the identification of both: harmonic and
interharmonic components. Notwithstanding, a time tracking of the frequency components
is not presented and the type of load that may be related to a specific frequency component
is not analyzed. In [33] the use of wavelet transform (WT) is introduced for identifying
harmonic components and the authors of this work also try to introduce an explanation
of the loads that generate such harmonics. However, interharmonics are not studied
and the time evolution of the found frequencies is not presented. Finally, the SK-FFT
methodology proposed in this particular work is able to identify and quantify any SFC
considering harmonics and interharmonics as well. Moreover, the time evolution of every
SFC is tracked and presented and this behavior over time is used for analyzing the type of
load that causes each SFC. Thus, the methodology here proposed is the only one that is
capable of fulfilling these four tasks: identification of stationary harmonics, identification
of stationary interharmonics, tracking behavior over time and presenting a relationship
with possible loads.

5.2. PQ Analysis

The PQ analysis is performed on data from both years. This analysis is used as a
complement to the results obtained by the SK-FFT methodology. Figure 9 shows the voltage
THD calculated for both years, the behavior of this index is similar from 2018 to 2019. The
register of the loads from the smart building shows that in both years there is almost the
same number of loads, and this is reflected in the THD. Furthermore, the THD remains
within acceptable levels during the two years of analysis. At this point, it is important to
mention that the THD index is computed considering only the influence of harmonics. As
it can be observed in the previous sections, most of the SFC that appear are interharmonics;
therefore, their contribution is not considered. This is an important situation because
most of the international standards that regulate PQ issues consider the THD as the main
index for quantifying waveform distortion. The results found in this work show that
interharmonics can also have a significant contribution to waveform distortion; then, their
contribution should be considered. In this sense, the proposed methodology can inform
about the interharmonics that significantly contribute to the waveform distortion so they
can be considered in a new index for quantifying this waveform distortion.
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Figure 9. Voltage THD for the: (a) week from 2018, (b) week from 2019.

As part of the PQ analysis, the active power is calculated. Figure 10 shows the active
power from both years. The levels of active power in 2018 have a maximus in 100 kW, and
the levels of active power in 2019 have a maximus in 200 kW. This difference is related to
the weather because the data from 2018 is acquired in winter and the data from 2019 is
acquired in spring and it is observed that more energy is required for cooling the building
than for warming it.

Finally, it is important to mention that this methodology is suitable to be applied in
facilities and installations different than the smart building presented here. For instance,
this methodology may result helpful at industrial facilities where an important number
of loads, such as electric motors, are operating simultaneously. Identifying unexpected
frequency components can be useful for avoiding damage to sensitive equipment and
reducing losses for the enterprise related to unexpected stops and poor PQ. Thus, the
application of the proposed methodology at industrial facilities is left as a perspective for
future work.
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Figure 10. Active Power (a) week from 2018 (b) week from 2019.

6. Conclusions

In this work, the fusion of two well-known techniques is proposed for the identification
and isolation of stationary frequency components in electric signals. These techniques are
the SK and the FFT. By combining these two techniques it is possible to use SK for tracking
specific frequency components with stationary behavior, and with the FFT it is possible to
perform an accurate estimation of each stationary component. This allows the identification
and quantification of the SFC that cause waveform distortion in a robust and reliable way.

In addition, the described methodology has some advantages over some of the con-
ventional approaches, as explained below. First, this proposed approach identifies and
quantifies individual frequency components rather than frequency bands. This situation
makes it possible to provide more accurate data, as it avoids mode mixing. Secondly, this
methodology also allows observing the behavior of each frequency component over time;
therefore, it is possible to determine the causes of specific frequencies to determine if any
corrective action needs to be implemented.
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Abstract: A new DC fault current limiter (FCL)-based circuit breaker (CB) for DC microgrid (MG)
clusters is proposed in this paper. The analytical expressions of the DC fault current of a bidirectional
interlink DC/DC converter in the interconnection line of two nearby DC MGs are analyzed in detail.
Meanwhile, a DC fault clearing solution (based on using a DC FCL in series with a DC circuit breaker)
is proposed. This structure offers low complexity, cost, and power losses. To assess the performance
of the proposed method, time-domain simulation studies are carried out on a test DC MG cluster in a
MATLAB/Simulink environment. The results of the proposed analytical expressions are compared
with simulation results. The obtained results verify the analytical expression of the fault current and
prove the effectiveness of the proposed DC fault current limiting and clearing strategy.

Keywords: DC microgrid; fault; cluster; DC/DC converter; fault current limiter (FCL)

1. Introduction

DC microgrids (MGs) have attracted wide attentions over the last years in both
industry and academia. At the point of practical applications, DC MGs make sense to
be used because important types of distributed energy resources (DERs), such as fuel
cells (FCs), photovoltaic (PV) arrays, wind turbines (WTs), and battery energy storage
systems (BESSs), and also many types of electronics loads are DC [1]. The DC MGs have
demonstrated superiority over the alternating current (AC) MGs from the viewpoints
of reliability, efficiency, control complexity, penetration of renewable energy resources,
and connection of DC loads [2–4]. Despite these significant advantages, designing and
implementing a suitable protection scheme for DC MGs remains an important challenge [5].
The protection challenges in the rapid rise of DC fault current and the absence of a naturally
occurring zero crossing point potentially lead to sustained arcs. To address the DC MG
protection challenges, proper grounding architectures, fast fault current limiting methods,
efficient fault detection/location strategies, and well-designed DC circuit breakers are
required [6].

As a solution for better power support, the DC MG clusters are designed with the help
of bidirectional interlink DC/DC converters [7]. One or several DC MGs can be connected
to the AC grid by bidirectional interlink AC/DC converters. Due to the bidirectional current
in the interconnected link between DC MGs, a bidirectional DC/DC converter should be
implemented in these lines. In [8], a bidirectional DC/DC converter has been presented
for connecting two adjacent DC MGs. This converter has two functions: operating as a
boost converter during the power flow from the low voltage (LV) to the high voltage (HV)
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side, and as a buck converter during the power flow from HV to the LV side. DC MGs can
be connected to the main utility grid via a modular multilevel converter (MMC) [9–11].
Due to the modular structure of MMCs, it is not necessary to connect the power electronic
devices in series, and so the difficulties of manufacturing are reduced [12]. The MMC
system provides a suitable output for modulated current and voltage. Therefore, these
systems are widely used in AC/DC converter applications [13].

Up to now, most of the reported studies on the DC MG clusters have been focused on
the control [14–17], switching network topology [18], power scheduling mechanism [19],
management [20], and resiliency [21] of these systems. When the DC MG clusters consist
of several DC systems and the connection to the utility grid, the DC fault characteristics
and corresponding fault clearing solutions should be analyzed in depth. In Table 1, the
focus of the reported studies on DC MG clusters is summarized to highlight the lack of
enough investigations on the protection of these systems. In [22], an LV DC circuit breaker
(CB) has been suggested for the protection of autonomous DC MG clusters. However, the
interlink converter between individual DC MGs was not discussed in the paper. Moreover,
the system under study has only been operated in islanded mode. In [23], the performance
of a multiport DC/DC converter in a DC network has been analyzed to find solutions for
protecting a DC network equipped with multiport converters and avoid the long clearing
time of traditional DC CBs. A hybrid MMC (HMMC) with integrated BESS has been
proposed in [24], and its performance during AC and DC grid faults has been analyzed.
In [25], the fault analysis method has been presented for a simple AC/DC voltage source
converter for a DC MG application.

Table 1. Comparison of the reported studies on DC MG clusters.

Reported Study Focusing Area Operation Mode

[14] Communication-based control Grid-connected
[15] Coordinated control Islanded and grid-connected
[16] Power flow control Islanded
[17] Modeling and control Islanded
[18] Switching network topology Islanded
[19] Power scheduling mechanism Islanded
[20] Power exchange management Islanded
[21] Resiliency Grid-connected

DC fault isolation and limitation are the most essential technical obstacles during the
fault in interconnection lines of DC MG clusters. Generally, there have been four solutions
for solving these problems:

• Implementing AC CB at the AC side of the AC/DC converter for faults at the inter-
connection line between the AC grid and DC MG cluster: Several AC CB strategies
have been investigated for LV AC MGs protection systems [26,27]. However, the
slow response time of the AC CBs makes them unsuitable for implementation in the
clustered DC MGs.

• Integrating FCL functionality into the converter of interconnection lines: FCL is
deactivated during the normal operation of the system; however, during the fault, it
adds a high resistance to the fault path to limit the value of the fault current [28]. In the
literature, both AC FCL [29] and DC FCL [30] have been proposed for converter-based
LV systems. However, the implementation of conventional FCLs in DC MG clusters
suffers from high response time, cost, size, and installation complexity [31].

• Implementing DC CB in series to the DC/DC converter for faults at the interconnection
line between the two adjacent DC MGs: In [32], a hybrid DC CB has been presented to
break the DC fault current up to 9 kA within 5 ms. However, existing DC CBs have
some disadvantages, such as low technology maturity and high manufacturing cost.

• Implementing fault limiting capability in the converter control: Some of the reported
strategies have suggested active FCL strategies for the AC/DC converters to limit the
fault current and enhance the fault-ride-through (FRT) capability of MGs [33,34]. Con-
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verter limits the fault current to two times the nominal value to prevent overheating.
Therefore, for adopting this option in the converters, more powerful electronic devices
are required, and the power losses and the cost of the system increase [35].

By reviewing the previous literature, it has been found that there is a lack of study
on the fault analysis of the bidirectional DC/DC converter as the interlink of DC MG
clusters. This paper proposes an analytical expression of the current of a DC MG cluster
under fault conditions. First, the analytical model of the fault current of the AC/DC
converter between the grid and DC MG is presented. Second, the analytical model of a
bidirectional interlink DC/DC converter of the interconnection line between two adjacent
DC microgrids in a clustered DC MG is derived in detail. Then, a DC fault clearing
strategy is proposed based on using a DC FCL in series with a DC circuit breaker. Finally,
the performance of the proposed method is evaluated based on time-domain simulation
studies on a test DC MG cluster in MATLAB/Simulink environment. The simulation
results are also compared with the results of the proposed analytical model. The obtained
results verify the analytical expression of the fault current and prove the effectiveness of
the proposed DC fault current limiting and clearing strategy. The main salient features of
this presented study are as follows:

i. A detailed analysis of converters during short circuit faults is investigated, which
allows the better design of converters during faults. It can also model the converter
behavior during different stages of fault by transient equations.

ii. An accurate transient analysis of DC MG clusters during fault by considering the
characteristic of converters is presented. Therefore, the importance of the current
limiting of interconnected lines between converters is highlighted and investigated.

iii. A DC FCL is proposed for interconnected DC MG clusters, which has a higher speed,
lower coordination problems, and power losses make it different from existing FCL
strategies. Moreover, the proposed method is designed and specified for DC MG
clusters, which have a few studies on the protection of these systems.

The rest of the paper is organized as follows: The structure of the DC MG cluster is
discussed in Section 2. The analytical expression of the AC/DC converter is presented in
Section 3. Section 4 proposes the detailed analytical expression of the bidirectional DC/DC
converters in the DC MG cluster. In Section 5, a strategy is presented for limiting and
clearing the DC fault in the DC MG cluster. Section 6 is dedicated to the simulation results
and discussion to verify the performance and demonstrate the accuracy of the presented
analytical equations. Finally, conclusions are stated in Section 7.

2. DC MG Cluster

The structure of a sample DC MG cluster consisting of two DC MGs is depicted
in Figure 1, and the parameters are presented in Table 2. Neighboring DC MGs can be
connected by a bidirectional DC/DC converter. Because a DC MG cluster can operate in
grid-connected mode, one or several DC MGs are connected to the upstream AC utility
grid by AC/DC converters. Both DC MGs in this cluster are connected to the AC grid
by AC/DC MMCs. Increasing the number of connections increases the probability and
the current level of a fault. Therefore, detailed fault analysis is an important task in these
systems. In this paper, only the faults in the interconnected lines between one of the DC
MGs to the AC/DC MMC are investigated, as mentioned by F1 and F2 in Figure 1. For
example, F1 is a candidate scenario for a fault at the interconnected link between grid and
DC microgrids. The highest possible fault current usually belongs to the interconnected
lines because typically, these lines have the highest power transfer capability and connect
two main buses. Figure 2a,b illustrate the structure of an AC/DC MMC. Each sub-module
(SM), as shown in Figure 2c, consists of two IGBTs, two freewheeling diodes, and a cell
capacitor [36]. The modulation strategy of this scheme is different from the two-level voltage
source converters (VSCs), which makes high-quality waveforms and low switching losses.
Section 3 discusses the fault characteristics of this type of converter in a DC MG cluster.
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Figure 1. Structure of a DC MG cluster.

Table 2. Main parameters of the case study.

Component Rated Value

Inductor of DC/DC converter 5 mH
Capacitor of DC/DC converter, C1 500 μF
Capacitor of DC/DC converter, C2 5000 μF

Resistance of DC/DC converter 1.358 mΩ
Capacitor of AC/DC converter 600 μF

Inductance of AC/DC converter 76 mH
Resistance of DC/DC converter 1.5 mΩ

Nominal voltage of VDC1 690 V
Nominal voltage of VDC2 400 V

Line resistance 1.6 mΩ/m
Line inductance 0.1 mH/m

 
Figure 2. (a) Structure of an AC/DC MMC, (b) structure of each arm, (c) equivalent model of SM.
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In Figure 3, a bidirectional DC/DC converter for use in the interconnection line
between two adjacent DC MGs is represented, as shown in Figure 1 for converters one to
three. This type of converter for managing the bidirectional power flow between two DC
MGs has been introduced in [9]. This converter is a boost converter when power flow is
from the LV (VDC2) side to the HV (VDC1) side, and a buck converter for power flow from
the HV to the LV. Therefore, during the normal operation mode, this converter meets an
appropriate bidirectional power sharing and voltage regulation among the DC MGs. The
detailed fault analysis of this converter in the DC MG cluster is discussed in Section 4.

Figure 3. Structure of a bidirectional DC/DC converter.

3. DC Fault Analysis of AC/DC Converter

The previous literature has presented the two stages of a fault in the converters,
namely capacitor-discharge and freewheeling diode operation. With the onset of a fault,
the capacitors are discharged into the cable, and a high-rise current flows through it. Then,
after a few milliseconds, the voltage of the terminal of the converter gets reversed, and
the diodes start conducting. It should be noted that due to the surge energy in converters
during the capacitor discharge stage, caused by high di/dt, the main damages to power
electronic converters happen during the capacitor discharge stage [37].

The fault current starts with the capacitor discharge state, which has the highest
magnitude of the current. Each SM of the interface AC/DC converter between the grid
and the DC MGs includes a capacitor, inductance, and resistance, as shown in Figure 2b.
The values of R0, C0, and L0 are assumed to be the equivalent resistance, capacitor, and
inductance of all SMs in each arm, respectively. According to [38], the value of the fault
current of the DC side, F1 fault in Figure 1, during the capacitor discharge state is given by

IDC(s) =
1

s2( 2
3 L0 + LDC) + s( 2

3 R0 + RDC) +
N

6C0

(1)

by using inverse Laplace transform of Equation (1), the time domain equation of fault
current is obtained as:

iDC(t) = − 1
sinθ

Ae−
t
σ sin(ωDCt − θ) + Be−

t
σ sin(ωDCt) (2)

where, LDC and RDC are the inductance and resistance of the DC line, respectively. N shows
the number of SMs in each arm. The values of A and B are calculated by the initial values
of the current and voltage of the AC/DC converter and

θ = arctan(σωDC) (3)

σ =
4L0 + 6LDC
2R0 + 3RDC

(4)

ωDC =

√√√√2N(2L0 + 3LDC)− C0(2R0 + 3RDC)
2

4C0(2L0 + 3LDC)
2 (5)

After the DC line’s voltage reaches zero, the voltage of the terminal gets reversed,
and diodes start to conduct. Therefore, each SM could be modeled by a resistance, an
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inductance, and a capacitor. According to [39], the lower and upper arm currents of MMC
could be calculated by⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ipa(t) = A0 +
∞
∑

n=1
Ansin(nωt + ϕn)

ina(t) = A0 +
∞
∑

n=1
(−1)n Ansin(nωt + ϕn)

ia = ipa(t)− ina(t) =
∞
∑

n=2k−1
2Ansin(nωt + ϕn)

(6)

where, ipa and ina are upper and lower arm currents, respectively. ia is the current from the
AC side, A0 and An are the DC component and nth harmonic of the current of the arm,
and k is a positive integer. The harmonic orders in ipa higher than A0 and A1 are assumed
to be zero, and by applying Kirchhoff’s voltage law to Figure 2, the following equation
can be obtained {

uAC = Lac
dia
dt + L0

dipa
dt

uAC = Usin(ωt + β)
(7)

where, uac is the voltage of the AC side, and U is the magnitude of this voltage, Lac is the
inductance of the AC line, and β is the angular displacement of the harmonics in the upper
and lower arm currents. Therefore, by comparing Equations (6) and (7), the An = 0 for
n = 2, 3, 4. Consequently, the value of the DC fault current during the freewheeling stage is
obtained as

ipa(t) =
U

2ωLac + ωL0
(1 − cos(ωt + β)) (8)

It should be noted that Equation (8) represents the steady-state performance of the
converter after the blocking stage. It takes some time for DC current to vary from the
blocking moment to the steady state. This process can generally be modelled by a first-
order inertia behavior. Therefore, the complete expression of DC current can be shown by

idc(t) = Idc∞ + (IdcBlock − Idc∞)e−
t

τdcBlock (9)

where, Idc∞ is the peak of (8), IdcBlock is the initial DC current after MMC blocking, and
τdcBlock is the first-order inertia time constant. For practical systems, τdcBlock is between
10 ms to 200 ms [39].

4. DC Fault Analysis of DC/DC Converter

A DC fault in the interlink DC/DC converter between two adjacent DC MGs (F2
fault in Figure 1) is a severe condition for near to fault converters. During a fault, the
fault analysis should be done in two states. The first state is the response of the RLC
equivalent circuit due to the DC link capacitor discharge of the bidirectional DC/DC
converter. The second stage starts after the current magnitude reaches the maximum value
and consequently, the voltage of the capacitor reaches zero.

4.1. Analysis of Capacitor Discharge

After a fault, at the first step, capacitors start discharging through the cable impedance
and the equivalent circuit of the bidirectional DC/DC converter in a DC MG cluster, as
shown in Figure 4. RL and LL are the resistance and inductance of the cable, respectively,
and Rf is the fault resistance.
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Figure 4. Equivalent circuit of DC/DC converter during capacitor discharge.

The RLC circuit response in the frequency domain can be obtained by Equation (11).

I f (s) =
LLLC2is3 + s2(C2u2L + LLrC2i) + s(Li + LLi + C2u2r + C2

C1
LLi) + u1 +

C2
C1

u2

LLLC2s4 + s3(RC2L + rLLC2) + s2(RrC2 + L + LL(1 +
C2
C1
)) + s(r + RC2

C1
+ R) + 1

C1

(10)

where, u1 and u2 are the initial voltages of the C1 and C2, respectively, and i is the initial
value of the current of the converter. r and L are the internal resistance and inductance of
the DC/DC converter, respectively, and R = Rf + RL. The fault current in the time domain
can be calculated by solving the differential Equation of (11).

LLLC2
d4 I f

dt4 + (RC2L + rLLC2)
d3 I f

dt3 + (RrC2 + LL + L + LL
C2

C1
)

d2 I f

dt2 + (r + R + R
C2

C1
)

dI f

dt
+

1
C1

I f = 0 (11)

Due to the low length of the cable between two adjacent DC MGs, the value of
line inductance is very small. Therefore, assuming LL = 0, Equation (11) is simplified
as Equation (12)

(RC2L)
d3 I f

dt3 + (RrC2 + L)
d2 I f

dt2 + (r + R + R
C2

C1
)

dI f

dt
+

1
C1

I f = 0 (12)

And the fault current is calculated as

I f (t) = Ae−αt + Be−λtcos(μt) + De−λtsin(μt) (13)

where, the value of A, B, and D are calculated by the initial values of capacitors voltages. α,
μ, and λ are obtained by the Equations (14)–(16)

Δ0 = R2r2C2
2 + L2 − LRrC2 − 3R2C2L (14)

Δ1 = 2R3r3C3
2 − 3R2r2C2

2 L − 3RC2rL2 + 2L3 − 9R3rC2
2 L − 9R2C2L2

+
27R2C2

2 L2

C1

(15)

ζ =
3

√√√√Δ1 ±
√

Δ2
1 − 4Δ3

0

2
(16)

Then, Equation (16) has three different roots, one of them is a real number, and two
of them are complex. The real value is α, the real part of the complex values is λ, and the
imaginary parts are ±μ.

τ =
1

3RC2L
(RrC2 + L + δkζ +

Δ0

δkζ
) (17)

where δ is

δ = −1
2
±

√
3

2
j (18)

where, j is the imaginary unit, δ defines the three roots of Equation (16), and k is 0, 1, and 2.
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4.2. Freewheeling Diode Operation

The second step of the fault current analysis is the freewheeling diode stage. This stage
starts after DC-link capacitors’ (C1 and C2 in the equivalent circuit of Figure 5) voltages
reach zero. Then, the converter terminal voltage is reversed and makes a diode-capacitor
equivalent circuit, as depicted in Figure 5.

Figure 5. Equivalent circuit of DC/DC converter during the freewheeling diode operation.

The differential equation of the fault current during the freewheeling diode stage for
calculating the fault current in the time domain is shown in Equation (19).

(2RdRC2L)
d3 I f
dt3 +

(
(R + 2Rd)L + 2RdRC2r + R2

dRC2
) d2 I f

dt2

+(Rr + (R + 2r)Rd +
2RdRC2

C1
+ R2

d)
dI f
dt + ( R+2Rd

C1
)I f = 0

(19)

Rd is the diode resistance, and consequently, the fault current in the time domain is
obtained by

I f (t) =
2Vd

2Rd + R
+ Ee−υt + Fe−ηtcos(Ψt) + Ge−ηtsin(Ψt) (20)

where, Vd is the voltage of the diode, and E, F, and G are defined by using initial values of
the freewheeling diode stage. η and Ψ are the real and imaginary parts of Equation (23),
respectively, and υ is the real value of Equation (23).

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a1 = 2RdRC2L
a2 = RL + 2RdRC2r + R2

dRC2 + 2RdL
a3 = Rr + RRd +

2RdRC2
C1

+ 2rRd + R2
d

a4 = R+2Rd
C1

(21)

⎧⎪⎪⎨
⎪⎪⎩

b1 = a2
2 − 3a1a3

b2 = 2a3
2 − 9a1a2a3 + 27a2

1a4

b3 =
3

√
b2±

√
b2

2−4b3
1

2

(22)

Γ =
1

6RdRC2L
(a2 + δkb3 +

b1

δkb
) (23)

5. DC Fault Clearing and Limiting Solution

In this section, a novel DC FCL-based CB configuration is presented as a solution for
installing a lower-rate CB and limiting the fault current. Figure 6 depicts the schematic
connection of the proposed DC FCL-based CB including a rectifier bridge, a resistor, an
inductance, a capacitor, and also a DC CB which is connected in series with the DC/DC
converter of Figure 1 in the interconnected line. Herein, the FCL is installed before the
converter, which is used to achieve the energy transmission and conversion between DC
MGs. Note that the proposed FCL can operate in both the normal and fault operation mode
of the system. The basic concept of the proposed DC FCL-based CB operation uses a novel
FCL in series with DC CB to reduce the fault current before clearing the fault by CB. It
offers a soft current clearing and a lower fault current.
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Figure 6. Proposed DC FCL configuration.

It should be noted that in Figure 6, it is necessary to use a diode bridge in the DC link;
otherwise, the ripple of current generates a voltage drop, which will have an impact on the
performance of the normal operation of connected converters. The DC FCL is composed of
three main parts:

i. A diode rectifier bridge;
ii. A series inductor;
iii. A shunt RC branch for fault current reduction.

Furthermore, in the proposed DC FCL, the diode bridge composed of four diodes
is utilized to enable the bidirectional current-flowing function, replacing the anti-parallel
structure of the half and full-controlled switches. It also improves the economic considera-
tions, due to lower price of diodes than the half and full-controlled switches. However, the
forward voltage of diodes altogether causes a small voltage drop, but, in comparison to the
total voltage drop in line, this voltage drop is negligible and has an insignificant impact on
the normal operation [40].

The DC FCL-based CB operation is divided into two modes, namely normal and
fault operation mode. During the normal operation mode, as shown in Figure 7a, the line
current only flows through the inductor, and since the normal current of the system is
DC, the overall power losses of inductance are relatively low, and they depend on the
reactor copper loss. As shown in Figure 7b, during the fault, depending on the frequency
components of the fault current, the capacitor branch absorbs some part of the fault current,
and the inductance makes an impedance path for this current. The equivalent impedance
of the DC FCL-based CB during the fault is obtained as

ZFCL =
s(LRCs + L)

LCs2 + RCs + 1
(24)

where, L, R, and C are the inductance, resistance, and capacitance of the DC FCL-based
CB, respectively. In the frequency domain, the size of the impedance of FCL for the fault
current limiting stage is calculated as

|ZFCL| = (LΨ)(
√

R2C2Ψ2 + 1)(
√
(1 − LCΨ2) + R2C2Ψ2)

(1 − LCΨ2)2 + R2C2Ψ2
(25)

where, Ψ is the frequency of the current during the freewheeling diode operation mode,
and then during the capacitor discharge stage, it will be replaced by μ, as explained in
Equation (16). Based on Equation (25), the fault current magnitude is reduced by the
coefficient of 1/|ZFCL|, as the total impedance of FCL during fault conditions. Therefore,
the value of ZFCL should be selected as higher than 1 Ω, to operate as a fault current
reducing component. To determine the parameters of FCL, the thermal resistance of the
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equipment should be considered [3] to find the reduction value. Therefore, the objective
value of ZFCL can be determined by:

Iobj
Ipeak

= 1
|ZFCL |

Subject to :
Lmin ≤ L ≤ Lmax
Rmin ≤ R ≤ Rmax
Cmin ≤ C ≤ Cmax

(26)

where, Iobj is the final value of fault current after reduction, and Ipeak is the peak of fault
current before reduction. The values of R, C, and L should be in the range of minimum
and maximum values of existed components. Therefore, the proposed DC FCL parameters
can have different values based on cost and existing components, which causes a better
availability of the design of this FCL.

Figure 7. DC FCL-based CB and current flow (a) normal, (b) fault, (c) bidirectional condition.

During normal operation, as long as the DC current direction is positive, as shown in
Figure 7a, the diodes D1-D3 are in conducting state. On the other hand, during the negative
DC current direction, as shown in Figure 7c, the diodes D2-D4 are in conducting state. In
this situation, the DC reactor LFCL is bypassed from the DC line, thus, having no impact
on the DC grid during normal operations. After a fault, the DC fault current rises rapidly
to a high magnitude. As shown in Figure 7b, due to the high frequency of the DC fault
current, the RC circuit will be paralleled with inductance to limit the fault current to the
desired value. Moreover, this bridge-type FCL can deal with the bidirectional fault current
limitation in the DC systems.
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The modeling of the DC FCL-based CB has been based on the consideration of the
transient impedance during the fault, since they are effective parameters in the study of the
behaviors of the fault current. From Figure 1, an AC-DC converter is utilized to convert the
AC grid power to the DC MG cluster power. Due to the existence of the power electronic
components and controllers, the transient impedance of the proposed method is obtained
by (25), which is different from the normal operation mode. The access of DC FCL-based
CB helps to increase the impedance of the system and the damping factor, for decreasing
the fault current from the two aspects. Meanwhile, this current reduction will help relays
to keep their settings during variations of fault resistances.

In order to avoid the negative impacts of the directly installed DC reactors, the bridge-
type FCLs are implemented in the DC grids. The implemented bridge-type FCL in a DC
system consists of an H-bridge composed of four series diodes, and a branch composed
of the series-connected DC reactor. Therefore, it can avoid the negative impact of the
DC reactor on a system in normal operation. However, during normal operation, the
rated current will flow through diodes in the bridge-type FCL, thus leading to a small
power loss [30].

During normal operation, the current of the DC inductor is an almost ripple-free DC
current with a magnitude equal to the peak of the DC-link current. Therefore, the ripple
current in the DC inductor of FCL is approximately zero, and then, the average current
in FCL in normal operation is equal to the peak value of DC-link current in steady-state.
Consequently, the total power losses of DC FCL (PLoss) is the sum of power losses of DC
inductor (PInductor) and diode-bridge (PBridge), and can be determined as follows [28]

⎧⎨
⎩

PBridge = 2Vd ILine
PInductor = rd I2

max
PLoss = ILine(rd ILine + 2Vd)

(27)

where, Iline is normal current, Vd is the voltage drop of diodes, Imax is the peak value of
DC-link current in steady-state, rd is the resistance of the inductor. On the other hand, in a
DC system without FCL, the normal flowing power can be defined by PDC. Thus, the ratio
of power losses to active flowing power is defined by K, and can be calculated by:

K =
PLoss
PDC

=
ILine(rd ILine + 2Vd)

PDC
(28)

For example, consider the under-study system by VDC = 690 V, rd = 0.005 Ω, Vd = 2 V,
Iline = 20 A. For this case, the value of K = 0.5%. This shows that in the presence of the
proposed DC FCL, the total power loss has a very small percentage of the overall rated
power of the system, and it will be acceptable in most practical applications. Furthermore,
by using a superconductor inductor in DC FCL, the power loss of the inductor will be
cancelled out, however, it increases the cost and weight of the system. Obviously, it is also
possible to use a switch parallel with DC FCL to bypass it during steady-state conditions
and avoid any power losses, however, it will increase the overall operation time of the
proposed DC FCL.

6. Simulation and Real-Time Validation Results

In this section, the simulation results and discussion are presented for the case study
system of Figure 1 with the parameters provided in Table 2. To validate the proposed fault
analysis method, two cases are considered to obtain the fault current behavior for both
AC/DC and DC/DC converters in the interconnected lines. In addition, the effectiveness
of the proposed DC FCL-based CB is evaluated by using time-domain simulation studies
in MATLAB/Simulink software environment and verified by comparing the proposed DC
FCL with other reported FCL techniques.
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6.1. Behavior of AC/DC Converter during the Fault

In the first part, the presented fault analysis of the AC/DC converter between the grid
and the DC MG cluster, as represented in Section 3, is compared with the simulation results.
Figure 8 shows the behavior of the fault current for a fault with a resistance of 0.1 Ω for
both analytical results and simulation results. The results of Figure 8 show a small error
between the analytical model and simulation results.

 

Figure 8. DC current of MMC during the fault.

6.2. Behavior of DC/DC Converter during the Fault

In Figure 9, the behavior of the DC/DC converter during a fault with a fault resistance
of 0.1 Ω is presented for both analytical and simulation cases. During the capacitor
discharge, the fault current reaches 6485 A in less than 0.03775 ms. One of the main
parameters used for detecting the fault, as a threshold of the switching and relay settings,
is the slope of the fault current. Therefore, this threshold is 171,788 kA/s and 158,616 kA/s
by calculation using Equation (13) and simulation, respectively, which shows a small error
of 7%. Thus, selecting the threshold by the proposed analytical equations is suitable for
adjusting the setting of the relay. The parameters of Equations (13) and (20) for this case
study are shown in Table 3.

 

Figure 9. Comparison between analytical and simulation results.

Table 3. Parameters of the analytical model.

Parameter Value (s−1)

Capacitor discharge
α 2153
λ 76
μ 604

Freewheeling diode
υ 102 × 103

η 2.157
Ψ 88.5
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6.3. Characteristics of DC FCL-Based CB during the Fault

By installing a DC FCL-based CB in series with a bidirectional DC/DC converter in
the interconnected line between two DC MGs in a DC MG cluster, the desired maximum
fault current magnitude is controlled by selecting a suitable value for resistance, inductance,
and capacitance parameters of the DC FCL-based CB. According to the thermal resistance
of the converter diodes [3], the maximum magnitude of the fault current is selected as
1100 A, and the equivalent impedance of FCL is calculated by Equation (25). The values
of RFCL, LFCL, CFCL are selected as 0.5 Ω, 0.1 H, and 2 mF, respectively. The fault current
characteristic of the system equipped with DC FCL-based CB is shown in Figure 10. In
Figure 11, the impact of the fault resistance on the performance of the proposed FCL is
evaluated. The fault current peak of DC MGs reduces by increasing the fault resistance,
and therefore, by using the proposed DC FCL scheme, fault current magnitude remains
approximately constant. Furthermore, for low fault resistances, a considerable reduction in
fault current is caused by using the proposed DC FCL scheme.

 

Figure 10. Impact of the DC FCL on the fault current.

 

Figure 11. Performance of proposed DC FCL-based CB on the fault current.

In DC MG clusters, the fault current is injected from different sources. For example, in
Figure 1, a fault at F1 with a fault resistance of 0.15 Ω causes a high-rise current from the
DC MG and grid, as shown in Figure 12. Consequently, due to the converters’ capacitor
discharge, the fault current injected into the faulty point also has a high-rise peak, as
represented in Figure 13. This high-rise current can damage the converters; therefore,
installing the proposed DC FCL reduces the fault current to a lower level, as presented in
Figure 13.
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Figure 12. Fault current contributions without FCL, from grid and DC MGs.

 

Figure 13. Fault current with and without FCL.

6.4. Real-Time Validation

The proposed DC FCL scheme has been modeled using an OPAL-RT simulator for
validating the performance of the proposed method using real-time simulation. The
experimental setup with oscilloscope, personal computer (PC), and OPAL-RT simulator
is shown in Figure 14. Figure 15a,b presents the per-unit fault current waveforms for a
fault in MG at F1, which occurred at t = 1 s with fault resistances of 0.45 Ω and 1.5 Ω,
respectively. This verification using OPAL-RT assures the operation and effectiveness of
the proposed scheme during different fault conditions.

 

(a)

(a) OPAL-RT
(b) Host PC
(c) Oscilloscope

(b)

(c)

Figure 14. Real-time setup.
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Figure 15. Fault current waveform with and without FCL for (a) 0.45 Ω and (b) 1.5 Ω faults.

6.5. Comparison between the Proposed DC FCL and Existing FCL Strategies

Finally, the proposed DC FCL-based CB is compared with other methods from several
points of view, including cost, size, bidirectional operation, speed, complexity, and impact
on the coordination of overcurrent relays. These comparison points are summarized in
Table 4. Moreover, to better clarify the comparison of the existing methods and proposed
scheme, detailed installed components for each DC FCLs, and the range of implemented
voltage are summarized in Table 5.

Table 4. Comparison of the proposed DC FCL with other existing methods.

Type Cost Size Speed Complexity Coordination Problem Power Losses

[32] High Large High High Medium Low
[41] High Large Low High Low Low
[42] High Large Medium High Miscoordination Medium
[43] High Large Medium High Miscoordination Medium
[44] Low Large Medium High Miscoordination High
[45] Low Large Low Low Medium Low
[46] Low Small High High Medium High

proposed method Moderate Small High Low Low Low
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Table 5. Comparison of the proposed DC FCL with the existing methods.

Type Fault Current Limiting Component Installed Power System

[32] Arrester bank High voltage

[41] Ultrafast switch, diode bridge, a resistor with a high
positive temperature Medium Voltage

[42] Switch, diode bridge, inductor capacitor branch Low Voltage
[43] Superconductor resistance bank Medium Voltage

[44] Diode bridge, two parallel RC thyristors, two series
inductor diodes Medium Voltage

[45] Resistor, two IGBTs, switch Low Voltage
[46] Metal oxide varistor, diode bridge, IGBT, parallel RC Medium Voltage

proposed method Diode bridge, parallel RC, inductor Low and Medium Voltage

Cost: The overall cost of an FCL strategy is estimated based on utilizing semiconductor
and mechanical components and auxiliary circuits, such as communication and cooling
systems. In order to investigate the overall cost, it is supposed that the mechanical switches
are from the same type in the considered structures, and the cost of the semiconductor
elements (including MOSFETs, silicon-controlled rectifiers, and diodes) are determined
for a certain current and voltage rating. Among the existing FCL schemes, due to the
implementation of arrester or superconductor resistance banks, the methods presented
in [32,41–43] have the highest cost, and the strategies proposed in [44–46] have the lowest
cost, due to the utilization of only a few elements.

Size: The size of an FCL is determined by several required control and power elements.
The methods proposed in [45,46] have a small size, however, its size increases by increasing
the rating of the FCL. On the other hand, the semiconductor and mechanical branches
in [32,41,44] result in the large size of their suggested FCLs. Implementing the capacitor
charging circuit and superconductor with a cooling system in [42,43], respectively, resulted
in bulky FCLs. The installed components in each method are also shown in Table 5.

Speed: The speed of an FCL is determined by the breaking and operating time of
mechanical switches. In [41,45], the multistage current limiting and positive temperature
coefficient resulted in a low-speed operation for these structures, and these methods limited
the current by approximately 2 ms. Implementing one stage FCL using PWM in [46] caused
a fast FCL operation. The methods of [42–44], with an operation time of approximately
1 ms, due to the switching in zero current and the fact that they require charging time, are
categorized as medium-speed FCLs.

Complexity: Control, power circuits and the capability of bidirectional conducting
are three parameters that determine the complexity of an FCL scheme. Therefore, [39–45]
have the lowest complexity, while [32,41–43,46] have the highest complexity. In refer-
ences [32,41–43,46], the systems are relatively complicated because of employing several
operating sequences, PWM function, complicated power circuitry including the consider-
able number of mechanical switches and semiconductor devices, active circuitry to charge
their commutation capacitors, and super-conductor elements.

Impact on the Coordination with Other Protection Devices: Most protection devices
are coordinated based on the magnitude of the fault current of the system. The method
suggested in [41] can only be used in the upstream network, which causes better coordina-
tion for overcurrent relay only in the upstream. Furthermore, due to the transient behavior
in [42–44], these schemes are not appropriate for the coordination of fast protection de-
vices. On the other hand, due to the expected value of the fault current and suitability of
suggested FCLs in [45,46], these FCL strategies help to coordinate the protection devices.

Power Losses: The overall power losses of an FCL are evaluated during the normal
condition. The method in [41] uses a fast-tripping switch with zero resistance during
normal conditions, however, it was unusable for MV DC systems. In [42,43], FCL included
two diodes series with a capacitor. Therefore, the power losses include the losses of the
internal resistance of diodes and the ESR of the capacitor. The FCL of [44–46] has three
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diodes in a normal operation mode that cause a power loss. In [32,45], during the normal
condition, only one IGBT is conducting, and the power losses of IGBTs are normally less
than diodes.

The proposed DC FCL-based CB does not require a communication system, capacitor
charging circuit, and has a low number of elements, but the rating of inductance and diode,
and the high value of current tolerance of diodes increase the cost. Then, this method is
categorized as a moderate-cost DC FCL strategy. Moreover, there is no need for a capacitor
discharge circuit or any controlling circuit for DC FCL; thus, the size of this structure is low.
In the proposed scheme, due to the passive structure of FCL and its connection in series
with the DC/DC converter, the speed of fault current limiting of the proposed structure
is high. On the other hand, in terms of the coordination problem, as the proposed FCL
provides an approximately constant fault current in the protected line by changing the fault
resistance, the value of fault current will be constant. Therefore, the overcurrent relays do
not require new settings, and it can be a reliable and secure coordination of current-based
protection devices. The proposed method uses two diodes in the current path during
normal conditions. Therefore, the total power losses are only the sum of power losses of
these diodes.

The qualitative performance evaluation of each method based on six performance
parameters is depicted as spider diagrams in Figure 16. The axes in the spider charts
present qualitative performance parameters in the range of low to high, starting from the
center point. For example, in the category of cost, the low-cost and high-cost are marked
with 1 and 3, respectively.

Figure 16. Comparative evaluation of existed and proposed scheme, (A) cost, (B) size, (C) operation time, (D) complexity,
(E) coordination problem, (F) power losses.

7. Conclusions

In this paper, the DC fault currents of a DC MG cluster were analyzed. The analytical
DC fault current expressions of a bidirectional DC/DC converter and AC/DC MMC con-
verter were presented. After the fault occurrence, the capacitor discharge of the converters
causes a high-rise fault current within several milliseconds, and the main damage is caused
by the di/dt level in the power electronic devices. Then, the freewheeling stage starts, and
the fault current reduces to the steady-state value. Consequently, a new DC FCL-based CB
was proposed to limit the fault current and provide a soft clearing for CB. The proposed
DC FCL scheme causes an approximately constant maximum fault current in a lower level
of fault current before installation of FCL in the protected line, and it makes the setting
adjustment of other protection devices more convenient and reduces the required current
rating of the CBs. The simulation results and the comparison with several previously
reported FCL strategies proved the accuracy of the analytical expressions and the proper
operation of the proposed DC FCL-based CB during the fault condition.
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Abstract: The discrimination of inrush currents and internal fault currents in transformers is an
important feature of a transformer protection scheme. The harmonic current restrained feature is
used in conventional differential relay protection of transformers. A literature survey shows that the
discrimination between the inrush currents and internal fault currents is still an area that is open to
research. In this paper, the classification of internal fault currents and magnetic inrush currents in the
transformer is performed by using an extended Kalman filter (EKF) algorithm. When a transformer is
energized under normal conditions, the EKF estimates the primary side winding current and, hence,
the absolute residual signal (ARS) value is zero. The ARS value will not be equal to zero for internal
fault and inrush phenomena conditions; hence, the EKF algorithm will be used for discriminating
the internal faults and inrush faults by keeping the threshold level to the ARS value. The simulation
results are compared with the theoretical analysis under various conditions. It is also observed that
the detection time of internal faults decreases with the severity of the fault. The results of various test
cases using the EKF algorithm are presented. This scheme provides fast protection of the transformer
for severe faults.

Keywords: transformer; internal fault currents; magnetic inrush currents; extended Kalman filter
(EKF) algorithm; harmonic estimation

1. Introduction

Transformers require an efficient protection system from faulty conditions in the
power system network. The classification of magnetic inrush currents and internal fault
currents is a challenging issue for proper relay design. The magnetizing inrush current
results in maloperation of the differential relay in transformer protection. The transformer
may become saturated with inrush currents and internal faults due to the presence of zero-
sequence components, which may lead to maloperation of differential current protection.
The waveform correlation technique is suggested for differential current protection of
transformers. The analysis of zero sequence currents due to inrush currents and internal
faults can be performed using the waveform correlation technique [1].

An accelerated Convolutional neural network (CNN) was suggested for estimating
the transformer magnetizing current from internal faults on a 230 kV transmission network.
It was observed that the CNN can have feature extraction and fault detection blocks in a
single deep neural network block by enabling the system to provide important features
automatically [2]. The fundamental theory and principles of magnetizing the inrush current
of the transformer are essential when it is energized. The analysis of the magnetizing
current is important for transformer protection [3]. A new technique was proposed with
two moving windows to predict the magnitude of differential currents of the transformer
for the discrimination of inrush currents from internal faults [4]. The least error square (LES)
was proposed to classify the fault currents and the magnitude of magnetic inrush currents
with the two moving windows technique. The LES method has a very fast response
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capability with good estimation. A new method was proposed for the classification of
fault currents and magnetic inrush currents of the transformer by using measurement
of similarity index between the updated new sequence and a prescribed template. The
proposed technique was used to sort the sample points of differential currents and fault
currents to classify the fault currents and magnetic inrush currents [5].

The discrimination of the inrush currents from the internal faults in power transform-
ers was suggested based on the runs test method, which is derived from the inherent
differences between the waveforms [6]. A short time correlation transform was used to
discriminate the internal fault current and inrush current by extracting the dead angle from
the differential current. The effect of current-transformer (CT) saturation on the inrush
current was also considered for proper discrimination of the faults [7].

Discrete wavelet transform (DWT) was suggested for the separation of magnetic
inrush currents and fault currents by extracting the energy functions. DWT as used with
different wavelet functions to achieve higher accuracy and reliability [8]. The saturation of
the transformer will affect the classification of magnetic inrush currents and fault currents
of a single-phase transformer. An efficient compensation algorithm was suggested for the
discrimination of magnetic inrush currents and fault currents, which are affected by CT
saturation [9].

The EKF algorithm as used to predict the primary winding current for the classification
of magnetic inrush currents and fault currents. The EKF algorithm was used to estimate
the primary side winding current of the transformer based on the residual current [10]. The
novel method was used for the classification of internal fault currents and inrush currents
based on the two-terminal network method. The absolute difference of the active power
(ADOAP) flowing into and consumed by the two-terminal network was considered, so that
the internal faults were identified [11]. The high-temperature resistive Superconducting
Fault Current Limiters (SFCL) is suggested for discrimination of an internal fault from
inrush current of transformer. The SFCL will operate for high fault currents, which gives
more sensitivity than the differential protection [12]. The internal and external electrical
faults and inrush current of the transformer are can be analysed using Maximal Overlap
Discrete Wavelet Transform (MODWT) with Daubechies4 wavelet function by extracting
their features. These extracted features are considered for training the classifiers of Decision
Tree (DT) and Artificial Neural Network (ANN) [13].

The wavelet transform is one of the signal processing techniques that are used for
feature extraction and fault analysis. The discrimination of electromagnetic transients
and internal faults were also estimated by using wavelet transform analysis [14]. The
wavelet pocket transform (WPT) has more features than the fast wavelet transform (FWT)
to discriminate signals in both time and frequency domains. The WPT is an accurate
method for the characterization of signals for both the frequency and time domains [15].

The sine wave curve-fitting was suggested for classifying the magnetic inrush currents
and internal fault currents for three-phase transformers. The sinusoidal wave was fit to the
normalized differential current (Idiff) by utilizing least squares techniques (LSQ) for every
individual phase. The calculation of residual signals is based on the difference between
normalized differential currents and fitted signals. The prediction of internal fault currents
and magnetic inrush currents by using the residual signals may be possible in less than
10 ms, i.e., half cycle of power frequency [16]. A review of the reliability and safety of
high-speed trains with advanced branches of intelligent transportation was performed
by using fault detection and diagnosis techniques. This literature review will help with
the fault detection of high-speed trains, and it suggests an advanced method for future
investigation [17]. The fault detection and diagnosis (FDD) of high-speed trains in electric
traction is suggested based on modified principal component analysis and a broad learn-
ing system. The broad learning system can be used to extract fault information without
requiring mathematical models or a control mechanism for high-speed trains [18]. The
hybrid KNN-GA is used for differential protection of the transformer, i.e., discrimination
of magnetic inrush current and fault current with improved performance. The proposed
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algorithm also increases the performance of the deferential relay [19]. The inrush currents
and fault currents are distinguished by the novel method, i.e., generalized delayed signal
cancelation (GDSC), based on the sequence components along with the fundamental com-
ponent. The fundamental, second harmonic positive and negative sequence components
are calculated for the estimation of internal faults and magnetic inrush currents [20].

The discrimination of transformer fault currents and magnetic inrush currents is
achieved by multi-scale multivariate fuzzy entropy (MMFE), by applying the fuzzy mem-
bership function. The MMFE renders better results than the WT method for classification
of fault currents and inrush currents, based on the comparison of numerical values of the
fixed value of current [21]. The extraction of features with the measured data from the
differential currents of a power transformer is suggested by using random the forest-based
fault discrimination (RFBFD) technique [22]. New techniques, such as LES, DWT and EKF,
are suggested for analysis and estimation of the current from the measured waveform.
It is observed that the DWT is given detailed coefficients for current estimation with the
varying window technique and EKF is suggested for current estimation with the prediction
and correction method.

From the above analysis of the literature survey, it is observed that discrimination of
internal fault currents and inrush currents is still a problem for researchers. In this paper, a
novel technique is presented for the classification of internal fault currents from the inrush
currents using the EKF algorithm.

In this paper, an EKF algorithm is explored to predict primary side currents of the
transformer, using the nonlinear state-space transformer model. A residual signal is derived
from the difference of measured and estimated currents on the primary side winding of
the transformer. When the transformer is under normal conditions, the residual signal
becomes zero based on the EKF estimation. If the transformer is in a faulty condition,
large residual currents are generated. The residual signal amplitude is compared with the
threshold value in order to classify the magnetic inrush current and internal fault current.
In this paper, the diagonal elements of the covariance matrix are utilized to analyze the
severity of the fault occurrence in the transformer. The nonlinear state-space model of the
one-phase transformer is developed under steady-state conditions and the proposed EKF
algorithm in the next sections. The simulation results are presented to evaluate the EKF for
different conditions of the transformer.

2. Transformer State-Space Nonlinear Model

According to the literature [10], the nonlinear state-space model for the transformer is
formulated by the proposed method, i.e., the EKF. In this regard, the nonlinear equations
are derived in state-space form for the transformer. The transformer equivalent circuit is
presented in Figure 1 [10].

Figure 1. Single-phase transformer equivalent circuit under steady-state conditions.

By applying Kirchhoff’s current law (KCL) at the single node of the circuit shown
in Figure 1,

I1 + I2 = ic + im (1)

271



Energies 2021, 14, 6020

By applying Kirchhoff’s voltage law (KVL), the loop equations are applied at the input
side and output side of the equivalent circuit of the transformer,

v1 = R1 I1 +
dl1
dt

(2)

v2 = R2 I2 +
dl2
dt

(3)

where λ1 = λl1 + λm and λ2 = λl2 + λm. We know that L1 and L2 are considered linear
inductances; the flux linkages of L1 and L2 can be written as λl1 = L1I1 and λl2 = L2I2.
Therefore, I1 and I2 are given as

I1 =
λ1 − λm

L1
(4)

I2 =
λ2 − λm

L2
(5)

Applying the KVL in the middle loop of the above circuit is given as:

Rcic =
dλm

dt
(6)

Substituting Equation (4) in Equation (2), the first state-space equation is achieved,
which is

dλ1

dt
= −R1

L1
λ1 +

R1

L1
λm + v1 (7)

(First state-space equation)
Substituting Equation (5) in Equation (3), and considering V2 = −RLI2, the second

state-space equation is modified as

dλ2

dt
= −RL + R2

L2
λ2 +

RL + R2

L2
λm (8)

(Second state-space equation)
Considering [1,4–6], the third state-space equation, which associates the nonlinear

nature of the transformer magnetic core, is given by

dλm

dt
=

Rc

L1
λ1 +

Rc

L2
λ2 − Rc

(
1
L1

+
1
L2

)
λm − Rcim (9)

(Third state-space equation)
To predict the current in the primary side winding with the EKF method, the nonlinear

state-space model output is derived as:

y = I1 =
1
L1

λ1 − 1
L1

λm (10)

Equations (7)–(10) give the state-space formulation of the nonlinear model of the
transformer. In Equation (9), the inrush current im is not determined. Therefore, it is
required to determine a nonlinear model of transformer, im=g (λm), in which g describes
the nonlinear nature of the hysteresis andmagnetic saturation of the core.

According to the literature [10], various approaches are suggested for modeling this
nonlinear behavior such as tangent, polynomial, and hyperbolic tangent functions, etc.
Based on a trial and error approach, it was concluded that the combination of two Gaussian
functions will best describe the nonlinear behavior of the 1-phase transformer that is
studied in this paper. The criterion for assessment of the different models is the root mean
square of the error (RMSE). The Gaussian model is given as:

im = g(λm) = sign(λm)×
[

ae−( |λm |−b
c )

2

+ de−( |λm |−e
f )

2
]

(11)

According to the literature [10], the main coefficients of the Gaussian model are esti-
mated by using nonlinear LS (NLS) optimization and the Levenberg-Marquardt algorithm
technique. Different Gaussian functions are used to predict the magnetization curve of a
transformer, as presented in Table 1 [10].
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Table 1. Different functions used for the estimation of the magnetization curve of the transformer.

No Function RMSE

I im = λm

[
−2 + 4 tan (0.65λm)

2
]

1.1082

II im = 16λ5
m − 47λ4

m + 43λ3
m − 11.5λ2

m − 0.5λm + 0.02 1.3214

III im = sgn(λm)

[
44e

−(
|λm |−6

2 )
2

+ 170e−
(
|λm |−10

3.5 )
2
]

0.7042

Functions I, II, and III of the above Table 1 are used for various estimations of the
magnetization curve, i.e., magnetizing current vs. magnetization and transformer inrush
currents, as shown in Figure 2a,b, respectively [10]. The magnetic inrush currents are
provided based on the various functions presented in the above Table 1 and it shows the
behavior of the magnetic core [10].

Figure 2. Various estimated magnetization curves (a) with their respective inrush currents (b).

Different functions from Table 1 are used for modelling the magnetic core behavior
of the transformer. Different estimations of the magnetization curve are compared in
Figure 2a. Moreover, with different fulfilled estimations, the expected waveforms relevant
to the transformer inrush current under various conditions are shown in Figure 2b.

3. EKF Formulation and Its Working Principle

The proposed working principle of EKF algorithm is given below.

3.1. Proposed Working Principle of the EKF

According to the literature [10], the nonlinear state-space model’s equation of the
1-phase transformer considered was derived in the previous section. The transformer
primary side winding current using EKF is estimated for the model considered [10]. If the
transformer is under a fault condition, the EKF will accurately predict the input current. If
the considered transformer is in a faulty period, the model would not give proper nonlinear
behavior due to the existing internal faults. Therefore, the estimation error of the EKF is
increased, which depends on the accuracy of the model. In this regard, the estimation error
is accountably large during the incipient cycles. Therefore, the absolute residual signal
(ARS), i.e., the difference between the estimated and measured primary side currents,
is increased at the incipient cycle while energizing a transformer in a faulty condition.
This feature is used for the classification of transformer inrush currents from internal
faults. Therefore, the ARS compares with the predefined threshold value for confirming or
rejecting the protection systems [10].
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3.2. Formation of the EKF

The nonlinear behavior of the state-space model can be given as follows:

λ. = f (λ, v1, ω, t)
I1 = h(λ, v, t)

ω ≈ (0, Q)
v ≈ (0, R)

(12)

where v and ω are uncorrelated white noises with zero mean and λ3×1 is the state vec-
tor. The complete algorithm of the proposed EKF is given by the following flowchart
in Figure 3 [10].

Figure 3. Flowchart of the proposed EKF method for estimation of different fault currents.
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The nonlinear vectors of Equation (12) for the transformer modeled in earlier sections
are formulated in Equation (13).⎡

⎢⎢⎣
•

λ1•
λ2•
λm

⎤
⎥⎥⎦ = f (λ, v1, ω, t) =

⎡
⎢⎢⎣

−R1
L1

λ1 +
R1
L1

λm + v1 + ω1
−RL+R2

L2
λ2 +

RL+R2
L2

λm + ω2

RC
L1

λ1 +
RC
L2

λ2 − RC

(
1
L1

+ 1
L2

)
λm − RC(sgn(λm)[ae−( |λm |−b

c )
2

+ de−( |λm |−e
c )

2

] + ω3

⎤
⎥⎥⎦

y = I1 = h(λ, v, t) = 1
L1

λ1 − 1
L1

λm + v

(13)

In Equation (13), y and v1 are the measured magnetic inrush currents of the transformer
and input voltage of each sample datum, respectively. Moreover, Q and R matrices are
considered as

Q =

⎡
⎣ 0.2 0 0

0 0.05 0
0 0 0.5

⎤
⎦

R = 1
The Q and R matrices were chosen based on the present model and measurement uncer-

tainties, and the matrices A, L, C, and M were also obtained, as given in Equations (14)–(17).

A = ∂ f
∂λ

∣∣∣∧
λ
=⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− R1
L1

0 R1
L1

0 − RL+R2
L2

RL+R2
L2

RC
L1

RC
L2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−RC

(
1
L1

+ 1
L2

)
− RC

((
ae−(

∧
λ m−b

c )

2)(
− 2

c

(
∧
λ m−b

c

)))
+

⎛
⎝de−(

∧
λ m−e

f )

2⎞⎠(− 2
f

(
∧
λ m−e

f

))

when
∧
λ m ≥ 0

RC

(
1
L1

+ 1
L2

)
− RC

((
ae−(

∧
λ m+b

c )

2)(
− 2

c

(
∧
λ m−b

c

)))
+

⎛
⎝de−(

∧
λ m+e

f )

2⎞⎠(− 2
f

(
∧
λ m−e

f

))

when
∧
λ m ≤ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14)

L =
∂ f
∂ω

∣∣∣∣
λ̂

=

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ (15)

C =
∂h
∂λ

∣∣∣∣
λ̂

=
[

1
L1

0 − 1
L1

]
(16)

M =
∂h
∂v

∣∣∣∣
λ̂

= 1 (17)

3.3. Operating Criteria

The residual signal instantaneous magnitude value is determined to bethe criterionfor
differentiating fault currents of the transformer. The residual signal can be shown as:

R = y − ŷ (18)

where y and ŷ are the measured value (from the current transformer) and estimated
(with EKF) currents, respectively. If the ARS is greater than the threshold value, the fault
condition is discriminated. The selection of the threshold value is very important, because
it may affect the operating time of estimation and accuracy percentage of the algorithm.

4. Analysis of Simulation Results of Transformer under Various Faults

The proposed method was implemented by using simulated data of the transformer to
distinguish the different inrush and fault conditions. The inrush current may be present in
the system when the transformer is energized under no-load or lightly loaded conditions.
The equivalent circuit of the respective transformer under such conditions is shown in
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Figure 4. Consider Rs, Rp, and Rt are a series, core losses and source resistances and Ls and
Lm are series and magnetizing inductances, respectively.

Figure 4. Transformer equivalent circuit under the no-load condition.

4.1. Transformer Parameters

The single-phase transformer equivalent model was designed and simulated using
MATLAB/Simulink, 2018a version by MathWorks, Natick, USA for different internal fault
conditions and inrush currents conditions.

The transformer’s parameters are tabulated in Table 2.

Table 2. Specifications of the single-phase transformer.

Specification No. Parameters Value

1 KVA rating 15 KVA
2 Frequency 50 Hz
3 Voltage Rating 2300/230
4 Rated Primary Current 6.53 amps
5 Winding Resistance on Primary 7.334 mΩ
6 Winding Resistance on Secondary 4.634 × 10−5 Ω
7 Winding Reactance on Primary 3.428 Ω
8 Winding Reactance on Secondary 6.194 Ω

4.2. Types of Inrush Currents, Modeling, and Simulation of Inrush Currents

1. Inrush current energization
2. Recovery inrush current
3. Sympathetic inrush current

4.2.1. Factors Affecting Inrush Currents

The inrush phenomenon occurs due to over-fluxing of the transformer core for a
temporary period. This phenomenon may depend on:

1. The switching time of the voltage waveform, when the transformer is energized.
2. The magnitude and polarity of the flux (residual) persisting in the transformer at the

re-energization time.
3. Resistance on the primary side winding.

4.2.2. Effects of Switching Angle

The phase angle of starting voltage depends on the transformer when it is switched
on. Therefore, the flux in the core also starts from zero at the time of switching. As per
Faraday’s law of electromagnetic induction, the voltage induced across the winding is
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given as e = dϕ
dt , where ϕ is the flux in the core. Hence, the flux ϕ is the integral of the

voltage wave, which can be determined and it is shown in Figure 5 [3].

Figure 5. Calculation of the induced emf.

The saturation of the transformer starts when it is crossed above the steady-state value
of the flux, i.e., when the transformer is switching, the maximum value of flux will double
the steady-state maximum value. After the occurrence of the steady-state maximum value
of flux, the core becomes saturated and the respective current required for producing the
rest of flux when it is high is shown in Figure 6 [3]. Let ϕm be the maximum value of the
steady-state flux. In this regard, the transformer primary side will draw a high peak current
from the source side. This phenomenon is treated as the inrush current or magnetizing
inrush current of the transformer.

Figure 6. Transformer flux doubling effect.

During the voltage switching at 90°, the produced flux is the minimum and hence
the current drawn. If the switching angle increases, it leads to a decrease in the amplitude
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of inrush current, which is shown in Figure 7 [3]. The representation of inrush current
energization is shown in Figure 8, and inrush currents for various switching angles are
shown in Figure 9.

The magnitudes of magnetic inrush currents for various switching angles are given
in Table 3.

Hence, the highest inrush current magnitude is treated for a zero-degree switching
angle and the least inrush current magnitude is treated for a 90-degree switching angle. It
is observed that increasing the switching angle decreases the amplitude of inrush current
for different materials, as shown in Figures 10 and 11.

Figure 7. Variation in switching angle effects on inrush current amplitude.

Figure 8. Representation of energization inrush current.
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Figure 9. Inrush currents for various switching angles.

Table 3. Magnitudes of magnetic inrush current for various switching angles.

SNo. Switching Angle Inrush Current Magnitude

1 0 degree switching 19.688 A
2 45 degree switching 13.170 A
3 90 degree switching 0.037 A
4 180 degree switching −19.573 A

Figure 10. Analysis of inrush current using FFT for old materials.
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Figure 11. Analysis of inrush currents using FFT for new materials (metglass).

Table 4 shows the magnitude of harmonic currents for old metals and new metals
(metglass) of transformer core.

Table 4. Magnitudes of harmonic currents for different metals of the transformer.

Sl.No. Harmonic Oder Old Materials
New Materials

(Metglass)

1 Fundamental harmonic (1st) magnitude 7.73 A 21.78 A
2 2nd harmonic magnitude 4.78 A 3.86 A
3 3rd harmonic magnitude 1.69 A 1.65 A
4 Total harmonic distortion (%THD) 66.93% 20.73%

4.3. Modeling and Simulation of Internal Faults

The generation of internal faults, i.e., transformer internal turn faults along with
current waveforms, is shown in Figures 12 and 13, respectively.

Table 5 shows the magnitude of internal fault current for different conditions of
the transformer.
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Figure 12. Simulink model for various transformer internal (turn-to-turn) faults (no fault, 2% fault
and 4% fault).

Figure 13. Internal faults with energization for different percentages of winding shorted.
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Table 5. Magnitudes of internal fault currents for different cases.

Sl.No. Particulars No Fault 2% Fault 4% Fault

1
Current Magnitude

(RMS value)
(Simulation analysis)

6.52 A 20.23 A 34.48 A

2
Current Magnitude

(Peak = RMS × 1.414 value)
(Simulation analysis)

9.151 A 28.226 A 47.666 A

3
Current Magnitude

(Peak = RMS × 1.414 value)
(Mathematical analysis)

9.21 A 28.61 A 48.854 A

Hence, the simulation results are validated with the mathematical analysis under various conditions i.e., no fault,
2% fault, and 4% fault.

4.4. Implementation of the EKF for the Specified Transformer

The simulation of transformer with the EKF for primary current estimation with the
specific data of the transformer is shown in Figure 14.

Figure 14. Simulink model of the EKF for primary current estimation.
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The functions used in the EKF block are:

 
 
 

 

 

 

 

 

 

 

 

 

 

1. State transition function 
function x = myStateTransitionFcn(x,v) 

dt = 0.0001; 
ind1 = 0.012256; 
ind2 = 0.000106; 
R1 = 2.59; 
R2 = 2×4.6344e-05; 
RC = 105,000; 
x = x + [(-R1×x(1)/ind1) + (R1× x(3)/ind1) + v; 
(-R2× x(2)/ind2) + (R2× x(3)/ind2);RC× x(1)/ind1 + RC× x(2)/ind2 − (RC× x(3)) ×(1/ind1 
+ 1/ind2)-RC× sign(x(3)) ×(13.89×  

exp(-((abs(x(3))-6.17)/2.58)^2)) − RC× sign(x(3)) ×(54.55× exp(-((abs(x(3))-6)/1.92)^2))] × 
dt; 
end 

2. Measurement function 
function y = myMeasurementFcn1(x) 

ind1 = 0.012256; 
ind2 = 2× 5.55368e-5; 
R1 = 2.59; 
R2 = 2× 4.6344e-05; 
RC = 105,000; 
y = (1/ind1) × x(1) − (1/ind1) × x(3); 
end 

4.5. Simulation Results of EKF Algorithm for Various Conditions

When the transformer is energized in various healthy conditions, the transformer is
able to estimate it almost perfectly with a low residual signal value. The various estimated
magnetization curves with their respective inrush currents mentioned in Section 2 are more
useful for analysis of the EKF algorithm for estimation of inrush current [10].

The transformer is now energized after it has a 2% inter-turn fault. The combination
of inrush and fault currents is not perfectly estimated by the EKF algorithm with a residue
larger than in Figure 15; it can be observed in a close-up view of the EKF estimation
during the inrush case in Figure 16. Similarly, the EKF was tested over the algorithms
with various fault conditions; again, a high residual signal was generated, as shown
in Figures 17 and 18.

The simulation model for discrimination of magnetic inrush current, 2% internal
fault, 4% internal fault, and 6% internal fault along with current waveforms is given in
Figure 19a,b and the respective ARS signals obtained from various sources are depicted
in Figure 20, which indicates that the residual signal keeps increasing with the severity of
the fault.
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Figure 15. Estimation of inrush current by EKF algorithm (blue line is actual current and red line is the EKF
estimation current).

Figure 16. Close up view of EKF estimation during inrush case (red line depicts actual current where the blue line is the
estimated current waveform).
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Figure 17. EKF estimation during energization with a 2% internal fault.

Figure 18. EKF estimation during energization with a 6% internal fault.
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Figure 19. (a) Simulation model with various types of internal faults. (b) ARS signals of magnetic inrush current along with
fault current waveforms.

Figure 20. ARS signals for various cases.
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The Table 6 indicates the fault detection time with respect to the severity of the faults
along with ARS signal amplitudes for different cases.

Table 6. ARS signals and the fault detection time for various cases.

S.No. Different Cases ARS Signal Amplitude (amps) Detection Time (ms)

1 For all inrush currents less than 5 amps -
2 Threshold value 11 amps -
3 Energization with 2% fault 14.3 amps 116
4 Energization with 4% fault 28.82 amps 115
5 Energization with 6% fault 43.82 amps 114

4.6. Observations

• The EKF algorithm was simulated for cases of inrush current with various switching
angle cases, and the residue signal was found to be low and within limits (less than
the selected threshold value in all cases).

• The internal fault current could not be estimated by the EKF filter and all the ARS
values were found to be greater than the selected threshold value of 11 amperes (all
fault conditions had an ARS of 11A or more, so this was selected as the threshold). If
ARS > 11A, it is an internal fault; otherwise, it is not.

• While we prefer a shorter operating time, some fault cases may be perceived as inrush
because the ARS value might not have crossed the threshold by then. Nevertheless,
the operating point was always low (max 116 milliseconds, which is much less than
a cycle). As the severity of the fault increases, the detection time decreases as the
required residual threshold is achieved earlier.

• EKF is independent of the low second harmonic problem as the filter takes into account
the BH curve of the core. If the core material or other parameters of the transformers
are changed, the equations for the EKF algorithm will have to be changed as well and,
hence, the algorithm is able to predict the inrush currents in every case provided the
equations are derived and implemented carefully.

• The state-space model and all the coefficients must be derived very carefully. Even a
slight mistake can cause the EKF to diverge, which is bound to give the wrong output.

5. Conclusions

In this paper, the EKF was implemented for the discrimination of inrush currents
and internal faults current of a single-phase transformer. The state-space equations of
the power transformer were simplified using simple circuit theory and curve fitting (for
saturation curve). By using the two-step predictive-corrective mechanism of the EKF
algorithm, the estimation of the primary winding current of the transformer was achieved.
The transformer primary winding current was estimated for various switching angles and
faults using the EKF. It was observed that the ARS value is zero under normal conditions,
and it will not be equal to zero for internal fault and inrush phenomena conditions. Hence,
the EKF algorithm was implemented for discriminating the internal faults and inrush faults
by keeping the threshold level at the ARS value. The simulation results were validated
with the theoretical analysis under various fault conditions. It is also concluded that the
detection time of internal faults decreases with the severity of the fault. Hence, this scheme
provides fast protection of the transformer for severe faults. The results of various test
cases using the EKF algorithm were presented. The implementation of the EKF can be
extended to protect other power system equipments for classification of faults.
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Abstract: Traditional direct field-oriented control (DFOC) techniques with integral-proportional
(PI) controllers have undesirable effects on the power quality and performance of variable speed
contra-rotating wind power (CRWP) plants based on asynchronous generators (ASGs). In this work,
a commanding technique based on the DFOC technique for ASG is presented on variable speed
conditions to minimize the output power ripples and the total harmonic distortion (THD) of the grid
current. A new DFOC strategy was designed based on third-order sliding mode (TOSM) control to
minimize oscillations and the THD value of the current and active power of the ASG; the designed
technique decreases the current THD from ASG and does not impose any additional undulations
in different parts of ASG. The designed technique is simply implemented on traditional DFOC
techniques in variable speed DRWP systems to ameliorate its effectiveness. Also, the results show
that by using the designed TOSM controllers, in addition to regulating the active and reactive powers
of the ASG-based variable speed CRWP system, the THD current and active power undulations of
the traditional inverters can be minimized simultaneously, and the stator current became more like a
sinusoidal form.

Keywords: third-order sliding mode control; asynchronous generators; variable speed dual-rotor
wind turbine; direct field-oriented control; integral-proportional

1. Introduction

A sliding-mode command (SMC) is a robust command technique that forces the system
to slide along a prescribed switching surface and changes the dynamics of a system by using
a discontinuous command signal [1]. Compared to that of other command strategies, SMC
attracted significant interest due to its high robustness to external disturbances, simplicity,
ease of implementation, and low sensitivity to the system parameter variations [2]. Similar
to other methods, we can find this method in all fields of applied sciences, such as robotics,
process command, machine command, and motion command. On the other hand, the
instrumentation is among the most widely used applications of the SMC technique. There
are new applications of the SMC method, for example, anomaly detection and congestion
command. SMC technique was used for AC machine drive in wind turbines. In [3], the
author uses the SMC technique to regulate the power of the induction generator. In [4],
direct power command (DPC) was designed based on the SMC method of the induction
generator. Active power undulations were reduced by using the neural SMC (NSMC)
technique [5]. However, the NSMC technique was able to offer better effectiveness and
performance compared to that of classical SMC strategy. Benbouhenni et al. proposed the
fuzzy SMC technique to reduces stator current and torque undulations of an asynchronous
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generators-based wind turbine [6]. This technique combines the advantages of fuzzy logic
and the classical SMC technique so the chattering phenomena are eliminated. In [7], a
robust SMC technique based on neuro-fuzzy controllers was developed for ASG.

Despite the many advantages and numerical simulation results, as well as the exper-
imental results, the SMC method is still characterized by several problems, such as the
chattering issue. When this method is used to produce electricity from a wind farm, it
presents ripples at the level of effective electric current, and this is undesirable because
high-quality current and energy can be obtained only if the ripple ratio is very small. There
are several solutions proposed to ameliorate the characteristics and effectiveness of the
SMC technique, and thus, to improve the quality of the electric current. When the current is
high quality, the life of the devices is extended to a longer period, thus reducing the cost of
purchasing the devices. In addition, the cost of periodic equipment maintenance is reduced.
Among the proposed solutions to reduce chattering and improve SMC performance, we
find terminal SMC (TSMC) technique [8], synergetic control [9], integral SMC (ISMC)
strategy [10], fast TSMC technique [11], adaptive global SMC control [12], total SMC [13],
nonsingular TSMC [14], fast TSMC technique [15], and fast integral TSMC [16].

Traditionally, the terminal SMC (TSMC) command was proposed in 1996 by Yu
et al. [17]. Compared to that of the classical SMC technique, TSMC offers some superior
characteristics such as high steady-state tracking precision and fast and finite-time conver-
gence, such as motor control, robot command, multiagent systems, stochastic nonlinear
systems, second-order SMC command, TSMC observer, and distributed command. Never-
theless, the TSMC command technique has a singularity problem. The latter is among the
biggest obstacles that limit the use of the TSMC method. In [18], a nonsingular fast TSMC
technique was proposed for position tracking of the electric cylinder. ASG control through
rotor current controllers proposed by the TSMC technique is designed in [19], and in this
work, the current and torque undulations are reduced compared to the classical method.
A super twisting fractional-order terminal SMC technique was designed to command the
rotor converter of ASG [20]. In [21], the rotor side converter of ASG is controlled by using
the second-order integral TSMC method. The TSMC approach improves the performance
of the ASG-based wind turbine compared to a standard SMC method [22].

In recent decades, several new methods were published with the goal of overcoming
the chattering phenomenon of classical SMC techniques. In [23], an approach of the high-
order SMC technique was designed. In [24], another approach was designed to overcome
the problem of the high-order SMC technique. These two techniques adopted indirect
methods to overcome the problem of the chattering phenomenon. In [25], the author uses
the super twisting algorithm (STA) to control the induction generator. The neural algorithm
and the STA technique were combined to reduces voltage and stator current ripples of
ASG-based wind power [26]. The combination of the STA algorithm and the neuro-fuzzy
methods was completed to obtain a more robust method, as well as to reduce oscilations at
the level of electromagnetic torque and active power [27]. STA algorithm with fuzzy logic
was used to control doubly fed induction machines [28]. In [29], a direct power control
(DPC) with the STA algorithm minimized the ripples of active power compared to that
of DPC with a look-up table. In [30], the author uses the STA algorithm to command
the power of the synchronous generator (SG). In [31], the fractional order-based super
twisting algorithm (FOSTA) improves the performances of the BLDC compared to that of
proportional-integral (PI) controllers. The STA technique minimizes the chattering effect,
which is inherent in the traditional SMC method [32,33]. In [34], the adaptive intelligent
global SMC method was proposed to minimize the current ripple of a DC-DC buck inverter.
In [35], the DPC strategy was designed based on the variable gain STA technique to
command ASG-based wind turbines. In [36], the STA improves the performance of the
DFIG and the quality of output power compared to classical SMC control.

There is another method that was suggested in several scientific works to ameliorate
the characteristics of the SMC method under the name of second-order continuous SMC
method. This method is characterized by simplicity and durability, and it can be accom-
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plished easily. This method is used to ameliorate the effectiveness and efficiency of the DPC
and DTC of the asynchronous generator [37,38]. Synergetic control and the SMC method
are combined to minimize the chattering phenomenon and ameliorate the characteristics of
the quality current of the ASG [39]. This designed strategy is a simple nonlinear technique
that can reduce the total harmonic distortion (THD) of current compared to that of the
traditional strategy. To obtain lower current ripples and high-quality energy efficiency,
a new nonlinear strategy is designed in [40]. This designed new strategy is simple and
gives very excellent results compared with that of the PI controller. This method was called
terminal synergetic control.

There are many nonlinear methods proposed to ameliorate the purity of current
produced from renewable sources. All these methods have one goal: to obtain good results
in terms of ripples of effective power, electric current, and THD value.

In this work, we attempt to deliver a new method for SMC to reduce the chattering
phenomenon as well as improve the performance and efficiency of the asynchronous
generator-based contra-rotating wind turbine power (CRWP). This method will be called
below as the third-order sliding mode (TOSM) command. This new method is the main
contribution made in this paper.

In this work, the TOSM command was designed to control and minimize the ripples
of current, reactive power, torque, and active power of ASG-based variable- speed CRWP
systems. A TOSM technique to overcome the undulations power problem is designed
for the direct field-oriented control (DFOC) technique of variable-speed CRWP systems.
A DFOC control strategy with TOSM controllers is employed to enable avoidance of the
power undulations and improve the response time. The system states can be ensured
to improve in variation parameters. The principle of the proposed TOSM controllers
is detailed in the work. Validation of the designed technology is carried out by digital
simulations using Matlab software.

In summary, the novelties and main findings of this paper are as follows:

- A new TOSM controller based on the DFOC control scheme is proposed to reduce
ripples of both reactive and active powers.

- TOSM controllers minimize the tracking error for reactive and active powers towards
the references of ASG-based variable speed CRWP systems.

- The DFOC-TOSM control scheme with the PWM technique minimizes the THD value
of torque, voltage, and active power of ASG-based variable speed CRWP.

Thus, the combination of the work is as follows. In Section 2, contra-rotating wind
turbine system models are presented. In Section 3, the proposed nonlinear controller is
presented using the STA controller. Section 4 includes the DFOC control scheme with
designed controllers. Section 5 presents and discusses the numerical results of the research
carried out.

2. CRWP Model

Wind energy is inexhaustible, clean, does not require much maintenance, and is
inexpensive. The use of wind energy is now common in the world in the field of electric
energy generation. The most widely used generation system for wind power conversion is
the single-turbine, which is capable of converting 59% of the total wind power into useful
electrical power [41]. This is still a very small percentage and needs to be increased. In
order to ameliorate the characteristics and development of a single-rotor system, there are
several scientific types of research in this regard to increase the efficiency of power recovery.
Among these most effective solutions, we find the two-rotor system or contra-rotating wind
power. The latter can increase the power conversion efficiency by 40% compared to that of
a single turbine system (STS) [42]. This new method is explained in [43–47]. In this new
technology, two turbines were used to raise and increase the ability to collect energy from
the wind. Experiments proved the effectiveness of this new technology. However, the first
is a small turbine and the second is a large turbine. The difference between new and old
technology lies in the number of mechanical components and the amount of energy gained
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from the wind. As is known through the scientific experiments conducted on this new
technology, all the results are in favor of the new technology. Besides, this new turbine has
excellent characteristics in regions with high and low wind speeds. Among its advantages
is that it operates at lower tip speed ratios compared to that of the traditional STS [47].
However, this method has several disadvantages, such as high costs, control difficulties,
and risk of subsynchronous resonance. On the other hand, the new technology has more
mechanical components than the classic wind turbine. The mechanical energy obtained
from this new technology is shown in Equation (1). Through this equation, the total energy
of this technology is the sum of the two energies of the small and large turbines:

PCRWP = PT = PST + PLT (1)

where PST and PLT are the mechanical power of the small and large turbines.
In the CRWP system, the resulting aerodynamic torque is the sum of the torques of

the small and large turbines and is represented by the Equation (2).

TCRWP = TT = TST + TLT (2)

where TST and TLT are the aerodynamic torque of the small and large turbines.
Equations (3) and (4) represent the aerodynamic torque for of the large and small

turbines [45].

TLT =
Cp

2·λ3
LT

·ρ·π·R5
LT ·w2

LT (3)

TST =
Cp

2·λ3
ST

·ρ·π·R5
ST ·w2

ST (4)

where: RST and RLT are the blade radius of the small and large turbines; ρ: the air density;
λST, λLT: the tip speed ration of the small and large turbines; wST, wLT the mechanical
speed of the small and large turbines.

Equations (5) and (6) represents the tip speed ratios of the small and large turbines,
respectively.

λST =
wST ·RST

VST
(5)

λLT =
wLT ·RLT

VLT
(6)

where VST and VLT are the speed of the unified wind on small and large turbines.
To calculate the wind speed at a point between a large and a small turbine, we use

Equation (7). Fifteen m is the distance (x) between the center of the large turbine and the
center of the small turbine [48].

Vx = VLT ·
(

1 − 1 −√
1 − CT
2

·(1 + 2·x√
1 + 4·x2

)

)
(7)

where CT is the trust coefficient (CT = 0.9) and Vx is the wind speed at a point between a
large and small turbine.

Cp in terms of the pitch angle (β) is given by Equation (8) [49].

Cp(β, λ) = 0.517·
(

116
λi

− 0.4·β − 5
)
·e

−21
λi + 0.0068·λ (8)

3. Third-Order Sliding Mode Control

There are many types of SMC techniques in the literature. All these proposed methods
aim to reduce chattering phenomena. The one with the simplest algorithm and the easiest
experimentally is the STA method [50,51]. This method was applied in several fields, for
example, electronic and electrical control. In [52], there are two types of STA which are
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as follows: super twisting extended state observer and super twisting SMC. These two
methods were applied to wind turbines to compare them. In [53], the characteristic of
DFOC was improved by the STA method. Experimental results showed the characteristics
of the STA technique in improving the response time of a six-phase motor. STA technique
was proposed to control the DC-link of the NPC inverter [54]. Internal permanent-magnet
synchronous motors (IPMSMs) were controlled by an adaptive STA observer [55]. In [56],
the author proposes to use the STA technique to command the output current of the
multilevel converter. Permanent-magnet synchronous motors (PMSMs) were controlled
by two different types of nonlinear controllers (STA and SMC) [57]. Experimental results
showed that the STA improved the motor properties compared to that of SMC. In [58], the
author proposes to use the STA technique to control the photovoltaic system. The STA
technique has a very high efficacy compared to that of the classical method, as seen in the
results of [58]. Synchronous motors (SMs) were controlled by the STA method [59]. STA
observer with adaptive parameters estimation was proposed to command the IPMSMs [60].
In [61], the author proposes to use the STA technique to control the DC motor. The
numerical simulation results showed that the characteristics of the STAR technique improve
the performance and efficiency of the DC motor.

In this section, a new technique to reduce the chattering phenomena and minimizes
the ripples of active power and current for ASG-CRWP was designed. The designed
technique, named third-order sliding mode (TOSM), is an effective method for uncertain
systems to overcome the main drawbacks of the classical SMC technique and STA described
in the literature. The proposed strategy is a nonlinear method based on the STA method.
The command input of the designed TOSM controller comprises three inputs given by
Equation (9):

u(t) = u1(t) + u2(t) + u3(t) (9)

u1(t) = λ1·
√
|S| ·Sign(S) (10)

u2(t) = λ2·
∫

Sign(S)dt (11)

u3(t) = λ3·Sign(S) (12)

Equation (13) shows the output of the proposed TOSM method:

u(t) = λ1·
√
|S| ·Sign(S) + λ2·

∫
Sign(S)dt + λ3·Sign(S) (13)

The tuning constants λ1, λ2, and λ3 are used to refine the TOSM strategy for controller
smoothing.

This suggested method was used to improve the performance of the DFOC method.
Figure 1 shows the structure of the proposed TOSM controller.

Figure 1. Structure of proposed TOSM controller.

The stability condition is given by:

S·
.
S < 0 (14)
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This TOSM technique is designed in this work to minimize the ripple of stator current,
active power, electromagnetic torque, and reactive power in an ASG-based CRWP system
using the DFOC strategy and an inverter controlled by the classical PWM technique.

4. DFOC-TOSM Control

In the literature, the FOC technique was widely used for AC machines. The principle
of this control is to orient the stator flux along the axis of the rotating frame. Two types
of FOC strategies were studied in literature: direct and indirect FOC control. Traditional
FOC control was proposed to control the induction generator [62]. In [63], the indirect
FOC (IFOC) technique improved the performance of the induction generator compared
with that of the DFOC technique. In [64], the FOC strategy was designed based on the
neuro-fuzzy (NF) controllers to minimize the current and flux of the ASG. The experimental
result shows the superiority of the designed FOC-NF technique. In [65], the FOC strategy
was designed based on SVM technique and hysteresis current to minimize the reactive
power ripples of ASG-based traditional wind power.

In this section, we propose to ameliorate the performances of the DFOC strategy of
the asynchronous generator integrated into the CRWP system. This method is based on
the following principle [64]:

ψds = 0 and ψqs = ψs (15)

Hence, direct stator voltage and quadrature stator voltage can be written as:
{

Vqs = Vs = ws·ψs
Vds = 0

(16)

Equation (17) expresses each of direct stator current and quadrature stator current of
the induction generator. {

Iqs = −M
Ls
·Iqr

Ids = −M
Ls
·Idr +

ψs
Ls

(17)

The active and reactive power are obtained from Equation (18).⎧⎨
⎩ Qs = −1.5

(
ωs ·ψs ·M

Ls
·Idr − ωs ·ψs

2

Ls

)
Ps = −1.5 ωs ·ψs ·M

Ls
·Iqr

(18)

Equation (19) represents the torque.

Tem = −1.5 Iqr· ψds· p·M
Ls

(19)

Equation (20) expresses each of direct rotor voltage and quadrature rotor voltage of
the induction generator.⎧⎨

⎩
Vqr = Rdr·Iqr +

(
Lr − M2

Ls

)
p·Iqr − g·ws

(
Lr − M2

Ls

)
Idr + g·M·Vs

Ls

Vdr = Rdr·Idr +
(

Lr − M2

Ls

)
·p·Idr − g·ws·

(
Lr − M2

Ls

)
·Iqr

(20)

Equation (21) represents direct and quadrature rotor current of the ASG.⎧⎪⎪⎨
⎪⎪⎩

Iqr =
(

Vqr − g·ws·
(

Lr − M2

Ls

)
·Iqr − g·M·Vs

Ls

)
· 1

Rr +
(

Lr− M2
Ls

)
·p

Idr =
(

Vdr − g·ws

(
Lr − M2

Ls

)
·Iqr

)
· 1

Rr +
(

Lr− M2
Ls

)
·p

(21)

The DFOC method is a very simple and easy to implement method, and it can be
applied to any electric machine. In addition, it is inexpensive compared to that of other
methods. The principle of this method can be expressed as in Figure 2. From this figure, it
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is observed that two independent PI controllers to control the direct and quadrature rotor
voltages are used.

Figure 2. Classical DFOC strategy.

This method is simple but provides greater ripples for both current and active power.
Also, the response time is rather large compared, for example, with direct power command
(DPC) and direct torque command (DTC), and this is due to the use of PI controllers.

In this paper, we propose to ameliorate the characteristics and effectiveness of this
method by the proposed nonlinear TOSM method. Thus, by improving the quality of the
current produced, the life of the generator and the system as a whole is extended as well.

The principle of the TOSM-DFOC strategy is the direct regulation of the current, active
power, voltage, torque, and reactive power of the ASG-based CRWP system by using two
TOSM techniques. The two regulated variables are reactive and active powers, which are
usually controlled by TOSM controllers. The idea is to keep the active and reactive power
quantities within the designed sliding surfaces.

The DFOC with TOSM controllers (TOSM-DFOC) is a modification of the traditional
DFOC strategy, where the PI regulators were replaced by TOSM controllers, as shown in
Figure 3.

Figure 3. Structure of DFOC-TOSM strategy.

The TOSM technique was designed to force the regulated dynamics towards man-
ifolds and keeps them there. To force the ASG active and reactive powers to track their
corresponding references, the sliding surfaces SQs and SPs of the reactive and active powers
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are selected as the error between the desired and real dynamics, being given by Equations
(22) and (23), respectively:

SPs = P∗
s − Ps (22)

SQs = Q∗
s − Qs (23)

The sliding surfaces shown in Equations (22) and (23) are used as inputs for the TOSM
command law. Thus, TOSM regulators for the active and reactive power are used to
influence the two rotor voltage components, as in Equations (24) and (25), respectively:

V∗
dr = λ1·

√∣∣SQs
∣∣ ·Sign

(
SQs

)
+ λ2·

∫
Sign

(
SQs

)
dt + λ3·Sign

(
SQs

)
(24)

V∗
qr = λ1·

√
|SPs| · Sign(SPs) + λ2·

∫
Sign(SPs)dt + λ3· Sign(SPs) (25)

This proposed technique is implemented for a DFOC strategy based on the TOSM
controllers to obtain minimum active power undulations and to minimize the chattering
phenomenon. The controller structure of the TOSM technique for the reactive and active
powers of the DFOC strategy is presented in Figures 4 and 5, respectively.

Figure 4. Proposed TOSM active power controller.

Figure 5. Proposed TOSM reactive power controller.

The basic block diagram of the DFOC-TOSM strategy is shown in Figure 6. This
strategy is designed as a simple algorithm that provides a robust command. However,
this proposed strategy gives a fast response dynamic compared to DFOC, DPC, and DTC.
This designed technique can better minimize the active and reactive power undulations
compared to that of classic DPC, DFOC, and DTC strategies.
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Figure 6. DFOC-TOSM control of ASG-CRWP.

The proposed method is one of the best methods available today, and this is due to
the use of TOSM. The following table (Table 1) shows a comparative study between the
proposed method and some of most famous and widely used methods, such as DTC, DPC,
and FOC control scheme. From Table 1, we note that the proposed method is more robust
than the rest of the methods in terms of improving the dynamic response and THD value.
But this method is rather complicated compared to that of the classic DTC and DPC.

Table 1. A comparative study between DFOC-TOSM with some techniques.

Control Techniques Controller Complexity
Current

Oscillations
Reference
Tracking

Dynamic
Responses

Sensitivity
to Parameter

Change

THD (%)
of Current

DTC control
Hysteresis
controller Low High Good Good High High

DPC control
Hysteresis
controller Low High Good Good High High

FOC control PI High High Acceptable Acceptable High High
Proposed technique

(DFOC-TOSMC)
TOSM

controller High Low Excellent Excellent Medium Low

5. Numerical Simulation

The proposed TOSM controller as applied for the ASG reactive and active powers
was implemented using MATLAB® software. Comparison between the proposed method
and the classical PI controller in terms of current, active power, torque and reactive powers
undulations reduction, wind speed changing, trajectory tracking, and robustness to ASG
parameter variations.

The generator used in the digital simulation has the following characteristics: f = 50 Hz,
p = 2, Rs = 0.012 Ω, Lr = 0.0136 H, Pn = 1.5 MW, Rr = 0.021 Ω, Ls = 0.0137 H, Vn = 380 V,
J = 1000 K×gm2, M = 0.0135 H, F = 0.0024 N×m.

The grid used in the simulation has the following parameters: nominal grid voltage
(Vg = 389 V), nominal grid frequency (fs = 50 Hz), DC-link voltage (E = 1200 V), filter
inductance (Lg = 6 mH), and filter resistance (Rg = 0.15 Ω).

DFOC with PI controllers (DFOC-PI) and DFOC-TOSM are simulated and compared
in terms of current, reactive power, torque and active power undulations, reference tracking,
and THD value of current.
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To test the effectiveness and robustness of the proposed method, we proposed two
different tests: the first is related to tracking the trajectory and the second to assess the
robustness to changes in some parameters of the machine.

5.1. First Test

The results obtained from the simulation for the two methods are shown in Figures 7–12.
In the case of each of the two proposed methods, the measured values of reactive and
active power follow the reference values very well (see Figures 9 and 10). On the other
hand, for the two techniques, the active and reactive powers perfectly track their references
values, for which the TOSM controller introduces better performances in terms of settling
time, overshoot damping, and steady-state error decreasing. In Figures 9 and 10, both
controllers introduce a good tracking performance with a remarkable superiority of the
proposed TOSM controller in terms of rise time, settling time, and steady-state error, which
all decrease. The electric current has the form of active power and is related to the wind
speed, as seen in Figure 12.

Figure 7. THD (DFOC-PI).

Figure 8. THD (DFOC-TOSM).
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Figure 9. Active power.

Figure 10. Reactive power.

Figure 11. Torque.

Figure 12. Current.

The torque resulting from the two proposed methods is shown in Figure 11. From this
figure, we find that the value of the torque is related to the values of active power and wind
speed. To further compare the characteristics of these two techniques, the stator currents
harmonic spectra are compared.

Figures 7 and 8 show the THD of stator current of the AG-CRWP system for both
DFOC strategies. Here, the THD value is reduced for the DFOC-TOSM (1.42%) when
compared to that of the DFOC-PI (2.94%). The THD reduction can be estimated at 51.71%.

The zoom in the current, active power, and torque is shown in Figures 13–15, re-
spectively. The DFOC-TOSM strategy reduces the undulations in torque, reactive power,
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current, and active power compared to that of the DFOC-PI strategy, and the reduction
rate is estimated at 84%, 94.5%, 78%, and 90%, respectively, compared to that of the clas-
sical method (DARPC). Based on the results above, the DFOC-TOSM strategy proved its
efficiency in minimizing undulations and chattering phenomena.

Figure 13. Zoom (Current).

Figure 14. Zoom (Active power).

Figure 15. Zoom (Torque).

5.2. Second Test

The aim of this test is to find out which method is not affected by changing the
following parameters: Rs, Rr, Ls, M, and Lr. Figures 16–21 show the simulation results
for variations in inductance and resistance values. Note that there is a change in reactive
power, torque, active power, and current because both active power and torque are related
to changing values of parameters. The classical technique was heavily affected by the
change of parameter values compared to that of the designed technique (Figures 22–24),
and this is evident in the value of THD (Figures 16 and 17). The ripple reduction can be
estimated at 73.94%. Parameter changes have a clear effect on the dynamic performances
of active power, current, torque, and stator reactive power when using the PI controller. In
addition, the decoupling between the reactive and active powers is not ensured in this case.
Instead, the designed DFOC based TOSM controller is robust against parameter variations,
and decoupling is perfectly ensured.
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Figure 16. THD (PI-DFOC).

Figure 17. THD (TOSM-DFOC).

Figure 18. Active power.
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Figure 19. Reactive power.

Figure 20. Torque.

Figure 21. Current.

Figure 22. Zoom (Active power).
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Figure 23. Zoom (Torque).

Figure 24. Zoom (Current).

Thus, the DFOC with designed TOSM algorithms is more robust than the classical
DFOC technique.

The obtained results can be summarized in Table 2. Table 2 presents a comparative
study between the proposed method and the classical method in all respects. Through this
table, we note that the proposed method gave very satisfactory results in terms of reducing
the torque and flux fluctuations. Also, the proposed method improved the dynamic
response compared to that of the classical method. On the other hand, the proposed
method provided better results in terms of current, reactive power, torque and active power
fluctuations, reactive and active power tracking, and the quality of the produced current.
The proposed DFOC-TOSM technique is more robust than that of the traditional DFOC
using PI controllers except for the dynamic response, rise time, overshoot, and settling time,
which is faster in the proposed technique than that of the DFOC technique. However, the
proposed technique is complicated relative to the calculations to be performed compared
to that of the DFOC control technique.

A comparative study between the proposed method in this paper with some published
works in terms of the value of THD is presented in Table 3. Through this table, the proposed
method provided a very good THD value of the current compared to that of the rest of
the other controls. Tables 2 and 3 show that the proposed method is more robust and
can be used to improve the quality of current and energy produced from the wind power
generation system.
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Table 2. Comparative results obtained from DFOC-TOSM with DFOC control.

Criteria
Control Techniques

DFOC DFOC-TOSM

Reactive and active power tracking Well Excellent

THD (%) 2.94 1.42

Reactive and active power ripples Acceptable Excellent

Dynamic response (s) Medium Fast

Reactive power: ripples (VAR) Around 20,000 Around 1100

Torque: ripple (N.m) Around 500 Around 80

Settling time (ms) High Medium

Overshoot (%) Remarkable ≈ 19% Neglected ≈ 1.5%

Sensitivity to parameter change High Medium

Active power: ripples (W) Around 10,000 Around 1000

Simplicity of converter and filter design Simple Simple

Rise Time (s) High Medium

Stator current ripple (VAR) Around 100 Around 22

Simplicity of calculations Simple Rather complicated

Improvement of transient performance Good Excellent

Quality of stator current Acceptable Excellent

Table 3. Comparative results with other methods.

References Techniques THD (%)

Ref. [6] Fuzzy SMC technique 3.05

Ref. [38] Direct torque command 2.95

Ref. [64] FOC with hysteresis current controller 3.70

Ref. [66]
Virtual flux DPC method 4.19

DPC 4.88

Ref. [67]
Integral SMC technique 9.71

Multi-resonant-based sliding mode controller (MRSMC) 3.14

Ref. [68] SOSMC method 3.13

Ref. [69] DPC control with STA controller 1.66

Designed strategies
DFOC-PI 2.94

DFOC-TOSM 1.42

6. Conclusions

In this study, a new TOSM strategy was designed to command the generated reactive
and active power from the ASG based on the variable speed CRWP. The designed strategy
aims to ameliorate the command characteristics of the algorithm that are based on the
proposed TOSM methods by minimizing active power, torque, current, and reactive power
undulations under variable speed CRWP system.

The proposed TOSM command was used to define the attractive command section of
the classic SMC strategy.

The designed strategy was compared with that of the classical PI controller. The
obtained results illustrated the effectiveness of the designed TOSM strategy, even in the
presence of time-varying reference trajectory, ASG parameter variations, and changes in
speed wind. Current, active power, torque, and reactive power undulations were largely
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minimized, and response time was improved using the designed TOSM strategy. Moreover,
robustness, stability, and high-decoupling between the command axes were ensured.

The simulation results showed that the introduced TOSM-based DFOC control scheme
is high performance and has a robustness to uncertainties and parameter mismatches as
well as the attenuation of chattering phenomena in comparison with that of the DFOC con-
trol scheme-based conventional PI controllers. The designed control technique improved
the active power ripple, current ripple, torque ripple, reactive power ripple, and THD
value of stator current by about 90%, 78%, 84%, 94%, and 51.71%, respectively, compared
to that of the classic DFOC strategy. Finally, the designed TOSM strategy may be a good
solution to improve the DFOC strategy effectiveness applied for power systems, ensuring
high quality of active power and stator current.

To summarize, the main findings of this research are as follows:

• A novel nonlinear controller was presented and confirmed with numerical simulation.
• A new DFOC strategy based on the proposed TOSM algorithm was presented and

confirmed with numerical simulation.
• A robust command technique was designed to minimize the ripples of current, active

power, electromagnetic torque, and reactive power.
• The THD value of stator current was reduced by the proposed strategy.

In future work, to improve the quality of the voltage, torque, current, and active power,
the asynchronous generator will be controlled using another combination of intelligent
algorithms, such as type-two fuzzy logic and neural algorithm used for DFIG in [34]. The
ratio between the obtained performance and the complexity of the control will be evaluated.
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Abstract: This paper presents a small signal stability analysis to assess the stability issues facing
PV (photovoltaic) inverters connected to a weak grid. It is revealed that the cause of the transient
instabilities, either high-frequency or low-frequency oscillations, is dominated by the outer control
loops and the grid strength. However, most challenging oscillations are low-frequency oscillations
induced by coupling interaction between the outer loop controller and PLL (Phase-Locked Loop)
when the inverter is connected to a weak grid. Therefore, the paper proposes a low-frequency
damping methodology in order to enhance the high system integration, while maintaining the
stability of the system. The control method uses a DC link voltage error to modulate the reference
reactive current. The proposed control reduces the low-frequency coupling between the DVC (DC
link voltage controller), AVC (AC voltage controller) and PLL (Phase-locked loop). According to
this study’s results, the performance capability of the grid-connected PV inverter is improved and
flexibility in the outer loop controller design is enhanced. The control strategy proposed in this paper
is tested using the PLECS simulation software (Plexim GmbH, Zurich Switzerland) and the results
are compared with the conventional method.

Keywords: VSC (voltage source converter); PLL (Phase-Locked Loop); weak grid; small signal
stability; eigenvalues

1. Introduction

High penetration of PV systems into AC systems reduces the grid strength, i.e., the
AC system short circuit ratio (SCR) is reduced. The reduction in the SCR is due to a high
impedance of long transmission lines connecting the PV systems, which are located far
away from load centers [1]. In addition, the reduction in the SCR may also be due to the
increased level of penetration of the inertialess PV system [2]. The grid strength is described
by the SCR, where a weak grid is defined by the SCR < 3 [2]. With the increasing level
of PV system penetration into the grid, the system stability becomes a challenging issue,
as the grid becomes weak [3–5]. PV systems are connected to the grid through VSCs [6],
which are controlled to inject a clean current to the grid.

The main method used to control VSCs is based on vector control in the synchronous
reference frame (dq) [7–9]. Vector control consists of cascaded control loops containing a
DC link voltage controller (DVC), a PCC (point of common coupling) voltage controller
(AVC), and an inner current loop controller (CC) [10]. The DVC regulates the terminal
voltage to follow the reference level by generating the active current reference, while the
AVC regulates the PCC voltage to produce the reactive current reference. Furthermore, the
CC regulates the current flowing into the grid to follow the reference set by the outer loop
controllers. Apart from control loops, a PLL is necessary for the synchronization process of
the VSC to the grid [11].

Stability issues encountered in distributed PV systems connected to a weak grid
could be due to the physical dynamics of the PV system, to the control loop interactions
or to the combination of both. To investigate the causes of the unwanted oscillations in
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power systems with high penetration VSC interfaced sources, many methods have been
developed. References [1,12,13] proposed a reduced small-signal model to investigate the
effects of outer control loops, grid dynamics and PLL on the system stability. The model
only addresses the causes of low-frequency oscillations encountered when the inverter
interacts with a weak grid. It has been found that the PLL, outer control loop (which
includes the PCC voltage controller and DC link voltage controller), and the grid strength
are the main cause of low-frequency instability issues [4,14]. The same results have been
revealed in [5,15], when a full order or accurate small-signal model of the system as called
by the author was used. These forms of instabilities are quite challenging and limit the
integration of solar energy into the grid system. Therefore, in order to cope with the
instabilities caused by the high integration of PV systems into a weak grid, different control
methods are generated.

An improved PLL system has been proposed [16,17]. The proposed PLL uses a virtual
impedance to compensate for the voltage drop across the line impedance in order to extend
the operational capability of the system. The proposed control method yields good perfor-
mance. However, such control strategies do not decouple the control loop interactions. The
impact of control loop interactions was addressed in [7], where a multivariable controller
was turned using H_inf. Nevertheless, the outer loop controllers were turned without
considering the effects of PLL. An alternative robust vector current controller was proposed
considering the effects of PLLs [3]. In reference [5], the author proposed a control method
to damp the low-frequency oscillations, where the measured PCC voltage is used to update
the d-axis current reference, while in [4], the author uses the measured grid current and
PCC terminal voltage to set the DC link voltage reference level. All the above-mentioned
methods aim to stabilize the VSC system interacting with a weak grid.

All models presented in the above sections lack a deep understanding of the degree
of system control loop interactions. In addition, high-frequency instabilities that may be
due to the control loop and grid interaction have not been touched. Therefore, in order to
address the aforementioned problems, this paper proposes a simplified full order model
that reflects on high and low-frequency instabilities.

For a weak grid, the ac terminal voltage is sensitive to the change in active power,
which is controlled through the DC-link voltage controller. As a result, the DC-link con-
troller, the ac-voltage controller that regulates the ac terminal voltage and the PLL are
dynamically coupled. The resonance oscillations may take place due to those loops cou-
pling. Thus, a decoupling methodology is required to limit the interaction between the
DC-link controller, AVC controller and the PLL. Therefore, a simple compensation method
that aims to damp the low-frequency oscillations induced by the outer control loop, the
PLL and the grid dynamics, is proposed.

The proposed method uses the DC-link voltage error deviation to generate the addi-
tional reactive current reference. The obtained compensating reactive current is added to
the reactive current reference from the PCC voltage control loop. By updating the reactive
current reference with respect to the DC-link voltage, the instability issues induced by the
control loops coupling are overcome. Further, the proposed control strategy also benefits
from easy implementation and good robustness against AVC, DVC and PLL bandwidth
variation, as well as the grid strength variation. The performance of the proposed method
is evaluated by using the small-signal stability analysis based on the derived small-signal
model. At last, but not the least, the comparative evaluation of the proposed control
method with the conventional control method is performed.

The rest of the paper is structured as follows: in Section 2, the configuration of PV
generation connected to a weak AC grid is described and its small-signal model, including
PV generator, control loop dynamics, VSC power stage and grid model is derived. The
stability analysis of conventional control method is presented in Section 3 and a proposed
low-frequency oscillations damping method is presented in Section 4. Section 5 presents
a comparative stability analysis of the conventional method and the proposed method,
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while in Section 6, the simulations results are presented. Finally, the conclusions are drawn
in Section 7.

2. Structure of Single-Stage Grid-Connected PV Inverter and Control System

The schematic diagram of the grid-connected single-stage 3-phase 2-level PV inverter
system is depicted in Figure 1a and the control system is shown in Figure 1b. The PV
inverter contains a PV generator that converts solar irradiance into electrical power. The
power generated by the PV generator is routed to the VSC through a DC-link capacitor
(Cdc) that plays a major role in power balancing. The switching harmonics in the output
current produced by the VSC are curtailed by the LCL filter, which consists of converter
side inductor Lf with parasite resistance Rf, the capacitor Cf and the grid side inductor
Lc. The filter components are designed based on reference [18]. In addition, the output
current of LCL flows to the grid through the grid impedance consisting of Rg and Lg
that characterize the grid strength. The control system consists of the maximum power
point tracking (MPPT), the DC-link voltage controller that regulates the DC voltage at
the reference level while maintaining the AC and DC power balanced, the inner CC loop
implemented in dq reference frame and a synchronous reference frame PLL (SRF–PLL)
used to synchronize the grid-connected inverter to the grid.

Figure 1. (a) Single-line representation of single-stage grid-connected PV inverter and (b) control
system for grid-connected inverter.
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3. Characteristics of PV Generator and its Mathematical Model

The main building block of a PV generator is a PV cell that converts solar energy
to electrical energy. Due to the low power generated by PV cells, they are combined in
series and parallel configurations to form a PV module, which can be also parallel and
serially configured to form PV panels to increase power. Furthermore, PV arrays are
combined in series and parallel configurations to generate the required power and produce
the required DC link voltage. In compact and simple ideal form representation, a PV
generator is modeled using a single diode model, due to its simplicity and accuracy. The
model presented in Figure 2 contains the current source representing the photonic current
generated by the PV cell, where that current mainly depends on solar irradiance and the
cell temperature, the parasite diode (D), parallel resistor (Rp) and series resistance (Rp).

Figure 2. PV array equivalent circuit.

Mathematically, the simplified ideal PV module used to capture solar energy and convert
it into electrical can be modeled by its V-I characteristics as expressed as in Equation (1) [19–21]
when the parasite resistances are ignored.

Ipv(vpv, T) = Iph − Irs(e(qvpv/kaT) − 1) (1)

where the PV characteristics parameters in Equation (1) such as: q = (1.602 × 10−19 C) is the
electron charge, K = (1.38 × 10−23) is the Boltzmann constant, T is the module temperature,
Iph is the photon current, Irs is the saturation current and A is the ideality factor. ns and np
represent the number of the interconnected PV module in series and parallel, respectively.
The photonic current of the PV generator is determined as indicated in Equation (2), and it
is linearly dependent on the solar insolation.

The module temperature affects the photonics current as well.

Iph = (Isc + Kt(T − Tre f ))
G

Gre f
(2)

where Tref is the module reference temperature, Isc is the module short-circuit current at
the reference temperature, G(W/m2) is the solar insolation and Kt is the module tempera-
ture coefficient.

The output power extracted from the PV array can be obtained using Equation (3),
where the generated power depends on the solar insolation and the terminal PV voltage.

Figure 3 shows the output power of the PV generator in the function of the PV terminal
voltage at a different level of solar insolation.

Ppv(G, T, Vpv) = vpv Ipv = np Iphvpv − np Irsvpv(e(vpvQ/nsKAT) − 1) (3)
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Figure 3. Ppv-vpv characteristics curves of the PV generator at different solar insolation.

In this paper, a Mitsubishi PV array of a model “PVUD190MF5” is considered [22].
The output power of the PV system under different solar irradiation as a function of the
DC terminal voltage, with series-connected modules of ns = 33 and the parallel-connected
string of np = 16 which can generate 100 KW when working at MPPT, is shown in Figure 3.

From Figure 3, the output power of a PV generator at any value of the solar insolation
and module temperature varies nonlinearly as a function of the terminal voltage, where
it exhibits two zero power points, with one corresponding to the open-circuit voltage
and the other to the short-circuit voltage, respectively, and one single maximum power
point. It is desirable to operate the grid-connected PV generator to the maximum power
point for harvesting the maximum possible power available. Therefore, to guaranty that
the PV generator outputs the possible maximum output power under variations of the
environmental conditions, the PV terminal voltage is regulated by the MPPT algorithm [23],
to remain closer to the maximum power point voltage (vmpp). The incremental conductance
and P&O (perturb and observe) are the most used due to their accuracy and simplicity in
implementation. In this paper, a P&O is adopted.

4. Small-Signal Model of Grid-Connected PV Inverter

Considering both the power part and control system as represented in Figure 1, the
small-signal mathematical model can be derived for stability analysis. The system is
considered to be a 3-phase balanced system. All system variables and control loops are
represented in dq reference frame. During steady-state operation, the grid dq reference
frame is oriented with the converter dq rotating frame, whereas that is not the case when
the converter operating is in transient mode. Therefore, the mismatch between the grid
reference frame and the converter reference frame is modeled using the grid angle gener-
ated by PLL. Note that, as the control loop does not use the grid current, the Lc inductor
may be taken as the grid impedance in combination with Lg. For simplicity, the variable in
the grid dq frame will be superscripted by “g” while the variable in the converter frame is
maintained as it is; the subscript “0” represents the steady-state value of that variable and
Δ represents small signal variations around the operating point.
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4.1. Frame Transformation

The input variables in grid dq reference frame are transformed into converter reference
using Equation (4a), whereas the output variables of the converter in converter dq frame
are transformed back into grid dq reference frame through Equation (4b)

x = xge−jδ (4a)

xg = xejδ (4b)

where x = xd + jxq represents the variable in converter dq reference frame, xg = xd
g + jxq

g

represents the variable in the grid reference frame, and δ is the grid angle output of PLL.
In linearized form around steady-state operating point, the expressions (4a) and (4b)

are obtained in Equation (5a–d)

Δxd = Δxg
d + xq0Δδ (5a)

Δxq = Δxg
q − xd0Δδ (5b)

Δxg
d = Δxd − xq0Δδ (5c)

Δxg
q = Δxq + xd0Δδ (5d)

The capacitor filter dynamics and grid inductor current through Lg + Lc are the only
ones modeled in grid dq frame, while the remaining are modeled in the converter dq frame.

4.2. Phase-Locked Loop (PLL)

The conventional second-order SRF–PLL in [11] is used to measure the grid angle.
As can be seen in Figure 1b, it consists of abc/dq transformation, a PI regulator and VCO
(voltage controlled oscillator) represented by the integrator. The PIpll controller regulates
q-axis voltage to zero and outputs the grid rotation frequency deviation with respect to
nominal frequency. Since the q-axis voltage is regulated to zero, the d-axis voltage always
aligns with the capacitor voltage vector. Afterward, the sum of the angular frequency
deviation and the reference angular frequency are integrated to generate the grid angle.

The mathematical equations representing the PLL dynamics are expressed in (6a)
and (6b). ⎧⎨

⎩
dδ
dt = ωre f + ωpll

dγpll
dt = vcq

(6a)

ωpll = kpωvcq + kiωγpll (6b)

where ωpll is the rotational frequency deviation, kiω and kpω are the phase-locked PI integral
constant and proportional constant of PIpll, respectively, γpll is the PLL integral state and
ωref is the reference angular frequency.

Linearizing the Equation (6a,b), a state-space representation of PLL is obtained in (7).⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dxpll
dt = Apll xpll + BpllΔvcdq

Δωpll = Cωxpll + DωΔvcdq

Δδ = Cδxpll

(7)

where xpll = [δ, γpll]T, Apll and Bpll are the state matrix and state input matrix, Cω and Dω

are the angular frequency output matrix and disturbance input matrix, respectively, and Cδ

is the synchronous angle output matrix Due to space limitation, the state-space matrices
are not presented here.
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4.3. DC Bus Voltage Control (DVC) and AC Voltage Control (AVC)

The outer control loops are responsible for generating the inner current references
that flow into the converter. Both AVC and DVC are implemented using the classical PI
controller. The DVC processes the error between the reference DC-link voltage, which is
generated by the MPPT and the measured DC-link voltage to generate the d-axis current
reference. The DC-link stability is guaranteed by maintaining the power generated by the
PV generator equal to the power flowing to the grid. The dynamics of the MPT in this
model are omitted and their impact on the stability of the system remains a topic for future
study. On the other side, the AVC generates the reference reactive inductor current by
regulating the d-axis component of the capacitor filter voltage to follow its reference for
voltage support purpose.

The mathematical dynamics expressing the AVC and DVC are shown in Equation (8).

⎧⎨
⎩

d
dt x1 = vpv − vdcre f

d
dt x2 = vsd − vdre f

idre f = kpdc(vpv − vmpp) + kidcx1

iqre f = kpv(vcd − vcdre f ) + kivx2

(8)

where x1 and x2 are the state variable of DVC and AVC, respectively; Kpdc and kpv are the
proportional constants of DVC and AVC PI-controllers, respectively; Kidc and kiv are the
integral constants of DVC and AVC PI-controllers, respectively; and idref and iqref are the
d-axis and q-axis current references, respectively.

After linearization of equations in (8), the state space equations of outer control-loops
results in (9).

d
dt x12 = Aoutx12 + BoutΔvpv + Bout1Δvcd + Bout2xre f

Δidqre f = Coutx12 + DoutΔvpv + Dout1Δvcd + Dout2xre f
(9)

where Aout, Bout, Bout1, Bout2, Cout, Dout, Dout1 and Dout2 are the outer control loops state
matrices and xref = [vmpp,vcdref]T.

4.4. Inner Current Control Loop (CC)

The inner current controller, as shown in Figure 1b, also uses a PI-controller to regulate
the current flowing through the filter inductor current. The reactive power is controlled
by the q-axis current, whereas the active power is regulated through the d-axis current.
The current controller tracks the error difference between idqref and the measured filter
ifdq current error to generate the modulating signal. The dq-axis feed-forward decoupling
and capacitor voltage feed-forward through gain kv are used for improving the system
performance [24]. The inner loop current controller dynamics are obtained in Equation (10)
and after linearization, a state-space model representation is illustrated in Equation (11).

Where γ1 and γ2 are the state variable of the current controller, Ac, Bc, Bc1, Bc2, Cc, Dc,
Dc1, Dc2 and Dc3 are the matrices of the state-space model of the current controller and vidq*
are the output variables of the current controller. We can note that, as the current controller
bandwidth was chosen to be 1/5 of the switching frequency, the delay introduced by the
modulator may be omitted. This results in vidq* = vidq.

⎧⎨
⎩

d
dt γ1 = idre f − i f d

d
dt γ2 = iqre f − i f q

v∗id = kpc(idre f − i f d) + kicγ1 − ω0L f i f q + kvvcd

v∗iq = kpc(iqre f − i f q) + kicγ2 + ω0L f i f d + kvvcq

(10)
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d
dt γ12 = Acγ12 + Bc1Δi f dq + Bc2Δidqre f

Δv∗idq = Ccγ12 + DcΔidqre f + Dc1Δvcdq + Dc2Δi f dq + Dc3xre f
(11)

4.5. Converter Filter Inductor Dynamics

As shown in Figure 1a, the dynamic model of the inverter side filter inductor in dq
reference frame can be represented in Equation (12), and its linearized state-space model in
Equation (13). ⎧⎨

⎩
L f

di f d
dt = vid − vcd − R f i f d + ω0L f i f q

L f
di f q
dt = viq − vcq − R f i f q − ω0L f i f d

(12)

d
dt

Δi f dq = A f Δi f dq + Bf Δvidq + Bf 1Δvcdq (13)

where Af, Bf and Bf1 are the matrices of the filter inductor state-space model.

4.6. DC-Link Capacitor Dynamics

The dynamics rate of change of DC-link voltage is expressed mathematically by the
PV power and grid power imbalance as shown in Equation (14).

Cdcvpv
dvpv

dt
= Ppv − Pin (14)

where Ppv and Pin are the PV power and input power to the inverter, respectively.
The power generated by the PV generator depends on the solar insolation and tem-

perature (see Equation (3)). The input power to the VSC can be expressed as in (15).

Pin = vidi f d + viqi f q (15)

The linearized DC-link dynamics is shown in (16).

Cdcvpv0
dΔvpv

dt
= Ipv0Δvpv + vpv0Δipv − 1.5vid0Δi f d − 1.5viq0Δi f q − 1.5I f d0Δvid − 1.5I f q0Δviq (16)

To include the PV generator dynamics in the model, the expression (17), is obtained
from Equation (3).

Δipv = GdΔvpv (17)

where Gd is the conductance of the PV generator.
The state-space model of the DC link is obtained in (18) from (16) and (17).

dΔvpv

dt
= ApvΔvpv + BpvΔvidq + Bpv1Δi f dq (18)

where Apv, Bpv and Bpv1 are the matrices of DC-link state-space model.

4.7. Grid Dynamics Model

The grid dynamics consist of Cf, Lc and Lg. Applying the KVL, the equations describing
the grid dynamics can be obtained as in Equation (19).⎧⎨

⎩
Cf

d
dt vg

cdq = ig
f dq − ig

gdq + jωCf vg
cdq

Lt
d
dt ig

gdq = vcdq − Rgig
gdq + jωLti

g
gdq − edq

(19)

where Lt = Lg + Lc, vcdq
g is the capacitor filter voltage in grid dq frame, ifdq

g is the filter
inductor current in grid dq frame, igdq

g is the grid side inductor current in grid dq frame
and edq is the grid terminal voltage in dq frame.

316



Energies 2021, 14, 3907

Linearizing the equations in (19) around the steady-state operating point and taking
into account the angular frequency dynamics, the state-space model of the grid side is
obtained in (20).

d
dt

xg = Agxg + BgΔig
f dq + Bg1Δedq + Bg2Δωpll (20)

where xg = [vcdq
g, igdq

g]T, and Ag, Bg, Bg1 and Bg2 are matrices of the state-space model of
grid dynamics.

4.8. Overall State-Space Model

The overall small-signal representation of the grid-connected PV inverter shown in
Figure 1 is illustrated in Figure 4. It is obtained by combining the converter and the grid
system model as shown in Figure 4. The linearized aggregate state-space model of the
overall system with 13 states variables and 2 input variables, is expressed in Equation (21).
Where Asys is the state matrix of the system, Bsys is the state input matrix and Csys is the
system output matrix. The proposed system model can easily be extended for multiple
inverters operating in parallel, without requiring virtual resistance to define the PCC
voltage as in [25]. However, in this study, a single inverter connected to a weak grid is
considered and the stability analysis of parallel grid-connected PV inverters remains a
topic for future study. ⎧⎨

⎩
dxsys

dt = Asysxsys + Bsysusys

ysys = Csysxsys

(21)

where

xsys =
{

vdc x1 x2 γ1 γ2 i f d i f q δ γpll vg
cd vg

cd ig
gd ig

gq

}
and usys =

{
vpv vcdre f

}

Figure 4. Overall small-signal model representation of the proposed system.

5. Stability Analysis

To analyze the stability of the PV system based on the derived small-signal model, the
study system parameters in Figure 1 are defined in Table 1. The nominal power of the PV
generator is 100 kVA. The inner current loop has been designed with a bandwidth equal to
1/5 of the switching frequency (fsw). The AVC loop bandwidth was chosen as 20 Hz and a
DVC bandwidth of 50 Hz was used. The AVC, DVC and the CC have been designed based
on reference [26] for the specified above bandwidth. The LCL filter values, the parameters
of the current controller, DC-link voltage controller, AVC loop controller and PLL controller
are defined in Table 1. The parameters of the PLL controller were obtained as in [11] for a
bandwidth of PLL equal to 10 Hz.
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Table 1. Steady-state parameters of the system.

Parameter Value Parameter Value

Vdc, (V) 850 Kidc 1401.5
Lf, Lg (mH) 0.75, 4.5 kic 471
Rf, Rg (Ω) 0.1, 0.4 Kpc 4.7

Cf, Cdc, (μF) 100, 8500 Kiv 0.0141
SN, KVA 100 Kvv 88.8889
fsw, KHz 5 G (W/m2) 1000
Eg (V) 380 Kid 500
fg, Hz 50 kfv 0.75

vcref (V) 400 kiω 12.1372
Kpdc 3.1540 Kpω 0.2731

The analysis of the outer control loops interaction when the system operates under
weak grid conditions is presented. The impact of control parameters variation on the
stability of the system is analyzed based on the eigenvalues sensitivities.

5.1. Control Loop Interaction

From the state-space model, the DC link voltage closed-loop and the ac capacitor
voltage closed-loop transfer functions are derived. The bode plots of the transfer functions
of the closed-loop are shown in Figure 5. The frequency response of the DC voltage closed-
loop is shown in Figure 5a when the AVC bandwidth (BW_pcc) is 5 Hz, 10 Hz, 25 Hz and
35 Hz with the DC link controller bandwidth set to 50 Hz, while the PLL bandwidth is
10 Hz.

Figure 5. Frequency response of closed loop transfer function(a), vpv/vmpp (b) and (c) vcd/vcdref.

As shown in Figure 5a, the AVC has a significant impact on DC-link stability. For
low AVC bandwidth; for example, BW_pcc = 5 Hz, the system is unstable due to the peak
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resonance effects with negative damping ratio induced in low-frequency range. As the AVC
bandwidth increases, the low-frequency oscillations are damped and the system becomes
stable. This may be due to the fact that when the inverter interacts with the weak grid, the
AVC is necessary to stabilize the system. However, increasing the AVC bandwidth impacts
the high-frequency oscillations. The high-frequency resonance effects appear to be closer
to 1100 rad/s and shift toward 1000 rad/s as the BW_pcc increases.

The high-frequency effects are due to the resonance induced by the LCL filter. As
can be seen from Figure 5, the high-frequency instabilities dominate the DC link channel
compared to the ac voltage link channel, as there may be a non-zero amplification gain.
Therefore, the AVC bandwidth is selected large enough to limit low-frequency oscillations
and must not be high to avoid high-frequency resonances. Figure 5b shows the AVC closed-
loop response with the variation of the DVC controller bandwidth. The lower frequency
resonances are amplified when the DVC bandwidth increases closer to the PLL bandwidth
and is damped for a DVC bandwidth greater than the PLL bandwidth. The PLL and DVC
interactions are portrayed in Figure 5b.

In the same way, the impact of the PLL bandwidth on the closed-loop AVC is shown in
Figure 5c. For a PLL bandwidth (BW_pll) closer to the AVC bandwidth, for example when
BW_pll = 20 Hz and Bw_pll = 25 Hz, the closed-loop system has a negative phase margin,
as can be seen in Figure 5c. As a result, the system becomes unstable. The PLL bandwidth
in this case is selected lower than the AVC bandwidth, where a 10 Hz is selected.

5.2. Eigenvalues Analysis

The eigenvalue method is used to assess the system’s stability based on the small-
signal model shown in Figure 4. Table 2 shows the eigenvalues of the overall system at the
steady-state operating point with system values in Table 1. The corresponding oscillation
frequencies and damping ratios for each mode are also presented in Table 3.

Table 2. Eigenvalues, damping and oscillation frequency of the system at steady-state values.

Modes Eigenvalues Damping
Oscillation
Frequency

λ1 −6852 1 0
λ2 −5702.3 1 0
λ3,4 −212.74 ± 2215.2i 0.095595 352.56
λ5,6 −275.5 ± 1170.9i 0.22903 186.36
λ7,8 −225.74 ± 62.654i 0.96358 9.9718
λ9,10 −8.0449 ± 114.33i 0.070194 18.196
λ11 −68.643 1 0
λ12 −128.64 1 0
λ13 −101 1 0

319



Energies 2021, 14, 3907

Table 3. Eigenvalues of the system and the states participation factor.

States Modes

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10 λ11 λ12 λ13

Vdc 0.16 0 0.18 0.18 0.09 0.09 0.07 0.07 0.18 0.175 0.038 0.03 0.043
x1 0.01 0 0.02 0.02 0.02 0.02 0.07 0.07 0.64 0.643 0.063 0.075 0.085
x2 0 0 0.03 0.03 0.1 0.1 0.6 0.6 0.47 0.466 0.828 0.012 0.659
γ1 0.02 0 0 0 0 0 0 0 0.08 0.081 0.004 0.848 0.028
γ2 0 0.03 0 0 0.03 0.03 0.04 0.04 0.22 0.216 0.226 0.008 1.131
i f d 0.89 0.01 0.07 0.07 0.02 0.02 0.03 0.03 0.02 0.017 0.015 0.001 0.006
i f q 0 1.13 0.01 0.01 0.03 0.03 0.01 0.01 0.04 0.042 0.007 0.007 0.044
vcd 0.02 0 0.45 0.45 0.07 0.07 0.01 0.01 0.01 0.01 0.004 0.001 0.003
Vcq 0 0.11 0.07 0.07 0.48 0.48 0.01 0.01 0.03 0.031 0.015 0 0.017
igd 0 0 0.24 0.24 0.02 0.02 0.12 0.12 0.25 0.25 0.206 0 0.234
igq 0 0.01 0.05 0.05 0.55 0.55 0.19 0.19 0.22 0.221 0.168 0.02 0.128
δ 0 0 0 0 0.04 0.04 0.46 0.46 0.25 0.251 0.804 0 0.576

xpll 0 0 0 0 0.01 0.01 0.22 0.22 0.09 0.089 1.676 0 0.536

Since all the eigenvalues have a negative real part, the system is stable for the system
and control parameters in Table 1. As can be observed from Table 2, there exist four groups
of complex conjugate eigenvalues that determine the dynamics of the system. Among
them, complex conjugates eigenvalues λ9,10 are closer to the imaginary axis, with a lower
damping ratio and a small oscillation frequency of 18.19 Hz. Therefore, eigenvalues λ9,10
are the critical eigenvalues to determine the system’s stability. The eigenvalues λ7 8 have the
lowest oscillation frequency of 10 Hz. However, they do not affect the system’s dynamics
as they have a higher damping ratio. The remaining complex eigenvalues λ3,4 and λ5,6 are
associated to the LCL filter, with oscillation frequency closer to the resonance frequency of
the LCL, as can be noted, from Table 2.

From Table 3, the participation factor of each state variable in a particular mode corre-
sponding to that eigenvalues are shown. The highlighted participation factors correspond
to the dominant state with a participation factor greater than 0.15 for each mode. From
Table 3, it can be observed that the states corresponding to Lf and Cf have no impact on
critical eigenvalues. The vcd and igd states affect the eigenvalues λ3,4. Thus, the change in
DVC and AVC controller parameters will affect the mode λ3,4.

On the other hand, the vcq and igq states affect the eigenvalues λ5,6; meaning that they
are sensitive to PLL parameter changes. The states that affect the critical eigenvalues are
the states corresponding to DVC, AVC, Lg and PLL. Therefore, if there is any change in the
control parameters of DVC, AVC and PLL, the system’s stability is affected. In addition,
any variation in line inductance or line resistance affects the robustness of the system, as
they are crucial in determining the strength of the grid. Moreover, the states corresponding
to the q-axis current control also impact the critical eigenvalues. This may be due to the
fact that the d-axis’ ac voltage is regulated through the q-axis’ current and the q-current
determines the voltage drop across the line inductor if the grid Xg/Rg ratio is very high. To
understand how all the states enumerated above affect the system’s robustness, a root locus
is used to plot the sensitivity for the eigenvalues over the change of control parameters
and grid strength. Only the eigenvalues closer to the imaginary axis will be shown on the
root locus.

6. Proposed Damping Method for Low-Frequency Resonance Oscillations

As described in the sections above, the coupling effects between the control loops
consisting of the AVC, DVC and PLL interacting with the weak grid deteriorate the robust-
ness of the system. Therefore, a control method to damp the low-frequency oscillations
by reducing the coupling effects between DC-link voltage loop and AVC loop is proposed.
For a PV-inverter connected to a weak grid, the PCC voltage is sensitive to the active
power flowing to the grid controlled by d-axis current through DC-link voltage regulation.
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Conventionally, the PCC voltage is regulated through q-axis current control. As the PCC
voltage is sensitive to both active and reactive currents when the inverter interacts with a
weak grid, a control method that considers the effects of both d-axis and q-axis current on
PCC voltage to enhance inverter robust performance is proposed. The proposed compen-
sation method, as shown in Figure 6, modifies the q-axis current reference by using the DC
voltage deviation error. The controller Kdamp expressed in (22) processes the DC voltage
error and generates the compensating additional reactive current reference.

kdamp = kid
1

s + a
(22)

where Kid is the integral constant and a is the pole of the integrator, which is chosen to be
closer to zero.

Figure 6. Control system for grid-connected PV inverter with proposed compensation loop.

The performance of the proposed control method can be analyzed based on the
eigenvalues loci generated from the augmented state-space model developed in Figure 5
by the proposed damping loop dynamics. A comparison of the proposed control method
and the conventional control is performed.

The outer loop dynamics in Equation (8) can be rewritten as in Equation (22). Where
x3 is the state variable of the damping loop.⎧⎪⎪⎪⎨

⎪⎪⎪⎩

d
dt x1 = vpv − vdcre f
d
dt x2 = vsd − vdre f
d
dt x3 = −ax3 + vpv − vdcre f

idre f = kpdc(vpv − vmpp) + kidcx1

iqre f = kpv(vcd − vcdre f ) + kivx2 − kidx3

(23)

7. Comparative Stability Analysis of Conventional and Proposed Control

Please note that the direction of the eigenvalues change from the black point corre-
sponding to the low control variable and the eigenvalues of the posed control method are
represented by the red “*” while the blue “*” represent the eigenvalues of the conventional
control method. Additionally, the shaded area represents the unstable region. If any system
eigenvalue is located in the shaded region, the system becomes unstable.

7.1. Eigenvalues of the Proposed System

Table 4 shows the eigenvalues of the proposed control method. By comparison with
the eigenvalues of the conventional method in Table 2, one can observe that the critical

321



Energies 2021, 14, 3907

mode λ9,10 eigenvalues are highly damped, where the damping ratio of the proposed
control is 0.638 and 0.07 for the conventional control. Consequently, the damping ratio of
higher frequency eigenvalues remains approximately the same for both control methods.
In addition, there is an introduction of the added eigenvalue closer to zero in the proposed
method. The location of the added eigenvalue is determined by the pole of the integrator
in the proposed damping method.

Table 4. Eigenvalues of the proposed control method.

Modes Eigenvalues Damping
Oscillation
Frequency

λ1 −6847.8 + 0i 1 0
λ2 −5701.9 + 0i 1 0
λ3,4 −205.92 ± 2227.6i 0.092 354.53
λ5,6 −281.65 ± 1159.5i 0.236 184.54
λ7,8 −153.51 ± 219.85i 0.57 34.99
λ9,10 −70.76 ± 85.231i 0.638 13.565
λ11,12 −115.05 ± 26.254i 0.974 4.178
λ13 −93.191 1 0
λ14 −0.056512 1 0

7.2. Impact of Capacitor Voltage Feed-Forward Constant

The role of the voltage feed-forward control is to suppress the grid harmonics’ ef-
fects [24,27,28]. The voltage feed-forward control may affect the system’s stability when
the inverter is connected to the weak grid, due to the unwanted positive feedback loop it
causes [24]. The impact of voltage feed-forward gain on the system’s stability is shown
in Figure 7.

Figure 7. Sensitivity of system eigenvalues under variation of voltage feed-forward gain.

Figure 7 shows the eigenvalues locus of the system when the voltage feed-forward
gain (Kv) changes from 0 to 1 for a grid strength of SCR = 1.1 (Lt = 4.5 mH and Rt = 0.4). As
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can be observed, the gain Kv affects both high-frequency eigenvalues and low-frequency
eigenvalues. The eigenvalues move as indicated in Figure 7, where the movement of the
eigenvalues is in the direction of the arrows as the feed-forward coefficient increases.

For the conventional control method, it can be seen that the critical eigenvalues λ9,10
are closer to the imaginary axis compared to the critical eigenvalues of the proposed
control method, and the higher damping ratio of the eigenvalues λ9,10 is guaranteed for the
proposed control. Since eigenvalues λ3,4 and λ5,6 move into the unstable region as the value
of the feed-forward coefficient becomes greater than 0.9, higher frequency instabilities
could occur. To guaranty the safe operation of the inverter interacting with the weak grid,
the value of feed-forward should be less than or equal to 0.9. The proposed system and the
conventional control method perform the same in higher frequency mode.

7.3. Impact of Grid Impedance

Figure 8 shows the movement of the system’s eigenvalues when the grid inductance
increases from 2.5 mH (SCR = 2.16) to 5.5 mH (SCR = 0.97). The impact of the grid inductor
on the system’s eigenvalues can be observed in Figure 8. The eigenvalues λ9,10 are the
only ones that determine the system’s stability because they can move into the unstable
region, while other eigenvalues remain in the stable region with high damping ratios. The
eigenvalues λ9,10, when the grid inductance changes, sweep toward the unstable region.
As can be observed in Figure 8, the eigenvalues λ9,10 become unstable when the value of
the Lg > 5.35 mH (SCR = 1) for the conventional method and eigenvalues remain in stable
region, far away from the imaginary axis when the proposed method is used. Thus the
system’s stability is worsened when the PV inverter is interfaced to a weak grid while the
conventional method is in use. Consequently, the critical eigenvalues stay in a stable region
for the proposed method, as can be observed in Figure 8.

Figure 8. Sensitivity of system eigenvalues under variation of grid inductance.

7.4. Impact of AVC Control Bandwidth

Figure 9 shows the effect of the AVC controller bandwidth on system stability. As can
be noted, the system remains stable for the whole range of the AVC bandwidth when it
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changes from 5 Hz to 40 Hz because no eigenvalue shifted in the unstable shaded region
for the proposed control method. However, at low AVC bandwidth, the critical eigenvalues
λ9,10 for the conventional method have a positive real part. The system is stable if, and only
if, the AVC bandwidth is greater than 9 Hz for the convention method. It may be observed
that the increase in AVC bandwidth frequency makes the system more stable. Moreover,
for a large increase of AVC bandwidth, the higher frequency eigenvalues λ5,6, as can be
observed in Figure 9, move toward the right side of the s-plan and may become unstable
poles if the AVC bandwidth increases too high. Additionally, the AVC bandwidth should
be lower than the DVC bandwidth to decouple their dynamics.

Figure 9. Sensitivity of system eigenvalues under variation of AVC control bandwidth.

7.5. Impact of DC Link Voltage Controller Bandwidth

The movement of the system eigenvalues for the DVC bandwidth controller when it
changes from 5 Hz to 100 Hz can be observed in Figure 10. For the conventional method,
when the bandwidth of the DVC loop is increased, the critical eigenvalues λ9,10 move
towards the imaginary axis as the bandwidth of the DC link controller approaches the PLL
bandwidth. If the DVC bandwidth increases beyond the PLL bandwidth, the eigenvalues
λ9,10 return to the left side of the s-plan. Nonetheless, for a proposed damping method,
the critical eigenvalues λ9,10 move far away from the imaginary axis compared to the
conventional method, thus, resulting in an improved system dynamic response. When
comparing to the AVC, the increase of VDC bandwidth causes the eigenvalues λ2,3 to move
toward the imaginary axis. It may result in negatively damped eigenvalues if the DVC
bandwidth is increased high enough, closer to the resonance frequency of the LCL filter.
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Figure 10. Sensitivity of system eigenvalues under variation of DVC control bandwidth.

7.6. Impact of PLL Controller Bandwidth

Figure 11 illustrates the effect of the PLL bandwidth on the system’s stability when
the PLL bandwidth changes from 5 HZ to 25 Hz. It can be noted that, while changing the
PLL bandwidth, the critical eigenvalues λ9,10 move towards the imaginary axis, and when
the PLL bandwidth reaches 16 Hz, the real part of the critical eigenvalues becomes positive.
Therefore, the system becomes unstable.

Figure 11. Sensitivity of system eigenvalues under variation of PLL control bandwidth.
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On the other hand, for the proposed control, the critical eigenvalues of the system
move as shown in Figure 11. They firstly move towards the left side of the s-plane,
then return towards the imaginary axis and become negatively damped eigenvalues at
24 Hz. With the proposed control, the PLL bandwidth changes over a broad range while
maintaining system stability compared to the conventional control method.

7.7. Impact of the Solar Insolation of the Stability

Figure 12 shows the eigenvalue-loci of the system when changing the values of solar
irradiance from 500 W/m2 to 1200 W/m2. The dominant eigenvalues move as shown in
Figure 12. As can be seen from Figure 12, for the proposed control loop, the system remains
stable in the whole variation range of the solar insolation; whereas, for the conventional
control method, the system becomes quickly unstable. For solar insolation greater than
1200 W/m2 the conventional control method yields a negative damping ratio due to the
presence of the positive critical eigenvalues, λ9,10.

Figure 12. Eigenvalues of the system when solar insolation values change.

7.8. Impact of the Damping Loop Integrating Constant

Figure 13 shows the sensitivity of the system eigenvalues when the value of kid changes
from 0 to 1000. The eigenvalues move as indicated, starting from the black “*”, which
corresponds to kid = 0. As can be observed, the damping ratios of critical eigenvalues
increase as kid increases. With the proposed control method, the additional eigenvalue
appears, where its position from the origin is defined by the value of a. A value of kid = 500
is selected in this paper. The other system eigenvalues have a high damping ratio, as they
are located far from the imaginary axis as the value of kid increases.
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Figure 13. Sensitivity of system eigenvalues with change in kid.

8. Simulation Results

To verify the stability analysis carried out in the previous section, time-domain simu-
lations were performed in PLECS simulation software. The steady-state operating data are
shown in Table 1.

The transient’s response of the DC-link voltage under variation of the solar insolation,
system strength, and the outer loop control bandwidth were analyzed. In addition, the
grid angle measured by the PLL, and the capacitor d-axis voltage response were also
analyzed. It is easier to say that, the transients in DC link voltage are reflected to the
active power while the transients in the filter capacitor d-axis are reflected in reactive
power when the converter operates under a strong grid. When the inverter is subjected to
the disturbances and operate under weak grid conditions, the coupling effects that exist
between the terminal capacitor voltage, DC-link power port and the grid dynamics induce
large oscillations in reactive power compared to the oscillation in active power.

Figure 14a shows the ac voltage angle response following a step change of PLL
bandwidth at time t = 2 s. Figure 14b shows the DC-link capacitor voltage and d-axis
terminal ac voltage when the PLL bandwidth frequency is subjected to a step change
from 5 Hz to 20 Hz at time t = 2 s. The growing oscillations resonating at a frequency of
24.8 Hz in both DC link voltage and ac d-axis voltage are yielded when the PV inverter is
controlled by the conventional method. The instabilities are due to the presence of positive
eigenvalues caused by the PLL bandwidth increase, as described in previous sections.
However, when the proposed control system is activated, the system performance is well
damped, regardless of the step-change in frequency at 2 s. Therefore, the robustness of the
system over any change in the PLL bandwidth is improved as presented in the analysis.

Figure 14. (a) grid angle and (b)vdc and vcd response when BW_PLL change from 5 Hz to 25 Hz.
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Figure 15a,b shows the transients’ response of the output DC link voltage, d-axis ac
voltage and the grid voltage angle for a step-change in AVC control bandwidth. As can be
observed from Figure 15, the system becomes unstable when the AVC bandwidth frequency
changes from 20 Hz to 5 Hz, if the system is under conventional control method. Growing
undamped oscillations that oscillate at 9.22 Hz are induced. Compared to the conventional
control method, the proposed control system maintains the system’s stability, even for a
low AVC control bandwidth, as can be observed in the results presented in Figure 15. With
the proposed control, flexibility in designing the AVC controller is achieved. This is because
the system is robustly stable over a large range variation of the AVC controller bandwidth.

Vp
v 

Vc
d 

Figure 15. (a) vdc and vcd and (b) grid angle response when AVC bandwidth change from 20 Hz to
5 Hz.

Figure 16a shows the output response of the grid angle when the grid strength changes,
and Figure 16b shows the DC-link voltage and ac d-axis voltage. The grid inductor changes
from Lg = 4.5 mH to Lg = 5.15 mH at 1 s. Based on Figure 16a,b, it is observed that, for a
step change of grid inductance that characterizes the grid strength, the induced oscillations
die away with time in both control methods. However, for the proposed method, the
system oscillations are rapidly damped compared to the traditional method. For both
output voltage and grid angle, the steady-state is attained at time 1.3 s for the proposed
control, whereas for the conventional method, the steady-state is reached at time 1.8 s.
Furthermore, the transient overshoot for the proposed control is reduced compared to the
conventional method.

For the convention method, the peak to peak overshot of 0.1 radians, 0.2 P.U and
0.03 P.U for grid angle, d-axis ac voltage and DC-link voltage, respectively, are obtained.
The peak to peak overshoot when the oscillation damping control method is applied
becomes 0.13 radians, 0.125 P.U and 0.0075 P.U for grid angle, d-axis ac voltage and DC-link
voltage, respectively. The same performance can be observed in Figure 17b showing the
output reactive power and active power under step change of grid inductance. Higher
reactive power overshoots of 0.08 P.U for undamped system and 0.05 for the proposed
control are yielded.
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Figure 16. (a) PCC voltage angle and (b) vdc and vcd response when grid inductor change from
4.5 mH to 5.15 mH.

Figure 17. Reactive and active power: (a) step change in solar insolation and (b) grid inductor variation.

Apart from control and the system parameter, another factor affecting the stability
of the system is the power rating of the system. The power rating depends on the solar
insolation, which can change depending on weather conditions. Figure 17b shows the
output power response, Figure 18a shows the grid voltage angle and Figure 18b shows the
DC-link and ac d-axis voltage for solar insolation changes from 900 W/m2 to 1100 W/m2.
Following that step change of solar insolation, the DC-link voltage changes from 1.07 P.U
to 1.083 PU, whereas the active power changes from 0.785 to 0.97 PU. Correspondingly, the
reactive power changes from 0.14 to 0.26 PU. Based on the results shown in Figure 17, a
highly damped response is produced while the proposed method is used. It can be observed
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that the system remains stable in both control methods as the oscillations resulting from
a step-change in solar insolation die away. However, the settling time for the proposed
method is shortened to 0.2 s from 0.6 s (for the convention method). In addition, similar to
the analysis carried above, the transient overshoots of the proposed method are very low
compared to the response of the undamped system. For the damped system, the reactive
power overshoot is 0.01 PU, while the undamped system yields 0.09 PU, the ac capacitor
voltage angle overshoot is 0.15 radians and 0.075 radians for conventional and proposed
control method, respectively. In addition, the overshoot of d-axis ac voltage is 0.15 P.U and
0.05 for the conventional and proposed methods, respectively.

Figure 18. (a) PCC voltage angle and (b) Vpv and Vcd step change in solar insolation.

9. Conclusions

This paper firstly analyzed the stability of a single-stage PV inverter connected to a
weak grid. The small-signal stability analysis was performed to evaluate the conventional
control method’s performance and highlighted possible sources of instabilities. The main
sources of instabilities were found to be the grid dynamics, the outer control loops and
the PLL. The interaction of outer control loops of the inverter and the weak grid could
worsen the system’s stability, thus limiting the level of integration of the grid-connected
PV inverter. In order to boost the performances of the grid-connected PV inverter, a control
methodology that could limit the control loops interaction was proposed. The proposed
control method employs DC-link voltage error to modulate the reference reactive power
current flowing into the grid.

The results of simulation in PLECS were presented to verify the performance of the
proposed control methodology over the conventional method. According to the simula-
tion results, the proposed system achieves improved system responses compared to the
conventional control method. For the proposed control method, the enhanced oscillations
damping and reduced transients overshot are guaranteed for a large variation range of the
DC-link, PCC voltage and PLL controller bandwidth. Furthermore, the system’s robust-
ness is improved, even when the inverter is connected to a very weak grid, thanks to the
proposed controller. The simulation results confirm the robust performance of the derived
small-signal model and the proposed low frequencies damping method.
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Abstract: Electric power load forecasting is an essential task in the power system restructured
environment for successful trading of power in energy exchange and economic operation. In this
paper, various regression models have been used to predict the active power load. Model optimization
with dimensionality reduction has been done by observing correlation among original input features.
Load data has been collected from a 33/11 kV substation near Kakathiya University in Warangal.
The regression models with available load data have been trained and tested using Microsoft Azure
services. Based on the results analysis it has been observed that the proposed regression models
predict the demand on substation with better accuracy.

Keywords: dimensionality reduction; simple linear regression; multiple linear regression; polynomial
regression; load forecasting

1. Introduction

Electric power industries are seeking electric power prediction tools to forecast the
load so that balance between load and generation can be maintained properly. Prediction
of active power load is required for arranging regular interval activities and power firms
are increasing their infrastructure [1]. Accurate load forecasting systems provide a better
understanding of the dynamics of existing power systems [2]. Electric load forecasting was
classified into three categories as presented in Table 1 based on time horizon [3].

Short-term active power load prediction is vital to effective power system service,
such as dispatching power into the network to prevent regular power outages. Short
term active power estimation is a critical prerequisite for optimal dispatch of generators in
power plants [4]. Customers would be able to select a more cost-effective energy usage
scheme if the short-term load forecasting methodology was more accurate. It helps the
power system to reduce cost of power production and to utilize resources optimally [5].

Artificial Intelligence (AI) is an integral part of many fields, some of the main subparts
of AI are machine learning and swarm intelligence. Machine learning has become an
integral part in many fields like civil engineering applications [6,7], image processing [8]
and time series data prediction [9]. Swarm intelligence was developed by taking inspiration
from the swarming behavior of various natural systems and this is used to solve various
optimization problems [10,11].

Estimation methods to predict the active power load was classified into two classes as
shown in Figure 1. Prediction tools were used to estimate solar irradiation, temperature
and wind speed. ARIMA time series forecast model was developed in [12] to predict
the temperature in Pakistan and it also develops a linear trend model to estimate electric
power consumption. Digital Elevation Models were developed in [13] to predict the solar
irradiation.
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Forecasting techniques can help power system operators exchange active power for
the highest possible benefit by calculating active power load and energy price. Electric
energy price was predicted using artificial neural networks in [14] by considering day
category, hour marker, holiday index, electric load, nonconventional energy generation
and natural gas price as input features.

Table 1. Active power load prediction classification.

Load Prediction Type Time Usage

Short term Few hours to days Electric power generation and transmission scheduling
Medium term Few weeks to months Fuel purchase scheduling

Long term 1–10 years Establishment of power sector entities

Figure 1. Prediction tools.

A new model was developed in [15] to predict the active power load. Active power
load was estimated in [16] by considering day category, hour marker, holiday index, electric
load, renewable energy generation using artificial neural networks and MLR model. Active
power load was predicted in [17] based on load data of last four hours. Active power load
was estimated in [18–20] based on load data for the last four hours and load data at the
same hour for the last two days.

An ANN model was developed in [21] to forecast the half-hourly electric load demand
in Tunisia. Authors have used a Levenberg–Marquardt learning algorithm to train the ANN
model. Prediction of electricity demand and price one day ahead using functional models
was discussed in [22]. Estimation of electric power consumption in Shanghai using grey
forecasting model was discussed in [23]. All of these methods make useful advancements
to load estimation, but these overlook useful elements such as dimensionality reduction,
which improves model accuracy per number of model parameters.

In this paper, stochastic gradient descent optimizer [24] was used to update the
parameters in the regression models. The methods described are analyzed by comparing
them to previously developed models [17,18].

The main contributions of this paper are as follows:

• SLR and PR models were used to predict the active power load.
• A new approach, i.e., predict the active power load based on load at last three hours

and load at one day before was used with various regression models and dimension-
ality reduction technique was used to reduce the complexity of the model so that
overfitting problem was removed.

• Data analytic tools were used to process the data before feeding it to the model

2. Methodology

Active power load on a 33/11 kV substation has been predicted using regression
models like SLR, MLR and PR. In all regression models, stochastic gradient optimizer has
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been used to update the parameters so that error, i.e., the difference between actual and
predicted load is minimum.

2.1. Simple Linear Regression Model (SLR)

In SLR, output variable (Ya) is related linearly with input variable (Xa). For a given
input Xa, predicted output Y will be calculated using Equation (1). Gradient descent
optimization method has been used to find the values of m and c for the given inputs (Xa)
and corresponding outputs (Ya), such that the total distance between all the output data
points and line represented by Equation (1) is minimum, as shown in Figure 2. The main
objective of gradient descent optimization method is minimization of half mean distance
from all actual data points from line as shown in Equation (2). This half mean distance is
also called error which represents the difference between actual output Ya and predicted
output (Y). As error which is going to minimize is a convex function, the gradient descent
optimizer will perform well to reach global minimum point.

Y = mXa + c (1)

Min E =
d1 + d2 + d3 + d4 + ... + ds

2ns
=

ns

∑
a=1

da

2ns
=

s

∑
a=1

√
(Ya − Y)2

2ns
(2)

Figure 2. Distance between actual output (Ya) and predicted output (Y).

Gradient descent optimizer will update the solution such that it will reach the point
where gradient is zero by choosing step size opposite to the gradient. In linear regression
problem m and c are variables and step size for m, i.e., δm and step size for c, i.e., δc has
been computed using Equations (3) and (4) respectively. Variables m and c will be updated
using Equations (5) and (6), respectively, such that gradient will reach towards zero.

δm = −η
∂E
∂m

=
ns

∑
a=1

η(Ya − mXa − C)Xa (3)

δc = −η
∂E
∂c

=
ns

∑
a=1

η(Ya − mXa − C) (4)

m = m + δm (5)

c = c + δc (6)

SLR has been used to predict the active power load (L(D, t)) on a substation at
particular hour (t) of the day (D) based on active power load (L(D−1, t)) at same time (t)
but in previous day (D−1). In this scenario L(D−1, t) data points represent input (Xa),
whereas L(D, t) data points represents output (Ya). The procedure for load prediction using
SLR is presented in Figure 3.
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Start

Prepare dataset for Xa, i.e., L(D,t−1) and Ya, i.e., L(D,t)
Randomly initialize m and c, choose η and ε, Initiliaze ns = 1

Set Iter=1

Set sample=1

Set [Xa,Ya]=[L(D-1,t),L(D,t)]

Calculate Y using Equation (1)

Calculate E using Equation (2)

Is E ≤ ε?

Calculate δm and δc using Equations (3) and (4) respectively

Update m and c using Equations (5) and (6) respectively

Set sample = sample + 1

Is
sample
> Ns?

Set iter = iter + 1

StopYes

No

Yes

No

Figure 3. Simple Linear Regression model training algorithm.

2.2. Multiple Linear Regression Model (MLR)

In MLR, output variable (Ya) is related linearly with multiple input variables like (Xa
1,

Xa
2, · · · , Xa

n). For a given input variables (Xa
1, Xa

2, · · · , Xa
n), output Y will be predicted using

Equation (7). Gradient descent optimization method has been used to find the values of
(m1, m2, · · · , mn) and c for the given inputs (Xa) and corresponding outputs (Ya), such
that the half mean distance between all the output data points and line represented by
Equation (7) is minimum as shown in Figure 4.

Y = m1Xa
1 + m2Xa

2 + ... + mnXa
n + c (7)
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Figure 4. Distance between actual output (Ya) and predicted output (Y) for MLR.

In MLR the variables step size like δmi ε (δm1, δm2, · · · , δmn) and δc have been
computed using Equations (8) and (9) respectively. Variables δmi ε (m1, m2, · · · , mn) and
c will be updated using Equations (6) and (10) respectively such that gradient will reach
toward zero.

δmi = −η
∂E
∂mi

=
ns

∑
a=1

η(Ya −
n

∑
i=1

miXa
i − C)Xa

i (8)

δc = −η
∂E
∂c

=
ns

∑
a=1

η(Ya −
n

∑
i=1

miXa
i − C) (9)

mi = mi + δmi (10)

MLR has been used to predict the active power load (L(D,t)) on a substation at
particular hour (t) of the day (D) based on last three hours load data from time of prediction,
i.e., L(D, t−1), L(D, t−2), L(D, t−3) and active power load (L(D−1, t)) at same time (t)
but in previous day (D−1). In this scenario L(D, t−1), L(D, t−2), L(D, t−3) and L(D−1, t)
data points represent input (Xa), whereas L(D,t) data points represents output (Ya). The
procedure for load prediction using MLR is presented in Figure 5.

2.3. Polynomial Regression Model (PR)

In PR, output variable (Ya) is related nonlinearly with input variable (Xa). For a given
input Xa, output Y will be predicted using Equation (11). Gradient descent optimization
method has been used to find the values of (m1, m2, · · · , mp) and c for the given input (Xa)
and corresponding outputs (Ya), such that the total distance between all the output data
points and nonlinear curve represented by Equation (11) is minimum as shown in Figure 6.
The main objective of gradient descent optimization method is minimization of half mean
distance from all actual data points from nonlinear curve as shown in Equation (2).

Y = mpXp
a + mp−1Xp−1

a + ... + m1Xa + c (11)
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Start

Prepare dataset for Xa, i.e., L(D,t−1), L(D,t-2), L(D,t-3), L(D-1,t) and Ya, i.e., L(D,t)
Randomly initialize m1, m2, m3, m4 and c, choose η and ε, Initiliaze ns=1

Set Iter=1

Set sample=1

Set [(Xa),(Ya)]=[(L(D,t-1),L(D,t-2),L(D,t-3),L(D-1,t)),(L(D,t))]
for corresponding sample

Calculate Y using Equation (7)

Calculate E using Equation (2)

Is E ≤ ε?

Calculate δmi and δc using Equations (8) and (9) respectively

Update m and c using Equations (10) and (6) respectively

Set sample = sample + 1

Is
sample
> Ns?

Set iter = iter + 1

StopYes

No

Yes

No

Figure 5. Multiple linear regression model training algorithm.

Figure 6. Distance between actual output (Ya) and predicted output (Y).

Gradient descent optimizer will update the solution such that it will reach the point
where gradient is zero by choosing step size opposite to the gradient. In PR problem
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(m1, m2, · · · , mp) and c are variables and step size for mi, i.e., δmi and step size for c, i.e.,
δc have been computed using Equations (12) and (13) respectively. Variables δmi and c
will be updated using Equations (6) and (10), respectively, such that gradient will reach
toward zero.

δmi = −η
∂E
∂mi

=
ns

∑
a=1

η(Ya −
p

∑
i=1

miXi
a − c)Xi

a (12)

δc = −η
∂E
∂c

=
ns

∑
a=1

η(Ya −
p

∑
i=1

miXi
a − c) (13)

PR model has been used to predict the active power load (L(D,t)) on a substation at
particular hour (t) of the day (D) based on active power load (L(D−1,t)) at same time (t) but
in previous day (D−1). In this scenario L(D,t) data points represents output (Ya), whereas
L(D−1,t) data points represent input (Xa). The procedure for load prediction using PR is
presented in Figure 7.

Start

Prepare dataset for Xa, i.e., L(D−1,t) and Ya, i.e., L(D,t). Randomly
initialize mi (i ε {1,2,..,p} and c, choose η, ε, ns = 1 and p

Set Iter=1

Set sample=1

Set [Xa,Ya]=[L(D-1,t),L(D,t)] for correspoding sample

Calculate Y using Equation (11)

Calculate E using Equation (2)

Is E ≤ ε?

Calculate δmi and δc using Equations (12) and (13) respectively

Update m and c using Equations (10) and (6) respectively

Set sample = sample + 1

Is
sample
> Ns?

Set iter = iter + 1

StopYes

No

Yes

No

Figure 7. Polynomial Regression model training algorithm.
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2.4. Dimensionality Reduction

In data science forecasting problems, there are often too many variables used to make
the final estimate. These variables are also known as features. The more features there
are, the more difficult it is to imagine the training set and then work on it. Occasionally,
the majority of these characteristics are synonymous and therefore redundant. Features
reduction algorithms come into play here. Feature reduction is the method of reducing the
number of random variables taken into account by having a collection of principal variables.

Dimensionality technique based on correlation among input features was used to
reduce complexity and to avoid the overfitting problem in MLR model.

2.5. Model Performance Metrics

Globally used error metrics such as MAE [25], MSE [26] and RMSE [27] as shown in
Equations (14)–(16) respectively, were used to measure the performance, final decision and
best model structure among simple, MLR models and PR model.

MAE =
∑Ns

i=1 |Y − Ya|
Ns

(14)

MSE =
∑Ns

i=1(Y − Ya)2

Ns
(15)

RMSE =

√
∑Ns

i=1(Y − Ya)2

Ns
(16)

The data from the electric utility, i.e., 33/11 kV substation was collected to train and
test the machine learning model. The variation in predicted output with respect to each
input feature is shown in Figure 8, the data samples are crammed together in a line. By
observing the data distribution, we confidently begin with regression models rather than
more complex advanced models that provide high nonlinear mapping between input and
outputs, which were not necessary for this data. However, to improve prediction accuracy,
some nonlinearity was added to the regression model in the form of a PR model, and
multiple inputs were also tried. The proposed regression models are mathematically simple
and have few model parameters (light weight model), allowing for quick computation and
storage of the deployable model and also having good accuracy as the model considered,
which is more suitable for the distribution of substation load data.
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Figure 8. Impact of each input feature on output variable.
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3. Results

Historical load data to train and test the models was considered from [28]. Date
processing techniques for observing the data distribution and outliers and for data nor-
malization have been used before using this data to train and test the regression model.
Stochastic gradient descent optimizer has been used train the proposed regression models.
The proposed regression models have been implemented and tested in cloud computing
environment using Microsoft Azure Notebook [29].

3.1. Simple Linear Regression

A total of 2160 samples have been considered in the dataset; out of these, 1728 samples
have been used for training and the remaining 432 samples have been used for testing.

3.1.1. Data Analysis

Statistical information of the active power load dataset is presented in Table 2. Scatter-
ing of data available in the dataset is presented in Figure 9. From the data scattering it has
been observed that linear regression model can predict the load with good accuracy.

Table 2. SLR: statistical information of active power load dataset.

Parameter Input Output

count 2160 2160
mean 6037 6028

std 1066 1068
min 3378 3378
25% 5263 5260
50% 5950 5935
75% 6747 6739
max 8842 8842
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Figure 9. SLR: Scattering of data available in the dataset.

Box plot and histogram plot have been used to observe the input and output data
distribution. Input and output data histograms are presented in Figure 10, and it has been
observed that both input and output data samples follow the normal distribution.
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Figure 10. SLR: Data observation using histogram plot.

The box plot shown in Figure 11 is used to identify the outliers in the data and confirms
that there are no outliers in the active power load dataset.

Figure 11. SLR: Data observation using box plot.

3.1.2. Simple Regression Model Performance Analysis

SLR model was trained with 1728 load data samples to find the optimum m and c
values such that half mean distance from actual load data points to the line represented
by optimum m and c values. The optimum m and c values after training using stochastic
gradient descent optimizer are 0.7472 and 0.1173 respectively. The training performance of
the model was measured in terms of MAE, MSE and RMSE and the respective values are
0.0973, 0.01742 and 0.132.

The distribution of actual load Ya and load predicted using Equation (1) with training
load data samples is presented in Figure 12 and similarly distribution of actual load Ya and
predicted load with testing load data samples is presented in Figure 13.
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Figure 12. SLR: Distribution of actual load Ya and predicted load with training dataset and with
m = 0.7472 and c = 0.1173.

Figure 13. SLR: Distribution of actual load Ya and predicted load with testing dataset and with
m = 0.7472 and c = 0.1173.

The performance of the model was observed using MAE, MSE and RMSE and the
respective values with testing dataset were 0.0939, 0.0163 and 0.1277. The comparison
of actual load available in testing dataset and load predicted with trained SLR model is
presented in Figure 14.
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Figure 14. SLR: Comparison of actual load and predicted load with trained SLR model.
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3.2. Multiple Linear Regression

A total of 2160 samples have been considered in the dataset; out of these, 1728 samples
have been used for training and the remaining 432 samples have been used for testing of
MLR model.

3.2.1. Data Analysis

Statistical information in terms of mean, standard deviation and inter quartile range of
the active power load dataset is presented in Table 3. Dataset contains a total of four input
parameters L(D,t−1), L(D,t−2), L(D,t−3) and L(D−1,t) and one output parameter L(D,t).

Table 3. MLR: Statistical information of active power load dataset.

Parameter L(D,t−1) L(D,t−2) L(D,t−3) L(D−1,t) L(D,t)

count 2160 2160 2160 2160 2160
mean 6028 6028 6029 6037 6028

std 1068 1068 1068 1066 1068
min 3378 3378 3378 3378 3378
25% 5260 5260 5260 5263 5260
50% 5933 5935 5936 5950 5935
75% 6739 6739 6739 6747 6739
max 8842 8842 8842 8842 8842

Box plot and histogram plot have been used to observe the input and output data
distribution. Input and output data histograms are presented in Figure 15, and it has been
observed that both input and output data samples follow the normal distribution.

Figure 15. MLR: Data observation using histogram plot.

344



Energies 2021, 14, 2981

The box plot shown in Figure 16 is used to identify the abnormal data samples and it
confirms that there are no outliers in the active power load dataset for MLR model.

Figure 16. MLR: Data observation using box plot.

3.2.2. Multiple Regression Model Performance Analysis

MLR model was trained with 1728 load data samples to find the optimum m4, m3,
m2, m1, and c values such that half mean distance from actual load data points to the line
represented by optimum m1, m2, m3, m4 and c values. The optimum m1, m2, m3, m4 and c
values after training using stochastic gradient descent optimizer are presented in Table 4. It
has been observed that load at one hour before and one day before has positive and high
impact on the predicted load. Similarly, load at two and three hours before has negative
and low impact on the predicted load. The training performance of the MLR model was
measured in terms of MAE, MSE and RMSE and the respective values are 0.0723, 0.0105
and 0.1026.

Table 4. MLR: coefficients and intercept information.

m1 m2 m3 m4 c

0.618733 −0.00289 −0.148361 0.374255 0.07541947

The performance of the model was observed using MAE, MSE and RMSE and the
respective values with testing dataset were 0.0766, 0.0119 and 0.1092. The comparison
of actual load available in testing dataset and load predicted with trained MLR model is
presented in Figure 17.

3.2.3. MLR with Dimensionality Reduction (DR)

In MLR model load at particular hour (t) of the day (D) i.e., L(D,t) was predicted based
on load data on last three hours from time of predicting and load at 24 h before. This means
that a total of four input features were considered. Correlation among four input features
were computed and presented in Table 5 and this information was used for dimensionality
reduction, i.e., to reduce the number of input features and complexity of the model. As
presented in Table 5, L(D,t−2) and L(D,t−3) have more than 75% correlation with L(D,t−1)
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and L(D,t−2), respectively. Hence feature L(D,t−2) was removed from input features and
only L(D,t−1), L(D,t−3) and L(D−1,t) were considered as input features to predict the load
L(D,t) using MLR model.
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Figure 17. MLR: comparison of actual load and predicted load with trained MLR model.

Table 5. MLR: coefficients and intercept information.

Features L(D,t−1) L(D,t−2) L(D,t−3) L(D−1,t)

L(D,t−1) 1 0.783398 0.547211 0.660699
L(D,t−2) 0.783398 1 0.783336 0.472053
L(D,t−3) 0.547211 0.783336 1 0.256744
L(D−1,t) 0.660699 0.472053 0.256744 1

MLR model was trained with 1728 load data samples having three input features,
i.e., L(D,t−1), L(D,t−3) and L(D−1,t) to predict the load L(D,t). The optimum m1, m2, m3
and c values after training using stochastic gradient descent optimizer are presented in
Table 6. It has been observed that load at one hour before and one day before has positive
and high impact on the predicted load. Similarly, load three hours before has negative and
low impact on the predicted load.

Table 6. MLR with dimensionality reduction: coefficients and intercept information.

m1 m2 m3 c

0.596832 −0.137541 0.392209 0.07235393

The behavior of the MLR model prior to and after feature reduction was presented in
Table 7. The behavior of the model was almost similar prior to and after dimensionality
reduction in terms of error metrics.

Table 7. MLR with dimensionality reduction: performance of the model on training dataset.

MAE MSE RMSE

With DR 0.0748 0.0113 0.107
Without DR 0.0723 0.0105 0.103
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The behavior of the model with dimensionality reduction was compared with the
behavior of the model without dimensionality reduction in terms of MAE, MSE and RMSE
on testing dataset as presented in Table 8. The performance of the model was increased
after applying the dimensionality reduction. It was happened due to removal of over
fitting problem by reducing the number of input features and complexity of the model.
The comparison of actual load available in testing dataset and load predicted with trained
MLR model after reducing number of input features is presented in Figure 18.

Table 8. MLR with dimensionality reduction: performance of the model on testing dataset.

MAE MSE RMSE

With DR 0.0679 0.009 0.093
Without DR 0.0766 0.0119 0.109
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Figure 18. MLR With Dimensionality Reduction: comparison of actual load and predicted load with
trained MLR model.

3.3. Polynomial Regression Model

A total of 2160 samples have been considered in the dataset; out of these, 1728 samples
have been used for training and the remaining 432 samples have been used for testing of
the PR model. The approach used for PR model is prediction of load at a particular hour of
the day based on load at 24 h before, which is similar to the approach which was used for
SLR. The same dataset was used for both simple and PR models.

PR Model Performance Analysis

PR model with different degree of polynomial (p) was trained with 1728 load data
samples to find the optimum mi where i ε {1,2,...,p} and c values so that half mean distance
from actual load data points to the curve represented by optimum mi and c values was
minimum. Optimum mi and c values for different degree of PR models were presented in
Table 9.
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Table 9. PR: coefficients and intercept information.

Degree (p) m1 m2 m3 m4 m5 m6 m7 m8

2 0.6061 0.1345 NA NA NA NA NA NA
3 −0.016 1.5525 −0.936 NA NA NA NA NA
4 −0.235 2.4303 −2.25139 0.65556 NA NA NA NA
5 −1.458 9.886 −20.92 21.1449 −8.156 NA NA NA
10 3.8512 −90.59 857.68 −3885.2 10,407 17,572.45 19067.9 13006.7
15 20.437 −802.9 13357 −121,706 661,929 −2,132,575 3,267,138 2,932,709

Degree (p) m9 m10 m11 m12 m13 m14 m15 c

2 NA NA NA NA NA NA NA 0.15478
3 NA NA NA NA NA NA NA 0.22922
4 NA NA NA NA NA NA NA 0.24466
5 NA NA NA NA NA NA NA 0.30014
10 5113.5 -888.6 NA NA NA NA NA 0.25182
15 −3 × 107 7 × 107 −1 × 108 9.2 × 107 −5 × 107 18132030 −3 × 106 0.19706

The training of various PR models has been observed in terms of MAE, MSE and RMSE.
Table 10 presents MAE, MSE and RMSE values during training for different PR models. It
has been observed from Table 10 that the training performance metrics values, i.e., MAE,
MSE and RMSE values decrease by increasing the degree of polynomial. This means that
the training performance of the model is increasing with the degree of polynomial.

Table 10. PR: training performance metrics.

Polynomial Degree (p)
Training

MAE MSE RMSE

3 0.0973329 0.01732 0.131609177
4 0.0973174 0.01732 0.131591693

10 0.0970367 0.01717 0.131019329
15 0.0969165 0.01708 0.130697822
16 0.0968882 0.01708 0.130688064
18 0.0969342 0.01707 0.130644772
20 0.0970481 0.01705 0.130574147

The actual performance of various PR models has been observed with testing data
and presented in Table 11. The performance metrics’ values have been observed, i.e., MSE
and RMSE values decrease up to the degree of polynomial 15 and beyond that increase.
This means that if testing performance of the model increases with degree of polynomial
up to 15 and beyond that decreases, it is due to overfitting of the model.

Table 11. PR: testing performance metrics.

Polynomial Degree (p)
Training

MAE MSE RMSE

3 0.09289 0.015969 0.12637
4 0.09276 0.015939 0.12625

10 0.09274 0.015889 0.12605
15 0.09295 0.015849 0.12589
16 0.09292 0.015853 0.12591
18 0.09308 0.015877 0.12600
20 0.09311 0.015900 0.12609
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Figure 19 shows the variation of RMSE value of model with degree of polynomial on
both training and testing dataset. It has been observed from the Figure 19 that training
performance of the model increases with degree of polynomial. However, testing perfor-
mance of the model increases with polynomial degree up to 15 but beyond that testing
performance decreases due to overfitting problem. Hence, PR model with degree 15 is
considered as the optimal model to deploy.
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Figure 19. PR: identification of Optimal PR Model.

The comparison of actual load available in testing dataset and the load predicted
with trained PR model having polynomial degree 15 is presented in Figure 20. It has been
observed that most of the predicted load points are close to the actual load.
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Figure 20. PR: comparison of actual load and predicted load with trained PR model.

3.4. Comparative Analysis

The proposed SLR model, MLR model with and without DR and PR model to predict
the load on a 33/11 kV substation were compared in terms of MAE, MSE and RMSE as
shown in Table 12. It has been observed that MLR model with DR has low MAE, MSE and
RMSE values compared to simple linear and multiple linear without DR and PR models.
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Which means that MLR model with DR predicted the load with good accuracy compared
to simple linear and multiple linear without DR and PR models.

Table 12. Comparison of regression models’ performance on testing dataset.

Regression

Model MAE MSE RMSE

SLR 0.0939 0.0163 0.1277
PR 0.0930 0.0158 0.1259

MLR 0.0766 0.0119 0.1092
MLR with DR 0.0679 0.009 0.093

The load on a substation varied from 3 MW to 9 MW during the observation period, and
building a regression model by considering +/−0.5 MW load variation can be significant. The
number of times each model failed to predict below the threshold limit is shown in Figure 21.
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Figure 21. Model performance to predict load with in threshold limit.

The performance of the proposed models was compared with existing models avail-
able in the literature [17,18] in terms of training and testing MSE and presented in Table 13.
The proposed multiple linear regression (MLR) with dimensionality reduction performs
well with low mean square error 0.009 over the existing models.

Table 13. Performance comparison with existing complex models.

Mean Square Error

Model Training Testing

SLR 0.0973 0.0163
PR 0.0171 0.0158

MLR 0.0723 0.0119
MLR with DR 0.0748 0.009

[18] 0.23 0.44
[17] 0.29 1.59

In comparison with other techniques, the proposed regression models stand out on
the data considered for the discussed problem in terms of speed due to light weight models,
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accuracy due to a suitable model chosen based on data distribution and simplicity due to a
very simple model with 2 model parameters for SLR, 16 model parameters for PR and 5
model parameters for multi-variable linear regression model.

4. Conclusions

The SLR, MLR and PR models were used in this paper to estimate the active power
load on a 33/11 kV substation. Dimensionality reduction based on correlation among MLR
model input features was used to reduce the model’s complexity and overfitting issue.

The analytical results indicate that the proposed regression models predicts active
power load with good accuracy. The analytical results concluded that the proposed MLR
model with dimensionality reduction performs better. This paper offers a detailed tool for
network operators to efficiently exchange energy and run the network.

The methodology to predict load using regression models can be applied to other
power system research areas such as LMP computation, effective trading in the energy
market, power system deregulation and so on. This load prediction work can be expanded
by taking into account sequential networks as well as weekdays and weekends.
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Abbreviations

The following abbreviations are used in this manuscript:

da Distance between actual and predicted outputs
DS Dimensionality reduction
L(D, t) Load at Day ‘D’ and at hour ‘t’
L(D, t − 1) Load at Day ‘D’ and at hour ‘t – 1’
L(D, t − 2) Load at Day ‘D’ and at hour ‘t – 2’
L(D, t − 3) Load at Day ‘D’ and at hour ‘t – 3’
L(D − 1, t) Load at Day ‘D – 1’ and at hour ‘t’
MAE Mean Absolute Error
MLR Multiple Linear Regression Model
MSE Mean Square Error
Na Total number of samples
na Batch size
p Degree of polynomial
PR Polynomial Regression Model
RMSE Root Mean Square Error
SLR Simple Linear Regression Model
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Xa ath sample from input dataset
Xa

i ith input parameter in ath sample from input dataset
Y Predicted output using regression model
Ya ath sample from output dataset
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Abstract: This paper proposes a photovoltaic (PV) string-level isolated DC–DC power optimizer with
wide voltage range. A hybrid control scheme in which pulse frequency modulation (PFM) control
and pulse width modulation (PWM) control are combined with a variable switching frequency is
employed to regulate the wide PV voltage range. By adjusting the switching frequency in the above
region during the PWM control process, the circulating current period can be eliminated and the
turn-on period of the bidirectional switch of the dual-bridge LLC (DBLLC) resonant converter is
reduced compared to that with a conventional PWM control scheme with a fixed switching frequency,
resulting in better switching and conduction loss. Soft start-up control under a no-load condition is
proposed to charge the DC-link electrolytic capacitor from 0 V. A laboratory prototype of a 6.25 kW
DBLLC resonant converter with a transformer, including integrated resonant inductance, is built and
tested in order to verify the performance and theoretical claims.

Keywords: isolated DC–DC converter; photovoltaics; LLC resonant converter; dual-bridge; wide
voltage range; power optimizer

1. Introduction

Photovoltaic (PV) converters are key components in solar systems. These converters
maximize the power extracted from PV cells for delivery to the grid. The power trans-
ferred to the utility grid is processed and organized in different concepts, as illustrated
in Figure 1 [1–8]. Each grid-tie concept is a series of paralleled PV panels or strings con-
nected to a couple of power converters (DC–DC converter and DC–AC inverter) based
on the power level as well as the output voltage of the PV cells. According to the state-of-
the-art technologies, grid-tie PV systems are single-stage and two-stage structures. The
single-stage PV systems shown in Figure 1a,b contain only a DC–AC inverter. However,
the two-stage structure employs DC-DC converters with DC–AC inverter, as shown in
Figure 1c,d. Single-stage PV systems are simple and promise high efficiency due to the
reduced power processing stages. Under certain ambient conditions, it is not possible to
guarantee a DC-link requirement for the inverter [9,10]. Therefore, it is necessary to step
up or step down the voltage of a PV string/multi-string to the required DC-link voltage for
grid connection. Furthermore, the single-stage architecture does not extract the maximum
energy from the PV modules, as the global maximum power point (MPP) is not the MPP
for all individual modules, especially under partial shading, soiling, and mismatched
conditions [11–13]. The drawbacks of the single-stage design can be alleviated using a
two-stage type of architecture. Therefore, PV plants now favor two-stage architectures
with DC–DC converters that reduce the effects of partial shading, improve the energy
yield, provide more flexibility in the plant design process, and improve the monitoring and
diagnostics capabilities [14,15].
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Figure 1. Grid-tie photovoltaic (PV) systems. (a) Centralized structure. (b) String structure. (c) Multi-string structure with
non-isolated DC–DC converters. (d) Multi-string structure with isolated DC–DC converters.

Furthermore, in the two-stage structure, the DC–DC converter can be selectively
designed as a buck, boost, or the buck–boost converter according to the PV connection.
The boost converter is the best candidate if a significant step-up process is required. The
basic non-isolated boost converter is the simplest solution due to its low part count and
simple design. However, this converter tracks the MPP within a limited range and is asso-
ciated with a limited switching frequency due to the hard switching operation. Moreover,
PV systems employing a basic non-isolated boost converter necessitate a low-frequency
transformer for the grid connection. Hence, the system cost and size are significantly
increased. On the other hand, high-frequency isolated converters eliminate the need for a
low-frequency transformer, reducing both the system size and the cost [16–18].

As a result, the isolated DC–DC converter has been considered to eliminate the low-
frequency transformer [19–24]. In particular, the conventional full-bridge LLC resonant
converter has an inherent entire-range zero-voltage switching (ZVS) characteristic with a
low turn-off current of the primary switches [25–29]. For this reason, the resonant DC–DC
converter with high-frequency isolation is widely used in various applications. However,
the converter operates within a wide switching frequency range (above and below regions)
under a wide PV voltage range, and low magnetizing inductance is required. The low
magnetizing inductance increases the circulating current and conduction losses, especially
at frequencies greater than the resonant frequency (fr). The dual-bridge LLC (DBLLC)
resonant converter presented in [30] is shown in Figure 2a. The topology operates with
a fixed switching frequency (fs) and the PV voltage Vpv is regulated by the mode change
between the full-bridge (FB) and the half-bridge (HB) components within a half switching
cycle, as shown in Figure 2b. The primary-side switches achieve ZVS turn-on while the
secondary diodes are turned off with the zero-current switching (ZCS). The resonant tank
of the aforementioned converter is simple given that the voltage gain is independent of
the quality factor, and the magnetizing inductance has little influence on the voltage gain.
Moreover, the topology utilizes high magnetizing inductance, leading to high efficiency.
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Figure 2. Dual-bridge LLC resonant converter. (a) Circuit configuration. (b) Key waveforms of the conventional pulse
width modulation (PWM) control with fixed switching frequency (fs = fr).

However, in this topology, the circulating current flows for a longer duration, leading
to a high root mean square (RMS) and peak current in the resonant tank. Moreover,
the converter voltage gain is limited between 0.5 (HB mode) and 1 (FB mode) due to
the implemented pulse width modulation (PWM) control at a fixed switching frequency.
Furthermore, a soft start-up control scheme cannot be implemented as part of the traditional
PWM method.

This paper proposes the PV string-level isolated power optimizer for wide voltage
range. The aforementioned drawbacks of a DBLLC resonant converter are eliminated and
the performance of the DBLLC resonant converter is improved. That is, the proposed
power optimizer achieves wider gain and high efficiency compared to the conventional
DBLLC resonant converter. Major contributions of this paper are listed as follows:

• The RMS and peak value of the resonant current are decreased by eliminating the
circulating current, resulting in a reduced level of conduction loss.

• The implemented hybrid control method significantly increases the overall voltage
gain. Hence, a wider voltage range is achieved.

• The current stress of the bidirectional switch is decreased because the conduction time
is shorter with a minimized RMS current.

• Phase shift control is implemented for soft start-up operation, guaranteeing the initial
charging of the DC-link electrolytic capacitor.

The proposed DBLLC resonant converter is presented in Section 2. In addition, design
methods of the switching frequency range and transformer with integrated leakage induc-
tance are presented in Section 3. In Section 4, the experimental results from a laboratory
prototype of the proposed DBLLC resonant converter are provided to verify the theoretical
analysis.

2. The Proposed Dual-Bridge LLC (DBLLC) Resonant Converter

2.1. Operation Principle and Characteristics

The dual-bridge LLC resonant converter has been considered to achieve wide voltage
range [31–38]. As shown in Figure 2a, the DBLLC resonant converter has a bidirectional
switch added to the conventional LLC full-bridge resonant converter for the wide PV
voltage range. The DBLLC resonant converter with a fixed switching frequency in [30]
operates in HB mode and/or the FB mode, providing the wide range operation with
maximum gain of 2. Moreover, the DBLLC converter maintains the ZVS of all switches
under entire voltage and load range. However, due to PWM control, the DBLLC converter
generates a large circulating current, resulting in limitation on the efficiency.

357



Energies 2021, 14, 1889

This paper introduces the pulse frequency modulation (PFM) control operating under
very wide voltage range from 300 V to 900 V based on the topology presented in [30]. In
addition, in order to eliminate circulating current period, the boundary conduction mode
(BCM) was introduced, thereby increasing the converter efficiency. Figure 3 shows the
operation principle of the DBLLC resonant converter. The MPPT algorism is implemented
by using two control methods: PFM control and PWM control. The PFM control is applied
when the voltage gain M is between 0.33 and 0.5, and PWM control is applied when voltage
gain M is between 0.5 and 1. Since the DBLLC resonant converter operates at the nominal
MPPT voltage with PWM control, increasing the efficiency is important during the PWM
control. Unlike conventional PWM control with a fixed switching frequency, the switching
frequency of the proposed PWM control is varied according to the duty cycle D to increase
the efficiency.

Figure 3. Operation principle of the dual-bridge LLC (DBLLC). (a) The proposed hybrid control scheme. (b) Key waveforms
of the DBLLC resonant converter with Pulse Frequency Modulation (PFM) control at 300 V–450 V. (c) Key waveforms of the
DBLLC resonant converter with the proposed PWM control scheme with a variable switching frequency of 450 V–900 V.

2.1.1. Pulse Frequency Modulation (PFM) Control

Figure 3b shows the key waveforms of the DBLLC resonant converter with PFM
control for the voltage gain M ε [0.33, 0.5]. The converter is controlled by PFM at frequencies
below the resonant frequency (fs < fr). Switches S1 and S2 operate in a diagonal manner
with S3 and S4 at fixed 50% duty, while the bidirectional switch consisting of S5 and S6 is
turned off. The voltage across the primary side of the transformer vab is denoted as Vpv. The
operating principles of the DBLLC resonant converter in the PFM mode are not covered
in this paper given that they are similar to the operating principles of a conventional
full-bridge LLC resonant converter [39].

2.1.2. Pulse Width Modulation (PWM) Control with a Variable Switching Frequency

Figure 3c shows the key waveforms of the DBLLC resonant converter with PWM
control of a varying switching frequency. This mode is considered within voltage gain M
between 0.5 and 1. When operating in this mode, both the duty cycle D and the switching
frequency are varied. Switches S3 and S4 operate in a diagonal manner with bidirectional
switch S5 and S6, respectively. The duty cycles of S3 and S4 are also varied, while S1 and S2
operate at a fixed duty cycle of 0.5. The magnitude of the voltage across the resonant tank
vab is Vpv in the FB mode and 0.5 Vpv in the HB mode. Because different voltages across the
resonant tank lead to a circulating current period, the switching frequency is also varied in
the above region such that the switching frequency fs is higher than the resonant frequency
fr according to the duty cycle D to eliminate the circulating current period. Three operation
modes during the half switching cycle are presented.

• Mode 1 [t0–t1];
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This mode starts when S1 and S4 are turned on. ZVS operations of the S1 and S4 are
achieved with the magnetizing current of the transformer. The resonant tank voltage vab
equals the PV voltage Vpv. The series resonance between Lr and Cr starts while the voltage
across the magnetizing inductor is clamped at nVo. The equivalent circuit during this mode
is shown in Figure 4a and the voltage across to the resonant tank is Vpv-Vo/n The resonant
inductor current, resonant capacitor voltage and magnetizing current are expressed as
shown below.

iLr(t) = (Vpv − Vo

n
− vcr(t0))

sin(ωr1(t − t0))

Zr1
+ iLr(t0) cos(ωr1(t − t0)) (1)

vcr(t) = Vpv − Vo

n
− (Vpv − Vo

n
− vcr(t0)) cos(ωr1(t− t0)) + iLr(t0)Zr1 sin(ωr1(t− t0)) (2)

iLm(t) = iLm(t0) +
nVo

Lm
(t − t0) (3)

where the angular frequency between Lr and Cr ωr1 = 1/
√

LrCr, resonant tank impedance
of Lr and Cr Zr1 =

√
Lr/Cr and t1 − t0 = DTs. The power is delivered from PV to load in

this mode.

Figure 4. Equivalent circuit of the Pulse Width Modulation (PWM) control operation in the dual-bridge LLC resonant
converter. (a) t0–t1. (b) t1–t2. (c) t2–t3.

• Mode 2 [t1–t2];
When S3 is turned off and S6 is ZVS-turned on with resonant current, the resonant tank

voltage vab equals half of the PV voltage of 0.5Vpv, while the voltage across the magnetizing
inductor is still clamped at nVo. The equivalent circuit in this mode is shown in Figure 4b
and the voltage across to the resonant tank is Vpv/2−Vo/n. The resonant inductor current,
resonant capacitor voltage, and magnetizing current are expressed as follows:

iLr(t) = (
Vpv

2
− Vo

n
− vcr(t1))

sin(ωr1(t − t1))

Zr1
+ iLr(t1) cos(ωr1(t − t1)) (4)

vcr(t) =
Vpv

2
− Vo

n
− (

Vpv

2
− Vo

n
− vcr(t1)) cos(ωr1(t − t1)) + iLr(t1)Zr1 sin(ωr1(t − t1)) (5)

iLm(t) = iLm(t1) +
nVo

Lm
(t − t1) (6)

The power is delivered from PV to load in this mode. Mode 2 begins when the
resonant inductor current iLr equals the magnetizing current iLm. However, in the proposed
PWM control scheme with a variable switching frequency, since S1 and S5 are turned off
when the resonant inductor current iLr equals the magnetizing current iLm, mode 3 can be
eliminated.

• Mode 3 [t2–t3];
In this mode, the resonant tank voltage vab still equals half of the PV voltage of 0.5Vpv

and the voltage across the magnetizing inductor is no longer clamped due to the ZCS
turn-off of the secondary diode. The magnetizing inductance Lm starts the resonance
together with resonant inductor Lr and resonant capacitor Cr. The equivalent circuit while
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in this mode is shown in Figure 4b and the voltage across to the resonant tank is only Vpv/2.
The resonant inductor current, resonant capacitor voltage, and magnetizing current are
expressed as

iLr(t) = (
Vpv

2
− vcr(t2))

sin(ωr2(t − t2))

Zr2
+ iLr(t2) cos(ωr2(t − t2)) (7)

vcr(t) =
Vpv

2
− (

Vpv

2
− vcr(t2)) cos(ωr2(t − t2)) + iLr(t2)Zr2 sin(ωr2(t − t2)) (8)

iLm(t) = iLr(t) (9)

where the angular frequency ωr2 =
√

1/(Lr + Lm)Cr, resonant tank impedance Zr2 =√
(Lr + Lm)Cr containing Lm, and t3–t0 = 0.5Ts.

In this mode, the load power is not supplied from Vpv to Vo, and the circulating current
is conducted on the primary side. This circulating current period increases the peak and
RMS values of the resonant current, resulting in high switching loss and conduction loss. In
the proposed PWM control scheme with a variable frequency, this period can be eliminated
by operating in the above region.

Figure 5a shows the circulating current period in the conventional PWM control
scheme with a fixed switching frequency according to duty cycle period D. The resonant
current iLr becomes equal to iLm at the instant t2. The circulating current period is calculated
by numerically solving Equations (1)–(4) and (6). The circulating current period is varied
according to the Q factor, which is defined as n2wrLr/RL and which can be shorter with a
high value of Q. Figure 5b shows the switching frequency boundary for the BCM mode
when Q is 0.83. The switching frequency boundary for the BCM mode is determined when
the t3 − t2 is zero. The switching frequency for the BCM mode is expressed as shown
below:

fs_BCM =
fr

0.5 − (t3 − t2) fr
(10)

Figure 5. Selection of the switching frequency for the Boundary Conduction Mode (BCM). (a) Circulating current period of
the PWM control scheme with a fixed switching frequency (fs = fr). (b) Switching frequency boundary for the BCM mode.

When the switching frequency is lower than fs_BCM, the DBLLC resonant converter
operates in the discontinuous conduction mode (DCM), which has a circulating current
period. When the switching frequency is higher than fs_BCM, the DBLLC resonant converter
operates in the continuous conduction mode (CCM). Despite the fact that there is no
circulating current period, the turn-off losses of S1–S2 and S5–S6 and the reverse recovery
loss of the secondary diodes are increased. In the BCM mode, not only is the circulating
current period eliminated, but the small turn-off current is also ensured, which results in
the optimal efficiency.

Figure 6 shows the results of a steady-state trajectory comparison between the pro-
posed PWM control method with a variable switching frequency and the conventional
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PWM control with a fixed switching frequency using Equations (1)–(9). It should be noted
that the proposed control scheme leads to lower magnitudes of the resonant current and
resonant voltage compared to the conventional control method. Figure 6b is the resonant
current comparison at time domain, which shows that the rms value of the resonant current
in the proposed PWM control is smaller than that of the conventional PWM control by 15%.

Figure 6. Steady-state waveform comparison between the proposed PWM control scheme with a variable switching
frequency and the conventional PWM control scheme with a fixed switching frequency. (a) Steady-state trajectory; (b)
Time domain.

Figure 7 shows a comparison of the voltage gains between the proposed PWM control
and the conventional PWM control schemes. The proposed scheme requires a higher
duty cycle in the entire voltage gain range than the conventional scheme. At a voltage
gain of 0.65, the duty cycle of the proposed scheme is 0.23, while that of the conventional
scheme is 0.3. Therefore, the period of circulating current of the proposed scheme is 0.2,
which is smaller than that of the conventional scheme of 0.27. As a result, the proposed
scheme eliminates the circulating current and minimizes the turn-off losses of the switches,
thereby achieving high efficiency. The voltage gain of the proposed PWM control scheme
is expressed using the first harmonic approximation (FHA) method as:

MPWM =
Vo

nVpv
=

√√√√ 10 − 6 cos(2πD)/4(
1 + 1

Ln
− 1

Ln · f 2
n

)2
+ Q2 ·

(
fn − 1

fn

)2 (11)

where quality factor Q =
√

Lr/Cr
Rac

, reflected load resistance Rac =
8

π2 · n2 · Ro, inductance
ratio Ln = Lm/Lr, and nominalized switching frequency fn = fs/fr. Since the proposed PWM
control scheme operates at frequencies higher than fr, higher voltage gain is achieved
compared to that of the conventional PWM control scheme.

Therefore, a longer turn-on period of S3–S4 and a shorter turn-on period of the bidirec-
tional switch S5 and S6 are required to regulate the same PV voltage with the conventional
PWM control method. Since operating the bidirectional switch instead of operating S3 or
S4 increases the conduction loss due to conduction though three switches together and the
doubling of the conduction period during one switching cycle, as shown in Figure 7, the
proposed PWM control scheme can release the current stress of the bidirectional switch S5
and S6.
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Figure 7. Voltage gain comparison between the proposed PWM control scheme and the conventional PWM control scheme.

2.2. Start-up Control of the Proposed Dual-Bridge LLC (DBLLC) Resonant Converter

If the system power of the inverter is supplied from the DC-link side, an isolated
DC–DC converter should maintain the enough DC-link voltage to supply the system
power of the inverter, as shown in Figure 8a, and soft-start-up control during which the
DC-link voltage is increased from 0 V is required. This system can eliminate the initial
charging circuit of the DC-link. However, because the minimum voltage gain is 0.5 in the
DBLLC resonant converter and the voltage gain is increased when under a virtual no-load
condition due to the parasitic capacitor of the secondary diode, soft start-up control with
the conventional PWM scheme or the PFM control scheme is not possible.

Figure 8. Selection of the switching frequency for the Boundary Conduction Mode (BCM) mode. (a) Circulating current
period of the PWM control scheme with a fixed switching frequency (fs = fr). (b) The switching frequency boundary for the
Boundary Conduction Mode (BCM) mode.

During the start-up process, the DBLLC resonant converter regulates the output volt-
age by means of phase-shift (PS) control between S1–S2 and S3–S4 while the bidirectional
switch S5 and S6 is turned off, as shown in Figure 8b. The magnitude of the resonant tank
voltage vab is the PV voltage vpv during duty cycle D and is 0 V during 0.5-D. Moreover, the
DC-link voltage can be increased from 0 V by increasing the duty cycle gradually from 0.
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2.3. Proposed Control Scheme

Some MPPT algorithms for tracking the PV string voltage more effectively are sug-
gested in [40,41], and the well-known perturb and observe (P&O) algorithm is applied in
this paper to validate only the converter performance. When the inverter regulates the
DC-link voltage, the proposed DBLLC resonant converter controls the PV string voltage
by means of the perturb and observe (P&O) MPPT control, as shown in Figure 9. In this
paper [42], the PV module data are listed in Table A1 of the Appendix A. The PV voltage
is given as from 300 V to 900 V, and the output voltage of the converter is fixed at 900 V,
as shown in Table 1. In order to operate the wide PV voltage range, the transformer turn
ratio is designed to be 0.5. Thus, when the PV voltage is larger than 450 V, the converter
performs PWM control to regulate the output voltage to 900 V. However, when the PV
voltage is less than 450 V, it operates in PFM control to boost the output voltage to 900 V
due to low PV voltage. Accordingly, when K is lower than 0.5, the duty cycle of S3 and S4
is the control variable and the switching frequency is varied according to fs_BCM, which is
calculated using Equation (10). Therefore, the DBLLC converter operates in the BCM that
eliminates the circulating current period, thereby achieving high efficiency. Meanwhile,
when K is higher than 0.5, the switching frequency is the control variable to operate in
PFM control and the duty cycle of S3 and S4 is fixed at 0.5. Since the voltage gain is linear
between the PWM control scheme and the PFM control scheme, there is no transient state
during a mode change. When the inverter is in a pause state, one of the DBLLC resonant
converters controls the DC-link voltage via PS control. The duty cycle D is increased slowly
from 0 to charge the DC-link capacitor.

Figure 9. Proposed control scheme for Dual-Bridge LLC (DBLLC) converter with wide photovoltaic
(PV) voltage range.

Table 1. System specification and designed parameters of the proposed Dual-Bridge LLC (DBLLC)
resonant converter.

Specification/Parameter Symbol Values

PV voltage Vpv 300 V–900 V
Output voltage Vo 900 V
Maximum power Po 6.25 kW
Primary-side switches S1–S6 C2M0025120D (1200 V, 90 A)
Secondary-side diode D1–D4 FFSH30120A-D (1200 V, 30 A)
Transformer turn ratio n 0.5
Magnetizing inductance Lm 120 μH
Resonant inductance Lr 22.3 μH
Resonant capacitance Cr 60 nH
Resonant frequency fr 120 kHz
Input capacitance Cpv1, Cpv2 40 μF
Output capacitance Co 10 μF
Switching frequency range fs 70 kHz–160 kHz
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3. Design Procedure

3.1. Selecting the Switching Frequency Range

The resonant tank parameters are designed considering both the switching frequency
range and the magnetizing inductance value. When the resonant frequency is 120 kHz, the
resonant capacitor value is determined by the resonant inductance value. Figure 10 shows
the voltage gain of the PFM control scheme with different resonant inductance Lr values.

Figure 10. Voltage gain of the PFM control with different resonant inductance values when Vo = 900 V
and Lm = 120 μH.

When the output voltage is 900 V and the magnetizing inductance value is fixed at
120 μH, the voltage gain of the PFM control scheme is expressed using the first harmonic
approximation (FHA) method, as shown below.

MPFM =
1√(

1 + 1
Ln

− 1
Ln · f 2

n

)2
+ Q2 ·

(
fn − 1

fn

)2
(12)

where quality factor Q =
√

Lr/Cr
Rac

, reflected load resistance Rac =
8

π2 · n2 · Ro, inductance
ratio Ln = Lm/Lr, and nominalized switching frequency fn = fs/fr. With a small Lr value
(green line), a wide switching frequency range is required to satisfy the requirements of the
desired voltage gain due to the flat gain curve. Because the minimum switching frequency
is limited to 70 kHz, considering the volume of the transformer, a small magnetizing
inductance value design is required to increase the voltage gain, which increases the
conduction loss and the switching loss. The maximum switching frequency for the BCM
mode is increased due to the low Q factor. Although the voltage gain curve is sharp with a
high Lr value (red line), the desired voltage gain in this case as well cannot be acquired due
to the reduced peak voltage gain. Therefore, a design with a small magnetizing inductance
value is required to increase the voltage gain. A resonant inductance value of 22 μH
is selected considering the maximum switching frequency for the BCM mode and the
magnetizing inductance value.

3.2. Soft Switching

The magnetizing current of the transformer discharges the output capacitor of the
primary switches, while ZVS operation of S3 and S4 is ensured when using the PWM
control scheme due to the high turn-off current of the resonant current. Therefore, the
peak value of the magnetizing current should be high enough to discharge the output
capacitor of the switches. The peak current of the magnetizing current for ZVS operation is
expressed as

iLm(t3) ≥ iCoss = 2Coss
Vpv

td
(13)
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where Coss is the output capacitance value of the switches and td is the dead-time period.
The peak value of the magnetizing current is expressed as

iLm(t3) =
VoTs_min

4nLm
(14)

where Ts_min denotes a single switching cycle at the maximum switching frequency. From
Equations (13) and (14), the magnetizing inductance value for the entire range of ZVS
operation of the switches is expressed as

Lm =
tdTs_min

8Coss
=

80 · 10−9 · 1
160·103

8 · 80 · 10−12 = 535μH (15)

where Vpv = 900 V, the output voltage Vo = 900 V, turn ratio of the transformer n = 0.5,
dead-time td = 80 ns, Coss = 80 pF (from the CREE C2M0025120D datasheet), and one
switching period is considered as the maximum operation switching frequency of 160 kHz
of the proposed DBLLC resonant converter. The magnetizing inductance value in the PFM
control scheme was set to 120 μH according to the design procedure in Section 3.1, a value
which satisfies the Equation (15) requirement, the condition for the entire range of ZVS
operation.

3.3. Transformer with Integrated Leakage Inductance

Generally, both primary and secondary windings are wound on the center leg, as
shown in Figure 11a [43,44]. The Lm value can easily be adjusted by changing the air
gap distance of the core; however, there is limitation to the Lk value because it can only
be adjusted by changing the distance between the primary and secondary wires. This
winding method has the lowest Lk value because the distance between the primary and
secondary windings is narrow [45]. Therefore, for this winding method, an additional
resonant inductor should be used when a sufficiently large Lk value is required to operate
over a wide voltage range. An example of this would be an LLC resonant converter.
Meanwhile, by placing some of the secondary turns on the outer legs of the core, as shown
in Figure 11b, the leakage inductance can be increased since there is more leakage magnetic
flux flowing into the air. The leakage inductance can be increased further by distributing
more windings on the outer legs. The largest Lk value can be obtained by winding all of the
secondary side turns on the outer leg, as shown in Figure 11c, in which case the internal
Lk of the transformer can be used as the resonant inductor without using an additional
inductor [46].

Figure 11. Secondary-side winding methods. (a) Winding only the center leg of the core. (b) Winding
both the center leg and the outer legs of the core. (c) Winding only the outer legs of the core.

Figure 12a shows the relationship between the number of turns of the secondary
winding on the outer legs, T1, and the leakage inductance value. In this paper, the winding
method in Figure 11c was adopted because at least 20 μH is required for the regulation
of the LLC converter. PM12/EE555S (TODA ISU Co. Ltd., Wonju, Korea) was selected as
the transformer core. To minimize heat generation in the core, the maximum flux density
(Bmax) was chosen to be 0.3 T. To achieve the desired Bmax, the required number of primary
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turns is 11, which is wound around the core center leg. A 3D finite element analysis (FEA)
simulation was conducted on ANSYS Maxwell, and these results are shown Figure 12b.

Figure 12. Finite Element Analysis (FEA) simulation result. (a) Relationship between the number of turns of the secondary
winding on the outer legs and the leakage inductance. (b) The magnetic flux density distributions of the core.

4. Experimental Results

In order to verify the performance of the proposed DBLLC resonant converter, a
6.25 kW laboratory prototype was built, as shown in Figure 13. The system specifications
and designed parameters of the proposed DBLLC resonant converter are summarized in
Table 1. The primary switches and secondary-side diodes were implemented using SiC
devices (S1–S6: C2M0025120D from CREE, D1–D4: FFSH30120A from ON Semiconductor).
The transformer was implemented with EE55/55 ferrite cores from Core Electronics. Values
of 40 μF for input capacitors Cpv1 and Cpv2 and 10 μF for output capacitor Co were selected,
respectively, considering the voltage ripple. The control algorithm was implemented in
a floating-point digital signal processing (DSP) platform TMS320F28377S, and a power
analyzer (YOKOGAWA WT3000) was used to measure the efficiency.

Figure 13. Prototype of the proposed 6.25 kW DBLLC resonant converter.

Figure 14 shows the experimental waveforms of the proposed hybrid control in a wide
PV voltage while the output voltage is constant at 900 V. When the PV voltage is 300 V, the
DBLLC resonant converter operates in the FB mode, and the switching frequency of 84 kHz
is lower than the resonant frequency. The amplitude of the resonant tank voltage vab is
equal to the PV voltage, and the PV voltage is regulated using the PFM control scheme.
When the PV voltage is 450 V, the DBLLC resonant converter operates in the FB mode,
and the switching frequency is near to the resonant frequency of 120 kHz. The amplitude
of the resonant tank voltage vab is still equal to the PV voltage. When the PV voltage is
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equal to 720 V, the DBLLC resonant converter operates with the proposed PWM control
scheme, and the switching frequency is varied in the above region in order to eliminate
the circulating current period. The FB mode and the HB mode are varied to regulate the
PV voltage. When Vpv is 900 V, the DBLLC resonant converter operates in the HB mode
and the switching frequency is near to the resonant frequency of 120 kHz. The amplitude
of the resonant tank voltage vab is equal to half of the PV voltage. As a result, the peak
and RMS values of the resonant tank current iLr are able to be minimized by the proposed
PWM control scheme with a variable switching frequency. Furthermore, a wide PV voltage
range (300 V–900 V) is regulated by the PFM control scheme.

Figure 14. Experimental waveforms of the proposed hybrid control in a wide PV voltage range.

Figure 15 shows the results of a comparison of the experimental waveforms between
the proposed PWM control scheme and the conventional PWM control scheme in terms
of the peak current value and the RMS value of the resonant current when Vpv = 720 V,
Vo = 900 V, and Po = 6.25 kW. In the proposed PWM control scheme, the circulating current
period is eliminated by operating in the above region, as shown in Figure 15a, and the peak
value and RMS value of the resonant current are 29.3 A and 18.1 A, respectively. In the
conventional PWM control scheme shown in Figure 15b, the peak value and RMS value
of the resonant current are 34.2 A and 20.9 A, respectively, due to the circulating current
period. The proposed PWM control scheme provides a smaller peak value and a smaller
RMS value of the resonant current by 17% and 15%, respectively, resulting in less turn-off
loss and conduction loss.
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Figure 15. Experimental waveforms of the PWM control scheme: (a) proposed variable switching frequency; (b) conven-
tional fixed switching frequency.

Figure 16 shows the experimental waveforms of the proposed soft-start up and initial
operation sequence. This method is used to smoothly charge the bulky electrolytic capaci-
tors of the DC-link to decrease inrush current. Therefore, the resistive pre-charge circuits of
the inverter were eliminated. In period (a), the DBLLC resonant converter regulates the
DC-link voltage gradually from 0 V to supply the system power such as in the inverter
condition using the PS control scheme. Then, the inverter regulates the DC-link voltage
during period (b), while the DBLLC resonant converter is paused. In period (c), the DBLLC
resonant converter regulates the PV voltage with the proposed hybrid control scheme to
track the MPPT point.

Figure 16. Experimental waveforms of the soft-start up and initial operation sequence.

Figure 17 shows a comparison of the measured efficiency rates between the pro-
posed PWM control and the conventional PWM control schemes when VPV = 720 V and
Vo = 900 V. The maximum and California energy commission (CEC) efficiency of the pro-
posed PWM control are 98.23% and 98.04%, respectively, values greater than those by the
conventional PWM control by 0.1% and 0.2%, respectively. This is because the switches
losses are reduced by eliminating the circulating current period by the proposed PWM
control. Figure 18 shows the results of a loss analysis when Po = 6.25 kW with PWM control.
Despite the fact that the switching loss is higher due to the increased switching frequency,
the conduction losses of the primary switches of the proposed PWM control scheme are
smaller due to the elimination of the circulating current period and the reduced turn-on
period of the bidirectional switch.
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Figure 17. Measured efficiency comparison between the proposed PWM control scheme and the
conventional PWM control scheme when Vpv = 720 V and Vo = 900 V.

Figure 18. Loss analysis under the full load condition with PWM control.

5. Conclusions

This paper proposes an isolated DC–DC power optimizer for a wide PV string voltage
range, and this wide PV voltage range (300 V–900 V) is regulated by the proposed hybrid
control combining the PFM control scheme and PWM control scheme with a variable
switching frequency. By operating in the above region of the LLC resonant converter
with PWM control, the circulating current period is eliminated and the peak and RMS
values of the resonant current are decreased to 17% and 15% under the rated power,
respectively, compared to the conventional PWM control scheme with a fixed switching
frequency. The current stress of the bidirectional switches is also decreased due to the
reduced turn-on cycle. To charge the DC-link capacitor, the start-up control is proposed
and validated with experimental results. The leakage inductance integrated transformer
with a distributed secondary turn ratio is designed for high efficiency and a high power
density. From a 6.25 kW laboratory prototype, it is shown that the maximum efficiency
and CEC efficiency are 98.22% and 98.04%, respectively, which are increased by 0.1% and
0.2%, respectively, compared to those of the conventional PWM control scheme with a
fixed switching frequency. It should be noted that the proposed hybrid control in a DBLLC
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resonant converter provides higher efficiency and a wider voltage range without extra
components.
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Appendix A

Table A1. Specification of the one PV Module [42].

Parameter Values

Total maximum power 400 W
MPP voltage 40.6 V
MPP current 9.86 A

Open circuit voltage 49.3 V
Short circuit current 10.47 A

Number of series 16
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Abstract: Renewable energy resources like solar energy, wind energy, hydro energy, photovoltaic etc.
are gaining much importance due to the day by day depletion of conventional resources. Owing to
the lower efficiencies of renewable energy resources, much attention has been paid to improving them.
The concept of utilizing phase change materials (PCMs) has attracted wide attention in recent years.
This is due to their ability to extract thermal energy when used in collaboration with photovoltaic (PV),
thus improving the photoelectric conversion efficiency. In this paper, the objective is to design and
fabricate a novel thermal energy storage system using phase change material. An investigation on the
characteristics of Potash Alum as a phase change material due to its low cost, easy availability and its
usage as an energy storage for the indoor purposes are taken into account. The use of a latent heat
storage system using phase change materials (PCMs) is an effective way of storing thermal energy and
has the advantage of high-energy storage density and the isothermal nature of the storage process.
In the current study, potash alum was identified as a phase change material combined with renewable
energy sources, that can be efficiently and effectively used in storing thermal energy at compartively
lower temperatures that can later be used in daily life heating requirements.A parabolic dish which
acts of a heat collector is used to track and reflects solar radiation at a single point on a receiver tank.
Heat transfer from the solar collector to the storage tank is done by using a circulating heat transfer
fluid with the help of a pump. The experimental results show that this system is capable of successfully
storing and utilizing thermal energy on indoor scale such as cooking, heating and those applications
where temperature is below 92 ◦C.

Keywords: thermal energy storage; parabolic dish; latent heat; phase change material; heat transfer fluid

1. Introduction

Renewable energy is playing a vital role in the clean energy generation and avoiding hazardous
and negative effects of pollutions in our environment. The use of different renewable energy sources like

Energies 2020, 13, 6169; doi:10.3390/en13236169 www.mdpi.com/journal/energies
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hydroelectric, wind, solar, tidal is increasing day by day with the addition of thousands of megawatts to
the grid systems. Photovoltaic (PV) technology, which converts solar irradiance directly into electricity,
has made tremendous progress on the scientific as well as the commercial scale. Still the research and
development continues to push its efficiency along with lowering its cost [1,2]. On the other hand,
photovoltaics are already used but the problem is that of the system durability and low expenditure
because panels don’t work the same over time. Similarly, storage batteries are also very expensive and
not long lasting. However, along with other barriers, the prime barrier is that of intermittent sunlight
which is available for only a portion of a day. Hence, incorporating efficient energy storage systems
along with renewable energy sources is becoming essential with time [3,4]. The traditional mechanism
for the solar energy storage is first converting solar energy into electrical energy through photovoltaic
panels and then storing it in a batteries which are expensive [5]. In recent years, few researchers have
proposed the usage of phase change materials (PCMs) as an alternative method for the storage of solar
energy [6]. In this method, the solar energy is converted into thermal energy using PCMs and then
stored into storage tank which acts as a thermal battery [7,8]. In thermal energy storage, the useful
energy is transferred to the storage medium and stored in the form of latent and sensible heat during
the phase transition process with a minimum rise in temperature. Among the two, latent heat storage
is more attractive than the sensible heat storage system because of its high temperature swing and
relatively small size [9].

In latent heat storage system, radiation from the sun fall on a parabolic concentrator which directs
the incident radiation toward the base of the receiver tank resulting in the temperature rise of the heat
transfer fluid (HTF), hence storing energy in the form of sensible heat for a specific period of time.
The receiver tank is connected to a storage tank by rubber pipes and HTF is circulated in them at a
constant flow rate with the help of a small pump. As the hot HTF flows in the storage tank, the heat is
supplied to the PCM situated inside the storage tank which changes its state [10–12]. The bulk amount
of heat (latent heat) used to change the phase of PCM can be stored by using effective insulation.
The storage tank is also connected to a heating application by using pipes. Valves are used to direct the
flow of HTF within the receiver tank and storage tank to store the energy during the availability of the
solar energy and from storage tank to the heating application when the stored energy is to be used.

Several types of solar energy storage devices using different PCMs like paraffin, perlite, metal foam
and beeswax [13–15] are used. The selection of suitable PCM for a particular application requires a
lot of factors to be taken into consideration. These PCMs are classified into organic and inorganic,
with the later PCMs are costly and not readily available [16–18]. Bushnell and Sohi designed a modular
phase change heat exchanger with pentaerythritol as PCM for thermal storage and tested it in an oven
with circulating heat transfer oil with a pattern of electrical heating to stimulate the concentrating
solar collector. The comparative analysis of thermal energy retention times and cooking extraction
times with efficiencies were assessed with reported non-modular heat exchanger. The results indicated
that foods were cooked at temperatures between 95–97 degrees [19]. Sharma and his team used
commercial grade acetamide as a latent heat storage material with significant values of melting point
and latent heat of fusion, designed a cylindrical PCM storage unit for box-type solar cookers and
to utilized it for late evening cooking. This unit provides higher heat transfer between PCM and
cooking and consumes less time for cooking. It is proved that storage of solar energy doesn’t affect
the performance of solar cookers for late evening cooking, thus having a PCM melting temperature
between 105–110 ◦C is needed and this design can be implemented for late-evening cooking as well.
The only thing to be considered for this design is to identify a material with appropriate melting point,
concentration and quantity [20]. Buddhi used acetanilide with a melting point of 118.9 ◦C and latent
heat of fusion as 222 kj/kg as a PCM for night cooking [21]. Thus the proper significance and the
assessment of the materials with capability of increasing melting point and higher latent heat of fusion
can be tried by further experiments.

Schmerse et al. [22] studied PCM materials in building design. They concluded that PCM
incorporated in the construcition of buildings can save up to 27% of the energy consumption annually.
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Nems and Puertas [23] experimentally studied a dual PCM for heat storage, they made a I–D model for
dual PCM and validated their results using experimental results. Leang et al. [24] performed design
and optimization of composite walls by integrating a PCM in their design. Their study concluded
that the higher the latent heat, the lower the heating demand and greater the thermal comfort of the
interior of the house. Pasupathi et al. [25] studied a hybrid PCM that included nano-particles for
the purpose of a thermal energy storage system. Their study concluded that utilizing a hybrid PCM
material can increase the performance of PCM if the mass fraction of the nanomaterial is 1.0. In all the
aforementioned studies, different PCM materials were employed for thermal energy storage. There is
no specific studies that employed potash alum as PCM with a renewable energy source for thermal
energy storage systems. In the current study, potash alum is used as PCM because it is cheap and
readily available on the market.

The aim of this study was to design and study a latent heat thermal energy storage system which
can store solar energy for a reasonable amount of time. This stored energy is environmentally friendly
and can be used for any indoor heating purpose such as cooking, water and room heating applications
in the absence of sunlight. The experimental results of the designed system show that the system
is capable of storing enough energy during sunshine hours which can later be used for any heating
application in the absence of sunlight.

This research article has been organized as follows: In Section 2 the system design is discussed
and analyzed. Simulations are performed and results are presented in Section 3. Section 4 is about the
fabrication of the system, whereas, Section 5 throws light on the experimental results and discussion

2. Design and Analysis

2.1. Design Requirements

Heat required for the purpose of cooking through heater can be calculated using Equation (1):

Q = Ph × t (1)

The heat losses cannot be ignored in every real system. Total heat required incorporating heat loss
can be calculated using Equation (2):

QT = Q + Ql (2)

The required design parameters are summarized in Table 1.

Table 1. Design requirement for cooking.

S. No Description, Symbol (Units) Values

1 Temperature requirement, T (◦C) 95–97
2 Cooking time, t (minutes) 55
3 Power of electric Heater, Ph (W) 1000
4 Required heat, Q (kJ) 3300
5 Heat losses, Ql (kJ) 100
6 Total Heat, QT (kJ) 3400
7 Steel pipe inner diameter (inches) 1
8 Steel pipe length (inches) 30

For the purpose of encapsulating the PCM, several tests were done on small one inch and half
inch pipes as PCM encapsulating materials since they are effective and can be cheaply manufactured.

2.2. Selection of Potash Alum as PCM and Heat Transfer Fluid

It is possible to find materials with a heat of fusion and melting temperature in the desired
range (184 kJ/kg, 92 ◦C) but a material has to exhibit certain properties to become a feasible PCM.
The properties and characteristics required for selection of a phase change material desired for heat
storage are shown in Table 2.
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Table 2. Properties of Phase Change Materials [26,27].

Thermal Properties Physical Properties Kinetic Properties Chemical Properties Economics

Suitable phase-transition
temperature

Favorable phase
equilibrium No super cooling Long-term chemical

stability Abundant

High latent heat of
transition High density Sufficient

crystallization rate
Compatibility with

materials of construction Available

Good heat transfer Small volume change No toxicity Cost effective
Low vapor pressure No fire hazard

Based upon the above properties and special consideration to economics and thermal stability of
the PCM, potash alum, which is readily available in the market, was selected as a suitable PCM for
latent thermal energy storage systems [28]. Its melting temperature is about 92 ◦C, which is why it is
suitable for cooking or for heating water which is near to our target range of 95–97 ◦C. The latent heat
of potash alum is about 184 kJ/kg, which is very high compared to rest of PCMs. Potash alum is a PCM
with exceptional stability behavior [29]. Table 3 shows the characteristics of the potash alum and its
suitability as a phase change material. Thermal stability is an extremely important characteristic to
select a PCM as the material has to withstand several heating and cooling cycles in order to ensure
the efficient functioning of the thermal system. Therefore several tests were carried out with eutectic
salt mixtures and potash alum to check which one is the most thermally stable. Firstly, the eutectic
salt Al2O3 (66%) and NaCl (34%) were encapsulated, which melted twice and by the third cycle it
was rock solid. Secondly, potsh alum was encapsulated, melted and solidified 30 times and every
time the material melted easily and did not show degradation which demonstrates the good stability
characteristics of potash alum.

Table 3. Design parameters of the storage tank, PCM and HTF.

S.No Description, Symbol (Units) Values

1 Heat of fusion of potash alum (PCM), hm (kJ/kg) 184
2 Required mass of potash alum (PCM), mpcm (kg) 18.4
3 Specific heat of potash alum in the liquid phase (melted), Clp (kJ/kg.K) 2.76
4 Specific heat of potash alum in liquid phase, Csp (kJ/kg.K) 1.38
5 Melted fraction, am 1
6 Melting point of potash alum, Tm (◦C) 92
7 Initial temperature, Ti (◦C) 10
8 Final temperature, Tf (◦C) 140
9 Total heat storage capacity, Qpcm (kJ) 4591
10 Density of potash alum in the liquid phase (melted), ρi (kg/m3) 1300
11 Volume of potash alum, V (m3) 0.0079
12 Outer diameter of cylinder, doo (m) 0.201
13 Inner diameter of cylinder, dii (m) 0.2
14 Inner diameter of tube, dit (m) 0.0254
15 Number of tubes, n 89
16 Length of PCM tube, Lpcmt (m) 0.74
17 Length of storage tank, Lst (m) 0.77
18 Inner radius of storage tank inlet, rii (m) 0.00635
19 Inner inlet area, Ai (m2) 0.000125
20 Volume flow rate, q‘ (m3/s) 1.235 × 10−5

21 Mass flow rate, m‘ (kg/s) 0.013
22 Velocity of HTF at the inlet, u (m/s) 0.1
23 Viscosity of HTF (at 20 ◦C), μhtf (Pa · S) 2.1671 × 10−3

24 Reynold’s number, Re 605
25 Required flow rate of pump, (m3/s) 2.5 × 10−5

The selection criteria for heat transfer fluid is based on the specific heat density, boiling point,
decomposition point, viscosity and availability of the fluid [30,31]. Among the other heat transfer fluids,
water has a boiling point of 100 ◦C at 1 atm and highest specific heat (4.184 kJ/kg-K). However, adding
ethylene glycol to water increases its melting point significantly and reduces its specific heat slightly [32],
so a mixture of 30% ethylene glycol and 70% water was selected as a heat transfer fluid in this study.
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2.3. Modeling and Design of Storage Tank

The mass of phase change material required for the storage of heat is calculated using Equation (3).
Where QT is the value of heat required for cooking and hm stands for the heat of fusion of potash alum:

mpcm =
QT

hm
(3)

The total heat storage capacity of a latent heat system in the concrete case of solid-liquid
transformation incorporating sensible heat can be found by knowing the values of the mass of phase
change material (mpcm), specific heat of the potash alum in the liquid phase (Melted) (Clp), the specific
heat of the potash alum in the liquid phase (Csp), melted fraction (am), heat of fusion of potash alum (hm),
melting point of potash alum (Tm), initial temperature (Ti) and final temperature (Tf) using Equation (4):

Qpcm = mpcm × ((am × hm) +
(
Csp × (Tm − Ti)

)
+
(
Clp × (T f − Tm)

)
) (4)

The increase in energy occurs due to Csp × (Tm − Ti) + Clp × (T f − Tm), which represents the
sensible heat. This sensible heat is lost very quickly, so the useful energy to be considered is the latent
energy of the PCM which is to be calculated from the PCM mass. This means that the PCM material
considered in the study has sufficient capacity to store the required amount of heat. The required
volume of the potash alum (PCM) can be calculated using Equation (5):

Vpcm =
m
ρl

(5)

The length of the PCM tubes (Lpcmt) can be calculated using Equation (6) where Vpcm stands for
PCM volume, dit for inner diameter of tubes and n for number of tubes:

Lpcmt =
(V × 4)

(π× n× dit2)
(6)

The length of the storage tank (Lst) can be found from the length of PCM tube using Equation (7):

Lst = Lpcmt + 0.03 (7)

The inner inlet area of the storage tank is calculated using Equation (8), where rii stands for the
radius of the storage tank:

Ai = π× rii
2 (8)

The mass flow rate of HTF is calculated using Equation (9), where ρHTF stands for the density of
HTF and

.
q stands for the volume flow rate:

.
m = ρHTF × .

q (9)

The velocity of the HTF at the inlet is calculated using Equation (10):

u =

.
q

Ai
(10)

The Reynold’s number for the HTF is calculated using Equation (11) which specifies the flow
pattern of a fluid. A low Reynold’s number indicates laminar flow, whereas a high Reynold’s number
indicates turbulent flow. μHTF stands for the velocity of the HTF:

Re =
ρHTF × u× 2× rii

μHTF
(11)
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The results calculated above for the design parameters of the storage tank, PCM and HTF are
summarized in Table 3.

In order to get an idea how much time it takes to melt the PCM material within the tank
(charging time) and also how much time can the energy be stored within the storage tank (storing time)
we use two separate simulation studies.

A 2D model of the latent energy storage tank is constructed in COMSOL, a software used for
simulation-based modeling and designing physical and mechanical structures. The COMSOL software
is used to analyze the temperature and phase change results of PCM material after a specific amount of
charging and storing time. The geometry of the 2D model is shown in the Figure 1. The HTF enter
through the inlet and exits through outlet, and transfer heat throughout the storage tank container
which contains a cross section of 10 PCM tubes as shown in Figure 1.

Figure 1. Energy storage tank modeling in COMSOL.

3. Simulation Results

For charging time simulation, laminar flow is considered, incorporating gravitational effects
and insulation effects on the walls of the storage tank. At the inlet, the HTF flows with a velocity of
0.1 m/s normal to the inlet boundary. Temperature boundary condition is specified as 105 ◦C (378 K).
In the simulation, it has been assumed that the temperature of the HTF has reached the maximum
value of 105 ◦C. The outflow boundary condition was specified at the outlet. After 5 h of simulation
time for HTF flow in the storage tank, the results are observed. Figure 2a,b illustrate the temperature
contour along with liquid level indicator plots for charging the storage tank at various time steps.
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(a) 

 
(b) 

Figure 2. (a) Temperature for 10 min, 1 h, 2 h and 2 h and 20 min; (b) Liquid level temperature for
10 min, 1 h, 2 h and 2 h and 20 min.

The liquid level indicator shows how much portion of the PCM is converted into liquid so a scale
of 0 to 1 is defined where 0 stands for the PCM to be solid while 1 stands for the liquid state. Any value
between 0 and 1 is partially liquid and partially solid state of the PCM.
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From the temperature contours it is observed that, once the HTF reaches a temperature of 105 ◦C
(378 K) it takes about 140 min to completely melt the PCM as shown in the last contour in Figure 2.
It is also observed that the liquid level indicator shows a small portion of the PCM which isn’t fully
melted while the temperature contour shows that the temperature is nearly uniform at 104 ◦C (377 K)
everywhere in the tube except the small solid PCM region. Figure 3 shows the relation of average
temperature in the PCM region with respect to time showing the melting behavior of the PCM.

Figure 3. Temperature vs. Time of melting of the PCM.

Simulation for Charging Time

Using the same geometry as Figure 1 for our storage time simulation, it is considered that the
PCM was already melted and is at a temperature of 105 ◦C (378 K). The inlet and outlet boundary
conditions are replaced by walls because during storage the valves will be closed so fluid will not flow.
Convective heat flux condition is given to the outside boundary of the storage tank with ambient
air temperature taken to be 20 ◦C (293 K). After 12 h of simulation time for airflow over the charged
storage tank the results are observed. Figure 4 illustrates the temperature contour along with liquid
level indicator plots for storing heat in the storage tank for various time steps.

(a) Temperature 

Figure 4. Cont.
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(b) Liquid Level Indicator 

Figure 4. Storage time by: (a) temperature and (b) liquid level for 10 min and 12 h.

As it can be observed that, it takes about 12 h to re-solidify the PCM up to some extent. The storing
capacity for 8 cm thick insulation is very high. The temperature plot for storage time is shown
in Figure 5.

 

Figure 5. Temperature vs. storage time to resolidify the PCM.

4. Fabrication

4.1. Prototype Modeling of Solar Concentrator

The prototype design was carried out with CAD/CAM software Creo parametric, which contemplates
the parabola and focus characteristics, as well as the dimensions adjusted to the estimated size from the
above calculations. As shown in Figure 6, the parabolic concentrator support has four support points;
each support point has a piece to level the structure to the surface. There are four wheels attached to
these four support points. The parabolic dish concentrator can rotate only in one axis with the help
of screws. The whole structure (stand dish assembly) can be rotated in the other axis with the help of
the support wheels
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Figure 6. CAD/CAM Model of the solar concentrator.

4.2. Design of Solar Concentrator

The parabolic dish is made up of fiber glass and small pieces of mirror are attached to the inner
surface of the concentrator, which reflects the solar radiation at a single point known as the focal point.
At the focal point, the receiver tank is placed which contains the heat transfer fluid which is heated up
through the sunlight directed toward it. This heat transfer fluid is moved from receiver tank to the
storage tank with the help of pump until the PCM is melted. Figure 7 shows the solar concentrator
that was manufactured and utilized in this study.

 

Figure 7. Manufactured solar concentrator.

4.3. PCM Tubes

Steel tubes are used for encapsulating the PCM. These PCM tubes are filled by melted PCM and
welded from both sides as shown in Figure 8. The dimensional aspect of the PCM tubes has already
been summarized in Table 1.
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Figure 8. PCM steel tubes used for encapsulating the PCM.

4.4. Storage Tank

The storage tank consists of two cylindrical tanks made of steel as shown in Figure 9. The internal
tank also known as PCM tank contains the PCM tubes while the other tank is used as an external tank.
There is styrofoam and glass wool insulation between the internal tank and external tanks.

  

Figure 9. Fabrication of the storage tank.

4.5. Assembled Design

Flexible rubber pipes are used to assemble the receiver tank and storage tank, so that the
concentrator can rotate freely on two axes. A copper coil which utilizes the stored energy is connected
to storage tank by steel pipes. In order to circulate the HTF in the system, a 12 Volt pump of the type
originally used to spray water on the windshield in cars is used. Five ball valves are used to direct the
flow of the HTF into the two thermal circuits. Two dial temperature sensors are attached to the receiver
tank and at outlet of the storage tank to measure the temperature in the respective tanks. The flow
chart of charging and discharging of the PCM is shown in Figure 10a,b, respectively. Figure 11 shows
the design of the assembled solar energy storage system

 
(a) 

Figure 10. Cont.
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(b) 

Figure 10. (a) Flow chart of charging PCM; (b) Flow chart of discharging PCM.

 

Figure 11. Completely assembled prototype of the solar thermal energy storage system.

5. Experimental Results and Discussion

In this section, the experimental results for the solar thermal energy storage system based upon
the assembled experimental setup are discussed. The experimental results are compared and discussed
with simulated results.

5.1. Experimental Results

Figure 12 shows the temperature behavior of the HTF. The following results were obtained for
charging the PCM storage tank.

Figure 12. Plot of HTF temperature vs charging time.

384



Energies 2020, 13, 6169

The results show a linear trend as the temperature of the HTF follows a linear pattern as time
advances and reaches a value of 98 ◦C. At this point, the temperature of the HTF approaches closer to
its boiling point, i.e., 104.4 ◦C, so the process is halted for a while to regain the temperature of 98 ◦C.
The temperature is maintained by this process for about 2 h and 50 min in order to completely melt
the PCM.

Figure 13 shows the results for the storing time of the solar thermal energy storage system.
The charged storage tank was left in the open air after sunset and the recorded temperature relation
with respect to time is given as follows.

Figure 13. Plot of temperature vs. storage time.

Figure 14 shows that initially the temperature of the PCM at 98 ◦C steadily decreases to 92 ◦C
and then remains constant for about 3 h at said temperature. The temperature remains constant at
this value due to the latent heat of the PCM being released at 92 ◦C and then the temperature steadily
decreases to about 81 ◦C after 7 h. This means that the solar thermal energy storage system has the
capacity to store energy for about 7 h after sunset. The discharge time of the system was found from
another experiment by first charging the storage tank at 97 ◦C and then storing the energy for about
1 h, and then by putting water in a pot placed above the heating coil.

 
Figure 14. Plot of temperature vs. discharge time after 1 h.
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Figure 14 shows that the stored energy can be utilized for 40 min before discharging the system
completely as the temperature falls below 70 ◦C after this time and the remaining available heat energy
is not enough for cooking.

5.2. Analysis and Discussion

The comparison of the experimental and simulation results highlights that both the results
are in conformance for the charging duration of the analysis but differ slightly when it comes to
storage analysis. The difference in the results occurs because of the manufacturing defects with the
insulation of the storage tank as the storage tank was not tightly insulated. This defect results in a
significant heat loss affecting the storage capacity of the storage tank to reduce to 7 h as compared to
12 h as derived from the simulation results. However the experimentally measured charging time
(2.83 h) is within reasonable error (5%) of the simulated charging time (2.66 h). From the results, it was
analyzed that the discharging time of 40 min is reasonable to green vegetables and some pulses.

6. Conclusions

This paper presented an assessment of the design and fabrication of a thermal energy storage
system using potash alum as a phase change material. Our preference of potash alum as a phase
changing material over other materials is due to its easy availability at a lower price along with better
thermal energy storage compatibilities for low temperature cooking and heating purposes. The prime
importance for thermal energy storage performance is the coupling between the heat transfer fluid
characteristics and storage performance. In this study, a mixture of ethylene glycol and water is
used as heat transfer fluid. The experimental setup was developed and the results were compared
with the simulation results performed in COMSOL. The propsed setup shows that thermal energy
can be stored for up to 7 h at a maximum temperatue of 92 ◦C and minimum temperature of 81 ◦C
after sunset, which is a very beneficial output of the proposed system. The simulation results were
consistent with experimental results and confirm that the proposed thermal energy storage system
could be successfully used efficiently for cooking and heating purposes for applications which require
temperatures of less than 92 ◦C. i.e., low temperature cooking and water heating can be done using
this setup. The application of this system is not limited to indoor cooking, and it can be used for several
other applications requiring temperatures below 92 ◦C, for example, it can be used for heating water
for indoor applications and also used as an indoor heater, etc.

As future work we can mention the following aspects: (1) We used two temperature sensors
in the system, but no pressure sensor to measure the pressure in the system. The system should
have a feedback loop from the pressure and temperature sensor to stop the pump from pumping
the high temperature HTF; (2) The selection of the HTF can be improved; (3) The insulation of the
tank can be improved by using a good manufacturing process and materials to enhance the storage
capacity of the storage tank; (4) Simulation of discharging can be added by linking in to the already
stored energy in the concentrator to an application; (5) The charging simulation can be improved to
incorporate even more multiphysics and (6) a better concentrator design which can be linked to the
phase change simulation of the concentrator discussed in this paper can be implemented. For example
sunlight incidence upon a concentrator can be simulated using particle ray tracing simulation and
concentrated upon a receiver tank containing a HTF which heats up. A pump can be added from
the receiver to the concentrator and back to the receiver to complete the loop Design improvements
can be further achieved by using different variables for various parameters in the simulation and the
optimized results can be found based upon the best results for charging, storing and discharging times.
A few improvements in the design of the concentrator and storage tank could yield a commercially
viable product.
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Abstract: This manuscript presents a robust tracking (servomechanism) controller for linear
time-invariant (LTI) islanded (autonomous, isolated) microgrid voltage control. The studied microgrid
(MG) consists of many distributed energy resources (DERs) units, each using a voltage-sourced
converter (VSC) for the interface. The optimal tracker design uses the ellipsoidal approximation
to the invariant sets. The MG system is decomposed into different subsystems (DERs). Each
subsystem is affected by the rest of the system that is considered as a disturbance to be rejected by the
controller. The proposed tracker (state feedback integral control) rejects bounded external disturbances
by minimizing the invariant ellipsoids of the MG dynamics. A condition to design decentralized
controllers is derived in the form of linear matrix inequalities. The proposed controller is characterized
by rapid transient response, and zero error in the steady state. A robustness analysis of the control
strategy (against load changes, load unbalances, etc.) is carried out. A MATLAB/SimPowerSystems
(R2017b, MathWorks, Natick, MA, USA) simulation of the case study confirm the robustness of the
proposed controller.

Keywords: islanded mode; microgrid; decentralized control; robust tracking; invariant set

1. Introduction

Distributed energy resources (DERs), such as photovoltaic arrays (PVs) and wind, are now
connected to the power grids to address environmental issues and emissions of global warming gas [1].
The loads represented by constant impedances are connected to DGs [2–14] for the operation of MG at
the distribution networks. Stability analysis is one of the most critical issues for inverter-interfaced
MG [4–8]. Attaining precise power-sharing while controlling the voltage magnitude and frequency in
an autonomous MG is the main DERs control objective [4]. Researchers have used various centralized
and decentralized control strategies to improve MG dynamic performance [8–12]. The benefits and
drawbacks of the schemes are summarized in [8]. In [8,9], different centralized control schemes are
proposed to control multiple parallel inverters, maximize the DERs output power, and optimize
the power exchange between the MG and the main grid. Centralized control in remote areas with
a long distance between inverters is impractical and expensive due to the requirement of building
a reliable communication link [9]. To avoid the utilization of expensive communication networks,
decentralized systems are utilized [10,11]. Distributed control that lies in between the centralized
and decentralized approaches in terms of complexity, price, and effectiveness [12–15]. It allows
communication between the subsystems. However, it faces the problems of packet loss, communication
delay, and quantization errors.

Energies 2020, 13, 5756; doi:10.3390/en13215756 www.mdpi.com/journal/energies
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MGs can operate either connected to the utility main grid or isolated form it. The MG operates in
islanded mode when it is disconnected from the grid and continues to provide power to local loads.
The voltage and frequency are no longer dictated by the grid, and they can have values dictated by the
MG’s DER units. Because of the load variations and the DERs’ output power intermittency, an islanded
MG may encounter problems of reliability, robustness and power quality. Novel optimal and robust
control strategies are required to minimize these problems.

Voltage source converters (VSC) are widely utilized to interface the MG to the grid. VSCs
perform power flow conversion and control. Several control strategies for the autonomous operation
of VSC-based DER units are suggested. The frequency/power and voltage/reactive-power droop
control [16] are among the most widely used control techniques. Considering an active load to the
autonomous MG is given in [17]. A control strategy is proposed in [18] which ensures robust stability
despite parametric uncertainties due to load variations using Kharitonov’s theorem. Reference [18]
does not consider neither multi-DG micro-grids nor decentralized control. This strategy is based on a
low order proportional integral controller, which only uses its d-axis part in dq-frame to regulate the
load voltage. A more robust control strategy is suggested in [19,20], using a servomechanism controller.
Nevertheless, this is a high-order controller that is more complex than the one in [18]. Note that [19]
considers only a single-DG islanded system. The decentralized control in [20] has higher dynamics
than the proposed one in this manuscript.

This paper presents the decentralized control for each DER. The suggested controller uses only its
local information. Decentralization is tackled by decomposing the global MG system into subsystems
(DERs). The dynamic effect of the rest of the system on a particular DER is considered as an external
disturbance. The proposed controller has to achieve fast response + zero steady state error in addition
to rejecting the external disturbance. Note that the designer faces two challenges: (1) a modeling
problem and (2) a control problem. The designer has to obtain the model for the global large system.
The resulting centralized controller will be of large dimension, difficult to implement. In this case,
the designer needs to adopt model reduction or decentralized control. This paper adopts decentralized
control for each subsystem, for each only the local (subsystem) states are used.

The designed controllers are decentralized in the sense that it uses only the local information of its
subsystem. Centralized versus decentralized control can be summarized as follows. The benefit of using
decentralized control via local subsystem information is avoiding using a hub computer (controller)
whose failure will cause loss of the global system stability. It also avoids a costly communication
network (and its associated delay, packet loss) to transmit information of the whole system to the
centralized controller. This is in addition to the high dimensionality of centralized control.

One of the key issues in the control theory is the rejection of external disturbance. It is studied by
both the linear quadratic Gaussian optimization (where the disturbance is assumed to be random)
and the H∞-optimization (where the disturbance is considered as arbitrary bounded). An alternative
approach to disturbance rejection relying on the method of invariant sets and invariant ellipsoids
is proposed in [21,22]. The invariant ellipsoid method is a newly born powerful method in robust
control theory.

The present work formulates the problem of external disturbances (arbitrary bounded) rejection in
terms of the invariant ellipsoids. The proposed feedback+ integral controller is designed by minimizing
the size of the invariant ellipsoids of the dynamic system. The controller synthesis is formulated using
linear matrix inequalities (LMIs) that can be effectively solved using convex optimization techniques.

The main contributions of this paper are summarized as follows:

1. An effective decentralized control is developed. The overall system is decomposed into subsystems,
for each a local controller is installed. Each controller is designed to achieve fast response,
zero steady-state error, and effective rejection of external disturbances that are caused by the
different subsystems.

2. A new method, based on LMIs and invariant sets, is proposed to design an optimal tracking
controller that effectively rejects external disturbances.
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The rest of this paper is organized as follows. Section 2 describes the MG under investigation and
the proposed control strategy. The MG mathematical model is provided in Section 3. Section 4 details
the controller synthesis that is based on the ellipsoidal design. Verification of the performance and
viability of the proposed method, based on a simulation case study. Conclusions are stated in Section 5.

Notations and Facts

Rm is the set of m × 1 vectors, Rrxq is the set of real matrices of dimension r × q, and (.)′ denotes
the transpose of a vector or a matrix. For a matrix P, P > 0 (< 0) means that P is a symmetric positive

(negative) definite matrix. Also, the shorthand
[

M N
∗ L

]
means

[
M N
N′ L

]
. Similarly, (M + N + *)

means (M + N +M’ + N’). Matrices are denoted by capital letters, vectors are denoted by small letters,
and scalers are denoted by small Greek letters. Finally, 0 and I denote the zero matrices and the identity
matrix, respectively.

Fact 1: The time varying uncertainty Δ(t) can be removed using the fact MΔ(t)N + ∗ < εMM′ +
ε−1N′N

Fact 2: (Schur complements). Given a matrix M composed of

M =

[
M1 M3

∗ M2

]

where M1 = M′1 , M2 = M′2 > 0, then M > 0 if and only if

M1 −M3M−1
2 M′3 > 0

Fact 2 is used to linearize a special class of nonlinear matrix inequalities.

2. Microgrid Study System

2.1. Microgrid Description

The MG under study is shown in Figure 1a. A control strategy and power management system
(PMS) for several-distributed energy resources (DER) islanded microgrids is proposed in [20]. DERs
can also be viewed as distributed generators (DGs). In this system, the PMS defines the voltage set
points at the DER terminals and communicates them (via a low bandwidth communication medium)
to the local controllers (LCs) of DER units. The DER terminal voltages are robustly regulated by the
LCs in a decentralized manner. The MG frequency is controlled using an open-loop control scheme
using the DER units’ internal crystal oscillators. To ensure the same frequency, these oscillators are
synchronized by a common timing signal received from a global positioning system (GPS), Figure 1b.

The MG has of three DER units rated at 0.6 kV. Their power ratings are 1.6, 1.2, and 0.8 MVA.
The DER units represent photovoltaic PV generating stations. Each DER unit is modelled using a
1.5 kV DC voltage source, a voltage sourced converter (VSC), and a series RL filter. A 0.6 kV/13.8 kV
step-up transformer is used to interface each DER to the grid at its corresponding point of coupling
(PC) bus. The three busses in Figure 1b has their local loads and they are connected using two sections
of the 13.8 kV distribution line. The utility grid is described by an AC voltage source behind series R
and L elements. The MG can be operated in grid-connected or islanded mode based on the circuit
breaker CBg status. The parameters of the study system are given in Table 1.
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(a) (b) 

Figure 1. Case-study system (a) The studied microgrid (MG) and (b) power management system (PMS)
and non-droop control system.

Table 1. Parameters of the microgrid.

Base Values

Sbase = 1.6 MVA Vbase, low = 0.6 kV Vbase, high = 13.8 kV

Transformers

0.6/13.8 kV Δ/Yg XT = 8%

Load Parameters

Load1 Load2 Load3

R1 350 Ω 2.94 pu R2 375 Ω 3.15 pu R3 400 Ω 3.36 pu

XL1 41.8 Ω 0.35 pu XL2 37.7 Ω 0.32 pu XL3 45.2 Ω 0.38 pu

XC1 44.2 Ω 0.37 pu XC2 40.8 Ω 0.34 pu XC3 48.2 Ω 0.41 pu

Rl1 2 Ω 0.02 pu Rl2 2 Ω 0.02 pu Rl3 2 Ω 0.02 pu

Line Parameters

R 0.34 Ω / km 0.0029 pu Line1 5 km

X 0.31 Ω / km 0.0026 pu Line 10 km

Filter Parameters (Based on DERi Ratings)

Xf = 15% Quality Factor = 50

In a low-voltage distribution system, the values line parameters are difficult to acquire, especially
when the devices are installed in an ad hoc manner by individual users. Reference [23] proposes a
novel method for automated impedance estimation based on practically available parameters at the
terminal nodes.
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2.2. Mathematical Model of The Microgrid

To design robust linear controllers, a linearized model of the microgrid of Figure 1a using a
synchronously rotating dq-frame, which is based on the fundamental frequency of the system, is
required. The linearized state space model of the MG is derived based on the single-line diagram
shown in Figure 2. Each DER unit is described by a three-phase voltage source inverter with a series
RL branch. Loads are represented by an equivalent parallel RLC circuit. Distribution lines are modeled
using lumped series RL elements.

Vt1

Rf1  

Lf1

V1 Rt1  Lt1  

L1C1

Rl1

R1

Vt2

Rf2  

Lf2

V2 Rt2  Lt2  

L2C2

Rl2

R2

Vt3

Rf3  

Lf3

V3

L3C3

Rl3

R3

i1 i2 i3

it1 it2

iL1 iL2 iL3

Figure 2. Single-line diagram of the microgrid.

The MG in Figure 2 is partitioned into three subsystems. Subsystem 1 model, in the abc reference
frame, is

i1,abc = it1,abc + C1
.
v1,abc + iL1,abc +

v1,abc

R1

vt1,abc = L f 1
di1,abc

dt
+ R f 1it1,abc + v1,abc

v1,abc = L1
diL1,abc

dt
+ Rl1iL1,abc

v1,abc = Lt1
dit1,abc

dt
+ Rt1it1,abc + v2,abc

(1)

where xabc is a 3 × 1 vector. The coefficients of differential Equation (1) are time varying, difficult to
handle. To simplify the controller design, the abc frame of system (1) is transformed to the dq frame
using Park’s transformation. This results in differential equations with constant coefficients, easy
to work with. Assuming a three-wire system and using the Park’s transformation in Equation (3),
the mathematical model (1) can be rewritten in a synchronously rotating dq-frame. In Equation (3),

θ(t) =

∫ t

0
w(τ)dτ+ θ0 (2)

is the phase angle and w is the angular frequency of the crystal oscillator internal to DER. The resulting
state equation in the dq frame is given in Equation (4).

fdq =
2
3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
cosθ cos

(
θ− 2

3π
)

cos
(
θ− 4

3π
)

−sinθ −sin
(
θ− 2

3π
)
−sin
(
θ− 4

3π
)

1√2
1√2

1√2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3)
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.
V1,dq =

1
C1

I1,dq − 1
C1

It1,dq − 1
C1

IL1,dq −
V1,dq

C1R1
− jwV1,dq

.
I1,dq =

1
L f 1

Vt1,dq −
R f 1

L f 1
I1,dq − 1

L f 1
V1,dq − jwI1,dq

.
IL1,dq =

1
L1

V1,dq − Rl1
L1

IL1,dq − jwIL1,dq

.
It1,dq =

1
Lt1

V1,dq − Rt1
Lt1

It1,dq − 1
Lt1

V2,dq − jwI t1, dq

(4)

Likewise, the subsystems 2, and 3 dq-models are both derived and used to write the overall
system’s state-space model

.
x = Ax + Bu, y = Cx (5)

where

x′ = [V1,d, V1,q, I1,d, I1,q, IL1,d, IL1,q, It1,d, It1,q,V2,d, V2,q, I2,d, I2,q, IL2,d, IL2,q, It2,d, It2,q,

V3,d, V3,q, I3,d, I3,q, IL3,d, IL3,q]

u′ =
[
Vt1,d, Vt1,q, Vt2,d, Vt2,q, Vt3,d, Vt3,q

]
, y′ =

[
V1,d, V1,q, V2,d, V2,q, V3,d, V3,q

]

A∈R22×22, B∈R22×6 and C ∈ R6×22 are the state matrices as given in the Appendix A.

3. Decentralized Tracking Control

In control system design, the output has to follow the input. If the input is constant, the control
problem is termed as a regulator problem. If the input is time varying, it is called a servomechanism
(tracking) problem. A decentralized servomechanism controller for the system (5) is designed in this
section. System (5) represents an interconnected composite system composed of three subsystems.
Each subsystem can be controlled by using only local controllers about each subsystem [3]. Splitting
the matrix A = (Aij, i, j = 1, 2, 3) in Equation (5) into a two parts: diagonal, Ad, and off diagonal, D,
one gets,

.
x = Adx + Bu + Dx, y = Cx (6)

where

Ad =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
A11 0 0

0 A22 0
0 0 A33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
B1 0 0
0 B2 0
0 0 B3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 A12 A13

A21 0 A23

A31 A32 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
C1 0 0
0 C2 0
0 0 C3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
In Equation (6), the effect of interconnecting the rest of the system on a specific subsystem is

considered to be an external disturbance, Dx, to be rejected by the controller proposed. The vector x is
assumed to be an external bounded disturbance w.

The following structure is considered to implement a decentralized controller, consisting of three
control agents, for the MG under study.

u = Kx + KIξ,
.
ξ = r−Cx (7)

where

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
K1 0 0
0 K2 0
0 0 K3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, KI =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
KI1 0 0
0 KI2 0
0 0 KI3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
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so that the augmented closed-loop system is described by

⎡⎢⎢⎢⎢⎣
.
x
.
ξ

⎤⎥⎥⎥⎥⎦ =

[
Ad + BK BKI

−C 0

][
x
ξ

]
+

[
D
0

]
w +

[
0
I

]
r (8)

Note that the proposed controller (7–8) is a decentralized one equipped with an integral part to
eliminate the steady state errors thus the desired reference voltage is tracked. The microgrid dynamics
and the suggested control is modelled in Figure 3.

Figure 3. Servo system.

The problem of MG voltage control is the design of a decentralized controller in which the output
voltage tracks the reference voltage. The tracker must be robust against the load variations and must
minimize the interconnection effect of the rest of the system on the output voltage of a particular
subsystem. This is termed disturbance rejection control.

The proposed controller relies on using the invariant (or attracting as will be seen) ellipsoid’s
concept. A summary is described as follows:

3.1. Attracting Ellipsoid

Consider a continuous-time state space model of a linear dynamical system:

.
x = Ax + Dw, z = Czx (9)

where x(t) ∈ Rn is the system state vector, z(t) ∈ Rl is the system output to be optimized(minimized).
It is assumed that the output for feedback y is equal to the output to be optimized, z. Hence C = Cz.

The external disturbances w(t) ∈ Rm are bounded i.e., subject to the constraint

‖w(t)‖ ≤ 1,∀t ≥ 0 (10)

For the vector (.), ‖(.)‖ denotes the Euclidean norm of (.). The control target is to minimize the
impact of disturbance Dw on the output z. The constraint (10) can be always satisfied by properly
scaling the matrix D. The disturbances w(t) is considered to be L∞ bounded external disturbance. It is
assumed that (9) is stable, the pair (A, D) is controllable, and that C has maximum-rank. The goal is to
determine the system’s family of attracting ellipsoids.

An ellipsoid E with origin at the center can be written as

E =
{
x : x′P−1x ≤ 1

}
, P > 0 (11)
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where P is a symmetric positive definite matrix called the matrix of the ellipsoid.
The ellipsoid E is termed state invariant if for any initial state x(0) lies inside E, the trajectory x(t)

stays inside the ellipsoid for t > 0 for all admissible disturbances (10). When the initial state x(0) lies
outside the ellipsoid, the trajectory x(t) is attracted to the ellipsoid for t > 0. This is achieved if the
ellipsoid E represented a Lyapunov function

V(x) = x′P−1x, P > 0 (12)

does not increase outside (including the boundary, V(x) ≥ 1) of this ellipsoid, that is, if

.
V(x) ≤ 0 f or all x(t) subject to V(x) ≥ 1 (13)

Reference [22] shows that the ellipsoid E is invariant and attracting for system (8) if and only if

AP + PA′ + αP +
1
α

DD′ ≤ 0 (14)

When the system is subjected to the family of bounded disturbance in Equation (10), the trajectories
of the system relies inside the ellipsoid. To reduce the disturbance impact on the system states and
outputs, the volume of the attracting ellipsoid must be minimized. Thus, an objective function must be
formulated to represent ellipsoid volume.

In this paper, the trace function in Equation (15) is selected as the objective function. The tr(.)
is defined as the sum of the diagonal elements of (.). It corresponds to the sum of the squares of
the semi-axes of the state-invariant ellipsoid. The linearity of the trace function offers a significant
advantage (the optimization problem becomes convex, easy to handle) compared to other functions
that can be used to calculate the volume of the ellipsoid. With this choice, the optimization problem
can be easily cast into a standard semi-definite program (SDP) (optimization of a linear function subject
to LMI constraints) that can be easily solved using convex optimization solvers that are available using
the MATLAB-LMI( R2017b, MathWorks, Natick, MA, USA) toolbox.

f (P) = tr(P) (15)

It is more important to minimize the disturbance impact on the controlled outputs z rather that
the whole state vector x. This can be easily achieved by substituting the ellipsoid of Equation (11)
by Ez = z′P−1z, z = Cx. Thus, if the attracting ellipsoid in Equation (10) bounds the x trajectory,
then the output z is contained in the ellipsoid Ez. Minimizing the volume of Ez will minimize the MG
voltage variations due to external disturbances.

The optimal state feedback controller design using attracting ellipsoids is discussed next.

3.2. Attracting Ellipsoid Design of State-Feedback Plus Integral Tracker

The state feedback regulator is discussed first. In this case, the reference is assumed to be constant.
The main control objectives are to drive all the states and system outputs to the origin, ensure fast
transient response and optimize the disturbance rejection performance. The results of this subsection
are, then, extended to address a state feedback tracker where the reference is time varying.

Regulator Attracting Ellipsoid Design

Consider the linear system
.
x = Ax + Bu + Dw

z = Cx + B2u
(16)
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where x ∈ Rn is the system state, z ∈ Rl is the controlled output, u ∈ Rp is the control signal, and w ∈ Rm

is the external disturbance satisfying the constraint (10). The goal is to calculate the gain K of a linear
proportional state feedback controller,

u = Kx (17)

That guarantees stability of the closed-loop system and optimizes the disturbance rejection
performance by minimizing the trace of the attracting output ellipsoid. It is worth noting that the
inclusion of term B2u in Equation (16) prevents large values of control effort.

By substituting Equation (17) in Equation (16), the closed loop system is

.
x = (A + BK)x + Dw, z = (C + B2K)x (18)

The following theorem provides a semidefinite program formulation for the state feedback
controller synthesis problem.

Theorem 1. Let the external disturbances be L∞-bounded and the pair (A, B) controllable for the system
(16). Then, the problem of designing a state feedback controller by state (17) that optimally rejects the external
disturbance, in the sense of the trace that is output-attracting ellipsoid, is equivalent to

Minimize tr
[
CPC′ + B2ZB′2

]
,

subject to the following constraints:

(AP + BY + ∗) + αP +
1
α

DD′ ≤ 0,α > 0 (19)

[
Z Y
∗ P

]
≥ 0, P > 0 (20)

where Y = KP. The minimization is carried out with respect to the variables α, P = P’ ∈ Rn×n, Y ∈ Rp×n and
Z = Z’ ∈ Rp×p [22].

Note that Equation (19) is nonlinear matrix equation (due to the product term αP, 1
α ). If the scalar

α > 0 is fixed, the optimization problem in Theorem 1 becomes convex which can be solved efficiently
using convex optimization algorithms.

Theorem 1 does not consider a reference input in the regulator formulation. Thus, reference
tracking cannot be achieved. In the next subsection, Theorem 1 is extended to offer both good dismissal
of disturbance and good reference tracking.

3.3. Tracker Attracting Ellipsoid Design

It can be verified that the MG model (5) has no integrator (type 0 plant), and therefore, non-zero
steady error will occur for step changes in the reference voltage. To ensure offset-free tracking of the
voltage reference, the integrator must be inserted in the forward path of the loop. In a state feedback
controller setup, the integrator is added as shown Figure 3 (which facilitates the Simulink modeling
(R2017b, MathWorks, Natick, MA, USA).

From Figure 3, we obtain

.
x = Adx + Bu + Dw, y = Cx, u = Kx + kiξ,

.
ξ = r−Cx (21)

Therefore, the augmented system is

.⎡⎢⎢⎢⎢⎣ x

.
ξ

⎤⎥⎥⎥⎥⎦ =

[
A 0
−C 0

][
x
ξ

]
+

[
B
0

]
u +

[
D
0

]
w +

[
0
I

]
r, z = [C 0]

[
x
ξ

]
+ B2u (22)
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or .⎡⎢⎢⎢⎢⎣ x
.
ξ

⎤⎥⎥⎥⎥⎦ = Â
[

x
ξ

]
+ B̂u + D̂w +

[
0
I

]
r, z = Ĉ

[
x
ξ

]
+ B2u (23)

where the augmented matrices are

Â =

[
A 0
−C 0

]
, B̂ =

[
B
0

]
, D̂ =

[
D
0

]
Ĉ = [C 0]

The ellipsoidal design of regulators, theorem 1, can be generalized to the trackers design.
The proposed controller has to be decentralized and robust against load variation (uncertainty) of the
MG. For this, Equation (23) is modified to

⎡⎢⎢⎢⎢⎣
.
x
.
ξ

⎤⎥⎥⎥⎥⎦ =
(
Â + ΔÂ

)[ x
ξ

]
+ B̂u +

(
D̂ + ΔD̂

)
w +

[
0
I

]
r, z = Ĉ

[
x
ξ

]
+ B2u (24)

The system time varying uncertainties ΔÂ(t), Δ D̂ (t) have the norm-bounded form

ΔÂ = MΔAN, ΔD̂ = FΔDH, ‖ΔA(t)‖ ≤ 1, ‖ΔD(t)‖ ≤ 1 (25)

The following theorem is developed.

Theorem 2. Consider system in Equation (24) with the controllable pair (Â, B̂), and L∞-bounded external

disturbances. Then, the decentralized robust state feedback with integral controller u = [K ki]

[
x
ξ

]
, which

rejects optimally the external disturbances (in the sense of the trace that is output-invariant to the ellipsoid) is
equivalent to minimize tr

[
ĈP̂Ĉ′ + B2ZB′2

]
subject to the following constraints:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
ÂP̂ + B̂Ŷ + ∗

)
+ αP̂ + εMM′ + ρFF′ D̂ P̂N′ 0
∗ −αI 0 H′
∗ ∗ −εI 0
∗ ∗ ∗ −ρI

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤ 0, α, ε,ρ > 0

[
Z Ŷ
∗ P̂

]
≥ 0, P̂ > 0

(26)

where Ŷ = K̂P̂, K̂ = [K ki], and the minimization is carried out with respect to the variables α, ε,ρ, P = P′ ∈
R(n+l).(n+l), Ŷ ∈ Rp.(n+l) and Z = Z′ ∈ Rp×p.

Proof of Theorem 2. For the tracking problem, the matrices in Equation (19) are replaced by the
augmented system matrices. Using Fact 2, the following can be obtained:

⎡⎢⎢⎢⎢⎣
(
ÂP̂ + B̂Ŷ + ∗

)
+ αP̂ D̂

∗ −αI

⎤⎥⎥⎥⎥⎦ ≤ 0, α > 0 (27)

To cope with load variation (uncertainty) in the MG, Â is replaced with
(
Â + ΔÂ

)
, and D̂ with(

D̂ + ΔD̂
)

in Equation (27). The resultant system is:

⎡⎢⎢⎢⎢⎣
({

Â + ΔÂ
}
P̂ + B̂Ŷ + ∗

)
+ αP̂ D̂ + ΔD̂

∗ −αI

⎤⎥⎥⎥⎥⎦ ≤ 0, α > 0
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Substituting for the norm-bounded uncertainty in Equation (25), one gets

⎡⎢⎢⎢⎢⎣
({

Â + MΔN′
}
P̂ + B̂Ŷ + ∗

)
+ αP̂ D̂ + FΔDH

∗ −αI

⎤⎥⎥⎥⎥⎦ ≤ 0, α > 0

Separating the uncertainty terms, we obtain

⎡⎢⎢⎢⎢⎣
(
ÂP̂ + B̂Ŷ + ∗

)
+ αP̂ D̂

∗ −αI

⎤⎥⎥⎥⎥⎦+
([

M
0

]
ΔA
[

NP̂ 0
]
+ ∗
)
+

([
F
0

]
ΔD
[

0 H
]
+ ∗
)
≤ 0 (28)

Using Fact 1 to eliminate ΔA(t), ΔD(t), Equation (28) is satisfied if the following matrix equation
is satisfied:

⎡⎢⎢⎢⎢⎣
(
ÂP̂ + B̂Ŷ + ∗

)
+ αP̂ D̂

∗ −αI

⎤⎥⎥⎥⎥⎦+ ε
[

M
0

][
M
0

]′
+ ε−1

[
P̂N′

0

][
P̂N′

0

]′

ρ

[
F
0

][
F
0

]′
+ ρ−1

[
0

H′
][

0
H′
]′
≤ 0, α, ε,ρ > 0

Using Fact 2, theorem is proved. �

Decomposing global MG system into N-subsystems (DGs), the above theorem can be applied for
each subsystem by adding a subscript i to every variable.

For ± 10% changes in load resistance, the norm-bounded uncertainty in Equation (25) for the
subsystems DERS are shown in Table 2. Note that the load resistance does not appear in the off-diagonal
matrices Aij, j � i (the disturbance), hence the uncertainty matrices of the disturbance (25) F, and H = 0.

Table 2. Norm-bounded uncertainties in ΔAi, j.

DER # M N

1 [2.8994,0,0,0,0,0,0,0;0,2.8994,0,0,0,0,0,0]′, [1.836,0,0,0,0,0,0,0;0,1.836,0,0,0,0,0,0]

2 [2.6912,0,0,0,0,0,0,0;0,2.6912,0,0,0,0,0,0]′ [1.7042,0,0,0,0,0,0,0;0,1.7042,0,0,0,0,0,0];

3 [2.8323,0,0,0,0,0;0,2.8323,0,0,0,0]′ [1.7935,0,0,0,0,0;0,1.7935,0,0,0,0]

The following optimal decentralized robust controller parameters are obtained by solving the
LMIs of Theorem 2, with B2 selected as a unit matrix.

Decentralized robust tracker for DER1:

K1 = [−0.062127, 0.16641,−16.023, 0.0019958,−4.0591, 5.2101, 5.7804, 2.7372;
−0.16641,−0.062127,−0.0019958,−16.023,−5.2101,−4.0591, 2.7372, 5.7804]
K1, I = [292.7000− 161.8750; 161.8750 292.7000]

Decentralized robust tracker for DER2:

K2 = [−0.23452, 0.38322,−34.774,−0.00019014,−4.1782, 16.381, 13.573,−4.5376;
−0.38322,−0.23452, 0.00019014,−34.774,−16.381,−4.1782, 4.5376, 13.573]
K2, I = [372.8000− 120.3425; 120.3425 372.8000]

Decentralized robust tracker for DER3:

K3 = [−0.94669, 0.37784,−79.496, 0.00025575, 48.315, 9.9538;
−0.37784,−0.94669,−0.00025575,−79.496,−9.9538, 48.315]
K3, I = [ 223.39− 95.798; 95.798 223.39]
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4. Simulation Results

The proposed control system performance is verified and tested using the
MATLAB/SimPowerSystem Toolbox. The selected islanded PWM-inverter microgrid consisting of
three-DGs as shown in Figure 2. It is implicit that each DG maintains a local load. The parameters
of all DGs, transmission lines and local loads are presented in Table 1. In Figures 4–9, the dynamic
performance of the proposed designed controllers is assessed via several test scenarios, including
voltage tracking, load change and load unbalance.

Figure 4. Proposed controllers’ performance of DG 1 as a result of two-step changes in the voltages
set point. (a) dq-components of the load voltage at point of coupling (PC) 1. (b,c) Instantaneous load
voltages of PC 1. (d) Output active and reactive power of DG 1.

Figure 5. Dynamic performances of DGs 2 and 3 as a result of two-step changes in Vdq1 set point.
(a) d-component of the load voltages at PCs. (b) q-component of the load voltages at PCs. (c) Output
active power of DGs. (d) Output reactive power of DGs.
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Figure 6. Dynamic performances of DG 1, DG2, and DG 3 as a result of step changes in the load
resistance in three-phase system. (a) d-component of the load voltages at three DGs. (b) q-component
of the load voltages at three-DGs. (c) Output active power of three DGs. (d) Output reactive power of
three DGs.

Figure 7. Dynamic performances of DG 1, DG2, and DG 3 as a result of step changes in the load resistance
in three-phase system. (a,b) d-component of the load voltages at three DGs. (c,d) q-component of the
load voltages at three DGs. (e,f) Output active power of three DGs. (g,h) Output reactive power of
three DGs.
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(a) (b) 

Figure 8. Response for an increase in real power of load2. (a) Control of Reproduced from [20],
the name of the publisher: IEEE Trans. Power Deliv [20] (b) Proposed control.

Figure 9. Dynamic performances of DG 1, DG 2, and DG 3 during islanded micro-grid and unbalance
load condition. (a) load currents, unbalance at t = 2 s, (b) load currents, unbalance at t = 3 s, (c) Vd at
PCC, unbalance at t = 2 s, (d) Vd at PCC, unbalance at t = 3 s, (e) Vq at PCC, unbalance at t = 2 s, (f) Vq

at PCC, unbalance at t = 3 s, (g) active power, unbalance at t = 2 s, (h) active power, unbalance at t = 3 s.

4.1. Scenario 1: Voltage Tracking

The microgrid system shown in Figure 2 which has three DGs. Each DG delivers the active and
reactive power for its particular local loads corresponding to the information/set points obtained from
PMS shown in Figure 1a. The voltage values of the dq components of the DGs’ references are listed
in Table 1. The tracking response is checked by step changes in the reference voltage. The d and q
components of the reference voltage for DG1 are respectively changed in steps as follows: (i) from 0.6
and 0.8 pu to 0.8 and 0.6 pu at t = 2 s. and (ii) at t = 3 s, from 0.8 and 0.6 pu to 0.6 and 0.8 pu.

The dynamic responses of DG 1 as a result of new reference voltages are shown in Figure 4.
Figure 4a shows the d and q components of the load voltage of DG 1. The proposed controller
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successfully adjusts the load voltage in less than 0.2 s with zero steady state error. Figure 4b,c
respectively, shows the instantaneous load voltages of PCC 1 during the two-step changes. Figure 5d
represents the output active and reactive power of DG 1. Moreover, the dq voltages and the active and
reactive power of the other two-DGs (DG2 and DG3) are depicted in Figure 5. The results show that
there is a short transient period (approximately 0.2 s) in the load voltages and the active and reactive
powers at PC2 and PC3 as a result of the two-step changes in the voltage set points of DG 1.

4.2. Scenario 2: Load Change

Although the proposed controllers are designed to reject any disturbance up to ±10% of load
changes; in this scenario, we will examine the robustness of the proposed controller by applying load
changes to the microgrid system more than the design range. The local load of any DG in Figure 2 is
modeled by a three-phase parallel RLC network whose parameters are given in Table 1.

The load resistances R at any of the three-DGs in the three phases are equally changed from 100%
to 150% at t = 2 s and changed again from 150% to 50% at t = 3 s. The results illustrated in Figure 6
show the robustness of the controller and how it copes with respect to the load changes even if it is
more than the designed range. Figure 7 demonstrates that the designed controllers are too fast where it
took less than 0.05 s to reject the significant changes.

4.3. Comparison with Other Controller

For an increase in real power of load2 at t = 1 s from 0 to 0.8 p.u, the response using the control
in [20] and the proposed one is shown respectively in Figure 8a,b.

The comparison can be summarized in Table 3.

Table 3. Comparison with the control in [20]. Reproduced from [20], the name of the publisher: IEEE
Trans. Power Deliv.

Case Response with Control in [20] Response with Proposed Control

Vd2 Faster, but has higher undershoot Slower, but has less undershoot

Vq2 Faster, less undershoot Slower, higher undershoot

PDGi Slower Faster

QDGi Noticeable disturbance Unnoticeable disturbance

It can be concluded that the proposed control outperforms that in [20] in PDGi, and QDGi.

4.4. Scenario 3: Unbalanced Load

In this scenario, the proposed system is primarily operating with a balanced load, then the
islanded micro-grid load is assumed to become unbalanced. At t = 2 s, the load becomes unbalanced
by changing the resistance load in phase a, b and c to be: Ra = 130% of Ra, Rb = 150% of Ra and
Rc = 60% of Ra. The dynamic performance of the three-DGs is shown in Figure 9a,c,e,g. At t = 3 s,
the load is changed from unbalanced to another unbalanced by changing the resistance load in phase a,
b and c to be: Ra = 50% of Ra, Rb = 100% of Ra and Rc = 140% of Ra. The dynamic performance of the
three-DGs is given in Figure 9b,d,f,h. Figure 9a,b shows the abc-load current response. Figure 9c,d
depicts the d-components of the PCC voltage. Figure 9e,f illustrates the q-components of the PCC
voltage, and Figure 9g,h gives the output active power of the three-DGs. Figure 9 demonstrates that the
proposed voltage controller is effective against the load unbalances. The d-q components are polluted
by a small oscillation which is produced from the load side. The frequency of this oscillation is double
the PCC frequency. This case shows that the proposed control can partially compensate for the effect of
the unbalanced load.
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5. Conclusions

This paper proposes a control strategy for an islanded, multi-DER microgrid. Each DER’s
local controller is designed based on a multivariable decentralized robust servomechanism approach
that uses a microgrid’s linear state-space model. The design is simple and based on the ellipsoidal
approximation to invariant sets. The local controller for each DER considers the interaction effect of the
rest of the system as an external disturbance to be rejected. The proposed controller achieves robust
stability and desired performance (fast transient response, negligible interaction, and zero steady-state
tracking error, despite uncertainties in the load parameters).

The performance of the proposed robust servomechanism controller is evaluated and verified using
MATLAB/Simulink. The controller performance is evaluated when the study system is subjected to

• Set point step changes;
• Uncertainties in the load parameters.

The simulation results show that the proposed controller

• Provides excellent tracking of the reference signals (fast and smooth non-peaking transients);
• Robustly maintains voltage magnitude of the load despite the load parameter uncertainties.
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Appendix A System Equations and State Matrices

The A-matrix of (4) is given below.

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

A11 = [

−1
R1c1

ω 1
c1

0 −1
c1

0 −1
c1

0
−ω −1

R1c1
0 1

c1
0 −1

c1
0 −1

c1
−1
L f 1

0
−R f 1
L f 1

ω 0 0 0 0

0 −1
L f 1

−ω −R f 1
L f 1

0 0 0 0
1

L1
0 0 0 −Rl1

L1
ω 0 0

0 1
L1

0 0 −ω −Rl1
L1

0 0
1

Lt1
0 0 0 0 0 −Rt1

Lt1
ω

0 1
Lt1

0 0 0 0 −ω −Rt1
Lt1

], A22 = [

−1
R2c2

ω 1
c2

0 −1
c2

0 −1
c2

0
−ω −1

R2c2
0 1

c2
0 −1

c2
0 −1

c2
−1
L f 2

0
−R f 2
L f 2

ω 0 0 0 0

0 −1
L f 2

−ω −R f 2
L f 2

0 0 0 0
1

L2
0 0 0 −Rl2

L2
ω 0 0

0 1
L2

0 0 −ω −Rl2
L2

0 0
1

Lt2
0 0 0 0 0 −Rt2

Lt2
ω

0 1
Lt2

0 0 0 0 −ω −Rt2
Lt2

],

A33 = [

−1
R3c3

ω 1
c3

0 −1
c3

0
−ω −1

R3c3
0 1

c3
0 −1

c3
−1
L f 3

0
−R f 3
L f 3

ω 0 0

0 −1
L f 3

−ω −R f 3
L f 3

0 0
1

L3
0 0 0 −Rl3

L3
ω

0 1
L3

0 0 −ω −Rl3
L3

],

A12 = −1
Lt1
× [ 06×2 06×6

I2×2 02×6
], A13 = 08×6,

A12 = 1
C2
× [ 02×6 I2×2

06×6 06×2
],

A23 = −1
Lt2
× [ 06×2 06×4

I2×2 02×4
],

A31 = 06×8, A32 = 1
C3
× [ 02×6 I2×2

04×6 04×2
],

Nonzero entries of B22x6 are b3,1 = b4,2 = 1
L f 1

, b11,3 = b12,4 = 1
L f 2

, and b19,5 = b21,6 = 1
L f 3

.
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Non-zero entries of C6×22, i.e., C1,1, C2,2, C9,3, C10,4, C17,5, and C18,6 are unity.
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