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Article

Telling the Wave Function: An Electrical Analogy

Leonardo Chiatti

Medical Physics Laboratory, ASL VT, Via Enrico Fermi 15, 01100 Viterbo, Italy; leonardo.chiatti@asl.vt.it

Abstract: The double nature of material particles, i.e., their wave and corpuscular characteristics,
is usually considered incomprehensible, as it cannot be represented visually. It is proposed to the
student, in introductory courses, as a fact justified by quantum interference experiments for which,
however, no further analysis is possible. On this note, we propose a description of the wave function
in terms of a simple electrical analogy, which reproduces at least some of its essential properties. Our
aim is to provide a cognitive representation of an analogical type: starting from a classical context
(electrical circuits) and introducing in an appropriate way the notions of “wave” and “particle”, we
show how typically quantum properties such as delocalization and entanglement emerge in a natural,
understandable, and intuitive way.

Keywords: quantum mechanics; particle–wave duality; quantum jump; quantum entanglement

1. Introduction

The wave nature of material particles, conceived by de Broglie in 1923 [1], still appears
strongly counterintuitive today although confirmed by all the experiments carried out to
verify it. There are at least two aspects of the particle–wave duality that seem contrary
to common sense. The first is the “delocalization” of the corpuscle, i.e., the fact that an
individual entity is somehow simultaneously present on the entire spatial volume occupied
by the wave [2]. Secondly, if we accept, as we do in this study, the standard formulation
of quantum mechanics and, therefore, the projection postulate [3], then in a “quantum
jump” originating from the interaction with other particles or fields, the corpuscle abruptly
changes its state of delocalization. As a particular ideal limit case, the corpuscle can
undergo a precise localization in space acquiring, at least in an ephemeral way, an attribute
of position. That same attribute is permanently possessed by a “classical” corpuscle.

The difficulties, however, do not end here. Amplitude interference experiments with
single particles clearly demonstrate [4–6] the absence of the trajectories attributable to
quantum “corpuscles”. These experiments have become, at least since the 1960s, the basis
of a didactic presentation of the particle–wave duality [7]. A widely used example is that
of Young’s interferometer with a double slit. In this device, the particle, which manifests
itself as a localized corpuscle in its impact on the rear screen, interferes with itself as a
consequence of the fact that the absence of trajectories prevents the definition of which slit
is actually crossed.

A similar phenomenon occurs with two identical particles emitted in a coherent way,
which can hit two distinct detectors (intensity interference). In this case, there may be a
situation (H1) in which the particle emitted by source S1 hits detector D1, and the particle
emitted by source S2 hits detector D2, or there may be another situation (H2) in which the
particle emitted by source S1 hits detector D2, and the particle emitted by source S2 hits
detector D1. The absence of trajectories leads to the undecidability between H1 and H2,
and therefore to an interference connected with this undecidability [8,9]. This interference
is a particular effect of a general phenomenon correlated with the non-factorizability of
the wave function of the system consisting of the two particles. This phenomenon is the
entanglement [10], and it constitutes a further aspect of the quantum domain that does not
seem to admit a classical representation.

Foundations 2022, 2, 862–871. https://doi.org/10.3390/foundations2040058 https://www.mdpi.com/journal/foundations1
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We are thus faced with the problem of how to find a viewable representation of the
quantum phenomena that we have briefly mentioned. In our opinion, this problem has
a well-known historical precedent in the development of non-Euclidean geometries, in
particular the elliptical geometry of Riemann [11] and the hyperbolic geometry of Bólyai
and Lobačevskij [12,13]. In an attempt to construct a geometry that denies the parallel
postulate, we are faced with spaces that are impossible to visualize. Certainly, no one is
able to visualize a space where, given a straight line and a point external to it, no parallel
to the given straight line passes through that point. Or, an infinite number of parallels
pass through it. This impossibility, however, persists only as long as we keep the original
Euclidean notions of “ straight line” and “point”. It is, in fact, well-known that Riemann’s
elliptical (two-dimensional) geometry admits a representation on the surface of a Euclidean
sphere when the appropriate redefinitions of the terms are performed, for example, if the
straight lines are interpreted as the maximum circles of the Euclidean narrative [14]. In
the same way, it is possible to represent the hyperbolic (plane) geometry on a portion
of the Euclidean plane through the construction of Klein [14]. In the simplest version of
this construction, the space is the internal region of a circumference (understood in the
Euclidean sense); the “straight lines” are (in Euclidean terms) the segments inside the
circumference that intersect it in two points, etc. In summary, it is possible to represent the
unrepresentable by attributing a new meaning to the terms. By carrying out this operation
with care, the “new” can be represented, in a fully viewable way, in the same environment
as the “old”. It should be emphasized that this operation is analogical, and numerous
alternative representations of the same represented structure are possible.

Returning to our specific problem, the application of this type of strategy, first of
all, involves the identification of a specific classical setting within which to operate the
redefinition of the terms “particle”, “wave”, and “quantum jump”. It is then necessary
to show that the entities thus redefined (but easily visualized in the chosen classical
setting) behave like the corresponding quantum entities in the context of their relations.
The intuitive comprehensibility of the redefined entities is guaranteed by their coexisting
“narration” in classical terms.

In attempting to search for a representation of quantum phenomena intended in this
way, it seems inevitable to start with the concept of “particle”. It is immediately evident that
the usual notion of localized entity is unsuitable because it conflicts with delocalization and
the absence of trajectories; therefore, something geometrically less constrained is needed.
We choose to assimilate the particle to an electromechanical actuator (a sort of relay) that
exchanges the energy elements associated with a charge. Recall that a particle can carry
different types of charge: certainly, a gravitational charge but also possibly a weak, strong,
or electric charge. We will deal with the concept of the charge assimilating it to that of
electric charge, in both cases, keeping in mind the more general meaning of the term.

The next problem is how to introduce a spatially delocalized charge. The first idea that
arises to mind is that, in each point of the empty space, there is a “charge reservoir” (i.e., a
system of capacitors) that exchanges the elements of energy with the actuator, i.e., with the
particle. The charge and energy of the particle are thus spatially delocalized because they
are derived from the contribution of the capacitors associated with each point in space. The
wave function of the particle then measures the local contribution to the total charge of the
particle.

Invading the empty space with circuits of electric capacitors may appear as an annoy-
ing reminiscence of 19th-century English physics with its “ether of space”. It is, therefore,
appropriate to repeat that the meaning of our proposal is not to specify what a quantum
particle is but how it can be told using the language of classical physics. Our “ether of
capacitors” is fictional but functional for that purpose. Its state of charge allows us to define
the wave function of the particle.

Having in mind these reasons and this strategy, in Section 2, we move on to examine
the basic ideas of our representation and then introduce, in the subsequent Section 3, the
relevant definition of the wave function. An electrical analogy of the quantum jump is
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presented in Section 4, which also discusses the reason why the wave function “lives” in
the enlarged configurational space and not in ordinary spacetime. The notion of a multi-
particle–wave function is thus introduced, and the meaning of entanglement is illustrated.
In Section 5, some issues related to the wave–particle dualism are specified; in particular,
the notions of particle and corpuscle in the context of the present representation. The
inclusion of the spin is discussed in Section 6. Section 7 summarizes the conclusions.

2. Basic Ideas

Let us now see how to express, in a more precise way, the ideas illustrated in Section 1.
For the moment, we limit ourselves to considering the case of the propagation of a single
particle with mass m, and only subsequently will we consider the more general case of a
system with several particles.

We assume that the propagation of the particle in four-dimensional spacetime is
associated with a phenomenon of the polarization of the vacuum, structured as follows:
We denote a generic point of the four-dimensional spacetime by x, whose coordinates in
reference to the rest of the particle are (x, y, z, ct), and we consider the two regions of the
light cone (past and future) having vertices in x and extension ±L/c in t. There are no
stringent indications on the value of L; we will assume that L = h̄/mc is the Compton length
of the particle. This assumption seems plausible because it is below this spatial scale that
the particle is dissociated into particle–antiparticle pairs, and therefore, the polarization
effects are manifested [15]; however, any other physically reasonable choice of L is just
as good.

As a consequence of the vacuum polarization associated with the particle, two opposite
charges of +Q1(x) and −Q1(x) will be induced in the future light cone of x (t < t’ <t + L/c),
while two opposite charges of +Q2(x) and −Q2(x) will be induced in the past light cone
of x (t −L/c < t’ <t). We pose Q1, Q2 ≥ 0 (the opposite choice is just as good). If we
admit the existence of “vacuum capacity” C, dependent only on the type of the particle
(electron, muon, etc.), these two charges correspond to two energies Qi

2/2Cn, i = 1, 2. The
total energy (Q1

2 + Q2
2)/2Cn = Q2/2Cn is that of a group of n(x) capacitors in parallel to

the same capacity C brought to the common voltage V. The voltage V is assumed to be
independent of x. The charge q = CV then depends on the type of the particle. From the
usual formalism of capacitors in parallel [16], we have Q2/2Cn = nCV2/2, from which the
relation Q = nq follows.

A group of capacitors in parallel is, therefore, associated with each point-event x. The
key assumption is that this group contributes, with a part of its charge Q, to the total charge
of an actuator (the particle), which we will assume to be q.

If the particle was exactly localized in x, its charge would be integrally supplied by the
capacitor group present in x. In this case, the total energy of the group would vary by an
amount of ±q2/2Cn. The negative sign corresponds to the transfer, by the group, of charge
q to the particle; the positive sign corresponds to the transfer, by the particle, of charge q
to the group. In the hypothesis of the perfect localization of the particle in x, the number
of possible energy elements that can be exchanged between the group and the particle is
given by the ratio (Q2/2Cn)/(q2/2Cn) = (Q/q)2 = n2.

This suggests how to deal with the more general case of a delocalized particle. The
charge exchanged between the group and the particle is, in this case, a fraction (possibly
infinitesimal) of q. We can, therefore, assume ρ(x)dxdydz = dn2(x)/A as the probability of the
presence of the particle in the neighborhood dxdydz of x. The dimensionless normalization
constant A can be determined according to the relation:∫

Vol

ρ(x, y, z, t) dxdydz = 1 (1)

The contribution to q2 of the element dxdydz around x is then q2ρ(x)dxdydz = q2dn2/A = dQ2.
Each point of space contributes, with its own group of capacitors in parallel, to the total

3
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charge q of the particle. This result constitutes a description of the delocalization of the
particle in classical terms, and we will return to it later. At the Compton scale (the minimum
scale at which the wave function is defined [15]), the relation q2ρ = dQ2/(dxdydz) becomes
q2ρ~Q2/L3. Since q does not depend on x, the density (ρ) is locally proportional to Q2.

We must now see how the other actor appears, namely the wave function of the particle.

3. Positional and Impulse Representation

Let us now consider the two complex conjugate functions:

ψ =
(Q1 + Q2)

2
+ i

(Q1 − Q2)

2
(2)

ψ∗ =
(Q1 + Q2)

2
− i

(Q1 − Q2)

2
(3)

As we have seen, the probability density ρ is proportional to Q2 = Q1
2 + Q2

2 since q is
independent of x. Therefore, ρ is proportional to ψψ*. We interpret functions (2) and (3) as
the two wave functions, retarded and advanced, of the particle. We note that:

(1) If charges Q1,2 are multiplied by a real common factor (k), the probability density (not
normalized) is multiplied by k2, while (2) and (3) are multiplied by k;

(2) If k is complex, the (non-normalized) probability density is multiplied by kk* when
(2) and (3) are multiplied by k and k*, respectively. This implies that the modulus
of (2) and (3) is multiplied by the modulus of k, while the two functions are rotated
around the origin of the complex plane by an angle equal to the argument of k, k*;

(3) From both the proportionality of (2) and (3) to the capacitor charges and the additive
nature of the charges, it follows that functions of this type can be summed generating
interference effects;

(4) The time inversion t→−t implies the exchange Q1↔Q2, and then ψ↔ψ*;
(5) Functions (2) and (3) have, of course with reference to the representation discussed

here, a clear ontic meaning as charge states of the network of groups of capacitors
associated with the particle.

On the other hand, it is possible to derive (2) and (3) with respect to the spacetime
coordinates. Dimensionally, the quantities I1,2 = c∂μQ1,2, where c is the maximal speed, and
μ = 0,1,2,3 is the spacetime coordinate index, are currents. In functions (2) and (3), those that
are the eigenfunctions of c∂μ are also the eigenfunctions of the four momentums (ih̄∂0, -ih̄∂i),
i = 1,2,3. These eigenfunctions can be superposed, thus generating generic wave packets.
It, therefore, becomes possible to replace (2) and (3) with analogous complex functions
containing currents instead of charges, thus passing to the momentum representation:

ϕ =
(I1 + I2)

2
+ i

(I1 − I2)

2
(4)

ϕ∗ =
(I1 + I2)

2
− i

(I1 − I2)

2
(5)

In general, (4) and (5) can be modeled as a system of n inductors in parallel, with
individual inductance M, through which the current I = (I1

2 + I2
2)1/2 flows. The energy of

the single inductor is Mi2/2, with i = I/n as the current flowing in it. The total inductance
of the system is MT = M/n. We, therefore, have [16]:

MT I2

2
=

MI2

2n
=

M
n

n2i2

2
=

nMi2

2
(6)

The representation in terms of inductances is completely specular to that in terms of
capacitors, and in this paper, we choose to focus on the latter.
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4. Multi-Particle Systems

The independent variable x of functions Q1(x) and Q2(x) labels a group of capacitors
connected in parallel. Therefore, there is a continuous quadruple infinity of these groups.
In a quantum jump, functions (2) and (3) are zeroed, and new φ functions of the same
type are generated at the output. This means that the capacitors associated with the labels
x = (x, y, z, ct), with t = instant of the jump, are discharged and new capacitors associated
with new labels of the same type are charged according to the functions φ. It is possible to
represent the quantum jump ψ→φ with the electrical diagram in Figure 1.

Figure 1. Electrical diagram of the quantum jump ψ→φ (for simplicity, only two pairs of opposing
meshes are represented).

Each point-event of spacetime corresponds to a group of capacitors associated with the
incoming function ψ and a group of capacitors associated with the outgoing wave function
φ. There are, therefore, groups ψ(xi) paired with groups φ(yi), as in Figure 1, where the
labels xi, yi (i = 1, 2, . . . ) represent the same point-event, i.e., the same spatial position and
same instant in time coinciding with those of the jump.

The homologous ends of all groups ψ(xi) are connected to the corresponding two ends
of switch a. Closing a involves short-circuiting all the groups of capacitors associated with
function ψ. The opposite charges are recombined, and ψ is canceled. The closing of a also
implies, as an automatic consequence, the closing of other switches such as b. The latter, in
turn, implies the charging of all the groups of capacitors associated with function φ.

The function of the electromechanical actuator constituting the particle is to keep
the circuit associated with function ψ open, that is, to keep switch a open. The energy
accumulated in the actuator is, therefore, the potential energy with switch a open. The
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interaction responsible for the quantum jump provides the energy needed to overcome this
potential barrier and close a. At the end of the jump, a is closed, and its potential energy
is zero.

It can be seen from the diagram in Figure 1 that each value of the x (y) argument
represents a mesh and, therefore, a discharge (charge) line. These labels are unique to the
network of groups of capacitors that are discharged or charged. If the network corresponds
to a particle, in the sense that it exchanges charge with that particle (actuator) only, then
the label is shared by that particle. Two distinct particles, A and B, then have distinct
spacetime labels of xA and xB. The wave functions associated with them are, respectively,
φ(xA) and ϕ(xB), and each describes the state of the charge of the network associated with
the corresponding particle. The overall state of the charge of the two quadruple infinity
of the groups of capacitors associated with the two particles will be represented by the
product φ(xA)ϕ(xB). Normally, in this product, the two functions are considered at the same
instant in time, in such a way that the square modulus of the wave function provides the
compound probability density of the two particles at that instant.

On the other hand, it is possible to imagine multiple networks and an equal number
of actuators that (1) exchange charge with each network and (2) contribute to the potential
energy related to the opening of the circuit of each network. In this case, the spatial
labels of all the networks must be simultaneously assigned to the single actuator (particle).
An example can be made by returning to the previous case of the two networks of A
and B. Imagine two actuators (particles) to whose charge both networks contribute and
each of which contributes to the opening of both circuits A and B. In this case, it is not
possible to distinguish the two particles through their network, and one can have an
entangled state such as, for example, φ(xA)ϕ(xB)± φ(xB)ϕ(xA). This entanglement describes
the contributions of the two networks to the opening of the two switches a, inserted,
respectively, on network A and network B.

The proposed representation, therefore, allows us to define both single-particle–wave
functions and multi-particle–wave functions, the latter both factorizable and entangled. It
also supports a viewable model of quantum jump.

5. Corpuscle–Wave Dualism

It is possible to assume that the energy of the actuator constituting the particle asso-
ciated with the wave function ψ is q2/2C, with the meaning of the symbols already seen
in the previous sections. In this hypothesis, this is the minimum energy required to keep
switch a open and thus allow the propagation of ψ. It is, therefore, natural to suppose that,
for a particle with mass m, the rest energy of the particle is q2/2C = mc2. This is, in fact, the
minimum energy required for an interaction to create an outgoing state containing that
particle. The delocalization of the particle described in Sections 2 and 3then corresponds,
physically, to the delocalization of its rest energy; the energy stored in each capacitor group
represents the local contribution to the rest energy. The relation q2/2C = mc2 in turn implies
C = 2πε0rcl, where ε0and rcl are, respectively, the dielectric constant of the vacuum and the
classical radius of the particle; rcl/L is the fine structure constant.

In summary, the quantum wave is the state of the charge of capacitor networks. Each
network contributes to the charge and energy of an actuator, which is the particle. In this
sense, the particle is “delocalized” on the network. The wave function defines, at the same
time, the state of the charge of the network and the delocalization of the particle. Different
particles can correspond to different networks, and in this case, the state of the charge of the
networks is described by a factorizable wave function. On the other hand, when different
networks contribute to powering the same actuator, and the latter acts on all the networks
that feed it, entanglement occurs. In both cases, the wave function depends on the spatial
coordinates of all the particles involved and not on the generic spacetime coordinates (as
it would be for a classical field). The ambient space of the wave function is, therefore,
the enlarged space of configurations, not the ordinary four-dimensional space where an
observer coordinates the interaction events.

6
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In a quantum jump, there is a sudden change in the wave function: The wave function
entering the jump is zeroed by short-circuiting the network of capacitors associated with it;
a new capacitor network, associated with a new wave function coming out of the jump, is
charged. The net charge q of the particle—if it is a conserved quantity—is transferred from
the incoming function to the outgoing one and becomes an additive contribution to the
total charge of the particles it describes. This transfer is what we normally refer to with the
term “corpuscle”. This definition captures a feature of the corpuscular aspect of the matter
that is well-known from quantum experiments: its ephemeral nature. In other words, a
corpuscle is an event (such as, for example, the impact of an electron on a photographic
plate), not a persistent object that can be recognized and traced within the wave function.

The analogical representation proposed here applies to the wave function of systems
with one or more particles. It is not applicable to the wave function of idealized systems
such as the rotator, the vibrator, etc., because, for these systems, the concept of a charge
associated with a (virtual) polarization of the vacuum loses meaning. It must, however,
be considered that the real systems corresponding to these idealizations can nevertheless
be described as the aggregates of interacting particles, and therefore, their exact treatment
leads back to the case examined here.

At this point, we would like to introduce a clarification to avoid misunderstandings.
It could be assumed that the vacuum polarization postulated in this paper coincides with
the vacuum polarization described by quantum field theory (QFT). This belief can be
strengthened by our choice of the value of L as the Compton wavelength of the particle
since this is precisely the scale below which the polarization of the QFT vacuum occurs. In
reality, there is no obvious identification of the two phenomena.

We have introduced vacuum polarization as an ad hoc postulate, functional to a
translation, in classical terms, of the quantum delocalization of the particle, that is, of
its wave function. For relativistic reasons (i.e., the polarization of the QFT vacuum and,
therefore, the dissociation of the particle into virtual particle–antiparticle pairs, which
occurs on the Compton scale), the concept of wave function loses its meaning on the
Compton scale [15]. Therefore, the Compton scale is the minimum scale at which the
vacuum polarization, as introduced in this paper,can be matched to the wave function of a
massive particle. For this reason, we choose the value of L as corresponding to the Compton
wavelength of the particle.

Our classical description of particle delocalization starts from the vacuum polarization
as postulated by us, through the introduction of an entirely fictitious “ether of capacitors”,
invented only for this purpose. These capacitors exchange, with an actuator, fractions of
the renormalized charge of the particle.

The polarization of the QFT vacuum around a bare charge leads, in the QFT, to the
virtual charges of opposite signs, each of infinite value. In the QFT description, these
charges renormalize the bare charge (also infinite), producing a finite effective charge at
finite distances. These virtual charges have no obvious relationship with the fractions of the
renormalized charge considered here, exchanged between the capacitors and the actuator. It
is also not clear what this exchange would correspond to in the QFT description. Therefore,
although an indirect connection between the polarization of the QFT vacuum and the
phenomenon of polarization postulated in this work cannot be absolutely excluded, we
limit ourselves to assuming the latter as a simple classical analogy useful for our purposes.

We conclude this section with an observation of resistance R in the series with the
capacitor network (Figure 1). We assume the quantum jump, and therefore the discharge
of the capacitors, as instantaneous. Strictly speaking, this would require a null time
constant τ = RC (due to the normalization condition, C is substantially referred to as
the single capacitor) and, therefore, a zero resistance R and an infinite discharge current
i = V/R = q/RC. This hypothesis is sufficient for our purposes. If we wanted to contemplate
the hypothesis of a finite duration of quantum jumps, the time constant of the discharge
must be finite. In such a case, experimental data provide an upper limit of τ, intended as
“jump duration”; they then set an upper limit on the value of R and a lower limit on the

7
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value of i. The technology of the exploration of the motion of atomic electrons by means
of pulsed laser beams had a prodigious development in recent decades, passing from the
pulses of the duration of the femtosecond to the pulses of the duration of the attosecond
(10−18s) [17]. On this time scale, it is possible to resolve the temporal evolution of atomic
orbitals during a transition, but it is not yet possible to resolve the quantum jumps that
terminate this transition. The duration of the jumps—if actually finite—must, therefore, be
much shorter.

Referring to the electron, the most studied elementary particle, it, therefore, seems rea-
sonable to assume τ ~ rcl/c = 0.937·10−23s, and then C = 2πε0rcl = 1.56·10−25F; R = τ/C = 60 Ω;
i = e/τ = 17,100 A. These results are derived from the currently accepted value for the classical
electron radius, rcl = 2.81·10−15m. However, we do not elaborate here on this aspect, due to
its speculative character.

6. Spin

It is possible to construct the row or column vectors whose components are different
functions of types (2) and (3), or, respectively, of types (4) and (5). Each component of
these vectors is associated with a different network of groups of capacitors in parallel
or, respectively, of inductances in parallel, afferent to a single actuator. If the relativistic
covariance rules are applied to these vectors, they become spinors. We then have the Pauli
spinors in the non-relativistic limit and the Dirac spinors in the general relativistic case.
It thus becomes possible, in principle, to extend the present electrical analogy to include
the spin of elementary particles and their internal degrees of freedom such as isospin or
strangeness. Here, we limit ourselves to an observation on the spin.

A generic wave function of spin 1
2 takes, in the Pauli algebra, the following form [18,19]:

ψ(
→
x , t) = α(

→
x , t) ψ+

z + β(
→
x , t) ψ−z ; |αα∗| + |ββ∗| = 1 . (7)

where
→
x = (x, y, z) is the spatial position, and the spinors ψ+

z and ψ−z represent fully po-
larized beams along the z axis, corresponding to the two eigenvalues of the spin projection
along that axis. The meaning of (7) in the present representation is that a single actuator
(particle) exchanges charge with two distinct networks, each of which is associated with
one of the two projections, and keeps them both open. The (complex) coefficients α and β
measure the relative intensity of the exchange with the relevant network, in the terms seen
in Section 3. The rotation of the frame of reference of an angle χ around a spatial axis

→
n

(with
∣∣∣→n ∣∣∣ = 1) changes coefficients α and β according to the following law [18,20]:

ψ → ei χ
2 (
→
n · →σ )ψ =

[
I cos

χ

2
+ i (

→
n · →σ ) sin

χ

2

]
ψ (8)

For example, if α(
→
x , t) = 1 and β(

→
x , t) = 0, a rotation around the z axis gives

α′(
→
x
′
, t) = ei χ

2 , β′(
→
x
′
, t) = 0. This means that the exchange is sensible to rotations. It

must be borne in mind that a variation in axes is always associated with a modification
of the experimental situation, such as fixing a direction to a magnetic field or reorienting
a polarizer. This modification involves a variation in the charge exchange between the
particle and the two networks. The directional dependence of the exchange represents, in a
certain sense, a directional structure of the particle itself. However, this structure, or the
internal “direction” of the particle, has nothing to do with the rotation of a solid object in
three-dimensional space. This is consistent with the non-classical nature of the spin [21].

7. Conclusions

In these concluding notes, we would like to try to put this contribution in context. In
our opinion, the non-viewability of quantum processes has generated the widespread belief
that they are inherently incomprehensible. Quantum theories are often assimilated into
formal recipes that are very effective on the predictive level but are ones whose connection
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with any intelligible ontology remains obscure. Following the historical precedent of
non-Euclidean geometries, we tried to circumvent these obscurities by providing a model
of quantum behavior in a classical context: that of electrical circuits. As in the case of
non-Euclidean geometries, we had to redefine the notions of particle, wave, and corpuscle
in this context, moving away from their original classical meaning. By paying this price, we
obtained the visualization of quantum entities and processes, guaranteed by the classical
nature of the context in which their redefinition was carried out.

We believe that this attempt is located in a sort of middle land between the choice of
surrendering to non-visualization (with the consequent problems of conceptual opacity)
and the strong choice of determining an ontology of elementary processes, which is the
goal of any physical interpretation of the quantum formalism. Although in choosing our
representative model, we tried to adhere to the criteria of “sound physics”, we find it diffi-
cult to seriously believe that space is the equivalent of a cabinet of electric capacitors. Our
representation is, therefore, less than a sensu strictu interpretation of quantum formalism
such as, for example, Bohm’s [22] and relative state [23] interpretations. At the same time,
however, it is more than just a surrender to mystery and allows for an analogical narrative
of concepts such as the wave function or the particle–wave dualism. Our aim is to facilitate
the communication related to quantum processes, through images that can be understood
by anyone familiar with the basics of classical physics concerning electrical circuits.

This objective responds to a pedagogical need that has been our strongest motivation
and seems particularly urgent to us in a moment like the present one, in which quantum
theories have become part of the educational background of the new generations of engi-
neers and technologists, engaged in the development of the amazing technologies that the
quantum nature of reality makes possible.
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Abstract: In one of our previous papers, we performed a comparative analysis of the experimental
and theoretical cross-sections for the excitation of atomic hydrogen by electrons. We found that the
theoretical ratio of the cross-section σ2s of the excitation of the state 2s to the cross-section σ2p of the
excitation of the state 2p was systematically higher than the corresponding experimental ratio by
about 20% (far beyond the experimental error margins). We showed that this discrepancy can be due
to the presence of the Second Flavor of Hydrogen Atoms (SFHA) in the experimental gas and that
the share of the SFHA in the mixture, required for removing this discrepancy, was about the same
as the share of the usual hydrogen atoms. The theory behind the SFHA was based on the standard
quantum mechanics—on the second solution of the Dirac equation for hydrogen atoms—and on
the experimental fact that the charge distribution inside the proton has the peak at the center of the
proton; the term “flavor” was used by the analogy with flavors of quarks. In the present paper, we
used the same guiding principles, as employed in that previous study, for the comparative analysis of
the experimental and theoretical cross-sections for the excitation of molecular hydrogen by electrons.
We found that presumably the most sophisticated calculations, using the convergent close-coupling
method involving 491 states, very significantly underestimate the corresponding experimental cross-
sections for the two lowest stable triplet states. We showed that if in some hydrogen molecules one or
both atoms would be the SFHA, then the above very significant discrepancy could be eliminated. We
estimated that it would take such unusual hydrogen molecules to be represented in the experimental
gas by the share of about 0.26. This is just by about 40% smaller than the share 0.45 of the SFHA
deduced in our previous analysis of the experiment on the electron impact excitation of hydrogen
atoms (rather than hydrogen molecules). It should be emphasized that from the theoretical point
of view, the share of the unusual hydrogen molecules in any experimental gas and the share of the
unusual hydrogen atoms (SFHA) in any experimental gas should not be expected to coincide (it
would be the comparison of “apples to oranges”, rather than “apples to apples”). In addition, given
the roughness of the above estimates, we can state that the results of the present paper reinforce the
main conclusion of our previous papers of the very significant share of the SFHA in the experimental
hydrogen gases. Thus, the experiments on the electron impact excitation of hydrogen molecules are
the fourth type of atomic experiments that proved the existence of the SFHA.

Keywords: electron impact excitation of hydrogen molecules; discrepancy between theories and
experiments; second flavor of hydrogen atoms

1. Introduction

The theory behind the Second Flavor of Hydrogen Atoms (SFHA) was based on the
standard quantum mechanics—on the second solution of the Dirac equation for hydrogen
atoms—and on the experimental fact that the charge distribution inside the proton has a
peak at the center of the proton [1]. The term “flavor” was used by analogy with flavors
of quarks (see Appendix A). In the same paper [1] the first experimental proof of the
existence of the SFHA was presented. Namely, the allowance for the SFHA eliminated
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a huge discrepancy concerning the linear momentum distribution in the ground state of
hydrogen atoms: in its high-energy tail, the distribution derived from the analysis of atomic
experiments exceeded the theoretical predictions (made for the usual hydrogen atoms) by
several orders of magnitude [1].

The subsequent analysis of the experiments on charge exchange during collisions of
low-energy protons with hydrogen atoms yielded the second experimental evidence of the
existence of the SFHA [2]. The theoretical cross-sections, calculated with allowance for the
SFHA, turned out to agree with the experiments within the experimental error margins—in
distinction to the previous calculations made before the theoretical discovery of the SFHA.
By the way, this result should be important for atomic codes developed for describing edge
plasmas in magnetic fusion devices because charge exchange is a very important atomic
process in these plasmas.

The third type of the atomic experiments that proved the existence of the SFHA was
the experiments on the electron impact excitation of the n = 2 states of hydrogen atoms [3].
The theoretical ratio of the cross-section σ2s of the excitation of the state 2s to the cross-
section σ2p of the excitation of the state 2p turned out to be systematically higher than
the corresponding experimental ratio by about 20% (far beyond the experimental error
margins). In paper [3] it was shown that this discrepancy can be due to the presence of
the SFHA in the experimental gas. The share of the SFHA in the mixture, required for
removing this discrepancy, was estimated to be about the same as the share of the usual
hydrogen atoms [3].

For atomic physics, the proven existence of the SFHA has fundamental significance in
its own right. Nevertheless, it was also found to be important for astrophysics—especially
for finding out what is dark matter (i.e., solving the most fundamental cosmological
problem). Namely, after Bowman et al. [4] found that the observed absorption signal of the
redshifted 21 cm spectral line from the early Universe was about two times more intense
than expected from the standard cosmology, meaning that the primordial hydrogen gas was
cooler than predicted, Barkana [5] brought up the suggestion that the additional cooling
was caused by some unspecified dark matter particles colliding with the hydrogen gas.
Then in paper [6] it was shown that the above large discrepancy would be eliminated if it
were collisions with the SFHA that caused the additional cooling.

Another astrophysical puzzle was published by Jeffrey et al. [7]: the distribution
of dark matter predicted on the basis of Einstein’s gravity was not confirmed by the
observation—the observed one was smoother. This prompted suggestions on the need for
new physical laws that would go beyond Einstein’s gravitation. However, in paper [8] it
was demonstrated that the perplexing observations by Jeffrey et al. [7] can be explained
qualitatively and quantitatively by allowing for the SFHA.

The Occam razor principle favors the SFHA as the possible explanation of dark matter
because the SFHA is based on the standard quantum-mechanical Dirac equation and does
not resort to new physical laws (in distinction to most other possible explanations of dark
matter). Besides, no other hypothesis has the experimental confirmations—in distinction to
the SFHA. All of the above reinforced the leading status of the SFHA on explaining dark
matter (or at least a part of it).

In the present paper we discuss whether there is yet another experimental proof of
the existence of the SFHA—from the fourth type of atomic experiments: the experiments
on the electron impact excitation of hydrogen molecules to the lowest triplet states. There
are lots of various theoretical approaches on this process—see for example one of the most
recent papers [9] and the very extensive list of references therein. We perform our study
based on the same principles as in our previous analysis of the experiments on the electron
impact excitation of hydrogen atoms [3]. This is explained in the next section.

2. Comparison of the Experimental Cross-Sections with Theories

Let us start by specifying four important points, on which we based our study in
paper [3] and which we are going to use in the present study. The first point: in our study
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of the experiments on the electron impact excitation of hydrogen atoms [3], we chose the
first two excited states: 2s and 2p. This was done because for the first two excited states,
calculations are simpler (and therefore more reliable) than for higher states.

The second point: the range of energies relatively close to the excitation threshold was
not favorable for determining the presence and the share of the SFHA in the experimental
gas mixture. This is because in this range, the excitation cross-sections σ2s and σ2p are
strongly dominated by so-called “resonances”.

The third point: we considered only the theoretical works where both the cross-
sections σ2s and σ2p were calculated in the same theoretical approach. The same about
the experiments.

The fourth point: after we found about 20% discrepancy between the theoretical and
experimental ratio of the cross-sections σ2s/σ2p, the next task was to estimate the percentage
of the SFHA in the hydrogen gas mixture required for eliminating this discrepancy. For
this purpose we needed the corresponding theoretical cross-section for the SFHA.

The primary feature of the SFHA distinguishing it from the usual hydrogen atoms
is that the SFHA only has states of the zero orbital momentum (l = 0) both in the discrete
and continuous spectra of energies. Therefore, due to the well-known selection rules, the
SFHA does not couple to the electromagnetic radiation: the SFHA remains “dark” (except
for the 21 cm spectral line resulting from the radiative transition between the two superfine
structure sublevels of the ground state). In the discrete spectrum the states of l = 0 are called
the s-states. [1,6]. The s-states are spherically symmetric.

Theoretical calculations of the electron impact excitation cross-sections most relevant
to the SFHA were performed by Poet [10], who considered such excitation for a model
hydrogen atom having only spherically symmetric states. By comparing the theoretical
results by Poet [10] with the corresponding theoretical results for the usual hydrogen atoms,
and combining this with the above 20% discrepancy, we arrived at the conclusion that the
SFHA and the usual hydrogen atoms were present in the experimental gas in about the
same shares.

Next, we applied the same principles to the analysis of the experimental and theoretical
results on the electron impact excitation of hydrogen molecules. First, we chose the first
two stable excited electronic triplet states of H2: the state c 3Πu and the state a 3Σg

+. The
reason for choosing the triplet states is the following. The singlet states can get populated
both by the direct excitation and by exchange between the incident electron and one of the
molecular electrons. The triplet states can get populated only by the exchange, so that the
corresponding theory is simpler for the triplet states. (This is a generalization of principle
number one from the study [3] for the case of H2.)

Second: for avoiding resonances, which complicate the calculations and thus compli-
cate determining the presence and the share of the SFHA in the experimental gas mixture,
we chose the range of energies starting from 30 eV.

Third: concerning the choice of the experimental and theoretical works. In the experi-
ments by Wrkich et al. [11] (who improved the previous experimental results by Khakoo
and Trajmar [12]), both the excitation cross-section to the state c 3Πu and to the state a
3Σg

+ were measured, but only up to the energy of 30 eV, so that only their data at 30 eV is
relevant for our purposes (according to the second point above). Therefore, we also chose
the experiment by Mason and Newell [13], who covered the energies from 30 eV to 60 eV
for the excitation to the state c 3Πu, as well as the experiment by Ajello and Shemansky [14],
who covered the energies from 30 eV to 60 eV for the excitation to the state a 3Σg

+. As for
the corresponding theoretical work, dealing with the usual (non-SFHA) hydrogen atoms in
the molecule H2, we choose the (presumably most sophisticated) calculations by Zammit
et al. (2017) [9]. In that paper, both the excitation cross-section to the state c 3Πu and to the
state a 3Σg

+ were calculated by the convergent close-coupling (CCC) method with the total
number of states equal to 491—they referred to these calculations as CCC(491).

The comparison of the theoretical CCC(491) results from paper [9] (as well as of
some theoretical results from paper [15] included for reasons explained later on), with the
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experimental results from papers [11,13] in the range from 30 eV to 50 eV (practically the
same range as in our study [3]) is presented in Table 1 for the state c 3Πu.

Table 1. Comparison of the experimental excitation cross-sections σ (10−17 cm2) to the state c 3Πu,
deduced from the plots in papers [11,13], with the corresponding theoretical results, deduced from
the plots in papers [9,15]. Here N/A stands for “not available”.

Energy (eV) σ Experiment [11] σ Experiment [13] σ Theory CCC(491) [9] σ Theory Lima et al. [15]

30 0.77 0.74 0.38 1.61

40 N/A 0.59 0.19 N/A

50 N/A 0.57 0.10 N/A

From Table 1 it is seen that in the range of incident electron energies from 30 eV to 50 eV,
the theoretical CCC(491) results [9] very significantly underestimate the corresponding
experimental cross-section: e.g., by a factor of five at 50 eV, by a factor of three at 40 eV, and
by a factor of two at 30 eV. At the same time, it is seen that there is a very good agreement
between the experimental cross-section by Wkrich et al. [11] at 30 eV (which is the highest
energy data point that they measured) with the experimental cross-section by Mason and
Newell [13], thus reinforcing the reliability of Mason–Newell results.

Now the question arises: could this huge discrepancy be explained if there were the
SFHA in the composition of some hydrogen molecules? (Let’s call them “unusual hydrogen
molecules”). Physically, what would be the difference in calculating the corresponding
theoretical cross-section?

Out of the 491 states, involved in producing the theoretical CCC(491) results, the
overwhelming majority of the states would be absent in the unusual hydrogen molecules
(because the SFHA has only the s-states). So, how would the dramatic reduction of the
states involved in the CCC calculations affect the results? Zammit et al. [9] also provided
theoretical results for the CCC involving a lesser number of states. They showed that the
decrease of the number of states involved in their calculations yields significantly greater
excitation cross-sections than CCC(491).

Here we come to the fourth point in the sequence of steps from paper [3]: the choice
of the theoretical calculations of the cross-sections that is the most relevant for the un-
usual hydrogen molecules. The minimal number of states were used in calculations
by Lima et al. [15] (in frames of Schwinger multichannel formulation)—to the best of
our knowledge.

From Table 1 it is seen that at the incident electron energy 30 eV (the maximum energy,
for which Lima et al. [15] performed their calculations), the CCC(491) result [9] for the
usual hydrogen molecules underestimates the corresponding experimental results by a
factor of two, while the result from Lima et al. [15] (most relevant for the unusual hydrogen
molecules) overestimates the corresponding experimental results by a factor of two. So, if
we denote by α the share of the unusual hydrogen molecules in the experimental gas, then
from the data at 30 eV it is easy to find that the agreement with the experimental results
would be achieved for α ≈ 0.30 as the solution to the equation 1.61 α + 0.38 (1 − α) = 0.755
(where 0.755 is the experimental value averaged between the corresponding results of the
experiments [11,13]).

Now let us proceed to the situation with the excitation to the state a 3Σg
+. Table 2

presents the comparison of the experimental results from papers [13,14] with the corre-
sponding theoretical result CCC(491) from paper [9] and with the corresponding theoretical
result from paper [15]. It is seen that at the incident electron energy 30 eV (the maximum
energy, for which Lima et al. [15] performed their calculations), the CCC(491) result [9] for
the usual hydrogen molecules underestimates the corresponding experimental results by
a factor of about 1.5, while the result from Lima et al. [15] (most relevant for the unusual
hydrogen molecules) overestimates the corresponding experimental results by a factor of
about 1.5.
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Table 2. Comparison of the experimental excitation cross-sections σ(10−17 cm2) to the state a 3Σg
+,

deduced from the plots in papers [11,14], with the corresponding theoretical results, deduced from
the plots in papers [9,15]. Here N/A stands for “not available”.

Energy (eV) σ Experiment [11] σ Experiment [14] σ Theory ccc(491) [9] σ Theory Lima et al. [15]

30 0.18 0.33 0.18 0.52

40 N/A 0.15 0.081 N/A

50 N/A 0.10 0.054 N/A

The share α of the unusual hydrogen molecules in the experimental gas necessary
for achieving the agreement with the corresponding experimental results can be easily
estimated from the data at 30 eV as the solution of the equation 0.52 α + 0.18 (1 − α) = 0.255
(where 0.255 is the experimental value averaged between the corresponding results of the
experiments [11,14]). It yields α ≈ 0.22.

For estimating the share of the unusual hydrogen molecules we could not use the
data at 40 eV and 50 eV because for these energies there is no data from Lima et al. [15]
representing the corresponding theoretical cross-sections for unusual hydrogen molecules.

Both for the state c 3Πu and for the state a 3Σg
+, these are rough estimates. The

value of α averaged over the corresponding results for the states state c 3Πu and a 3Σg
+ is

α = 0.26 ± 0.04, so that the scatter is just about 15%. The above results can be interpreted
as the possible evidence that in the experimental gas, the shares of the usual and unusual
(i.e., the SFHA-based) hydrogen molecules differed just by a factor of three.

In paper [3] where we compared the experimental and theoretical results on the
electron impact excitation of hydrogen atoms, the share of the SFHA was found to be
approximately 0.45. The corresponding value of 0.26 for the experiments on the electron
impact excitation of hydrogen molecules (rather than hydrogen atoms) is less than 0.45 by
just about 40%. It should be emphasized that from the theoretical point of view, the share
of the unusual hydrogen molecules in any experimental gas and the share of the unusual
hydrogen atoms (SFHA) in any experimental gas should not be expected to coincide (it
would be the comparison of “apples to oranges”, rather than “apples to apples”). In
addition, given the roughness of the above estimates, we can state that the results of the
present paper reinforce the main conclusion of paper [3] of the very significant share of the
SFHA in the experimental hydrogen gases.

3. Conclusions

We performed a comparative analysis of the experimental and theoretical cross-
sections for the excitation of molecular hydrogen by electrons. We employed the same set
of guiding principles as in our previous analogous study of the electron impact excitation
of hydrogen atoms [3]. We found that presumably the most sophisticated calculations by
Zammit et al. [9], using the convergent close-coupling method involving 491 states, very
significantly underestimate the corresponding experimental cross-sections.

We showed that if in some hydrogen molecules one or both atoms would be the SFHA,
then the above very significant discrepancy could be eliminated. We estimated that it
would take such unusual hydrogen molecules to be represented in the experimental gas in
the share of about 0.26. This is about 40% smaller than the share 0.45 of the SFHA deduced
by the corresponding analysis (in paper [3]) of the experiments on the electron impact
excitation of hydrogen atoms (rather than hydrogen molecules). It should be emphasized
that from a theoretical point of view, the share of the unusual hydrogen molecules in any
experimental gas and the share of the unusual hydrogen atoms (SFHA) in any experimental
gas should not be expected to coincide. Given the roughness of the above estimates, we
can state that the results of the present paper reinforce the main conclusion of paper [3]
of the very significant share of the SFHA in the experimental hydrogen gases. Thus, the
experiments on the electron impact excitation of hydrogen molecules are the fourth type of
the atomic experiments that proved the existence of the SFHA (the three previous types of

15



Foundations 2022, 2

atomic experiments proving the existence of the SFHA being listed in the Introduction of
the present paper).

The rough estimates provided in the present paper are intended to get the message
across and to motivate further experimental and theoretical works on this subject.
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Appendix A. On Using the Term “Flavor”

Both the regular and singular solutions to the Dirac equation outside the proton
correspond to the same energy. As this means the additional degeneracy, then according to
the fundamental theorem of quantum mechanics, there should be an additional conserved
quantity. In other words, the situation is that hydrogen atoms have two flavors, differing
by the eigenvalue of this additional, new conserved quantity: hydrogen atoms have flavor
symmetry [16].

It is called so by analogy with quarks that have flavors: for example, there are up and
down quarks. For representing this particular flavor symmetry, there was assigned an
operator of the additional conserved quantity: the isotopic spin I—the operator having two
eigenvalues for its z-projection: Iz = 1/2 assigned to the up quark and Iz = −1/2 assigned
to the down quark.
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Abstract: We utilize relativistic quantum mechanics to develop general quantum field-theoretic
foundations suitable for understanding, analyzing, and designing generic quantum antennas for
potential use in secure quantum communication systems and other applications. Quantum antennas
are approached here as abstract source systems capable of producing what we dub “quantum
radiation.” We work from within a generic relativistic framework, whereby the quantum antenna
system is modeled in terms of a fundamental quantum spacetime field. After developing a framework
explaining how quantum radiation can be understood using the methods of perturbative relativistic
quantum field theory (QFT), we investigate in depth the problem of quantum radiation by a controlled
abstract source functions. We illustrate the theory in the case of the neutral Klein-Gordon linear
quantum antenna, outlining general methods for the construction of the Green’s function of a source—
receiver quantum antenna system, the latter being useful for the computation of various candidate
angular quantum radiation directivity and gain patterns analogous to the corresponding concepts
in classical antenna theory. We anticipate that the proposed formalism may be extended to deal
with a large spectrum of other possible controlled emission types for quantum communications
applications, including, for example, the production of scalar, fermionic, and bosonic particles, where
each could be massless or massive. Therefore, our goal is to extend the idea of antenna beyond
electromagnetic waves, where now our proposed QFT-based concept of a quantum antenna system
could be used to explore scenarios of controlled radiation of any type of relativistic particles, i.e.,
effectively transcending the well-known case of photonic systems through the deployment of novel
non-standard quantum information transmission carriers such as massive photons, spin-1/2 particles,
gravitons, antiparticles, higher spin particles, and so on.

Keywords: quantum antennas; quantum field theory; relativistic quantum mechanics; quantum
radiation; propagator; Green’s function; quantum engineering; quantum technologies; radiation
pattern

1. Introduction

The main objective of this paper is to develop conceptual, physical, and mathematical
foundations for quantum antenna theory based on a very broad approach to generic
quantum fields produced and consumed by source and sink systems separated in spacetime.
Quantum antenna technology is a recent emerging subfield within the larger and more
fluid research area often referred to as quantum engineering, quantum technologies, or
just quantum information processing. In particular, and within this subfield, we find that
the main intention behind the desire for developing a new “quantum antenna technology”
is to serve the needs of current and future quantum communication systems [1–4], where
information is transmitted using quantum states [5,6], regardless of whether digital data
are encoded as classical bits or qbits [1,7–10], with obvious applications to physical-layer
security [11–14]. However, the peculiar system known as “the quantum antenna” may
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also perform functions other than mere information transmission in wireless quantum
links, for example, quantum tomography, quantum state estimation, biophotonics, sensing,
molecular communications, space exploration, and other applications [13,15–26].

We believe that quantum antenna theory and technology may be viewed as an attempt
to synthesize three already established subfields: (1) classical antennas [27,28], (2) optical
nanoantennas [29,30], and (3) quantum emitters [29,31]. As such, a quantum antenna is
often confused with one of these three topics. For example, occasionally, laser sources
or photodiodes are treated as quantum antennas by some authors working in free space
optical communications. This is not what we understand by the term here. A laser source
could constitute a part of the q-antenna system, while a larger part, for example a terahertz
or an optical antenna [29,32], may serve as a secondary reflector as in nanoantennas [30]. In
addition, an atom emitting a photon after undergoing a transition from excited to ground
states is not considered an “antenna” in this paper. Instead, we propose the following
general definition:

Definition 1 (Antennas). By the term antenna, we follow classical antenna theory where the
antenna system is defined as an externally controlled spatiotemporal current distribution capable of
controlling the spatiotemporal properties of the radiation emitted by the antenna system.

It will be seen that the most salient point in this definition is the emphasis on the
following three features:

1. The source is a controllable current distribution function of both space and time.
2. Ultimately, the source current is externally controlled.
3. A spatiotemporal current distribution profile serving as a model for a quantum

antenna source can control the radiation proprieties in both space and time, and
usually for near- and far-field scenarios as well.

Hence, the existence of spatiotemporal, externally controlled source current distributions
capable of modifying its produced radiation in both space and time is the main content of
antenna theory.

Clearly enough, mainstream examples in quantum optics such as a laser source by
itself, or an isolated atom undergoing a spontaneous emission of light, do not fall under
a conceptual umbrella such as the one supplied by Definition 1, at least not naturally.
However, such conventional quantum optical sources may still serve as essential sub-
components of such systems. For example, probably, the most natural method to inject a
controlled time signal into a radiating nanostructure is through a modulated laser beam.
However, controlling the spatial distribution of the radiating current excited by this time
signal would require the use of additional methods and objects; for instance, an optical
antenna, or an engineered metamaterial, or an optimized array of point sources. Even
though the data to be transmitted are encoded into time signals, in general, the quantum
antenna system is much more complex than its time excitation method. There is a need,
then, to understand the complex and multifaceted nature of the spatiotemporal structure of
the radiation field emitted by a generic quantum system at a very broad level. This paper is
a contribution toward this goal.

The classical theory of controlled radiation has been extensively studied and developed
in applied electromagnetics [27,28,33–35]. On the other hand, the general theory of quantum
antennas has not been investigated in depth so far, in spite of the publication in recent years
of a number of reports and proposals about the subject, not restricted only to quantum
wireless communications but also involving other topics as well, e.g., see [15–21]. Some of
the main conceptual and philosophical hurdles that a viable theory of quantum antennas
need to overcome include, though by no means are restricted to, the following issues:

1. Understanding what is meant by quantum radiation.
2. Understanding the role played by particle emission dynamics in light of the wave-

particle duality characteristic of quantum phenomena.
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3. Understanding the complex role played by quantum fields, propagators, and Green’s
functions in quantum radiation.

4. Understanding the role played by many-particle states/interactions in quantum
radiation processes.

It should be noted that these conceptual and technical issues are still considered
difficult open research fields in both foundational and applied research as they have not
been resolved even within standard quantum field theory itself. For instance, it is still
not clear what the ultimate meaning of “particle” in quantum fields is [36,37]; questions
about the nature of quantum excitations in interacting field theories have been asked in
the past [38] and are still being investigated up to date [39]. Therefore, there is a need
to re-examine the subject of quantum antennas at a very general and fundamental level,
that of developing possible foundations for the topic that may help illuminate current
and future open theoretical problems on one hand, and to help devise and evolve new
genera of quantum systems and applications on the other hand. A viable candidate for
such foundational approach, we believe, is to formulate the entire problem of quantum
antennas and quantum radiation using a relativistic spacetime formalism (QFT in this case).

Our intended goals in the present article include a wide spectrum. Most of these
objectives are research related and can be classified as part of the emerging area of quantum
antenna theory within both quantum physics and quantum engineering. Yet, additionally,
other aspects in our work are pedagogical, relating to the wish to reach a wide multidisci-
plinary audience. We summarize these two flavors of our main goals as follows:

• Primary research objectives of the present article:

1. Generalizing the concept of antennas beyond acoustic and electromagnetic an-
tennas, the two concepts that have dominated the field so far, by demonstrating
how relativistic QFT can be used to formulate a single and unified concept of
“quantum radiators” valid for a large number of possible radiation processes
in nature.

2. Providing a concrete illustration of some of the potential algorithmic capabilities
of the spacetime formalism of quantum antennas by constructing various possible
candidates for radiation pattern functions and gains in the case of the quantum
(spin-0) Klein–Gordon q-antennas.

• Secondary (pedagogical) objectives of the present article:

1. Introducing new applications of fundamental theory (here relativistic quantum
mechanics) to different audiences, e.g., quantum engineering and quantum
technology research.

2. Introducing the subject of QFT in a self-sufficient manner by providing detailed
appendices explaining how relativistic quantum mechanics is formulated for an
audience familiar only with nonrelativistic quantum mechanics.1

This paper is organized as follows. In Section 2, the classical theory of antennas is
re-examined, and the comparison with the new, more general concept of quantum source
radiators is explored at the thematic level in order to prep the reader for the subsequent,
more technical quantum-field theoretic treatment. This is followed in Section 3 by a very
broad view on the theory of quantum radiators developed based on interacting quantum
mechanics, without much emphasis at this stage on the relativistic quantum field theoretic
scenario. The purpose is to map out the generic structure of the problem and to highlight
the distinction between linear and nonlinear quantum antennas. Starting from Section 4,
we narrow down our focus to the special but rich enough special case of the neutral Klein–
Gordon field linear quantum antenna, which appears to exhibit many of the salient features
of the general quantum antenna system. Then, the abstract formal and physical structure
of such a system is explicated in Section 5. To provide more concrete applications of the
theory, Section 6 presents a series of examples and constructions aiming at illustrating
how one may define radiation pattern measures such as directivity and gain (transmission)
coefficients in quantum antenna systems. Finally, we end up with conclusions.
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2. Antenna Theory: Classical and Quantum Radiation Scenarios

In analogy to classical antenna theory [27,35,40], we formally define a quantum antenna
in terms of the mathematical representation of a radiating source term as follows:

Definition 2 (Quantum Antennas). Within the context of relativistic quantum field theory, a
quantum antenna (q-antenna) J is an operator map of the form

J : J → Ψ, (1)

where Ψ is a quantum field system produced by the abstract source function

J : M4 → K, (2)

which maps the Minkowski spacetime M4 of special relativity to the set K = R (real numbers) or
K = C (complex numbers). We assume that the function J(x), x ∈ Ds ⊂ M4 is integrable over
any spacetime region Ds of interest. We further assume that the source J(x) is compactly supported;
i.e., cl{Ds} is compact where cl is the closure operator in the standard Euclidean topology on R4.

Physically, the main property of the q-antenna (source) function J(x) is that it controls
the quantum radiation Ψ(x), x ∈M4, emitted by the source system J(x), x ∈ Ds ⊂M4. The
generic configuration itself is shown in Figure 1. In fact, much of this paper will concentrate
on understanding the precise nature of how a generic source function J(x) can control the
spacetime structure of the quantum field emission Ψ(x) in applications characteristic of
the special context of an arbitrary quantum communication system (source-channel-detector
system). Thus, the article’s main scope is the theoretical foundations of the physical layer
of the quantum communication link structure, e.g., how a quantum state can be directed
to a given spacetime region through the choice of a proper abstract source function. The
particular discipline devoted to this problem is the area we dub quantum antenna theory,
which is a relatively new interdisciplinary research area.

Figure 1. The fundamental configuration of a quantum antenna communication system in spacetime.

Remark 1. It may be noted here that there is a similarity between the quantum communication
problem [7] and the quantum measurement problem in quantum physics [41–43]. The analogy is
manifested by the common underlying abstract structure shared by the two distinct processes of
communications and generalized quantum measurement [1,8]. Both involve a source of information
(often called quantum state preparation in QM), which is localized within a given spacetime region;
and a process of destructive consumption of the transmitted information, this time localized at a
receiver or detector located at a timelike-distant spacetime region [43,44]. The quantum receiver
system’s ultimate objective is to extract the maximum amount of information embodied in the
received quantum state in QM, or quantum field in QFT, through the judicious utilization of
optimized combinations of measurement operations and signal processing algorithms.
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Quantum antenna systems turn out to be considerably more complex to understand
and analyze than conventional antennas, where the latter antenna type is often approached
within the framework based on classical electromagnetism (and sometimes acoustics). A
reason behind this noticeable difference in complexity between the two theories might be
related to the fact that a proper and completely satisfactory understanding of quantum
interactions is ultimately based on relativistic QFT, which is inherently a many-particle
world picture. That is, in QFT, it is inconsistent to assume the possibility of a single-
particle-interaction configuration due to the inherent tension that this assumption will
bring with special relativity (SR) and other fundamental principles [38]. On the other
hand, a traditional classical antenna is essentially a “one-point physical process” in which a
generic source point x′ = (x′, t′) radiates into another arbitrary observation point x = (x, t),
where the total radiation is just the linear superposition of all contributions emanating from
all relevant individual non-interacting spacetime points [45].

The most obvious and rigorous way to understand the classical process of radiation
and reception of electromagnetic signals is through the two fundamental Green’s functions
of the antenna system, the source or current Green’s function F(x, x′, t− t′) [28,46–48], and
the radiation Green’s function G(x− x′, t− t′) [49–51]. These two are essentially defined via
their crucial superposition-like integral summation rules (A1) and (A2); see Appendix A,
where the Green’s function approach to classical antenna theory is briefly reviewed and
additional references are given.

However, when we next move toward examining the emerging theory of quantum
antenna systems, the natural question is whether this generalized structure of classical
antennas persists. It turns out that radiation formulas similar to the Green’s function-based
expressions (A1)–(A3), Appendix A, can not in general be maintained in the case of quantum
radiation. However, in this paper, we focus on ways to retain as much classical structure as
possible in the new quantum antenna theory. This turns out to be possible for the case of
linear quantum antenna systems, which will be investigated in details below.

To summarize, we find that the following general situation holds in antenna theory:

1. Classical electromagnetic radiation in free space or linear materials, when viewed
from the perspective of its ultimate source (external field), is inherently linear.2

2. On the other hand, quantum antennas involving higher-order processes (many-
particle interactions, n-point processes with n > 1, etc.) are intrinsically nonlin-
ear radiation problems (due to the many-body nature of interactions in quantum
field theory).

To be more precise, it can be shown that only first-order quantum radiation processes
may lead to linear operator radiation relations similar to (A1)–(A3). This is the process that
corresponds to what we call linear quantum antennas, which will be studied in more details
in this paper, while a more complete theory of relativistic nonlinear quantum antennas is
relegated to future publications. All other higher-order processes, which are ultimately due
to the many-body quantum interactions between source points, can be shown to lead to
nonlinear contributions to the total probability amplitude of the quantum radiation emitted
by the source system.

3. The General Theory of Quantum Antenna Systems

3.1. Preliminary Considerations

According to Definition 2, a q-antenna system consists of a spacetime source region Ds
together with a current source function defined on this region. The receiving q-antenna
is located in the compact spacetime region Dr. The overall spacetime configuration is
illustrated in Figure 1. To allow information transmission from the source to the receiver
regions, the two spacetime domains Ds and Dr must have timelike separation [53].3 For
simplicity, Ds and Dr as spacetime regions are assumed to be factorizable into the forms

Ds = Ss × Ts, Dr = Sr × Tr, (3)
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where Ss and Sr are the three-dimensional spatial subdomain components of the original
four-dimensional regions Ds,r satisfying

M
4 ⊃ Ds,r ⊃ Ss,r ⊂ R

3, (4)

while Ts,r ⊂ R is the “temporal component” (timelike slice) of the source/receive regions
Ds,r, respectively. Here, both Ds,r and Ts,r are assumed to be compact, i.e., Ds,r and Ts,r are
closed and bounded sets in the standard Euclidean metric space R3.4

Throughout this section, the quantum field φ(x) is allowed to refer to a general field
with possible spins 0, 1/2, 1, 2, etc., without worrying much about indices (in the next sec-
tions, we work only with scalar fields for simplicity). Moreover, any particular QFT under
consideration may itself be of the free (non-interacting) or interacting types. Interacting
field theories often require the use of perturbation theory in order to obtain practical results.
However, all information about the interacting system is conveniently encoded in the
propagator, which will be used extensively in our theory below.5 Therefore, for generality, in
this paper, we utilize the propagator concept as the fundamental mathematical carrier of
physical information about the generic quantum antenna system in spacetime.

3.2. A Generic Interaction Hamiltonian Description of Quantum Antenna Systems

Here, a high-level view on interacting field theory is provided. Note that a full
treatment of interacting field theories is outside the scope of the present paper, whose main
goal is to supply the reader with a minimal picture of how eventually quantum antenna
theory should be fully formulated when specific physical layouts, often described with
their own Hamiltonian, are introduced. On the other hand, starting from Section 4, we
work mainly with the scalar field theory (the Klein–Gordon theory) in order to illustrate
the general structure of quantum radiation with minimum knowledge of the full details of
matter–field interaction mechanisms. Readers interested in more information related to
specialized physical layouts may consult numerous other publications, for example those
quoted in the Introduction section of this paper.

We assume that all relevant quantum field operators can be described within one and
the same large enough combined Hilbert spaceH, which in the case of QFT is a Fock space
F . The total Hamiltonian operator of the system is written as

H = H0 + Hint, (5)

where H0 is the free Hamiltonian (non-interacting part that is usually solvable), while Hint
is the interacting Hamiltonian, which is a time-dependent operator that in turn can be
expanded into four basic component as follows

Hint = Hin + Hs + Hr + Hc. (6)

Here, we have the following three categories of interaction Hamiltonian terms:

1. Hin captures intrinsic interaction in the fundamental quantum field of the q-antenna
system, e.g., self interactions such as polynomial Lagrangian terms containing powers
of φ(x) larger than three such as the mainstream interacting φ4-theory [54,56,57].

2. The terms Hs and Hr describe, respectively, the interaction between the source and
the receiver antennas on one side and the fundamental quantum field φ(x) of the
q-antenna system on the other side. These interactions should be understood as
processes localized within their respective spacetime domains Ds and Dr.

3. Finally, the term Hc corresponds to channel interactions and couplings, e.g., coupling
of the excited quantum field φ(x) with scattering objects located within the effective
path of an excited quantum particle produced by the source and directed toward the
receiver.6

A couple of important observations on this decomposition of the interacting Hamilto-
nian are in order. First, to keep the discussion at the most general level, we assume that the
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intrinsic interacting Hamiltonian, if nonzero, is present all the time. That is, it becomes an
essential ingredient of the fundamental field φ(x) of the q-antenna system. In this sense,
the latter field is defined as precisely that quantum field corresponding to the Hamiltonian

Hφ = H0 + Hin. (7)

On the other hand, the source, receiver, and channel Hamiltonian terms are treated in
this theory as extrinsic interactions, i.e., external disturbances coupled to the fundamental
quantum field φ(x) associated with the Hamiltonian Hφ. As expected in quantum physics,
coupling often leads to nonlinear equations of motion [54]. In this sense, the uncoupled
fundamental field φ(x) is perturbatively transformed into a new coupled field φ′(x) with a
full Hamiltonian

Hφ′ = Hφ + Hs + Hr + Hc (8)

solved using perturbation Dyson or path integral expansions [55]. Following standard
conventions in QFT, we do not change the notation of the field but always use φ(x) while
clearly stating which Hamiltonian is being used (if needed). In addition, we will not label
Hamiltonians by their fields or spacetime arguments unless this is needed.

Remark 2. Sometimes, it is more convenient to group channel interactions Hc and intrinsic field
self-interactions Hin into one term

H′in = Hin + Hc. (9)

The reason is that there is indeed some similarity between the two types of interactions above. They
are both unrelated to the transmitter (source) and receiver terminals and can be considered then as
indigenous components of the q-antenna system field itself. However, there are also some differences,
since channel couplings are not the same everywhere but are localized at the scattering objects
themselves. On the other hand, self-interactions and also intrinsic mutual interactions captured
by the term Hin are generally “turned on” most of the time. Nevertheless, in some applications,
it might be useful to group Hin and Hc with each other under the rubric of scattering-based
interaction processes in order to distinguish them from transmitter and receiver types of interactions
(information source and sink).

Let us examine now how the source and the receiver terminals of the system may
interact. Working in the Schrodinger picture,7 Let the state of the source at the end of the
interaction interval Ts = [t′s, ts] be denoted by |J, Ds〉ts

. Here, J is a generic symbol for the
overall set of (classical) disturbances supported on Ds ultimately constituting our proposed
formal Definition 3 of the q-antenna current source system. Then, we may write

|J, Ds〉ts
= P(t′s, ts; J, Ds)|0in〉, (10)

where P(t′s, ts; J, Ds) is the interaction picture (Dirac) propagator (A18), which is reviewed
in Appendix D for more details. That is, the computation of this propagator is based on the
substitution HI = Hs into (A19). The special state labeled |0in〉 is the ground state of the
intrinsically interacting system, i.e., the state satisfying

(H0 + Hin + Hc︸ ︷︷ ︸
H′in

)|0in〉 = 0, (11)

where, as discussed above, we have here opted for generality by including all possible
wireless channel scattering effects captured by Hc with the field intrinsic self-interaction
Hamiltonian Hin. Then, the ground state |0in〉 represents both the (i) true or actual physical
initial state of the q-antenna system before interacting with the source J localized in the
spacetime domain Ds; and (ii) the final state reattained after finishing interaction with the
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receiver localized in the disjoint domain Dr. On the other hand, the bare ground state |0〉 is
the ground state of the free Hamiltonian H0 satisfying

H0|0〉 = 0. (12)

An exactly analogous general analysis can be conducted in order to understand the receiv-
ing q-antenna interaction problem. The latter is that concerned with what happens after
interaction with the detector during the time interval Tr = [t′r, tr], change in fields, states,
observation outcomes, etc.

3.3. The General Expansion Theorem of Quantum Radiation Fields

We now generalize the concept of quantum source in order to take into account
many-point interactions. Let us consider a generic quantum source located in the region
Ds ⊂M4.

Definition 3 (Generalized quantum antenna source). A generalized quantum source is de-
fined as a countable set of real-valued functions Jn of the form

Jn : Ds × Ds · · · × Ds︸ ︷︷ ︸
n times

→ R, n ∈ N, (13)

where Ds is compact. In other words, a generalized quantum antenna source is defined as the set

J = {Jn, n ∈ N} (14)

of all real-valued functions on all product spaces of Ds.

The motivations behind the apparently abstract definition are in fact the actual physical
relevance of all the functions Jn mentioned there. It turns out that J1 represents nothing but
a direct linear current source, while all higher-order sources Jn, n > 1, can be interpreted as
mutual interaction8 strength factors. To see this, we now present the following fundamental
theorem about quantum sources:

Theorem 1 (The q-antenna decomposition theorem). Let A(x) ∈ C be the probability am-
plitude of the observation (particle annihilation) of the quantum antenna field at a location x ∈M4.
Then, it follows that when expressed in terms of the generalized q-antenna source of Definition 3,
the amplitude A(x) can be expanded as

A(x) =
∞

∑
n=1

∫ n

∏
l=1

d4xl Gn(x, x1, . . . , xn)J(x1, . . . , xn), (15)

where all integrals are performed within the source region Ds. Here, J(x1, . . . , xn) is identified with
Jn in Definition 3. The set of functions Gn are (n + 1)-point Green’s functions where n is a labeling
superscript, not a power.

See Appendix E for some background to the decomposition theorem, where a general
discussion and additional references are given. A complete and rigorous treatment of
Theorem 1 is outside the scope of the present paper, since the proof is fairly lengthy though
relatively straightforward, and the details are not needed in order to understand linear
quantum antennas (the case mostly discussed in the remaining parts of this paper). A
general idea of the scope of the proof is briefly outlined in Appendix E.
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We discuss the physical meaning of Theorem 1. For clarity, let us rewrite the general
expression (15) as a sum of first-order term (linear radiation) and all higher-order terms:

A(x) =
∫

d4x1G1(x, x1)J(x1)︸ ︷︷ ︸
Linear quantum radiation integral

+
∞

∑
n=2

∫ n

∏
l=1

d4xl Gn(x, x1, . . . , xn)J(x1, . . . , xn)︸ ︷︷ ︸
Nonlinear quantum radiation higher-order integrals

.
(16)

The first term on the RHS represents conventional linear quantum radiation processes and
will be studied in detail in the remaining parts of this paper. It involves a usual quantum
source function J(x) (see Definition 2), with a two-point Green’s function G1(x, x′) serving
as a “system spacetime transfer function” of the antenna system (or “generalized impulse
response” using the terminology of signal processing and the engineering sciences). Note
that while A(x) is a complex probability amplitude the like of which is completely absent
in the classical world, radiation expressions analogous to the first term on the RHS of (16)
do possess some—at least formal—structural similarity to the classical radiation formula
(see Section 5.2 for an in-depth comparative analysis between different antenna types).

On the other hand, the remaining terms in (16) involve mutual source functions of
the form J(x1, . . . , xN). These are joint interaction terms describing coupling phenomena
among the generic points x1, . . . , xn ∈ Ds, n > 1, which may introduce mutual correlation
between some or all points of the source systems, which in turn are ultimately explainable
as many-body effects9 as illustrated by the following example.

Example 1 (Classical current source). In order to appreciate why the presence of joint
source functions signifies interactions, let us consider the well-known case of a classical
current source (i.e., the backreaction of the quantum field on the source is ignored) when
such source function J(x) is inserted into the Lagrangian of quantum field theory [14,62].
In that case, one may obtain an exact solution of the interaction problem. It turns out that
higher-order processes in this solution can be all expressed as simple direct multiplications
of the same source function J(x), i.e., we have:

Jn = J(x1, · · · , xn) = Πn
l=1 J(xl) = J(x1)J(x2)× · · · J(xn). (17)

Therefore, in such theory, the second term on the RHS of (16) looks like∫
d4x1d4x2 G2(x, x1, x2)J(x1)J(x2), (18)

which is essentially nonlinear in the current source. In the more general case, when there is
a correlation between x1 and x2, the following condition holds:

J(x1, x2) �= J(x1)J(x2). (19)

However, still even in this correlated latter case, one may expand the function J(x1, x2) in
Taylor series around the uncorrelated case J(x1, x2) = J(x1)J(x2) in order to understand
the general structure of the problem whose general form is now given by the second-order
process10 ∫

d4x1d4x2 G2(x, x1, x2)J(x1, x2). (20)

Nevertheless, the message of this example is clear: A higher-order process, i.e., Jn with
n > 1, introduces nonlinear contributions to the total probability amplitude A(x) as
per (16).
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4. Linear Quantum Antenna Systems

4.1. Introduction

The conceptual, physical, and mathematical structure of quantum antennas will now
be further investigated in depth by focusing on the first term on the RHS of (16). This
restriction is motivated by the desire to keep the presentation as simple as possible. In
fact, most of the key concepts and structure to be developed in connection with the main
component of the quantum source, the function J1, can be adapted and also applied to
the higher-order components Jn, n > 1, although the details are lengthy. For example, a
radiation pattern could be constructed for each source mode function Jn similar to the
one to be given below (see Section 6), after which the various contributions of all such
terms are summed together in order to estimate the total radiation characteristics of the
source system.

Our approach is fundamentally based on the idea of propagators and Green’s functions
in field theory. Similar to the corresponding situation in QFT itself, the concept of Green’s
function is also fundamental in classical antenna theory [27,28,33,35,49,63,64]. There, one
finds that Green’s function connects the source (cause) with its produced radiation field
(effect), which is a fact that has been frequently exploited as a useful computational tool in
both classical electromagnetism [49,63–66] and quantum physics [54,55,67].

However, for quantum radiating systems to behave as antennas, one must track down
and separate from out of the total quantum system an ultimate terminal where a purely
classical—i.e., deterministic—source function is identified. Through such a source function,
the quantum source system may then allow for an external user control for the purpose of
sending information [10,13].11 For the purpose of this paper, we will show that QFT allows
the construction of a very natural and direct source model for q-antenna systems.

In order to simplify the presentation, we break down our method into several steps
as follows:

1. Construct a quantum source model resembling the point (infinitesimal source) in
classical antenna theory.

2. Using the previous quantum point source model, construct the quantum state ra-
diated by the q-antenna due to arbitrary continuous or discrete source distribution
(superposition principle).

3. Construct Green’s function of the q-antenna using the previous superposition integral.
4. Introduce and evaluate the q-antenna radiation pattern using Green’s function (mostly

in the momentum space representation).

References on the Green’s function approach to classical antenna theory can be found
in [28,46–48]. The infinitesimal source approach is developed in [68]. The momentum space
approach to electromagnetic theory and antennas is outlined in [69–73].

For maximum clarity, this program will be carried out throughout the remainder of
the present paper for the special case of a neutral Klein–Gordon field φ(x) (the standard
spin-0 scalar field theory, Section 4.2). In addition, and as already mentioned above, for
emphasis on simplicity, we focus on the linear quantum antenna case. In fact, the key
concepts introduced below through the Feynman propagator for the construction of a
quantum radiation pattern are essentially the same whether the radiation regime under
consideration is linear or nonlinear.

4.2. The Klein–Gordon Field Theory

In relativistic quantum field theory [38,54,55], everything takes place in the
four-dimensional Minkowski spacetime [51,53], denoted by M4, which is a linear vector
space endowed with a special metric, the Lorentz metric gμν, see Table A1 in Appendix B,
where the relativistic notation and key quantum formulas in the natural unit systems are
reviewed. (In what follows, we work in the natural unit systems where c, the speed of light,
and h̄, the Planck constant, are both reduced to unity (c = h̄ = 1); see Appendix C). Without
loss of generality, and as mentioned earlier, the q-antenna quantum field φ(x) is assumed to
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be that of scalar massive theories.12 To further simplify the mathematical manipulations, we
focus on the neutral massive Klein–Gordon field theory, which is outlined in Appendix F.
For massive particles (spin-0 particles in our scalar theory example), the dispersion rela-
tion (A27) governs the behavior of particles emitted when the q-antenna system is used in
applications such as quantum molecular communications. On the other hand, massless
(m = 0) particles models “scalar photons” or photons with polarization ignored, since in
this case, the Klein–Gordon equation reduces to the (scalar) wave equations.13 In general,
adding spin to the theory does not involve any major changes in the main conceptual ideas
related to q-antennas and hence will be left for future work.

We also further note that the field modal expansion (A26) is intrinsically Lorentz
invariant, even though the spectral integration performed there is carried with respect to
the non-Lorentz invariant volume measure d3x because the standard method of normalizing
factor has been already employed in our formulation.14 In other words, the spacetime
q-antenna theory developed here is fully relativistic. A breakdown of relativistic invariance,
as exemplified by choices of spatiotemporal decomposition (slicing) of the source or receiver
regions Ds,r, e.g., as in (3), can be introduced later as an external restriction enforced by
hand to simplify the calculations and the presentation.

4.3. An Elementary Model for Point Quantum Particle Excitation

In our model, a fundamental spacetime quantum field φ(x) is associated with the
q-antenna.15 We start by provisionally identifying φ(x) as the “quantum source field” of
the q-antenna system, i.e., the fundamental quantum field of the system directly produced
by the source J(x), x ∈ Ds. Roughly speaking, this terminology indicates that this quantum
field plays a double role:

1. It emits quantum particles (massive particles when m �= 0 and scalar Klein–Gordon
particles when m = 0) at particular spacetime positions.

2. Once generated, the quantum field φ(x) would somehow “propagate” the quantum
particle in space and time.

Equivalently, we say that the quantum field φ(x) enjoys the double role of being both
the producer and propagator of the quantum radiation particle.

Next, let us hit the vacuum state |0〉 with the q-antenna source field φ(x′) operator;
i.e., we wish to excite a quantum particle at the position x′ = (t′, x′). Using (A26) and the
standard facts ap|0〉 = 0 and a†

p|0〉 = |p〉, we compute

φ†(x′)|0〉 =
∫

p∈R3

d3 p
(2π)3/2

eipμx′μ

(2ωp)1/2 |p〉. (21)

Therefore, we managed to set up a superposition of outgoing particles, i.e., radiation quanta
leaving the position x′ at time t′. This may explain why φ(x) was duped the quantum source
field of the q-antenna: The field literally “creates” many quantum particles radiating away
from the initial source location. (The latter source plays the role of the “initial state” in
quantum mechanics, though it should be noted that QFT does not use the same concept of
the state).

Furthermore, with the help of the expansion (21), we are now in possession of a
satisfactory understanding of the composition of the quantum states radiated by this point-
like quantum source: they are essentially superpositions of pure momentum states |p〉,
with scaling factors (momentum state excitation strength) given by the total factor of the
integrand of (21) multiplying each such momentum ket.16

Let us now compute how much probability amplitude there is in the new excited
q-antenna state (21) when an observer tries to measure the q-antenna’s radiation field’s
momentum. If the observation momentum eigenvalue is q, then we form the relativistic bra

〈q| = (2π)3/2(2ωp)
1/2〈q|, (22)
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through which one may estimate the amplitude A(q) by calculating the matrix element

A(q) := 〈q|φ†(x′)|0〉 =
∫

p∈R3

d3 p
(2π)3/2

eipμx′μ

(2ωp)1/2 〈q|p〉. (23)

Using the basic orthogonality relation between momentum eigenstate [57]

〈q|p〉 = δ(q− p), (24)

the integral (23) can be readily evaluated, yielding

A(q) = eiqμx′μ = ei(ωq−q·x′). (25)

This is a deceptively simple-looking relation, but it underlies a powerful structure that
enjoys considerable importance in the theory of q-antennas. From the engineering point of
view, the expression (25) may be shown to lead to the emergence of the classical antenna
array factor when moving into the quantum context, hence the ability to shape the quan-
tum radiation emitted by q-antennas using techniques borrowed from what is essentially
classical antenna theory.

From the physics point of view, (25) says that the complex probability amplitude
of finding the radiated particle emitted at the spacetime point x′ at the four-momentum
state |q〉 is simply exp

(
iqμx′μ

)
. Furthermore, the relation (25) also confirms the provisional

interpretation proposed above that the state φ†(x′)|0〉 may be viewed as a one-particle
quantum field excitation state “localized” at the spacetime point x′. The reason is that such
interpretations is reminiscent of the standard relation

〈p|x〉 = exp(ip · x) (26)

in nonrelativistic quantum mechanics, suggesting a “quasi-localization” of the particle’s
momentum state at x. From (25), we obtain Pr{q = q′} = 1 for any four-momentum
range q ∈M4. This is completely natural since, as in nonrelativistic quantum mechanics,
momentum eigenkets are maximally nonlocalized. Since we have just established that the
state φ†(x)|0〉 represents what, within QFT, corresponds to a pure one-particle momentum
state, total nonlocalizablity of the conjugate position parameter is expected. However,
note that in standard perturbative QFT, it is very difficult to mathematically describe the
complete localization of particles. For an in-depth discussion of this problem, see the
footnotes.17

4.4. The Feynman Propagator of Quantum Antennas

So far, we have succeeded in modeling the process in which a q-antenna emits a
particle at a specific spacetime point x′ = (t′, x′). We also explicated the momentum-space
composition of the emitted one-particle radiation state and found that it is comprised of a
superposition of multiple outgoing one-particle momentum states. Moreover, we estimated
the probability amplitude of measuring a certain (generic) momentum in this radiated
state. However, for practical applications, there is a need to actually compute the effective
coupling between the source on one side and generic observation spacetime points located
either in the near- or far-zone on the other side. To do so, we will make use of one of the
most powerful methods in QFT, the Feynman propagator [38,54,55,67]. Effectively, this will
also directly provide us with the two-point Green’s function G1(x, x′) of the q-antenna
system corresponding to the first term on the RHS of (15).

The importance of moving to a mathematical description based on propagators stems
from the fact that in QFT, one often finds that exciting the ground state at a specific
spacetime point does not automatically imply that the radiated particle will reach every
point in the far-zone with significant probability. To ensure that the quantum wireless or
molecular communication link’s receiver has access to the radiated particles with significant

30



Foundations 2022, 2

probability of detection, we need to compute the probability amplitude of measuring a
particle at a generic spacetime point x away from the source point x′. Since in QFT, there
are no measurement operators as in nonrelativistic quantum mechanics, we may model the
observer’s interactions with the receiver by the process of particle annihilation [38]. This is
one of the key ideas of quantum measurement in QFT to be adopted in this paper.

In order to mathematically implement this idea, we compute the two-point Green’s
function of the q-antenna system, which is defined as follows:

Definition 4 (The two-point q-antenna Green’s function). The q-antenna two-point (or one-
particle) Green’s function, denoted by Gq(x, x′), is defined as the probability amplitude of the process
that a particle created at the point x′ ∈ Ds in the source region, while the system was initially at the
ground state |0〉, will be annihilated at the later point x ∈ Dr in the receiver (detection, observation)
region, after which the q-antenna system will return again to the ground state.

Theorem 2. The correct relativistic expression for Gq(x, x′) is given by the formula

Gq(x, x′) = 〈0|T φ(x)φ†(x′)|0〉, (27)

where T is the time-ordering operator defined by (A17).

Proof. This follows directly from Definition 4, the quantum field expansion (A26) in terms
of creation and annihilation operators, and the definition of the time-ordering symbol (A17).
The time ordering operator is included in order to automatically deal with both particle
and antiparticle emission.18

Remark 3. Definition 4 is inspired by the propagator-based quantum field-theoretic formalism of
condensed matter physics, see in particular Mattuck’s elegant formulation in [60], which influenced
our approach here. The same quantity Gq(x, x′) is constructed in perturbative QFT as the funda-
mental tool for computing scattering cross-sections in experiments involving fundamental particle
interactions [38,54,67] and the ground state energy in many-body condensed matter physics [59–61].
In the expression (27), T , the time-ordering operator, is inserted in order to automatically ensure
that fields with later time components x0 are always placed to the left of earlier ones.

Theorem 2 provides a characterization of the q-antenna Green’s function expressed
directly in spacetime. However, in most applications of QFT, it is the momentum space
representation that often proves to be the most useful space to do calculations in.19 As will
become more evident below, this is also the case in q-antenna theory. We would like then
to derive an expression for the propagator in momentum space. In fact, this is a quite
straightforward process: taking the conjugate of (21), multiplying the result with (21), then
making use of the basic position-momentum eigenket orthogonality relation

〈q|p〉 = δ(q− p), (28)

the q-antenna Green’s function readily evaluates to

Gq(x, x′) =
∫

p∈R3

d3 p
(2π)3

e−ipμ(xμ−x′μ)

2ωp
. (29)

This spectral expansion of the q-antenna Green’s function is very important and will be
illustrated in several examples, while its structure is investigated in depth below.

Remark 4. It should be noted that in all momentum space integrals of the form (29), a rigorous
treatment would require that we place a step function of the form Θ(x0 − x′0) before the integral (or
integrand) in order to transition from the time-ordered form (27) to the final expression (29). Here,
we are effectively focusing on the causal or retarded radiation problem where it is understood that
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particles observed at x possess a clock time x0 that is later with respect to the spacetime creation point
x′, whose internal clock starts ticking at x′0; i.e., x0 > x′0 and Θ(x0 − x′0) = 1. If antiparticles
are to be included, this restriction is not needed. The advantage of using the Feynman propagator
(among many other things) is that it naturally and economically leads to a direct and efficient
computational formulation of the problem of quantum radiation, where no distinction between
particles and antiparticles is required, since the propagator (27) can handle both at the same time.

Remark 5. The integral representation of Green’s Function (29) can also be put in the following
(x, t)-form more suitable for future use in antenna theory:

Gq(x− x′, t− t′) =
∫

k∈R3

d3k
(2π)3

e−i|k|(t−t′)

2
√
|k|2 + m2

eik·(x−x′), (30)

where the dispersion relation (A27) was utilized. Moreover, the natural-unit replacement p→ k
from Table A1 was used. For the computational evaluations of Green’s functions in terms of special
functions, see Appendix H.

4.5. Generalization to Multiple Discrete and Continuous and Sources

Suppose that now, we apply the quantum source field again but at a different spacetime
point, say x′2, while we rename x′ in (21) as x′1. Furthermore, we note that each excitation of
the vacuum by a field φ(x′) localized at x′ can be controlled by some position-dependent
“scaling factor”, say J(x′). This is again the abstract source representation of the q-antenna
in the spirit of Definition 2. Then, the total quantum source field is

J(x′1)φ(x′1) + J(x′1)φ(x′2). (31)

Again, if we hit the vacuum state by this new operator, the radiated quantum state can be
written as

[J(x′1)φ(x′1) + J(x′2)φ(x′2)]|0〉 =
∫

p∈R3

d3 p
(2π)3/2

J(x′1)e
ipμx′μ1 + J(x′2)e

ipμx′μ2

(2ωp)1/2 |p〉, (32)

where we used (21). Physically, the expression (32) means that two clusters of outgo-
ing waves (quantum particles) are emitted, one emanating from the spacetime point
x′μ1 = (t′1, x′1), while the other cluster is directly radiated from x′μ2 = (t′2, x′2). In all cases,
note that the linearity of the quantum source field operator φ(x′), as manifested by the
expression φ(x′)|0〉 in (21), is the ultimate basis behind the applicability of the principle of
superposition in q-antenna systems.

It is straightforward to generalize the q-antenna’s radiation Formula (32) to the generic
scenario of an arbitrary number of N discrete point sources located at the spacetime points
x′n, each with its own excitation strength specified by J(x′n), n = 1, 2, . . . , N. This leads to
the expression

Jq(x′)|0〉 =
∫

p∈R3

d3 p
(2π)3/2

∑N
n=1 J(x′n)e

ipμx′μn

(2ωp)1/2 |p〉, (33)

where

Jq(x′) :=
N

∑
n=1

J(x′n)φ(x′n) (34)

is the effective (discrete) quantum source distribution operator.
It should become clear now how to generalize from discrete to continuous sources. Let

us expand the continuous classical current source function J(x′) in terms of a finite number
of spacetime (four-dimensional) Dirac delta functions δ(x′) as follows:

J(x′) =
N

∑
n=1

J(x′n)δ(x′ − x′n), (35)
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where the source domain Ds, the spacetime region upon which the source is supported, is
in this case the discrete set

Ds := {x′1, x′2, . . . , x′N}. (36)

Using the sifting property of the Dirac delta function, it is evident that (33) can be rewrit-
ten as

Jq(Ds)|0〉 =
∫

p∈R3

d3 p

(2π)
3
2 (2ωp)

1
2

∫
x′∈Ds

d4x′ J(x′)eipμx′μn |p〉, (37)

where the quantum source operator is given by the integral

Jq(Ds) :=
∫

x′∈Ds
d4x′ J(x′)φ†(x′). (38)

While (33) and (37) are formally equivalent in the special case of discrete sources, it is the
second form (37) that is needed for writing down the correct expression corresponding
to the continuous source case. Indeed, when the set Ds becomes dense (which implies
N → ∞), the relation (37) continues to hold.

Remark 6. In deriving (37), we implicitly assume that the order of the dx′- and d3 p- integrals can
be exchanged. This can be justified relatively easily when we impose the condition that Ds is compact,
which is an assumption we make throughout this paper that still covers most practical antenna
systems. The details of the rigorous proof are lengthy and will not be given. For a comprehensive
discussion of the rigorous mathematical theory behind representing integrals (continuum sums)
over quantum kets in QFT, see [54,55,67,79].

To summarize, we have managed so far to construct two fundamental types of quanti-
ties behaving as “sources” in q-antenna theory:

1. The classical source function

J(x′) : Ds ⊂M
4 → R. (39)

2. The quantum source operator

Jq(Ds) : Ds → O, (40)

where
Ds := {D ⊂M

4|D is open, cl(D) is compact in R
4} (41)

is the set of all open subsets in the Minkowski spacetime M4 whose topological closure
is compact in R4. On the other hand, O is defined as the space of all operators acting
on elements of the Fock (occupation state Hilbert space representation [54,55]) space
of the q-antenna system.20

Remark 7 (The source design problem in quantum antenna theory). The classical source
J(x′) is needed in order to delimit the actual q-antenna configuration in spacetime. As in classical
antenna theory, an antenna source is considered known if its geometric support regions Ds is known
in addition to the value of the source J(x′) at each point x′ ∈ Ds. The situation is quite similar here.
The q-antenna designer is interested in obtaining bounds or information on both Ds and J(x′) in
order to attain certain radiation states. This is the design problem that is usually solved by means of
optimization methods.

Once the classical source J(x′) is fixed, one can employ (38) in order to immediately
construct the quantum source operator Jq, which depends (among other things) on the
geometrical and topological structure of the source support domain Ds.
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Remark 8. It should be noted that the operator Jq depends on the classical function J(x′) defined
on the entire spacetime regions Ds. Thus, formally speaking, one should write that operator as
Jq[Ds, J(x′)]. However, to simplify the presentation, this is avoided, since it should always be clear
from the context which specific classical source function J(x′) is involved with the quantum source
operator Jq.

The probability amplitude A(x) of receiving a particle/wave at the spacetime position
x can now be readily computed in exactly the same way we did with the point quantum
source at x′, i.e, the amplitude Gq(x− x′) in (27), simply by adding the various contributions
coming from all source points x′ ∈ Ds. The calculations are

A(x) = 〈0|T φ(x)Jq(Ds)|0〉 = 〈0|T φ(x)
∫

x′∈Ds
d4x′ J(x′)φ†(x′)|0〉

=
∫

x′∈Ds
d4x′〈0|T φ(x)φ†(x′)|0〉J(x′),

(42)

where (37) was employed in order to write down the second equality in (42). Note that
we assume that x and x′ are well separated from each other such that there is no overlap
between the observation spacetime region Dr and points x′ ∈ Ds in the source domain.
This allows as to freely move the time-ordering operator T so to obtain (with negligible
error) the third equality in (42) above, making our radiation formulas ultimately valid in
the exterior region of the q-antenna system.

Finally, with the help of (27), we arrive at our main q-antenna radiation amplitude
formula summarized by the following theorem:

Theorem 3. The probability amplitude of a continuous source q-antenna system J(x), x ∈ Ds ⊂
M4, where the closure of Ds is compact in R4, is given by the following superposition integral

A(x) =
∫

x′∈Ds
d4x′Gq(x− x′)J(x′), (43)

where Gq(x− x′) is the q-antenna Green’s function in Definition 4.

Remark 9. We may rewrite (43) in a form more familiar to antenna engineers by recruiting the
notation x = (t, x) and x′ = (t′, x′), viz., in the “(x, t)-format”, allowing us to restate (43) as

A(r, t) =
∫

x′∈Ss

∫
t′∈Ts

dt′ d3x′ Gq(x− x′, t− t′)J(x′, t′), (44)

where Ss and Ts are the spatial and temporal components of the four-dimensional spacetime source
region Ds; see (3). Thereby, we find that the spatial support domain of the q-antenna’s source system,
i.e., its spatial extension properties, is captured by Ss, while Ts is the time interval of the application
of the source.

Remark 10. The relation Ds = Ss × Ts holds locally in Ds. The reason is that for attaining wide
generality, we are already implicitly permitting Ds to posses a manifold structure in which, locally
speaking, each point x′ ∈ Ds is homeomorphic (topologically isomorphic) to Rd, d = 2, 3, 4. That
is, from the topological viewpoint, the source region Ds ⊂M4 can be said to be of type (0 + 1) for
q-antenna point sources; type (1 + 1) for one-dimensional sources such as wire or loop antenna; type
(2 + 1) for surface radiators; or full (3 + 1) type for volumetric sources; and so on.

Remark 11. Either one of the two expressions (43) or (44) may be used to express the probability
amplitude of receiving a particle at a specific location x = (t, x) when radiated by a source distribu-
tion written as either J(x′) or J(x′, t′). Both are Lorentz invariant, but the form (43) expresses that
more clearly. On the other hand, the form (44) may be utilized when a concrete frame of reference
(lab frame) is used such that an unambiguous decomposition of the source region Ds into spatial
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and temporal part can be made (this is in fact the case in most practical scenarios). Physically,
the radiation formulas (43) or (44) express quantum radiation by a source J(x) in terms of the
q-antenna Green’s function, which happens in this particular case to coincide with the Feynman
propagator of QFT.

5. On the General Structure of Radiation Processes in Linear Quantum
Antenna Systems

Before moving next to the construction of practical definitions for the q-antenna
directivity and gain patterns, we pause for a moment in order to provide a deeper insight
into the nature of quantum radiation in q-antenna systems based on the new q-antenna
Green’s function Gq(x− x′) whose main concept was introduced earlier via Definition 4.

5.1. The General Structure of the Quantum Antenna Propagator Process

If we insert (29) into (43), interchanging the order of integrals, the following spectral
(momentum-space) result is obtained.

Theorem 4. The momentum space probability amplitude A(q) in Theorem 3 can be expanded in
the spectral domain using the following integral formula:

A(x) =
∫

p∈R3

d3 p
(2π)3 2ωp

∫
x′∈Ds

d4x′ J(x′)eipμx′μ e−ipμxμ
. (45)

Here, the spectral integration is performed with respect to all real momenta p in R3.

Proof. In order to obtain (45), we assume that cl(Ds) is compact in R4 in order to make
sure that a needed interchange of limiting operations can be justified. The rest of the proof
is immediate.

The anatomy of the quantum radiation’s Green’s function’s spectral expansion (45)
is illustrated in Figure 2. The various fundamental sub-processes composing the overall
process of quantum radiation can be formally identified as follows:

1. We first must form the correct relativistic sum over all allowable momentum states.
This is accomplished by the Lorentz invariant integral operator

∫
p∈R3

d3 p
(2π)3

1
2ωp

. (46)

2. Each momentum state |p〉 will be summed over all possible source locations x′ ∈ Ds
in the source region via the integral operator∫

x′∈Ds
d4x′. (47)

This step is also relativistic, since Ds ⊂M4 and d4x′ are Lorentz invariant.21

3. The next crucial step is to multiply by the factor exp
(
ipμx′μ

)
. This will trigger the

production of a quantum wave (particle) emanating from x′ and spreading radially
away from the point source.

4. Finally, in order to observe the radiation field at a distance, we multiply the wave
produced at x′ by a propagation factor exp

(
−ipμxμ

)
. This will guarantee that the

field has been effectively propagated and absorbed at the observation location x.
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Figure 2. The anatomy of the q-antenna’s propagator-based quantum radiation process.

Remark 12. It may be seen from the above algorithmic construction of the q-antenna propaga-
tor in the spectral domain that the problem of quantum radiation acquires a very intuitive and
concrete structure when viewed from the spectral (momentum space) domain’s perspective. This
observation will be exploited in Section 6 when we explore candidate expressions for the q-antenna
radiation pattern.

Remark 13. The probability amplitude A(x) can be seen as a superposition of “quantum plane
waves” each of the form exp

(
ipμxμ

)
. This is in fact somehow similar to the plane-wave (Weyl)

expansion of electromagnetic fields radiated by continuous sources [63,64,80–82]. As in the electro-
magnetic case, each point source will emit a continuum of plane waves (some of them are evanescent,
and the others are pure propagating), with wavevector/momentum specified by p and frequency
ωp. The total sum of all these waves will produce an effective field moving gradually away from
the source and approaching the far zone of the antenna by first going through the near zone. (The
evanescent mode character of the momentum space representation becomes directly visible when
we transform the above three-dimensional spectral integrals evaluated with respect to p ∈ R3 to
equivalent four-dimensional integrals now performed with respect to p ∈M4, see for example [57]).

5.2. Comparative Analysis of the Three Fundamental Types of Antennas

At this point, it is instructive to give a bird’s eye view on the various genera of antenna
theories available to us so far. Classical antennas (c-antennas) involve excitation with an
external electric field Eex, which in turn induces a current on the antenna via the current
Green’s function [28,46–48].22 This is illustrated in Figure 3a. Here, it is essential to note
that the “system input” is a classical field, while the “system output” is also the classical
radiated fields E and H. On the other hand, the quantum-optics approach to defining
quantum antennas, which is the one currently most often mentioned in connection with
applications to quantum communications [1,2,13], treats the input as a classical source
while the output is a quantum state |α(t)〉 [10,13,62,83]. This is illustrated in Figure 3b,
where the q-antenna current Green’s function Fq is still a classical function, just like the
induced radiating current Jq(x

′).
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Eex(x,t) �� F̄c(x, x′; t, t′)
Jc(x,t) ���� c-channel

E(x,t), H(x,t)����

(a) Electromagnetics-based c-antennas.

Eex(x,t) �� F̄q(x, x′; t, t′)
Jq(x,t)

���� q-channel
|α(t)〉����

(b) Quantum-optics approach to q-antennas.

J(x′) �� Fq(Ds, x′)
Jq(Ds) ���� q-channel

A(x)����

(c) Relativistic-QFT approach to q-antennas.

Figure 3. The fundamental operational modes of c- and q- antennas. Both types requires a current
Green’s function (ACGF) F̄ [28] to connect classical excitation field Eex with a classical induced current
J. Note that in both c- and q-antennas, the induced currents Jc and Jq, respectively, are classical.
However, the difference resides mainly in the “output” or the radiation state, which is classical
(quantum) in c- (q-) antennas.

Consider now the third type of antennas shown in Figure 3c. The input to the system
J(x′) (exactly like the previous two antenna types) is still a classical source, but now
the radiating source Jq(Ds) is an operator that can describe quantum particles emission
(quantum radiation) from within the q-antenna’s source spacetime region Ds. In fact, we
may rewrite (38) in the revealing integral form

Jq(Ds) :=
∫

x′∈M4
d4x′Fq(Ds, x′)J(x′), (48)

where the q-antenna current Green’s function in this case is simply given by

Fq(Ds, x′) :=
{

φ†(x′), x′ ∈ Ds,
0, x′ /∈ Ds.

(49)

Clearly, this is quite different from the two cases depicted in Figure 3a,b. In the case
Figure 3c, captured by the expression (49), the current Green’s function itself is a quantum
field, i.e., an operator-valued function on spacetime. The source Jq reproduced by the
Green’s function superposition integral is also an operator, and the ultimate “output”
coming out from the relativistic QFT-based antenna system is the probability amplitude
A(q) of annihilating a particle at some generic observation point x ∈ Dr ⊂M4.

5.3. On the Causal Spacetime Structure of Radiation Emitted by Quantum Antenna Systems

In both special and general relativity, two events x and x′ with timelike distance,
i.e., |x− x′|2 > 0, can be causally connected [51,53,84]. This has a direct and obvious
implication for the general spacetime theory of q-antennas developed here.

1. Consider a point source case. Figure 4a indicates the future lightcone Cx′ of the event
located at x′, i.e., the apex of the cone in the spacetime diagram given therein. Since
we assume for simplicity that the operational principle behind our q-antenna-based
communication link’s receiver is based on the process of annihilating the radiated
particle at the observation point x, it follows that only receivers located inside the antenna
causal lightcone Cx′ can receive information from the point source.

2. For potential receivers located outside the antenna causal cone, it is not possible to
transmit information at all, unless one admits some superluminal mechanism to be
used for sending information, which is currently not accepted by majority of scientists.

These two observations above are enough to determine the causal structure of q-
antennas for the case of point sources. However, since arbitrary sources can be constructed
from assembling clusters of point sources, the argument can be expanded, as will be
shown next.
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For the case of continuous sources, the situation is qualitatively similar to the discrete
scenario discussed above, but the detailed content of the antenna’s causal domain becomes
somehow more complicated, since the situation strongly depends on the geometry of the
source region in the former case. In Figure 4b, we schematically illustrate the problem
when a generic continuous source J(x′) is applied in the spacetime region Ds ⊂M4. Since
any current source function J(x′) can be expanded into a continuous sum of point sources,
as per the sifting property of delta functions

J(x′) =
∫

x∈M4
d4x J(x)δ(x′ − x), (50)

one may then attempt to construct a causal lightcone for each point x′ ∈ Ds, which is again
denoted by Cx′ . A continuum of causal cones is shown in Figure 4b where all cones appear
to be aligned in parallel in spacetime because we ignore gravitational effects.

We now introduce the following construction of the antenna’s horizon causal structure,
which is valid for both classical and quantum antennas:

Definition 5 (The antenna causal domain). The antenna causal domain associated with a given
source region Ds, which we denote by C(Ds), is defined as simply the fusion (set-theoretic union) of
all individual causal cones Cx′ based on events located inside the source region x′ ∈ Ds. That is,
according to the recipe

C(Ds) :=
⋃

x′∈Ds

Cx′ . (51)

The part of C(Ds) that is solely due to future lightcones C+
x′ is called the antenna future causal

domain. Similarly, the components of C(Ds) due to contributions emanating from past lightcones
C−x′ lead to the antenna past causal domain. Then, we have

C+(Ds) :=
⋃

x′∈Ds

C+
x′ , C−(Ds) :=

⋃
x′∈Ds

C−x′ , (52)

and
C(Ds) = C+(Ds) ∪ C−(Ds). (53)

Note that the same constructions can be laid out for the receiving q-antenna case when the detector
is in the receive domain Dr.

Remark 14. Note that it is still possible to incorporate gravitation into our model, since the
effect of gravitational fields is mainly to tilt the lightcones locally, where the tilting is directly
determined by the gravitational potential/metric tensor gμν [41]. For applications of q-antennas
in deep space communications, these gravitational effects may have to be taken into account.
Consequently, the constructions provided by Definition 5 may become useful in astronomical and
cosmological applications of either classical or quantum antennas. That is especially true when the
large-scale structural impact of the gravitational field on a planned solar or even future interstellar
communication links is important.

Remark 15. The causal domain C(Ds) is a function of the source region Ds. Moreover, it should be
emphasized that in general, the antenna causal domain, as defined above, need not constitute a simple
cone in itself. In addition, in principle, the receivers located inside C(Ds) can receive information
transmitted by radiation emitted from inside Ds. On the other hand, noncausal receivers, e.g., see
some cases schematically depicted in Figure 4b, can never receive information from an antenna
system whose source is supported by the region Ds.

Overall, the analysis above has highlighted an organic interlinking of spacetime with
causality within the context of generic quantum communication systems utilizing quantum
antennas. This suggests the need to pay closer attention to the global (i.e., topological)
structure of spacetime domains when such future quantum technologies are incorporated
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in the analysis, design, and construction of long-distance space communication systems at
the solar, extra-solar, astronomical, or even cosmological scales.

Figure 4. The fundamental causal structure of the q-antenna radiation process. For simplicity, we
only show future lightcones.

6. Quantum Antenna Radiation Patterns: Basic Constructions

6.1. Introduction

In contrast to classical antennas, q-antenna systems are intrinsically stochastic. The ul-
timate goal of a candidate q-antenna theory is to supply rules and guidelines for estimating
probabilities of potential detection (reception) processes ideally enacted somewhere within
the near or far spacetime zones of the quantum sources. In conventional antenna theory, cer-
tain quantities are fundamental for analyzing and designing functioning actual devices able
to radiate power in real-life settings. These often include directivity, gain (preferably with a
measure of radiation efficiency), and the array factor [27,33,35]. As will be illustrated in this
section, it turns out that in q-antennas, there also exist close counterparts for many of the
conventional characterization measures/concepts already in use in -c-antennas. However,
there are also fundamental differences between c- and q-antennas in terms of the physical
interpretation and meaning of the results thus obtained since, clearly, electromagnetic and
quantum radiation are very distinct (though related) physical processes. For the purpose of
constructing working definitions for directivity and gain functions suitable for q-antennas,
we explore next some possible antenna radiation pattern constructions made available to
us by the relativistic QFT approach proposed above.

6.2. The Probability Law of Producing Radiated Quantum States

From the general rules of QFT [54,56,57], the probability of measuring a particle with
four-momentum q within the range Q′ ⊂M4 is given by the integral of the square of the
probability amplitude A(q):

Pr{q ∈ Q} = 1
α

∫
q∈Q′

d4q |A(q)|2 =
1
α

∫
q∈Q

d3q
(2π)3

|A(q)|2
2ωq

, (54)

where Q ⊂ R3 is the projection of Q′ ⊂ M4 onto R3, and we made use of (A34) to derive
the second equality in (54). The number α ∈ R+ is a normalization constant defined by (57)
inserted in order to ensure that the probability of any event is between 0 and 1.

Remark 16 (Relativistic normalization). In writing the second equality in (54), a delta function

δ(p2 −m2), p0 > 0, (55)

is included in the d4 p-integral (54), i.e., the mass shell condition expressed by the dispersion
relation (A27); see Appendix G for more details on this background.
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Remark 17 (Probabilistic normalization). The correct relativistic normalization of the four-
momentum kets |p〉 and |q〉, e.g., see relations such as (A38), which we have been already utilizing
from the outset, does not automatically ensure the required probability normalization condition

Pr{q ∈M
4} = 1

α

∫
q∈M4

d4q|A(q)|2 = 1. (56)

The latter is in fact a consequence of the normalization in (54) by

α :=
∫

q∈M4
d4q|A(q)|2, (57)

whenever the integral converges.

The normalization condition (56) is not a consequence of the completeness relation
of the Lorentz momentum states (A38), but it should be enforced by hand in order to
extract useful probability statements from the theory [85]. However, it should be stressed
that the normalization integral (56) for the q-states is not convergent in the usual sense
since exact continuous momentum states such as |q〉 or |q〉 are unormalizable [52,54,86].
For more detailed information about the proper rigorous mathematical theories that can
deal with problems involving continuous states, see [37,55,67,79]. In practice, we seldom
need to directly compute continuous state representation, since one always works with
“discretized states”, where momentum or wavevectors are measured in a finite range [2,87].
The set of all such finite-range states is normalizable [54]. Therefore, whenever expressions
such as (56) are encountered, they should be understood in the above of sense of being
approximated by discrete sum after which the normalization to unity becomes correct.
Nevertheless, for some choices of A(q), for example the point source with A(q) = 1, the
integral (56) diverges regardless of whether one works with continuous or discretized state
representations. This is an example of the persistent and well-known problem of ultraviolet
(UV) divergences in QFT [38]. However, this problem is not a major issue in q-antenna
theory, since in practical settings, one often requires a smoothly switchable source. In such
types of source systems, the Fourier amplitudes of the spacetime source function decay fast
enough in momentum space in order to secure the convergence of infinite spectral integrals
such as (56). For in-depth discussion of this scenario backed by several examples taken
from the area of high-energy physics, see Coleman’s lectures [38].

We next give a few examples to illustrate this formulation.

Example 2 (General quantum source’s radiation probability law at a particular momen-

tum). First, we construct a suitable probabilistic representation of a point source radiation
function. Introduce the Euclidean ball

Q(q0, ε) := {q ∈ R
3, |q− q0| < ε}, (58)

where q0 ∈ R3, while ε ∈ R+ is very small. (The norm | · | is that inherited from the
standard Euclidean metric on R3). The probability of measuring a momentum q in the ball
Q(q0, ε) is given by

Pr{q ∈ Q(q0, ε)} = 1
α

∫
p∈Q(q0,ε)

d3q
(2π)3

|A(q)|2
2ωq

� (4/3)πε3

α(2π)3
|A(q0)|2

2ωq0

=
ε3

12π2α

|A(q0)|2
2ωq0

, (59)

where (4/3)πε3 is the volume of the ball Q(q0, ε) centered at q0 with radius ε. Therefore,
the expression (59) gives the probability of measuring a momentum p = q0 after exciting
the ground state |0〉 of the q-antenna to a higher-energy state |q0〉. It is completely general,
regardless of how the vacuum state was excited.
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Example 3 (Point source quantum radiation probability model). Let us apply the rule (54)
to the single quantum source probability amplitude (25). By treating (25) as a special case
of (54), we find that for a point quantum source firing at the spacetime point x′, the
probability amplitude is A(q) = 1; hence, the total radiation probability is given by

Pr{q = q0} �
1
α

ε3

12π2ωq0

=
ε3

12π2α
√
|q0|2 + m2

, (60)

after using the dispersion relation (A27). Since the expression (60) depends only on the
amplitude of the momentum q0, not its direction, we conclude that the q-antenna with
a single scalar quantum source is an isotropic radiator since it radiates its various four-
momentum states |q〉 in the same manner in all directions. This is not very surprising, since
the quantum field of the q-antenna is scalar, and in classical antenna theory, a scalar point
source is also isotropic [27].

Remark 18. From the antenna viewpoint, the examples above suggest that the quantum state of the
q-antenna is inherently global and hence extendable everywhere. Therefore, we can not guarantee
that the q-antenna has effectively radiated into every spacetime point until a concrete measurement
process is performed at some position x, after which one may determine the probability of actual
detection there using the receive antenna model with the help of the q-antenna Green’s function in
Theorem 2. Such a process requires introducing a more sophisticated approach to measure probability
amplitudes when the observation point is included as a parameter in the system. This subject will be
taken up again in Section 6.4.

6.3. Constructing the Quantum Antenna Directivity Pattern

Our goal here is to estimate the directive properties of a continuous source J(x′) located
in the spacetime region Ds. The probability amplitude of measuring the four-momentum q
is denoted by A[q; J(x′), Ds] but will be abbreviated to A(q) whenever there is no confusion
about the source. Our main tool here is the following theorem.

Theorem 5. Consider a q-antenna system J(x), x ∈ Ds ⊂M4. Let the corresponding probability
amplitude be A(q). Then, the following formula holds:

|A(q)|2 = |J(q, ωq)|2, (61)

where J(q) is the spacetime Fourier transform of the radiating current source (A45).

Proof. See Appendix I.

Remark 19. Since there is a one-to-one (injective) mapping between the Lorentz four-momentum
states q ∈M4 and the conventional three-momentum vectors q ∈ R3 via the dispersion relation (A27),
we may just write A(q) instead of A(q, ωq).

Theorem 6. For the situation described in Theorem 5, the quantum radiation probability amplitude
can be expressed as:

Pr{k ∈ Q} = 1
α

∫
k∈Q

d3k
(2π)3

|J(k)|2
2ωk

, (62)

for a generic three-dimensional region Q ⊂ R3. Here, J(k) := J(k, ω) is the momentum space
Fourier transform of the source defined by (A45); see also Remark 19 on the reduced notation in
momentum space used here.

Proof. Use the probability law (54) in (61) and make the replacement q→ k.
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An immediate application of Theorem 6 is in expressing the total energy radiated by a
quantum source directly in terms of the classical source function J(x), as will be illustrated
through the next example.

Example 4 (Total radiated energy and momentum of a q-antenna in momentum space).
The total energy radiated by the antenna in a momentum space region Q ⊂ R3 can
be obtained by multiplying the probability of particle production in the infinitesimal
momentum space volume d3k by the particle’s energy, which is h̄ωk (or just ωk in natural
units), and then integrating. With the help of (62), this procedure yields:

E [Q] =
1
2

∫
k∈Q

d3k
(2π)3 |J(k)|

2, (63)

where E is the total energy. Similarly, the expected value of the total radiated momentum
can be estimated via the formula

P [Q] =
1
2

∫
k∈Q

d3k
(2π)3

|J(k)|2k√
|k|2 + m2

, (64)

where use was made of the fact that the momentum of the particle excitation associated
with the kth state is h̄k (or k in natural units).

Remark 20. It is interesting to note that the momentum space energy pattern of the q-antenna (63)
is similar to the energy directivity of a classical source in generic medium. For example, see how
general formulas of directivity for classical radiators were constructed recently in momentum space
for generic homogeneous nonlocal domains [71–73].

In order to put relation (62) into further practical use, we transform momentum
representations into spherical coordinates so we may obtain some information about the
directive properties of quantum radiating sources as illustrated by the following example.

Example 5 (Radiation angular directivity pattern of q-antennas in momentum space).
Let us express the wavevector k in terms of the spherical angular coordinates θ and ϕ by
using the standard transformation

k̂ = k̂(Ω) = x̂1 cos ϕ sin θ + x̂2 cos ϕ sin θ + x̂3 cos θ, (65)

where
Ω := (θ, ϕ), k̂(Ω) :=

k

|k| . (66)

Here, x̂i, i = 1, 2, 3, constitute a set of three mutually orthogonal Cartesian unit vectors.
The angles 0 < ϕ < 2π, 0 < θ < π determine the direction of the unit vector k̂, or
where the emitted quantum particle’s momentum p = h̄k is pointing in three-dimensional
space. Since physically and intuitively, one would expect that the directions in three-
dimensional position space along which momenta tend to maximally flow also correspond
to the directions toward which most of the particle ensemble’s energy and momentum are
directed, we may use Theorem 6 in conjunction with (66) to estimate the quantum source’s
directive properties in generic three-dimensional scenarios. A simple way to achieve this is
by re-expressing (62) using (65) and (66), resulting in

Pr{k ∈ [kmin, kmax], Ω ∈ Ω0} =
1
α

∫
k∈[kmin,kmax]

∫
Ω∈Ω0

dk dΩ
k2 sin θ

(2π)3

∣∣∣J[k, k̂(Ω)
]∣∣∣2

2
√

k2 + m2
, (67)
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where
k := |k|, dΩ := dθdϕ. (68)

The angular set Ω0 in (67) is the three-dimensional (solid) angular sector inside where one
is interested in characterizing the radiating quantum antenna system.

Remark 21. It is important not to confuse k ∈ R+, defined by (68), with the four-vector
k = kμ ∈ M4 (Appendix B). In this section, we use the shorthand notation (68) in order to
simplify the presentation.

Inspired by the expression (67), we may then introduce the following definition of
momentum space directivity for quantum antennas:

Definition 6 (Quantum antenna directivity in momentum space). The momentum space
directivity of a q-antenna with source function J(x), x ∈ Ds is defined as the following angular
function

D(ϕ, θ; k) :=
1
αk

k2 sin θ

(2π)3

∣∣∣J[k, k̂(ϕ, θ)
]∣∣∣2

2
√

k2 + m2
, (69)

where

αk :=
1

4π

∫
4π

dΩ
k2 sin θ

(2π)3

∣∣∣J[k, k̂(ϕ, θ)
]∣∣∣2

2
√

k2 + m2
(70)

is a positive momentum-dependent probability noramalization constant.

Expressed in terms of the momentum-space-type directivity (69), the total probability
in (62) may be be put into the more compact form

Pr{k ∈ [kmin, kmax], Ω ∈ Ω0} =
∫

k∈[kmin,kmax]
dk

αk
α

∫
Ω∈Ω0

dΩD(ϕ, θ; k). (71)

The last expression explains the physical motivation behind Definition 6. Moreover, the
following two remarks explain more about the engineering background to directivity
concepts in antenna theory motivating the above definition itself.

Remark 22. It is evident then from (71) that for a given k̂, the function D(k, k̂) is the angular
probability density in the momentum space variable k. On the other hand, the mathematical
dependence of D(k, k̂) on the angles ϕ and θ provides information on how the emitted quantum
particles tend to flow along different directions in space. This is why D does indeed behave as a
momentum-space radiation pattern (probability per unit momentum per solid angle).

Remark 23. The positive number αk is inserted into (69) in order to ensure that the total probability
of radiation at all angles, evaluated at a single radial momentum value k, is equal to that of an
isotropic source.23 Intuitively, αk represents the total radiation angular density emitted by the
q-antenna, so the ratio D given by (69) is the relative radiation intensity along one direction with
respect to a standard isotropic source

D0 :=
P0

4π
, (72)

where P0 is the constant radiation angular probability of such an isotropic reference antenna whose
radiation angualr density is D0. That is, we have∫

Ω∈4π
dΩD(ϕ, θ; k) = 4πD0, (73)

as expected from a typical directivity expression [35]. Physically, the ratio 4παk/α in (71) represents
the fraction of the total quantum radiation contained in a sphere with radius k in momentum space
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relative to the total radiation obtained by including contributions coming from all values of the
momentum magnitude k := |k|. The ability of a source to direct power along certain directions
is measured by angle-dependent generalizations of such total ratios. Then, Definition 6 of the
q-antenna directivity is a natural generalization of the corresponding definition in classical antenna
theory as traditionally presented in texts such as [27,35].

6.4. The Probability Law of Receiving Radiated Quantum States: Source-Receiver Coupling
Gain Estimation

Consider the configuration shown in Figure 5. The quantum antenna communication
system is characterized by the gain functional

G : X ×X → C, G = G[Js, Jr], (74)

which is a bilinear functional in the source and receiver currents Js(x′) ∈ X , x′ ∈ Ds,
and Jr(x) ∈ X , x ∈ Dr, respectively. Here, X is the space of real-valued functions on
the four-dimensional domains Ds,r ⊂ M4. The complex number G gives the probability
amplitude of information transmission (coupling amplitude) between source and receiver.
This gain plays the role of “transmission coefficient” or the “coupling coefficient” often
used in conventional electromagnetic communication systems, e.g., see [33,88]. From the
fundamental theory of quantum antennas developed above, we may easily deduce the
general expression of this functional by simply treating the receiver as a source with the
“quantum reverse” process of that of the transmitter, i.e., the dual of the transmitter problem,
e.g., by converting kets to bras, taking adjoints, complex conjugates, etc. Since for real
sources and receiver currents Jr,s(x′), the problem is fully reciprocal,24 we can immediately
write down the q-antenna system gain expression as follows:

G = 〈0|
∫

x∈Dr
d4x

∫
x′∈Ds

d4x′ Jr(x)T φ(x)φ†(x′)Js(x′)|0〉, (75)

where (43) was used to realize the transmitter, and a similar form was adapted for
the receiver.

Figure 5. Angular gain measurementconfiguration scenario for a generic quantum antenna source
system Js(x, t), x ∈ Ss, t ∈ Ts.

Example 6 (Construction of practical angular gain pattern in q-antenna systems). We
will use the general relativistic expression (75) in order to construct an angular expression
characterizing quantum radiation for possible use in practical settings. To do that, we
first need to break relativistic covariance in order to simplify the problem and facilitate
calculations. The most natural choice for a preferred frame is to use a coordinate system
at rest with either the lab frame of the transmitter or the receiver. We choose the source
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frame below. Consider a standard test receiver to be used for performing quantum mea-
surement on the radiation emitted by the source Js(x′, t′), where x′ ∈ Ss, and Ss is the
spatial support of the source region. The receiver spatial region is Sr, and its strength is
given by Jr(x, t). Both t′ and t′ will be measured with a single clock at rest in the source lab
frame. Let the test (receiver) current be reduced to a concentrated delta source

Jr(x) = Jr(x, t) = δ(x− xr)Jr(t), ∀ t ∈ Tr. (76)

That is, we measure the response at a sharp spatial location xr, while we impose the receiver
function restriction Jr(t) on the time measurement interval Tr. We can use (66) to express
the position vectors as

xr = |xr|x̂r(Ω), (77)

where the unit angle-only dependent unit vector x̂r is defined by

x̂r(Ω) :=
xr

|xr|
. (78)

By substituting the relations (76), (77), and (78) into the gain Formula (75), the following
angular expression is obtained:

G(Ω; |xr|) =
∫

x′∈Ss, t′∈Ts
d3x′dt′ Ga

q(Ω; |xr|, x′)Js(x′), (79)

where
Ga

q(Ω; |xr|, x′) :=
∫

t∈Tr
dt Gq(|xr|x̂r(Ω)− x′; t− t′)Jr(t), (80)

and the notation of (27) was used. The integral (80) can be computed numerically for
known current source distributions Js(x) by using the special functions representation of
the Feynman propagator Gq(x− x′) given in Appendix H.

Remark 24. We note that the q-antenna system gain Function (79) depends on the distance between
the source and the receiver in addition to the angles. In general, one studies the asymptotic behavior
of Ga

q(Ω; |xr|, x′) in the long distance limit |xr| → ∞, with the hope that this behaves as |xr|−n,
with n often a small integer (usually 1 or 2). From the asymptotic limits of the special functions used
in Appendix H, some possible relations could be derived using the bessel function large argument
approximation, which in turn then might be further utilized in order to eliminate the dependence on
the radial distance in the gain pattern (79). However, such detailed computational considerations
are outside the scope of this paper, which is mainly focused on the general fundamental theory.

7. Conclusions

We developed foundations for quantum antenna theory using the relativistic frame-
work of quantum field theory (QFT) with emphasis on the source–sink (transmitter–
receiver) model for potential applications to quantum communication systems. The QFT-
based q-antenna is the most general type of antenna systems because it includes both the
classical and quantum-optics-based q-antennas as special cases. In addition, relativistic q-
antennas can accommodate a wider range of physical processes, since the same theory may
deal with massive or massless particles and for different spins. These types of q-antennas,
the most general to date, appear to enjoy the distinction of exhibiting a current Green’s
function that is itself a quantum field, which we dubbed before the quantum source of
the antenna system, i.e., the field φ(x) as per (49). We have illustrated the theory mostly
with the specific example of the neutral Klein–Gordon field because of its simplicity and
importance for building the general solution to other, more complex problems. In particular,
we have shown how in the linear quantum antenna model, one may directly construct
quantum radiation directivity and gain measures that somehow resemble their counter-
parts in classical antenna theory. A future research based on the present theory would
proceed to construct more concrete radiation models for quantum fields such as the Proca
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field (massive electromagnetism), the Maxwell–Dirac field (quantum electrodynamics),
the graviton field (gravitational antennas), and possibly other types. Then, the present
paper attempted to provide a first sketch of a possible general theory that may blend all
these distinct phenomena, where our key idea was that relativistic QFT supplies precisely a
promising such unifying theoretical framework.
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Abbreviations

The following abbreviations are used in this manuscript:

QFT Quantum field theory
QM Quantum mechanics
SR Special relativity
c-antenna Classical antenna
q-antenna Quantum antenna
q-radiation Quantum radiation
q-state Quantum state
q-source Quantum source
c-source Classical source
EM Electromagnetic/Electromagnetics
ACGF Antenna current Green’s function

Appendix A. Classical Antenna Theory

Let the source or current Green’s function be the dyadic tensor F(x, x′, t− t′) [28,46–48,89].
The forward Green’s function is the standard retarded radiation Green’s function
G(x− x′, t− t′) [49]. Then, we have the following two fundamental relations [28,90]:

J(x, t) =
∫

S
d2x′ dt′ F(x, x′, t− t′) · Eex(x′, t′), (A1)

E(x, t) =
∫

S
d3x′ dt′G(x, x′, t− t′) · J(x′, t′), (A2)

where Eex(x, t) is the excitation electric field, J(x, t) is the radiating antenna current on its
compact surface S supporting the electromagnetic boundary conditions, and E(x, t) is the
radiated field. For simplicity, we assume perfect-electric conducting (PEC) antennas where
the magnetic field does not contribute to the current Green’s function. Another radiating
Green’s functions similar to G(x, x′, t− t′) is needed in expressions such as (A2) in order to
obtain the magnetic field B(x, t), which is always present in any radiation problem beside
the electric field; see [89–91] for more details and applications.

The relation (A1) captures the antenna’s fundamental Mode A, where a source field
Eex(x, t) produces a radiating current via the current Green’s function F(x, x′, t− t′), which
in turn generates the radiated fields E(x, t) and B(x, t) throughout the region exterior to the
surface S. To complete the antenna-based wireless communication system, a third Mode C,
where a receiving (Rx) antenna, placed at some distance from S, interacts with the radiated
field in order to produce an observable receive port current Jrx(x) by means of the formula

Jrx(x, t) =
∫

Srx
d2x′dt′ Frx(x, x′, t− t′) · E(x′, t′), (A3)
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where Frx(x, x′, t− t′) is the receive current Green’s function, which is generally different
from the transmit (Tx) current Green’s function F(x, x′, t − t′). The three relations and
Green’s functions in (A1)–(A3) fully describe the antenna system in classical electromag-
netic theory [92], with obvious generalization to magnetic field interactions included in
essentially the same logic [90].

Appendix B. The Relativistic Four-Vector Formalism

In special relativity, everything takes place in the four-dimensional Minkowski space-
time, denoted by M4, a linear vector space with a special metric, the Lorentz metric,
given by

gμν =

⎛⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎠. (A4)

We follow the standard convention of denoting spacetime indices using Greek letters
μ = 0, 1, 2, 3, with the time-like component always given the 0th index and the space-
like part denoted by Roman letter. Four vectors with upper and lower indices are dual
vectors. The converse of the metric tensor gμν is gμν, i.e., gμνgμν = δν

μ, where δν
μ is the

Kronecker delta function. Note that summation over repeated indices is implied (the
Einstein repeated index convention). In general, we raise or lower indices by contracting
with the fundamental tensor in relations such as aμ = gμνaν or aμ = gμνaν. From this we
can see, for example, that a0 = a0, and ai = −ai. The dot product between two four vectors
aμ and bμ is defined as aμbμ := aμgμνbν = gμνaμbν. We also write this as a · b := aμbμ where
a and b stands for the four-vectors aμ and bμ. In particular, the all-important inner product
p · x between four-momentum pμ and spacetime position xμ, given by

p · x = pμxμ = ωt− k · x, (A5)

will be used frequently. Note that in M4, the proper “differential operators four-vectors”
are given by ∂μ = (∂/∂t,−∇) and ∂μ = (∂/∂t,∇). Table A1 provides a compact summary
of the main relativistic formulas.

Table A1. List of main basic relativistic relations in the Natural Units.

Quantity Expression

p (particle momentum) p = k
Ep (particle energy) Ep = ωp = ωk

Relativistic dispersion relation E2
p = p2 + m2

∂μ (four-vector differential operator) ∂μ = (∂/∂t,−∇)
xμ (position four-vector) xμ = (t, x)

kμ (relativistic wavevector) kμ = (ω, k)
pμ (photon four-momentum vector) pμ = (Ep, p) = kμ

gμν (Lorentz metric tensor) gμν = diag(1,−1,−1,−1)
pμxμ (four-vector inner product) pμxμ = gμν pμxν = ωt− k · x

Appendix C. Natural Units

In relativistic quantum field theory, it is customary to use a system of units in which
h̄ = 1, c = 1. Here, the action S is dimensionless. Mass, energy, wavevector, and momentum
have the same dimension, which is the inverse of the dimension of length and time:

[mass] = [energy] = [momentum] = [length]−1 = [time]−1. (A6)

Therefore, the physics of the world is reduced to measurements in two units, length and
time. Moreover, in four dimensions, the creation and annihilation operators have the
dimension of an inverse energy, i.e., [ap] = [a†

p] = [energy]−1.
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Appendix D. Dirac Interaction Picture

Consider a Hamiltonian H that can be written as

H = H0 + H′(t), (A7)

where H0 is the free Hamiltonian of the system (time-independent function), while H′(t) is
the interaction (time-dependent) Hamiltonian, which is usually assumed to be turned on at
a specific time point. In the Dirac picture, our goal is to decouple the free dynamics of the
system, i.e., that governed by a Hamiltonian of the form H = H0 (no interaction or H′ = 0),
from the pure interaction component, i.e., that which is solely due to the term H′ in the
actual full Hamiltonian (A7). Now, let us define the following time-dependent operator

OI(t) := eiH0tOSe−iH0t, (A8)

where OS is the Schrodinger picture (time-independent) operator. Differentiating (A8) with
respect to time, we obtain the Heisenberg equation of motion

i
d
dt

OI(t) = [O, H0]. (A9)

Therefore, the interaction picture operator OI(t) evolves in time according to the exact same
law corresponding to the case when the full Hamiltonian is just the free part, i.e., H = H0.

What about the evolution of the interaction picture state, which will be denoted by
ψI(t)? To find out, note that all different pictures, the Schrodinger, Heisenberg, and Dirac,
must agree on probability amplitudes. Therefore, for any two pairs of Schrodinger and
Dirac states ψS(t), ϕS(t), and ψI(t), ϕI(t), respectively, the matrix elements in both pictures
must be identical. Formally, we express this by the condition

〈ψS(t)|OS ϕS(t)〉 = 〈ψI(t)|OI(t)ϕI(t)〉 =
〈

ψI(t)e−iH0t
∣∣∣OSe−iH0t ϕI(t)

〉
. (A10)

Clearly, this implies that we should define the Dirac (interaction) state by

|ψI(t)〉 := eiH0t|ψS(t)〉. (A11)

To find out how this state evolves, we differentiate with respect to time, obtaining

i
d
dt
|ψI(t)〉 =

(
−H0 + i

d
dt

)
|ψS(t)〉 = H′|ψS(t)〉 (A12)

where we have made use of the Schrodinger equation

i
d
dt
|ψS(t)〉 = H|ψS(t)〉 (A13)

and the form (A7). Finally, using the definition (A11) of the interacting picture state, the
relation (A12) becomes

i
d
dt
|ψI(t)〉 = HI(t)|ψI(t)〉, (A14)

where the Dirac picture interacting Hamiltonian HI is given by

HI(t) := eiH0tH′(t)e−iH0t. (A15)

Let us summarize the main features of this Dirac picture:

1. In the Schrodinger picture, the state evolves in time according to the full Hamiltonian
while the operators are constant.

2. In the Heisenberg picture, the state is constant (time-independent), but the operator
evolves according to the full Hamiltonian.
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3. In the Dirac picture, both state and operators evolve with time. However, the time
evolution is decoupled into two distinct and independent components. First, all
interaction (Dirac) picture operators evolve according to the free Hamiltonian as per
the corresponding Heisenberg Equation (A9). Second, the Dirac state |ψI(t)〉 evolves
independently according to the dynamic Equation (A14).

Therefore, the main advantage of the Dirac picture is that we can concentrate on the
essential aspects of interaction as encoded in the Schrodinger-like dynamic Equation (A14).
In this equation, Schrodinger or Heisenberg states and operators can be obtained using the
usual transformation formula. On the other hand, note that operators in the Dirac picture,
including in particular the interaction Hamiltonian (A15), all evolve according to the free
evolution law (A9). In this case, this becomes

i
d
dt

HI(t) = [HI(t), H0], (A16)

which says that all quantum fields inside H′ are to be evolved under the free Hamiltonian
H0 in order to obtain the dynamics of HI(t).

Let us finally solve the dynamical evolution Equation (A14). To do so, introduce the
time-ordering symbol T defined by

T [A(t1)B(t2)] :=

{
A(t1)B(t2), t1 > t2,

B(t2)A(t1), t2 > t1.
(A17)

Then, the general solution of (A14) can be expressed in terms of the evolution operator
P(t2, t1), which evolves that initial state |ψ(t1)〉 to the final state |ψ(t2)〉 via the
operator relation

|ψI(t2)〉 = P(t2, t1)|ψI(t1)〉, (A18)

where

P(t2, t1) := T e−i
∫ t2

t1
dtHI(t). (A19)

The reader may verify that (A18) and (A19) indeed solves (A14) by direct substitution.
Note that all operators inside the ordered exponential symbol T commute with each other.

Appendix E. On the Background to Theorem

The complete and most general proof of Theorem 1 can be obtained by utilizing a
generalized framework, that of algebraic quantum field theory [37,78]. The expansion (15)
can be shown to be derivable from a suitable perturbative algebraic quantum field theory,
e.g., the recent approach [93]. The advantage of choosing such a method is that one does
not need to assume a concrete Lagrangian from the beginning but rather proceed to work
directly with algebras of quantum fields and then use the structure of these algebras
in order to construct the entire theory, including the quantum states themselves, which
are generated internally. However, since the mathematical details are extensive, the full
treatment will be presented in a separate paper. Nevertheless, note that special cases of
Theorem 1 have already appeared repeatedly in the literature, though in quite different
applications and within distinct contexts. For example, a special case of (15) seems to
have been discussed by Coleman in his analysis of perturbation calculations in scattering
theory [38]. Moreover, a less general form of the expansion (15), known as the Volterra
series, is often presented in several textbooks on QFT when discussing the evaluation of the
vacuum expectation persistence function in terms of the higher-point Green’s (correlation)
functions of the quantum field, e.g., see [38,54–58,67].
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Appendix F. The Neutral Klein–Gordon Field Theory

A massive neutral Klein–Gordon field with mass m can be fully captured by a real
scalar field φ(x) whose Lagrangian density is given by [38,54,56,75]

L(x) =
1
2

∂μ∂μφ(x) +
1
2

m2φ(x)2, (A20)

with the corresponding action integral being

S =
∫

d4xL(x). (A21)

The Euler–Lagrange equation of motion

δS
δφ(x)

= 0 (A22)

yields the field equation
∂μ∂μφ(x) + m2 = 0, (A23)

which is the relativistic wave equation of a particle the Klein–Gordon equation [38,75].
Note that within the framework of standard quantum field theory (QFT), fields are

promoted to operators expanded in terms of plane-wave modes of the form

operator× exp
(
−ipμxμ

)
, (A24)

where the “operator” is either creation a†
p or annihilation ap operator (for particles or

antiparticles). Note further that by convention, the plane wave

exp
(
−ipμxμ

)
= exp

[
−i(Ept− p · x)

]
(A25)

is taken to encode an incoming wave/particle with momentum p/wavevector k and en-
ergy Ep/frequency ω [38]. In the unified language of QFT, we say that the plane wave
encodes a particle/antiparticle in a pure momentum state p. Within this convention, the
energy/frequency of a particle/wave is always positive.25

By applying the canonical quantization algorithm [38] (see review in Appendix G), the
quantum field φ(x) may be expanded into a continuous sum of spacetime modes (plane
waves) as follows

φ(x) =
∫

p∈R3

d3 p
(2π)3/2

1
(2ωp)1/2

[
ape−ipμxμ

+ a†
peipμxμ

]
, (A26)

with the dispersion relation (in natural units)

Ep = ωp = ωk = +
√
|p|2 + m2 = +

√
|k|2 + m2. (A27)

The creation and annihilation operators a†
p and ap, respectively, obey the standard canonical

commutation relations

[ap, ap′ ] = 0, [a†
p, a†

p′ ] = 0, [ap, a†
p′ ] = δ(p− p′), (A28)

where δ is the Dirac delta function.

Appendix G. The Relativistic Field-Theoretic Canonical Quantization Algorithm

The general canonical quantization algorithm is shown in Algorithm A1, where we
leave the nature of the field (scalar, vector, spin type, tensor, etc.) unspecified. In what
follows, the detailed quantization algorithm applies to our main type of fields in this paper,
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i.e., the massive spin-0 scalar field φ(x). Recall that in nonrelativistic quantum theory, a
generic operator can be Fourier expanded in terms of creation and annihilation operators
a†

p and ap, respectively. For instance, a generic scalar quantum field φ(x) is expected to be
written as

φ(x) =
∫

p∈R3

d3 p
(2π)3

[
ape−ipμxμ

+ a†
peipμxμ

]
. (A29)

Unfortunately, clearly, this expression is not Lorentz invariant because of the use of the
non-Lorentz invariant integration measure d3 p. We review below how Lorentz-invariant
quantum states |p〉 may be redefined so that Fourier expansions like (A29) can be made
manifestly covariant.

In order to expand the quantum field into a proper continuum of plane-wave modes
of the form exp

(
±ipμxμ

)
, we will need to integrate over all four-vector momenta pμ, i.e.,

perform four-dimensional integrals over p and Ep (or equivalently k and ω). However,
for massive particles in general, and Proca waves in particular [94], there is a definite
relation between momentum/wavevector and energy/frequency, so the integral over d3 p
might appear at first sight to be essentially reducible to d3 p, while Ep is computed from
E2

p = p2 + m2. However, the problem is that the differential element d3 p is not Lorentz
invariant, so there is a need to automatically enforce Lorentz invariance in our quantization
rules. In this paper, we adopt the computationally efficient method of applying normalizing
factors to quantum states right from the beginning. The main idea is to produce Lorentz-
invariant momentum quantum states and use them to expand the quantum fields.

The essence of the method of normalizing factors is to perform a transformation of
the form ∫

p∈R3
d3 p −→

∫
p∈M4

d4 p (A30)

taking us from the non-Lorentz invariant space R3 to Minkowski space M4, where d4 p is
clearly invariant since p := pμ = (p0, p). However, note that the mass shell condition

p2 := pμ pμ = m2 (A31)

forces this integration to remain on the cone defined by equations of this type, i.e., a
four-submanifold embedded into M4 whose equation is (A31). Then, we may write

d4 p = d3 pδ
(

p2 −m2
)

Θ
(

p0
)

, (A32)

where Θ(·) is the Heaviside unit step function, which is inserted by hand in order to
prevent the appearance of negative energies. It can be shown that [38,76]

δ
(

p2 −m2
)

Θ
(

p0
)
= (1/2Ep)δ(E− Ep)Θ(Ep), (A33)

and hence, we conclude

∫
p∈M4

d4 p
(2π)3 =

∫
p∈R3

d3 p
(2π)3

1
2Ep

, (A34)

where the factor 1/(2π)3 was intentionally inserted in order to make the final integral
looks like an inverse Fourier transform (this inserted factor will be compensated for shortly
when we define the normalizing factors of the Lorentz-invariant state |p〉). Therefore, we
have managed then to reduce a four-dimensional integration in M4 into a regular volume
integral in R3. Note that by writing the RHS of in (A34) without δ(E− Ep)Θ

(
p0), it is to be

implicitly understood that – algorithmically speaking – every appearance of E or ω in the
various possible expressions placed to the right of the integral operator sign

∫
d3 p should

be automatically replaced by +Ep or +ωk.
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A Lorentz-invariant momentum state |p〉 should be constructed from the standard
three-vector momentum states |p〉, which obey the normalization rule〈

p
∣∣p′〉 = δ(p− p′). (A35)

The most obvious construction of the Lorentz-invariant momentum state then is

|p〉 := (2π)3/2(2Ep)
1/2|p〉. (A36)

For example, the inner product of such states is〈
p
∣∣p′〉 = (2π)3(2Ep)δ(p− p′). (A37)

The definition (A36) can be readily used to yield the desired Lorentz-invariant completeness
relation

1 =
∫

p∈R3

d3 p
(2π)3

1
2Ep︸ ︷︷ ︸

Lorentz measure

|p〉〈p|, (A38)

where 1 is the unity operator. The computational utility of the method of normalizing
factors stems from the fact that a completeness relation originally holding for all states
{|p〉, p ∈ M4} in the full four-dimensional Minkowski space is now reduced to carrying
out integration in the regular Euclidean space R3. However, the price to be paid for
such simplification is that a momentum-dependent factor 1/2Ep must be inserted into the
integrand of the reduced integral, which slightly complicates the evaluation of various
related expressions such as probability amplitudes.

Finally, we can create the Lorentz state by applying a new normalized creation operator
b†

p to the ground or vacuum state |0〉, i.e., |p〉 = b†
p|0〉 and bp|0〉 = 0. Based on (A36),

we expect
b†

p = (2π)3/2(2Ep)
1/2a†

p, bp = (2π)3/2(2Ep)
1/2ap. (A39)

The field expansion now, based on (A38), becomes

φ(x) =
∫

p∈R3

d3 p
(2π)3

1
2Ep

[
bpe−ipμxμ

+ b†
peipμxμ

]
, (A40)

which after using (A39) leads to

φ(x) =
∫

p∈R3

d3 p
(2π)3/2

1
(2Ep)1/2

[
ape−ipμxμ

+ a†
peipμxμ

]
. (A41)

Algorithm A1 The Canonical Quantization Algorithm (General Formulation).

1: Start with a Lagrangian density L.
2: Find the momentum density. From this knowledge, construct the Hamiltonian.
3: Promote the field and the corresponding momentum variables to operator-valued fields.

Apply the standard commutation relations.
4: Expand the quantum fields into sums of plane waves with creation and annihilation

operator amplitudes.
5: Evaluate the Hamiltonian operator in terms of the creation and annihilation operators

and put in in the normal ordering form.

Appendix H. On the Numerical Evaluation of the Propagator

For the scalar massive or massless field theory considered above, the Green’s
Function (29) can be evaluated in closed analytical forms after regulating the integral
by inserting small imaginary number iε at proper locations in the integrand in order to
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ensure convergence (causality consideration, e.g., see [54,55]). The final expressions are
given by [56]

Gq(x, x′) =

⎧⎪⎨⎪⎩
im
8π

H(2)
1 (m|x−x′ |)

m|x−x′ | , m �= 0,
−1
4π2

1
|x−x′ |2−iε

, m = 0.
(A42)

Here, the distance |x− x′| is computed in Minkowski spacetime M4 with the metric tensor
gμν, i.e, the relation

|x− x′|2 = (t− t′)2 − |r− r′|2. (A43)

The Hankel function of the second kind H(2)
ν is defined as

H(2)
ν (x) := Jν(x)± iNν(x), (A44)

where Jν and Nν are the Bessel and Neumann functions, respectively [95,96].

Appendix I. Proof of Relation

Proof of Relation (61), when there is a source J(x′), x′ ∈ Ds, then the actual radiated
(quantum) state of the q-antenna system is obtained by applying the operator∫

x′∈Ds
d4x′ J(x′)φ†(x′)

on the ground state |0〉 in order to create the following one-particle excited state∫
x′∈Ds

d4x′ J(x′)φ†(x′)|0〉.

To measure the probability of having a four-momentum state |q〉 in the previous excited
q-antenna state, we compute the source probability amplitude A[q; J(x′), Ds] as follows:

A[q; J(x′), Ds]

:= 〈q|
∫

x′∈Ds
d4x′ J(x′)φ†(x′)|0〉 =

∫
p∈R3

d3 p
(2π)3/2(2ωp)1/2

∫
x′∈Ds

d4x′ J(x′)eipμx′μ〈q|p〉

=
∫

p∈R3

d3 p
(2π)3/2(2ωp)1/2 J(p)δ(q− p)(2π)3/2(2ωp)

1/2 = J(q)|q0=ωq
= J(q, ωq),

where
J(k) :=

∫
x∈Ds

d4x J(x)eikμx′μ =
∫

x∈R3
d3x

∫
t∈R

dt J(x, t)ei(ωt−k·x) (A45)

is the four-dimensional (Minkowski) Fourier transform in spacetime. The second line
in (A45) follows from using the momentum-space expansion of the source field φ(x′) given
by (A26), while in the third line, we used the normalized four-momentum state inner
product formula

〈q|p〉 = (2π)3/2(2ωp)
1/2δ(q− p), (A46)

then proceeded to evaluate the trivial resulting integral over a delta function.
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Notes

1 Other possible long-term aims behind the spacetime theory of q-antennas proposed below include the stimulation of fruitful
collaboration between theoreticians, especially those working on problems related to foundations, and applied quantum
physicists and engineers, whose attention is often more focused on algorithmic and physical-layer applications, e.g., quantum
communications, cryptography, computing, and so on.

2 Maxwell’s equations in vacuo are exactly linear [49,51]; a photon does not self-interact with itself [52]. As in classical antenna
theory, in the proposed quantum antenna theory given here, all nonlinearities are relegated to production of the source J(x) itself.
Well-known examples include gun diodes (microwaves) and laser devices (optics), where the diode itself is nonlinear but the
relation between the current or field as external source and the fields radiated into vacuum is linear. The physical nonlinear
processes behind the source function J(x) itself are outside the scope of the proposed theory.

3 Otherwise, relativistic causality would preclude information transfer [51]. In general, there is an agreement in the literature
that entanglement-based quantum communication links cannot transmit information at superluminal speeds even though the
quantum correlations between entangled states persists at spacelike separated terminals [2,4].

4 This is a realistic assumption in our model, in conformity with the common practical situation where typical classical or quantum
sources are supported by bounded spatial domains and radiate within a finite time interval while practical measurement times
are also bounded.

5 The propagators coincide with well-known Green’s functions in the case of free fields. For interacting field theories, the
propagators are not in general known, but viable approximations can be estimated using perturbation theory, in which the
free-field Green’s function is used as a fundamental building block in order to compute more complex higher-order interaction
processes [54–60].

6 By effective path, we just mean the spacetime trajectory in the Feynman’s path integral expansion of the propagator that contributes
most to the total probability amplitude, e.g., see [57].

7 Cf. Appendix D.
8 Interaction is a more general concept than quantum correlation, since two uncorrelated objects could interact, where in this case,

the interaction terms are just the multiplication of the strengths of each process while the two remain, at least stochastically
speaking, independent. An example illustrating this will be given shortly.

9 Nowadays, such many-body effects are approached in the modern literature on condensed-matter physics, e.g., through the
elaborate and elegant language of many-point correlation or Green’s functions in QFT [59–61].

10 In QFT, integrals such as (20) are handled using four-point Green’s functions of the form G(4)(x3, x4, x1, x2), where the latter is
called the four-point correlation (Green’s) function [54,55,57]. In our case, we just choose x3 = x4 = x, since x is the common
observation point of the receiving q-antenna system.

11 The realization of the need to eventually differentiate a purely classical source function from within any stochastic system
(including quantum systems) was originally proposed within the context of quantum optics in the 1960s [62].

12 For the purposes of illustrating the main ideas of q-antenna systems, this assumption simplifies considerably the presentation,
but the main ideas related to q-antennas are unchanged when more complicated field theories are considered such as spin-1 and
spin-1/2 theories.

13 For additional information on the physical processes modeled by a Klein–Gordon quantum field, see [74,75].
14 For a more detailed discussion of relativistic QFT, see [38,76].
15 The generation of φ(x) itself is not treated here for simplicity. However, note that computing the quantized fields of coupled

matter–field systems is a fairly well-developed area in the physics and engineering literature, mostly using the methods of
perturbation theory [38,54,55,67,77]. On the other hand, in this paper, our main focus is on how to deploy an already given or
generated quantum field φ(x) in order to construct the radiation pattern and the Green’s function of a q-antenna system for use
in applications in controlled radiation of quantum states.

16 When reworked in the full momentum space p ∈ M4, the integral (21) becomes even more interesting, both computationally
and conceptually, since one can show then that point source excitations lead to the production of virtual (off-mass-shell)
particles [38,57]. However, we will not make use of these expansions in the present paper though they are expected to play an
important role in developing the near-field theory of radiating quantum source systems.

17 The concept of particle localization in QFT is difficult both philosophically and mathematically, and several approaches have
been proposed in the literature so far, apparently with no universal agreement on the ontological status of particles in field
quantization. Such more advanced issues do not affect the practically oriented theory of quantum antennas developed in this
paper. For some in-depth discussion of localization in field theory, see [37,78].

18 Recall that in QFT, antiparticles are interpreted as particles moving backward in time [57,58].
19 Momentum space means either p ∈ R3 or p ∈ M4. In this paper, whenever the term momentum space is invoked, it is to be

understood that we will mostly work with the former version, i.e., in three dimensions.
20 In this paper, we do not consider the possible case of unbounded source domains such as infinite current sheets and lines.
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21 Cf. Appendix G.
22 Cf. Appendix A.
23 Indeed, this is how directivity is defined in classical antenna theory, e.g., see [35]. Note further that D in the LHS of (69) was

directly expressed in terms of the spherical angles ϕ, θ, in order to emphasize the spatial angular character of this momentum
space function. See [71,72] for more details about the momentum space approach to directivity.

24 See Coleman’s discussion of the generic detection process in high-energy physics as given in [38].
25 Indeed, negative energy/frequencies obtained as solutions to the massive particle dispersion equation E2 = p2 + m2 are often

reinterpreted as antiparticles and plane waves of the form exp
(
+ipμxμ

)
are taken to represent outgoing antiparticles with

momentum p and energy Ep [38].
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Experiments on the Electron Impact Excitation of the 2s and 2p
States of Hydrogen Atoms Confirm the Presence of Their
Second Flavor as the Candidate for Dark Matter

Eugene Oks

Physics Department, 380 Duncan Drive, Auburn University, Auburn, AL 36849, USA; goks@physics.auburn.edu

Abstract: For the excitation of the n = 2 states of hydrogen atoms due to electron impact, we compared
the experimental and theoretical ratios of the cross-sections σ2s/σ2p. We found this theoretical ratio
to be systematically higher than the corresponding experimental ratio by about 20%—far beyond the
experimental error margins. We suggest that this discrepancy can be explained by the presence of
the Second Flavor of Hydrogen Atoms (SFHA) in the experimental hydrogen gas. The explanation
is based on the fact that, in the experiments, the cross-section σ2s was determined by using the
quenching technique—by applying an electric field that mixed the 2s and 2p states, followed by
the emission of the Lyman-alpha line from the 2p state. However, the SFHA only had the s-states,
so the quenching technique would not count the excitation of the SFHA in the 2s state and, thus,
lead to the underestimation of the cross-section σ2s. We estimates the share of the SFHA in the
experimental hydrogen gas required for eliminating the above discrepancy and found this share to be
about the same as the share of the usual hydrogen atoms. Thus, our results constitute the third proof
from atomic experiments that the SFHA does exist, the first proof being related to the experimental
distribution of the linear momentum in the ground state of hydrogen atoms, and the second proof
being related to the experimental cross-section of charge exchange between hydrogen atoms and
low-energy protons.

Keywords: electron impact excitation of hydrogen atoms; discrepancy between theories and experi-
ments; second flavor of hydrogen atoms

1. Introduction

The theoretical discovery of the Second Flavor of Hydrogen Atoms (SFHA) in [1] was
followed by the first experimental proof of their existence. Namely, the high-energy tail of
the linear momentum distribution in the ground state of hydrogen atoms (the distribution
being derived from the analysis of atomic experiments) was greater than the theoretical
prediction for the usual hydrogen atoms by several orders of magnitude. The allowance
for the SFHA eliminated this huge discrepancy [1].

The second piece of experimental evidence of the existence of the SFHA was obtained
by analyzing experiments on charge exchange during collisions of low-energy protons
with hydrogen atoms [2]. Namely, the allowance for the SFHA brought the corresponding
theoretical cross-sections into agreement with the experiments within the experimental
error margins.

The proven existence of the SFHA has importance for atomic physics in its own right.
However, it has also turned out to have significant astrophysical consequences, including
for the most fundamental problem of cosmology: finding out what dark matter is, as
explained below.

Bowman et al. [3] reported a perplexing observation of the redshifted 21 cm spectral
line from the early Universe. The absorption signal turned out to be about two times more
intense than expected from the standard cosmology, thus indicating an additional cooling
of the primordial hydrogen gas. Barkana [4] suggested that the additional cooling was due
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to collisions with some unspecified dark matter particles. In [5], it was demonstrated that,
if the additional cooling was caused by collisions with the SFHA, this huge discrepancy
would be removed. This outcome suggested the SFHA as a candidate for dark matter.

Jeffrey et al. [6] reported that the observed distribution of dark matter in the Universe
was found to be smoother than the predictions based on Einstein’s gravitation. This
puzzle induced suggestions that new physical laws are needed: a non-Einsteinian gravity.
However, in [7], it was shown that the allowance for the SFHA explains the puzzling
observational results from Jeffrey et al. [6] not only qualitatively, but also quantitatively.

It should be emphasized that the theory behind the SFHA is the standard quantum-
mechanical Dirac equation. So, the qualitative and quantitative explanations of the perplex-
ing observations by Bowman et al. [3] and by Jeffrey et al. [6] obtained by using the SFHA
did not introduce any new physical laws (in distinction to the overwhelming majority of
other hypotheses on the nature of dark matter) and, therefore, are favored by the principle
of Occam’s razor. All of this solidified the status of the SFHA as a leading candidate for
dark matter (or at least for a part of it).

In the present paper, we provide yet another experimental proof of the existence
of the SFHA from the third type of atomic experiment: experiments on the electron im-
pact excitation of hydrogen atoms to the states of the principal quantum number, n = 2.
There are many different theoretical approaches to this process—see, e.g., [8–17] (listed
in alphabetical order) and the references therein. In our analysis, we limit ourselves to
the corresponding experimental and theoretical work where both the cross-section σ2s
of the excitation of the 2s state and the cross-section σ2p of the excitation of the 2p state
were determined within the same experiment or within the same theoretical approach. Then, we
compare the experimental and theoretical ratios of the cross-sections σ2s/σ2p. We show
that this theoretical ratio is systematically higher than the experimental ratio by about 20%
(far beyond the experimental error margins). We explain that the presence of the SFHA in
the experimental hydrogen gas could be responsible for this discrepancy and estimate the
share of the SFHA in the mixture that would be sufficient to eliminate this discrepancy.

2. Comparison of the Experimental Ratios of the Cross-Sections with Theories

Let us first outline the idea. We consider a gas of hydrogen atoms representing a
mixture of the SFHA and the usual hydrogen atoms. Further, we consider the excitation
of these hydrogen atoms from the ground state to the 2s and 2p states due to electron
impact. The experimental measurements of the cross-section σ2p for the excitation to the
2p state are determined by observing the emission of the Lyman-alpha line from the 2p
state to the ground state. As for the experimental measurements of the cross-section σ2s for
the excitation to the 2s state, they are determined by using the quenching technique: by
applying an electric field that mixes the 2s state with the 2p state and then observing the
emission of the Lyman-alpha line from the 2p state to the ground state—see, e.g., [18–20]
(listed in alphabetical order).

The central point is the following. In the mixture of the SFHA with the usual hydrogen
atoms, both the SFHA and the usual hydrogen atoms can be excited to the 2s state. However,
after applying the electric field, the mixing of the 2s and 2p states (followed by the emission
of the Lyman-alpha line) occurs only for the usual hydrogen atoms. This is because the
SFHA has only s-states, so they do not contribute to the observed Lyman-alpha signal.
Therefore, measurements of the cross-section σ2s that are conducted in this way should
underestimate this cross-section compared to its actual value, while the cross-section σ2p
should not be affected by the presence of the SFHA. Consequently, by comparing the
experimental ratio σ2s/σ2p with the corresponding theoretical ratio, it should be possible
to find out whether the SFHA was present in the hydrogen gas used in the experiments
and to estimate the percentage of the SFHA in that hydrogen gas.

The 2s and 2p states are chosen for the following reasons. From the experimental
viewpoint, for n > 2, the quenching electric field would mix not only s- and p-states, but
also states with a higher angular momentum. From the theoretical viewpoint, calculations
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for n = 2 states are simpler than for n > 2 states. Therefore, the 2s and 2p states represent
the simplest (and, thus, most reliable) test bed from both the experimental and theoretical
viewpoints.

Various types of calculations of the absolute cross-section σ2s yield significantly dif-
ferent results—up to a factor of two [8]. Various types of calculations of the absolute
cross-section σ2p also yield significantly different results. Therefore, for the stated pur-
pose of our study, we limit ourselves to theoretical papers where both σ2s and σ2p were
calculated within the same approach, and we focus on the corresponding σ2s/σ2p ratio
within each theoretical approach. In this way, the scatter of the σ2s/σ2p ratios calculated
with different theoretical approaches should be noticeably smaller than the scatter of the
absolute cross-sections.

Guided by this principle, we determined the theoretical σ2s/σ2p ratio from the values
of σ2s and σ2p, which were calculated at three different energies of the incoming electrons
by Whelan et al. [16] by using close coupling with the pseudostate basis within the 13-state
approximation. We also determined the theoretical σ2s/σ2p ratio from the values of σ2s and
σ2p, which were calculated at four different energies of the incoming electrons by Whelan
et al. [16] by using the second Born approximation. Then, we determined the corresponding
experimental σ2s/σ2p ratio from the values of σ2s and σ2p presented in a paper by Callaway
and McDowell [18], which is the latest (to the best of our knowledge) and most accurate
discussion of experiments where both σ2s and σ2p were measured in the range of energies
given below. (These values of σ2s and σ2p were also cited by Whelan et al. [16].) The results
are presented in Table 1.

Table 1. Comparison of the experimental ratios of the cross-sections σ2s/σ2p that we determined on
the basis of the paper by Callaway and McDowell [18] with the corresponding theoretical ratios that
we determined on the basis of the paper by Whelan et al. [16].

Energy (eV)

σ2s/σ2p from Close
Coupling with

Pseudostates in 13-State
Approximation

σ2s/σ2p from 2nd
Born

Approximation

Average of These
Two Theories

Experimental Ratio
σ2s/σ2p

Ratio of the Average
Theoretical Value to

the Experimental
One

35 N/A 0.097 0.097 0.079 1.23

41.65 0.0933 0.0912 0.092 0.076 1.21

50 0.0802 0.0851 0.083 0.070 1.19

54.4 0.0774 0.0828 0.080 0.067 1.19

It can be seen that the average theoretical σ2s/σ2p ratio consistently exceeded the
corresponding experimental ratio by about 20% over the entire experimental range of
energies. This difference was far beyond the experimental error margin, which was 9% or
less. At first glance, this might seem to indicate that about 20% of the hydrogen gas used in
the experiments was of the SFHA. However, the actual percentage of the SFHA was much
higher, as explained below.

The SFHA differs from the usual hydrogen atoms not only by the fact that the quench-
ing of the 2s state of the SFHA does not work because of the absence of the 2p state (as
already noted above), but also in terms of the value of the cross-section of the excitation to
the 2s state.

Indeed, for the usual hydrogen atoms, the contribution to the excitation cross-section
σ2s,usual originates not only from the direct transition of 1s–2s, but also from numerous
cascade transitions via the intermediate states with a higher angular momentum. In
distinction, for the SFHA, the contribution to the excitation cross-section σ2s,SFHA originates
only from the direct 1–2s transition because there are no states with a higher angular
momentum, so σ2s,SFHA should be significantly smaller than σ2s,usual.

If α is the share of the SFHA in a hydrogen gas mixture, then the effective theoretical
cross-section is

σ2s,eff = α σ2s,SFHA + (1 − α) σ2s,usual. (1)
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The experimental cross-section observed by using the quenching technique is

σ2s,exp = (1 − α) σ2s,usual. (2)

Consequently, the ratio of the effective theoretical cross-section to the experimental
cross-section is

σ2s,eff/σ2s,exp = 1 + [α/(1 − α)] σ2s,SFHA/σ2s,usual. (3)

From Equation (3), the ratio of the share of the SFHA to the share of the usual hydrogen
gas in the experimental mixture can be represented in the form

α/(1 − α) = [σ2s,eff/σ2s,exp − 1] [σ2s,usual/σ2s,SFHA]. (4)

From the analysis in the preceding part of this paper, we found the first factor in the
right side of Equation (4) to be

σ2s,eff/σ2s,exp − 1 ≈ 0.2. (5)

Now, let us estimate the second factor on the right side of Equation (3).
In a paper by Poet [14], the author provided analytical results for the excitation cross-

section σ2s for a model where the wave functions of the hydrogen states were spherically
symmetric. In other words, the target was a hydrogen atom with only s-states. This means
that the results obtained by Poet [14] are applicable to the SFHA.

In a paper by Bhatia [9], the author compared his calculations of the excitation cross-
section σ2s,usual, which was obtained with the variational polarized orbital method, with the
corresponding results from Poet [14], that is, with σ2s,SFHA. It can be seen that, for the values
of the energy (of the incoming electrons) closest to the experimental range of the energies
from [18], the σ2s,usual/σ2s,SFHA ratio was about 4. Consequently, from Equation (4), the
ratio of the share of the SFHA to the share of the usual hydrogen gas in the experimental
mixture can be estimated as

α/(1 − α) ≈ 0.8. (6)

In other words, in the hydrogen gas used in the experiments discussed by Callaway
and McDowell [18], the SFHA and the usual hydrogen atoms were represented by about
equal shares. Thus, our results constitute the third proof from atomic experiments (this
time, from experiments on the excitation of the n = 2 states of atomic hydrogen due to
electron impact) that the SFHA does exist.

We note that the σ2s,usual/σ2s,SFHA ratio grows as the incident electron energy increases,
as can be seen in Table 1 of Bhatia’s paper [9]. Therefore, one can expect that, as the incident
electron energy increases, the experimental σ2s/σ2p ratio should become closer to unity
when keeping the product on the right side of Equation (4) approximately constant, since
it is reasonable to expect that the ratio of the share of the SFHA to the share of the usual
hydrogen gas in the experimental mixture is independent of the incoming electron energy.
As the experimental σ2s/σ2p ratio would become closer to unity, it would fall within the
experimental error margins. Thus, to determine the presence and the share of the SFHA
in an experimental gas mixture, one should not use an electron beam with too high of an
energy.

The range of energies below the ionization threshold is also not favorable for determin-
ing the presence and the share of the SFHA in experimental gas mixtures. This is because,
in this range, the excitation cross-sections σ2s and σ2p are strongly dominated by so-called
“resonances”, which are temporary negative hydrogen ions consisting of a proton and two
highly correlated electrons—see, e.g., the paper by Williams [21] and the references therein.
However, there is no “second flavor” of a negative hydrogen ion. This is because there is
no singular solution (outside the proton) for two highly correlated electrons, in distinction
to the singular solution (outside the proton) of the Dirac equation for hydrogen atoms, the
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solution representing the SFHA. Therefore, in this range of energies, the SFHA practically
does not contribute to both σ2s and σ2p.

Thus, the range of incoming electron energies that is most favorable for determining
the presence and share of the SFHA in an experimental gas mixture seems to be the range
presented in Table 1.

3. Conclusions

For the excitation of the n = 2 states of hydrogen atoms due to electron impact, we
compared the experimental and theoretical ratios of the cross-sections σ2s/σ2p. We found
that this theoretical ratio is systematically higher than the experimental ratio by about 20%
(far beyond the experimental error margins) over the entire range of the energies of the
incoming electrons used in the experiment by Callaway and McDowell [18].

We suggested that this discrepancy can be explained by the presence of the SFHA in the
experimental hydrogen gas. This explanation is based on the fact that, in the experiments,
the cross-section σ2s was determined by using the quenching technique—by applying
an electric field that mixed the 2s and 2p states, followed by the emission of the Lyman-
alpha line from the 2p state. However, the SFHA only has s-states, so the quenching
technique would not count the excitation of the SFHA in the 2s state and, thus, lead to the
underestimation of the experimental cross-section σ2s.

We estimated the share of the SFHA in an experimental hydrogen gas required to
eliminate the above discrepancy and found this share to be about the same as the share
of the usual hydrogen atoms. Thus, our results constitute the third proof from atomic
experiments that the SFHA does exist—this time, from experiments on the excitation of the
n = 2 states of atomic hydrogen due to electron impact. This is also important because the
SFHA is the leading candidate for dark matter (or at least for a part of it).
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Abstract: Vector-valued electromagnetic waves for which the integral of the electric field over time
is zero at every location in space were characterized as “usual” by Bessonov several decades ago.
Otherwise, they were called “strange”. Recently, Popov and Vinogradov studied conditions leading
to usual waves using a spectral representation. Their main result is that pulses of finite energy in
free space are usual and, consequently, bipolar. However, they do not exclude the possibility of the
existence of finite-energy strange pulses, although quite exotic, in a vacuum. Our emphasis in this
article is to examine what the relevant necessary and sufficient conditions are for usual and strange
waves, particularly for scalar pulses. Illustrative examples are provided, including spherical symmet-
ric collapsing pulses, propagation-invariant, and the so-called almost undistorted spatiotemporally
localized waves. Finally, source-generated strange electromagnetic fields are reported.

Keywords: space-time couplings; spatiotemporal; ultrafast optics; bipolar pulses; few-cycle pulses;
free-space wave equation; space-time wave packets; nondiffracting localized waves

1. Introduction

Progress in the generation and application of femtosecond and attosecond electro-
magnetic (EM) pulses have stimulated theoretical research of few-cycle and near-cycle
localized exact solutions of the free-space wave equation (see, e.g., [1,2] and references
therein). A strong space-time coupling, inherent to such pulses in focusing, makes the
classical well-known approximations inapplicable. Moreover, with the decrease in the
duration of optical pulses, there is a growing need to go beyond the quasi-monochromatic
limit, and spectral representations of fields lose their advantages over direct time-domain
ones. There is an ultimate milestone on the road away from the narrow-band limit—where
the temporal spectrum of the pulse extends to the frequency scale origin. This causes a
merging of positive-frequency and negative-frequency Fourier components, and as a result,
the concept of analytic signal with its Hilbert-transform-related real and imaginary parts
remains the only sound alternative for determining the envelope of a pulse.

If the spectrum vanishes at the frequency ω = 0, the pulse is bipolar. Several decades
ago Bessonov [3] introduced the term “strange” for waves whose electric field does not
obey the equality

→
S E

(→
r
)
≡

∞∫
−∞

→
E(
→
r , t)dt = 0 (1)

and called “usual” all waves satisfying Equation (1) at every location
→
r . It is obvious that

usual waves are necessarily bipolar.
In a recent paper [4], Popov and Vinogradov studied conditions leading to Equation (1)

using a spectral representation. Their main result is that pulses of finite energy in free
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space are usual and, consequently, bipolar. However, they do not exclude the possibility of
the existence of finite-energy strange pulses, although quite exotic, in a vacuum. In other
words, they have not proved that the finiteness of pulse energy is a sufficient condition for
a pulse to be usual (not strange). Of course, it is not a necessary condition, as a bipolar
plane wave pulse can already readily be a usual one.

We will neither question the results of the paper [4] nor prove the sufficiency of the
energy condition. Instead, our aims here are to analyze what the relevant necessary and
sufficient conditions are and to study the problem with several sample waves.

Specifically, we first consider spherically symmetric pulses converging to and there-
after, at positive times, diverging from a focus at the origin, i.e., pulses described by
a wavefunction

ψ
(→

r , t
)
=

1
r
[ f (t + r/c)− f (t− r/c)], (2)

where f (s) is an arbitrary nonsingular function depending on the spherical radial coordi-
nate r =

√
x2 + y2 + z2 and time t, with c being the speed of light in a vacuum.

Second, we consider axially symmetric propagation-invariant pulses [5–10] whose
wavefunction and/or energy density depend on the axial coordinate and time solely
through the propagation variable ζ = z− vt, where v is the group velocity of the pulse.
These fields exhibit pronounced space-time coupling. From a theoretical point of view it is
interesting that the second type of pulses can be obtained from spherically symmetric ones
via relativistic boosts and/or complexifying the axis z [5,6,8]. Finally, we study some exotic
pulses described by sophisticated solutions of the wave equation.

2. Methods

We primarily analyze scalar waves for the following reasons:

1. Every component of the electric (and magnetic) field is a scalar-valued field that

obeys the wave equation. Hence, in order to judge for a chosen wavefunction ψ
(→

r , t
)

whether the corresponding EM pulse is strange or not, it is sufficient to evaluate
the integral

Sψ

(→
r
)
=

∞∫
−∞

ψ(
→
r , t)dt. (3)

2. If EM field vectors are derived by the standard procedure of constructing the magnetic

vector potential or the Hertz vector from ψ
(→

r , t
)

, even simple expressions of ψ
(→

r , t
)

may result in too cumbersome ones for the EM field vectors, and the integral of
Equation (1) may be difficult to evaluate. Moreover, as the procedure involves taking
derivatives with respect to time and/or spatial coordinates, a strange ψ

(→
r , t

)
, i.e.,

one with property Sψ

(→
r
)
�= 0, generally results in a usual EM field, i.e.,

→
S E

(→
r
)
= 0.

3. The notion of strangeness also applies to wave fields that are scalar valued by their
physical nature, e.g., sound waves.

It should be pointed out that our approach does not mean resorting to a scalar approx-
imation for EM fields.

In order to determine whether an electric field is strange or not, one can avoid inte-
gration according to Equation (1), which in most cases is a computationally difficult task.

Instead, one can make use of the expression
→
E
(→

r , t
)
= −∂

→
A
(→

r , t
)

/∂t of the electric field
derived from a magnetic vector potential in the Coulomb gauge and consider the vector
potential at t = ±∞ instead of evaluation the integral of the electric field. It is convenient

to derive the vector potential from a scalar wavefunction as
→
A
(→

r , t
)
= ∇×

[
ψ
(→

r , t
)→

a z

]
,

where
→
a z is the unit vector along the z-axis. In the case of cylindrical symmetry, only the

azimuthal component remains, and it takes the simple form Aϕ(ρ, z, t) = −∂ψ(ρ, z, t)/∂ρ.
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In the case of spherical symmetry, the unit vector
→
a z needs to first be expressed in a spheri-

cal coordinate system, and then for the curl, only the azimuthal component remains, taking
a similar simple form Aϕ(r, θ, t) = − sin θ∂ψ(r, θ, t)/∂r. Hence, if one of the following
equalities is fulfilled at every location, in the case of cylindrical or spherical symmetry,
respectively,

lim
t→∞

∂

∂ρ
[ψ(ρ, z, t)− ψ(ρ, z,−t)] = 0, lim

t→∞

∂

∂r
[ψ(r, θ, t)− ψ(r, θ,−t)] sin θ = 0, (4)

the corresponding electric field is not strange. Equation (4) has been successfully applied
for the examples in Section 3.

2.1. Evaluation of the Wave Pulse Energy

The (total) energy of a physically realizable pulse is a time-independent spatial integral
(over the whole space) of the energy density, which in the case of an EM wave is given
by the well-known expression with squares of strengths of electric and magnetic fields.
Energy density of a scalar field is frequently defined as the square of the wavefunction (or
modulus squared for complex-valued fields). However, the spatial integral of the latter
will not be used below for establishing whether the EM pulse corresponding to a given
wavefunction has finite or infinite energy.

For scalar-valued wave fields, another definition of the energy density exists [11],
which is consistent with the energy conservation law and the Poynting theorem. It is given
by Equation (5) below. We will call the spatial integral of W the Mandel-Wolf total energy for
brevity. Conditions in the spectral domain—analogous to those in [4]—for a scalar field to
have finite energy and be usual are discussed in Appendix A.

W =
1
2

[
1
c2

(
∂

∂t
ψ

)2
+∇ψ·∇ψ

]
. (5)

In order to establish whether a chosen wavefunction gives a pulse of finite energy or
not, we used two different packages of scientific calculation for symbolic integration—or, if
it turned out to be impossible—numerical integration.

2.2. Time-Domain Representation

As an alternative to using the Fourier expansion of the field as done in [4], for the
constituents of the field one may take the singular propagator D(r, t) (sometimes called the
Riemann or Schwinger function)

D(r, t) =
1

4πrc2 [δ(r/c− t)− δ(r/c + t)] ≡ G+(r, t)− G−(r, t), (6)

where δ(.) denotes the Dirac delta and G± are the causal (retarded) and anticausal (ad-
vanced) Green functions, respectively. The function D(r, t) represents a spherically sym-
metric delta-shaped pulse wave, first (at negative times t) collapsing to the origin (the right
term) and then (at positive times t) expanding from it.

With this propagator as an elementary constituent, any solution to the three-dimensional
homogeneous wave equation can be expressed as the following convolution integral over
the whole 3D space:

ψ
(→

r , t
)
=

∫ [
D(R, t)h

(→
r
′)

+
∂

∂t
D(R, t)g

(→
r
′)]

d
→
r
′
. (7)

Here, R =
∣∣∣→r −→r ′∣∣∣ and the distributions g(.) and h(.) are determined by the ini-

tial conditions—the field “snapshot” at the time origin moment g
(→

r
)

= ψ
(→

r , 0
)

and
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h
(→

r
)
= ∂/∂t ψ

(→
r , t

)∣∣∣
t=0

. However, unlike the solution of a radiation problem, since
D contains not only the retarded Green function but the advanced one as well, g and h
describe a distribution of fictitious Huygens-type sources, i.e., sources coupled with sinks
of the same strength.

3. Results

3.1. General Conditions for a Pulse to Be “Usual”
3.1.1. Sufficient Conditions

With the help of Equation (7), we can easily find conditions under which the field is
not “strange”, i.e., conditions of vanishing of the time integral in Equation (3), or—keeping
in view the text before it—also conditions for fulfillment of Equation (1). Since D(R, t) is an
odd function with respect to time, the first term of the integrand in Equation (7) in any case
does not contribute to Sψ

(→
r
)

. As the δ-function equals zero at infinity, the time integral of

the second term vanishes if R =
∣∣∣→r −→r ′∣∣∣ remains finite in the spatial integration. Hence,

any wave field that is spatially bounded at a certain instant of time (when the pulse is
focused) cannot be “strange”. Any such pulse, if it has no unphysical singularities, has finite
energy irrespective of which of the abovementioned definitions of the pulse energy has
been taken. Hence, the sufficient condition formulated here is consistent with the one found
by Popov and Vinogradov [4]. The second term also vanishes if g

(→
r
)
= ψ

(→
r , 0

)
= 0 in

the whole space. This condition means that any nontrivial ψ
(→

r , t
)

must be an odd function
of time. Therefore, such oddness is another sufficient condition for a pulse to be “usual”.
The results of the next subsection demonstrate accordance with this condition.

3.1.2. Necessary and Sufficient Conditions

For a field to be usual (not strange), the integral in Equation (1) or (3) must vanish
everywhere. Therefore, we obtain the necessary condition that it must vanish at the

origin
→
r = 0. In this case, we write R =

∣∣∣→r ′∣∣∣ ≡ r, omitting the prime for simplicity.
After integration from t = −T to t = T and subsequently taking the limit T → ∞ in
accordance with Equation (3), the second term in Equation (7) can be transformed in
spherical coordinates as follows:[∫

D(R, t)g(r, θ, ϕ)R2 sin θdRdθdϕ
]T
−T =

= 1
4πc2

{∫
r−1

[
δ(r/c− T)− δ(r/c + T)−
−δ(r/c + T) + δ(r/c− T)

]
g(r, θ, ϕ)r2 sin θdrdθdϕ

}
=

= 2 1
4π

∫
g(cT, θ, ϕ)T sin θdθdϕ = 2T〈g〉cT .

Here, gcT denotes the average value of the function g on the surface of a sphere with
radius cT and center at the origin. Therefore, a necessary condition for a wave field to be
usual is lim

T→∞
T〈g〉cT = 0.

Generally, this means that g(r, θ, ϕ) must asymptotically vanish as r → ∞ faster than
1/r. Of course, the surface average might be zero irrespective to such asymptotic behavior
of g(r, θ, ϕ) if the latter is bipolar on the surface, and due to some symmetry the regions
of opposite sign cancel each other. However, if applying the condition for a sphere whose
center is shifted from the origin, the symmetry would disappear and the condition would
be fulfilled due to only the aforementioned asymptotic behavior of g(r, θ, ϕ).

The transformation of the integral carried out above remains valid for an arbitrary
point

→
r �= 0 in Equation (7). The reason for this is that whatever the point in the field

is, its radial vector is fixed while
→
|r| runs together with cT to infinity. Therefore,

→
r can

be neglected in the expression R =
∣∣∣→r −→r ′∣∣∣. Consequently, the necessary and sufficient

condition for a wavefield to be “usual” can be stated as follows. The wavefunction g(r, θ, ϕ)
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at t = 0 must vanish asymptotically as r → ∞ faster than 1/r; in other words, the following
equality must be fulfilled:

lim
r→∞

rψ(r, θ, ϕ, 0) = 0. (8)

Application of the criterion in Equation (8) is especially appropriate when ψ
(→

r , t
)

contains multivalued complex functions and direct temporal integration according to
Equation (3) may be hampered due to crossing the branch-cut lines.

3.2. Spherically Symmetric Pulses: Some Examples

Such pulses, the general form of the wavefunction of which is given by Equation (2),
are the simplest to analyze. If ψ

(→
r , t

)
in the form of Equation (2) is used to construct a

vector magnetic potential, simple relations between f (s) and EM field vectors and EM
pulse energy have been derived in [12] and references therein.

3.2.1. Even and Odd Lorentzians

We studied the functions fe(s) = 1/
(
1 + s2n) and fo(s) = s/

(
1 + s2n) (see Equation (2))

where n = 1, 2, . . .. Results concerning the strangeness of such fields are as follows:

(a) If f (s) is an even function, ψ
(→

r , t
)

is odd with respect to time (hence, automatically

not strange) and
→
E(
→
r , t) is even, but nevertheless not strange. The magnetic field is

odd and, hence, not strange.
(b) If f (s) is odd, ψ

(→
r , t

)
is even with respect to time (but nevertheless not strange) and

→
E(
→
r , t) is odd, i.e., automatically is not strange. The magnetic field is even, but still

not strange.

For these pulses the Mandel–Wolf energy and EM energy are both finite.

3.2.2. Error Function

The function f (s) = erf(s) is odd, and consequently, ψ
(→

r , t
)

is even. However, it
is strange and it is not square-integrable. Nevertheless, its Mandel–Wolf energy and EM

energy are both finite. In accordance with point (b) above,
→
E(
→
r , t) is odd, i.e., automatically

not strange. The magnetic field is an even function of time but still not strange.

3.3. Propagation-Invariant Pulses: Some Examples
3.3.1. Superluminal X-Waves

Inspired by the quotation “Therefore, the possibility of the existence of strange and
unipolar pulses in a vacuum, although quite exotic, remains” from [4], we turned to the
so-called X-waves, which were first intruduced in [5,13] and then studied in numerous
papers; see [6–9] and references therein.

The so-called fundamental axisymmetric X-wave is given by

ψ(ρ, z, t) =
a√

[a + i(z− vt)]2 + ρ2γ−2
, (9)

where γ =
(
v2/c2 − 1

)−1/2 is the superluminal version of the Lorentz factor, including
the velocity v > c of the pulse; a is a positive parameter that determines the width of the
pulse; and ρ =

√
x2 + y2. This wavefunction is commonly considered as a white-spectrum

superposition of Bessel beams.
Referring to Equation (7), it can be also derived as Liénard–Wiechert potentials for

Lorentzian distributions of fictitous “charges” (sources and sinks) flying with the constant

velocity v along the axis z, i.e., the distributions being a
[
(z− vt)2 + a2

]−1
δ(x)δ(y) (for
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the imaginary part of ψ(.) and (z− vt)
[
(z− vt)2 + a2

]−1
δ(x)δ(y) (for the real part) [14].

The real part of Equation (9) respresents a strange scalar field and the imaginary part an
ordinary (usual) scalar field. At the origin, ψ(0, 0, t) = a/(a− ivt), the temporal spectrum
of the real part is proportional to exp(−a|ω|/v) while that of the imaginary part is propor-
tional to signum(ω) exp(−a|ω|/v). Hence, although both spectra have their maxima at
infinitesimally small frequencies, the spectrum of the imaginary part lacks the constituent
at ω = 0 exactly, which is in accordance with the established difference in strangeness of
the real and imaginary parts.

If the EM vector fields are derived from Equation (9) by standard procedures involving
the vector magnetic potential or the Hertz vector, then, due to taking derivatives in the
course of these procedures, the EM field turns out to be usual.

A specific procedure to obtain an EM field avoiding the derivatives is to derive the
following complex-valued Riemann–Silberstein vector

→
F
(→

r , t
)
= ic2

√
(v/c)2−1

v2Q
(→

r ,t
) P−

(→
r ,t

)
P+

(→
r ,t

)→a x − c
√

(v/c)2−1

vQ
(→

r ,t
) P−

(→
r ,t

)
P+

(→
r ,t

)→a x + c2 (v/c)2−1

v2Q
(→

r ,t
)→a z;

Q
(→

r , t
)
=

√(
(v/c)2 − 1

)
ρ2 + (a + i(z− vt))2;

P±
(→

r , t
)
=

√
1± a+i(z−vt)

Q
(→

r ,t
)

(10)

which arises from a superposition of vector-valued Bessel beams. It can be expressed as
→
F
(→

r , t
)
=
√

ε0/2
(→

E + ic
→
B
)

, where ε0 is the permittivity of free space and
→
E and

→
B are

real fields obeying the homogeneous Maxwell equations. The z-component of
→
F
(→

r , t
)

is essentially the infinite-energy superluminal fundamental X wave, as one can see by
inspection of Equations (9) and (10). Hence, the real part of the electric field is a strange
field, whereas the magnetic field is a usual field. The EM wave pulse energy is infinite quite
analogously to the case of plane waves. This is understandable because the X wave can be
thought of as a superposition of plane wave pulses directed along a conical surface.

3.3.2. Subluminal Arctan-Wave

The expression in Reference [6]

ψ
(→

r , t
)
= 1√

ρ2+γ2(z−vt)2
tan−1

( √
ρ2+γ2(z−vt)2

a+iγ(v/c)
(

z− c2
v t

)
)

;

γ = 1/
√

1− (v/c)2, v < c,

(11)

where again ρ is the polar radial coordinate, is a subluminal localized wave that is relatively
undistorted upon propagation depending on the value of the positive free parameter
a. The real part of ψ

(→
r , t

)
has a finite Mandel–Wolf total energy and is a strange field;

however, its imaginary part is normal (usual). Additionally, the finite-energy corresponding
electromagnetic fields, constructed within the framework of either a Coulomb gauge or a
vector Hertz potential, are usual fields.

3.3.3. Luminal Localized Wave

In cylindrical coordinates, the azimuthally symmetric expression

ψ
(→

r , t
)
=

1√
4b2ρ2 + [−b2 + (a1 + iς)(a2 − iη) + ρ2]

2
, (12)

where ζ = z− ct, η = z + ct are the characteristic variables of the one-dimensional scalar
wave equation in vacuum and a1,2 and b are positive free parameters, is a spatiotemporally
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localized extended splash-mode nonsingular solution to the (3 + 1)-dimensional scalar
wave equation under the condition a1a2 − b2 > 0. It can be derived from a superposition of
Bessel–Gauss focus wave modes (FWM). For b = 0, it reduces to the ordinary first-order
splash-mode first derived by Ziolkowski (see, e.g., [5,6]); the latter is not strange. The scalar
wave field in Equation (12) is not strange, and the Wolf–Mandel total energy of its real

part is finite. The electric and magnetic fields arising from a vector potential
→
A
(→

r , t
)
=

∇×
[
ψ
(→

r , t
)→

a z

]
within the framework of a Coulomb gauge have been examined. The

electric and magnetic fields are usual. The total electromagnetic energy is finite.
The reason why the “strangeness” integral of Equation (3) turns out to be zero can be

understood from Figure 1.

Figure 1. Dependencies of the real part (red) and imaginary part (blue) of the wavefunction in
Equation (12) on time (for specificity—in the optical femtosecond domain) along the propagation axis
(where ρ = 0). Ordinate scales are normalized to Reψ(0, 0) (see (a)), but notice the change of the scale
in (b–d). Spatial locations: (a) z = 0 μm; (b) z = 0.4 μm; (c) z = 0.8 μm; (d) z = −0.8 μm. Values of
the parameters: a1 = 0.1 μm, a2 = 0.2 μm, b = 0.1 μm.

At first glance, the real part is unipolar (à la that of the X wave); i.e., the real field
seems to be strange. However, closer inspection of Figure 1a indicates that the peak appears
on the negative-polarity background, which makes the area under the curve equal to zero,
as is the case with the imaginary part. Plots (a) and (b) show that outside the origin, the
pulse splits into two counterpropagating ones. Comparison of plots (c) and (d) shows
that the real part of the wavefunction is even with respect to simultaneous inversion
of the sign of the variables z, t and the imaginary part is odd with respect to the same
inversion. It should be mentioned that neither numerical computation of the “strangeness”
integral Equation (3) nor plotting of the wavefunction can be properly accomplished by
straightforward application of Equation (12) due to presence of a brach cut in the square
root function of a complex-valued argument.
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3.4. Strange Fields Generated by Sources
3.4.1. Bonnor Fields

In cylindrical coordinates, we identify two regions of space: ρ ≥ a (outside) and ρ ≤ a
(inside). Motivated by Bonnor’s work [15], we specify scalar and vector potentials in the
two regions:

Φ0(ρ, φ, z, t) = e−(t−z)2
cos φ/ρ, A0(ρ, φ, z, t) = Φ0(ρ, φ, z, t)

→
a z;

Φi(ρ, φ, z, t) = e−(t−z)2
(

4ρ2

a3 − 3ρ3

a4

)
cos φ, Ai(ρ, φ, z, t) = Φi(ρ, φ, z, t)

→
a z.

(13)

Here, normalization with the speed of light in a vacuum equal to unity has been
used. These potential fields satisfy the Lorentz condition. Additionally, the continuity
Φ0(a, φ, z, t) = Φi(a, φ, z, t) should be noted.

In the region ρ ≤ a, the electric volume charge and current densities are determined
as follows:

ρvi = −
(
∇2 − ∂2

∂t2

)
Φi = − 12e−(t−z)2 (a−2ρ) cos φ

a4 ,
→
J vi = −

(
∇2 − ∂2

∂t2

)→
Ai = ρvi

→
a z.

(14)

The total charge in this region equals zero. No charges exist for ρ ≥ a.
The electric and magnetic fields in the two regions are given by the expressions

→
E0 = −∇Φ0 − ∂

→
A0/∂t = e−(t−z)2 cos φ

ρ2
→
a ρ +

e−(t−z)2 sin φ

ρ2
→
a φ;

→
B0 = ∇×

→
A0 = − e−(t−z)2 sin φ

ρ2
→
a ρ +

e−(t−z)2 cos φ

ρ2
→
a φ;

→
Ei =

e−(t−z)2 ρ(−8a+9ρ) cos φ

a4
→
a ρ +

e−(t−z)2 ρ(4a−3ρ) sin φ

a4
→
a φ;

→
Bi = − e−(t−z)2 ρ(4a−3ρ) sin φ

a4
→
a ρ − e−(t−z)2 ρ(8a−9ρ) cos φ

a4
→
a φ;

(15)

These are transverse electromagnetic (TEM) structures propagating along the z-direction
with the normalized speed of light in vacuum. Both the electric and magnetic fields are
strange. The total energy associated with these fields is finite.

3.4.2. Single-Cycle Dipole Electromagnetic Fields

Wang et al. [16] have derived single-cylce electromagnetic fields generated by an
oscillating elecric dipole oriented along the x-direction. We examined these fields for
“strangeness”. The electric field is strange but not the magnetic field.

4. Conclusions

Motivated by the recent work of Popov and Vinogradov [4], we have examined the
relevant conditions for usual and strange waves, particularly for scalar pulses. General
necessary and sufficient conditions for scalar and electromagnetic field pulses possessing
spatiotemporal coupling to be “usual” or “strange” have been derived in the time domain,
and their application has been illustrated. For various examples of luminal and rather
peculiar subluminal and superluminal scalar waves, it has been shown that even if they
are strange, the corresponding finite-energy electromagnetic fields constructed from the
scalar fields from either a magnetic potential within the framework of a Coulomb gauge or
a vector Hertz potential are usual. Finally, source-generated strange electromagnetic fields
have been reported.
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Appendix A

Let ψ
(→

r , t
)

be a real function satisfying the homogeneous scalar wave equation in
free space. The energy transport equation for such a wavefunction is given by

∇ ·
→
S +

∂

∂t
W = 0, (A1)

where

W =
1
2

[
1
c2

(
∂

∂t
ψ

)2
+∇ψ · ∇ψ

]
,
→
S = − ∂

∂t
ψ ∇ψ (A2)

are, respectively, the real energy density in units J/m3 and the real energy flow vector
(W/m2).

Let the real field ψ
(→

r , t
)

be expressed in terms of its spatial Fourier spectrum
as follows:

ψ
(→

r , t
)
=

1

(2π)3

∫
d
→
k Ψ

(→
k , t

)
ei
→
k ·→r . (A3)

Then, the total energy density can be written as follows:

Wtotal =
∫

d
→
r W

(→
r , t

)
=

1
2

1

(2π)3

∫
d
→
k
[

1
c2

.
Ψ
(→

k , t
)

.
Ψ
∗
(→

k , t
)
+ k2Ψ

(→
k , t

)
Ψ∗

(→
k , t

)]
, (A4)

where the dot indicates differentiation with respect of time. Bearing in mind the dispersion
relationship −k2 + ω2/c2 = 0, we assume, next, the form

Ψ
(→

k , t
)
= Ψ−

(→
k
)

eikct + Ψ+

(→
k
)

e−ikct. (A5)

Then, we have

Wtotal =
1
2

1

(2π)3

∫
d
→
k k2

[∣∣∣∣Ψ−(→k )∣∣∣∣2 + ∣∣∣∣Ψ+

(→
k
)∣∣∣∣2

]
. (A6)

Next, let the wavefunction ψ
(→

r , t
)

be defined as ψ
(→

r , t
)
= ∂φ

(→
r , t

)
/∂t and consider

the integral
Sψ

(→
r
)
=

∫ ∞
−∞ ψ

(→
r , t

)
dt = Lim|T→∞

∫ T
−T ψ

(→
r , t

)
dt

= Lim|T→∞

[
φ
(→

r , T
)
− φ

(→
r ,−T

)] (A7)

The wavefunction φ
(→

r , T
)

is expressed as

φ
(→

r , T
)
=

∫
d
→
k ei

→
k ·→r

[
Φ−

(→
k
)

eikcT + Φ+

(→
k
)

e−ikcT
]

. (A8)

According to the Riemann–Lebesgue theorem, Sψ

(→
r
)

vanishes provided that

∫ ∞

0
dk k2

∣∣∣∣∫ d
�
Ω Φ±

(→
k
)

ei
→
k ·→r

∣∣∣∣ (A9)
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converges. However, Φ±

(→
k
)
= ∓Φ±

(→
k
)

/ck. Therefore, Sψ

(→
r
)

vanishes and the field

is usual provided that the integral∫ ∞

0
dk k

∣∣∣∣∫ d
�
Ω Ψ±

(→
k
)

ei
→
k ·→r

∣∣∣∣ (A10)

converges.
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Abstract: In this work, we present a Big Rip scenario within the framework of the generalized
Brans-Dicke (GBD) theory. In the GBD theory, we consider an evolving BD parameter along with
a self-interacting potential. An anisotropic background is considered to have a more general view
of the cosmic expansion. The GBD theory with a cosmological constant is presented as an effective
cosmic fluid within general relativity which favours a phantom field dominated phase. The model
parameters are constrained so that the model provides reasonable estimates of the Hubble parameter
and other recent observational aspects at the present epoch. The dynamical aspects of the BD
parameter and the BD scalar field have been analysed. It is found that the present model witnesses
a finite time doomsday at a time of tBR � 16.14 Gyr, and for this scenario, the model requires a large
negative value of the Brans-Dicke parameter.

Keywords: cosmological constant; generalised Brans-Dicke theory; Big Rip

1. Introduction

Late-time cosmic acceleration is one of the most bizarre and unsolved problems in modern
cosmology. In scalar field cosmological models, the late-time cosmic acceleration issue is
predominantly attributed to an exotic dark energy (DE) form that corresponds to a cosmic
fluid having low energy density, as well as negative pressure. This is usually understood
through a quantity dubbed as the equation of state (EoS) parameter ωD = p

ρ , where p
represents the DE pressure and ρ symbolises the dark energy density. The dark energy with
a negative pressure corresponds to a negative EoS parameter. Despite several attempts
made by astronomers and cosmologists, the experimental determination of ωD remains
challenging. Its precise estimation at the present epoch along with the knowledge of
its development over a long period may unravel the mystery of the dark energy whose
nature and origin remains speculative so far. In the ΛCDM model, the cosmological
constant Λ with ωD = 1 plays the role of dark energy. However, in canonical scalar
field models, quintessence fields or phantom fields shoulder the burden for the late-time
cosmic speed-up, while the EoS parameter for the quintessence field lies in the range
− 2

3 ≤ ωD ≤ − 1
3 [1–3], which for the phantom fields, becomes ωD < −1 [4]. However, the

EoS parameter as constrained from recent observational data favours a phantom phase
in the Universe with ωD < −1 [5], while constraints from the CMB data in the nine-year
WMAP survey suggest that ωD = −1.073+0.090

−0.089 [6], a combination of the CMB data with
Supernova data, predicts ωD = −1.084± 0.063 [7]. Other constraints on the EoS parameter
include ωD = −1.035+0.055

−0.059 from Supernova cosmology project [8], ωD = −1.03± 0.03
from recent Planck 2018 results [9] and from Pantheon data ωD = −1.006 ± 0.04 [10].
In phantom dark energy models, the energy conditions are usually violated, and the
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Universe may witness a blowing-up of the curvature of space-time at a finite time, leading
to the dissolution of the whole material Universe into pieces. This picture of the finite
future of the Universe, dubbed as the Big Rip singularity, concerns the recent cosmological
research [11,12]. The finite-time future singularity leads to inconsistencies which led to
different proposals in recent times, including the quantum effects to delay singularity,
possible gravity modification, or the coupling of dark energy and dark matter [13,14].

In recent times, because of the concern regarding the ultimate fate of the Universe
for phantom accreted dark energy with ωD < −1, a number of cosmological models
have been used to investigate the Rip cosmologies based on the general relativity (GR)
and modified gravity. Darbowski et al. studied the Big Rip singularity and the ultimate
cosmic fate [15,16], and Granda and Loaiza showed the occurrence of Big Rip for kinetic
and Gauss-Bonnet coupling [17]. The classical and quantum fate of the Big Rip cosmology
has been studied by Vasilev et al. [18]. Within the framework of f (T) gravity, Hanafy
and Saridakis presented a cosmological model where the Universe may last forever in
a Pseudo Rip scenario [19]. Recently, Ray et al. studied the Big Rip and some Pseudo
Rip cosmological models in the context of an extended gravity theory [20], and Pati et al.
investigated the possible occurrence of Rip scenarios in an extended symmetric teleparallel
theory [21]. Big Rip singularity is a unique singularity that possibly occurs in a phantom
scenario violating the Null Energy Condition. The occurrence of Big Rip singularity, for
which the energy density and the scale factor of the Universe diverge, dissolutes the
bound system and ultimately leads to the tearing up of the Universe in finite time. Such
a scenario has become a major concern for cosmologists. As such, the present study is
aimed at investigating the possibility of the occurrence of a Big Rip scenario within the
framework of the generalised Brans-Dicke (GBD) theory. The GBD theory incorporates
a self-interacting potential, as well as a dynamically varying Brans-Dicke(BD) parameter.
Previously, Montenegro and Carneiro have investigated some cosmological models leading
to Big Rip kinds of solutions within the Brans-Dicke theory in the presence of decaying
vacuum density. In that work, they considered a time-independent negative BD parameter
ω = −1 [22]. They obtained cosmological solutions with a time-varying deceleration
parameter which may lead to negative energy density. In general, the BD theory is a most
popular modified gravity theory proposed as an alternative to GR, where the gravity is
mediated by a scalar field. The BD theory has already been used emphatically in addressing
many issues in cosmology and astrophysics including the explanation for the inflationary
scenario [23]. Over a period of time, the BD theory has been well-studied through different
tests, including the gravitational radiation from gravitational wave bursts [24–27].

The manuscript is presented as follows: In Section 2, the basic field equations for the
GBD theory are estimated for an anisotropic LRS Bianchi I (LRSBI) metric. Additionally,
the dynamics of the GBD theory when incorporating a cosmological constant is appraised.
Section 3 is devoted to a Big Rip scenario through a scale factor that diverges at a specific
time, and discusses the time evolution of the BD scalar field, BD parameter, and the self-
interacting potential under the Big Rip scenario. Lastly, the conclusion is drawn, and
a concise summary of the present investigation is given in Section 4. Throughout this work,
we chose the natural unit system: 8πG0 = c = 1, where G0 symbolises the Newtonian
gravitational constant at the present epoch and c represents the speed of light in vacuum.

2. Basic Formalism

In a Jordan frame within the GBD theory with a self-interacting potential V(φ) and
a time-dependent BD parameter ω(φ), we have the action as [28,29]

S =
∫

d4x
√
−g

[
φR− ω(φ)

φ
φ,μφ,μ −V(φ) + Lm

]
, (1)

where R defines the curvature and Lm is the matter Lagrangian. The time-dependence
aspect of the BD parameter emerges naturally in the Kaluza-Klein theory, string theory, or
in the supergravity theory [30,31]. Different issues in cosmology have been investigated in
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recent times in the GBD framework with a time-dependent BD parameter [32–36]. Because
of the GBD field equations may be obtained as [36,37]

Gμν =
Tμν

φ
+

ω(φ)

φ2

[
φ,μφ,ν −

1
2

gμνφ,αφ,α
]
+

1
φ

[
φ,μ;ν − gμν�φ

]
− V(φ)

2φ
gμν, (2)

�φ =
T

2ω(φ) + 3
−

2V(φ)− φ
∂V(φ)

∂φ

2ω(φ) + 3
−

∂ω(φ)
∂φ φ,μφ,μ

2ω(φ) + 3
, (3)

where � represents the d’Alembert operator. A perfect fluid distribution with the energy-
momentum tensor Tμν = (ρ + p)uμuν + pgμν is considered, so that the T = gμνTμν is the
trace. In order to model the universe, we consider an LRSBI universe [38]

ds2 = −dt2 + A2dx2 + B2(dy2 + dz2). (4)

Even though the present observable Universe is mostly isotropic and homogeneous
and can be mostly described as an FRW metric, some of the observations obviously hint of
a possible departure from isotropy [39–42]. The amount of cosmic anisotropy present may
be very small, but we cannot simply rule out its possibility. Additionally, the LRSBI model
resembles the flat FRW model, but allowed us to incorporate a small but finite anistropy in
the model. The GBD field equations for the anisotropic model become [32,36]

(2k + 1)ξ2H2 =
ρ

φ
+

ω(φ)

2

(
φ̇

φ

)2

− 3H
(

φ̇

φ

)
+

V(φ)

2φ
, (5)

2ξḢ + 3ξ2H2 = − p
ρ
− ω(φ)

2

(
φ̇

φ

)2

− 2ξH
(

φ̇

φ

)
− φ̈

φ
+

V(φ)

2φ
, (6)

(k + 1)ξḢ + (k2 + k + 1)ξ2H2 = − p
φ
− ω(φ)

2

(
φ̇

φ

)2

− (k + 1)ξH
(

φ̇

φ

)
− φ̈

φ
+

V(φ)

2φ
. (7)

In the above equations, ξ = 3
k+2 is an anisotropic parameter where k is a positive

constant that decides the relationship among the directional expansion rates: Ȧ
A = k Ḃ

B .
One should note that the isotropic behaviour of the model may be obtained for ξ = 1.
H = 1

3

(
Ȧ
A + 2 Ḃ

B

)
= 1

ξ
Ḃ
B is the Hubble parameter.

The BD scalar field satisfies the Klein-Gordon equation

φ̈

φ
+ 3H

φ̇

φ
=

ρ− 3p
2ω(φ) + 3

−
∂ω(φ)

∂φ φ̇2

2ω(φ) + 3
−

2V(φ)− φ
∂V(φ)

∂φ

2ω(φ) + 3
. (8)

The GBD theory may be recast as an effective GR picture by incorporating a cosmolog-
ical constant Λ. In such a case, the total energy density and the total pressure respectively
become ρT = ρ + Λ and pT = p−Λ, and the GBD field equations reduce to

(2k + 1)ξ2H2 = ρT + ρφ, (9)(
k + 3

2

)
ξḢ +

(
k2 + k + 4

2

)
ξ2H2 = −

(
pT + pφ

)
, (10)

where,

ρφ = (2k + 1)ξ2 H2�φ− 3Hφ̇ +
ω(φ)

2

(
φ̇2

φ

)
, (11)

pφ = −
(

k2 + k + 4
2

)
ξ2 H2�φ−

(
k + 3

2

)
ξḢ�φ + φ̈ +

(
k + 3

2

)
ξHφ̇ +

ω(φ)

2

(
φ̇2

φ

)
, (12)
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where�φ = 1− φ, which ensures the reduction to GR behaviour for�φ = 0. It is interesting
to note here that the GBD theory provides an extra cosmic fluid which may shoulder the
burden of late-time acceleration. The corresponding effective EoS parameter becomes

ωe f f =
pφ −Λ
ρφ + Λ

= −1 +
−
(

k+3
2

)
ξḢ�φ +

[
(2k + 1)−

(
k2+k+4

2

)]
ξ2H2�φ + f (φ, φ̇, φ̈)

Λ + (2k + 1)ξ2H2�φ + g(φ, φ̇)
, (13)

with f (φ, φ̇, φ̈) = φ̈ +
[(

k+3
2

)
ξ − 3

]
Hφ̇ + ω(φ)

(
φ̇2

φ

)
and g(φ, φ̇) = −3Hφ̇ + ω(φ)

2

(
φ̇2

φ

)
.

In the low redshift epoch, there can be small values of |�φ|, and consequently, Λ
becomes the dominant term in the denominator of the second term in Equation (13).
Additionally, in the numerator of Equation (13), the contribution of f (φ, φ̇, φ̈) may be
neglected compared to other terms. In the limit of |�φ| → 0, the effective EoS may be
expressed as

ωe f f � −1− �φ

Λ

[
−
(

k + 3
2

)
ξḢ +

[
(2k + 1)−

(
k2 + k + 4

2

)]
ξ2H2

]
, (14)

which may be reduced to

ωe f f � −1 + 2
�φ

Λ
ξḢ. (15)

for a small departure from cosmic anisotropy. The above equation tells us that we get
a quintessence-like phase for�φ > 0 and a phantom-dominated phase for�φ < 0, at least
in the low redshift epochs. In an earlier work, it has been shown from the reconstruction of
the BD scalar field from observational H(z) data that�φ < 0. This shows phantom-like
behaviour in the GBD theory [38].

3. A Big Rip Scenario

An explanation of the late-time cosmic speed-up issue with dark energy requires
that the EoS parameter should be ωD < −1/3. The cosmological constant corresponds
to ωD = −1. For dark energy, cosmological models favouring ωD < −1 are usually
dominated with phantom energy for which the energy density goes up with time violating
the dominant energy condition. The energy density in a phantom dominated dark energy
model is proportional to the scale factor. As a consequence, the scale factor blows up at
a finite time tBR − t0 � 2

3|1+ωD |
1

H0
√

1−Ωm
, where H0 represents the present value of the

Hubble parameter and Ω � 0.3 is the matter density parameter [43]. Such a scenario is
termed as the Big Rip, whose occurrence dissolutes the bounded system [43–45]. The Big
Rip scenario in Phantom models leads to a unique singularity in the Universe and can be
associated with the fundamental quantum gravity formalism [46].

We consider a Big Rip scenario with the scale factor evolving as

a(t) � (tBR − t)α, (16)

where tBR is the epoch where the scale factor blows up. α is a constant parameter related to
the EOS parameter as

α =
2

3(1 + ωD)
. (17)

In a phantom field-dominated Universe, the EoS parameter is usually less than unity,
that is, ωD < −1, which requires that the constant parameter α appearing in the scale
factor should be negative, that is, α < 0. For the given Big Rip scenario, the Hubble
parameter and the deceleration parameter (DP) are, respectively, H(t) = − α

tBR−t and

q = −1− Ḣ
H2 = −1 + 1

α . Additionally, we have Ḣ = −H2

α and Ḧ = 2
α2 H3. One should note

that, while the Hubble parameter contains two adjustable parameters, the deceleration
parameter contains only one parameter, α. The deceleration parameter in the present Big
Rip scenario comes out to be a constant quantity which should be negative to provide
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an accelerating model. Because of this, we may constrain the parameter α from some recent
observational constraint on the deceleration parameter. In a recent work, Camarena and
Marra used the observational data from supernovae in a redshift range to constrain the
DP as q0 = −1.08± 0.29 [47]. The central value of the deceleration parameter immediately
fixes up the scale factor parameter as α = −12.49. Consequently, the EoS parameter may
be constrained as ωD = −1.0533. This value is in close agreement with some recent
measurements, as mentioned earlier. Once α is fixed, the other parameter tBR may be
obtained from the present value of the Hubble parameter. In Figure 1, we show the
evolution of the Hubble parameter for the constrained value of α that predicts a finite-time
future singularity. The Hubble parameter increases with the cosmic expansion and blows
up at a finite future. Assuming H0 = 74.3 km s−1 Mpc−1, the present model predicts a Big
Rip occurring at a cosmic time tBR � 16.14 Gyr.
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Figure 1. Hubble parameter as a function redshift. The Hubble parameter is in km s−1 Mpc−1 units.

3.1. Brans-Dicke Scalar Field

Considering the Big Rip scenario, the evolutionary aspect of the Brans-Dicke scalar
field may be studied within the framework of the GBD theory. Algebraic simplification of
the field Equations (6) and (7) leads to the evolution equation for the BD scalar field as

− Ḣ
H
− 3H =

φ̇

φ
. (18)

In terms of DP, we may express the evolution equation as

(q− 2)H =
φ̇

φ
. (19)

In our model, we obtained the deceleration parameter to be a constant quantity, and
consequently, the BD scalar field may be obtained by integrating Equation (19) as

φ =
φ0

an
0

an, (20)

where n = q− 2 = 1
α − 3. a0 and φ0 are respectively the value of the scale factor and the

BD scalar field at the present epoch. This relation clearly articulates a power-law behaviour
of the BD scalar field with respect to the scale factor. It is worth mentioning here that the

79



Foundations 2022, 2

use of power-law functional behaviour of the scalar field is quite common in the literature.
Since the deceleration parameter is a negative quantity in our model, the BD scalar field
should decrease with the cosmic expansion.

The scale factor may be expressed as a =
(
− α

H
)α, and consequently, the BD scalar

field becomes
φ

φ0
=

(
H0

H

)nα

, (21)

which ultimately leads to
φ̈

φ
= −3nH2. (22)

In terms of the redshift defined as z = a0
a − 1, the BD scalar field reduces to

φ

φ0
= (1 + z)−n. (23)

In Figure 2, the evolutionary aspect of the BD field is shown. The BD scalar field shows
a decreasing trend from large positive values to vanishingly small values at late cosmic
times. One should note from the figure that the BD scalar field behaves like ∼(1 + z)3 in
low redshift epochs.
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Figure 2. Evolutionary behaviour of the BD scalar field.

3.2. Brans-Dicke Parameter

The BD parameter is a dynamical quantity in the GBD theory, and its behaviour
depends on the dynamical behaviour of the BD scalar field. The BD parameter may be
obtained from the GBD field Equations (5)–(7) as

ω(φ) =
1(
φ̇
φ

)2

[
−ρ + p

φ
− φ̈

φ
+ kξH

φ̇

φ
− 2ξḢ + 2(k− 1)ξ2H2

]
. (24)

It should be mentioned here that, for a given Big Rip scenario as specified by a Hubble
parameter H and a given cosmic anisotropy ξ, the dynamics of the BD scalar field is
suitably obtained. Once the BD scalar field is obtained, the time-dependent aspect of the
BD parameter now requires an equation of state p = ωDρ, a relationship between the

80



Foundations 2022, 2

pressure p and the energy density ρ. Replacing ρ + p by (1 + ωD)ρ and using the fact that
φ̇
φ = nH in Equation (24), we get

ω(φ) = n−2H−2
[
−
(

1 + ωD
φ

)
ρ +

(
(kξ + 3)n + 2(k− 1)ξ2

)
H2

]
. (25)

For the given Big Rip scenario, the conservation equation for the cosmic fluid

ρ̇ + 3H(ρ + p) = 0 (26)

can be reduced to
ρ̇

ρ
= − 2

α
H. (27)

The energy density may be obtained from the integration of the conservation equation as

ρ = ρ0

(
H
H0

)2
, (28)

where ρ0 is the present value of the energy density. Here, we used the fact that a
a0

=
(

H0
H

)α
.

It is now straight-forward to obtain the pressure as

p =

(
2

3α
− 1

)
ρ0

(
H
H0

)2
, (29)

so that p + ρ = 2
3α ρ0

(
H
H0

)2
. The Brans-Dicke parameter may now be expressed in terms of

the Hubble parameter as

ω(H, ξ, α) = ω0(H0, ξ, α)− χ

[(
H
H0

)(nα−2)
− 1

]
, (30)

where χ =
2ρ0 H((3+n)α−1)

0
3αφ0n2 and ω0(H0, ξ, α) = kξ+3

n + 2(k− 1)
(

ξ
n

)2
− χ is the present value

of the BD parameter.
One may note that the anisotropy affects the Brans-Dicke parameter, but it does not

participate in its evolution. Only the non-evolving part of the Brans-Dicke parameter is
modified in the presence of cosmic anisotropy. In fact, as is evident from Equation (30), the
cosmic anisotropy brings about a change in the required present value of the BD parameter.
Similar results have already been observed in an earlier work [32], where it was shown that
for a power-law expansion and an exponential expansion law of the scale factor, the cosmic
anisotropy affects only that part of the BD parameter which does not evolve with time.
The similarity between this Big Rip model and that of the power-law behaviour and the
exponential expansion model is that the deceleration parameter is non-evolving. Because
of this, we may infer that, for the time-independent deceleration parameter, the cosmic
anisotropy will not contribute to the evolution of the Brans-Dicke parameter. However, for
models with a time-dependent deceleration parameter, the cosmic anisotropy affects the
BD parameter as a whole [36,38]. In Figure 3, the BD parameter (normalized to its value
at the present epoch) is shown for a representative value of the cosmic anisotropy ξ. It is
observed that the BD parameter increases with the cosmic expansion. Since the Hubble
parameter blows up at a time t � tBR, the BD parameter also blows up at that epoch. In
Figure 4, the evolutionary aspect of the BD parameter with respect to the BD scalar field is
shown. With an increase in the BD scalar field, ω(H, ξ, α) decreases from a much higher
value to low positive values. However, the decrement in ω(H, ξ, α) slows down for higher
values of the scalar field. One may estimate the BD parameter at the present epoch within
the purview of the present formalism to get a rip scenario at a finite future. In fact, for
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a finite time future singularity such as the one discussed in the present work within GBD
theory, we require the BD parameter to be approximately ω(z = 0) � −3.6× 109 at the
present epoch.
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Figure 3. Brans-Dicke parameter as a function of redshift.
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Figure 4. Evolutionary behaviour of the Brans-Dicke parameter with respect to the BD field.

3.3. Self-Interacting Potential

Within the GBD formalism, the time-dependence aspect of the self-interacting potential
may be obtained as

V(φ) = 2φ

[{
(2k + 1)ξ2 + 3n− ω(φ)

2
n2

}
H2 − ρ

φ

]
. (31)
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In order to assess the effect of the cosmic anisotropy, we may express the self-interacting
potential as

V(φ)

2φ
=

{
(2k + 1)ξ2 − ω0

2
n2

}
H2 +

[
3n +

χn2

2

((
H
H0

)(nα−2)
− 1

)]
H2 − ρ

φ
. (32)

In the above Equation (32), the first term in the right-hand side bears the contribution
of the cosmic anisotropy. In Figure 5, we show the evolutionary behaviour of the self-
interacting potential for a given cosmic anisotropy. Since in the Big Rip scenario, we
discussed in the present work a large negative value of ω0 = ω(z = 0) is being required,
the effect of the cosmic anisotropy becomes negligibly small. However, in other scenarios
such as a bouncing one, we may get a substantial effect of the cosmic anisotropy on the
self-interacting potential [36]. Because of this, we chose a representative value k = 1.0001 or
a corresponding ξ = 0.999967 to plot the figure. The value of the self-interacting potential
in the figure is normalized to its present value. One should note that, with the growth of
cosmic expansion, V(φ) decreases from a higher value to small values at late times. This
behaviour may be translated in terms of the scalar field to infer that the self-interacting
potential shows an increasing trend with the BD scalar field.
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Figure 5. Evolutionary behaviour of the self-interacting potential.

4. Summary and Conclusions

In the present work, we studied a Big Rip scenario within the framework of a gen-
eralized Brans-Dicke theory. An LRSBI Universe is considered to incorporate directional
anisotropy in the expansion rates. Such a model provides a more general approach com-
pared to the FRW model. The generalized Brans-Dicke theory having a cosmological
constant can be recast as a GR-like theory with cosmic fluid dominated by dark energy. The
effective cosmological constant for such effective cosmic fluid dominated by dark energy
may provide a quintessence-like or phantom-like behaviour depending on the nature of the
scalar field. On the basis of the nature of the BD scalar field which has been reconstructed
from the observational H(z) data, we showed that the present model favours a phantom
dark energy model. In Phantom models, the energy density and the scale factor may grow
sharply within a finite time, leading to a Big Rip situation. We considered a Big Rip scale
factor with an arbitrary parameter, that was fixed from a recent observational value of the
deceleration parameter, which ultimately fixes the effective EoS parameter as ωD = −1.05
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in close conformity with recent observational estimates. Additionally, the present model
witnesses a Big Rip scenario at a time tBR � 16.14 Gyr. We studied the dynamical aspects
of the scalar field, Brans-Dicke parameter, and the self-interacting potential. In conformity
with other scalar field models, the BD scalar field shows a decreasing behaviour with cosmic
time. The Brans-Dicke parameter, on the other hand, increases with the cosmic expansion.
To the BD scalar field, the BD parameter (as normalized to its present value) decreases
from a high value to almost constant values for higher values of the scalar field. In some
recent tests concerning the gravitational radiation from gravitational wave bursts on the
BD theory, the bounds on the BD parameter may be ω ≥ 104∼105 [27] or ω ≥ 106 [24].
Montenegro et al. used ω = −1 to obtain Big Rip kinds of solutions in the BD theory [22].
However, our present model requires a high negative value of the BD parameter at the
present epoch of the order of ∼−109 to witness a Big Rip scenario in the finite future.

In our model, the anisotropy parameter does not affect the BD scalar field. It affects
the BD parameter, but does not contribute to its time evolution aspect. In principle, only
the non-evolving part of the BD parameter is affected by the anisotropy parameter. This is a
feature usually observed for BD gravity models with a constant deceleration parameter [32].
However, the anisotropy affects the self-interacting potential. Since we require quite a large
magnitude of the present epoch value of the BD parameter to get a viable Big Rip scenario,
a small variation of the cosmic anisotropy does not substantially bring about a change in
its numerical value.
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The following abbreviations are used in this manuscript:

GR General Relativity
BD Brans-Dicke
GBD Generalized Brans-Dicke
FRW Friedmann-Robertson-Walker
LRSBI Locally Rotationally Symmetric Bianchi type I
CMB Cosmic Microwave Background
Λ CDM Λ dominated Cold Dark Matter
WMAP Wilkinson Microwave Anisotropy Probe
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Abstract: A new α-emitting 214U has been recently observed experimentally. This opens the window
to theoretically investigate the ground-state properties of the lightest known even–even neutron
deficient 214,216,218U isotopes and to examine α-particle clustering around the shell closure. The
decay half-lives are calculated within the preformed cluster-decay model (PCM). To obtain the α-
daughter interaction potential, the RMF densities are folded with the newly developed R3Y and
the well-known M3Y NN potentials for comparison. The alpha preformation probability (Pα) is
calculated from the analytic formula of Deng and Zhang. The WKB approximation is employed
for the calculation of the transmission probability. The individual binding energies (BE) for the
participating nuclei are estimated from the relativistic mean-field (RMF) formalism and those from
the finite range droplet model (FRDM) as well as WS3 mass tables. In addition to Z = 84, the so-called
abnormal enhancement region, i.e., 84 ≤ Z ≤ 90 and N < 126, is normalised by an appropriately
fitted neck-parameter ΔR. On the other hand, the discrepancy sets in due to the shell effect at (and
around) the proton magic number Z = 82 and 84, and thus a higher scaling factor ranging from
10−8–10−5 is required. Additionally, in contrast with the experimental binding energy data, large
deviations of about 5–10 MeV are evident in the RMF formalism despite the use of different parameter
sets. An accurate prediction of α-decay half-lives requires a Q-value that is in proximity with the
experimental data. In addition, other microscopic frameworks besides RMF could be more reliable
for the mass region under study. α-particle clustering is largely influenced by the shell effect.

Keywords: preformed cluster decay; relativistic mean-field; alpha-particle clustering; neck-length

1. Introduction

Instability is highly prevalent in heavy nuclei due to the Coulomb repulsion of several
protons involved. To gain stability, heavy nuclei naturally dispose of the excess positive
charges via alpha (α)-decay. An α-particle itself is characterised by high stability and a
tightly bound structure. The discovery of α-decay dates back to 1896 when it was observed
as natural radioactivity and later confirmed in Rutherford’s experiment in 1908. This
was given credence in the theoretical interpretation of α-decay explained as a quantum
tunnelling effect. Thereafter, the relationship between the decay energy of α-particles and
half-lives was empirically deduced by Geiger and Nuttal [1,2]. Alpha decay has been
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proven to be a powerful tool that incorporates nuclear structure information [3,4], such as
ground-state half-life and energy [5,6], stellar nucleosynthesis [7,8], cluster decay [9], exotic
nuclei in the superheavy mass region [8], closed-shell region [10,11], proton-neutron drip
line region [12,13], and the shell structure [11,14].

The development of radioactive beams across the globe since they were first used a
few decades ago has extended the frontiers of the knowledge of the nuclear shell structure,
especially in light nuclei. Yet, from the experimental front, little is presently known of
the structure evolution in the heavy nuclei around and below the neutron shell closure at
N = 126 [12,15,16]. Particularly, some neutron-deficient nuclei around the region Z = 82
in the heavy-ion reaction are often excluded in the in-beam γ-ray experiments [17]. On the
other hand, all theoretical probes on this shell closure emanate from either the nuclear
fission [18–20] or Gamow theory of α-decay [21–25]. The former relegates the idea of prefor-
mation; i.e., it is assumed that clusters are formed during the separation/deformation pro-
cess of the parent nucleus while penetrating the confining interaction barrier. In Gamow’s
prescription [26], the α-particle decay is considered as a quantum tunnelling process of a pre-
formed α-particle penetrating the potential barrier. This presupposes that α-preformation
probability could be incorporated into α-decay theories as α-cluster preformation. One of
the models that embraces this theory is the preformed cluster-decay model (PCM), which
stems from the well-known quantum mechanical fragmentation theory (QMFT). In the
PCM, an α-particle is assumed to be preborn within the parent nucleus and thereafter
tunnels through the potential barrier generated by the superposition of the nuclear and
Coulomb potentials [26–28]. Obtaining the Coulomb potential is straightforward, whereas
the nuclear potential can be deduced via phenomenological [29,30] and microscopic ap-
proaches [31,32]. Thus, to gain insight into the decay phenomena, the choice of nuclear
potential is crucial [30]. In addition to the fundamental approaches [33,34], the newly
developed R3Y nucleon-nucleon (NN) potential [35,36], which is analogous to the phe-
nomenological M3Y [37], is derived from the relativistic mean-field (RMF) Lagrangian and
is applied in the present work for the study of α emission using the NL3∗ parameter set,
which has been successfully employed in the study of various ground- and excited-state
properties [38–40].

Recently, a new neutron-deficient α-emitting isotope 214U produced by the fusion-
evaporation reaction 182W(36Ar, 4n)214U has been observed [15]. Its α-decay energy and
half-life were measured to be Qα = 8533(18) KeV and T1/2 = 0.52+0.95

−0.21 ms, respectively.
Hence, 214U is the lightest known even-A uranium isotope until now. This necessitates
a detailed investigation of the ground-state properties of 214U. The authors [15] also
reported that an abnormal enhancement was observed in the reduced width of other re-
measured light even-even 216,218U isotopes around the proton closed-shell 84 ≤ Z ≤ 90
and neutron closed-shell N < 126. This constitutes our motivation to theoretically examine
this phenomenon in the α-decay chain of these lighter uranium isotopes using the PCM
within the RMF framework [41–43], which is cognate with the energy density functional
formalism and gives an accurate description of both ground and excited-state properties
across the entire nuclear landscape [44]. However, previous theoretical studies [28,45] hold
that a constant scaling factor (CSF) of 10−4 is required for the calculation of the α-decay
half-lives of nuclei in the superheavy region within the PCM framework at the ground state
(at temperature, T = 0). Thus, the present study is also aimed at answering two pertinent
questions: (1) Does the α-decay of lighter uranium follow a similar trend as those from
other superheavy nuclei? More precisely, does the constant scaling factor that appears in
PCM calculations for the superheavy region apply to other regions in the nuclear chart?
(2) If yes, what will be the course (of the CSF) for the lightest 214,216,218U isotopes (around
84 ≤ Z ≤ 90 and N < 126 shell closures) where an abnormal enhancement has just been
observed?

The only variable parameter in the PCM is the neck-length parameter ΔR, which
assimilates the neck formation effect between two nuclei and determines the first turning
point of the barrier penetration. In this context, ΔR is always fitted to the experimen-
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tal data within the proximity potential limit of up to 2 fm [28,46]. The inputs of PCM
include the preformation probability (Pα), calculated from the analytic formula of Deng
and Zhang [47,48], and penetration probability (P), using the WKB approximation [49–51].
The binding energy (BE) estimated from the microscopic RMF formalism and those from
the FRDM [52] and WS3 [53] are utilised to calculate the Q-values of the α-decay. Thus,
the dynamics of α-decay are analysed in detail.

The paper is organised as follows: In Section 2, the relativistic mean-field formalism
and the nucleus–nucleus potential obtained from the double-folding procedure for R3Y and
M3Y NN-potential using the densities of the daughter and cluster. This section concludes
with a brief overview of the PCM. Section 3 is assigned to the discussion of the results
obtained from our calculation. The summary of our findings and a brief conclusion is given
in Section 4.

2. Theoretical Framework

The isotopes of uranium, namely 214,216,218U, are studied here microscopically within
the relativistic mean-field formalism in which the interaction between the many-body sys-
tem of nucleons and mesons is expressed via the non-linear effective Lagrangian [41–43,54–58],

L = ψi
{

iγμ∂μ −M
}

ψi +
1
2

∂μσ∂μσ

−1
2

m2
σσ2 − 1

3
g2σ3 − 1

4
g3σ4 − gsψiψiσ

−1
4

ΩμνΩμν +
1
2

m2
ωVμVμ − gωψiγ

μψiVμ

−1
4
�Bμν.�Bμν +

1
2

m2
ρ
�Rμ.�Rμ − gρψiγ

μ�τψi.�Rμ

−1
4

FμνFμν − eψiγ
μ(

1− τ3i
2

)ψi Aμ. (1)

The scalar meson σ and vector meson Vμ account for the medium-range attraction
and the short-range repulsion between the nucleons, respectively. The isovector-vector
meson �Rμ describes the isospin-dependent effects in the nuclei. Their respective masses are
mσ, mω and mρ with the coupling constants gs, gω and gρ. The Dirac Spinor, isospin and its

third component are denoted as ψi, τ and τ3, respectively. Parameters g2, g3 and e2

4π are the
coupling constants of the non-linear terms. M is the mass of nucleon and Aμ stands for the
electromagnetic field. The π-meson is not considered since its contribution is negligible
owing to its pseudoscalar nature [42,57]. From Equation (1), the classical variation principle
is employed to deduce the Dirac equation,

[−iα.∇+ β(M∗ + gσσ) + gωω + gρτ3ρ3]ψi = εiψi (2)

to obtain the nuclear spinors and the Klein–Gordon equations

(−∇2 + m2
σ)σ(r) = −gσρs(r)− g2σ2(r)− g3σ3(r),

(−∇2 + m2
ω)V(r) = gωρ(r),

(−∇2 + m2
ρ)ρ(r) = gρρ3(r). (3)

A numerical solution is then carried out self-consistently using an iterative approach
with NL3* parameter set [59]. Taking the limit of a single-meson exchange for static
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baryonic medium, the scalar, σ- and vector (ω, ρ)-fields are expressed in terms of the
nucleon–nucleon potentials as

Vσ = − g2
σ

4π

e−mσr

r
+

g2
2

4π
re−2mσr +

g2
3

4π

e−3mσr

r
,

Vω(r) =
g2

ω

4π

e−mωr

r
, Vρ(r) = +

g2
ρ

4π

e−mρr

r
. (4)

The contribution of δ-meson is subsumed in the ρ-field [57] and, hence, Vδ is negligible.
The sum of the expressed NN interactions in Equations (4) gives the RMF-based-R3Y NN
effective interactions plus a single-nucleon exchange effect [60]

VR3Y
eff (r) =

g2
ω

4π

e−mωr

r
+

g2
ρ

4π

e−mρr

r
− g2

σ

4π

e−mσr

r

+
g2

2
4π

re−2mσr +
g2

3
4π

e−3mσr

r
+ J00(E)δ(s), (5)

where J00(E) = −276(1− 0.005Eα/Aα) MeV fm3. Aα represents the mass of the α-particle
and Eα symbolises the energy measured in the centre of mass of the decay fragments
(α-daughter) system whose magnitude is equal to energy released for the decay process
(Qα-value). Unlike the energies required in high-energy α-scattering, J00(E) could be
independent of the Qα-value and is often used in its approximated form, as seen in Ref. [61].

The M3Y (Michigan-3-Yukawa) is composed of a 0.25 fm medium-range attractive
part, 0.4 fm short-range repulsive part and 1.414 fm long-range tail of one-pion exchange
potential (OPEP), which proceeds from the fitting of G-matrix elements predicated on
Reid-Elliott soft-core NN interaction [37] on an oscillator basis. The M3Y plus exchange
term takes the form

VM3Y
eff (r) = 7999

e−4r

4r
− 2134

e−2.5r

2.5r
+ J00(E)δ(r), (6)

where the unit of the ranges are in fm and the strength is in MeV. The nuclear interaction
potential Vn(R) is calculated here within the double-folding approach [37] and is given as

Vn(R) =
∫

ρα(�rα)ρd(�rd)Veff(|�rα −�rd + �R| ≡ r)d3rαd3rd. (7)

Here, ρα and ρd are the nuclear matter density distributions of the alpha particle
(α) and the daughter nucleus (d), respectively. To obtain the alpha–daughter interaction
potential, the nuclear potential Vn(R) is added to the Coulomb potential VC(R) (= ZcZd

R e2)
and is given as

V(R) = Vn(R) + VC(R). (8)

This potential is used in the calculation of the WKB penetration probability in the PCM.

Preformed Cluster-Decay Model (PCM)

The alpha-decay half-life in the preformed cluster-decay model (PCM) can be esti-
mated as [62,63]

T1/2
α =

ln 2
λ

, λ = ν0P0P. (9)

The decay constant λ denotes the probability per unit time for each nucleus to decay.
It is assumed that clusters are preborn within the parent nucleus with certain preformation
Pα and hits the potential barrier with an assault frequency ν0, given as

ν0 =
velocity

R0
=

√
2Eα/μ

R0
, (10)
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and thereafter tunnels with a probability P. R0 represents the radius of the parent nucleus.
A necessary condition for the energetically favoured spontaneous emission of the α-particle
is a positive Q-value. This is the total energy available for the decay process. The Q-values
are obtained from the ground-state binding energies from the expression

Q = BEp − (BEd + BEα), (11)

where BEp, BEd and BEα are the binding energies of the parent and daughter nuclei and
the emitted α-particle, respectively. The Q values are rationed between both fragments
such that α-particle Eα = Ad

A Q and the recoil energy of the daughter Ed = Q− Eα since
Q = Eα + Ed.

The first turning point Ra shown in Figure 1, which illustrates the penetration path of
the decaying compound nucleus 214U→ 210Th + α, is given as

R = Ra = R1(α1, T) + R2(α2, T) + ΔR. (12)

Here, ΔR is the relative separation distance between two outcoming nuclei, which
incorporates the neck formation effects between them and hence is referred to as the neck-
length parameter. ΔR is introduced similarly as those of the scission point [64] and saddle
point [65,66] in statistical fission models. In the present context, the neck parameter is fitted
to predict the experimentally measured half-lives. It is pertinent to note that the Q-value
of the reaction influences the choice of the neck length. As such, it is required that the
potential at the first turning point V(Ra) should be higher than the Q-value.

In the PCM framework, the preformation probability Pα (otherwise called the spec-
troscopic factor) encapsulates the structural information of the decaying parent nucleus.
From a microscopic perspective, it is difficult to obtain the exact value of Pα due to the
complexities associated with the nuclear many-body problem. Nonetheless, Pα could be
several orders of magnitude below unity [22,62]. Here, the α-particle preformation is calcu-
lated from the analytic formula of Deng and Zhang [47,48], who successfully employed it
in the investigation of some neutron-deficient nuclei. The authors also reported that this
formula gives an accurate prediction of α-decay half-lives for known and unsynthesised
superheavy nuclei and sheds light on some microscopic nuclear structure information such
as odd-even staggering and the shell effect. It takes the expression

log10 Pα = a + bA1/6
√

Z + c
Z√
Qα
− kχ′ − eρ′ + f

√
l(l + 1), (13)

where

χ′ = ZαZd

√
Aα Ad

(Aα + Ad)Qα
and

ρ′ =

√
Aα Ad

(Aα + Ad)
ZαZd(A1/3

α + A1/3
d ).

The mass and proton numbers of the decaying parent nucleus are denoted as A, Z,
respectively. l is the angular momentum carried by the α-particle. In this study, l = 0 since
all nuclei are considered to be in the ground state. The adjustable parameters a, b, c, e, f
and k have been fitted with the experimental data as given in Ref. [47] and their respective
values are the same for the N ≤ 126 region, as mentioned in Ref. [48]. It is worth noting
that this analytical P0 formula from Deng et al. is based on the GLDM with an elliptic
lemniscatoid geometry. The family of the elliptic lemniscatoid geometries are obtained by
the inversion of spheroids [67], in which the daughter nucleus is assumed to be almost
spherical. Moreover, it has been established [68] that the shape evolves continuously
from one spherical nucleus to two touching spherical nuclei and naturally results in the
formation of a conspicuous neck. This geometry may not be the best compromise in α-
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emission since its touching-point configuration is characterised by the existence of cusp,
leading to an abrupt reversal in motion of the relative distance (see Ref. [69] for elaborate
details). However, our goal in the present work is to investigate the behaviour of the
RMF formalism. A more suitable preformation formula is being developed and will be
communicated shortly.

The α-particle tunnels through the interaction potential V(R), starting from the first
turning point R = Ra, and terminates at the second turning point R = Rb, whose corre-
sponding potential V(Rb) = Q for ground-state decays (illustrated in the inset of Figure 1).
On the other hand, V(Ra) = Q + Ei, where Ei (as adopted by Malik et al. [62]) is the
energy with which the α-particle or daughter nucleus decays into an excited state. At the
radius of the parent nucleus R = R0, the potential of the system is equal to its Q value.
The shape of the parent nucleus changes as instability sets in, leading to the separation of
the α-particle and neck formation. To deduce the barrier penetration probability P, using
the WKB approximation, three basic steps are involved [62]: (a) the penetrability Pi from
Ra to Ri, (b) the (inner) de-excitation probability Wi at Ri, taken as one [70], and (c) the
penetrability Pb from Ri to Rb, which leads to the penetration probability

P = PiPb, (14)

where Pi and Pb are the integrals in the WKB approximation and are given as:

Pi = exp
(
−2

h̄

∫ Ri

Ra
{2μ[V(R)−V(Ri)]}1/2dR

)
, (15)

and

Pb = exp
(
−2

h̄

∫ Rb

Ri

{2μ[V(Ri)−Q]}1/2dR
)

, (16)

where μ is the reduced mass given by μ = Ad Aα/(Ad + Aα). The above integrals in
Equations (15) and (16) are solved numerically to obtain the penetration probability.
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Figure 1. The total nucleus-nucleus interaction potential V (MeV) and its components, namely,
nuclear and Coulomb potentials as a function of radial separation R (fm) for R3Y (NL3∗) and M3Y
NN potentials as a representative case of 214U→ 210Th + α. The inset shows a magnified view of the
barrier height and position.

3. Calculations and Discussions

The present work aims to theoretically investigate the α-decay properties of the newly
measured 214U as well as the even-even 216,218U isotopes within the PCM framework.
The nuclear interaction potential (shown in Figure 1) is deduced from the RMF approach
using the recently developed R3Y (with NL3∗ parameter set) and the well-known phe-
nomenological M3Y NN interactions. Three different sets of Q-values calculated from
the binding energy data FRDM [52], WS3 [53] and those from the RMF formalism (NL3∗)
were employed.

As a representative case, the total radial density distribution of the fragments (daughter
nucleus 210Th (red line) and α-particle (blue line)) in Figure 1 is conspicuously shown in
Figure 2 as a function of the radius. A similar figure can be obtained for all the participating
nuclei under study (but not shown here for the sake of clarity). From the figure, the density
of 210Th displays a lower magnitude around the central position and increases towards the
surface region while the reverse is observed for the α-particle due to Coulomb repulsion
and the difference in their respective mass. It is imperative to note that in Ref. [71],
the density-dependent M3Y (DDM3Y) NN interactions were introduced to reproduce the
saturation properties of nuclear matter. The inclusion of the DDM3Y NN interaction in the
double-folding approach leads to the modification of nuclear potential, especially at small
separation distances where the density overlap is larger and hence the density dependence
of NN interaction becomes important. However, the present study aims to compare the
results of widely adopted M3Y and recently proposed relativistic R3Y NN interactions.
Therefore, to avoid complexities, we have only considered the simple density-independent
M3Y NN interaction. A more comprehensive study involving the density dependence of
both M3Y and R3Y is under process and will be communicated shortly. The respective neck
parameter is optimised for each reaction system about the experimental half-life for both
the cases of M3Y and R3Y NN interactions.

93



Foundations 2022, 2

0 3 6 9 12
0.00

0.05

0.10

0.15

0.20

0.25

0.30
NL3*

ρ 
(f
m

−3
)

R (fm)

210Th
   α

Figure 2. The total radial density distribution of 210Th obtained from the RMF (NL3∗) parameter
set and those of α-particle, deduced from the experimental data [72] (following the illustration in
Figure 1). See text for details.

Several parameters are involved in estimating the ground-state properties of nuclei
using the relativistic mean-field Lagrangian. Examples of such parameters which include
the binding energy (BE), charge radius rc, quadrupole deformation parameter β2, pairing
energies Epair and other bulk properties, are replete in the literature [40,73,74]. These
mentioned parameters are obtained from RMF predictions for all the participating nuclei
in the first decay chain (214U→ 210Th→ 206Ra→ 202Rn→ 198Po→ 194Pb), second decay
chain (216U → 212Th → 208Ra → 204Rn → 200Po → 196Pb) and the third decay chain
(218U → 214Th → 210Ra → 206Rn → 202Po → 198Pb) and are compared with those of the
FRDM ones given in the Table 1. As such, with an appropriate choice of parameter set,
the predicted results are nearly force independent [6]. Note that, in Table 1, the RMF (NL3∗)
results are displayed in columns 2–10 and their respective FRDM and WS3 predictions are
given in columns 11–13 and 14–16, respectively.
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Table 1. The RMF (NL3∗) predictions for the binding energy (BE), pairing energy Epair, deformation
β2, root-mean-square radii (rms), charge radii rc, proton radii rp and neutron radii rn in comparison
with their results from FRDM [52] and WS3 [53]. The energy is in MeV and radii in fm.

Nuclei
RMF FRDM WS3

Epair Ec.m. B.E B.E/A rc rn rp rms β2 B.E B.E/A β2 B.E B.E/A β2

214U 16.49 −5.141 1640.51 7.67 5.66 5.73 5.60 5.68 0.001 1630.22 7.62 −0.115 1629.70 7.62 −0.106
210Th 16.59 −5.173 1618.15 7.71 5.62 5.70 5.56 5.64 0.045 1610.37 7.67 −0.135 1610.53 7.67 −0.124
206Ra 16.36 −5.207 1596.11 7.75 5.58 5.67 5.52 5.61 0.095 1589.89 7.72 −0.125 1590.06 7.72 −0.123
202Rn 16.35 −5.241 1573.09 7.79 5.54 5.64 5.49 5.58 0.109 1568.87 7.77 −0.115 1569.16 7.77 0.096
198Po 16.40 −5.276 1549.31 7.83 5.50 5.61 5.44 5.54 0.111 1547.43 7.82 0.075 1547.97 7.82 0.074
194Pb 16.31 −5.312 1524.98 7.86 5.47 5.58 5.41 5.51 0.124 1526.18 7.87 0.000 1526.38 7.87 0.083
216U 15.81 −5.125 1659.59 7.68 5.66 5.76 5.61 5.69 0.000 1648.69 7.63 −0.073 1648.16 7.63 −0.084

212Th 16.00 −5.157 1637.16 7.72 5.62 5.72 5.57 5.66 0.003 1628.74 7.68 −0.094 1628.38 7.68 −0.101
208Ra 15.89 −5.190 1614.15 7.76 5.59 5.69 5.53 5.62 0.059 1608.11 7.73 −0.125 1608.51 7.73 −0.116
204Rn 15.84 −5.224 1590.80 7.80 5.55 5.66 5.489 5.59 0.083 1586.94 7.78 −0.115 1587.23 7.78 −0.101
200Po 15.73 −5.258 1566.81 7.83 5.51 5.63 5.45 5.55 0.089 1565.52 7.83 −0.063 1565.66 7.83 −0.065
196Pb 15.43 −5.294 1542.13 7.87 5.47 5.60 5.41 5.52 0.096 1543.48 7.88 0.000 1543.96 7.88 0.008
218U 15.10 −5.109 1677.21 7.69 5.67 5.78 5.62 5.71 0.001 1666.17 7.64 0.000 1665.89 7.64 −0.004

214Th 15.29 −5.141 1655.61 7.74 5.63 5.75 5.58 5.68 0.000 1646.39 7.69 −0.063 1645.97 7.69 −0.072
210Ra 15.46 −5.173 1632.02 7.77 5.59 5.71 5.56 5.64 0.019 1625.80 7.74 −0.084 1625.57 7.74 −0.096
206Rn 15.38 −5.207 1608.23 7.81 5.55 5.68 5.49 5.60 0.047 1604.44 7.79 −0.094 1604.86 7.79 −0.097
202Po 15.22 −5.241 1583.85 7.84 5.51 5.65 5.45 5.57 0.056 1582.71 7.84 −0.063 1582.92 7.84 −0.070
198Pb 14.66 −5.276 1558.98 7.87 5.47 5.62 5.42 5.54 0.075 1560.26 7.88 0.000 1560.75 7.88 0.022

The newly measured α-emitting isotope 214U [15], produced via a fusion evaporation
reaction and the re-measured even-even 216,218U, furnishes us with helpful data with which
the RMF (NL3∗) is tested. In addition to the calculation of the α-decay energies, binding
energies can be employed to probe the stability of nuclei as well as test the reliability of the
model adopted if it can quantitatively replicate the experimental binding energies. Figure 3
displays the variation of the binding energy (B.E) and the binding energy per particle
(B.E/A) with the mass number of their respective parent nuclei. In each case, the values
of the binding energies increase proportionately with the increasing mass of the parent
nuclei until notable peaks are formed at A = 214, 216 and 218 (near and) at magic numbers
N = 122, 124 and 126, respectively. Unlike the former, the B.E/A values decrease, leading
to a higher mass until a minimum is observed around the same closed shell. In both varied
parameters, similar trends are observed. It is seen that the FRDM and WS3 predicted
binding energies agree closely, while the RMF (NL3∗) predictions display a considerable
deviation, gradually decreasing from uranium to radon isotopes with about 5–10 MeV
(comparing the corresponding values in columns 4, 11 and 14 of Table 1). As a necessary
input for the calculation of the α-decay energies, this deviation would lead to an inaccurate
estimation of the decay properties.
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Figure 3. The binding energy B.E (upper panel) and the binding energy per particle B.E/A (lower
panel) for the decay chains of even-even 214,216,218U isotopes, estimated from the RMF (NL3∗) in
comparison with the results from FRDM [52] and WS3 [53].

The decay energy (Q-value) plays an indispensable role in the calculation of the
half-lives of nuclei [75]. From Figure 4 and Table 2 (columns 5–7), it is observed that
the estimated alpha-decay energies from FRDM and WS3 are in good agreement with
the experimental data and notably, the FRDM gives a perfect fit. Meanwhile, the RMF
predictions are found to be at least 2 MeV less as compared with the recent experimental
measurement, although it accurately reproduces a similar trend of Qα with the neutron
number [17]. We have also compared the RMF Q-values using NL3, NL3∗ and DD-ME2
parameter sets with the experimental Q-values and those of WS3 (not shown in the present
analysis for the sake of brevity), yet, a discrepancy of about 2 MeV is still present. This
underestimated RMF prediction of the α-decay energies is obvious in all the comparisons
made in this study. It is well known that little deviation in the Q values alters the resulting
half-lives by a few orders of magnitude [5]. This suggests that the RMF formalism is not
the best compromise to accurately estimate the Qα values (for the region under study)
and hence certain improvements in the interaction term of the Lagrangian density are
needed to ensure its reliability in the prediction of the α-decay half-lives. The parameters of
the macroscopic–microscopic FRDM have been fitted to the ground-state masses of about
1654 nuclei (Z, N ≥ 8), while the RMF approach is predicated on a Lagrangian describing
the interactions of nucleons through the exchange of mesons and photons [76].
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Figure 4. The Qα energies for the α-decay chain of 214U isotopes obtained from the RMF formal-
ism (NL3∗) in comparison with those from the FRDM [52], WS3 [53] and the recent experimental
measurement of Zhang et al. [15].

Table 2. The R3Y and M3Y predictions of the α-decay half-lives T1/2 within the PCM (T = 0) and the
calculation details for the decay chains of the neutron-deficient even–even 214,216,218U isotopes from
RMF (NL3∗) in comparison with the experimental data [15,77,78]. The Q-values also are calculated
using the binding energies from FRDM [52] and WS3 [53] for comparison.

R3Y M3Y

α-Transition Experiment Q Values (MeV)
ΔR Scaling Factor

log10 T1/2
ΔR Scaling Factor

log10 T1/2

Parent Daughter Qexpt
α log10 T1/2 RMF FRDM WS3 RMF FRDM WS3 RMF FRDM WS3

214U 210Th 8.533 −3.284 5.942 8.446 9.126 1.270 10−4 5.672 −3.285 −4.950 0.540 10−4 5.291 −3.197 −4.721
210Th 206Ra 8.069 −1.790 6.247 7.816 7.831 1.537 10−4 3.913 −1.789 −1.835 0.590 10−4 3.654 −1.846 −1.889
206Ra 202Rn 7.415 −0.620 5.280 7.276 7.394 1.737 10−4 8.001 −0.633 −1.020 0.836 10−4 7.622 −0.833 −1.209
202Rn 198Po 6.774 1.093 4.518 6.856 7.099 0.728 10−4 9.098 1.094 0.717 1.487 10−4 12.858 1.088 0.230
198Po 194Pb 6.309 2.270 3.966 7.046 6.710 1.469 10−8 a 18.299 2.269 3.404 1.302 10−7 a 18.525 2.271 3.433
216U 212Th 8.384 −2.326 5.863 8.346 8.513 1.810 10−4 7.004 −2.319 −2.779 0.914 10−4 6.796 −2.387 −2.837

212Th 208Ra 7.958 −1.499 5.287 7.666 8.424 1.393 10−4 8.513 −1.496 −3.643 0.610 10−4 8.219 −1.505 −3.553
208Ra 204Rn 7.273 0.137 4.951 7.126 7.019 1.913 10−4 10.236 0.119 0.492 1.110 10−4 10.291 0.214 0.584
204Rn 200Po 6.546 2.013 4.303 6.876 6.727 0.700 10−4 10.568 2.014 2.205 0.956 10−6 a 15.236 2.014 2.543
200Po 196Pb 5.981 3.794 3.614 6.256 6.589 0.797 10−6 a 16.290 3.795 3.123 1.103 10−6 a 20.254 3.794 2.513
218U 214Th 8.775 −3.292 6.692 8.516 8.366 1.318 10−4 2.609 −3.293 −2.896 0.592 10−4 2.316 −3.293 −2.920

214Th 210Ra 7.827 −1.060 4.708 7.706 7.896 1.812 10−4 12.896 −1.060 −1.641 0.872 10−4 −9.977 −1.060 −1.631
210Ra 206Rn 7.151 0.585 4.500 6.936 7.591 1.622 10−4 13.039 0.585 −1.599 0.828 10−4 12.905 0.585 −1.558
206Rn 202Po 6.384 2.740 3.924 6.566 6.353 0.964 10−7 a 16.978 2.741 3.486 1.188 10−5 a 18.083 2.740 2.735
202Po 198Pb 5.701 5.143 3.422 5.846 6.130 1.655 10−6 a 21.800 5.142 3.913 0.840 10−6 a 21.656 5.144 3.934

a A higher scaling factor between the range 10−8–10−5 is required to calculate the α-decay half-lives with daughter
nuclei near (and at) proton shell closure Z = 82.

In summary, the difference in the Q-values estimated from the considered mass
tables can be attributed to their respective parameterisations [76] and the mass correlation
distance between surrounding nuclei, which is usually r ≤ 3, but ranges up to r ∼ 10
for RMF, being characterised with a larger rms deviation [79]. The α-decay half-life is a
viable tool used in nuclear structure physics to reveal the shell effect of both parent and
daughter nuclei. Figure 5 shows the profile of the logarithmic half-lives log10 T1/2 as a
function of different α-emitting parent nuclei for the three decay chains, starting from
the lightest uranium isotope 214U. Again, the FRDM predictions appear to be the most
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consistent with the measured data [77,80]. Likewise, the WS3 is in fair agreement with
the experimental data with a tolerable difference. On the other hand, the RMF half-life
predictions were all-time higher with a wide difference, traceable to its relatively low alpha-
decay energy. These discrepancies in the RMF predictions are reconciled by a random
fitting (not following the systematic trend of FRDM and WS3) of the scaling factor, as well
as the neck-length parameter ΔR, as shown in Table 3. From the table, it is clear that an
appropriate scaling and fitting can compensate for the divergent RMF values. Nonetheless,
the refitting process appears to play a small effect on the penetration probability P. This
is because the decay energy directly imparts and determines the magnitude of cluster
penetration in the decay process. As reported by Kumar and collaborators [81–83], parent
nuclei with stabilised shells are marked with high half-life values and such a situation in
the daughter nuclei results in relatively lower values of the half-life. The shell structure
effect is prominent in all cases for the α-emitting parent 198,200,202Po (Z = 84) having higher
log10 T1/2 values. On the other hand, from Figure 5, the decay energy Qα of Polonium
isotopes, whose daughter Pb has a proton number at (or near) the magic shell closure
Z = 82, which assumes the deepest minima as a result of its stability. This stability can be
linked to the magicity of protons at (or near) (Z = 82, 84) or of the neutrons magic numbers
N = 214, 126, 218. This phenomenon was also reported by Phookan [22] and Manjunatha
and Sowmya [84]. Interestingly, in Figure 5, the variation in Qα seems to be the inverse of
those of the logarithmic half-lives log T1/2. Yet, a similar profile with the experimental data
is maintained from the calculated values of RMF, FRDM and WS3. It is also noticed that Qα

increases to the size of the (neutron number of) the parent nuclei.
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Figure 5. The logarithmic half-lives (upper panel) and the Qα for the α-decay chain of 214U, 216U
and 218U, obtained of from the RMF formalism (NL3∗) in contrast with those from the FRDM [52],
WS3 [53] and the recent experimental measurement of Zhang et al. [15].

In the PCM framework, it is assumed that the penetration probability P0 will be less
than unity and manifests an abrupt reduction with an increasing mass number A of the
parent nuclei. Here, our calculated P0 values are in tune with the shell model, with notable
minima around the magic numbers. This conforms with the recent findings of [24,25],
in which it was demonstrated that P0 can be influenced by the isospin asymmetry of the
parents, the deformation of the daughter nuclei, and pairing and shell effects and that
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the minima of P0 can be ascribed to the presence of proton, neutron shells and sub-shell
closures. A careful evaluation of Figure 6, which portrays the relationship between the
preformation probability P0 and the penetrability P, where both parameters are shown as a
function of the mass number, reveals that lower P0 values correspond to a higher P and
vice versa, such that their products P0P are near to the same order for all the decay chains
under study.
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Figure 6. Preformation probability P0 (calculated from Equation (13)) and the penetration probability
P using the Q-values estimated from RMF (NL3∗), FRDM [52] and WS3 [53] for 214U, 216U and
218U decay chains.

Pairing is a vital quantity used in determining the nuclear properties of open-shell
nuclei. Here, the pairing correlation is taken into account using the BCS approach. There
exists a marginal relationship between the pairing energy Epair and the deformation pa-
rameter β2 [6]. In other words, the variation of β2 yield a meagre change in Epair. Figure 7
(upper panel) outlines the variation of the pairing energy Epair with the mass number A of
the parent nuclei. In our context, the pairing is found to increase until a peak is reached
at 210Th, 212Th and 210Ra, corresponding to N = 120, 122, 122, respectively, just before the
neutron magic shell closure. However, in the first decay chain, the sudden surge at 198Po
(Z = 84) indicates the presence of shape coexistence [14,85–87]. Shape coexistence is a
habitual hallmark of neutron-deficient nuclei [14,87,88]. The RMF formulation has been
successfully employed in the investigation of the quadrupole moment and found to be in
harmony with the experimental data [86,89]. Figure 7 (lower panel) shows the changes
in the quadrupole deformation parameter β2 obtained from the RMF (NL3∗), FRDM and
WS3 results as a function of the mass number A. The RMF predicts far from the others.
In the first chain, shape changes are observed with increasing mass numbers. Except for
194Pb from the FRDM results, a shape change is noticed, from prolate to oblate, at A = 198
and thereafter descends steeply to a highly deformed oblate at A = 202. Most of these
isotopes are nearly spherical in their ground-state configurations [90]. Additionally, a closer
examination of the FRDM predictions (which is the most consistent with the experimental
data in our study) of β2 values in Table 1 shows that the deformation at (and near) the shell
closures Z = 82 and Z = 126 are approximately zero, indicating a state of stability.

99



Foundations 2022, 2

14.5

15.0

15.5

16.0

16.5

17.0

190 195 200 205 210 215
-0.15

-0.10

-0.05

0.00

0.05

0.10

195 200 205 210 215 220 200 205 210 215 220

E
pa
ir
(M

eV
)

214U 216U 218U

  RMF
FRDM
WS3

A

Figure 7. Pairing energies Epair from RMF prediction and the quadrupole deformation parameter β2

obtained from the RMF (NL3∗), FRDM [52] and WS3 [53] for the three decay chains.

In the present study, we have also extended the theoretical investigation of Sawh-
ney et al. [28] to neutron-deficient nuclei using the preformed cluster-decay model (PCM)
within the RMF framework at temperature T = 0 for generalisation. The details of our
calculations are shown in Table 2, highlighting the α-transitions (Columns 1 and 2), the ex-
perimental and calculated Q values (Columns 3 to 7), and details of R3Y calculations
(Columns 8 to 12), as well as those of the M3Y (Columns 13 to 17) of the alpha-decay chains.
The large deviation of the RMF-calculated Q values seen in their corresponding logarithmic
half-life predictions have been extensively discussed. Columns 8 and 13 of Table 2 show
the trend in the fitted neck-length parameter participating in the three decay chains for
R3Y and M3Y, respectively. A close difference can be observed in the ΔR values, except
in the case of Polonium (Z = 84), in which a smaller ΔR is required for its fitting. One
very clear observation is that, in addition to the Po, almost all the ΔR values in M3Y were
smaller than those of R3Y. This alludes to the fact that the R3Y and M3Y NN interactions
have different barrier characteristics [91].

The difference in the effective R3Y and M3Y interactions is conspicuously shown in the
driving potential (V(Ra)−QFRDM). Figure 8 displays the driving potential as a function
of the mass number of the parent nuclei for R3Y (in black squares) and M3Y (in red circles)
NN interactions for the three decay chains. The FRDM-calculated Q-values were chosen for
this comparison. Despite the well-fitted neck-parameter ΔR, the influence of the different
barrier characteristics of the R3Y and M3Y NN potential is visible. Mostly, the R3Y driving
potential was found to be higher than M3Y, except for Rn and (in the second decay chain)
Po isotopes. This anomaly occurs because these nuclei are found in the vicinity of the
proton shell closure Z = 82. Indeed, α-decay studies of neutron-deficient isotopes provide
information on nuclei near the proton drip line [92].
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Figure 8. Upper panel: The driving potential (V(Ra)−QFRDM) for the decay chains of 214,216,218U
isotopes for R3Y (in black squares) and M3Y (in red circles) NN potentials as a function of the parent
nuclei A. The lower panel illustrates the rms radii for matter distribution rm and charge distribution
rc for the 214,216,218U isotopes using the relativistic mean-field formalism RMF (NL3∗).

The scaling factors for the decay chains of the considered Uranium isotopes are
given in columns 9 and 14 of Table 2. The previous findings [28,45] at PCM (T = 0),
indicating ground-state α-decays, are confirmed for the first three α-transitions in each
of the chains. However, higher scaling factors in the range 10−8–10−5 are required to
normalise the penetrability P of the decay channels around the proton shell closure Z = 82.
This is obvious for Z = 82 and 84, whose scaling factors are given in the footnote “a”.
The deviation in the RMF Q-values necessitates the use of random scaling to attain the
measured experimental half-lives, as shown in Table 3. Despite this fact, the need for higher
scaling factors around the proton magic number Z = 82 is confirmed, as highlighted with
the footnote “b”. Thus, the previous knowledge is now broadened around the proton magic
number 82. The root mean square (rms) rm and the charge radii rc are deduced from the
RMF formalism with the NL3∗ force parameter set and the corresponding values are given
in the lower panel of Figure 8 as well as Columns 6 and 9 of Table 1, respectively. A similar
behaviour and trend are noticed in the variation of both rm and rc. Specifically, both rms
and charge radii increase monotonously with the increase in the mass of the parent nuclei.
A close examination of the three decay chains reveals that the difference between rm and rc
becomes larger with the increase in the neutron number. Currently, there are no available
data for comparison.
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Table 3. Details of the random fitting of the neck-length ΔR and scaling factor due to the deviations
found in RMF (only).

Parent Nuclei
Expt. R3Y M3Y

log10 T1/2 ΔR (fm) Scaling Factor log10 T1/2 ΔR (fm) Scaling Factor log10 T1/2

214U −3.284 1.249 105 −3.285 0.544 105 −3.200
210Th −1.790 1.208 101 −1.791 1.390 103 −1.850
206Ra −0.620 1.070 103 −0.636 0.560 104 −0.833
202Rn 1.093 0.728 104 1.098 1.010 107 1.104
198Po 2.270 1.480 108 b 2.276 1.050 109 b 2.267
216U −2.326 1.156 104 −2.319 0.492 104 −2.326

212Th −1.499 1.399 106 −1.499 0.730 106 −1.501
208Ra 0.137 1.911 106 0.189 0.980 106 0.127
204Rn 2.013 1.030 105 2.008 0.961 107 2.225
200Po 3.794 1.710 1010 b 3.816 1.400 1011 b 3.796
218U −3.292 0.793 101 −3.280 0.625 102 −3.296

214Th −1.060 0.591 109 −1.061 1.020 105 −1.129
210Ra 0.585 1.090 107 0.549 0.730 108 0.581
206Rn 2.740 1.364 109 2.734 1.200 108 2.742
202Po 5.143 0.690 107 5.144 0.780 1010 b 5.194

b The need for a higher ‘random’ scaling factor is evident to estimate the α-decay half-lives with daughter nuclei
near (and at) proton shell closure Z = 82.

4. Summary and Conclusions

The RMF framework is employed for the calculation of the ground-state properties
(binding energies, quadrupole deformation, rms charge and matter radii and Q-values) of
the newly measured 214U and remeasured 216,218U together with the decay product in their
respective α-decay chains and compared with those from the FRDM and WS3 mass tables.
The α-decay process was treated as a quantum tunnelling effect across a potential barrier
using the WKB approximation and the half-lives are deduced within the PCM framework.
The phenomenological M3Y and the recently developed R3Y NN potentials are used to
obtain the nuclear interaction potential following the double-folding technique. In all
cases, the FRDM data with the new R3Y NN potential are found to be in close agreement
with the experimental half-lives. Moreover, from our calculations, we observed that in
the so-called region of abnormal enhancement, the scaling factor 10−4 is maintained and
normalised with the optimised neck-parameter ΔR. Nonetheless, a discrepancy is noticed
around the proton shell closure with Z = 82 and 84, and this is consistently found in all
three decay chains. As such, the required scaling factor to estimate the experimental half-
lives may range from 10−8–10−5 at Z = 82, 84. However, it has been lately demonstrated
in another study that the need for scaling factor is not necessary when the temperature
effect T �= 0 is considered. This assertion will be subsequently verified around the magic
number Z = 82. Moreover, a number of studies have demonstrated that the quantisation,
deformation and orientation degrees of freedom can influence the alpha-decay half-lives
quantitatively. These effects will also be incorporated in our future study. In contrast
with the FRDM- and WS3-estimated binding energies for the considered neutron-deficient
nuclei, an unusually large difference (gradually decreasing from uranium to radon isotopes
with about 10.288 MeV up to 4.219 MeV) is also observed in the those of RMF despite
various parameter sets employed. This contrast can be attributed to the difference in their
respective parameterisations as well as the mass correlation distance between surrounding
nuclei, which has a larger rms deviation for RMF. This indicates that certain improvements
are needed in the RMF framework in this mass region.
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Peculiar Features of Molecular Hydrogen Ions Formed by
Proton Collisions with Hydrogen Atoms of the Second Flavor

Eugene Oks

Physics Department, Auburn University, 380 Duncan Drive, Auburn, AL 36849, USA; goks@physics.auburn.edu

Abstract: We analyze Molecular Hydrogen Ions (MHIs) formed by collisions of low-energy protons
with the Second Flavor of Hydrogen Atoms SFHA, whose existence was previously proven by two
kinds of atomic experiments and also evidenced by two kinds of astrophysical observations. We find
that the resulting MHIs would lack a significant number of terms compared to the MHIs formed
by collisions of low-energy protons with the usual hydrogen atoms. We show that, in this situation,
the radiative transition between the terms of such MHIs of the lowest quantum numbers would
be between the terms 5fσ and 4dσ. We calculate the position of the edge of the corresponding
molecular band and find it to be at the frequency 14,700 cm−1 or equivalently at the wavelength of
680 nm, which belongs to the visible range. It should be easier to observe this band compared to
the spectral bands that are completely beyond the visible range. We emphasize that these results
open up another avenue for finding an additional experimental proof of the existence of the SFHA.
Namely, if the SFHA is present in gas (in addition to the usual hydrogen atoms), on which a beam of
low-energy protons is incident, then the relative intensity of the band, corresponding to the radiative
transitions between the terms 5fσ and 4dσ of the MHIs, would be enhanced compared to the absence
of the SFHA.

Keywords: second flavor of hydrogen atoms; molecular hydrogen ion; proton collisions; molecular
spectral bands

1. Introduction

The Second Flavor of Hydrogen Atoms (SFHA) has been discovered theoretically and
proven experimentally to exist (by analyzing atomic experiments related to the distribution
of the linear momentum in the ground state of hydrogen atoms) first in 2001 [1]. The gist of
the theoretical discovery was that, for the states of zero angular momentum, the so-called
“singular” solution of the Dirac equation outside the atomic proton, which was usually
disregarded, can be tailored without any problem with the regular solution inside the
proton. Therefore, for this second solution, the wave function did not have a singularity at
the origin and thus there was no reason to disregard this solution. Since then, there was
also found evidence of the existence of the SFHA from atomic experiments: this time from
the experiments on the charge exchange of hydrogen atoms with incoming protons [2].

There are also two kinds of astrophysical evidence for the existence of the SFHA.
The first one is related to the puzzling observation of the redshifted 21 cm spectral line from
the early universe by Bowman et al. [3]. They found that the absorption in this spectral
line was about two times stronger than predicted by standard cosmology. This meant
that the primordial hydrogen gas was significantly cooler than predicted by standard
cosmology. In paper [4], it was shown that this big discrepancy between the observa-
tions by Bowman et al. [3] and standard cosmology can be eliminated—qualitatively and
quantitatively—in the case where the additional cooling was due to collisions with the
SFHA. These results made the SFHA a candidate for dark matter.

The second astrophysical evidence of the existence of the SFHA is the following.
Jeffrey et al. [5] recently found through observations that the distribution of dark matter in
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the universe is smoother than predicted by Einstein’s gravitation, which prompted calls
for a non-Einsteinian gravity, i.e., for new physical laws. However, in paper [6] it was
demonstrated that this perplexing observation can be also explained—qualitatively and
quantitatively—by using the SFHA.

The SFHA-based explanations of the puzzling astrophysical observations by Bowman et al. [3]
and by Jeffrey et al. [5] did not require any change of physical laws (and thus were favored
by the Occam razor principle). The theoretical discovery of the SFHA in paper [1] was
based on the standard Dirac equation of quantum mechanics.

In the present paper, we offer an experimental possibility for an additional proof of
the existence of the SFHA; it is about collisions of low-energy protons with the SFHA.
One of the possible outcomes of such collisions is charge exchange: for the SFHA it has
a slightly larger cross-section than for the usual hydrogen atoms—as shown in paper [2]
where the comparison with experiments confirmed this theoretical result. In the present
paper, we focus on another outcome of such collisions: the capture of the incoming proton
and the formation of the Molecular Hydrogen Ions (MHIs). We reveal the peculiar features
of the MHIs formed in this way. This opens up another avenue for finding an additional
experimental proof of the existence of the SFHA.

2. Allowed Molecular Terms and Radiative Transitions

There have been lots of theoretical studies of the MHI—see, e.g., reviews [7–9] and
references therein, as well as papers [10,11] and references therein. There are several reasons
for this. From the theoretical point of view, the MHI is the simplest stable molecule and
thus represents the test-bench for molecular quantum mechanics. From the applied point of
view, the MHI is important in astrophysics because it is involved in reaction chains leading
to the formation of polyatomic molecules.

From the theoretical point of view, at fixed nuclei (which in this situation are protons),
the MHI is a particular case of the two-Coulomb center system, the latter consisting
of two fixed nuclei of charges Z1 and Z2 separated by a distance R and one electron.
The two-Coulomb center system allows the complete separation of variables (in elliptical
coordinates)—see, e.g., the textbook [12]. This is the consequence of the higher than
geometric symmetry of this system, manifested by the existence of an additional conserved
quantity: the projection of the super-generalized Runge–Lenz vector on the internuclear
axis [13].

As a result of the complete separation of variables, the states of the system are de-
scribed by sets of elliptical quantum numbers {k, q, m}. Here, k is the radial quantum
number, q is the angular quantum number, and m is the azimuthal quantum number.
They are equal to the number of nodes of the corresponding parts of the wave function.
In particular, the azimuthal quantum number m is the projection of the orbital momentum
(in atomic units) on the internuclear axis.

Usually, instead of (k, q, m), there are introduced the following linear combinations—
i.e., the orbital quantum number,

l = q + m (1)
and the principal quantum number,

N = k + q + m + 1 = k + l +1. (2)

Then the states are described by the sets (N, l, m). Finally, the numerical values l = 0, 1,
2, 3, . . . are substituted by letters s, p, d, f, . . . , respectively, and the numerical values of
m = 0, 1, 2, . . . are substituted by Greek letters σ, π, δ, . . . . For example, the state (1, 0, 0)
becomes denoted as 1sσ, the state (3, 2, 1) becomes denoted as 3dπ, and so on.

When the incoming slow proton is relatively far from the hydrogen atom, i.e., for
a relatively large internuclear separation R, the states are described by the sets of the
parabolic quantum numbers [n1, n2, m]—see, e.g., the textbook [12]. For the purpose of
our paper, the most important is the correspondence between these parabolic quantum
numbers (relevant for relatively large R) and the elliptical quantum numbers (relevant for
relatively small R). According to book [14], the correspondence is the following.
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For any Z1 and Z2:
k = n1. (3)

As for the correspondence between the other quantum numbers, for Z1 = Z2 (i.e., for
the situation we are interested in), there are two subcases. For even q, one has,

q = 2n2, (4)

while for odd q, one has,
q = 2n2 + 1. (5)

Here we come to the central point. The primary distinctive feature of the SFHA is that
it only has states of the zero-orbital momentum [1,4,15]: the S-states, which are spherically
symmetric. Only for S-states, the highest probability of the location of the atomic electron
is at or near the origin, so that only the S-states are sensitive to the finite size of the atomic
proton and to the behavior of the solution of the Dirac equation in and around the proton. In
terms of the parabolic quantum numbers, the spherically symmetric states can correspond
only to the situation where,

n1 = n2, m = 0. (6)

Therefore, in this situation, Equation (1) becomes,

l = q (7)

and Equation (3) becomes,
k = n2, (8)

so that Equation (2) becomes,
N = l + n2 + 1. (9)

On substituting q = l (according to Equation (7)) in Equations (4) and (5), we arrive
to the following results (taking into account also Equation (9)). For even n2, the possible
states have the quantum numbers,

l = 2n2, N = 3n2 + 1. (10)

For odd n2, the possible states have the quantum numbers,

l = 2n2 + 1, N = 3n2 + 2. (11)

(We remind that n2 = 0, 1, 2, . . . )
In other words, the MHI formed by collisions with low-energy protons with the SFHA

would have a significantly smaller number of energy terms compared to the usual MHI.
Namely, the even terms are,

1sσ, 4dσ, 7fσ, . . . (12)
The odd terms are,

2pσ, 5fσ, 8gσ, . . . (13)

Now, let us consider the consequences of these peculiar features of the energy terms
(of this kind of the MHI) in the radiation spectrum. All allowed radiative transitions are
between the terms of m = 0, so that the radiation would have the π-polarization only
(Δm = 0). Further, taking into account the selection rule |Δl| = 1, we find the following.

The radiative transitions between the terms of the lowest quantum numbers might
have been between the terms 2pσ and 1sσ. The term 1sσ corresponds to the stable state of
the molecule, the term 2pσ does not.

During the collisions of low-energy protons with hydrogen atoms, the stable theoretical
terms of the MHI indicate the possibility of capturing the proton and forming a stable state
for the NHI. As for the unstable theoretical terms of the MHI, they should correspond
to the formation of transient, quasi-molecular states. Radiative transitions between the
meta-stable and stable molecular states in principle should be possible to observe.

However, for the radiative transition between the terms 2pσ and 1sσ there is a problem,
as follows. Figure 1 shows the frequency F (in units of 105 cm−1) of the radiative transitions
between these two terms versus the internuclear distance R (in atomic units). It would
seem that the corresponding spectral band does not have an edge (theoretically it occupies
the entire continuous spectrum of frequencies). Therefore, for this band, its intensity per
unit frequency range would be very low, thus making it virtually impossible to observe.

109



Foundations 2022, 2

2 4 6 8 10 12 14
R

0.25

0.5

0.75

1

1.25

1.5

1.75

2
F

Figure 1. The frequency F (in units of 105 cm−1) of the radiative transitions between the terms 2pσ
and 1sσ versus the internuclear distance R (in atomic units).

As we proceed to the terms of higher quantum numbers, the next possibility is the
radiative transition between the terms 5fσ and 4dσ. The term 4dσ corresponds to the stable
state of the molecule, the term 5fσ does not. Fortunately, the corresponding spectral band
has an edge.

Figure 2, which we created using the tables from the Madsen and Peek paper [16],
shows the frequency F (in units of 105 cm−1) of the radiative transitions between these two
terms versus the internuclear distance R (in atomic units). At the maximum (located at
R = 5), the frequency is F = 14,700 cm−1. This means that this spectral band indeed has an
edge, and it is in the vicinity of which the intensity per unit frequency range should be
heightened. Moreover, the edge of this spectral band is at a wavelength of 680 nm. Thus, it
should be easier to observe compared to the spectral bands that are completely beyond the
visible range.
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Figure 2. The frequency F (in units of 105 cm−1) of the radiative transitions between the terms 5fσ
and 4dσ versus the internuclear distance R (in atomic units).
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These results open up another avenue for finding an additional experimental proof
of the existence of the SFHA. Indeed, let us consider an experiment where a beam of
low-energy protons is incident on a gas of hydrogen atoms. If the SFHA is present in the
gas (in addition to the usual hydrogen atoms), then the relative intensity of the band, corre-
sponding to the radiative transitions between the terms 5fσ and 4dσ, would be enhanced
compared to the absence of the SFHA. This is because the SFHA would not contribute to
the usually observed bands, corresponding to the radiative transitions between the terms
of lower quantum numbers.

In closing this section, we make the following comments. First, some terms of the MHI,
formed by collisions of the usual hydrogen atoms with low-energy protons, can exhibit
an additional (typically shallow) potential well caused by the van der Waals interaction.
Generally, it corresponds to the dipole–dipole interaction (see, e.g., the textbook [12]). It
has the form,

V = [−d1d2 + 3(d1n)(d2n)]/R3 (14)

where n is the unit vector along the internuclear direction. Since generally the non-diagonal
matrix elements of the dipole moment operators are non-zero, then in the second order
of the perturbation theory one obtains a non-zero result proportional to 1/R6 (because
the result is quadratic with respect to V). In particular, for the ground state, the sec-
ond order correction is always negative so that the corresponding interaction energy
U(R) = −const/R6 < 0 (where const > 0). This corresponds to the attraction and might
manifest in molecular terms as a shallow potential well located at relatively large R. The
above is true for the usual hydrogen atoms. However, the SFHA has only the S-states, so
that, due to the selection rules, all matrix elements of the dipole moment operator are zeros.
Therefore, the dipole–dipole interaction vanishes, as well as the charge–dipole interaction.
Thus, in the case of the SFHA, there is no van der Waals interaction.

Second, in paper [15] we discussed the consequences of the fact that the ground state
of hydrogen atoms turns out to be double-degenerate (due to the SFHA) despite these
two states having the same values of all the known conserved quantities. Actually, this
additional double-degeneracy is related to all S-states of hydrogen atoms. According to
the fundamentals of quantum mechanics, this means that there should be an additional,
new conserved quantity by eigenvalues of which any S-state of the SFHA differs from
the corresponding S-state of the usual hydrogen atoms. Consequently, hydrogen atoms
have two flavors, differing by the eigenvalue of an additional, new conserved quantity that
we called isohydrogen spin (abbreviated as isohyspin)—by analogy with the isotopic spin
(isospin) distinguishing two flavors of quarks (the up-quark and down-quark). We also
emphasized in paper [15] that, since the isospin does not couple to the electromagnetic
force/interaction, there seems to be no reason for the isohyspin to couple to the electromag-
netic force/interaction either. A hypothetical (though actually impossible) transition from
a state of the SFHA (the state being the S-state) would require the “flip” of the isohyspin,
thus transforming the state into the S-state (of the same energy) of the usual hydrogen
atom. Obviously, this would not be a radiative transition because it would be the transition
between states of the same energy. Finally, in paper [15] we emphasized that the idea of
the isohyspin is not necessary for considering the second kind of hydrogen atoms as the
candidate for dark matter or for a part of dark matter. The idea of the isohyspin is also not
necessary for the analysis of different types of atomic and molecular experiments involving
the SFHA, such as the experiments analyzed in paper [1,2] and the experiments suggested
in the present paper.

3. Conclusions

We considered the MHIs formed by collisions of low-energy protons with the SFHA.
We found that the resulting MHIs would lack a significant number of terms compared to
the MHIs formed by collisions of low-energy protons with the usual hydrogen atoms.

We showed that, in this situation, the radiative transition between the terms of such
MHIs of the lowest quantum numbers would be between the terms 5fσ and 4dσ. We

111



Foundations 2022, 2

calculated the position of the edge of the corresponding molecular band and found it to be
at the frequency 14,700 cm−1 or equivalently at the wavelength of 680 nm, which belongs
to the visible range. So, it should be easier to observe this band compared to the spectral
bands that are completely beyond the visible range.

We emphasized that these results open up another avenue for finding an additional
experimental proof of the existence of the SFHA. Namely, if the SFHA is present in the
gas (in addition to the usual hydrogen atoms) on which a beam of low-energy protons is
incident, then the relative intensity of the band, corresponding to the radiative transitions
between the terms 5fσ and 4dσ of the MHIs, would be enhanced compared to the absence
of the SFHA.
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Abstract: An alternative to conventional spacetime is proposed and rigorously formulated for
nonlocal continuum field theories through the deployment of a fiber bundle-based superspace
extension method. We develop, in increasing complexity, the concept of nonlocality starting from
general considerations, going through spatial dispersion, and ending up with a broad formulation
that unveils the link between general topology and nonlocality in generic material media. It is shown
that nonlocality naturally leads to a Banach (vector) bundle structure serving as an enlarged space
(superspace) inside which physical processes, such as the electromagnetic ones, take place. The
added structures, essentially fibered spaces, model the topological microdomains of physics-based
nonlocality and provide a fine-grained geometrical picture of field–matter interactions in nonlocal
metamaterials. We utilize standard techniques in the theory of smooth manifolds to construct the
Banach bundle structure by paying careful attention to the relevant physics. The electromagnetic
response tensor is then reformulated as a superspace bundle homomorphism and the various tools
needed to proceed from the local topology of microdomains to global domains are developed. For
concreteness and simplicity, our presentations of both the fundamental theory and the examples
given to illustrate the mathematics all emphasize the case of electromagnetic field theory, but the
superspace formalism developed here is quite general and can be easily extended to other types of
nonlocal continuum field theories. An application to fundamental theory is given, which consists
of utilizing the proposed superspace theory of nonlocal metamaterials in order to explain why
nonlocal electromagnetic materials often require additional boundary conditions or extra input from
microscopic theory relative to local electromagnetism, where in the latter case such extra input is
not needed. Real-life case studies quantitatively illustrating the microdomain structure in nonlocal
semiconductors are provided. Moreover, in a series of connected appendices, we outline a new broad
view of the emerging field of nonlocal electromagnetism in material domains, which, together with
the main superspace formalism introduced in the main text, may be considered a new unified general
introduction to the physics and methods of nonlocal metamaterials.

Keywords: nonlocal metamaterials; multiscale structures; fiber bundles; superspace; mathematical
methods; mathematical physics; nonlocal continuum field theory; semiconductor materials

1. Introduction

Numerous research studies point toward a basic fact: topology and physics are des-
tined to come closer to each other in the following decades [1–4]. This in itself is not totally
new because several authors, for example, Henri Poincare, E. Cartan, and Hermann Weyl,
had already advocated topological thinking in physics [5–7]. However, a salient feature of
this convergence is the focus on material engineering applications, for example, metama-
terials and topology-based devices. In this paper, we look into the general and rigorous
foundations of the discipline behind these applications, namely the framework of nonlocal
continuum field theories [8,9], with focus on explicating the generic multiscale topological
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structure of continua studied by such theories. We propose that in addition to the now
mainstream approach to topological materials [10,11], where the emphasis is often laid
on exploiting the global dependence of the wave function on momentum (Fourier) space,
there is a need to consider how materials can be assigned an indirect structure indexed
by parameters taken directly from the spatial side of the configuration space, i.e., either
space–time or space–frequency.

Our key observation is that arriving at an adequate understanding and characteri-
zation of nonlocality in generic scenarios would naturally require gathering information
at the microtopological level of what we dub nonlocal microdomains (the topological level
of small regions around every point where the response is nonlocal), then collectively
aggregating these microdomains in order to obtain the global topological structure (the
macro-topological level). The fundamental insight coming from topology is precisely how
this process of “moving from the local to the global” can be enacted. We have found that a
very efficient method to do this is the natural formulation of the entire problem in terms
of a fiber bundle superspace, where conventional spacetime or space–frequency are here
understood as nothing but “index spaces” embedded into a larger (in our opinion more
fundamental) fibered superspace characteristic of nonlocal continuum field theories. In
other words, and in contrast to existing approaches to local field theories and topological
materials, our strategy is not to first solve Maxwell’s equations in order to find the state
function as expressed within the Fourier k-space, after which one proceeds to study topol-
ogy over momentum space; instead, we start in spacetime (or space–frequency), and then
formulate the extended or superspace structure of a topology over a fiber bundle where
the conventional position space of the nonlocal continuum, e.g., Euclidean space, would
manifest itself merely as the index space of the fiber bundle superspace.

The principal conceptual and philosophical message behind this work is that spacetime
(or space–frequency) is not adequate for formulating nonlocal continuum field theories,
and that a more appropriate natural approach is the superspace formalism proposed below,
which, in our case, is based on a specific fiber bundle construction taking into account the
intricate physics-based microdomain structure of the generic nonlocal continuum. It is
the hope of the author that by helping scientists generate new insights into their physics
and models, this formalism may provide a rigorous approach complementing some of the
exciting theories and researches currently addressing various topics in continuum field
theories, nonlocal metamaterials, and topological materials, while possibly stimulating
the creation of novel algorithms for the computation of suitable topological invariant
characterizing complex material domains. Due to the wide scope and complexity of this
work, we first provide in Section 2 a relatively lengthy overview on the our contribution,
where high-level information about this work, in addition to a guide to the literature and
how to read the present paper, are outlined before moving to the more technical treatments
of the subsequent sections and appendices.

2. Preliminary Considerations

While the essential idea of the superspace formalism introduced here will be valid
for a generic nonlocal continuum field theory, it is much easier sometimes to work with a
concrete example, especially in explaining what nonlocality is for someone who is coming
to the subject for the first time. Therefore, in this preliminary section, we emphasize the
special but very important case of electromagnetic nonlocality.

2.1. What Is Nonlocality?

In classical electromagnetic (EM) theory, it is currently widely held that there are no
nonlocal interactions or phenomena in vacuum because Maxwell’s equations, which capture
the ultimate content of the physics of electromagnetic fields, are essentially local differential
equations [12]. In other words, an effect applied at point r in space will first be felt at
the same location but then spread or propagate slowly into the infinitesimally immediate
neighborhood. Long-term disturbances, such as electromagnetic waves, propagate through
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both vacuum and material media by cascading these infinitesimal perturbations in outward
directions (rays or propagation paths) emanating from the time-varying point source that
originated the whole process. However, if we leave behind vacuum electromagnetism and
move into electromagnetically-responsive matter-filled space, then we note that nonlocal
interactions in material domains differ fundamentally from the de facto local vacuum-
like picture in allowing fields applied at position r′ to influence the medium at different
location r [13]. That is, in the nonlocal material system, a location not infinitesimally close
to the source position r′ can experience a nonvanishing effect emanating from the source
location. While the “nonlocality scale” |r− r′| tends to be quite small in most natural media
(and certainly zero in vacuum), in some types of materials, the so-called nonlocal media,
observable response can be found such that this “radius of nonlocality” |r− r′| becomes
appreciably different from zero [14–16].

The existence of multiple scales in the fundamental physics of nature is not really new.
The scaling properties are important in Yang–Mills fields, the non-abelian field theory, and
it has been recently used to propose the presence of fractal structures in the dynamical
evolution of the fields. For example, one may consider the fractal structure of Yang–Mills
fields [17] as an example of a multiple-scale effect in fundamental field theories.1 In a
more familiar setting, it is generally accepted that Aharonov–Bohm-type effects, which
lead to observable nonlocal electrodynamic effects [18], have their origin in quantum
physics. Bringing quantum physics into field theory can be shown to lead to intrinsically
nonlocal effects since quantum field theory may be considered a fundamentally nonlocal
theory due to, for example, entanglement effects [19,20]. However, in this paper, we focus
on classical field theory realized through phenomenological models of the electromagnetic
response of the material domain. The phenomenological model itself (the constitutive
relations [9]) may have as its ultimate origin a purely quantum effect. For example, the
main example considered in this paper, the nonlocal semiconductor material domain, has
as its “origin of nonlocality” the essentially quantum process of exciton polariton coupling
in solids (Section 7). It should be noted that in recent years some authors suggested that
classical electromagnetism, under certain conditions, may induce nonlocal effects [21–23];
nevertheless, such scenarios are outside the scope of the physical paradigm treated in the
present paper.

On the other hand, and interestingly enough for our purposes, Cvijanovich proposed
several decades ago a theoretical model in which vacuum itself is modeled as a nonlocal
constitutive non-material domain, where the standard Lorentzian spacetime manifold of
general relativity is assumed here to play the role of the “medium” transmitting nonlocal ac-
tions [24]. Such proposal might be linked to field–matter interaction regimes where there is
a strong coupling between gravitational fields and electromagnetic degrees of freedom. For
flat spacetime, however, we already know from experiments that classical electromagnetism
is strictly local. Nevertheless, it was discovered recently that classical electromagnetism
can be made nonlocal if the photon mass is nonzero. More precisely, classical massive elec-
tromagnetism can be shown to arise in certain nonlocal (spatially dispersive) homogeneous
domains [25]. Therefore, the statement that “classical electromagnetism is strictly local”
should be qualified by allowing for the possibility that the photon mass might be proved
experimentally to be non-vanishing, say in a future empirical research. In spite of all these
interesting proposals on how to modify classical electromagnetic theory in order to make
it compatible with nonlocality at the very fundamental level, the system of field theory
treated in this paper is mainly classical, and the underlying spacetime structure is flat (the
gravitational degrees of freedom are ignored).

The research field concerned with the study of the classical electromagnetism of nonlo-
cal material domains is called nonlocal electromagnetism/electromagnetics/electrodynamics. This
paper introduces a comprehensive general approach to this emerging discipline together
with a series of selected applications. An extensive literature survey on past researches
into nonlocal electromagnetism is given in Appendixes A.1 and A.2. The subject of non-
local electromagnetism, here understood as the electromagnetism of nonlocal material
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domains, is presently treated as a subdomain of the science of metamaterials. Historically,
it has not been a well-defined direction of research, with researchers working on nonlocal
structures often coming from very diverse and distinct fields, such as plasma physics,
crystal optics, periodic structures, metasurfaces, and so on. One of the objectives of this
article is to propose a coherent view of the inherently cross-disciplinary nonlocal materials
research program, encompassing contributions coming from theoretical physics, applied
physics, chemistry, engineering, with mathematical physics as the unifying framework of
our inquiry.

2.2. Key Contributions and Motivations in the Present Work

Currently, there is an interest within applied physics and engineering in harnessing
nonlocal media as a new generation of metamaterials for use in various settings, e.g., optical
devices, energy control, antennas, circuit systems, etc., see Appendixes A.1 and A.3. The
main goal of the present work is to explore, at a very general level, the conceptual and
mathematical foundations of nonlocality in connection with applied electromagnetic meta-
materials (MTMs). Our approach is conceptual and theoretical, with the main emphasis
being laid on understanding the mathematical foundations of the subject and how they
relate to the underlying physical bases of some illustrative examples. Indeed, while a
massive amount of numerical and experimental data on all types of nonlocal materials
abound in a literature that goes back to as early as the 1950s, the purpose of the present
paper is attaining some clear understanding of the essentials of the subject, particularly in
connection with the ability to build a very general superspace formalism for nonlocal con-
tinuum field theory without restricting the formalism first to particular classes of materials
such as metals, plasma, or semiconductors.

The central theoretical idea in this work is the introduction of the superspace concept
into the process of constructing a general formalism suitable for understanding, analyzing,
and designing nonlocal material systems in classical field theory. The superspace formalism
has a long history in physics, mathematical physics, and mathematics (see Appendix A.4).
It will be shown below that nonlocal continuum field theory appears to lead very naturally
to a reformulation of its essential configuration space by upgrading the conventional space–
time or frequency space to a larger superspace in which the former spaces serve as base
spaces for the new (larger) superspace. Such reconsideration of the fundamental structure
of the problem may help foster future numerical methods and potential applications as will
be discussed later, e.g., see Appendix A.11.2.

The key motivation behind the proposed superspace approach is explicating a subtle,
but often overlooked, difference between two fundamental scales of interactions in nature:

1. Infinitesimal interactions: this characterizes local field theories, e.g., local electromag-
netism, where all operators are differential operators.

2. Non-infinitesimal but local interactions: here, nonlocal operators, such as integral
operators, may be present. In this type of theory, interactions are extended into small
topological neighborhoods around the source/observation point.

We believe that this topological difference has not received the attention it deserves in the
growing theoretical and methodological literature on nonlocal media. In particular, the
author believes that a majority of present approaches to nonlocal metamaterials conflate
the topologically local (but EM nonlocal) domain of small neighborhoods and global do-
mains. However, general topology and much of modern mathematical physics is based on
clearly distinguishing the last two topological levels. Explicating these subtle conceptual
differences emanating from the existence of distinct types of spatial scales in field–matter
interactions, while aided by a precise, rigorous, and powerful mathematical language, is
one of the principal aims of this work. In fact, we believe that a complete understanding of
material nonlocality in nature cannot be attained without relying on a fairy advanced math-
ematical apparatus such as the theory of smooth fiber bundles and infinite-dimensional
manifolds developed below.
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Let us give a brief summary of the main conceptual findings of this research. First, we
highlight that the main idea of the superspace formalism is not restricted to electromagnetic
theory, but applies to all types of nonlocal continuum theories, i.e., field theories in nonlocal
continuous media. However, for concreteness, and in order to reduce the complexity of the
mathematical formalism, we chose to work with a specific type of field theories, namely
the classical field paradigm based on Maxwell’s equations. As will be seen below, It turns
out that the standard formalism of local field theory, which is based on spacetime points
and their differential (but not topological) neighborhoods, viewed as the basic configuration
space of the problem, is not the most natural or convenient framework for formulating field
theory in nonlocal materials. This is mainly because the physics-based domain of nonlocality
(to be defined precisely below), which captures the effective region of field–matter nonlocal
interactions, is found to not always be naturally transportable into the mathematical
formalism of boundary-value problems characteristic of classical field theory, as practiced
in several domains, such as applied electromagnetism, heat transfer, hydrodynamics, etc.
By investigating the subject from an alternative but enlarged and intrinsically broader
perspective, it will be shown that a natural space for conducting nonlocal metamaterials
research is the vector bundle structure, more specifically, a Banach bundle [26] where every
element in the fiber superspace is a vector field on the entire domain of nonlocality.

The main result of this paper is that every generic nonlocal domain can be topologically
described by a superspace comprised of a Banach (infinite-dimensional) vector bundle
M. If two materials described by their corresponding vector bundlesM1 andM2 are
juxtaposed, then one may use topological methods to combine them and to compare their
topologies. The present paper’s focus is mainly on the first part, i.e., how to construct
the material bundle M. That is, the derivation of the various vector bundle structures
starting from a generic phenomenological model of electromagnetic nonlocality is the
main contribution of the present work. It is hoped by the author that the superspace
theory developed below will stimulate new approaches to computational field theories by
adopting methods borrowed from or inspired by computational topology and differential
topology to help supporting ongoing efforts to solve challenging problems in complex
material domains as in nanoscale hydrodynamics, nonlocal optical materials, topological
insulators, topological photonic devices, and other areas where nonlocality is currently
important or expected to play an increasingly dominant role in the future.

2.3. An Outline of the Present Work

Because of the considerable complexity of the present article, which is unavoidable in
treatment of the subject of nonlocality in the continuum field theory at this broad theoretical
level, and in order to help make our contribution accessible to a wider audience involving,
for instance, physicists, engineers, and mathematicians, we have divided the argument
into different stages with different flavors, as follows. First, Section 3 provides a general
mathematical description of nonlocality in the continuum field theory, emphasizing the set-
tings of the electromagnetic case. The key ingredients of nonlocal metamaterials/materials
are illustrated in Section 3.1 using an abstract excitation-response model. This is followed
in Section 3.2 by a more detailed description of the special but important case of spatial
dispersion, which tends to arise naturally in many investigations of nonlocal metamaterials.
In Section 4, we begin the elucidation of the main topological ideas behind electromagnetic
nonlocality, most importantly, the concept of EM nonlocality microdomains, which provides
the key link between physics, material engineering, and topology in this paper. The various
physical and mathematical structures are spelled out explicitly, followed in Section 5 by a
more careful construction of a natural fiber bundle superspace structure that appears to
satisfy simultaneously both the physical and mathematical requirements of EM nonlocality
(Sections 5.1 and 5.2). We then provide a key computational application of the proposed
theory in Section 5.3, where it is shown that the material response function is representable
as a special fiber bundle homomorphism over the metamaterial base space. In this way,
a more general map than linear operators in local field theory is derived, providing solid
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mathematical foundations for possible future computational topological methods where,
for example, the bundle homomorphism itself might be discretized instead of the original
spacetime-based linear operator. The fiber bundle superspace algorithm is summarized
in Section 6, where it is highlighted that the main data needed are the physics-based (e.g.,
electromagnetic) nonlocality microdomains, which do not arise solely from purely math-
ematical considerations, but require some empirical input, for example the microscopic
theory of materials, which ultimately would involve both electromagnetism and quantum
mechanics. In this manner, the entire construction of the nonlocal metamaterial superspace
may proceed as per the procedure outlined there. In order to illustrate how the above
mentioned microdomain structure can be actually estimated in practice, in Section 7 we
present a fairly detailed computational example based on nonlocal semiconductors, where
we also explore in depth the physical origin of nonlocality in this particular setting. Insights
into the lack of general EM boundary conditions in nonlocal EM are provided in Section 8
based on the superspace formalism.

This paper provides a series of technical appendices designed to provide necessary
information to expand the scope of the treatment found in the main text. In Appendix A.1,
we back up our major formulation as developed by introducing a general review of electro-
magnetic nonlocality targeting a wide audience of mathematicians, physicists, engineers,
and applied scientists. This review does not restrict itself to specific types of materials,
such as plasma, metals, and semiconductors, but aims at integrating the author’s own
understanding of the vast literature on the subject in a tentative and necessarily provisional,
but somehow more coherent view. Because of the extreme importance of the special case of
spatial dispersion for understanding nonlocality, we provide some brief historical remarks
on this subject in a separate Appendix A.2. Some technical and historical explications of
the concept of superspace, as needed and used in the main text, is given in Appendix A.4,
which is not meant as a complete rigorous introduction to the concept of superspace in
mathematics and theoretical physics, a topic far from being well-defined and focused.
Instead, the goal of this appendix is to fix the very specific meaning we have in mind in
this paper whenever we speak about superspace structures in order to avoid confusing our
concept with other usages found in physics, such as in supersymmetry.

The Appendixes A.6–A.9 supply important technical information needed in order
to fully comprehend the specific main example developed in this paper, to illustrate the
use of the superspace formalism in actual real-life scenarios (the inhomogeneous nonlocal
excitonic semiconductor material system of Section 7). We opted to separate the content of
these appendices from the main text in order to simplify the presentation. The subject of
nonlocal semiconductor metamaterials is already well-known in the specialized literature,
but is also highly technical. In order to help keep the flow of the various ideas treated in
the main text tightly focused on the conceptual and mathematical aspects of our proposed
superspace theory, we relegated some background material, especially detailed derivations
and explanations more related to semiconductor physics than the superspace formalism, to
the three appendices mentioned above.

Some basic familiarity with vector bundles and Banach spaces is assumed, but essen-
tial definitions and concepts will be reviewed briefly within the main formulation and
references where more background on vector bundles can be found will be pointed out.
The paper intentionally avoids the strict theorem-proof format to make it accessible to
a wider audience. Most of the time we give only proof sketches and leave out straight-
forward but lengthy computations. In general, just the very basic definitions of smooth
manifolds, vector bundles, Banach spaces, etc., are needed to comprehend this theory (also
see Appendix A.5 for a guide to the mathematical background.) The only place where the
treatment is mildly more technical is in Section 5.3 when the bundle homomorphism is
constructed using partition of unity technique as a detailed computational application of
the superspace theory.

In Appendixes A.3 and A.11, various additional current and future applications to
fundamental methods, applied physics, and engineering are outlined in brief form. Some of
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the applications mentioned there, for instance numerical methods and topological devices,
appear to us to be directly relevant to the scope of a superspace extension of conventional
nonlocal electromagnetic field continuum theory, such as the one attempted below within
the main text. On the other hand, some of the other applications discussed there, e.g.,
digital communications and energy, are of a more general nature and belong to our broader
tentative global review of the subject of nonlocality in nature and engineering attempted in
the Appendix A sections of this paper. Finally we end with the conclusion.

3. The Nonlocal Continuum Response Model

3.1. A Generic Nonlocal Response Model in Inhomogeneous Continua

In order to introduce the concept of nonlocality in the simplest way possible, let us
first start with a scalar field theory setting. As mentioned in the introduction, vacuum
classical fields cannot exhibit nonlocality, so in order to attain this phenomenon, one must
consider fields in specialized domains. We therefore kick-start the technical mathematical
treatment by reviewing the broad theory of such media. The goal is to outline the main
ingredients of the spacetime-based configuration space on which such theories are often
founded in literature. To further simplify the presentation, we work in the regime of linear
response theory: i.e., all material media considered throughout this paper are assumed to be
linear with respect to field excitation.

In detail, if the medium response and excitation fields are captured by the spacetime
functions R(r, t) and F(r, t), respectively, then the most general response is given by an
operator equation of the form [9]

R(r, t) = L{F(r, t)}, (1)

where L is a linear operator describing the medium, and is ultimately determined by the
laws of physics relevant to the structure under consideration [27–29].

Now, the entire physical process will occur in a spacetime domain. In a nonrelativistic
formulation (like the one in the present work), we intentionally separate and distinguish
space from time. Therefore, let us consider a process of field–matter interactions where
t ∈ R, while we spatially restrict to a “small” region spanned by the position

r ∈ D ⊂ R
3, (2)

where D is an open set containing r. (Throughout this paper, we assume the normal
Euclidean topology on R3 for all spatial domains.) Since the operator L is linear, one may
argue (informally) that its associated Green’s function or kernel function

K(r, r′; t, t′) (3)

must exist. Strictly speaking, this is not correct in general and one needs to prove the
existence of the Green’s function for every given linear operator on a case by case basis
by actually constructing one [30,31].2 However, we will follow (for now) the common
trend in physics and engineering by assuming that linearity alone is enough to justify the
construction of Green’s function. If this is accepted, then we can immediately infer from
the very definition of the Green’s function itself that [12,32]

R(r, t) =
∫

D

∫
R

d3r′ dt′ K(r, r′; t, t′)F(r′, t′). (4)

The relation (4) represents the most general response function of a (scalar) material medium
valid for linear field–matter interaction regimes [37,38]. The kernel (Green) function
K(r, r′; t, t′) is often called the medium response function [9,32,37].
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If we further assume that all of the material constituents of the medium are time
invariant (the medium is not changing with time), then the relation (4) maybe replaced by

R(r, t) =
∫

D

∫
R

d3r′ dt′ K(r, r′; t− t′)F(r′, t′), (5)

where the only difference is that the kernel function’s temporal dependence is replaced
by t − t′ instead of two separated arguments. Such superficially small difference has
nevertheless considerable consequences. Most importantly, by working with (5) instead
of (4), it becomes possible to apply the Fourier transform method to simplify the time-
dependent formulation of the problem [39]. Indeed, taking the temporal Fourier transform
of both sides of (5) leads to

R(r, ω) =
∫

D
d3r′K(r, r′; ω)F(r′; ω), (6)

where the Fourier spectra of the fields are defined by

F(r; ω) :=
∫
R

dtF(r; t)e−iωt,

R(r; ω) :=
∫
R

dtR(r; t)e−iωt.
(7)

On the other hand, the medium response function’s Fourier transform is given by the
essentially equivalent formula

K(r, r′; ω) :=
∫
R

d(t− t′)K(r, r′; t− t′)e−iω(t−t′). (8)

In this paper, we focus on time invariant material media and, hence, work exclusively
with frequency domain expressions, such as (6), (7), and (8), though we often suppress
the frequency dependence on ω in order to simplify the notation whenever no confusion
would arise.

The generalization to the three-dimensional (full-wave) electromagnetic picture is
straightforward when the dyadic formalism is employed [28,40]. The relation correspond-
ing to (4) is

R(r, t) =
∫

D
d3r′

∫
R

dt′ K(r, r′; t− t′) · F(r′, t′), (9)

where we replaced the scalar fields F(r) and R(r) by vector fields F(r), R(r) ∈ R3. The
kernel function K, however, must be transformed into a dyadic function (tensor of second
rank) [14,28,41,42]:

K(r, r′; t− t′). (10)

In the (temporal) Fourier domain, (9) becomes

R(r, ω) =
∫

D
d3r′ K(r, r′; ω) · F(r′; ω), (11)

where
K(r, r′; ω) :=

∫
R

d(t− t′) K(r, r′; t− t′)e−iω(t−t′) (12)

is the frequency domain response kernel, while

F(r; ω) :=
∫
R

dt F(r; t)e−iωt,

R(r; ω) :=
∫
R

dt R(r; t)e−iωt,
(13)

are the corresponding frequency domain excitation and response fields, respectively.
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The essence of electromagnetic nonlocality can be neatly captured by the mathematical
structure of the basic relation (9). It says that the field response R(r) is determined not only
by the excitation field F(r′) applied at location r′, but at all points r′ ∈ D. Consequently,
here we find that the following is true:

In nonlocal continuum field theories, knowledge of the field response at a specific point r
requires knowledge of the cause (excitation field) on an entire topological neighborhood
set D � r.

On the other hand, if the medium is local, then the material response function can be
written as

K(r, r′; ω) = K0(ω)δ(r− r′), (14)

where K0 is a spatially constant tensor and δ(r− r′) is the three-dimensional Dirac delta
function. In this case, (11) reduces to [13]

R(r; ω) = K0(ω) · F(r; ω), (15)

which is the standard constitutive relation of linear electromagnetic materials. Clearly, (15)
says that only the exciting field F(r) data at r is needed in order to induce a response at
the same location. In a nutshell, locality implies that the natural configuration space of the
electromagnetic problem is just the point-like spacetime manifold D ⊂ R3 or the entire
Euclidean space R3.

Remark 1 (Infinitesimal domains). One may use the “infinitesimally immediate vicinity”
of a given point r, where a response is sought, for computing that response itself, yet while
still remaining within the local regime of continuum field theory. Indeed, for the case of elec-
tromagnetic theory, we note that, according to the constitutive relation (15), while only the
exciting field at r is required for computing the response, Maxwell’s equations themselves,
on the other hand, still must be coupled with the local constitutive relation model of the
problem. Now, the fact that Maxwell’s equations are differential equations implies that the
“largest” domain beside the point r needed for carrying out the mathematical description of
the details of the relevant field–matter interaction physics is just the region infinitesimally
close to r. In other words, in continuum field theories, infinitesimal domains should be
treated as neither topological domains nor neighborhoods. The infinitesimal belong to
any type of continuum field theory built on the differential calculus and, hence, is not a
criterion for distinguishing local and nonlocal theoretical structures.

Conventional boundary-value problems in applied electromagnetism are formulated
in this manner, i.e., with a three-differential manifold as the main problem space on which
spatial fields live [28,29,32,40,41,43–46]. Note that, strictly speaking, the full configuration
space in local electromagnetism (also called normal optics [16]) is the four-dimensional
manifolds D × R or R4 since either time t or the (temporal) circular frequency ω must
be included to engender a full description of electromagnetic fields. However, nonlocal
materials are most fundamentally a spatial type of materials/metamaterials where it is the
spatial structure of the field what carries most of the physics involved [32,47]. For that
reason, throughout this paper, we investigate the required configuration spaces with focus mainly
on the spatial degrees of freedom. This will naturally lead to the discovery of the fiber bundle
structure of nonlocality, the main topic of the present work.

3.2. Spatial Dispersion in Homogeneous Nonlocal Material Domains

Spatial dispersion is considered by some researchers as one of the most promising
routes toward nonlocal metamaterials, e.g., see [16,47–49]. It is by large the most intensely
investigated class of nonlocal media, receiving both theoretical and experimental treatments
by various research groups since the early 1960s.3 The basic idea is to restrict electromag-
netism to the special, but important case of media possessing translational symmetry, an
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important special scenario of material nonlocality that holds when the medium is homoge-
neous. In such situation, the material tensor function satisfies

K(r, r′; ω) = K(r− r′; ω). (16)

The spatial Fourier transforms are defined by

K(k, ω) :=
∫
R3

d3(r− r′) K(r− r′; ω)eik·(r−r′), (17)

with
F(k, ω) :=

∫
R3

d3r F(r; t)eik·r,

R(k, ω) :=
∫
R3

d3r R(r; t)eik·r.
(18)

After inserting (16) into (11), taking the spatial (three-dimensional) Fourier transform of
both sides, the following equation is obtained:

R(k, ω) = K(k, ω) · F(k, ω). (19)

The dependence of K(k, ω) on the wave vector (“spatial frequency”) k, here added to the
already existing temporal frequency ω dependence, is the signature of spatial dispersion. As
a spectral transfer function of a homogeneous medium, K(k, ω) includes all the information
needed to compute the nonlocal material domain’s response to arbitrary spacetime field
excitation functions F(r, t) (through the application of inverse four-dimensional Fourier
transform [16]).

Remark 2. In several treatments of the subject within electromagnetic theory, the excitation
field is taken as the electric field E(r, t), while the response function is D(r, t). In such
formulation, the material tensor function K(k, ω) takes into account both electric and
magnetic effects [14–16,37–39,50–54]. This is different from the permittivity tensor often
invoked in local electromagnetism [28], which is ultimately based on the popular multipole
model [43] of electromagnetic interactions in material media. A comparison between the
two material response formalisms, the one based on K(k, ω) and the multipole model, is
given in [32,47,53].

Complex heterogeneous arrangements of various nonlocal materials can be realized
by juxtaposing several subdomains where each subunit is homogeneous, hence can be de-
scribed by a spatial dispersion profile of the form K(k, ω) discussed above. The idea is that
even materials that are inhomogeneous at a given spatial scale may become homogeneous
at a different (less refined) spatial level, leading to a “grid-like” spatially dispersive cellular
building blocks at the lower level. In Figure 1, we show a nonlocal metamaterial system
with various multiscale structures. A large nonlocal domain, e.g., K3(r, r′) in the figure,
acts like a “substrate” holding together several other smaller material constituents, such
as Kn(r, r′), n = 1, 2, 4. We envision that each nonlocal subdomain may possess its own
specially tailored nonlocal response function profile serving one or several applications.4

By concatenating multiple regions, interfaces between subdomains with different material
constitutive relations are created. We here show subdomains Dn, n = 1, 2, 3, 4, while some
of the possible intermaterial interfaces include D1/D2, D1/D3, D2/D3, D3/D4. More com-
plex geometrical and topological interfaces than those shown in Figure 1 are possible where
the topological type of the interface manifold can be controlled by introducing handles,
holes, gluing, cutting, and so on.
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K2(r, r′)K1(r, r′) K3(r, r′)

K4(r, r′)

Topological holes

D2D1

D3
D4 Spatial dispersion

cellular domains

Figure 1. A generic depiction of an electromagnetic nonlocal metamaterial system. Each of the
domains Dn is captured by a general linear nonlocal response function Kn(r, r′).

Recall that in local electromagnetism each intermaterial interface should be assigned a
special electromagnetic boundary condition in order to ensure the existence of a unique
solution to the problem [9,41]. This, however, is not possible in nonlocal electromagnetism.
Indeed, and as already mentioned earlier, nonlocal electromagnetism introduces several
subtle issues that are absent in the local case: additional boundary conditions are often
invoked to handle the transition of fields along barriers separating different domains, such
as between two nonlocal domains, or even one nonlocal and another local domain [16,55,56].
The topological fiber bundle theory to be developed in Section 5 will provide a clarification
of why this is so since it turns out that the traditional spacetime approach often employed
in local electromagnetism is not necessarily the most natural one (see also Section 8). There
is a need, then, to examine in a more in-depth fashion the detailed structural phenomena
associated with the presence of multiple topological scales in nonlocal metamaterials. This
paper will provide some new insights into these issues.

3.3. Preliminary Remarks on the Existence of Multiple Topological Scales in Nonlocal Continuum
Field-Theoretic Structures

For completeness and maximal clarity, we discuss here some of the directly observable
topological scales in nonlocal continuum systems whose preliminary understanding at
this stage of our presentation does not require the use of the quite elaborate mathematical
apparatus to be carefully constructed in the remaining parts of this paper. We list the most
important of these topological levels as follows:

1. The first is the geometrical separation between different nonlocal domains, such as
D1 and D2 discussed in Section 3.2 and illustrated by Figure 1.

2. The second is the case captured by the inset in the right hand side in Figure 1. Fine “mi-
croscopic” cells, each homogeneous and, hence, describable by a response function of
the form K(k, ω), can be combined to build up a complex effective nonlocal response
tensor Kn(r, r′) over its topologically global domain Dn. Such juxtaposition at the
microscopically local level that effectively leads to the emergence of a global behavior
is a classic example of multiscale physics. However, note that it even acquires a higher
importance in the present context due to the fact that both of the constituent cell level
(rectangular “bricks” in the inset of Figure 1) and the global domain level Dn already
belong to the physically, e.g., electromagnetically, nonlocal dimension of the relevant
nonlocal continuum field theory.

3. Finally, the third directly observable topological scale is that connected to what we
termed “topological holes” in Figure 1. These are arbitrarily-shaped gaps, such as
holes, vias, etchings, etc., which are intentionally introduced in order to influence
the electromagnetic response by modifying the topology of the three-dimensional
material manifolds Dn.
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The above topological levels are called “directly observable” because their determination
does not require the use of abstract and advanced concepts from continuum field theory.
This is in contrast to the more subtle distinction that will be discussed next.

In Remark 3, we discuss the very important conceptual distinction between topology-
based and physics-based nonlocal domains, a demarcation between two concepts that has
already been invoked several times above, and will also figure up repeatedly throughout
the remaining parts of this article.

Remark 3 (Distinction between physics- and topology-based locality/nonlocality). The
terms local and global possess two different senses, one physics-based, e.g., electromag-
netic theory; the other is spatio-geometric in essence, belonging to the purely formal and
mathematical dimensions of the structure of the nonlocal continuum theory of the material
system. Elucidating this subtle interconnection between the two senses will be one of the
main objectives of the present work but we will first need to introduce the various relevant
microscale topological concepts to be given in Section 4 (see also Remark 17) For the time
being, let the following be known:

1. Physics-based local/non-local distinction: this is where basically physical considerations
are at stakes. We distinguish between:

(a) Physics-based non-local level: this includes how the response of the material
continuum depends on locations r′ not infinitesimally close to the point r

where the excitation field is applied. That is, r− r′ is nonzero but it is also not
a differential. (On infinitesimal domains, see Remark 1.)

(b) Physics-based local level: this is the physical regime whose essence is captured
by local constitutive relations of the form (15).

2. Topology-based local/non-local distinction: mathematical considerations dominate at this
level. We have:

(a) Topology-based non-local level: this is the topologically global level, e.g., the
entire topological manifold in contrast to the local description applicable only
to a coordinate patch [57], and so on. At this level, the non-local-as-global is
an emerging structure based on gluing together “smaller pieces” of the total
manifold. We will see examples of processes occurring basically at this level
when we use partition of unity methods.

(b) Topology-based local level: this is the topological layer associated with struc-
tures, such as open sets, topological neighborhoods, closed sets, and so on. A
topological space is defined as a collection of all such local sets [58,59].

The two concepts outlined above interact with each. There is a subtle relation between
physics and topology. This paper will address some of these delicate interrelations in
subsequent sections.

Remark 4 (Electromagnetic Domains). For simplicity, in what follows we will occasionally
use ‘electromagnetic (EM) domain’ and ‘physics-based nonlocal domain’ as interchangeable
terms. It should be kept–in min–that the concept of physics-based nonlocality is broader
than EM nonlocality. The former refers to a characteristic structural trait enjoyed by all
nonlocal continuum field theories, while the latter is restricted to the realm of just one such
theory, that of the electromagnetism of continuous media.

4. The Microscopic Topological Structure of Physics-Based Nonlocal Domains

4.1. Introduction

In this section, we begin our careful examination of the mode of interrelation between
the physics- and topology-based types of nonlocality introduced and discussed above.5

Let the nonlocality domain of the electromagnetic medium, the region D ⊂ R3 in (11),
be bounded. Corresponding to (1), a similar operator equation in the frequency domain
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representing the most general form of a nonlocal electromagnetic medium can be posited,
namely

R(r; ω) = Lω{F(r; ω)}, (20)

where the nonlocal medium linear operator is itself frequency dependent. For simplicity,
and as stated before, whenever it is understood from the context that the material response
operator is formulated in the frequency domain, all dependencies on ω appearing in its
formal expression will be removed.

We are going to propose a change in the mathematical framework inside which
electromagnetic nonlocality is usually defined. This will be done in two stages:

• Initially, in the present Section, we introduce the rudiments of the main physics-based
microtopological structure associated with nonlocality in continuum field theories,
but without delving into considerable mathematical details. The aim is to familiarize
ourselves with the minimal necessary physical setting and how it naturally gives
rise to a more refined picture of the nonlocal material domain compared with the
traditional (and much simpler) topological structure of local electromagnetism based
on spacetime points.

• In the second stage, treated in Section 5, a more careful mathematical picture is devel-
oped using the theory of topological fiber bundles. We eventually show (Section 5.3)
that the physics-based (in this case the electromagnetic) nonlocal operator (20) can be
reformulated as a Banach bundle map (homomorphism) over the three-dimensional
space of the material domain under consideration. Some computational examples and
applications are provided in the later Sections, e.g., see Section 7.

The key conceptual idea behind the entire theory presented here is that of the topological mi-
crodomains associated with the field theory of nonlocal continua, e.g., the electromagnetism
of continuous media, which we first develop thematically in the next Section 4.2 before
moving subsequently to the more rigorous and exact topological formulation of Section 5.

4.2. The Concept of Topological Microdomains in Nonlocal Continuum Field Theories

In conventional frequency domain local electromagnetism, the boundary-value prob-
lem of multiple domains is formulated as a set of coupled partial differential equations or
integro-differential equations interwoven with each other via the appropriate intermaterial
interface boundary conditions dictating how fields change while crossing the various spa-
tial regions inside which the equations hold [28,40,41]. This has been traditionally achieved
by taking up the electromagnetic response function K(r, r′; ω) as an essential key ingredient
of the problem description, which traditionally has been exploited in two stages: First, the
constitutive relations would enter into the governing equations in each separate solution
domain. Second, the constitutive relations themselves are used in order to construct the
proper electromagnetic boundary conditions prescribing the continuity/discontinuity be-
havior of the sought field solutions as they move across the various interfaces separating
domains with different material properties.

Unfortunately, it has been well known for a long time that it is not possible to formulate
a universal electromagnetic boundary condition for nonlocal media, especially for the case
of spatial dispersion. This will be discussed later with more details in Section 8, but also
see the discussion around additional boundary conditions (ABC) in Appendix A.1. For
now, we concentrate on gaining a deeper understanding of the generic structure of spatial
nonlocality in continuum field theories.

Consider the microdomain structure depicted in Figure 2. A key starting observation
is how nonlocality forces us to associate with every spacetime point (r, t), or frequency
space point (r; ω), a topological neighborhood of r, say Vr, such that r ∈ Vr. For now, let us
assume that the spatial material domain D � r is just an open set in the technical sense of
the topology of the Euclidean space R3 inherited from the standard Euclidean metric [59].
By restricting D to be open, we avoid the notorious problem of dealing with boundaries or
interfaces between such (possibly overlapping) open sets. That is, the topological closure
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of D, denoted by cl(D), is excluded from the domain of nonlocality. Let D be the maximal
such topological neighbored for the problem under consideration.6 We now associate with
each point r a “smaller” open set Vr where the following holds:

∀ r ∈ D, ∃Vr ⊂ D such that r ∈ Vr, and Vr is open. (21)

Note that the assumed openness of D makes the above construction technically possible.
We will call the proposition (21) the principle of nonlocal microdomain generation. It formally
captures the main content of the structure of nonlocality at the microscopic level. In
Section 7, a practical example taken from nonlocal semiconductor metamaterials will be
investigated in depth in order to illustrate the applicability of (21).

Kn(r, r′)Km(r, r′)

Dn
Dm

Vr1

r1

Vr2

r2

Figure 2. The microtopological structure of nonlocal metamaterial systems includes more than just
the three-dimensional spatial domainsDn, n = 1, 2, . . . It is best captured by classes V(Dn) composed
of various open sets Vr ⊂ Dn based at each point r ∈ Dn. On every such subset a vector field is
defined, representing the external field excitation field. The collection of all vector fields on a given
set Vr gives rise to a linear topological function space F (Vr). The topologies consisting of the base
spaces Dn, the nonlocal microdomains Vr, and the function spaces F (Vr), collectively give rise to a
total “macroscopic” topological structure (superspace) that is considerably more complex than the
base spaces Dn.

Now, instead of considering fields like R(r) and F(r) defined on the entire maximal
domain of nonlocality D (which can grow “very large”) we propose to reformulate the
problem of nonlocal continua as a topologically local7 structure by exploiting the fact that the
physics of field–matter interactions gives the field response at location r due to independent
excitation fields essentially confined within a “smaller domain” around r, namely the open
set Vr.8

Furthermore, if the response at another different point r �= r′ is needed, then a new,
generally different, “small” open set Vr′ will be required. That is, in general we allow that

Vr �= Vr′ (22)

even though it is expected that typically there should be some overlap between these two
small local domains of electromagnetic nonlocality in the sense that

Vr ∩Vr′ �= ∅, (23)

especially if the nonlocality radius |r− r′| is small.
The following fundamental collection of “smaller” sets, where a metric scale character-

izing “smallness” is not implied, written as

{Vr, r ∈ D}, (24)

will be dubbed nonlocal microdomains, or just microdomains in short. A possible precise
definition is given next.
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Definition 1 (Nonlocal microdomains: the physics-based scenario). Consider a material
domain D with the associated nonlocal response function K(r′, r). We define the (physics-
based) nonlocal microdomain Vr ⊂ D, labeled by r ∈ D, as the interior of the compact9

support of K(r′, r). The support itself is defined by the standard formula

supp K(r′, r) := clD{r′ ∈ D,
∥∥K(r′, r)

∥∥ �= 0}, (25)

where ‖·‖ is a suitable tensor norm, for example the matrix norm.10 The topological closure
operator clD is here taken with respect to the total material space D where the latter is
viewed as a topological space on its own.

Remark 5 (Microdomain topology). By Definition 1 above, the nonlocal microdomain Vr

is always open. It can be shown that the collection of open sets {Vr, r ∈ D} induces a
topology on the total space occupied by the nonlocal material (the details are omitted since
they are lengthy though straightforward.) In what follows, this topology will be referred
to by the term microdomain topology. The set of physics-based nonlocality microdomains
(microdomains for short), as constructed in Definition 1, explicate the fine microtopological
structure of nonlocal electromagnetic domains at a spatial scale different from that of
the (topologically “larger”) material domain D itself and are fundamental for the theory
developed in this paper.

Remark 6 (Discrete topology in local continua). In local media, the microdomains topol-
ogy reduces to the trivial discrete topology

{{r}, r ∈ D} (26)

since the external field interacts only with the point r at which it is applied and hence

Vr = {r} (27)

holds as the “smallest” possible topological microdomain in that rather special case. There-
fore, the microdomain topology is interesting only for the case of physics-based nonlocality,
e.g., the scenario of EM microdomains discussed in more details in the examples and
applications below. In particular, from the point of view of this article, local metamaterials
are not topologically interesting.

4.3. Construction of Excitation Field Function Spaces on the Topological Microdomains of
Nonlocal Media

After enriching the MTM domain D with the finer topology of nonlocality microdomains
Vr, r ∈ D, we wish to equip this total medium with additional mathematical structure based
on the physics of field–matter interaction. Consider the set of all sufficiently differentiable
vector fields F(r) defined on Vr, r ∈ D. This set possesses an obvious complex vector space
structure: for any two complex numbers a1, a2 ∈ C, the sum

a1F1(r) + a2F2(r)

is defined on Vr whenever F1(r) and F2(r) are, while the null field plays the role of the
origin. In what follows, we will denote such function spaces by F (Vr) or just F if it is
understood from the context on which material spatial domains the fields are defined.

Remark 7 (The excitation field function space and Sobolev spaces). It is possible to equip
F (Vr) with a suitable topology in order to measure how “near” to each other are any two
fields defined on Vr, e.g., see [59,62,63]. Therefore, in this manner F (Vr) acquires the
structure of a topological vector space [59]. In particular, it can be made a Sobolev space, where
the latter is not only a Banach space (normed space), but also a Hilbert space (inner product
space) [64–66].
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The detailed construction of a Sobolev space on a given microdomain is not needed
for what follows in this paper, but can be found in the literature, including the references
quoted in this Remark 7.

4.4. The Global Topological Structure of Nonlocal Electromagnetic Material Domains: First Look

In light of the analysis above, each microdomain Vr induces an infinite-dimensional
linear function space (Sobolev space) F (Vr) indexed by the position r ∈ D, with the
corresponding topology being essentially determined by the geometry of Vr. On the other
hand, this latter geometry is obtained from the physics of field–matter interaction in nonlocal
media. Consequently, the physical content of nonlocal materials is encoded at the level of
the topological microstructure encapsulated by the following formal scheme:

D � r
Physical Data−−−−−−−−−−−−−−→

Physics-Based Nonlocality
Vr

Mathematical Data−−−−−−−−−−→
Sobolev Space

F (Vr) (28)

Let us first identify the main relevant collections of subsets needed in order to understand
the formal set-theoretic structure of the problem. We begin by

V(D) := {Vr ⊂ D
∣∣ r ∈ D, Vr is open}, (29)

as the class of physics-based nonlocal microdomains (Definition 1). On the other hand, it is
also possible to introduce the useful construction

G[V(D)] := {F (Vr)
∣∣ r ∈ D,F (Vr) is a Sobolev function space}, (30)

as a convenient class into which we collect all the function spaces of excitation fields on
each nonlocality microdomain Vr as spanned by the position index r ∈ D (see Remark 7
for the construction of each such function space.) It follows then that (28) can be neatly
captured by the ordered triplet

D× V(D)× G[V(D)]. (31)

We wish now to unpack this compact structure in a careful, step-by-step manner, proceeding
as follows:

1. Each open domain in D ⊆ R3 will by assigned a distribution V(D) of open sets Vr, i.e.,
the physics-based nonlocality microdomains topology defined in Section 4.2, see in
particular Definition 1 and Remark 5. Physically, it expresses the fine microtopological
structure of nonlocal continua, e.g., electromagnetic material nonlocality.

2. The structure V(D) is solely determined by the physics of field–matter interaction.
A concrete example explicitly illustrating how the detailed physical content of the
underlying process contributes to the construction of V(D) will be given in Section 7.

3. We further emphasize that the various sets Vr ∈ V(D) constitute an open cover of D,
that is, we have

D =
⋃

r∈D
Vr. (32)

In this way, the model can accommodate excitation fields F(r) applied at every point
in r ∈ D.

4. The decomposition of the material domain D into smaller building blocks exemplified
by (32) is fundamental for computational topological models of nonlocal MTMs. For
example, in Section 7 we will exploit this expansion in order to construct a topological
coarse-grained model for inhomogeneous nonlocal semiconductor metamaterials.

5. Finally, the topology V(D) induces the “function superspace” G[V(D)] (30) defined
as a class of function spaces F (Vr), r ∈ D,, where each vector field acts on one
microdomain element Vr chosen from the topology V(D).
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Remark 8 (Topology, physics, and multiple scales). It is interesting to observe how, within
the framework proposed above, some sort of delicate constructive “division of labor” is
seen to emerge into the picture, where a fruitful interaction between physics and mathemat-
ics generates the various required multiscale topological microstructures characteristic of
nonlocality in continuum field theories. This is also the source of some potential difficulties
hidden in the formal set-theoretic structure (31). Indeed, we will next try to smooth out the
differences between the two main substructures V(D), which is principally controlled by
physics, on one side, and G[V(D)], which is dominated by purely mathematical considera-
tions. One way to achieve a resolution of this philosophical tension between the physical
and mathematical is by developing the entire theory of the set-theoretic structure (31) in
a form that can encode all of its main substructures within a single, rich enough “meta-
structure”: the Banach vector bundle superspace (see Section 5 for the detailed construction).

As can be seen from Remark 8, there is indeed some strong motivation to search for
alternative formulations of physical theory in complex and rich systems such as nonlocal
material continua, where there exists multiple spatial topological scales. It will be seen that
the superspace theory appears to provide some form of rare direct and transparent unity
between physics and topology in this regard. In order to reach there, gradual, step-by-step
changes in the conventional formulation of continuum field theory will be introduced. We
now begin to look into such a reformulation, starting with a straightforward one.

4.5. A Reformulation of the Nonlocal Continuum Response Function

It is now possible to provisionally construct the nonlocal continuum response function
by working on the fundamental topological domain structure (31) instead of the global
domain D, the later being the favored arena of conventional continuum field theory that
we would like to ultimately move beyond. Again, for concrete expressions, the special
case of electromagnetic theory will be presupposed but it should always be kept in mind
that the mathematical structure of the theory is quite general and applies to all nonlocal
continuum field theories governed by an abstract material response function model, such
as the one discussed in Section 3.

We start by noting that the response field R(r) can be re-expressed by the map

R : D× V(D)→ C
3, (33)

where the codomain is taken to be C3 because the electric or magnetic response functions
D or B, respectively, are complex vector fields in the frequency domain.11 The value of the
EM nonlocal response field due to excitation field F(r) applied at a microdomain Vr can be
computed by means of

R(r; ω) =
∫

Vr

d3r′ K(r, r′; ω) · F(r′; ω). (34)

Although (34) may appear at first sight to be only slightly different from (11), the underlying
difference between the two formulas is significant. In essence, the construction of the EM
response field R(r) via the map (33) amounts to topological localization of electromagnetic
nonlocality, since in the latter case, the EM response function K(r, r′; ω) is no longer allowed
to extend globally onto “large and complicated material domains.” Indeed, with the
recipe (34) only the response to “small”–or more rigorously topologically local12—domains,
namely the microdomains Vr, is admitted. On the other hand, in order to find the response
field R(r) everywhere in D, one needs to use sophisticated topological techniques to extend
the response from one point to another until it covers the entirety of D. This local-to-global
extension application of differential topology is discussed in detail in Section 5.3 and again
briefly in Appendix A.11.

In such a manner, it becomes possible to provide an alternative, more detailed expli-
cation of the behavior of the medium at topological interfaces (boundary conditions in
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nonlocal metamaterials are treated–provisionally–in Section 8) and also explore the effect
of the topology of the bulk medium itself on the allowable response functions and the
production of non-trivial edge state, with obvious applications to emerging areas such as
nonlocal metamaterials.13

5. The Fiber Bundle Superspace Formalism in the Field Theory of Generic
Nonlocal Continua

Here, an outline of the direct construction of a fiber (Banach) bundle over an entire
(global) nonlocal generic material domain is given, where our purpose is to attach to every
point r ∈ Ui a fiber Fi, actually a vector space in our case. The contents of this section are
the most technically advanced in this paper. Readers interested in applications may skim
through Sections 5.1 and 5.2, skip Section 5.3, then move directly to Section 6 for a general
summary of the fiber bundle algorithm. Concrete computational models are outlined in
Section 7 using a practical nonlocal model, while additional remarks and discussions about
current and future uses of the theory are provided in Appendixes A.3 and A.11. However,
even readers not fully familiar with the differential manifold theory will benefit from
reading the present technical section, because we strive to illustrate the physical intuition
behind the various mathematical computations and steps therein.

5.1. Preparatory Step: Promoting the Material Domain D to a Manifold D
In order to investigate in depth the fundamental physico-mathematical constraints

imposed on nonlocal continua, the domain D, which we have working with so far as the
main total spatial space of the material, should be upgraded in complexity to the higher
level of a differential manifold, the latter which posses a quite rich and sophisticated structure
that allows performing calculus and geometrical reasoning simultaneously [26,57,62,63,68].
There are several reasons why this is highly desirable:

1. It provides a natural and obvious generalization of the basic structure (31) from the
mathematical perspective.

2. Engineers often need to insert metamaterials into specific device settings, hence the
shape of the material becomes highly restricted. It is therefore important to develop
efficient tools to deal with variations of geometric and topological degrees of freedom
and how they could possibly impact the design process.

3. Applied scientists and engineers are often interested in deriving fundamental limitation
on metamaterials, e.g., what are the ultimate allowable response–excitation relations or
constitutive response functions possible given this material domain topology?

4. Sophisticated full-wave electromagnetic numerical solvers prefer working with local
coordinates in order to handle complicated shapes, even if a global coordinate system
is sometimes available, making the deployment of the three-manifold structures for
describing the material domain D useful.

5. In topological photonics and materials [11], most applications seem to focus on lower-
dimensional states of matter like those associated with quantum Hall effects and
edge states (surface waves).14 There, new phenomena appear at material structures
where the base space (material domain D) is a two-surface, which is best described
mathematically as a differential two-manifold.

For all these reasons, it is desirable to strive to furnish the domain D with the most general
and flexible mathematical apparatuses available to us, which, in this case, amounts to
equipping the material/metamaterial spatial domain with a smooth manifold structure.

We quickly illustrate how this can be accomplished. If we denote byD a three-manifold
(three-dimensional smooth manifold), then, since D ⊂ R3, there is a natural differential
structure defined on D, inherited from the ambient three-dimensional Euclidean space itself.
(Throughout this paper, such differential three-manifold structure will be presupposed as
the de facto space for the total, i.e., largest, material space.)
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Following the standard theory of smooth manifolds, let

(Ui, φi) (35)

be a countable collection of charts (an atlas), labeled by

i ∈ I ⊂ N, (36)

where I is an index set. Together, the devices (35) and (36) can equip D ⊂ R3 with a
differential three-manifold structure. For simplicity, we will refer to the points of the
manifold D by r, i.e., using the language of the global (ambient) Euclidean space R3.
Symbolically, by adding a differential manifold structure, we effected the transformation

D Insert a smooth manifold structure−−−−−−−−−−−−−−−−−−−→
Introduce a differential atlas

D (37)

This well-known construction [26,57,63] constitutes the differential atlas on D, which will
be used in what follows.

5.2. Attaching Fibers to Generic Points in the Nonlocal Material Manifold D

Our current goal is to attach a vector fiber (a linear function space in this case) at every
point r ∈ D, namely the function space F (Vr) introduced in Section 4.3. It turns out that
accomplishing this requires finding suitable “compatibility laws” dictating how coordinates
change when two intersecting charts Ui and Uj interact with each other, which is typical in
such types of constructions [26]. In particular, we will need to later find the law of mutual
transformation of vectors in the fibers F (Vφi(r)

) and F (Vφj(r)
). Here, the expression

F
(

Vφi(r)

)
(38)

means the fiber space attached to the point whose coordinates are φi(r), i.e., the function
space where all functions are expressed in terms of the language of the ith chart (Ui, φi(r)).

In this connection, the major technical problem facing us is a mathematical one induced
by the physics of the situation. We first isolate and describe the main problem by the
following brief technical resume:

Since the differential structure associated with charts

{(Ui, φi(r)), i ∈ I, }

can be fixed by essentially mathematical considerations alone, while the collection of
microdomains

V(D) = {Vr, r ∈ D}
is solely determined by the physics of electromagnetic nonlocality (See Remark 3 and
Section 4), there is no direct and simple way to determine and express the vector transfor-
mation

F (Vφi(r)) −→ F (Vφj(r)),

because several different coordinate patches other than Ui and Uj, belonging to the
differential three-manifold D atlas, might be involved in geometrically building up the
microdomain Vr.

The above technical problem will be solved in Section 5.3 by using the technique of partition
of unity borrowed from differential topology [26,57,62]. It will allow us to split up each full
microdomain Vr into several suitable sub-microdomains (details below), which can be later
joined up together in order to give back the original EM nonlocality microdomain Vr.

For now, we start by recalling that the microdomain structure represented by the
collection V(D) = {Vr, r ∈ D} is an open cover of the manifold D. Therefore, and since the

131



Foundations 2022, 2

material domain manifold D possesses a countable topological base [59], it contains a locally
finite open cover subordinated to V(D) [26,57].15 This implies that an atlas (Ui, φi), i ∈ I,
with diffeomorphisms

φi : Ui → R
3, (39)

describing the differential structure of the manifoldD exists such that the elements {Ui, i ∈ I}
constitute the above mentioned locally finite subcover subordinated to the microdomains
collection V(D). Moreover, the images φi(Ui) are open balls centered around 0 in R3 with
finite radius a > 0 (henceforth, such balls will be denoted by Ba) [26].

In this way, the physics-based open cover set V(D) provides a first step toward the
construction of a complete topological description of the physics-based nonlocal microdomain
structure. The reason is that the coordinate patches (Ui, φi), i ∈ I, are subordinated to the
microdomains {Vr, r ∈ D} [26].

It is also known that there exists a partition of unity associated with the D-atlas
(Ui, φi), i ∈ I, constructed above summarized by the following lemma [26,57,62,63,68]:

Lemma 1 (Partition of Unity). There is a collection of functions

ψi : Ui ⊂ D → R (40)

satisfying the following requirements:

1. ψi(r) ≥ 0 and each function is Cp, p ≥ 1.16

2. The support of ψi(r), denoted by supp ψi, is contained within Ui, that is, the condition

supp ψi ⊂ Ui, (41)

holds. Recall that the support is defined as the (topological) closure of the set

{r ∈ D|ψi(r) �= 0}. (42)

See for example [30,68,69].
3. Since the open cover Ui, i ∈ I, is locally finite, at each point r ∈ D, only a finite number

of Ui will intersect r.
4. Let the set of indices of those intersecting Uis be Ir. Then we require that

∑
i∈Ir

ψi(r) = 1, (43)

where the sum is always convergent because the set Ir is finite.

Remark 9. It can be shown that the sets

φ−1
i (Ba/3), i ∈ I, (44)

where Ba/3 is a standard Euclidean ball centered at the origin with radius a/3, already
cover D [57]. Moreover, the closure

cl{φ−1
i (Ba/3)} (45)

may be taken to constitute the support of ψi(r), while [26,57,70]

r /∈ supp{ψi(r)} =⇒ ψi(r) = 0. (46)

The partition of unity functions ψi can be computationally constructed using standard
methods, most prominently the bump functions, see [57,71] for details.
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The motivation behind the deployment of the partition of unity technique and how it
immediately arises in connection with our fundamental EM nonlocal structure should now
be clear. We have found that the following three-step process is natural:

1. Initially, the physics-based collection of sets

V(D) = {Vr, r ∈ D},

for example, the EM nonlocal microdomain structure based on each point r in the
nonlocal metamaterial D, is obtained using a suitable physical microscopic theory or
some other procedure.17

2. Introduce a differential atlas
(Ui, φi(r)), i ∈ I,

on the smooth manifold D subordinated to V(D) and representing the nonlocal
material domain under consideration.

3. Finally, the same atlas is linked to a set of functions ψi(r) (partition of unity) that
can be recruited as “topological bases” in order to expand any differentiable field
excitation function into sum of individual sub-fields defined on open subsets of the
material domain D (see Section 5.3).

The three-step process outlined above is summarized in Figure 3, illustrating how to progres-
sively construct micro-coordinate systems allowing one to see through increasingly smaller
spatial scales in the fundamental characterization of electromagnetic material nonlocality.

Nonlocal
microdomain

structure
V(D)

Differential
atlas φi :
Ui → R3

Partition
of unity

ψi : Ui → R

Figure 3. The three-step process of constructing micro-coordinate representations of material non-
locality starting from the nonlocal microdomain set and ending with the partition of unity on the
material continuum’s superspace.

The key idea to be developed next is that both the base manifold D and the nonlocal
physics-based microdomains Vr are described locally (in the topological sense18) by the
same collection of charts, namely (Ui, φi(r)), i ∈ I. This will permit us to construct a direct
unified description of both the base manifold D and its fibers, i.e., the linear topological
function spaces F (Vr), the latter being the model of the physical electromagnetic fields
exciting the nonlocal material D.

The construction of a fiber bundle superspace for nonlocal electromagnetic materials
will be completed in two steps:

• Step I: Construct a tailored fiber bundle based on the partition of unity charts (Ui, φi(r))
introduced above.

• Step II: the original physical structure (31) is recovered by gluing together various
sub-microdomain Ui ⊆ Vr of each EM nonlocal microdomain Vr.

We start with Step I, while we leave the more complicated Step II to Section 5.3.
Consider the (Ui, φi(r)), i ∈ I, as our atlas on the three-manifold D introduced in

Section 5.1. At each point r ∈ Ui, we attach a linear topological space F (Ui) defined as the
Sobolev space

Wp,2(Ui), p ≥ 1, (47)

of functions on the open set Ui, i.e., we write

∀ i ∈ I, F (Ui) := {ψi(r)F(r), r ∈ Ui, is in the Sobolev space Wp,2(Ui)}, (48)

where F(r) is a suitable Cp,2 vector field.
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Remark 10 (Sobolev Spaces). For the precise technical definition of the infinite-dimensional
Sobolev function space Wp,2(Ui), see [64,65]. Appendix A.5 provides some additional
information on the literature. Section 4.3 gives a simplified intuitive definition of the
physics-based function space Fi, in particular see Remark 8. The intricate details of the
theory of such Sobolev function spaces will not be needed for our immediate purposes in
what follows (compare with Remark 11).

Physically, the multiplication of the global excitation field F(r) by ψi(r) in constructions
like (48) above and (50) below effectively “localizes” (in the topological sense) the field
into a smaller compact subdomain, namely the support of the “topological localization
basis function” ψi(r) itself. Moreover, because the Cp-functions ψi(r) have compact supports
satisfying the inclusion restrictions

supp{ψi} ⊂ Ui, i ∈ I, (49)

it follows that F (Ui) is effectively a local Sobolev space on Ui [66]. Alternatively, it is also
possible to seek different constructions, such as the one captured by the following remark.

Remark 11. We may define a less complicated function space on Ui using the following
construction:

∀ i ∈ I, F′(Ui) := {ψi(r)F(r), r ∈ Ui, is an element of a Cpsup-norm function space}, (50)

where the Cp-sup-norm is defined by

||ψi(r)F(r)|| := supr∈supp{ψi}[ψi(r)F(r)]. (51)

In the case of F′(Ui), one may further consider only Cp-vector excitation fields F(r). A
choice of which linear function space to work with depends on the particular application
under consideration. In what follows, we further simplify our notation by writing Fi
instead of F (Ui) whenever the partition of unity’s differential atlas’ coordinate patches Ui
are used.

5.3. Direct Construction of Bundle Homomorphism as Generalization of Linear Operators in
Electromagnetic Theory

We now demonstrate how the material constitutive relations in conventional (local)
continuum theory may be absorbed into a new structure, the bundle homomorphism, which
is the most natural generalization of linear operators in local electromagnetism taking us
into the enlarged stage of the generic nonlocal medium’s superspace formalism. In the
future, these bundle homomorphisms may be discretized using topological numerical
methods, e.g., see [72]. In what follows, we focus on the rigorous exact construction using
the technique of partition of unity, which allows computations going from local to global
domains.19

5.3.1. The Basic Definition of the Nonlocal Material, (or Continuum, Metamaterial (MTM),
etc.), Banach (Fiber) Bundle Superspace

The initial step in formally defining the proposed nonlocal MTM bundle superspace is
the following disjoint union construction:

Definition 2 (Preliminary Definition of the Bundle Superspace). Let the material contin-
uum’s superspace be denoted byM, which is also called the total bundle space. We define
this space as the disjoint union of all spaces Fi of the form:

M := { (r,Fi)| ∀i ∈ I, r ∈ Ui ⊂ D}. (52)
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Associated withM is a surjective map

p :M→ D, (53)

which “projects” the fiber onto its corresponding point in the base manifold D, i.e.,
p((r,F )) := r.

Remark 12 (Other constructions of bundle spaces). In mainstream literature, the fiber
bundle concept is often approached in a manner slightly differently from that of Definition 2.
Indeed, the fiber ofM at r ∈ D is defined as the set p−1(r), but provided the map p is already
given as part of the bundle’s initial data. However, in this paper, we construct the bundle
data starting with the physics-based topological structure (31).

Remark 13 (Fiber Projections and Local Isomorphisms). The map p is called the projection
of the vector bundleM onto its base space D. Moreover, from now on, we will also use the
notation Fr to denote the fiber p−1(r). By construction, it should be clear that

∀i ∈ I : p−1(r) = Fi ⇐⇒ r ∈ Ui. (54)

From the topological viewpoint, the material continuum superspaceM manifests itself
locally as a product space in the form

Ui ×Fi. (55)

In other words, the map p should behave locally as a conventional projection operator; i.e.,
in a local domain Ui, the material’s total bundle spaceM is isomorphic to Ui ×Fi, and
p(Ui ×Fi) should be isomorphic to Ui. Symbolically, we have:

M∼=locally Ui ×Fi, p(Ui ×Fi) ∼=locally Ui, (56)

for all i ∈ I, and where ∼=locally means local topological (in this case also smooth) isomor-
phism.20

In order to complete the specification of the nonlocal material continuum superspace,
we next construct the linear function space Xi defined by

∀ i ∈ I, Xi :=
{

ψi

[
φ−1

i (x)
]
F
[
φ−1

i (x)
]

is an element of a Sobolev space for all x ∈ Ba

}
, (57)

which is the Sobolev space of Wp,2(Ba) functions on the Euclidean 3-ball Ba. Here, each
function is defined with respect to the local coordinates

x := φ−1(r), r ∈ Ui. (58)

In fact, it should be straightforward to deduce from the above that there exists maps

τi : p−1(Ui)→ Ui × Xi, (59)

for all i ∈ I, that are isomorphisms (diffeomorphism in our case), where such diffeomorphism
may be expressed by

∀i ∈ I : p−1(Ui) ∼= Ui ×Fi. (60)

We also add that the fact of (59) actually playing the role of such an isomorphism would
naturally follow from the respective definitions of the spaces Fi and Xi, as specified by (48)
and (57), and from the proposition that each φi is a diffeomorphism from Ui into R3 (or,
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equivalently, to the unit 3-ball Ba with radius a instead of R3.) Furthermore, note that by
construction the diffeomorphism τi satisfies

proj1 ◦ τi = p, (61)

where proj1 is the standard projection map defined by proj1(x, y) := x. Finally, if we restrict
τi to p−1(r), the resulting map

τi|p−1(r) : p−1(r)→ {r} × Xi (62)

is a (linear) topological vector space isomorphism from Fr to Xi; namely, we have

∀i ∈ I, r ∈ Ui : Fr
∼= Xi. (63)

Remark 14. The charts (Ui, τi) are called trivialization covering of the vector bundle M.
They provide a coordinate representation of local patches of the vector bundle. (The
global topology of the bundle, however, is rarely trivial [62].) Since here all maps are
Cp smooth, τi are also called smooth trivialization maps. The complete derivations of the
diffeomorphism (60) and the topological vector space isomorphism (63) are straightforward,
but lengthy, and the full proofs are omitted.

Consider now two patches Ui and Uj with Ui ∩Uj �= ∅. By restricting τi and τj to
Ui ∩Uj, two diffeomorphisms

τi : p−1(Ui ∩Uj)→ (Ui ∩Uj)× Xi,

τj : p−1(Ui ∩Uj)→ (Ui ∩Uj)× Xj,
(64)

are obtained, which together imply in turn that

(Ui ∩Uj)× Xi
∼= (Ui ∩Uj)× Xj, (65)

or, equivalently, the following expected Banach space isomorphism:

Xi
∼= Xj, (66)

In particular, it can be shown that the composition map

τj ◦ τ−1
i : (Ui ∩Uj)× Xi → (Ui ∩Uj)× Xj (67)

possesses the simple form
τj ◦ τ−1

i (r, F) = (r, g(r)F), (68)

with the following formal structure:

∀ r ∈ Ui ∩Uj, F ∈ Xi, ∃g ∈ L(Xi, Xj), (69)

where the abstract vector linear space

L(Xi, Xj) (70)

is defined as the space of all linear operators [26]

g : Xi → Xj (71)

on Banach vector spaces. In particular, g(r) is a Cp-Banach space isomorphism.
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Remark 15. In the mathematical literature, the smooth maps τj ◦ τ−1
i are called the vector

bundle transition maps. They are essential technical tools for computing global data by
starting from local data then gluing them together. For example, they will be used in
Sections 5.3.2 and 5.3.3 as part of the toolbox needed in the process of generalizing local
information into global domains.

We have now succeeded in directly constructing a specialized smooth Banach vector
bundle (M,D, τ, p) consisting of the nonlocal material continuum’s total fiber bundle
spaceM, the material domain’s base three-manifold D, a set of smooth trivialization charts
τi, i ∈ I, and a projection map p. The base manifolds D itself is described by a differential
atlas (Ui, φi), also associated with the partition of unity (Ui, ψi), i ∈ I as per our discussion
in Section 5.2 above. This incredible increase in the complexity of the mathematical space of
nonlocal continuum field theory; that is, the transition from spacetime (or space–frequency)
as the configuration space to a a larger superspace, here the fiber bundle space (which might
be time- or frequency-dependent), is a direct expression of the very significant complexity
and richness of the physics of nonlocal field theory in general.

As will be seen in the next Section 5.3.2, it is possible to demonstrate yet another
remarkable departure from conventional theory where the concept of linear operator, as such,
a fundamental structural object in the mathematical and computational physics of local
continuum field theories [65], is found to be generalizable to the concept of homomorphism,
which is essentially topological in nature.

5.3.2. The Nonlocal Material Continuum Fiber Bundle Homomorphism

At this point, we need to describe how the evaluation process of the response field (33)
may be formulated within the new enlarged framework of the fibered superspace M.
The most obvious method is to introduce a new vector bundle with the base space being
the same base space D, but with the fibers now taken as the complex Hilbert space C3.
This is a well-known vector bundle, which we denote by R, and dub the range vector
bundle. Formally, the structure of this vector bundle is expressed by the ordered quadruple
(R,D, τ′, p′), where τ′ and p′ are the range bundleR’s smooth trivialization and projection
maps, respectively. On the other hand, the source vector bundle is taken asM.

As a preparation for introducing the concept of the nonlocal continuum homomor-
phism, let us recap and comment on the overall physical process of exciting a material
nonlocal continuous domain D as follows:

1. The continuum itself is mathematically modeled as a Banach bundle superspaceM
instead of its conventional differential manifold representation D. The response of
the medium is to be sought at some point r ∈ D.

2. The bundle superspaceM encompasses an additional structure compared toD, namely
a distinct copy of a linear function space attached at each point r ∈ D. This is nothing
but the fiber p−1(r), which is a Banach space of functions defined on the region Ui.
This function space can be intuitively understood as a rigorous and exact model of
the excitation field F(r) when the latter is restricted to (topologically localized at) the
physics-based nonlocal domain Ui.

3. It should be noted that in local continuum field theory, e.g., conventional electromag-
netism in normal temporally dispersive media, each one of the subdomains Ui, i ∈ I,
is essentially one point r ∈ D. Therefore, in the case of local continua, the excitation
field F is there found to be preferably defined as acting on the conventional space D
instead of being a section of a Banach bundle superspaceM.

4. A vector bundle homomorphism (to be formalized in Definition 3) will map one
element of this fiber function space, namely, the particular excitation field F(r), r ∈ Ui,
to its value in the range vector bundleR. For the case of electromagnetic field theory,
the latter may be taken as a vector space fiber isomorphic to C3 with a copy of this
fiber attached to each r ∈ D.
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We turn now to a precise definition for convenient maps between bundle superspaces.
Formally, we may directly use the standard concept of homomorphism in fiber bundle
theory, adapted to our purposes in the following manner [57,68]:

Definition 3 (Bundle homomorphism). A smooth bundle homomorphism over a com-
mon base space D shared between the two vector bundles M and R is defined by the
(smooth) map:

L :M→R (72)

satisfying p′ ◦ L = p. Moreover, the restriction of L to each fiber p−1(r) induces a linear
operator on the corresponding vector space of that fiber. In effect, the following diagram

M R

D
p

L

p′

is commutative.

Remark 16. Because the nonlocal material continuum’s superspaceM and its range fiber
bundleR both share an identical base manifold D, the action of the homomorphism L as
a bundle map is effectively reduced to how it interacts with each fiber p−1(r) by acting
on the latter as a standard vector space linear operator. Therefore, a large portion of
the conventional linear algebra and computational methods extensively deployed in the
mathematical and numerical apparatus of local continuum field theory, such as nonlinear
functional analysis [65], Hilbert space methods [64], and the Finite Element Method [75],
may be reused as “sub-algorithms” within the larger, more general formalism of nonlocal
continuum field theory proposed in this paper.

Now, since the Banach space Xi is isomorphic to p−1(r), we may assemble the homo-
morphism L by specifying its local expression in each topological subdomain Ui ⊂ D of
the open cover {Ui, i ∈ I}. In particular, we define the local action using the source and
range bundles’ trivialization maps τi and τ′i by the intuitively obvious formula:

τ′i ◦ Lω ◦ τ−1
i : Ui × Xi → Ui ×C

3, (73)

with
τ′i ◦ Lω ◦ τ−1

i := (r,Li,ωF), F ∈ Xi, (74)

where
Li,ω : Xi → C

3 (75)

is the linear operator defined by

Li,ω(∗) =
∫

Ui

d3r′ K(r, r′; ω) · (∗), (76)

in which ‘*’ stands for an element of the smooth Banach function space Xi.
Therefore, within the frequency domain formulation of this paper, the operator L will

leave every point in the base space D unchanged while mapping each smooth function
on Ui (component of the total electromagnetic excitation field, see below) into its complex
vector value in C3 at r ∈ Ui. Physically, Li models a (topologically) localized “piece” of the
global electromagnetic material operator mapping excitation fields F(r) to response fields
R(r), where the entire physics here is restricted to the physics-based nonlocal subdomain
Ui. The global operator itself is assembled by gluing together these small pieces using the
partition of unity technique, as we endeavor to show next.
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5.3.3. Computing Global Data Starting from Local Data

The final step is tying up together the fundamental source Banach bundle superspace
M, range bundle R and the nonlocal microdomain physics space (31). The essential
ingredients of the physics of nonlocal field–matter interaction are encoded in the geometrical
construction of the collection of microdomains V(D) = {Vr, r ∈ D}, and the excitation
fields F(r) defined on them, i.e., the sets V(D) and the (excitation) function spaces G(D)
combined together in one space, the superspaceM.

So far, the vector bundle homomorphism L introduced above (Definition 3) can
handle excitation fields supported on the open sets Ui, i ∈ I. However, the latter sets are
mathematical fundamental building blocks, or “set-theoretic atoms”, deployed in order
to formally construct the source vector bundle superspaceM. The question that will be
addressed presently is the following one:

How can we extend the description of the nonlocal continuum’s response operators
starting from excitation fields defined locally to excitation fields applied on the entire
physical cluster of nonlocal microdomains {Vr, r ∈ D)?

As mentioned before, it is the partition of unity (Ui, ψi), i ∈ I, what will make this expansion
of the topological formulation technically feasible.

To see this, let us consider an electromagnetic field F(r) interacting with a nonlocal
medium extended over the manifold D. Our goal is to compute the response field R(r);
that is, at point r. Let us recall what the fundamental idea of EM nonlocality is: in order
to compute the nonlocal material continuum’s response at one point r, one must know
the excitation field in the entirety of an open set Vr. This set Vr is one of these nonlocal mi-
crodomains composing D as per (29). Moreover, such Vr is also a topological neighborhood
of its continuous index point r ∈ D (cf. Section 4.2). However, in general this microdomain
will change depending on the position r. The goal now is to find R(r) using the vector
bundle map L defined by (72) starting from the data:

1. Region Vr;
2. Vector field F(r) acting on Vr.

To accomplish this, we exploit the properties of the partition of unity functions ψi (Lemma 1)
for expanding the excitation field F(r) over all patches Ui covering Vr, resulting in

F(r′; ω) = ∑
i∈Ir

ψi(r
′)Fi(r

′; ω), (77)

where (43) was used. The truncated function Fi is equal to F(r) only if r ∈ Ui and zero
elsewhere, i.e., we have

Fi(r
′; ω) :=

{
F(r′; ω), r ∈ Ui,

0, r /∈ Ui.
(78)

Recall that according to Lemma 1, the set Ir is defined as the collection of indices i ∈ I of all
Ui having the point r in their common set intersection; by construction, this index set Ir is
always finite.

The main idea behind our construction should now become clear: while each truncated
sub-field Fi fails to be differentiable (it is not even continuous), the multiplication by ψi(r)
fixes this problem. In fact, each function

ψi(r
′)Fi(r

′; ω) (79)

is a smooth component of the total excitation field F with support fully contained inside the
coordinate patch Ui; that is, we have

supp{Fi} ⊂ Ui. (80)
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Consequently, the vector bundle map constructed in (72) can be applied to each such
component field. From (73)–(75) and (77), the following can be deduced:

R(r; ω) = ∑
i∈Ir

Li,ω [ψi(r
′)Fi(r

′; ω)]. (81)

Finally, using (76), we arrive at our main superspace map theorem:

Theorem 1 (global superspace bundle map). For the fiber bundle superspaceM of the
nonlocal continuum whose differential manifold representation is D and the nonlocal
continuum response function (tensor) K, the response and excitation fields R and F can be
related to other other via the global bundle (superspace) map:

R(r; ω) = ∑
i∈Ir

∫
Ui

d3r′ K(r, r′; ω) · ψi(r
′)Fi(r

′; ω), (82)

where ψi, i ∈ I, are the partition of unity basis functions subordinated to the D-atlas
(Ui, φi), i ∈ I.

Physically, Theorem 1 states that the nonlocal continuum’s source bundle (superspace)
M, the range bundle R, and the nonlocal response superspace map L, together, supply
the fundamental formal scaffold upon which the material domain’s response to generic
excitation field, when the latter field operates on arbitrary configurations of nonlocality
microdomain, can be constructed. By aggregating all of those physics-based microdomains
constituting the topological microstructure of nonlocal processes in material continua, the
main field-theoretic structures of the medium may be couched, computed and reformulated
in the richer language of this more general superspace framework belonging to the Banach
fiber bundle M instead of the position space D of conventional spacetime extensively
used in local field theories. At this stage of our formulation, the vector bundle formalism
of nonlocality becomes essentially complete, where the connection between the purely
mathematical fiber superspace and the physical microdomain structures is secured by
Theorem 1, especially the Formula (82).

6. Interlude: The Nonlocal Continuum Fiber Bundle Superspace
Algorithm—Summary and Transition to Applications

We review and summarize here the salient features of the fiber bundle superspace
construction, carefully developed above, by explicitly outlining the algorithm implicit in
the various detailed derivations of the previous sections. Our main objective in this short
transitional section is to highlight again the fact, already discussed above, which is that our
superspace formalism is based on estimating the physics-based nonlocality microdomain
set V(D) = {Vr, r ∈ D} associated with the nonlocal continuum D. These data can be
obtained only through physical theory and/or measurement. However, once available, the
construction of the fibered space proceeds in a computationally well-determined manner.
We first summarize the algorithm then provide few additional preparatory remarks before
moving to the more detailed and concrete computational examples of Section 7.

In Figure 4, we show two distinct points r1, r2 ∈ D and their associated microdomains
Vr1 and Vr2 , respectively. From the locally finite subcover {Ui}i∈I subordinated to V(D) =
{Vr, r ∈ D} we highlight two sets

Ui ⊆ Vr1 , Uj ⊆ Vr2 , (83)

where in general it is allowed that

Vr1 ∩Vr2 �= ∅, Ui ∩Uj �= ∅, (84)
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as could be inferred from a glance at the Figure itself. For the partition of unity (Ui, ψi)i∈I ,
which is subordinated to the open cover {Ui}i∈I , we also highlight the two compact sets

Si := supp{ψi(r)}, Si := supp{ψi(r)}, (85)

forming the support of the corresponding partition of unity functions.

Figure 4. An example illustrating the various topological microstructures involved in modeling
a generic nonlocal material. The microdomains Vr1 , Vr2 ∈ V(D) are open sets and belong to the
nonlocal microstructure of the MTM D. The open sets Ui and Uj are the corresponding coordinate
sets and partition of unity functions {ψi}i∈I ’s domains subordinated to Vr1 and Vr2 , respectively. The
compact sets Si and Sj are defined by Si := supp{ψi(r)} and Si := supp{ψi(r)}.

The nonlocal material continuum’s superspace algorithm itself is summarized in
Algorithm 1. Once the microdomain dataset V(D) is given, the construction proceeds
automatically using the partition of unity basis functions (Ui, ψi)i∈I . The latter may be com-
puted directly in terms of the standard bump functions, see [57,68,71], and also Remark 9.

Because of the fundamental importance of the physics-based nonlocality microdomain
structure V(D), Section 7 will be entirely devoted to the explication of a quantitative
practical example illustrating the origin of these microdomains in the concrete setting of a
real-life advanced material system, including how the microdomain topology itself may be
estimated in practice. In the subsequent sections Section 8 and Appendixes A.3 and A.11,
we also explore the usefulness of the superspace homomorphism construction developed
in Section 5 for reformulating boundary-value problems in the nonlocal continuum field
theories of mathematical physics, besides also providing some hints and additional remarks
on other current and future applications.

Algorithm 1 The nonlocal continuum fiber bundle algorithm.

1. Start with a physics-based microdomain structure V(D) = {Vr, r ∈ D}.
2. The open cover V(D) of D induces a locally finite subcover {Ui}i∈I subordinated to V(D). It is then automatically

equipped with the differential structure of the manifold D, generating the differential atlas (Ui, φi)i∈I .
3. The subcover {Ui}i∈I is equipped with a partition of unity function set {ψi}i∈I , producing the partition of unity

(Ui, ψi)i∈I .
4. Generate an appropriate Banach/Sobolev/Hilbert space Xi attached to each point r ∈ D using constructions, such

as (57).
5. Declare D the base manifold of the fiber bundle. Construct the bundle spaceM using

M := {(r, Xi)|∀i ∈ I, r ∈ Ui ⊂ D}. (86)

6. Construct the projection map p :M→ D through the operation (r, Xi)→ r.
7. Use (68) to transform vector from one fiber (function) space to another.

7. Applications to Advanced Materials: Nonlocal Inhomogeneous Semiconductors

7.1. Introduction

A concrete example involving spatially-dispersive isotropic media is considered in this
Section, where the intention is to provide an outline of how the intricate fiber bundle type
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topological fine structure (the topology of microdomains attached to each point explored
above as developed in detail in Section 5 and summarized in Section 6) may be estimated in
actual practice. The contents of the example given below are rather detailed, and that is for
two main reasons. First, in spite of the fact that nonlocal metamaterials are not proposed
here for the first time, the author’s experience indicates that there is still a general lack of
appreciation of the subject in the large community, where most research on “metamaterials”
concentrate on temporally-dispersive media. Because of that, we provide a very detailed
example, including reintroducing some of the well-known physics of semiconductors (in
some of the appendices) in order to make the presentation complete and self sufficient.
Second, the detailed example to be found below is itself novel. The estimation of the
microdomain nonlocal structure in inhomogeneous semiconductors seems to be achieved
here for the first time. Therefore, it is a topic that could be treated not merely as an
example illustrating the more general and abstract superspace theory developed in the
earlier sections, but possibly as a stand-alone contribution to semiconductor materials and
their physics. However, the main intention behind the inclusion of this highly-technical
physical example continues to be the illustration of the fundamental superspace formalism.
More detailed examinations of nonlocality in semiconductor metamaterials belong to a
more specialized literature than the current article, whose main topic is the mathematical
physics of nonlocal continuum field theories.

7.2. A Topological Coarse-Grained Model for Inhomogeneous Nonlocal Material Domains

A review of the homogeneous medium model of spatial dispersion is provided in
Appendix A.6. Below, we describe a method that can help transitioning from the generic
form (A3), valid for homogeneous nonlocal domains, to the inhomogeneous medium situa-
tion developed throughout this paper where nonlocality cannot be captured by a simple
global dependence of the dielectric function on k. However, instead of working with the
full nonlocal function K(r, r′), an alternative simplified model is proposed which we entitle
the topological coarse-grained model. The idea is as follows. Consider a global material domain
D, which is an open three-manifold, say an open subset of R3 that may be either simply
connected or disconnected.21 The material is nonlocal and inhomogeneous. At each point
r ∈ D, a microdomain, i.e., and open set Vr ⊂ D, is assigned. The medium is locally isotropic
and homogeneous in the sense that within each microdomain we can describe the response
to an external field excitation E by means of a relation similar to (34), namely:

D(r; ω) = ε0

∫
Vr

d3r′ K(r− r′; ω) · E(r′; ω). (87)

That is, the only difference between (87) and (34) is that, in the former, we use the correct
form of homogeneous nonlocality K(r − r′; ω) instead of K(r, r′; ω). Moreover, we have
put the proper response and excitation fields D(r) and E(r) and inserted the free space
permittivity ε0.

Fundamentally speaking, each material microdomain is now described by a spatially-
dispersive model of the form (87). The “topological atoms” of nonlocality, namely the sets
Vr, spanned by the continuous index r ∈ D, are each a spatially-dispersive “medium” on
its own. As will be seen later in this section, the idea of the locally–spatially-dispersive
nonlocal semiconductor system is to build an inhomogeneous metamaterial that goes beyond
spatial dispersion by assembling a more general form of nonlocality using the spatially-
dispersive material “atoms” Vr. In such systems, the engineered metamaterial is only
locally spatial dispersive. On the other hand, at a larger spatial scale it does not follow the
standard spatial dispersion law, but rather appears to belong to a more complicated class
of nonlocal continua which, we believe, are best mathematically described using the fiber
bundle superspace formalism of Section 5.

It may be seen then that as a topological coarse-grained process, the original inho-
mogeneous nonlocal medium, ultimately described by the material tensor K(r, r′; ω), is
sub-decomposable into “small topological cells”, the microdomains Vr, r ∈ D, such that
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each “topological cell” or “atom” would in itself behave like a homogeneous nonlocal
isotropic subdomain, hence may be described by (87), where the material tensor in that
case takes the (topologically) locally correct form (A3). This can be considered a quasi-local
model (also sometimes called locally spatially dispersive), where the global domain, electro-
magnetically speaking, is nonlocal, while, on the other hand, seen at the scale of a small
region (cells) it would more or less behave like a typical electromagnetic local medium, see,
for example, the discussion of some special cases of complex nonlocal crystals in [76].

Remark 17. We remind the reader again about the subtle difference between mathematical
nonlocality and physics-based nonlocality, a distinction at the conceptual level that will
become quite visible throughout this section. The term local is used in this paper in two
senses. The first sense is the physical one in which local is set against physical nonlocality,
which includes spatial dispersion (EM local/nonlocal.) On the other hand, in topology, a
local property is that which holds in a small open neighborhood of a given point, in our
case the topological microdomain Vr. The distinction between the two technical senses of
the same term should always be clear from the context. In the few cases when there is a
risk of confusion, we say topologically local to emphasize the second meaning above from
EM local. (see also Remark 3 and Section 3.3).

Our key objective now is to first develop a simple estimation of the “size” of the
nonlocal microdomains Vr. To do so, some metric methods must be introduced. An
attractive approach would be to approximate the topology of the nonlocal metamaterial
system using arrays of various spheres, and then use this array in order to obtain the
topological content of the microdomain structure described in Section 4.

Let us illustrate the main ideas with a simple example first. Consider a point r1, which
provides a label for one of the micro cells, we may deploy for creating a coarse-grained
model for the inhomogeneous medium. To be more specific, let us construct the topological
open ball defined by

B(r, ar) :=
{

r ∈ R
3∣∣ d(r, r′) < ar

}
, (88)

where ar ∈ R+ is a number quantifying the smallness of this “nonlocality ball” centered
at r′, while d is the distance metric. The number ar will be determined later based on the
actual physics of the problem.

Next, the fine-grained topological microdomain structure can be constructed by aggre-
gating all these balls in order to produce a coarse-grained of the overall inhomogeneous
nonlocal material domain D. The choice of the shape of the microdomain Vr as a sphere
B(r, ar) defined by (88) is justified by our earlier assumption that the material is (topolog-
ically) locally isotropic. However, note that globally electromagnetic processes need not
behave as they do in isotropic domains.

In Figure 5, a diagrammatic depiction of the two local and global processes is provided
where we illustrate:

1. The proposed topological coarse-grained model utilizing the set of balls Vr, r ∈ D
(left).

2. The conventional paradigm where the unit cells are non-overlapping (right).

As can be seen from the diagram, in the topological approach, there exists an open set
(microdomain) Vr attached to each point r ∈ D such that nearby microdomains may overlap
with each other; i.e., in such case the set

∪r1,r2∈D [Vr1 ∩Vr2 ] (89)

is not necessarily empty. On the other hand, the conventional approach to coarse-grained,
depicted in Figure 5 (right), involves subdomains like V′r1

and V′r2
that are non-overlapping,

leading to a grid-like structures or “tile covering up” of the material domain D where in
general no holes are left.
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In both approaches, it should be noted, we find that each type of the two subdomains,
whether Vr or V′r , was already assumed to be homogeneous. The disadvantage of the
conventional approach is that any abrupt change in the electromagnetic properties of the
material, experienced when transitioning between two neighboring subdomains through
their interface region, often requires imposing a suitable “boundary condition” at this
geometric interface in order to obtain an accurate computational assessment of the physics.
On the other hand, this problem does not exist in the topological approach, illustrated in
Figure 5 (left), because the microdomains are allowed to overlap, where common regions
between overlapping microdomains are treated correctly using the partition of unity basis
functions as described in Section 5.3.

Figure 5. Topological coarse-grained model for an inhomogeneous nonlocal material domain D (left)
in comparison with a conventional coarse-grained process (right). The topological microdomains
constitute an open cover of the domain in the sense that D =

⋃
r∈D Vr, which is the obvious general-

ization of (32). Note how the topological approach allows overlapping microdomains, e.g., between
microdomains Vr2 and Vr3 . The technique of the partition of unity will take care of electromagnetic
data “repeated” in such regions of overlap by assigning proper weights that always sum to unity at
each point in r ∈ D.

7.3. Resonant Nonlocal Semiconductor Domains and the Nonlocal Exciton-Polariton Model

A concrete application of the topological coarse-grained algorithm proposed in
Section 7.2 is now in order. The specific nonlocal metamaterial is a semiconductor with
dielectric function exhibiting a single strong resonant exciton transition at the frequency
ω = ωe. We first examine in detail the nonlocal exciton–polariton model to be used below.
For a review on the physics of exciton–polariton interactions in solids, see Appendix A.7.

A polariton is simply a “photon living inside a dielectric medium”. The quantum of
an electromagnetic wave inside a dielectric domain is often called polariton instead of
photons (sometimes polaritons are called “dressed photons”). An exciton–polariton is a
polariton coupled with a mechanical exciton, e.g., an electron-hole pair. The latter should be
distinguished from other types of polaritons such as phonon-polaritons defined as polaritons
coupled with phonons, the quantum of lattice vibrations [37].

It is well known from quantum theory that near resonance, the dielectric function of
such semiconductor materials may be approximated by the formula [16,77–80]:

ε(k, ω) = ε0 +
χ

k2 − γ2(ω)
, (90)

where
χ = 4π

αm�
e ωe

h̄
, γ2(ω) =

m�
e

h̄ωe

(
ω2 −ω2

e + iωΓ
)

. (91)

Here, h̄ is the reduced Planck constant, while α serves as the oscillator strength.22 The
effective mass of the exciton is denoted by m�

e .23. On the other hand, the exciton lifetime τe is
defined by

τe :=
2π

Γ
, (92)
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hence, Γ can be thought of as the exciton decay or relaxation rate. We emphasize that any
dependence of Γ and the oscillator strength α on k is ignored in the excitonic model (90).

In Appendix A.7, the physical origin of nonlocality in the semiconductor is revisited,
where it is traced to the quantum mechanical energy–momentum relations of exciton–
polaritons. In order to actually see significant nonlocal physics taking place in the excitonic
material system described by (90), the following sufficient condition may be imposed:

Γ h̄k2

2m∗e
. (93)

It can be shown that under such Γ-bound, the kinetic energy term in (A12) can induce
significant nonlocal effects in (90). One way to realize nonlocal (spatially dispersive)
semiconducting metamaterials is to operate with intrinsic semiconductors satisfying (93)
by keeping the temperature low and the material pure (undoped) [83].

The model described by (90) and (91) can be viewed as a natural generalization
of the local Lorentz model widely utilized to model temporal dispersion in solids and
plasma [77,79]. It represents the simplest nonlocal resonant model with a single strong
resonance at a characteristic frequency, here ω = ωe. All other off-resonance excitonic
transitions are gathered into the background dielectric constant ε0 for simplicity. For
frequencies well below ω  ωe, the exciton–polariton behaves essentially like a photon
propagating in a medium with background permittivity ε0. For ω ! ωe, we again recover
photons but usually with a background described by ε∞, the high-frequency limit of
permittivity. In general, the difference between the static and high-frequency permittivities
is quite small in the sense that

|ε0 − ε∞|  ε0. (94)

Hence, for simplicity, in this example the two permittivities are treated as identical (ε0 � ε∞)
since we are interested in the EM response around a single excitonic resonance while in
fact the oscillator strength α in (90) is small. One consequence of this assumption is that
the splitting between longitudinal and transverse modes can be neglected. Indeed, since
the longitudinal and transverse frequencies ωL and ωT are related to each other via the
relation [16]

ω2
L

ω2
T
=

ε0

ε∞
, (95)

then the assumption (94) is equivalent to neglecting the longitudinal–transverse splitting

ωL,T := |ωL −ωT| (96)

in the sense that
ωL,T  ωT. (97)

A consequence of this is the near equality of the longitudinal and transverse frequencies,
which allows us to considerably simplify the mathematical treatment.24 In addition, as-
suming that the oscillator strength α in (90) is nearly the same for both the longitudinal
and transverse part of the response function, then it follows that we need only work with
a single scalar response function, namely the form (90) itself instead of the more general
tensorial Formula (A3).25

Nonlocal effects associated with the model (90) emerge from the quantum mechan-
ical nature of exciton–polariton interactions and the need to enforce conservation of en-
ergy/momentum as discussed in Appendix A.7, leading to the strong dependence on k
observed in (90). There is yet another physical explanation of nonlocality. Within the regime
of the large exciton mass limit

m∗e → ∞, (98)

the kinetic energy term in (A12) drops out and the excitonic dielectric function (90) becomes
local. This is why spatial dispersion is sometimes referred to as the “finite-mass model”,
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with some suggestions that the origin of nonlocality in this case is the inertial effects of the
exciton [79].26 In what follows, we assume that the effective mass of the exciton is always
finite and positive:

0 < m�
e < ∞. (99)

However, it should be noted that since excitons are collective excitations of solids [84,85],
they may have negative mass [86]. While this will not be pursued here, the negativity of
the excitonic mass may be exploited in order to further design and control the EM behavior
of nonlocal MTMs constructed using excitonic semiconductors.

In order to gain a deeper insight into the various resonance structures of the exciton–
polariton response function (90), we rewrite it in the equivalent form

ε(k, ω) = ε0 +
χ/k2

e
k2/k2

e + 1−ω2/ω2
e − iωΓ/ω2

e
, (100)

where

ke :=
2π

λe
=

√
m�

e ωe

h̄
(101)

is called the exciton wave number. The wavelength λe is a fundamental resonance spatial
scale, which we will refer to as the exciton wavelength and is given by

λe =
1

2π

√
h̄

m�
e ωe

. (102)

For example, with h̄ωe = 2.5 eV and m�
e = 0.9mel, where mel is the electron mass, the

exciton wavelength λe is around 0.0293 nm, which is the same order of magnitude of
interatomic spacing. The excitation field wavelength λ is at least one order of magnitude
larger. Later we will show typical values for the topological microdomain radius ar.

There are several fundamental spatial and temporal scales involved in the process
of describing the generic nonlocal metamaterial domain D. The excitation field E(r) itself
introduces its own temporal excitation period

T :=
2π

ω
, (103)

in addition to a purely spatial scale (wavelength) measured by the formula

λ :=
2π

k
. (104)

On the other hand, the excitonic transition as such is associated with the fundamental
(temporal) transition period

Te :=
2π

ωe
, (105)

while a fundamental spatial scale

λe :=
2π

ke
(106)

can be unambiguously linked to the exciton at the same time. Table 1 gives a summary of
all these parameters with their meaning explicitly stated. Moreover, it will be demonstrated
later that the radius of a topological microdomain Vr, which is based at a generic position
r ∈ D, can be given by a special Formula (120). Nonlocality arises from the delicate
interplay between all these different spatial and temporal scales. In what follows, we
will emphasize their relative roles in determining the rich nonlocal microstructure of the
material domain, while introducing quantitative calculations.
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Table 1. A summary of the various spatial and temporal scales involved in understanding and
designing generic nonlocal metamaterials with exciton–polariton resonance-type of nonlocality.

Scale Type Meaning Formula

λ spatial excitation field wavelength λ = 2π/k
λe spatial exciton wavelength 2π/ke
ar spatial microdomain radius 1/|γ′′ |
T temporal excitation field period 2π/ω
τe temporal exciton lifetime 2π/Γ
Te temporal exciton period 2π/ωe

Armed with this typology of spatial and temporal scales, we are now better positioned
to understand the resonance structure associated with the exciton–polariton nonlocal
dielectric function (100). Figure 6 illustrates two cases of resonance where the value of
the dielectric function is examined with respect to variations in the excitation field wave
number k (or equivalently the wavelength λ). In order to focus on nonlocality, we only
plot the nonlocal part of the total response, which is found here to be proportional to the
dielectric residue

ε(k, ω)− ε0. (107)

As we may infer from Figure 6, a strong resonance takes place when the ratio

k
ke

=
λe

λ
(108)

becomes comparable in magnitude to the quantities remaining in the denominator of (100).
That is, the spatial resonance condition is

k2

k2
e
+ 1− ω2

ω2
e
∼ ωΓ

ω2
e

. (109)

However, the condition (109) holds only if the imaginary part of the denominator of (100),
i.e., the quantity ωΓ/ω2

e, is relatively small. Otherwise, since k and ke are real, the ratio
k/ke can never lead to strong resonance when the relaxation rate Γ is sufficiently large.
Another way to say the same thing is the following: strong spatial resonances, whose main
origin is nonlocality, can take place either when dissipation is small, or when the exciton
lifetime is long enough. The latter scenario of long exciton lifetime is characterized by
the condition

ωΓ
ω2

e
 

∣∣∣∣1− ω2

ω2
e

∣∣∣∣. (110)

In such case, it is evident that the appropriate spatial and temporal sufficient conditions
needed to secure nonlocal resonance are mutually related by the simple relation

k2

k2
e
≈ ω2

ω2
e
− 1. (111)

From this, it can be inferred that nonlocal resonances generally occur only for ω/ωe > 1.
In Figure 6 (left), we can see that for the above-resonance condition of ω/ωe = 1.5, the
nonlocal domain possesses a spatial resonance at roughly λ ≈ λe. On the other hand,
if we operate the material at larger frequency ω/ωe = 2.5, i.e., well above the exciton
transition frequency, then spatial resonances may occur only at values of the excitation field
wavelength λ that are considerably smaller than the exciton wavelength λe.

Finally, we add that when the nonlocal response is plotted as function of ω instead of k,
resonance structures similar to Figure 6 are obtained under the condition (110) since in that
case (111) approximately holds. In general, we would expect that for the best operation of
the designed nonlocal MTM (maximal nonlocal response), the operating frequency should
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be selected to be as close as possible to the exciton transition frequency, i.e., we would like
to maintain the material design condition

ω

ωe
≈ 1, (112)

which is needed since, in general, the excitonic relaxation rate Γ is never exactly zero and,
hence, the condition (110) seldom holds otherwise for all frequencies.

Figure 6. The nonlocal spatial resonance structure of the exciton–polariton dielectric response
as a function of the excitation field wave number k. The normalized response function
(ε(k, ω)− ε0)/(χ/ke)2 is plotted, where the dashed line is the absolute value, the solid line rep-
resents the real part, while the dotted line is the imaginary part. For both figures, Γ/ωe = 0.01.
(Left) ω/ωe = 1.5. (Right) ω/ωe = 2.5.

7.4. Quantitative Estimation of the Electromagnetic Nonlocality Microdomain Structure in the
Exciton-Polariton Dielectric Model

In the spatial domain, the dielectric function can be obtained by computing the inverse
Fourier transform

ε(r− r′; ω) = F−1
k {ε(k, ω), (113)

where F−1
k is the converse of the forward Fourier transformation defined by (17). We will

need the following inverse Fourier transform relation (proved in Appendix A.9):

F−1
k

{
χ

k2 − γ2(ω)

}
=

χ

4π

eγ′′(ω)|r−r′ |e−iγ′(ω)|r−r′ |

|r− r′| , (114)

where

γ′ = −
√

m�
e

2h̄ωe

√
(ω2 −ω2

e) +

√
(ω2 −ω2

e)
2 + (ωΓ)2, (115)

γ′′ = −
√

m�
e

2h̄ωe

√
−(ω2 −ω2

e) +

√
(ω2 −ω2

e)
2 + (ωΓ)2. (116)

Hence, by substituting (100) into (113) and using (114), we arrive at

ε(r− r′; ω) = ε0δ(r− r′)︸ ︷︷ ︸
local response

+ εNL(r− r′; ω).︸ ︷︷ ︸
nonlocal response

(117)

The first terms in the RHS of (117) provides the background local response of the medium.
On the other hand, all nonlocal effects are relegated to the second term in the RHS of (117):

εNL(r− r′; ω) :=
αm�

e ωe

h̄
e−iγ′(ω)|r−r′ |

|r− r′| eγ′′(ω)|r−r′ |, (118)
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which is nothing but the Green’s function of the electromagnetic semiconductor material
system under investigation.

The Green’s function (118) is the most fundamental physical quantity needed for
the construction of the microdomain structure D of the nonlocal medium. It has some
similarity with the scalar free-space Green function for radiation fields, i.e., spherical waves
of the form:

exp(ik|r− r′|)
|r− r′| . (119)

However, there are notable differences:

1. First, we note that (118) exhibits strong dispersive behavior due to the dependence of
γ′ and γ′′ on frequency per their Formulas (115) and (116).

2. Second, the presence of a spatially-decaying exponential factor of the form exp(γ′|r− r′|)
makes the Green function εNL(r− r′; ω) highly attenuating in spite of the fact that
this attenuation is not mainly due to thermodynamic losses.

Indeed, as can be seen from (90), dissipation is controlled by the exciton lifetime τe, or,
equivalently, the decay rate Γ. Dissipation decreases as the lifetime increases, i.e., when
Γ is small. Figure 7 illustrates some examples where we plot both γ′ and γ′′ as functions
of frequency. The frequency-dependent behavior observable there strongly depends on
Γ/ωe, i.e., the ratio between the relaxation frequency and the excitonic transition frequency.
For ratios as small as Γ/ωe = 0.1, the intensity of attenuation per unit length γ′′ is nearly
constant for ω > ωe, while it assumes higher values for frequencies below the ωe as can
be seen from Figure 7a. This is consistent with a “high-pass filtering behavior” typical
for this type of resonance phenomena, where waves are often excited with frequencies
slightly larger than the cutoff threshold at ωe. For the propagation constant γ′ at the same
relaxation-to-exciton transition ratio Γ/ωe, Figure 7b shows that it becomes nearly straight
line. Such behavior, when combined with nearly constant per-unit-length attenuation,
represents negligible dispersion effects. On the other hand, when Γ/ωe increases, we begin
to see strong dispersion effects, manifested by non-constant per-unit-length attenuation
and nonlinear phase-delay relations.

In fact, the attenuation process described by the per-unit-length rate γ′′ is not merely
an expression of dissipation, but is also the signature of nonlocality in exciton–polariton
semiconductor materials. The medium response weakens as the distance from the source
increases, while the characteristic length scale of this nonlocality radius is found to be
solely controlled by γ′′. Figure 8 illustrates the real part of the dielectric function Green’s
function (118). The ability of the excitonic semiconducting medium to respond to spatially
distant sources is graphically illustrated by its dielectric profile’s functional spread around
the origin |r− r′| = 0. The size of the nonlocal domain is then directly reflected by the
rapidity of the decay of the Green’s function (118) as one moves away from r′, which is the
origin here.

Figure 7. Frequency dependence of γ′′ (a) and γ′ (b) for several values of the exciton decay
rate Γ. Here, m�

e = 0.9me, where me is the electron mass. The exciton transition frequency is
ωe = 3.7977× 1015 rad/s (h̄ωe = 2.5 eV).
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Figure 8. (a) Comparison between the real parts of the long-range decay of the excitonic nonlocal
domain Green function εNL(r− r′) with and without the full spatial dependence, including the
exponential short-range decay factor exp(γ′′ |r− r′ |) for γ′ = 1 nm−1 and γ′′ = 2 nm−1. (b) Fre-
quency dependence of ar, the radius of the topological microdomain B(r, ar) centered at some
generic point r in the nonlocal excitonic material domain D for several values of the exciton life-
time Γ−1. Here, m�

e = 0.9me, where me is the electron mass. The exciton transition frequency is
ωe = 3.7977× 1015 rad/s (h̄ωe = 2.5 eV).

7.5. The Locally-Homogeneous Model of Nonlocal Semiconducting Domains

Quasi-inhomogeneous, also known as smoothly-inhomogeneous or locally spatially
dispersive nonlocal media, are some of the simplest possible prototypes of general (inhomo-
geneous) nonlocal materials where the spatial dispersion model ε(k), with a dependence
on only one spatial spectral variable k, is found to be not adequate for the mathematical
description of the physics of the nonlocal system [76,87]. In contrast, one would need
the considerably more complex spectral functions of the form ε(k, k′), which are three-
dimensional spatial Fourier transformations of generic nonlocal response functions like (3)
or (10). In general, there has been quite few investigations aimed at going beyond spatial
dispersion in homogeneous media. Examples include inhomogeneous plasma, such as
those in controlled-fusion reactors [88], cold collisionless magnetoplasma [88], the electro-
dynamics of nanostructures [89–92], and incommensurately-modulated superstructures in
insulators [76,93].

Here, we will analyze a simple inhomogeneous model of semiconductors experienc-
ing exciton–polariton transitions as outlined above. The EM nonlocal model is locally-
homogeneous in the sense that around each point r ∈ D there exists a topologically-local
neighborhood, namely the microdomain Vr, inside which the medium can be modeled as
a homogeneous and spatially dispersive domain for all r ∈ Vr (i.e., the second mention
of “locally” here means topological nonlocality, see Remarks 3 and 17). It should be noted
though that for maximum generality, we allow for variations in the spatial dispersion
model to take place from one microdomain Vr to another.

We now wish to estimate the size of each nonlocality microdomain with the help of the
exponential law in (118). Let us first expand the homogeneous model treated in Section 7.3
to the inhomogeneous setting of the present discussion, where currently we need to allow
that at each point r ∈ D, the parameters of the original exciton–polariton model (100)
would all become generally functions of the position. That is, in this more general case, one
should write γ′(r), γ′′(r), ωe(r), α(r), m�

e(r), etc, where it is understood that the medium’s
microscopic composition may change from one position to another.

The main formula for computing the size (radius) of the topological microdomain
balls Vr = B(r, ar) can be easily given by the following expression:

ar �
1

|γ′′(r)| . (120)
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Roughly speaking, the radius given by (120) quantifies the spatial extension of that charac-
teristic phenomenon of field localization entailed by the presence in the medium Green
function (118) of exponential factors like exp(−|γ′′|r′). Using the formula (116), the rela-
tion (120) becomes:

ar =

√√√√√ 2h̄/m�
e(r)ωe(r)

1− ω2

ω2
e(r)

+

√(
ω2

ω2
e(r)
− 1

)2
+ Γ2(r)

ω2
e(r)

ω2

ω2
e(r)

. (121)

This expression (121) is illustrated with some basic examples as given in Figure 8b for
various values of the crucial parameter Γ/ωe. When this ratio between the relaxation rate
and the exciton transition frequency is small, the size of the EM nonlocality domain will
increase due to the weakening of the corresponding nonlocality-based attenuation (field
localization or confinement) processes. Conversely, one may control the size of each EM
nonlocality microdomain Vr by modifying the ratio Γ(r)/ωe(r) evaluated at that position.
This may provide a path toward an experimental realization of generalized nonlocal MTMs
with controlled microtopological structures. In order to give a view on the numerical values
of this structure, Table 2 provides some relevant microdomain data computed by means of
the expression (121).

Table 2. Topological microdomain data at a generic position r ∈ D. The exciton transition frequency
is fe = 23,862 THz (h̄ωe = 2.5 eV), while m�

e = 0.9me. For the left table, Γ/ωe = 2× 10−5.

f (THz) ω/ωe ar (μm) Γ/ωe ω/ωe ar (μm)

19,090 0.8 0.0003 0.00002 1.01 2.5834
21,476 0.9 0.0004 0.00020 1.01 0.2583
23,862 1.0 0.0582 0.00200 1.01 0.0259
26,248 1.1 7.6670 0.02000 1.01 0.0028
35,793 1.5 13.7174 0.02000 1.01 0.0028
47,724 2.0 15.9382 2.0000 1.01 0.0002
59,655 2.5 16.8674 20.000 1.01 0.0001

Remark 18. The approximation (120), strictly speaking, is not compatible with Definition 1
since the latter is based on assuming that the material response kernel possesses a compact
support. However, for all practical purposes, a decaying exponential can be taken to
approximate the behavior of a function with compact support. Nevertheless, in a more
careful future treatment it is always possible to modify the exact Definition 1 in order to
incorporate the decaying-exponential response kernel as another valid example of effective
physics-based nonlocality mathematically realized by a topologically-localized function.
An elementary discussion of some possible such modifications is given in Appendix A.10.

8. Application to Fundamental Theory: Electromagnetic Boundary Conditions in the
Fiber Bundle Superspace Formalism

Armed with the general superspace formalism of nonlocal continua (Section 5) and
the detailed practical example illustrating the theory (Section 7), we now turn to a brief
reexamination of a topic in fundamental theory: the role of boundary conditions in nonlocal
continuum field theories. The well-known tension between nonlocal electromagnetism and
intermaterial interfaces has been already mentioned several times above. Here, we provide
some application of the fiber bundle theory of Section 5, aiming at elucidating the nature of
this tension, and we suggest some possible new formulation of the problem.

The natural starting point is Figure 2, where a zoomed-in topological picture based
on the general structures explicated in Section 4 is given. The focus now is on the interface
between two generic nonlocal domains Dn and Dm. In traditional local electromagnetism,
the constitutive relation material tensor Kn is usually exploited to deduce conditions
dictating how various electromagnetic field components behave as they cross the Dn/Dm
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intermaterial interface. However, even if each response function Kn/m(r, r′) was to be
treated as one belonging to a spatially dispersive domain, i.e., replacing it by Kn/m(r− r′),
the presence of a boundary between two distinct material profiles completely destroys the
translational symmetry of the structure on which the very rigorous derivation of the specific
spatially-dispersive nonlocal response tensor Kn/m(r− r′) was originally based.

The breakdown of translational symmetry in inhomogeneous crystal configurations
was very clearly identified and explained by Agranovich and Ginzburg [16], together with
several proposals for a solution of such unusual electromagnetic problem. For example,
because it is evident that close to the intermaterial interface the response tensor of each
medium, when seen from its own side while approaching the boundary, must be reverted
back to the most general nonlocal form, namely Kn/m(r, r′) instead of Kn/m(r− r′), it was
then proposed that one may use the former, more general, functional form, but only within
a “thin transitional layer” that includes the intermaterial interface, yet while additionally
extending, along some necessarily “ambiguous distance”, into the depths of the two
material domains Dn and Dm on both sides of the boundary. Outside this fuzzy region, a
gradual transition, or a continuously changing profile (a tapered channel), is introduced to
proceed from the most general forms Kn/m(r, r′), valid in the vicinity of the intermaterial
interface, to the special spatially dispersive forms Kn/m(r− r′), which are more accurate
the further one goes away from the material boundary, where the latter response tensor
functions are considered characteristic of “bulk” homogeneous material domains [16].

Another proposal is to keep using everywhere spatial dispersion profiles of the form
Kn(r− r′), but introduce specialized additional boundary conditions (ABCs) at the intermate-
rial interface based on each particular problem under consideration. Although this latter
approach is both mathematically and physically inconsistent (due to the breakdown of
symmetry caused by the presence of intermaterial interfaces), it nevertheless remains pop-
ular because—at least in outline—nonlocal electromagnetism is thereby held up in a form
as close as possible to familiar local electromagnetic theory methods, especially numerical
techniques, such as finite element method (FEM) [44], method of moment (MoM) [46], and
finite difference time-domain method (FDTD) [45], i.e., established full-wave algorithms
where it is quite straightforward to replace one boundary condition by another without
essentially changing much of the code.27

Nevertheless, both approaches discussed above require considerable input from the
microscopic theory, mainly to determine the tapering transition region in the case of the first,
and the ABCs themselves in the second. That motivated the third approach, called, the
ABC-free formalism, where the relevant microscopic theory was utilized right from the
beginning in order to formulate and solve Maxwell’s equations. For example, in [50,53],
a global Hamiltonian of the matter-field system is constructed and Maxwell’s equations
are derived accordingly. In [38], the rim zone (field attached to matter) is investigated
using different physical assumptions to understand the transition from nonlocal material
domains to vacuum going through the entire complex near-field zone. In [89], the symmetry
group of carbon nanotubes was exploited to construct a set of Maxwell’s equations in
nonlocal nanoscale problems without using a homogenized electromagnetic field-based
boundary condition.

We believe that the main common conclusion from all these different formulations is
that in nonlocal electromagnetism it is not possible in general to formulate the electromagnetic
problem at a fully phenomenological level. In other words, microscopic theory appears to be in
demand more often than in the case of systems involving only local materials. However,
since all existing solutions use the traditional spatial manifold D as the main configuration
space, the question now is whether the alternative formulation proposed in this paper, the
extended fiber bundle superspace formalism, may provide some additional insights into
the problem of why nonlocal continuum field theory cannot be formulated in general for
inhomogeneous domains as in the local version of that theory.

We provide a provisional elucidation of the topological nature of field theory across
intermaterial interfaces by noting that, in Figure 2, it is not only the behavior of the fields
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F(r) in the two domains that is mostly relevant, but also the entire set of local topological
microdomains Vr clustered on both sides of the interface inside the material domains. More
specifically, we attach a great importance to how these microtopological domains, together with
the corresponding set of excitation fields that are applied on them, would behave as they move across
the boundary. In general (set-theoretic) topology, boundaries are defined fully in terms of the
behavior of open sets [58,59].

We now build on this key set-theoretic topological concept in order to illustrate how
the problem of nonlocal inhomogeneous continuum field theory may be reformulated
through the superspace formalism developed in Section 5. First, Figure 9 provides a finer or
more structured picture of the topological content of Figure 2 based on replacing the spaces
Dm and Dn by the corresponding Banach bundle superspacesMm andMn, respectively.
The thick horizontal curved lines represent the base spaces Dm and Dn, while the wavy
vertical lines stands for the fiber spaces Xm and Xn attached at each point r ∈ Dn/m in the
corresponding base manifolds. The double discontinuous lines at the “junction” of the
two base spaces Dm and Dn indicate the joining together of the two vector bundlesMm
andMn.

Dm

Dn

XnXm

Interface between
the nth and mth domains

Dm � Dn ⇒ Xm � Xn

fiber superspace boundary condition

p−1(r) (fiber at r)

r

Figure 9. An abstract representation of the topological fiber bundle superspace structure behind
Figure 2.

It should become clear now that since the two nonlocal material domains possess
an extra structure, namely that of the individual copies of the fibers, each a linear vector
Banach space attached to every point in the base space, we must also indicate how the
various elements belonging to the Banach function spaces, i.e., the fields defined on the
microdomains Vr in Figure 2,28 would behave as they cross the boundary separating the
two material domains Dm and Dn. One obvious way to do this is to introduce a bundle
homomorphism between the two vector bundlesMm andMn over the interface submanifold
∂Dmn separating Dm and Dn. This mathematical object is similar to the nonlocal response
map L introduced by (72).

The motivation behind introducing this bundle homomorphism is to serve as a “bound-
ary condition operator” acting on the fiber bundle superspacesMm andMn instead of the
conventional spaces Dm and Dn always used in local continuum field theories. We will not
go here into a detailed construction of such a new fiber bundle super-operator. Instead, we
provide some additional remarks to illustrate the broad outline of the key idea behind our
proposal. A more detailed investigation of the intermaterial interface homomorphism will
be given somewhere else.

In continuum field theories, the formal expression of the traditional boundary condi-
tion applied to the two materials’ Dn and Dm base spaces (spacetime, space–frequency, or
space differential manifolds) will be summarized by the symbolic formula

Dm � Dn (122)

in order to highlight that in such traditional formulation, it is the direct geometric relations
between the individual material manifolds that usually holds the center stage. For example,
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the electromagnetism of continuous media, is usually spelled out in the more specific
space-limit form:

lim
r→∂Dmn

{Fm(r)− Fn(r)} = Γb1 [Fm(r), Fn(r)],

lim
r→∂Dmn

{Rm(r)− Rn(r)} = Γb2 [Rm(r), Rn(r)],
(123)

where ∂Dmn is the boundary between Dm and Dn. Here, Γb1 and Γb2 are “base space
boundary functions”, which are not universal, but whose detailed expressions depends on
the concrete content of the field theory and the material system under consideration.

On the other hand, in the superspace formalism of nonlocal metamaterials and con-
tinua, it can be seen that the various elements belonging to each fiber space Xn/m attached
at the point r ∈ Dn/m of the base manifolds, i.e., the excitation field functions operating
on the microdomains Vr, r ∈ Dn/m, are to be mapped onto each other via an expression of
the form:

Xm � Xn : lim
r→∂Dmn

(Xm − Xn) = Γ f [Xm, Xn]. (124)

Here, Γ f is a new “fiber superspace boundary function”. The full formulation of (124) is
considerably more complex than the local field-theoretic case of (122) and (123) due to the
fact that, additionally, the boundary condition quantity Γ f must be also proven compatible
with the detailed corresponding fiber bundle structures of the materials involved. Con-
sequently, for the field theoretic treatment of complex nonlocal continuum systems, the
global topology of the metamaterial superspacesMm andMn will have to be assessed and
utilized in the process of formulating a generalized “superspace boundary condition” of
the form (124).

We summarize our main provisional view on the status of boundary conditions in the
nonlocal field theory of inhomogeneous continua as follows:

• The existence of extra or additional structures in the fiber bundle superspace approach
to nonlocality in complex continua forces on us the need for introducing additional
boundary conditions or information coming from the microscopic topological structure
of the corresponding material superspaces.

• The fiber bundle superspace formalism of nonlocal metamaterials appears to be able to
capture the intricate processes taking place inside and across various nonlocal material
domains joined together through interfaces.

• This is achieved by providing an efficient apparatus to topologically encode some of
rich and complex physics of field–matter interactions via the construction of appropri-
ate infinite-dimensional function spaces (Banach space fibers) attached at each point
of the materials’ base manifold.

• It is suggested that the relations between those additional fiber spaces are in fact
what should be mainly taken into account while formulating boundary conditions
for nonlocal continuum field theories, hence not merely the conventional relations
involving only spatial interfaces between the material base manifolds as has been
usually the practice in local field theories.

However, despite the fact that the full mathematical formulation of the proposed fiber
bundle boundary condition homomorphism (124) is beyond the scope of this paper, it
is hopped that the initial insight provided in this section can at least clarify the subject
and stimulate further researches into the fundamental theory of nonlocal continua and
metamaterials. Additional possible applications are given in the Appendixes A.3 and A.11.

9. Conclusions

We provided a general theoretical and conceptual investigation of nonlocal contin-
uum field theories that aimed to achieve several goals. First, the subject was revisited
from a new perspective, with the intention of introducing it not only to mathematical
and theoretical physicists, but also invite a wider audience, including engineers, material
scientists, chemists, applied physicists, and applied mathematicians. The various essential
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ideas behind nonlocality in material continua were put under new light with the help of
an abstract field-response model developed in three dimensions. Next, the fine-grained
topological microstructure of nonlocal metamaterials was explicated in detail. We intro-
duced the concept of physics-based nonlocality microdomains, demonstrating how the
latter regions present an important structural topological feature of the physics of nonlocal
media. Afterwards, it was proved using differential topology that a natural fiber bundle
structure, serving as a “source (excitation) superspace”, can be constructed. The material
source fiber bundle superspace, or the material superspace in short, was shown to possess
all of the required properties of a standard fiber bundle yet while faithfully reflecting the
physics of nonlocal microdomains. Eventually, and using the technique of partition of unity,
it was proved that the fiber bundle superspace can be deployed for the purpose of con-
structing and computing the complete nonlocal material response function over arbitrary
microdomain configurations. This was accomplished by building a bundle homomorphism
to replace the well-known, but now inadequate, material tensor linear operators commonly
utilized in local continuum field theories, for instance, conventional electromagnetism.
This new homomorphism can be viewed as a generalization of the linear operators of the
various classical boundary-value problems of mathematical physics. It is hoped that in
the future this homomorphism may be “topologically discretized” using suitable methods
borrowed from other advanced fields such as algebraic topology, computational topology,
and global analysis. The new fiber bundle superspace formulation suggested that nonlocal
continuum field theories could be reformulated in an alternative way compared with the
prevailing existing methods. Most importantly, nonlocality in material continua forces us to
introduce an entire array of infinite-dimensional Banach spaces attached to every point in
the conventional three-dimensional base space inside which the material is conventionally
defined. This extra or additional fiber structure provides a natural explanation of why tra-
ditional boundary conditions often fail to account for the physics of nonlocal metamaterials.
Moreover, the fiber bundle theory opens the door for several new applications, including
the ability to understand the deep connection between topology and field theories, e.g.,
electromagnetism, in engineered artificial media. Overall, the author proposes that future
research in metamaterials will gradually require more extensive collaboration between
engineers and mathematicians in order to explore in full the deep consequences of this
organic topology/electromagnetism relation.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

Appendix A.1. Survey of the Literature on Nonlocal Metamaterials

Appendix A.1.1. Introduction

We first provide a non-exhaustive and selective review of the development of nonlocal
electromagnetic materials research. More information and proposals regarding engineering
applications are given in Appendix A.3, where additional references can be found. The main
propose behind this literature overview is to suggest that the area of nonlocal metamaterials
research might be approached as an approximately coherent field of investigation, i.e., more
than just being merely a technical sub-discipline selected from within the sciences of metals,
semiconductors, plasma, periodic structures, metasurfaces, etc. In fact, one of the main
objectives of this paper is to demonstrate that a unified theoretical treatment of the entire
subject is mathematically possible (the superspace formalism.) However, one needs to
be convinced first of the presence of substantial past researches into this area. Hence,
convincing readers not familiar with the topic about the long and very rich history of
investigations into various nonlocal phenomena in material systems is one of the objectives
of this Appendix.
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Appendix A.1.2. Historically Important Examples

Some of the physical phenomena that cannot be understood using local electromag-
netic theory include spatial dispersion effects [83], extreme negative group velocity and
negative refraction [52,94], new diffraction behavior in optical beams [95], superconductiv-
ity [96], natural optical activity [16,97,98], non-Planck equilibrium radiation formulas in
nonlocal plasma [99]. Outside electromagnetism but within wave phenomena, there also
exists processes that cannot be fully accounted for through simple local material models,
for instance, we mention phase transitions, Casimir force effects [100], and streaming bire-
fringence [9]. By large, spatial dispersion has attracted most of the attention of the various
research communities working on nonlocal electromagnetic materials. Indeed, few book-
length researches on spatial dispersion already exist in literature, most notably [14–16,83].
We provide additional remarks on the history of spatial dispersion in Appendix A.2.

Appendix A.1.3. General Theories of Nonlocal Continua

The majority of the published research on nonlocal media and nonlocal electromag-
netism tend to focus on applications and specialized materials (see the majority of the
references quoted below). Few exceptions include investigations attempting to approach
the subject at a more general level. For example, from the perspective of general thermody-
namics, see [8,9]. A unified perspective inspired by condensed-matter physics, especially
plasma physics, can be found in [47]. Within nanoscale electrodynamics, nonlocality
was treated broadly as an essential feature of microscopic interactions at the nano- and
mesoscopic scales [50,53]. Some of the topics reexamined within the framework of a
general nonlocal field–matter interaction theory include the applicability of optical reci-
procity theorems [101–104], energy/power balance [105], quantization [106–108], operator
methods [87], extension of spatial dispersion to include inhomogeneous media [76], and
alternative formulations of spatial dispersion in terms of the Jones calculus [109].

Appendix A.1.4. Semiconductors, Metals, Plasma, Periodic Structures

The bulk of the available literature on nonlocality is concentrated in the very large area
of general field–matter interactions. There already exists a well-attested body of research
on nonlocality in metals based on various phenomenological approaches, e.g., see [110] for
a general review. Nonlocality has also been extensively investigated in dielectric media, for
example semiconductors [83,111]. A comprehensive recent review of nonlocality in crystal
structures is provided in [112], which updates the classic books [16,55]. Moreover, numer-
ous researches conducted within condensed-matter physics and material science implicitly
or explicitly assume that nonlocality is essentially based on microscopic (hence quantum)
processes, and develop an extensive body of work where the spatially dispersive dielec-
tric tensor is deployed as the representative constitutive material relation [37,38,50,53,54].
On the other hand, one can also treat nonlocality without resort to spatial dispersion
by modeling certain classes of material media as periodic structures [113], e.g., photonic
nanocrystals [114], where the susceptibility tensor is derived from the symmetry of the
overall structure [37,89,115] or from the lattice dynamics approach [92,116].

Appendix A.1.5. Boundary Conditions in Nonlocal Metamaterials

For solving nonlocal problems, several methods have been proposed in order to deal
with the notorious problem of the lack of exact universal nonlocal response models at the in-
termaterial interface between a nonlocal domain and other media. The so-called additional
boundary condition (ABC) approach adjoins new boundary conditions to the standard
Maxwell’s equations in order to account for “additional waves” excited at the interface,
which otherwise would not be explicable by the standard local theory alone [16]. However,
it must be noted that without exception all ABC formulations are inherently model-specific
since each boundary condition model presupposes a particular type of nonlocal media,
or simply just postulates specific ABCs based on their ease of use in applications, e.g.,
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see [55,56,80,117–119]. We note that such ABC formalisms are not inevitable since there
exists several boundary-condition free formulations, e.g., see [50,53,89].29

Appendix A.1.6. Computational Techniques

For performing full-wave field analysis in the presence of nonlocal materials, a number
of discretization strategies have been proposed. For example, an FDTD-based method was
suggested to deal with metallic spatially dispersive objects [120]. The formulation, dis-
cretization, and solution of surface integral equations for nonlocal plasmonic materials were
also attempted in [121,122], where the reduction of the electromagnetic problem to a finite-
matrix form was achieved using the RWG basis functions. Moreover, specialized methods
were proposed for various possible scenarios involving nonlocal field–matter interactions,
such as nonlocal dielectric profile retrieval from measurable data [123], iterative solutions
of nonlocal wave equations [124,125], applications of the derivative expansion method
to nonlocal plasma analysis [126], application of Kramers–Kronig relation method [127],
application of the Pade approximation to homogenization [128].

Appendix A.1.7. Novel Systems and Devices with New Electromagnetic Behavior

The idea of exploiting nonlocality to design and develop a new generation of meta-
materials (MTMs) exhibiting novel EM behavior has also received a revival in recent
years [32,47,129], though the basic concept in itself is not completely new, going back to
at least the 1980s and possibly earlier [16]. Recent examples of research focused in expli-
cating nonlocal behavior to harness the associated new physics include spatial dispersion
in photonic crystals [130], wire media [131–134], semiconductor nanoparticles [135–138],
optically nonlinear liquids [139], hyperbolic metamaterials [140], layered dielectric-metal
structures [141,142] and thin films [143], plasma-based metamaterials [144–146], quan-
tum wells [147], soliton interactions with matter [148–153], superconducting films [154]
and circuits [155], plasmonic devices and structures [156–158], nanocubes [159], cloak-
ing [160], Chern metamaterials [161] and superconductors [162], dispersion management
profiles [52,163], biomedical applications in materials [164], nonlocal antennas [165,166],
and nonlocal uniaxial metamaterials [167]. Due to the practical importance of this area of
research, we provide additional information in Appendixes A.3 and A.11.

Appendix A.1.8. Homogenization

Numerous homogenization theories for nonlocal MTMs, where averaging operations
are considered over multiple spatial scales, have been reported in the literature, e.g.,
see [133,168–171]. We note that the subject of estimating the effective electric and magnetic
properties of electromagnetic metamaterials, with or without nonlocality, is enormous
and it is beyond the scope of this paper to even summarize the main papers in the field.
Nevertheless, it is curious to note that until fairly recently, most publications have tended
to focus on non-spatially-dispersive media; hence, local scenarios are still dominant in the
area of advanced artificial material systems. This situation has began to change in the last
few years, and nowadays an increasing number of reports appear to move from the old
opinion that “spatial dispersion is a bug” to the more positive and fruitful perspective that
nonlocality may provide pathways to novel physical behavior that can be exploited for
various applications in metamaterial system design. However, we also note that progress
in this second direction, where nonlocality is embraced rather than being treated with
suspicion, has been generally slow.

Appendix A.1.9. Topological Materials and Photonics

A particularly interesting direction of research in nonlocal media is the recent subject of
topological photonics. The main idea was inspired by previous researches in Chern insulators
and topological insulators [10], where the focus has been on electronic systems. There, it
has already been observed that the nonlocal behavior of the fermion wave function may
exhibit a rather interesting and nontrivial dependence on the entire configuration space of

157



Foundations 2022, 2

the system, in that case the momentum space (the wave vector k space). In addition to the
already established role played by nonlocality in superconductors, quantum Hall effects
are among the most intriguing physically observable phenomena that turned out to depend
fundamentally on purely topological aspects of the electron wave function [96]. The major
themes exhibited by electrons undergoing topological transition states include topological
robustness of the excited edge (surface) states moving along a two-dimensional interface
under the influence of an external magnetic fields. More recently, it was proposed that the
same phenomenon may apply to photons (electromagnetism) [172], where the key idea is
to use photonic crystals to emulate the periodic potential function experienced by electrons
in fermion systems. However, since photons are bosons, transplanting the main theme of
topological insulators into photonics is not trivial and is currently generating a great atten-
tion, see for example the extensive review article [11], which provides a literature survey of
the field. One of the most important applications of topological photonics is the presence
of “edge states”, which are topologically robust unidirectional surface waves excited on
the interface between two metamaterials with topologically distinct invariants. Since edge
states are immune to perturbations on the surface, they have been advocated for major new
applications where topology and physics become deeply intertwined [173]. Topology can
also be exploited to devise non-resonant metamaterials [174] and to investigate bifurcation
transitions in media [175]. Another different but related exciting subject illustrating the
synergy between topology, physics, and engineering is non-Hermitian dynamics, especially
in light of recent work related to the origin of surface waves [176,177], which is now being
considered as essentially non-trivial topological effect. In Appendix A.11, the subject of
topological photonics is taken up again but from the viewpoint of applications.

Appendix A.2. On the History of Spatial Dispersion in Crystal and Plasma Physics

Historically, spatial dispersion had been under the radar since the 1950s, especially in
connection with researches on the optical spectra of material domains [77,78,178]. However,
the first systematic and thorough treatment of the subject appeared in 1960s, prominently in
the first edition of Ginzburg’s book on plasma physics, which was dedicated to electromag-
netic wave propagation in plasma media. The second edition of the book, published in 1970,
contained a considerably extended treatment of the various mathematical and physical
aspects of the electromagnetism of spatially dispersive media [14]. Spatial dispersion in
crystals had been also investigated by Ginzburg and his coworkers during roughly the
same time [179–181]. The book [83] contains good summaries on spatial dispersion research
up to the end of the 1980s. More recently, media obtained by homogenizing arrays of wires,
already very popular because of their connection with traditional (temporal) metamaterials,
are known to exhibit spatial dispersion effects, though many researchers ignore that effect
to focus on temporal dispersion [182–184]. Other types of periodic or large finite arrays
composed of unit cells like spheres and desks also exhibit spatial dispersion effects [185].
Nonlinear materials with observable nonlocality have also been investigated in the opti-
cal regime [186]. More recently, much of the resurgence of interest in spatial dispersion
can be traced back to the observation that nonlocal phenomena cannot be ignored at the
nanoscale level [187], especially in problems of low-dimensional structures, such as car-
bon nanotubes [89,91,92,188] and graphene [189,190]. The subject was also introduced at a
pedagogical level for applications involving current flow in spatially dispersive conductive
materials, such as plasma and nanowires [191].

Appendix A.3. Some Further Engineering Applications of Nonlocal Metamaterials

The purpose of this Appendix is to provide a sample of some other current and future
possible applications of nonlocal metamaterials based on the author’s own experience,
which may serve as a supplementary text to be read in conjunction with the general survey
of Appendix A.1.
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Appendix A.3.1. Communications Systems and Information Transmission

Nonlocal metamaterials offer a very wide range of potential applications in wireless
communications and optical fibers. The basic idea is to introduce specially engineered
nonlocal domains either as part of the communication channel (e.g., optical fibers, plas-
monic circuits, microwave transmission lines) [189], or as a control structure integrated
with existing antennas [129,192]. Spatial dispersion was also used as a method to engineer
wave propagation characteristics in material domains, e.g., see [193] for applications to
high-efficiency modulation of free-space EM waves. A general linear partial equation
explicating how spatial and temporal dispersion can be jointly exploited to produce zero
distortion (e.g., constant negative group velocity) was derived and solved in [52]. The main
idea originated from the fact that one of the main sources of distortion in communication
systems is that due to non-constant group velocity vg := ∇kω [194,195]. Since vg is a
strong function of the dependence of the material response tensor K(k, ω) on both k and ω,
dispersion management equations can be derived for several applications. For example, it was
proved in [52] that in simple isotropic spatially dispersive media with high-symmetry, one
may obtain exact solutions where the group velocity is constant at an entire frequency band.
This happens because while strong temporal dispersion is present (which alone causes
strong distortion), incorporating optimized spatially dispersive profiles leads to complete
compensation (cancellation) of distortion, resulting in essentially a distortion-free commu-
nication channel. There are enormous potentials of research into this new exciting area.
The reason is that most practical realizations of nonlocal metamaterials involve complex
material response tensors, where the relevant mathematics of dispersion engineering is still
underdeveloped (and in fact underappreciated by researchers), which implies that, to the
best of our knowledge, relatively very little has been done in this emerging field so far.

Appendix A.3.2. Electromagnetic Metamaterials

While this paper attempts to analyze and understand the general structure of non-
locality in generic field theories of continuous media, we have already mentioned above
that artificial media, better known nowadays as metamaterials systems, could provide
one of the most direct paths toward building new functional advanced materials and
also providing models to further explore nonlocality both experimentally and numerically.
As early as the 1960s, it was proposed that EM nonlocality can be exploited to produce
materials with very unusual properties. For example, in [16], negative refraction materi-
als were noted as one possible application of spatial dispersion where the path toward
attaining this goes through controlling the direction of the group velocity vector. Since in
nonlocal media, power does not flow along the Poynting vector [14], new (higher-order)
effects were shown to be capable of generating arbitrary group velocity profiles by carefully
controlling the spatial and temporal dispersion profiles. Overall, the ability of spatial
dispersion to induce higher-order corrections to power flow is a unique advantage enjoyed
by nonlocal metamaterials exhibiting weak or strong spatial dispersion in addition to
normal dispersion. This extra spatial degrees of freedom provided by nonlocality was
researched, reviewed and highlighted in many publications, including, for example, works
such as [32,47,115,129,134,141,163,175,184,196].

Appendix A.3.3. Near-Field Engineering, Nonlocal Antennas, and Energy Applications

Another interesting application of nonlocality in electromagnetic media is near-field
engineering, a subject that has not yet received the attention it deserves. It was observed
in [129] that a source radiating in homogeneous, unbounded isotropic spatial dispersive
medium may exhibit several unusual and interesting phenomena due to the emergence of
extra poles in the radiation Green’s function of such domains. Both longitudinal and trans-
verse waves are possible (dispersion relations), and the dispersion engineering equations
relevant to finding suitable modes capable of engineering desired radiation field patterns
are relatively easy to set and solve. For example, by carefully controlling the modes of the
radiated waves, it is possible to shape the near field profile, including total confinement of
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the field around the antenna even when losses is very small, opening the door for applica-
tions like energy harvesting, storage, and retrieval in such media [197]. The direct use of
especially-engineered nonlocal metamaterials, however, has been explored only for simple
materials so far and mainly at the theoretical level [32]. However, the increasing importance
of energy localization [198] at both the level of numerical methods [199] and the device
level applications [200], suggest the need to reconsider the role played by nonlocality in
complex media.

On the other hand, away from the source region, the subject of far-field radiation
by sources embedded into nonlocal media was investigated previously by some authors
within the context of plasma domains [104]. Recently, it has been systematized into a
general theory for nonlocal antennas with media possessing an arbitrary spatial dispersion
profile [25,165,166,192]. However, no general theory exists for nonlocal media, which are
inhomogeneous. The superspace formalism proposed in this paper may help stimulate
research into this direction in order to overcome the limitations of the existing theory of
nonlocal antenna systems.

Appendix A.4. On the Concept of Superspace

The concept of superspace is not new, and has been proposed several times in both
physics and mathematics. For a brief but general view on the definition of superspaces,
see [201]. For example applications, various superspaces have been proposed as funda-
mental structures in quantum gravity [202,203], which are frequently infinite-dimensional.
Superspace concepts are also now extensively researched in quantum field theory and the
standard model of particle physics, e.g., see [204–206]. In general, dealing with topics such
as supergravity, supersymmetry, superfields, superstrings, and noncommutative geometry
often requires the use of one superspace formalism or another [204]. In mathematics and
mathematical physics, where the concept itself originated, a notable recent example of the
superspace concept includes sheaves, which are used in differential and algebraic topology
and algebraic geometry and have numerous applications in physics [30,207,208].

In this paper, the superspace concept has very little to do with applications to super-
symmetry or supergravity, such as the examples mentioned above (and many others we
do not mention.) Instead, our use of the concept is more aligned with the mathematical
practice of extending one space by embedding it into a larger superspace as in the schema:

Space
embedding−−−−−−→

injection
Superspace. (A1)

In other words, the embedded space is injected as a substructure into the (larger) embedding
superspace. The key interest behind the formula superspace-as-embedding (A1), of course,
goes beyond mere set-theoretic inclusion. We are not here trying simply to say that
Space ⊂ Superspace, which would be devoid of mathematical substance. Instead, the main
motivation behind the superspace construction (A1) is that the embedded Space becomes
a substructure attached to or placed within the larger, embedding “container”, which is
here superspace.

The most important thing to note here is that the latter superspace acquires a more
coherent and fundamental status than the former. Eventually, Space becomes nothing but a
mere “substructure” or “index space” of the more originary mother space that we originally
called superspace. Strangely, with time, superspaces tend to become so familiar and basic
to the degree one begins to call them regular spaces, while the original Space fades into
oblivion. This last observation regarding the ontological primacy of the superspace concept
over space can be best seen from the converse generative schema:

Superspace
de-embedding−−−−−−−−→

projection
Space. (A2)
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Here, we recover the original space through a projection operation by which a de-embedding
of the superspace substructure, the interior placeholder occupied by space, is achieved by
projecting the mother space, the superstructure, superspace, onto the substructure, space.
It is really the purely formal structural relation dictating how sub- and super-structures
are organized within a common unifying global schema what is at stake in such type of
superspace theories, i.e., not just the simple set-theoretic inclusion of one space into another.

Both operations, the injection (A1) and projection (A2) are necessary to fully under-
stand the idea of superspace in general. However, in practice, usually only one of them is
emphasized on the expense of the other. It is rare to find in superspace theories that both
projection and injection operations are allotted the same ontological status. For instance, in
the fiber bundle approach adopted in the present paper, space is recovered (or generated)
from the fundamental superspace through the projection map of the mother fiber bundle,
which will send each fiber into its “representative point” in the base manifold. In this
manner, regular space may be seen as if it was actually generated or “produced” by the more
primordial superspace mother structure [18,209].

A specific example more related to the subject of nonlocal MTMs is the original super-
space concept introduced earlier for the analysis of deformed crystal [210] and subsequently
utilized for fundamental investigations of EM nonlocality in incommensurate (IC) super-
structures in insulators [76]. Such modulated-structure materials possess spaces with
dimensions greater than spacetime [211]. Nevertheless, for fairly concrete models one may
exploit group theory to construct finite-dimensional (dimension > 4) approximations of
them. The general theory of superspace formalisms in quasi-periodic crystals is presented
in [212]. Other examples from condensed-matter physics where superspace methods where
applied include mesoscopic superconductivity [213].

Appendix A.5. Guide to the Mathematical Background

We provide a brief overview on how to read the mathematical portions of this paper
and where to find detailed references that might be needed in order to expand some of the
technical proof sketches provided in the main text. We emphasize that in this paper only
the elementary definitions of

1. Differential manifolds,
2. Banach and Sobolev spaces,
3. Vector bundles, and
4. Partition of unity

that are needed in order to understand the mathematical development. Here, we briefly
go over the principal ideas behind each one of these four key mathematical topics listed
above, providing also additional references for readers interested in learning more about
the required background. The current Appendix is not intended as a complete review;
some familiarity with all four elementary mathematical topics listed above is required for a
complete understanding of the technical proofs and constructions found in Section 5.

Appendix A.5.1. Topology on Smooth Manifolds

A differential manifold is a collection of fundamental “topological atoms” each composed
of an open set Ui and a chart φi(x), which serves as a coordinate system, basically an
invertible differentiable map to the Euclidean space Rn. That is, locally, every manifold
looks like a Euclidean space with dimension n. When the differentiable map is smooth, the
differential manifold is called smooth manifold. The collection of open sets Ui, i ∈ I, where
I is an index set, covers this n-dimensional manifold. Since some of these open sets are
allowed to overlap, the crucial idea underlying the concept of the differential manifold
is that over the common intersection region Ui ∩ Uj, there exists a smooth reversible
coordinate transformation function mutually relating the two coordinates of the same
abstract point when expressed in the two (generally different) languages belonging to
the topological atoms Ui and Uj. Note that the key concept of topology is how to propagate
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information from the local to the global levels. In this sense, differential manifolds present
elementary structure allowing us to rigorously conduct this process using the efficient
apparatus of the differential calculus. Note that only the elementary definition of smooth
manifolds is required in this paper, which can be found in virtually any book on differential
or Riemannian geometry, e.g., see [26,30,57,62,65,70,204,214].

Appendix A.5.2. Banach and Hilbert Spaces

A Banach space is a vector space equipped with a norm satisfying the standard prop-
erties that a generic norm should have (namely, being positive, being zero only for the
null vector, scale linearity, and the triangle inequality [215].) Most importantly, Banach
spaces are also required to be topologically complete in the sense that every Cauchy sequence
converges to an element in the space itself. In this way, no “holes” are left in the space
thus defined, hence one may deploy a Banach space in order to do analysis on operators
as in solving differential equations or the analysis of numerical methods. A Hilbert space
is a Banach space equipped with an inner product. An important fact to remember about
Banach and Hilbert spaces is that when they are employed to model function spaces (as in
this paper), they most often lead to intrinsically-infinite dimensional vector spaces [30].

Appendix A.5.3. Banach and Hilbert Manifolds

A straightforward process of combining Banach or Hilbert spaces with differential
manifolds leads to the concept of Banach or Hilbert manifold, which are prominent ex-
amples of infinite-dimensional manifolds. A Banach/Hilbert manifold is simply a differ-
entiable/smooth manifold that is locally isomorphic to a Banach/Hilbert space instead
of the regular n-dimensional Euclidean space R3 invoked in the basic definition of an
n-dimensional manifold. The isomorphism itself can be either differentiable or smooth,
where a suitable derivative operator, such as the Fréchet derivative, may be defined on
Banach/Hilbert spaces, leading to the resulting Banach/Hilbert manifold itself being either
a differentiable or smooth infinite-dimensional manifold. A Banach/Hilbert manifold is
then an intrinsically infinite-dimensional manifold. An elegant formulation of the theory
of Banach manifolds can be found in Lang’s text [26]. Applications of this theory in the
general fields of analysis and geometry can be found in textbooks on global analysis, e.g.,
see [70,216]. In general, much of the theory of n-dimensional manifolds carry over un-
changed into the case of infinite-dimensional manifolds. However, there exists some subtle
technical differences, which are carefully highlighted in [214].

Appendix A.5.4. Sobolev Spaces

The most economic approach to constructing Sobolev spaces is to define them as Hilbert
spaces consisting of (Lebesgue) square integrable functions that posses “generalized deriva-
tive”, a concept in itself technical but straightforward. For the basic definition of Sobolev
spaces and their applications to partial differential equations in mathematical physics and
finite-element method in engineering, we recommend [65]. The subject of Banach mani-
folds is less commonly treated in the literature on Sobolev spaces than finite-dimensional
manifolds. For a very readable account on the functional analytic background to the use of
Sobolev spaces, see [65], while [64] provides information on the applications of Sobolev
spaces in the analysis of linear partial differential equations. The generalization of the the-
ory of Sobolev spaces into the wider setting of functions defined on differential manifolds
is tackled in [66] (with applications to nonlinear functional analysis).

Appendix A.5.5. Vector Bundles

The quite general structure known as fiber bundles, of which vector bundles are famous
special cases, are now standard topics in both mathematics (topology, geometry, differen-
tial equations), theoretical physics (quantum field theory, cosmology, quantum gravity),
and applied physics (condensed-matter physics, many-body problems). On the major
importance of vector and fiber bundles within the overall area of modern fundamental
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physics, see [30,204,208]. In quantum field theory, gauge field theories use vector bundles
as essential ingredients in the standard model of particle physics [18,30]. The increasing
importance of methods based on quantum field theory in applications to condensed-matter
physics has contributed into making knowledge of fiber bundle techniques useful and more
widespread in physical and engineering research than originally anticipated; e.g., see the
area of the Berry phase and the associated gauge connection [11,96]. The key idea behind
the vector bundle is to attach an entire vector space to every point on a base manifold. To be
more specific, consider a differential manifold D serving as the base manifold. Each copy
of the vector space that is attached to a point in this base space will be called the fiber at that
point. The standard tangent space of a smooth manifold is the most obvious example of such
vector bundles. However, more complicated structures than finite-dimensional tangent
spaces can also be captured by a suitable vector bundle concept. In this paper, we have
shown that physics-based nonlocality in material continua can be modeled, very naturally
in the mathematical sense, by considering the Banach space of all excitation fields acting on
the microdomains indexed by a point in the material configuration space (base space). The
fiber bundle superspace formalism may then be seen as a highly efficient and economic
apparatus available for encoding, storing, and processing a large amount of topological
and geometrical data pertinent to the problems of nonlocality in physics and engineering
since fiber bundles lend themselves easily to complex calculations. Readable technical
descriptions of vector bundles can be found in [30,57,63,70].

Appendix A.5.6. Additional Remarks on the Use of Sobolev Spaces in the Fiber Bundle
Superspace Formalism

In Section 4, we introduced Sobolev space over the open domain D instead of simply
operating with the more generic Banach space. The reason behind our decision to invoke the
more specialized (and technical) structure of a Sobolev space was mainly to actually simplify
the technical development and in anticipation of future work on the superspace formalism.
Indeed, in this paper, the fiber bundleM is referred to just as Banach bundle, not Sobolev
bundle for the reason that all our essential results and insights apply to the more general
concept of Banach space, which contains Sobolev spaces as a special case. In fact, Sobolev
spaces are easier to work with in problems involving integro-differential equations such
as nonlocal continuum field theory. Nevertheless, we only used the elementary definition
of Sobolev space itself in Section 5, not its advanced properties. In particular, none of the
other technical properties of Sobolev spaces are needed in the paper. Nevertheless, since in
the future the material bundle spaceM is expected to be employed in order to construct
solutions of Maxwell’s equations in new form (i.e., in superspace instead of conventional
spacetime), Sobolev spaces are projected to play the most important role since they have
proved very efficient in analysis and the theory of partial differential equations [64].

Appendix A.5.7. Partition of Unity Techniques

In analysis and differential topology, the title the partition of unity lemma refers to a
somehow rather technical tool used by topologists and analysts in order to help propagate
information from the local to the global setting. They were found to be quite handy and
easy to apply. The main theorem (Lemma 1) permits us to move from one topological
“atom” to another by “gluing” them together using smooth standard domain-division
functions. The technique was stated and used only toward the end of Section 5 in order to
justify expansions, such as (77) and can be skipped in first reading of the paper. Partition of
unity is usually taught in all topology and some geometry textbooks, e.g., see [26,57,63,70].
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Appendix A.6. The General Electromagnetic Model of Nonlocal (Spatially-Dispersive)
Isotropic Domains

One of the simplest—yet still demanding and interesting—nonlocal media is the spe-
cial case of isotropic, homogeneous, spatially-dispersive, but optically inactive domains [14].
In this case, very general principles force the generic expression of the material response
tensor to acquire the concrete form [13,15,16]:

K(k, ω) = KT(k, ω)(Ī− k̂k̂) + KL(k, ω)k̂k̂, (A3)

where
k := |k|, k̂ := k/k, (A4)

and k is the wave vector (spatial-frequency) of the field. The first term in the RHS of (A3)
represents the transverse part of the response function, while the second term is clearly
the longitudinal component, with behavior captured by the generic functions KT(k, ω) and
KL(k, ω), respectively.30 The tensorial forms involving the dyads k̂k̂, however, are imposed
by the formal requirement of the need to satisfy the Onsager symmetry relations in the
absence of external magnetic fields [16]

Using a proper microscopic theory, ultimately quantum theory, it is possible in general
to derive fundamental expressions for the transverse and longitudinal components of
the response functions in (A3) [14–16,37,38,50]. These forms are often obtained in the
following way:

1. First, fundamental theory is deployed to derive analytical expressions for KT(k, ω; r′)
and KL(k, ω; r′).

2. Afterwards, depending on the concrete values of the various physical parameters that
enter into these expressions, e.g., frequency, temperature, molecular charge/mass/spin,
density, etc., the obtained analytical expressions are expanded in power series with
the proper number of terms.

3. The expression of the dielectric tensor function is then put in the form of either a
polynomial or rational polynomial in k.

A concrete example is given in Section 7.3 to illustrate the use of such physics-based
dielectric functions for the case of exciton–polariton-based semiconductor materials.

Appendix A.7. Origin of Electromagnetic Nonlocality in Excitonic Semiconductors

Appendix A.7.1. Review of the Semiconductor Physics of Excitons

Very early in the history of condensed-matter physics, excitons were introduced by
Frenkel [84,85], and further developed by other researchers, such as Wannier [217]. In the
late 1950s, excitonic phenomena were transplanted into a central stage in the framework
of light-matter interaction through the concept of exciton–polariton [178], which will be de-
fined below. Pekar [178], Ginzburg [77], and others [79,119,218,219] affirmed the nonlocal
approach to exciton–polariton materials by explicitly highlighting the strong impact of
spatial dispersion near excitonic resonances. The subject of excitons is vast and multidisci-
plinary. For extensive treatments covering various applications in physics, chemistry, and
technology, see [16,55,86,220–222].

In order to understand the particular nonlocal model to be presented in Section 7.3, let
us first briefly explain the relevant physics of exciton–polariton interactions and why they
can lead to strong nonlocal response. In a direct-band gap semiconductor the minimum of
the conduction band is aligned along the maximum of the valance band, allowing electronic
transitions from lower (unexcited) to excited bands upon interaction with external EM
fields. For insulating semiconductors of the II-VI and III-V groups, exciton transitions occur
in the visible or near-ultraviolet range of the electromagnetic spectrum. By engineering the
material/metamaterial parameters, these transition frequencies can be shifted.

It should be noted that in contrast to metals and plasma, no free charged carriers are
assumed to exist in the material. An electron exiting the valance band after the absorption

164



Foundations 2022, 2

of an external photon will leave behind a hole, which acts as an independent quasiparticle
that can travel throughout the material in the form of a collective excitation [84,85,223,224].
The exciton is defined as a coupled pair composed of the two bound states of the electron
and hole. Here, both electrons and holes must be understood as “dressed” particles (quasi-
particles) with effective mass and charge different from those of the bare (noninteracting)
particle [225]. We may apply the Bohr model to the exciton (electron-hole pair) with simple
modifications that can be summarized by the following procedure:

1. The electron mass must be replaced by the reduced exciton mass

mr :=
melmh

mel + mh
, (A5)

where mel and mh are the electron and hole masses, respectively.
2. The numerical values of mel and mh are determined by the curvature of the conduction

and valance bands, respectively, and, hence, they follow from accurate quantum
mechanical calculations of the band structure, see for example [55,226,227].

3. Due to the screening of Coulomb attraction by the dielectric medium, the effective
electron charge e− = −e should be replaced by e−/

√
ε0, where ε0 is the static dielec-

tric constant.

From this, it follows that the exciton binding energy Eb is given by

Eb =
mre4

2h̄2ε2
0

. (A6)

Therefore, the total energy needed to create an exciton state is given by

h̄ωe = Eg − Eb, (A7)

where Eg is the semiconductor band gap energy. In most applications, the binding energy
Eb is in the order of meV, while Eg is usually few eV. That is, the energy needed to create an
exciton is slightly less than the band gap energy and typically we have

Eb  Eg. (A8)

However, it is recommended to include binding energy in some applications for accurate
calculations to help explaining the fine structure of measured excitonic transitions.

Appendix A.7.2. A Simple Explanation of How Nonlocality Emerges in the
Excitonic Semiconductor

They key to the origin of nonlocality is the scenario when the excitation photon has an
energy h̄ω that is greater than the minimum exciton energy (A7). In the case where

h̄ω > h̄ωe, (A9)

the excess energy will be transformed into kinetic energy. Due to the conservation of
momentum, the wave vector of the exciton is equal to the photon wave vector k and, hence,
the exciton kinetic energy Ekinetic

e is given by

Ekinetic
e =

h̄k · h̄k

2me
, (A10)

where
me := mel + mh (A11)
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is the translational mass of the exciton in the effective-mass approximation [217]. Conse-
quently, the total exciton energy Ee is given by [228]

Ee(k) = h̄ωe(k) = h̄ωe +
h̄2k2

2me
. (A12)

Consequently, the exciton frequency ωe(k) acquires a novel dependence on k, which is
mainly due to the kinetic energy term in expression (A12). It is precisely such dependence
that eventually leads to the emergence of electromagnetic nonlocality in semiconductors
around excitonic resonances when photons couple with excitons. In other words, away
from the excitonic transition regime, the effective dielectric function of the semiconductor
exhibits only the typical dependence on ω (normal or temporal dispersion.)

Appendix A.8. An Alternative Intuitive Derivation of the Dielectric Model (90) and the Quantum
Origin of Nonlocality in Excitonic Semiconductors

The model (90) itself may be intuitively derived as follows. A generic oscillator model
is the one having the following well-attested Lorentzian expression:

1
ω2

e −ω2 − iΓω
. (A13)

This Lorentzian form models a large number of physical processes in nature, from lattice
vibrations to electronic transitions and numerous many others [13,15,37,229]. Substituting
the wave vector-dependent ωe expression (A12) into the above Lorentzian form (A13), the
dielectric function formula (90) can be immediately obtained when we keep only quadratic
terms of k. For a more careful quantum mechanical derivation, see [16,54,86].

Appendix A.9. Computation of the Inverse Fourier Transform (114)

We start from the standard Fourier transform pair

F−1
k

{
χ

k2 − γ2(ω)

}
=

χ

4π

e−iγ(ω)|r−r′ |

|r− r′| , Im{γ(ω)} < 0, (A14)

where the spatial Fourier transform is defined by (17). The condition

Im{γ(ω)} < 0 (A15)

is due to the physical requirement that fields do not grow exponentially in passive do-
mains [13]. We also have written |r− r′| instead of |r| in anticipation of the fact that the
inverse Fourier transform will produce a Green function.

Our main task now is to make a proper choice of the correct sign when performing
the square root operation

√
γ2. Let us write

γ2 = Re
{

γ2
}
+ i Im

{
γ2

}
. (A16)

From (91), we have

Re
{

γ2
}
=

m�
e

h̄ωe

(
ω2 −ω2

e

)
, Im

{
γ2

}
=

m�
e

h̄ωe
ωΓ. (A17)

On the other hand, γ also can take the form

γ(ω) = γ′(ω) + iγ′′(ω), (A18)

where both γ′ and γ′′ are real. The goal now is to derive expressions for γ′ and γ′′ in terms
of Re

{
γ2} and Im

{
γ2} with the correct sign since the square root is a many-one function.
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To accomplish this, we use the following elementary theorem: let x, y, a, b ∈ R. Then
the square root of x + iy is given by√

x + iy = ±(a + ib), (A19)

where the following expressions hold

a =

√
x +

√
x2 + y2

2
, b =

y
|y|

√
−x +

√
x2 + y2

2
. (A20)

Substituting (A17) into (A20), the following is obtained

a =

√
m�

e
2h̄ωe

√
(ω2 −ω2

e) +

√
(ω2 −ω2

e)
2 + (ωΓ)2, (A21)

b =

√
m�

e
2h̄ωe

√
−(ω2 −ω2

e) +

√
(ω2 −ω2

e)
2 + (ωΓ)2. (A22)

Here, we used the calculation

y/|y| = Im
{

γ2
}

/|Im
{

γ2
}
| = ωΓ/|ωΓ| = 1, (A23)

which follows from the fact that ω, Γ > 0.
It remains now to find the correct signs. From (A14), the condition

γ′′ = Im{γ(ω)} < 0 (A24)

must be satisfied. Therefore, we choose the negative sign in (A19). The final expressions be-
come γ = −a, γ′′ = −b, and after inserting γ′ and γ′′ into (A14), the required relation (114)
is obtained.

Appendix A.10. On Extending Definition 1 to Noncompact Regions

The localization of the physics-based nonlocality microdomains estimated using the
formula (121) is based on approximating the exact mathematical definition of the topologi-
cal microdomain (Definition 1) by response kernel functions possessing spatial decaying
exponential behavior as in (114). It might be advisable then to provide a modification of
Definition 1 taking into account the noncompact setting, which is the scenario more often
encountered in physical applications.

Definition A1 (Nonlocal Microdomains: The Noncompact Case). Consider a material
domain D with the associated nonlocal response function K(r′, r). Assume further that the
following bound holds: ∥∥K(r′, r)

∥∥ ≤ A exp
(
−a

∣∣r− r′
∣∣), (A25)

for all r′ ∈ D, where a and A are some positive numbers. (Here, ‖·‖ is as in Definition 1).
The form (A25) is called the exponentially-decaying nonlocal kernel response function. We
define the effective (physics-based) nonlocal microdomain Vr ⊂ D, labeled by r ∈ D, as the
open ball

{r′ ∈ D,
∥∥K(r′, r)

∥∥ < A exp(−1)}, (A26)

where A is as defined in (A25). In other words, an effective onlocality microdomain of this
type, such as the one in Definition 1, is still locally compact.

Remark A1. The physical meaning of the ball (A26) is that it effectively approximate the
spatial region where most of the “energy” of the response is concentrated, hence providing
a physical means to estimate practical microdomain physical problems, since the Coulomb
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interaction and other types of molecular forces are long range forces and, hence, cannot
be described by an exact compact support such as the one originally introduced in the
Definition 1.

Remark A2. It is straightforward to modify Definition A1 to include other forms of decay
functions weaker than the exponential form. For example, we may replace the exponential
in (A25) by a decaying function 1/rn, where n is a suitable positive integer. Obvious
modifications of the ball (A26) can then be subsequently made to construct the nonlocality
microdomain.

Appendix A.11. Possible Applications of the Superspace Formalism to Fundamental Methods in
Metamaterials Research

Appendix A.11.1. Estimating Fundamental Limitations on Nonlocal Metamaterials

Fundamental continuum response maps, such as L (72), can be completely refor-
mulated in a different setting, that of the space of vector bundle sections [57,62,70]. The
latter topic, the theory of sections, is an extremely well-developed subject in mainstream
differential topology. In fact, in some cases the electromagnetic response field function
R(r) itself may be obtained by working directly with the source bundle superspaceM.
For example, under some conditions, this can be achieved by replacing each fiber Xi by
Xi ×C3. In this way, the entire nonlocal response problem reduces to understanding how
vector bundle sections interact with the topology of the underlying base manifold D. There
is a large literature in differential topology and geometry focused on this latter technical
mathematical problem, especially how local information can be transported from one place
to another in order to extend local structures into global ones [26,57,63].

The author believes that by starting from local data in a given nonlocal metamaterial
domain, e.g., the global shape of the device, the distribution of topological holes, etc, one
may then use existing techniques borrowed from differential topology, e.g., the theory of
characteristic classes, to determine allowable EM response functions that are in principle
permissible at the global level. Engineers are typically interested in acquiring in advance the
knowledge of what the best (or worst) performance measures obtainable from specific topolo-
gies are. Hence, reformulating the electromagnetism of nonlocal metamaterials in terms of
vector bundles could be of help in this respect since it opens a pathway, within metamaterials
research, toward a synergy between general topology, physics, and engineering.

Appendix A.11.2. Numerical Methods

Traditional full-wave numerical methods are sometimes deployed in order to deal
with nonlocal EM materials, often using the additional boundary conditions framework, in
spite of the latter’s lack of complete generality.31 At the heart of the traditional approach to
numerical methods in local electromagnetism is the concept of operators between linear
spaces. However, by reformulating the source space of field–matter interaction in terms
of a Banach bundle, it should be possible to reformulate Maxwell’s equations to act on
this extended geometric superspace instead of the conventional spacetime framework. As
an alternative to the concept of the linear operator of classical mathematical physics and
numerical methods, we now have the much more general and richer concept of bundle
homomorphism developed in Section 5. Some of the advantages anticipated from such
reformulation include

1. The ability to resolve the issue of generalized boundary condition (already discussed
in Section 8).

2. Since every point belonging to a fiber superspace is in itself a smooth function defined
on an entire material sub-microdomain, by building a new system of discretized
recursive equations approximating the behavior of electromagnetic solutions living in
the enlarged superspacesM and R one may anticipate arriving at a deeper under-
standing of the physics of nonlocality. The reason is that the topology of the nonlocal
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interaction regime is explicitly encoded into the geometry of the new expanded solution
superspaceM itself. Characterizing this geometry is then possible through a suitable
discrete approximation of the interior microtopological content of the superspace
(fiber bundle) structure itself; i.e., not just at the “exterior” parts often found in the
boundary conditions of classical local field continuum theories, but also “going inside”
the problem space as such.

3. It is also possible that such numerical methods may emerge as more computationally
efficient and broader in applicability than the conventional methods rooted in local
electromagnetism. One reason for this is that the Banach vector bundle formulation
introduced in this paper is quite natural and appears to reflect the underlying physics
of nonlocal metamaterials in a direct manner. From our general experience in nu-
merical methods, “natural operations” tend to translate into numerical methods with
better convergence, sensitivity, and robustness.

As directly related to the three possible advantages of the superspace formalism discussed
above, we also add that in recent years the subject of computational topology has gained mo-
mentum, where some researchers are now building new numerical methods by exploiting
the topological structure of the problems under considerations, e.g., see [72,230]. The fiber
bundle superspace formalism of this paper might provide a way to link research done in
electromagnetic and non-electromagnetic nonlocal materials with such advances in the
computational and applied mathematical sciences.

Appendix A.11.3. Topological Photonics

One of the main applications of the proposed vector bundle formalism is that it
opens the door for a new way to investigate the topological structure of materials. It has
already been noted that the nonlocal EM response is essential in topological photonics,
e.g., see [11,161] and also Appendix A.1. Indeed, since in topological photonics the wave
function of bosons, usually the Bloch state, is examined over the entirety of momentum
space (usually the Brillouin zone), then it is the dependence of the EM response on k what
is at stake, which naturally brings in nonlocal issues. But now since by using our theory we
can associate with every nonlocal material a concrete fiber bundle superspace reflecting
the rich information about the multiscale topological microdomain structure and the
global shape of the material plus the impact of the boundaries separating various material
domains, it is natural to examine whether a topological classification of the corresponding
fiber bundles may lead to a new way to characterize the topology of materials other than the
Chern invariants used extensively in literature. The advantage of the superspace approach
in this case is that the complicated topological and geometrical aspects of the boundaries
and inhomogeneity in nonlocal media can be encoded very efficiently in the local structure
of the material fiber bundle. Using standard techniques in differential topology [62], it
should be possible to propagate this local information to the global domain (the entirety
of the system), for example by computing suitable fiber bundle topological invariants like
its homology groups [70]. Our approach is then a “dual” to the standard approach since
we work on an enlarged configuration space (spacetime or space–frequency), while the
mainstream approach operates in the momentum space of the wave function.

Notes

1 The author would like to thank one of the anonymous reviewers for suggesting this connection.
2 This is argued in detail in [32]. In particular, the recently-introduced current Green’s function of electromagnetic devices was

inspired by finding a Green’s function structure similar to that corresponding to nonlocal media [33–36].
3 See Appendixes A.1 and A.2 for the literature review.
4 For a brief discussion of some possible engineering applications of metamaterials, see Section A.3.
5 Cf. Section 3.3.
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6 If D asymptotically grows into an unbounded region, then the problem reduces to that of homogeneous unbounded domain
(bulk media), well treated in the basic literature on spatial dispersion. Clearly, in this paper, we are not interested in such a
topologically trivial problem.

7 Cf. Remark 3.
8 This is well known from the quantum theory of nonlocality [16,38,50], but concrete examples illustrating this behavior will be

given in Section 7.
9 This compactness of the response kernel’s support cannot be proved in general, but is very plausible on physical grounds

(causality considerations). Therefore, we posit such compactness as an axiomatic feature of all physically-realizable causal
nonlocal continuum field theories. However, see Appendix A.10.

10 For some possible definitions of matrix norms, see for example [60,61].
11 In this section and the one to follow, we do not worry much about the details of the electromagnetic model and for simplicity

assume that only one vector field F acts as excitation and one response field R is induced. More complex media like bi-anisotropic
domains and others [67] may also be treated within this formulation. For example, if two response fields are needed, the codomain
in (33) can be simply changed to C6.

12 Cf. Remark 3.
13 See the discussion of nonlocal and topological metamaterials applications in Appendix A.3.
14 Cf. Appendix A.1.
15 See [59,68] for the full technical definition of subordinated cover. A collection of subsets of a topological space is said to be locally

finite, if each point in the space has a neighborhood that intersects only finitely many of the sets in the collection. What we need
here is that there exists some i and r such that Ui is inside Vr, i.e., Ui ⊆ Vr where r ∈ Ui.

16 The function space Cp is comprised of the set of real functions that are continuously differentiable p-times [62,69].
17 See Section 7 for one possible method and examples.
18 Cf. Remark 3.
19 The discretization of the nonlocal MTM bundle homomorphism itself is outside the scope of the present work and will be

addressed elsewhere.
20 On the technical difference between local and global topological isomorphisms, especially in differential topology, see [62,73,74].
21 For instance, by introducing holes into a simply-connected domain in order to make the latter disconnected.
22 The numerical value of α may be different for transverse and longitudinal excitation fields.
23 In the effective-mass approximation, a simple way to estimate the exciton mass m�

e is via the relation m�
e = mel + mh, i.e., the sum

of the effective electron and hole masses introduced in Appendix A.7. However, it must be noted that this relation is far from
being universal, e.g., it should be modified when there are strong interactions [81,82]

24 In typical crystal materials, the ratio ωL,T/ωT is already about 10−3 [16,55].
25 It should be noted that there is no loss of generality here. The computational model to be presented shortly allows the estimation

of the nonlocal microdomain topology based on a generic model of the form (90). If εL and εT are not identical, then the same
procedure can be applied to each one of them separately.

26 There is a nice parallelism here with temporal dispersion where the latter is known to arise from the inertial effects of electrons in
interaction with radiation fields [37].

27 This is more obvious in FEM or FDTD than MoM.
28 Cf. Section 5.2.
29 Cf. Section 8.
30 Even for isotropic materials, the response tensor K remains a tensor. This is due to the manner in which the equivalent dielectric

function is defined using the Fourier transform instead of the conventional multipole approach, e.g., see [16,32,37].
31 Cf. Section 8 and Appendix A.1.
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Abstract: Previously published analytical results for the effects of a high-frequency laser field on
hydrogen Rydberg atoms demonstrated that the unperturbed elliptical orbit of the Rydberg electron,
generally is engaged simultaneously in the precession of the orbital plane about the direction of
the laser field and in the precession within the orbital plane. These results were obtained while
disregarding relativistic effects. In the present paper, we analyze the relativistic effect for hydrogenic
Rydberg atoms or ions in a high-frequency linearly- or circularly-polarized laser field, the effect being
an additional precession of the electron orbit in its own plane. For the linearly-polarized laser field,
the general case, where the electron orbit is not perpendicular to the direction of the laser field, we
showed that the precession of the electron orbit within its plane can vanish at some critical polar
angle θc of the orbital plane. We calculated analytically the dependence of the critical angle on the
angular momentum of the electron and on the parameters of the laser field. Finally, for the particular
situation, where the electron orbit is perpendicular to the direction of the laser field, we demonstrated
that the relativistic precession and the precession due to the laser field occur in the opposite directions.
As a result, the combined effect of these two kinds of the precession is smaller than the absolute value
of each of them. We showed that by varying the ratio of the laser field strength F to the square of the
laser field frequency ω, one can control the precession frequency of the electron orbit and even make
the precession vanish, so that the elliptical orbit of the electron would become stationary. This is a
counterintuitive result.

Keywords: hydrogenic atoms; high-frequency laser field; relativistic precession; laser-controlled precession

1. Introduction

Analytical studies of effects of a high-frequency laser field on various Rydberg atoms
and ions—the studies using the method of separating rapid and slow subsystems—have
been presented in the literature: see, e.g., book [1] and references therein. In particular,
analytical results for hydrogen Rydberg atoms were presented in paper [2] for the case of
the linear polarization of the high-frequency laser field and in paper [3] for the cases of the
elliptical or circular polarization of the high-frequency laser field.

Specifically, in paper [2] it was shown that the unperturbed elliptical orbit of the
Rydberg electron, generally is engaged simultaneously in the precession of the orbital plane
about the direction of the laser field and in the precession within the orbital plane, the
corresponding precession frequencies being calculated analytically. In paper [2] it was also
pointed out that the situation has a celestial analogy: it is mathematically equivalent to the
motion of a satellite around an oblate planet (such as, e.g., the Earth), the results for the
latter system being presented, e.g., in book [4]. Later in paper [5] it was demonstrated that
there is also another celestial analogy: it is mathematically equivalent also to the motion of
a planet around a circular binary star.

As for paper [3], their authors showed that the case of the circular polarization of the
high-frequency laser field is mathematically equivalent to the motion of a satellite around a
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(fictitious) prolate planet, the results for the latter system being presented, e.g., in book [6].
The orbit of the electron in this case is also engaged simultaneously in the precession of the
orbital plane about the direction of the laser field and in the precession within the orbital
plane, the corresponding precession frequencies being calculated analytically [3].

The authors of paper [3] also obtained analytical results for the situation where the
high-frequency laser field is elliptically-polarized in the plane of the electron orbit. They
demonstrated that this situation is mathematically equivalent to a problem of celestial
mechanics, where a satellite moves in an equatorial orbit about a slightly non-spherical
planet. For this case the plane of the orbit does not change its orientation over the course of
time: the only precession that is the precession of the periapsis (and apoapsis) of the ellipse
in the orbital plane.

All of the above analytical results were obtained while disregarding relativistic effects.
In the present paper we study the role of the relativistic effect for hydrogenic Rydberg atoms
or ions in a high-frequency linearly- or circularly-polarized laser field, the effect being an
additional (relativistic) precession of the electron orbit in its own plane. For the linearly-
polarized laser field, in the general case, where the electron orbit is not perpendicular to the
direction of the laser field, there can exist a critical polar angle θc of the orbital plane, for
which the precession within the plane vanishes and only the precession of the orbital plane
remains. We study the dependence of the critical angle both on the angular momentum of
the electron and on the laser field parameters.

For the particular situation, where the electron orbit is perpendicular to the direction of
the linearly-polarized laser field, we show that the relativistic precession and the precession
due to the laser field occur in the opposite directions, so that their combined effect is smaller
than the absolute value of each of them. Moreover, we show the existence and calculate the
specific value of the laser field parameters, for which the two precessions cancel each other
out, so that the elliptical orbit of the electron becomes stationary. This is a counterintuitive result.

2. Analytical Calculations for the Linearly-Polarized Laser Field in the General Case

We study a hydrogen atom or a hydrogen-like ion of charge Z which is subjected to
a high-frequency linearly-polarized laser field of amplitude F, directed along the z-axis,
and frequency ω. The interaction of the laser field with Rydberg states can be described
classically. Relativistic effects are taken into account. The Hamiltonian of the system is therefore

H = H0 + zFcosωt, H0 =
√

p2c2 + m2c4 −mc2 − Ze2

r
(1)

where m is the electron mass, e is the elementary charge, p is the momentum of the electron,
r is the distance from the nucleus to the electron, and c is the speed of light. Atomic units
(m = e = h̄ = 1) are used throughout this study.

In the absence of the laser field, we approximate the time-independent part of the
Hamiltonian for the case p << mc:

H0 = c2

√
1 +

p2

c2 − c2 − Z
r
≈ p2

2
− p4

8c2 −
Z
r

(2)

From the non-relativistic Hamiltonian,

HNR =
p2

0
2
− Z

r
= E0 (3)

where p0 is the non-relativistic momentum of the electron and E0 is its energy, we express p0

p2
0 = 2

(
E0 +

Z
r

)
(4)
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and substitute it in the second term in Equation (2), thus obtaining the further approximation:

H0 ≈
p2

2
− Z

r

(
1 +

E0

c2

)
− Z2

2c2r2 −
E0

2c2 ≡ H1 −
Z2

2c2r2 −
E0

2c2 (5)

where H1 is the Hamiltonian of the system without the relativistic correction. Therefore,
the penultimate term in Equation (5) is the perturbing term due to the relativistic effects.
(The last term in Equation (5) is constant and thus does not affect the motion.) In book [7],
a relativistic treatment of the Kepler problem is presented. The effect of the relativistic
correction on the orbit dynamics is the precession of the orbit in its plane with the frequency
(scaled by the Kepler frequency ωK)

Ωc

ωK
=

1√
1− Z2

L2c2

− 1 ≈ Z2

2L2c2 (6)

where L is the angular momentum of the electron (this result follows from Equation (10) in
book [7]); we refer to the quantity (6) as the scaled relativistic precession. The precession is
positive, i.e., its angular velocity has the same sign as the angular velocity of the Kepler motion.

Now we consider the above-mentioned system without the relativistic correction
subjected to a linearly-polarized laser field of amplitude F and frequency ω which is
much greater than the highest frequency of the unperturbed system. For such systems,
it is appropriate to use the formalism of effective potentials [1,8–10]. As a result, the
Hamiltonian H1 in Equation (5) acquires a time-independent term. The zeroth-order
effective potential,

U0 =
1

4ω2 [V,[V, H1]] =
F2

4ω2 (7)

where V = zF and [P, Q] are the Poisson brackets, is a coordinate-independent energy shift,
so it does not affect the dynamics of the system. The first-order effective potential gives the
first non-vanishing effect on the system:

U1(r, θ) =
1

4ω4 [[V, H1], [[V, H1], H1]] = −
a
(

1 + E0
c2

)(
3 cos2 θ− 1

)
r3 ≈ − a

(
3 cos2 θ− 1

)
r3

(8)
where a = ZF2/(4ω4); as E0 << c2, we can neglect the term E0/c2 in (8). The first term of
U1 is a perturbation of the Coulomb potential which makes the system mathematically
equivalent to a satellite rotating around the oblate Earth [4], whose motion has the following
property: the unperturbed elliptic orbit undergoes simultaneously two precessions, one of
them being the precession of the orbit in its plane, and the other being the precession of
the orbital plane about the vector F. Both precession frequencies are of the same order of
magnitude and are much smaller than the Kepler frequency.

Without the relativistic correction, the first-order effective potential given in Equation (8)
gives rise to two simultaneous effects on the Kepler orbit, as mentioned above. By using
Equations (1.7.10) and (1.7.11) from book [4], we obtain the scaled frequencies of the preces-
sion of the orbit in its plane (“pip” stands for “precession in plane”) and the precession of
the plane about the direction of the laser field (“pop” stands for “precession of plane”):

Ωpip

ωK
=

3aZ
2L4

(
1− 5 sin2 θ

)
(9)

Ωpop

ωK
=

3aZ
L4 sin θ (10)

where θ is the angle between the orbital plane and the laser field. The precession of
the orbital plane is realized by the plane’s rotation around the vector F, while its an-
gle with the vector stays the same. For the case considered in the previous section,
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θ = π/2, the orbit plane precesses parallel to itself, therefore, the angular velocities from
Equations (9) and (10) are both parallel to the laser field.

When the relativistic precession is taken into account, it creates an additional term
for the precession in the plane. Thus, the plane of the orbit of the electron in this case
undergoes the precession given by (10), while the orbit precesses in its own plane with the
scaled frequency

Ωpip

ωK
+

Ωc

ωK
=

3aZ
2L4

(
1− 5 sin2 θ

)
+

Z2

2L2c2 (11)

Without the relativistic effects, the critical angle θc at which there is no precession in
the plane is given by arcsin (1/51/2) ≈ 26.6◦. The relativistic effects increase the value of
this critical angle: its value is given by

θc = arcsin

√
1
5
+

4ω4L2

15F2c2 (12)

Figure 1 shows the value of the critical angle in degrees depending on the angular
momentum of the electron, for selected values of the laser field strength and frequency.

Figure 1. Dependence of the critical angle θc at which the precession in the orbital plane vanishes,
on the angular momentum of the electron, for the laser field amplitude F = 2 (solid line) and F = 5
(dashed line) and the frequency ω = 10.

From Equation (12), we see that the situation when the precession in the orbital plane
vanishes is possible when

L <
F
ω2 c
√

3 (13)

i.e., the relativistic correction puts an upper limit on the value of the angular momentum of
the electron when the vanishing of the precession in the orbital plane is possible, for the
given values of the laser field strength and frequency. For example, when

ω >

√
Fc
√

3 (14)

the precession in the orbital plane never vanishes for any L ≥ 1; for example, if F = 2, then
for the laser field frequency ω > 21.8 the precession in the plane never vanishes for any L ≥ 1.
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3. The Case of the Electron Angular Momentum Collinear with the Linearly-Polarized
Laser Field

Now we consider the situation when the angular momentum of the electron is collinear
to the laser field, i.e., θ = π/2. In this case, the perturbation takes the following form:

U1(r) =
a
r3 (15)

The calculation of the 1/rn-perturbation for the Kepler orbit can be found in work [11]
(the treatment for the cases n = 2 and n = 3 can be found also in the textbook [12]). For the
Coulomb potential −α/r perturbed by the potential β/rk, the orbit undergoes a precession
with the perihelion advance

δΦ = 2mβ
∂

∂L

⎛⎝ 1
L

p2−k
π∫

0

(1 + ε cosϕ)k−2dϕ

⎞⎠ (16)

with the substituted quantities

p =
L2

mα
, ε =

√
1 +

2E0L2

mα2 (17)

the first of which is the semi-latus rectum of the unperturbed elliptical orbit and the second
is its eccentricity. The ratio of the precession frequency due to the perturbation to the Kepler
frequency given by Equation (16) is therefore

Ω1

ωK
= −3aZ

L4 = − 3Z2F2

4L4ω4 (18)

to which we refer as scaled high-frequency precession. The precession caused by the
high-frequency laser field is negative (its angular velocity is of the opposite sign to that of
the Kepler motion). The ratio of the magnitudes of the precessions is

Ωc

Ω1
=

2L2ω4

3c2F2 (19)

For example, for the values of the laser field amplitude F = 2 and frequency ω = 10,
the ratio in Equation (19) is of the order of unity for L being in the approximate range
between 3 and 6. Due to their opposite directions, the combined effect of the relativistic
and high-frequency precessions is always less by absolute value than the greater precession
by absolute value, and the two effects may cancel each other.

We note that the ratio of the frequencies in Equation (19) does not depend on the
nuclear charge Z. However, if in the expansion in Equation (6) we would add higher order
terms, then the ratio in Equation (19) would become weakly dependent on Z.

Figure 2 shows the dependence of the value of both corrections and of the combined
effect of the two on the value of the angular momentum L of the electron for the nuclear
charge Z = 6, the laser field amplitude F = 2 and frequency ω = 10.

The high-frequency laser field cancels the relativistic effect when

F
ω2 =

√
2
3

L
c

(20)

For example, for L = 3, the laser field with F = 2 and ω = 10.5778 will make the orbit’s
precession vanish. Figure 3 shows the critical value of the frequency of the laser field of
selected amplitudes at which the precession of the electron orbit vanishes, depending on the
angular momentum of the electron. As we see, the critical value of the laser field frequency
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stays much greater than the Kepler frequency of the electron 1/L3 and is therefore within
the validity range of the method of effective potentials.

Figure 2. The scaled relativistic precession (dashed line), the absolute value of the scaled negative
high-frequency precession (dotted line), and their combined effect (solid line) for Z = 6, F = 2 and ω = 10.

Figure 3. Dependence of the critical value of the laser field frequency, at which the precession of the
electronic orbit vanishes, on the angular momentum of the electron, for the laser field amplitude
F = 2 (solid line) and F = 5 (dashed line).

Thus, by varying the ratio of the laser field strength F to the square of the laser field
frequency ω, one can control the precession frequency of the electron orbit and even make
the precession vanish (according to Equation (20)), so that the elliptical orbit of the electron
would become stationary. This is a counterintuitive result.

In general, any precession at some frequency Ω manifests in the radiation spectrum
of a hydrogenic atom/ion as satellites separated from the unperturbed frequency of the
spectral line by multiples of the precession frequency. Thus, the above situation where the
elliptical orbit of the electron becomes stationary would manifest in the radiation spectrum
as the disappearance of the satellites.

4. Analytical Calculations for the Circularly-Polarized Laser Field

In this section, we consider the case of circular polarization of the laser field. In this
case, the field of amplitude F and frequency ω is perpendicular to the z-axis and varies as

F = F
(
excosωt + eysinωt

)
(21)
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where ex and ey are the Cartesian unit vectors. For our system, the relativistic correction
stays the same as described in Section 2, while the effective potential due to the laser field
is different. In this case, the Hamiltonian without the relativistic correction is

H0 = H1 + xFcosωt + yFsinωt (22)

where H1 is the Hamiltonian of the system without the relativistic correction. We denote

V = xF = Frsin θ cosϕ, W = yF = Frsin θ sinϕ (23)

where (r, θ, ϕ) are the spherical coordinates. We apply the method of effective potentials [8–10]
and obtain the zeroth-order effective potential

U0 =
1

4ω2 ([V,[V, H1]] + [W,[W, H1]]) =
F2

2ω2 (24)

which, as in the linear-polarization case, is a coordinate-independent energy shift, so it
does not affect the dynamics of the system, and the first-order effective potential

U1 = 1
4ω4 ([[V, H0], [[V, H0], H0]] + [[W, H0], [[W, H0], H0]])+

+ −1
2ω3 [[V, H0], [W, H0]] =

a(3 cos2 θ−1)
r3

(25)

which is the opposite of that in the linear-polarization case. Thus, the results for the
circular-polarization case can be obtained by effectively replacing a with −a in the linear-
polarization case. In particular, in the case of the angular momentum collinear with the
laser field, the precession due to the circularly-polarized laser field is positive, the same as
the precession due to the relativistic correction, so these two effects cannot cancel each other.
The ratio of the magnitudes of these two precessions is the same as in Equation (13) for the
linear-polarization case. In the general case of the orientation of the angular momentum
with respect to the direction of the laser field, the precession of the orbit in its plane and
the precession of the orbit plane both have the direction opposite to that in the linear-
polarization case and are expressed by Equations (15) and (16) multiplied by −1.

The precession in the orbital plane vanishes when the critical angle is

θc = arcsin

√
1
5
− 4ω4L2

15F2c2 (26)

Figure 4 shows the dependence of the critical angle corresponding to zero precession
on the angular momentum of the electron, for the cases of F = 2 and F = 5 and ω = 10.

Figure 4. Dependence of the critical angle θc in degrees at which the precession in the orbital plane
vanishes in the circular-polarization case, on the angular momentum of the electron, for the laser field
amplitude F = 2 (solid line) and F = 5 (dashed line) and the frequency ω = 10.
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We see that the range of possible angles is more narrow than in the linear-polarization
case, being 0 ≤ θ ≤ arcsin(1/51/2), with the possibility of zero precession at polar orbits
(θ = 0) when

L =
F
ω2 c
√

3
2

(27)

So the upper limit of the angular momentum is twice as small as in the linear-
polarization case (19).

5. Conclusions

We analyzed the relativistic effect for hydrogenic Rydberg atoms or ions in a high-
frequency linearly- or circularly-polarized laser field. For the general case, where the
electron orbit is not perpendicular to the direction of the laser field, we showed that the
precession of the electron orbit within its plane can vanish at some critical polar angle θc
of the orbital plane. We calculated analytically the dependence of the critical angle on the
angular momentum of the electron and on the parameters of the laser field.

For the particular situation, where the electron angular momentum is collinear with
the linearly-polarized laser field, we demonstrated that the relativistic precession and the
precession due to the laser field occur in the opposite directions. As a result, the combined
effect of these two kinds of the precession is smaller than the absolute value of each of
them. We showed that, by varying the ratio of the laser field strength F to the square of the
laser field frequency ω, one can control the precession frequency of the electron orbit and
even make the precession vanish, so that the elliptical orbit of the electron would become
stationary. This is a counterintuitive result.

In general, any precession at some frequency Ω manifests in the radiation spectrum
of a hydrogenic atom/ion as satellites separated from the unperturbed frequency of the
spectral line by multiples of the precession frequency. So, the above situation where the
elliptical orbit of the electron becomes stationary would manifest in the radiation spectrum
as the disappearance of the satellites.

We hope that the fundamental nature of our analytical results for the hydrogenic
atoms/ions, i.e., for atomic systems serving as the test bench of our understanding of
atomic physics, makes the results significant.
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Abstract: The effect of atomic and molecular microfield dynamics on spectral line shapes is under
consideration. This problem is treated in the framework of the Frequency Fluctuation Model (FFM).
For the first time, the FFM is tested for the broadening of a spectral line by neutral particles. The
usage of the FFM allows one to derive simple analytical expressions and perform fast calculations
of the intensity profile. The obtained results are compared with Chen and Takeo’s theory (CT),
which is in good agreement with experimental data. It is demonstrated that, for moderate values of
temperature and density, the FFM successfully describes the effect of the microfield dynamics on a
spectral line shape.

Keywords: spectroscopy; stark broadening; atomic physics

1. Introduction

The problem of the microfield dynamics effect on a spectral line shape was recognized
many years ago [1–3]. There are different methods which were developed to solve this
problem [4–6]. However, the best agreement with the results of Molecular Dynamics (MD)
simulations provides the Frequency Fluctuation Model (FFM) [7]. It is based on dividing
a spectral line contour in a static field into separate regions, between which there is an
exchange of intensities due to thermal motion. This model is widely used for spectral line
shape calculations in plasmas (see, e.g., [8–13]). It was shown that the FFM is equivalent
to the method of the quantum kinetic Equation [14]. This approach makes it possible to
reformulate the FFM in terms of analytical expressions. Namely, the FFM spectral line
shape can be considered as the functional of the static profile. This circumstance allows
one to use simple analytical expressions and perform fast calculations of a spectral line
shape for arbitrary values of temperatures and densities.

The FFM was formulated for spectral line shape calculations in plasmas. It was never
used for the Stark broadening by neutral particles—to the best of our knowledge. Most
of the material on the van der Waals broadening accumulated by the end of the 1960s is
presented in the famous review of S. Chen and M. Takeo [15]. Moreover, in this paper, the
authors present the line shape calculation method (based on the work of P.W. Anderson and
J.D. Talman [16]) for arbitrary values of temperatures and densities. The Chen and Takeo
results (CT) are very old. Nevertheless, they are in good agreement with experimental
data and can be used for the examination of the FFM theory. Moreover, the analytical
expressions for the line shape presented in [15] are very cumbersome. The direct use
of the CT theory in numerical calculations requires significant computational resources.
Therefore, the FFM may provide simple analytical expressions for the description of the
van der Waals broadening.

The FFM has a drawback. It does not reproduce the impact width correctly. This
circumstance was noted in the original paper [7]. Furthermore, it was directly shown
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in [12,17]. However, this problem was solved for the linear Stark effect. The resolution
consists of the dependence of the jumping frequency, which characterizes the rate of
change of the microfield on the energy shift. This dependence is obtained by comparing the
analytical calculations with MD in the paper [12]. The authors of the work [17] overcame
this problem in the alternative way. They used the asymptotic expression of the jumping
frequency obtained by S. Chandrasekhar and J. von Neumann [18], who derived this for
the description of the stellar dynamics.

The detailed analysis of the FFM results for different plasma parameters is presented
in the paper [17]. It is demonstrated that the accounting for the dependence of the jumping
frequency on the energy shift leads to the correct behaviour of the spectral line width
in the impact limit for the linear Stark effect. The difference between the modified and
the original versions of the FFM for moderate values of temperatures and densities is
insignificant. Therefore, accounting for the jumping frequency dependence on the field
strength yields the simple analytical theory which provides the correct results for a wide
range of plasma parameters. The situation is more complicated for the quadratic Stark
effect. In this case, the problem of reproducing the impact width is not solved in this way.
However, for realistic plasma parameters, the FFM with the constant jumping frequency
provides quite satisfactory results.

Usually, the van der Waals broadening can be described in terms of the impact approx-
imation [19]. Furthermore, there are modern works related to the spectral line broadening
by neutral atoms and molecules (see, e.g., [20,21]). Therefore, the main goal of the present
paper is the examination of the FFM for the van der Waals interaction. The second aim of
this work is to provide the simple analytical algorithm for the line shape calculations for
low temperatures (less that 300 K) or high densities.

2. Description of the Method

In the present paper, we focused on the spectral broadening by neutral atoms and
molecules. The detailed description of the analytical FFM formulation and the discussion
of the dynamics effect on the spectral line formation are given in [17]. For convenience, an
abridged version was presented below.

The effect of a multiparticle electric field on molecular and atomic spectra is character-
ized by the ratio of the jumping frequency and the Stark shift:

ν =
ΩJ

Ωn
S

, (1)

where
ΩJ = N1/3vT , (2)

Ωn
S = CS

n N
n
3 . (3)

Here, N and vT are, respectively, the density and the thermal velocity of interacting
particles; CS

n is the constant of the Stark effect; ΩJ is called the jumping frequency. The
potential of binary interacting particles has the following form:

V(r) =
CS

n
Rn . (4)

In the present paper we considered the case of n = 6, which corresponds to a wide
class of van der Waals interactions. The interaction between atoms and molecules often
defers from (4). However, we focused on the examination of the FFM by the comparison
with CT results, which were obtained for the potential (4).
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The transition from binary to non-binary type of interactions is often characterized by
the number of particles is the Weisskopf sphere h. For n = 6 in Expression (4), it equals
to [19]

h =

(
3π

8
CS

6
vT

)3/5

N. (5)

Parameter (5) also determines the transition from the static theory to the impact limit.
The number of particles in the Weisskopf sphere is connected with ν by the simple relation

h ∼ ν−3/5. (6)

Using the results from [19], we could estimate the parameter ν. For T ≈ 300− 5000 K,
ν approximately equals to:

ν ≈ (1035 − 1038)N−5/3, (7)

where N is expressed in cm−3.
All over the paper, atomic units were used (e = m = h̄ = 1, where: e—the elementary

charge; m—the mass of an electron; h̄ is the Planck constant). Furthermore, for the sake of
simplicity, we used the reduced detuning: z = Δω/Ωn

S.
The FFM procedure is equivalent to the method of the kinetic equation with strong-

collision integral, which describes an intensity exchange between different regions of a
static profile [14]. The frequency of the exchange equals to ν. The solution of this equation
led to the following expression for the resulting profile:

I(z) =
1
π

Re

∫ W(z′)dz′

ν + i(z− z′)

1− ν
∫ W(z′)dz′

ν + i(z− z′)

, (8)

where W(z) is the normalized static profile. Note, that when ν→ 0, I(z) turns into W(z).
The Formula (8) can be rewritten in more convenient form:

I(z) =
ν

π

J0(z)J2(z)− J2
1 (z))

J2
2 (z) + ν2 J2

1 (z)
, (9)

where

Jk(z) =
+∞∫
−∞

W(z′)(z− z′)kdz′

ν2 + (z− z′)2 , (10)

There is a useful relation between the functions J0(z) and J2(z):

J2(z) = 1− ν2 J0(z). (11)

S. Chen and M. Takeo presented the analytical expression for the intensity profile for
an arbitrary value of ν for the van der Waals broadening [15]:

I(CT)(z) = C · Re
{ ∞∫
−∞

exp
[

izτ − 1
ν3/5 ψ

(
ν6/5τ

)]
dτ

}
, (12)

where

C =

[ +∞∫
−∞

Re
{ ∞∫
−∞

exp
[

izτ − 1
ν3/5 ψ

(
ν6/5τ

)]
dτ

}
dz

]−1

.
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The function ψ(x) can be approximated by the simple functions:⎧⎪⎪⎨⎪⎪⎩
ψ(x  1) =

(2π)3/2

3
√

x(1− i),

ψ(x ! 1) =
2π

5

(
3π

8

)−3/5

Γ
(

2
5

)(
cos

π

5
− i sin

π

5

)
x + 1.91 + 2.63i,

(13)

where Γ(z) is the gamma function.
Expression (12) turned into the static profile W(z) when ν approached zero. In order

to derive W(z), it was necessary to use the approximation for ψ(x) for small values of x.
Using the first relation of (13) and the stationary phase approximation, one obtains

the following formula for the static profile:

W(z) =

⎧⎪⎨⎪⎩
0, z ≥ 0

2π

3|z|3/2 exp
[

4π3

9z

]
, z < 0

(14)

Result (14) is in agreement with the well-known formula derived by H. Margenau [22].
The examination of the FFM consisted of the comparison of the CT Formula (12) with

Expression (9). In the integrand of (10), we substituted the static profile (14). In the impact
limit (ν! 1), we could perform a simple estimation of the impact width. Namely, for large
values of ν, the spectral line shape turned into the Lorentzian:

L(z) =
1
π

γ

γ2 + (z− z0)2 , (15)

where γ is the width of the profile and z0 is the coordinate of the centre of the Lorentz profile.
Note, that the CT theory reproduced the impact limit. Indeed, the usage of the

second relation from (13) led to Expression (15).
In order to estimate the impact width for the FFM, we used the following property of

a wide class of normalized profiles:

F(0) ∼ 1
γ

. (16)

Relation (16) was valid here, because in the impact limit, γ and z0 always have the
same dependence on ν (see, e.g., [19]). Therefore, it was obvious that Property (16) worked
for the Lorentz profile (15). Using the asymptotic behaviour of Formula (14), we could
estimate Jk(0):

J0(0) ∼
1
ν2 ,

J1(0) ∼
+∞∫
ν

dz′
1

z′1/2(z′2 + ν2)
∼ 1

ν3/2 ,

J2(0) ∼
+∞∫
ν

dz′
z′1/2

z′2 + ν2 ∼
1

ν1/2 ,

I(0) ∼ 1
ν1/2 . (17)

From Relations (16) and (17), it was easy to see that γ = γFFM ∼ ν1/2. Thus, the
FFM did not reproduce the behaviour of the profile width in the impact limit. Indeed,
it was the well-know result of the impact theory [19], which was γ = 8.16ν3/5. The
difference in the dependence of the impact width on the power of velocity was very small
γimpact/γFFM ∼ ν1/10.
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3. The Results of Numerical Calculations

In order to test the FFM procedure, we compared it with the CT results. The numerical
calculations showed that, for ν ∼ 1, the FFM was in good agreement with CT. The example
of it is demonstrated in Figure 1, where one can see the comparison of two theories for
ν = 1.5. However, the FFM did not reproduce the impact width correctly (Figure 2) as
it was shown in the previous section by the analytical estimations. The comparison of
the CT theory (in the impact limit) with the FFM profile is presented in Figure 2. The
full width at half maximum of the FFM profile was approximately 1.5 as large as the
impact width for ν = 100. With an increase in the parameter ν, the FFM profile slowly
became wider than the impact line shape. This circumstance was connected with the slow
growth of the ratio: γimpact/γFFM ∼ ν1/10. Moreover, we only knew how γFFM depended
on ν. Uncertainty in the value of the prefactor played an important role in the impact
width determination. However, the derivation of the certain value of the FFM impact
width prefactor by analytical calculations is a complex problem. It might be determined
numerically as in the work of [17], but it is not reasonable to do so until the dependence
of the jumping frequency on the detuning is determined. The discrepancy between two
graphs became insignificant for ν ∼ 1000 (Figure 3). According to Estimation (7), this value
of ν for T = 300–5000 K corresponded to N = 1019–1021 cm−3.

The discrepancy in the impact limit might have most likely been eliminated by ac-
counting for the dependence of the jumping frequency on the detuning. It was shown that,
for the linear Stark effect, it led to the correct result for large values of ν [17]. However, in
order to determine this dependence, it was necessary to describe complicated dynamics of
the van der Waals forces.

Figure 1. The normalized intensity profile of one spectral component as the function of the reduced
energy shift. Comparison of the FFM profile with the Chen and Takeo theory; ν = 1.5.
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Figure 2. The normalized intensity profile of one spectral component as the function of the reduced
energy shift. Comparison of the FFM profile with the impact theory; ν = 100.

Figure 3. The normalized intensity profile of one spectral component as the function of the reduced
energy shift. Comparison of the FFM profile with the impact theory; ν = 1200.

4. Conclusions

The construction of the general analytical theory, which described the effect of the
complicated microfield dynamics on the spectral line shape formation, faced the greatest
difficulties. The Frequency Fluctuation Model is believed to be the most accurate and
simplest method for account such effects. Therefore, it was necessary to examine this
theory for different types of interactions. In the present paper, we tested the FFM for the
van der Waals forces.

The FFM showed good results for moderate values of temperature and density. In the
case of broadening by neutral atoms, it was no exception. The results of the FFM procedure
were in agreement with the CT theory (Figure 1).
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The FFM did not reproduce the impact width correctly (Figure 2). As it was shown
in [17], for the linear Stark effect, this problem could be solved by accounting for the
dependence of the jumping frequency on the field strength. Apparently, the resolution
of the problem of the broadening by neutral particles consisted of the description of the
complicated dynamics of the van der Waals field.
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a Parallel Universe
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Abstract: Many totally different kinds of astrophysical observations demonstrated that, in our
universe, there exists a preferred direction. Specifically, from observations in a wide range of
frequencies, the alignment of various preferred directions in different data sets was found. Moreover,
the observed Cosmic Microwave Background (CMB) quadrupole, CMB octopole, radio and optical
polarizations from distant sources also indicate the same preferred direction. While this hints at
a gravitational pull from the “outside”, the observational data from the Plank satellite showed that
the bulk flow velocity was relatively small: much smaller than was initially thought. In the present
paper we propose a configuration where two three-dimensional universes (one of which is ours)
are embedded in a four-dimensional space and rotate about their barycenter in such a way that the
centrifugal force nearly (but not exactly) compensates their mutual gravitational pull. This would
explain not only the existence of a preferred direction for each of the three-dimensional universes (the
direction to the other universe), but also the fact that the bulk flow velocity, observed in our universe,
is relatively small. We point out that this configuration could also explain the perplexing features of
the Unidentified Aerial Phenomena (UAP), previously called Unidentified Flying Objects (UFOs),
recorded by various detection systems—the features presented in the latest official report by the US
Office of the Director of National Intelligence. Thus, the proposed configuration of the two rotating,
parallel three-dimensional universes seems to explain both the variety of astrophysical observations
and (perhaps) the observed features of the UAP.

Keywords: parallel universes; multiverse; preferred direction in the universe; bulk flow;
four spatial dimensions

1. Introduction

The hypothesis for the existence of a parallel universe or universes (in the latter
case called multiverses) has proponents and opponents among astrophysicists, e.g., see
works [1–6] and references therein. The primary argument against this hypothesis was
the lack of the observational evidence. In response, the proponents theorized (at different
times) that the following two kinds of observations might constitute such evidence.

One theory was based on an early observation of “bulk flow” (i.e., a stream of galaxy
clusters moving in the same direction), where the bulk flow velocity was found to be
>4000 km/s [7]. These observations could be interpreted as evidence for the existence of
a parallel universe. However, later, more precise observations (from the Plank satellite)
revealed that the average clusters’ velocities are “compatible with zero”, being at the level
of 120–160 km/s [8]. The authors of paper [8] wrote that this “constitutes an unprecedented
and valuable confirmation of a prediction of the standard cosmological scenario”; therefore,
this proposed evidence for the existence of a parallel universe should be discarded.

Another theory was that the observed cold spot in the Cosmic Microwave Background
(CMB) radiation (nestled in the constellation Eridanus) is the remnant of a collision between
our universe and another “bubble” universe during an early inflationary phase, e.g., see
review [9] and references therein. Another hypothesis [10] was that the cold spot could
be the imprint of another universe beyond our own, caused by quantum entanglement
between universes before they are separated by cosmic inflation. However, a more thorough
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analysis of data from the WMAP (Wilkinson Microwave Anisotropy Probe) and from the
Plank satellite, which has a resolution three times higher than WMAP, did not reveal any
statistically significant evidence for such a bubble universe collision [11–13].

In the present paper we show that the existing observations, astrophysical or otherwise,
might actually constitute proof for the existence of a parallel universe.

2. Possible Observational Evidence

Many totally different kinds of astrophysical observations demonstrated that, in our
universe, there exists a preferred direction (called the “axis of evil” in paper [14]; see the
review [15] and references therein). In particular, the author of the review [15] wrote:

“A very curious feature of SI [Statistical Isotropy] violations is the alignment of
various preferred directions in different data sets. Several observations at wide range of
frequencies suggest a preferred direction pointing roughly towards the Virgo supercluster,
which is close to the direction of the observed CMB dipole. . . . Furthermore, the observed
CMB quadrupole, CMB octopole, radio and optical polarizations from distant sources
also indicate a preferred direction pointing roughly towards Virgo. . . . Statistical isotropy
would imply that these are independent of one another as well of other multipoles, such as
the dipole. However the preferred axis of both these multipoles points approximately in
the direction of the CMB dipole. . . . This is rather surprising!”

It should be noted that the CMB dipole can be interpreted as the peculiar motion of
the Earth toward the CMB. However, the CMB quadrupole and CMB octupole cannot be
interpreted in this way.

Thus, the existence of the preferred direction (or axis) in our universe is undisputable.
This hints at a gravitational pull from the “outside”. However, the observational data
from the Plank satellite showed (according to paper [8]) that the bulk flow velocity was
no more than 160 km/s, i.e., much smaller than the previous observational result of
>4000 km/s, and thus the actual gravitational pull from the outside was much smaller than
was initially thought.

There is a possible way to reconcile the undisputable existence for the preferred
direction of our universe with the relative smallness of the gravitational pull from the
outside. Let us consider two three-dimensional universes (one of which is ours) embedded
in a four-dimensional space. (By this, we mean only spatial dimensions.) The two universes
rotate about their barycenter in such a way that the centrifugal force nearly (though not
exactly) compensates their mutual gravitational pull. In this configuration, within each of
the three-dimensional universes, there would be a preferred direction: the direction to the
other universe. Additionally, in this configuration, the bulk flow velocity (in each of the
universes) would be relatively small because the centrifugal force nearly compensates the
gravitational force.

This scenario seems to offer a possible explanation for the above astrophysical obser-
vations; therefore, it seems to be self-sufficient. Nevertheless, it should be mentioned that
there could also be non-astrophysical evidence for this scenario, as presented below.

Paper [16] focused on the following three perplexing features of Unidentified Aerial
Phenomena (UAP), previously called Unidentified Flying Objects (UFOs), from the latest
official report by the US Office of the Director of National Intelligence [17], where, out
of 144 relatively resent observations of UAP by the US military recorded by various
detection systems, 143 remained unexplained. First, some UAP demonstrated accelerations
(measured by detection systems) of about 700 g. Humans, even those who are astronauts,
can stand the acceleration of no more than about 10 g. Second, UAP can both appear
suddenly and disappear suddenly (almost instantaneously), which is impossible for man-
made objects. Third, these observed UAP were capable of traveling back and forth in air
and water, without any significant change of the dynamics, which is also impossible for
man-made objects.

For a more visual presentation of that author’s main idea, one of his papers [16] first
discussed the following. If an experimentalist shone a laser beam on a distant surface
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(e.g., on the surface of the Moon) and rotate the laser with some angular velocity, the bright
spot can travel across the distant surface with a very large linear velocity, even exceeding
the speed of light. (No physical law would be violated because it is the information that
cannot be transmitted faster than the speed of light, while the bright spot cannot transmit
any information from one place on the surface to another.)

If the experimentalist sharply changed the direction of the motion of the laser, the
bright spot on a distant surface would exhibit an extremely sharp turn. If a hypothet-
ical, two-dimensional observer residing on this surface calculated the “acceleration” of
this “object” during the extremely sharp turn, the observer would achieve a very large
value for this “acceleration”, a number far exceeding the technological capabilities of the
observer’s community.

If the experimentalist (on the Earth) initially shone the laser beam parallel to a dis-
tant surface, and then abruptly changed the direction of the beam to hit the surface, the
two-dimensional observer on this surface would register a sudden appearance of the bright
spot. If later on, the experimentalist abruptly changed the direction of the laser beam to be
parallel to the surface, that observer would register a sudden disappearance of the bright
spot. In both cases, the observer would qualify this as being beyond the technological
capabilities of the observer’s community.

Further, let us picture that on that surface there are dry regions (the “air”) and wet
regions (the “water”). The bright spot can move through the “air”, then through the “water”,
then again through the “air”, without any change in its velocity (the velocity controlled
by the motion of the laser in the third dimension). The two-dimensional observer on
that surface would again qualify this as being beyond the technological capabilities of the
observer’s community.

At this point in paper [16], the following was written.
“Now let us add an extra spatial dimension both to the “surface” and to the space,

from which the light is shined. Now the “surface” becomes our three-dimensional world,
into which the light is incoming from the fourth spatial dimension. In our world we see
a three-dimensional “bright spot”. This “bright spot” is the projection of the light coming
from the four-dimensional world on the three-dimensional “screen”, the “screen” being
our three-dimensional world.”

Clearly, in this situation, all of the above three perplexing features of the three-
dimensional “bright spot” would be observed and registered by detection systems, with
features that are far beyond our technological capabilities, and we would consider such
three-dimensional “bright spots” to be UAP. In other words, there is an explanation for all
three perplexing features of the observed UAP; they are the three-dimensional projections
of the light entering our world from the fourth dimension. In paper [16] the following
was written:

“By varying the intensity distribution of the cross-section of the light beam at the
source (for example, by using various filters), it would be possible to create any shape and
form of the three-dimensional projection that we observe, including the shape of “flying
saucers” and so on. By varying color filters or their combinations, it would be possible to
make the three-dimensional projection of any color or their combinations.”

Further in paper [16], it was explained that the detailed information on the properties
of the electromagnetic radiation in four spatial dimensions was provided in paper [18].
According to paper [18], the only one difference of the electromagnetic wave in four spatial
dimensions, compared to the electromagnetic wave in three spatial dimensions, is that, in
the four-dimensional case, it is intertwined with a weak oscillatory gravitational field (the
gravitational field oscillates in the direction of the propagation of the electromagnetic wave).
As for the electric and magnetic components of the four-dimensional electromagnetic wave,
they are the same as the three-dimensional world.

In paper [16], it was emphasized that, as of now, no new physical laws has been
introduced: everything was based on the standard physics. Next in paper [16], the following
was written:
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“Next, it might seem that since the light is coming from the world of four spatial dimen-
sions, then the source of light should be controlled by four-dimensional intelligent creatures
(this would belong to realm of science fiction). However, this does not have to be the
case . . . the source of light could be located and controlled in a parallel three-dimensional
world by three-dimensional relatively advanced civilization that developed the capability
to manipulate the electromagnetic radiation in the way described above. By projecting the
light into our three-dimensional world and detecting the reflected light, they monitor our
technological capabilities.”

Then, in paper [16], the above scenario was compared to the only existing alternative
explanation for 143 unexplained UAP from the aforementioned official report—that the
unexplained UAP could be drones. The perplexing features of these drones hint to their
extra-terrestrial origins. There are three shortcomings of the drone hypothesis compared to
the scenario where the UAP are the three-dimensional projections.

First, since our astrophysicists have not yet detected any extraterrestrial civilization
located within hundreds of light years from the Earth, the advanced civilization controlling
the extra-terrestrial drones would receive the many hundreds years or even in thousands
years into the future. In contrast, in the scenario where the UAP are the three-dimensional
projections, the information carried by the reflected light, could reach the origin of the light
in just few years or less, since the parallel three-dimensional world could be just few light
years (or less) away from our three-dimensional world across the four-dimensional space.
Clearly, it would make much more sense to monitor our technological capabilities with
just a few years of delay, as opposed to monitoring them with the delay of hundreds or
thousand years.

Second, in the scenario where the observed UAP are extraterrestrial drones, the
extraterrestrial civilization would be extremely advanced; otherwise, it would not be able
to make spacecrafts that can withstand the acceleration of 700 g and can interchange the
motion in the air and under water without any significant change of the velocity. In contrast,
in the scenario of the UAP being the three-dimensional projections, it would be sufficient
for the other civilization to be only slightly advanced—just capable of manipulating the
electromagnetic radiation in the way described above.

Third, but most important: the scenario of extraterrestrial drones cannot explain the
sudden, almost instantaneous appearance of the UAP and the subsequent sudden, almost
instantaneous disappearance of the UAP. In contrast, in the scenario with the UAP being
the three-dimensional projections, this perplexing feature is easy to explain.

Thus, the configuration of two parallel, three-dimensional universes embedded in
a four-dimensional space (where they rotate about their barycenter) explains not only all
relevant astrophysical observation, but perhaps also the mind-boggling features of the
observed UAP (that have no consistent alternative explanation).

3. Conclusions

We started from the undisputable fact that, from various astrophysical observations
of very different kinds, our universe has a preferred direction in space. We proposed
a configuration where two three-dimensional universes (one of which is ours) are embedded
in a four-dimensional space and rotate about their barycenter in such a way that the
centrifugal force nearly (but not exactly) cancels out their mutual gravitational pull. This
would explain not only the existence of a preferred direction within each of the three-
dimensional universes (the direction to the other universe), but also the fact that the bulk
flow velocity, observed in our universe, is relatively small.

We pointed out that this configuration could also explain the perplexing features
of the UAP recorded by various detection systems—the features presented in the latest
official report by the US Office of the Director of National Intelligence. Thus, the proposed
configuration of the two rotating, parallel, three-dimensional universes seems to explain
both the variety of the astrophysical observation and (perhaps) the observed features of
the UAP.
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We mention that one of the interpretations of quantum mechanics suggests the ex-
istence of parallel universes. It is the many-world interpretation, proposed as early as
1957 [19].

The totality of the astrophysical observations should be emphasized—those proving
the existence of the preferred direction in our universe, as well as astrophysical observations
where a weak but non-zero bulk flow (i.e., the gravitational pull from the “outside”) was
measured. This seems by itself to be sufficient for making the proposed configuration
of the two rotating, parallel, three-dimensional universes viable. We hope that our work
stimulates a further discussion of these issues.
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Abstract: The “line-by-line” method is used for the evaluation of thermal emission of the standard
atmosphere toward the Earth. Accounting for thermodynamic equilibrium of the radiation field
with air molecules and considering the atmosphere as a weakly nonuniform layer, we reduce the
emission at a given frequency for this layer containing molecules of various types to that of a uniform
layer, which is characterized by a certain radiative temperature Tω , an optical thickness uω and an
opaque factor g(uω). Radiative parameters of molecules are taken from the HITRAN database, and
an altitude of cloud location is taken from the energetic balance of the Earth. Within the framework
of this model, we calculate the parameters of the greenhouse effect, including the partial radiative
fluxes due to different greenhouse components in the frequency range up to 2600 cm−1. In addition,
the derivations are determined from the radiative flux from the atmosphere to the Earth over the
concentration logarithm of greenhouse components. From this, it follows that the observed rate of
growth of the amount of atmospheric carbon dioxide accounts for a contribution of approximately
30% to the observed increase in the global atmosphere during recent decades. If we assume that
the basic part of the greenhouse effect is determined by an increase in the concentration c(H2O) of
water atmospheric molecules, it is approximately d ln c(H2O/dt) = 0.003 yr−1. This corresponds to
an increase in the average moisture of the atmosphere of 0.2%/yr.

Keywords: line-by-line; greenhouse effect; radiative fluxes; thermal emission

1. Introduction

The goal of this paper is to evaluate the radiative fluxes for the greenhouse effect
in the atmosphere. This evaluation is based on a developed algorithm formulated in [1].
The used model includes the following features.

1. The “line-by-line” model [2,3] is the basis of these evaluations, and integral radiative
fluxes follow from these partial fluxes.

2. The model includes three basic greenhouse components, namely, H2O molecules,
CO2 molecules and liquid water microdroplets, as the basic condensed phase in the atmo-
sphere. In addition, trace components, such as CH4 molecules and N2O molecules, may be
included in this scheme.

3. The model of standard atmosphere [4] is the basis of evaluations. In particu-
lar, the global temperature (the average temperature of the Earth’s surface) is taken as
TE = 288 K, and its decrease with altitude h is dT/dh = −6.5 K/km. This model provides
the altitude distribution for the number densities of atmospheric molecules. The model of
standard atmosphere implies that atmospheric parameters depend only on the altitude.

4. Along with the local thermodynamic equilibrium for atmospheric components, this
equilibrium takes place between the radiation field and atmospheric air.

5. Parameters of radiative transitions of greenhouse molecules are taken from the
HITRAN data bank [5–7]; therefore, we use the formalism for the rates of molecular
radiative processes of this data bank [8].

6. The energetic balance of the Earth and its atmosphere is taken into account. Ac-
cording to this balance, radiative fluxes toward the Earth and outside are determined
by different atmospheric regions and are separated, i.e., the radiative fluxes to the Earth
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that are connected with its temperatures do not depend on processes in high layers of
the troposphere.

7. Basic greenhouse components are separated so that clouds are located starting
from a certain altitude, and they are characterized by a sharp boundary. Radiation from
greenhouse molecules is created in the gap between the Earth’s surface and clouds.

Differences between these evaluations and those of [1] are twofold. First, the com-
puter code presented in our paper does not separate frequencies in different ranges; this
code relates to the total range of frequencies. Second, evaluations [1] are restricted by
frequencies below 1200 cm−1. Since the absorption in an additional frequency range is
determined by water molecules, new evaluations may change the emission, due to water
molecules. Of course, we account for this in our analysis for a contemporary understanding
of atmospheric physics and processes in the atmosphere [2,3,9–22].

2. Model of Atmospheric Emission to the Earth

Thus, we evaluate the radiative fluxes on the basis of the algorithm, which is formu-
lated in the introduction section. The character of radiative processes is given in Figure 1.
Correspondingly, according to the model under consideration, we have for the radiative
flux Jω at a given frequency ω the following:

Jω = Iω(Tω)g(uω) + Iω(Tcl)[1− g(uω)] (1)

where Iω(T) is the radiative flux of a blackbody with a temperature T at this frequency
that is given by the Planck formula as follows [23,24]:

Iω(T) =
h̄ω3

4π2c2
[
exp

(
h̄ω
T

)
− 1

] , (2)

and the opaque factor g(uω) of a uniform gaseous layer is given by the following [25,26]:

g(uω) = 2
1∫

0

cos θd cos θ
[
1− exp

(
− uω

cosθ

)]
, (3)

Formula (3) takes into account the thermodynamic equilibrium of air molecules of
the atmosphere with its optically active molecules, water microdroplets of clouds, and the
radiation field.

Figure 1. Character of emission of the atmosphere toward the Earth, according to which the radiative
flux consists of those from clouds and atmospheric molecules located in the gap between the Earth
and clouds.
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We thus consider the radiating atmosphere as a shell of the Earth, whose thickness is
small compared with the radius of the Earth. Hence, the radiating atmosphere is a weakly
nonuniform gaseous layer [27]. One can reduce a radiating weakly nonuniform layer
that contains optically active molecules to an effective uniform layer by introducing the
effective temperature of radiation or the radiative temperature Tω [28,29]. In addition, due
to thermodynamic equilibrium in the atmosphere, the emission of clouds is characterized
by the cloud + temperature Tcl or the temperature of the cloud boundary because of its
sharp structure.

Formula (1) contains parameters that are expressed through the optical thickness uω

of the radiated atmospheric layer, which in turn is connected with the optical parame-
ters of optically active molecules, which are located in atmospheric air. There are three
greenhouse parameters of the radiated atmospheric layer, namely, H2O molecules, CO2
molecules, and clouds consisting mostly of water microdroplets. Correspondingly, the op-
tical thickness of the atmospheric gap located between the Earth and clouds is given by the
following [1]:

uω(hω) = σω(H2O)N(H2O)λ

[
1− exp

(
− hω

λ

)]
+ σω(CO2)N(CO2)Λ

[
1− exp

(
− hω

Λ

)]
, (4)

where the number densities of water molecules and carbon dioxide molecules are deter-
mined by the following formulas:

N(H2O) = Nw exp
(
− h

λ

)
, Nw = 3.4× 1017 cm−3, λ = 2.0 km

N(CO2) = Nc exp
(
− h

Λ

)
, Nc = 1.1× 1016 cm−3, Λ = 10 km (5)

We use here the data of the model of standard atmosphere [4] and measured data on
the basis of the NASA programs, which are analyzed in [30]. In addition, the equation for
the effective altitude hω at a given frequency ω has the following form [1]:

uω(hω) =
uω(hcl)

2 exp(−uω(hcl) + 1.5uω(hcl))
(6)

Within the framework of the model of standard atmosphere, the radiative temperature
Tω for a given frequency follows from the given relation:

Tω = TE − hω
dT
dh

, (7)

where the global temperature equals TE = 288 K for the contemporary standard atmo-
sphere, and its gradient is dT/dh = 6.5 K/km.

Formula (4) includes the absorption cross section σω for molecules of a given sort,
which is a sum of the cross sections for individual spectral lines due to this component,
according to the following formula:

σω = ∑
j

Sjνj

2π[(ω−ωj)2 + (νj/2)2]
(8)

As is seen, for each radiative transition, this formula contains three parameters, namely,
the transition intensity Sj, the frequency ωj at the line center, and the width of this spectral
line νj. We take these parameters from the HITRAN data bank [5–7], and these parameters
allow one to determine the absorption cross section at a given frequency. In addition, for air
pressures under consideration which are of the order of atmospheric one, the following
criterion is fulfilled:

Δω ! νj, (9)
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where Δω is a typical difference of frequencies for centers of neighboring spectral lines.
Note that, according to the Wien law [31], the maximum flux of photons for a black-

body corresponds to the wavelength λ as follows:

λmaxT = 0.3 cm ·K (10)

From this, it follows that a typical wavelength of atmospheric radiation is λ ∼ 10μm.
Therefore, below, we are restricted by frequencies ω < 2600 cm−1.

In this evaluation, we are guided by strong spectral lines such that at the centers of
these lines, the optical thickness satisfies the relation uω > 1. In accordance with typical
parameters of spectral lines due to water and carbon dioxide molecules, one can select
from the HITRAN data bank radiative transitions for these molecules whose intensities
satisfy the following relation:

Sj(H2O)! 1× 10−24 cm, Sj(CO2)! 2× 10−23 cm (11)

The problem in the evaluation of the radiative flux of the atmosphere is determining
the parameters of clouds. In contrast to the number densities of optically active molecules,
which are given by Formula (4), analogous information for clouds is absent. Indeed, clouds
exist over a given surface point during a restricted time, and their distribution over altitudes
has a random character. Within the framework of the model under consideration, we use
one parameter of clouds, namely, the altitude hcl , which determines the radiation of clouds,
or the radiative temperature of clouds Tcl , which follows from the given equation below:

Tcl = TE −
dT
dh

hcl , (12)

where the global temperature is TE = 288 K, and the temperature gradient is
dT/dh = 6.5 K/km.

One can determine the cloud parameters of this model by using the energetic balance
of the Earth and atmosphere. The energetic balance includes the radiative flux J↓ from
the atmosphere toward the Earth. The energetic balance and this radiative flux follows
from different sources, which are presented in Table 1. The total radiative flux from the
atmosphere to the Earth is given by the following:

J↓ ≡
∫

Jωdω (13)

This analysis is used below for calculating the partial radiative fluxes from the atmo-
sphere to the Earth.

Table 1. Values of the total radiative flux from the atmosphere to the Earth as it follows from different
versions of the energetic balance for the Earth and its atmosphere with references that contain a
certain version of the sources. The altitude hcl of the cloud boundary and the temperature Tcl of the
cloud emission relate to the corresponding version of Earth’s energetic balance.

Number 1 2 3 4 5 Average

J↓, W/m2 327 327 333 346 342 335± 7
Reference [21,32–34] [18,35–40] [41–44] [45] [46] -

hcl , km 5.6 5.6 4.8 3.2 3.7 4.6± 0.7
Tcl , K 252 252 257 267 264 258± 6

3. Radiative Fluxes from the Standard Atmosphere

Evaluations of the radiative fluxes from the atmosphere to the Earth are based on the
above algorithm [1]. In the previous analysis, the frequency range was separated over
several ranges, and evaluations were fulfilled in each range independently. In this case,
within the framework of a general computer code, one can make calculations in the total
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range of frequencies that determine the radiative flux. Let us choose the effective range of
flux evaluations. If the Earth’s surface with the temperature of the standard atmosphere
TE = 288 K emits as a blackbody, the radiative flux at frequencies above 1300 cm−1 is 10%
of the total radiative flux, the radiative flux at frequencies above 2000 cm−1 is 1% of the
total radiative flux, and the radiative flux at frequencies above 2600 cm−1 is 0.1% of the
total radiative flux. In previous evaluations [1], calculations were made for frequencies
below 1260 cm−1, accounting for the radiation of molecules CO2, CH4 and N2O at larger
frequencies. We are now restricted by the frequency range below 2600 cm−1.

By analogy with evaluations [1], in subsequent calculations, we use information
about radiative transitions from the HITRAN data bank. Figure 2 contains the frequency
dependence for the optical thickness of the atmospheric layer between the Earth’s surface
and clouds, which is determined by optically active atmospheric molecules in the infrared
spectrum range. As it follows from this Figure, optical parameters of the atmosphere as
a frequency function have a line character. One can determine from this the radiative
temperature of molecules located in the atmospheric gap between the Earth and clouds,
and its frequency dependence is presented in Figure 3.

Figure 2. Optical thickness uω of the atmospheric gap between the Earth and clouds due to optically
active atmospheric molecules. The solid curve corresponds to uω = 2/3 and the cloud altitude is
hcl = 4.6 km.

Figure 3. Radiative temperature Tω due to atmospheric molecules located in the gap between the
Earth’s surface and clouds, whose boundary is located at the altitude hcl = 4.6 km.

Figure 4 contains values of radiative temperatures, given in Figure 3, which are
averaged over ranges of 20 cm−1 width. This averaging is made over the frequency range
of the width of 10 cm−1 below and above the frequency under consideration.
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Figure 4. Averaged over a range of 20 cm−1, radiative temperatures Tω , which are determined by
emission of atmospheric molecules, which are located in the gap between the Earth’s surface and
clouds. The cloud boundary is found at the altitude hcl = 4.6 km.

The opaque factor g(uω) is determined by Formula (3), and its frequency depen-
dence is given in Figure 5. The averaged value of the opaque factor is given in Figure 6.
The averaging is made over the frequency range of 20 cm−1 by analogy with that for the
radiative temperature.

Figure 5. Opaque factor g(uω) due to absorption of atmospheric molecules in the gap between the
Earth’s surface and clouds if the cloud boundary is located at the altitude hcl = 4.6 km. The model
is shown, where the atmosphere is transparent in the frequency range between 780 cm−1 and
1250 cm−1.

The opaque factor characterizes the part of the radiative flux that is emitted by the
Earth’s surface and attains the clouds. Figure 7 contains the radiative flux Iω(TE) that
is emitted by the Earth as well as the radiative flux g(uω)Iω(TE) at a given frequency,
which reaches the clouds for the model of standard atmosphere. We have also the average
radiative flux, which is emitted by the Earth and reaches the cloud boundary as follows:

J↑ =
∫

g(uω)Iω(TE)dω (14)

Taking TE = 288 K on the basis of the model of standard atmosphere, we obtain
the following:

JE =
∫

Iω(TE)dω = 390 W/m2
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in accordance with the energetic balance of the Earth, and J↑ = 120 W/m2. As is seen,
a part of the thermal radiative flux that passes through the atmospheric layer below clouds
and reaches the clouds is approximately 30% of the emitted radiative flux.

Figure 6. The averaged opaque factor g(uω) over a frequency range of 20 cm−1 for the absorption
of atmospheric molecules located in the gap between the Earth’s surface and clouds. The cloud
boundary is located at the altitude hcl = 4.6 km.

From Formulas (1) and (13), one can determine the radiative flux from the atmosphere
to the Earth’s surface due to atmospheric molecules and clouds; this flux depends on
the cloud temperature Tcl or the boundary altitude hcl for clouds. This dependence is
represented in Figure 8. In addition, these parameters are given in Table 1 for different
versions of the energetic balance of the Earth and its atmosphere.

Figure 7. The frequency dependence for the radiative flux Iω(TE) from the Earth’s surface (1) and its
part g(uω)Iω(TE), which attains the boundary of clouds.

In previous evaluations [1], only data of the first source of Table 1 were used, whereas
now we are based on a variety of these values. Because parameters of the Earth’s energetic
balance are different for these sources, this difference characterizes also the error in the final
results. Note that the connection between the effective altitude hcl of the cloud boundary
and the cloud temperature Tcl is given by Formula (12).

A cursory glance at the emission parameters of the atmosphere according to
Figures 2, 3 and 5 exhibits that the spectrum of atmospheric radiation consists of sepa-
rate spectral lines, in contrast to climatological models with a smooth empiric frequency
functions, which approximate the atmospheric spectrum. In addition, climatological mod-
els do not take into account the thermodynamics of the atmosphere and radiation field.
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Therefore, computer codes of climatology are not reliable in the evaluation of the radiative
parameters of the atmosphere.

Figure 8. Dependence of the total radiative flux from the atmosphere to the Earth J↓ on the altitude
of the cloud boundary hcl . The average value of the radiative flux toward the Earth is marked.

One can divide the radiative flux Jω from the atmosphere to the Earth in parts that
are created by various components of the radiated atmosphere. For example, the partial
radiative flux Jω(CO2), which is determined by CO2 molecules, is given by the follow-
ing formula:

Jω(CO2) = Jω
kω(CO2)

kω
, (15)

where Jω is the total radiative flux, kω(CO2) is the absorption coefficient due to CO2
molecules, and kω is the total absorption coefficient at a given frequency. These absorption
coefficients are taken at the radiative temperature Tω . Integrating the partial radiative flux
as a frequency function over frequencies, one can determine the total radiative flux from
the atmosphere to the Earth due to this component. Table 2 contains values of the total
radiative flux from the atmosphere due to each greenhouse component.

Table 2. Radiative fluxes in W/m2 for indicated frequency ranges and the total radiative flux due to
a given component. Results of evaluations [1] are given in square parentheses.

Component ω < 800 cm−1 1250 cm−1 >
ω > 800 cm−1 ω > 1250 cm−1 Sum

H2O-molecules 163 13 39 (215± 2) [166]
H2O-droplets 8 52 1 (61± 7) [96]
water in total 171 65 40 (276± 10) [262]

CO2-molecules 53 2 1 (56± 1) [60]
CH4-molecules 0 1 1 2 [4]
N2O-molecules 0 0 1 1 [3]

One can compare the results for radiative fluxes of these evaluations given in Table 2
and previous ones [1]. The basic difference is that the basic part of the emission, according
to [1], is taken from the frequency range ω < 800 cm−1; in the other frequency range
ω > 800 cm−1, which gives the contribution approximately 10% to the radiative flux, the
emission of water molecules is ignored. In these evaluations, the HITRAN bank data are
included up to ω = 2600 cm−1. As a result, a part of the emission transfers from clouds to
water molecules. We also note that average radiative fluxes given in Table 2, according to
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evaluations [1], refer to the total radiative flux J↓ = 327 W/m2 from the atmosphere toward
the Earth, whereas now, we are guided by this flux J↓ = (335± 7) W/m2; the results of
Table 2 correspond to the total flux.

In addition, Figure 9 contains radiative fluxes due to individual greenhouse compo-
nents. The frequency range is separated into two parts with the boundary of 800 cm−1.
One can evaluate separately the emission of trace greenhouse components, which are CH4
and N2O molecules. The number density of these molecules as an altitude function is
analogous to formula (5) for CO2 molecules and is given by the following formulas:

N(CH4) = Nm exp
(
− h

Λ

)
, Nm = 3.5× 1013 cm−3, N(N2O) = Nn exp

(
− h

Λ

)
, Nn = 7.5× 1012 cm−3 Λ = 10 km (16)

The number densities of these molecules at the Earth’s surface are taken from [47,48].
The absorption band for the CH4 molecule is (1240–1360) cm−1, the absorption bands for
N2O molecule are placed in the frequency ranges (1250–1310) cm−1 and (2180–2260) cm−1.
Figure 10 contains the partial optical thickness as a frequency function in the above ab-
sorption bands, due to individual greenhouse components, which include the above trace
components and water molecules.

Figure 9. Radiative fluxes JE from the Earth’s surface for the model of standard atmosphere, and also
fluxes from clouds and to indicated molecular components, where radiation attains the Earth’s
surface. A molecular component is indicated inside an ellipse; average values of the fluxes are
expressed in W/m2. Data of [1] are represented in black, and the results of these evaluations are
given in red.

As it is seen, the optical thickness due to trace gases is not large and is screened
by absorption of water molecules. Because we ignored in [1] the absorption of water
molecules at the wing ω > 1200 cm−1 of atmospheric thermal emission, evaluations [1]
contain heightened values of radiative fluxes due to trace gases, as it follows from the data
of Figure 9 and Table 2.

It should be noted that we exclude the ozone emission from the tropospheric radiation
toward the Earth since the concentration of ozone molecules in the troposphere usually
does not exceed 1012 cm−3. Therefore, the optical thickness of the troposphere in the gap
between the Earth’s surface and clouds is small. The concentration of ozone molecules
in the stratosphere is larger, but the stratospheric radiation does not reach the Earth
because it is absorbed by clouds. Hence, we ignore the radiation of ozone molecules in
the atmosphere.
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Figure 10. Optical thickness uω of the atmospheric gap between the Earth and clouds due to optically
active atmospheric molecules CH4, N2O and H2O in the absorption bands of trace gases.

4. Emission of Atmosphere with a Varied Composition

The code under consideration allows one to analyze variations in the radiative fluxes
as a result of the change in the atmosphere composition. We start this analysis from the
standard case, where the concentration of CO2 molecules is doubled. This leads to the
change in the global temperature that is named “Equilibrium Climate Sensitivity” [49].
Note that this operation implies that optically active gases have a uniform distribution over
the globe that corresponds to the average altitude distribution. This criterion is fulfilled
more or less for CO2 molecules, and the uniform distribution is violated for H2O molecules.

In this consideration, we take into account three basic greenhouse components, namely,
CO2 molecules, H2O molecules, and water microdroplets of clouds. Table 3 contains the
distribution over the spectrum for the change in radiative fluxes due to a given component
as a result of doubling the concentration of CO2 molecules. Quantities Δc, Δw, Δd of
this table are the changes in the radiative fluxes to the Earth due to CO2 molecules, H2O
molecules, and water microdroplets of clouds, correspondingly, according to the following
relations:

Δc =
∫
[J′ω(CO2)− Jω(CO2)]dω, Δw =

∫
[J′ω(H2O)− Jω(H2O)]dω, Δd =

∫
[J′ω(drop)− Jω(drop)]dω, (17)

where Jω(A) is the radiative flux due to an indicated component A at the current concen-
tration of CO2 molecules, and J′ω is the radiative flux of this component at the doubling
concentration of CO2 molecules. The change in the total radiative flux Δ is introduced
as follows:

Δ = Δc + Δw + Δd (18)

It is evident that the change in radiative fluxes of components as well as the total
change in the radiative flux from the atmosphere to the Earth takes place only in spectrum
ranges where CO2 molecules absorb. In addition, the basic change in the radiative flux
as a result of the concentration change for some optically active components takes place
in the frequency range where the optical thickness is of the order of one. The red line
uω = 2/3 in Figures 2, 10, and 11 separates the optical thicknesses, with large ones
above this line and low ones below it. Comparing the data of Table 3 and Figure 11, one
can conclude that the main contribution to the change in the radiative flux follows from
a frequency range where uω ∼ 1. Next, changes in radiative fluxes resulted from the
variation in the concentration of CO2 molecules are nearby, according to these calculations
and evaluations [1], because the absorption of CO2 molecules is absent in the added
frequency range 1200 cm−1 < ω < 2600 cm−1. On the contrary, in the case of the change
in the concentration of water molecules, the change in the total radiative flux differs by
several times under identical conditions.
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Table 3. Variations in radiative fluxes for the standard atmosphere as a result of doubling of the
CO2 concentration in an indicated spectrum range of CO2 molecules. The frequency ranges Δω are
given in cm−1, and radiative fluxes are expressed in W/m2. Results of calculations [1] are given
in parentheses.

Frequency Range, cm−1 Δc Δw Δd Δ

580–600 0.70 −0.60 −0.05 0.05 (0.03)
600–620 0.91 −0.75 −0.05 0.11 (0.04)
620–640 0.75 −0.71 0 0.04 (0.02)
640–660 0.23 −0.22 0 0.01 (0.01)
660–680 0.08 −0.08 0 0 (0)
680–700 0.27 −0.26 0 0.01 (0.01)
700–720 0.38 −0.32 0 0.06 (0.06)
720–740 0.56 −0.20 −0.12 0.24 (0.20)
740–760 1.03 −0.42 −0.37 0.24 (0.29)
760–780 0.65 −0.02 −0.45 0.18 (0.14)
780–800 0.25 0 −0.17 0.08 (0.06)
800–850 0.18 0.01 −0.15 0.04 (0.04)
900–950 0.20 0 −0.15 0.05 (0.04)

950–1000 0.35 0 −0.25 0.10 (0.22)
1000–1050 0.18 0 −0.12 0.06 (0.05)
1050–1100 0.45 0 −0.31 0.14
2250–2400 0.02 0 −0.01 0.01

total 7.19 (7.24) −3.57 (−3.02) −2.20 (−2.90) 1.42 (1.32)

Figure 11. Optical thickness uω of the atmospheric gap between the Earth and clouds due to CO2

and H2O molecules in the frequency range where the optical thickness of the atmosphere is of the
order of one.

One can see from the data of Table 3 that the change in the radiative flux Δc due to
CO2 molecules as a result of doubling the concentration of CO2 molecules is five times
larger than the change in the total radiative flux Δ. In climatological models, the Kirchhoff
law [50], according to which radiators are simultaneously absorbers, is ignored. Therefore,
the change in the radiative flux Δc due to CO2 molecules is taken in climatological models
instead of the change in the total radiative flux Δ, and the error in the change of the global
temperature under these conditions is exceeded by five times. This results from neglecting
the absorption of emitted radiative fluxes by water molecules and water microdroplets of
clouds by added CO2 molecules [51,52]). This large difference follows also from a general
conclusion for a plane gaseous layer with a low temperature gradient [51,52]). Indeed,
if we have a layer of a constant temperature and of a high optical thickness, where the
emission is created by several components, this layer emits as a blackbody with the gaseous
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temperature. Therefore, a change in the concentration of some optically active component
would not lead to the change in the outgoing radiative flux.

A comparison of the results of these evaluations with those of [1] allows one to estimate
the accuracy of the change in radiative fluxes, which is estimated as ∼10%. The same
accuracy corresponds to the derivative of the radiative flux over the concentration of
a given component. From these calculations, in the case that the concentration of CO2
molecules varies, while other atmospheric parameters are unvaried, we have the following:

dJ↓
d ln c(CO2)

≈ 2
W
m2 , (19)

where J↓ is the radiative flux from the atmosphere to the Earth, and c(CO2) is the concen-
tration of CO2 molecules.

Along with variations in the concentration of CO2 molecules, other changes take
place in the real atmosphere, which influence the global temperature. Let us analyze this
change in the real atmosphere on the basis of measurements within the framework of
NASA programs. We use below the results of measurements for the concentration c(CO2)
of carbon dioxide molecules [53,54]. Because the time of residence of a CO2 molecule is
large, we take the evolution of the atmospheric concentration of CO2 molecules according
to measurements in the Mauna Loa observatory as the global evolution of this quantity.
Next, the evolution of the global temperature during the last 150 years is analyzed carefully
by the Goddard Institute for Space Studies (GISS) (for example, [55]) within the framework
of the NASA program. These results are collected in [1] and are as follows:

d ln c(CO2)

dt
= 0.006 yr−1,

dΔT
dt

= 0.018 K/yr (20)

One can connect the change in the radiative flux from the atmosphere to the Earth J↓
and the change in the global temperature ΔT through climate sensitivity S, according to
relation [18,56]:

S =
dΔT
dJ↓

(21)

We use the average value of these quantities, which follows from an average of various
data and is S ≈ 0.5 m2 ·K/W [1]. One can estimate the accuracy of this value as ≈50%.
From this, for the derivation of the radiative flux J↓ over the concentration of CO2 molecules
(cCO2) in the real atmosphere, we have the following:

dJ↓
d ln c(CO2)

≈ 6
W
m2 (22)

We note that in contrast to formula (19) where all atmospheric parameters, except for
the concentration of CO2 molecules, are unvaried, formula (22) takes into account other
processes that lead to the change in the global temperature. As is seen, the contribution
of carbon dioxide in the change in the global temperature for the evolution of the real
temperature is approximately 30%.

By analogy with the CO2 case, one can analyze the influence of the change in atmo-
spheric water molecules on the change in the radiative flux from the atmosphere to the
Earth. Some results that are analogous to those of Table 3 are given in Table 4. From the
data of this table, we have the following:

dJ↓
d ln c(H2O)

= 7
W
m2 , (23)

where c(H2O) is the concentration of atmospheric water molecules.
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Table 4. Variations in radiative fluxes from the standard atmosphere to the Earth as a change in the
concentration of H2O molecules. Here, c(H2O) is the contemporary concentration of H2O molecules,
and c′(H2O) is that at a new concentration of water molecules. The radiative fluxes represented are
expressed in W/m2.

c′(H2O)/c(H2O) Δc Δw Δd Δ

0.5 3.84 −15.64 6.52 −4.98
0.7 2.05 −7.94 3.20 −2.53
0.9 0.62 −2.38 0.91 −0.74
1 0 0 0 0

1.1 −0.57 2.10 −0.81 0.66
1.5 −2.52 8.86 −3.36 2.78
2 −4.42 15.15 −5.65 4.71

Let us assume that along with an increase in the concentration of CO2 molecules, the
evolution of the global temperature of the real atmosphere is determined by the increase in
the concentration of H2O molecules. Then, water molecules account for the contribution
of 2/3 of the change in the global temperature. On the basis of Formula (20), we have
the following:

dΔT(H2O)

dt
= 12

mK
yr

, (24)

where ΔT(H2O) is the part of the global temperature change which follows from an
increase in the concentration of H2O molecules. Taking as early S ≈ 0.5 m2 ·K/W, one can
find the derivation part of the radiative flux from the atmosphere to the Earth due to H2O
molecules as follows:

dJ↓(H2O)

dt
= 24

W
m2 · yr

, (25)

From this, it follows the rate of variation for the concentration of the water molecules
c(H2O), which can provide this change:

d ln c(H2O)

dt
= 0.003 yr−1 (26)

According to this result, the observed rate of an increase in the global temperature may
be determined by an increase in the following average number density of water molecules:

dN(H2O)

dt
= 1015 cm−3 yr−1 (27)

The annual change in the number density is small, compared to the contemporary
number density of water molecules, which is equal to 3.4× 1017 cm−3. Therefore, a real de-
termination of this derivation under contemporary conditions is problematic and requires
additional efforts similar to those for the evolution of the global temperature.

It should be noted that the moisture η is the measured water parameter in the atmo-
sphere that is given by the following:

η =
N(H2O)

Nsat(H2O)
=

c(H2O)

csat(H2O)
, (28)

where Nsat(H2O) is the number density of water molecules at the saturated vapor pressure
for a given temperature, c(H2O) is a current concentration of water molecules in atmo-
spheric air, and csat(H2O) is its concentration for the saturated vapor pressure at the air
temperature. The contemporary value of the atmosphere moisture is η ≈ 80% [57].

Let us determine the rate of the moisture variation due to the temperature change.
Because the amount of atmospheric water is small compared to that at the Earth’s surface,
we have, from an equilibrium between the atmospheric and surface water, the following:
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csat(H2O) ∼ exp
(
−Ea

T

)
,

where Ea = 0.43 eV [58] is the binding energy for a water molecule with its bulk liquid.
From this, for the rate of an increase in the atmosphere capacity with respect to water
molecules due to a temperature increase, we have the following:

dcsat(H2O)

dt
=

Ea

T2 ·
dT
dΔt
≈ 0.001 yr−1 (29)

The process of growth of the atmospheric moisture will be stopped through a time tev,
according to the following equation:

tev =
1− c(H2O)

c(H2O)− csat(H2O)
≈ 100 yr (30)

From this, it follows that tev ≈ 100 yr, i.e., this time is sufficiently large to check this
mechanism of the Earth’s heating.

5. Conclusions

The goal of this paper is to apply the improved code for the evaluation of the radiative
fluxes from the atmosphere to the Earth on the basis of the model of [1]. In these evaluations,
we use the range of frequencies up to 2600 cm−1 in contrast to the previous calculations [1],
where this range was restricted by 1200 cm−1. Besides this difference, we use now various
versions of the energetic balance of the Earth and its atmosphere (see Table 1), and the
difference in radiative parameters due to various versions of the Earth’s energetic balance
may be considered an error of the results. Nevertheless, the cloud boundary altitude hcl ,
as one of basic parameters of the model under consideration, according to [1], is hcl =
4.3 km, whereas from Table 1, the average altitude of the cloud boundary is hcl = 4.6 km,
i.e., these values coincide within the accuracy of these evaluations.

Because carbon dioxide molecules do not absorb in the additional spectrum range
between 1200 cm−1 and 2600 cm−1, the radiative parameters due to CO2 molecules are
close in these evaluations and in the previous one. In particular, the variation in radiative
fluxes as a result of the change in the carbon dioxide amount in the atmosphere for these
calculations are close. In this evaluation as well as previous evaluations, we have a contra-
diction with the results of climatological models in the analysis of the Earth’s greenhouse
effect, according to which the increase in the global temperature differs by five times. We
show [51,52], so the large difference results from ignoring, in climatological models, the
Kirchhoff law [50], according to which radiators are simultaneously the absorbers. In this
case, we take the change in the radiative flux created by CO2 molecules as the change of
the total radiative flux.

Note the restrictions by the frequency range up to 1200 cm−1 in the previous calcula-
tions [1]; we thus assume that the atmosphere is transparent for larger frequencies, and the
emission at larger frequencies is determined by clouds. However, according to the HITRAN
data bank, water molecules absorb effectively in the enlarged frequency range. As a result,
the derivative (22) is larger than that according to [1]. We proved early (for example, [1])
that atmospheric CO2 molecules are not the main radiator of the atmosphere. From these
evaluations, it follows that water molecules in the atmosphere may be responsible for the
observed heating of the Earth.
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Abstract: Measurements of cross-sections of charge exchange between hydrogen atoms and low
energy protons (down to the energy ~10 eV) revealed a noticeable discrepancy with previous theories.
The experimental cross-sections were systematically slightly higher—beyond the error margins—than
the theoretical predictions. In the present paper, we study whether this discrepancy can be eliminated
or at least reduced by using the Second Flavor of Hydrogen Atoms (SFHA) in calculations. We show
that for the SFHA, the corresponding cross-section is noticeably larger than for the usual hydrogen
atoms. We demonstrate that the allowance for the SFHA does bring the theoretical cross-sections
in a noticeably better agreement with the corresponding experiments within the experimental error
margins. This seems to constitute yet another evidence from atomic experiments that the SFHA
is present within the mixture of hydrogen atoms. In combination with the first corresponding
piece of evidence from the analysis of atomic experiments (concerning the distribution of the linear
momentum in the ground state of hydrogen atoms), as well as with the astrophysical evidence from
two different kinds of observations (the anomalous absorption of the redshifted 21 cm radio line from
the early universe and the smoother distribution of dark matter than that predicted by the standard
cosmology), the results of the present paper reinforce the status of the SFHA as the candidate for
dark matter, or at least for a part of it.

Keywords: charge exchange; second flavor of hydrogen atoms; dark matter; stark effect

1. Introduction

Measurements of cross-sections of charge exchanges between hydrogen atoms and
low energy protons (down to the energy ~10 eV), such as, e.g., experiments by Fite et al. [1],
Fite et al. [2], and Belyaev et al. [3], revealed a noticeable discrepancy with previous the-
ories. The experimental cross-sections were systematically slightly higher—beyond the
error margins—than the theoretical predictions. The source of this discrepancy was stated
as unknown [3]. Up to now, there has been no attention paid to this discrepancy, to the best
of our knowledge.

In paper [4], we showed analytically that there is a slight difference in cross-sections of
charge exchange between the usual hydrogen atoms and protons in comparison to charge
exchange between the Second Flavor of Hydrogen Atoms (SFHA) and protons. The SFHA
was discovered theoretically, as well as by the analysis of atomic experiments in paper [5],
on which subsequent studies of the SFHA are based.

The basis of the theoretical discovery in paper [5] was a fresh analysis of the Dirac
equation for hydrogen atoms. There are two solutions of the Dirac equation at a relatively
small distance from the proton: the regular solution and the singular solution, with the
latter usually being rejected. In paper [5], it was shown that at the proton boundary, the
singular solution outside the proton can be tailored with the regular solution inside the
proton for the ground state, so that the singular solution outside the proton is legitimate for
the ground state. Using this fact, the author of paper [5] eliminated a huge discrepancy—by
many orders of magnitude—between the experimental and theoretical distributions of
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the linear momentum in the ground state of hydrogen atoms. This constituted the first
experimental evidence of the existence of the SFHA.

In a later paper [6], it was shown that the singular solution of the Dirac equation
outside the proton is legitimate not only for the ground state, but for all discrete and
continuous states of the zero angular momentum: for all S-states. This kind of hydrogen
atom, having only S-states and described by the singular solution of the Dirac equation
outside the proton, was called the “second flavor” in paper [7]—by an analogy with the
flavors of quarks, so that there is an additional conserved physical quantity not commuting
with some of the other ones and thus leading to an additional degeneracy.

By now, there are also two kinds of astrophysical evidence of the existence of the
SFHA. First, the SFHA eliminated by a factor of two discrepancy between the absorption
signal at the redshifted 21 cm radio line, recently observed by Bowman et al. [8] and the
predictions of the standard cosmology—this was shown in paper [6]. Second, the SFHA
explained the recent observations by Jeffrey et al. [9], where they found that the distribution
of dark matter in the universe is noticeably smoother than predictions based on Einstein’s
relativity—this explanation was provided in paper [10].

The most striking feature of the SFHA is that since they have only S-states, then due
to the well-known selection rules, the SFHA does not interact with the electromagnetic
radiation (except for the radiative transition at a 21 cm wavelength between the two
hyperfine structure substates of the ground state). Thus, the SFHA remains “dark”. In
combination with the above two kinds of astrophysical evidence, this makes the SFHA a
good candidate for dark matter, or at least for a part of it.

The purpose of the present paper is to find out whether, by using the SFHA, one can
eliminate, or at least reduce, the aforementioned discrepancy between the experimental and
theoretical cross-sections of charge exchange involving hydrogen atoms and low energy
protons. For this purpose, we extend the theory from paper [4] (where it was developed
for excited states) specifically for the ground state since the corresponding experiments
dealt with hydrogen atoms in the ground state. We demonstrate that for the SFHA, the
corresponding cross-section is noticeably larger than for the usual hydrogen atoms. We
show that the allowance for the SFHA does bring the theoretical cross-sections in a better
agreement with the corresponding experiments within the experimental error margins.

2. Calculations and the Comparison with Experiments

According to paper [11], classically, the cross-section σ for the resonant transition of
the electron from being associated with one ion to being associated with another ion is

σ = (8π/I2)(1 − 0.8z2/5), z = v/(2I)1/2 (1)

Here, v is the relative velocity of the colliding nuclei, and I is the ionization potential from
the particular atomic state. In the present paper we use atomic units unless noted otherwise.
Formula (1) is valid for relatively small velocities:

v << vmax = (2I)1/2 (2)

We study the resonant charge exchange between a hydrogen atom in the ground state
and an incoming proton, so that from now on, I is the ionization potential of hydrogen
atoms from the ground state. For calculating the quantity I, we take into account the Stark
shift (if any) of the ground state due to the electric field the proton separated by the distance
R from the atom.

It should be emphasized upfront that only the energy levels of the usual hydrogen
atoms experience the Stark shift. In contrast, the energy levels of the SFHA have no Stark
shift in the field of the proton in any order of the multipole expansion, as explained in paper [4].
This fact leads to the difference in the corresponding cross-sections of charge exchange for
collisions of protons with the usual hydrogen atom compared to the collision of protons
with the SFHA, as calculated below.
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For a relatively large R, the ground state energy of usual hydrogen atoms can be
represented in the form (according to Equation (4.59) from book [12]):

Elarge = − 1/2 − 9/(4R4) − 15/(2R6) (3)

where we omitted higher order terms in this expansion; the subscript “large” signifies that
this expansion is valid for relatively large R. So, the ionization potential for the ground
state has the form:

Ilarge = 1/2 + 9/(4R4) + 15/(2R6) (4)

In paper [11], it was noted that for the no-barrier transition of the electron from
one nucleus to another nucleus, at the midpoint between the two nuclei, the interaction
potential for the electron in the field of two nuclei should surpass the corresponding
ionization potential. This condition translates in the following relation between the charge-
exchange-effective distance R0 of the proton from the atom and the ionization potential [11]:

I = 4/R0 (5)

Upon substituting Equation (5) in Equation (1), we obtain:

σ = (πR0
2/2) [1 − 0.8v2/5(R0/8)1/5] (6)

Further, upon substituting Equation (5) into the left side of Equation (4) (and omitting
the subscript “0”), we obtain:

4/R = 1/2 + 9/(4R4) + 15/(2R6) (7)

The relevant root of this equation is

Rlarge = 7.991 (8)

(We reiterate that the subscript “large” here and below simply refers to the fact that the
results were obtained from the energy expansion for relatively large R).

In contrast, for the SFHA for a relatively large R, the energy of the ground state is

Elarge,2 = − 1/2 (9)

because the SFHA does not experience any Stark shift. (Here, the number 2 in the subscript
signifies the “second flavor”). Therefore,

Ilarge = 1/2 (10)

so that (according to Equation (5))
Rlarge,2 = 8 (11)

Now, let us consider the corresponding situation for relatively small R. In this case,
the ground state energy of usual hydrogen atoms can be represented in the form (according
to Equation (5.13) from book [12]):

Esmall = − 2 + 8R2/3 − 16R3/3 (12)

where we omitted higher order terms in this expansion; the subscript “small” signifies that
this expansion is valid for relatively small R. So, the ionization potential for the ground
state has the form:

Ismall = 2 − 8R2/3 + 16R3/3 (13)

Further, on substituting Equation (5) in the left side of Equation (13) (and omitting the
subscript “0”), we achieve:

4/R = 2 − 8R2/3 + 16R3/3 (14)
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The relevant root of this equation is

Rsmall = 0.953 (15)

(we reiterate that the subscript “small” here and below simply refers to the fact that the
results were obtained from the energy expansion for a relatively small R).

In contrast, for the SFHA for relatively small R, the energy of the ground state is

Esmall,2 = − 2 (16)

because the energy levels of the SFHA do not shift in the electric field (here, the number 2
in the subscript signifies the “second flavor”). Therefore,

Ismall,2 = 2 (17)

so that (according to Equation (5))
Rsmall,2 = 2 (18)

We note that the ionization potentials, corresponding to the values of R from
Equations (8), (11), (15) and (18), can be easily found from Equation (5).

For calculating the cross-sections of the charge exchange by using Equation (6), it
is necessary to add the corresponding contributions from both channels, i.e., from both
the “large R” case and the “small R” case. For obtaining the ratio of the resonant charge
exchange cross-section from the ground state of the SFHA σSFHA to the corresponding result
σusual for the usual hydrogen atoms in the simplest form—just to get the message across—
we will consider the limit of v approaching zero. In this limit, the ratio σSFHA/σusual
simplifies to:

σSFHA/σusual = (Rlarge,2
2 + Rsmall,2

2)/(Rlarge,
2 + Rsmall

2) (19)

On substituting into Equation (19) the data from Equations (8), (11), (15) and (18), we finally
obtain:

σSFHA/σusual = 1.05 (20)

so that σSFHA is by 5% greater than σusual.
Let us find out whether this result sufficiently improves the comparison with the

corresponding experiments. The most precise experiment on the resonant charge exchange
between hydrogen atoms in the ground state and relatively low energy protons was
performed by Fite et al. [2] (the error margin was 9% or less, while for the later experiment
by Belyaev et al. [3], the error margin reached 13%). Figure 1 presents:
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Figure 1. Comparison of the experimental cross-sections of the resonant charge exchange between hydrogen atoms and low
energy protons with the corresponding theoretical cross-sections (the cross-sections are in units of 10–16 cm2). Circles (some
with error margins)—experiment reported in paper [2]; crosses (with error margins) connected by a solid line—experiment
reported in paper [1]; filled circles connected by a solid line—theory from paper [13], allowing only for the usual hydrogen
atoms; the dashed line—theory from the present paper, allowing for the SFHA (adapted from [1,2,13]).

(1) the experimental cross-sections—circles, some with error margins—reproduced from
Figure 2 of paper [2];

(2) the experimental cross-sections—crosses (with error margins) connected by a solid
line—from the earlier measurements by Fite et al. [1], reproduced from Figure 2 of
paper [2];

(3) the theoretical cross-sections—filled circles connected by a solid line—calculated by
Dalgarno and Yadav [13], reproduced from Figure 2 of paper [2];

(4) the theoretical cross-sections for the case of the SFHA—the dashed line—from the
present calculations.

It can be seen that the theoretical cross-sections for the case of the SFHA demonstrate
a noticeably better agreement with the corresponding experimental cross-sections.

3. Conclusions

We studied whether the allowance for the SFHA can eliminate, or at least reduce, the
noticeable discrepancy between the experimental and theoretical cross-sections of charge
exchange involving hydrogen atoms and low energy protons: the discrepancy where
the experimental cross-sections are systematically slightly higher than the corresponding
theoretical cross-sections. We showed that, for the SFHA, the theoretical cross-sections are
noticeably greater than for the usual hydrogen atoms. We demonstrated that the allowance
for the SFHA leads to a noticeably better agreement with the experiments: the agreement
with experiments within the experimental error margins.

This seems to constitute yet more evidence from atomic experiments that the SFHA is
present within the mixture of hydrogen atoms. In combination with the first corresponding
piece of evidence from the analysis of atomic experiments (presented in paper [6]), as well
as with the astrophysical evidence from two different kinds of observations [9,11], the
results of the present paper reinforce the status of the SFHA as the candidate for dark
matter, or at least for a part of it.

Compared to other explanations of dark matter effects, the SFHA is favored by the
Occam’s razor principle. Indeed, it is based on the standard quantum mechanics (the Dirac
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equation), whereas other hypotheses either resort to mysterious, never-discovered particles
beyond the standard model or require significant changes in the existing physical laws.
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Abstract: E.G. Bessonov suggested the time integrated strength of an electric field
∫ ∞
−∞ E(r, t)dt = SE(r)

as a parameter to classify electromagnetic (EM) waves. Since then, this parameter has been studied
and used in many works on microwave and laser physics, especially when it comes to unipolar,
bipolar and few cycle EM pulses. In this paper, it is shown that SE(r) = 0 is an identity for a wide
class of free space pulses of finite total energy. This property can be useful in various applications of
few cycle radiation and as a benchmark in EM and QED computations.

Keywords: space–time couplings; spatiotemporal; ultrafast optics; unipolar pulses; few cycle pulses

1. Introduction

The development and widespread use of few cycle lasers [1] motivated the study of
little-known and new properties of free electromagnetic (EM) waves, or more precisely,
pulses [2–4]. By pulse, we mean the solution of Maxwell’s equations in the absence of
sources, corresponding to a finite energy. Obviously, such solutions should describe real
pulses propagating in free space. The question posed in the title of the article also refers
to real pulses. To answer it, it is necessary to turn to the full set of electromagnetic wave
equations and add the only requirement: the finiteness of the energy of the electromagnetic
field. Thus, monochromatic and plane waves are out of our consideration, since their
energy is infinite, and also Gaussian beams, since they do not satisfy Maxwell’s equations,
as well as some other commonly used models.

Let’s now go back to few cycle laser pulses of finite energy. Their distinctive property,
which is clearly manifested and often discussed, is space–time couplings (STC). This
implies that the spatial configuration of the field of the propagating pulse is constantly
changing with time, while the time shape and the spectrum of the pulse change from point
to point. For example, it is well known that when focusing, the shape and spectrum of the
compressed pulses differ from the incident one, and it is not a matter of duration, but of the
number of periods of the field. Any pulse of finite energy has the STC property. However,
when the number of periods of the field N is large, these effects are weak and are not given
importance. It is enough to characterize the structure of the pulse and its interaction with
matter in terms of the average frequency ω and line width δω. If the pulse is short-period
and N approaches 1, the values of ω and δω become close. In this case, the result of the
impact of a pulse on a substance essentially depends on its shape, and not on these average
characteristics of the spectrum [5].

For a consistent description of STC effects, it is necessary to refer to models of finite
energy pulses with nonseparable dependence on space and temporal coordinates. This can
be achieved in exact solutions of Maxwell’s equations, as well as in other rigorous methods.
It should be noted here that, as a rule, finding exact solutions and studying their properties
is also a difficult task [2,6–10]. On a qualitative level, we can say that STC is expressed in
the extreme variability of any real electromagnetic pulse in time and space [11].

This work is devoted to another, in a sense, opposite property of electromagnetic
pulses, which, like STC, is also important in ultrafast optics. This is due to the once rarely
used characteristic of the EM field
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SE(r) =
∫ ∞

−∞
E(r, t)dt, (1)

which in the era of few cycle pulses, attracted increased attention. This value first appeared
in the work [12] by E.G. Bessonov, who studied the radiation of particles in accelerators. To
describe the radiation field E(r, t) of a system of charged particles, he introduced parameter
(1) and proposed to use it to classify electromagnetic waves, calling waves with

SE(r) �= 0 (2)

strange. At the same time, as Bessonov showed, the radiation field of sources of a suffi-
ciently wide class, namely, any system of charges performing a finite motion, satisfies the
relation

SE(r) = 0. (3)

He called EM waves, for which (3) is satisfied for all r, usual. Thus, in the classification
proposed by Bessonov, usual waves are necessarily bipolar. At the same time, strange
waves, according to (2), can be both bipolar and unipolar (single sign). Their source can
be charges that perform infinite motion, including bremsstrahlung, Compton scattering,
the radiation of charged particles in bending magnets, the radiation of cosmic rays in the
magnetic field of the Earth, radiation of electrons reflected from the surface of crystals,
etc. [12]. The work of Bessonov received a noticeable response in accelerator and microwave
communities. Since then, several theoretical and experimental papers on e-beam and other
sources of bipolar and unipolar waves have been published (see [11] for references).

Interest in the topic increased sharply in the mid-1990s. The generation, application
and study of unipolar pulses has become extremely relevant with the advent of the era
of few cycle laser fields [13,14]. The main findings of [12] were again analyzed and
confirmed [15,16]. The prospects and applications of unipolar pulses in microwave and
optical ranges are presently being studied and reported in various new fields of science
and technology. The parameter SE(r) is now also used in a broader sense than the criteria
given by Bessonov Equations (1)–(3). For the characterization of bipolar strange waves,
Arkhipov et al. [17] introduced the degree of unipolarity:

ξ(r) =
|SE(r)|∫ +∞

−∞ |E(r, t)|dt
=

∣∣∣∫ +∞
−∞ E(r, t)dt

∣∣∣∫ +∞
−∞ |E(r, t)|dt

, (4)

The method to measure the modulus of Bessonov vector (1) by observing quantum
transitions induced by pulse interaction with a two-level system was proposed in [11].

In this work, it will be shown that in the absence of sources, any EM pulse is typically
usual in the sense of Bessonov condition (3). In other words, condition (3) is the same
inherent property of EM pulses in a vacuum as the invariants of energy, momentum, angu-
lar momentum, spin [2,18], the number of quanta [19–21] and STC, which was discussed
above.

2. Materials and Methods: Some Relations for the Vector Potential in K-Space

First, let’s repeat that we are talking about impulses of a general form in free space.
The only requirement is the finiteness of total energy.

As in the method of expansion of an EM field in terms of field oscillators [22], it is
convenient to use the Fourier transform. This allows, instead of the field strengths E(r, t)
and H(r, t), satisfying the free space Maxwell equations:

rotE(r, t) = − 1
c

∂H(r,t)
∂t , divE(r, t) = 0,

rotH(r, t) = 1
c

∂E(r,t)
∂t , divH(r, t) = 0.

(5)
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consider only vector potential A(r, t), which satisfies the equations:⎧⎪⎨⎪⎩
ΔA(r, t) = 1

c2

..
A (r, t)

divA(r, t) = 0
, (6)

where c is the speed of light in a vacuum. In this case, the vectors of the electric and
magnetic fields are expressed in terms of A as follows:

E(r, t) = −1
c

.
A(r, t); H(r, t) = rot A(r, t). (7)

The transition to the Fourier space in Equation (6) after some transformations allows
us to present the EM field as a set of independent harmonic oscillators. This is part of
the standard procedure for quantizing the EM field. For the purposes of this work, it is
sufficient to express the fields E(r, t) and H(r, t) in terms of the spatial harmonics of the
vector potential A(k, t); which, as is known, depend on time according to the harmonic law.
As a result, the proof is reduced to the study of integrals of rapidly oscillating functions.

For the Fourier harmonics of the vector potential A(k, t), from Maxwell’s equations
in the form of (6), it is easy to obtain the following equations:

..
A(k, t) + k2c2A(k, t) = 0, (8)

A∗(k, t) = A(−k, t), (9)

(k·A(k, t)) = 0. (10)

Expressions for E(r, t) and H(r, t) are easily found from the relations of (7):

E(r, t) = −1
c

∫ .
A(k, t)eikrdk, H(r, t) = i

∫
(k×A(k, t))eikrdk, A(r, t) =

∫
A(k, t)eikrdk. (11)

The total energy ε does not depend on time:

ε =
∫

ε(r, t)dr, ε(r, t) =
E2 (r, t) + H2(r, t)

8π
. (12)

In k-space expression (12), taking into account (11) and (9), (10) can be written as

ε = π2
∫ [
|E(k, t)|2 + |H(k, t)|2

]
d
→
k =

π2

c2

∫ [∣∣∣ .
A(k, t)

∣∣∣2 + k2c2|A(k, t)|2
]

dk . (13)

We now use Equation (8), from which it obviously follows that

A(k, t) = A−(k)e−ickt + A+(k)e+ickt, (14)

and, therefore, the total energy (13) is equal to

ε = 2 π2
∫

k2
[
|A−(k)|2 + |A+(k)|2

]
dk. (15)

The functions A−(k) and A+(k) are determined by the initial conditions for Equation
(8). For each of them, the transversality condition similar to (10) is satisfied, and, in addition,
they are linked by the relation

A+(k) = A∗−(−k) (16)

Thus, formula (14) expresses the vector potential of an arbitrary EM pulse of finite
energy in terms of the vector functions A−(k) and A+(k), satisfying the transversality
condition and being square-integrable with weight k2. In the next section, this will be used
to prove relation (3).
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3. Results: Free EM Pulses Are Not Strange

Along with the strangeness vector SE(r) (see (1)), consider the vector S E(r, T), so that

SE(r) = lim
T→∞

SE(r, T) = lim
T→∞

∫ T

−T
E(r, t)dt = −1

c
lim

T→∞
[A(r, T)−A(r,−T)]. (17)

For the first term in (17), taking into account the last formula of (11), as well as formula
(14), we obtain

A(r, T) =
∫

A(k, T)eikrdk =
∫

A−(k)eikr−ickTdk +
∫

A+(k)eikr+ickTdk. (18)

According to the Riemann–Lebesgue theorem [23], both terms in (18) disappear, as
T → ∞ for any r. The condition for the applicability of this theorem is the convergence of
the integrals ∫ ∞

0
k2dk

∣∣∣∣∫ dΩ̂ A−(k) eikr
∣∣∣∣ and

∫ ∞

0
k2dk

∣∣∣∣∫ dΩ̂ A+(k) eikr
∣∣∣∣, (19)

where dΩ̂ means the integral over the angles of the vector k. Taking into account the
convergence of the energy integral (15), the requirement of convergence of the integrals in
(19) does not seem excessively strict.

The second term on the right-hand side of (17) also disappears for T → ∞ . Thus, for
a fairly large class of pulses in free space, we obtain

SE(r) = lim
T→∞

∫ T

−T
E(r, t)dt = 0, (20)

and consequently, relation (3) is satisfied. Hence, we can summarize this section by saying
that each of the field projections of the free EM pulse of a finite energy is a sign-variable
function of time, the integral of which is zero at any point in space.

4. Conclusions and Discussion

So, the answer to the question in the title of the article is no. Free EM pulses are
bipolar. Moreover, they satisfy Bessonov relation (3), i.e., their S-function (1) is equal to
zero everywhere. According to the duality principle (see [24]), this relation is also valid for
the magnetic field H(r, t). The validity of what has been said is restricted by the conditions
that determine the applicability of the Riemann–Lebesgue theorem for integrals of the
vector potential (18).

Violations of relation (3) in the published exact solutions of the free Maxwell equations
are not known to us (see [4,11,25]). However, we also failed to prove the convergence
of integrals in (19) for an arbitrary electromagnetic pulse of finite energy. Therefore, the
possibility of the existence of strange and unipolar pulses in a vacuum, although quite
exotic, remains. This will happen if, despite the finiteness of the pulse energy (13), the
conditions for the validity of the Riemann–Lebesgue theorem are broken; that is, the
integral in (19) diverge. Note that the analysis of the radiation field of the laser medium in
a cavity [14], as well as the radiation of charges performing a finite motion [12], showed
the validity of relation (3).

Table 1 shows the classification of EM waves in terms of relations (2) and (3), as well
as the terminology introduced in Section 1. Table 1 yields the conclusion that rigorous
modeling of unipolar (single sign) EM pulses and their applications requires accurate
consideration of both the nature of the source and the propagation of the wave, since both
factors affect the time shape of the pulse at the point of interest.
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Table 1. Bessonov characteristic SE(r) and classification of EM pulses from moving charges (2nd
column) and EM pulses travelling in free space (3rd column).

EM Pulses from Moving Charges [12] Free Space EM
Pulses (This Paper)Charge Motion Bounded Unbounded

SE(r) 0 �= 0 0 0

usual or strange usual strange usual usual

bipolar or
unipolar bipolar both are

possible bipolar bipolar

The 3rd column in Table 1, like the rest of the article, deals only with exact, finite-
energy vector solutions to EM wave equations in free space. Important results beyond
these restrictions (e.g., nondiffracting waves, scalar and 2D wave-packets, etc.) can be
found in [26–29].

In conclusion, we note the coexistence of two properties inherent in EM pulses of
finite energy. On the one hand, this is the extreme variability in space and time associated
with STC, and on the other hand, the equality to zero of the S-function in the whole space is
proved here. The latter can be used to control the accuracy of EM and QED computations
with finite energy pulses (compare with [30,31]).
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1. Introduction

The self-simulation hypothesis (SSH) [1] posits that emergence is a core element in the
engine of reality, down to the underlying code—considering spacetime and particles as
secondary or emergent from this code. In 1938, Dirac [2] addressed the internal structure
of the electron and how it affects the spacetime structure itself. Feynman later evolved this
thinking to point out that a point of spacetime is like a computer, which lead Finkelstein
to propose that reality is a code in action in his 1969 spacetime code paper [3]. Wheeler
later wrote an interesting synthesis of this with ideas like the participatory universe as a
self-excited circuit, law without law and it from bit [4–6]. Second test edit. This information
theoretic line of thinking can lead to many ways of addressing the conundrum of quantum
gravity and unification physics problems. We focus here on the specific perspective that a
notion of pre-spacetime code or language in action leads to the physics and metaphysics
idea of reality as a self-simulation [7–9] and requires a new principle to drive the evolution—
the principle of efficient language (PEL) [1,7,9–11].

To address emergence of physical observables from an information theoretic frame-
work governed by the PEL, we need to set up a concrete, constrained and rigorous math-
ematical substrate. We will consider the Three-Dimensional Penrose tiling quasicrystal
(3DPT), also known as Amman or Ammann-Kramer-Neri tiling, projected from the Z6
lattice [12–14]—a generalization of the two-dimensional Penrose tiling [15]. On this point
set and associated tilings, we implement a state sum model [16,17], where the states are
given by objects inherent in the quasicrystalline geometry. We consider geometric realism
discussed in Section 2 as a new paradigm for state sum models following Einstein’s pro-
gram of geometrization of physics [18]. As we will see, quasicrystals are a natural substrate
for geometric realism, where self-referential geometric symbols [1,19] are given from first
principles for both kinematics and dynamics. Details on quasicrystals will be presented in
Section 3. Essentially, quasicrystalline structures [20–24] are structures that exhibit a new
kind of order—aperiodic order—which lies between disorder and periodicity. Statistical or
quantum mechanical models defined on lattices can be generalized in a straightforward
manner to quasicrystals [25]. The choice of Z6 root lattice and its associated 3DPT qua-
sicrystal provides a toy model for the conformal symmetry associated with the D6 root
system and the grand unified gauge theory associated with the exceptional Lie algebra
E8. Both D6 and E8 have similar quasicrystals associated with them [26–28]. The gauge
symmetry represented in the root system is transformed to a 3D quasicrystal network,
working as a toy model for quasicrystalline pre-spacetime code.
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Quasicrystals come with a natural non-local structure called an empire [29–32], which
can be considered as their defining property. The geometrical state sum model (GSS)
proposed will make use of the concept of empire overlaps (called hits in this paper) built
upon the rules driving the dynamics, which we will discuss in Section 4. One element that
implements the PEL is that an empire position can save resources in the GSS evolution.

A simple implementation of GSS is given in Section 4.1 with a new kind of cellular
automaton game of life, where different patterns emerge. Those patterns then act back
on the more general GSS model in the form of observables discussed in Section 4.2. In
Section 5, we conclude with some discussion about the notion of emergence within a GSS
model that implements the PEL.

2. Geometric Realism

The construction of general relativity (GR) marked a breakthrough for the so-called
program of geometrization of physics [18], which basically says that one should start with
geometry to understand the physical world—there should be a one-to-one correspondence
between physical quantities and geometric objects. Modern physics, starting with Einstein
himself, follows a path to apply that idea to generalize GR by going beyond Riemannian
manifolds (adding to the usual curvature variable, the torsion and nonmetricity variables).
This is in essence Riemann’s program as a unified view of geometry. Some variations of this
approach include elements from Klein’s program, which focus on symmetries and their
associated groups. However, there is another path that we will consider in light of recent
developments in theoretical physics, which brings the lesser known geometric program
view of Fedorov/Delone that can address both local and global geometry when considering
discrete systems [21]. For example, a problem that can be easily solved by this program is
which shapes tile space and how. The idea is that regular point systems are determined by
local settings. Global regularity results from the structure of local configurations.

Consider a clear route to the quantization of GR that is given by loop quantum gravity
(LQG) [33], where the classical 4-dimensional manifold is foliated in 3-dimensional (3D)
spacelike surfaces and the metric field gμν is decomposed in terms of connections and
tetrads, which, in the 3D foliation, reduces to 3D-connection and the triad field. Then the
connection and the triad are promoted to operators in a Hilbert space. This quantization
procedure leads to the result that the main kinematic objects are spin network states
spanning the Hilbert space. The dynamics can be achieved by the usual path integral
procedure and leads to spin foam transition amplitudes. These objects can be described
graph-theoretically with SU(2)-spin quantum numbers labeling the edges of the graphs
and another group or algebraic SU(2) data at the vertices. The spin foam path integral
of quantum gravity can be understood as a sum over spin network states. In summary,
the main object after the path integral quantization of GR is a sum over states of the
quantum geometry. In fact, this formulation is a cornerstone of modern physics. Making
use of the similarity of the path integral in quantum field theory and the partition function
in statistical mechanics [34], many concrete computations of physical observable with
different models, from Ising models to lattice gauge theory, condensed matter systems [35],
and quantum gravity, is done with a state sum over discrete lattices or graphs. So, the other
path to geometrization of physics is to address the geometry of state sum models at the
quantum or statistical mechanics regime.

Geometric realism will dictate for us that the labels, for example a spin state ±1, that
appear in those graphs, quasicrystals or lattices, must have a one-to-one correspondence
with the underlying discrete geometry, in our case, the quasicrystal one. That is, the labels
are directly related to the geometric building block of tilings. To be more concrete, let us
consider the state sum object

W�(sb) = N�∑
s

∏
e

Ae(s)∏
v

Av(s), (1)
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In spin foam models or some lattice gauge models, W�(sb) is called the quantum
transition amplitude, or the partition function Z� in some Ising like models where one
sum also over the boundary states sb. In Equation (1), N� is a normalization constant
that depends on the discretization �. There is weight or amplitude (Weight if W� is
considered as a partition function or quantum amplitudes in a path integral picture.) Ae
for each edge of � and weight or amplitude Av for each vertex. The sum goes over
all the allowed configurations of states s. Usually Ae and Av are built from the group
and algebraic theoretic implementation of symmetries involved in the specific problem.
Geometric realism requires that Ae and Av are built from geometry of�.

Let us consider some examples of standard state sum models:

• Ising models

The Ising model, constructed over a lattice� can be described using only weights Ae
given by

Ae = eβgs(e)g−1
t(e) (2)

with the sum over spin states s = ±1, gs(e) representing the spin at the starting vertex
and gt(e) representing the spin at the end vertex of every edge e. The β coupling constant
is proportional to the inverse of temperature. General Ising models can be achieved
by allowing the states, s, to take values in a large range of integers 0, 1, ..., n. Further
generalization can be considered by allowing the edge weights to locally vary as a general
function of the states gs(e)g

−1
t(e), Ae = f (gs(e)g

−1
t(e)).

• Lattice gauge theory (LGT):

LGT gives a non-perturbative formulation of the path integral quantization of gauge
theories such as the standard model of particle physics. With LGT one gives up on Lorentz
symmetry and works with gauge symmetries at the vertices of the lattice �. Gauge
invariant quantities are given by Wilson loops made up of edges around a two dimensional
face of�, g f = ∏e∈ f ge. For continuous groups of symmetry, the sum in Equation (1) is
converted on an integral that goes over the infinite of group elements (gauge) symmetry ge
and the products of amplitudes on edges and vertices are converted to a product over faces

A f = f (h f ) (3)

where the amplitude functions A f are class functions on the group of symmetry ( f (ghg−1) =
f (h)). The explicit form of the function f depends on the specific gauge symmetry model.
For example, for Yang-Mills theory, is given by

A f = eβ ∑ f R(tr(U(h f ))) (4)

where U is a unitary finite dimensional matrix representation of the group, β here, is a
coupling constant. Another example is given by topological models where A f takes the
simpler form

A f = δ(h f ) (5)

where the delta function δ is taken with respect to the group measure.

• Spin foam

In spin foam models, � is a triangulation of spacetime manifold or its dual. Spin foam
models also have amplitudes associated with faces (or edges), usually give by Equation (5),
but also amplitudes Av associated to vertices and constructed from more complicated
group invariant objects. In LQG, the group of symmetry is given by the little group (SU(2))
of spacetime symmetries (SL(2, C)). A generalization of spin foam for quantum gravity is to
include color charge symmetry (SU(3)), within the weights Ae and Av in Equation (1). This
can be done by defining the weights from invariants of SU(2)× SU(3) [17]. When W�(sb)
depends only on the boundary states, the spin foam is topological and the amplitudes are
constructed from topological invariants [16].
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State sum models are built from algebraic and group-theoretic elements. Even the
simple Ising model can be understood as a discrete Z2 model. The underlying group and
algebraic structures have a geometric correspondence. Geometric realism demands the
values on the GSS to come from the geometry, more concretely from tiling of�, which, for
the specific model presented in next sections, will be a 3D quasicrystal. The states, coupling
constants, potentials, weights and amplitudes themselves, will be determined by geometric
objects as lengths, volumes and volumetric intersections.

3. Kinematics: The 3D Quasicrystal, Empire and Hits

The construction of the quasicrystal of interest here, the 3DPT, will make use of the
canonical cut-and-project method [12,21]. To construct the 3DPT, �, we consider the
canonical hypercubic lattice Z6 in Euclidean space R6. Let ε be an irrational 3-dimensional
subspace of R6 and ε⊥ be its orthogonal complement. Let P be the orthogonal projector
onto ε and P⊥ onto ε⊥. Now we fix a compact subset K of ε⊥, called the cut-window. The
canonical choice for the cut-window is the projection of the Voronoi cell of Z6 to ε⊥. The
Voronoi cell contains one lattice point, which lies at its center. Unlike the unit cells of lattices,
these cells are unique and their symmetry groups are the stabilizer groups of the lattice
points. The 3DPT quasicrystal � is constructed by projecting points λ ∈ Z6 to ε, P(λ),
such that P⊥(λ) lies inside K, the acceptance domain. Z6 lattice points are connected by
the unit length edges. If two points λ1 and λ2 are connected in Z6 and P⊥(λ1) and P⊥(λ2)
are accepted, then P(λ1) and P(λ2) are connected in �. A vertex vi can have different
numbers of neighbors, here denoted vij, with j variating from 1 to the valence of vi (The
possible valences for any vertex at some 3DPT are: 4, 6, 8, 10, 12, 14, 16, 20.) The geometric
lengths of the connections are labeled as lij. A tiling T of � is a set of possible points
and connections given by this procedure. Different tiling configurations can be generated
by doing a shift on P⊥(λ) in ε⊥ before checking if P⊥(λ) lies inside K, so-called γ⊥. The
shift γ⊥ can be used to generate different tilings and it is a continuous parameter that can
be used to make the quasicrystal dynamic. A specific 3D tiling T of� has two different
rhombohedral prototiles building blocks with 10 orientations each. Each vertex vi of one T
can be associated to different configurations of prototiles (up to 20 rhombohedral prototile
around one vertex vi). There are 24 possible different vertex types (VT), which appears
with different frequencies and valence in a tiling. Most of the 24 VT have valence 20, but
those with lower valence appear with more frequency in a tiling. See [12] for the explicit
form of VT and its frequencies. A small tiling and 3 of the 3DPT VTs are shown in Figure 1.

Figure 1. 3DPT tiling and some VTs.

The empire is an important property of quasicrystals that arises, in context, within the
empire problem [29–32]. A quasicrystal itself arises in context of the the ancient problem
of tiling space in an aperiodic way. To clarify the use of the 3DPT, we can think of �
generated from K as a possibility point (tiling) space (PS) where points (or VT) can be
turned ON or OFF. Or we can think of� as the selected points in Z6 but not projected yet.
We are interested in project subsets of those points, the empires, which we define below.
The empire problem asks what other vertices or VT of a quasicrystal tiling is forced to be
ON if a specific vertex or VT is chosen to be ON—it is projected or actualized. By defining
the empire problem and its solutions, one sets the kinematics of a given quasicrystal. For
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a specific vertex vi in� there is associated a specific VT (from the 24 possible ones). We
can define a window E ⊂ K associated to any VT given at some vertex vi, and so, the
empire of a point P(λi) of�will be the sub-set of� such that P⊥(λ) lies also inside E. The
cut-window K can be volumetric partitioned in sub-windows E, which can overlap. The
dynamic quasicrystal can be generated by projecting empires. Empires capture the non-
local aspect of quasicrystals [36] in the sense that when a vertex vi is ON, its empire—the
whole set of points defined by window Ei—is also ON. An additional question can be asked
now: If two vertices v1 and v2 and their empires are projected, what is the empire overlap
between them? The answer is that a measure of the overlap of points sets of different
empires is given geometrically by the overlap of empire windows E1 and E2 inside the
cut-window K. We call this overlap the hit H12. Consider the empire given by E1 to be
�E1 ⊂ � and for E2 to be�E2 ⊂ �, then H12 = �E1 ∩�E2 or in terms of vertex window
polytope intersection for any vi and vj we can compute a normalized measure of overlap by

Hij =
IVol(E1, E2)

IVol(E1)
(6)

where IVol is a function that gives the volume of the intersection of different polytopes,
computed here numerically, and if it has only one polytope as input, it returns the volume
of that polytope. Computing hits Hij between a VT at vi and different vj positions in one
tiling and then changing vi gives a hit map distribution for the specific tiling. One typical
example is shown in Figure 2. In what follows we will consider only nearest neighbors Hij.

Figure 2. A typical hit map for the 3DPT quasicrystal. We consider a list with 1000 points of a 3DPT
tiling and compute vertex window polytope overlap between them, Equation (6).

With the main construction of the 3DPT presented, we can establish that the main
kinematics variables of interest are the hits Hij between vi and vj, the length lij of the
connection between vi and vj and the volume Vi of the VT polytope associated with vi.
We can turn now to the implementation of the dynamics aspects of the GSS W�(sb),
Equation (1), to be done in the next section.

4. Dynamics: Geometric State Sum Model and the PEL

To implement dynamics of the GSS, we consider the state sum in Equation (1). Follow-
ing the ideas from the previous sections, the weights Ae for an edge linking vertices vi and
vj will be given by

Ae = lijHij, (7)
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where the states given at each edge sij = Hij are geometric quantities, specifically, volumet-
ric polytope intersections. The length lij plays the role of the coupling constant or inverse
of temperature. We can group these edge states by summing over nearest neighbors vij

Avi = ∑
j

lijHij. (8)

We will add an additional term to each vertex vi, called the hit potential Yi, which
takes into account the PEL by implementing a look-ahead algorithm [37]. Consider a PS
tiling T with only the central vertex vc and its empire being ON, which means that the
vertex window polytope Evc is being used to select the possible points of the Z6 that can be
projected to the cut-window K. Now we will probe the quasicrystal possibility space�
with random walks of the vertex type at vc using rules based on Hij. So, we start on step 1,
with vc and its empire being ON. In step 2, one of the neighbors vcj will be ON according to
a non-deterministic rule R(Hij), which we will discuss in Section 4.2. Then we repeat these
steps until step N. This defines one animation A1. Next, we repeat this procedure, getting
a new animation A2, and so on until an animation AM, so that we end with M animations,
each with N steps. We call these animations possibility space random walks (PRW). The
hits potential Yi is defined at each vertex vi as the number of PRWs that use that position.
For consistency we will add a volume weight

Yi = ViYi, (9)

where Vi is the volume of the VT polytope at vi. It encodes the coupling lij there. The
hit potential comes from the idea of minimizing the cost of projection resources to turn
ON points on�. The vertices that have more PRWs going over them have more potential
to save projection steps to generate animations for the look-ahead algorithm (or here:
Look-savings-ahead algorithm). As there are more walks going over those positions they
can be part of more possible emergent patterns. The hit potential can be defined from
weights of entire animations. We can count hits and associate an integer to one animation
Am by counting how many empire vertices the PRW of that animation encounters. These
vertices are already ON and don’t need to be turned ON on the PRW. The hits Hij and hit
potential Yi associated to a tiling Tk define one valid configuration of states given by

WTk = NTk ∏
i

Ak
vi
Y k

i , (10)

where the index k means that the geometric quantities are computed on the specific tiling
Tk. The defining object of interest for the GSS is then, in a partition function form,

W� = N�∑
Tk

WTk , (11)

where the sum goes over the different allowed configurations, implemented by finding
new allowed tilings. One way to find new tilings, which involves changing only the states
Hij and not the couplings lij or Vi, is by using the shift γ⊥. To change the couplings lij or Vi
from quasicrystalline first principles, one can use inflation [27], which requires changing
the size of the windows. The state sum can also be defined as a transition function for state
Hab that fixes a subset of�, where Hab can be two disjointed subsets so that maintaining
both fixed, and summing over the remaining part, would give the transition function
between the states

W�(Hab) = N� ∑
Tk(ij/ab)

WTk , (12)

where the notation (ij/ab) indicates that all tilings and their accompanying Hij are gener-
ated, but with Hab remaining fixed. This implementation is given by finding values of the
shift γ⊥ that generate new tilings sharing a fixed configuration.
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4.1. A New Kind of Game of Life in Quasicrystals

A concrete implementation of a dynamic GSS Equation (12) is given in the form of a
cellular automaton game of life (GoL). In this case we let the quasicrystal tiling space�
evolve according to local rules, which the same nature of R(Hij) we use to generate the hit
potential and which we discuss below.

Classical cellular automata are defined on regular lattices. The rules depend on the
state of each site and its neighbors. The neighborhood structure looks the same across the
lattice. For GoLs [38–42], which have outer totalistic cellular automaton rules, the next state
of a site depends only on its current state, and the total number of neighbor sites in certain
states. In 2-dimensional quasicrystalline GoLs [43–45] the neighborhoods are generalized
and not the same for each site, but the dynamics are implemented with similar rules to the
original GoL. GoL rules on Penrose tilings still have complex behavior.

The generalization to 3D that implements the GSS model is given by a 5-tuplet
G = (�, T, H, v,R) with elements as follows. � is a 3DPT; T includes the initial tiling
condition (where at least one VT is ON) and the set of steps to update �—we usually
consider 1000 steps for 5000 3DPT point set; H is the set of states generalized to be a real
number between 0 and 1 according to Equation (6); v = vij are the neighbors of a vertex vi,
which vary between 4 and 20—we note that when a vertex is ON the whole VT associated
to it is considered to be ON, and also that sometimes we can consider the point set for
evolution to have only a specific VT instead of the full quasicrystal point set;R are the new
local adapted rules for this kind of GoL. The rules measure empire overlap: If there is too
much overlap with ON neighbor VTs then it turns or stays OFF (overpopulation condition);
if there is too little overlap it also will be OFF (under-population condition); but if there
is the right value of overlap with the mean value of all vij, then the current vertex will be
ON. Good values for the normalized Avi , Equation (8), are found to be between 0.7 and
0.9. We also consider the information entropy associated to hits to drive the evolution as in
Equation (14)—in this case the VT will be ON if its information entropy is close enough of
the mean of its neighbors, which are ON (one additional option with this kind of GoL is
that due to the non-local properties of empires we can allow the rules to be applied to the
whole quasicrystal and not only with the connected vertices of a VT, which we will leave
for future investigations).

These dynamics lead to different emergent patterns, most of which are oscillation
patterns as in Figure 3. There are also different kinds of propagation as in Figure 4. However,
varying the rules opens up possibilities of more complex dynamics, which are open for
future systematic investigations, but which may also encounter problems of optimization
of image processing.

Figure 3. One 3DPT GoL oscillation pattern. The pattern is a oscillator period 2 and the two frames
are shown.
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Figure 4. A recurrent pattern propagation for a 3DPT GoL made mainly from the VTs from Figure 3.
(1–8) show eight frames of the dynamics where the pattern highlighted moves from left to right.

4.2. GSS Observables and Emergence

In light of more general dynamics, we can interpret Equation (12) as one observable on
a GSS model. It is a fixed pattern over the space of geometric states. The specific emergent
pattern and its properties can be addressed with Equation (12). The hit potential Yi can,
in fact, be considered as derived from one observable VT that is ON and that is following
a family of PRWs. Let us consider the rules R(Hij) in this context. The rules are used to
guide the random walks to probe the possibility space and then define the hit potential.
What is moving in the quasicrystal, or, what are those VT, which are being turned ON or
OFF (being projected/actualized or not)? A GSS model aims to describe pre-spacetime
physics—the Planck scale quantum gravity regime. This regime is considered to have the
concept of holographic matter [46–49], which is proportional to information entropy

|Ivi − Ivj | = �Iij = αm, (13)

with α a constant of proportionality and m the mass crossing some horizon. In this Planck
scale regime picture, each connection is considered to be crossing a holographic horizon
and information is the stuff flowing between horizons and to be conserved. The local
information entropy is given by

Ii = −∑
j

PijlogPij (14)

with Pij =
Hij
Ni

. Different rules can be implemented under I. The above motivation leads
us to the notion of local conservation of I. We simply let the PRW, starting at the center of
a tiling, be guided by a probability distribution constructed by choosing each successive
position from a local subset whose values of I are within some selected range of the current
value of I, which sets the non deterministic look-saving-ahead algorithm. The resultant
hit potential Y(r) as a function of the distance from the center is given in Figure 5 for
1000 animations over 1000 steps.

The specific form presented in Figure 5 has a mean value that drops with the inverse
of distance away from the center but with a Gaussian contribution close to the center. In
general its form depends on the distribution of VTs on a specific tiling, the local rules and
random walk properties. We can also consider an additional second PRW starting at a
different position and allow the Y(r) to count overlap between the two walks—a synergistic
effect [50] on the whole emergent hit potential not accounted for on the underlying GoL.
See Figure 6.
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Figure 5. PRW hit potential.

Figure 6. PRW hit potential from two patterns evolution starting at different positions with one
at origin.

Note that we can use the PRWs to evolve� determining H, v and evenR of the GoL
G. We can also allow local rules at site i to be determined from the full weights AviYi. This
generates a more sophisticated stratified recursive game

Gn+1 = G(Gn). (15)

As a result of the GSS evolution, we consider a candidate for an order parameter,
which is analogous to magnetization in spin systems,

HT (l) =
1
NT ∑

i

1
Ni

∑
j

Hij(lij), (16)

where l represents the length inflation scale that defines lij. As the cut-window K gets
smaller, the points in the projected space P(λ) get farther way from each other and in the
perpendicular space the points P⊥(λ) get closer. lij and Vi get bigger but the intersection
of vertex window polytopes in the perpendicular space also gets bigger, approaching 1.
As a result, over many inflations, we see that there are two dominant regimes. One is
“disordered”, where there is not much overlap of vertex window polytopes and there are
more local variations so that the information entropy rules depend on hits. The other
regime is “ordered”, where the overlaps approach 1 and therefore the information entropy
rules should depend only on the vertex valences and not on hits. See Figure 7.
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Figure 7. Average hits HT (l) evolution under inflations.

Different emergent dynamics can be considered. For example, we can set a preferred
direction to follow the rules and also consider the central hit potential, which leads to
interesting curving path patterns as in Figure 8.

Figure 8. Evolution considering local information entropy conservation, initial preferred direction
and the central hit potential.

As a further result, we consider an oscillation pattern around the center of a tiling with
the large symmetric VT there. There are 12 of these same VTs around the center making the
geometry of an icosahedron. In each frame step only one of the 12 VTs is ON. This gives a
notion of an emergent quasiparticle (the whole icosahedron) with internal structure (the
12 symmetric VTs). See Figure 9.

Figure 9. Central icosahedron oscillating pattern.

With this object we can consider a 4-dimensional dynamic by considering the influence
of the empires of those 12 VTs at arbitrary 3D positions on�. The oscillation on the 12 VTs
plays the role of time. We consider a vertex P(λ1) around the icosahedron. The VT
associated to that position depends on the γ⊥ tiling Tk, VTk

1 = VT(P(λ1)). By shifting the
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projections by specific γ⊥ values, we can change tiling k and VTk
1 , preserving the oscillating

icosahedron pattern at the center. Figure 10 shows the cut-window K (the large window),
the empire vertex window for the icosahedron (the middle window), and the small window
limiting the available shifts.

Figure 10. Available points for shifts γ⊥ presented inside the small window.

So for each P(λ1) we compute Hij, where i refers to one of the 12 central VTs and j
to VTk

1 . We average this computation over a large number of tilings Tk and over 12 cycles
of the central icosahedron, getting H̄ij, and then we go to a new position. We define the
observable of interest to be

O(lij) = log(lij H̄ij), (17)

which gives a different notion of emergent potential as shown in Figure 11. This one grows
with distance while the hit potential drops.

Figure 11. Potential due to composite quasiparticle oscillating at the center of the tiling.

As a last result, we consider how information entropy grows with the number of steps
for patterns made of different VTs. We define the hit section (hs) to be a certain number of
the same VTs within some distance r from the center of some tiling. We compute Hij, where
i refers to a certain VT at the center of this tiling and j refers to the same VT at different
position p on that tiling, p < r, with j ∈ hs,

Ii(r) = −
hs(r)

∑
j

PijlogPij. (18)

The result is that Ii(r) distinguishes the patterns made of different VTs, which should
be proportional to the frequency of appearance of the respective VTs, see Figure 12.
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Figure 12. Information entropy order parameter for different VTn, where the integer n number the
3DPT VTs and we show only 5 of the 24. hs grows different with distance for the different VTs.

5. Discussions and Outlook

In this paper, we discussed state sum models under geometric realism. The SSH
paradigm is looking to understand the emergence of spacetime and matter from a pre-
spacetime code that takes into account stratification and recursion. GSS is discussed as a
framework in this direction. State sum models implement the principles of locality and
superposition. GSS adds geometric realism at the state level and the PEL for dynamics.
With the GSS formulation, we made concrete the idea that emergence happens due to
structure and not necessarily randomness. In the current implementation, the structure is
given by a 3D quasicrystal with aperiodic order projected from a 6-dimensional lattice. By
having dynamics where different points can be projected or actualized at different steps
with their empires, quasiparticle patterns emerge in a simple GoL simulation as presented
in Section 4.1. The patterns that emerge are built from known quasicrystal structures, the
VTs. A stratified recursive feedback loop can then be established between, on the one
hand, the quasicrystal level of projections, non-local empire overlaps and local information
entropy rules and, on the other hand, the emergent level of quasiparticle patterns made
of VTs. This is expressed as a potential derived from many evolutions of PRWs going
over the underlying quasicrystal points, generating an emergent pattern. Overlap of PRW
positions or PRWs and empire vertices is understood as potential optimization; it gives an
opportunity to economize resources, which in this case are projections from 6 dimensions
to 3 dimensions. This implements the PEL by allowing the simulation to express more
emergent patterns over less projection step resources. The PEL is implemented on the
structure of PRWs, which are considered here as virtual walks to probe the possibility
space of walks. It aims to create “cognitive” structure, as in artificial neural networks, so
that the simulation itself can decide the best sequence of movements for the emergent
pattern. This kind of structure under the emergence paradigm within complex systems
is what is observed in general: The emergent structure, with its new emergent properties,
always occurs under the dynamics of a large underlying number of building blocks that
have structure governing their dynamic interactions. This is seen from atoms to DNA to
neurons to stars and galaxies.

In this work, we investigated some general code theoretic properties of general emer-
gent patterns on the GSS. For future investigations, we aim to derive the physical emergent
laws governing the dynamics of the emergent patterns, making more concrete the emer-
gence of spacetime and matter. An important hint in this direction is that the cut-and-project
method used to derive the quasicrystal makes clear the connection with the higher di-
mensional lattices. The main quasicrystals of interest are derived from the so-called root
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lattices of Lie algebras. Lie algebras and groups are the language of symmetry and so a
core element in fundamental physics, as in quantum mechanics. The dynamics derived
in this paper can be thought of as a dynamics that tails back to the root system of Lie
algebras [17,27], suggesting a generalization from Z6 to D6 and E8.

One different consideration to be addressed for GSS models is the computational
efficiency on current classical computers. The values on usual state sum models come
from algebraic or group-theoretic objects. There are more computational costs to obtain the
values from the geometry.

Author Contributions: Conceptualization, M.A., F.F. and K.I.; methodology, M.A.; software, M.A.
and D.H.; validation, F.F.; formal analysis, M.A.; investigation, M.A., F.F. and D.H.; writing—original
draft preparation, M.A.; writing—review and editing, M.A.; visualization, F.F.; supervision, M.A. and
K.I.; project administration, K.I.; funding acquisition, K.I. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: We acknowledge the many discussions had with David Chester, Raymond As-
chheim and Richard Clawson and we thank them for their generous feedback in editing discussions.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

SSH Self-simulation hypothesis
PEL Principle of Efficient Language
3DPT 3-Dimensional Penrose Tiling quasicrystal
PEL Geometrical State Sum (GSS)
GR General Relativity
LQG Loop Quantum Gravity
3D 3-dimensional
LGT Lattice Gauge Theory
VT Vertex Type
PS Possibility Space
PRW Possibility Random Walk
GoL Game of Life
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Abstract: This article reviews the electrodynamic force law of Wilhelm Weber and its importance in
electromagnetic theory. An introduction is given to Weber’s force and it is shown how it has been
utilised in the literature to explain electromagnetism as well as phenomena in other disciplines of
physics, where the force law has connections to the nuclear force, gravity, cosmology, inertia and
quantum mechanics. Further, criticism of Weber’s force is reviewed and common misconceptions
addressed and rectified. It is found that, while the theory is not without criticism and has much room
for improvement, within the limitations of its validity, it is equally as successful as Maxwell’s theory
in predicting certain phenomena. Moreover, it is discussed how Weber offers a valid alternative
explanation of electromagnetic phenomena which can enrich and complement the field perspective
of electromagnetism through a particle based approach.

Keywords: Weber’s electrodynamics; Weber force; field theory; electromagnetism; electrodynamics;
physics of elementary particles and fields; magnetic field; electric field; electrical engineering;
fundamental physics

1. Introduction

Wilhelm E. Weber formulated a generalised electrodynamic force law that was first
published in 1846, only a few years prior to Maxwell’s first works on electromagnetism.
However, Weber’s direct-action-at-a-distance theory is little known today and often dis-
missed a priori and without further thought in the scientific community, on the basis that it
is old and superseded or taken as disproven. Whilst there are historic reasons that led to the
dismissal of Weber’s theory and the success of Maxwell-Lorentz field theory, there seems
to be some common misconceptions surrounding the theories and the existing criticism.

This manuscript aims to give a balanced and comprehensive review about Weber’s
theory and show that it’s dismissal is premature. Criticism will be reviewed and refuted
where appropriate, and for the sake of context it will be shown that field theory is not
without criticism either. After analysing the achievements of Weber’s electrodynamics
through its use in the literature and how it has been applied not only to electromagnetism,
but several branches of physics, it will eventually be shown that both electromagnetic
theories have great commonalities and they can be regarded as complementary rather than
competing. Weber is shown to provide a viable alternative description of electrodynamics,
and whilst it is not without limitations and has bounds of validity, as will be discussed, it is
argued that neither theory is perfect and that their similarities far outweigh their differences.

Some have commented that the current state of physics is in a crisis, and that “new
physics” is required to resolve current puzzles in particle physics and supersymmetry [1–4].
However, it may be possible that a re-examination of the foundations (i.e., electrodynamics
in this case) can lead to new perspectives and insight which may guide and inform new
solutions. It is argued that further pursuit and research of Weber electrodynamics can offer
epistemological, physical and practical value.
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Foundations 2022, 2

2. Fundamentals of Weber’s Theory

Weber’s electrodynamic force is introduced to provide a mathematical overview and to
familiarise the reader with Weber’s direct-action approach as an explanation for electricity
and magnetism. Weber’s force describes the interaction of two point charges and was
postulated before the electron was even discovered. Hence, it was originally based on
Fechner’s hypothesis that a current consists of equal amounts of positive and negative
charges moving in opposite directions, which was the conventional wisdom at the time,
as scientists imagined so called “electrical fluidae” moving through wires and circuits when
subjected to electromotive forces. Fechner’s hypothesis will be addressed separately (see
Section 3.3) and it shall be noted that Weber’s theory can still be used when we assume that
only electrons are charge carriers in motion responsible for conduction currents in circuits.
With this restriction lifted we can now explain the general workings of Weber’s theory.

First, let us consider two charged particles, q1 and q2, in a Cartesian coordinate system
(x, y, z), at their respective positions�r1 and�r2 (see Figure 1).

Figure 1. Two charged particles q1 and q2 in a Cartesian coordinate system (x, y, z) at positions�r1

and�r2. Their relative position�r12 is a vector pointing from q2 to q1.

The position of these particles, which are time dependent spatial coordinates, can be
expressed by

�r1 = x1(t)x̂ + y1(t)ŷ + z1(t)ẑ, �r2 = x2(t)x̂ + y2(t)ŷ + z2(t)ẑ, (1)

where we have the unit vectors:

x̂ =

⎛⎝ 1
0
0

⎞⎠, ŷ =

⎛⎝ 0
1
0

⎞⎠, ẑ =

⎛⎝ 0
0
1

⎞⎠. (2)

Their relative position is the difference between�r1 and�r2:

�r12 =�r1 −�r2 (3)

and a distance r12 given by the magnitude of�r12

r12 = |�r1 −�r2| =
√
(x1(t)− x2(t))2 + (y1(t)− y2(t))2 + (z1(t)− z2(t))2. (4)
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With this, the unit vector along�r12 can be defined as

r̂12 =
�r12

r12
(5)

and both�r12 as well as r̂12 are pointing from q2 to q1. The relative velocity �v12 and rela-
tive acceleration�a12 between the two charges can be calculated as first and second time
derivatives of the relative position, Equations (6) and (7), respectively:

d�r12

dt
= �v12, (6)

d2�r12

dt2 =
d�v12

dt
=�a12. (7)

To arrive at the time derivative ṙ12 of r12 the chain rule is utilised:

ṙ12 =
dr12

dt
=

d
dt
[(x1(t)− x2(t))2 + (y1(t)− y2(t))2 + (z1(t)− z2(t))2]

1
2

=[2x1(t)ẋ1 − 2(ẋ1x2(t) + ẋ2x1(t)) + 2x2(t)ẋ2 + 2y1(t)ẏ1 − 2(ẏ1y2(t) + ẏ2y1(t)) + 2y2(t)ẏ2

+ 2z1(t)ż1 − 2(ż1z2(t) + ż2z1(t)) + 2z2(t)ż2]

· 1
2
√
(x1(t)− x2(t))2 + (y1(t)− y2(t))2 + (z1(t)− z2(t))2

=r̂12 ·�v12.

(8)

By analogy, the same procedure can be applied to arrive at the second time derivative,
or the quotient and product rule along with the substitutions u =�r12, v = �v12, w = r12 can
be used: (u · v

w

)′
=

(u′v + v′u)w− w′uv
w2 , (9)

r̈12 =
d2r12

dt2 =
dṙ12

dt
=

[�v12 ·�v12 − (r̂12 ·�v12)
2 +�r12 ·�a12]

r12
. (10)

With the help of these definitions, we can now examine Weber’s potential between the
charges in question which will eventually lead us to Weber’s force. It was two years after
Weber introduced his force law that he succeeded in showing that it could be derived from
a potential, and this takes the form:

U =
q1q2

4πε0

1
r12

(
1− ṙ2

12
2c2

)
. (11)

To arrive at the force, the principle of virtual work is invoked which states

�F21 = −r̂12
dU
dr12

or �v12 · �F21 = −dU
dt

.
(12)

(Note that the principle of virtual work by definition depends on a time dependent trajec-
tory.) Now applying Equation (12) to (11) gives Weber’s force law in the following way:
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�F21 = −r̂12
dU
dr12

=
q1q2

4πε0

r̂12

r2
12

(
1− ṙ2

12
2c2 +

2r12r̈12

2c2

)

=
q1q2

4πε0

r̂12

r2
12

(
1− ṙ2

12
2c2 +

r12r̈12

c2

)

=
q1q2

4πε0

r̂12

r2
12

[
1 +

1
c2

(
�v12 ·�v12 −

3
2
(r̂12 ·�v12)

2 +�r12 ·�a12

)]
,

(13)

where again the chain rule is necessary to derive the expression dṙ2

dr correctly,

dṙ2

dr
=

d(ṙ(t))2

dt
dt
dr

= 2ṙ
dṙ
dt

dt
dr

= 2r̈. (14)

We can see in (13) different notations of Weber’s force, for example, we can simply write
the time derivatives indicated as dots, noting

�F21 =
q1q2

4πε0

r̂12

r2
12

(
1− ṙ2

12
2c2 +

r12r̈12

c2

)
. (15)

Similarly, the following form can more readily be used to substitute quantities, which is
especially handy when investigating the interaction between charge carriers for a given
experiment or apparatus, for example:

�F21 =
q1q2

4πε0

�r12

r3
12

(
1− 3

2c2

[
�r12 ·�v12

r12

]2
+

1
c2 (�v12 ·�v12 +�r12 ·�a12)

)
. (16)

We can see from these derivations that the force depends on the relative position,
velocity and acceleration of the particles involved. The force is along the line joining them
and follows Newton’s third law in the strong form, that is every action has an equal and
opposite reaction. Furthermore, conservation of energy as well as conservation of linear and
angular momentum are followed by this law. Additionally the principle of superposition
applies to this force law, similar to the superposition principle with electric and magnetic
fields of Maxwellian field theory.

Other formulations of Weber’s force formula exist in the literature, as will be dis-
cussed in Section 3.2.1, it has been shown that Weber can be formulated to incorporate
electromagnetic fields [5–9] and especially in [8] the field-based Weber force is formulated
with focus on the relation between source and test charges and how they define current
elements and densities. Further, Hamiltonian and Lagrangian formulations of the force
law have been obtained [6,10] and expressions like this have occasionally been used in the
literature [11–13].

3. Literature Review

3.1. Two Different Theories of Electrodynamics

Historically, many scientists have worked on electrodynamics and electromagnetic
phenomena, performing a wide range of experiments to investigate the nature of electricity
and magnetism. From these experiments researchers have developed a multitude of
hypotheses, laws and eventually attempted to merge them into cohesive theories, leading
to several attempts to explain electrodynamics, some of them more successful than others.
Many alternative theories have been proposed over the years with important contributions
from several scientists. Some examples include Gauss, Neumann, Lorentz, Riemann, Weber,
Helmholtz, Hertz, Ritz, Moon & Spencer, and Wheeler-Feynman direct-action theory,
amongst others (see Appendix B of [6], also [14–21]).
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In this section, some brief comments will be first given on the established theory of
fields and ether by Maxwell, which forms the foundation of modern science and technolog-
ical inventions, from particle accelerators to modern medical instrumentation. Following
this, we will introduce Weber’s force law in the context of its development before engaging
with the wider literature relating to its development and application.

3.1.1. Maxwell’s Equations and Field Theory

When James Clerk Maxwell presented his magnum opus on electromagnetic theory [22]
in 1873, he formulated his ideas about the action of electric and magnetic fields partly in
prose and partly as mathematical descriptions and equations he introduced. These can be
summarised in the concise form of only four equations as widely disseminated in modern
times [23]. The differential forms of Maxwell’s equations in a vacuum and in SI-units are
commonly given as:

∇ · �E =
ρ

ε0
, (17)

∇ · �B = 0, (18)

∇× �E = −∂�B
∂t

, (19)

∇× �B = μ0

(
�J + ε0

∂�E
∂t

)
. (20)

Here, ρ is the local charge density, ε0 and μ0 are the vacuum permittivity and permeability
and �J is the current density. �E and �B are the electric and magnetic field, respectively,
through which charged particles interact, meaning contact-action where a particle always
interacts with the field as a medium and the fields themselves can interact, as for example
in the transmission of electromagnetic waves.

Equation (17) is Gauss’s law, which relates the electric field with the charge density, (18)
is the law of non-existence of magnetic monopoles, (19) is the Maxwell-Faraday equation
that expresses induction, and (20) is the Maxwell-Ampère equation that correlates currents
and time-varying electric fields to magnetic fields, which is also a form of induction. Due
to the time-dependent nature of (19) and (20) electromagnetic waves can be predicted,
while Maxwell’s approach is originally based on the ether through which electromotive
forces and waves would propagate, from today’s point of view the fields themselves have
effectively replaced the ether as the dominant medium and are now considered to be
responsible for interaction transmission. The ether as an original construct is largely and
effectively ignored.

Further to the field equations, the Biot-Savart law is formulated to obtain the magnetic
field for a current element integrated along a closed circuit path

�BBS =
μ0

4π

∫ Id�l × r̂
r2 , (21)

where Id�l is a current element and r is the distance from d�l to the point where the field is
evaluated and r̂ is the corresponding unit vector. For forces between two current elements,
Grassmann’s force is normally utilised based on the Biot-Savart law,

d2FGrassmann = I1d�l1 × d�BBS = I1d�l1 ×
(

μ0

4π

I2d�l2 × r̂
r2

)

= − μ0

4π

I1 I2

r2

[
(d�l1 · d�l2)r̂− (d�l1 · r̂)d�l2

]
.

(22)
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For any charged particle q in more general situations moving in the presence of electric and
magnetic fields the interaction is usually given by the Lorentz force:

�FL = q
(
�E +�v× �B

)
. (23)

In general, field theory and Maxwell’s equations are a ‘macroscopic’ approach as they
were developed from a continuous medium model (the ether). However, as we will see
in the following section, Weber’s force is ‘microscopic’ in that sense as it describes the
interaction between two charged particles in its standard form. For a better comparison
between Maxwell’s and Weber’s theory, Assis shows the derived force between two point
charges from field theory [24] up to second order in v/c based on the work of Liénard,
Wiechert and Schwarzschild, which was first obtained by O’Rahilly [25] as

�F21 =q1�E2(�r1) + q1�v1 × �B2(�r1) = q1

{
q2

4πε0

1
r2

[
r̂
(

1 +
�v2 ·�v2

2c2

− 3
2
(r̂ ·�v2)

2

c2 −�r ·�a2

2c2

)
− r�a2

2c2

]}
+ q1�v1 ×

{
q2

4πε0

1
r2
�v2 × r̂

c2

}
.

(24)

In this formula q1 is the test charge and q2 is the source charge generating the fields �E2
and �B2, where according to Assis time retardation, radiation and relativistic effects have
been included. The constant c is the speed of light and �a2 denotes the acceleration of
the point charge. It is apparent that the expression depends on the square of the source
charge velocity and on its acceleration, whereas Weber’s force depends on the relative
velocity and acceleration, as will be seen in Section 3.1.2. Assis also shows how this
expression can be obtained from the Darwin Lagrangian ([6], Section 6.8), as the Darwin
Lagrangian is more widely used in the literature to describe systems of point charges [26–28].
Both the Schwarzschild force (24) and Lorentz force (23) have been criticised as violating
conservation of linear and angular momentum. To restore conservation it is usually argued
that the energy is lost or gained by the electromagnetic field generated by the charges
or that self force needs to be taken into account [29,30]. However, a system of two point
charges seems extremely difficult to test. The general applicability (or non-applicability)
of Newton’s third law to the Lorentz force and generally in electrodynamics has been
discussed in [31–33]. Cornille [32] also claims that if the electrodynamic force laws indeed
violate Newton’s third law, then it inevitably leads to the conclusion that energy can be
extracted from the ether, as the ether exerts a force that is responsible for the violation.

It has further been criticised that the velocity �v in the Lorentz force formula (23) is not
clearly defined, that is what it is defined with respect to, was not even given by Lorentz
himself [6,34]. It thus remains ambiguous if the definition is w.r.t a coordinate system or
a source charge, which might itself be moving, although there seems to be support to the
idea that Lorentz viewed the velocity as relative to the ether [6,34]. However, in relativistic
treatments this is usually resolved by a chosen inertial frame of reference and regarding the
velocity relative to the measuring device or observer.

In an interesting review about Maxwell’s equations and the field approach Tran [35]
concludes that there are only few experiments supporting the Maxwell-Ampère and
Maxwell-Faraday equation, at least not to the same degree of accuracy that the conti-
nuity equation and the magnetic law are supported. There is further discussion about
conceptual problems in classic electromagnetism and modern particle-field theories in the
literature [36,37]. This mainly focuses on the problem of point charges and their diverging
self-energy, as the calculated energy of an electron with its own field tends to infinity based
on classic electromagnetism. One solution is the renormalisation approach in the quantum
theory of Dirac where the point charge is treated as a singularity and the infinite energy is
subtracted as a constant from the problem to renormalise the energy content. The other
solution is the extended particle model, where elementary charges are not treated as point-
like anymore and consequently the divergence in the singularity disappears. Pietsch [36]
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discusses both approaches and the associated cost of the proposed solutions, and for an
interesting discussion of these approaches including a mathematical perspective, see [38],
on which Pietsch bases their arguments. Pietsch then argues that both approaches are
incompatible at a fundamental level and a better solution is needed, in which direct-action
theories are proposed. Lazarovici [37] also discusses the self-energy problem and the
Lorentz-Dirac as well as the extended particle solutions as unsatisfactory, but also involves
free fields, among other philosophical, mathematical and physical arguments, and proposes
the Wheeler-Feynman direct-action theory in particular as a solution to those problems.
The renormalisation approach has also been criticised by other authors [39], including
Feynman [40] and Dirac [41]. A similar argument has been made by Kastner about the
Wheeler-Feynman direct-action theory, not only does it avoid self-energy problems, it is
also not subject to Haag’s theorem and the consequent problems of free and interacting
fields in quantum field theory (QFT) [42].

This concludes the brief overview of field theory and Maxwell’s equations and further
reading where fields, waves, radiation and relativity are treated can be found in the works
of other authors [26,43–46].

3.1.2. Weber’s Theory of Electrodynamics

Wilhelm Eduard Weber first published his force law to describe the interaction of
charged particles in 1846, some 15 years before Maxwell published his first work on electro-
magnetism, ‘On physical lines of force’ [47], a concept which would only tangentially relate
to the field concept later introduced in Maxwell’s Treatise [23]. Maxwell, as a contemporary
of Weber, was well aware of his work and Maxwell positively mentions Weber in his Treatise,
expressing admiration for Weber’s work. As a 19th century scientist, Weber engaged with
several physical disciplines, but a collection of his original work on electrodynamics can be
found in [48,49] and English translations of his eight major memoirs on electromagnetism
can be found in [50–57].

The main difference between Weber’s theory and Maxwell’s field equations is that We-
ber’s is a direct-action-at-a-distance theory, such as Newton’s law of gravity or Coulomb’s
force of electrostatic interaction, and the fields themselves are not conceptualised as a
primary part of the mathematical description. Instead, Weber’s force depends on the direct
interaction and force transmission between charges themselves, as opposed to contact
action in field theory, where the charges give rise to fields so a source charge and a test
charge only interact with the field of the other. Some aspects of how fields can still be
conceived with Weber will be discussed later in Section 3.2.

In modern vector notation and SI units, Weber’s force can be expressed as

�F21 =
q1q2

4πε0

r̂12

r2
12

(
1− ṙ2

12
2c2 +

r12r̈12

c2

)
. ((15) revisited)

When Weber developed his force, the aim was to connect Coulomb’s force and Ampère’s
force, arriving at a more general interaction law. Weber’s force acts along the line joining
two interacting point charges, following Newton’s third law in the strong form with equal
action and reaction, conserving linear and angular momentum. It depends only on the
relative distance, relative velocity and relative acceleration of the interacting charges.

As this force is electrodynamic in nature, it contains electrostatic (i.e., Coulomb’s force)
and magnetic (i.e., Ampère’s force) interactions, which is comparable with the Lorentz
force (23) where a static (i.e., the electric field term) and a moving component (i.e., the
magnetic field term) of the force are considered. The speed of light c in (15) was introduced
as the ratio between electrostatic and electromagnetic units of charge, whose value was
first determined experimentally in 1856 (10 years later) by Weber and Kohlrausch based on
Weber’s force. In 1848, two years after the presentation of the force law, Weber also showed
that the force can be derived from a velocity dependent potential, as shown in Section 2.
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A further analysis of the capabilities of Weber’s theory will follow in Section 3.2 and
the theory has undergone more development in recent decades. It is noteworthy that
predominantly in the low velocity limit, Weber and Maxwell theory predict very similar
results, if not the same results for a given phenomenon. Weber has also been shown to
be consistent with field equations by a number of authors and the matter will be further
addressed in Section 3.2.1.

However, it must be stressed, Weber’s electrodynamic theory has not yet been devel-
oped to anywhere near the same degree that other theories have, which includes the high
velocity regime near the speed of light where the theory has problems. When quantum in-
teractions are considered, the Wheeler-Feynmann approach to direct-action has undergone
development by Davies who introduced a quantum theory based on Wheeler-Feynman
electrodynamics [58]. In the case of Weber, only some initial connections between Weber’s
theory and quantum mechanics have been made, as will be seen in Section 3.2.2, however,
a rigorous treatment is yet to be developed. This is considered a work in progress and
further research is needed before any conclusions can be drawn about Weber’s theory in
the quantum realm.

3.2. Weber Electrodynamics in the Literature

After Maxwell’s success in the late 19th and early 20th century, Weber’s electrody-
namic force law has not received a lot of attention except from a few, with important
contributions from O’Rahilly [25], Wesley [9,59,60], Assis [6] and others. Over the years,
many connections have been made from Weber’s theory of electrodynamics to different
topics within physics, while Weber’s force is electromagnetic in nature and has been used to
describe phenomena in that field, it is also shown to interconnect with mechanics, the struc-
ture of the atom, gravity, quantum mechanics and even some effects of general relativity
theory (GRT) and topics that are usually referred to as “breakthrough physics”. A visual
overview of the relations Weber has with electromagnetics and other disciplines can be
seen in Figure 2.

Figure 2. A visual map providing an overview of the different subsidiary fields and phenomena that
Weber’s theory has been shown to provide a basis for and connects with throughout the branches of
physics and engineering.
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3.2.1. Electromagnetic Phenomena

As Weber is essentially a theory of electrodynamics, it has been shown to explain
many pure and applied phenomena in electricity and magnetism. From its basic form (15),
it is easy to see that Weber’s force reduces to the Coulomb force for stationary charges. That
means for static charges where their velocities are zero, the formula can be simplified to

FCoulomb =
q1q2

4πε0

r̂12

r2
12

. (25)

Thus, Weber can be readily seen to describe purely electrostatic interactions. When interact-
ing charges start moving, the force then changes, and for two current elements in a circuit
Ampère’s force can be derived from Weber’s force as shown by Assis [61]. For two steady
current elements I1d�l1 and I2d�l2 this takes the form:

d2FAmpere = −
μ0

4π
I1 I2

r̂
r2

[
2(d�l1 · d�l2)− 3(r̂d�l1 · r̂d�l2)

]
(26)

Grassmann’s force (22) from Section 3.1.1, for comparison, is slightly different in its
interaction. Assis’ extensive analysis indicates the similarities and differences between
Ampère’s and Grassmann’s forces [6] and most notably shows, that Grassmann’s force
violates Newton’s third law. However, it has been claimed that, when the respective force
expressions are applied to any closed circuit, they are equivalent and lead to the same
result [62]. There has been a discussion in the literature about which force is the correct one.
For example, a paper by Cavalleri [63] claims that Grassmann’s force gives the correct result
for any given circuit and Ampère’s does not; but as Assis commented in response [64],
they did not consider all contributions of Ampère’s force in their deductions and when
carried out, both models predict the same force values [62,65]. This inevitably leads to the
conclusion that it is impossible to distinguish between the two forces for any closed circuit,
which has been verified for several configurations [66,67].

In this context, it seems adequate to briefly discuss the Ampère force and note its
importance, as even Maxwell himself stated that it must remain the cornerstone of electro-
dynamics. The divide in the literature between Ampère’s vs. Grassmann’s force seems to
stem from the nature of the Ampère force, which includes a longitudinal force component
along the wire in the direction of movement of the current elements. This feature complies
with Newton’s third law but appears to be incompatible with the Lorentz force, whereas
Grassmann’s force for current elements does not include a longitudinal component and is
in turn compatible with the Lorentz force, but violates Newton’s third law. When Ampère
conducted his original experiments, investigating the force between two wires [68–71], he
found his force law as a result of these experiments and made sure to include the longitudi-
nal component according to his observations. Further to the discussions about the general
applicability of Newton’s third law in electrodynamics [31,32], Chaib and Lima [72] have
re-iterated that Ampère did not find any evidence in his experiments that would contradict
Newton’s third law and that it remains applicable in electrodynamics. They also clarify
that Ampère regarded the third law as a consequence of his experiments, rather than an
assumption he tried to conform to, and explain his philosophical reasoning in arriving at
that conclusion. The authors of [72] also give a review of some of Ampère’s main work in
the manuscript and show that Ampère was the first to obtain an expression similar to the
Biot-Savart law from his experiments.

This special quality of the Ampère force to incorporate longitudinal forces has sparked
the interest of researchers and in modern times more experiments have been performed
to investigate it, where the force has also been connected to a variety of effects and appli-
cations. In particular Graneau et al. have investigated Ampère’s force [73–82], including
water jet propulsion, exploding wires, fusion and railguns, as well as the electromagnetic
impulse pendulum, liquid mercury experiments (e.g., Ampère’s bridge) and homopolar
motors [83–92]. Even though the exploding wire phenomenon has been investigated fur-
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ther [93,94] and the longitudinal Ampère force component does not seem responsible for
the bursting of wires, it is still important in other situations. For example, the importance
of Ampère’s force to induction in general has been discussed along with the ability of the
force to explain EM-waves in the near field [95]. A classical approach to derive longitudinal
forces has been taken by Rambaut and Vigier [96], where they find longitudinal forces as
an average effect of conduction electrons and lattice charges of a current element. In a
follow-up paper [97] the authors then derive longitudinal forces with a different approach
based on the Liénard-Wiechert potentials and discuss their influence on conductors in all
phases, including plasmas and fusion applications. Recently Moyssides also succeeded
in deriving longitudinal forces with the help of the Biot-Savart-Grassmann-Lorentz force
law acting on a submarine projectile in mercury, showing that both forces are equivalent
and both agree with experimental results presented in the paper [98]. Further experiments
to detect longitudinal forces have been performed by Saumont [99], where difficulties in
measurements of these forces due to thermal effects and rapid spurious forces are also
addressed and the compatibility of longitudinal tensile forces with relativity theory and the
Lorentz force is considered. An experiment by Graneau et al. [100] has investigated longitu-
dinal forces utilising spark gaps in a circuit and found them consistent with Ampère’s force,
which has been interpreted as a direct proof of the existence of longitudinal forces. A new
experiment has recently investigated how the charges in a neon glow lamp are influenced
in the near field of a capacitor dependent on the signal frequency [101]. It was found that
there is a longitudinal force component on the charges moving in the plasma that agrees
with predictions of a Weber-Ampère model calculated in the paper. We can deduce from
this brief analysis that longitudinal forces appear in both classic and Weber approaches
which shows the similarity of the two theories.

Moving on from current elements, Weber’s force in the general form (15) is a force
between point charges and depends on the relative velocity between them, it is intrinsically
electromagnetic in nature and so incorporates magnetic interaction by design. The magnetic
force naturally arises from the movement of the charges, whereas the Lorentz force (23) is
usually derived by considering special relativity theory (SRT) or Lorentz transformation
of the Coulomb Force or electric field [46,102–104] and magnetism is considered to arise
as a relativistic effect in this context. However, recently it has also been suggested that it
may not be necessary to treat magnetism as a consequence of SRT and instead Maxwell’s
equations can be derived from Coulomb’s force and time retardation without any further
assumptions [105]. In Weber electrodynamics however, the intrinsic velocity dependence
of the force can be used in combination with the concept of current elements to calculate
magnetic interaction forces, such as has been applied to the fields of solenoids [106–109].
Specifically in the case of the magnetic field of a long straight wire [107] the Lorentz and
Weber force on a charged particle have been found to be identical in the low velocity limit.

Further to the similarities between Ampère’s and Grassmann’s force as well as the
Weber and the Lorentz force, Weber has been shown to be consistent with Maxwell’s field
equations by a number of authors [5,6,8,9,110,111], even though it does not conceptually
depend on them. For example, Wesley [9] derives field equations from Weber by introduc-
ing charge densities and current densities into Weber’s equation and integrates over a fixed
volume. He arrives at the form

d3F
d3r

= −ρ∇Φ +�J × (∇× �A)
1
c
− ρ

∂�A
∂tc
−�J∇ · �A 1

c

+
∂�J
∂t

Φ
c2 + (�J · ∇)∇Γ

1
c
+ ρ∇ ∂Γ

∂tc
− (

∂�J
∂t
· ∇)�G 1

c2 ,

(27)

with
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Φ =
∫

d3r′ρ′(�r′, t)
1
R

, (28)

�A =
∫

d3r′�J′(�r′, t)
1

cR
, (29)

Γ =
∫

d3r′�R ·�J′(�r′, t)
1

cR
, (30)

�G =
∫

d3r′�Rρ′(�r′, t)
1
R

. (31)

The primed quantities in this formula are sources acting on the unprimed test currents
and charges separated by distance R. It is especially interesting that in addition to the
usual electric potential Φ and magnetic potential �A two new potentials, Γ and �G appear
and Wesley points out that the Lorentz force and Maxwell’s equations are a special case
where only the first three terms on the left hand side of (27) appear. Wesley further argues
that the representations through a force equation and field expression are mathematically
isomorphic as long as the fields are intermediate without time retardation. However, when
time retardation is introduced into (27), the field expressions then contain wave equations
with velocity c.

While Assis [6] and Kinzer [5] have taken a similar approach to Wesley, starting from
Weber’s formula and deriving the field equations from it, the opposite approach, starting
from Maxwell’s equation and arriving at a Weber-type formulation, does also exist [8].
With extensive mathematical work the author of [8] shows that there are two implicit
restrictions in Maxwell’s field equations and without these restrictions a set of Weber
equations can be obtained. One limitation is the condition that the charge density function
ρ is a constant in time and the other is that the test charge velocity is required to be zero for
mathematical consistency according to the author of [8]. The procedure of removing the
restrictions from Maxwell’s field theory is then to allow for moving test charges and time
varying charge densities, which emphasises Wesley’s argument that Maxwell’s equations
are a special case of Weber’s law. Another important opposite approach has also been
discussed where Weber’s and Ampère’s forces are obtained as a non-relativistic limit
from the Liénard-Wichert potentials [97] and from a Fermi distribution of accelerated
charges [112]. In the recent approach of Li [110] a field representation of Weber’s force is
developed with the help of Einstein notation, where the velocity and acceleration dependent
terms in Weber’s force can then each be identified with a respective Tensor field. Li states
that this approach has the advantage of simplifying the necessary calculations in systems
of many particles, reducing the number of required force calculations.

One of the strengths that is usually ascribed to Maxwell’s field equations is that the
velocity of light appears from the wave equations as does the relation between permittivity
ε and μ. However, it was not Maxwell who first discovered the relation between the
speed of light c and electromagnetic waves, in fact it was Weber and Kohlrausch who first
predicted the value of c from Weber’s equation and confirmed it experimentally [113,114].
Following this, Weber and Kirchhoff derived the telegraph equation for the propagation of
electromagnetic signals through a wire independently of each other, and Assis has provided
a modern derivation and analysis of the telegraph equation in this context [115–117]. This
equation also reduces to a regular wave equation when the resistance of the wire goes to
zero. Fukai [118] has further argued that modern views of the vacuum can be assumed,
where the vacuum behaves as a medium with inductance and capacitance, similar to a
coaxial cable or transmission line problem, Weber’s theory predicts a signal propagation at
light velocity in vacuum and thus should be able to predict radiation as well.

In relation to circuit theory, Assis [119] has analysed the self inductance of circuits
with the help of Weber’s force and Newton’s second law and compared them to similar
derivations based on the Lorentz force and the Liénard-Schwarzschild force for circuits. He
manages to derive the self inductance from Weber’s force by examining the acceleration
that conductor charges will be subjected to. The result can be interpreted as an effective
mass of the conduction electrons in the circuit, with the positive lattice ions opposing the
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motion of the accelerated electrons. In a further study [120] Assis and Bueno also show
that the self inductance formulae for a single circuit of Weber and Maxwell are equivalent.
This has added to the previously known fact that the mutual inductance formulae were
the same, however when a single circuit is considered, the equivalence can be obtained
by considering surface charge or volume charge elements instead of line charge elements.
Weber himself also worked on circuit resistances [49], conducting many experiments to
investigate their resistive behaviour and considered the derivation of an absolute unit of
resistance based on his force law.

A possible derivation of the Hall effect from Weber’s force has been investigated by
McDonald [121] and it is deduced that, under the condition that only negative charges are
assumed to be charge carriers in Weber’s theory, and disregarding the original Fechner
hypothesis, Weber does predict the Hall effect consistent with the Lorentz force derivation.
Based on this assumption the Hall effect cannot distinguish between the two forces, as they
are equivalent in this particular case. The Fechner hypothesis itself will be further discussed
in Section 3.3.

In addition to self inductance and the generation of a Hall voltage, Weber’s theory
has also been applied to voltages arising through induction. Smith et al. [122,123] have
developed a model for transformer induction with the assumption of conduction electrons
following accelerated motion. They arrive at an expression identical to Faraday’s law and
predict voltages in receiver coils correctly. Maxwell even pointed out in his Treatise [22]
that it is possible to derive Faraday’s law from Weber’s law, as Weber derived it himself
from his force, and Wesley has also indicated the connection between Faraday’s law and
Weber’s, besides consideration of induction in general [9,59].

Unipolar induction (also called homopolar induction), as another example, has been
analysed by Assis [124] on the basis of Weber electrodynamics. He arrives at the conclusion
that the phenomenon can only be predicted correctly if the closing wire is included in
the analysis, thus considering the whole circuit that is influenced by the presence of a
magnet in a Faraday generator setup. Recently, unipolar induction experiments have
been found to be consistent with Weber electrodynamics [125,126] There are also recent
claims in the literature [127] that not all observed induction effects can be explained by
Faraday’s law or the flux cutting rule, mentioning Weber as a possible fuller explanation.
Assis has even presented an analysis [128] where he explores beyond the regular scope
of unipolar induction and describes a situation where an additional voltage is induced
due to the presence of an electrostatic potential, calling it Weberian induction. In this
scenario a spinning disk is placed inside a charged spherical shell, with or without the
magnet. From the perspective of field theory and the Lorentz force, the charge on the shell
cannot induce a voltage in the disk due to the absence of a field inside the shell, but in
Weber’s electrodynamics the charge on the shell would still exert a force on the disk charges
and an additional voltage should be induced. However, such an effect would be many
orders of magnitude smaller than regular unipolar induction. This field-free electrostatic
force is closely related to a criticism of Weber’s theory and will be further discussed in
Sections 3.2.3 and 3.3.

Related to unipolar induction is the so-called Feynman disk paradox [129], where
metal spheres are mounted on a plastic disk free to rotate and a current carrying coil is
situated on the same axis. Initially, the apparatus is at rest, but when the current is switched
off, the paradox arises. Analysing the problem in terms of the change in magnetic flux
one would expect the disk to rotate as an electric field is induced and seen by the spheres,
however, analysing from the perspective of angular momentum would mean that the disk
does not start to rotate, as the momentum is initially zero and since it must be conserved,
the disk should remain stationary. The apparent contradiction in field theory is resolved
by taking into account the electromagnetic angular momentum stored in the fields, so
that initially the angular momentum was not zero [130]. Fukai argues that the problem
is equally well explained by Weber’s theory [118] and considers the force on the sphere
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exerted by the change of current in the solenoid, which turns out to be non-zero, so the disk
will move accordingly.

It was also shown recently that superconductivity can be derived from Weber’s theory
according to two independent authors in two different ways. One approach by Prytz [131]
considers a magnet or solenoid with a DC current at rest and the centripetal acceleration of
the conductor charges. This acceleration causes the Meissner effect to appear in conduction
materials according to their deductions. Assis and Tajmar [132] instead follow a more
general treatment where AC currents are considered, and in turn the acceleration of the
charges causes the Meissner effect and the London moment to appear from Weber’s force.

The so called Aharonov-Bohm effect (AB-effect) that describes a phase shift experi-
enced by electrons when they are scattered around a finite solenoid is usually explained
through the quantum mechanical influence of the vector potential �A. Wesley [133] man-
aged to establish a connection between Weber’s force and the existence of the AB-effect.
First, he takes a more classical approach and considers the force due to motional induction
on the electron beam, which leads them to find a phase shift depending on the electron
path due to this force component. Then, he shows that the same force is present when
considering Weber’s potential and force, causing the appearance of the phase shift and
thus the AB-effect. Unfortunately in the digital version there seems to be a misprint and
large parts of the paper are missing, but his essential deductions can still be found in the
first and last sections of the manuscript [133].

An initial connection between Weber’s force and antenna theory has been made by
Prytz [134]. In this approach the concept of retarded time is considered to account for
far distance effects and utilised with the acceleration dependent induction of Weber’s
force. This can describe loop antennae by itself and also contributes to dipole antennae,
and simultaneously relates back to the transmission of radio waves. This is, of course,
similar to the approach taken by Moon and Spencer [19] who had derived the behaviour of
the loop and dipole antenna about 60 years prior, and also arrived at Neumann’s inductance
formula for circuits based on the acceleration dependent force in the process.

Weber also considered early forms of diamagnetism in his work, based on the molecu-
lar currents introduced by Ampère, where diamagnetism occurs when molecular currents
are induced by an external field in a diamagnetic material that has otherwise no molecular
currents. While the general idea of molecular currents remains to this day, present explana-
tions necessitate quantum mechanical considerations to fully account for the existence of
diamagnetism, due to the Bohr-Van Leeuwen theorem.

3.2.2. Relevance of Weber’s Force Beyond Electromagnetism

There are several aspects of Weber’s force that are not immediately obvious when
just regarding it as an electrodynamic force law between charged particles. It holds wider
consequences in its action and has been connected to a variety of topics in the literature.
The first connection of note is the structure of the atom. Weber himself used his theory
to devise a planetary model of the atom [135,136], where negative charges orbit around a
positively charged centre, even before the electron was discovered. He realised a special
feature of his force law by which an atomic structure emerges as a consequence, that is,
a certain critical distance exists in the force law. It is most remarkable that below this
critical distance like charges will start to attract instead of repel and opposite charges will
still attract regardless. Furthermore, when two or more charges interact with only each
other (no external forces are present in that scenario) they cannot transition to the inside or
outside of that critical distance. If the interaction started below the critical radius, it would
remain inside the radius, and if it began outside it would remain outside. Interestingly,
the critical distance can be calculated to be of the order of the known diameter of the
atomic nucleus when electron or positron interaction is considered. Thus, it seems possible
to interpret Weber’s force as relating to the strong nuclear force that is responsible for
the attraction inside the nucleus, even though it is not yet known how it would work
for protons. Additionally, for two charges of opposite sign orbiting each other in this
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model a confinement to elliptical orbits is found which would experience a precession
of the elliptical axis [135–138] and remain within an upper and lower bound of the orbit
radius [135,137,139–141].

Weber also speculated based on his model of the atom on the mechanism of heat
conduction and a possible connection between light and electricity. He related the orbital
frequency of charged particles in his model to the wavelength of excited heat- and light-
waves. Zöllner [142] even considered that from Weber’s model it would be possible to
derive the spectral lines of chemical elements. Upon considering the possibility of multiple
orbits in a molecule and that each orbit could be populated with a number of charges,
Weber also deduced a classification system characterising the possible combinations of
positive and negative charges in a table that has similarities to the periodic table of elements.
He further concluded that these molecular configurations could attract other molecules
and combine to form stable systems. Eventually he was led to the hypothesis that chemical
bonds might have an electrical origin and arrived at a bond that is similar to a covalent
bond between two atoms sharing an electron pair [135].

Unfortunately, Weber passed away before he could finish his planetary model of the
atom, nevertheless it shows some very interesting properties, while Weber speculated
about spectral lines emerging from their model, the fine structure of the atom was still in an
early stage of discovery. There are relatively recent works in the literature [11,12] analysing
the connections between Weber’s theory and quantised energy levels, they generally tend
to show slightly different splittings for the fine structure of the atom. In 2015, Torres-
Silva et al. [11] used the Hamiltonian formalism of Weber’s theory and also considered
spin–orbit corrections, whereas Frauenfelder and J. Weber [12] used a Bohr-Sommerfeld
quantisation on Weber’s Hamiltonian for a hydrogen atom. Wesley obtained a similar
result in [143] where he considered the perturbation energy on the electron orbit in the
hydrogen atom by utilising the Schrödinger perturbation method, which leads to energy
levels different from the experimentally known splittings. It is also reviewed by Post [144]
that Phipps’ modification to Weber’s potential leads to twice the number of observed
splittings. As the experimental determinations of quantum electrodynamics (QED), such as
the fine structure, lamb shift, Rydberg constant and anomalous dipole moments are among
the most well tested predictions derived from field theory, this will remain the greatest
challenge for Weber-type theories as it seems that it cannot make the necessary predictions
in its current form. However, it seems worth noting that Feynman has directly utilised
ideas of direct-action and retarded time in his approach to develop QED [40].

The Weber force has also been shown to be similar to velocity dependent forces
in nuclear physics, such as nucleon-nucleon forces [145]. These are central forces and
obey Newton’s third law, and in [145] the authors show that the momentum dependent
inter-nucleon forces in the interaction potential and Hamiltonian are generalised Weber
forces, pointing out that Weber’s force can be considered a special case of the forces
appearing in nuclear physics. They state further that a similarity to Ampères force exists in
nuclear physics as well for scattering processes of spinless projectiles and that it cannot be
understood on the basis of only the Lorentz force analogy, but is consistent with a Weber
force analogy.

Another interesting similarity with the forces of nature exists between Weber’s force
and gravity, and Weber had already speculated about such a connection based on his atomic
model. One of the underlying ideas is that the attractive force between charged particle
assemblies is slightly larger than the repulsive force. Based on this idea, Assis [146,147]
has developed a model to derive gravitational effects as a fourth order effect from the
electromagnetic interaction through an extension of Weber’s formula. He considers a series
expansion of Weber’s force law:
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with numerical constants α, β and γ and omitting any higher order terms of the series
expansion. Equation (32) is then used to study the interaction of two neutral dipoles that
consist of a positive charge in the centre and an oscillating negative charge. After an
extensive analysis, Assis arrives at a non-zero force of attraction between the two dipoles
which he proceeds to interpret as a gravitational interaction force. These derivations later
led Tajmar [148] to analyse a minimum energy requirement between two neutral dipoles
that is similar in nature to Planck’s constant. The approach used by Assis is then further
investigated by Baumgärtel and Tajmar [149] yielding a slightly different result to that
originally obtained by Assis. The authors of [149] interpret the resulting force to contain
the Casimir force and inertial effects as well. Further analysis of this result in regards to
a minimum energy requirement is pursued and the study finds a connection to Planck’s
constant and the origin of mass establishing a general relation between Weber’s theory
and Planck’s constant solely on electrodynamic properties of particles. One can generally
see with the appearance of the Casimir force, Planck’s constant and the fine structure of
the atom that Weber’s theory ties to certain quantum mechanical effects, however it still
requires significant development on quantum theoretical aspects in the future.

There are other considerations about Weber’s force and gravitational interaction.
A common approach in the literature is to utilise a gravitational force of the Weber type,
such as has been investigated by Tisserand [150], Gerber [151], Schrödinger [152] and others.
Utilising such a gravitational form of Weber’s law, Assis and Wesley [60,153] have shown
that it is also possible to arrive at the origin of inertia in combination with Mach’s principle.
Their derivations generally follow the form
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where it is easy to see that the usual charges q1 and q2 have been replaced by masses m1,
m2 and gravitational constant G. As a consequence of this approach however, Newtons
second law, F = ma, follows naturally from this formulation, so that the interaction with
the distant masses is responsible for the existence of inertia. In essence, Assis calculates
the force on a body by investigating its interaction with what is more or less a celestial
sphere and the cosmic microwave background, while Wesley uses a gravitational field
in his derivations. Additionally, in Assis’ model the resulting force contains terms that
represent centrifugal and Coriolis forces.

Because there are many possible variations of Weber-type gravitational forces of
similar nature, e.g., [60,150–152,154], their form has been further generalised by Bunchaft
and Carneiro [155] as
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Here, k is a parameter depending on the nature of the interacting bodies (like charges or
masses) and the parameters μ and γ are positive constants of the velocity and acceleration
terms usually of the order 1/c2. Further aspects of these approaches, with regards to
cosmology and conservation of energy, will be discussed in the next section.

Weber’s force law in its basic form (15), is a ’microscopic’ force law which obeys certain
general principles of mechanics. It intrinsically follows Newton’s third law of action and
reaction. Any action arising from Weber’s force has an opposing force of equal magnitude
and inverse sign, making it consistent with linear momentum conservation. It can also
be shown that Weber’s theory follows energy and angular momentum conservation [6,8],
and Weber himself only succeeded in 1871 to show that conservation of energy is obeyed.

It is even possible to derive a virial theorem from Weber’s force as has been shown by
Mendes and Assis [156]. The virial theorem states that the time average of kinetic energy in
a system of discrete particles is related to the potential energy of the particles. For Weber’s
formula this takes the form

2〈T〉 = −〈Uw〉, (35)
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with the potential energy Uw being Weber’s potential (see Section 2). As a consequence,
this offers the possibility for statistical treatments of problems with Weber, such as the
formations of galaxies on an astronomical scale or plasma physics, although limitations
have been indicated regarding the applicability to cold plasmas [157].

Weber’s force has also been used with a modified version of mechanics [158]. The idea
is based on the relational nature of Weber’s force, making mechanics relational as well.
In essence, Newton’s mechanical principles are extended with Mach’s principle and a
Weber-type force for interacting masses is implemented. This has consequences for cos-
mology, affecting the interpretation of Hubble’s law and the cosmological redshift as light
interacting on its journey. The cosmic microwave radiation background would then indicate
an equilibrium state and the precession of mercury’s perihelion is due to the interaction
with distant fixed stars. Although the idea is intricate and intriguing, this would of course
be less compatible with the standard cosmological interpretation of an expanding universe.

3.2.3. Cosmology and Breakthrough Physics

From the previous section it was shown that Weber has ties to other forces of nature,
like nuclear forces and gravity, and it was suggested that Weber’s force has significant links
to cosmological theories and related phenomena. Based on the possibility of gravitational
modifications to Weber’s force, there have been many investigations about planetary motion
and in particular the precession of mercury’s perihelion [13,150–152,159–164]. In addition,
some of these also investigate the bending of light in a gravitational field and the two
effects are usually explained from GRT. From these investigations it can be seen that Weber
generally offers a possible explanation for both observations, but the applicability has been
shown to have limits.

The general form of Weber-type forces of the order 1/c2 (34), is further investigated
by Bunchaft and Carneiro [155] with specific attention to energy conservation. The authors
of [155] show that such a force is only conservative under a special condition when the
parameters μ and γ of (34) obey the form 2μ = γ. They deduce from this analysis that
a Weber-type gravitational force cannot predict the correct values for the precession of
mercury’s perihelion and the gravitational bending of light at the same time under the
condition of being conservative. However, more generalised formulations of higher order
might still be able to predict both effects whilst remaining conservative, and it is still evident
from this that Weber’s force offers an alternative approach to phenomena that are usually
attributed to GRT. A somewhat more general discussion about how GRT and Weber-type
theories are related on a fundamental level can be found by Giné [165], although that
approach has been challenged [166] in not having a proper Einsteinian approach. A further
analysis by Tiandho [167] came to the conclusion that Weber-type gravitational forces are
a weak field approximation of GRT and thus a special case, nonetheless, it shows some
similarity and connection between the two theories.

Recently, Weber-like gravitational interactions in combination with Mach’s principle
have been investigated with regards to their implications in cosmology [168]. The advan-
tage of such an approach is that inertia arises naturally from the interaction with a celestial
sphere and avoids the incompatibility of inertia in GRT with Mach’s principle; and addi-
tionally maintains the equivalence of gravitational and inertial mass and the equivalence
of kinematic and dynamic rotation rates of the Earth. On the other hand, the resulting
universe is non-expanding and the redshift arises from energy loss of light on its journey.
Another cosmology model based on Mach’s principle has recently been developed and
investigated by Das [169], where the universe is governed by Machian gravity. According
to Das it is able to explain rotational curves and mass distribution of galaxies without
dark matter or dark energy and when comparing the model to observed cosmological data
it fits well with the measurements. Previous to these approaches, the general idea of a
Machian cosmology had been suggested in the literature [158,170–173], where P. and N.
Graneau [173] have even found a connection to the expanding universe, but Das seems to
be the first to apply the concept to available data of galactic rotation curves.
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Beyond the general connection of Weber’s theory and GRT, some works have analysed
more specific effects arising from gravitational perturbations, for example spacecraft flyby
anomalies [154,174]. These approaches also utilise gravitational formulations of Weber’s
force, similar to the previously discussed modifications. The first of such gravitational-
influenced effects is called frame dragging, also known as the Lense-Thirring-effect, which
has its usual explanation in GRT. This effect adds a precession to a gyroscope or orbiting
satellite in the presence of a large rotating mass. It is possible to arrive at a similar effect by
utilising Weber’s theory [174] for gravitational interactions. The authors of [174] present
the formula for the action of a large spinning shell with mass M, radius R and angular
velocity �Ω on a test body, mass m, at position�r, velocity �v and acceleration�a to be

�F = −2GmM
Rc2

[
�a + �Ω×

(
�Ω×�r

)
+ 2�v× �Ω +�r× d�Ω

dt

]
, (36)

where G and c are the gravitational constant and speed of light, respectively. As can be
seen it is similar to the previously presented gravitational-type Weber forces, with terms
resulting from the rotation and acceleration, for example the second and third term in
square brackets of (36) represent centrifugal and Coriolis’ force, which appear due to the
implementation of Mach’s principle. After analysing the problem with the help of Newton’s
second law, they arrive at a gravitationally induced azimuthal acceleration that will be
experienced by the test body, similar to a frame dragging effect.

The gravitomagnetism arising from this principle has also led Tajmar and Assis to
investigate flyby anomalies with a similar implementation of gravity-like Weber forces [154].
They found that flyby anomalies due to Weber-based interactions are several magnitudes
smaller than currently measurable. They relate this to data of Rosetta flyby manoeuvres
where expected anomalies have not been measured, even though the standard approach
would have predicted them. However, if the effect is, according to the Weber-interaction,
below the threshold of current detectability, this result would not be surprising.

Apart from the general and specific connections to GRT, an interesting possibility
seems to exist in Weber’s theory that pushes the boundaries of known physics. A situation
can be created according to Assis, where the mass of charged particles can be manipulated
under the influence of a field-free electrostatic force [6,175]. If it is indeed possible to change
the inertial mass of a charged particle through electrodynamic means, it can possibly
be applied to breakthrough propulsion physics technologies, such as the warp drive,
anti-gravity or even cold fusion [176–178] which could revolutionise space travel, energy
production and transportation in general.

The approach taken by Assis shows the influence of a charged spherical shell on a
point charge according to Weber’s force, whereby the force on the point charge can be
interpreted as an inertial mass change of the particle. Assis considers a hollow spherical
shell made of a dielectric with charge Q of radius R, with an angular velocity �ω. This
approach is similar in nature to the gravitational model of gravitomagnetism with Weber
for a massive spherical shell producing a frame dragging effect. Here, the charged sphere
acts on a point charge q at position�r, velocity �v and acceleration�a. For the point charge
inside of the spherical shell, he arrives at the expression

�F =
μ0qQ
12πR

[
�a + �ω× (�ω×�r) + 2�v× �ω +�r× d�ω

dt

]
, (37)

which can further be simplified with the restriction �ω = 0, meaning the sphere being
stationary, to:

�F =
μ0qQ
12πR

�a. (38)

With the help of Newton’s second law this can then be interpreted as a change in effective
inertial mass of the particle due to the potential on the surrounding shell.
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This is an especially interesting prediction of Weber’s theory, because in standard
theory, the field inside a charged spherical shell is zero and such an effect is not intuitively
expected. Assis also estimates an order of magnitude for the effect, which entails a sphere of
radius 0.5 m and a potential on the shell of 1.5 MV to double the mass of an electron, which
is generally in the realm of the possible to obtain in the laboratory. However, from these
values compared with the size and charge of the electron it can be seen that the effect is still
considerably small in nature. However, as a logical conclusion, in theory a particle can be
made to have an effective negative mass through the influence of an electrostatic potential
at the cost of sufficient energy expenditure. This behaviour might then be applied to future
breakthrough propulsion applications [176–178].

As this is an interesting prediction and experiment to determine boundaries of the
validity of Weber’s force law, several experimental efforts have tried to investigate this
predicted phenomenon, with recent evidence suggesting the non-existence of this effect.
Mikhailov had first reported an experiment in 1999 [179] where he claims to have suc-
cessfully observed the effect in question, with two follow-up experiments in 2001 and
2003 [180,181], which he reported to be equally successful. However, the attempts of
independent researchers to repeat and, respectively, improve their experiments have not
yielded positive results [182–184]. Since all of the re-evaluated experiments feature a refined
methodology and uncover flaws in the settings of Mikhailov (e.g., coupling and detec-
tion methods), one inevitably concludes that the effect in question was not observed by
Mikhailov. An important point is discussed by Lörincz and Tajmar [183] as to what degree a
glow discharge is suited to produce and measure a possible mass change of charge carriers,
because the discharge is always made up of a neutral plasma and hence probably not suited
to show the effect, and Weikert and Tajmar also speculated that the oscillatory motion of
electrons in a Barkhausen-Kurz configuration could mask the effect in question [184].

There is new evidence [185] that the sought after mass change effect does not seem to
exist. Tajmar and Weikert tested electron beam deflections in a Perrin tube where under a
certain magnetic field the beam would be deflected precisely into a Faraday cup measuring
the beam current. The arrangement was located in an aluminium sphere that was charged
up to ±20 kV and they simultaneously observed the current feeding a set of Helmholtz
coils generating the magnetic field and the measured beam current of the Faraday cup.
By observing the necessary current to keep the beam consistently in the Faraday cup they
concluded that the sought after effect can be ruled out by two orders of magnitude. This
makes this topic a valid point of criticism against Weber electrodynamics which will be
discussed further in the following Section 3.3.

These many investigations of Weber’s force in the literature demonstrate the strength
of the theory and how it links to many fields across physics, and therefore it is an interesting
alternative model to standard electrodynamics. Weber’s force law has even been suggested
in the literature as a unified theory of nature [146,186], especially as it includes the electro-
magnetic force, a form of nuclear or strong force, a gravitational-type force and additionally
an explanation of the origin of inertia. We can see from this that Weber offers an elegant
path towards the unification of theories and, to quote O’Rahilly ([25], Volume II, p. 535): ‘If
any one man deserves credit for the synthetic idea which unifies the various branches of
magnetic and electrical science, that man is Wilhelm Weber’. Weber’s theory connecting so
many disciplines is of course not an accident, since it is an electromagnetic theory. Field
theory and relativity which the standard model of modern physics is based on also show
these properties and strive for a unified theory of physics. It is well known that three out
of the four forces of nature can be unified in the standard model (magnetic force, strong
nuclear force and electroweak force) and attempts are made through quantum gravity to
connect the remaining force to those three. So in general, any theory attempting to explain
the natural phenomena on a larger scale is likely to show the characteristics of a unified
theory. However, Weber’s theory, despite the time that has elapsed since its inception, is
still very much in an early stage of development and has not been researched to the same
degree as conventional models. Nevertheless this should not be taken as discouraging,
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quite the opposite in fact, it gives motivation for further investigation of Weber’s force to
explore its capabilities to describe and predict the universe. Needless to say, Weber’s theory
is not without criticism.

3.3. Criticism of Weber’s Theory

Weber’s force is not pursued by mainstream physics as it was superseded by Maxwell’s
theory of fields and ether, and so we must question just why the theory was largely aban-
doned in favour of another. Historically there were three main points of criticism leading
to the neglect of Weber’s theory and a fourth factor of experimental nature. The points
of criticism of Weber’s force were: (i) It is based on the Fechner hypothesis, i.e., currents
being comprised of equal amounts of moving positive and negative charges, (ii) Helmholtz
first criticised Weber’s force as violating energy conservation, and (iii) then criticised the
theory for exhibiting unphysical behaviour in the form of negative mass and infinite accel-
eration. Finally, what was claimed as decisive evidence in favour of the field model were
the successful experiments of Hertz, demonstrating electromagnetic waves and therefore
taken as direct proof supporting Maxwell’s theory as opposed to Weber’s. We will now
re-investigate these historical factors to see how they have aged and after that look at more
modern criticisms or limitations of the theory. Another review of historic criticisms from a
philosophical perspective of action-at-a-distance theories in general can be found in [187]
with a strong focus on epistemologic aspects.

We will first consider the criticism that Weber’s force is originally based on Fechner’s
hypothesis. In the middle of the 19th century it was assumed that a current in a circuit
consisted of equal amounts of positive and negative charge (or electric “fluidae”) moving
in opposite directions. While it is true that Weber designed his force based on this assump-
tion to derive Ampère’s force, he himself moved away from the idea of a double current
consisting of moving positive and negative charges towards a simple current where the
positive charges remain fixed in the lattice and only the negative charges are considered
to be moving in his later works. Despite this change in perspective, he did not alter the
formulation of his force law because it would still remain valid in predicting observable
effects. Assis showed [61] that it is possible to derive Ampère’s force regardless of the
Fechner hypothesis from Weber’s force. The only assumptions made are the charge neu-
trality of current elements and the independence of velocities of positive and negative
charge carriers therein. This means that it holds true for moving electrons and stationary
lattice charges as well as oppositely moving positive and negative charges as, for example,
in plasma states. Further the Hall effect can be explained with Weber’s theory when the
Fechner hypothesis is abandoned, as reviewed in the previous section.

When discussing this matter it should be mentioned that Clausius was the first to claim
in 1877 that Weber’s force would lead to unphysical situations when only one kind of charge
is moving and the other kind is fixed in a conductor [188]. This criticism seems to have
been taken as a decisive argument against the theory as reviewed by Woodruff [189] and
persisted in the more recent literature when Pearson and Kilambi analysed the similarity
with nuclear forces [145]. The argument is that in the situation where Weber’s force is not
balanced by oppositely moving charge carriers, so called electrostatic induction occurs
outside of a conductor and this has been considered an exclusion criterion of Weber’s
theory as an explanation for electrodynamics in [145]. However, it must be said that an
early extensive refutation of this argument has been given by Zöllner as early as 1877 [190]
in response to Clausius, arguing that these electrostatic effects have been known since
1801 through experiments by Erman [191] and others, and Weber’s theory is erroneously
criticised. Assis and Hernandes [192–194] have given a modern review of electrostatic
induction effects in theory and experiment, showing that these effects do indeed exist on
different orders of magnitude and that it is too early to dismiss Weber’s force law on such
a basis. In fact, the existence of such effects could even provide experimental support
for Weber’s theory. In conclusion we can say that at present there is no requirement for
Fechner’s hypothesis in Weber’s theory and the criticism is not valid.
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Helmholtz originally criticised the theory by saying it did not obey conservation of
energy. He considered the potential and kinetic energy, especially with particles in circular
motion and came to the conclusion that there are possible situations in Weber’s theory
where energy can be lost or gained and thus objected to the theory. At the time, Maxwell
was familiar with Weber’s theory and knew of Helmholtz’s argument, supporting the
objection stated by him. It was only in 1869 and 1871 that Weber succeeded in showing that
energy is conserved in his force law. After this proof Maxwell even acknowledged in his
Treatise that Weber’s theory was mistakenly criticised in that regard [22] and reconsidered
it as a possible theory of electrodynamics. Helmholtz erroneously came to the conclusion
that energy conservation is violated as he only included the velocities between interacting
charges and did not consider the complete form of Weber’s force which also depends on
the acceleration of charges, leading him to an incomplete deduction [24].

Furthermore, Helmholtz issued a second major criticism of Weber’s theory, where he
describes a situation that leads a particle to exert behaviour of negative mass and upon
movement it could accelerate infinitely in the presence of an external force, such as friction,
and an infinite amount of work would be done. He describes a particle inside a charged
spherical shell that experiences friction from a fluid and as it is infinitely accelerating, it
would continue to heat the fluid due to friction and thus perform an infinite amount of work.
An argument ensued between the two parties with Weber trying to defend against the
criticism, but Helmholtz again countered his arguments and the criticism prevailed [189]
and to this day remains an open question in Weber electrodynamics.

This is indeed a similar situation to the suggested inertial mass change of Assis due
to a field-free electrostatic force and the criticism has been further analysed by Assis
and Caluzi [195]. They have suggested three possible ways to resolve the problem: (1) If
instead of using Weber’s force and Newton’s mechanics, a modification of mechanics to a
relativistic type kinetic energy is assumed, then the particle will not accelerate ad infinitum.
The modified expression for mechanics has also been obtained by Schrödinger [152] and
Wesley [60] by considering Weber-type forces. (2) It is also possible to avoid the problem
by a modification of Weber’s potential energy, e.g., Phipps [196], which leads to a force
expression where infinite acceleration does not occur. (3) It is still possible (though highly
unlikely) that nature behaves this way, it just has not been sufficiently tested.

However, with the new experiment of Tajmar and Weikert [185] it seems very unlikely
that nature behaves in a way where this change of mass or energy is involved. Especially
when according to Helmholtz an infinite amount of work can be gained if a particle
experiencing friction forces from a fluid would continue to increase the fluid’s temperature
due to the friction. By implication this would violate the first law of thermodynamics
and allow for a perpetual motion machine under the condition that the energy can be
extracted from the closed system formed by the charged shell, fluid and point charge. It
could theoretically still be possible that in order for the effect to manifest, a friction force
is needed, as this is what Helmholtz originally considered and was also included in the
analysis of Assis and Caluzi [195]. However, this seems unlikely as Assis also made the
prediction for a mass change without the consideration of friction forces at first [175] and
further a situation like this seems very unlikely to manifest in practice. As far as we know,
a similar system has never been observed in nature and the proposed scenario seems
unlikely to occur naturally.

If we now consider resolutions (1) and (2) suggested by Assis and Caluzi, we can say for
point (1) that the infinite acceleration of a particle can be avoided through the assumption
of modified mechanics, but this would change the behaviour mainly for velocities near the
speed of light, as pointed out by Weikert and Tajmar [185]. Additionally, in this case Assis
and Caluzi still speak of an effective inertial mass influenced by the electrodynamics, so an
apparent mass change would still occur in this instance. As for point (2), the modification
of Weber’s potential energy to Phipp’s potential, this can generally present a solution
to the problem, however Phipp’s potential turns out to have other shortcomings [197].
Nevertheless, there might still be a more fundamental, more general Weber-type potential
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where the change in mass is avoided and the problem is resolved, such as suggested by
Li [198]. So this criticism is a valid point, however, there might well be other ways not yet
known to avoid the problem like a more general potential and here more research is needed.
It must also be added to this discussion that due to the self-energy divergence in field
theory, the Lorentz-Dirac renormalisation solution also leads to runaway behaviour with
infinite self-acceleration of a particle [37]. Albeit a different situation where the particle
interacts with its own field, as opposed to Weber’s theory where the particle interacts with
a field-free charge distribution, this shows that we can find the same unphysical behaviour
through infinite acceleration exhibited in the framework of field theory as well. It would
seem inadequate to use this singular behaviour as a decisive argument against Weber’s
theory when field theory is not rid of such a problem itself.

The fourth factor that was historically held against Weber’s theory are Hertz’s experi-
ments that showed a finite propagation velocity of electromagnetic signals, and were taken
as a direct verification of Maxwell’s field theory. However, we have seen in the previous
sections that Weber’s theory has been shown to be consistent with fields and can indeed
predict wave equations propagating with the speed of light and is related to radiation
phenomena when the right physical methods and constraints are applied. So it remains
questionable if Hertz’s experiments should only be taken as a direct proof of Maxwell’s
equations. For example, the experiments are also consistent with Ritz’s theory (as pointed
out by O’Rahilly [25]), and it would be premature to exclude Weber’s theory on that basis.

Additionally, it should be mentioned that Weber believed in a form of ether, i.e., the
luminiferous ether, which nowadays has been effectively replaced by the electromagnetic
field model. So one could argue that Weber’s theory is based on the same ethereal premise
as Maxwell’s, as he tried to model the interactions of charges within the fluid of ether that
was general scientific consensus at the time. Although it should be noted that Weber’s
force does not conceptually depend on the ether due to only involving relative velocities.
Furthermore when invoking the principle of Ockham’s razor, that is, entities should not
be multiplied beyond necessity, it becomes apparent that Weber’s theory is considered
to be preferable over Maxwell’s as it makes fewer assumptions. Weber being based only
on the interaction of charges without invoking the concept of field entities conforms to
minimal assumptions as only the charges and their motion is relevant. Additionally, there
is an argument in the literature, when discussing contact-action through fields or emitted
virtual particles, that entities like the ether or the field which cannot be observed directly
should be avoided [199]. At its core this issue relates to a more general criticism of Weber’s
theory being a direct-action-at-a-distance theory with apparent instantaneous transmission
unlike a field theory. The instantaneous nature of force laws like this is usually argued to
be a problem since it violates causality and since the propagation of electromagnetic effects
are clearly of finite velocity, hence there is an apparent problem with the theory. Take,
for example, Newton’s gravitational force law: if one body experiences a change in position,
body two will immediately feel this change in force, no matter the distance between
them. However, there exists a claim in the literature that Newtonian gravity actually
propagates at the speed of light [200]. Although the analysis is based on dimensional,
empirical and observational arguments, this is a remarkable postulate, and even though
Newtonian gravity is formulated mathematically as instantaneous-action-at-a-distance,
a finite propagation speed is implicitly contained within the formula, suggesting that the
same could be true for other so called “instantaneous” force laws.

So the real question is how propagation velocities behave in Weber’s theory or how
they can be limited. There are multiple factors to consider here. First, Weber’s force itself
models a delay in propagation intrinsically with the constant c in the formula, and as
argued by Brown [201], c should be viewed as a retardation constant at which cause and
effect occur. Related to this Sokol’skii and Sadovnikov [13] have studied planetary orbits
with a gravitational form of Weber and find that gravitational interaction propagates at
the speed of light c in their model. In the previous Section 3.2.1 we have seen different
considerations showing how Weber is able to predict wave propagation of electromagnetic
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signals at the speed of light, for example in combination with the principle of retarded
time applied by Moon and Spencer, and Wesley who derived wave equations based on this
premise. Additionally, Weber and Kohlrausch first obtained experimentally the value of
c with Weber’s force and Kirchhoff and Weber both arrived at the telegraph equation for
propagation of signals in a circuit independently from each other based on Weber’s force.
From these considerations, we can see that Weber indeed expresses a delay in propagation
and a finite propagation velocity despite it’s action-at-a-distance origin, meaning causality
is not violated.

The overall concept of action-at-a-distance theories on a more philosophical basis has
been discussed by Pietsch [36]. The discussion is on a more general level about energy
conservation, necessity of contact for transmission of energy, locality criteria and meta-
physical considerations and does not favour Weber’s theory over the Wheeler-Feynman
type or other action-at-a-distance theories [21]. First the problem of divergent self energy
of a point charge in classic electromagnetism is discussed, with the existing resolutions
of renormalisation versus extension approaches. It is argued that both solutions come
at a cost and that action-at-a-distance can offer an alternative to resolve either problem
that arises in one approach or the other. Similarities of pure particle action and pure field
theories are explored in the analysis [36] and then Pietsch continues to point out similarities
of action-at-a-distance theories with modern particle-field theories of electrodynamics
widely established today. Lentze [202] has argued that direct-action between charges as a
general concept can provide deeper insight into explaining the origin of electromagnetic
forces and the light speed principle, thus improving our understanding of nature. Fur-
ther discussion of direct-action theories, also more focussed on the quantum version of
the Wheeler-Feynman approach with respect to Haag’s inconsistency theorem and how
direct-action can overcome the mathematical inconsistencies and problems arising from
QED and QFT can be found in [42], but are beyond the scope of this review.

From a modern perspective, Weber’s force has been critiqued as it does not account
for relativistic corrections of deflected electron beams, such as the Kaufmann-Bucherer
or Bertozzi experiments [203,204] in its basic form. Additionally, Weber’s force does not
impose the same relativistic speed limit of c on a particle [205] as is expected from SRT,
and it does not seem to be compatible with SRT and the Lorentz transformation based on
these shortcomings. In its standard form Weber is only an approximation in v2/c2 for high
speed particles compared with relativistic corrections, as shown by [107,203]. There are,
however, some approaches in the literature to address and solve these inconsistencies of
Weber’s force. For example, this could suggest that the regular form of Weber’s force (15)
might still be an incomplete theory and only modified forms may be able to overcome this
problem. Attempts on limiting the velocity have been made by Montes [206], Wesley [204]
and Phipps [196] which manage to include relativistic corrections to varying degrees.
Assis [207] investigated Phipp’s potential and the inclusion of higher order terms similar
to [146,147] in relation to their relativistic compatibility. He finds that these types of Weber
theories either hold the speed limit c for an individual charge or their relative speed, but not
both at the same time. In general these approaches consider some form of modification
of Weber’s theory, which might involve other costs as analysed for the gravitational type
forces and their energy conservation [155], and even if a suitable modification is discovered,
its properties should be studied further on this basis. In a recent study, Li [198] utilises
an extension of Weber’s potential and the additional assumption of modified mechanics
and arrives at high velocity particle behaviour that is identical to the predictions made
from SRT. This has certain similarities to Wesley’s approach [143] of modified mechanics
in conjunction with a Weber-type force and indicates that further research is necessary in
relation to the high velocity regime.

Another interesting approach to potentially resolve the problem was suggested by
Bush [137]. Bush investigated a direct-action force of the Weber-Ampère type and instead
of a variation of mass with velocity assumes a variation of charge with velocity. He deduces
from these investigations that the e/m ratio obtained with their approach is consistent with
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the Kaufmann-Bucherer experiments. Further, with this approach it is the force which tends
to zero for a relative velocity between charges close or equal to the speed of light, rather
than the mass tending to infinity. The reason why no superluminal particles are observed
experimentally is then the lack of force transmission at the speed of light. From these
different suggestions to reconcile Weber’s force with relativistic corrections it can thus be
concluded that the theory has not been fully developed for high speed interactions yet,
and more research is needed if Weber can be correctly used in that sense.

Recently, a new study by Kühn found that it is also possible to resolve the problem
with wave equations derived from Weber electrodynamics [111], where the wave solutions
are obtained in the reference frame of the receiver. The article first shows how Maxwell’s
equations lead to Weber’s force within the low velocity limit and then further investigates
how the wave propagation in the far field can be limited to the velocity of light. Interestingly,
the Lorentz transformation is not a necessity in that approach and rather than viewing the
propagation velocity as constant w.r.t. the transmitter, it is perceived as constant by the
receiver. The physical mechanism responsible for this behaviour is discussed with regard to
a newly developed emission theory by Kühn [208] and its implications for electrodynamics
and SRT. Concluding from these different approaches, while in its standard form Weber’s
force seems incompatible with SRT, we see that solutions have been suggested and further
research is needed to investigate how Weber’s theory and relativistic physics are related.

Other modern criticisms have been issued where Weber’s force was shown to lead to
unphysical results [157,209]. In the case of the investigation carried out by Clemente et al.
Weber’s force is applied to cold plasmas and analysed for the resulting propagation of
waves in the plasma oscillations. The authors of [157] find that Weber predicts a type of
longitudinal wave propagation that is unphysical and contradicts the well established
experimental evidence [210] about dispersion relations in cold plasmas. On this basis it is
also concluded that only the existence of electromagnetic fields can account for this effect
and that Weber’s force leads to erroneous results in this case because it strictly follows
Newton’s third law. This is, of course, an important point of criticism and it shows that
Weber’s theory has not yet been developed in relation to plasma physics at all. It might be
interesting to see if Weber still leads to unphysical results if retarded action is taken into
account (as it was discussed in Section 3.2.1 whereby Weber is consistent with fields in
that case). It might be possible to arrive at the correct result by modification of Weber’s
equation or potentially Ritz’s formula could account for the discrepancy, while this is a
shortcoming of Weber’s force it would be of interest to further develop a plasma physics
approach based on Weber’s force.

An analysis by Sherwin [209] compares the transmission and detection of an idealised
radar system between Weber’s force and the Liénard-Wiechert force in the standard theory.
While the magnitude is found to be the same for both approaches, the angular dependence,
direction of signal transmission and propagation delay is different between the two. Sher-
win states that the standard result through the Liénard-Wiechert equation is well supported
by experiments in radar technology and disagrees with the Weber prediction. On the other
hand, the field-model result cannot easily account for longitudinal forces, which the Weber
force can, and at least the propagation delay can be introduced through a retarded time
approach, such as Wesley’s [9,211]. From this, Sherwin concludes that neither theory agrees
sufficiently well with observable phenomena yet. This seems to be a peculiar situation
that neither theory fully agrees with expectations yet, as it is likely that the inclusion of
longitudinal forces in the Liénard-Wiechert model would also change the angular depen-
dence and transmission direction closer towards the Weber force result. Certainly, more
research is needed to arrive at an answer to the problem and it would be advantageous
to give Weber’s theory a further rigorous development for signal transmission and radar
applications, also on the basis of the approaches reviewed herein [9,19,134,211].

We have outlined how Weber’s theory offers particular value in explaining phenomena
arising in various areas of physics. Most of the original objections to the theory have been
answered and the criticisms that remain are not yet completely resolved. Neither the
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Maxwellian field approach nor Weber’s electrodynamics are free of criticism and problems,
each theory has its own advantages and disadvantages and unreconciled inconsistencies.
In the same way that established theories are continually researched and developed further
and eventually amended, we would make the argument that the same is necessary for
direct-action theories, especially considering that there are significant parallels between
both theories and many connections have been established between the two. Several
authors have presented the view point that direct-action theories are a valid alternative
to be considered in physics and can help overcome problems associated with field theory.
None of the theories are perfect, so it is not wise to dismiss direct-action too early and it
should be further developed to inform research and to investigate what explanations it
can offer. Another useful approach might be to regard the two theories as complementary,
and depending on the application to employ whichever theory is most suitable.

4. Perspective and Future Prospects

The present article has given a comprehensive review about an underrated contribu-
tion to the foundations of electrodynamics, namely the electrodynamic theory of Wilhelm
Weber, and pointed out its many capabilities. However, even with the several strengths of
Weber’s formula presented, the current limitations of the theory have also been explored
and criticism of the theory addressed. Overall, it is found that Weber’s force in its standard
form is only valid within certain limitations and further research is needed, but it can still
complement Maxwell’s field equations within those bounds.

In the literature analysis both Maxwell’s theory of fields and Weber’s electrodynamics
have been introduced, and it was then reviewed how Weber is capable of explaining several
electromagnetic phenomena, including Coulomb’s force, Ampère’s force, field equations,
induction and the telegraph and wave equations. Moreover, the importance of longitudinal
forces and their role in Weber electrodynamics was emphasised, as well as their analogy in
field theory, as they have been shown to exist in both approaches.

Further to just explaining electricity and magnetism, Weber’s theory provides a basis
for other physics disciplines and has a unifying character connecting several branches of
physics. It has been shown how Weber’s force connects to gravity and the strong nuclear
force, Newton’s second law and Mach’s principle and relativistic phenomena such as the
bending of light or frame dragging, however it is not yet known how the weak force relates
to Weber’s force. For standard field theory it is well known that strong force and weak
force can be related to the electromagnetic force but it is still unknown how gravity can
be unified with the other forces in that approach, although it is being actively researched
(e.g., quantum gravity). Lastly, field theory is compatible with SRT as well as quantum
mechanics, but there is no extensive research yet how Weber’s theory can be related to
these topics, if at all. We can see from this juxtaposition that both theories are similar, yet
different, and a table is given below summarising some of the similarities and differences
of both theories (Table 1).

One can conclude that Weber’s theory is not without limitations and is only valid
within the low velocity regime, with standing problems in relativistic physics (special as
well as general), radiation and plasma applications as well as quantum electrodynamics.
However, if the force law is considered as an addition to Maxwellian field theory, it
can enrich one’s perspective on electromagnetic phenomena and beyond. It offers an
explanation of observed phenomena from a particle perspective, as well as the prediction
thereof. In this sense Weber’s theory can be regarded as an important component of
electrodynamic theory, even though it has not been developed anywhere near to the same
level as field theory. While experimental evidence in relativistic electrodynamics and QED
supports Maxwell’s field theory, it has been found that Weber agrees with experiments in
the near field and low velocity limit. This suggests, along with recent studies, that Weber’s
force is a low velocity approximation up to second order in v/c of a more fundamental
underlying force, and needs further development. Several modifications are conceivable,
with possible generalisations of the Ritz-type or corrections to the Weber potential as
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suggested by Li [198] and it will be subject to future work to investigate the full capabilities
and boundaries of the theory and its modifications.

Table 1. A comparison between field and Weber theory in selected categories.

Category Field Theory Weber Electrodynamics

Point Particle Interaction Liénard-Wiechert-Schwarzschild force Weber force

Current Element Interaction Grassmann’s force Ampère force

Longitudinal Forces Can be obtained in various ways [96,97,112] Intrinsic

Magnetic Force Lorentz force Weber-Ampère force

Conservation laws Energy is stored or dissipated by the field to restore
conservation laws

Follows linear momentum, angular
momentum and energy conservation

Field Equations Maxwell equations Can be obtained in various ways [5,6,8,9,110]

Induction Through changing electric and magnetic fields
and flux

Through particle movement (velocity and
acceleration)

Wave Equations Arise from moving fields Can be obtained through retarded time and
also predicts telegraph equation

Compatibility with other forces of nature Weak force, strong force, gravity not yet known Gravity, strong force, weak force not
yet known

Compatibility with SRT Compatible through Lorentz transformation Incompatible with Lorentz transformation

Extension to Quantum Mechanics QED, QFT Initial connections and some problems exist,
but not yet fully known

A benefit of Weber’s force is that it follows Newton’s third law of motion, thus
conserving linear momentum, and additionally conserving angular momentum as well
as energy, so it does not violate conservation laws. In the field approach it is usually
argued that conservation laws are not violated when the energy content of the field is
taken into account, i.e., the field can obtain energy or momentum from a system and
store it as well as release energy and momentum. Further, Weber’s force accounts for
longitudinal forces intrinsically, however, the absence of longitudinal forces seems to be
desired in radar and plasma applications where the field approach benefits from this quality
instead and Weber seems to fail to predict the expected results. However, Weber’s force
can be calculated directly from the movement of the charges involved in an interaction and
does not necessitate the calculation of one or more fields of those charges from which the
force is calculated, which offers clear force and particle-based explanations, which avoids
problems such as the self-energy divergence. Another benefit in Weber’s theory is that
charge velocities are clearly defined, whereas in field theory there may be some ambiguity
left as to what velocities are to be used in the Lorentz force equation. Lastly, Weber’s force
offers the possibility to unify gravitational forces with those of electromagnetism. It is
thus considered constructive to use both theories in cooperation with each other, as each
can compensate for the other’s weakness and regarding a specific problem in question
from both perspectives can potentially lead to new insight. Examples for this can be found
not only in the flux cutting analogy of unipolar induction, but also transformer induction
where the particle perspective considers the acceleration of the current electrons whereas
the field perspective links the magnetic flux of either side of the transformer. Similarly,
magnetic fields (e.g., of a solenoid) can be regarded from a particle perspective, where it is
again the movement of the charges exerting an influence on the test body rather than the
field mediating the force.

On the basis of the present review, one can identify certain aspects of Weber’s electro-
dynamics that would be especially interesting to research further. Firstly, the importance of
Ampère longitudinal forces to determine how they influence specific applications, for exam-
ple the present limitations surrounding the radar equation and cold plasmas, and further
development of Weber’s force for signal transmission and radar applications would be of
interest. Further, the general relevance of longitudinal forces to nuclear fusion applications
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has been suggested [82,97,212], and it remains to be determined how longitudinal forces
could be applicable to plasma physics on a wider scale, especially as plasmas typically
have a positive ion charge density and a negative electron charge density. There is not yet
extensive experimental work giving a quantitative estimate of the influence of the longi-
tudinal forces on plasmas of which the authors are aware. Some recent experiments [101]
suggest that the influence is frequency dependent but relatively small. Further research
into longitudinal forces would certainly be of general interest to clarify their overall role
in electrodynamics.

Another aspect that should be further investigated is charged particle optics based
on Weber’s electrodynamics, in particular the deflection of high-speed electrons as in the
Bertozzi experiment and further exploring how Weber relates to mass change with velocity
and SRT. In order to advance the simulation in the high velocity regime, Weber’s force will
likely need modifications, such as suggested by Wesley, Assis, Montes and Li, along with
other types of modification and generalisation still to be explored.

It could also be valuable to research further electrostatic induction and its connection
to Weber’s force, Assis notably mentions the experiments performed by Jefimenko and
Edwards et al. [213–215]. Nowadays, there are more modern experiments that have been
performed and extended the work of Edwards et al. with superconductors and electrostatic
induction in general, but it seems like they have not yet been analysed from a Weber-
perspective and similar experiments could help to further investigate the boundaries and
validity of Weber’s and field theory in these cases. Next to electrostatic induction, of course,
investigating other induction experiments further and how Weber’s force can predict
them seems logical as Weber has been successfully applied to transformer and unipolar
induction already.

There have been some initial connections between Weber’s force and quantum me-
chanics (see Section 3.2.2), and it could be extremely valuable to extend Weber’s force to the
quantum realm, as this could resolve existing problems with Weber’s force and might allow
for new insight into particle physics from a Weber perspective relating to the nature and
behaviour of the particles themselves. Similar to Weber’s model of the atom, it might be
conceivable that a Weber-type theory leads to a quantum wave equation which resembles
Schrödinger’s equation. Interestingly, a recent study by Zhao [216] has derived a wave
equation similar to Schrödinger’s, that shows interesting similarities to Weber, as both
Weber’s planetary model of the atom and Zhao’s approach can account for precessing
electron orbits. So it might be worth investigating what quantum mechanical capabili-
ties Weber-type forces might have. It may well offer yet unknown solutions and insight
regarding present problems surrounding supersymmetric expectations in particle physics.

In conclusion, Weber’s force is an electrodynamic force law with limited validity that
can complement Maxwell’s field equations, and particularly in the low velocity and near
field limit it is indistinguishable from field theory. It can offer explanations not only for
electromagnetic phenomena but also general physics, with many connections yet to be
explored, holding great potential for further development.
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Spectrum in Dispersive Media
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Abstract: In the review, based on the analysis of the results published in the works of domestic
and foreign researchers, a variant of an unconventional interpretation of the photoluminescence of
dispersive media in the energy range of 0.5–3 eV is proposed. The interpretation meets the require-
ments of the energy conservation law for photons and axions participating in the photoluminescence
process. The participation of axions in the process is consistent with Primakov’s hypothesis. The role
of nonradiative relaxation at the stage of axion decay is noted. The axion lifetimes are estimated for a
number of dispersive media.

Keywords: photoluminescence; dispersive media; axion

1. Introduction

The review is devoted to photoluminescence (PL) and the axion problem [1–5]. The
processes of interaction of light, usually laser monochromatic radiation with various media
in the visible and near infrared regions of the spectrum (0.5–3 eV), are considered. The
appearance as a result of the light exposure of a broadband PL at the output of the dispersive
medium under study, in the author’s opinion, can serve as evidence of the presence of
axions in such processes. According to the existing theoretical concepts, the circumstance
confirming the possibility of the presence of axions in the specified spectral region can be
their decay, leading to the appearance of radiation at the output of the environment under
study at frequencies that are absent at the entrance to the medium.

In this paper, the definition of an axion is based on Primakov’s hypothesis [6,7],
according to which the fusion of two primary photons in a strong electromagnetic field
of an atomic nucleus can lead to the birth of a pseudoscalar particle (axion) and vice
versa, a pseudoscalar particle (axion, neutral pion) can decay into two secondary photons—
annihilation (forward and reverse) processes. The light beam, falling into the dispersion
medium, loses laminarity due to the presence of atoms of the alloying element. When
photons penetrate into the atom into the region of the nucleus, a meeting, a collision of
photons becomes inevitable. The strength of the axion–photon interaction is determined by
the energy characteristics of the outer and inner electron shells of an atom. If for the outer
electron shells, the value of the binding energy of electrons is from several eV to several
tens of eV, then for the inner shells of an atom, the order of this value is 102–104 eV. For the
photon energy range that I am considering (0.5–3 eV), the interaction force turns out to be
sufficient for the generation of axions.

For reference, we point out that in theoretical physics that there is no consensus on the
nature of the axion. At this stage, all that matters to us is that the mass of the axion is small.
This fact corresponds to the statement: “In the theory modified within the framework of
the Grand Unification axion must be a particle of small mass” [4], apparently comparable
in size to the small mass of a moving photon. Therefore, it becomes possible to extract
information about the presence of axions in certain optical processes initiated by photons,
which we will be guided by in the next part of the review.
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This work was written by an experimenter. In our work, we do not limit ourselves to
analyzing our own results. The availability of published experimental results obtained by
many research groups in the visible and near infrared regions of the spectrum (0.5–3 eV)
allows them to be compared and analyzed. In this paper, I discuss physical processes,
mechanisms, and models that illustrate and confirm the position put forward by the author.
After considering the materials included in the review, the readers will be offered a scheme
according to which the axion lifetime estimates for a number of objects are estimated from
published sources [1,7].

The traditional approach to the description of optical phenomena using wave rep-
resentations [8] does not allow for the full interpretation of the results observed at the
junction of optics and elementary particle physics. The involvement of methods used in the
physics of the quantum world can help solve the problem. If we turn to photons (quanta),
which successfully moved from particle physics to optics with the advent of lasers, then
the connection between optics and the physics of the quantum world turns out to be real.
This fact will help us get closer to finding out the nature of the axiom.

Here, it is appropriate to recall the generation of harmonics of optical radiation, para-
metric light generation. The authors of [9], the subtitle of which is “electromagnetic waves
in nonlinear dispersive media (DM), argued that when using the quantum interpretation,
the birth of harmonics and the appearance of combinational frequencies indicates the
essential role of the processes of fusion or division of photons (light quanta), noting the
need to take into account the laws of conservation of energy and momentum in nonlinear
optical transformations. When the second harmonic is generated, two pump radiation
photons merge in an elementary act. In a parametric light generator [10], the decay of a
pump photon in an elementary act ensures the appearance of two photons at the output of
a nonlinear medium: a signal and an idle one.

The purpose of this review is as follows: based on the analysis of experimental data
published by foreign and Russian researchers, to present a scheme, a model reflecting the
contribution of axions to the PL process. The analysis of the results obtained in the study of
PL, according to the author [1,7,8], admits the possibility of the presence of axions at the
stage of interaction of pumping radiation with atoms used for doping the medium. As a
rule, the medium under study is a dispersive medium (glass or crystal) in which the pump
radiation is transformed, leading to the appearance of PL quanta. The process of conversion
of pumping radiation is associated with the birth of axions and their decay. The energy of
the PL quanta, as a rule, is different from the energy of the pump radiation quanta.

In our review, we will deal with a DM. The continuous phase DM consists of glass,
crystal structure, and liquid. The second component of DM distributed (suspended) in the
volume of the continuous phase consists of atoms or nanoparticles of alloying material:
atoms of holmium, bismuth or silicon. That is to say, this phase consists of electrons and
nucleis of atoms of the alloying material.

From chemistry, it is necessary to also recall the complex environment [11]. The
complex environment is a substance composed of complex particles (atoms or nanoparticles)
capable of independent or connected existence in a liquid, amorphous (glass), or crystalline
environment, acting as a matrix. The complex particle itself, in turn, can be heformed from
other, simpler particles (nuclei, surrounded by electrons). In optics, it is natural to talk
about a dispersive medium—DM, a medium that is associated with the phenomenon of
light dispersion.

Returning to the problem we are interested in, we inform you that the review will
consider PL in DM, that is, in glasses doped with bismuth and holmium atoms, in crystal
samples doped with holmium, and in PL suspended in ethanol silicon nanoparticles.

2. The Bohr Frequency and Its Relation to the Lorentz Harmonic Oscillator Model

In this section, we will consider the conditions for the propagation of a light beam in
DM. In particular, these are the reasons that change the laminar propagation of a light beam
to a turbulent one. This circumstance can change the phase velocity of photon propagation
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in the DM, which leads to the interaction of primary photons with each other. Multiphoton
nonlinear optical processes are considered as an example of such interaction.

2.1. Niels Bohr’s Postulates

When considering the atom model, Niels Bohr proposed the postulates of quantization.
Following [12,13], we recall their contents. The first postulate is that there are a certain
number of electron orbits in an atom, which they call stationary states (levels). Moreover, in
each of these states, an electron can stay indefinitely without radiating at all. This position
was postulated arbitrarily and obviously contradicted the classical electromagnetic theory.
Second, he postulated that an electron could be knocked out by a blow from the lower
stationary, normal state E1 to an energetically higher E2, which Bohr called excited. The
transition between these states is characterized by the Bohr frequency—ν21 [14], the value
of which is determined from Equation (1)

ν21 = (E2 − E1)/h, (1)

h is Planck’s constant, and (E2 − E1) = ΔE is the energy of the electron transition
between levels. Such relations can link many levels together in pairs, and the role of the
lower state can be assigned not only to the lower level but also to the higher ones. The
Equation (1) in this case should have the following form:

νmp = (Em − Ep)/h (2)

i corresponds to the level located below, and j corresponds to the level, located above.
Thus, m = 1,2,3 . . . , and p = i + 1,2,3 . . .

Bohr’s ideas proved useful for explaining the structure of optical spectra and found
application in practical spectroscopy.

The next part of the review is devoted to the consideration of the processes of interac-
tion of a monochromatic radiation beam with resonant and almost resonant media, which
link the frequency of exciting radiation at the entrance to the medium to the frequencies
of the medium levels responsible for scattered radiation at the exit of the medium under
study with Bohr’s frequencies. This circumstance occurs, as a rule, in nonresonant condi-
tions, when the detuning of the pump radiation frequency relative to the frequency of the
electronic transition in the νmn atom does not exceed 10–20 cm−1. When considering the
PL process, in various environments with volumetric placement of multidimensional oscil-
lators, and, consequently, having a large set of Bohr frequencies, the proposed approach
turns out to be useful for practical use.

As a rule, on spectrograms, the line corresponding to the Bohr frequency νij is not
observed at the output of DM.

2.2. The Bohr Frequency and Its Relation to the Lorentz Harmonic Oscillator Model

The Bohr frequency is a characteristic of the medium that appeared with the birth of
quantum mechanics. Note that an expression similar to Equations (1) and (2 bnvvm) has
been used in classical physics for a long time to describe the characteristics of a harmonic
oscillator. We have to figure out how the refractive index n of a medium consisting of
identical and different-sized oscillators behaves depending on the frequency. To do this, we
should refer to the works that used a model in which the oscillations of electrons in an atom
near the equilibrium position are considered [15–19] and compare with the work in which
the author deals with the Bohr frequency [14]. In the first case, the book “Fundamentals of
Optics” by M. Born and E. Wolf can help us [20]. Following to her we note that “the phase
velocity V and, consequently, the refractive index n(ν) cannot be constant in the volume of
the entire medium under study.” These values depend on the detuning value of the pump
frequency n relative to the Bohr frequency νij. E. Fermi pointed out that the refractive index
n(ν) and the phase velocity V are not quantities that have a constant value in the medium
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under study [14]. For the classical harmonic Lorentz oscillator, according to [16] we have
the Equation (2):

νmp = (Em − Ep)/h,

νmp is the natural frequency of the electron oscillations near the stable equilibrium
position, Em is the value of the electron energy at the “m” level, and Ep is the value of the
electron energy at the “p” level [16]. Planck’s constant h = 6.6252 × 10−27 erg × s.

According to Fermi [14], a similar ratio has the form:

νmp = (E(m) − E(p))/h̄ (3)

νmp is the Bohr transition frequency, E(m) is the energy of an electron occupying level “m”,
and E(p) is the energy of an electron occupying level “p”. In this case, h̄ = h/2 π = 1.0544 ×
10−27 erg × s.

It is essential for us that, regardless of the type of model, the refractive index n(ν)
depends on the pumping frequency.

Note that when photons pass through the electron shell surrounding the nucleus, both
the magnitude and the sign of the pump frequency detuning relative to the frequency of
the transition under study have an effect on the magnitude of their velocity.

If, for a harmonic oscillator, the refractive index n(ν) is greater than 1 (the pumping
frequency ν is less than the Bohr frequency νmp, then the photon velocity slows down. If
the value of the refractive index n(ν) is greater than the Bohr frequency νmp, then photons
are reflected toward the pump light beam, which assists in the addition of photons, leading
to the birth of an axion.

The results of consideration of the question of the relationship between the frequencies
of the medium, its refractive index, and the characteristics of the radiation scattered by the
medium are considered in detail in [21–26] on the example of atomic potassium vapors.
Below, we will see that the considered dependencies will bring us closer to solving the
problem: finding out the nature of the PL, the axion, and its place in the physical picture
of the world. The Bohr frequencies are a real characteristic of the medium under study.
The numerical values of spectral lines included in reference books and atlases are simple
coincide with the Bohr frequencies of interlevel transitions in atoms. This position is valid
for linear to laser optics. For high-power laser radiation used in experiments of this kind,
shifts of electronic levels in atoms may occur [24], which naturally affects the spectral
characteristics of scattered radiation and PL radiation at the outlet of the medium. As
a rule, the level shift is associated with multiphoton processes. For example, in atomic
pairs of potassium, these are three-photon electron Raman scattering [22] and six-photon
parametric scattering (SPR) [25,26].

The frequency of the three-photon electron Raman ν3 in a two-level medium can be
calculated in accordance with the law of conservation of energy:

ν3 = 2ν − ν21 (4)

where the multiplier h is omitted, and the frequency ν21 corresponds to the tabular value of
the frequency of the interlevel transition.

Equation (4) does not take the shift of the levels of the medium under study in the
pumping field into account; however, it allows comparing experimental data and tabular
values of wavelengths or frequencies of interlevel transitions.

The results of experiments related to the three-photon electron Raman process can be
found in [22–26].The similar results were obtain also in work [27]. Theoretical estimates
of the three-photon process in two-level media are made in the book by Pantel R. and
Puthof G. [18]. For further consideration, it should be noted that in the elementary act of
three-photon Raman scattering Equation (4), two pump radiation photons participate. This
fact will help us in solving the problem of PL and axion.
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2.3. Starting the Analysis of the PL Spectra in the DM

In this section, we need to find out what happens to the radiation at the output of the
DM under study, in which the atoms of the element alloying the medium are “weighted”,
while not forgetting that the atoms are nuclei surrounded by electron shells. Namely, the
electrons of the shells determine the behavior of photons in the medium, and the behavior
of the refractive index n(ν) DM near the resonance transition region is determined by
electrons. Resonant transition and harmonic oscillator? According to Niels Bohr, there is a
correlation of complementarity between “the unambiguous application of stationary states
and the mechanical analysis of intra-atomic motions . . . ” [12,13].

Taking this into account, we combine the ideas about the interlevel transitions of
electrons of doping DM atoms with the oscillations of different-frequency harmonic oscilla-
tors. Namely, the electrons of the atoms doping the medium, responsible for the optical
properties of the medium, are an ensemble of identical or different-frequency classical
oscillators. Above, we have partially discussed the consequences of this circumstance.

For the future, we must consider three cases concerning the processes of interaction of
the pump radiation ν with DM, namely:

(a) ν = ν21, n(ν) ∼= 1;
(b) ν > ν21, n(ν) > 1;
(c) ν < ν21, n(ν) >1,

where n( ν) is the refractive index of the medium at the frequency of the pump radiation ν;
ν21—the Bohr frequency resonant transition.
According to the theory of dispersion for the case:
(a) when ν = ν21, the refractive index n(ν) of the medium is close to unity [15–18]. The

reflection coefficient of such a medium increases as the excitation frequency ν approaches
the Bohr frequency ν21, reaching a maximum value at ν = ν21 [16]. A qualitative illustration
of this circumstance is Wood’s experience in observing resonant radiation in the case of
atomic sodium vapors placed in a cuvette illuminated by a sodium lamp. This experi-
ence practically illustrates the case of exposure to a two-level medium of photons whose
frequency ν is equal to the Bohr frequency (ν = ν21).

In fact, the scheme of forced (induced) photon emission proposed by A. Einstein in
1916 was implemented. Indeed, in a resonant two-level medium, in the elementary act of
photon absorption, an electron leaves the ground level to the excited level.

By the next photon of the beam, electron can be knocked out from the excited level,
i.e., we have:

hν21 + hν = 2hν (5)

Here, ν = ν21, where ν21 = (E2 − E1)/h is the transition frequency of the investigated
duplex environment; the value of hν21—energy of an electron in the excited level (hν12 = hν21).

The left part of the Equation (5) open mechanism of enhancement of light emission in
the inverted environment by doubling the number of photons, right side of Equation (5) in
each elementary act of forced (induced) radiation. This process is implemented in tasks
related to the amplification and generation of monochromatic radiation [20,28]. It should be
noted that even at the dawn of the development of laser physics, the model of the classical
harmonic Lorentz oscillator that we have attracted has already been used to consider the
laser generation process [29].

In case (b), when ν > ν21, the feature limiting the propagation of photons is due to the
fact that, according to the theory of dispersion, the refractive index n(ν) < 1. The propagation
of photons of monochromatic radiation in this region of the spectrum, generally speaking,
is impossible, because otherwise their velocity V = c/n(ν) would exceed the speed of light
c, which contradicts existing concepts. If a high-power laser is used in the experiment,
then due to three-photon electron Raman scattering [22] after leveling the populations of
the levels of the transition under study, we will get n(ν) ∼= 1, which will allow part of the
pumping to pass through such a medium. If the intensity distribution across the cross-
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section of a powerful beam is Gaussian (single-mode laser), then we have self-focusing at
the output of such a medium [21].

Finally, consider case (c) ν < ν21, where ν21 is the resonant transition frequency. In this
region of the spectrum, the refractive index is n(ν) > 1. According to [15–19], the refractive
index n(ν) increases with decreasing detuning in the low-frequency spectral region with
respect to the resonance frequency. This case was considered in [22]. Below is a summary
of it.

If the condition ν �= ν21 is fulfilled in an elementary act, the energy of two pump
photons ν should add up, which forms a kind of “virtual” level in the medium (ν + ν) = 2 ν,
the breakdown of which is accompanied by the emission of one light quantum at a new
frequency. PL is associated with this process. The fate of the second quantum is nonradia-
tive relaxation (electron leaves “virtual“ level for transition on one of real levels of doping
atom—heating of the medium) [19].

When using high-power laser radiation with a frequency close to the transition fre-
quency, the populations of the ground and excited levels of the atomic medium can be
equalized due to three-photon electron Raman. In this case, according to Equation (4)
radiation at the frequency ν3 is recorded on the spectrograms [22,27].

When summing up the results under point (c) we note, that the process of three-photon
electron Raman process is accompanied by a decrease of the refractive index of the medium
n(ν)→ 1 at the frequency of exciting radiation, ν.

If the pumping of the medium under study is carried out by a single-mode beam,
in the cross-section of which the energy distribution has a Gaussian structure, then the
consequence of this is a sagging refractive index on the beam axis. The consequence of this
is a deviation from the axis of the particle beam of the pump radiation, which leads to the
appearance of a conical structure of the beam at the outlet of the medium [21,22].

With an increase in the power of the exciting radiation, the process of three-photon
electron Raman process is supplemented by a six-photon parametric process [25,26] in
this case, and a second cone structure can be registered at the outlet of the cuvette with
potassium vapor. The conditions of their appearance are discussed in detail. The first reason
is the propagation of “superluminal” photons [23]. Naturally, the speed of propagation of
these photons does not exceed the speed of light. The second reason is the propagation
in a medium with superluminal velocity along the beam axis of nonlinear polarization
associated with the six-photon parametric scattering [26].

We have shown that this situation can be explained by the dependence of the refractive
index of the medium on the intensity of the pump radiation and the Gaussian intensity
distribution over the cross-section of a single-mode beam. The propagation of photons in a
medium with a phase velocity V = c/n(ν) makes them “superluminal” [30]. The results of
experiments in atomic vapors of alkali metals in the frequency range of the main doublet
can serve as a visual proof of the processes considered.

The propagation of radiation in a two-level medium occurs according to the law
of conservation of energy. This applies equally to Raman and parametric multiphoton
processes. The same correspondence takes place if we have an environment with a set of
different frequency oscillators, which corresponds to DS. In comparison with the considered
model of a two-level medium, in this case, due to a significant increase in the number
of Bohr frequencies, the spectra of the radiation scattered by the medium become more
complicated (broadening, overlapping). Nevertheless, the decoding of spectrograms turns
out to be feasible within the framework of the proposed model.

The above information is necessary so that the reader can analyze the nonstandard.

3. Photoluminescence (PL)

In order to expand our understanding of PL, let us first dwell on the definition of
this process. PL is luminescence excited by optical radiation [31]. Remaining within the
framework of this definition, it is necessary to consider three options: (1) resonant radiation,
(2) PL, corresponding to the Stokes rule, and (3) anti-Stokes PL.
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The energy conservation law for PL [31,32] can be written in a form convenient for
further work:

hνpl = 2hν − hνij, (6)

where hνpl—the energy quanta (photons) PL, hν—the energy of the pumping quanta
(photons)—the light radiation used to excite the PL, 2hν—the energy of “virtual” level,
ν—the frequency of pumping radiation, and hνij—the energy of electron, expended for
nonradiative relaxation.

The index i, j correspond to a set of levels involved in the relaxation process; index
i—real level, index j—“virtual” level.

According to (6), each of these transitions corresponds to a component in the PL
spectrum at the outlet of the medium. The value of νij is a combination of a large number
of transition frequencies associated with nonradiative relaxation and transfer of thermal
energy to the medium. Since the PL spectrum in DM is usually broadened, it is natural to
assume that the PL process is accompanied by a multitude of electronic interlevel transitions
responsible for nonradiative relaxation in the atoms of the element used for doping DM.
Naturally, the law of conservation of energy is fulfilled for each frequency component of
the broadened PL spectrum.

hνpl—the quantum energy of the PL radiation,
νpl—the frequencies filling the broadened spectrum of the PL.
The index “pl” corresponds to the whole set of frequencies involved in PL. The same

number of frequencies of nonradiative transitions correspond to the index “ij”.
From the Equation (6), it follows that the value of the pump radiation frequency is the

arithmetic mean between each pair of frequencies νpl and νij.
Resonant radiation is the simplest case of PL. In this case we have an implementation

of the Einstein scheme: (1) absorption of a light quantum, (2) spontaneous emission
of a quantum, and (3) stimulated radiation [17,18]. The experiments of the American
optician R. Wood, who studied the resonant interaction of light radiation in a cuvette
with atomic sodium vapor in the frequency range of the main doublet, were mentioned
above. The process of absorption by sodium atoms of quanta falling on the window of a
cuvette with atomic vapors is accompanied by the processes of spontaneous and forced
resonant radiation.

Note that, in contrast to the resonant case, the PL spectrum at the DM output is,
as a rule, broadened. Most often, it is broadened relative to the pumping frequency in
the Stokes region of the spectrum. This fact is considered fundamental for the definition
of PL. We will return to this issue below, since the processes of PL have not yet, in fact,
been fully investigated. This was noted by Paul R.V. [17], referring to the experiments
of Vavilov S.I. [33]. Finally, the well-known rule of mirror symmetry between the PL
spectrum and the absorption spectrum is uniquely associated with the law of conservation
of energy [28]. Indeed, in compliance with Equation (6) from the law of conservation of
energy frequencies involved in the PL process, for the Stokes region of the PL spectrum,
we have mirror symmetry:

νij − ν = ν − νpl (7)

here: ν > νpl.
A similar ratio can be written for the anti-Stokes region of the PL spectrum:

νpl − ν = ν − νij (8)

here ν < νpl.
The Equations (7) and (8) helped to author to understand the PL spectra, obtained

by him [34–36], or borrowed from the materials of various authors, in which the results
on PL are presented, and to which we will return below. Unfortunately, the accuracy of
the frequency estimation at the stage of analysis of the PL spectrograms, published in the
journals in the DM could not be high enough. However, this did not prevent the author
from establishing coincidences between the tabular values of wavelengths or frequencies
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responsible for nonradiative relaxation and the values of frequencies or wavelengths
calculated from the experimental results.

If a frequency-nontunable laser is used as a pump, then the coincidence of the “virtual“
level, whose energy is 2hν and the real level in the alloying atom is unlikely. That is why
we do not have an exact match in the case of PL. In the next section of the paper, the case of
an exact match is considered. The section is devoted to studies of PL and laser generation
(LG) in holmium-doped media.

The next step is to discuss, within the framework of the above model, a number of
experimental results published by domestic and foreign researchers and the consequences
arising from the proposed model of PL.

4. On the Results of Studies of PL and LG in Holmium-Doped Media

We will focus on the studies of PL in DM performed in different laboratories. The
purpose is to test the model, proposed by the author on the material of publications that
contain information about the spectra of PL or laser generation (LG) in media activated
(doped) with holmium. The author is aware that a small part of the publications on this
topic has been considered. Nevertheless, the information extracted from the considered
works confirms the position of the considered nontraditional model of PL.

The cases of using quartz glass fiber optical fibers [37,38], crystal samples, and
chips [34,39–41] as DM are considered. Information about the preliminary review of
the results of these works can be found in [42].

Both PL and LG processes starting at frequencies corresponding to the maximum
peaks and humps on graphs reflecting the spectral dependence of intensity (power) will
be considered PL at the DM output depends on the wavelength of the pump radiation.
The transition of the overhead line to the LG mode in fiber light guides is carried out due
to their length by retaining pumping and fluorescence radiation in the light guide. For
chips, the LG mode is carried out using powerful pumping [34]. The use of holmium as an
alloying additive is due to the search for media whose radiation is safe enough for vision,
since the wavelengths of PL and LG radiation are in the IR region of the spectrum (~2 μm).
In this area of the spectrum, it is convenient to conduct remote sensing, the development of
differential absorption radars.

The reader should pay attention to the fact that to obtain PL in the infrared region of
the spectrum (~2 μm), different sources whose wavelengths and radiation power differ
significantly from different authors can be used for pumping.

The task of the analysis will be to determine the specific interlevel electronic transitions
responsible for PL and LG in the specified spectral region (~2 μm). The use of holmium as
an alloying additive is due to the search for media whose radiation is safe enough for vision,
since the wavelengths of PL and LG radiation are in the IR region of the spectrum (~2 μm).
Let us focus on the experiments performed using fiber light guides. Let us consider the
results presented in the works of A.S. Kurkov and his collaborators [37,38]. According
to these results, PL was obtained in the infrared region of the spectrum (~2 μm), and at
wavelengths of 2.02 μm, 2.05 μm, 2.07 μm, 2.1 μm, 2.13 μm, 2.15 μm—LG. The experiments
used a pump laser with a wavelength of 1125 nm, as well as 1147.35 nm. It is interesting to
determine the wavelength of the electronic transition, which is associated with the heating
of the glass fiber due to nonradiative relaxation. In particular, the transition responsible
for LG in this region of the spectrum (~2 μm) corresponds, according to tabular data, to
the wavelength value 755.09 nm [43]. This is the transition 5 I (9 − 55/2) − 4 I 0 (15/2 −
9/2) [44].

This result is obtained as follows. Previously, it was possible to obtain the value of the
frequency νpl.

To calculate the frequency of the transition responsible for this process, it is necessary
to use the following equation from the law of conservation of energy:

νpl − ν = ν − νij,
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where:
ν is the frequency source of pump;
νpl is the frequency of the maximum peak on the spectrogam PL.
νij is the frequency electronic transition between electronic levels (in case LG, for the

holmium atom). Recall that the frequency ν ij corresponds to transitions between any pair
of electronic levels of opposite parity.

A slight (0.028 eV) discrepancy between the tabular data and the calculated value
allows us to conclude that the results of the work [37,38] correspond to the PL model
proposed by the author. Let us consider examples of obtaining radiation in the region
(~2 μm) in crystal structures doped with holmium. In [41], when using a crystal made of
yttrium–aluminum oxide (YAlO3, YAP), radiation in the region (~2 μm) was obtained by
pumping, the wavelength of which is 791 nm.

In [34], LG was obtained at a wavelength of 2050.5 nm (~2 μm) in a laser on a
Tm,Ho:YLF microchip, when using a diode laser with a wavelength of 785 nm as a pump.
In this case, the difference between the energy of the interlevel transition calculated accord-
ing to Equation (7) corresponding to the frequency νlm, and, in fact, responsible for the
PL, and the energy for the table value of the wavelength 4939.01 Å [43] does not exceed
0.043 eV. Thus, in the case of glass fiber for the 755.09 nm pumping wavelength used in
the experiment, the transition, 5 I (9 − 55/2) − 4 I 0(15/2 − 9/2), is responsible for the LG
mode, corresponding to the frequency of 13243.35 cm−1.

In the crystal structures, using the pumping 493,901 nm LG is responsible for transition
5 I (9 − 55/2) − 4 I 0(15/2 − 9/2); its frequency—20246.97 cm−1.

In [41], generation at a wavelength of 2044 nm was obtained using a holmium-doped
Tm, Ho:YALO3 (YAP) crystal, where a laser diode was used for pumping, the radiation
wavelength of which is 794.8 nm. Numerical calculation shows in this case that the
difference between the calculated value of the energy of the interlevel transition responsible
for the PL and the tabular value does not exceed 0.027 eV.

In [34], the case of obtaining LG at a wavelength of 2050.5 nm in a laser on a Tm,Ho:YLF
microchip when using a diode laser with a wavelength of 785 nm as a pumping source is
considered. The calculation shows that in this case, the difference between the calculated
value of the energy of the interlevel transition corresponding to the frequency νpl and, in
fact, responsible for photoluminescence, and the energy of the table value of the wavelength
4939.01 Å (see [43]) does not exceed 0.043 eV.

Thus, in the case of glass fiber [37,38], for the 755.09 nm pumping used in the ex-
periment, the transition 5 I (9 − 55/2) − 4 I 0(15/2 − 9/2), corresponds to the LG mode,
corresponding to the frequency of 13243.35 cm −1. In crystal structures, when pumping
493.901 nm, the transition 5 I (9 − 55/2) − 4 I 0(15/2 − 9/2) is responsible for LG, its
frequency is 20,246.97 cm−1. Some results of the section are presented in [42].

5. Analysis of the Results, Observed in Bismuth-Doped Media

Are the results and conclusions of the previous section random? To make sure that the
PL model we are considering is viable, let us consider the papers that present the results
of the study of PL and LG in media doped with atomic bismuth. It is either fiberglass or
monolithic glass. In fiberglass, as a rule, we are talking about PL and LG; in glass samples,
we are talking about PL.

Table 1 presents information about PL and LG in the visible and IR spectral ranges. The
criterion confirming the validity of our assumptions can be proximity (or even coincidence,
which is not necessary) calculated transition frequencies associated with nonradiative
relaxation. Naturally, the results of calculations of the frequencies of inter-level transitions
are compared with the values of the frequencies presented in the reference literature, which
has generally recognized fame and reliability [43,44].
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Table 1. Juxtaposition tabular value of the transition wavelength with the result of calculating the
wavelength of the transition.

1 2 3 4 5

Link number
in the list
literatures

Wavelength
corresponding to

the maximal
valued ordinal

curve of PL (LG):
λpf (nm)

Wavelength of
excitation source

PL: −λ (nm)

The result of
calculating the
wavelength of
the transition:
−λlm (nm)

Tabular value
of the

transition
wavelength: −λt

(nm)

which is associated with
non-radiative

relaxation.

[45] ~1130 nm 1058 nm 994.6 nm 982.8 nm
[46,47] ~720 nm 514 nm 399.6 nm 388.6 nm
[48,49] ~750 nm 500 nm 374.99 nm 359.6 nm
[48,49] ~1140 nm 500 nm 320.2 nm 323.9 nm
[48,50] ~1300 nm 800 nm 577.7 nm 574.2 nm
[48,51] ~1315 nm 808 nm 583.1 nm 574.2 nm

[48,52,53] ~1310 nm 808 nm 584.1 nm 574.2 nm
[48,54] ~1150 nm 980 nm 853.8 nm 854.4 nm
[48,55] ~1210 nm 405 nm 243.2 nm 243.3 nm

[56] ~1260 nm 798 nm 584 nm 574 nm
[56] ~1153.5 nm 502 nm 314.9 nm 306 nm
[56] ~1153,5 nm 525 nm 339.8 nm 339.7 nm
[56] ~1085.4 nm 680 nm 472 nm 472.2 nm
[56] ~1171.6 nm 738 nm 540 nm 555.2 nm
[56] ~1260 nm 798 nm 584 nm 527.4 nm

The works in which pumping was used in the 405–1230 nm spectral regions and the
PL spectra were recorded in the 720–1650 nm range are considered. Bismuth atoms are em-
bedded in a homogeneous amorphous isotropic medium (example: quartz, aluminosilicate
glass), the temperature of which depends on the environment. For reference: bismuth has
an ionization potential of 7.3 eV, which corresponds to 58,765 cm−1.

The pumping radiation that initiates PL in a medium, containing bismuth atoms,
due to the addition of two quanta of light in the elementary act, transfers electrons to
“virtual” levels that occur near the levels of 2D3/2, 2D5/2, 4P5/2, etc. These levels of bismuth
correspond to the energy region of 0.5–3 eV.

The addition of two pump radiation quanta in the atomic nucleus field, according
to Primakov [6], may indicate the birth of an axion. The condition for its appearance is
the high intensity of intra-atomic fields. The “virtual” levels cannot be long-lived. The
born axion decays into two new quanta, one of which leaves the medium—a contribution
to the PL, and the second gives its energy to heating the medium due to nonradiative
relaxation of electrons. Here, we should recall the direct and reverse effects of Primakov.
Theorists are familiar with Feynman diagrams that illustrate the possibility of the existence
of such processes.

In general, in bismuth-doped glass fiber, the structure of the PL spectrum can be quite
complex, as evidenced by the published results [45–55]. Nevertheless, it is possible to
distinguish frequencies that correspond to the maximum values of the spectral curve of the
PL. The exact numerical value of the frequency corresponding to the top of the hump of the
spectral curve PL is quite difficult to obtain from illustrations in journal publications. For
this reason, in Table 1, depending on the pumping frequency, the discrepancy between the
exact tabular value (column No. 5) of the transition frequency responsible for nonradiative
relaxation and the one calculated on the basis of publications (column No. 4) cannot be ideal.
However, the results of the calculation and the tabular values for the viewed publications
are quite close to each other.
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Column 1 of Table 1 contains a reference to the source. Column 2 indicates either the
wavelength of the line on which the LG is obtained or the wavelength corresponding to
the hump on the PL spectrogram. The wavelength of the excitation source PL is given in
column 3. The calculated wavelength corresponding to the position of the hump having the
maximum power value on the PL spectrogram (column 4). Tabular values of wavelengths
of atomic bismuth lines with which radiative relaxation is associated are presented in
column 5. The results from [45–55] were obtained in fiberglass, and only in the work [56]
PL was investigated in a monoblock.

Before proceeding to the axion problem, let us briefly consider two more elements
of the periodic system of Mendeleev, used for doping media used in optics and quantum
electronics and related to PL.

First of all, I will focus on neodymium [57]. A new generation has come to replace the
neodymium laser with lamp-pumped rods cooled by running water, in which laser LEDs
are used to pump rods doped with neodymium. According to the author, the choice of the
operating frequency of a narrow-band neodymium laser pump source corresponds to the
PL model considered in the review.

A few words about silicon, the main material of electronics: The review [31,34,35]
discussed the problem of mirror symmetry of PL and absorption of multi-dimensional
silicon nanoparticles suspended in ethanol. The contribution of the anti-Stokes component
in the PL spectrum is noted. The PL excitation of silicon nanoparticles suspended in ethanol
was carried out using an argon laser λ = 488 nm.

The author [59], using lasers with different wavelengths (365 nm, 456 nm, 532 nm,
660 nm), showed that the peaks of the PL spectra (660 nm, 690 nm, 720 nm, 820 nm) of
silicon nanoparticles are shifted, new sections of the spectrum are filled.

The relation (8) is valid in the case of LG. In the case of broadband PL, indices “i,j”
correspond to electron transitions between the “virtual” level, whose energy is 2hν, and
the set of electronic levels of the doping atom. The frequencies of these transitions are
not reflected in the tables and depend on the radiation frequency of the pump source. If
the value of the pump radiation frequency ν is greater than the frequencies “νij” of these
transitions, then the conditions for anti-Stokes PL are met.

6. Axions in the Optical Range of the Spectrum and Their Lifetime

We have constantly noted above that when using monochromatic radiation to pump
DM, the PL spectrum is, as a rule, broadened. The width of the PL spectrum is undoubtedly
related to transitions in the atom of the alloying element. Among the reasons for the
broadening of the PL spectrum are: the finite width of the electronic levels involved in the
elementary act of excitation of the atoms of the element used for doping the medium, shifts
of these levels in the pumping field [24], temperature conditions of the experiment.

The virtual level, whose energy is determined by the sum of the energies of the two
pumping quanta, as a rule, does not coincide with the levels of the atom. According to
Primakov [6], a meeting in an elementary act of two photons in the field of an atomic
nucleus can lead to the birth of an axion. The time of its life is extremely limited. The
instability of the virtual level due to the interaction with the levels of the atom of the
alloying element in the field of the atomic nucleus leads to the decay of the axion into
two quanta.

The energy of one of them is spent on heating the medium due to non-radiative
relaxation. Unfortunately, the issue of heating, heat transfer of the DM is little discussed.
But when dye lasers were being developed, the issue of heat dissipation was the main one.
The same can be said about neodymium and other solid-state lasers [57].

As follows from the experiment, the main contribution to the width of the PL spectrum
is due to the fact that the number of allowed transitions of electrons from the virtual level
corresponds to the set of levels in the atomic shell. A lot of non-radiative electron transitions
are the reason for heating the luminescent medium.
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The second quantum of the decayed axion, according to the ratio (6), leaves the DM
at a slow speed, which depends on the structure of the energy spectrum of the atoms of
the alloying element, its energy, i.e., frequency. In addition, it is necessary to remember
about the multitude of different-frequency harmonic oscillators (electrons) encountered
on his way, and the law of dispersion for each of them. At the output of the DM, we get,
as a rule, an expanded spectrum of PL. For example, when silicon nanoparticles placed in
ethanol [34,58,59] are excited by argon laser radiation, a PL spectrum with a width from
464 nm to 670 nm is obtained.

What can the width of the PL spectrum give us and what information can we extract
from it?

In fact, due to the quantum-mechanical uncertainty of the position of the energy levels
of the atom, including the virtual one, we have the right to believe that the width of the PL
spectrum recorded by the photodetector corresponds to the natural width [60]. If τ is the
average lifetime of the axion at the virtual level, ΔW is the energy of this level, then for this
situation there is a known uncertainty relation.

ΔWτ ≈ h/2π (9)

According to [61], the uncertainty ratio due to the smallness of h is significant only for
microsystems, which we are dealing with. Let us use this relation to determine the lifetime
of the axion.

The contour of a wide spectrum of PL I(v), reflecting the dependence of the power of
the PL on the frequency, usually has a maximum (hump) and falling wings. For the width
of the spectral line ΔW, a difference of frequencies is taken, which corresponds to a halving
of its peak power I(ν)max/2. Table 2 shows several examples illustrating the relationship
between the width of the spectral band of the PL radiation and the lifetime of the axion. To
estimate the lifetime of the axion, the ratio was used: 1 cm−1 ≈ 2.99793 × 1010 s−1. The
lifetime of the axion is significantly shorter than the lifetime of the excited energy levels,
which, according to reference data [62], corresponds to a value of 10−8 s.

Table 2. Axion lifetime for Alloying Materials the Test Sample.

References

Alloying Material;
in Parentheses—

Environment of the
Test Sample

The Wavelength
of the Pump

Radiation, nm

Frequency
Corresponding to

the Maximum
Value of Intensity

PL, cm−1

Width of the PL
Spectrum at

Half-Length, ΔW,
cm−1

Axion Lifetime
τ, s

[35,36] Silicon (ethanol) 488 ~5480 ~1160 ~3.48 × 10−13

[63] Bismuth-Bi
(glasscorderite)) 514 ~8547 ~420 (~700)

~1120 2.93 × 10−13

[64]
Bismuth-Bi

(aluminosil-rolled
glass T = 77 K

1075 ~8880 ~1213 3.64 × 10−13

[65]
Bismuth-Bi

(phosphorus-silicate
glass)

1240 ~7463 ~340 ~1.02 × 10−13

[66] Bismuth-Bi T = 1.4 K 375 ~6803 ~340 1.02 × 10−13

7. Summing Up

Analysis of experimental results shows that the definition of PL in DM needs to be
supplemented and clarified. We have previously settled on the definition according to
which PL is a glow generated by optical radiation. By definition, Vavilov S.I. luminescence
is an excess of radiation over temperature, provided that the excess radiation has a finite
duration exceeding the period of light oscillations (10−10 s). Stokes’s law states that PL light
has a longer wavelength compared to the light used for excitation. According to Lommel,
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the PL spectrum as a whole and its maximum are always shifted in comparison with the
excitation spectrum and its maximum towards long waves.

For a long time, it was believed that the substance has a completely defined lumines-
cence spectrum, which is not sensitive to changes in the wavelength of exciting light. For
DM, this rule is violated. Experiments in silicon, holmium, and bismuth doped media have
not confirmed this position. On the other hand, the validity of the rule of mirror symmetry
of absorption and PL spectra established by Levshin V.L. is confirmed, which follows from
the unconventional definition of PL, considered in the work.

Finally, the main thing: the laminar luminous flux of the pump radiation, when
propagated in a dispersing medium, becomes turbulent, which allows photons to collide
with each other, forming a virtual energy level in the atom shell. This circumstance ensures
the appearance of axions with a short lifetime at this level. As a result of exciton annihilation,
new pairs of photons appear. One of the pair of photons leaves the medium—a contribution
to PL. The second throws an electron to one of the higher levels of the alloying atom. The
non-radiative relaxation of such an electron to the lower levels is the reason for the heating
of the medium.
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Abstract: Neutron stars are the densest known objects in the universe and an ideal laboratory for
the strange physics of super-condensed matter. Theoretical studies in connection with recent obser-
vational data of isolated neutron stars, as well as binary neutron stars systems, offer an excellent
opportunity to provide robust solutions on the dense nuclear problem. In the present work, we re-
view recent studies concerning the applications of various theoretical nuclear models on a few recent
observations of binary neutron stars or neutron-star–black-hole systems. In particular, using a simple
and well-established model, we parametrize the stiffness of the equation of state with the help of the
speed of sound. Moreover, in comparison to the recent observations of two events by LIGO/VIRGO
collaboration, GW170817 and GW190425, we suggest possible robust constraints. We also concen-
trate our theoretical study on the resent observation of a compact object with mass ∼2.59+0.08

−0.09 M%
(GW190814 event), as a component of a system where the main companion was a black hole with
mass ∼23 M%. There is scientific debate concerning the identification of the low mass component, as
it falls into the neutron-star–black-hole mass gap. This is an important issue since understanding the
nature of GW190814 event will offer rich information concerning the upper limit of the speed of sound
in dense matter and the possible phase transition into other degrees of freedom. We systematically
study the tidal deformability of a possible high-mass candidate existing as an individual star or as
a component in a binary neutron star system. Finally, we provide some applications of equations
of state of hot, dense nuclear matter in hot neutron stars (nonrotating and rapidly rotating with the
Kepler frequency neutron stars), protoneutron stars, and binary neutron star merger remnants.

Keywords: neutron stars; nuclear equation of state; gravitational waves; speed of sound; tidal polarizability

PACS: 26.60.-c; 21.30.Fe; 21.65.Cd; 26.60.Kp

1. Introduction

One of the currently unsolved open problems in nuclear physics is the properties of
dense nuclear matter. In particular, compact objects, such as white dwarfs and especially
neutron stars, offer the opportunity to study the behavior of nuclear matter at high den-
sities [1–4]. Neutron stars are a very promising tool for studying the properties of dense
nuclear matter, such as the speed of sound and its possible upper bound.

The main assumption for the speed of sound is that it cannot exceed the speed of
light because of the causality. However, this is not determinant, as Zel’dovich [5,6] showed
the importance of defining a rigorous limit of speed of sound upon the equation of state
(EoS). To be more specific, in the electromagnetic interaction, the main assumption is that
vs ≤ c/

√
3 is generally low in nature. Moreover, by considering the interaction of baryons

through a vector field, he noticed that the upper limit of the speed of sound is the causality,
vs = c. Therefore, the only restriction imposed by general principles is that vs ≤ c [5,6].
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On the other hand, Hartle noticed that the causality is not enough to constrain the high-
density part of the EoS [7], while Weinberg pointed out that the speed of sound is much
less than the speed of light for a cold nonrelativistic fluid [4]. In addition, for nonrelativistic
and/or weakly coupled theories, the bound vs = c/

√
3, according to Bedaque and Steiner

seems to be valid, while in conformal theories, the upper bound is saturated [8]. According
to these authors, the existence of a 2 M% neutron star, in combination with the knowledge
of the EoS of hadronic matter at the low density region, is not consistent with the limit
c/
√

3. We notice that various recent studies have been conducted regarding the speed of
sound and the tidal deformability of neutron stars [9–12].

One of the goals of this study is to apply a method that directly relates the observed
tidal deformability, derived from binary neutron star mergers, to the maximum mass of neu-
tron stars, aiming to obtain constraints on the upper bound of the speed of sound. The main
idea is the fact that while the measured upper limit of the effective tidal deformability
favors softer EoSs, recent measurements of high neutron star masses favor stiffer EoSs. As a
basis in our study, we used a model in which we parametrized the EoS through the various
bounds of the speed of sound (stiffness). Hence, the EoS is a functional of the transition
density and the speed of sound bound. In our approach, we used the observation of two
recent events, GW170817 [13] and GW190425 [14], as well as the current observed maxi-
mum neutron star masses (1.908± 0.016M% [15], 2.01± 0.04 M% [16], 2.14+0.10

−0.09 M% [17],
and 2.27+0.17

−0.15 M% [18]). The need for (a) a soft EoS for the low density region (to be in
accordance with the observed upper limit of the effective tidal deformability) and (b) a
stiff EoS for the high density region (to provide the high neutron star masses) leads to
robust constraints on the EoS. In addition, this method allows making postulations about
the kind of future measurements that would be more informative and help to improve
our knowledge.

Furthermore, we highlight the very recent observation of the GW190814 event, where
a gravitational wave has been detected from the merger of a 22.2–24.3 M% black hole with a
non-identified compact object with mass 2.5–2.67 M% [19,20]. Although the authors of the
mentioned references suggest that is unlikely for the second component’s mass to belong to
a neutron star, they do leave open the window that the improved knowledge of the neutron
star EoS and further observations of the astrophysical population of compact objects could
alter this assessment.

It is worth pointing out that the observation of the GW190814 event has some addi-
tional general benefits, apart from the measurement of 2.6 M% of the second partner [19].
Firstly, this binary system has the most unequal mass ratio yet measured with gravitational
waves close to the value of 0.112. Secondly, the dimensionless spin of the primary black
hole is constrained to ≤0.07, where various tests of general relativity confirm this value,
as well as its predictions of higher multiple emissions at high confidence intervals. More-
over, the GW190814 event poses a challenge for the understanding of the population of
merging compact binaries. It was found, after systematic analysis, that the merger rate
density of the GW190814-like binary system was 7+16

−6 Gpc−3yr−1 [19]. More relevant to the
present study, the observation of the GW190814 event led to the following conclusion: due
to the source’s asymmetric masses, the lack of detection of an electromagnetic counterpart
and of clear signature of tides or the spin-induced quadrupole effect in the waveform of
the gravitational waves, we are not able to distinguish between a black-hole–black-hole
and black-hole–neutron-star system [19]. In this case, one must count only the comparison
between the mass of the second partner with the estimation of maximum neutron star
mass [21]. This is one of the main subjects which has been revised in the present work.
It should be emphasized that the measurements of neutron star mass can also inform us
about a bound on the maximum gravitational mass independently of the assumptions of
the specific EoS. For example, Alsing et al. [22], fitting the known population of neutron
stars in binaries to double-Gaussian mass distribution, obtained the empirical constraint
that Mmax ≤ 2.6 M% (with 90% confidence interval ).
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Farr and Chatziionannou updated knowledge from previous studies, including recent
measurements [23]. Their study constrains the maximum mass Mmax = 2.25+0.81

−0.26 M%,
leading to the conclusion that the posterior probability (for the mass of the second partner
m2 ≤ Mmax) is around only 29%. However, the prediction of Mmax is sensitive to the
selection mass rules of neutron stars (not only on binary systems but also isolated) as
well as to the discovery of new events, and this consequently remains an open problem.
Finally, the conclusion of the recent GW190814 event in comparison with previous ones (for
example the GW170817 event [24]) may shed light on the problem of the Mmax. For example,
the spectral EoSs, which are conditioned by the GW170817 event, are once more elaborated
to include the possibility that the prediction of Mmax is at least equal to m2. This approach
leads to significant constraints on the radius and tidal deformability of a neutron star with
mass of 1.4 M% (R1.4 = 12.9+0.8

−0.7 km and Λ1.4 = 616+273
−158, respectively, [19]).

The matter of the finite temperature and its effect on the nuclear EoS, as well as astro-
physical applications, has been extensively studied by Bethe et al. [25], Brown et al. [26],
Lamb et al. [27], Lattimer and Ravenhall [28], and Lattimer [29]. Lattimer and Swesty [30],
as well as Shen et al. [31], constructed the most used hot neutron star EoSs. The first one
is based on the liquid drop-type model, and the second one is based on the relativistic
mean field model. Afterwards, Shen et al. [31] broadened their study in order to study
supernovae, binary neutron star mergers, and black hole formations by developing EoSs for
various temperatures and proton fractions [32]. In addition, the density and temperature
dependence of the nuclear symmetry free energy using microscopic two- and three-body
nuclear potentials constructed from Chiral effective field theory have been studied in a
series of works, including the one of Wellenhofer et al. [33]. Furthermore, hot neutron
star and supernova properties have been studied by Constantinou et al. [34,35], where
a suitable hot EoS is produced. Finally, the interplay between the temperature and the
neutron star matter was probed by Sammarruca et al. [36], by considering the framework
of chiral effective field theory.

EoSs at finite temperature constructed within the Brueckner–Hartree–Fock approach
and the properties of hot β-stable nuclear matter were studied in a series of papers [37–45].
In addition, a model for cold nucleonic EoSs, extended to include temperature and proton
fractions for simulations of astrophysical phenomena, was constructed by Raithel et al. [46].
Pons et al. [47], as well as Prakash et al. [48], focused on describing the thermal and
chemical evolution of protoneutron stars by considering neutrino opacities consistently
calculated with the EoS. Finally, neutron stars, along with the hot EoS of dense matter, are
presented in a recent review of Lattimer and Prakash [49].

The processes that occupy the stages of the merger and postmerger phases of a
binary neutron star system have been extensively studied in recent years. However,
matters that concern the remnant evolution are still under consideration or even unsolved.
In particular, the remnant evolution contains (a) the collapse time, (b) the threshold mass,
(c) the possible phase transition in the interior of the star, and (d) the disk ejecta and neutrino
emission (for an extended discussion and applications, see Perego et al. [50]). It has to be
noted here that the possibility of a phase transition will affect the signal of the emitted
gravitational wave. Relevant previous work is also be available in Bauswein et al. [51],
Kaplan et al. [52], Tsokaros et al. [53], Yasin et al. [54], Radice et al. [55], Sarin et al. [56],
Soma and Bandyopadhyay [57], and Sen [58].

In the present work, we review some applications of the thermal effects on neutron
star properties. In particular, we apply a momentum-dependent effective interaction (MDI)
model, where thermal effects can be studied simultaneously on the kinetic part of the
energy and also on the interaction one. In addition, the extension of the proposed model
can lead to EoSs with varying stiffness with respect to the parameterized symmetry energy.
In fact, Gale et al. [59] presented a model aimed at the influence of MDI on the momentum
flow of heavy-ion collisions. However, the model has been successfully applied in studying
the properties of cold and hot nuclear and neutron star matter (for an extensive review of
the model, see References [60–62]).
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Moreover, we review specific properties of neutron stars (including mainly the mass
and radius, moment of inertia, Kerr parameter, etc.) with respect to the EoS, both at
nonrotating and rapidly rotating (considering the mass-shedding limit) configurations.
The above properties are well applied in studying hot neutron stars, protoneutron stars,
and the remnants of binary neutron star systems.

To summarize, in the present work, we review the applications of various theoretical
nuclear models on a few recent observations of binary neutron stars or neutron-star–black-
hole systems, including mainly the GW170817, GW190425, and GW190814 events. Our
results have been published recently in sections, in the following journals [63–66].

It has to be noted that the present study is mainly dedicated to the case of the emission
of the gravitation waves due to the merger of a binary neutron star system. However, there
are other mechanisms by which gravitational waves are emitted by a neutron star and
thus, have additional ways of studying its internal structure (for a recent review, see Refer-
ence [67]). These mechanisms, which are considered as continuous gravitational waves
sources, include, for example, (a) the case of radiation of gravitational waves by a rigidly
rotating aligned triaxial ellipsoid (radiation of purely quadrupolar waves), (b) the emission
of gravitational waves due to asymmetry in the magnetic field distribution in the interior
of the neutron star, and (c) the radiation of gravitational waves from the rapidly rotating
neutron stars. In this case, neutron stars may suffer a number of different instabilities
with a general feature in common: they can be directly associated with unstable modes
of oscillation (for exable g-modes, f-modes, w-modes, r-modes; for a review see Refer-
ence [68]). The more notable mechanism is the r-mode oscillations. In these oscillations,
the restoring force is the Coriolis force. The r-mode mechanics have been proposed as
an explanation for the observed relatively low spin frequencies of young neutron stars,
as well as of accreting neutron stars in low-mass X-ray binaries. This instability only occurs
when the gravitational radiation driving timescale is shorter compared to the ones of the
various dissipation mechanisms, which occur in the neutron star matter [69]. The free
procession may cause deformation of the neutron star, leading to a better understanding
of some neutron star matter properties, including breaking strain, viscosity, rigidity, and
elasticity [67]. We expect that in the future, the development of the sensitivity of LIGO and
Virgo detectors in cooperation with and new instruments will help to significantly improve
our knowledge of neutron star interiors with the detection of the emitted gravitational
waves [67].

Another way to study the properties of dense nuclear matter that exists inside neutron
stars can be done with the help of the statistical study of the observed properties of neutron
stars. To be more specific, we refer to the observational data concerning both isolated
neutron stars and those that exist in binary systems. In the first case, there are extensive
studies where observational data are applied to estimations with the help of statistical
studies, for example, the maximum possible mass of a neutron star, but mainly the radius of
neutron stars with masses of about 1.4 M%. In each case, valuable information and ideas can
be extracted and utilized in terms of knowledge of the EoS of neutron star matter, in order
to evaluate the reliability of the existing EoS (see the review article [70] and references
therein). In the case of binary systems, the analysis of the emitted gravitational waves
from the fusion of a binary system of neutron stars, where a large amount of information is
received by studying the amplitude and phase of gravitational waves, is utilized. These
studies mainly focus on the measurement (and utilization of the measurement) of tidal
deformability. In any case, extensive and systematic statistical estimation of data can lead to
valuable knowledge of the structure and composition of neutron stars (for a recent review
see [71] and references therein).

The article is organized as follows: in Section 2, we present the theory concerning the
EoS and the structure of cold neutron stars. In Section 3, we present the construction of the
hot EoSs (both isothermal and isoentropic) and briefly discuss the stability equations of hot
rapidly rotating neutron stars. The results and the discussion are provided in Section 4,
while Section 5 includes the most noteworthy concluding remarks of the present review.
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2. Cold Neutron Stars

2.1. The Momentum-Dependent Interaction Nuclear Model

The description of the interior structure of neutron stars demands the use of a nuclear
model suitable to describe the properties of dense nuclear matter. In the present work,
the EoS of nuclear matter is studied using the MDI model. In this model, the energy per
baryon is given by the formulae [60,72]

E(n, I) =
3
10

E0
Fu2/3

[
(1 + I)5/3 + (1− I)5/3

]
+

1
3

AQ0u +
2
3 BQ3uσ

1 + 2
3 B′Q3uσ−1

+
3
2 ∑

i=1,2

[
Ci +

Ci − 8Zi
5

I
](

Λi

k0
F

)3
⎛⎝ ((1 + I)u)1/3

Λi
k0

F

− tan−1 ((1 + I)u)1/3

Λi
k0

F

⎞⎠
+

3
2 ∑

i=1,2

[
Ci −

Ci − 8Zi
5

I
](

Λi

k0
F

)3
⎛⎝ ((1− I)u)1/3

Λi
k0

F

− tan−1 ((1− I)u)1/3

Λi
k0

F

⎞⎠, (1)

where u is the baryon density normalized with respect to the saturation density
(ns = 0.16 fm−3), I = (nn − np)/n is the asymmetry parameter, X0 = x0 + 1/2,
X3 = x3 + 1/2, Q0 = 3

2 − X0 I2, and Q3 = 3
2 − X3 I2. The parameters A, B, σ, Ci, and B′

appear in the description of symmetric nuclear matter (SNM) and are determined so that
the relation E(ns, 0) = −16 MeV holds. Λ1 and Λ2 are finite range parameters equal to
1.5k0

F and 3k0
F, respectively, where k0

F is the Fermi momentum at the saturation density.
The remaining parameters, x0, x3, Zi, appear in the description of asymmetric nuclear
matter (ANM) and, with a suitable parametrization, are used in order to obtain different
forms for the density dependence of symmetry energy, as well as the value of the slope
parameter L and the value of the symmetry energy Esym at the saturation density, defined
as [63]

L = 3ns
dEsym(n)

dn

∣∣∣∣
ns

and Esym(n) =
1
2

∂2E(n, I)
∂I2

∣∣∣∣
I=0

, (2)

and consequently different parametrizations of the EoS stiffness.
The specific choice of the MDI model is based on the following: (a) it combines

both density and momentum dependent interaction among the nucleons, (b) it is suitable
for studying neutron star matter at zero and finite temperature (due to the momentum
term), (c) it reproduces with high accuracy the properties of SNM at the saturation density,
including isovector quantities, (d) it reproduces the microscopic properties of the Chiral
model for pure neutron matter (PNM) and the results of state-of-the-art calculations of
Akmal et al. [73] with suitable parametrizations, (e) it predicts higher maximum neutron
star mass than the observed ones [16–18], and (f) it maintains the causal behavior of the EoS
even at densities higher than the ones that correspond to the maximum mass configuration.

2.2. Speed of Sound Formalism

An EoS can be parametrized in order to reproduce specific values of the speed of
sound in the interior of the neutron star. This parametrization is possible following the
formula available from References [22,74–80]:

P(E) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Pcrust(E), E ≤ Ec−edge

PNM(E), Ec−edge ≤ E ≤ Etr( vs
c
)2
(E − Etr) + PNM(Etr), Etr ≤ E ,

(3)

where P and E denote the pressure and the energy density, respectively, and the correspond-
ing subscript “tr” in energy density denotes the energy density at the transition density.

297



Foundations 2021, 1

However, following the approach in Equation (3), only the continuity in the EoS is
ensured. The artificial character of Equation (3) does not take into account the continuity in
the speed of sound. Therefore, in order to ensure the continuity and a smooth transition,
we followed the method presented in Reference [81]. We proceeded with the matching of
the EoSs with the transition density by considering that, above this value, the speed of
sound is parametrized as follows (for more details, see Reference [81]):

vs

c
=

(
a− c1 exp

[
− (n− c2)

2

w2

])1/2

, a ∈ [1/3, 1] (4)

where the parameters c1 and c2 are fit to the speed of sound and its derivative at ntr
and also to the demands vs(ntr) = [c/

√
3, c] [74] according to the value of α. The remaining

parameter w controls the width of the curve, which in our case is equal to 10−3 fm−3, in
order to preserve the neutron star properties. Using Equation (4), the EoS for n ≥ ntr can
be constructed with the help of the following [81]:

Ei+1 = Ei + ΔE , Pi+1 = Pi +
(vs

c
(ni)

)2
ΔE , (5)

ΔE = Δn
(Ei + Pi

ni

)
, (6)

Δn = ni+1 − ni. (7)

2.3. Construction of the EoS

The construction of the EoS for the interior of neutron stars is based on the MDI
model and data provided by Akmal et al. [73]. More specifically, we utilized the data
for the A18+UIX (hereafter APR-1) EoS from Akmal et al. [73] for the energy per par-
ticle of SNM and PNM in the density range [0.04, 0.96] fm−3. Due to the complexity
of the microscopic data, we divided the density region into three sections—(a) low-
density region [0.04, 0.2] fm−3, (b) medium-density region [0.2, 0.56] fm−3, and (c) high-
density region [0.56, 0.96] fm−3—in order to acquire the best fitting using Equation (1).
From this process emerged the coefficients for the SNM and ANM, and eventually the EoS,
hereafter MDI-APR.

In the case of the speed-of-sound-parametrized EoSs, the construction of the EoSs fol-
lows the procedure: (a) in region E ≤ Ec−edge, we used the equation of Feynman et al. [82]
and also of Baym et al. [83] for the crust and low densities of neutron star; (b) in the interme-
diate region, Ec−edge ≤ E ≤ Etr, we employed the MDI-APR EoS; and (c) for Etr ≥ E region,
the EoS is maximally stiff with the speed of sound, defined as vs = c

√
(∂P/∂E)S (where S

is the entropy) fixed in the present work in the range [c/
√

3, c]. The lowest allowed value
of the speed of sound, that is (vs/c)2 = 1/3, is introduced in order to be consistent with
the possibility of a phase transition in quark matter. In this case, the theoretical predictions
lead to this value as an upper bound of the speed of sound. The implementation of speed
of sound values between the limited ones will lead to results well constrained by the
two mentioned limits. Although the energy densities below the Ec−edge have negligible
effects on the maximum mass configuration, we used them in calculations for the accurate
estimation of the tidal deformability.

In this study, two cases, based on the transition density, ntr = pns and the speed of
sound, are employed, in particular, (a) the ones where p takes the values [1.5, 2, 3, 4, 5]
while the speed of sound is parametrized in the two limiting cases, (vs/c)2 = 1/3 and
(vs/c)2 = 1, and (b) the ones where p takes the values [1.5, 2] while the speed of sound is
parametrized in the range (vs/c)2 = [1/3, 1].

For reasons of completeness, the treatment with both discontinuity and continuity in
the speed of sound is presented in Table V of Reference [74]. The main point was that the
two approaches converge and consequently the effects of the discontinuity are negligible.
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In Figure 1, we present the pressure as a function of the rest mass density (ρrest = nbmn)
and the square speed of sound in units of speed of light as a function of the transition
density for the EoSs constructed in cases (a) and (b). In addition, we display the credibility
intervals proposed by Reference [24] from LIGO/Virgo collaboration for the GW170817
event. It is clear from these figures that the pure MDI-APR EoS is well-defined in the
proposed limits of LIGO/Virgo collaboration and also fulfills the speed of light limit at
high densities.
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Figure 1. (a,c) Dependence of the pressure on the rest mass density and (b,d) dependence of the
square sound speed in units of light speed on the transition density. (a,b) The speed of sound is fixed
at the two boundary cases, (vs/c)2 = 1/3 and (vs/c)2 = 1, and the value p takes the arguments
[1.5, 2, 3, 4, 5]. (c,d) The value p takes the arguments [1.5, 2], and the speed of sound is parametrized
in the range (vs/c)2 = [1/3, 1] (the lower values of the speed of sound correspond to the darker
colored curves). In all figures, the vertical dotted lines indicate the transition cases, while the shaded
regions note the credibility interval derived from Reference [24].

2.4. Structure Equations
2.4.1. Nonrotating Neutron Stars

For a static spherical symmetric system, which is the case of a nonrotating neutron
star, the metric can be written as follows [1,2]:

ds2 = eν(r)dt2 − eλ(r)dr2 − r2
(

dθ2 + sin2 θdφ2
)

. (8)
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The density distribution and the local pressure is related to the metric functions λ(r) and
ν(r) according to the relations [1,2]

8πG
c2 ρ(r) =

1
r2

(
1− e−λ(r)

)
+ e−λ(r) λ′(r)

r
, (9)

8πG
c4 P(r) = − 1

r2

(
1− e−λ(r)

)
+ e−λ(r) ν′(r)

r
, (10)

where derivatives with respect to the radius are denoted by ′. The combination of
Equations (9) and (10) leads to the well known Tolman–Oppenheimer–Volkoff (TOV)
equations [1,2]:

dP(r)
dr

= −Gρ(r)M(r)
r2

(
1 +

P(r)
ρ(r)c2

)(
1 +

4πP(r)r3

M(r)c2

)(
1− 2GM(r)

c2r

)−1

, (11)

dM(r)
dr

= 4πr2ρ(r). (12)

It is difficult to obtain exact solutions to TOV equations in closed analytical form,
and they are solved numerically with an equation of state specified [84]. Actually, there
are hundreds of analytical solutions of TOV equations, but there are three that satisfy the
criteria that the pressure and energy density vanish on the surface of the star, and they
also both decrease monotonically with increasing radius. These three solutions are the
Tolman VII, the Buchdahl, and the Nariai IV. Actually, the Tolman VII and the Buchdahl
have already been analyzed and employed in Reference [85]. It is worth pointing out that
in the present work we use the Tolman VII solution, which contains two parameters, that
is, the central density ρc and the compactness parameter β = GM/Rc2. All the mentioned
solutions have been presented and analyzed in detail in References [85–88].

One of the most significant sources for the detectors of terrestrial gravitational waves
is the gravitational waves from inspiraling binary neutron star systems before their
merger [86,89–96]. The component masses of these binary systems can be measured. Addi-
tionally, during the last orbits before the merger, the tidal effects that are present can also
be measured [90].

The dimensionless parameter that describes the response of a neutron star to the
induced tidal field is called tidal Love number k2. This parameter depends on the neutron
star structure (i.e., the mass of the neutron star, and the EoS). Specifically, the tidal Love
number k2 is a proportional parameter between the induced quadrupole moment Qij and
the applied tidal field Eij [90,97] given below:

Qij = −
2
3

k2
R5

G
Eij ≡ −λEij, (13)

where R is the neutron star’s radius and λ = 2R5k2/3G is a key-role quantity, which is
called tidal deformability. The tidal Love number k2 is given by [90,91]

k2 =
8β5

5
(1− 2β)2[2− yR + (yR − 1)2β]×

[
2β(6− 3yR + 3β(5yR − 8))

+ 4β3
(

13− 11yR + β(3yR − 2) + 2β2(1 + yR)
)

+ 3(1− 2β)2[2− yR + 2β(yR − 1)]ln(1− 2β)
]−1

. (14)

The quantity yR is determined by solving the following differential equation

r
dy(r)

dr
+ y2(r) + y(r)F(r) + r2Q(r) = 0, (15)
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with the initial condition y(0) = 2 [93]. F(r) and Q(r) are functionals of E(r), P(r), and
M(r), defined as [86,93]

F(r) =
[

1− 4πr2G
c4 (E(r)− P(r))

](
1− 2M(r)G

rc2

)−1

, (16)

and

r2Q(r) =
4πr2G

c4

[
5E(r) + 9P(r) +

E(r) + P(r)
∂P(r)/∂E(r)

]
×

(
1− 2M(r)G

rc2

)−1

− 6
(

1− 2M(r)G
rc2

)−1

− 4M2(r)G2

r2c4

(
1 +

4πr3P(r)
M(r)c2

)2(
1− 2M(r)G

rc2

)−2

. (17)

The Equation (15) must be integrated self-consistently with the TOV equations using
the boundary conditions y(0) = 2, P(0) = Pc and M(0) = 0 [86,91]. The numerical solution
of these equations provides the mass M, the radius R of the neutron star, and the value of
yR = y(R). The latter parameter along with the quantity β are the basic ingredients of the
tidal Love number k2.

Moving on to the parameters of a binary neutron star system, a well-measured quantity
by the gravitational waves detectors is the chirp massMc of the system [13,98]:

Mc =
(m1m2)

3/5

(m1 + m2)1/5 = m1
q3/5

(1 + q)1/5 , (18)

where m1 and m2 are the masses of the heavier and lighter components. Therefore, the bi-
nary mass ratio q = m2/m1 is within the range 0 ≤ q ≤ 1.

Another quantity that can be constrained from the analysis of the gravitational wave
signal and is of great interest, is the effective tidal deformability [13,98]

Λ̃ =
16
13

(12q + 1)Λ1 + (12 + q)q4Λ2

(1 + q)5 , (19)

where Λi is the dimensionless tidal deformability, defined as [13,98]

Λi =
2
3

k2

(
Ric2

MiG

)5

≡ 2
3

k2β−5
i , i = 1, 2. (20)

By observing Equations (14) and (20), one can find that Λi depends both on the star’s
compactness and the value of y(R). More specifically, Λi depends directly on the stiffness
of the EoS through the compactness β and indirectly through the speed of sound which
appears in Equation (17). In addition, the applied EoS also affects the behavior of Λ
regarding the neutron star’s mass M and radius R.

2.4.2. Rotating Neutron Stars

In a fully general relativistic framework, the rotating neutron stars are studied with
the use of the stationary axisymmetric spacetime metric, which is given by [99]

ds2 = −e2νdt2 + e2ψ(dφ−ωdt)2 + e2μ
(

dr2 + r2dθ2
)

(21)

where the metric functions ν, ψ, ω, and μ depend only on the coordinates r and θ. In order
to describe a rapidly rotating neutron star, in addition to the above metric, we need the
matter inside the neutron star described as a perfect fluid. By neglecting sources of non-

301



Foundations 2021, 1

isotropic stresses, as well as viscous ones and heat transport, then the matter inside the
neutron star can be fully described by the stress-energy tensor [99],

Tαβ = (E + P)uαuβ + Pgαβ (22)

where uα is the fluid’s 4-velocity and E and P are the energy density and pressure.
For the stability of cold rotating neutron stars, the turning-point criterion is being

used. It has to be noted that this is only a sufficient and not a necessary condition. Actually,
the neutral stability line is positioned to the left of the turning-point line in (M, ρc) space,
which implies that the star will collapse before reaching the turning-point line [100,101].

The numerical integration of the equilibrium equations was conducted under the
RNS code [102] by Stergioulas and Friedman [103], which is actually based on the method
developed by Komatsu, Eriguchi, and Hachisu [104] and modifications introduced by
Cook, Shapiro, and Teukolsky [105].

3. Hot Neutron Stars

3.1. Thermodynamical Description of Hot Neutron Star Matter

The description of nuclear matter at finite temperature includes the Helmholtz free
energy, where the differentials of the total free energy, as well as the total internal energy
(assuming that the baryons are contained in volume V) are given by [106,107]

dFtot = −StotdT − PdV + ∑
i

μidNi, (23)

dEtot = TdStot − PdV + ∑
i

μidNi, (24)

where Stot is the total entropy of baryons, μi is the chemical potential of each species, and Ni
is the number of particles of each species, respectively. Furthermore, the free energy per
particle can be expressed as

F(n, T, I) = E(n, T, I)− TS(n, T, I) =
1
n
[E(n, T, I)− Ts(n, T, I)], (25)

where E = E/n and S = s/n are the internal energy and entropy per particle, respectively.
It has to be noted here that for T = 0 MeV, Equation (25) leads to the equality between free
and internal energy.

In addition, the entropy density s has the same functional form as a noninteracting
gas system, calculated through the form

sτ(n, T, I) = −g
∫ d3k

(2π)3 [ fτ ln fτ + (1− fτ) ln(1− fτ)], (26)

with spin degeneracy g = [1, 2]. The first case corresponds to protons, neutrons, electrons,
and muons, and the second case corresponds to neutrinos. Finally, the pressure and
chemical potentials, which depend on the above quantities, are described as:

P = −∂Etot

∂V

∣∣∣∣∣
S,Ni

= n2 ∂(E/n)
∂n

∣∣∣∣∣
S,Ni

, (27)

μi =
∂Etot

∂Ni

∣∣∣∣∣
S,V,Nj �=i

=
∂E
∂ni

∣∣∣∣∣
S,V,nj �=i

. (28)
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3.2. Bulk Thermodynamic Quantities

The pressure and chemical potentials, which are essential for the thermodynamical
description of nuclear matter, can also be connected to the key quantity, that is, the free
energy, as

P = −∂Ftot

∂V

∣∣∣∣∣
T,Ni

= n2 ∂( f /n)
∂n

∣∣∣∣∣
T,Ni

, (29)

μi =
∂Ftot

∂Ni

∣∣∣∣∣
T,V,Nj �=i

=
∂ f
∂ni

∣∣∣∣∣
T,V,nj �=i

, (30)

where f denotes the free energy density. It is worth mentioning that the pressure P can
also be determined by [106,107],

P = Ts− E + ∑
i

μini. (31)

In this case, the calculation of the entropy per particle is possible by differentiating the free
energy density f with respect to the temperature,

S(n, T) = −∂( f /n)
∂T

∣∣∣∣∣
V,Ni

= − ∂F
∂T

∣∣∣∣∣
n

. (32)

By applying Equation (30), the chemical potentials take the form [37,108,109]

μn = F + u
∂F
∂u

∣∣∣∣∣
Yp ,T

−Yp
∂F
∂Yp

∣∣∣∣∣
n,T

, (33)

μp = μn +
∂F
∂Yp

∣∣∣∣∣
n,T

, (34)

μ̂ = μn − μp = − ∂F
∂Yp

∣∣∣∣∣
n,T

. (35)

The free energy F(n, T, I) and the internal energy E(n, T, I), as well as the entropy, which
depends on the latter quantities, can have the following quadratic dependence from the
asymmetry parameter [37,109–112]:

F(n, T, I) = F(n, T, I = 0) + I2Fsym(n, T), (36)

E(n, T, I) = E(n, T, I = 0) + I2Esym(n, T), (37)

S(n, T, I) = S(n, T, I = 0) + I2Ssym(n, T), (38)

as the parabolic approximation (PA) suggests, where

Fsym(n, T) = F(n, T, I = 1)− F(n, T, I = 0), (39)

Esym(n, T) = E(n, T, I = 1)− E(n, T, I = 0), (40)

Ssym(n, T) = S(n, T, I = 1)− S(n, T, I = 0) =
1
T
(Esym(n, T)− Fsym(n, T)). (41)

While the above approximation is valid for the specific model, in general, it is mandatory
to check it. For completeness, the PA is satisfied in both the internal energy and the free
energy, as References [37,109–112] state. However, there are studies [113] in which the PA
contains uncertainties. In sum, the PA and its validity strongly depend on the specific
character of the selected nuclear model.
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Equation (35), which is mandatory for this approximation, can be acquired by substi-
tuting Equation (36) as

μ̂ = μn − μp = 4(1− 2Yp)Fsym(n, T). (42)

This equation is similar to that obtained for cold catalyzed nuclear matter by replacing
Esym(n) with Fsym(n, T).

3.3. Lepton’s Contribution

Stable nuclear matter and a chemical equilibrium state are explicitly connected at high
densities for all reactions. Specifically, electron capture and β decay take place simultaneously

p + e− −→ n + νe and n −→ p + e− + ν̄e. (43)

In consequence, a change in the electron fraction Ye is in order. Considering that the
generated neutrinos have left the system, a significant effect on the EoS is presented by
changing the values of proton fraction Yp [114,115]. In particular, the absence of neutrinos
implies that

μ̂ = μn − μp = μe. (44)

It is has to be mentioned that, in principle, the matter contains neutrons, protons, electrons,
muons, photos, and antiparticles, which are in a thermal equilibrium state. However, in the
present study, we consider only the contribution of neutron, protons, and electrons, as the
contribution of the remaining particles is negligible [114]. As a consequence, the following
relation holds:

μn = μp + μe. (45)

The energy density and pressure of leptons are calculated through the following formulae:

El(nl , T) =
g

(2π)3

∫ d3k
√

h̄2k2c2 + m2
l c4

1 + exp

[√
h̄2k2c2+m2

l c4−μl
T

] , (46)

Pl(nl , T) =
1
3

g(h̄c)2

(2π)3

∫ 1√
h̄2k2c2 + m2

l c4
× d3k k2

1 + exp

[√
h̄2k2c2+m2

l c4−μl
T

] . (47)

The chemical potential of electrons is available through the Equations (42) and (45), as

μe = μn − μp = 4I(n, T)Fsym(n, T), (48)

which is crucial for the calculation of the proton fraction as a function of both the baryon
density and the temperature. The construction of the EoS of hot nuclear matter in the β-
equilibrium state is provided through the calculation of the total energy density Et, as well
as the total pressure Pt. The total energy density (with all terms) is given by

Et(n, T, I) = Eb(n, T, I) + ∑
l
El(n, T, I) + ∑̄

l

El̄(n, T, I) + Eγ(n, T), (49)

where Eb(n, T, I) is the contribution of baryons, El(n, T, I), El̄(n, T, I) are the contribu-
tions of particles and antiparticles of leptons, and Eγ(n, T) is the contribution of photons.
The total pressure (with all terms) is

Pt(n, T, I) = Pb(n, T, I) + ∑
l

Pl(n, T, I) + ∑̄
l

Pl̄(n, T, I) + Pγ(T), (50)
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where Pb(n, T, I) is the contribution of baryons,

Pb(n, T, I) = T ∑
τ=p,n

sτ(n, T, I) + ∑
τ=n,p

nτμτ(n, T, I)− Eb(n, T, I), (51)

while Pl(n, T, I), Pl̄(n, T, I) are the contributions of particles and antiparticles of leptons,
and Pγ(T) is the contribution of photons.

3.4. Isothermal Configuration

In the isothermal temperature profile, by considering that for each value of temper-
ature, the value of the proton fraction is a well-known function of the baryon density,
the total energy density is evaluated as

Et(n, T, Yp) = Eb(n, T, Yp) + Ee(n, T, Yp), (52)

where
Eb(n, T, Yp) = nFPA + nTSPA, (53)

Ee(n, T, Yp) is given by Equation (46), replacing the leptons with electrons and μe from
Equation (48), and FPA and SPA are given by Equations (36) and (38), respectively. Moreover,
the total pressure is evaluated as

Pt(n, T, Yp) = Pb(n, T, Yp) + Pe(n, T, Yp), (54)

where

Pb(n, T, Yp) = n2 ∂FPA(n, T, Yp)

∂n

∣∣∣∣∣
T,ni

, (55)

and Pe(n, T, Yp) is given by Equation (47), replacing the leptons with the electrons and μe
from Equation (48).

Thus, the Equations (52) and (54) for the energy density and the pressure, respectively,
correspond to the ingredients for the construction of isothermal EoSs of hot nuclear matter
in β equilibrium state.

3.5. Isentropic Configuration and Neutrino Trapping

In an isentropic configuration, we assume that the entropy per baryon and lepton
fraction are constant in the interior of the neutron star (protoneutron star). Specifically, ac-
cording to Equation (43), the neutrinos are trapped in the interior of the star and the proton
fraction is significantly increased. The relevant chemical equilibrium can be expressed in
terms of the chemical potentials for the four species,

μn + μνe = μp + μe. (56)

In addition, the charge neutrality demands the equality between proton and electron frac-
tion, while the total fraction of leptons is equal to Yl = Ye + Yνe . Henceforth, the chemical
equilibrium is expressed as

μe − μνe = μn − μp = 4(1− 2Yp)Fsym(n, T). (57)

In this case too, the relevant system of equations can provide us with the density and
temperature dependence of proton and neutrino fractions, and their chemical potentials,
by assuming a constant entropy per baryon. Nonetheless, we applied the approximation
of Yp � 2/3Yl + 0.05 (3% accuracy) introduced by Takatsuka et al. [114], in order to avoid
computational complications. The ingredients for the construction of isentropic EoSs are
given by the Equations (49) and (50).
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3.6. Construction of the Hot EoSs

The construction of the EoS for the interior of neutron stars at finite temperature and
entropy per baryon is based on the MDI model and data provided by Akmal et al. [73].
In particular, we utilized the APR-1 EoS data from Akmal et al. [73] for the energy per
particle of SNM and PNM in the density range [0.04, 0.96] fm−3. The process leads to the
evaluation of the coefficients for the symmetric and asymmetric nuclear matter, and finally,
to the construction of the EoS, hereafter MDI+APR1.

In the case of the isothermal temperature profile, we have constructed 10 EoSs in
the temperature range [1, 60] MeV, while in the isentropic case, we have constructed
nine EoSs in entropy per baryon and lepton fraction ranges [1, 3] kB and [0.2, 0.4], re-
spectively. For the crust region of the finite temperature cases and the low-density re-
gion (nb ≤ 0.08 fm−3), as well as the finite entropies per baryon and lepton fractions,
the EoSs of Lattimer and Swesty [30] and the specific model corresponding to the in-
comprehensibility modulus at the saturation density of SNM Ks = 220 MeV are used
(https://www.stellarcollapse.org, accessed on 4 March 2020).

3.7. Rapidly Rotating Hot Neutron Stars

The stability of hot neutron stars is acquired via a specific version of the secular
instability criterion of Friedman et al. [116], which follows Theorem I of Sorkin [117]. In a
continuous sequence of equilibria at a fixed baryon number Nbar and total entropy of the
neutron star Sns

t , the extremal point of the stability loss is found when [118]

∂J
∂nc

b

∣∣∣∣∣
Nbar,Sns

t

= 0, (58)

where J and nc
b are the angular momentum and central baryon density of the star, respectively.

Furthermore, in a sequence, the turning-point appears in the case where three out of
four following derivatives vanish,

∂Mgr

∂nc
b

,
∂Mb
∂nc

b
,

∂J
∂nc

b
, and

∂Sns
t

∂nc
b

, (59)

with Mgr and Mb denoting the gravitational and baryon mass [52,119]. In addition,
the turning-point theorem shows that at this point, the fourth derivative also vanishes,
and the sequence has transitioned from stable to unstable.

It has to be mentioned that the criterion for secularly stable/unstable configurations
is essential only for constant entropy per baryon or temperature [119]. In this review,
the entropy per baryon and the temperature in each case are constant throughout the
neutron star. Therefore, the remaining criteria vanish at the maximum mass configuration
(the last stable point). Furthermore, we considered that in the rotating configuration,
the maximum mass and the maximum angular velocity coincide, which generally is not
the case [99]. However, the existing difference is very small, and it could not be detected
within the precision of our calculations [118].

The numerical integration of the equilibrium equations was conducted under the
publicly available numerical code nrotstar from the C++ Lorene/Nrotstar library [120].

4. Results and Discussion

4.1. Speed of Sound and Tidal Deformability

In our study, we used two cases for the value of speed of sound, the lower bound of
(vs/c)2 = 1/3 and the upper one of (vs/c)2 = 1, and four transition densities
ntr = {1, 1.5, 2, 3}ns [65].

In Figure 2, we display the corresponding mass-radius (M-R) diagram, which we
obtained from the numerical solution to the TOV system of equations. The green col-
ored lines correspond to the (vs/c)2 = 1/3 limit, while the blue ones correspond to the
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(vs/c)2 = 1 limit. One can observe that each transition density leads to bifurcations in
the M-R diagram. Between the same kind of linestyle, the lower and upper bounds,
(vs/c)2 = 1/3 and (vs/c)2 = 1 of speed of sound correspond to lower and higher masses,
respectively. In general, the higher the transition density, the softer the EoS, with the lower
bound of (vs/c)2 = 1/3 leading to a more soft EoS compared to the (vs/c)2 = 1 case.
In addition, the estimation of the GW170817 event and the NICER’s data are also dis-
played [24,121]. We notice that while there is an accordance between the two observations,
the GW170817 event (from the gravitational-waves perspective) is more informative for
our study than the NICER’s detection, as it restricts the cases leading to the exclusion of
EoS at least with transition density ntr = ns, for both bounds of speed of sound.
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Figure 2. Mass vs. radius for an isolated neutron star and for the two cases of speed of sound
bounds. The blue (green) lines correspond to the upper (lower) bound. The black diagonal shaded
region corresponds to NICER’s observation (data taken from Reference [121]), while the purple
upper (orange lower) shaded region corresponds to the higher (smaller) component of GW170817
event (data taken from Reference [24]). The solid (dashed) contour lines describe the 90% (50%)
confidence interval.

Our study takes into consideration the observation of binary neutron stars mergers from
the gravitational waves detectors. Therefore, we used the measured upper limit of the effective
tidal deformability Λ̃ provided by the events GW170817 and GW190425 [14,24,98]. The chirp
masses for the two events areMc = 1.186 M% [13] andMc = 1.44 M% [14], respectively.
The component masses vary in the ranges m1 ∈ (1.36, 1.60) M% and m2 ∈ (1.16, 1.36) M% [98]
(GW170817) and m1 ∈ (1.654, 1.894) M% and m2 ∈ (1.45, 1.654) M% (GW190425). We notice
that we modified the range of the component masses (especially in the second event) to have an
equal mass boundary, i.e., q ≤ 1.

In Figure 3, we display the effective tidal deformability Λ̃ as a function of q for both
events. In Figure 3a, we observe that the upper limit on Λ̃ (derived from the GW170817
event) leads to the exclusion of both cases of speed of sound with transition density
ntr = 1, 1.5 ns. By comparing to Figure 2, the constraints on the upper limit of Λ̃ in Figure 3
make more clear which cases must be excluded. For the second event in Figure 3b, we
observe that all the EoSs are shifted to lower values of Λ̃, compared to the GW170817 event.
This is because of the higher value of chirp mass in the second event (GW190425). Contrary
to the GW170817 event, the upper limit on Λ̃, provided by GW190425 event, excludes
only these EoSs with transition density ntr = ns, for both bounds of the speed of sound.
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In general, for both events, the EoSs corresponding to higher values of transition density
ntr lead to smaller values of Λ̃. Therefore, the measured upper limits of Λ̃ favor softer EoSs.
We have to notice that for the GW190425 event, we did not take into consideration the
cases with transition density ntr = 3 ns because the EoS with (vs/c)2 = 1/3 and ntr = 3ns
cannot reproduce the masses of this event.
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Figure 3. The effective tidal deformability Λ̃ as a function of the binary mass ratio q for the event
(a) GW170817 and (b) GW190425. The measured upper limits for Λ̃ are also indicated, with the
grey shaded region corresponding to the excluded area. The green (blue) curves correspond to the
(vs/c)2 = 1/3 ((vs/c)2 = 1) case.

Beyond the useful constraints that we obtained so far by the study of the EoSs through
the observed upper limit of Λ̃, a more direct connection between this quantity and the
speed of sound bounds is still needed. This idea, which lies at the very heart of our
study, was the main motive. Such a direct relation between the referred quantities can
be accomplished if we treat the variation of Λ̃ in Figure 3 as a function of the transition
density ntr, i.e., the Λ̃(1/3,1)

min − ntr and Λ̃(1/3,1)
max − ntr relations.

In Figure 4, we display the relation between the effective tidal deformability Λ̃ and the
transition density ntr at the maximum mass configuration for the two bounds of the speed
of sound, vs = c/

√
3 and vs = c, and the two events GW170817 (Figure 4a) and GW190425

(Figure 4b). The corresponding upper measured limits for Λ̃, as well as the compatible
lower transition density values, are also indicated. The predictions on the bound of the
speed of sound which are considered between the two referred limits correspond to the
middle region.

The main remarks from the observation of Figure 4 are the following

1. The overall thickness decreases as the transition density ntr reaches higher values.
This behavior can be explained by the variation of the radius M(R) presented in the
M-R diagram (see Figure 2).

2. The thickness of each shaded region decreases as the ntr reaches higher values.
3. The shaded areas are shifted downwards in the GW190425 event, compared with

the GW170817 event. This behavior is due to the increase in the component masses.
A similar behavior was observed in Figure 3b, compared to Figure 3a.

According to our findings, for the GW170817 event, the lower limit for the transition
density is 1.626 ns for vs = c/

√
3 and 1.805 ns for vs = c. In the case of the second event,

GW190425, the corresponding limits are 1.015 ns for vs = c/
√

3 and 1.216 ns for vs = c.
Therefore, the first event imposes more stringent constraints on the EoS. In particular,
the value of the speed of sound must be lower than vs = c/

√
3, at least up to density

1.626 ns (so the EoS is soft enough to predict the tidal deformability). Furthermore, the EoS
must remain casual at least up to density 1.805 ns. In addition, according to the Fermi liquid
theory (FLT), the speed of sound must be v2

s,FLT ≤ 0.163c2 for n = 1.5ns [122], meaning that
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the EoS cannot exceed this value for n ≤ 1.5ns, which is in agreement with our finding of
the lower limit ntr = 1.626ns for the case of vs = c/

√
3.
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Figure 4. Λ̃ as a function of the transition density ntr (in units of saturation density ns) at the
maximum mass configuration for the two speed of sound bounds vs = c/

√
3 and vs = c and for

the events (a) GW170817 and (b) GW190425. The measured upper limits for Λ̃ [14,98] as well as the
corresponding lower values of transition density are also indicated for both events. The green (blue)
arrow marks the accepted region of transition density for the vs = c/

√
3 (vs = c) case. The green

lower (blue upper) curved shaded region corresponds to the vs = c/
√

3 (vs = c) limit. The yellow
shaded area indicates the region between the two cases of bounds of the speed of sound.

We notice that so far we used the upper limit on Λ̃ to impose stringent constraints
on the ntr. The existence of a lower limit on Λ̃ could provide further information. In-
deed, for the GW170817 event, such a lower limit is provided both by the gravitational
wave data [24,98] and the electromagnetic (EM) counterpart of the merger [123–128].
Most et al. [129] used the bound of Reference [123] and demonstrated its significance in
order to further constrain the tidal deformability Λ̃1.4 and the radius R1.4 of a M = 1.4 M%
neutron star. For our case of interest and especially for the GW170817 event, a lower limit
on Λ̃ similar to the proposed values, could not provide any further constraint, even if we
consider the more optimistic boundary of Λ̃ ≥ 400.

On the contrary, for the second event GW190425, its higher component masses lead
to smaller values of Λ̃. Hence, there is an inability for the upper limit of Λ̃ to provide
further constraints. We speculate that the existence of a lower limit on Λ̃ would be able to
provide constraints, especially leading to an upper limit for ntr. Hence, binary neutron stars
coalescences with heavy masses would be helpful to constrain the upper limit of ntr via the
lower limit of Λ̃ as provided by the EM counterpart. Unfortunately, an EM counterpart for
the GW190425 event was not detected [14,130].

Furthermore, we provide in Figure 4 an expression for the Λ̃(1/3)
min and Λ̃(1)

min boundary
curves of the green (lower) and blue (upper) shaded regions, respectively. This expression
gives the exact value of the lower limit on n(1/3)

tr and n(1)
tr , respectively. The expression is

given by the following equation, and the coefficients on Table 1,

Λ̃ = c1 coth

[
c2

(
ntr

ns

)2
]

. (60)

As one can observe from Figure 2, the highest mass is provided by the stiffest EoSs,
i.e., the higher value of speed of sound. Therefore, the behavior of the maximum mass
Mmax and the speed of sound v2

s has to be studied further.
In Figure 5, the behavior of the effective tidal deformability Λ̃ as a function of the

maximum mass for the two speed of sound bounds and for both events is displayed. The cor-
responding upper observational limit for Λ̃ (black dashed horizontal line), the compatible
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maximum mass in each case (horizontal arrows), and the current observed maximum neutron
star mass M = 2.14+0.10

−0.09 M% (vertical purple shaded region) are also indicated.

Table 1. Parameters of the Equations (60) and (61) for both events and all bounds of the speed
of sound.

Bounds
GW170817 GW190425

c1 c2 c3 c4 c1 c2 c3 c4

c 500.835 0.258 53.457 0.873 47.821 0.055 10.651 1.068
c/
√

3 503.115 0.325 38.991 1.493 43.195 0.069 5.024 1.950
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Figure 5. The effective tidal deformability Λ̃ as a function of the maximum mass for the two speed of
sound bounds vs = c/

√
3 and vs = c and for the events (a) GW170817 and (b) GW190425. The mea-

sured upper limits for Λ̃ (black dashed lines with arrows; see References [14,98]); the corresponding
maximum mass shaded regions, for the vs = c/

√
3 (left green) case, for the vs = c case (right

blue), and for the middle cases (yellow); and the current observed maximum neutron star mass
M = 2.14+0.10

−0.09 M% (purple shaded vertical area; see Reference [17]) are also displayed. The green left
(blue right) arrow marks the accepted region of maximum mass Mmax for vs = c/

√
3 (vs = c) case.

At first glance in Figure 5, there is a contradiction between the maximum mass and
the upper limit of the observed Λ̃. For the first event shown in Figure 5a, the upper limit
of Λ̃ is compatible with a maximum mass value 2.106M% for vs = c/

√
3 and 3.104M% for

vs = c. Nonetheless, this bound corresponds to transition density in approximation 1.5 ns.
Experimental evidence disfavors this value. Therefore, the simultaneous derivation of the
maximum mass combined with the experimental knowledge that the EoS cannot take this
bound of sound speed for ntr = 1.5ns are in contradiction. Furthermore, the upper limit
on Mmax for the case of (vs/c)2 = 1/3 lies roughly inside the estimation of the measured
maximum mass. In the general perspective, we notice that two different points of view
antagonize each other. The constraints derived by the upper limit on Λ̃ lead to softer EoSs,
contrary to the observational estimations of the maximum mass of neutron stars, which lead
to stiffer EoSs. As we move to higher values of the speed of sound, this contrast decreases,
with the causal scenario of vs = c leading to a very wide area for the maximum mass.

In the case of the second event GW190425 displayed in Figure 5b, the constraints
provided by the measured Λ̃ are less stringent than the GW170817 event, with a maximum
mass value of Mmax ≤ 2.534 M% for vs = c/

√
3 and Mmax ≤ 3.772 M% for vs = c.

HOwever, the presence of a lower limit on Λ̃, especially in the case of events with heavy
components (such as GW190425), could constrain the lower maximum mass.

In addition, we provide an expression that describes the Λ̃ as a function of the maxi-
mum mass Mmax. The expression is given by the following equation and the coefficients in
Table 1,

Λ̃ = c3

(
eMmax − 1

)c4

. (61)
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The expression in this form means that Mmax → 0⇒ Λ̃→ 0. Moreover, the adoption
of an upper limit on the maximum mass Mmax in Figure 5 could provide an additional
constraint on the behavior of the speed of sound. Specifically, by applying the estimated
upper limit Mmax ≤ 2.33 M% [131], the case of (vs/c)2 = 1 in Figure 5a for the GW170817
event should be excluded. On the contrary, the estimated upper limit Mmax ≤ 2.106 M%
for the (vs/c)2 = 1/3 bound, is a more tight constraint. Additionally, an upper limit such
as Mmax ≤ 2.33 M% imposes a general upper bound on the possible intermediate values of
speed of sound (intermediate shaded area in the figure). Concerning the second event in
Figure 5b, a strict upper limit on Mmax could constrain even the (vs/c)2 = 1/3 case.

Another interesting relation is the Λ̃ as a function of the radius of a 1.4 M% neutron
star, for both events, which is displayed in Figure 6. First of all, the upper limit on
Λ̃ leads to a limitation on the maximum values of the radius, especially in the case of
vs = c/

√
3. Furthermore, there is a trend between Λ̃ and R1.4, which was also remarked on

by Raithel et al. [132], mentioning that the effective tidal deformability depends strongly
on the radii of the stars rather on the component masses. This strong dependence can be
observed in Figure 6.
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Figure 6. The effective tidal deformability Λ̃ as a function of R1.4 for both events and all the bounds
of the speed of sound. The dashed and dash-dotted horizontal black lines correspond to the upper
limit on Λ̃ for the GW190425 and GW170817 events, respectively, taken from References [14,98].
The grey shaded regions correspond to the excluded areas. The horizontal arrows indicate the
allowed area for R1.4 in each case. The purple dotted curve demonstrates the proposed expression by
Reference [133,134].

In particular, for the GW170817 event, the curves of the two limited cases, red and
blue for the (vs/c)2 = 1/3 and (vs/c)2 = 1 bounds, respectively, of the speed of sound
are almost identical. The cross marks correspond to the specific values for each case. In
our study, we considered four cases of transition density ntr; therefore, eight marks are
expected in total, but in the diagram, only seven can be seen. This is because of the identical
values for the ntr = 3ns case that the two bounds provide. This is clear from their behavior
in Figure 2 in which, for the mass range of GW170817 event, their M-R curves are identical.

Moreover, as the effective tidal deformability Λ̃ shows higher values, the distance be-
tween them also increases. The same behavior is present in the curves of Figure 3a, in which
their in-between distance increases for higher values of Λ̃. This increment is related to the
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ntr, meaning that the differentiation for small values of ntr is more obvious. Hence, in these
cases, the effect of each bound of the speed of sound is easier to be manifested.

The dotted purple line corresponds the approximate relation of References [133,134].
We notice that this approximate relation is valid only for the first event and for specific
assumptions on the components’ radii. In particular, the main assumption of this ap-
proximation consists on the R1 ≈ R2 relation. From the comparison of Figure 6 with the
M-R diagram of Figure 2, it follows that for smaller values of ntr (i.e., more stiff EoSs),
(a) the inclination of the curves increases and (b) the difference between the M-R curves
of boundary cases also increases. Therefore, these remarks, combined with the strong
dependence of Λi to R (see Equation (20)), show the inability of the proposed expression to
accurately reproduce the values of Λ̃ in the high-values region can be explained.

The grey shaded area indicates the excluded area due to the upper limit on Λ̃, provided
by Reference [98]. The upper limit of Λ̃ leads to constraints on the radius R1.4, especially
R1.4 ≤ 13.047 km for the (vs/c)2 = 1/3 bound and R1.4 ≤ 13.02 km for the (vs/c)2 = 1
bound. These upper limits are consistent with other analyses [24,124,128,129,132,134–137].

For the second event (GW190425), we notice that the exact range of the component
masses is not determinant [130]. The orange and green lines and marks correspond to the
(vs/c)2 = 1/3 and (vs/c)2 = 1 bounds, respectively, of the speed of sound. The shaded
grey region indicates the excluded region by the upper limit of Λ̃ [14]. The orange and
green arrows indicate the allowed region for each case. For (vs/c)2 = 1/3, the constraint
on the radius is R1.4 ≤ 14.712 km, while for (vs/c)2 = 1 is R1.4 ≤ 14.53 km. These are more
stringent constraints compared to the 15 km and 16 km of Reference [14]. We notice that
recently it was found in Reference [138] that the joint contribution of gravitational waves
and NICER data favors the violation of the conformal limit (vs/c)2 < 1/3. In particular,
this analysis suggests the violation of the conformal limit around 4ρnuc density, where
ρnuc = 2.8× 1014g/cm3 is the nuclear saturation density.

In addition, one can observe the similarity of the curves’ behavior between the two
events. For higher values of ntr, the distance between the points grows. One of the main
differences is that for the second event, the curves and the points are shifted to smaller
values of Λ̃ because of the higher chirp massMc of the system. Another observation is that
the fitting lines are more distinct from each other, contrary to the GW170817 event, in which
they were almost identical; nevertheless, there is a common trend (see also Reference [132]).
For this reason, we applied the following expression

Λ̃ = c1Rc2
1.4, (62)

where R1.4 is in km, similar to the proposed relations of References [133,134]. The coeffi-
cients for each case are given in Table 2.

Table 2. Coefficients of Equation (62) for the two bounds of the speed of sound.

Event Bounds c1 c2

GW170817 c 0.12357× 10−4 6.967
c/
√

3 0.12179× 10−4 6.967

GW190425 c 0.870× 10−6 7.605
c/
√

3 0.088× 10−6 8.422

4.2. GW190814: A Postulation of the Most Massive Neutron Star

The GW190814 event that arose from the merger of a ∼23 M% black hole with a
∼2.6 M% compact object has provided various scenarios for the nature of the second
component. In particular, the possibilities for the second merger component are that of (a)
the lightest black hole, (b) the most compact neutron star, (c) a rapidly rotating neutron
star, and (d) an exotic compact object. We note that in the present review, we consider only
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the scenarios where the compact object is a nonrotating (most compact) neutron star or is a
rapidly rotating one [66].

In Figure 7, we display the gravitational mass as a function of the Kerr parameter for
the pure MDI-APR EoS. In addition, we note the universal relation

Mrot = MTOV

[
1 + 0.132

( K
Kmax

)2
+ 0.071

( K
Kmax

)4
]

, (63)

where Kmax = 0.68 is the Kerr parameter at the mass-shedding limit, for two limiting cases:
(a) MTOV = 2.08 M% and (b) MTOV = 2.3 M% [139]. The limiting cases correspond
to the minimum and maximum possible mass for a neutron star [139], along with the
maximum value of the Kerr parameter (considering the minimum possible mass) [139].
The area marked by the intersection of the gravitational mass, M = 2.59+0.08

−0.09 M%, with
the Kerr parameter, K = [0.49, 0.68] [139], notes the area where the compact object can
exist. Figures 1 and 7 show that the pure MDI-APR EoS, which is well-defined in the above
limits, is a suitable hadronic EoS to describe the ∼2.6 M% compact object.
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Figure 7. Dependence of the gravitational mass on the Kerr parameter. The lower solid line represents
Equation (63) with MTOV = 2.08 M%, while the upper solid line represents Equation (63) with
MTOV = 2.3 M%. The dashed line corresponds to the MDI-APR EoS. In addition, the horizontal
shaded region notes the mass of the second component of GW190814 event, and the vertical wide
shaded region marks the Kerr parameter, K = [0.49, 0.68], according to Reference [139]. Furthermore,
the narrow vertical shaded region indicates the Kerr parameter, Kmax = [0.67, 0.69], extracted
from Reference [63] by assuming that the low mass component was rotating at its mass-shedding
limit. The cross, the plus sign, and the diamond show the maximum mass configuration at the
mass-shedding limit.

Furthermore, by assuming that the second merger component is rotating at its mass-
shedding limit, possible constraints are available through the Kerr parameter, the equatorial
radius, and the central energy/baryon density. Specifically, by employing the relation
found in Reference [63]

Kmax = 0.488 + 0.074
(

Mmax

M%

)
, (64)

for the observable gravitational mass, the maximum Kerr parameter is evaluated in the
range Kmax = [0.67, 0.69], a feature that is also noted in Figure 7. Moreover, taking into
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consideration the relation from Reference [64] that connects the Kerr parameter with the
compactness parameter at the mass-shedding limit, namely

Kmax = 1.34
√

βmax and βmax =
G
c2

Mmax

Rmax
, (65)

the equatorial radius is calculated in the range Rmax = [14.77, 14.87] km.
Finally, we focused on the central energy/baryon density, a property that is con-

nected to the time evolution of pulsars and the appearance of a possible phase transition.
The above dependence is presented in Figure 8 as the dependence of the maximum gravita-
tional mass on both the central energy density and the central baryon density. Specifically,
Figure 8 contains a wide range of hadronic EoSs (23 EoSs) [63] both at the nonrotating and
maximally rotating configurations, the analytical solution of Tolman VII, Equation (66),
denoted as

M
M%

= 4.25

√
1015 g cm−3

εc/c2 , (66)

according to Reference [63], the calculation data from Cook et al. [140] and Salgado et al. [141],
and the recent data for the nonrotating and maximally rotating configurations both in the
cases of (vs/c)2 = 1/3 and (vs/c)2 = 1 with the corresponding transition densities.
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Figure 8. Dependence of the maximum gravitational mass on the central energy/baryon density both
at nonrotating and rapidly rotating with the Kepler frequency configurations. Circles and squares
correspond to 23 hadronic EoSs [63] at the nonrotating (N.R.) and maximally-rotating (M.R.) cases,
respectively, and stars and triangles correspond to data of Cook et al. [140] and Salgado et al. [141],
respectively. Furthermore, diamonds and plus signs note the nonrotating configuration, while crosses
and polygons show the maximally-rotating one, in the cases of the two limiting values of the sound
speed. The horizontal dashed lines mark the current observed neutron star mass limits (2.01 M% [16],
2.14 M% [17], and 2.27 M% [18]). Equation (66) is noted with the dashed-dotted line, while for
comparison, the Tolman VII analytical solution [63] is added with the solid line. The horizontal
shaded region notes the mass range of the second component of GW190814 event.

In addition, via Equation (66), which is used for the description of the upper bound
for the density of cold baryonic matter [63], the central energy density can be constrained
in the narrow range εc/c2 = [2.53, 2.89] 1015 g cm−3. The latter indicates that neutron stars
with higher values of central energy density cannot exist. Furthermore, Figure 8 provides
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us the tools to extract the corresponding region for the central baryon density, which is
nc = [7.27, 8.09] ns. It is worth mentioning that the cases in this review meet the limit
for the central energy/baryon density as they are included in the region described under
Equation (66).

4.3. The Case of a Very Massive Neutron Star
4.3.1. Isolated Non-Rotating Neutron Star

In this study, we extended our previous work in Reference [65] for an isolated non-
rotating neutron star by using two transition densities ntr = [1.5, 2]ns and eight values
of speed of sound bounds (vs/c)2 = [1/3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1] [66]. The values of
transition density were taken to be close to the constraints of Reference [65]. By solving
numerically the system of TOV equations, combined with the previous bounds for the
speed of sound, we obtained the M-R diagram, displayed in Figure 9a.
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Figure 9. (a) Mass vs. radius for an isolated nonrotating neutron star, for each transition density ntr

and all speed of sound cases. The darker curves’ color corresponds to the lower values of speed of
sound. The blue horizontal line and region indicate the mass estimation of the massive compact
object of Reference [19]. The dashed-dotted and dotted curves correspond to the MDI-APR and APR
EoS, respectively. (b) The maximum mass Mmax of a nonrotating neutron star as a relation to the
bounds of the speed of sound (vs/c)2 for each transition density ntr (in units of saturation density
ns). The purple vertical shaded region corresponds to the ntr = 1.5ns case, while the green one
corresponds to the ntr = 2ns case. The purple (green) vertical line indicates the corresponding value
of the speed of sound for a massive object with M = 2.59 M%.

At first sight, there are two main branches in Figure 9a related to the transition density.
The solid (dashed) curves correspond to the ntr = 1.5ns (ntr = 2ns) case. Depending on
each value for the bound of the speed of sound, there are bifurcations in the families of
EoSs. As we move to higher values for the speed of sound, the color of the curves lightens.
The blue solid horizontal line, with the accompanying shaded region, represents the
estimation of the recently observed massive compact object of Reference [19]. In general,
the branch of EoSs with ntr = 1.5ns provides stiffer EoSs compared to the ntr = 2ns
branch. Hence, the EoSs of the ntr = 1.5ns case are more likely to provide such a massive
nonrotating neutron star than the ntr = 2ns case in which three EoSs lie outside of the
shaded region. Specifically, between the same kind of transition density ntr the EoSs with
higher bounds of the speed of sound lead to higher values of neutron star mass and radius.
Therefore, a generally high bound of the speed of sound (as the transition density has
higher values, the speed of sound would be closer to the causal scenario) is needed for the
description of such a massive compact object.
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As one can observe in Figure 9a, there is a trend across the maximum masses. In order
to study this behavior, we constructed the diagram of Figure 9b. The cross and star marks
represent the maximum masses of ntr = 1.5ns and ntr = 2ns cases, respectively. The color of
the marks is lighter for higher values of the speed of sound. The blue solid horizontal line,
with the accompanying shaded region, indicates the estimation of the recently observed
massive compact object of Reference [19]. The purple and green curves represent the
following expression for the ntr = 1.5ns and ntr = 2ns cases, respectively, given below

Mmax = c1dc2 + c3d + c4, (67)

where d = (vs/c)2. The coefficients are given in Table 3.

Table 3. Parameters of Equation (67) and bounds of speed of sound value of Figure 9b. The parame-
ters c1, c3, and c4 are in solar mass units M%.

ntr c1 c2 c3 c4 (vs/c)2
min (vs/c)2 (vs/c)2

max

1.5ns −1.6033× 103 −7.56× 10−4 −1.64× 10−1 1.6068× 103 0.448 0.485 0.52
2ns 5.5754 0.2742 −0.6912 −1.9280 0.597 0.659 0.72

By applying the formula mentioned above, we were able to obtain estimations of
the speed of sound values for each transition density ntr. In particular, for a nonrotating
massive neutron star with M = 2.59 M% the speed of sound must be (a) (vs/c)2 = 0.485
(ntr = 1.5ns), and (b) (vs/c)2 = 0.659 (ntr = 2ns). The exact values’ interval is given
in Table 3. We note that in the case of higher values of transition density ntr, the fitted
expression and marks are shifted downwards; i.e., the higher the point of the transition in
density, the smaller the provided maximum mass. In addition, as one can see in Figure 9b,
the higher values of the speed of sound are better able to predict such massive neutron
stars, until a specific boundary value of transition density ntr (higher than those we adopted
in our study), in which even the causality could not lead to such a massive neutron star.

Hence, a very massive nonrotating neutron star favors higher values of the speed of
sound than the vs = c/

√
3 limit. Based on our previous work, the current observation of

neutron star mergers leads to a lower bound on the transition density ntr [65]. At this point,
a contradiction arises; the transition density ntr must be above a specific lower value but
not big enough to predict very massive masses.

In Figure 10, we display the tidal parameters for the single neutron star case that we
study as a function of the mass. The vertical blue shaded region and line indicate the mass
estimation for the second compact object of Reference [19].

One can observe that in both diagrams there are two main families of EoSs, distin-
guished by the transition density ntr. The EoSs with higher speed of sound bounds lead to
bigger values on both tidal parameters. This means that a neutron star with a higher speed
of sound value is more deformable than a more compact one (with a lower speed of sound
value). Moreover, the EoSs with smaller transition density ntr and higher (vs/c)2 values
are more likely to predict a very massive neutron star of M = 2.59 M%.

We notice that taking into consideration cases with higher transition density ntr could
lead to smaller values of tidal parameters, i.e., more compact and less deformable stars.
Hence, a very high value of the speed of sound, close to the causality, would be necessary
to provide such a massive nonrotating neutron star.
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Figure 10. Tidal parameters (a) k2 and (b) λ as a function of an neutron star’s mass. The blue vertical
line and shaded region indicate the estimation of the recently observed massive compact object of
Reference [19]. The solid (dashed) curves correspond to the ntr = 1.5ns (ntr = 2ns) case. The lower
values of the speed of sound correspond to the darker-colored curves.

4.3.2. A Very Massive Neutron Star in a Binary Neutron Stars System

Beyond the hypothetical scenario of a single nonrotating neutron star, it is of particular
interest to consider the binary case of two neutron stars, with the heavier having a mass
of m1 = 2.59 M% and letting the secondary lighter neutron star fluctuate within the range
m2 ∈ (1, 2.59) M%. By subtracting the component masses m1, m2 in Equation (18), we
obtain the corresponding values of Mc. Then, since the masses are defined, from the
Equations (19) and (20), the effective tidal deformability Λ̃ can be determined.

In Figure 11a, we display the effective tidal deformability Λ̃ as a function of the chirp
massMc of the system, for all the possible binary neutron star systems with such a massive
neutron star component. We have to underline that from all the EoSs that we studied in the
single-neutron star case previously, in the binary case, we used only those that can provide
a neutron star with 2.59 M% mass. As one can see in Figure 11, there are two families of
EoSs, distinguished by the transition density ntr. For each family of EoSs, the EoSs with
higher values of the speed of sound predict higher values of Λ̃. We notice that for a binary
system with m1 = 2.59 M% and m2 = 1.4 M%, the chirp mass isMc = 1.642 M%. Another
remark is that binary neutron star systems with both heavy components, meaning higher
Mc, lead to smaller values of Λ̃. In this case, a possible lower limit on Λ̃ might provide
useful constraints on the EoS.

In Figure 11b, we display the dependence of Λ̃ on the corresponding binary mass
ratio q.

We have to underline that this kind of Λ̃− q diagram is different from the usual ones
(see in comparison Figure 3) because the chirp massMc has no specific value. In particular,
in this work, theMc is treated as a variable, and each point of Figure 11b corresponds
to a different binary neutron star system with the heavier component in all cases being a
very massive neutron star with mass 2.59 M%. Similarly to Figure 11a, there are two main
families for the curves, and the EoSs with higher speed of sound provide higher values of
Λ̃. The more symmetric binary neutron star systems (q→ 1) lead to smaller values of Λ̃.
On the contrary, the highest values of Λ̃ correspond to the most asymmetric binary neutron
star systems. We notice that for a binary system with m1 = 2.59 M% and m2 = 1.4 M%, the
asymmetry ratio is q = 0.541.
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Figure 11. The effective tidal deformability Λ̃ as a function of (a) the chirp massMc and (b) binary
mass ratio q, in the case of a very massive neutron star component, identical to Reference [19].
The darker colored curves correspond to lower values of speed of sound. The black dashed vertical
line shows (a) the corresponding chirp massMc and (b) mass ratio q, of a binary neutron star system
with m1 = 2.59 M% and m2 = 1.4 M%, respectively.

Moreover, we studied the effective tidal deformability Λ̃ and the R1.4 case of an
m2 = 1.4 M% secondary component neutron star, with the heavier component neutron star
taken to be m1 = 2.59 M%. In Figure 12, we display this dependence. To be more specific,
the EoSs are in five main groups, characterized by the transition density ntr. Our study has
been expanded to transition densities ntr = [1.25, 1.75, 2.25] ns so that the calculations could
be more accurate The higher speed of sound values correspond to lighter color. In analog to
the observations of the previous Figure 11, the high speed of sound bounds lead to higher
Λ̃ and R1.4.
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Figure 12. The effective tidal deformability Λ̃ as a function of the radius R1.4 of an m2 = 1.4 M%
neutron star. The heavier component of the system was taken to be m1 = 2.59 M%. The darker
colors correspond to lower values of speed of sound bounds. The grey lines show the expression of
Equation (68). The black dotted vertical line indicates the proposed upper limit of Reference [132].
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In addition, we applied a fitting formula to the (vs/c)2 = [0.8, 0.9, 1] cases. The for-
mula was taken to be in the kind of the proposed relations of References [133,134],

Λ̃ = c5Rc6
1.4 (68)

where the coefficients for each case are given in Table 4. According to a recent study,
a similar power-law relation connects the tidal deformability of a single neutron star to
the R1.4 [142]. The significance of the tidal deformability Λ1.4 and R1.4 in order to obtain
information about microscopic quantities was studied in Reference [143]. By imposing an
upper limit on R1.4, one can obtain an upper limit on Λ̃. Hence, by adopting the general
limit of Reference [132], we obtained the constraints of Table 4.

Table 4. Parameters of Equation (68) and bounds of Λ̃ of Figure 12.

(vs/c)2 c5 (km−1) c6 Λ̃

0.8 4.1897× 10−9 9.3518 109.536
0.9 5.3213× 10−9 9.2652 111.416
1 6.1109× 10−9 9.2159 112.729

4.4. Finite Temperature Effects on Rapidly Rotating Neutron Stars
4.4.1. Sequences of Constant Baryon Mass

A way to study the effects of finite temperature on the rapidly rotating remnant after
a binary neutron star merger is the sequences of constant baryon mass. The sequences
provide us with information about the evolution and instabilities of hot neutron stars.
In particular, in the case of the isothermal EoSs, we considered the same baryon mass
configuration for the EoSs and constructed a sequence related to the cooling of a hot
neutron star [64].

Figure 13a displays the Kepler frequency as a function of the temperature for four
baryon masses in the range [1.6, 2.2] M%. Specifically, in the range [0, 15] MeV, the Ke-
pler frequency decreases sharply with the temperature, while for higher temperatures, a
smoother behavior is presented. This dependence can be described as

f (T) = α0 + α1T3 + α2exp[α3T] (Hz), (69)

where f and T are in units of Hz and MeV, respectively, and the coefficients αi with i = 0–3
are given in Table 5.

Table 5. Coefficients αi with i = 0–3 for the empirical relation (69) and baryon masses in the range
[1.6–2.2] M%.

Coefficients
Baryon Mass

1.6 M� 1.8 M� 2.0 M� 2.2 M�
a0 (×102) 4.259 5.284 6.414 7.863
a1 (×10−3) −4.787 −3.202 −2.099 −1.443
a2 (×102) 5.401 4.929 4.363 3.530
a3 (×10−1) −1.468 −1.443 −1.424 −1.636

This behavior suggests that the effects of temperature are more pronounced in the
range [0, 15] MeV, leading to significant lower Kepler frequencies, where for higher tem-
peratures than T > 15 MeV, the effects are moderated.

Afterwards, in Figure 13b, the dependence of Kepler frequency on the central baryon
density is presented, for four baryon masses in the range [1.6, 2.2] M%. While for low
values of temperature the central baryon density increases with increasing temperature,
for high values of temperature, a reduction in the values of the central baryon density is
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noted. In addition, for low values of temperature (T < 30 MeV) there is the appearance of
a linear relation between the Kepler frequency and the central baryon density, assuming
always a constant temperature. The significance of Figure 13b is focused on temperatures
higher than T = 30 MeV, where a linear relation described as

f (nc
b) = −473.144 + 2057.271nc

b (Hz), (70)

with f and nc
b given in units of Hz and fm−3, respectively, interprets the dependence of

the Kepler frequency on the central baryon density independent from the specific baryon
mass. Henceforth, Equation (70) defines the allowed region that a neutron star can exist
with rotation at its mass-shedding limit for a specific central baryon density and vice versa.
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Figure 13. Dependence of the Kepler frequency on (a) the temperature and (b) the central baryon
density for baryon masses in the range [1.6, 2.2] M%. (a) Solid lines represent the fits originated
from Equation (69). (b) The solid line represents Equation (70), while open circles note the high-
temperature region (T ≥ 30 MeV).

4.4.2. Moment of Inertia, Kerr Parameter, and Ratio T/W

Figure 14 displays the dimensionless moment of inertia as a function of the com-
pactness parameter for neutron stars at the mass-shedding limit in (a) isothermal and (b)
isentropic profile. In both cases, the increase of the temperature or the entropy per baryon
(assuming a constant lepton fraction) leads to lower values of moment of inertia and lesser
compact stars than the cold star. However, for low values of temperature (T < 2 MeV) or
low values of entropy per baryon (S = 1 with Yl = 0.2 and 0.3), the dimensionless moment
of inertia and the compactness parameter exceed the values of the cold neutron star.

Afterwards, in Figure 15 we present the Kerr parameter as a function of the gravita-
tional mass for neutron stars at the mass-shedding limit in (a) isothermal and (b) isentropic
profile. In addition, we display the constraints for the Kerr parameter of neutron stars with
the shaded region [64] and the Kerr bound for astrophysical Kerr black holes [97]. As the
temperature or the entropy per baryon increases in the neutron star, the Kerr parameter
decreases, except for high values of temperature (T = 60 MeV) where a slightly increase is
observed. Furthermore, Figure 15c displays the Kerr parameter as a function of the tem-
perature for constant gravitational mass in the isothermal profile. After T = 30 MeV, it is
observed that the Kerr parameter creates a plate, meaning that the increase in temperature
does not affect the Kerr parameter.
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Figure 14. Dependence of the dimensionless moment of inertia on the compactness parameter at the
mass-shedding limit in the case of (a) isothermal and (b) isentropic profiles. Dashed lines note the
hot configurations, while the solid line notes the cold configuration.
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Figure 15. Dependence of the Kerr parameter on the gravitational mass at the mass-shedding limit in
the case of (a) isothermal and (b) isentropic profiles. Dashed lines note the hot configurations, while
the solid line notes the cold configuration. The horizontal dotted line corresponds to the Kerr bound
for astrophysical Kerr black holes, KB.H. = 0.998 [144], while the shaded region corresponds to the
neutron star limits from Reference [64]. (c) Dependence of the Kerr parameter on the temperature for
gravitational masses in the range [1.4, 2.3] M% and in the case of isothermal profile.

The introduction of temperature in neutron stars cannot violate the proposed limit for
Kerr black holes [97] and the one from cold neutron stars [64]. Therefore, the gravitational
collapse of a hot and uniformly rotating neutron star, constrained to mass–energy and
angular momentum conservation, cannot lead to a maximally rotating Kerr black hole.
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In addition, it is worth mentioning that, while in the cold neutron star, for Mgr > 1 M%,
the Kerr parameter is almost independent of the gravitational mass, in hot configurations,
Kerr parameter is an increasing function of the gravitational mass. The latter leads to the
conclusion that while the interplay between the angular momentum and the gravitational
mass in cold neutron stars is imperceptible, that is not the case in hot neutron stars, where
a significant dependence is suggested.

Finally, Figure 16 displays the angular velocity as a function of the ratio of kinetic
to gravitational binding energy T/W for neutron stars at the mass-shedding limit in (a)
isothermal and (b) isentropic profile. Gravitational waves can be produced from neutron
stars through the nonaxisymmetric perturbations. The vertical dotted line notes the limit
for nonaxisymmetric instabilities from gravitational radiation, located at T/W ∼ 0.08 for
models with Mgr = 1.4 M% [145]. The introduction of temperature leads to the conclusion
that nonaxisymmetric instabilities cannot exist in hot neutron stars. However, for cases
with low values of temperature (T ≤ 1 MeV and S = 1 with Yl = 0.2), the nonaxisymmetric
instability would set in before the mass-shedding limit is reached. The latter indicates that
both the maximum gravitational mass and the angular velocity will be lowered.
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Figure 16. Dependence of the angular velocity on the ratio of rotational kinetic to gravitational
binding energy at the mass-shedding limit in the case of (a) isothermal and (b) isentropic profiles.
Dashed lines note the hot configurations, while the solid line notes the cold configuration. Markers
correspond to the Mgr = 1.4 M% configuration. The vertical dotted line notes the critical value,
T/W = 0.08, for gravitational radiation instabilities.

The aftermath from the analysis on the compactness parameter, Kerr parameter,
and ratio T/W is the insight for the hot and rapidly rotating remnant after a neutron star
merger. Actually, the remaining object is a compact object consisting of neutron star matter.
By assuming a remnant with at least T ≥ 30 MeV for isothermal neutron stars and S = 1
with Yl = 0.2 for isentropic ones, rotating at its mass-shedding limit, possible constraints
are available through the mentioned quantities. In particular,

• compactness parameter: βiso
rem ≤ 0.19 and βise

rem ≤ 0.27,
• Kerr parameter: Kiso

rem ≤ 0.42 and Kise
rem ≤ 0.68,

• ratio T/W: (T/W)iso
rem ≤ 0.05 and (T/W)ise

rem ≤ 0.127,

where the superscripts “iso” and “ise” correspond to isothermal and isentropic profiles
[for more details see Reference [64]]. Specifically, in the case that the remnant follows the
isothermal profile, the remaining object is a lesser compact object than the cold neutron
star, with lower values of maximum gravitational mass and frequency, and stable toward
the dynamical instabilities. In the case that the remnant follows the isentropic profile,
the remaining object is comparable to the cold neutron star.
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5. Concluding Remarks

In this review we have presented a suitable EoS parameterized to reproduce specific
values of the speed of sound and gravitational mass of neutron stars. In addition, we
introduced the effects of finite temperature both in isolated neutron stars and in matters of
merging. In particular, we have constructed equilibrium sequences of both nonrotating
and rapidly rotating with the Kepler frequency neutron stars and paid special attention
to the gravitational and baryon mass, the radius, the transition baryon density, the Kerr
parameter, the moment of inertia, the ratio T/W, and the tidal deformability. This study
is applied in several gravitational wave events, GW170817, GW190425, and GW190814,
and possible constraints for the EoS are extracted.

Firstly, we studied the EoS and especially imposed constraints on the speed of sound
(which affects the stiffness of the EoS) and the transition density by using recent observa-
tions of two binary neutron stars mergers (GW170817 and GW190425 events). The imple-
mented method that we developed was based on the upper limits of the effective tidal
deformability (derived from the mentioned events), combined with measurements of the
maximum neutron star mass. As a base in our study, we used the MDI-APR EoS, for two
cases of speed of sound bounds [63,74]; the conformal case vs = c/

√
3 and the causal one

of vs = c.
The treatment of the effective tidal deformability as a function of the transition den-

sity allowed us to extract constraints on the bounds of the speed of sound. Specifically,
for the GW170817 event, we found that the speed of sound must be lower than the value
vs = c/

√
3, at least up to densities ntr ≈ 1.6ns, and lower than vs = c up to densities

ntr ≈ 1.8ns. For the GW190425 event, the respective values are ntr ≈ ns for the lower speed
of sound bound and ntr ≈ 1.2ns for the upper one. These constraints are less rigorous than
those derived from the GW170817 event.

Moreover, we studied the effective tidal deformability as a function of the maximum
mass for both cases of speed of sound bounds. For the GW170817, we obtained that the max-
imum mass should be Mmax ≤ 2.106 M% for the vs = c/

√
3 bound and Mmax ≤ 3.104 M%

for the upper bound vs = c. We notice that the limit of Mmax ≈ 2.11 M% corresponds to a
transition density equal to ntr ≈ 1.5ns. Hence, according to this finding, the conformal limit
vs = c/

√
3 is in contradiction with the observational estimations of the Mmax of neutron

stars. Therefore, it must be violated in order to be able to simultaneously describe small
values of the effective tidal deformability and high values for neutron star mass. The reason
for this contradiction is based on two different points of view that antagonize one another:
the upper limit on Λ̃ favors softer EoSs (higher values of ntr), while the maximum mass
observations require stiffer EoSs (smaller values of ntr). For higher values of the speed of
sound, this contradiction becomes less severe (i.e., Mmax ≈ 3.1 M% for the case vs = c). We
notice that the GW190425 was not able to offer further information.

Furthermore, from the study of the effective tidal deformability and the radius R1.4
of a 1.4 M% neutron star, we observed that all the EoSs follow a common trend. This
trend is affected mainly by the chirp mass of the binary system. To be more specific,
as the chirp mass reaches higher values, the trend moves downwards. From the event
GW170817 we obtained an upper limit R1.4 ≈ 13 km for both cases, which is consistent
with other estimations. The event GW190425 provided an upper limit R1.4 ≈ 14.712 km for
the vs = c/

√
3 bound and R1.4 ≈ 14.53 km for the vs = c bound.

We postulate that the discovery of future events of binary neutron stars mergers will
provide rich information and further constraints on the bound of the speed of sound. In
particular, the detection of future events could lead to more stringent constraints on the
upper limit of Λ̃ and therefore more rigorous constraints on ntr and bounds of the sound
speed. Based on our approach, the more useful events for the lower limit of ntr would be
those with lighter component masses. Moreover, it would be of great interest to probe the
lower limit of Λ̃. Such a lower limit might lead to an upper value of the transition density
ntr. We make the assumption that heavier neutron star mergers would be suitable in the
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direction of a possible upper limit on ntr. In any case, further detection of neutron stars
mergers will assist in these open problems.

The baryon mass of the postmerger remnant is considered approximately conserved,
a feature that gives rise to the significance of the temperature. In particular, in the case of
hot neutron stars, the baryon mass is lower than the cold ones. As remnants are considered
rapidly rotating, we study them at the mass-shedding limit. Specifically, in the cold case,
the baryon mass is 3.085 M%, while for a hot one at T = 30 MeV is 2.427 M% and for one
at S = 1 is 3.05 M%. By considering that the merger components have approximately
equal masses, the above limits correspond to merger components with ∼1.5425, ∼1.2135,
and ∼1.525 M% baryon masses, respectively. Furthermore, the immediate aftermaths
of GW170817 [13] and GW190425 [14] events created hot and rapidly rotating remnants
probably at the mass-shedding limit. In the case of GW170817 event, the remnant with
∼2.7 M% can be supported under the uniform rotation of cold and isentropic neutron stars
with respect to the baryon mass of MDI+APR1 EoS. In contrast, isothermal neutron stars
cannot support these values of mass. As far as the GW190425 event, the assumption of
uniform rotation cannot be used to interpret the remnant of ∼3.7 M%. It has to be noted
that the postmeger remnant is assumed to rotate differentially. However, uniform rotation
is a valid candidate to provide us with useful information about neutron stars.

In the GW190814 event [19], a compact object with a mass of ∼2.6 M% was observed
as a merger component. It is believed to be either the lightest black hole or the most
massive neutron star [139]. Nonetheless, Most et al. [139] suggest that the compact object
could be a neutron star rapidly spinning with K in the range [0.49, 0.68]. In this case,
the relevant postulation is in accordance with this study. More specifically, the values of the
gravitational mass and Kerr parameter coincide with the ones from the MDI+APR1 EoS in
both cold catalyzed matter and isentropic matter with S = 1 and Yl = 0.2. Following the
latter conclusion, there is a possibility that the observed star was rotating close to or at its
mass-shedding limit and provide us additional constraints on the high density region of
the nuclear EoS. In addition, possible constraints can be extracted for the corresponding
equatorial radius. The Kerr parameter at the mass-shedding limit of the MDI+APR1 EoS
lies in the region of Kmax = [0.67, 0.69]. This region also includes the upper limit of the
relevant region from Reference [139] in a narrow range. Furthermore, by exploiting the
relation between the Kerr parameter and the compactness parameter, a possible tight region
for the equatorial radius of the star is implied as Rmax = [14.77, 14.87] km.

The Kerr parameter also has the role of an indicator of the collapse to a black hole.
In hot neutron stars, the Kerr parameter decreases as the temperature inside the neutron
star increases and never exceeds that of the cold neutron star. In conclusion, thermal
support cannot lead a rapidly rotating star to collapse into a maximally rotating Kerr black
hole. In addition, after ∼1 M%, while the Kerr parameter is almost constant for the cold
neutron stars, for hot neutron stars, the Kerr parameter is increasing with respect to the
gravitational mass. The latter leads to a specific maximum value.

The ratio T/W is explicitly linked to the gravitational collapse to a black hole and
the existence of stable supramassive neutron stars. We consider in the present study only
the first scenario. Instabilities originating from the gravitational radiation, in which the
critical value is at T/W ∼ 0.08 for the Mgr = 1.4 M% configuration [145], do not exist for
hot neutron stars. Nonetheless, for low values of temperatures, as the ratio T/W exceeds
the critical value, this limit sets the upper value for the maximum gravitational mass and
angular velocity. It has to be noted that studies concerning the Kerr parameter as well as
the ratio T/W and the corresponding effect of the temperature are very rare. The existence
of the latter studies may open a new window in neutron star studies.

A way to manifest the significance of the thermal support in neutron stars is the evo-
lutionary sequences of constant baryon mass. In this configuration, the dependence of the
Kepler frequency on the central baryon density presents a linear relation for temperatures
higher than T = 30 MeV. The existence of such a relation, independent of the baryon mass,
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can define the allowed region of the pair of the central baryon density and corresponding
Kepler frequency for a rotating hot neutron star at its mass-shedding limit.

Central baryon/energy density can also be of great interest in cold neutron stars, as it
is connected with the evolution of the neutron star and the possible appearance of a phase
transition. The end point from our study is that the central energy density must be lower
than the values in the range εc/c2 = [2.53, 2.89] 1015 g cm−3, while for the central baryon
density, the corresponding range is nc = [7.27, 8.09] ns. The latter can inform us about the
stability of the neutron star, as a neutron star with higher values of central energy/baryon
density cannot exist, as well as can the appearance of the back-bending process.

Moreover, we examined the hypothetical scenario of a very massive neutron star
with mass equal to ∼2.59+0.08

−0.09 M%, such as the secondary component of the GW190814
system [19]. The study of the maximum mass of each EoS as a function of the speed of
sound bounds (for each value of transition density ntr), provide us constraints in the speed
of sound. To be more specific, the ntr = 1.5ns case leads to (vs/c)2 ∈ [0.448, 0.52], while the
ntr = 2ns case leads to (vs/c)2 ∈ [0.597, 0.72]. We postulate that as the transition density ntr
is getting higher values, it is more difficult to achieve such a massive nonrotating neutron
star. In particular, above a specific high-transition-density ntr value, the speed of sound
should be close to the causality to provide such a massive neutron star.

By studying the tidal parameters for the single case, we observed that the lower tran-
sition densities ntr lead to higher tidal parameters. Hence, the transition density ntr = 2ns
corresponds to a more compact neutron star (less deformation). Furthermore, between the
same kind of transition density ntr, the EoSs with higher bounds on the speed of sound predict
higher tidal parameters. Therefore, for the same transition density, the higher speed of sound
bound means that the neutron star is less compact (more deformation).

Moving on to the binary neutron star system case, we adopted the hypothesis of a very
massive component with m1 = 2.59 M%, allowing us to investigate a variety of hypothetical
binary neutron star systems with such a heavy component neutron star. In the case of
heavy components of binary neutron star systems, meaning high value for the system’s
chirp massMc, the effective tidal deformability Λ̃ has smaller values (smaller deformation).
This behavior was noticed also in the Λ̃− q diagram, in which the increasing binary mass
symmetric ratio q leads to smaller values of Λ̃. For a binary neutron system with the heavier
component equal to m1 = 2.59 M% and the lighter one equal to m2 = 1.4 M%, the chirp mass
Mc and the ratio q were estimated to beMc = 1.642 M% and q = 0.541, respectively.

Lastly, we studied the case of a binary neutron star system with m1 = 2.59 M% with
a secondary component m2 = 1.4 M%. We especially concentrated on the radius R1.4.
A general remark is that the transition density ntr = 1.5ns provides higher values of R1.4
and Λ̃ than the ntr = 2ns case. We extended our study to further transition densities ntr,
which confirmed this general behavior. Additionally, the higher bounds of the speed of
sound provide higher values on both parameters. By imposing an upper limit on the radius,
we extracted some upper limits on the Λ̃ for each value of the speed of sound. In particular,
this upper limit on Λ̃ shifts to higher values as the bound of the speed of sound increases.

This hypothetical scenario of a very massive neutron star demonstrated the key role
of a microscopic quantity of the EoS, the speed of sound, which dramatically affects the
EoS in combination with the changes in the transition density. We notice that the existence
of such a massive nonrotating neutron star would mean a significant difference from all
the cases known so far, which is a challenge for physics.

The underlying physics of neutron star mergers and the hot, rapidly rotating rem-
nant should be investigated by considering differential rotation and cooling mechanisms,
as these are the main features in the early postmerger phase. In addition, special emphasis
should be given in the phase transition region, the existence of exotic degrees of freedom
in the interior of neutron stars, as well as the accurate measurement of the tidal deformabil-
ity. Finally, the observation of binary neutron star mergers and black-hole–neutron-star
mergers, combined with the above studies, may provide significant constraints for the
construction of the EoS.
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Abstract: The interpretation of optical spectra requires thorough comprehension of quantum me-
chanics, especially understanding the concept of angular momentum operators. Suppose now that a
transformation from laboratory-fixed to molecule-attached coordinates, by invoking the correspon-
dence principle, induces reversed angular momentum operator identities. However, the foundations
of quantum mechanics and the mathematical implementation of specific symmetries assert that
reversal of motion or time reversal includes complex conjugation as part of anti-unitary operation.
Quantum theory contraindicates sign changes of the fundamental angular momentum algebra. Re-
versed angular momentum sign changes are of a heuristic nature and are actually not needed in
analysis of diatomic spectra. This review addresses sustenance of usual angular momentum theory,
including presentation of straightforward proofs leading to falsification of the occurrence of reversed
angular momentum identities. This review also summarizes aspects of a consistent implementation
of quantum mechanics for spectroscopy with selected diatomic molecules of interest in astrophysics
and in engineering applications.

Keywords: foundations of quantum mechanics; molecular spectroscopy; diatomic molecules; symmetry
transformations; optical emission spectroscopy; astrophysics

1. Introduction

Identification of diatomic molecular spectra necessitates a clear description of an-
gular momentum (AM) in order to demarcate the various features that comprise optical
fingerprints. Quantum mechanics theory (QMT) asserts that not all three components of
AM can be measured simultaneously, usually the total AM and one projection of the total
AM describe upper and lower states of molecular transitions. The components of AM are
formally described by a set of operator equations.

Classical mechanics (CM) description and associated quantization of the asymmetric
top [1] suggests occurrence of commutator relations with different signs when computing
momenta with respect to the principal axes of inertia. In other words, a laboratory-fixed
system shows standard AM commutators, but with respect to the molecule-attached
coordinate system, there is a sign change that carries the name “reversed” internal AM [2].
The derivation by Klein in 1929 [1] is based on the correspondence principle that in essence
emphasizes that QMT reproduces classical physics in the limit of large quantum numbers.
From a CM point of view, reversal of motion occurs when transforming from a lab-fixed
to a molecule-attached coordinate system, akin to experience of motion reversal when
jumping onto a moving merry-go-around. However, reversal of motion in quantum
mechanics (QM) is described by an anti-unitary transformation, requiring sign change
and complex conjugation. The reversed internal AM concept [2] and applications actually
are communicated and applied in analysis of molecular spectra by Van Vleck in 1951 in
his review article on coupling angular momenta, i.e., AM, referring to axes mounted on
the molecule, adheres to opposite-sign commutator algebra. This evolved into so-called
reversed angular momentum (RAM) concepts for prediction of molecular spectra.

However, orthodox or classic QM abides by strict mathematical rules associated
with the theory. Use of RAM techniques is contraindicated, especially since Nöther-type
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symmetry transformation [3] sustains the standard commutator relations, viz., reversal of
motion is an anti-unitary transformation, just like in the Schrödinger wave equation that is
invariant with respect to motion-reversal or time-reversal due to anti-unitary operation,
as expected. It is important to recognize that a transformation from laboratory-fixed to
molecular-attached coordinates within standard QM does not condone anomalous AM
operator identities.

This review communicates proofs that the quantum-mechanic AM equations remain
the same in a transition from laboratory-fixed to molecular-attached coordinates. Methods
that invoke RAM for the prediction of molecular spectra are misleading. Application of
standard QM establishes within the concept of line strengths [4] consistent computation of
diatomic spectra [5]; examples include hydroxyl, cyanide, and diatomic carbon spectra [6].
First, Oscar Klein’s paper [1] is discussed showing his original argumentation. This is
followed by presenting proofs consistent with QMT opposing RAM concepts and occur-
rence of a minus sign in unitary and anti-unitary transformations. The “new” aspect of
this review is the emphasis of invoking mathematics consistent with QMT. Subsequently,
this review summarizes the approach for prediction of selected diatomic spectra including
presentation of computed diatomic spectra of OH and C2 molecules.

2. Materials and Methods

The premise of this article is Oscar Klein’s work [1] “Zur Frage der Quantelung des
asymmetrischen Kreisels” or “On the question of the quantization of the asymmetric top.”
This particular work is in German without an available translation; the essential contents
are in the Einleitung, viz., the introduction, and on the page following the introduction.
Klein’s paper reflects the initial argumentation of the RAM method, and essential aspects
of this paper are discussed below, up to Equation (6).

The purpose of the 1929 work is, as O. Klein writes, to reduce quantization of the
asymmetric top to simple algebra for the components of the angular momentum “... that
were developed by Dirac [7] and as well by Born, Heisenberg and Jordan [8].” For a solid
body, the main moments of inertia are labeled as A, B, and C, the angular momenta are
labeled P, Q, R, and one finds the CM energy of rotation, E,

E =
1
2

(
P2

A
+

Q2

B
+

R2

C

)
, (1)

or perhaps with convenient notation, using for operators J̃1 = P, J̃2 = Q, J̃3 = R, where
the tilde-symbol indicates that angular momenta (that would be AM operators in QM) are
referred to the main axis of the ellipse of inertia (or in molecules, referred to molecular-fixed
coordinates), and for moments of inertia I1 = A, I2 = B, I3 = C,

E =
1
2

k=3

∑
k=1

1
Ik

J̃k. (2)

Subsequently, O. Klein writes that P, Q, R can be understood to describe matrices
satisfying QM equations of motion, with i =

√
−1 and using the standard h̄ for Planck’s

constant divided by 2π,

dP
dt

=
i
h̄
(EP− PE),

dQ
dt

=
i
h̄
(EQ−QE),

dR
dt

=
i
h̄
(ER− RE). (3)

In terms of operators, using the Hamilton operator H instead of E and writing the
equation in the Heisenberg-picture for an abstract observable (operator), O, without

explicit time-dependence of the observable, i.e.,
∂O
∂t

= 0, and using the commutator

[H,O] = HO−OH, gives

dO
dt

=
i
h̄
[H,O] + ∂O

∂t
. (4)
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The hypothesis of O. Klein comprises the requirement of utilizing Equation (3) in
Equation (1). Consequently, O. Klein assumes commutator relations for P, Q, R,

ih̄P = RQ−QR, ih̄Q = PR− RP, ih̄R = QP− PQ, (5)

or using abbreviated nomenclature and the Levi-Civita symbol, with εklm = 1 for even
permutations, and εklm = −1 for odd ones, otherwise εklm = 0 for identical indices,
k, l, m = 1, 2, 3, [

J̃k, J̃l
]
= −ih̄εklm J̃m. (6)

With the commutator relations in Equation (5), the correspondence principle leads
to the equations of motion, and as O. Klein writes, “... as we overlook occurrence of the
action-quant ...,” viz. overlook h̄. Further, O. Klein remarks that Equation (5) differs only by
the sign of i from the well-known quantum-mechanical commutators for a laboratory-fixed
system. In summary, O. Klein’s work concludes that a minus sign is required for consistency
with classical mechanics and a result of the application of the correspondence principle.

Clearly, writing Equation (5) in the compact form of Equation (6) highlights the minus
sign that differs from the standard equations of AM operators Jk, k = 1, 2, 3,

[Jk, Jl ] = ih̄εklm Jm. (7)

The minus sign in Equation (6) is labeled “anomalous” by some authors, e.g., J. Van
Vleck [2], but there is no justification for the anomalous minus sign to occur within QMT.
Usually, one considers right-hand systems, so Equation (7) is termed as the standard
quantum-mechanic AM operator identity. Sustenance of RAM concepts may appear conve-
nient, even calling the negative sign an “anomaly” but without QMT support. In scientific
approach and in spite of the initial success in explaining spectra within various approxima-
tions, one usually avoids starting with an “anomaly” and/or inaccurate presuppositions
that are readily falsified [9]. However, several textbooks and works continue support of
RAM in the theory of molecular spectra [10–22], in spite of obvious falsification by QMT.
This work emphasizes that there is no need to resort to RAM “cook book” [22] methods.

The methods in this work utilize standard QMT [23,24] and standard mathematical
methods [25], showing that there is no sign change of the standard commutator relations
when transforming from a laboratory-fixed to a molecule-attached coordinate system.
Consistent application of standard AM algebra in the establishment of computed spectra
yield nice agreement with laboratory experimental results [5] and agreement in analysis
of astrophysical C2 Swan data from the white dwarf Procyon B [5], including agreement
in comparisons with computed spectra that are obtained with other molecular fitting
programs such as PGOPHER [26].

Methods for measurement of optical emission signals from diatomic molecules are
comprised of standard molecular spectroscopy experimental arrangements such as in laser-
induced plasma or breakdown spectroscopy [27–34], encountered as well in stellar plasma
physics or astrophysics to name other areas of interest. Particular interests in astrophysics
include “cool” stars, brown dwarfs, and extra-solar planets, and the associated need for
accurate theoretical models for ab initio calculations of diatomic molecular spectra, nicely
reviewed recently [35].

3. Results

3.1. Angular Momentum Commutators

The invariance of standard QMT commutator relations (see Equation (7)) is communi-
cated in this section.

335



Foundations 2021, 1

3.1.1. Invariance for Unitary Transformations

Application of unitary transformation, viz., transforming from one coordinate system
to another, leaves the AM commutator relations invariant [36]. A unitary transformation
operator, U, acting on an operator O −→ O′, with U† = U−1, is defined by

O′ = UOU† or O = U†O′U. (8)

The invariance of the AM commutators with respect to a unitary transformation,
Equation (8),

[Jk, Jl ] = iεklm Jm −→ [J′k, J′l ] = iεklm J′m, (9)

can be derived by inserting Jk = U† J′kU and Jl = U† J′l U in Equation (9) to obtain the
intermediate step,

U† J′kUU† J′l U −U† J′l UU† J′kU = U† J′k J′l U −U† J′l J′kU = iεklmU† J′mU. (10)

Multiplying from left with U and from right with U−1 yields the transformed identity
in Equation (9). In other words, a unitary transformation preserves the quantum-mechanic
AM commutators. For example, the Euler rotation matrix is easily demonstrated to be
unitary [6]. In other words, there is no anomaly when going from a laboratory-fixed to a
molecule-attached coordinate system.

3.1.2. Invariance for Time Reversal or Reversal of Motion

Time reversal or reversal of motion in QMT requires sign changes of the operators
and complex conjugation, leaving the QMT commutators invariant,

[Jk, Jl ] = iεklm Jm ←→ [(−Jk), (−Jl)] = (−i)εklm(−Jm). (11)

CM would indicate a reversal of motion when going from a laboratory-fixed to a
molecular-fixed coordinate system; however, reversal of motion requires complex conju-
gation due to the anti-unitary requirement. In other words, the sign is preserved. QMT
so-to-speak opposes the hypothesis by O. Klein.

The invariance regarding time reversal or reversal of motion of course also would
apply to the abstract form of the time-dependent Schrödinger equation,

ih̄
∂

∂t
ψ = Hψ ←→ (−i)h̄

∂

∂(−t)
ψ = Hψ, (12)

where ψ describes an abstract vector in Hilbert space, andH is a Hamiltonian. Changing
time t −→ −t and applying conjugate complex of i preserves the left-hand side of the
equation. For example, for a free particle of mass m and momentum P , the Hamiltonian is
H = P2/2m, and the form of Schrödinger’s equation is preserved.

Equally, the operator equation in the Heisenberg picture, see Equation (4), preserves
form under time reversal or reversal of motion,

dO
dt

=
i
h̄
[H,O] + ∂O

∂t
←→ d(−O)

d(−t)
=

(−i)
h̄

[H, (−O)] + ∂(−O)
∂(−t)

. (13)

A change of sign for the operators and complex conjugation leaves the equation invari-
ant. The mentioned symmetry can also be associated with usual Nöther symmetries [3].

3.2. Diatomic Wave Function

For diatomic molecules, symmetry properties allow one to invoke simplifications
when evaluating the laboratory wave-function in terms of rotated coordinates [5]. For
internuclear geometry, the spherical polar coordinates are r, φ, and θ, and one (arbitrary)
electron is described by cylindrical coordinates ρ, χ, ζ. For coordinate rotation, one uses
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Euler angles α, β, γ, and without loss of generality, one can choose α = φ, β = θ, χ = γ [5].
The result is the Wigner–Witmer eigenfunction (WWE) for diatomic molecules [37,38],

〈ρ, ζ, χ, r2, . . . , rN , r, θ, φ |nvJM〉 =
J

∑
Ω=−J

〈ρ, ζ, r′2, . . . , r′N , r |nv〉DJ∗
MΩ(φ, θ, χ). (14)

The usual total AM quantum numbers are J and M, and the electronic–vibrational
eigenfunction is explicitly written by extracting v from the collection of quantum numbers,
n. The WWE exactly separates φ, θ, χ. The quantum numbers J, M, Ω refer to the total AM.
The sum over Ω in Equation (14) originates from the usual abstract transformation,

|JM〉 =
J

∑
Ω=−J

|JΩ〉 〈JΩ |JM〉, (15)

where Ω is the magnetic quantum number along the rotated, or new, z′-axis. The sum in
Equation (15) ensures that the quantum numbers for total AM are J and M. In Hund’s
case a [39], Ω describes the projection of the total AM, within L-S coupling. Hund’s
case a eigenfunctions form a basis; therefore, from a computational point of view, these
eigenfunctions form a complete (sufficient) set. In various approximate descriptions and
for specific diatomic molecules, it may be desirable to use other Hund cases.

From the rotation operator R(α, β, γ), with the Euler angles α, β, γ, one finds for
D-matrix elements,

DJ∗
MΩ(α, β, γ) = 〈JM| R(α, β, γ) |JΩ〉∗. (16)

D-matrices are the usual mathematical tool for transformation from one basis to an-
other, but the D-matrix cannot represent an eigenfunction due to presence of two magnetic
quantum numbers M and Ω, so the sum over Ω is needed in the transformed coordinates.

Diatomic spectra composed of line positions and line strengths are based on WWE [5]
instead of eigenfunctions used for the Born-Oppenheimer approximation. Extensive
experimental studies confirm agreement of computed spectra with measured emission
spectra from laser-induced optical plasma [5].

3.3. Selected Diatomic Spectra

Typical spectra of some diatomic molecules of general interest are presented. Figure 1
illustrates OH molecular spectra for different spectral resolutions. Figures 2 and 3 show
computed C2 Swan spectra for the vibrational sequences Δν = −1,+1. The OH spectra,
Figure 1, are a superposition of 0-0 (band head near 306 nm), 1-1 (band head near 312 nm),
and 2-2 (band head near 318 nm) vibrational transition along with rotational contributions.
Four C2 vibrational peaks, Figures 2 and 3, are clearly discernible. Rotational contributions
for the selected spectral resolution, Δλ, appear to have beats (especially Figure 2) that,
however, are purely coincidental.

The details for the computation, line strength data for C2 Swan bands, and programs
are published [40]. Computation of diatomic spectra utilizes high-resolution data for
determination of molecular constants of selected molecular transitions from an upper
to a lower energy level. Numerical solution of the Schrödinger equation for potentials
yield r-centroids and transition-factors associated with vibrational transitions, viz. Franck–
Condon factors. Calculated rotational factors are interpreted as selection rules because
these factors are zero for forbidden transitions, viz. Hönl–London factors. Hönl–London
factors in traditional molecular spectroscopy involve selection rules that may require use
of anomalous commutators and use of two magnetic quantum numbers M and Ω for a
given total angular momentum J. Anomalous selection rules and two quantum numbers
for angular momentum J appear to be associated with approximations. The published
line strength data [40,41] are derived consistent with standard quantum mechanics, in
other words, without anomalous commutators and without states that have two magnetic
quantum numbers associated with angular momentum.
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Figure 1. Computed spectrum of the A2Σ → X2Π uv band of OH, T = 4 k K, (top) spectral reso-
lutions of Δλ = 0.32 nm (Δν̃ = 32 cm−1) and (bottom) idealized resolution for the stick spectrum
Δλ = 0.002 nm (Δν̃ = 0.2 cm−1) of the Δν = 0 sequence (adapted from [6]).

Figure 2. C2 Swan d3Πg → a3Πu band Δν = −1 sequence, T = 8 kK, Δλ = 0.13 nm
(Δν̃ = 6 cm−1) (adapted from [6]).

Figure 3. C2 Swan d3Πg → a3Πu band Δν = +1 sequence, T = 8 kK, Δλ = 0.18 nm (Δν̃ = 6 cm−1)
(adapted from [6]).
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The published program package [40] also includes a worked high-temperature cyanide
example, the Boltzmann equilibrium spectrum program (BESP) for computation of equilib-
rium spectra, and the Nelder–Mead temperature (NMT) routine that utilizes a non-linear
fitting algorithm. The OH line strength data have been made available recently [41].

Various reported studies of plasma spectra, including astrophysics plasma, and of
molecular laser-induced breakdown spectroscopy (LIBS) [40–43] illustrate nice comparisons
of recorded and of computed diatomic spectra. In LIBS, plasma generated by focusing
coherent radiation is analyzed primarily in visible/optical or in near-uv to near-ir regions.
After initiation of optical breakdown with typically 10 nanoseconds, 100 mJ laser pulses
focused in standard ambient temperature and pressure (SATP) air or in gas mixtures [42],
molecule formation including, for example, OH in air, C2 in carbon monoxide, and CN
in 1:1 molar N2:CO2 mixture, leads to recombination radiation that is typically measured
using time-resolved optical emission laser spectroscopy. When using a metallic target,
other diatomic molecules can be investigated, e.g., TiO or AlO, and molecular spectra can
be computed from line strength data [40].

4. Discussion and Conclusions

Angular momentum operators are well defined in quantum mechanics theory, includ-
ing the fact that there is an inherent limit in measurement of its components. Another way
of formulating this could be: There are only two quantum numbers needed for description
of angular momentum, usually the total angular momentum and its projection onto a quan-
tization axis. The use of the correspondence principle to ensure compatibility with classical
mechanics equations of motion brings about an ad hoc hypothesis of a negative sign for the
commutators, as originally communicated by Oscar Klein in 1929. Subsequent application
of reversed angular momentum coupling continues to find support in analytic description
of molecules that also includes modeling of quantum mechanic vector-operators as vectors.

However, quantum mechanics theory already ensures how to mathematically describe
angular momentum, not supporting heuristic conclusions involving reversed angular mo-
mentum concepts, nor occurrence of more than two quantum numbers for the total angular
momentum of diatomic molecules. This review emphasizes that there is no mathematical
justification of reversed angular momentum algebra, and it also discusses applications in
diatomic molecular spectroscopy. Consistent application of standard quantum mechanics
theory is preferred, including avoidance of a priori use of separating electronic, vibrational,
rotational wave functions. Subsequent to implementation of diatomic molecular symme-
tries, line strengths for selected diatomic molecules that contain effects of spin splitting
and lambda-doubling as function of wavelength are in agreement with results from optical
emission spectroscopy. The computed and fitted diatomic spectra nicely match within
reasonable error bars, but without invoking heuristic selection rules that may be affected
by initial approximations or by spurious use of reversal of angular momentum.
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Abbreviations

The following abbreviations are used in this manuscript:

AM Angular Momentum
BESP Boltzmann Equilibrium Spectrum Program
CM Classical Mechanics
NMT Nelder–Mead Temperature
PGOPHER Program for simulating rotational, vibrational, and electronic spectra, or

“Program Gopher”
QM Quantum Mechanics
QMT Quantum Mechanics Theory
RAM Reversed Angular Momentum
WWE Wigner–Witmer Eigenfunction
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1. Theoretical Background

Statistical models are employed to formulate probabilistic descriptions of systems
of arbitrary nature when only partial knowledge about the system is available. Indeed,
in recent years, methods of entropic inference [1] have been utilized in conjunction with
information geometry (IG) [2] for the purpose of developing complexity indicators of
statistical models. From the perspective of this hybrid framework, such complexity indica-
tors can be understood as being quantitative measures that describe the complication of
inferring macroscopic predictions about statistical models. In this context, the difficulty of
making macroscopic predictions is attributed to the fact that statistical models intrinsically
reflect only partial information about the microscopic degrees of freedom of the system
being modeled. Initial theoretical investigation in this direction, quoted as the Information
Geometric Approach to Chaos (IGAC), was originally proposed by Cafaro in his physics Ph.D.
doctoral dissertation in [3].

A general summary of the IGAC framework is described as follows [4,5]: upon
identifying the microscopic degrees of freedom of a complex system, one must obtain data
and choose important information constraints on the system. Entropic methods are then
utilized to obtain an initial, static statistical model of the system. In this way, the system
is described by a statistical model specified in terms of probability distributions that are
characterized by statistical macrovariables. The statistical macrovariables are determined
by the data and the specific functional expression of the information constraints used
to implement statistical inferences. The next step in the theoretical scheme is concerned
with the temporal evolution of the system. If it is assumed that the system changes, then
the corresponding statistical model evolves from its initial to final configurations in a
manner specified by Entropic Dynamics (ED, [6]). The ED framework can be viewed as
a form of constrained information dynamics that is formulated on statistical manifolds,
the elements of which are probability distributions. These distributions, in turn, are in
one-to-one relation with an appropriate set of statistical macrovariables that determine a
parameter space, where the latter serves to provide a suitable parameterization of points
on the original statistical manifold.

Within the context of ED, the change of probability distributions is described in
terms of a principle of entropic inference. Specifically, beginning with a known initial
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configuration, change toward the final configuration happens by the maximization of
the logarithmic relative entropy (known as the Maximum relative Entropy method—or
MrE method in brief, [1]) between any two successive intermediate configurations. We
emphasize that ED specifies the expected rather than the actual dynamical paths of the
system. Inferences within the ED framework depends on the data and functional form of
the selected information constraints used in the MrE algorithm. Indeed, modeling strategies
of this kind can only be corroborated a posteriori. This fact implies that in the event inferred
predictions fail to match experimental measurements, a new set of information constraints
should be chosen. This feature of the MrE algorithm is of critical significance and was
recently re-examined by Cafaro and Ali in [7].

The change of probability distributions characterized by the maximization algorithm
outlined above prescribes a geodesic evolution for the statistical macrovariables [1]. The
Fisher–Rao information metric [2] yields a measure of distance between any two dissimilar
probability distributions on a statistical manifold. The notion of distance between elements
of a statistical manifold can be regarded as the degree of distinguishability between any two
different probability distribution functions. Once the information metric has been obtained,
differential geometric techniques can be readily applied to study the geometry of the curved
statistical manifold. Broadly speaking, standard Riemannian geometric quantities, such as
Christoffel connection coefficients of the second kind, Riemannian curvature tensor, Ricci
tensor, Ricci scalar curvature, Weyl anisotropy tensor, sectional curvatures, Killing fields
and Jacobi fields (including the IG analogue of Lyapunov exponents) can be calculated in
the usual fashion. In particular, the chaoticity (i.e., temporal complexity) of such statistical
models can be analyzed via appropriately selected indicators, such as the signs of the Ricci
scalar and sectional curvatures of the statistical manifold, non-vanishing Weyl anisotropy
tensor, the asymptotic temporal behavior of Jacobi fields and the existence of Killing
vectors. Along with the various indicators mentioned above, the notion of complexity
within the IGAC framework can also be characterized by the Information Geometric Entropy
(IGE), originally proposed in [3]. We make reference to the Ali–Cafaro effort in [8] for a
more extensive summary of the IGAC framework that incorporates a set of remarks on
entropic evolution and the MrE algorithm. For a presentation of alternative information
geometric descriptions of complexity, we suggest the investigation by Felice, Cafaro and
Mancini in [5]. While we certainly appreciate the power of the synthetic, non-component
approach to tensor analysis commonly used in theoretical physics (for instance, see [9]), we
have nevertheless chosen to employ the component approach in the present paper. In our
opinion, the applied nature of our works can be formulated and analyzed more efficiently
(and transparently) within the component approach to tensor calculus.

In the next section, we introduce suitable indicators of complexity within the IGAC.

2. Indicators of Complexity

In this section, we introduce three indicators of complexity within the context of the
IGAC framework. We present the IGE, the curvature of the statistical manifold, and finally,
the notion of Jacobi fields arising from the equation of geodesic deviation.

2.1. Information Geometric Entropy

We begin this subsection by discussing the IGE. Assuming the elements {p(x; θ)} of
an n-dimensional statistical manifoldMs are parameterized by n, real-valued variables(
θ1,. . . , θn), the statistical manifold is defined by the set

Ms
def
=

{
p(x; θ) : θ =

(
θ1,. . . , θn

)
∈ D(tot)

θ

}
. (1)
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We point out that the quantity x in Equation (1) denotes microvariables belonging to
the microspace X , whereas the macrovariables θ appearing in Equation (1) are elements of
the parameter space D(tot)

θ defined by

D(tot)
θ

def
=

n⊗
j=1

Iθ j = (Iθ1 ⊗ Iθ2 . . . ⊗ Iθn) ⊆ R
n. (2)

The quantity Iθ j with 1 ≤ j ≤ n in Equation (2) is a subset of Rn that denotes the
full range of admissible values of the statistical macrovariables θ j. The IGE serves as an
indicator of temporal complexity associated with geodesic paths in the IGAC framework.
The IGE is given by

SMs(τ)
def
= log ṽol[Dθ(τ)], (3)

where the average dynamical statistical volume ṽol[Dθ(τ)] is defined as

ṽol[Dθ(τ)]
def
=

1
τ

∫ τ

0
vol

[
Dθ

(
τ′
)]

dτ′. (4)

We remark that the temporal averaging operation is denoted by the tilde symbol in
Equation (4). Furthermore, the volume vol[Dθ(τ

′)] appearing on the RHS of Equation (4)
is given by

vol
[
Dθ

(
τ′
)] def

=
∫
Dθ(τ′)

ρ
(

θ1,. . . , θn
)

dnθ, (5)

where ρ
(
θ1,. . . , θn) is known as the Fisher density and is equal to the square root of the

determinant g(θ) of the Fisher–Rao information metric tensor gμν(θ),

ρ
(

θ1,. . . , θn
)

def
=

√
g(θ). (6)

The Fisher–Rao information metric tensor gμν(θ) is defined as

gμν(θ)
def
=

∫
p(x|θ)∂μ log p(x|θ)∂ν log p(x|θ)dx, (7)

where μ, ν = 1,. . . , n for an n-dimensional manifold and ∂μ
def
= ∂

∂θμ . The volume vol[Dθ(τ
′)]

in Equation (5) can be recast in a more crystalline manner for cases involving statistical
manifolds whose information metric tensor has a determinant that can be expressed in a
factorized form as follows,

g(θ) = g
(

θ1,. . . , θn
)
=

n

∏
j=1

gj

(
θ j
)

. (8)

By using the factorized form of the determinant, the IGE appearing in Equation (3)
can be expressed as

SMs(τ) = log

{
1
τ

∫ τ

0

[
n

∏
j=1

(∫ τ0+τ′

τ0

√
gj
[
θ j(ξ)

]dθ j

dξ
dξ

)]
dτ′

}
. (9)

Within the IGAC framework, the leading asymptotic behavior of SMs(τ) in Equation (9)
is employed to specify the complexity of the statistical model under investigation. There-
fore, it is quite instructive to take into consideration the quantity

S (asymptotic)
Ms

(τ) ≈ lim
τ→∞

[SMs(τ)], (10)
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that is, the leading asymptotic term in the expression of the IGE. The integration space
Dθ(τ

′) in Equation (5) is defined by

Dθ

(
τ′
) def
=

{
θ : θ j(τ0) ≤ θ j ≤ θ j(τ0 + τ′

)}
, (11)

where θ j = θ j(ξ) with τ0 ≤ ξ ≤ τ0 + τ′ and τ0 denotes the initial value of the affine
parameter ξ such that

d2θ j(ξ)

dξ2 + Γj
ik

dθi

dξ

dθk

dξ
= 0. (12)

The domain of integration Dθ(τ
′) in Equation (11) is an n-dimensional subspace

of D(tot)
θ . The elements of D(tot)

θ are n-dimensional macrovariables {θ} whose compo-
nents θ j are bounded by the limits of integration θ j(τ0) and θ j(τ0 + τ′). The temporal
functional form of such limits is determined by the integration of the geodesic equations
in Equation (12).

The IGE evaluated at a particular instant is specified by the logarithm of the volume of
the effective parameter space probed by the system at that instant. In order to coarse-grain
the possibly very complex details of the entropic dynamical characterization of the system,
however, the process of temporal averaging has been employed. Moreover, in order to
remove the effects of potential transient features that may enter the calculation of the
expected value of the volume of the effective parameter space, only its asymptotic temporal
behavior is taken into consideration. For these reasons, it is evident that the IGE serves as
an asymptotic, coarse-grained complexity indicator of dynamical systems in the presence
of partial information. For additional specifics concerning the IGE, we refer the interested
reader to [8,10].

As a conclusive side remark, we emphasize that it would be interesting to characterize
the tendency to increase of the entropy of a physical system that approaches equilibrium
as specified by the Boltzmann H theorem and the second law of thermodynamics [11] from
an information geometric perspective. For a recent information geometric interpretation
of the entropy production, we refer to [12]. In particular, to understand the possible link
between the IGE and the Boltzmann–Shannon entropy, it would be important to study the
Kaniadakis Sκ entropy (with κ being the so-called deformation parameter) and comprehend
how the statistical mechanics based on Sκ can be regarded as a natural generalization of the
equilibrium Boltzmann–Gibbs statistical mechanics [13]. We leave these intriguing lines of
investigations to future efforts.

2.2. Curvature

We present here the notion of curvature of statistical manifolds. We begin by recalling
that an n-dimensional, C∞ differentiable manifold is defined by a set of pointsM endowed
with coordinate systems CM fulfilling the following two requirements: (1) each element
c ∈ CM is a one-to-one mapping fromM to an open subset of Rn; (2) given any one-to-one
mapping η :M→ Rn, we have that ∀c ∈ CM, η ∈ CM ⇔ η ◦ c−1 is a C∞ diffeomorphism.

In this paper, we focus on Riemannian manifolds (M, g) where the points of M
are probability distribution functions. It is worth noting that the manifold structure of
M is insufficient to specify in a unique manner the Riemannian metric g. On a formal
level, an infinite number of Riemannian metrics can be defined on the manifoldM. In
the context of information geometry however, the selection of the Fisher–Rao information
metric (see Equation (7)) as the metric underlying the Riemannian geometry of probability
distributions [2,14,15] serves as a primary working assumption. The characterization
theorem attributed to Cencov [16] gives significant support for this particular choice of
metric. In this characterization theorem, Cencov demonstrates that, up to any arbitrary
constant scale factor, the information metric is the only Riemannian metric that is invariant
under congruent embeddings (that is, under a family of probabilistically meaningful
mappings) of the Markov morphism [16,17].
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Upon introducing the Fisher–Rao information metric gμν(θ) in Equation (7), standard
differential geometric techniques can be used on the space of probability distributions to
describe the geometry of the statistical manifoldMs. The Ricci scalar curvature RMs is
one example of such a geometric property, whereRMs is defined as [18]

RMs
def
= gμνRμν, (13)

where gμνgνρ = δ
μ
ρ and gμν =

(
gμν

)−1. The Ricci tensorRμν appearing in Equation (13) is
given as [18]

Rμν
def
= ∂γΓγ

μν − ∂νΓλ
μλ + Γγ

μνΓη
γη − Γη

μγΓγ
νη . (14)

The Christoffel connection coefficients Γρ
μν of the second kind that specify the Ricci

tensor in Equation (14) are [18]

Γρ
μν

def
=

1
2

gρσ
(
∂μgσν + ∂νgμσ − ∂σgμν

)
. (15)

Next we consider geodesic curves on statistical manifolds. A geodesic on an n-
dimensional statistical manifold Ms can be interpreted as the maximum probability
trajectory explored by a complex system during its change from an initial θinitial to fi-
nal macrostates θfinal, respectively. Each point along a geodesic path corresponds to a
macrostate specified by the macroscopic variables θ =

(
θ1,. . . , θn). In the context of ED,

each component θ j with j = 1,. . . , n is a solution of the geodesic equation [6],

d2θk

dξ2 + Γk
lm

dθl

dξ

dθm

dξ
= 0. (16)

At this juncture, we reiterate the fact that each macrostate θ is in one-to-one correspon-
dence with the probability distribution p(x|θ), with the latter characterizing a distribution
of the microstates x. It is useful to recognize that the scalar curvatureRMs can be readily
recast as the sum of sectional curvatures K

(
eρ, eσ

)
of all tangent space planes TpMs with

p ∈ Ms spanned by pairs of orthonormal basis vectors
{

eρ = ∂θρ(p)

}
,

RMs
def
= Rα

α
def
= ∑

ρ �=σ

K
(
eρ, eσ

)
, (17)

where K(a, b) is given by [18]

K(a, b) def
=

Rμνρσaμbνaρbσ(
gμσgνρ − gμρgνσ

)
aμbνaρbσ

, (18)

with
a def
= ∑

ρ

〈a, eρ〉eρ, b def
= ∑

ρ

〈b, eρ〉eρ, and
〈
eρ, eσ

〉 def
= δσ

ρ . (19)

We observe that the Riemann curvature tensorRαβρσ [18] is fully determined by the
sectional curvatures K

(
eρ, eσ

)
where

Rα
βρσ

def
= gαγRγβρσ

def
= ∂σΓα

βρ − ∂ρΓα
βσ + Γα

λσΓλ
βρ − Γα

λρΓλ
βσ. (20)

The negativity of the Ricci scalar curvature RMs is a strong (i.e., a sufficient but
not necessary) criterion of local dynamical instability. Moreover, the compactness of the
manifoldMs is required to specify genuine chaotic (that is, temporally complex) dynamical
systems. In particular, it is evident from Equation (17) that the negativity ofRMs implies
that negative principal curvatures (i.e., extrema of sectional curvatures) are more dominant
than positive ones. For this reason, the negativity ofRMs is a sufficient but not necessary
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requirement for local instability of geodesic flows on statistical manifolds. It is worth
mentioning the possible circumstance of scenarios in which negative sectional curvatures
are present, but the positive curvatures dominate in the sum of Equation (17) such that
RMs is a non-negative quantity despite flow instability in those directions. For additional
mathematical considerations related to the concept of curvature in differential geometry,
we refer to [19].

2.3. Jacobi Fields

We introduce here the concept of the Jacobi vector field. It is worth noting that the anal-
ysis of stability/instability arising in natural (geodesic) evolutions is readily accomplished
by means of the Jacobi–Levi–Civita (JLC) equation for geodesic deviation. This equation is
familiar in both theoretical physics (for example, in the case of General Relativity) as well
as in Riemannian geometry. The JLC equation describes in a covariant manner, the degree
to which neighboring geodesics locally scatter. In particular, the JLC equation effectively
connects the curvature properties of an underlying manifold to the stability/instability of
the geodesic flow induced thereupon. Indeed, the JLC equation provides a window into a
diverse and mostly unexplored field of study concerning the connections among topology,
geometry and geodesic instability, and thus to complexity and chaoticity. The use the JLC
equation in the setting of information geometry originally appeared in [20].

In what follows, we take into consideration two neighboring geodesic paths θα(ξ)
and θα(ξ) + δθα(ξ), where the quantity ξ denotes an affine parameter satisfying the
geodesic equations,

d2θα

dξ2 + Γα
βγ(θ)

dθβ

dξ

dθγ

dξ
= 0, (21)

and
d2[θα + δθα]

dξ2 + Γα
βγ(θ + δθ)

d
[
θβ + δθβ

]
dξ

d[θγ + δθγ]

dξ
= 0, (22)

respectively. Noting that to first order in δθα,

Γα
βγ(θ + δθ) ≈ Γα

βγ(θ) + ∂ηΓα
βγδθη , (23)

after some algebraic calculations, to first order in δθα, Equation (22) becomes

d2θα

dξ2 +
d2(δθα)

dξ2 + Γα
βγ(θ)

dθβ

dξ

dθγ

dξ
+ 2Γα

βγ(θ)
dθβ

dξ

d(δθγ)

dξ
+ ∂ηΓα

βγ(θ)δθη dθβ

dξ

dθγ

dξ
= 0. (24)

The equation of geodesic deviation can be found by subtracting Equation (21) from
Equation (24),

d2(δθα)

dξ2 + 2Γα
βγ(θ)

dθβ

dξ

d(δθγ)

dξ
+ ∂ηΓα

βγ(θ)δθη dθβ

dξ

dθγ

dξ
= 0. (25)

Equation (25) can be conveniently recast via the covariant derivatives (see [21], for
instance) along the curve θα(ξ),

D2(δθα)

Dξ2 =
d2(δθα)

dξ2 + ∂βΓα
ρσ

dθβ

dξ
δθρ dθσ

dξ
+ 2Γα

ρσ
d(δθρ)

dξ

dθσ

dξ
+

− Γα
ρσΓσ

κλδθρ dθκ

dξ

dθλ

dξ
+ Γα

ρσΓρ
κλδθκ dθλ

dξ

dθσ

dξ
. (26)

348



Foundations 2021, 1

The covariant derivative is defined as Dξ δθα def
= ∂ξ δθα + Γα

ξκδθκ with Dξ
def
= D/Dξ

and ∂ξ
def
= ∂/∂ξ, respectively. By combining Equations (25) and (26), and performing some

tensor algebra calculations, we obtain

D2(δθα)

Dξ2 =
(

∂ρΓα
ησ − ∂ηΓα

ρσ + Γα
λσΓλ

ηρ − Γα
ηλΓλ

ρσ

)
δθη dθρ

dξ

dθσ

dξ
. (27)

Finally, the geodesic deviation equation expressed in component form becomes

D2 Jα

Dξ2 +Rα
ρησ

dθρ

dξ
Jη dθσ

dξ
= 0, (28)

where Jα def
= δθα is the α-component of the Jacobi vector field [18]. Equation (28) is known

formally as the JLC equation. We observe from the JLC equation in Equation (28) that
neighboring geodesics accelerate relative to each other at a rate measured in a direct manner
by the Riemannian curvature tensor Rαβγδ. The quantity Jα is defined as,

Jα = δθα def
= δφθα =

(
∂θα(ξ; φ)

∂φ

)
τ=constant

δφ, (29)

where {θμ(ξ; φ)} denotes the one-parameter φ family of geodesics whose evolution is
specified by means of the affine parameter ξ. The Jacobi vector field intensity JMs on the
manifoldMs is given by

JMs
def
=

(
Jαgαβ Jβ

)1/2
. (30)

In general, the JLC equation is intractable even at low dimensions. However, in the
case of isotropic manifolds, it reduces to

D2 Jμ

Dξ2 +K Jμ = 0. (31)

The sectional curvature K in Equation (31) assumes a constant value throughout the
manifold. In particular, when K < 0, unstable solutions of Equation (31) become

Jμ(ξ) =
ω

μ
0√
−K

sinh
(√
−Kξ

)
, (32)

with initial conditions Jμ(0) = 0 and dJμ(0)
dξ = ωμ(0) = ω

μ
0 �= 0, respectively, for any

1 ≤ μ ≤ n with n being the dimensionality of the underlying manifold. For additional
remarks concerning the JLC equation, we refer to [18,21,22].

We point out that it would be intriguing to understand the behavior of the Jacobi
vector fields within the geometry of the Kaniadakis statistical mechanics emerging from
a one deformation parameter κ [13]. We leave this fascinating line of study to future
scientific inquiry. For a schematic description of the behavior of the IGE and the Jacobi
field for two-dimensional surfaces with distinct (Gaussian) curvatures, we refer to Table 1
and Figure 1.

In the next section, making use of the complexity quantifiers introduced in Equations (3),
(17), and (30), we present numerous illustrative examples within the IGAC framework.
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Table 1. Schematic description of the behavior of the IGE and the Jacobi field for different types
of two-dimensional surfaces characterized by distinct constant values of their Gaussian curvature.
For such surfaces, the sectional and the scalar curvatures coincide, while the Gaussian curvature is
simply one-half of the scalar curvature. In particular, positive curvature causes geodesics to converge
while negative curvature causes geodesics to spread out. More specifically, in flat, positively, and
negatively curved manifolds, the geodesic deviation equation yields deviations of nearby geodesics
that exhibit linear, oscillatory, and exponential behaviors, respectively. Moreover, the volumes of the
manifolds regions explored during the entropic motion tend to increase while transitioning from
positively to negatively curved manifolds. Correspondingly, the IGE exhibits its maximum growth
(that is, linear growth) in the presence of exponential instability on negatively curved manifolds.

Surface Curvature Jacobi Field Behavior IGE Behavior

sphere positive oscillatory sublogarithmic
cylinder zero linear logarithmic

hyperboloid negative exponential linear
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Figure 1. Graphical depictions of the links among curvature, Jacobi fields, and IGE. In (a), we depict the constant scalar
curvature of a positively curved manifold (solid line), a flat manifold (dashed line), and a negatively curved manifold
(dotted line). In (b), we illustrate the behavior of the normal components of the Jacobi fields quantifying how nearby
geodesics are changing in the normal direction (that is, the direction that is orthogonal to the unit tangent vector of the
geodesic) as we move along the geodesics. In the positive, flat, and negative curvature cases, we observe oscillatory behavior
(solid line), linear behavior (dashed line), and exponential behavior (dotted line), respectively. Finally, in (c), we plot the
temporal behavior of the IGE in the positive (sublogarithmic behavior, solid line), flat (logarithmic behavior, dashed line),
and negative (linear behavior, dotted line) curvature cases.

3. Applications

In this section, with the help of the three complexity quantifiers introduced above, we
report the results of several applications of the IGAC in which the complexity of geodesic
trajectories on statistical manifolds are quantified. We present these illustrative examples in
a chronological order, from the first one to the last one. For brevity, we omit technical details
and confine the presentation to our own information geometric approach to complexity.
Early notions and applications of the IGAC originally appeared in [23–25]. For a recent
review of the IGAC framework, we refer to [4,8,26,27] and [10], respectively.

3.1. Uncorrelated Gaussian Statistical Models

In [20,28], the IGAC framework was employed to study the information geometric
features of a system of arbitrary nature, characterized by l degrees of freedom. Each of
these degrees of freedom is described by two relevant pieces of information, namely its
mean and variance. The infinitesimal line element for this model is given by [28],

ds2 def
=

l

∑
k=1

1
σ2

k
dμ2

k +
2
σ2

k
dσ2

k , (33)
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with μk and σk denoting the expectation value and the square root of the variance of the
microvariable xk, respectively. It was found that the family of statistical models associated
to such a system is Gaussian in form. Specifically, it was determined that this set of Gaussian
distributions yields a non-maximally symmetric 2l-dimensional statistical manifoldMs
whose scalar curvatureRMs assumes a constant negative value that is proportional to the
number of degrees of freedom of the system,

RMs = −l. (34)

It was determined that the system explores volume elements onMs at an exponential
rate. In particular, the IGE SMs was found to increase in a linear fashion in the asymptotic
temporal limit (more precisely, in asymptotic limit of the statistical affine parameter τ) and
is proportional to the number of degrees of freedom l,

SMs(τ)
τ→∞∼ lλτ. (35)

The quantity λ in Equation (35) denotes the maximal positive Lyapunov exponent that
specifies the statistical model. Geodesic trajectories onMs were found to be hyperbolic
curves. Finally, it was determined that in the asymptotic limit, the Jacobi vector field
intensity JMs is exponentially divergent and is proportional to the number of degrees of
freedom l,

JMs(τ)
τ→∞∼ l exp(λτ). (36)

Given that the exponential divergence of the Jacobi vector field intensity JMs is an
established classical feature of chaos, based on the results displayed in Equations (34)–(36),
the authors suggest thatRMs , SMs and JMs each behave as legitimate measures of chaotic-
ity, with each indicator being proportional to the number of Gaussian-distributed mi-
crostates of the system. Although this result was verified in the context of this special
scenario, the proportionality among RMs , SMs and JMs constitutes the first known ex-
ample appearing in the literature of a possible connection among information geometric
indicators of chaoticity obtained from probabilistic modeling of dynamical systems.In this
first example, we have compared all three measures RMs , SMs and JMs . Although we
have not performed such a comparative analysis in all applications, we shall attempt to
mention curvature and/or Jacobi vector field intensity behaviors whenever possible. Our
emphasis here is especially on our entropic measure of complexity. For more details on the
other types of complexity indicators, we refer to our original works cited in this manuscript.

3.2. Correlated Gaussian Statistical Models

In [29], the IGAC framework was used to analyze the information constrained dynam-
ics of a system comprised of two correlated, Gaussian-distributed microscopic degrees of
freedom each having the same variance. The infinitesimal line element for this model is
given by [29]

ds2 def
=

1
σ2

[
1

1− r2 dμ2
x +

1
1− r2 dμ2

y −
2r

1− r2 dμxdμy + 4dσ2
]

, (37)

with μx and μy denoting the expectation values of the microvariables x and y. The quantity
σ2, instead, is the variance while r is the usual correlation coefficient between x and y. The
scalar curvatureRMs of the manifold with line element in Equation (37) isRMs = −3/2.

The inclusion of microscopic correlations give rise to asymptotic compression of the statis-
tical macrostates explored by the system at a faster rate than that observed in the absence
of microscopic correlations. Specifically, it was determined that in the asymptotic limit

[exp(SMs(τ))]correlated
τ→∞∼ F (r) · [exp(SMs(τ))]uncorrelated, (38)
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where the function F (r) in Equation (38) with 0 ≤ F (r) ≤ 1 is defined as [29]

F (r) def
=

1

2
5
2

[√
4(4− r2)

(2− 2r2)
2

(
2 + r

4(1− r2)

)− 3
2
]

. (39)

The function F (r) is a monotone decreasing compression envelope ∀r ∈ (0, 1). This
result provides an explicit link between correlations at the microscopic level and complexity
at the macroscopic level. It also furnishes a transparent and concise description of the
functional change of the macroscopic complexity of the underlying statistical manifold
caused by the occurrence of microscopic correlations.

3.3. Inverted Harmonic Oscillators

Generally speaking, the fundamental issues addressed by the General Theory of
Relativity are twofold: firstly, one wishes to understand how the geometry of spacetime
evolves in response to the presence of mass–energy distributions; secondly, one seeks to
investigate how configurations of mass–energy move in dynamical spacetime geometry.
By contrast, within the IGAC framework, one is concerned only with the manner in which
systems move within a given statistical geometry, while the evolution of the statistical
manifold itself is neglected. The recognition that there exist two separate and distinct
characteristics to consider regarding the interplay between mass–energy and spacetime
geometry served as a catalyst in the development of the IGAC framework, ultimately
leading to a rather interesting finding. The first result obtained in this novel research
direction was proposed by Caticha and Cafaro in [30]. In that article, the possibility of
utilizing well established principles of inference to obtain Newtonian dynamics from
relevant prior information encoded in a suitable statistical manifold was investigated. The
primary working assumption in that derivation was the assumed existence of an irreducible
uncertainty in the location of particles. This uncertainty requires the state of a particle to
be described by a probability distribution. The resulting configuration space is therefore a
statistical manifold whose Riemannian geometry is specified by the Fisher–Rao information
metric. The expected trajectory is a consequence of the MrE method, with the latter being
regarded as a principle of inference. An unexpected consequence of this approach is that
no additional physical postulates such as an equation of motion, principle of least action,
nor the concept of momentum, mass, phase space or external time are required. Newton’s
mechanics involving any number of self-interacting particles as well as particles interacting
with external fields is entirely recovered by the resulting entropic dynamics. Indeed, a
powerful result of this approach is the fact that interactions among particles as well as
particle masses are all justified in terms of the underlying statistical manifold.

Our next example will be of a more applied nature. In [31,32], Zurek and Paz explored
the effects of decoherence in quantum chaos by analyzing a single unstable harmonic
oscillator with frequency Ω and potential V(x),

V(x) def
= −Ω2x2

2
, (40)

coupled to an external environment. They determined that in the reversible classical limit,
the von Neumann entropy of such a system increases linearly at a rate determined by the
Lyapunov exponent Ω according to

S (chaotic)
quantum(τ)

τ→∞∼ Ωτ. (41)

Building upon the results obtained in [30], an information geometric analogue of the
Zurek–Paz quantum chaos criterion in the classical reversible limit was proposed in [33,34].
In these works, the IGAC framework was employed to study a set of l, three-dimensional,
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anisotropic, uncoupled, inverted harmonic oscillators (IHO) with an Ohmic distributed
frequency spectrum.In this example, the infinitesimal line element is given by

ds2 def
= [1−Φ(θ)]δμν(θ)dθμdθν, (42)

where Φ(θ) is defined as

Φ(θ) =
l

∑
k=1

uk(θ), (43)

with uk(θ)
def
= −(1/2)ω2

k θ2
k and ωkbeing the frequency of the k-th inverted harmonic oscilla-

tor. Neglecting mathematical details, it was demonstrated in [33,34] that the asymptotic
temporal behavior of the IGE for such a system becomes

SM(l)
IHO

(τ; ω1,. . . , ωl)
τ→∞∼ Ωτ, (44)

where,

Ω def
=

l

∑
i=1

ωi, (45)

and ωi with 1 ≤ i ≤ l is the frequency of the ith IHO. Equation (44) indicates an asymptotic,
linear IGE growth for the set of IHOs and can be regarded as an extension of the result
of Zurek and Paz appearing in [31,32] to an ensemble of anisotropic, uncoupled, inverted
harmonic oscillators in the context of the IGAC. We remark that Equation (44) was proposed
as the classical IG analogue of Equation (41) in [33,34].

3.4. Quantum Spin Chains

In [35,36], the IGAC was used to study the ED on statistical manifolds whose ele-
ments are classical probability distribution functions routinely employed in the study
of regular and chaotic quantum energy level statistics. Specifically, an IG description of
the chaotic (integrable) energy level statistics of a quantum antiferromagnetic Ising spin
chain immersed in a tilted (transverse) external magnetic field was presented. The IGAC
of a Poisson distribution coupled to an Exponential bath (that specifies a spin chain in
a transverse magnetic field and corresponds to the integrable case) along with that of a
Wigner–Dyson distribution coupled to a Gaussian bath (that specifies a spin chain in a tilted
magnetic field and corresponds to the chaotic case) were investigated. The line elements in
the integrable and chaotic cases are given by

ds2
integrable

def
= ds2

Poisson + ds2
Exponential =

1
μ2

A
dμ2

A +
1

μ2
B

dμ2
B, (46)

and,

ds2
chaotic

def
= ds2

Wigner−Dyson + ds2
Gaussian =

4
μ′2A

dμ′2A +
1

σ′2B
dμ′2B +

2
σ′2B

dσ′2B , (47)

respectively. In Equation (46), μA and μBare the average spacing of the energy levels and
the average intensity of the magnetic field, respectively. A similar notation is employed for
the second scenario described in Equation (47) where, clearly, σ′2B denotes the variance of
the intensity of the magnetic field. Remarkably, it was determined that in the former case,
the IGE shows asymptotic logarithmic growth,

S (integrable)
Ms

(τ)
τ→∞∼ c log(τ) + c̃, (48)

whereas in the latter case, the IGE shows asymptotic linear growth,

S (chaotic)
Ms

(τ)
τ→∞∼ Kτ. (49)
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We emphasize that the quantities c and c̃ in Equation (48) are integration constants
that depend upon the dimensionality of the statistical manifold and the boundary con-
straint conditions on the statistical variables, respectively. The quantity K appearing
in Equation (49) denotes a model parameter describing the asymptotic temporal rate of
change of the IGE. The findings described above suggest that the IGAC framework may
prove useful in the analysis of applications involving quantum energy level statistics.
It is worth noting that in such cases, the IGE effectively serves the role of the standard
entanglement entropy used in quantum information science [37,38].

3.5. Statistical Embedding and Complexity Reduction

Expanding upon the analysis presented in [39], Cafaro and Mancini utilized the IGAC
framework in [40] to study the 2l-dimensional Gaussian statistical modelMs induced by an
appropriate embedding within a larger 4l-dimensional Gaussian manifold. The geometry
of the 4l-dimensional Gaussian manifold is defined by a Fisher–Rao information metric
gμν with non-vanishing off-diagonal elements. It should be noted that these non-vanishing
off-diagonal terms arise due to the occurrence of macroscopic correlation coefficients ρk
with 1 ≤ k ≤ l that specify the embedding constraints among the statistical variables on
the larger manifold. The infinitesimal line element is given by [40]

ds2 def
=

l

∑
k=1

1
σ2

2k−1

[
dμ2

2k−1 + 2ρ2k−1dμ2k−1dσ2k−1 + 2dσ2
2k−1

]
, (50)

with ρ2k−1defined as

ρ2k−1
def
=

∂μ2k
∂μ2k−1

∂μ2k
∂σ2k−1[

1 +
(

∂μ2k
∂μ2k−1

)2
]1/2[

2 + 1
2

(
∂μ2k

∂σ2k−1

)2
]1/2 , (51)

where σ2k = σ2k−1 and μ2k = μ2k(μ2k−1, σ2k−1)for any 1 ≤ k ≤ l. Two significant results
were obtained. First, a power law decay of the IGE at a rate determined by the correlation
coefficients ρk was observed

SMs(τ; l, λk, ρk)
τ→∞∼ log

[
Λ(ρk) +

Λ̃(ρk, λk)

τ

]l

, (52)

with ρk = ρs ∀k and s = 1, . . . , l, where

Λ(ρk)
def
=

2ρk

√
2−ρ2

k

1+
√

Δ(ρk)
, Λ̃(ρk, λk)

def
=

√
Δ(ρk)(2−ρ2

k) log[Σ(ρk ,λk ,α±)]
ρkλk

,

and α±(ρk)
def
= 1

2

(
3±

√
Δ(ρk)

)
.

(53)

The quantity Σ(ρk, λk, α±) is a strictly positive function of its arguments for 0 ≤ ρk < 1
and is given by [40]

Σ(ρk, λk, α±)
def
= − Ξk

4λk

1 +
√

Δ(ρk)

1−
√

Δ(ρk)

√
2α−(ρk)

α+(ρk)
, (54)

where Ξk and λk are real, positive constants of integration, and

Δ(ρk)
def
= 1 + 4ρ2

k . (55)

Equation (52) represents the first main finding reported in [40] and can be interpreted
as a quantitative indication that the IGC of a system decreases in response to the emergence
of correlational structures. Second, it was demonstrated that the presence of embedding
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constraints among the Gaussian macrovariables of the larger 4l-dimensional manifold
results in an attenuation of the asymptotic exponential divergence of the Jacobi field
intensity on the embedded 2l-dimensional manifold. Neglecting mathematical details, it
was determined in [40] that in the asymptotic limit τ ! 1,

0 ≤
J2l-embedded
Ms

(τ)

J4l-larger
Ms

(τ)
< 1. (56)

Equation (56) constitutes the second main finding reported in [40]. The observed
attenuation of the asymptotic exponential divergence of the Jacobi vector field associated
with the larger 4l-manifold, suggests that the occurrence of such embedding constraint
relations results in an asymptotic compression of the macrostates explored on the statistical
manifold Ms. These two findings serve to advance, in a non-trivial manner, the goal
of developing a description of complexity of either macroscopically or microscopically
correlated, multi-dimensional Gaussian statistical models relevant in the modeling of
complex systems.

3.6. Entanglement Induced via Scattering

Guided by the original study appearing in [41], the IGAC framework was employed
to furnish an IG viewpoint on the phenomena of quantum entanglement emerging via
s-wave scattering between interacting Gaussian wave packets in [42,43]. Within the IGAC
framework, the pre and post quantum scattering scenarios associated with elastic, head-
on collision are hypothesized to be macroscopic manifestations arising from underlying
microscopic statistical structures. By exploiting this working hypothesis, the pre and post
quantum scattering scenarios were modeled by uncorrelated and correlated Gaussian
statistical models, respectively.Using the standard notation used so far in this article, the
infinitesimal line elements in the absence and presence of correlations are given by

ds2
no-correlations =

1
σ2

[
dμ2

x + dμ2
y + 4dσ2

]
, (57)

and,

ds2
correlations

def
=

1
σ2

[
1

1− r2 dμ2
x +

1
1− r2 dμ2

y −
2r

1− r2 dμxdμy + 4dσ2
]

, (58)

respectively. The scalar curvature RMs of the manifolds with line elements in
Equations (57) and (58) is RMs = −3/2. Using such a hybrid modeling approach en-
abled the authors to express the entanglement strength in terms of the scattering potential
and incident particle energy. Moreover, the manner in which the entanglement dura-
tion is related to the scattering potential and incident particle energy was furnished with
a possible explanation. Finally, the link between complexity of informational geodesic
paths and entanglement was discussed. In particular, it was demonstrated that in the
asymptotic limit,

[exp(SMs(τ))]correlated
τ→∞∼ F (r) · [exp(SMs(τ))]uncorrelated, (59)

where the function F (r) in Equation (59) with 0 ≤ F (r) ≤ 1 is defined as

F (r) def
=

√
1− r
1 + r

. (60)

The function F (r) is a monotone decreasing compression factor with 0 < r < 1. The
analysis proposed in [42,43] is a significant progress toward the understanding among the
concepts of entanglement and statistical micro-correlations, as well as the impact of micro-
correlations on the complexity of informational geodesic paths. The finding appearing in
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Equation (59) suggests that the IGAC construct may prove useful in developing a sound
IG perspective of the phenomenon of quantum entanglement.

3.7. Softening of Classical Chaos by Quantization

Expanding upon the original analysis presented in [44–46], the IGAC framework
was utilized to investigate the entropic dynamics and information geometry of a three-
dimensional Gaussian statistical model as well as the two-dimensional Gaussian statistical
model derived from the former model by introducing the following macroscopic informa-
tion constraint,

σxσy = Σ2, (61)

where Σ2 ∈ R
+
0 . The quantities x and y label the microscopic degrees of freedom of the

system. The constraint given by Equation (61) resembles the standard minimum uncertainty
relation encountered in quantum mechanics [47]. The infinitesimal line elementsin the 3D-
and 2D-Gaussian statistical models are given by

ds2
3D

def
=

1
σ2

x
dμ2

x +
2
σ2

x
dσ2

x +
2
σ2

y
dσ2

y , (62)

and,

ds2
2D

def
=

1
σ2 dμ2

x +
4
σ2 dσ2, (63)

respectively. Note that the expectation value μy of the microvariable y is set equal to zero
in Equation (62), while σx = σ with σxσy = Σ2 in Equation (63). Furthermore, the scalar
curvatures corresponding to the 3D and 2D cases are equal toR3D = −1 andR2D = −1/2,
respectively. It was determined that the complexity of the 2D-Gaussian statistical model
specified by the IGE is relaxed when compared with the complexity of the 3D-Gaussian
statistical model,

S (2D)
Ms

(τ)
τ→∞∼

(
λ2D
λ3D

)
· S (3D)
Ms

(τ), (64)

with λ2D and λ3D being both positive model parameters (satisfying the condition λ2D ≤
λ3D) that express the asymptotic temporal rates of change of the IGE in the 2D and 3D
cases, respectively. Motivated by the connection between the macroscopic information
constraint (61) on the variances and the phase-space coarse-graining due to the Heisenberg
uncertainty relations, the authors suggest their work may shed light on the phenomenon
of classical chaos suppression arising from the process of quantization when expressed in
an IG setting. It is worth noting that a similar analysis was implemented in [48] where the
work in [47] was generalized to a scenario where—in conjunction with the macroscopic
constraint in Equation (61)—the microscopic degrees of freedom x and y of the system are
also correlated.

3.8. Topologically Distinct Correlational Structures

In [49], the asymptotic behavior of the IGE associated with either bivariate or trivariate
Gaussian statistical models, with or without micro-correlations, was analyzed by Felice and
coworkers. For correlated cases, several correlational configurations among the microscopic
degrees of freedom of the system were taken into consideration. It was found that the
complexity of macroscopic inferences is dependent on the quantity of accessible microscopic
information, as well as on how such microscopic information is correlated. Specifically, in
the mildly connected case defined by a trivariate statistical model with two correlations
among the three degrees of freedom of the system, the infinitesimal line element is([

ds2
](mildly connected)

trivariate

)
correlated

def
=

1
σ2

3− 4r
1− 2r2 dμ2 +

6
σ2 dσ2. (65)
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Moreover, the infinitesimal line element in the uncorrelated trivariate case is given by([
ds2

]
trivariate

)
uncorrelated

def
=

3
σ2 dμ2 +

6
σ2 dσ2. (66)

In Equations (65) and (66), μ, σ, and r denote the expectation value, the standard
deviation, and the correlation coefficient, respectively. It was determined that in the
asymptotic limit,(

exp
[
S (mildly connected)

trivariate (τ)
])

correlated

τ→∞∼ R̃(mildly connected)
trivariate (r)

(
exp

[
S (mildly connected)

trivariate (τ)
])

uncorrelated
, (67)

where

R̃(mildly connected)
trivariate (r) def

=

√
3(1− 2r2)

3− 4r
. (68)

In Equation (67), the quantity r is the micro-correlation coefficient. The function
R̃(mildly connected)

trivariate (r) shows non-monotone behavior in the correlation parameter r and

assumes a value of zero at the extrema of the permitted range r ∈
(
−
√

2/2,
√

2/2
)

. By
contrast, for closed bivariate configurations where all microscopic variables are correlated
with each other, the complexity ratio between correlated and uncorrelated cases presents
monotone behavior in the correlation parameter r. For example, in the fully connected
bivariate Gaussian case with μx = μy = μ and σx = σy = σ, the infinitesimal line element is([

ds2
](fully connected)

bivariate

)
correlated

def
=

2
σ2

1
1 + r

dμ2 +
4
σ2 dσ2. (69)

It was found that(
exp

[
S (fully connected)

bivariate (τ)
])

correlated

τ→∞∼ R̃(fully connected)
bivariate (r)

(
exp

[
S (fully connected)

bivariate (τ)
])

uncorrelated
, (70)

where
R̃(fully connected)

bivariate (r) def
=
√

1 + r. (71)

Finally, in the fully connected trivariate Gaussian case with trivariate models having
all microscopic variables correlated with each other, the infinitesimal line element is([

ds2
](fully connected)

trivariate

)
correlated

def
=

3
σ2

1
1 + 2r

dμ2 +
6
σ2 dσ2. (72)

It was determined in this case that(
exp

[
S (fully connected)

trivariate (τ)
])

correlated

τ→∞∼ R̃(fully connected)
trivariate (r)

(
exp

[
S (fully connected)

trivariate (τ)
])

uncorrelated
, (73)

where
R̃(fully connected)

trivariate (r) def
=
√

1 + 2r. (74)

These results imply that in the fully connected bivariate and trivariate configurations,
the ratios R̃(fully connected)

bivariate (r) and R̃(fully connected)
trivariate (r) both present monotone behavior in r

over the open intervals (−1, 1) and (−1/2, 1), respectively. On the other hand, in the mildly
connected trivariate scenario appearing in Equation (67), an extremum in the function
R̃(mildly connected)

trivariate (r) occurs at rpeak = 1/2 ≥ 0. Such a distinctly different behavior between
mildly and fully connected trivariate configurations can be attributed to the fact that
when making statistical inferences subject to the hypothesis of three positively correlated
Gaussian random variables, the system becomes frustrated because the maximum entropy
favorable state—characterized by minimum complexity—is incompatible with the initial
working hypothesis. Guided by these results, it was suggested in [49] that the impossibility
of realizing the maximally favorable state for specific correlational configurations among
microscopic degrees of freedom, viewed from an entropic inference perspective, yields an
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information geometric analogue of the statistical physics frustration effect that arises when
loops are present [50].

4. Final Remarks

In this paper, we discussed the primary results obtained by the authors and colleagues
over an extended period of work on the IGAC framework. A summary of the IGAC
applications can be found in Table 2. For ease of readability, we have chosen to omit
technicalities in our discussion. We are aware of several unresolved issues within the
IGAC framework, including a deep understanding of the foundational aspects of the IGE
measure of complexity. Further developments of the framework are necessary, especially
within a fully quantum mechanical setting. For a more detailed list on limitations and
future directions of the IGAC approach, we refer the interested reader to [8]. In particular,
we mentioned there that one of our main objectives in the near future is to extend our
comprehension of the relationship between the IGE and the Kolmogorov–Sinai dynamical
entropy [51], the coarse-grained Boltzmann entropy [51] and the von Neumann entropy [52],
depending upon the peculiarity of the system being investigated. Despite its limitations,
we are pleased that our theoretical modeling approach is steadily gaining interest in the
community of researchers. Indeed, there appears to be an increasing number of scientists
who either actively use, or who’s work is linked to the theoretical framework described in
the present brief feature review article [53–78].

Table 2. Schematic description of existing mathematical, classical, and quantum investigations within the IGAC.

Math & IGAC Classical & IGAC Quantum & IGAC

Micro and macro correlations Geometrization of Newtonian mechanics Spin chains and energy levels statistics
Statistical embeddings Inverted harmonic oscillators Scattering induced entanglement

Topology and correlational structures Macro effects from micro information Softening chaoticity by quantization
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