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Preface to ”Remote Sensing in Agriculture:

State-of-the-Art”

Abstract: The Special Issue on “Remote Sensing in Agriculture: State-of-the-Art” gives an exhaustive

overview of the ongoing remote sensing technology transfer into the agricultural sector. It consists

of 10 high-quality papers focusing on a wide range of remote sensing models and techniques to

forecast crop production and yield, to map agricultural landscape and to evaluate plant and soil

biophysical features. Satellite, RPAS, and SAR data were involved. This preface describes shortly

each contribution published in such Special Issue.

Keywords: free satellite data; RPAS/UAV; copernicus; prescription maps; crop management;

crop monitoring; crop water requirements; services in agriculture; crop productivity; data process

standardization

1. Overview and Aim

Agriculture has been crucial in human life and, over the years, to meet the emerging challenges,

production activities and rural landscapes have been gradually moulded and adapted to society

demands [1]. For instance, diversifying crop production and optimizing its yield should satisfy

the increasing food need due to the continuous global population growing and its changed eating

habits [2]. Similarly, minimizing the environmental cost of new agricultural productive activities

plays a key role in improving human well-being and preserving biodiversity and ecosystem health

[3]. Indeed, the use of inorganic pesticides and chemical fertilizers over recent decades has been

recognized as one of the main factors responsible for pollutants diffusion in agricultural soils [4,5],

water [6,7], and air [8]. Moreover, the common agricultural policy (CAP) of the European Union,

supplying grants for farming activities, requires a continued control of farmers’ declarations, to

ensure the legitimacy of grants. Satellite missions, such as Sentinel-1 and Sentinel-2, are going to

support this control action, thus heavily entering into the new agriculture trend [9,10]. Moreover,

insurance companies operating in the agricultural field are looking at the new satellite missions as

potential tools for supporting their activities [11,12].

The above-mentioned issues are only a few examples of the problems caused by the agricultural

sector which are currently being faced. Thus, a big effort is still required to detect best practices to

operate through. Nevertheless, it is evident that a large amount of data concerning both temporal and

spatial variations in crop conditions, rural landscapes and, more generally, in the overall agricultural

systems, should be collected and integrated. Remote sensing relevance in supporting agricultural

applications has been recognized since the 1970s [13]. Nevertheless, because of the reduced spatial

and spectral resolutions of the first satellite sensors and their unsuitable revisiting times, remote

sensing-based applications were limited for a long time. The new satellite missions, as the Sentinels

of the European Space Agency (ESA), and the introduction of new tools, as Remotely Piloted Aircraft

Systems (RPAS), has turned on the footlights on such techniques again, offering new opportunities to

explore [14–17].

This Special Issue (SI) on “Remote Sensing in Agriculture: State-of-the-Art” moves within this

framework and was aimed at gathering contributions useful to delineate the ongoing trends of remote

sensing technology transfer to the agricultural sector. Reviewing of conventional methods, proposing

of novel data-collecting tools and handling techniques were expected to populate this volume,

included focuses about eventual limitations and challenges. Finally, 10 high-quality contributions

were selected to be included in this SI, making it possible to significantly account for most of the
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above-mentioned expectations. Some highlights of the presented contributions are given in Section 2.

2. Highlights of Research Articles

The SI collected documents satisfyingly deal with the most of issues that the ongoing technology

transfer process of remote sensing to agriculture is proposing. Contributions [12,18–20] present some

applications based on Synthetic Aperture Radar (SAR) data. Specifically, Ajadi et al. [18] introduce

a new method, based on Hidden Markov Random Field (HMRF), to identify crop lodging and to

map its extension. Iowa and Illinois were the pilot sites selected to test the new approach. Research

results will impact on future use of SAR-based information for operational crop lodging assessment.

De Petris et al. [9] propose to map apple orchards damaged by a stormy event by adopting

H-α-A polarimetric decomposition technique. Thus, a probability map of potentially storm-damaged

orchards was produced. This result may support local funding restoration policies. Hoskera et al., [19]

used Sentinel 1 data to estimate soil moisture by adopting both localized and generalized linear

models. Particularly, the authors derive 39 localized linear models and 9 generalized linear models.

Such models were validated using in situ data and all of them showed promising results. Lastly,

Sun et al. [20] propose a novel approach to merge time series Sentinel-1 (S1) and Sentinel-2 (S2) data

to map different crop kinds over oasis agricultural areas. A statistically homogeneous pixel (SHP)

distributed scatterer interferometry (DSI) algorithm was applied to handle Sentinel 1 data while the

random forest technique has been applied to exploit optical properties. The resultant map of five

major crop types were generated by integrating the outcomes produced by both methods.

A single contribution proposes a review about the adoption of thermal data acquired by RPAS

in supporting precision agriculture. After reporting their main applications and exploring their

potentialities, this it offers a potential outlook of development [21].

Contributions [22–24], instead, deal with RPAS-based applications. Each paper refers to

an acquisition experience operated with a different sensor, namely LiDAR, hyperspectral and

multispectral sensors. LiDAR data were used to estimate fresh biomass and crop height for three

different crops (potato, sugar beet, and winter wheat) [21]. Fresh biomass and crop height were

assessed using 3DPI algorithm and the mean height of a variable number of points selected for each

m2, respectively. The approach showed promising outcomes, albeit the authors outlined that results

are strongly dependent on flight conditions. Ref. [23] presents a work where a hyperspectral imaging

sensor was mounted on a ground-based vehicle and a RPAS to explore their potentialities in detecting

and quantifying yellow rust in wheat at ground canopy and plot scale, respectively. It is the first time

that such an experiment was conducted. The authors pinpointed limitations and challenges of such

an approach. In [24], the authors adopted two different RPAS equipped with two multispectral mini

sensors to analyse vegetated areas. Additionally, the authors explored the opportunity to integrate

such sensors to detect vegetation changes.

Lastly, the studies proposed by [25,26] involve the application of satellite data to the agricultural

sector. The former [25] derives nine vegetation indices from Moderate Resolution Imaging

Spectroradiometer (MODIS) data to predict crop yield in Mongolia. The authors concluded that

the Normalized Difference Water Index (NDWI) and Visible and Shortwave Infrared Drought Index

(VSDI) are the optimal indicators to meet research purposes. Additionally, the end of June and

the beginning of July have been recognised as the best timings to forecast the production yield.

Conversely, [26] assess and compare the performance of MODIS, Landsat, and blended images

in evaluating crop yield over a period of about 6 years (2009–2015). This contribution is aimed

at detecting the best data to accurately monitor biophysical processes and yields by using freely

available data.
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Abstract: Climate change increases extreme whether events such as floods, hailstorms, or storms,
which can affect agriculture, causing damages and economic loss within the agro-food sector. Optical
remote sensing data have been successfully used in damage detections. Cloud conditions limit their
potential, especially while monitoring floods or storms that are usually related to cloudy situations.
Conversely, data from the Polarimetric Synthetic Aperture Radar (PolSAR) are operational in all-
weather conditions and are sensitive to the geometrical properties of crops. Apple orchards play a key
role in the Italian agriculture sector, presenting a cultivation system that is very sensitive to high-wind
events. In this work, the H-α-A polarimetric decomposition technique was adopted to map damaged
apple orchards with reference to a stormy event that had occurred in the study area (NW Italy) on 12
August 2020. The results showed that damaged orchards have higher H (entropy) and α (alpha angle)
values compared with undamaged ones taken as reference (Mann–Whitney one-tailed test U = 14,514,
p < 0.001; U = 16604, p < 0.001 for H and α, respectively). By contrast, A (anisotropy) values were
significantly lower for damaged orchards (Mann–Whitney one-tailed test U = 8616, p < 0.001). Based
on this evidence, the authors generated a map of potentially storm-damaged orchards, assigning a
probability value to each of them. This map is intended to support local funding restoration policies
by insurance companies and local administrations.

Keywords: Sentinel-1; apple orchard damage; polarimetric decomposition; entropy; anisotropy;
alpha angle; storm damage mapping; economic loss; insurance support

1. Introduction

Climate change and related natural disasters affect several sectors [1]. Agriculture is
one of the most vulnerable [2,3]. Between 2005 and 2015, the impact of natural disasters on
the agricultural sector was estimated to be 96 billion dollars in damaged, or completely lost,
crops [4]. Climate change-related effects (e.g., temperature and precipitation increasing in
terms of level, time, and variability) are expected to reduce the yield and quality of many
crops, especially cereals and fodder cereals [5].

Storms and hail also can cause serious damage to crops [6]. Hurricanes can cause
much damage, with grass lodging, uprooting of orchards, and falling trees [7,8]. These
critical events, potentially highly impacting farmers’ income, must be carefully accounted
for in the context of risk management in agriculture.

Fruits and vegetables represent (year 2018) about 14% of the total value of European
(EU) agricultural production [9,10]. These crops are very important for many EU member
states, in particular for Mediterranean countries such as Spain, Italy, and France. Italy is
one of the main European leaders in the apple sector [11]. Consequently, the yield loss
risks concerning the fruit and vegetable sector must be minimized. Major threats concern
diseases, insects, and natural disasters such as hail, drought, frost, and storms.
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Apple cultivation is very intensive today, with a plant density around 2000 plants
per hectare [12]. Such density allows a very high yearly production (about 45 tons per
hectare) [13], which is obtained by a row-based cultivation strategy where young plants
begin to be productive after the third year. The adoption of low-vigor rootstocks enables
an increase in planting density and rapid fruiting. Unfortunately, this kind of cultivation
determines a very underdeveloped root system, not enough to guarantee plant stability
under unfavorable conditions. The situation is more critical during extreme weather events,
especially when there are many weighty fruits, i.e., before harvesting [14,15]. Steel cables
anchored to concrete or wooden poles are used to improve row stability.

Within this context, when a stormy event occurs, it is important to assess the spatial
level and extent of damage to start remedial actions and minimize crop loss. Farmers
are interested in damage estimation especially when a refund is due by insurance com-
panies [16,17]. In this case, damage is assessed through on-the-spot checks by an expert
surveyor from the insurance company, who determines the extent, type, and quality of
damage. Such an approach depends on a high level of subjectivity related to the expert’s
skill and experience. Moreover, these operations require a lot of time and are expensive,
especially where large areas have been affected by the event.

In this operative context concerning crop damage analysis, a more objective monitor-
ing could play a key role, providing more robust forecasts about potential yield or yield
losses. Many agricultural stakeholders, such as farmers, consortia, agronomists, insurance
companies, and local administrations, require a continuous monitoring of crops over large
spatial extents.

A method based on free Earth Observation (EO) data can certainly represent an
effective support [18] and the consequent technological transfer desirable [19–24].

In particular, optical remote sensing data have been successfully used in several
operational frameworks, as proved by many works [25–32]; unfortunately, cloud conditions
limit the nominal temporal resolution of this type of data, especially while monitoring
natural disasters (e.g., floods or storms) that ordinarily occur when clouds are present. Data
from synthetic aperture radar (SAR) systems can operate during all-weather conditions,
and, while exploring agronomical issues, they can be used to analyze the moisture and
geometrical conditions of crops [33–35]. In particular, dual-polarimetric SAR acquisitions
from Copernicus Sentinel-1 mission (S1) provide unique opportunities to disseminate
operational monitoring for several application communities [36,37]. Dual-pol acquisition
mode has a larger swath and a lower data volume compared with full-pol acquisitions, thus
improving data collection and processing for operational activities [38,39]. Polarimetric
data can provide information about polarization amplitude and phase, allowing scattering
mechanism definition (i.e., single-bounce, double-bounce, or volume scattering) induced by
target properties. SAR polarimetry (PolSAR) is a technique that analyzes SAR polarization
with respect to the vector of polarized electromagnetic waves. When a signal passes
through a medium, the refraction index changes, or when it strikes an object, it is reflected;
the so-called backscattering matrix [40] contains information about the reflectivity, shape,
and orientation of the reflecting target. An important improvement in the extraction of
physical information from the ordinary coherent backscattering matrix was achieved
by Cloude and Pottier [41,42], who proposed the composition of system vectors. Most
studies have assessed the sensitivity of polarimetric indicators derived from the C-band
space-borne SAR to derive crop parameters [43]. The PolSAR technique was successfully
applied to monitor crop growth and give estimates of yield. For example, Betberder [44]
analyzed temporal trends of polarimetric indicators, proving their high potential to detect
crop growth changes. Valcarce [45] used polarimetric data time series for land-cover
classification, adopting a decision tree classification algorithm performing high crop class
detection accuracies. Mercier and Qi [46,47] used PolSAR to support/integrate vegetation
phenology monitoring based on optical data.

Only few works referring to PolSAR application in crop damage analysis are present in
the literature [48,49], denoting a lack of scientific production about this issue. Nevertheless,
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hailstorms and storms are known to change vegetation structure, resulting in lodging or
tree uprooting/breaking. Therefore, this peculiar effect changes polarimetric response and
could be used to detect and characterize tree structure [50]. In general, it can be said that
decomposition techniques offer a new insight into PolSAR data for describing vegetation
structural proprieties [51].

The polarimetric decomposition technique decomposes the signal into its individual
scattering components, permitting identification of the dominant scattering type [42,52];
this information is related to the target structural properties [18,53,54]. Various decompo-
sition techniques have been proposed, and Lee and Cloude provided a comprehensive
review about this topic [42,55]. Model-based [56] and eigenvector-based [41] algorithms
have been preferred by many researchers [51]. According to Ji and his collaborators [57], the
Cloude–Pottier H-α-A decomposition seems to be the most promising approach. It is based
on second-order statistics extracted by a set of neighbor pixels that are used to calculate
the local entropy H and the α angle (related to average scattering mechanisms). These are
used to define a Cartesian space, H-α, that is linearly divided into nine zones describing
the main scattering mechanisms. Recently, eigenvector decomposition has been widely
applied in several applications [55,58–61]. The method was originally developed for quad-
polarization data. Nevertheless, it was also adapted to work with dual-pol data [57,62,63],
and consequently, it can be successfully used to retrieve polarimetric information also from
S1 data that are unable to collect quad-pol data.

In this work, the applicability of the H-α-A polarimetric decomposition technique to
the detection and mapping of damages from storms affecting fruit orchards was tested. In
particular, the proposed case study refers to the stormy event that occurred in Northwest
Italy on 12 August 2020. Consequently, a map of potentially damaged orchards was
generated with the aim of supporting insurance companies and local administrations to
address their funding restoration policies.

2. Materials and Methods

2.1. Study Area

On 12 August 2020, an exceptional storm affected the Northwest of Italy. In particular,
the storm uprooted many apple orchards in the province of Cuneo (Piemonte region, NW
Italy). Moreover, it occurred in a critical period of the year, when the main fruits (apples,
pears, and peaches) were still to be harvested (Figure 1). Because in this period the farmers
are focused on harvesting, no early recovery efforts were performed in the damaged fields.
Therefore, the majority of the uprooted trees were not removed until October.

Figure 1. An apple orchard (cultivar “Gala”) with hail nets uprooted by the storm on 12 August 2020.
At the bottom, many mature apples can be noted, suggesting the economic loss caused by the storm.

The study area includes four municipalities: Saluzzo, Verzuolo, Manta, and Lagnasco
(Figure 2). The area of interest (AOI) is sized about 132.23 km2. It plays a crucial economic
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role in Piemonte fruit production. In fact, this zone is suitable for this cultivation: the
loose soil without water stagnation, sunny and dry atmosphere, and strong temperature
difference between day and night allow the correct ripening and coloring of fruits. Apples
represent the primary crop in Manta. Since August is a droughty period in the AOI, no
significative previous precipitations had occurred before the event; 1.2 mm had cumulated
in the previous week, as reported by the regional environmental agency (www.arpa.
piemonte.it). Therefore, the authors supposed that moisture-related conditions cannot
significantly affect the SAR signal.

Figure 2. Italian regions (light gray) and the Piemonte region (dark gray). (Red) The AOI includes the Saluzzo, Manta,
Lagnasco, and Verzuolo municipalities (reference frame: WGS84 UTM32N).

2.2. Data and Data Collection
2.2.1. Sentinel-1 Data

Sentinel-1 is currently one of the largest space-borne missions providing free and
openly accessible SAR data. The S1 mission relies on a constellation of two satellites
(Sentinel-1A and Sentinel-1B) operating in the C-band (5.54 cm wavelength). The main
acquisition mode over land is the Interferometric Wide (IW) swath, recording approxi-
mately 250 km in length at 5 × 20 m spatial resolution in a single look. Ordinarily, S1
records data in a dual pole mode (VV and VH), where electromagnetic waves are polarized
vertically (V) for transmission and horizontally/vertically for reception. The data are
recorded as complex values (I/Q components) and in SAR geometry (range and azimuth).
A descending single-look complex (SLC) IW image (relative orbit no. 139), acquired af-
ter the storm (14 August 2020), was obtained from the Copernicus Open Access Hub
(https://scihub.copernicus.eu/dhus/#/home, accessed: 20 December 2020).

2.2.2. Cadastral Data

A cadastral map coupled with farmers’ applications for EU Common Agricultural
Policy (CAP) incentives was used in this work to classify the orchards in the AOI. The
correspondent map (hereafter called orchard map (OM)) was consequently generated. The
damaged orchards were analyzed at cadastral parcel level. The cadastral map was obtained
for free from the regional geoportal in vector format georeferenced in the WGS84 UTM zone
32N reference frame and updated in 2018 (nominal scale was 1:2000). Databases containing
farmers’ applications for EU CAP incentives of 2019 were used to map orchard types in the
AOI (2020 data are not yet available). Every year, farmers support their activities with CAP
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incentives. These data were obtained for free from the regional public information system
for agriculture. CAP applications contain the cadastral parcel code and the declaration of
the most relevant crops as communicated by farmers. In this way, it is possible to couple
the cadastral map with crop type information at parcel level by an ordinary join operation
available in the Geographical Information System (GIS) software. In this work, 2040 (about
1136 ha) apple orchards were selected from the joined data to test the procedure.

2.2.3. Ground Dataset

A ground survey was conducted to gather the field data needed to calibrate and
validate the PolSAR-based mapping procedure. In total, 72 apple orchards were surveyed
(about 3.5% of the apple orchards in the AOI) during a ground campaign aimed at labeling
damaged (22) and undamaged (50) fields. Specifically, the surveyed fields have an average
size of about 0.92 ha, fitting well with the S1 geometrical resolution. In fact, about 40 S1
pixels can characterize each field. In particular, a visual assessment aimed at recognizing
the following conditions was performed: if the majority of the trees were uprooted, the field
was labeled as damaged; otherwise, it was labeled undamaged, and the related cadastral
parcel was selected from the OM layer.

The dataset was split in a training (60%) and a test set (40%) by random selection
from the surveyed parcels. In total, 13 damaged fields (hereafter called DTFs) and 28
undamaged ones (hereafter called UTFs) were assigned to the training set. Conversely, 10
damaged fields (hereafter called DVFs) and 21 undamaged ones (hereafter called UVFs)
were assigned to the test set. The training and test set parcels are shown in Figure 3.

Figure 3. Parcels belonging to the training and test sets. Colors (see legend) define the state of the
surveyed parcel (damaged/undamaged). Reference frame is WGS84 UTM 32N.

This dataset was provided by local farmers. The authors found that the supplied
sample includes 72 fields corresponding to about 3.5% of the apple orchards in the AOI.
The authors had just the opportunity of comparing the sample size with the expected total
number of apple orchards in the AOI (about 2050). The authors are aware that this sample
size does not perfectly fit statical requirements. Nevertheless, it well represents ordinary
availability of ground data from farmers when working with actual data not directly
managed by scientists. This situation well represents a common operational condition
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when working with technology transfer issues, especially in the agronomic sector. In fact,
the most of data from farmers, generally, rely on their autonomous collections and decision
of making them public. Moreover, the private property of parcels is an objective limiting
factor for all the analyses, since free access is not guaranteed. With these premises, we
proceed to process the data.

A preliminary economic assessment was also performed since the storm occurred
close to the apple harvesting period, determining a significant problem for local apple yield
in 2020. This was obtained considering, for damaged parcels, a potential yield equal to the
average one in the Piemonte region (31 t·ha−1) and a reference unitary price of 380 €·t−1.
These values were obtained from the Italian Statistics Institute (ISTAT) [64].

2.3. Data Processing
2.3.1. Polarimetric Decomposition

The available S1 IW SLC image was processed to compute the polarimetric decom-
position parameters. The adopted workflow is shown in Figure 4 and proposed by [65].
The target polarimetric analysis is ordinarily performed starting from the coherency ma-
trix [66,67] or from the 2×2 covariance matrix (C2). Preprocessing steps were managed
using the ESA SNAP v. 7.0.0 software [68].

Figure 4. The adopted workflow. All steps were managed in SNAP ESA v. 7.0.

First, the precise orbit state vector data were downloaded from the ESA archive
(https://qc.sentinel1.eo.esa.int/, accessed: 20 December 2020) and applied to refine the
satellite position. Precise orbit files are delivered within 20 days after data acquisition and
provide accurate satellite position and velocity information. Using the TOPS split module,
1 sub-swath and 2 bursts were selected based on AOI coverage. A radiometric calibration
was applied and the result saved in a complex-valued format needed to compute C2. TOPS
deburst was applied by merging different bursts into a single SLC image. A spatial subset
was then generated covering the AOI. The subset was multi-looked by 4 × 1 (range and
azimuth direction, respectively) to generate squared pixels. The resulting multi-looked
image, with a geometrical resolution equal to 15 m, was used to generate the local C2 at
pixel level. With respect to quad polarization, dual-polarimetric SAR sensors generate a
matrix showing the half of the totally occurring scattering components involved in fully
polarimetric imagery [69]. In particular, the covariance matrix for dual polarization (e.g.,
Sentinel-1) is often calculated with reference to a second-order scattering information [18]
generated from the spatial averaging of the scattering vector k = [SVV, SVH]T as expressed
in Equation (1):

C2 =

[
C11 C12

C21 C22

]
=

[
〈|SVV |〉 〈SVHSVV

∗〉
〈SVHSVV

∗〉 〈|SVH |〉

]
(1)
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where ∗ denotes the complex conjugate and 〈 〉 the local mean value in a 5 × 5 moving
window. Each C2 element (C11, C22, �(C12), and �(C12)) is stored individually and succes-
sively refined by Lee filtering (5 × 5 kernel size) to minimize speckle-related noise. H-α-A
polarimetric decomposition was obtained by eigenvector computation as proposed by
different authors [57,62,63]. The modified formula for dual-pol data, as proposed by [66],
is reported in Equations (2) and (3).

〈C2〉 = [U]

[
λ1 0
0 λ2

]
[U]∗T = λ1u1u1

∗T + λ2u2u2
∗T (2)

[U] =

[
U11 U12
U21 U22

]
= [u1 u2] =

[
cos α − sin αe−jδ

sin αejδ cos α

]
(3)

where λ1 ≥ λ2 ≥ 0 are the local eigenvalues, [U] is the orthogonal unitary matrix, * and T
represents the complex conjugate and transpose matrices, respectively. The angles α and δ

define the orientation and size of the polarization ellipse of the recorded signal [62]. The
eigenvector dual-pol decomposition results in three roll-invariant parameters: polarimetric
scattering entropy (H), mean scattering angle (α), and scattering anisotropy (A).

H was calculated from Equation (4):

H = −
2

∑
i=1

(− Pi log2 Pi) (4)

where
Pi =

λi
λ1 + λ2

H defines scatter randomness; it can vary between 0 and 1 and is related to the number
of dominant scattering mechanisms, being proportional to the degree of depolarization [70].
H = 0 means that the coherency matrix shows only one eigenvalue and, therefore, the
relative orientation of the correspondent pixel elements is quite simplified (e.g., single-
bounce reflection).

Anisotropy A (Equation (5)) provides additional information about H in terms of the
difference between scattering mechanisms.

A =
λ1 − λ2

λ1 + λ2
(5)

The anisotropy quantifies the relative strength between first and second dominant
scattering mechanisms. It is strictly related to the degree of signal polarization [18,71,72].
According to Mandal [18], the state of polarization of an electromagnetic (EM) wave is
characterized in terms of the degree of polarization (0 ≤ A ≤ 1). The latter is defined as
the ratio between the average intensity of the polarized portion of the signal and its total
intensity [73]. A = 1 and A = 0 for a completely polarized and completely unpolarized
wave, respectively. The unpolarized part of the received wave, (1 − A), is assumed to
represent the volume scattering component from the distributed targets [74].

Average scattering mechanisms (i.e., surface, double-bounce, and volume scatter-
ing) can be identified with respect to the α parameter, which is computed according to
Equation (6):

α =
2

∑
i=1

Pi cos−1

⎛
⎝ |λ1 + λ2|√

2
√
|λ1|2 + |λ2|2

⎞
⎠ (6)

The α angles close to 0◦ denote a diffuse surface scattering, α close to 45◦ means
dipole scattering (caused by volumes), and α close to 90◦ means double-bounce scattering
mechanisms.
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With these premises, the raster layer mapping local H, α, and A values was computed
from the pre-processed SLC image. It was projected onto the WGS84 UTM 32N refer-
ence frame, applying the range–Doppler terrain correction. The adopted digital terrain
model (DTM) needed for this step was the one freely obtainable from the Piemonte region
geoportal [75]. It is supplied with a 5 m grid size and a height accuracy of ±0.30 m and
was generated in 2011. The nearest-neighbor resampling method was adopted during the
range–Doppler terrain correction.

2.3.2. Testing H-α-A Values after the Storm

To assess how the storm changed the orchards’ polarimetric behavior, a preliminary
analysis was performed with reference to the training set. In particular, DTF and UTF pixels
distributions were compared using the Mann–Whitney (MW) nonparametric test (one-
tailed) [76]. The MW null hypothesis is that DTFs and UTFs have an identical distribution.
The one-sided alternative “greater” was set, assuming that the DTF cumulated frequency
distribution was expected to have shifted to the right of the UTF one (i.e., DTFs were
greater than UTFs) [77].

The authors preliminary explored the polarimetric indices’ behavior using reference
ground data. In particular, the frequency distributions were perceptively assessed using
boxplots (see Section 3.1). The median value of distribution highlights a shift between
damaged and undamaged fields. Therefore, to test these perceptive differences, the authors
performed one tail test since the direction of changes is a priori known.

Three MW tests were performed to test if the DTF distributions of the H-α-A pixels
within the parcels were statistically different from the UTF ones. All statistical analyses
were performed using R software v. 3.6.3 [78]; conversely, spatial analysis was done using
SAGA GIS 7.0 [79].

2.3.3. Detection of Damaged Orchards

The main goal of this work was to test the capability of the PolSAR technique to
recognize damaged orchards. For this task, UTFs were assumed as representatives of the
state of undamaged orchards. Samples were sized about 23 ha and represented about
2% of OM. In spite of this small sample size, the UTFs preliminarily resulted in a good
dataset, whose reliability was confirmed by ground surveys. With these premises, the
H-α-A distributions within UTFs were used to represent the reference distributions of the
undamaged orchards. All H-α-A distributions from the AOI mapped parcels were tested
against undamaged ones by the MW test, checking the following conditions: (i) parcel H
distribution was greater than that of the UTFs; (ii) parcel α distribution was greater than
that of the UTFs; (iii) parcel A distribution was lower than that of the UTFs. The resulting
MW U-statistic and related p-value were then mapped for each orchard parcel. Moreover,
the compound probability (CP) [80] was also calculated according to Equation (7) using
R software v. 3.6.3. CP represents the probability that the previously mentioned three
conditions were simultaneously satisfied.

CP = (1 − pH)(1 − pα)(1 − pA) (7)

where pH is the p-value resulting from the MW test under condition (i), pα is the p-value
resulting from the MW test under condition (ii), and pA is the p-value resulting from the
MW test under condition (iii). The resulting CP was then mapped for all OM parcels,
representing its compound probability to have been damaged by the storm. A threshold
value of CP able to separate damaged fields from undamaged ones has to be necessarily
selected by final users, e.g., the insurance company or local public administration, according
to their specific policies and strategies. Nevertheless, a possible solution is proposed here,
relying on the standard error of the mean (SEM) of the CP distributions of the DTFs and
UTFs. The estimated threshold value was used to generate the map of damaged orchards
(DM): parcels showing a CP value lower than the threshold was classified as “undamaged,”
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otherwise as “damaged.” The DMs were then tested against the previously mentioned test
set and the correspondent confusion matrix calculated to assess the accuracy of detection.

3. Results

3.1. H-α-A Analysis

The statistical distributions of H-α-A were computed with reference to DTFs and
UTFs (Figure 5).

Figure 5. Boxplots of H-α-A distributions for UTFs and DTFs. The boxplot values are from bottom to
top, respectively, 5th, 25th, 50th—cross is mean value—75th, and 95th percentiles. (a) Entropy pixel
distribution; (b) alpha angle pixel distribution; (c) anisotropy pixel distribution.

The MW test results (Table 1) show that the H and α distributions of DTFs presented
values significantly greater than UTFs; conversely, the A distribution of the DTFs was
lower than that of the UTFs.

Table 1. MW test results obtained by comparing the H-α-A pixel distributions of DTFs and UTFs.

U p-Value

H 14,514 0.000159
α 16,604 3.83×10−10

A 8616 0.000161

3.2. Damaged Orchards’ Mapping

Based on the assumption that a storm can change the polarimetric behavior of orchards
according to previously mentioned dynamics, a map of CP representing the parcel proba-
bility of being recognized as damaged was generated using the UTF dataset as reference
(Figure 6).

With reference to CP, a threshold value was estimated to separate damaged fields
from undamaged ones based on the SEM of CP statistic distributions of the DTFs and UTFs
(Figure 7b). The DTFs showed a CP mean and SEM value of 0.715 and 0.125, respectively;
consequently, one can assume that the CP mean value of all damaged orchards reasonably
falls in the range 0.715 ± 0.125, about 0.6 being the lower boundary. A threshold equal to
0.6 was therefore selected to generate the DM binary classification (Figure 7a).

A total of 217 ha (430 orchards) of potentially damaged apple orchards were detected
in the AOI. According to the OM layer, 19% of the apple orchards were damaged after
the event.
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Figure 6. A CP map of apple orchards in the AOI (Reference frame: WGS84 UTM32N).

Figure 7. (a) DM binary classification of the OM in the AOI (reference frame is WGS84 UTM 32N);
(b) bar chart representing mean and 1 SEM of the CP for DTFs and UTFs.

The DM was validated with respect to the test set, and the correspondent confusion
matrix computed (Table 2). Classification accuracy is defined here as the one for binary
classification of imbalanced data [81–83] since, in the test set, the number of undamaged
fields was significantly greater than that of damaged fields. The resulting precision and
specificity were pretty high (0.80 and 0.71, respectively), while balanced accuracy was
found to be 0.75. Overall accuracy was 0.74, while F1 score (harmonic mean of the precision
and recall) and G-mean (geometric mean of sensitivity and precision) were both about 0.67.
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Table 2. Metrics derived from the confusion matrix of the DM with respect to the test set. True
positives (TPs): number of damaged elements predicted as damaged; false positives (FPs): number
of undamaged elements predicted as damaged; false negatives (FNs): number of damaged ele-
ments predicted as undamaged; true negatives (TNs): number of undamaged elements predicted as
undamaged.

Classification
Damaged Undamaged

Reference
Damaged 8 2

Undamaged 6 15

Accuracies

Measure Value Formula

Sensitivity 0.80 TPR = TP/ (TP + FN)
Specificity 0.71 SPC = TN/ (FP + TN)
Precision 0.57 PPV = TP/ (TP + FP)

Negative Predictive Value 0.88 NPV = TN/ (TN + FN)
False Positive Rate 0.28 FPR = FP/ (FP + TN)

False Discovery Rate 0.42 FDR = FP/ (FP + TP)
False Negative Rate 0.20 FNR = FN/ (FN + TP)

Overall Accuracy 0.74 OA = (TP + TN) / (TP + TN + FP + FN)
F1 Score 0.66 F1 = 2TP/ (2TP + FP + FN)

Balanced Accuracy 0.75 BA = TPR + TNR/2
G-Mean 0.67 G-mean= sqrt (TPR *PPV)

Furthermore, it is worth stressing that the storm occurred close to the harvesting
period, determining a significant problem for local apple yield in 2020. With reference to
the AOI, a preliminary estimate of economic loss was computed to be about €2,500,000.
Reported estimates could certainly vary according to the apple orchards’ age, apple variety,
plant density, agronomic management, and local soil properties. Nevertheless, these esti-
mates constituted a preliminary assessment of storm damage that occurred on 12 August
2020. Future validation is expected to test these economic deductions.

4. Discussions

Concerning the damaged orchards’ H-α-A distributions (Figure 5 and Table 1), higher
values of H and α in the damaged parcels could be attributed to the changes in vegetation
structure (Figure 8). In fact, the inter-row spaces of the damaged orchards, after the storm,
were completely covered with the crowns of the broken or uprooted plants, which deter-
mined a different scattering geometry. Pre-event plant row geometry was characterized by
a regular pattern, which drastically changed to a more disordered one, where the fallen
crown elements increased the H values. Since the pre-event scattering mechanism was
determined by regularly aligned and spaced plants (rows) alternating with bare soil/grass
(inter-rows), it determined intermediate α values. After the storm, it can be assumed that
the scattering mechanism was strongly influenced by crown volume, inducing an increase
in the α values. Conversely, A appeared to reduce after the event. This could be possibly
related to a reduction in the eigenvalue difference λ1 − λ2 related to the slightly different
scattering mechanism after the storm. The volumetric mechanism appeared to be the
prevailing one in the damaged parcels, as proved by the H increase. Since the canopy
causes a strong depolarization of the SAR signal, the degree of depolarization (i.e., 1-A)
tends to increase with crown closure [18]. Given these interpretation keys, the results
obtained seem to support the idea that, after a relevant event able to significantly change
vegetation structure, the orchards’ polarimetric behavior significantly changes. Based on
the collected reference data, damaged orchards tend to show (i) higher values of H and
α due to the increased contribution of the volume scattering mechanism, and (ii) lower
A values, possibly due to the inter-row closure generated by broken/fallen trees, which
increase signal depolarization.
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Figure 8. A sketch representing orchard condition before (a) and after (b) the storm. In (a) the pattern row/inter-row is well
defined; (b) after the storm, apple tree uprooting occurred, altering the row/inter-row pattern, and crowns covering the
ground increased volumetric scattering.

Concerning the mapping of damaged orchards, the results reported in Table 2 suggest
that polarimetric decomposition of S1 data is an effective approach to map orchards
affected by a storm, especially during cloudy weather situations. Nevertheless, it is worth
stressing that some limitations still persist while working with dual-pol decomposition.
In comparison to quad polarization, dual-pol SAR sensors collect half of the scattering
matrix components involved in fully polarimetric imagery. Therefore, dual-pol derived
products may vary from the classical Wishart distribution. In fact, [57] highlighted that
entropy/alpha decomposition using one co-polarization and one cross-polarization does
not adequately extract scattering mechanisms in the H-α plane. Nevertheless, Cloude [62]
proved how these differences result similarly to the conventional quad-pol one while
working with vegetation. In spite of these differences, many operative frameworks were
proposed proving how information lost during the dual-pol acquisition can be compensated
for enhancing image swath and satellite revisit frequency. Moreover, often quad-pol SAR
data are not available free of charge and not readily available for operative purposes. S1
is currently one of the largest space-borne missions providing free and open-access SAR
data having high temporal resolution, fitting well with vegetation dynamics monitoring
requirement.

Future developments are expected to test if pre- and post-H-α-A differences can be
used to semi-automatically detect significance changes. It is worth highlighting that the
majority of apple orchards in the study area are covered by plastic nets to protect the
trees against hail. Probably, plastic nets can influence the complex permittivity of the
analyzed volume and therefore affect the polarimetric response of the observed uprooted
trees. Since in the study area, a few fields do not have hail nets, the authors did not survey
such orchards, and therefore no assessment looking for the effects of nets on polarimetric
response was performed. A specific research should be addressed to assess how plastic
hail nets can affect backscattered signal.

5. Conclusions

In this work, a preliminary assessment about the polarimetric behavior of orchards
after a storm was performed. The analysis was aimed at proposing a first methodological
approach to detect orchard damage by a storm based on the PolSAR decomposition
technique using S1 data. The joint adoption of free accessible S1 data, institutional free
auxiliary data (a cadastral map and farmers’ CAP application database), and open software
(SNAP) constituted a peculiar trait of the proposed approach. It moves in the direction
of technological transfer, aiming at making SAR data/techniques an operational tool for
agronomic applications, with special concern about weather-related damages to crops,
which could be of interest to insurance companies or public administrations. The results
proved that storm damages significantly increase the H and α parameters. By contrast, the
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A parameter tends to be lower in the damaged orchards. This phenomenon is possibly
related to the changes affecting vegetation structure in the damaged fields, where the
crowns and branches of fallen/broken plants fill the inter-row space, changing the regular
pattern ordinarily characterizing apple orchards. Based on this evidence, the authors
proposed a methodology to map possibly damaged orchards that relies on the knowledge
about the behavior of witness (and neighboring) undamaged orchards. The method
permitted the mapping of the probability that an orchard is damaged or not, constituting
a new free tool able to improve orchard monitoring after a calamitous event by regional
agencies and insurance companies. It is worth reminding that only apple orchards were
considered for this case study. Future developments are expected to test the effectiveness
of this method in other orchard types, as pear or peach, which are very diffuse in the AOI.
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Abstract: Crop lodging, the tilting of stems from their natural upright position, usually occurs
after a heavy storm event. Since lodging of a crop seriously affects its yield, rapid assessment of
crop lodging is valuable for farmers, policymakers, agronomists, insurance companies, and relief
workers. Synthetic Aperture Radar (SAR) sensors have been recognized as valuable data sources for
mapping lodging extent because of their good penetrating power and high-resolution remote sensing
ability. Compared to other sources, SAR’s weather and illumination independence and large area
coverage at fine spatial resolution (3 m to 20 m) support frequent and detailed observations. Because
of these advantages, SAR has the potential in supporting near real-time monitoring of lodging in
fields when combined with automated image processing. In this study, a method based on change
detection using modified Hidden Markov Random Field (HMRF) and Sentinel-1A data were utilized
to identify lodging and map its extent. Results obtained have shown that when lodging occurs, the VH
polarization’s backscatter (σVH) increases between the pre-lodging event image and the post-lodging
event image. The increase in σVH is due to the increase in volume scattering and vegetation-soil
double bounce scattering resulting from the structural changes in the crop canopy. Using Sentinel-1A
images and applying our proposed approach across several fields in Iowa and Illinois, we mapped the
extent of the 2020 Derecho (wind storm) lodging disaster. In addition, we separated lodged regions
into severely and moderately lodged areas. We estimated that approximately 2.56 million acres of
corn and 1.27 million acres of soybean were lodged. Further analysis also showed the separation
between un-lodged (healthy) fields and lodged fields. The observations in this study can guide future
use of SAR-based information for operational crop lodging assessment.

Keywords: Synthetic Aperture Radar; SAR; lodging; Hidden Markov Random Field; HMRF; CDL;
corn; soybean; crop Monitoring; crop management

1. Introduction

With the increase in global population and the increase in food demand, the monitoring of
agricultural activities has been of utmost importance. The increasing frequency and intensity of
extreme weather events have also made monitoring of agricultural fields very critical. Lodging,
the tilting of plant stems from their natural upright position, is a major yield limiting factor to
crops such as corn, wheat, and barley [1–3]. Corn is vulnerable to lodging during its growing
stages, particularly between early to late vegetative period [4]. Lodging in corn could be as a result
of insufficient root growth due to soil compaction, or due to increased occurrence of heavy rain
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and derechos (wind storms). According to the National Oceanic and Atmospheric Administration
(NOAA), derechos are straight-line windstorms that are associated with a fast-moving group of severe
thunderstorms. The winds are destructive and can be as strong as those found in tornadoes and
hurricanes. Derecho lodging results in serious damage to crop growth and development as it impedes
the circulation of water and nutrients in the plant which in turn suppresses photosynthesis, leading
to deterioration of grain quality and total yield loss [5]. For a more comprehensive overview on the
mechanics of lodging, factors affecting lodging, and crop yield response to lodging, the reader is
referred to Chauhan, et al. [6]. Lodging also reduces grower’s profitability and, for this reason, it is
important to detect lodging quickly, map its extent, and quantitatively measure its severity. Accurate
and timely mapping of lodged fields can help guide farmers during harvest operations, help crop
insurance companies during crop loss assessment, and can improve crop yield forecasts [7].

Mapping of lodged fields is typically based on visual inspection (field-based approach). However,
this approach is extremely laborious, time consuming, and is infeasible for large areas. In recent years,
remote sensing has been used for mapping lodging since it offers a more scalable approach and is also
cost effective. Multi-temporal images acquired by optical [8,9] and radar [10,11] sensors have routinely
been applied for lodging identification. Since these two sensor types have their unique sensitivity and
imaging characteristics, their performance in the mapping of lodging varies.

Recently, synthetic aperture radar (SAR) data have gained considerable interest in lodging
applications because SAR is an active sensor, operating without regard to weather, smoke, cloud cover,
or daylight [12]. SAR sensors offer a clear advantage because of their unique scattering sensitivity to
crop structure and large area coverage.

In Chauhan, et al. [8], the authors used time series of SAR backscatter, SAR coherence, and spectral
reflectance derived from Sentinel-1 and Sentinel-2 data to detect lodging incidence and understand
the effect of lodging in wheat. The most reliable discriminators for differentiating lodged wheat
from healthy wheat were Sentinel-2 red edge band (740 nm), Sentinel-2 near infrared band (865 nm),
and Sentinel-1 VH backscatter. Shu, et al. [13] have used the dual-polarization of Sentinel-1A data to
develop a change detection method using plant height before and after lodging in maize to calculate the
lodging angle and monitor the lodging degree. The results showed that VV backscatter was sensitive
to lodged maize while the ratio of VH to VV backscatter was sensitive to non-lodged maize. In a
similar study, Chauhan, et al. [14], explored the advantage of multi-sensor SAR data (Sentinel-1 and
RADARSAT-2) to develop a quantitative approach to detect crop lodging stages (moderate, severe,
and very severe) based on the crop angle of inclination. Quantitative relationships using support vector
regression (SVR) models were established between remote sensing derived metrics from Sentinel-1
and RADARSAT-2 timeseries and field measured crop angle of inclination values [14].

While several researchers have predominantly used the single and dual-polarization of Sentinel-1
to address crop lodging, others have focused on using the multi-configuration (multi-polarization
and multi-incidence angle) data from RADARSAT-2. For example, Yang, et al. [15] used a time series
of Radarsat-2 images and target decomposition techniques to derive a set of polarimetric features
and backscattering intensity features to compare typical lodged fields and normal fields. In their
study, they found that polarimetric ratios (especially those based on odd/double scattering) were
sensitive in distinguishing lodged and normal fields. In a different study, Chen, et al. [16] used
polarimetric features from Polarimetric SAR (PolSAR) to identify sugarcane lodging. The authors
found that several polarimetric features, such as horizontal transmit and vertical receive (HV) intensity,
double-bounce scattering, and volume scattering derived from RADARSAT-2 data were helpful in
sugarcane lodging identification.

Despite these and other studies carried out throughout the last decade, the integration of SAR
remote sensing into routine mapping of lodging and severity assessment remains difficult for the
following reasons: (a) The acquisition of SAR dataset to coincide with the specific date of lodging is
not always feasible; (b) The heterogeneous distribution of lodging makes it difficult to be detected
with SAR and also, in particular, in order to map lodging precisely, the size of the lodged field must
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be larger than the spatial resolution of the SAR sensor; (c) The mapping of lodging over large spatial
extent and determination of lodging rate; (d) The acquisition of ground truth data (known lodged
fields) to evaluate lodging severity can itself be an overwhelming task as it is extremely labor intensive
and time consuming; (e) The accuracy assessment of the lodging severity also has some shortcomings
since there are no standard scales to quantify lodging into categories such as severe, moderate, or mild.

To address and overcome some of these challenges, we used the 2020 Derecho event in Midwest
U.S. as a case-study to evaluate SAR for large-scale lodging detection and mapping. The main objectives
and novelty of this study are to:

(1) Understand the changes in backscatter over large-scale lodged fields and how to use the backscatter
to classify lodging into severe or moderate categories.

(2) Generate large-scale spatial extent maps of lodging using a change detection approach modified
from our previous study [17] and determine the lodging rate (lodged crop per unit area) using
the USDA’s Crop Data Layer (CDL) map.

(3) Qualitatively explore the relationship between high wind speed and lodged fields.
(4) Explore the capability of Sentinel-1A over an optical dataset like the one from Landsat-8.
(5) Explore if lodged and un-lodged (healthy) fields differ between the pre-lodging event image and

post-lodging event image.

In this paper, the proposed change detection method for lodging utilizes the concept of ratio
image generation. The generation of ratio images suppresses background information while enhancing
change information [17]. The generated ratio images were filtered using a non-local means filter [18,19]
and classified into different classes using the Hidden Markov Random Field (HMRF). The HMRF
considers the contextual information of neighboring pixels (i.e., a neighboring pixel is expected to
have similar intensities and similar class labels) during classification. Published methods differ in
their approach to extract change detection map. In the work done by Kasetkasem and Varshney [20],
the authors used a MRF to model noiseless images for an optimal change image using the maximum a
posteriori probability computation and the simulated annealing (SA) algorithm. In Zhao, et al. [21],
the authors combined Voronoi Tessellation (VT) and HMRF based Fuzzy C-Means (FCM) algorithm
(VTHMRF-FCM) for texture image segmentation. Similarly, in Yang and Yi [22], a novel method based
on applying HMRF and generative adversarial network (GAN) on high-resolution SAR images was
used for ship detection. To our knowledge and according to Chauhan, et al. [6], the use of satellite-based
change detection for crop lodging is sparse. To date, there is no method available for corn and soybean
lodging over large spatial areas.

2. Study Area and Data

2.1. Study Area

This study was carried out in Iowa and Illinois, spanning across 52 counties (Figure 1), covering
the region affected by the 2020 Derecho lodging disaster which occurred on 10 August 2020. Iowa and
Illinois are located in the Western part of the Corn Belt region of the United States and are part of the
top agriculture production states. Iowa has a total agricultural land of 30.6 million acres, accounting
for 92% of the state’s total land area while Illinois has a total agricultural land of 27 million acres,
accounting for 75% of the state’s total land area. The two-dominant crops in both states are corn and
soybean. Other crops like wheat and winter wheat are also planted but they account for a very small
portion of all the cropland. In this study, the estimation of lodging rate (lodged crop per unit area) was
only focused on corn and soybean. In Iowa and Illinois, the climate is cold and temperate. In Iowa,
the wettest month with the most precipitation is June with an average precipitation of 107 mm and
an average temperature of 82 ◦F, while the driest month is January with an average precipitation of
23 mm of rainfall and an average temperature of 31 ◦F. In Illinois, the wettest month with the most
precipitation is August in the Northern portion of Illinois with an average precipitation of 89 mm and
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an average temperature of 82 ◦F, while the driest month is February with an average precipitation of
49 mm of rainfall and an average temperature of 35 ◦F.

Figure 1. Study area covering (a) the region affected by the 2020 Derecho lodging disaster in the states
of Iowa and Illinois as shown by the red outline and (b) the 52 counties in the affected region.

2.2. Field Data

In order to generate lodged crop per unit area, we used the 2018 CDL map because the 2020 CDL
map is not yet available. Another reason for using the 2018 CDL map is that most farmers in Iowa and
Illinois perform crop rotation. Fields where farmers consistently performed crop rotations for the last
eight years were kept while fields where crop rotations were not consistent for the last eight years were
removed. By doing this, we believe that corn and soybeans areas in 2018 should be similar to those of
corn and soybean areas in 2020. The CDL data have a spatial resolution of 30 m, includes 132 detailed
class labels, and was created from Landsat dataset using a decision tree algorithm trained on field
samples [23]. The overall accuracy of the CDL dataset is about 95% for the United States Corn Belt.
Apart from the CDL, we collected some ground truth data by field survey. Lodged fields were selected
as samples for field observation. Mobile phone GPS was used for positioning the sampling points.

2.3. Remote Sensing Data

During 10 August 2020 and 11 August 2020, a derecho swept through Midwest that caused severe
and widespread windstorms with some areas experiencing low-class tornadoes and heavy rain. As part
of this, a windstorm was observed in Iowa and Illinois on 10 August 2020. The wind speed in both
states ranged between 60 and 100 mph (Figure 2). Wind speed data for this study were acquired from
the National Weather Service (NWS). NWS used several sources like Iowa DOT, personal weather
station, Automated Surface Observing Systems (ASOS), and Automated Weather Observing Systems
(AWOS) to estimate the wind speed data. Since corn and soybean are already in their reproductive
stages at the time of the windstorm, high wind speed led to severe lodging.

In order to cover the agricultural areas damaged by the windstorm, we acquired six Sentinel-1A
images in Interferometric Wideswath (IW) instrument mode. Our Sentinel-1A images were acquired
between 29 July 2020, and 22 August 2020. Each Sentinel-1A image collection had a resolution
of 10 m, a dual polarization (VH and VV; V = Vertical, H = Horizontal), and consisted of Level-1
Ground Range Detected (GRD) scenes. As shown in Table 1 and Figure 3, three images were acquired
before the lodging event (pre-lodging event) and three images were acquired after the lodging event
(post-lodging event).
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Figure 2. Wind speed data acquired from the National Weather Service (NWS).

Table 1. Details of Sentinel-1A images acquired over Iowa and Illinois.

Date 2015
Flight

Direction
Local Standard

Time
Incidence

Angle
Polarizations

Lodging
Event

29 July 2020 ascending T00:05:15.604Z 30◦–46◦ VH & VV Pre-
3 August 2020 ascending T00:13:42.330Z 30◦–46◦ VH & VV Pre-
4 August 2020 ascending T23:57:18.422Z 30◦–46◦ VH & VV Pre-
15 August 2020 ascending T00:13:42.984Z 30◦–46◦ VH & VV Post-
16 August 2020 ascending T23:57:19.120Z 30◦–46◦ VH & VV Post-
22 August 2020 ascending T00:05:16.823Z 30◦–46◦ VH & VV Post-

Figure 3. Pre-lodging images acquired on (a) 29 July 2020; (b) 3 August 2020; and (c) 4 August 2020.
Post-lodging images acquired on (d) 22 August 2020; (e) 15 August 2020; and (f) 16 August 2020.
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3. Methods

A graphical overview of the framework used for this study is illustrated in Figure 4. Major steps
of the framework include preprocessing, ratio image formation, and change detection classification
approach. All the steps in this paper can be reproduced quickly and all analyses for the study were
carried out using python programming language.

 

Figure 4. Approach for mapping the 2020 Derecho lodging disaster.

In this paper, our proposed approach requires some parameters to be set beforehand.
The parameters that need to be set include (i) the neighborhood size of the non-local means filtering
step; (ii) the kernel size of the majority filter; (iii) the structuring element of the morphological filter;
and, finally, (iv) the maximum number of allowed change classes. Please note that while we identified
optimal settings for these parameters, we found that the performance of our algorithm does not
critically depend on the exact choice for these variables. This is true for the following reasons: (i) as
non-local means filtering is performed very early in the workflow, the impact of changes in the
neighborhood size is mitigated by subsequent processing steps such as the application of mathematical
morphology. Hence, we found that varying the neighborhood size from its optimal value changed
system performance only slowly; (ii) the increase or decrease in the kernel size of the majority filter
slowly decreases our change detection performance, yet this reduction of performance does not become
significant unless the kernel size is increased tremendously; (iii) from an analysis of a broad range of
data from different change detection projects we found that (1) a 5 × 5 pixel-sized structuring element
of the morphological filter led to the most consistent results; and that (2) change detection performance
changed slowly with deviation from the 5 × 5 pixel setting. Hence, while 5 × 5 pixel was found to be
optimal, the exact choice of the window size is not critical for change detection success; finally, (iv) the
maximum number of allowable change classes is a very uncritical variable as it merely sets an upper
bound for a subsequent algorithm that automatically determines the number of distinguishable classes
in a data set. By presetting this variable to 3 classes we ensure that changes as a result of lodging
are captured.

3.1. Image Preprocessing

Sentinel-1A preprocessing was carried out using SeNtinel Application Platform (SNAP) software
version 6.0 (https://step.esa.int/main/toolboxes/snap/), an open source common architecture provided
by European Space Agency (ESA). The preprocessing step includes orbit file correction, GRD border
noise removal, thermal noise removal, calibration, filtering using refined Lee filter, radiometric terrain
correction (RTC), and geometric terrain correction (GTC). For more details on the preprocessing step
and the importance of RTC, the reader is referred to Ajadi, Meyer and Webley [17].

3.2. Logarithmic Scaling and Ratio Image Formation

While both VH polarization and VV polarization were sensitive to crop lodging assessment,
we only used the VH polarization of Sentinel-1A dataset in this study because it depicts crop
phenology very well and, moreover, it is very sensitive to crop canopy structure. In order to increase
the detectability of lodging and to suppress background information from SAR data, ratio images
(XRis = [XRi1, XRi2, XRi3]) were formed (Figures 5 and 6) using the pre-lodging event image and of the

22



Remote Sens. 2020, 12, 3885

post-lodging event image of similar geometry, respectively (Table 1 and Figure 3). Note that, due to the
performed radiometric correction steps, images are not required to come from identical geometries.
Also, because the pre-lodging and post-lodging event images are logarithmically scaled, the creation
of ratio images is performed as a subtraction operation. Afterwards, a fast-non-local means filtering
procedure was applied to all ratio images in order to filter out the speckle noise while preserving
the details. The fast-non-local means uses redundant information to reduce noise and restore the
original noise-free image by performing a weighted average of pixel values, considering the spatial
and intensity similarities between pixels [17].

Figure 5. Ratio images generated between (a) 29 July 2020 and 22 August 2020; (b) 3 August 2020 and
15 August 2020; (c) 4 August 2020 and 16 August 2020.

 

Figure 6. Spatial mosaic of all ratio maps in Figure 5a–c.

3.3. Change Detection Classification Approach

In this study, we employed the Hidden Markov Random Field (HMRF) approach to perform our
lodging-based change detection classification. The HMRF approach fully utilizes and enhances our
previous change detection classification approach described in [17] by improving its robustness and
sensitivity to false alarms. The method in [17] employed the Finite Gaussian Mixture (FGM) model
for image classification. For example, if a ratio image XRi contains N dimensional vector of pixels
with I = {1, 2, . . . . . . . . . , N} being the set of pixel indices, then for each pixel i in XRi a class label xi is
inferred using the conditional probability as shown in [17]. Each pixel in the FGM is independent from
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their neighboring pixels, meaning they do not consider the relationship of pixels within its neighboring
system. To improve the FGM, we modified the HMRF approach proposed by Zhang, et al. [24] and
employed it. By assuming a Gaussian distribution, the HMRF model is given by

p(XRi| xNi;θ) =
∑
l∈L

f (XRi;θl) q(l| xNi) (1)

where q(l| xNi) is a conditional probability mass function (pmf) for a class label given that xNi are N
neighbors for a pixel xi. The segmentation process of HMRF requires an initial estimate for the class
labels x0 and initial parameters (θ0 = mean(μ0), variance

(
σ2

0

)
). In this research, we used K-means

clustering approach to provide these initial labels and initial parameters. The update for parameter θ0

was estimated iteratively using our Expectation-maximization (EM) algorithm [17]. The initial labels
were updated iteratively using the maximum a posteriori (MAP) algorithm. The updated label is now
used to solve for x̂ that minimizes the total posterior energy

x̂ = argmin
x∈χ

{
U(XRi|x) + U(x)

}
(2)

where χ is the set of all possible configurations of labels, x̂ is the estimated class label, U(XLR|x) is the
likelihood energy, and U(x) is the prior energy function which is defined by clique potentials. A clique
is a subset of nodes in which every node is connected to every other node. The clique potential was
defined on pairs of neighboring pixels. We assumed that one pixel has at most eight neighboring pixels.
The MAP algorithm iteration stops when Equation (2) converges or when the maximum iteration
we set is reached. In this study, we classified each ratio image in XRis into three classes namely no
change, moderate change, and severe change. Finally, the classified ratio image was filtered using a
majority filter with mathematical morphology to remove small isolated misclassified pixels. Majority
filter with mathematical morphology works by first replacing the pixels in a neighborhood using
majority of their adjacent neighboring pixels and then applying opening by reconstruction followed
with closing by reconstruction. The order of first doing opening by reconstruction followed by closing
by reconstruction was designed to reduce noise while preserving the geometric details in the image.
In this study, we set the kernel size of our majority filter to 3 and the size of our morphological kernel
to 5. In the final classification map, we removed the no change class, and we multiplied each changed
class (moderate change and severe change) by each crop (corn and soybean) mask derived from the
CDL to estimate lodged crops per unit area.

4. Results

4.1. Sentinel-1A Backscatter Analysis for Lodging Detection

The first instances of lodging were observed in the fields on 11 August 2020 due to the windstorm
on 10 August 2020. Because of the temporal frequency of Sentinel-1, lodging assessment was done on
acquisitions after the lodging event. As seen in the ratio images (Figures 5 and 6), the VH polarization’s
backscatter (σVH) increased between the pre-lodging image and the post-lodging image. We predict
the increase in value of σVH is based on two conditions:

(1) The first condition is due to volume scattering from the crops. In a healthy crop, the orientation
of the crop canopy is erect. When crop lodging occurs, the orientation of the canopy elements changes,
the ears and the stems bend downwards and incline against each other. Since σVH is sensitive to
structural changes, when lodging occurs, the volume scattering increases.

(2) The second condition is due to the high sensitivity between the interaction of vegetation and
soil (double bounce effect). When a field is lodged, the vegetation-soil double scattering increases and
the σVH increases as well.

The approach for the mapping of lodging as detailed in Section 3 captures the increase in
backscatter as a result of the lodging event. When the lodging is severe, condition 1 and condition
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2 hold and changes in σVH are very high but when lodging is moderate, condition 1 holds and
changes in σVH are moderate. The reader should note that both severe and moderate lodging are very
detrimental and they will lead to yield loss. In this study, ratio images in XRis were classified into
three classes. The first class, which depicts no change, comprises mostly of urban areas, healthy crops,
and standing water. The second class, which depicts moderate change, contains moderately lodged
fields while the third class, which depicts severe change, contains severely lodged fields (Figures 7
and 8). After classification of the lodging areas, we then quantified the amount of corn and soybean
that were moderately and severely lodged (Table 2) using the CDL map.

 
Figure 7. Lodging maps generated between (a) 29 July 2020 and 22 August 2020; (b) 3 August 2020 and
15 August 2020; (c) 4 August 2020 and 16 August 2020.

 

Figure 8. Spatial mosaic of all lodging maps in Figure 7a–c.
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Table 2. Amount of lodged corn and soybean per unit area.

Corn Soybean
Severe
(Acres)

Moderate
(Acres)

Severe
(Acres)

Moderate
(Acres)

Total
(Acres)

Figure 7a 287,238 398,821 79,246 307,482 1,072,787
Figure 7b 466,129 637,524 121,415 318,600 1,543,668
Figure 7c 326,819 442,113 120,602 318,308 1,207,842

Total (Figure 8) 1,080,186 1,478,458 321,263 944,390
2,558,644 1,265,653 3,824,297

4.2. Qualitative Relationship between High Wind Speed and Lodged Fields

To qualitatively check if there is a relationship between high wind speed and lodged fields,
we overlaid Figures 5b and 7b with the wind speed map (Figure 2). These overlay is shown in
Figure 9a,b respectively. The result showed that our estimated lodged fields followed areas with
increased wind speed (Figure 9a,b). In particular, areas with wind speed of 80+mph captured most
of our estimated severely and moderately lodged fields while areas with wind speed of 60+ mph
captured few lodged fields.

 
Figure 9. Example of (a) ratio map (Figure 5b) and (b) severity map (Figure 7b) overlaid with wind
speed map in Figure 2.

4.3. Reliability of the Approach Employed in Mapping Lodging

To qualitatively access the performance of the Derecho lodged area mapped, we acquired eight
ground truth data from field observation along the interstate I-80W. Due to limited amount of ground
truth data collected, we were unable to perform extensive quantitative analysis of our method.
While overlaying the eight ground truth points acquired with our lodged map, we observed that each
point overlaid perfectly on an area that was lodged (Figure 10).

Furthermore, we compared an example of the lodged change detection map generated from
Sentinel-1A ratio image and optical Landsat-8 ratio image by using our classification approach.
The Landsat-8 ratio image was generated from the green band of pre-lodging event image acquired on
10 July 2020, and the post-lodging event image acquired on 11 August 2020 (Figure 11).

We chose the green band over every other band of Landsat-8 because the green band has a larger
dynamic range which allowed for better separation of lodged and un-lodged areas. As can be seen
from Figure 12, the lodging map generated from Landsat-8 ratio image and the Sentinel-1A ratio image
were able to clearly detect lodging. While our approach was able to classify the Sentinel-1A ratio
image into severely lodged and moderately lodged fields, we were unable to do so in the Landsat-8
ratio image. This observation showed that Sentinel-1A radar sensor has the advantage in reflecting
the structural changes of lodging fields, while the Landsat-8 optical sensor only has the advantage
in detecting the biochemical changes of lodging fields. All in all, for this study, we believe that the
obvious feature for lodging is the structural change and the distribution pattern of lodged fields (severe
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and moderate) from Sentinel-1A image were similar to the distribution pattern of the lodged fields in
the Landsat-8 image.

 
Figure 10. Location of field observations for (a) all the eight points and (b) a zoomed location for three
points. (c) Photo for one of the field observations in “b”.

 

Figure 11. (a) Landsat-8 pre-lodging event image acquired on 10 July 2020. (b)Landsat-8 post-lodging
event image acquired on 11 August 2020. (c) Ratio image generated between 10 July 2020 and
11 August 2020.

Figure 12. Severity map generated from (a) Sentinel-1A and (b) Landsat-8.

5. Discussion

5.1. Spatial-Extent of Lodging and Lodging Rate

Based on the reports by USDA Risk Management Agency (RMA), 57 counties in Iowa and Illinois
were in the path of the storm which led to the Derecho lodging disaster. In the report by RMA, there are
roughly 14 million acres of insured crops within those 57 counties. Also, based on the Storm Prediction
Center preliminary storm reports and assessment from MODIS satellite imagery, the Iowa Department
of Agriculture and Land Stewardship estimated that about 3.57 million acres of corn and 2.5 million
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acres of soybeans were likely to have been impacted by the severe wind on 10 August 2020. Based on
our findings using Sentinel-1A data across 52 counties, we estimated that a total of approximately
2.56 million acres of corn and approximately 1.27 million acres of soybean were impacted during the
Derecho lodging disaster (Figure 8 and Table 2). Furthermore, we observed that out of the 52 counties,
only 32 counties have more than 10 thousand acres per county impacted by the storm. Within these
32 impacted counties, we leveraged our proprietary yield prediction capability to quantify the yield
potential prior to the storm, and we were able to quantify the total bushels lost following the windstorm.
We observed the following in our findings:

(a) Corn acres impacted: ~2.36 million acres impacted out of ~4.90 million acres planted (48%
acre impact).

(b) Corn bushels impacted: ~442.37 million bushels impacted out of ~918.36 million bushels expected
prior to the storm (48% reduction).

(c) Soybean acres impacted: ~1.27 million acres impacted out of ~4.69 million acres planted (28%
acre impact).

(d) Soybean bushels impacted: ~80.90 million bushels impacted out of ~279.00 million bushels
expected prior to the storm (29% yield reduction)

As shown above and in Table 2, fields with moderate lodging were more frequent than fields
with severe lodging and corn fields lodged more than soybean fields. We believe the reason for this
difference is due to relatively more resistance of soybean to wind than corn.

5.2. Temporal Behavior of Un-Lodged (Healthy) and Lodged Fields throughout the Observation Period

The main difference in a field before and after lodging is the reduction of plant height. Therefore,
the backscattering coefficients for lodged and un-lodged field will be different because for a lodged
field, either one of the two conditions stated in Section 4.1 will hold. In this study, we compared
nine randomly selected un-lodged fields to nine randomly selected lodged fields (Figure 13) using
both the VH mean polarization backscatter and VV mean polarization backscatter. While observing
Figure 13, on the one hand, un-lodged fields showed no change at all in both the VH and VV mean
polarization backscatter. On the other hand, we saw an increase of approximately 6 dB in the VH
mean polarization backscatter and 5 dB in the VV mean polarization backscatter for all the fields
between the pre-lodging event date and the post-lodging event date respectively. Even though there is
a slightly higher difference in the VH mean polarization backscatter, the sensitivity of VH polarization
to lodging is similar to the sensitivity of VV polarization to lodging. In this study, the increase in both
the VH and VV mean polarization backscatters follows the reported observations in [8]. In Chauhan,
et al. [8], the authors observed a clear linear trend of increasing VH polarization backscatter and VV
polarization backscatter with the increase in the lodging severity. It is worth mentioning that corn and
soybean in all the fields are in the grain-filling period or plateau stage. At this stage, the height and
greenness of the crop should be fairly constant, and this is why we see no change in the un-lodged
fields. To further show how lodged fields and un-lodged fields differ on a large scale, we generated the
VH and VV mean polarization backscatter over Dallas county in Iowa (Figure 14). By qualitatively
observing the mean backscatter between the pre-lodging event date and the post-lodging event date in
Figure 14, we saw an increase of approximately 3 dB in the VH mean polarization backscatter and
1 dB in the VV mean polarization backscatter. Based on the difference observed between the lodged
fields and un-lodged fields in Dallas county, it is quite evident that our approach is sensitive enough to
detect lodging.
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Figure 13. Time series of lodged and un-lodged fields.

 

Figure 14. Time series of lodged and un-lodged fields in Dallas county, Iowa.

6. Conclusions

The potential and feasibility of using SAR data for monitoring the Derecho lodging disaster
was demonstrated in this study. Though crop lodging assessment using SAR data have been shown
in a few studies earlier, studies that have assessed crop lodging using satellite-based data at large
spatial scale are still sparse and knowledge relating to the changes in SAR signatures was lacking in
literature. With the advent of dense SAR time series from Sentinel-1 and proposed missions like NASA
ISRO Synthetic Aperture Radar (NISAR), there is an increased interest in exploring SAR for lodging
identification. The main conclusions of this study are summarized below.
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(1) The modified change detection approach used was shown to be capable of providing near
real-time monitoring of the Derecho lodging disaster by generating detailed parameters, such as
backscatter changes, lodging extent, and lodging rate in corn and soybean. The generated lodging
extent maps from SAR showed both severely and moderately damaged fields. The use of CDL
also allowed the estimation of lodged crop per unit area, showing relatively more lodging in
corn fields than soybean fields. We believe the sensitivity of corn to lodging was caused by its
unique structural characteristics (long vertical orientation of its stalk). We estimated that a total
of approximately 2.56 million acres of corn and approximately 1.27 million acres of soybean were
impacted during the Derecho lodging disaster.

(2) The modified change detection approach used was reliable and the reliability can be seen by the
similar distribution patterns of lodged fields in the Sentinel-1A imagery and Landsat-8 imagery.
Furthermore, the generated lodged field maps show correlation with areas of extreme wind speed.

(3) The backscatter difference between the timeseries of lodged and un-lodged (healthy) fields differ.
Our analyses from nine fields showed almost no change between the pre-lodging event image
and post-lodging event image of an un-lodged field while we noted an approximately 6 dB
increase in the VH mean polarization backscatter and 5 dB increase in the VV mean polarization
backscatter for all the fields between the pre-lodging event date and the post-lodging event date.
When we aggregated all the un-lodged fields and the lodged fields across Dallas county, we saw
an increase of approximately 3 dB in the VH mean polarization backscatter and 1 dB in the VV
mean polarization backscatter between the pre-lodging event date and the post-lodging event
date. Taken together, these results suggest that differences in VH polarization and VV polarization
can serve as useful lodging indicators at parcel- and landscape-level and enable rapid mapping
of widespread lodging events using SAR data.

Taken together, the results and the insights from this study demonstrate the practicability of using
high resolution SAR remote sensing data for large scale identification of crop lodging. The approach
employed is simple, effective, and can help decision-makers obtain critical information on lodging
identification to support precision management in order to provide effective emergency relief. Future
studies will evaluate if there is any improvement in the lodging detection performance when SAR and
multispectral datasets are fused. We will also undertake quantitative measures to further validate our
results. Using the validated crop lodging area in this study as a reference, we will investigate the use
of deep learning models to generate a standard near-real time framework for crop lodging assessment.
We will also explore the use of Gamma distribution for fitting the EM algorithm in the HMRF rather
than Gaussian distribution. With adequate ground truth information and further validation, large-scale
crop lodging assessment can improve crop yield forecasting and crop insurance, ultimately benefitting
food production and food security initiatives.
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Abstract: This study describes a semi-empirical model developed to estimate volumetric soil moisture
(ϑv) in bare soils during the dry season (March–May) using C-band (5.42 GHz) synthetic aperture radar
(SAR) imagery acquired from the Sentinel-1 European satellite platform at a 20 m spatial resolution.
The semi-empirical model was developed using backscatter coefficient (σ dB) and in situ soil moisture
collected from Siruguppa taluk (sub-district) in the Karnataka state of India. The backscatter coefficients
σ0

VV and σ0
VH were extracted from SAR images at 62 geo-referenced locations where ground sampling

and volumetric soil moisture were measured at a 10 cm (0–10 cm) depth using a soil core sampler
and a standard gravimetric method during the dry months (March–May) of 2017 and 2018. A linear
equation was proposed by combining σ0

VV and σ0
VH to estimate soil moisture. Both localized and

generalized linear models were derived. Thirty-nine localized linear models were obtained using the
13 Sentinel-1 images used in this study, considering each polarimetric channel Co-Polarization (VV)
and Cross-Polarization (VH) separately, and also their linear combination of VV + VH. Furthermore,
nine generalized linear models were derived using all the Sentinel-1 images acquired in 2017 and
2018; three generalized models were derived by combining the two years (2017 and 2018) for each
polarimetric channel; and three more models were derived for the linear combination of σ0

VV and σ0
VH.

The above set of equations were validated and the Root Mean Square Error (RMSE) was 0.030 and
0.030 for 2017 and 2018, respectively, and 0.02 for the combined years of 2017 and 2018. Both localized
and generalized models were compared with in situ data. Both kind of models revealed that the linear
combination of σ0

VV + σ
0
VH showed a significantly higher R2 than the individual polarimetric channels.

Keywords: volumetric soil moisture; synthetic aperture radar (SAR); Sentinel-1; soil moisture
semi-empirical model; soil moisture Karnataka India

1. Introduction

Soil moisture estimation across space and time has become possible with the advent of
microwave remote sensing [1]. The amount of moisture in the soil is a function of physical, chemical,
and management practices. Soil moisture is highly dynamic across space and correlated in time.
The radar backscattering coefficient is a function of soil characteristics such as dielectric constant,
texture, and surface roughness, and depends on the wavelength, polarization, and angle of incidence
of the radar [1]. Shorter wavelength C-band radar backscatter has shown sensitivity to surface soil
moisture at a depth of about 5 cm [2–4]. The launch of the Sentinel-1 mission of the European Space
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Agency has made a huge amount of C-band data acquired since 2014 from all over the Earth’s surface
accessible. This opened up new perspectives on studying soil moisture in semi-arid regions, as was
undertaken in Karnataka, India, in this work. Large scale soil moisture monitoring will provide greater
insights into energy fluxes, which can result in improved meteorological and climatic projections [5]
that will provide critical inputs for agriculture.

There have been studies based on physical, empirical, and semi-empirical models that estimate soil
moisture over bare soils through radar remote sensing [6–8]. Physical approaches require many input
parameters such as surface roughness and slope, which are not available under practical conditions [8].
Empirical models are only data driven, whereas semi-empirical models, while being data driven,
also support theoretical considerations. In soil studies, they are site-specific and generally valid for
specific soil characteristics [3]. Previous semi-empirical studies have considered single polarization to
build a relationship between soil moisture and a backscatter model at 10 cm depth [9] and estimated
ϑv with a root mean square error (RMSE) of 3–6% [10–12] using C-band data. There have also been
studies that have used the SAR interferometry technique and Sentinel-1 data to estimate soil moisture
and compare them with in situ measurements [13]. Even though SAR interferometry is less frequently
used in the remote sensing community to estimate soil moisture, its advantage lies in its ability to
disentangle moisture and terrain roughness contributions. Most SAR-based soil moisture estimation
studies have covered small areas limited to a few hundred square kilometers [11–17]. Estimating soil
moisture over a wider area and at a higher resolution using SAR imagery will provide information on
managing water resources and irrigation scheduling that can benefit a large number of farmers [14].

The aim of this study was to estimate soil moisture in bare rice agricultural soils. While SAR
images have been used to estimate rice phenology using X-band TerraSAR-X images [15], there have
been limited studies to estimate the soil moisture in bare rice agricultural soils using Sentinel-1 C-band
images. Bare soils in Siruguppa are rice growing areas that lie bare after the rice crop has been
harvested in March, with rice stubble and weeds that have dried up during summer (March–June).
By the time the monsoon rains start, it is extremely critical to estimate the amount of soil moisture
in the top 10 cm, which will help farmers decide when to start preparing the land and start sowing
the next crop. Surface roughness, soil status, soil moisture, and crop residue distribution affect radar
backscatter [16]. It is well established that σ0

VV is more sensitive to variation in soils and σ0
VH is more

suited to the identification of dry crop residue [17]. Utilizing both together can improve the accuracy of
soil moisture estimates [18]. Nevertheless, soil moisture studies using σ0

VV and σ0
VH together, especially

using Sentinel 1 SAR data, are limited. The need for such studies over significantly large agricultural
fields is very important to study agriculture, water, and food security. The major goal of this study
was to estimate soil moisture over bare soils using both σ0

VV and σ0
VH polarization and compare it

with in situ measurements at a 10 cm (0–10 cm) depth. At the time of measurement, soil moisture to
10 cm is at the steady state and consistent across that top surface layer and therefore the C-band can be
assumed to detect the top 10 cm layer. However, it is known that C-band SAR signals cannot penetrate
to a 10 cm depth.

The contribution of standing stubble to total backscattering coefficient is comparable with that of
the soil surface when the stubble has more than 75% water content. Backscatter coefficient decreases
with a decrease in water content in the stubble. However, when the water content in the stubble is less
than 40%, the contribution to the total backscattering coefficient is negligible [19]. We investigated both
localized and generalized linear models to try to disentangle the stubble and soil moisture contributions.
The linear coefficients of localized models were derived using in situ data acquired on a specific
Sentinel-1 day. In contrast, generalized models were built using all in situ measurements acquired in
the study period, thus adding the temporal dimension to the analysis of Sentinel-1 data. The question
we wanted to answer is: can semi-empirical models estimate soil moisture, getting rid of the stubble
contribution to the backscattering coefficient? We tried to answer this question by studying the effects
of each variable, time, and polarization, separately. A localized model does not take into account
the temporal evolution of backscattering, while a generalized model includes the time variable when
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estimating the linear coefficients. Furthermore, for each model, it is possible to keep the polarimetric
channels separated or merge them. In this work, we used a large dataset of in situ measurements of
soil-moisture acquired across a 2-year period to answer the above question. The issues of the stability
of results and of collinearity of data are crucial and will be used to assess the results of this experiment.

The rest of this paper is organized as follows: Section 2 is devoted to materials and methods,
Section 3 to the results, and Section 4 presents the discussion. Finally, a few conclusions are drawn in
Section 5.

2. Materials and Methods

2.1. Study Area

The study was conducted in Siruguppa taluk (sub-district) in the Bellary district of Karnataka
state, India (Figure 1). Siruguppa is located between 15.35◦N to 15.83◦N latitudes and 76.69◦E to
76.71◦E longitudes covering an area of 1048 sq. km. Its climate is moderate and dry most of the year.
It experiences high temperatures ranging from 23.2 ◦C to 42.4 ◦C from March to May and an annual
rainfall of 645 mm. Irrigation from canal discharges cater to 60% of the cropped area, and the rest
is either rainfed or irrigated through groundwater. Most of the crops are grown in predominantly
black-clay, red-loamy, and red-sandy soils.

The River Tungabhadra runs diagonally across Siruguppa from the northwest, providing water
for irrigation. The major crops grown are paddy, sorghum, pearl millet, sunflower, groundnut, cotton
and sugarcane. The last decade saw a fall in kharif (rainy season) crop production due to deficit
rainfall during the monsoon in some places in the taluk, leading to a shift from paddy and millets to
cash crops such as cotton and sugarcane. The Deccan Plateau region is frequently prone to drought,
making information on soil moisture critical for allocating water resources and scheduling irrigation.
The date of sowing is a critical decision farmers make after the initial rainfall has occurred. This is
done based on traditional knowledge and the physical assessment of soil moisture by hand or using
a push probe. A scientific estimation of soil moisture can help farmers to decide the sowing date.
This study was conducted on “bare agriculture fields” of Siruguppa to estimate soil moisture using
radar remote sensing.

2.2. In Situ Data

2.2.1. Soil Sampling and Ground Data Collection

The soils of Siruguppa are classified into Vertisols (covering 720.9 km2), Aridisols (146.8 km2),
Inceptisols (65.1 km2), Alfisols (34.1 km2), and other land cover such as rock outcrops (21.5 km2).
The locations for soil sample collection were based on random sampling, taking into account the
fractions of different soil types. This mitigates the effects of variation from sampling error and increases
the precision of the measured variable [20]. Soil samples were collected using a 10 cm standard metallic
cylinder for a soil type to account for vertical and horizontal homogeneity [21], and weighed on site
using a Mettler Toledo electronic balance. A handheld GPS (Garmin etrex) was used to georeference the
locations immediately with an average accuracy of 2.5 meters as we collected it after a good almanac
was received. Sixty-two locations were sampled spread across the four soil types. Forty-eight locations
were sampled in Vertisols, eight in Inceptisols, four in Aridisols, and two in Alfisols. This was repeated
for two years (2017 and 2018) over 13 dates of satellite overpasses, bringing the total data points to 806
(Figure 1).

Bulk density (BD) samples were collected simultaneously using standard cylindrical cores on site
to estimate volumetric soil moisture (ϑv). The sampling was carried out from March to May in bare
agricultural soils with crop residue from paddy and weeds.
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Figure 1. Map of the study area with sampling locations.

2.2.2. Laboratory Analysis

Volumetric soil moisture was measured in two steps. First, the gravimetric method was used to
estimate soil moisture from field samples over bare agricultural land [22]. Global Positioning System
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(GPS) coordinates were taken at each sample location to allow the approximate identification of the
soil sample location with the image pixel. The soil collected from the ground after measuring the
wet weight (ϑw) was filled in airtight polythene bags and numbered with their corresponding GPS
ID. The polythene bags were brought to the soil laboratory to measure their dry weight (ϑd) using a
standard drying process. Each sample was transferred to a microwave bowl and placed in the oven at
105 ◦C for 24 h, and the weight measured as dry weight. The following formula was used to estimate
gravimetric soil moisture:

ϑ0 =
ϑw − ϑd
ϑd

[
g
g

]
(1)

The second step involved collecting the soil cores to estimate bulk density (BD). The drying
process was repeated for each sample and the following formula was used to estimate BD:

ϑ0 =
ϑd
V

[ g
cm3

]
(2)

where V is the volume of the core.
Volumetric soil moisture was expressed as:

ϑv =
ϑ0·BD
ρH20

[
cm3

cm3

]
(3)

where ρH20 is the water density.

2.3. Data Collection and Pre-Processing

Thirteen Sentinel-1 images were used, six acquired between 4 March 2017 and 27 May 2017
and seven between 11 March 2018 and 22 May 2018 (see Table 1). The incidence angle varied from
30◦ to 35◦ covering the study area in Co-Polarization (VV) and Cross-Polarization (VH) polarization.
The frequency of the acquisition of imagery over India is very low, and a cycle of low and high number
of acquisitions in alternating months was seen from the data portal (Table 1). Pre-processing of SAR
imagery was carried out using SNAP software developed by the European Space Agency (ESA).
Radiometric calibration, thermal noise removal, and terrain correction (using the Range Doppler terrain
correction operator) algorithms were applied to obtain the backscattering coefficient (σ dB) [23]. A Lee
speckle filter was applied to reduce speckle noise. Linear σ0

VV and σ0
VH were converted to dB values.

Sentinel-2 Level-1C S2 imagery with less than 10% cloud cover was downloaded for the years
2016 to 2018. These were converted to Level 2A to obtain bottom of atmosphere reflectance using
SNAP software provided by ESA under a GNU General Public License V3. Visible and Near Infrared
Radiation (NIR) bands B4 and B8 were used to generate normalized difference vegetation index (NDVI)
to delineate the agricultural area.

Table 1. Acquisition dates of Sentinel-1 images: Interferometric Wide (IW) swath mode, relative orbit
63, descending. Ground Range Detected (GRD) product type (VV and VH polarization). Images were
downloaded from the European Space Agency (ESA) portal https://scihub.copernicus.eu/.

Year Acquisition Date

2017 4 March 28 March 21 April 3 May 15 May 27 May

2018 11 March 23 March 4 April 16 April 28 April 10 May 22 May

2.4. Methodology

The study began with pre-processing of Sentinel-1 C-band data (described in Section 2.3) to obtain
σ◦ from both polarizations after applying appropriate corrections and speckle reduction. The in situ
data collected during the field missions were used to extract σ0

VV and σ0
VH values in dB from the
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respective images of different dates (Table 1). The in situ data and σ◦ data were compiled to analyze
and build a semi-empirical model. Agricultural land was derived using band B4 and B8 of a time
series of Sentinel-2 images used to calculate the NDVI for the date for which an image was available in
the season during each year. Random forest (RF) classification was applied to the set of nine NDVI
images covering the study area and training dataset. This is useful to mask out non-agricultural areas
when visualizing soil moisture estimates. An evaluation of the semi-empirical model was conducted
to assess the accuracy of soil moisture (Figure 2).

 

Figure 2. The process of estimating soil moisture using Sentinel-1 Co-Polarization (VV) and
Cross-Polarization (VH) imagery.

2.4.1. Semi-Empirical Model

A semi-empirical model was proposed to estimate soil moisture over bare soils in agricultural
areas from the backscatter coefficient based on a linear relationship. The linear equation captures the
backscatter from bare soil, which constitutes soil moisture and surface roughness (as crop residue) and
includes both VV and VH backscattering coefficients as:

f (ϑv ) = A σ VV + B σ(VH) + T (4)

where ϑv is the volumetric soil moisture; A, B, and T are empirical constants; and σ0
VV and σ0

VH are the
VV and VH backscattering coefficients, respectively.

On bare soil, σ0
VV and σ0

VH are mainly influenced by soil moisture. Since the major crop in the
study area is rice, there is a crop residue as rice stubble on the ground. The rice stubble at 75% water
content also contributes to the σ0

VV, but decreases as the water content decreases and is negligible in
both polarizations [19,24]. A linear combination including both polarizations was found to better
estimate soil moisture from bare soil.

2.4.2. Delineation of Agricultural Fields

The estimation of soil moisture is more meaningful when linked to the purpose for which it
is used. The ideal domain for use of such information is agricultural lands. Ideally, NDVI [25] is
used to understand changes in crop phenology as the growing season progresses. Since the target
class was only agricultural land, time series NDVI during the cropping season was best suited for the
delineation using Sentinel-2 imagery. A set of nine NDVI images during the three crop seasons was
used to estimate land cover using the RF algorithm [26]. The training dataset included land use in the
soil sample locations (62). Additionally, 200 training samples were used: 100 from agricultural land
and 100 from non-agricultural land. This product was used as a base for mapping soil moisture in
agricultural lands.

2.4.3. Evaluation of Semi-Empirical Model

Basic information like maximum, minimum and mean in situ soil moisture were generated
(Table 2). Linear regression was used to understand the relationship between Sentinel-1 backscattering
coefficients and in situ soil moisture data. The P value, which indicates the significance of the accuracy
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assessment was significant (≤0.05) and not significant (≥0.05). The RMSE of the modeled soil moisture
was estimated using the equation:

RMSE =

√
1
N

∑N

i=1
(Ymes −Yest)

2 (5)

To understand the contribution of each polarization and sum of both polarizations to the accuracy
of the model, residual standard error (RSE) of the estimated soil moisture was calculated using equation:

Residual standard error (RSE) =

√∑
(y0 − ye)

2

n− 2
(6)

where y0 is the observed soil moisture; ye is the predicted soil moisture; and n is the degree of freedom.

3. Results

A well distributed sampling scheme and data collected over two years yielded a well calibrated
model to estimate soil moisture in the bare agricultural soils during the dry season (March–May).
Linear and multi-linear regression was used to find the relationship between observed soil moisture
and backscatter coefficients by deriving the model constants for each date and a combination of dates.

3.1. Field Measurements and Laboratory Analysis

Soil moisture was estimated using the gravimetric method for all 62 samples spread over Siruguppa
taluk (Figure 1) for each date of satellite pass. Mean volumetric soil moisture (ϑv) in the samples
ranged from 0.22 m3/m3 to 0.28 m3/m3 from 4 March 2017 to 27 May 2017. Minimum ϑv varied from
0.12 m3/m3 to 0.17 m3/m3 from March 2017 to May 2017 and the maximum ϑv varied from 0.30 m3/m3

to 0.34 m3/m3, respectively (Table 2). Figure 3 illustrates the range of values that each point in the
population takes above and below the mean for six dates of satellite passes during 2017. It is worth
noting that Figure 3 displays the soil moisture values measured the day of the satellite passes and for
this reason, the ranges of the variation of soil moisture appeared as different from those reported in
Table 2. Similarly, measurements were made during 2018 at the same locations. The minimum ϑv varied
from 0.11 m3/m3 to 0.15 m3/m3 and the maximum varied from 0.32 to 0.34 m3/m3 from March 2018 to
May 2018, respectively. The mean ϑv was measured between 0.23 m3/m3 and 0.26 m3/m3 (Table 2).
Figure 4 shows the range of values during 2018 for the seven dates of satellite passes during 2018.

Figure 3. Observed soil moisture of each point during six passes of the satellite estimated using the
gravimetric method during 2017.
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Figure 4. Observed soil moisture of each point during seven passes of the satellite estimated using the
gravimetric method during 2018.

Table 2. Observed soil moisture of all 62 samples combined during each pass of the satellite during
2017 and 2018 collected at Siruguppa taluk.

Field Measurement
Soil Moisture (m3/m3)

Min Max Mean

4 March 2017 0.14 0.31 0.22

28 March 2017 0.12 0.30 0.23

21 April 2017 0.14 0.30 0.22

3 May 2017 0.12 0.30 0.23

15 May 2017 0.17 0.34 0.28

27 May 2017 0.15 0.30 0.23

11 March 2018 0.15 0.33 0.24

23 March 2018 0.15 0.34 0.26

4 April 2018 0.13 0.33 0.24

16 April 2018 0.13 0.34 0.25

28 April 2018 0.14 0.33 0.25

10 May 2018 0.11 0.32 0.24

22 May 2018 0.11 0.32 0.23

3.2. Localized and Generalized Relationships

The concepts of localized and generalized relationships were used in the in situ measurements of
soil moisture and SAR estimates. A relationship was localized if it was obtained using single date data
points in the study area, collected both in 2017 and 2018. A generalized relationship was obtained
when all the dates data points were considered in the study area (Figure 5).

The relationship for localized models showed R2 ranging from 0.62 to 0.75 between σ0
VV and ϑv,

revealing a significantly strong relationship in 2017 (Table 3). As far as σ0
VH is concerned, it was found

to have a lower R2, ranging from 0.43 to 0.70. During 2018, R2 values ranged from 0.56 to 0.69 for
σ0

VV and from 0.31 to 0.62 for σ0
VH. The linear combination of σ0

VV and σ0
VH showed higher R2 values,

ranging from 0.71 to 0.88 during 2017, and from 0.60 to 0.86 during 2018 (see Table 3).
Generalized relationships attempted to study the impact of seasonal effects observed in the study

area due to different agroecologies (i.e., the different management and practices in a homogenous
landscape). Table 4 summarizes the R2 values obtained in the individual years 2017 and 2018 along
with a combination of two years for σ0

VV , σ0
VH and their linear combination (σ0

VV + σ
0
VH). The individual
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and combined backscatter coefficients in the two VV and VH polarizations over 2017 and 2018 pointed
out a clear relationship with the in situ measurements of soil moisture.

Figure 5. Localized and generalized linear models between soil moisture and backscatter.
(Top) Examples of localized models refer to the Sentinel-1 acquisition of 15 May 2017. The remaining
rows refer to the generalized models obtained using all Sentinel-1 images acquired in 2017, 2018, and in
the total study from 2017 to 2018. The images from left to right represent Sentinel-1 images VV, VH,
and VV + VH backscattering coefficients.
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Table 3. Localized relationship between soil moisture and backscatter.

Sentinel-1 Acquisition Date R2 (σ0
VV) R2 (σ0

VH) R2 (σ0
VV+σ

0
VH)

4 March 2017 0.63 0.66 0.83
28 March 2017 0.65 0.65 0.87
21 April 2017 0.68 0.67 0.84
3 May 2017 0.69 0.56 0.80

15 May 2017 0.75 0.70 0.88
27 May 2017 0.62 0.43 0.71

11 March 2018 0.69 0.32 0.75
23 March 2018 0.63 0.34 0.78
4 April 2018 0.56 0.47 0.60
16 April 2018 0.64 0.33 0.72
28 April 2018 0.63 0.31 0.66
10 May 2018 0.65 0.62 0.86
22 May 2018 0.57 0.54 0.78

Table 4. Generalized relationship between soil moisture and backscatter.

Year σ◦ R2

2017 VV 0.68

2017 VH 0.67

2017 VV + VH 0.79

2018 VV 0.66

2018 VH 0.32

2018 VV + VH 0.62

2017, 2018 VV 0.62

2017, 2018 VH 0.47

2017, 2018 VV + VH 0.72

3.3. Soil Moisture Evaluation

Multi-linear regression and linear regression were applied to determine the value of empirical
constants (A, B, and T) in both the localized and generalized models. Tables 5 and 6 summarize the
results. Each localized model comprises images from one date of pass over of the study area, totaling
39 equations from March 2017 to May 2018, and considering individual σ0

VV, σ0
VH, and their linear

combination σ0
VV + σ

0
VH. Each generalized model combines all images acquired during a year for

individual σ0
VV, σ0

VH and linear combination σ0
VV + σ

0
VH. Three models were obtained for each year

2017 and 2018 and three additional models using all the images used in the study, making it a total
of nine generalized models. For the localized model, 40 samples for calibration and 22 samples for
validation were used during 2017 and 2018 (N = 62). The model calibration for individual dates
(localized models) with combined backscatter coefficient (σ0

VV + σ
0
VH) during the study years of 2017

and 2018 estimated an R2 ranging from 0.91 to 0.70 and RSE ranging from 0.03 to 0.01.
As far as generalized models are concerned, N = 368 points were used in 2017, 258 for calibration,

and 110 for validation, and N = 427 in 2018, with 299 for calibration and 128 for validation. The total
number of points for both years was N = 795, with 557 used for calibration and 238 for validation.
The nine linear equations modeled each backscatter coefficient σ0

VV, σ0
VH and a linear combination of

both (σ0
VV + σ

0
VH) for each year (2017, 2018) and 2017 and 2018 put together. Table 6 summarizes the R2

values modeled from σ0
VV and σ0

VH as a function of (ϑv) during 2017 and 2018. RSE was 0.03 for 2017,
2018 from σ0

VV, and 0.03 and 0.04 from σ0
VH for 2017 and 2018, respectively. A linear combination of

both backscatter coefficients during 2017 and 2018 showed an R2 of 0.80 and 0.70, respectively. The RSE
values were 0.02. The backscatter coefficient from each polarization and a linear combination of both
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polarizations put together for two years were also attempted. The R2 from σ0
VV was 0.60 with a RSE of

0.03 and from σ0
VH it was 0.50 with a RSE 0.03. The R2 from a linear combination of both polarizations

(σ0
VV + σ

0
VH) was 0.70 with a RSE of 0.02.

Model validation was done for individual dates from a linear combination of the two polarizations.
Table 5 and Figure 6 summarize the RMSE values for 2017 and 2018. The nine generalized models
were also validated and the RMSE values are reported in Table 6 and Figure 7.

Figure 6. Cont.
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Figure 6. Localized models. Validation (2017 and 2018).

Figure 7. Generalized models. Validation between the estimated and observed soil moisture.
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4. Discussion

Accurate estimation of ϑv was envisaged using a linear equation of σ0
VV and σ0

VH radar cross
section from bare agricultural soils. A thorough data collection campaign was undertaken during
2017 and 2018, synchronizing with the pass of the satellite. Bare soil areas were mostly post-harvest
cropped areas with little or no crop residue, depending on the crop sown. In the study area, 50% of
the agricultural land comprises rice cropped and irrigated from a seasonal stream. Sentinel-1 SAR,
dual polarized imagery was used to estimate soil moisture over bare soils using a semi-empirical model.
Model parameters were estimated using linear and multi-linear regression. Performance evaluation
was conducted based on a 70:30 ratio of sampled points and low RMSE was found between the
observed and estimated soil moisture, when a linear relationship between σ0

VV and σ0
VH was combined

for 2017 and 2018.

Table 5. Empirical constants (A, B, and T) of the localized model. The total number of samples for each
date was 62. The linear equation was derived using 70% of the total population.

Validation

Sentinel-1
Image

Acquisition
Date

Model A B T R2 RMSE

1 4 March 2017 (ϑv) = A × σ0
VV + B × σ0

VH + T 0.014 0.011 0.60 0.82 0.01
2 28 March 2017 (ϑv ) = A × σ0

VV + B × σ0
VH + T 0.013 0.014 0.65 0.88 0.02

3 21 April 2017 (ϑv ) = A × σ0
VV + B × σ0

VH + T 0.011 0.015 0.65 0.84 0.01
4 3 May 2017 (ϑv ) = A × σ0

VV + B × σ0
VH + T 0.014 0.012 0.62 0.76 0.01

5 15 May 2017 (ϑv ) = A × σ0
VV + B × σ0

VH + T 0.008 0.008 0.47 0.90 0.02
6 27 May 2017 (ϑv ) = A × σ0

VV + B × σ0
VH + T 0.017 0.012 0.63 0.75 0.03

7 11 March 2018 (ϑv ) = A × σ0
VV+ B × σ0

VH + T 0.016 0.008 0.57 0.82 0.02
8 23 March 2018 (ϑv ) = A × σ0

VV+ B × σ0
VH + T 0.013 0.008 0.52 0.84 0.02

9 4 April 2018 (ϑv ) = A × σ0
VV + B × σ0

VH + T 0.022 0.004 0.55 0.76 0.02
10 16 April 2018 (ϑv ) = A × σ0

VV + B × σ0
VH + T 0.015 0.008 0.53 0.77 0.03

11 28 April 2018 (ϑv ) = A × σ0
VV + B × σ0

VH + T 0.022 0.010 0.67 0.70 0.02
12 10 May 2018 (ϑv ) = A × σ0

VV + B × σ0
VH + T 0.016 0.017 0.74 0.90 0.02

13 22 May 2018 (ϑv ) = A × σ0
VV + B × σ0

VH + T 0.014 0.019 0.76 0.78 0.02

Table 6. Empirical constants (A, B, and T) of the generalized model. The total number of samples
for 2017 was 368, for 2018 it was 427, and for a combination of 2017 and 2018, it was 795. The linear
equations were derived using 70% of the total sample of each year and combined year.

Validation

Year σ Model A B T R2 RMSE

2017 VV (ϑv ) = A ·σ0
VV + T 0.015 - 0.39 0.70 0.03

2017 VH (ϑv ) = B ·σ0
VH + T - 0.017 0.56 0.67 0.03

2017 VV + VH (ϑv ) = A ·σ0
VV+ B ·σ0

VH + T 0.009 0.009 0.51 0.80 0.02
2018 VV

(
ϑv) = A ·σ0

VV + T 0.019 - 0.44 0.60 0.03
2018 VH (ϑv ) = B ·σ0

VH + T - 0.014 0.50 0.32 0.03
2018 VV + VH (ϑv ) = A ·σ0

VV+ B ·σ0
VH + T 0.016 0.009 0.58 0.70 0.02

2017, 2018 VV
(
ϑv) = A ·σ0

VV + T 0.016 - 0.41 0.60 0.03
2017, 2018 VH (ϑv ) = B ·σ0

VH + T 0.016 0.59 0.50 0.04
2017, 2018 VV + VH (ϑv ) = A ·σ0

VV+ B ·σ0
VH + T 0.011 0.009 0.59 0.70 0.02

4.1. Relationship between σ0
VV and σ0

VH with Observed Data

Soil moisture data were collected over two years (2017 to 2018) during the dry summer season from
March to May from the 62 plots on the dates of the satellite passes. The relationship between σ0

VV , σ0
VH,

and observed soil moisture by individual dates of the satellite pass (13 images) showed that in both years,
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the backscatter and observed soil moisture had a significant positive correlation [2,10,27,28]. In both
years, VV polarization had a higher backscatter dB value than VH polarization. In cross-polarization
(VH), signal attenuation occurs due to volumetric scattering [29]. In 2017, soil moisture constantly
increased from 4 March to 27 April. The R2 between radar backscattering coefficient and in situ
measurements of soil moisture is reported in Table 3. A sudden increase in R2 (VV) can be observed on
15 May, corresponding to the consecutive rainfall events that occurred during the three days before the
date of the satellite pass (Figure 8). This means that there is a better correlation for high values of soil
moisture, probably because under this condition, the radar backscattering coefficient’s dependence on
soil moisture is more important than it is on surface roughness.

Similarly, an unexpected increase in σ0
VH was observed (Figure 5). 27 May 2017 (Table 3) had a low

R2 value from σ0
VH compared to the rest of the dates due to the rainfall event (Figure 8), weeds or crop

residue moisture [24]. In 2018, R2 for the relationship between σ0
VV and observed soil moisture was

significant during March because of residual soil moisture (i.e., the crop residual moisture influenced
the radar backscattering coefficient, Table 3). Residual soil moisture was low on 4 April and 22 May
due to evaporative demand and higher between 16 April and 10 May due to consecutive rainfall
events (Figure 8). R2 did not decrease from March to May, probably due to irregular changes in
crop residue moisture, since σ0

VH is sensitive to it [24]. The R2 values from σ0
VH during March were

relatively low despite no rainfall in the month because of residual soil moisture from the previous crop.
The cumulative moisture due to rainfall during April is reflected in the low R2 of 16 April and 28 April
(Figure 8). During May, high R2 values were due to bare soils. A linear combination of σ0

VV and σ0
VH

during each date in 2017 produced higher R2 compared to R2 from individual polarization. This shows
that the addition of σ0

VV and σ0
VH or vice versa improves the backscatter and soil moisture relationship

rather than a single relationship with different polarization (Table 3). A similar relationship existed
during 2018 from a linear combination of σ0

VV and, which improved R2 significantly (Table 3).

Figure 8. Temporal soil moisture, backscatter, and rainfall, 2017–2018 (March to May).

4.2. Localized and Generalized Relationships

To operationalize the accurate estimation of soil moisture for decision making, a global relationship
was envisaged considering all dates during the dry season. The R2 value of global relationship from
VV polarization during 2017 was 0.68, which was higher than the mean of the local relationships.
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The generalized relationship was found to be more useful for an accurate soil moisture estimate.
In addition, R2 for the generalized relationship performed better than the mean of the localized
relationship (0.67) with VH polarization. The scenario during 2018 from VV polarization was more
influenced by rainfall events in the dry season. The R2 values ranged from 0.56 to 0.69 with a mean of
0.62 from localized relationships and 0.66 from the generalized relationship, which was more than the
local mean. R2 was very low from VH polarization due to cumulative moisture from rainfall events.
However, the generalized relationship produced a lower R2 than the mean localized relationship for
VH in 2018 (see Tables 3 and 4). The usefulness of a generalized relationship was exhibited with
a consistent increase in the accuracy of the soil moisture estimates over two years. The relationship
from VV and VH polarization during 2017 showed significantly lower R2 than the linear combination
of VV and VH during the same year. Similarly, also during 2018, R2 was significantly higher than the
individual polarization. Finally, the best relationship was obtained when the linear combination of two
polarizations was combined (appended) for the two years 2017 and 2018, than from single polarizations
combined for the two years. It was inferred that generalized relationships are more promising in terms
of building a model compared to localized relationships, which may not relate to the entire population.

4.3. Modeling the Relationships

The relationships of localized and generalized modeling were explored and tested for
multicollinearity, especially linear combination models σ0

VV + σ
0
VH. Multicollinearity is a statistical

phenomenon in which two or more predictor variables in a multiple regression model are highly
correlated [30]. To detect multicollinearity, we used an indicator called variance inflation factor (VIF),
which is a tool to measure and quantify how much the variance is inflated [30]. If any of the model’s
VIF values exceed 5 or 10, it is an indication that the associated regression coefficient is poorly estimated
because of multicollinearity [31]. The P value indicates statistical significance for independent variable
contribution in the model, which is explained in Section 2.4.3.

For generalized models, nine different types of linear relationships were explored withσ0
VV andσ0

VH
data (Table 6) during 2017 and 2018. In 2017, among the three possible models σ0

VV , σ0
VH and, σ0

VV + σ
0
VH,

individual models σ0
VV and σ0

VH showed a low RSE and the p value was statistically significant. When
σ0

VH was added to σ0
VV, the RSE was lower than in the individual models. This indicates a very good

relationship with a low VIF as well as p value for both backscatter coefficients. Similar results were
observed in 2018. Generalized models derived by combining two years (2017 and 2018) of data showed
similar results as individual year models. This study also showed that the linear combination equations
from the localized models also performed well with low VIF (<2) and a p value statistically significant
for both backscatter coefficients (Tables 7 and 8).

A collinearity test on the generalized and localized models showed that the VIF for a linear
combination of both backscatter coefficients (VV + VH) was <3. Hence, these models are non-collinear.
All models showed low p value, indicating that both backscatter coefficients made meaningful addition
to the models. During modeling relationships with a linear combination of individual backscatter
coefficient, it was inferred that the individual backscatter coefficients were non-collinear, contributing
to R2 independently. It was found that the localized models from individual dates varied over time,
and any one equation with a low RSE and VIF may not represent the whole season. In addition,
the generalized models produced lower RSE representing the whole season, and were hence better
than each localized model.
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Table 7. Analysis of variance in the generalized model.

Year (σ◦) Variable t Value Pr(>|t| ) VIF

2017 VV 24.24 <2 × 10−16 *** -
2017 VH 23.24 <2 × 10−16 *** -
2017 VV, VH 12.17, 11.20 <2 × 10−16 *** 2.11
2018 VV 21.23 <2 × 10−16 *** -
2018 VH 11.98 <2 × 10−16 *** -
2018 VV, VH 20.76, 11.50 <2 × 10−16 *** 1.10

2017, 2018 VV 29.49 <2 × 10−16 *** -
2017, 2018 VH 24.31 <2 × 10−16 *** -
2017, 2018 VV, VH 21.57, 16.32 <2 × 10−16 *** 1.40

*** p value < 0.001.

Table 8. Analysis of variance in the localized model.

Date (σ◦) Variable t Value Pr(>|t| ) VIF

4 March 2017 VV, VH 4.63, 7.54 <2 × 10−16 *** 1.36
28 March 2017 VV, VH 8.24, 8.04 <2 × 10−16 *** 1.30
21 April 2017 VV, VH 6.93,9.02 <2 × 10−16 *** 1.54
3 May 2017 VV, VH 7.39, 4.34 <2 × 10−16 *** 1.63

15 May 2017 VV, VH 6.93, 5.02 <2 × 10−16 *** 1.71
27 May 2017 VV, VH 5.03, 5.17 <2 × 10−16 *** 1.12

11 March 2018 VV, VH 10.45, 6.07 <2 × 10−16 *** 1.09
23 March 2018 VV, VH 11.25, 6.00 <2 × 10−16 *** 1.10
4 April 2018 VV, VH 10.19, 1.94 <2 × 10−16 *** 1.14

16 April 2018 VV, VH 9.17, 4.47 <2 × 10−16 *** 1.11
28 April 2018 VV, VH 9.10, 4.12 <2 × 10−16 *** 1.0
10 May 2018 VV, VH 10.69, 11.09 <2 × 10−16 *** 1.27
22 May 2018 VV, VH 6.66, 6024 <2 × 10−16 *** 1.26

*** p value < 0.001.

4.4. Validation of Models

Models were validated using 30% of the sampled points. Results for the localized models are
summarized in Table 5. In 2017, the lowest RMSE (0.01) was found on 21 April. Figure 8 shows that no
rainfall or very weak rainfall was observed on this day. An increase in RMSE was observed on 15 May.
Similarly, in 2018, the lowest RMSE was observed on 23 March and the highest (0.03) on 16 April 2018,
probably due to the increase in rainfall. The results seem to show that the RMSE of the models is
related to the amount of rainfall. Localized models performed better in drier soils.

As far as the generalized models are concerned, the validation results showed that generalized
models obtained using co-polar σ0

VV data provided a lower RMSE than those based on cross-polar
σ0

VH data for both 2017 and 2018 and taking all data acquired from 2017 to 2018. We also found that
the linear combination of both co-polar and cross-polar backscattering coefficients always provided
a lower RMSE than the models using only one polarization. The best results came when using the
linear combination of polarizations and all the data acquired along the two years, resulting in an RMSE
of 0.02 (Table 6). This globalized model was used to produce maps of soil moisture and its spatial
variability (Figures 9–11). This is probably the most important result, as a simple multi-linear model
using both co-polar and cross-polar Sentinel-1 data acquired over long time periods can reproduce the
spatial variability of soil moisture.
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Figure 9. Spatial variability in the soil moisture in Siruguppa taluk during 2017.

Figure 10. Spatial variability in the soil moisture in Siruguppa taluk during 2018.
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Figure 11. Spatial variability in the estimated soil moisture from combining all the dates in 2017
and 2018.

5. Conclusions

This study aimed to accurately estimate the soil moisture of bare, post-harvest agricultural areas
collected from Siruguppa taluk (sub-district) in the Karnataka state of India. Fifty percent of this
agricultural area is grown with rice that is irrigated by seasonal canal irrigation. An accurate estimate
of volumetric soil moisture (ϑv) was envisaged using a semi-empirical model based on a linear equation
of co-polarized and cross-polarized radar cross section obtained by Sentinel-1 images. A thorough
data collection campaign was undertaken during 2017 and 2018 during the pass of the satellite.

Both localized and generalized models were developed using Sentinel-1 image independently
and all images together, respectively. Results indicate that the accuracy of the soil moisture estimates
increased when using both co-polar and cross-polar images instead of only σ0

VV or σ0
VH, independently.

The use of localized models revealed that the RMSE of soil moisture estimates decreased
corresponding to dry periods, with little or no rainfall. This indicates that better estimates of soil
moisture can be obtained for drier soils. Coming to globalized models, soil moisture estimates with
lower RMSE were observed when merging all data acquired in 2017 and 2018, and co-polar and
cross-polar images, with a R2 of 0.7 and RMSE of 0.02. The availability of a large amount of in situ
data collected over a large area demonstrated that a generalized linear model based on the joint use of
co-polar and cross-polar C-band SAR images acquired for a long time period, with a short revisiting
time of twelve days, could capture spatial variability in soil moisture. This is an important result
as the availability of Sentinel-1 data can provide farmers with timely and accurate estimates of soil
moisture and enable the mapping of its spatial variability by using simple semi-empirical models.
This information, when provided in the immediate weeks and months preceding the cropping season,
could be very crucial in determining planting dates and assessing early season plant growth, thereby
playing a key role in influencing productivity.
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Abstract: Timely and accurate crop type mapping is a critical prerequisite for the estimation of water
availability and environmental carrying capacity. This research proposed a method to integrate
time series Sentinel-1 (S1) and Sentinel-2 (S2) data for crop type mapping over oasis agricultural
areas through a case study in Northwest China. Previous studies using synthetic aperture radar
(SAR) data alone often yield quite limited accuracy in crop type identification due to speckles. To
improve the quality of SAR features, we adopted a statistically homogeneous pixel (SHP) distributed
scatterer interferometry (DSI) algorithm, originally proposed in the interferometric SAR (InSAR)
community for distributed scatters (DSs) extraction, to identify statistically homogeneous pixel
subsets (SHPs). On the basis of this algorithm, the SAR backscatter intensity was de-speckled, and
the bias of coherence was mitigated. In addition to backscatter intensity, several InSAR products were
extracted for crop type classification, including the interferometric coherence, master versus slave
intensity ratio, and amplitude dispersion derived from SAR data. To explore the role of red-edge
wavelengths in oasis crop type discrimination, we derived 11 red-edge indices and three red-edge
bands from Sentinel-2 images, together with the conventional optical features, to serve as input
features for classification. To deal with the high dimension of combined SAR and optical features, an
automated feature selection method, i.e., recursive feature increment, was developed to obtain the
optimal combination of S1 and S2 features to achieve the highest mapping accuracy. Using a random
forest classifier, a distribution map of five major crop types was produced with an overall accuracy of
83.22% and kappa coefficient of 0.77. The contribution of SAR and optical features were investigated.
SAR intensity in VH polarization was proved to be most important for crop type identification among
all the microwave and optical features employed in this study. Some of the InSAR products, i.e., the
amplitude dispersion, master versus slave intensity ratio, and coherence, were found to be beneficial
for oasis crop type mapping. It was proved the inclusion of red-edge wavelengths improved the
overall accuracy (OA) of crop type mapping by 1.84% compared with only using conventional optical
features. In comparison, it was demonstrated that the synergistic use of time series Sentinel-1 and
Sentinel-2 data achieved the best performance in the oasis crop type discrimination.

Keywords: oasis crop type mapping; Sentinel-1 and 2 integration; statistically homogeneous pixels
(SHPs); red-edge spectral bands and indices; recursive feature increment (RFI); random forest (RF)

1. Introduction

The Xinjiang Uygur Autonomous Region is a major agricultural region in the arid and semi-arid
areas of Northwest China. Due to the dry climate, almost all agriculture in Xinjiang depends on
irrigation, leading to water shortage. This region relies on large-area cotton cultivation for profit,
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with cotton production accounting for over 70% of the national total. Cotton planting consumes
large amounts of water, exacerbating the problem of water scarcity. Some areas in Xinjiang have
undergone structural adjustments of agriculture, reducing the cultivation area of cotton and expanding
the planting scale of two other cash crops, i.e., chili pepper and tomato. These adjustments resulted in
a more complex cropping structure, requiring the timely and accurate mapping of crop distribution.
Crop type distribution is vital information for estimating water availability and environmental carrying
capacity. This is especially important in the arid and semi-arid areas in Northwest China, where oasis
agriculture is the economic pillar, while the ecological environment is relatively fragile.

Optical remote sensing has been widely used in agricultural area mapping and crop classification
in recent years. Approaches utilizing MODIS (Moderate Resolution Imaging Spectroradiometer)
vegetation indices for crop type discrimination only suit for large-open fields, due to the low resolution
(250–500 m) of MODIS data [1–3]. A number of studies used Landsat spectrum and vegetation indices
for crop mapping, but the data availability is heavily limited by cloud cover due to Landsat’s 16-day
revisit interval [4]. Landsat data also encounters mixed-pixel problems in heterogeneous smallholder
farming areas. In addition, crop type discrimination places a higher demand on the spectral resolution.
The increased temporal, spatial, and spectral resolution of Sentinel-2 A/B imagery provides new
opportunities for improving crop type classification over heterogeneous cultivated land compared
with other optical sensors [5,6].

As pointed out by previous studies, due to cloud cover, the optical data discontinuity in key
growth stages of crops can still happen [7]. Furthermore, for crop types with similar phenological
cycles, only using spectral information is still challenging for reliable discrimination of crop types. As
synthetic aperture radar (SAR) can reflect the structure of vegetation, and optical imagery captures the
multi-spectral information of crops, it has been indicated that the synergetic use of SAR and optical
data can be complementary to each other [8,9].

Space-borne SAR, due to its all-day, all-weather capability, wide coverage, and strong penetrating
ability, has been increasingly used in crop classification, to complement with the use of optical imagery.
It was found that considerable improvement can be achieved by increasing polarization channels [10,11].
Some studies suggested that using multi-temporal acquisitions can improve the accuracy of crop type
mapping, and cross-polarized backscatter outperforms other polarization modes [12,13]. The launches
of Sentinel-1 A and B satellites dramatically increased the volume of freely available SAR data, with
dual-polarization modes, a 12-day revisit time, and 20 m spatial resolution. Thus, Sentinel-1 data is
more desirable for medium to high-resolution crop mapping. However, affected by speckles inherent
in SAR imaging systems, crop type mapping using SAR data alone yields quite limited accuracy [14].
The work by Ban et al. suggested that apart from speckles, the single parameter, high incidence
angle SAR system used in their study did not provide sufficient differences to differentiate some crop
species [15]. Thus, due to the limited viewing angles and orbits of available SAR data in most study
cases, the sole use of SAR data may not be sufficient for crop type classification, especially in complex
cropping systems.

By the synergic use of microwave Sentinel-1 features and optical Sentinel-2 features, the accuracy
of crop discrimination can be potentially improved [15–18]. However, despite the existing studies to
combine SAR and optical images for crop classification, few studies (1) explored the performance of
individual InSAR products (such as coherence, amplitude dispersion, and master versus slave intensity
ratio) in crop type identification. Regarding the de-speckling of SAR intensity, the conventional
procedure presented in previous studies uses a regular-shaped window (e.g., boxcar filter, Lee filter,
refined Lee filter, etc.) to reduce speckle effects, but in the meantime blurs the image especially over
textural areas [19].

The combination of SAR and optical imagery resulted in hundreds of input features (also known
as input variables) for the classification model. We adopted a supervised random forest classifier in the
crop classification due to its high capacity to deal with a large number of input features. Nevertheless, it
has been reported that the classification accuracy can be considerably increased by removing redundant
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features [20]. Feature selection is a crucial step to improve the performance of a classifier. From an
operational perspective, the manual selection of such high-dimensional features is not desirable. Many
approaches used separability criterion or hypothetical tests to select features based on assumptions
of the sample distribution. In some cases, these assumptions were not satisfied, particularly when
using SAR features. Moreover, crop samples can even break the assumption of unimodal distribution.
For example, the sowing and harvesting dates are usually farmer customized; crop growth stages are
affected by local weather conditions and soil conditions; therefore, they are site-specific. Thus, we
prefer not to use separability criterion or hypothetical tests to select features. In the literature, several
methods based on machine learning algorithms have been proposed for feature selection [21,22]. Some
studies indicated the built-in attribute of random forest, the feature importance score, can be utilized
as a ranking criterion to aid feature selection.

The objective of this research is to develop a method to integrate time series Sentinel-1 and Sentinel-2
features for the mapping of typical oasis crop distribution in heterogeneous smallholder farming areas.
Firstly, in addition to SAR backscatter intensity, a number of InSAR products were extracted from time
series Sentinel-1 data, such as the interferometric coherence, amplitude dispersion, and master versus
slave intensity ratio. A statistically homogeneous pixel (SHP) distributed scatterer interferometry
(DSI) [23,24] algorithm, originally proposed in the interferometric SAR (InSAR) community to identify
distributed scatters (DSs), was adopted for the de-speckling of backscatter intensity and bias mitigation
of coherence coefficient, so as to improve the quality of SAR features. To the best of our knowledge,
this is the first time the use of amplitude dispersion and bias mitigated coherence is explored in crop
type discrimination. Secondly, optical features were extracted from multi-temporal Sentinel-2 images.
In particular, red-edge spectral bands and 11 indices were derived and included as input features
for the oasis crop classification. Thirdly, a recursive feature increment (RFI) approach, on the basis
of random forest feature importance, was proposed to obtain the optimal combination of S1 and S2
features for crop type discrimination. Finally, a random forest classifier was applied to the optimal
feature set to produce a crop type distribution map. This study aims to answer the following questions:
(1) Does the integration of Sentinel-1 and Sentinel-2 features achieve better performance than using
SAR or optical features alone in the oasis crop type mapping? (2) If yes, which SAR feature has the
most significant contribution? Are there any InSAR products that are capable of distinguishing oasis
crop types? (3) To what extent can the inclusion of red-edge spectral bands and indices improve the
accuracy of the oasis crop type identification? Which red-edge band or indices contribute most?

2. Materials and Methods

2.1. Study Area

The study area is located in oasis agricultural areas in Bayingolin Mongol Autonomous Prefecture,
Xinjiang Uyghur Autonomous Region, China, encompassing the area 40.61◦–42.44◦ N, 85.82◦–87.14◦ E
(Figure 1). This area is situated in the southern foothills of the Tianshan Mountains, on the north-eastern
edge of the Tarim Basin, adjacent to the west bank of Bosten Lake, and to the north of the Taklimakan
Desert. This region features a warm temperate continental climate, with much more evaporation
than precipitation. It has a representative planting pattern in the arid and semi-arid regions of
Northwest China.

The major crop types cultivated from spring to autumn include cotton, spring corn, summer corn,
pear, chili pepper, tomato, etc. Cotton is sown from early April to early May and harvested by the
end of September. Spring corn is sown in mid-April to early June and harvested in mid-August to
mid-September. Summer corn is sown in mid-June to mid-July and harvested by early October. Pear
starts budding in late March, flowering from late March to the end of April, fruiting from May to
early September, and is harvested in September. Chili pepper and tomato seedlings are nurtured in
greenhouses from February to March, transplanted to open fields from mid-April to early May. Tomato
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is harvested in August, and chili pepper is harvested in October. Phenological calendars of the five
crop types are summarized in Table 1.

Figure 1. The study area across Yuli, Korla, Bohu, Yanqi, Hejing, and Hoxud counties in Bayin Guoyu
Mongolian Autonomous Prefecture, Xinjiang Uygur Autonomous Region, China. The in-situ collected
sample points of major crop types are highlighted. The overlapped area of Sentinel-1 IW2 sub-swath
(in the blue rectangle) and mosaicked coverage of Sentinel-2 scenes (in the black rectangle) is the area
of interest in this study. The background image is a true color Google Earth high-resolution image.
Map data: Google Earth, Image© 2020 Europa Technologies.

Table 1. Phenological calendars of the major crop types in the study site.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Cotton � � √
Corn (Spring) � � � √ √

Corn (Summer) � � √ √
Pear

√
Chili pepper ♠ ♠ � �

√ √
Tomato ♠ ♠ � �

√
Legend: � Sowing; Budding; ♠ seedling nurturing;� Transplanting; Growing;

√
Harvesting.
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2.2. Data

2.2.1. In-Situ Reference Data

Ground samples of six land cover types (cropland, forest, urban area, desert, waterbody, and
wetlands) were visually identified from Google Earth high-resolution images in terms of polygons.
These sample polygons were resampled to generate randomly placed points for each cover type
(Table 2). Individual fields of five crop species were collected in a field campaign in July 2018. Crop
sample points were randomly extracted from each field under the condition that the minimum distance
between any two points must be no less than 20 m. This was done in ArcGIS Data Management
toolbox. Stratified K fold was applied in the units of crop fields; that is, sample points from the same
field can only be used for training or testing. Thus, training samples are not spatially correlated to the
samples used in validation. In the crop type classification, five folds were used to verify the accuracy,
and the details are shown in Table 3.

Table 2. Ground samples of the six land cover types in the study area.

Land Cover Type Sample Points

Cropland 3817
Forest 1468
Desert 1468

Urban area 2349
Waterbody 3257
Wetlands 3125

Table 3. Ground samples collected for major crop types in the study area.

Crop Type Fold
Training Samples Testing Samples

No. of Fields No. of Points Points No. of Fields No. of Points

Chili pepper

1st 57 148 18 37
2nd 50 147 25 38
3rd 68 147 7 38
4th 63 151 12 34
5th 71 147 4 38

Corn

1st 23 89 9 22
2nd 25 88 7 23
3rd 30 90 2 21
4th 29 87 3 24
5th 21 90 11 21

Cotton

1st 37 150 13 38
2nd 43 151 7 37
3rd 43 152 7 36
4th 34 151 16 37
5th 43 152 7 36

Pear

1st 22 76 2 19
2nd 20 78 4 17
3rd 15 76 9 19
4th 18 77 6 18
5th 21 73 3 22

Tomato

1st 19 104 2 31
2nd 16 108 5 27
3rd 19 108 2 27
4th 15 110 6 25
5th 15 110 6 25
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2.2.2. Satellite Data

To monitor the growth stages of major crop types cultivated from spring to autumn in the study
area, we examined Sentinel-1 and Sentinel-2 data acquired in the time period from late March to early
October. After discarding Sentinel-2 acquisitions with too much cloud cover (more than 20%), there
were in total eight Sentinel-2 acquisitions left. The available number of the Sentinel-1 and Sentinel-2
acquisitions for each month is summarized in Table 4.

Table 4. The employed Sentinel-1 and Sentinel-2 acquisitions of each month.

Acquisition Time Mar Apr May Jun Jul Aug Sep Oct

Sentinel-1A 1 2 3 3 3 3 2 2
Sentinel-2A 0 0 1 0 0 1 1 1
Sentinel-2B 0 0 0 1 1 0 1 1

The employed Sentinel-1 data is the level-1 interferometric wide swath (IW) single look complex
(SLC) data. In total, 18 acquisitions were used (Table 5).

Table 5. Metadata of the data stack of Sentinel-1 (S1) interferometric wide swath (IW) single look
complex (SLC) data using the parameters from the first image. These values remain very close for all
subsequent acquisitions.

Sentinel-1 IW SLC Data

First acquisition 26 March 2018
Last acquisition 16 October 2018
Pass direction Ascending

Polarization mode VV + VH
Incidence angle (◦) 36.12–41.84
Wavelength (cm) 5.5 (C-band)

Range spacing (m) 2.33
Azimuth spacing (m) 13.92

The Sentinel-2 data used in this study is the MSI Level-1C data (Table 6). In total, eight acquisitions
were used, spanning the time from 9 May 2018 to 11 October 2018.

Table 6. Central wavelength and bandwidth of different spectral bands of Sentinel-2 data used in
this research.

Spatial Resolution (m) Spectral Bands
S2A S2B

Central Wavelength (nm) Central Wavelength (nm)

10

B2 Blue 496.6 492.1
B3 Green 560 559
B4 Red 664.5 665
B8 Near-infrared (NIR) 835.1 833

20

B5 Red-edge 1 703.9 703.8
B6 Red-edge 2 740.2 739.1
B7 Red-edge 3 782.5 779.7

B8A NIR narrow 864.8 864

B11 Short-wave infrared (SWIR) 1 1613.7 1610.4
B12 SWIR 2 2202.4 2185.7

2.3. Methods

The workflow used in this research is provided in Figure 2.
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Figure 2. The workflow of crop type mapping by the integration of time series Sentinel-1 and
Sentinel-2 features.

Firstly, a number of SAR features were extracted from time series Sentinel-1 data. It has been
reported intensity and derived ratios (VV versus VH ratio, and the normalized ratio procedure between
bands (NRPB)) can monitor the vegetation changes. Some studies indicated that SAR interferometric
coherence can potentially improve the discrimination capability of different land cover types [25–28].
Thus, the backscatter intensity, interferometric coherence, and their derivative products were derived
as SAR features for crop mapping. A by-product from interferometric pairs was also included; that
is, the master versus slave intensity ratio computed respectively for the VH and VV polarization
modes. In addition, we derived a statistic of time series SAR intensity, i.e., the amplitude dispersion
computed respectively for VH and VV polarization. The amplitude dispersion was originally used in
multi-temporal interferometric SAR (InSAR) for the initial selection of persistent scatters, which is a
good indicator to distinguish vegetated surface and man-made structures, bare rocks, etc.

Secondly, optical features were derived from Sentinel-2 images. In addition to the conventional
features, such as the visible, NIR (Near-infrared), SWIR (Short-wave infrared) bands, normalized
difference vegetation index (NDVI), and normalized difference water index (NDWI), the red-edge
spectral bands were also extracted. A total of 11 red-edge indices (will be detailed in Table 7)
were calculated for each S2 acquisition, in order to thoroughly explore the contribution of red-edge
wavelengths in crop type discrimination.

To deal with the high dimensional input features for the classifier, we proposed a recursive
feature increment approach to select the optimal combination of SAR and optical features (detailed in
Section 2.3.2) based on the random forest feature importance ranking.
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A two-step hierarchical cotton mapping strategy (Figure 2) was implemented in this research. In
step 1, the entire field site was classified into six land cover types, i.e., cropland, forest, desert, urban
area, water body, and wetlands, so as to create a cropland mask. In the second step, the cropland
was mapped into five different crop types, including chili pepper, corn, cotton, pear, and tomato. The
automated feature selection method and RF classification were used both in step 1 and step 2, as
illustrated in Figure 2.

2.3.1. Data Processing and Feature Extraction

1. Sentinel-1 Data Processing and Feature Extraction

All Sentinel-1 IW SLC images were pre-processed by the SNAP—ESA Sentinel Application
Platform v7.0.0 (http://step.esa.int). Processing steps include co-registration, de-burst, and subset. To
derived InSAR products, in total, 17 interferometric pairs were formed for each polarization mode using
the acquisition on 26 March 2018 as the common master image, and all the subsequent acquisitions as
the slave images. The next step is the de-speckling of intensity and accurate estimation of coherence.
As pointed out by [29], using regular-shaped windows, conventional de-speckling methods average the
values of neighboring pixels indiscriminately, leading to degraded image resolution and blurred edges
between objects of different scattering characteristics. Furthermore, conventionally, the coherence
is calculated by a regular-shaped sliding window, which unavoidably averages pixel values from
different distributions (e.g., belonging to different land cover types), resulting in a biased estimation.
In this study, a SHP DSI algorithm [23,24] was applied to the single look complex SAR data prior to
SAR feature extraction. Here, we briefly summarize the principles and processing steps of the SHP
DSI algorithm:

In SAR images, there are large numbers of distributed scatters (DSs) that exist in a resolution cell
in cropland, forest, desert, etc. DSs cannot dominate the backscatter characteristics of a resolution cell,
and the pixel appears as a random variable along the time dimension. When the SAR time series is
sufficiently long, according to the central limit theorem, the vector sum of all the distributed scatters
from a pixel can be defined as a complex Gaussian random variable. In a SAR image, we can identify
if a pixel has the same statistical distribution with the other using the confidence interval. In this
way, pixels can be divided into different statistically homogeneous pixel (SHP) subsets. The SHP DSI
algorithm applies a modified Lee filtering method to the diagonal elements of the complex covariance
matrix of an arbitrary pixel, on the basis of the SHP subset that the pixel belongs to, to obtain filtered
time series intensity.

As for the interferometric coherence, for an arbitrary pixel i, the coherence coefficient is
calculated as:

γ =

∣∣∣∣∣∣ K∑
i=1

S1(i)S∗2(i)
∣∣∣∣∣∣√

K∑
i=1

∣∣∣S1(i)
∣∣∣2 K∑

i=1

∣∣∣S2(i)
∣∣∣2

(1)

where S1(i) and S2(i) represent the corresponding complex values of the pixel i in the master and
slave images, and K is the number of pixels in an SHP subset where the pixel i is located. Firstly,
the coherence coefficient is calculated on the basis of each SHP subset for the purpose of removing
the errors caused by the image texture. Secondly, a maximum-likelihood fringe rate algorithm [24]
is applied to compensate for the interferometric fringe pattern. Finally, the bias in the coherence
estimation is further mitigated using the second kind of statistical estimator proposed by [30].

After the implementation of the SHP DSI algorithm, we obtained the de-speckled backscatter
intensity and bias-corrected coherence coefficient for each acquisition date. The units of VH and VV
intensity were both converted decibels (dB). On this basis, a number of other Sentinel-1 features were
generated as follows.
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As one of the InSAR products, the master versus slave intensity ratio of the VH and VV polarization
modes was calculated as

Intensity_VH_mst/slv_ratio =
intVH,mst
intVH,slv

Intensity_VV_mst/slv_ratio =
intVV,mst
intVV,slv

(2)

where intVH,mst, intVV,mst and intVH,slv, intVV,slv are respectively the backscatter intensity (in the unit of
dB) of the master and slave images of each interferometric pair with the VH, VV polarization mode.

A statistic previously used in multi-temporal InSAR, i.e., amplitude dispersion is calculated as

amp_dispVH =
std(ampVH)

mean(ampVH)
, amp_dispVV =

std(ampVV)

mean(ampVV)
(3)

where ampVH and ampVV represent the amplitude of each Sentinel-1 acquisition of the VH and VV
polarization mode.

A by-product of backscatter intensity, i.e., VV versus VH intensity ratio is calculated as

Intensity_VV/VH_ratio =
intVV

intVH
(4)

where intVV and intVH are respectively the backscatter intensity (in the unit of dB) of each Sentinel-1
acquisition.

Another intensity-based ratio, the normalized ratio procedure between bands (NRPB) [31] is
calculated as

NRPB =
intVH − intVV

intVH + intVV
(5)

Table 7. Spectral indices calculated from Sentinel-2 data.

Reference Spectral Indices Formula

NDVI Normalized Difference Vegetation Index NDVI = (B8−B4)
(B8+B4)

NDWI Normalized Difference Water Index NDWI = (B3−B8)
(B3+B8)

Red-edge spectral indices Formula

NDVIre1 Normalized Difference Vegetation Index
red-edge 1 [32]

NDVIre1 =
(B8−B5)
(B8+B5)

NDVIre1n Normalized Difference Vegetation Index
red-edge 1 narrow [6]

NDVIre1n =
(B8a−B5)
(B8a+B5)

NDVIre2 Normalized Difference Vegetation Index
red-edge 2 [6]

NDVIre2 =
(B8−B6)
(B8+B6)

NDVIre2n Normalized Difference Vegetation Index
red-edge 2 narrow [6]

NDVIre2n =
(B8a−B6)
(B8a+B6)

NDVIre3 Normalized Difference Vegetation Index
red-edge 3 [32]

NDVIre3 =
(B8−B7)
(B8+B7)

NDVIre3n Normalized Difference Vegetation Index
red-edge 3 narrow [6]

NDVIre3n =
(B8a−B7)
(B8a+B7)

CIre Chlorophyll Index red-edge [33] CIre = B7
B5 − 1

NDre1 Normalized Difference red-edge 1 [32] NDre1 =
(B6−B5)
(B6+B5)

NDre2 Normalized Difference red-edge 2 [34] NDre2 =
(B7−B5)
(B7+B5)

MSRre Modified Simple Ratio red-edge [35] MSRre = (B8/B5)−1√
(B8/B5)+1

MSRren Modified Simple Ratio red-edge narrow [6] MSRren =
(B8a/B5)−1√
(B8a/B5)+1
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In summary, we derived 10 subcategories of features from Sentinel-1 data. Adding features of
different acquisition dates together, 142 Sentinel-1 features were produced, geocoded, and resampled
to 10 m resolution.

2. Sentinel-2 Data Processing and Feature Extraction

Sentinel-2 data were firstly processed from Level-1C to Level-2A surface reflectance using a
Sen2Cor—ESA Sentinel-2 Level 2A processor (https://step.esa.int/main/third-party-plugins-2/sen2cor/
(accessed on 30 October 2019)). Cirrus cloud correction was done during the Level-1C to Level-2A
processing by Sen2Cor. Pixels covered by thick clouds were masked out using the opaque clouds band
in the Level-2A product metadata. All spectral bands of 10 m and 20 m spatial resolution, including
the red-edge bands (Band 5, Band 6, and Band 7) were included in the analysis. The 20 m resolution
bands were resampled to 10 m resolution for further processing. Apart from the normalized difference
vegetation index (NDVI) and normalized difference water index (NDWI), 11 red-edge indices (Table 7)
were generated for each Sentinel-2 acquisition.

All geocoded Sentinel-1 features were aligned with the Sentinel-2 features. In summary, 33
subcategories, a total of 326 Sentinel-1 and Sentinel-2 features, were produced for subsequent analysis.

2.3.2. Optimal Feature Selection and Classification

1. Random Forest Classification

The random forest (RF) classifier [36] was deployed in this study for both cropland extraction
and crop type classification. Random forest is a machine learning algorithm for classification, which
consists of an ensemble of decision trees where each tree has a unit vote for the most popular class
to classify. RF has been widely used for remote sensing classification, as it runs efficiently on large
databases and performs well with high-dimensional features.

In this study, we used the RF classifier from the Scikit-learn Python module [37] for classification.
The two key parameters, i.e., the number of trees and the number of features in each node, were chosen
by analyzing the out-of-bag (OOB) errors. As a result, the number of trees was set as 450 in step 1 and
550 in step 2, and the number of maximum features in each tree was set as the square root of the total
number of input features in both steps.

2. Optimal S1 and S2 Input Variable Selection Using Recursive Feature Increment (RFI) Method

Inspired by the backward feature elimination method [22], we proposed a forward feature selection
approach to obtain the optimal combination of S1 and S2 features, which is referred to as the recursive
feature increment (RFI) method.

Firstly, a feature importance ranking was obtained by the permutation importance of random
forest calculated for each feature. The permutation importance assesses the impact of each feature
on the accuracy of the random forest model. The general idea is to randomly permute the feature
values and measure the decrease of the accuracy due to the permutation. In this study, we utilized the
permutation importance function from the ELI5 package to estimate the feature importance.

Secondly, using the feature ranking with the most important feature placed at the top, RF
classification was implemented by recursively considering bigger and bigger feature sets, starting
from one feature and adding one at a time. For the feature set at each iteration, an RF classifier is
parameterized and assessed using stratified k-fold cross-validation, with the mean overall accuracy
(OA), mean kappa coefficient, and mean f1 score of all classes, as well as the f1 score of individual
class recorded.

Finally, by analyzing the time series of the accuracy metrics, for example, the kappa coefficient,
the feature set corresponding to the iteration achieving the highest accuracy is selected as the optimal
combination of S1 and S2 features.
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3. Accuracy Assessment

The performance of classification was assessed using stratified k-fold cross-validation. The entire
sample dataset was split into k stratified “folds”. The folds were made by preserving the percentage of
samples for each class. In the case of unbalanced samples, this is to ensure that each fold is a good
representative of the whole. For each fold in the sample dataset, the classification model was trained on
k-1 folds and tested on the kth fold. This was repeated until each fold had served as the test set. Three
accuracy metrics were used in this study, i.e., the overall accuracy (OA), Cohen’s kappa coefficient,
and F1 score of each class. All these metrics were averaged over the k folds.

The OA is calculated from the confusion matrix by adding the number of correctly classified sites
together and dividing it by the total number of the reference sites. It is to test what proportion were
mapped correctly out of all of the reference sites. From the confusion matrix, the producer’s accuracy
(PA, also referred to as recall) and the user’s accuracy (UA, also referred to as precision) can also be
calculated. UA (precision) is the ratio of correctly predicted positive observations to the total predicted
positive observations; PA (recall) is the ratio of correctly predicted positive observations to all the
observations in the actual class. The kappa coefficient is to evaluate if the classification does better
than randomly assigning values by taking into account the possibility of the agreement occurring by
chance. In the case of uneven class distribution, the F1 score is a more useful metric than OA, as it is a
weighted average of precision and recall. The F1 score for each class is calculated as follows:

F1 = 2
precision× recall
precision + recall

(6)

3. Results

3.1. Step 1: Cropland Extraction

A random forest (RF) classifier was applied to the Sentinel-1 and Sentinel-2 features for land cover
classification, so as to generate a cropland mask. As the purpose of this step is to extract a cropland
mask, we use the F1 score of cropland (Figure 3) as the accuracy metric for the RFI feature selection
(Section 2.3.2). The top 114 features in the importance ranking were selected. The feature importance
scores of the top six features are displayed in Figure 4, with corresponding boxplots of different land
cover types shown in Figure 5.

Figure 3. The F1 score of cropland recorded in each iteration of the recursive feature increment (RFI)
process, reaching the maximum at the 114th iteration. Therefore, the top 114 features in the importance
ranking were chosen as the optimal feature set for land cover classification in step 1.
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Figure 4. The feature importance scores of the top six features selected by the RFI method for cropland
extraction, in descending order. Each importance score was normalized and converted to percentage.
Each feature is named by its subcategory and acquisition time in the format of “yyyymmdd”.

Figure 5. Boxplots of the top six most important features of different land cover types. Each feature is
named by its subcategory and acquisition time in the format of “yyyymmdd”.

In Figure 5, the top six features exhibit a good ability to distinguish different cover types, which
reflects the reliability of the RFI feature selection method.

The random forest classifier was parameterized using the selected 114 features to generate a
land cover map (Figure 6a). Then, a cropland mask (Figure 6b) was produced from the land cover
classification results. The land cover classification accuracy was assessed using 10-fold cross-validation
(Table 8).
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Figure 6. (a) Land cover classification map; (b) cropland mask extracted from the land cover
classification results.

Table 8. Accuracy of step 1 land cover classification, assessed by stratified 10-fold cross-validation
using the ground samples. OA: overall accuracy.

Mean OA (%) Kappa Coefficient F1 Score

94.05% 0.927

Cropland 0.942
Forest 0.835
Desert 0.908

Urban area 0.932
Waterbody 0.995
Wetlands 0.945

3.2. Step 2: Crop Type Mapping

3.2.1. Optimal S1 and S2 Feature Combination and Crop Type Mapping

Using the RFI feature selection method, we obtained the optimal combination of Sentinel-1 and 2
features for crop type discrimination. In this case, the kappa coefficient was used as the main accuracy
metric to determine the final feature set. The mean OA achieved its maximum at the same time as the
kappa coefficient, at the 113th iteration. Thus, in total, 113 features were selected. The mean OA and
mean kappa coefficient averaged over the k-fold cross-validation are plotted in Figure 7. The feature
importance scores of the top six features selected for crop type classification are shown in Figure 8.
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Figure 7. The mean overall accuracy (OA) and mean kappa coefficient of fivefold cross-validation
recorded for each iteration during the RFI feature selection process.

Figure 8. The feature importance score of the top six features selected by the RFI method for crop
type classification, in descending order. Each importance score was normalized and converted to a
percentage. Each feature is named by its subcategory and acquisition time in the format of “yyyymmdd”.

The boxplots of the top six features (Figure 9) reveal the good separability of different crop types,
which proves the rationality of the RFI feature selection results. For example, the intensity of the VH
mode reflects a good ability to distinguish pear from other crop types in March. Pear values in Band 8
(NIR) in July show a clear distinction from other crops. Corn can be easily separated in the red-edge
index NDVIre2n in September. Cotton is clearly distinguished in Band 11 (SWIR 1) in June.

Based on the optimal combination of S1 and S2 features, a random forest classification model was
trained using the ground samples and applied to the whole study area to produce a crop distribution
map (Figure 10). The classification accuracy was assessed by fivefold cross-validation (Table 9). Besides,
the accuracy was also verified by a “one sample per field” method; that is, from an individual validation
field (as listed in Table 3), only one sample was extracted. In this method, the validation samples are
independent from each other. The corresponding accuracy metrics are listed in Table 10.
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Figure 9. Boxplots of different crop types of the top six important features selected by the RFI approach.
Each feature is named by its subcategory and acquisition time in the format of “yyyymmdd”. (a)
Boxplots of the band 11 values from the 3 June 2018 acquisition of Sentinel-2; (b) boxplots of the band 6
values from the 17 August 2018 acquisition of Sentinel-2; (c) boxplots of the NDVIre2n indices derived
from the 1 September 2018 acquisition of Sentinel-2; (d) boxplots of the VH intensity values from the 26
March 2018 acquisition of Sentinel-1; (e) boxplots of the band 8 values from the 23 July 2018 acquisition
of Sentinel-2; (f) boxplots of the band 7 values from the 17 August 2018 acquisition of Sentinel-2.

Figure 10. Crop distribution map of the study area derived from random forest (RF) classification using
the combined Sentinel-1 and Sentinel-2 feature set.
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Table 9. Accuracy of step 2 crop type classification using the optimal combination of S1 and S2 features,
assessed by stratified fivefold cross-validation using the ground samples.

Mean OA (%) Kappa Coefficient F1 Score

86.98% 0.83

Chili pepper 0.84
Corn 0.71

Cotton 0.97
Pear 0.94

Tomato 0.79

Table 10. Accuracy of step 2 crop type classification using the optimal combination of S1 and S2
features, assessed by stratified fivefold cross-validation using one sample from each validation field.

Mean OA (%) Kappa Coefficient F1 Score

83.22% 0.77

Chili pepper 0.87
Corn 0.69

Cotton 0.91
Pear 0.89

Tomato 0.71

From Figure 10, we can see that pears are mainly planted in Korla County; the four counties near
Bosten Lake (Bohu, Yanqi, Hejing, and Hoxud) are the main production areas of chili peppers and
tomatoes; cotton is mostly cultivated in Yuli County on the edge of the Tarim Basin. Corn cultivation
spreads across the whole study area.

3.2.2. Performance Comparison of SAR Features Filtered by Different Methods in Crop Classification

In this section, we compare the crop classification results obtained using SAR features processed by
conventional de-speckling methods and the SHP DSI method. The input variables include all the SAR
features mentioned in Section 2.3.1. In the conventional procedure, the intensity and intensity-derived
features were de-speckled using a 7 × 7 refined Lee filter, and the coherence was estimated using a 7 ×
7 sliding window. In the SHP DSI method, statistically homogeneous pixels (SHPs) were identified
based on a 5 × 9 window using the intensity stack formed by 18 acquisitions. Then, the de-speckled
intensity and accurately estimated coherence were obtained by the procedure described in Section 2.3.1.
An example intensity of a subset area extracted from the original SAR intensity, intensity filtered by
refined Lee method, and intensity filtered by the SHP DSI method are compared in Figure 11. Figure 12
shows the example coherence of the same subset area extracted from the interferometric coherence
estimated respectively using a 7 × 7 sliding window and the SHP DSI method. The crop classification
accuracy obtained by using SAR features processed by different filtering algorithms is listed in Table 11.

Figure 11. A subset of VH intensity on 26 March 2018 extracted from (a) Original synthetic aperture
radar (SAR) intensity; (b) SAR intensity filtered by the refined Lee method; (c) SAR intensity filtered by
the SHP distributed scatterer interferometry (DSI) method.
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Figure 12. A subset of VV coherence on 7 April 2019 extracted from (a) Coherence coefficient
estimated by a 7 × 7 sliding window; (b) Coherence coefficient estimated by the SHP DSI method with
bias mitigation.

Table 11. Accuracy metrics of crop type classification using SAR features processed by different filters.
SHP: statistically homogeneous pixel.

Mean OA
Kappa

Coefficient
F1-Score

Chili
F1-Score

Corn
F1-Score
Cotton

F1-Score
Pear

F1-Score
Tomato

Original 60.20% 0.48 0.55 0.33 0.67 0.72 0.58
Refined Lee 73.21% 0.65 0.66 0.52 0.80 0.83 0.74

SHP DSI 79.46% 0.73 0.75 0.60 0.88 0.86 0.77

In Figure 11, it is evident that the speckles in original SAR intensity are both reduced by a refined
Lee filter and SHP DSI filter, but the sharpness and details of each image is better preserved in (c). In
Figure 12, it is found the coherence over a water body is overestimated in (a). This bias is reduced in (b)
by using the SHP DSI method. It is clear the coherence in (b) exhibits less salt and pepper-like noise.

In Table 11, it is demonstrated that the SAR features filtered by the SHP DSI method yield the best
accuracy in crop type classification. Compared with the results of using a refined Lee algorithm, the
overall accuracy is increased by 6.25%, the kappa coefficient is improved by 0.08, and the F1-scores of
each crop type are all improved.

3.2.3. Performance Comparison of Features from Different Sources in Crop Type Mapping

A comparison was conducted on the performance of crop type classification using four groups of
features. The first group includes only Sentinel-1 features; the second group contains only conventional
optical features exclusive of red-edge features; the third group comprises all Sentinel-2 features
inclusive of red-edge contribution; the last group consists of the both SAR and optical features. The
same feature importance ranking obtained in Section 3.2.1 was used for all groups. For each feature
group, the optimal feature set was individually determined by the RFI feature selection method, using
the kappa coefficient of each group as the accuracy metric. The mean OA and kappa coefficient reached
the maximum at the same iteration index for each test, as summarized in Table 12. The corresponding
F1 scores of different crop types are compared in Figure 13.
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Table 12. Accuracy assessment of crop type discrimination using different groups of features. The
mean overall accuracy (OA) and kappa coefficient were averaged over fivefold cross-validation in both
multi-sample per field validation and one sample per field validation.

Optimal Number
of Features

Mean OA Kappa Coefficient

Multi Samples
per Field

One Sample
per Field

Multi Samples
per Field

One Sample
per Field

Sentinel-1 133 79.46% 76.91% 0.73 0.69

Sentinel-2 without
red-edge features

58 82.37% 79.80% 0.77 0.72

Sentinel-2 104 85.43% 81.64% 0.81 0.75

Sentinel-1 and
Sentinel-2

113 86.98% 83.22% 0.83 0.77

Figure 13. Comparison of crop type mapping results using different feature combinations. Four groups
of features were tested, the first group contains only SAR (Sentinel-1) features, the second group
contains only optical (Sentinel-2) features without the red-edge contribution, the third group has all of
the Sentinel-2 features, the fourth group includes both SAR and optical (Sentinel-1 and 2) features.

In both Table 12 and Figure 13, it is evident that the combination of SAR and optical features
achieved the best accuracy in crop type discrimination. The inclusion of red-edge bands and indices
improved the mean OA and kappa coefficient respectively by 1.84% and 0.03 (3.06% and 0.04% in
multi-samples per field validation), compared with the results using other Sentinel-2 features. By
integrating the optical and SAR features, the mean OA and kappa coefficient were improved by
1.58% (1.55% in multi-samples per field validation) and 0.02% compared with the results only using
Sentinel-2 features. In Figure 13, among the five crop types, the F1 score of chili pepper and corn were
significantly improved by the inclusion of red-edge features.

4. Discussion

4.1. Importance of Features from Different Sources

The accumulated importance scores were calculated by subcategories (Figure 14), different data
sources (Figures 15a and 16a), and the month of acquisition (Figures 15b and 16b).
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Figure 14. Accumulated feature importance scores of features selected for (a) step 1: cropland extraction
and (b) step 2: crop type discrimination, calculated for each subcategory regardless of acquisition time.
Each importance score was normalized and converted to a percentage. Each feature is named by its
subcategory and acquisition time in the format of “yyyymmdd”.

Figure 15. The accumulated importance scores of features selected in step 1: cropland extraction in three
groups. The first group contains only Sentinel-1 features; the second group comprises only Sentinel-2
features exclusive of the red-edge features; the third group includes only the red-edge features. (a)
Feature scores in the three groups calculated regardless of the acquisition time; (b) Feature scores in the
three groups calculated for each month. The VH amplitude dispersion, as a single-phase feature, is
plotted on the rightmost bar. Each importance score was normalized and converted to a percentage.

Figure 16. The accumulated importance scores of features selected in step 2: crop type discrimination
in three groups. The first group contains only Sentinel-1 features; the second group comprises only
Sentinel-2 features exclusive of the red-edge features; the third group includes only the red-edge
features. (a) Feature scores in the three groups calculated regardless of the acquisition time; (b) Feature
scores in the three groups calculated for each month. The VH amplitude dispersion, as a single-phase
feature, is plotted on the rightmost bar. Each importance score was normalized and converted to
a percentage.
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Among the features selected for cropland extraction (Figure 14a), it is found that the SWIR 2 band
(Band 12) contributed the most in the cropland extraction, followed by the Sentinel-1 VH intensity and
Band 11 (SWIR 1), again the red-edge 1 (Band 5), and NDWI.

In the features selected for crop type discrimination (Figure 14b), the VH intensity exhibited the
highest accumulated score for crop type classification, followed by the NDVI, Band 8 (NIR), Band 6
(red-edge 2), Band 4 (red), and Band 5 (red-edge 1). The optimal feature set comprises six subcategories
of SAR features, 13 subcategories of red-edge features, and nine subcategories of conventional optical
features. The contribution of features from different data sources will be explored in detail later.

It should be noted that the VH intensity held a significant share in both land cover classification
and crop discrimination. The intensity ratio between bands, i.e., S1 NRPB and VV versus VH intensity
ratio were only used in land cover classification. As for InSAR products, it is found that the VV
coherence was selected in step 2. No coherence was selected in step 1. The coherence feature with
the highest score in its subcategory, i.e., the VH coherence on 17 August 2018, ranked 118 in the RF
permutation importance results in step 1. Its importance score was 0.27%, which is comparable to
the score of 0.29% of the last chosen feature, NDre2 (red-edge) index on 23 July 2018. The amplitude
dispersion of VH polarization, the master to slave intensity ratio in both polarization modes, were
used in both step 1 and step 2.

All conventional optical features and the three red-edge spectral bands contributed to both the
land cover classification. Regarding the red-edge indices, “NDVIre3” was only used in step 1; all the
other 10 indices were selected for both cropland extraction and crop type identification.

As shown in Figures 15a and 16a, the three groups of features held similar proportions in both
steps. The conventional optical features had the largest proportion in step 1 and step 2; the SAR
features accounted for −15% in step 1 and −16% in step 2; the red-edge features accounted for −24% in
step 1 and −22% in step 2.

Comparing Figures 15b and 16b, the features selected in step 1 and step 2 had significantly different
temporal distribution. For land cover classification, the features in May had the largest proportion,
followed by September, October, and June. Red-edge features contributed more in September, June,
and July. In crop type classification, it is clear that features in August held the biggest share, of
which red-edge features had a significant proportion. Compared with other months, the red-edge
wavelengths performed the best in August, when most crops were ripening. This is likely associated
with the sensitivity of the red-edge wavelengths to differences in the leaf structure and chlorophyll
content of crops. Conventional optical features (visible, NIR, and SWIR wavelengths) were dominant
from May to July and in October, and held a significant share in August and September.

In both steps, there were no optical features available in March and April, but some SAR features
show good separability in the early season. SAR features in June and July were not selected for either
of the steps. The proportion of SAR features re-increased in August and at the end of harvesting season
in October. The amplitude dispersion was used in both steps, as a single-phase feature, plotted on the
rightmost bar in both Figures 15b and 16b.

In addition, we examine the correlation between selected features in both step 1 and step 2, as
shown in Figure 17. In both step 1 and step 2, most of the selected features showed a low correlation,
as revealed by the histograms in (c) and (d).

4.2. The Contribution of SAR Features in Crop Type Discrimination

The electromagnetic radiation of the C-band cannot penetrate through vegetation cover. Therefore,
the radiation from the Sentinel-1 C-band SAR sensor reflects the interaction between the radar signal
and the ground surface cover, which explains the sensitivity of Sentinel-1 SAR to the vegetation cover.
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Figure 17. Heat maps showing correlation between selected features. (a) Correlation heat map of
selected features in step 1; (b) correlation heat map of selected features in step 2. In both (a,b), the feature
indexes follow the feature rankings obtained through the RF feature importance score. Correlation close
to 1 or −1 indicates high positive or negative correlation between features. The diagonal elements in
both correlation matrices are self-correlation coefficients, so they constantly equal one. (c) The histogram
of correlation between selected features in step 1; (d) the histogram of correlation between selected
features in step 2. In both (c,d), the histograms were calculated after removing the diagonal elements of
the correlation matrices and converting a negative correlation coefficient to corresponding positive
values. Thus, the ‘0’ in the histogram indicates low correlation, while ‘1’ indicates high correlation.

It has been reported that VH polarization is more sensitive to the structural and geometrical
arrangements of plants [11,38]. This is in accordance with the result that VH intensity bands held
the biggest proportion in the selected SAR features (also in all features) for crop type discrimination
(Figure 14b). We examined the selected SAR features and found that 13 out of 22 features were in
VH polarization mode, including six features of the VH intensity (Figure 18) and six features of the
master versus slave VH intensity ratio (Figure 19), as well as the VH amplitude dispersion (Figure 20a).
Pear is the most distinguishable crop in most of these features. This is highly likely because SAR
intensity is sensitive to target structure, as the planting density and vegetation height in pear fields are
significantly different from those in other crop fields. It is interesting to notice that the VV coherence
on 7 April 2018 revealed a good ability to differentiate cotton from other crop types (Figure 20b). In
Figure 20b, we can see the VV coherence is significantly low in the cotton field. According to local
crop phenological calendars (Section 2.1), cotton is the crop that is most likely to be sown in early
April. Other annual crops are usually sown or transplanted in mid-April or later. Thus, this is possibly
related to the changes of the cotton field surface in the sowing season (early April) from bare soil to
plastic-mulched land, which leads to a fast decrease of coherence in 12 days, while the other crop fields
almost remain as before. In addition, chili pepper can be easier recognized from the VH intensity on 16
October 2018 (Figure 18f).
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Figure 18. Boxplots of selected VH intensity features of different crop types, spanning the time from
26 March 2018 to 13 May 2018, as well as a feature on 16 October 2018. Each feature is named by
its subcategory and acquisition time in the format of “yyyymmdd”. In (a–e), pear values show an
apparent distinction from other crops, while in (f), chili can be easier recognized.

Figure 19. Boxplots of the top three scoring master versus slave VH intensity ratio of different crop
types. Each feature is named by its subcategory and acquisition time in the format of “yyyymmdd”.
(a) Boxplots of the master vs. slave VH intensity ratio derived from the 29 August 2018 acquisition
of Sentinel-1; (b) boxplots of the master vs. slave VH intensity ratio derived from 10 September 2018
acquisition of Sentinel-1; (c) boxplots of the master vs. slave VH intensity ratio derived from 4 October
2018 acquisition of Sentinel-1.

Figure 20. Boxplots of selected SAR features of different crop types. (a) Coherence coefficient in VV
polarization mode; (b) amplitude dispersion in VH polarization mode. Each feature is named by its
subcategory and acquisition time in the format of “yyyymmdd”.
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4.3. The Sensitivity of Red-Edge Wavelengths to Different Crop Types

Red-edge refers to the region of the sharp rise in vegetation reflectance between the red and NIR
part of the electromagnetic spectrum. It is an important wavelength range that is sensitive to vegetation
conditions. This research demonstrated the advantage of adding red-edge spectral bands and indices
in the crop type discrimination, which increased the overall accuracy by 3.06% compared with the
results only using conventional optical features. In Figure 14, among the selected red-edge features,
Band 6 (red-edge 2), Band 5 (red-edge 1), and the NDVIre2n (red-edge index based on Band 6 and
Band 8A) exhibited greater importance. As for red-edge indices, 10 out of 11 indices were selected for
crop type discrimination (NDVIre3n was discarded by RFI method), with a number of indices showing
a good capability to differentiate corn from other crops (Figure 21). This explains why the inclusion of
red-edge features significantly improved the mapping accuracy of corn (Figure 13). Apart from corn,
some re-edge indices also revealed good separability of tomato (Figure 21c–f,h) and pear (Figure 22).
Several red-edge features show good capability to identify chili pepper (Figure 23). These findings
reinforce the benefit of using red-edge wavelengths in crop type mapping.

Figure 21. Boxplots of selected red-edge indices showing a good capability to distinguish corn from
other crops. Each feature is named by its subcategory and acquisition time in the format of “yyyymmdd”.
(a) Boxplots of the NDVIre2n indices derived from the 1 September 2018 acquisition of Sentinel-2;
(b) boxplots of the NDVIre2n indices derived from the 17 August 2018 acquisition of Sentinel-2; (c)
boxplots of the CIre indices derived from the 17 August 2018 acquisition of Sentinel-2; (d) boxplots of
the NDVIre1n indices derived from the 17 August 2018 acquisition of Sentinel-2; (e) boxplots of the
MSRre indices derived from the 17 August 2018 acquisition of Sentinel-2; (f) boxplots of the NDre2
indices derived from the 17 August 2018 acquisition of Sentinel-2; (g) boxplots of the NDVIre2 indices
derived from the 17 August 2018 acquisition of Sentinel-2; (h) boxplots of the MSRren indices derived
from the 17 August 2018 acquisition of Sentinel-2; (i) boxplots of the NDVIre2 indices derived from the
01 September 2018 acquisition of Sentinel-2.
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Figure 22. Boxplots of selected red-edge indices revealing a clear distinction between the pear and other
crops. Each feature is named by its subcategory and acquisition time in the format of “yyyymmdd”. (a)
Boxplots of the NDVIre1 indices derived from the 9 May 2018 acquisition of Sentinel-2; (b) boxplots of
the NDVIre1n indices derived from the 6 October 2018 acquisition of Sentinel-2; (c) boxplots of the
NDVIre2 indices derived from the 9 May 2018 acquisition of Sentinel-2; (d) boxplots of the CIre indices
derived from the 06 October 2018 acquisition of Sentinel-2.

Figure 23. Boxplots of selected red-edge features showing good separability of chili pepper. Each
feature is named by its subcategory and acquisition time in the format of “yyyymmdd”. (a) Boxplots
of the band 6 values from the 17 August 2018 acquisition of Sentinel-2; (b) boxplots of the band 6
values from the 1 September 2018 acquisition of Sentinel-2; (c) boxplots of the band 7 values from the
17 August 2018 acquisition of Sentinel-2.

From the top six scoring features for crop type mapping (Figure 8) and the accumulated importance
score of each subcategory (Figure 14b), it can be inferred that the most important red-edge band is
Band 6, and the most useful red-edge indices is the NDVIre2n (calculated using Band 6 and Band 8A
(NIR narrow)). The top six features emphasized the significance of three red-edge features, i.e., Band 6
(red-edge 2), Band 7 (red-edge 3), and NDVIre2n (red-edge index based on Band 6). The accumulated
importance ranking (Figure 14b) indicated the contribution of Band 6, Band 5, and NDVIre2n. It has
been reported that the red-edge close to red wavelengths (Band 5) is mainly related to the difference in
chlorophyll content, while the red-edge close to NIR (Band 7) is usually correlated to variations in the
leaf structure [6]. The above results suggest that the separability of red-edge features lies in both the
leaf structure and chlorophyll content of different crop species.
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In a nutshell, SAR features distinguish crops based on the structural and geometrical arrangements
of plants or changes of the crop field surface, while optical features rely on the multi-spectral information
to differentiate crops. In experiments, the red-edge wavelengths exhibited good separability between
different crop types, due to their sensitivity to the variations in chlorophyll content and leaf structure.
Therefore, the combination of SAR and optical integrated the physical and spectral characteristics of
crops, improving the performance of crop classification.

With the development of deep learning technology, powerful convolutional networks, such as
U-net [39], can be explored for crop type mapping in future work. U-net has the potential to support
multi-dimensional input variables. By implementing U-net with multi-temporal, multi-sensor features,
it is expected that a higher level of accuracy can be achieved in crop type identification.

5. Conclusions

This research proposed a method for the synergistic use of Sentinel-1 and Sentinel-2 features for
oasis crop type mapping through a case study in a smallholder farming area in Northwest China. First
of all, a SHP DSI algorithm was introduced for the de-speckling of SAR intensity and accurate estimation
of interferometry coherence to improve the quality of SAR features. It was demonstrated that the use
of the SHP DSI method improved the crop classification accuracy by 6.25% when only using SAR
features. A variety of SAR features and optical features were derived from multi-temporal Sentinel-1
and Sentinel-2 images, including several InSAR products and red-edge spectral bands and indices.
Secondly, based on the permutation importance of the random forest classifier, a recursive feature
increment feature selection method was proposed to obtain the optimal combination of Sentinel-1 and
Sentinel-2 features for cropland extraction and crop type classification. Finally, a crop distribution
map was generated with an overall accuracy of 83.22% and kappa coefficient of 0.77. The contribution
of SAR and optical features were explored thoroughly. Among all the Sentinel-1 features, the VH
intensity held the biggest proportion, indicating the better sensitivity of VH polarization to vegetation
changes. It was also noted that some of the InSAR products, such as the VH amplitude dispersion, the
master versus slave intensity ratio, and the VV coherence in early April revealed good separability of
certain crop types. As for Sentinel-2 features, we demonstrated the merits of using red-edge spectral
bands and indices in oasis crop type mapping. The inclusion of red-edge features improved the crop
classification OA by 1.84% compared with only using conventional optical features. This proves the
superiority of Sentinel-2 data due to the increased spectral resolution. A comparison was conducted on
the performance of oasis crop classification using four combinations of features. The results indicated
that the integration of SAR and optical features achieved the best performance. We concluded that the
integration of time series S1 and S2 imagery is advantageous, and thanks to the free, full, and open
data policy, it can be further explored in the vast majority of regions for the monitoring of crop status.
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Abstract: Low-altitude remote sensing (RS) using unmanned aerial vehicles (UAVs) is a powerful
tool in precision agriculture (PA). In that context, thermal RS has many potential uses. The surface
temperature of plants changes rapidly under stress conditions, which makes thermal RS a useful
tool for real-time detection of plant stress conditions. Current applications of UAV thermal RS
include monitoring plant water stress, detecting plant diseases, assessing crop yield estimation,
and plant phenotyping. However, the correct use and interpretation of thermal data are based on
basic knowledge of the nature of thermal radiation. Therefore, aspects that are related to calibration
and ground data collection, in which the use of reference panels is highly recommended, as well as
data processing, must be carefully considered. This paper aims to review the state of the art of UAV
thermal RS in agriculture, outlining an overview of the latest applications and providing a future
research outlook.

Keywords: unmanned aerial vehicles (UAVs); remote sensing (RS); thermal UAV RS; thermal
infrared (TIR); precision agriculture (PA); crop water stress monitoring; plant disease detection; yield
estimation; vegetation status monitoring

1. Introduction

Remote sensing (RS) is the practice of obtaining information regarding an object, an area,
or a phenomenon through the analysis of images acquired by means of a device that does not
make physical contact with them [1]. RS investigations are mostly based on the development of
a deterministic relationship between the amount of reflected emitted or backscattered electromagnetic
energy, in specific bands or frequencies, and the chemical, biological, and physical characteristics of
the studied phenomena. Conventionally, RS has been associated with satellites and manned aircrafts
equipped with different sensors [2]. In recent years, considerable technological developments—mainly
concerned with the use of unmanned aerial vehicle (UAV) platforms—have been registered [3].
Born for military applications, UAVs have become a common tool for use in geomatics for data
acquisition in various research and operational fields: regional security, monitoring of structures and
infrastructures, monitoring of archeological sites, environmental monitoring, application in agriculture,
etc. [2,4,5]. Indeed, low-altitude RS by means of UAVs is one of the most powerful tools in precision
agriculture (PA).

The International Society of Precision Agriculture (ISPAG) defines PA as “a management that
gathers, processes and analyzes temporal, spatial and individual data and combines it with other
information to support management decisions according to estimated variability for improved
resource use efficiency, productivity, quality, profitability and sustainability of agricultural production”
(www.ispag.org, last access 18 April 2020). The general stages of PA practice involve data collection, field
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variability mapping through the use and development of algorithms, decision making, and management
practice [6].

In this framework, thermal RS has been found to be a promising tool by measuring surface
temperature [7]. In the last years, thermal sensors have also gained popularity because of
the improvements in sensor technology and the reduction in costs. The surface temperature detected by
thermal sensors has been found to be a rapid response variable to monitor plant growth and stress [7,8].
Indeed, the temperature is a fundamental environmental variable that plays an essential role in plant
physiological processes, such as transpiration, leaf water potential, and photosynthesis [9].

The potentialities of the application of thermal UAV RS concern several mapping and monitoring
issues, such as yield estimation, plant phenotyping [10,11], plant water stress detection [12,13], and plant
disease detection [14], as explained in the further paragraphs of this review. When considering these
last two applications, the capability to identify, using sensors mounted on UAVs, crop stress, and health
before said crops are significantly damaged could be a crucial goal.

Concerning water stress, it has been found that thermal images show a correlation between minor
changes in water stress that are undetectable by the normalized difference vegetation index (NDVI) [15].
In this regard, temperature-based indices represent a fast and practical way to evaluate and estimate
crop water status, indicating plants’ water content [16]. Among these indices, the crop water stress
index (CWSI) [17], which is the most used, is often exploited to monitor plants’ water status and,
therefore, for the management of irrigation [18]. Such indices have been applied to different crops,
both tree and herbaceous, such as olives [19], grapevines [20], sugar-beet [21], maize [22], rice [23],
wheat and cotton [24].

However, the correct interpretation and use of a thermal image are based on basic knowledge of
the nature of thermal radiation [1]. Thermal images can be influenced by various factors, including
the characteristics of the thermal camera, meteorological conditions, and several sources of emitted and
reflected thermal radiation [7]. For this reason, the aspects that are related to calibration, ground data
collection, the step in which the use, and the measurement of the temperature of reference panels are
recommended [25], and data processing must be carefully carried out for correct temperature retrieval.

The objective of this review is to cover the state of the art of thermal UAV RS in the framework
of PA, outlining an overview of the latest applications. The structure of this paper is as follows.
In Section 2, a brief description of the basic principles of thermography is provided. Section 3 deals
with the characteristics of thermal cameras; the calibration, data collection, and data processing aspects
are discussed. Section 4 is devoted to the main thermal RS in PA. Finally, in Section 5, we provide
the present—as well as future—challenges in thermal RS.

2. Basic Principles of Thermography

Thermal RS uses the information at the emitted radiation in the thermal infrared (TIR) range
(Figure 1) of the electromagnetic (EM) spectrum [26]. This information is converted into temperature [7].
Two categories can be distinguished within the IR region (0.7–100 μm), namely, the reflected-IR
(0.7–3.0 μm) and TIR (3.0–100 μm). Generally, all of the elements of the landscape, such as vegetation,
soil, water, and people, emit TIR radiation in the 3.0–14 μm portion of the EM spectrum [27].

In this range of the EM spectrum, part of the IR energy is transmitted to the Earth’s surface through
two so-called atmospheric windows that range from 3 to 5 μm and from 8 to 14 μm [28] (Figure 2).
Almost all of the radiation between 5 and 8 μm is absorbed by atmospheric gasses (i.e., water, carbon
dioxide (CO2), and ozone (O3) molecules), as indicated in Figure 2 [27] (Figure 2).
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Figure 1. The electromagnetic (EM) spectrum. In evidence, the infrared (IR) region, in which
the reflected-IR (0.7–3.0 μm) and the emitted-IR (3.0–100 μm) are further detailed.

Figure 2. Atmospheric transmittance in the thermal region with typical absorption bands induced by
gasses and water (modified from [29]).

The physical laws of Planck, Wien, Stefan–Boltzmann, and Kirchhoffmake it possible to better
understand the behavior of EM radiation. According to Planck, each energy element (Q) is proportional
to its frequency (ν), while the Planck’s constant h is used to adjust this relationship (Equation (1)):

Q = hν (1)
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When considering that the frequency of the wave (ν) is directly proportional to the speed of light
(c) and inversely proportional to its length (λ), Equation (1) can be rewritten as follows Equation (2):

Q =
hc
λ

(2)

In other words, the energy of a quantum is inversely proportional to its wavelength.
Thus, the longer the wave (larger wavelength), the lower its energy. Wien’s and Boltzmann’s
laws describe the relationship of a black body’s radiations (i.e., an ideal object that absorbs and
reemits all of the incident energy) and the wavelength of the maximum emission with a black body’s
temperature [30].

Wien’s displacement law explains the relationship between the true temperature of a black
body, being expressed in degrees Kelvin, and its peak spectral exitance or dominant wavelength [27].
As the temperature increases, its maximum exitance shifts towards shorter wavelengths [31]:

λmax =
b
T

(3)

Given that the Wien’s constant b is equal to 2898 μm K, this formula indicates the wavelength at
which the maximum radiant spectral exitance can be obtained. It is possible to observe such effects
in nature. For example, a body with a very high absolute temperature like the sun (about 6000 K)
has a λmax and, thus, a peak of emission in the visible part of the spectrum [32]. The result of the above
formula is useful to indicate what should be the measurement range of the sensor used to measure
the radiation emitted by a given body [27].

The Stefan–Boltzmann law states that the emittance of a black body is proportional to the fourth
power of its absolute temperature (Equation (4)):

E = σT4 (4)

where E represents the spectral radiant exitance expressed in W·m−2, σ is the Stefan–Boltzmann
constant, and T is the absolute temperature [K]. The formula clearly shows that the total EM radiation
that is emitted by a black body is a function of its absolute temperature. Therefore, the radiation
emitted by a body increases as its temperature increases, as mentioned above.

Kirchhoff’s law (1860) (Equation (5)) states that, at a given wavelength, the emittance of a body is
equal to its absorption capacity, which is:

ε = α (5)

where ε represents the emittance and α the absorbance.
This is frequently formulated as “good absorbers are good emitters and good reflectors are poor

emitters” [27]. The principle of energy conservation is defined by the following equation (Equation (6)):

ε+ ρ+ τ = 1 (6)

where ρ is the reflection and τ is the transmission. When considering that most objects are opaque to
TIR radiation, the above equation becomes (Equation (7)):

ε+ ρ = 1 (7)

Materials with a high ε absorb a large quantity of incident energy and radiate large quantities of
energy, while materials with low ε absorb and radiate less energy (Kirchhoff, 1860) [33]. All bodies
with a temperature above absolute zero are characterized by random movement—i.e., the kinetic heat,
whose measure is the kinetic temperature Tkin [27]. Besides, an object emits energy as a function of
temperature, and the emitted energy is used in order to determine its radiant temperature Trad [28].
Although there is a strong positive linear correlation between Tkin and Trad, Trad is lower than Tkin
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due to emissivity (ε) [34]. For this reason, the temperature that is measured by a sensor (Trad) will
always be lower than the real temperature (Tkin) (Equation (8)) [31]. It follows from this, as explained
by Kirchhoff’s law (Equation (8)), that:

Trad = ε
1
4 Tkin (8)

The emissivity is the ratio between the radiation that is emitted by the surface and the radiation
emitted by a black body at the same temperature [35]. Because the radiance of any real body, at the same
temperature, is always lower than that of a black body (equal to 1), its emissivity has a value between
0 and 1 [27]. Anybody absorbs and emits radiation less effectively at a given temperature when
compared to a black body, as explained by Planck’s law. Practically, the sensed temperatures of
materials with low emissivity appear to be much lower than those of nearby objects with the same
temperatures, making the Tkin assessment less precise [31]. Many factors influence emissivity: color,
chemical composition, surface roughness, moisture content, field of view, viewing angle, spectral
wavelength, etc. [27,35,36]. The emissivity of materials is difficult to measure, although it is more or
less constant in the region of the EM that ranges from 8 to 14 μm. The emissivity of vegetation ranges
from 0.96 to 0.99, while that of soil is around 0.89, and the emissivity of the water is 0.99 (Table 1).
In particular, focusing on vegetation, emissivity values of the leaves are available in literature for many
plant species [37,38] and some studies were dedicated to the determination of emissivity in herbaceous
and tree species [39,40].

Table 1. The emissivity of different surfaces over the range of 8–14 μm [1,36].

Material Average Emissivity (ε)

Healthy vegetation 0.96–0.99
Dry vegetation 0.88–0.94

Wood 0.93–0.94
Sand 0.90

Dry soil 0.92
Wet soil 0.95–0.98
Water 0.98–0.99
Snow 0.98–0.99

Regarding the intrinsic characteristics of a body, which affect its emissivity, thermal capacity
(or heat capacity, measured in J kg−1K−1) measures the quantity of heat energy that is necessary for
a body to increase its temperature by one degree—the lower the heat capacity, the less energy required.
The thermal conductivity (measured in W m−1 K−1), which measures the rate at which heat passes
through a material, is another important parameter. This capacity is greater the higher the value of
such a parameter in a material. These parameters can be integrated into the thermal inertia (expressed
in J m−2 K−1 s− 1

2 ), which measures a body’s tendency to change in temperature or the rate of heat
transfer between two substances put in contact. This concept is of great importance in the field of TIR,
because the capacity of a body to quickly change its temperature (if the thermal inertia is low) depends
on this parameter.

3. Thermal Cameras and Unmanned Aerial Vehicles (UAVs)

Thermal cameras typically carry a sensor that detects the infrared radiation emitted by a body,
displaying its temperature in a digital radiometric image. Two types of thermal cameras are currently
available: scanning devices that allow for capturing a point or a line and those with a two-dimensional
infrared focal plane array. The latter, which allows for capturing all of the elements of an image at once,
is faster if combined with a better image resolution [41] and it is the most commonly used [42]. A further
distinction can be made between thermal and photon (or quantum) detectors. The latter convert
directly absorbed EM into a change in the distribution of electric energy in a semiconductor by varying
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the concentration of free charge carriers [42] and require a cooling system, usually made while using
helium or liquid nitrogen at a temperature of −196 ◦C [27]. The cryocooler lowers the temperature of
the sensor with the aim to reduce the thermally induced noise to a level that is lower than that of the signal
coming from the image [43]. The more efficient the cooling system, the more accurate the measurements
of the instrument, which makes cooled thermal cameras more precise and accurate [44], thus allowing
the detection of the slightest temperature differences in the image. These cameras generally work
in the mid-wavelength infrared (MWIR) region (3–8 μm), where the thermal contrast is high [42].
The thermal radiance of a target is easier to detect once it is distinguishable (higher or lower) from
the background [43]. Unfortunately, cooled sensors, besides being large and expensive, have higher
energy consumption and they are not suitable for UAVs because of their weight [45]. Thermal detectors
are less sensitive (±0.1 ◦C) and they are slower than quantum detectors, but, instead, have the advantage
of not requiring cooling elements [46]. Different types of uncooled detectors are available, all of
which are made of different and unconventional materials; the three most common types are VOx
(vanadium oxide), amorphous silicon (α-Si) microbolometers, and ferroelectrics [47]. The operating
principle of thermal detectors is based on the conversion of absorbed EM radiation into thermal
energy [48]. Ferroelectric detectors are based on the ferroelectric phase transition that can be detected
in some dielectric materials. The microbolometer is a resistor organized in arrays—called focal plane
arrays, which are made up of VOx and α -Si—which is composed of a thermometer, integrated
on a micro-bridge, and an adsorber. Temperature increases, which are caused by absorption of IR
radiation, determine large fluctuations of its electrical resistance, which can be converted into electrical
signals and processed in order to generate an image [42,49–52], whose geometric resolution depends
on the number of detectors. The low values of temperature differences equivalent to noise in uncooled
thermal sensors, which reach 20 m ◦C, allows it to be used in applications where previously only cooled
thermal sensors could be used [44]. Furthermore, especially due to the rapid development of micro- and
nanotechnology, microbolometers have become cheaper and more efficient [53]. The lenses are made
of germanium—a shiny semi-metal, chosen because of its transparency to infrared radiation—and they
are reflective of visible radiation [42]. Several parameters characterize a thermal camera; among these,
worthy of a mention, include the temperature range measured, usually between −20 and +120 ◦C,
and the thermal sensitivity, which determines the minimum value of temperature difference (ΔT)
detectable in an image and generally ranges from 40 to 20 m ◦C for uncooled and cooled devices,
respectively [42]. Regarding the geometric resolution, to date, it is still very low when compared
to RGB cameras (currently, higher image resolutions ranging from 320 × 240 to 640 × 512 pixels),
while the spectral resolution normally ranges from 7 to 14 μm [12]. As for the price of cameras, their
cost can vary from €1.000 to more than €10,000, depending on sensor resolution and radiometric
calibration accuracy [54,55].

Cooled thermal infrared cameras have the widest use in satellite and aerial RS, thanks to their
thermal sensitivity and precision [56]; on the other hand, these devices are larger and more expensive,
also in terms of energy, than the uncooled ones [57]. In contrast, uncooled thermal cameras are
normally mounted on UAVs (Figure 3a,b), because they are smaller, lighter, and have lower energy
consumption [58].

The limited payload is perhaps the principal limit of UAVs, together with the limited battery life,
which affects the duration of the flight. For example, it is not unlikely that 45 minutes or more pass
between the first and the final image of the dataset when larger areas need to be covered and several
flights are required [59].

Payload integration considerably changes between cooled and uncooled TIR cameras, where
different ventilation modes are a key factor in image quality; thus, generally, an uncooled
microbolometer is preferred for its weight benefits [60].
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Figure 3. DJI Phantom 4 pro (a) and (b) DJI Inspire 1, both equipped with a FLIR uncooled thermal
camera (photos taken by the authors).

3.1. Camera Calibration and Data Collection

Low-cost thermal cameras, which are generally not radiometrically calibrated, can only provide
information regarding relative temperature differences [54]. The data provided by such instruments
are represented in the form of raw digital numbers (DNs) that express radiance. Even when
using radiometrically calibrated UAV cameras, it is not easy to derive accurate surface temperature
measurements, because their low accuracy is due to the presence of uncooled microbolometers [54].
The sensitivity and, therefore, the accuracy of each microbolometer, is affected by both the temperature
of the focal plane array [61] and that of the other components of the thermal camera, body, and lens,
such as to create a weak signal-to-noise ratio [53].

Besides this, other causes make it necessary to calibrate a thermal camera, as shown in [53] and [57].
The atmosphere affects the quality of the thermal image as it absorbs and emits IR. The atmospheric
effects on UAVs at low-altitude measurements are considered to be negligible when compared to
airborne or satellite measurements [31].

The effect of relative humidity, air density, and altitude can only be avoided by making
measurements within about 10 m or less of the target’s surface [62]; under different conditions, their effects
must be taken into account. Meteorological conditions can have an indirect effect on the temperature
measurements of uncooled thermal cameras [59]. In the field, some recommendations are useful for
reducing the effects; for instance, the critical factors for data acquisition are the time of day, weather,
and the knowledge of the surrounding environment [60]. Regarding the applications in PA, midday
has been identified as the best time for flying in terms of thermal accuracy [63] and the reduction of
background effects [64].

UAV thermal surveys should always be done in the absence of clouds, rain, snow, smoke, dust,
or any other darkening agents, because all of these reduce atmospheric transition, as well as change
the temperature of the background [62]. Before the flight, after powering up, the temperature of
the camera sensor is expected to stabilize from 20 minutes [25] up to one hour [65]. It is also essential to
perform a test flight to allow the camera to acclimatize to local weather conditions, as well as to protect
the thermal camera with a casing (to reduce air temperature effects on the sensor) when mounted on
a quadcopter UAV [66].

Besides, temperature calibration in the field is an essential step. The temperature of the presumed
hottest and coldest objects within the area of image acquisition should be measured for ground truth
calibration [31]. Field calibration should be performed while using the thermal measurements of target
surfaces during the flight [20,67]. These are placed in the area of the study where the temperature is
measured using thermocouples [59] or infrared thermo-radiometers [25], combined with data-loggers
capable of recording the temperature throughout the flight. Targets can be made using black and white
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polypropylene panels, which represent the thermal extremes of the study site, and whose size is such
as to represent several homogeneous pixels in the infrared thermal image [25].

In our experience, as is the case in Messina et al.’s [68] work, wet and dry reference surfaces were
used during the thermal UAV survey by taking images of them before and after the flights, as indicated
by [59]. Reference surfaces were placed close to UAV take-off and landing points, and their temperature
was measured while using a handheld infrared thermometer (FLIR E6) (Figure 6b).

The temperature was measured at three moments of the flight: At take-off, during, and end
of every flight. Four reference surfaces were used: three dry panels (black, grey, and white) and
one created delimiting a square piece of the ground while using circular targets and covered with
aluminum (Figure 4).

 
Figure 4. The temperature reference targets used during thermal unmanned aerial vehicle (UAV)
surveys in an onion crop field in Calabria (Italy) (photo taken by the authors).

Portions of dry and wet soil can also be considered as targets, as described in the following
paragraph. In addition to these, as in the case of multispectral sensors, there are ground control points
(GCP)s—points that are marked on the ground that have a known geographical position—which
improve the positioning and accuracy of the mapping outputs.

To make GCPs more visible in thermal images, they should have a low emissivity when compared
to the adjacent vegetation and other bodies [69].

In the case of thermal measurements, GCPs are made of aluminum, exploiting the low emissivity
that makes it appear as a cold object in the images [70] (Figure 5b). This GCP was made using
aluminum [71]. Our proposed GCPs were made using 50 cm × 50 cm white polypropylene panels
and covering two quadrants while using aluminum sheets (Figure 5a). Black cardboard was used to
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partially cover the other two quadrants to locate the point and also to make the GCP clearly visible and
usable in multispectral surveys (Figure 5c). Figure 5 shows the detectability of the target in thermal
and spectral images.

 
Figure 5. Example of a homemade target for ground control points (GCPs) designed to be easily
detected in thermal as well as in multispectral UAV surveys. (a). The GCP target (white dashed circle)
as it appears in (b) thermal and (c) near-infrared (NIR) multispectral images.

A further effect of the weather conditions to be taken into account is that of attenuating the thermal
radiance by the atmosphere [59]. The sensor registers, for every pixel, an at-sensor radiance (Lat-sensor),
being expressed in Wm−2, which is determined by the following formula (Equation (9)) [72]:

Lat-sensor = τ Lsurf + Latm (9)

In Equation (9), τ represents the atmospheric transmittance, while Latm, measured in Wm−2,
is the upwelling thermal radiation, created as a result of particles in the atmosphere, both depending
on the distance of the sensor from the object and the water content in the atmosphere [59]. Parameters τ
and Latm can be obtained by exploiting one of the theoretical atmospheric models, such as MODTRAN
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(MODerate resolution atmospheric TRANsmission) [73], which are widely used for thermal data
that are acquired from satellites [7]. This model allows for the estimation of atmospheric emission,
thermal scattering, and solar scattering by incorporating the effects of molecular absorbers and
scatterers, aerosols, and clouds, when considering the wavelengths from the ultraviolet region to
the far-infrared [36].

An example of MODTRAN application in UAV is shown by [65], which shows that it allows
for obtaining the surface temperature by applying atmospheric correction methods that are based
on entering the model as input data, i.e., data that are related to local atmospheric conditions.
In the application on UAV data using MODTRAN, it is essential to use local measurements of
temperature, relative humidity, and atmospheric pressure acquired from nearby meteorological
stations (Figure 6a) placed in the field [39–43].

 

Figure 6. (a) The weather station used during the thermal surveys on an onion field. (b) Handheld
infrared thermometer used to measure the temperature of reference surfaces (photos taken by
the authors).

3.2. Data Processing

Several steps are needed to acquire georeferenced UAV imagery, starting from the flight planning
that generates a navigation file guiding the UAV to capture images with the required overlaps and
geometric resolution automatically. Thermal imagery can be processed with structure-from-motion
(SfM) algorithm, which does not always work properly [59], as reported in [74,75]. Indeed, SfM can be
unable to align thermal imagery, making it necessary to mosaic separate images and manually
geo-reference them using GCPs. These issues are due to the reduced information contained
in the thermal image, which complicates the identification of the common features that are needed for
bundle adjustment [59]. Indeed, if compared to other types of imagery, such as RGB, thermal imagery
is characterized by a lower geometric resolution and contrast and by a stronger optical distortion [69].
In addition to increasing vertical and horizontal overlaps, the presence of an incorporated multispectral
(or RGB) camera, which is characterized by a higher geometric resolution, could help the alignment step
of the photogrammetric process. A framework to process thermal imagery is shown in Turner et al.’s [76]
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study. Firstly, image pre-processing provided the removal of blurry imagery and the subsequent
conversion of images to a 16-bit file format. In this way, all of the images have the same dynamic
scale, and a specific temperature value corresponds to the same digital number (DN) in all images.
Secondly, image alignment was executed using GPS log files and the imagery’s time stamps. Finally,
the spatial image was co-registered to RGB images. Some improvements of this framework were
provided in [59] in order to optimize the alignment and processing of thermal images by exploiting
the increased information contained in the RGB data. Although recent UAV models are provided with
real-time kinematic global navigation satellite systems (RTK-GNSS) that are able to reach a centimeter
planimetric accuracy, to ensure high positional precision, the placement of GCP within the surveyed
site is generally expected. Imagery must be geometrically aligned (orthorectification), calibrated,
and corrected, while taking atmospheric effects into account before final orthomosaics are obtained [7]
(Figure 7).

Figure 7. RGB (top) and thermal orthomosaic (bottom) images of an onion field (data collected by
the authors).
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4. Thermal UAV Imagery Analysis and Applications in Precision Agriculture (PA)

4.1. Crop water Stress Monitoring

Several detection systems have been developed for the production of specialty crops worldwide
thanks to technological advances [77]. The collection of accurate information on the spatial variability
of fields is essential in this context. A field’s variability is affected by several factors, including crop
yield and water content, and sensors that can be used to detect these factors include thermal cameras.

Plant water stress is one of the main critical factors of abiotic stress, as it limits the development of
crops [78,79]. Therefore, among the applications of thermal UAV RS in agriculture, the identification of
water stress from plant temperature data is of great importance, with irrigation resource management
being a key issue for PA. The use of UAVs in the study of plant water status requires measurements of
stem water potential (ψs) and stomatal conductance (gs), which are the most common physiological
water stress indicators that are used to determine crop water status [15,76,80,81]. Both indicators
can be measured in the field while using a pressure chamber and porometers, respectively, although
the interpolation of such local observations is not straightforward.

The use of thermal images allows for detecting the water stress conditions of a plant, because,
at the foliar level, stomata closure reduces transpiration and evaporative cooling, which results
in an increased temperature of the leaf [82,83]. This increase in temperature can be detected by thermal
cameras; therefore, thermal images can provide spatially continuous information concerning the water
status of plants in a wider area than that obtained by local measurements [84,85]. The temperature of
the plant is not only regulated by the water supply, but also by the micrometeorological conditions [86].
Among the climatic factors, atmospheric humidity plays a crucial role and, in environments with
humid climates, cloudiness also becomes a critical factor [87]. Several indices have been developed
in the past decades with the aim of compensating for the variation of these conditions [86].

The CWSI was developed precisely for that purpose. Jackson and colleagues formulated the CWSI
while using portable IR thermometers on herbaceous crops [84,88], developing a normalized index
in order to overcome environmental effects that may affect the relationship between plant temperature
and water stress. This index, which can assume values that range between 0 and 1, results in being
directly proportional to the water stress level of many species of interest. The CWSI is based
on the normalization of the canopy–air temperature difference with evaporative demand by means
of the vapor pressure deficit (VPD) of the air [14]. The formula to calculate the CWSI is as follows,
according to the methodology that was proposed by Idso et al. [17] (Equation (10)):

CWSI =
(TC − Ta) − (TC − Ta)LL

(TC − Ta)UL− (TC − Ta)LL
(10)

Where Tc − Ta is the canopy–air temperature difference, while LL refers to the Tc − Ta values for
the lower limit and UL for the upper limit. The normalization related to the VPD considers the Tc − Ta

difference of a canopy under two boundary conditions: (a) a lower limit when it transpires at its
potential rate (i.e., under well-watered conditions), and (b) an upper limit under no transpiration.
The lower limit is described by linear regression between Tc − Ta and the VPD, which is known as
the non-water-stressed baseline (NWSB). The NWSB is empirically derived by measuring the leaf–air
temperature difference for a well-watered crop in the experimental environment and provides the lowest
temperature difference likely in that environment. Once the NWSB, (Tc − Ta)LL can be calculated by
solving the baseline equation for the current VPD. The upper limit (Tc − Ta)UL, which is a constant,
is obtained by solving the same NWSB equation for a hypothetical slightly negative VPD. It represents
the vapor pressure difference that is generated by the temperature differential (Tc − Ta) when VPD is
0 [17]. The upper limit value is close to the NWSB interception a (depending on the temperature) and
only corresponds to a when a is equal to 0 [89]. This method is site-dependent. A second approach for
obtaining the upper and lower limits of (Tc − Ta) is theoretical and it foresees the combination of energy
balance and diffusion equations. This method requires knowledge of challenging to obtain variables,
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such as net radiation and aerodynamic resistance [19,89]. Another approach, defined statistical,
was used with good results [15,63,90,91]. In brief, it foresees the use of the average temperature of
the most cooling 5–10% of the canopy pixels as the wet reference to calculate the lower limit [92].

A further method that was proposed to obtain the two limits consists in the use of direct
measurements over wet or dry reference surfaces, natural or artificial. The reference dry targets,
as suggested by Jones [93,94], can be achieved, impeding leaf transpiration by covering the leaf surface
(on one or both sides) with petroleum jelly. In this case, the temperature of the upper limit reference
results from the measurement of the leaf temperature carried out about 30 minutes after the application
of the petroleum jelly layer. The wet targets are obtained by spraying a thin layer of water on one or
both leaf sides before taking the thermal image—this is valid on a single plant scale [94]. The advantage
of using this method is that the stress levels are normalized to the actual response of the plants.
However, the need to repeat the measurement for each test site after each flight of the UAV can be
an obstacle to its applicability. In addition, another problem is related to the difficulty of identifying
the leaves that are covered by petroleum jelly [95,96]. Maes proposed an example of a wet artificial
reference target in [97] using a cloth and a steel wireframe. The target thus created, with an appearance,
shape, and size similar to kiwi and grapevines leaves was kept wet for days by keeping the lower
part of the cloth immersed inside a bottle filled with water. Artificial targets were also used in [98].
This study provides an approach in which the reference temperature of the upper limit is set at 5 ◦C
above the air temperature, while that of the lower limit is derived from the temperature of the artificial
target. Berni et al. [19] proposed an approach to monitor relatively large areas while using UAVs to
detect water stress; the work, focused on the control of water stress in an olive grove, based on physical
models for the estimation of input variables of energy balance equations, did not require the use of
reference surfaces.

Two problems have prevented the widespread use of the CWSI: the first concerns its use under
changing atmospheric conditions, and the second occurs when using lower resolution data from
satellites or aircrafts platforms (as compared to UAVs), concerning, namely, the problem of “mixed-pixel
value”, which is where part of the temperature of the pixel comes from the background soil and not
from the pure canopy, thus reducing the quality of the data [99].

As far as the first aspect is concerned, CWSI was found to work better in dry climates,
while it showed considerable limitations in wet climates and in environments with substantial
climatic variability [100]. In fact, it must be taken into account that the absolute in leaf-air temperature
difference decreases as the atmospheric humidity deficit decreases, and the same goes for sensitivity to
any measurements made. Furthermore, while taking the latter aspect into account in the calculation of
the CWSI, as the humidity (and temperature) deficit decreases, the signal-to-noise ratio is reduced [101].
Finally, it must also be considered that the canopy temperature depends, in part, on variations
in the roughness of the canopy, wind speed, and net radiation, all of which are more variable in humid
climates [87].

As far as the problem of “mixed-pixel value” is concerned, while the resolution of satellite images
is limited, the sensors mounted on UAVs, because of their sub-meter spatial resolution, make it easier
to recover the pure canopy temperature while minimizing the thermal effects of the background
soil [65,102,103]. Different approaches can be adopted, as shown in [99]. An approach to extracting
the temperatures of canopies’ sunlit leaves foresees distinguishing canopies’ pixels from background
pixels that are based on an analysis of the temperature distribution among the pixel population and
then segment the image into two distinct classes. This solution is possible where there is a clear
difference between the average temperature of the canopy and that of the soil/background. A valid
solution also includes the use of additional information that is derived from RGB, multispectral and
hyperspectral images (in cases where several sensors are used simultaneously), in order to identify
plant’s pixels [99]. In this case, the use of vegetation indices, like NDVI, to separate soil pixels and
plant pixels can be useful.
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In addition to the CWSI, several normalized thermal indices were developed between the 1970s
and 1980s. Among these, there are the conductance index (IG) and the stomatal conductance index (I3),
whose formulas (Equations (11) and (12)) are as follows:

IG =
Tdry − TC

TC − Twet
(11)

I3 =
TC − Twet

Tdry − TC
(12)

where Tc represents the surface temperature of the canopy, while Tdry and Twet are entirely
dry or wet reference surfaces to simulate leaf temperature under conditions of minimum and
maximum transpiration.

The main aspects of these two indices are that IG increases with stomatal conductance, while I3
is positively correlated with stomatal resistance [94,96]. The three indices (CWSI, IG, and I3) need
the knowledge of canopy temperature under both wet and dry conditions; however, the concept of
the CWSI remains the most widely used, as it is best known [94].

Research carried out thus far has concerned the monitoring of water stress in both herbaceous and
tree crops. In Sullivan et al.’s [24] and Bian et al.’s [104] research, thermal UAVs were used, respectively,
to monitor Gossypium hirsutum L. crop residue management and the response to different irrigation
treatments, calculating the CWSI. Martinez et al. [105] worked on monitoring sugar beet water stress
by comparing thermal data, which were obtained using a conventional thermal camera, with those
obtained using a low-cost infrared sensor.

Zhang et al. [106] monitored, at the farm scale, maize water stress using RGB and thermal images.
The study of Crusiol et al. [107] dealt with the evaluation of the water status of soybean plants under
different water conditions. Other works [108,109] focused on the monitoring of herbaceous crops while
using different sensors (RGB, multispectral, and thermal) with the aim of producing orthomosaics and
vigor maps.

The CWSI is also widely used for perennial crops. Bellvert et al. [110] calculated the index
in peach trees (Prunus Persica), mapping the internal spatial variability of the orchard by thermal
UAV and verifying the relationships between the index and the leaf water potential in different
growing seasons. Gonzalez-Dugo et al. [91] studied the spatial variations in the water status of five
different fruit tree species: almond (Prunus dulcis), apricot (Prunus armeniaca), peach (Prunus persica),
lemon (Citrus x limon), and orange (Citrus sinensis). In this respect, it is important to remember that
the stomatal response to environmental conditions can vary from species to species [111]. Olive and
citrus show relevant stomatal closure at midday [89,91], while, in other species, such as almond trees,
the stomatal behavior changes between the different cultivars [112].

Some studies have applied thermal UAV RS to citrus orchards (orange, Citrus sinensis,
and mandarin, Citrus reticulata) in order to extract the temperature of the crowns for water stress
detection [113,114]. Research has also been carried out on olive crops, a species of great importance
in the countries of the Mediterranean basin [115], in order to verify the plant’s behavior in response to
various irrigation treatments. In particular, Poblete-Echeverría et al. [116] showed that the temperature
difference between the canopy (Tc) and air (Ta) is related to the difference in water potential under
different irrigation treatments when the plants are under water stress conditions. Berni et al. [19] used
very high-resolution UAV thermal imagery to calculate and map the tree canopy conductance and
the CWSI in a heterogeneous olive orchard.

Egea et al. [117] demonstrated the usefulness of the CWSI for monitoring water stress in a dense
olive orchard by verifying sound relationships between the index and water stress indicators, such
as stomatal conductance, stem water potential, and leaf transpiration rate. Ortega-Farías et al. [118],
while using thermal and multispectral cameras that were mounted on UAVs, estimated the energy
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balance components on a drip irrigation olive grove, acquiring high-resolution images to evaluate
intra-field spatial variability.

Several works have used thermal UAVs for the calculation of the CWSI in vineyards, such as that
of Zarco-Tejada et al. [81]. In Baluja et al.’s [15] study, the relationships between the temperatures or
indices that were derived from thermal and multispectral imagery and stomatal conductance and water
potential were determined. In particular, air and leaf temperatures were recorded with a handheld
thermometer, and stomatal conductance was measured with a leaf gas exchange system, while the stem
water potential was measured using a Scholander pressure bomb; the CWSI, IG, and I3 indices were
also calculated.

Similarly, the work by Bellvert et al. [20] related the CWSI with leaf water potential and that
by Santesteban et al. [119] related the CWSI with stem water potential and seasonal leaf stomatal
conductance to estimate the variability of plant water status in a vineyard. Matese et al. [120] and
Pàdua et al. [16,121] exploited the use of different sensors (RGB, multispectral, and thermal) for several
applications in precision viticulture: the production of vigor maps, multi-temporal analysis of vigor
maps, and water stress detection. Gómez-Candón et al. [25], by testing in an apple orchard, proposed
a methodology to derive thermal orthomosaics, including a method for the radiometric correction of
thermal UAV imagery.

4.2. Plant Disease Detection, Phenotyping, Yield Estimation, and Vegetation Status Monitoring

Calderón et al. provides an interesting example of application in the framework of plant pathology
of thermal UAV RS [14]. In particular, this research aimed to evaluate the use of thermal imagery
and physiological indices derived from other types of sensors to detect the presence of infection that
is caused by the soil-borne fungus Verticillium dahliae. The role of thermal RS in the diagnosis of
the pathology is due to the water stress of plants, caused by the fungus, or by the stomatal closure,
which determines the reduction of the transpiration rate. Therefore, decreasing evaporative cooling
increases leaf temperature. By conducting field measurements, it was demonstrated that crown
variations of temperature are higher and stomatal conductance lower as the severity level of the disease
increased. Besides, crown temperature and the CWSI index were shown to be among the best indicators
to detect Verticillium dahliae in the early stages of disease development.

With regard to the issue of yield estimation and related aspects, thermal UAV RS was exploited
to research cotton, soybean, and rice crops [23,122,123]. Feng et al. [122] used three types of sensors
(RGB, multispectral, and thermal) in order to analyze several features to see which one had the best
performance for the yield prediction and at which stages of the crop cycle: Four vegetation indices,
canopy cover, plant height, temperature, and a cotton fiber index.

The study of Maimaitijiang et al. [123] on soybean concerned testing the potentialities of using
different sensors (including the thermal camera) in the framework of multimodal data fusion and deep
neural network to derive useful information for the yield prediction model. Liu et al. [23] investigated
rice lodging while using RGB and thermal sensor UAV images. The objectives of the research were to
measure the daily temperature differences between non-lodged and lodged rice crops, as well as to
detect the optimal time window. Because the differences in temperature between 10 a.m. and 4 p.m.
were significant, thermal camera devices allowed for identifying lodged rice plants.

Some other works have focused on the monitoring of vineyards and related landscape elements,
such as agricultural terraces [124–127]. In particular, Tucci et al. [125,126] used RGB and thermal
cameras to investigate the thermal dynamics of a vineyard that was grown on dry-stone wall terraced
land. These dry-stone terraces are part of the UNESCO’s Representative List of the Intangible Cultural
Heritage of Humanity and are typical and iconic features of the agricultural landscapes across Europe,
including Italy [128]. However, the risk of abandonment and degradation threaten agricultural terraces,
which can involve the increase of hazards that are linked to geo-hydrological processes triggered by
rainfall events. In this framework, the use of RGB and thermal sensors mounted on UAVs represents
an efficient and cost-effective monitoring methodology, also given the high resolution of the images
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and the reduced time for their acquisition. Tucci et al. [125], besides verifying the effectiveness of
the used sensors in monitoring the terraced crops, investigated the influence that dry-stone walls can
have on the microclimate of the vineyard and, consequently, on the quality of the obtained grapes.
The results of the study showed differences in the temperature between the plants of the internal rows
(lower temperatures) and the external rows (higher temperatures).

Phenotyping has an important role in crop science research. The acquisition of crop phenotypic
information in different environments allows the association of genomic and phenotypic information
useful for increasing yield [129]. In this framework, recently, the importance of the use of UAVs has
increased, as they provide a rapid and non-destructive approach to phenotyping, also allowing the use
of high spatial resolution images [129,130].

The use of UAVs has made it possible to overcome various limits that are linked to the use of
traditional methods, such as the difficulty in making simultaneous measurements on different plots [131].
In this context, some works have been carried out involving the use of thermal UAV RS, thus proving
its effectiveness, as in [9]. Natarajan et al. [132] employed different sensors (visible, multispectral,
and thermal) that were mounted on UAVs for the phenotyping of indirect traits (including canopy
temperature) for early-stage selection in sugarcane breeding.

Gracia-Romero et al.‘s [133] work concerned the comparison of the performance of RGB,
multispectral, and thermal data, which were derived from ground-based and UAV surveys, with the aim
to assess genotypic differences in durum wheat’s yield, under different growing conditions. In this case,
the measurement of the canopies’ temperature was an alternative valid to that of leaf stomatal
conductance. Perich et al. [134] exploited thermal UAV RS to measure canopy temperature
in wheat. Canopy temperature has a strong association with water status and stomatal conductance
in wheat [135–137]; in particular, low canopy temperature can be associated with a 30% increase
in yield, as well as an increase in water absorption by the deeper roots when measured during the grain
filling phase [138]. Maimaitijiang et al.‘s [139] study, which was performed on soybean, showed that
the fusion of thermal and multispectral data could provide the best estimate of the biochemical traits
of crops (chlorophyll content and N concentration) and biophysics (LAI, fresh and dry biomass).

The use of thermal UAV RS has proven to be very promising as a less-expensive way for mapping
drainage systems. Subsurface tile drainage is of great importance in the Midwest of the United
States [140]. Subsoil drainage allows for the level of groundwater to be lowered by removing excess
water, as well as reducing soil erosion and increasing the aeration [141,142] and infiltration capacity of
water derived from precipitation.

Knowing the precise layout of the drainage networks, as well as bringing benefits for their better
functionality, favors soil and water conservation practices [143]. Additional benefits include increases
in the soil productivity and yield of the crops, most of which do not tolerate excess water [143–145].
As the soil is directly above a drainage line, it is often drier than the soil between the drainage lines [146].
Differences in emissivity between dry and wet soil surfaces can be detected while using a thermal
camera [147], which has been demonstrated in several studies using thermal cameras mounted
on UAVs, even in combination with visible and multispectral cameras, showing the significant
performance of thermal images and potentialities for their use in mapping agricultural drainage pipe
systems [143,146,148–150].

Table 2 reports the dataset of all analyzed studies concerning the application of thermal UAV RS
in precision agriculture (PA) and organized based on the aim of the study, the type of the used camera
sensor, and the analyzed crops.
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Table 2. Dataset compilation of studies concerning the application of thermal UAV remote sensing (RS)
in precision agriculture (PA).

Aim of the Study Camera Sensor Analyzed Crops References

Water stress detection and plant phenotyping Thermal Soybean and sorghum [9]

Water stress and disease detection Thermal /Multispectral / Hyperspectral Olive [14]

Water stress detection Thermal /Multispectral Grapevine [15]

Water stress detection and monitoring

Thermal /Multispectral / RGB Grapevine [16]

Thermal /Multispectral Olive [19]

Thermal Grapevine [20]

Thermal Sugar beet [21]

Monitoring lodging Thermal / RGB Rice [23]

Irrigation and crop residue management Thermal Cotton [24]

Water stress detection Thermal /Multispectral / RGB Apple [25]

Monitoring and water stress detection Thermal /Multispectral Cotton, Corn, Olive and Peach [65]

Monitoring

Thermal /Multispectral Onion [68]

Thermal /Multispectral Barley and Corn [108]

Thermal / RGB Grapevine [125,126]

Evapotranspiration estimation Thermal - [74]

Water stress detection

Thermal Nectarine and Peach [70]

Thermal /Multispectral Grapevine [81]

Thermal Almond, Apricot, Peach,
Orange, Lemon [91]

Thermal /Multispectral Cotton [104]

Thermal Sugar beet [105]

Thermal / RGB Corn [106]

Thermal / RGB Soybean [107]

Thermal /Multispectral Soybean [109]

Thermal Nectarine and Peach [110]

Thermal / Hyperspectral Mandarin and Orange [113]

Thermal / Hyperspectral Grapevine [114]

Thermal Grapevine and Olive [116,117]

Thermal Grapevine [119,120]

Estimation of energy balance components Thermal /Multispectral Olive [118]

Monitoring and water stress detection Thermal /Multispectral / RGB Grapevine [121]

Yield estimation

Thermal /Multispectral / RGB Cotton [122]

Thermal /Multispectral / RGB Soybean [123]

Thermal /Multispectral Grapevine [127]

Phenotyping

Thermal /Multispectral / RGB Sugarcane [132]

Thermal /Multispectral / RGB Wheat [133]

Thermal Wheat [134]

Thermal /Multispectral Soybean [139]

Mapping drainage systems
Thermal / RGB - [143]

Thermal /Multispectral / RGB Corn and soybean [146,148,149]

5. Conclusions and Future Research Outlook

This review covered the state-of-the-art thermal UAV RS technology and, to the best of our
knowledge, is the first to deal with this topic. We also outlined an overview of the latest applications
of thermal UAV RS in the framework of PA. Starting from a synthesis of the fundamental principles of
thermography, necessary for the less experienced who approach this scientific field, this was followed
by a brief description of the features of thermal cameras, from the operation of the sensor that allows
the conversion of measurements into images to a hint about the cameras’ cost, briefly covering the topics
of field data acquisition, calibration, and data processing.

As far as the application of thermal UAV RS in agriculture is concerned, a literature review
made it possible to verify the presence of numerous works devoted to the subject. To the best
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of our knowledge, most of the applications of thermal UAV RS have concerned the detection of
crops water stress and the management of irrigation resources—both being crucial aspects for crop
development and agriculture [12,83,151]. The other applications, in a smaller number, have dealt
with the identification of symptoms that are caused by pathologies, phenotyping, monitoring, yield
estimation, and the identification of drainage networks in the fields.

Certainly, the use of UAV thermal sensors is not as widespread as that of other sensors, such as
optical and multispectral sensors, and this is probably due to the characteristics of thermal sensors
and the type of data that are derived from them. Although the first aspect is important, an important
limitation of thermal cameras is their geometric resolution, which is low when compared to, for example,
RGB sensors. The second concerns the data that are derived from the sensor, i.e., the temperature, which
has proved to be fundamental in the detection of water stress in plants, given the natural mechanisms
that regulate the temperature of plants. Excluding, perhaps, this type of application, which sees thermal
sensors as protagonists and advantageous over other sensors, especially for the possibility of detecting
water stress connections in advance, other types of applications that have provided the exclusive use
of thermal cameras are not many, especially when considering the field of plant pathology. The real
potential of cameras on UAVs can be exploited at high levels and with maximum profit in terms of
utility, focusing on the feature that makes UAVs unique: that of being able to simultaneously mount
and use multiple sensors [152]. The thermal camera used side-by-side with RGB and multispectral
sensors can increase the importance of UAVs in PA and expand their possibilities in terms of use.
In particular, when considering, for example, plant pathology, in order to improve the ability to
detect diseases or parasitic attacks at an early stage, the use of different sensors, including thermal
sensors, and the fusion/combination of their derived data with optical and multispectral sensors,
should be considered [153]. The possibility to perform surveys with a centimeter resolution, coupling
different sensors at any time, and with more affordable costs, puts UAVs ahead of aircraft platforms.
When compared to satellites, on the other hand, the introduction of platforms, including nanosatellites,
equipped with sensors, capable of offering high-resolution images of less than 3 m or the ultra-high
resolution of less than 1 m makes satellites increasingly competitive with regard to drones in PA
applications [152,154–157]. It would be interesting to combine thermal (and optical) satellite data
with UAV data, together with data that were collected on the ground, as shown, for example, in [109].
As things stand, when considering the different platforms and sensors of RS, no one is probably able
to offer a high resolution in all spatial, spectral, and temporal dimensions [153]. Therefore, it would
be desirable to synergize UAV images with high-resolution satellite images to improve the quality of
the final products, including thermal RS, in order to overcome these limits.

Naturally, new developments are also expected in the framework of thermal RS. Likewise,
it is also expected that the current trend of increasing user-friendliness for all types of users will
continue in the technological development of UAVs and sensors. Greater automation, where possible,
of aspects that are related to both the field data acquisition phase (preparation of the optimal flight
plan, configuration, and calibration of the sensors before and during flight) and the data processing
phase (together with the reduction of the time that is needed for data processing) is necessary as
the next steps to implement the use of UAVs in agriculture. As far as ground data acquisition is
concerned, as explained in the previous paragraphs, it remains an essential step for the moment.
Specifically for thermal RS, a simpler and more easy and immediate combination of the data that
were collected by weather stations with data derived from UAVs would be useful. Indeed, there are
still important practical difficulties in the correct collection of data, when considering the mitigation
of atmospheric effects, calibration, climatic conditions, and the complex interactions between soil
and plants [7]—particularly true in the case of thermal RS, whose raw data before the processing
steps are far from offering true and accurate temperature measurements. In this respect, thermal RS
requires accurate knowledge of thermography [152] in all its application phases, from the preparation
of the surveys to the final product. If this aspect, on the one hand, does not fail to stimulate the world
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of research to explore all aspects of thermal RS, then it might, on the other hand, constitute a limit for
use outside this field.

However, it is fair to say that, given the important progress in the use of RS sensors in agriculture,
in the short term, new solutions should also be able to simplify and expand the use of thermal RS
in agriculture and PA, increasing its integration in decision making [7]. PA needs high-intensity
procedures for the use of acquired images and it requires the presence of experienced and qualified
personnel [126], which results in higher costs for companies. Therefore, the use of advanced technologies,
including the use of UAVs, remains confined to those farmers with large agricultural areas available [158].
This aspect is more evident in the case of thermal UAV surveys, when considering that their operational
costs per hectare are higher than those of multispectral surveys [159].
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Abstract: Phenotyping of crops is important due to increasing pressure on food production. Therefore,
an accurate estimation of biomass during the growing season can be important to optimize the yield.
The potential of data acquisition by UAV-LiDAR to estimate fresh biomass and crop height was
investigated for three different crops (potato, sugar beet, and winter wheat) grown in Wageningen
(The Netherlands) from June to August 2018. Biomass was estimated using the 3DPI algorithm, while
crop height was estimated using the mean height of a variable number of highest points for each m2.
The 3DPI algorithm proved to estimate biomass well for sugar beet (R2 = 0.68, RMSE = 17.47 g/m2)
and winter wheat (R2 = 0.82, RMSE = 13.94 g/m2). Also, the height estimates worked well for sugar
beet (R2 = 0.70, RMSE = 7.4 cm) and wheat (R2 = 0.78, RMSE = 3.4 cm). However, for potato both
plant height (R2 = 0.50, RMSE = 12 cm) and biomass estimation (R2 = 0.24, RMSE = 22.09 g/m2),
it proved to be less reliable due to the complex canopy structure and the ridges on which potatoes are
grown. In general, for accurate biomass and crop height estimates using those algorithms, the flight
conditions (altitude, speed, location of flight lines) should be comparable to the settings for which
the models are calibrated since changing conditions do influence the estimated biomass and crop
height strongly.

Keywords: UAV-based LiDAR; biomass; crop height; field phenotyping

1. Introduction

Phenotyping of crops is important to estimate biomass and the potential yield of new varieties of
agricultural crops. Due to the increasing need to increase food production and improve the associated
quality, it is important to optimize the yield, for which accurate estimation of biomass during the growing
season is needed. In this context, phenotyping focuses on the characterization of morphological as well
as physiological crop traits. Morphological parameters, such as plant height, stem diameter, leaf area
or leaf area index (LAI), leaf angle, stalk length, and in-plant space [1], can be determined with LiDAR
(light detection and ranging). Research on phenotyping using LiDAR often focusses on one specific
crop, for example, wheat [2,3] or cotton [4].

Phenotyping of individual plants can be done in very high detail with LiDAR, analyzing complex
phenotypical properties, such as leaf area, leaf width, and leaf angle [5,6]. For this, plants were put
on a slowly turning platform while a fixed LiDAR instrument was used. A drawback of this setup is
the low throughput of the scanning system while there is also a need to evaluate phenotypes under
field conditions.

For high-throughput phenotyping, traits such as plant-height, LAI, and leaf cover fraction are
determined directly in the field, using a LiDAR-based system mounted on a vehicle or RGB cameras
mounted on a UAV (unmanned aerial vehicle) [3,4,7]. Tractor based LiDAR systems data have shown
good correlation with in situ field measurements of plant height. Sun et al. [4] published an R2 of 0.98
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for cotton plants, [2] published an R2 of 0.99 for wheat, and [7] showed an R2 of 0.90 for wheat. These
studies show the capability of LiDAR to measure basic phenotypes such as plant height. However,
LiDAR systems mounted on tractors can be unsuitable for labour-intensive crops such as rice or in
orchards [8], for example, due to compaction of the soil [9]. A UAV equipped with a LiDAR system
can overcome those limitations.

Earlier research on the relation between plant height and biomass was based on varying approaches
for plant height measurements. Madec et al. [7] found an R2 of 0.88 for the correlation between plant
height and field-measured biomass, using a tractor based LiDAR system. Bendig et al. [10] used a
structure from a motion (SfM) technique on UAV acquired imagery to derive plant height and found
an R2 of 0.81 between field-measured height and SfM derived height.

In the last few years, LiDAR systems have been miniaturized, resulting in lower weights and
reduced dimensions, and as a result, can be operated from UAVs. This development opens the way
towards high throughput derived, more complex products like biomass and yield, thus, improving the
speed and frequency at which these plant traits can be acquired in the field in an undisturbed way.

LiDAR-based biomass estimates of agricultural crops can be derived in different ways. Based on
the Lambert-Beer LAI model of [11], the authors of [2] developed a biomass prediction model called
the 3-Dimensional Profile Index (3DPI). Where the LIDAR 3D point cloud is divided into layers and
for each layer, the fraction of points divided by the total amount of points is calculated. These layers
are then summed, and the 3DPI values can be related to biomass with a linear function. As follow
up [2] also proposed a voxel-based method (3DVI) to estimate the biomass of wheat. The 3DVI method
divides the LIDAR 3D point cloud in voxels of equal size and calculates the ratio between the number
of voxels containing points and the number of subdivisions in the horizontal plane. They showed
that 3DVI could estimate wheat biomass accurately with an R2 of 0.91, and for 3DPI, an R2 of 0.93
was achieved. Jimenez et al. [2] used a tractor based LiDAR system. An alternative approach using
airborne LiDAR was proposed by [12], who used Pearson’s correlation analysis and structural equation
modelling (SEM) to estimate plant height and LAI, which proved to be the best predictors of the
biomass of maize (R2 of 0.87).

The goal of this study was to investigate the potential of UAV-LiDAR for estimation of crop height
and fresh weight biomass for three different agricultural crops. For this, the RIEGL RiCOPTER with a
VUX-SYS LiDAR system was flown over fields with sugar beet, wheat, and potatoes, on a number of
moments during the growing season. First, it was investigated how accurate this system can estimate
crop height and biomass. Next, we answered the question if it is possible to create models that are
generally applicable for different crops. Finally, we did experiments with different UAV flight patterns,
altitudes, and speeds to investigate if this influences the LiDAR-derived plant height and biomass
estimation. Optimization of the flight parameters was beyond the scope of this paper.

2. Materials and Methods

2.1. Study Area

Three fields with different crops, each covering approximately 2 ha, were selected at the experimental
farm of Wageningen University, located just north of Wageningen in the Netherlands (Figure 1). The three
types of arable crops in this study are sugar beet, winter wheat, and potatoes (Table 1), which were
planted on a Placic Podzol [13]. The variation in elevation in the fields is very small with a height
difference of less than 10 cm going from east to west in the area. Orientation of the main crop rows for
all three crops is north–south. The plant density of winter wheat was 260 plants/m2. Planting distance
for potato and sugar beet was 30 cm and 23 cm, respectively.
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Figure 1. Left: Overview of fields within the study area: indicated are the three different fields and
crops that are studied. The image was taken on 4 June 2018. The large inset shows the location of
Wageningen in the Netherlands. Right: Impression of the three different crops used in this research.
Potato and sugar beet images were taken on 5 June 2018. The winter wheat image was taken on
25 June 2018.

Table 1. General information about the three crops planted in the study area.

Crop Type Sugar Beet Potato Winter Wheat

Fieldname Dijkgraaf Com02 Braam
Planting month April 2018 April 2018 October 2017

Harvesting month October 2018 September 2018 August 2018
Size (hectare) 1.99 2.0 1.78

2.2. Data Acquisition

UAV-LiDAR data and field measurements of crop height and biomass were collected simultaneously
on four dates (Table 2). For the 1st, 2nd, and 4th flight date, field data were collected on the same day,
directly starting after the flight and finished within 3 to 4 hours. The 3rd flight day was not planned
initially, so no field measurements were done on that day, but this flight was conducted only 2 days
after the 2nd flight. Therefore, the field data collected at the day of the 2nd flight were used for both
those flights.
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Table 2. Flying dates and corresponding growth stages for the crops in selected fields.

Day Date of Flight Sugar Beet Potato Winter Wheat

1 07-06-2018 Vegetative Vegetative/Tuber initiation Heading
2 25-06-2018 Vegetative Tuber bulking Ripening
3 27-06-2018 Vegetative Tuber bulking Ripening
4 11-07-2018 Vegetative Tuber bulking Ripening

2.2.1. Field Data Collection

Plant height was measured using a ruler at 14–21 locations in each field. Locations were chosen
in such a way that differences within the field were well represented. On each location, an average
height was calculated based on three height measurements of randomly selected plants taken within
15 cm of each other. Biomass was determined through destructive sampling at different locations
within the field, differing from the plant height sampling locations [14]. For potato and sugar beet,
five biomass samples per field were taken and for winter wheat three. Biomass was harvested after the
flights. Biomass samples were taken for the first, second, and fourth flight day only, which resulted
in 15 samples for both potato and sugar beet and 9 samples for winter wheat. For potato, biomass
was harvested for one meter along the potato ridge and converted to biomass per 1 m2. The same
procedure was used for harvesting the sugar beet, where one meter in the planting direction was
harvested and converted to biomass per 1 m2. For wheat, an area of 1 m2 area was harvested. Biomass
was measured as fresh biomass weight directly after harvesting. Table 3 shows the mean and standard
deviation of every field campaign. The location of every crop trait measurement was measured with a
Topcon HIPER V RTK-GNSS system (TOPCON, Japan), which has a sub centimeter accuracy.

Table 3. Mean and standard deviation of field measurements separated per crop and sampling date.

Crop Sampling Date
Plant Height Biomass Fresh Weight

Sample
Size

Mean
(m)

Standard
Deviation (m)

Sample
Size

Mean
(g/m2)

Standard
Deviation (g/m2)

Potato
07 June 2018 21 0.599 0.073 5 3364.93 461.65
25 June 2018 20 0.690 0.229 5 3546.40 846.19
11 July 2018 20 0.547 0.151 5 3749.07 889.75

Sugar beet
07 June 2018 16 0.275 0.098 5 1237.55 650.85
25 June 2018 20 0.501 0.099 5 3834.40 1374.40
11 July 2018 15 0.445 0.105 5 3656.00 1191.38

Winter
wheat

07 June 2018 17 0.483 0.063 3 3477.37 751.71
25 June 2018 14 0.489 0.076 3 3371.67 940.45
11 July 2018 20 0.449 0.076 3 1583.00 473.11

2.2.2. UAV-LiDAR Data

LiDAR data were collected using the RIEGL RiCOPTER UAV system (Riegl, Austria) with the
VUX-SYS laser scanner mounted underneath. The authors of [15] provided a description of the details
of the system. The VUX LiDAR unit has an accuracy of 1 cm and precision of 0.5 cm. The absolute
positioning error on the ground also depends on the IMU accuracy, which was <5 cm in the horizontal
and <10 cm in vertical direction. Analysis of previous datasets acquired with the same setup resulted
in positioning errors of <5 cm. The scanner pulse repetition rate was set at 550 kHz, the scanner angle
from 30–330 degrees, and the scanner speeds were synchronized with the UAV forward speed to create
a regular point spacing. On the predefined dates, UAV-LiDAR data was acquired by flying at 40 m
above ground level (m.a.g.l.) with a programmed speed of 6 m/s. The actual flight altitude and speed
can deviate slightly from those preset values and were calculated from the flight recordings afterwards
(Table 4: mean flying height and speed).

Further, to assess the influence of the flying height and speed on the accuracy of acquired
phenological parameters, additional flights were done within a few days after the second flight day,
with heights varying from 20 to 90 m above ground level, and with programmed speeds ranging from

110



Remote Sens. 2020, 12, 17

3 m/s to 8 m/s. An overview of the flights and the actual flight data is shown in Table 4. The code given
in Table 4 is later used to identify the data acquired from each flight.

Table 4. Overview of flight dates, including flight codes and corresponding general flight details The flight
codes are 1) indicating the flight number; 2) the flight altitude (LA = Low Altitude, MA = Medium
Altitude, HA = High Altitude; 3) and flight speed (LS = Low Speed, MS =Medium Speed, HS = High
Speed). Those codes will be used throughout the paper.

Flight
Date

Flight
Number

Related
Field Data

Code
Mean Flying

Height (m.a.g.l.)
Mean Flying
Speed (m/s)

Number of
Flight Lines

Average Point Density (points/m2)
Wheat Potato Sugar Beet

07-6-2018 1 07-6-2018 Day1-MA-MS 41.84 5.85 11 997 833 933
25-6-2018 1 25-6-2018 Day2-MA-MS 45.32 5.88 9 960 777 664
25-6-2018 2 25-6-2018 Day2-LA-MS 24.16 4.17 7 1516 659 805
25-6-2018 3 25-6-2018 Day2-LA-LS 20.05 2.73 5 2755 1402 1262
27-6-2018 1 25-6-2018 Day3-HA-HS 92.68 7.39 11 575 446 432
27-6-2018 2 25-6-2018 Day3-LA-LS 22.71 2.93 9 2257 2097 804
11-7-2018 1 11-7-2018 Day4-MA-MS 42.14 5.78 11 1011 873 1003

If during the analysis it appeared that field measurements of plant height or biomass ended up in
the same pixel as a driving path as seen from the Lidar 3D point cloud, the point was moved 1 pixel
away from the driving path. This was the case for one point in the winter wheat dataset. Further,
the field measurement locations were selected before the flights were made. Points that appeared to be
in areas with a much lower LiDAR point density were excluded from the height and biomass analysis.
Two winter wheat points during the last flight date had to be excluded for this reason.

2.3. Data Pre-Processing

Riegl RiCOPTER data was pre-processed to co-registered point cloud datasets (Figure 2) using the
standard Riegl processing chain as outlined by Brede et al. [15]. This includes trajectory processing,
for which a virtual GNSS base station was used. The movements of the UAV platform were corrected
using the POSPac software (Applanix, Canada), which combines the GNSS correction and the
movement data recorded by the IMU, with a reported precision of ~1–2 cm for all flights. To produce
a geo-referenced point cloud, the flight path, and raw point cloud data were combined in RiPROCESS
(Riegl, Austria). Further refinement of the point cloud, using automatically detected surfaces, was done
by RiPRECISION (Riegl, Austria). The final co-registered and geo-referenced point cloud datasets were
stored in LAS format.

 

Figure 2. Overview of methodology for height and biomass retrieval from UAV-LiDAR observations
for crops.
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The point clouds were clipped for the boundaries of the three fields (Figure 1). The ground points
were selected using LasTools (Rapidlasso, USA) with the lasground function. From the points classified
as ground, a triangulated irregular network (TIN) was created. The height of each non-ground classified
point was calculated as the height above this TIN, using the “replace z” option in lasground. The same
procedure was applied for all the three fields.

2.4. Data Analysis

2.4.1. LiDAR Based Plant Height

Due to the difference in the structure of the crop canopies, the highest point in the point cloud
is not always the best representation for the field-measured crop height. Therefore, for each grid
cell of 1 m2 the average plant height was derived by including a certain number of top-of canopy
points. To determine the amount of top-of-canopy points needed to get the best plant height estimation,
a theory was used that is more commonly used in economics to decide on the best allocation of
products: the Pareto efficiency score [16]. This method compares different alternatives and based on
preset criteria, calculates a score of optimal performance. In this case, we used this method here to
decide based on two criteria, namely the highest R2 and lowest root mean squared error (RMSE), which
are calculated for each alternative of measured plant height and a certain number of top-of canopy
points. The method then only selects the combination for which no better combination exists. This
can result in multiple optimal Pareto efficiency scores. Next, from these Pareto efficient combinations,
the combination with the highest R2 is selected. This was done once for the whole growing season
for every crop. The corresponding number of top-of canopy points of this combination was used to
calculate the plant height of each raster cell within the field. A linear model relating field plant height
measurements to LiDAR-derived plant height was built using the 3D LiDAR point cloud by taking the
optimal number of top-of-canopy points into account.

2.4.2. Crop Biomass

To estimate biomass from the LiDAR point cloud, the 3DPI method as developed by the authors
of [2] and described by Equation (1) was used and calculated for a cell size of 1 m2:

3DPI =
∑i=n

i=0

(
pi

pt
ek pcs

pt

)
(1)

where i is a given 10 mm vertical layer with 0 being the ground layer and n the uppermost layer
respectively; k is a tuning parameter changing from −1 to 5 by steps of 0.05; pi is the number of LiDAR
points for a given layer of 50 mm; pt is the total number of LiDAR points for all layers; and pcs is the
cumulative sum of LiDAR points intercepted above a given layer of 50 mm, as described in [2].

To derive the biomass prediction model, a linear regression was performed between the
dimensionless 3DPI indicator and the biomass measured in the field based on the 3DPI indicator.
First, the optimal value for the parameter k was determined. For each individual crop and flight,
the 3DPI score was calculated by varying the k-parameter from −1 to 5 by increments of 0.05. The best
k-parameter was chosen based on the correlation between the field measurements and the 3DPI score.
The data for each crop was combined into a crop-specific seasonal prediction model for the flights
Day1-MA-MS, Day2-MA-MS, and DAY4-MA-MS. Secondly, all the data of these flights and crops were
combined into a general non-crop-specific seasonal prediction model.

Next, the flight data from DAY2-LA-MS, DAY2-LA-LS, DAY3-HA-HS, and DAY3-LA-LS were
used to determine the effects of different flight specification and were compared to Day2-MA-MS.
The 3DPI for these four flights was calculated using the same field measurements of plant height
and biomass as for Day2-MA-MS. This enabled the analysis of different flight settings because only
the 3DPI indicator differed between the flights so a direct comparison can be made. To visualize the
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differences between these four flights, maps of predicted biomass were derived and difference maps of
each flight with flight Day2-MA-MS were calculated.

2.4.3. Model Validation

To assess the performance of the models (Figure 2) for determining biomass, plant height, and the
general models, three statistical indicators were used; the coefficient of determination (R2), the mean
absolute error (MAE), and the RMSE. We included a cross validated MAE and RMSE, using a k-fold
cross validation. For each k-fold, the out-sample RMSE and MAE were calculated, after which they
were averaged over the n-number of k-folds used in the cross validation. These averaged out-sample
RMSE and MAE were compared to the in-sample RMSE and MAE. This comparison shows the
predictive power of the model (out-sample errors).

For the plant height analysis, a 10-fold cross validation was performed, using 61, 51, and 51 samples
for potato, sugar beet, and wheat, respectively (Table 3). For the biomass estimation, a repeated
5 × 3-fold cross validation was performed. The reason for this repeated cross validation for biomass is
the limited amount of biomass samples available for the statistical analysis. In this case, we used 15,
15, and 9 samples for potato, sugar beet, and wheat, respectively (Table 3).

For the biomass error analysis, the MAE and RMSE were then normalized by dividing by
Xmax-Xmin, where Xmax is the highest measured biomass sample in the dataset and Xmin the lowest
measured biomass sample in the dataset, resulting in a normalized mean absolute error (NMAE) and
normalized RMSE (NRMSE).

3. Results

3.1. Crop Specific Models

3.1.1. Plant Height

Based on the analysis of the Pareto efficiency scores, the LiDAR plant height for each grid cell
of 1 m2 is based on the top 10 points for potato, on the top 90 points for sugar beet, and for winter
wheat on the top 30 points. The average height of these points serves as the LiDAR-based plant
height estimation.

The correlation between field-measured height and LiDAR-based plant height is highest for sugar
beet and winter wheat (Figure 3). Plant height was most accurately derived for winter wheat with
an RMSE of 3.4 cm. Determining plant height for potato proved to be the most difficult, showing
relatively large residuals.

Figure 3. Scatter plots showing measured plant height vs derived plant height, where potato is based
on the 10 highest points within a pixel, sugar beet on top 90 highest points, and winter wheat on the
top 30 highest points. The blue line in the Figure is the 1:1 line.

Figure 3 shows that there is a general over prediction of plant height for potato while winter
wheat shows an underestimation. As winter wheat has a relatively open and erectophile structure,
the number of returns in the top of the canopy could be lower, resulting in an underestimation of
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height. Although sugar beet falls on the 1:1 line, the prediction of plant height has a higher spread
than winter wheat, which is shown by the larger MAE and RMSE. The over prediction of potato is
most likely the result of the complex canopy, which is explained in more detail in the discussion.

3.1.2. Biomass

Choosing k = 1 for potato and winter wheat and k = 3 for sugar beet results in the best fit for
the biomass models. Values lower than k = 1 proved to be very unstable in the performance for the
3DPI algorithm, showing large fluctuation in R2 values. Values higher than k = 3 became saturated
and showed only minor increases in R2. For potato and winter wheat the model errors, NMAE and
NRMSE are the smallest for k = 1 (Figure 4), while for sugar beets the errors are smallest for k = 3.

 

Figure 4. Error analysis for biomass derivation based on the 3-Dimensional Profile Index (3DPI)
indicator, deviating K between 1, 2, or 3. Showing biomass estimations for potato, sugar beet,
and winter wheat, including the dimensionless normalized in-sample.

Potato shows a relatively large difference between the NMAE and NRMSE compared to those of
sugar beet and winter wheat. This indicates that the low R2 is most likely the result of large residuals
(Figure 4). Furthermore, the spread in points for potato is less equally distributed between large and
small residuals compared to the spread of points for sugar beet and winter wheat (Figure 5). This
explains the larger NRMSE and NMAE of potato.

The prediction model for potato does not provide reliable estimates of biomass, especially
for values higher than 3500 g/m2 (Figure 5) in which biomass is underestimated. Furthermore,
the scatterplot does not show a strong relation. For sugar beet, there is a good correspondence between
the fresh biomass in the field and the LiDAR predicted biomass (Figure 5). Also, the crop development
during the growing season is captured well: during flight 1, the sugar beets were still small, and the
field was only partially covered, while during flights 2 and 4 the sugar beets had grown, which is also
derived from the UAV-LiDAR observations.

The biomass of winter wheat was determined most accurately. For flights 1 and 2, the points are
practically on the 1:1 line (Figure 5). During the 4th flight, the wheat had ripened, which lowered the
amount of fresh biomass.
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Figure 5. Scatter plots showing the relation between measured biomass and predicted for potato (k = 1),
sugar beet (k = 3) and winter wheat (k = 1). The blue line in the Figure is the 1:1 line.

3.2. General Prediction Models

3.2.1. Crop Height

When combining the crops into a general prediction model for plant height, the RMSE is 10.1 cm
(Figure 6). This error is much larger compared to the crop-specific models. For example, this accuracy
was 3.4 cm for winter wheat in the single crop model (Figure 3).

Figure 6. Scatterplot showing measured plant height versus LiDAR-derived plant height and the
residual plot for the general plant height. Showing the model residuals versus fitted plant height.
The colours in the left Figure show each separate crop. The blue line indicates the 1:1 line.

The Pareto method is used to determine the optimized number of points to be used to calculate
the height per pixel, which showed that using 100 points per pixel yielded the best fit for the general
model, resulting in an R2 of 0.61 for the general model. This is lower than the R2 for sugar beet and
winter wheat (0.70 and 0.78, respectively), but higher than that of potato (0.49). The residual plot
shows a random distribution of points with one outlier (Figure 6). This point comes from the potato
dataset, but no valid reason was found to exclude the point.

3.2.2. Biomass

The general model for biomass performed worse for biomass prediction of winter wheat; the
normalized error increased to 17.07% for the general model compared to 13.9% for the crop-specific
model (Figure 7) based on tuning-parameter k = 3. The general models were fitted using different
k-factors, where the R2 was 0.47 for k = 1, 0.49 for k = 2 and 0.50 for k = 3. The generic model saturates
for higher biomass predictions, especially for winter wheat (Figure 7). This indicates that a new model
should be built for the higher biomass estimates. However, the general model can be used to predict
biomass for potatoes (NRMSE = 22.1%) and sugar beet (NRMSE = 17.47%), in which NRMSE values
are larger than those of the general model (NRMSE = 17.07%).
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Figure 7. Scatter plot showing the relation between measured biomass and fitted biomass, for k = 3.
The colours indicate the original crop data used for the model. The blue line in the Figure is the 1:1 line.
On the right, the corresponding residual plot is shown. Showing the fitted plant height plotted against
the model residuals.

The cross validated NRMSE shows that biomass can be predicted on a new dataset with an
NRMSE_cv of 17.61%. The NRMSE_cv is 0.54 larger than the NRMSE for k = 3. This indicates that the
model could be used for fields, where no biomass samples were taken for calibration.

3.3. Influence of Flight Characteristics on Plant Height

Changes in flight characteristics (altitude and speed) result in differences in point cloud density
(Figure 8), where a cross section (10 × 0.2 m) of the sugar beet point clouds of four flights with different
flight characteristics are shown. The flights were done on two days, with one day in between, but we
assumed that the crops did not change between those two days.

 
Figure 8. Profile plot for sugar beet showing a profile of 0.20 x 10 m. From top to bottom, it shows the
flights DAY2-LA-MS, DAY2-LA-LS, DAY3-HA-HS, and DAY3-LA-LS. The green colours indicate plant
material, where darker colours indicate a higher elevation of the point. The red points indicate the
points classified as ground points.

Measured plant height is consistent for the different flight characteristics, except for the high
and fast flight (DAY3-HA-HS: 90 m, 8 m/s). As can be seen in Figure 8, this results in a much lower
point density and an underestimation of the crop height, shown by the lighter green colours in
Figure 9. However, the spatial patterns of crop height between the four sets of flight characteristics are
comparable. The locations with low and high crop height show a comparable location and distribution.
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For DAY3-LA-LS height map, the north-western corner of the field was not covered well by the
pre-programmed flight path, which resulted in a lower point density and, thus, an underestimation
of crop height. This indicates that the flight characteristics do not influence the spatial patterns of
estimated crop height, but it is important to keep them consistent for measuring temporal changes in
crop height.

Figure 9. Maps indicating the estimated plant height in meters for sugar beet for DAY2-LA-MS,
DAY2-LA-LS, DAY3-HA-HS, and DAY3-LA-LS. Darker greens indicate a higher plant height.

3.4. Influence of Flight Characteristics on Biomass

Biomass maps based on the 3DPI scores show varying patterns of biomass, dependent on the
flight characteristics (Figure 10). The absolute differences, compared to flight Day2-MA-MS (40 m,
6 m/s), are more clearly visible in Figure 10. Flying higher and faster (DAY3-HA-HS), results in an
underestimation of the amount of biomass. For flight DAY3-HA-HS, the average biomass estimation
was 1622.1 g/m2, where for Day2-MA-MS, the average biomass estimation was 2479.7 g/m2 (Table 5).
For the other flight characteristics, the overall estimate of biomass does not deviate too much from the
standard flight settings, but there are locations where the estimated biomass for the adapted flights
is lower compared to the standard flight. Further investigations learned that those areas are located
exactly between two flight lines. It is important to indicate that the exact position of the flight lines
was not consistent for the different flights. For each of the flights with the standard settings, the same
pre-programmed flight paths were used, but for the flights with adapted altitude and speed, new flight
plans were made, resulting in different flight patterns. This results in a different point density and
point distribution along the dataset, which appears to influence the estimated biomass more than the
altitude and speed.
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Figure 10. Maps indicating for flight DAY2-LA-MS, DAY2-LA-LS, DAY3-HA-HS, and DAY3-LA-LS the
estimated biomass in grams for winter wheat. Darker greens mean a larger biomass prediction.

Table 5. Overview of mean and standard deviation for the flights discussed in Figures 8–10. The data
for plant heights are from sugar beet, and the data for the biomass data are from the winter wheat maps.
For Day1-MA-MS, Day2-MA-MS and Day4-MA-MS, there is no data (nd) in the difference cell because
these were not compared to Day2-MA-MS.

Flight
Plant Height (m) Biomass (g/m2)

Data Difference Data Difference
Mean SD Mean SD Mean SD Mean SD

Day1-MA-MS 0.186 0.096 nd nd 2181.38 1182.68 nd nd
Day2-MA-MS 0.443 0.153 nd nd 2479.68 1133.56 nd nd
Day2-LA-MS 0.445 0.149 0.002 0.050 2603.81 1164.33 96.80 1014.95
Day2-LA-LS 0.466 0.160 0.022 0.085 2720.69 1157.64 202.70 929.70
Day3-HA-HS 0.403 0.134 0.040 0.056 1622.14 1132.21 –857.79 871.38
Day3-LA-LS 0.472 0.164 0.026 0.069 2435.03 1421.60 –44.97 1018.49

Day4-MA-MS 0.445 0.136 nd nd 2164.12 1261.95 nd nd

The biomass prediction for flight Day3-HA-HS shows an under prediction compared to the other
flights (Table 5), where for plant height the difference in the mean between the flights are smaller.
The sugar beet plant height estimation shows almost no variation between the flight characteristics
describing the field data from 29 June 2018. The biomass estimations for winter wheat does appear to
be sensitive to a difference in flight characteristics. There are large differences in the mean prediction
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between the different flight specifications, where for faster and higher flights (Figure 11 and Table 5:
DAY3-HA-HS), an under prediction of biomass occurs compared to flight Day2-MA-MS.

Figure 11. Maps indicating pixel differences between the biomass prediction for winter wheat of Flight
Day2-MA-MS and, respectively, DAY2-LA-MS, DAY2-LA-LS, DAY3-HA-HS, and DAY3-LA-LS. Positive
values (blue) indicate a higher prediction for, respectively, DAY2-LA-MS, DAY2-LA-LS, DAY3-HA-HS,
and DAY3-LA-LS compared to Day2-MA-MS.

4. Discussion

4.1. Plant Height

Depending on the type of crop, the accuracy for plant height retrieval varied between 3.4 cm
for winter wheat, 7.4 cm for sugar beet, and 12 cm for potato (Figure 3). Previous research efforts on
determining plant height via LiDAR have focused on winter wheat, where Jimenez-Berni et al. [2]
found an accuracy of 1.7 cm for a ground-based LiDAR system. Madec et al. [7] compared plant height
derived from a LiDAR scanner on a ground vehicle with estimates from SfM analysis on RGB-UAV
images. The latter method provided an accuracy of 3.47 cm for winter wheat plant height, proving
that the methodology presented within this paper proves just as accurate. Homan et al. [17] showed
that using a terrestrial laser scanner (TLS), the RMSE was 2.7 cm for wheat, which is comparable to
the achieved accuracy by the RiEGL RiCOPTER UAV LiDAR system. This, and previous research,
shows that using a UAV-based LiDAR system can be used to accurately assess plant height for winter
wheat fields.

However, the accuracy drops for crops with a more complicated canopy structure, such as potato
and sugar beet, where it proves to be harder to provide a plant height estimate with high accuracy.
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This starts with the procedure for field measurements. Winter wheat is an easy-to-measure crop in the
field due to its erectophile structure and a homogeneous pattern in height. Potato and sugar beet and
their planophile leaf angle distribution prove to be harder to measure within the field, which is further
complicated for potatoes since it is grown on ridges. Therefore, it is visually harder to determine the
highest point of a specific location. We tried to account for this by averaging field measurements over
the three highest points in close proximity, but we cannot ignore the fact that there are uncertainties in
the field measurements (Table 3).

In particular, potato proved to be a difficult crop because it grows on ridges, showing the need for
a good digital terrain model (DTM) of these ridges. A flight should be performed just after planting
the potato to get a good DTM, which can be used to normalize the 3D LIDAR point cloud of the
flights further during the growing season. This research started when the potato plants were already
developed, resulting in a closed canopy, making it impossible to create a good DTM. This could be one
of the reasons for the worse performance of potato height estimation.

As a result, the standard deviations for potato are generally larger than for the other two crops
(Table 3). Especially on 25 June when the potato plants were fully grown, it proved more difficult to
get accurate measurements.

4.2. Biomass

The 3DPI algorithm proved to estimate the biomass of winter wheat (NRMSE = 13.9% and
R2 = 0.82) and sugar beet (NRMSE = 17.47% and R2 = 0.68) well, showing slightly higher accuracies
compared to the paper of [2], where an NRMSE of 19.82% was achieved for winter wheat. It should
be noticed that the early growth stages are not included in this study, which partially explains the
differences in NRMSE. For winter wheat, similar results were obtained in [18], where a linear relation
was also examined between LiDAR-derived plant height and biomass, reporting an R2 of 0.88.

Possible improvements in the amount of biomass for winter wheat could be made using the dry
weight of the plant material. Especially during the ripening phase, the water content of winter wheat
decreases [19], resulting in a mismatch between the 3DPI algorithm and the measured fresh weight
biomass. The 3DPI method is developed on plant structure and does not account for the changing
water content within the winter wheat. Also, research by [20] showed that LiDAR laser scans proved to
be useful in determining leaf water content. This shows that there is an influence on the return signal,
which is influenced by the water content that has not been accounted for now. This effect depends on
the architecture, size, and density of the crop and, as such, is crop dependent.

The 3DPI algorithm proved to be unsuitable for estimating the biomass of potato. The 3DPI
algorithm was developed for winter wheat and not tested on other crops so far. Probably the main
reason is the very dense canopy, resulting in very few points in the lower parts of the canopy, which
resulted in a small number of returns lower in the canopy. These points underneath the canopy are
needed to create a complete height profile relative to the 30 cm high ridges where potatoes are grown
on, resulting in a better representation of the above ground biomass. The reason the algorithm works
better for sugar beet, which also shows a relatively dense canopy, is that sugar beet has larger inter-row
spacing which leads to more hits from larger scan angles.

The biomass prediction could possibly be improved for areas with a low points density by
changing the p_i layer size in the 3DPI algorithm. In this study, a p_i layer size of 50 mm was chosen
for two reasons. Firstly, because our point density was lower than of the experiment done by [2],
choosing a p_i of 10 mm would result in layers with no points in it. This could possibly influence the
3DPI algorithm negatively. Thus, increasing the p_i layer size resulted in an increase in points per p_i
layer, but how this influences the final 3DPI indicator should be further researched. Secondly, choosing
a larger p_i resulted in a faster computation time, which was useful for the large files we had.

Possible further research could be done using machine learning, where the 3DPI may be one
of many predictors to estimate biomass. Using, for example, a PLS regression as mentioned in [21],
or using machine learning approaches like [22], where a deep convolutional network was used to
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predict biomass using RGB imagery. Or the machine learning approach of [23], where they used a
range of spectral indices as predictors to estimate above ground biomass with an NRMSE of 24.95%.
Combining these different methodologies with a predictor such as the 3DPI indicator could result in a
better prediction of biomass.

4.3. General Models

The accuracy of the prediction of plant height using the general prediction model is 10.1 cm,
which is lower than those for the crop-specific prediction models of sugar beet (7.4 cm) and winter
wheat (3.4 cm).

The general model for biomass prediction displays a strong influence of sugar beet on the total
prediction model (Figure 7). The general model has the best predictive power at k = 3, showing
this influence. Sugar beet had the highest predictive power for k = 3, with the other two crops at
k = 1 (Figure 5). The reason for this over-representation of sugar beet is due to larger sample size of
15 samples compared to nine for winter wheat and the better performance of the sugar beet biomass
model compared to that of potato. Combining these two explains why at k = 3, the model has the
highest predictive power. When combining data from different crops, extra attention should be paid to
include an equal sample size of the multiple crops. Therefore, using a crop-specific model to estimate
crop height from UAV-LiDAR data proves to increase the prediction accuracy. However, depending on
the accuracy requirements, a general model could provide plant height estimations with an accuracy
of 10.1 cm and a biomass estimation with an accuracy of 17.07%. The results of this research show that
crop-specific biomass models have a higher retrieval accuracy; however, further research is required to
evaluate if general models can be relevant for mixed cropping systems.

Again, the trade-off is visible between a general biomass model, compared to the specialized
models for each individual crop. Furthermore, the model now has to be fitted through three kinds of
crops, which are completely different from each other. It was also indicated that different K-values were
needed to get a good fit of the specialized biomass models. A certain combination of 3DPI indicator
and measured biomass for potato does not necessarily correspond to the same combination of the 3DPI
indicator and measured biomass for winter wheat. Therefore, limiting this general applicability of the
model, the 3DPI appears to be crop sensitive. Possible other factors, such a height statistics derived
from the LiDAR 3D point cloud as analyzed in [21] or the spectral vegetation indices of [23], could be
helpful to make the 3DPI method less crop sensitive, which is something for further research.

4.4. Influence of Flight Altitude and Speed on Biomass and Plant Height Estimation

Plant height estimation from 3D points can be accurately achieved when the data is acquired
at high speed and relatively high altitude. The LiDAR-derived plant height from DAY3-HA-HS,
which was acquired at 92.68 m.a.g.l. and a speed of 7.39 m/s, still shows the same patterns as with
DAY2-LA-MS and DAY2-LA-LS, but the general plant height is lower (Figure 9). The LiDAR-derived
plant height underestimates the plant height compared to DAY2-LA-MS on average with 4.03 cm. This
underestimation is still smaller than the sugar beet plant height model error of 7.2 cm, showing that
acquiring plant height could be done with these settings. Therefore, speeding up data collection and
covering larger areas is feasible.

Applying the generic model for sugar beet on the 3D points clouds from the flights DAY2-LA-MS,
DAY2-LA-LS, DAY3-HA-HS, and DAY3-LA-LS showed that between DAY2-LA-MS, DAY2-LA-LS
and DAY3-LA-LS, there is no real difference in LiDAR-derived plant height. This indicates that
there is no real benefit in slowing down to 2.53 m/s or decreasing flying height. The different flight
specifications do result in different point densities and point distributions. However, this results mostly
in more points underneath the canopy, which has only a minor influence on the top of canopy points.
To increase accuracy, a DTM could be created before plants start to grow, decreasing the dependence
on getting enough returns underneath the canopy.
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For biomass estimation, the under the canopy points are important, where for DAY3-HA-HS,
a large under estimation is made averaging 858.8 g/m2 compared to the biomass prediction for
DAY2-LA-MS. There are not enough points to represent the full height of the plant. The non-normalised
accuracy of the winter wheat biomass model was 415.8 g/m2. Showing the inaccuracy of data acquired
at 92.68 m.a.g.l. and 7.39 m/s compared to that of DAY2-LA-MS, acquired at 24.16 m.a.g.l. and 4.17 m/s.

Changing flight characteristics shows some areas with patches where the biomass for wheat is
underestimated (Figure 10). These patches appear to result from areas that are not covered with any
flight lines and almost no perpendicular flight lines. It appears to be crop-specific as these patches do
not appear for sugar beet and potato. A possible reason why it affects winter wheat more is that laser
pulses from the LiDAR UAV penetrate more easily due to its erectophile leaf structure compared to the
planophile leaf structure of potato and sugar beet. Sofonia et al. [24] showed that for a LiDAR-based
application, a cross-flight pattern worked best. A better cross pattern and closer flight lines could,
therefore, possibly improve biomass estimation in general because laser pulses are acquired from
multiple directions increasing the chance of hitting parts of the plant underneath the canopy and
remove these unwanted patches. For an accurate biomass prediction, a homogeneous point density
is needed.

To allow a good estimation of biomass and crop height over the growing season, it is necessary
to keep the flight patterns consistent for all flights. Our results show that biomass and crop height
estimation errors increase if the point density and point distribution vary from the circumstances used
to calibrate the models. To determine the optimal flight pattern, altitude, and speed, more intensive
experiments should be done.

4.5. Outlook

Our results show the possibilities for UAV LiDAR to estimate plant phenotypes, such as biomass
and plant height, accurately and with high throughput. This fills the gap between slower but highly
accurate tractor-based LiDAR systems and high-throughput but less-detailed manned airborne systems
as indicated by [25]. Therefore, providing a solution to situations where a quick analysis of the field
is required, tractor-based solutions are not suitable. Furthermore, this study shows that crop trait
monitoring can be done throughout the season, using the same model trained on data from the whole
season. Moreover, this research showed that under uncontrolled conditions, relevant biomass and
plant height estimations can be made, which is marked as a bottleneck in the review paper of [26].
When using UAV-LiDAR for high-throughput estimation of plant height and biomass [27], time should
be invested in creating a detailed and structured flight plan. A flight plan would ideally consist
of a cross-flight pattern and it will cover the whole field, where flights lines are created alongside
the boundaries.

This research furthermore showed that there are limitations to the biomass estimation for certain
crops and that models developed for a specific crop cannot directly be used for other crops, and generic
models should be used with care. For a fully operational approach, an effort should be made towards
combining LiDAR with hyperspectral data, as mentioned by [22,23,26], so models can be trained for
a range of crops. This will increase both the accuracy and general applicability of high-throughput
biomass estimation models. Also, alternative methods for canopy height determination from UAV-based
3D point cloud datasets have recently been published [28].

5. Conclusions

Retrieval of plant height and biomass using UAV-LiDAR proved to be possible for sugar beet
and winter wheat. While for potato both plant height and biomass estimation proved to be hard
due to the complex canopy structure and the ridges on which potatoes are grown. For plant height,
the data acquisition can be performed relatively fast and at high altitudes increasing opportunities for
high-throughput approaches. However, for accurate biomass estimates, the flight conditions (altitude,
speed, location of flight lines) should be kept constant. The higher acquisition speed, compared to, for
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example, tractor-based LiDAR systems, means that UAV-LiDAR can be used to assess large areas and
can provide data quickly. Creating a reliable general model to predict biomass for different crops results
in a lower accuracy, especially when crops with a dense canopy like potato are included. To increase
the predictive performance of both LiDAR-derived plant height and biomass, a clear DTM should be
created before germination of the plants. This accurate DTM could then be used to accurately perform
the height normalization of the 3D LiDAR point cloud.
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Abstract: The application of hyperspectral imaging technology for plant disease detection in the field
is still challenging. Existing equipment and analysis algorithms are adapted to highly controlled
environmental conditions in the laboratory. However, only real time information from the field scale
is able to guide plant protection measures and to optimize the use of resources. At the field scale,
many parameters such as the optimal measurement distance, informative feature sets, and suitable
algorithms have not been investigated. In this study, the hyperspectral detection and quantification
of yellow rust in wheat was evaluated using two measurement platforms: a ground-based vehicle
and an unmanned aerial vehicle (UAV). Different disease development stages and disease severities
were provided in a plot-based field experiment. Measurements were performed weekly during
the vegetation period. Data analysis was performed by three prediction algorithms with a focus
on the selection of optimal feature sets. In this context, the across-scale application of optimized
feature sets, an approach of information transfer between scales, was also evaluated. Relevant
aspects for an on-line disease assessment in the field integrating affordable sensor technology, sensor
spatial resolution, compact analysis models, and fast evaluation have been outlined and reflected
upon. For the first time, a hyperspectral imaging observation experiment of a plant disease was
comparatively performed at two scales, ground canopy and UAV.

Keywords: feature selection; spectral angle mapper; support vector machine; support vector
regression; hyperspectral imaging; UAV; cross-scale; yellow rust; spatial resolution; winter wheat

1. Introduction

Today’s demands of agricultural cropping systems are high. Agroecosystems have to be
highly productive, while the undesirable impact on the environment has to be as low as possible.
Resource-conserving methods with a minimum of chemical input are in favor. One vision able to
approximate this goal is the use site-specific cropping measures. Site-specific management has the
potential to lead to a higher or constant productivity with a constant or reduced input of resources [1].
One group of for site-specific applications are plant protection measures [2].

The spatial occurrence of plant diseases in the field, especially in the early season, is often
heterogeneous, while in most cases, plant protection compounds are applied homogeneously onto the
crop. This spatial heterogeneity of disease occurrence might lead to diverse fungicide demands that
are often not considered. Many diseases first occur in patches before they start spreading in the field.
One approach for a site-specific application of plant protection measures might be the application of
fungicides to patches of disease occurrence [3–5]. This could prevent or stop disease spreading without
applying a fungicide to the whole field [1].

Remote Sens. 2019, 11, 2495; doi:10.3390/rs11212495 www.mdpi.com/journal/remotesensing
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Spectral sensors might be tools able to contribute to site-specific disease management [6,7].
Spectral sensors measure the light reflected from the crop canopy [1]. During pathogen attack and
disease development on the crop leaf, diseases establish a spectral fingerprint in the reflected leaf
signature [8–10]. These shifts of the signature can be detected using spectral sensors, particularly in the
electromagnetic spectrum from 400–2500 nm [11]. Spectral sensors can be divided into hyperspectral
and multispectral sensors, depending on their spectral resolution. The number and width of measured
wavebands mainly characterize the spectral resolution [11].

Non-imaging hyperspectral sensors average the spectral information over a certain area,
while imaging sensors contain the spectral information for each pixel [7]. Hyperspectral imaging
sensors (HSIs) provide spectral information in a spatial resolution. Multispectral sensors typically
cover the RGB range with an additional NIR band. These sensors are less cost-intensive and the
generated data are less complex, but do not cover the broad spectral range like a hyperspectral sensor.

Spectral sensors have been applied on different scales [12]. For field approaches, a hyperspectral
camera can be mounted to a ground based vehicle or to a UAV [1,3,11,13]. Depending on the
interrogation and measuring setup, each scale can have advantages and disadvantages. On the ground
scale, it is possible to detect small features of a few mm through high resolution on close range, while
the throughput on the UAV scale is much higher, with still higher resolution compared to satellite
imagery [5,14–16]. For field applications of spectral sensors, depending on the scale, the resolution
or the measurement time can become a limiting factor. Most field applications for disease detection
focused on the calculation of vegetation indices (VIs) [17–19] using multispectral sensors. VIs are
developed by accounting certain band ratios to highlight one factor and reduce the impact of another
factor [20]. Depending on the wavelength, these indices can be indicators for crop vitality, general
crop stress, pigment content, or a specific plant disease [18,21]. Few works have demonstrated an
approach for disease detection using imaging hyperspectral sensors under field conditions [10]. This
might be because spectral measurements under field conditions are challenging and the complexity
of hyperspectral data is higher than multispectral data [1]. The features of multispectral sensors
might result in lower image acquisition durations and lower susceptibility to environmental factors
during measurements. The image quality of field data in general is influenced by various factors.
Beside suitable weather conditions, the field crop species and the disease symptom type are of high
relevance for successful measurements. The leaf architecture and disease occurrence on the plant
mainly determine the detectability of the disease. Disease presence on lower plant and leaf levels
results in a decreased reflected signal. Disturbing weather conditions such as wind and rain can
easily obscure spectral images obtained in the field. One elusive and eminently important factor is
the illumination. Changing illumination conditions over time, caused by clouds or solar altitude,
can lead to uninterpretable data, because spectra of different images cannot be compared with one
another anymore [1,3,22]. The detection of diseases on different leaf levels is also challenging because
of inhomogeneous illumination conditions through the leaf altitude in the crop stand and upper leaves
that cast shadow. These leaves might also be in different developmental stages, and a senescent leaf has
to be differentiated from a healthy green or a diseased leaf. The leaf angle to the camera influences the
spectral signal. Not least, the image quality is essentially determined by the spatial resolution of the
sensor system used. Small symptoms of a disease can only be visualized when the spatial resolution in
combination with the measurement distance is appropriate for the desired data quality.

So far, various field measurements on the ground canopy scale of cereal crops have focused on the
detection of biotrophic diseases such as yellow rust [3,10,13,23–25], brown rust [18,26], and powdery
mildew of wheat [19]. This might be due to the fact that biotrophic diseases are more likely to appear
on the upper leaf layers because of wind distribution and a preference for fresh and healthy leaf
tissue [27]. Necrotrophic diseases are most severe on lower leaf levels, and therefore more difficult to
detect with remote sensors. A detection and quantification of septoria tritici blotch with a hyperspectral
radiometer has been demonstrated in the field [28].
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The analysis and interpretation of sensor data is crucial for future implementation. Algorithms
from machine and deep learning, in combination with suitable sensors and measurement platforms
are promising techniques. These methods are particularly able to cope with the number of wavebands
provided in hyperspectral data, and can be used for the detection of plant diseases [7,29–32].

This work presents a new approach for field trial studies using innovative and machine learning
for a pixel wise detection of crop diseases. A winter wheat trial was conducted in the vegetation period
of 2018. The crop was infected with Puccinia striiformis, the causal agent of yellow rust (YR). Weekly
hyperspectral measurements were performed on the ground-canopy and the UAV scale to monitor the
spectral dynamic of crop stands during the vegetation period. Measurements were performed using a
mobile field platform with a distance of 50 cm to the crop canopy and with a UAV drone at 20 m height
over the plots to work on and compare different scales. Hyperspectral images were captured using
a line scanner attached to a linear stage in a measurement booth and a frame-based hyperspectral
camera for UAV applications. Field data were preprocessed and normalized, and then analyzed using
the supervised classification methods spectral angle mapper (SAM) and support vector machine (SVM)
to detect yellow rust of wheat. Additionally, a feature selection was performed on the hyperspectral
data to verify the potential for a waveband reduction from hyperspectral to multispectral data for
disease detection.

2. Materials and Methods

2.1. Field Trial Layout

In the vegetation period 2017/2018, a field trial with winter wheat was conducted at trial station
Campus Klein-Altendorf 50◦37′31.00′’N, 6◦59′20.54′’E (Rheinbach, Germany). In 2016/2017, a first field
trial was performed to specify the measuring setup and routine (data are not shown). The cultivars JB
Asano (Limagrain GmbH, Edemissen, Germany) and Bussard (KWS SAAT SE, Einbeck, Germany)
were sown on 26.10.2017 with 320 kernels/m2. Field emergence was on 14th November 2017, while
harvest took place on 24.07.2018. JB Asano was chosen because of its susceptibility to YR. The field
trial was designed in 10 treatments per cultivar with two repetitions, resulting in 40 plots (plot size:
3 × 7 m). The plot design was randomized within each cultivar. With a change of the cultivar after each
plot, the direct proximity of plots with the same cultivar was avoided. This was designed to arrange
the field trial into two long rows of plots with cultivars alternating one after another in 20 plots per
repetition (Figure 1). The treatments within one cultivar were randomized. Two fertilizer intensities
(160 kg N/ha and 30 kg N/ha) were applied per cultivar. For cultivar Asano, two treatments were used
for additional inoculation with YR. The whole field trial was aligned from northwest to southeast.

2.1.1. Inoculations

Additional inoculations of Puccinia striiformis were performed in April and May (25 April 2019;
12 May 2019). To establish high disease infections, the inoculations were repeatedly performed by
applying a spore suspension to the plants immediately after rainfall incidences. Inoculations were
timed to forecasted infection risks after the xarvio field manager (BASF Digital Farming GmbH,
Münster, Germany). The spore suspension was applied with a garden pump sprayer and contained
8 × 104 spores/mL. Two liters of spore suspension were homogeneously applied over one plot.

2.1.2. Visual Disease Ratings

Visual disease ratings were performed weekly from calendar week 17–23. One plot was rated
two times at the same locations where hyperspectral measurements took place. Disease incidence was
assessed by the eye of a human rater. The diseased leaf area (%) was rated on 15 leaves per leaf level.
Additionally, the growing stage and the visible leaf area of each leaf level in the hyperspectral image
(from top view) was ascertained.
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Figure 1. Field trial layout (RGB stitch from unmanned aerial vehicle (UAV) images) at the research
station Campus Klein-Altendorf (Rheinbach, Germany) of winter wheat varieties Bussard and Asano
in 2018, with treatment declaration and measurement strategy. The trial was designed in two long
rows of plots to reduce the number of turns and keep continuous measurements.

2.1.3. Crop Stand and Disease Development

The vegetation in 2018 started late in March and was denoted by a drought that especially affected
the length of the growing season and led to an early harvest in July (Figure 2). Septoria tritici blotch, tan
spot, and powdery mildew were insignificant throughout the growing season. YR could establish a
significant infection on cultivar Asano, and measurements were not aggravated due to mixed infections.
The first YR symptoms were found in mid of April and were based on natural infection incidences.
Until the beginning of May (BBCH 31), a serious increase of YR was rated. Warm days and cold nights
seemed to favor infection incidences through dew formation. Until the middle of May (BBCH 37-39),
YR was the dominating disease.

Figure 2. Schematic overview of the course of the 2018 vegetation period. For each calendar
week, the actions are presented and disease occurrence of yellow rust (YR) is shown. Weekly
assessments and measurements were performed during the vegetation period (CW = calendar week;
BBCH = growing stage).
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2.2. Measurement Platforms

2.2.1. Field Platform Phytobike

The measurement platform, based on a square steel construction with four wheels and provided
by Forschungszentrum Jülich (Jülich, Germany), covered a 3 m wide experimental plot (Figure 3).
Sensors for reflectance characteristics, localization systems, power supply, and control of the sensors
via a control laptop were mounted to the steel frame. All sensors were variable in height by a moveable
aluminum profile construction. In this way, the sensor platform could be adapted to the growth stages
of the plants and a constant distance between sensors and crop canopy was enabled. With a weight of
around 150 kg, the construction approached the limit of the platforms without steering, and could still
be moved by the physical strength of two people.

 

Figure 3. Construction plan of the Phytobike (top left) and the final appearance in the field including
the cotton diffuser (top right). The UAV system used, consisting of a DJI Matrice 600 and a Rikola
hyperspectral camera (bottom left). Normalization was performed using a 50% grey reference panel
(bottom right).

As a hyperspectral sensor, the Specim V10E line camera (Specim Oy, Oulu, Finland) was used.
The motion required for the Specim V10E camera was realized by a linear stage (Velmex, Bloomfield,
USA). Measurements were triggered via the control computer, allowing a flexible reaction to changing
light situations by an adapted integration time. The Specim V10E camera measured the electromagnetic
spectrum in a range from 400 to 1000 nm with a spectral resolution of 2.73 nm. Sunlight was used as a
natural light source. A canvas measuring cabin was constructed to avoid shadows cast by the sensors
and equipment of the Phytobike.

2.2.2. UAV Measurements

The UAV allowed overview images of whole experiments or at least of parts of the experiment to
be collected. Recent technologies have enabled hyperspectral imaging at UAV scale. We combined a
UAV DJI Matrice 600 (Da-Jiang Innovations Science and Technology Co., Shenzen, China) with a Rikola
hyperspectral camera (Senop Oy, Oulu, Finland) (Figure 3). The Rikola camera measured the reflected
light in a range from 500 to 900 nm. The measured wavebands were selectable and spectral resolution
was set to 7 nm using 55 wavebands. With flight times of around 20 min, the whole experiment was
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captured within one battery capacity. For plot observations, a 20 m flight height was selected and the
UAV hovered over each plot center for a duration of 10 s. Sunlight was used as a natural light source.

2.3. Data Preprocessing

This study focused on the information about relevant wavebands as the central outcome. We used
a data flow to assess the ability to transfer this information between observation scales (Figure 4).
We built two data sets for yellow rust prediction—a classification data set on field scale and a regression
data set on UAV scale. Multiple prediction models and feature selection results were derived. In the
final step, models were optimized using the selected features, and feature selection information was
also exchanged. The resulting four classification models with selected features, two on the field scale
(features selected on the field scale and on the UAV scale) and two on the UAV scale (features selected
on the field scale and on the UAV scale), were evaluated. This allowed the values of feature selection
and, more specifically, the values of feature information obtained at a different observational scales to
be evaluated.

 

Figure 4. Underlying workflow of data assessment to compare different prediction algorithms and
evaluate the value of information about selected features at different scales. SVM = support vector
machine, SAM = spectral angle mapper.

2.3.1. Spectral Preprocessing

The derivation of the physical surface property reflectance from observed intensity values is an
essential part of hyperspectral image processing. The normalization procedure has to be adapted to
the measurement platform and is based on a spectral reference panel with a known homogeneous
reflectance in the observed wavelengths. At all scales, the following equation was applied to calculate
the reflectance R from the observation Im, reference Imref, and the corresponding dark currents DCIm
and DCref. In the field, the additional DCref was omitted for practical reasons.

R =
�−DC�
�re f −DCre f

, (1)

On the ground canopy scale, a 50% spectral reference panel was measured within each image of
the line scanner. A separate dark current was observed for the Specim V10E camera before every image.
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For practical reasons, UAV flight sequences were started with the acquisition of a single dark current,
and one image of the reference panel immediately before and after flying the frame-based Rikola
camera over the wheat plots. Image quality always suffers from motion of the object to be measured or
motion of the sensor. To avoid this, images were taken in conditions as calm as possible on the ground
canopy scale. The Rikola camera was hovered for at least 10 images over the reference panel to ensure
that image quality was sufficient for data normalization. The use of cross-sensor normalization, e.g.,
by using a separate spectrometer that continuously logs the incoming light intensity, was tested but
was not successful due to a deviating response characteristic between the different sensors.

To remove high frequency noise at the spectral border regions of the Specim V10e, the bands
1–20 (400–450 nm) and 181–211 (910–1000 nm) were excluded from further analysis, resulting in 161
used spectral bands. In addition, a Savitzky–Golay filter using 15 centered points and a polynomial of
degree 3 smoothed the data of the Specim V10e.

2.3.2. Data Normalization

Plant geometry can present severe distortions due to varying leaf angles, leaf distances to
the camera, and specular reflections on particular parts of the leaves. To compare the reflectance
characteristics, omitting the additive and multiplicative factors, the standard normal variate (SNV) has
been developed [33]. It is able to remove scaling factors due to varying distance or leaf angle, as well
as additional factors like specular reflection, e.g., on leaf tips. The normalization was performed on
both the ground canopy and field data. The SNV representation was calculated per spectrum S and
focuses the shape of the spectral curve:

SNV =
S−mean(S)

std(S)
, (2)

2.4. Prediction Algorithms

Multiple algorithms can perform predicting a class or continuous value based on features of a
sample. In general, they use a vector representation as input. In this study, the classifiers spectral
angle mapper (SAM) and support vector machine (SVM), as well as the regression algorithm—support
vector regression (SVR)—were applied to the ground canopy data (taken with the phytobike). To train
and evaluate the models, four images of one measuring day were annotated to be used as training data
and four images were annotated to be used as test data. The number of annotated pixels differed in the
different images due to natural heterogeneity in the crop stand. Pixel numbers were at least several
thousand for each class, up to several hundred thousand pixels for all classes in one image. Based on
the huge number of annotated pixels, models were trained on a subsampled data set, to make them
trainable and to rebalance the classes. With the exception of the water class, all classes were trained
with 1000 samples per class after subsampling of training data. The SAM was used because it has
been described in the literature to work resiliently under inhomogeneous light conditions [34]. The
development of the classification model was easy and fast. The SVM was used because, in theory, it is
trained on the whole data set and considers the spectrum of each pixel as training data. Vegetation
indices (VIs) were used because various published works have focused on VIs as tool for disease
detection. VIs can be seen as established representatives for optical measurements of plant parameters.
The models were trained using three data representations: full spectra, SNV normalization, and
20 spectral VIs. The results were compared to a SAM that represented the base line accuracy. The
comparison was performed on the YR test data from 23 May 2018. The evaluation of different feature
representations showed a small advantage of SNV normalizations, whereas it was treated as standard
representation in the following. As performance measures, we applied the overall accuracy using
six classes for the model, combining the background and the old leaves/straw class. Furthermore,
we evaluated the F1 score (Table 1) for the class disease, providing a homogenized combination of
precision and recall. The F1 score declares the number of pixels of one class that are correctly classified
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into this class after the formula 2 × (precision × recall) ÷ (precision + recall)). The two performance
measures corresponded in tendency; however, the F1 score decreased faster as the large number of
background pixels stabilized the overall accuracy.

Table 1. Comparison of evaluation parameters obtained on test data for different data representations
and prediction algorithms on the ground scale for the support vector machine (SVM) and the spectral
angle mapper (SAM).

SVM Raw SVM SNV SVM Indices SAM

Accuracy 91.9% 92.9% 90.2% 81.4%
F1 disease score 83.2% 84.0% 76.4% 48.3%

2.4.1. Spectral Angle Mapper

The SAM is a prediction algorithm developed for the efficient classification of high- dimensional
spectral data. The assignment uses the angle between the spectra to classify and reference spectra,
treating a spectrum as high-dimensional vector [34]. The spectrum to be classified was assigned to the
reference spectrum/class with the smallest angular distance. In addition, a threshold prohibited the
assignment of spectra with a large angular distance.

2.4.2. Support Vector Algorithms

The SVM andSVR are established machine learning methods that have been proven to deal well
in situations with many features but a very limited number of samples [35]. This is a common situation
in hyperspectral data analysis, and following it is a suitable approach for hyperspectral remote sensing
as well as close range imaging. A critical point for the application of SVM and SVR is the selection
of the hyper parameters Cost C, kernel parameter γ (SVM) or C, and complexity control ν (ν-SVR).
They were selected by grid search combined with a cross validation. Grid points were 10−5 . . . 1010

for C, 10−8 . . . 102 for ν and 0.05 . . . 0.50 for n. The optimization algorithm was the sequential minimal
optimization SMO, and LIBSVM 3.18 with Matlab was used for as implementation [36].

2.5. Vegetation Indices

On hyperspectral images of ground canopy data, 20 VIs were tested to visualize crop heterogeneity
and to detect yellow rust in the field. The composition was used because it has previously been
successfully tested as an indicator for crop vitality [37]. The composition of VIs was chosen according
to Behmann et al. [37]. Due to the limitation of available bands of the Rikola camera, only 16 VIs were
used for UAV data and the ARVI, mRESR, mRENDVI, and SIPI were excluded.

2.6. Model Evaluation

To compare the performance of the different models on the respective data sets, different measures
were applied depending on the model type. All measures were calculated on a test set that was not
used in training. For classification models that determined the discrete classes y as a function f(X) of
the data X, the accuracy was defined as the percentage of correctly classified data points. The F1 score,
in contrast, was based on the precision and recall of each class. In regression tasks with continuous
target variables, the coefficient of determination R2, correlation, and root mean square error (RMSE)
were applied. Due to the limited number of data, we applied leave-one-out cross validation to generate
the test predictions. This procedure learns a model on the whole data set except for one sample.
This was repeated for all samples in the data set.

2.7. Feature Selection

There are multiple approaches for feature selection, feature subset selection, and feature weighting.
Filter approaches like Relief are very fast and provide a weight for each feature. In contrast, wrapper
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approaches have the big advantage of dealing well with high levels of redundancy and selecting the
best subset with minimal size [38]. A major drawback is the high computational load. Feature selection
at all scales (on ground-canopy and UAV images) was performed using a wrapper approach comprising
a SVM or SVR, respectively. A sequential forward feature selection (Statistics Toolbox, Matlab2013a)
was used, and the called criterion function minimizing the prediction error was implemented based on
LIBSVM 3.18. For the SVM, the accuracy was maximized and for the SVR, the RMSE was minimized.
Due to the limited number of samples in the UAV data set, a leave-one-out cross-validation was
performed to generate the test predictions to calculate the criterion.

2.8. Spatial Resolution as a Key Parameter for Disease Detection

Besides the relevant wavelengths, the required spatial resolution or ground sampling distance
(GSD) is highly important for the definition of a sensor capable of detecting different wheat diseases in
the field. Based on the test and training data sets, simulations were performed where the test data
were extracted from subsampled spectra by a factor of 2, 10, 20, and 100. A knn and an aggressive
subsampling approach were compared to visualize the effects of different annotation strategies on the
F1 score for the detection of YR.

3. Results and Discussion

3.1. Supervised Classification of Hyperspectral Pixels at the Ground Canopy Scale

One approach used to analyze hyperspectral data on the field scale is the pixel-wise classification
into usual pixel (background, straw, healthy leaf tissue) and in disease specific symptoms. In the field
experiment 2018, YR had a significant disease severity and classifiers for this disease were derived.

The use of 16 VIs reached a reasonable but not competitive performance. However, it has to
be noted that we compared 161 features to 16, meaning a significant reduction in dimensionality.
The results can be integrated in a later discussion of the various feature sets obtained by feature selection.

Based on these results, SVM SNV (Table 1) was selected as most appropriate approach. A visual
comparison of the SAM results and the SVM SNV result is shown in Figure 5. Significant differences
were apparent. The SVM detected many more senescent leaves, e.g., all leaves from the lower leaf
levels, whereas the SAM assigned these to the background or the healthy leaves. The SVM was
more sensitive for ear detection, which caused major problems in the SAM image, where they were
partly assigned to YR. Overall, both approaches were sensitive to YR, but the SVM was much more
accurate in the very bright image parts as well as the darker background parts, while the class YR was
overrepresented in the SAM classification. The visually most significant aspect was the large number
of blue pixels in the visualization of the SVM result. YR disease was present at all leaf levels and led to
early senescence in lower leaf levels.

The classification models were validated via two approaches: (1) pixel-wise classification of
the hold-out test data set consisting of manually annotated pixels of new images of separate plots,
and (2) prediction of pixel classes of all images obtained on a respective day and comparing the total %
disease class from all plant pixels to the visual assessment done by the expert (Figure 6). Approach 1
resulted in a confusion matrix allowing the calculation of multiple performance measures such as the
overall accuracy, the sensitivity, and the recall, whereas Approach 2 provided the R2value, correlation
coefficient, and a regression plot. Table 1 shows the overall accuracy and the F1 score for the different
classification methods.

Presumably, due to light reflections and transmission or a deviating weighting of the different
canopy levels, the SVM prediction overestimated the ratio of diseased pixels. To compensate for this,
a linear regression model was applied. However, deviations between the predicted disease severity
and the visual assessment could have various reasons, e.g., the section of the plot observed by the
sensor did not represent the true status that was evaluated by the visual assessment. The viewing
angle produced a variable composition of different leafs and leaf layers in the field of view of the
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human and the sensors. Furthermore, the visibility of the lower leaf levels was low for imaging system
from the top, and more accurate if the human rater could go deep into the crop stand for individual
leaf disease rating. Further points are that the visual assessment produced a single value averaging
the affected leaf area. From repeated disease assessments with multiple experts, different deviations
have been observed depending on the literature [39,40]. The method of disease detection is subjective
to the individuals performing the assessment. Another prime factor for deviations and classification
inaccuracies is the biological heterogeneity. This has to be considered as highly dynamic within one
field, one plot, and one location, and even on different leaf layers and single leaves. The biological
heterogeneity can be affected by many factors, e.g., the leaf color and status, stem elongation (distance
of leaf layers), the density of the canopy, and other biological growth processes.

 

Figure 5. Visual comparison of the representative spectral angle mapper (SAM) classification (top

left) and the support vector machine standard normal variate (SVM SNV) classification (top right)
with the original RGB visualization of the corresponding ground-based image of one representative
measurement location of a plot inoculated with YR (bottom left). The image is captured with the
hyperspectral camera Specim V10. The classes (bottom right) were generated from manual annotation
of train and test data.
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Figure 6. Scatter plot of the relation between visual assessment and predicted disease ratios for
yellow rust on 23 May 2018 before (left) and after the application of a linear calibration model (right).
The calibration model had the purpose of compensating for scale differences in the prediction values.

3.2. Evaluation of Hyperspectral UAV Observations Using a Filter-System Hyperspectral Camera

To characterize the reflectance characteristics of the field plots, the spectra of the central 4 × 2 m
of each plot were averaged. Intra-plot variations were neglected. Multiple traits were predicted with
reasonable accuracy based on SVM and SVR analysis of the 55 recorded bands from 500–900 nm.
Table 2 shows the obtained performance parameters based on a SNV representation and the integration
of all 55 bands.

Figure 7. Prediction results of a YR infestation obtained by applying a leave-one-out procedure to the
support vector regression (SVR) on the UAV scale. Each point represents a plot observation, and its
color, the observation date (DD-MM).
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Table 2. Performance values for different SVM and SVR models predicting the treatments of the wheat
field experiment based on UAV observations.

Trait/Treatment Performance

Fertilizer level Accuracy = 82.3%
Fungicide Accuracy = 91.5%

Fungicide + fertilizer level (four classes) Accuracy = 71.4%
Disease detection (severity > 0) Accuracy = 90.0%

Disease severity estimation Correlation = 70.6%

Using the SVR approach, a prediction of the disease severity in percent was possible with
reasonable accuracy (Figure 7). The interpretation of this result has to take into account that a value
from the visual assessment might not represent the average plot value because diseases may occur at
zoned locations in the plot, and assessment locations may or may not be in these spots.

3.3. Selection of Relevant Features at Different Scales

One of the main motivations for the application of hyperspectral imaging technology is the
potential to find the most relevant wavelength for a specific task, and to subsequently design a specific
sensor. Reference [41] showed that specific wavelengths might be useful to identify certain leaf
diseases in sugar beet. In wheat, VIs have been described that are capable of detecting brown rust [18].
This shows that a selection of specific wavelengths can be specific for one disease. We applied the
introduced technique to the data sets on the ground-canopy and UAV scale and derived important
wavelength for the detection of disease symptoms as well as the prediction of disease severity.

3.3.1. Ground Scale

Feature selection on the field scale was performed for the detection of YR. The models were trained
on a homogenized sample of training data and validated by a five-fold cross-validation. The final
accuracy was determined by the hold-out test set. To reduce the computational complexity, the feature
was regularly subsampled by a factor of 5. The resulting 33 bands were ranked and an optimal band
number was selected (Figure 8).

For YR, an optimal number of 16 features reached 91% accuracy. However, to allow a comparison
with the UAV scale selection, we selected the best 10 features, providing an accuracy of 88%.
The waveband of 780 nm in the NIR was the most important for YR detection. The next two
bands were also in in the NIR, followed by a band in the blue/green spectral region. Less important
was the NIR wavebands > 800 nm and the red part of the spectrum. Various works have shown that
VIs using wavelengths out of these spectral regions can be successfully used to detect rust diseases of
wheat [17,18,25], or even for necrotrophic diseases of other crop plants such as groundnuts [42]. In the
literature, it has been described that pigments and water influence the absorbance and reflectance
of light with plant interactions [43–45]. The measured reflectance signal is always a mixed signal
and the result of complex biochemical interactions [43,46,47]. The visible region is mainly influenced
by the light absorption of leaf pigments [48]. Healthy wheat canopies appear dark green because of
high amounts of chlorophyll in the leaves [10]. With YR infection in the leaf tissue, a degradation of
chlorophyll happens, while the urediniospores of rust fungi are pigmented through the formation
of carotenoids [49]. This could explain the importance of certain absorption or reflection bands of
pigments for YR detection in the visible range. The effect of chlorophyll degradation and the formation
of chlorosis, and a resulting detectability for the disease has also been described for Septoria tritici
blotch [28]. The NIR region is strongly influenced by the leaf and cell structures, the architecture of
the canopy, and water absorption bands [43,50]. High YR incidence leads to an early senescence of
leaves in the upper, but particularly in the lower leaf levels. This changes the appearance of the crop
architecture, reduces the vitality of leaves and water content, and could explain the importance of
specific wavebands for YR detection.
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Figure 8. Results of the feature selection for the relevant wavebands for the classification of YR
in the field on the ground (top) and UAV (bottom) scales. The accuracy reached for the different
numbers of features (left) and the ranking of the inclusion within the feature subset (right) is displayed.
RMSE = root mean square error.

3.3.2. UAV Scale

For the feature selection on the UAV scale, the detection and quantification of YR infections was
investigated. Using the UAV and the filter-system Rikola hyperspectral camera, the mean spectrum
of the central part of each plot was measured at multiple days. The first four dates were used, as a
suitable disease estimation was not possible later due to the beginning of senescence.

The optimal number of features was 11 features, reaching an RMSE of 17.9 (i.e., to the visual
assessment at the ground of around 70%) (Figure 8). Here, the most important bands were 830 nm
and 510 nm, followed by NIR bands. Without significance were the red region 630–700 nm and the
beginning of the NIR at 700–800 nm. The selection of the spectral border band would be a sign of
fitting to noise if the Specim V10E line scanner had been used, but here, the Rikola camera was used
without an increased noise at the spectral border regions.

Feature selection results for further traits are shown in Table 3. Important bands were also found
in the green and NIR regions, which might have been triggered by the same biochemical reactions as
on the ground scale. However, for the fertilizer, fungicide, and the combined treatment the spectral
region 600–750 nm had a higher relevance.

137



Remote Sens. 2019, 11, 2495

Table 3. The six most important bands for selected plot traits at the UAV scale and ranking of the
wavebands (in nm) for the importance of feature selection, beginning with the highest. Selected
traits: fertilizer (Fert), fungicide (Fung), fungicide + fertilizer (Fert+Fung), yellow rust (YR) detection,
yellow rust regression.

Ranking Fert Fung Fert + Fung YR Detection YR Regression

1 767 727 734 797 832
2 725 804 887 881 510
3 648 762 545 601 867
4 557 648 559 706 874
5 627 594 517 874 587
6 704 767 748 594 594

3.3.3. Cross-Scale Interpretation

The cross-scale interpretation revealed significant inconsistencies but also some parallels.
The inconsistencies were related to sensor characteristics, as the same sensor had not always been
applied. Furthermore, additional factors at the different scales (leaf geometry, mixed pixels with
background) were included at the higher scales that may have relied on further bands to be regarded
properly by the prediction model.

The number of required features varied at the different scales. In a separate experiment (data
not shown) with fixed leaves in the laboratory, a perfect differentiation was possible using two bands.
Geometry was also not relevant, as the leaves were fixed in a horizontal position. The highest number
required on the field scale was 18 on average, as the complex geometry and complex scattering effects
in the canopy affected the recorded signal. At the UAV scale, the geometry was the same, but due to
the physical smoothing by blur and high pixel size, the signal was simplified again. There, an optimum
was reached at 11, omitting the spectral region 620–820 nm.

The red region had a low relevance for the classification of YR on the field and UAV scales.
This might have been due to the fact that urediniospores P. striiformis appear more yellow than red
(due to carotenoid composition) and do not show strong reflection in the red region. The NIR region
had an increased relevance on the UAV scale. Presumably this was related to simple separability based
on pigments on the lower scale, whereas in the field, the leaf geometry distorted this signal and the
NIR region was required to compensate for this effect.

The differences and parallels of the different feature sets motivated the cross-scale application of
feature sets. It was assumed that information about optimal feature sets could also be an advantage
at a different scale. Therefore, the feature sets for the assessment of YR were exchanged between the
ground scale with the Specim V10, and the UAV scale with the Rikola hyperspectral camera. To allow a
comparison of the different feature sets, the number of included features was fixed to 10, based on the
previous feature selection runs (Figure 8). Evaluation at the ground and UAV scales was performed
following the same principle as for the feature selection. Table 4 shows the performance of multiple
feature sets. The highest accuracy was reached by the full data set, followed by the 16 VIs. The feature
sets with 10 features reached a slightly lower, but in direct comparison, very similar accuracy. The
results indicate that the complex situation in the wheat canopy required more than 10 features. The
good performance of the equidistant feature set can be explained by the resemblance to the 10 selected
features that were nearly equidistantly distributed over the spectral range. Both feature sets applied
wavebands out of the same spectral regions. Furthermore, the performance of the field-selected feature
set points to the heterogeneity of reflectance characteristics even within the same treatment group.
The test and training data were extracted from separate image sets. Following, this feature set was
optimized on the training data, but had no advantages compared to the equidistant feature set on the
test data.
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Table 4. Performance of the different feature sets for the YR detection based on ground observations.

Ground Class. All UAV Select Field Select Equidistant VI

# feature 210 10 10 10 16
Acc. 92.9% 87.4% 88.9% 89.2% 90.2%

F1 disease 0.84 0.694 0.751 0.732 0.764

The comparison of different feature sets showed the potential positive results of feature selection
to a higher degree. The highest accuracy was obtained by the feature set optimized at the UAV scale,
whereas the feature set from the ground scale obtained an even lower performance than the equidistant
feature set (Table 5). For the UAV data set, a separation of test and training data was not possible
due to the much smaller data base. Here, a leave-one-out cross validation was applied to obtain R2

and correlation coefficients. The obtained feature set may have been more adapted to the evaluation
procedure at the UAV scale compared to the ground scale. The UAV evaluation shows that it was
possible to slightly increase the accuracy by feature selection compared to the full data set, and also
that uninformed subsampling did not lead to optimal results.

Table 5. Performance of the different feature sets for the YR regression based on UAV observations.

UAV Regression All UAV Select Field Select Equidistant

# feature 55 10 10 10
R2 0.63 0.69 0.57 0.61

Corr. 79.4% 83.0% 75.5% 78.1%

However, the data characteristics at the ground canopy and the UAV scale were so disparate that
an advantage of feature set transfer is doubtful. The transferred feature set had a lower performance
even compared to the uninformed equidistant sampling. There were multiple factors contributing
to the deviating data characteristics expressed by different demands to the feature sets. One of the
main points was the use of different sensors with different measurement principles, each adapted to
its measurement scale. The noise characteristics of the ground camera showed an increased noise
level at the spectral border regions and a noise optimum in the red range. The UAV camera showed a
homogenous measurement quality for the whole range, despite some artifact bands around 630 nm,
where optical refractions seem to occur at a beam splitter. The suitability of a spectral region can
be significantly reduced by such sensor characteristics, but if the effect occurs only at one sensor,
the optimal feature set changes. Further points regard the implicit spatial smoothing if a larger area is
captured by a single pixel. At the ground scale, the feature set will directly point to the reflectance
characteristics of the spores, whereas at the UAV scale, the reduced vitality and even morphological
changes have to be taken into account. In contrast, the close-range observations at the ground scale
were dominated by the leaf geometry, and more specifically by leaf angle and position within the crop
stand. Therefore, the analysis model had to integrate these factors to enable predictions as robust as
possible against the plant geometry. At the UAV scale, most of the pixels provided a mixed signal of
multiple leaves and, in addition, the analysis was performed on the mean spectra of each plot. Most of
the geometric effects averaged out as the characteristics of hundreds of leaves were averaged.

In general, there is no single waveband for individual diseases, but broad regions (blue, green,
red, NIR I (700–800), NIR II 800–1000) with varying relevance for the different diseases. This is tightly
coupled with the sensor characteristics. The Rikola camera was not able to measure the blue and NIR
(900–1000 nm), but provided stable noise conditions over the whole measurement region. The Specim
V10E camera had a larger measurement region (400–1000 nm), but the spectral border regions had a
much higher noise level.
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3.3.4. Spatial Resolution as Key Parameter for Disease Detection

The un-sampled data had a GSD of approximately 0.4 mm (for Specim as well as Rikola). The UAV
observations (20 m flight height) had a GSD of approximately 8 mm (Figure 9).

This approach did not regard the adaptation of the model to the new classification scale.
By retraining the prediction, the accuracy may be improved, as the smoothing here also affected the
data characteristics. However, even then, the disease-specific information will vanish at a certain level.
We omitted this evaluation as the performance measures of the retrained models were not comparable
anymore as the number of training data declined drastically, e.g., to around 100 samples for YR at
higher subsampling scales.

 

Figure 9. Visualization of spatial subsampling effects for the four investigated subsampling levels
(images) and the effect of scale on accuracy and F1 score for the two different approaches knn (nearest
neighbor) and an aggressive for subsampling the annotation.

The investigations allowed the definition of a minimal sampling distance at which the mixed
information no longer allowed the prediction of plant diseases. Without retraining the model,
the accuracy decreased at subsampling factors of 10 and 20. A low subsampling of 2 seems to have had
no negative effects. Presumably, the included smoothing removed border cases and outliers which are
hard to classify correctly. At higher subsampling levels, more and more mixed pixels occurred where
the aggressive label subsampling tended to extend the image regions assigned to a class. Subsequently,
the effect was more severe here. The accuracy of more than 50% at the final state was related to the
dominant background, which provided a significant majority of test data at the high subsampling
levels. It was not related to the ability to predict the presence of YR. This was demonstrated by the F1
score, a measure to quantify the performance of a multi-class prediction model on class level.

In this performance measure, the quality also decreased at subsampling factor of 10. Surprisingly,
the F1 score increased to nearly optimal numbers at a subsampling factor of 100. Discussing this fact, it
has to be noted that at the highest subsampling factor, only 119 YR samples were included in the data
set, which are all correctly classified. Maybe this was related to the accuracy on the UAV scale, where
the majority of geometric effects were averaged out. This point remains to be evaluated in further
investigations, but it seems that subsampling by a factor of 100 removed the leaf structure completely,
whereas at a lower subsampling factor, the leaf structure was still apparent but more and more effects
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of mixture become present. Without any leaf structure, the classification problem is simplified to the
presence of YR within this part or even within the image. At low level disease severities, this will cause
major problems, but here, the test data has been selected to show clear disease symptoms.

3.4. Optimal Sensor System for Plant Disease Detection

Two sensor systems were evaluated, both showing strengths and weaknesses. In direct comparison,
the flying sensor system had strong advantages in usability, throughput, and commercial viability.
The ground sensing system was much more sensitive, as a single symptom with a diameter of a few
mm could be recorded. Such a spatial resolution could only be obtained by the flying system at a flight
altitude of around 1 m above the canopy. However, with the used system this was not possible, as the
downstream from the rotors would have strongly moved the canopy. Alternatively, an optical zoom
could be applied, presumably reducing the light flux as well as the throughput of the overall system.
This could be compensated for by an increased spatial resolution of the sensing array.

Summarizing, based on the experiments conducted during the presented study, we propose a
focus on a UAV flying at low height in combination with a frame-based spectral camera sensing in
around 15 equally distributed bands. A tunable band configuration would be an alternative that could
use bands optimized for every single disease scenario, e.g., crop species, crop developmental stage,
assumed disease setting, assumed symptom maturity. The spatial resolution should be set at around
1 mm GSD, a value that allows the detection small symptoms but neglects the high-frequency noise
caused by the complex surface structure of plants [29,51].

4. Conclusions

This study investigated the detection of plant diseases using hyperspectral cameras at ground
and UAV scales. In this context, the appropriate data analysis was decisively able to reach suitable
results. Supervised classification has the advantage of separating disease-related signals from a huge
amount of natural biological, geometrical, and sensor-related variability within a hyperspectral image
of a crop canopy in the field. We proved that hyperspectral imaging in combination with supervised
classification and regression showed good accordance to visual assessment at the ground. This allows
questions to be addressed regarding the transfer of information between different scales and sensors.
We showed that a feature selection was able to increase the prediction accuracy if it was performed on
the analyzed data set. In contrast, scale or sensor transfer of selected feature sets was not successful,
and was even less predictive than an uninformed regularly sampled feature set. This highlighted the
importance of a precise specification of a prediction task by representative data samples. Deviations in
data characteristics can significantly impair the performance of a data analysis pipeline or a tailored
sensor in real-life applications.

This study sets a basis for ongoing research. New, upcoming sensors fulfilling the demands
defined in this study might also cope with the current disadvantages. Consequently, there is a high
probability that the defined flying sensor system with high resolution spectral camera, computing
capabilities, and self-localization will be realized. Adapted legal conditions would allow an integrated
system of field managing software, remote sensing based predictions, and current observations from
the field using an automatized UAV.
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Abstract: In recent years, the use of unmanned aerial vehicles (UAVs) has received increasing attention in
remote sensing, vegetation monitoring, vegetation index (VI) mapping, precision agriculture, etc. It has
many advantages, such as high spatial resolution, instant information acquisition, convenient operation,
high maneuverability, freedom from cloud interference, and low cost. Nowadays, different types of
UAV-based multispectral minisensors are used to obtain either surface reflectance or digital number (DN)
values. Both the reflectance and DN values can be used to calculate VIs. The consistency and accuracy
of spectral data and VIs obtained from these sensors have important application value. In this research,
we analyzed the earth observation capabilities of the Parrot Sequoia (Sequoia) and DJI Phantom
4 Multispectral (P4M) sensors using different combinations of correlation coefficients and accuracy
assessments. The research method was mainly focused on three aspects: (1) consistency of spectral
values, (2) consistency of VI products, and (3) accuracy of normalized difference vegetation index
(NDVI). UAV images in different resolutions were collected using these sensors, and ground points with
reflectance values were recorded using an Analytical Spectral Devices handheld spectroradiometer
(ASD). The average spectral values and VIs of those sensors were compared using different regions of
interest (ROIs). Similarly, the NDVI products of those sensors were compared with ground point
NDVI (ASD-NDVI). The results show that Sequoia and P4M are highly correlated in the green, red,
red edge, and near-infrared bands (correlation coefficient (R2) > 0.90). The results also show that
Sequoia and P4M are highly correlated in different VIs; among them, NDVI has the highest correlation
(R2 > 0.98). In comparison with ground point NDVI (ASD-NDVI), the NDVI products obtained by
both of these sensors have good accuracy (Sequoia: root-mean-square error (RMSE) < 0.07; P4M:
RMSE < 0.09). This shows that the performance of different sensors can be evaluated from the
consistency of spectral values, consistency of VI products, and accuracy of VIs. It is also shown
that different UAV multispectral minisensors can have similar performances even though they have
different spectral response functions. The findings of this study could be a good framework for
analyzing the interoperability of different sensors for vegetation change analysis.

Keywords: reflectance; digital number (DN); vegetation index (VI); Parrot Sequoia (Sequoia);
DJI Phantom 4 Multispectral (P4M)

1. Introduction

An unmanned aerial vehicle (UAV) is an unmanned aircraft operated by radio remote control
equipment and self-provided program control device [1]. The combination of a UAV and a remote

Remote Sens. 2020, 12, 2542; doi:10.3390/rs12162542 www.mdpi.com/journal/remotesensing
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sensing sensor can constitute an ultralow-altitude remote sensing monitoring system. UAV remote
sensing has many advantages, such as high image spatial resolution, instant information acquisition,
convenient operation, high maneuverability, freedom from cloud interference, and low cost [2–4].
With the rapid development of UAV technology, UAV remote sensing has been widely used in
agriculture, forestry, resource surveys, and vegetation monitoring [5–10]. Vegetation indices (VIs),
as simple and effective measures of the surface vegetation condition, are widely used in vegetation
monitoring via remote sensing [11–13]. Because of the unique response characteristics of vegetation in
the near-infrared band, most vegetation indices (such as the normalized vegetation index [14] and the
soil-adjusted vegetation index) are currently based on a combination of visible light and near-infrared
bands [15].

At present, there are a variety of UAV-based multispectral minisensors on the market that can be
used for vegetation monitoring [16–23] and can be selected according to the different needs of users.
To make the VI products obtained from different sensors at different times comparable, the digital
number (DN) of the collected image data is usually converted into reflectance, and then the reflectance
is used to calculate the vegetation index [24]. For example, the Parrot Sequoia (Sequoia) multispectral
sensor can help users to obtain the reflectance value, and then some conversions can be performed on
the reflectance to calculate the VI [25]. Different sensors may use different conversion methods, but the
conversion process may have a certain effect on the reflectance value which will further affect the
calculated VI value. Unlike the Sequoia, the DJI Phantom 4 Multispectral (P4M) provides users with
DN values, and then some conversions can be performed on the DN to calculate the VI. Although these
two sensors provide users with different types of data for calculating VI values, the calculation method
is the same; i.e., the VI value is the result of the spectral value (Sequoia: reflectance; P4M: DN) after
linear or nonlinear transformation. Between these sensors, there is a certain difference between the
spectral values in the same band, and this difference may be enlarged or reduced after VI calculations.
This leaves the question as to whether there is any difference between the VI products obtained by the
above two methods. To answer this question, this study considered two UAV multispectral minisensors,
Sequoia and P4M. The research was conducted based on the consistency of spectral values, consistency
of VI products, and accuracy of VI products, as these assessment methods have been widely used in
different sensors [26–29].

Zhang et al. [30] compared the reflectance and normalized difference vegetation index (NDVI) of
the medium spatial resolution satellite Sentinel-2A with those of Landsat-8. The results showed that the
Sentinel-2A surface reflectance was greater than the Landsat-8 surface reflectance for all bands except
the green, red, and the broad Sentinel-2A near-infrared bands. The Sentinel-2A surface NDVI was
greater than the Landsat-8 surface NDVI. Ahmadian et al. [31] estimated the physiological and physical
parameters of crops by using the VIs of Landsat8 OLI and Landsat-7 ETM+. The results showed that
Landsat-8 OLI was better at capturing small variability in the VIs, making it more suitable for use in
the estimation of crop physiological parameters. Roy et al. [32] compared Landsat-8 and Landsat-7
in terms of reflectance and NDVI. The results showed that the reflectance and NDVI of Landsat-8
were both greater than those of Landsat-7. In order to accurately distinguish cassava and sugarcane
in images, Phongaksorn et al. [33] compared the reflectance and NDVI of Landsat-5 and THEOS.
The results showed that THEOS can better distinguish the two crops. These previous studies show the
value of studying different sensor platforms in terms of reflectance and VI in order to evaluate their
performance. While there are many other relevant studies focusing on satellite-based sensors [34–38],
only a few studies have considered UAV-based minisensors.

Bueren et al. [39] compared four optical UAV-based sensors (RGB camera, near-infrared camera,
MCA6 camera, and STS spectroradiometer) to evaluate their suitability for agricultural applications.
The STS spectrometer and the multispectral camera MCA6 were found to deliver spectral data that can
match the spectral measurements of an Analytical Spectral Devices handheld spectroradiometer (ASD)
at ground level when compared over all waypoints. Bareth et al. [40] compared the Cubert UHD185
Firefly and Rikola hyperspectral camera (RHC) to introduce their performance in precision agriculture.
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The results showed that they both worked well, and the flight campaigns successfully delivered
hyperspectral data. Nebiker et al. [41] compared three sensors (Canon s110 NIR, multi-SEPC 4C
Prototype, and multi-SEPC 4C commercial) to investigate their characteristics and performance in
agronomical research. The investigations showed that the SEPC 4C (multi-SEPC 4C Prototype and
multi-SEPC 4C commercial) matched very well with ground-based field spectrometer measurements,
while the Canon s110 NIR expressed significant biases. Deng et al. [42] systematically compared the
vegetation observation capabilities of MCA and Sequoia based on reflectance and VI. It was found that
the reflectance of the MCA camera had higher accuracy in the near-infrared band, and the reflectance
accuracy of the Sequoia camera was more stable in each band. The MCA camera can obtain an NDVI
product with a higher accuracy after using a more precise nonlinear calibration method.

In recent years, UAV minisensors have begun to show an end-to-end (user to product) development
trend, which simplifies the data processing and VI calculation, thus giving users the best sense of use.
It is necessary to further explore the performance of different UAV multispectral minisensors based on
previous research. To address this, our main objective of this paper was to experimentally evaluate
different UAV multispectral minisensors and compare them in terms of consistency. To meet the main
objective, we focused on (1) analyzing the consistency of spectral values, (2) analyzing the consistency
of VI products, and (3) assessing the accuracy of NDVI products between two sensors. This research
will suggest whether vegetation observations from different sensors complement each other or not,
thereby further broadening their application in different fields.

2. Materials and Methods

2.1. Study Area

The study area is located in Fangshan District, Beijing, China (39◦33′34.93′′ N, 115◦47′40.97′′ E),
which has a warm temperate humid monsoon climate (Figure 1). It covers an area of 0.03 km2 with flat
terrain and 95 m average altitude. The annual average temperature is 11.6 ◦C, and the annual average
precipitation is 602.5 mm. There are a variety of surface types in the area, mainly grassland.

 

Figure 1. Location of study area.
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2.2. Multispectral Sensors and UAV Platforms

Two types of multispectral sensors were compared in this experiment. The Sequoia camera [43]
has a total of five imaging sensors, including four multispectral sensors and one RGB sensor (Figure 2).
The spectral response function of Sequoia is shown as the solid line in Figure 3, which was provided by
the manufacturer. The focal length of the Sequoia camera is 3.98 mm, the image size is 1280 × 960 pixels,
and the sensor size is 4.8 mm × 3.6 mm. It is equipped with a sunshine sensor that can record
the illumination information of each image, facilitating the calibration of multispectral images.
The self-provided calibration panel can be used for radiometric calibration, and the reflectance data
can be obtained directly.

Figure 2. UAV platforms and multispectral sensors (Sequoia and P4M). The Sequoia sensor is carried
on the EM6-800 hexarotor UAV (left), and the P4M uses its own aircraft (right).

Figure 3. Spectral response functions of Sequoia (solid lines) and P4M (dashed lines).

The other multispectral sensor considered in the study is the P4M (Figure 2). The P4M camera [44]
has a total of six imaging sensors, including five multispectral sensors and one RGB sensor. The spectral
response function of P4M is shown as the dashed line in Figure 3, which was provided by the manufacturer.
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The focal length of the P4M camera is 5.74 mm, the image size is 1600 × 1300 pixels, and the sensor size is
4.87 mm × 3.96 mm. The P4M camera is also equipped with a sunshine sensor, but the reflectance data
cannot be obtained directly. Table 1 shows the band information for Sequoia and P4M.

Table 1. Spectral band information for the Parrot Sequoia (Sequoia) and DJI Phantom 4 Multispectral (P4M).
Their approximately equivalent bands (green, red, red edge, and near-infrared) were compared in
this study.

Sequoia P4M

Band
Central

Wavelength (nm)
Wavelength
Width (nm)

Band
Central

Wavelength (nm)
Wavelength
Width (nm)

- - - blue 450 32
green 550 40 green 560 32

red 660 40 red 650 32
red edge 735 10 red edge 730 32

near-infrared 790 40 near-infrared 840 52

During the data collection, the sensors were carried on different UAV platforms. The Sequoia
was mounted on a hexarotor UAV called EM6-800 which has the advantages of low cost and high
stability. Its payload is 800 g, and the maximum flight time is 40 min; under the maximum load of
1.2 kg, its maximum flight time is 25 min [45]. The UAV is equipped with an onboard flight controller,
which includes a compass; an inertial unit; and gyroscopic, barometric, and global positioning system
sensors. The onboard flight controller can be used to control the flight missions through flight route
and measurement point settings. It can also record and access the data obtained by the mounted
sensors for postprocessing. Unlike the Sequoia, the P4M has its own UAV platform, so it can complete
the data collection task independently without the help of other aircraft. It has a takeoff weight of
1487 g, and the average flight time is 27 min.

2.3. Data Collection

2.3.1. Sequoia and P4M Data

The UAV flight was conducted during sunny and clear sky (without clouds) conditions from 11:00
to 13:00 on 22 August 2019. During data collection, the Sequoia sensor was mounted on the EM6-800
hexarotor UAV, while the P4M was mounted on its own aircraft. For the Sequoia, a calibration target
provided by the manufacturer was recorded to perform radiometric calibration in postprocessing.

In this experiment, the two sensors acquired a total of three sets of image data. The Sequoia
images were collected while flying at 56 m height with 5 cm resolution and 100 m height with 10 cm
resolution. The P4M images were collected while flying at 100 m height with 5 cm resolution. All of
those flights were started within a one-hour period (11:27 to 12:22) to maintain similar illumination
among each set of images. These images were acquired with 80% overlap. Sequoia acquired a total of
1715 images and P4M acquired 960 images. The specific parameter settings for the sensors are shown
in Table 2.

Table 2. Parameters of sensors used for comparison. During the data collection process, the P4M
camera failed to successfully acquire image data with a resolution of 10 cm. The 10 cm image data used
in the comparative experiment was obtained by resampling the 5 cm image.

Sensor Date Time Altitude (m) Solar Zenith (◦) Solar Azimuth (◦) Resolution (m)

P4M 2019.8.22 11:27 100 29.8031 155.00 0.05
Sequoia 2019.8.22 11:59 56 27.9838 170.80 0.05
Sequoia 2019.8.22 12:22 100 27.7342 182.63 0.10
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2.3.2. ASD Data

We used the FieldSpec HandHeld 2 field spectroradiometer produced by Analytical Spectral Devices
to measure the ground object spectral data. The coordinates and photos of the measured points were
collected for ground object identification and visual interpretation of images. The spectroradiometer can
perform continuous spectrum measurement in the wavelength range of 325–1075 nm, with the spectral
resolution <3.0 nm at 700 nm, wavelength accuracy of ±1 nm, and field angle of 25◦. It can measure the
reflection, transmission, radiance, or irradiance in real time and obtain the continuous spectral curve of
the measured object. The spectrum measurement was carried out in sunny and cloudless weather and
the time was between 11:00 to 13:00. During the UAV flight, synchronous ground observation was
carried out to ensure that the solar elevation angle, zenith angle, and weather conditions measured by
the ground object spectrum were consistent with the UAV data. During data collection, the surveyors
wore black clothing to absorb sunlight and reduce spectral interference. The spectrum measurement
was carried out under natural light conditions, the spectroradiometer was held vertically downward at
1 m above the ground, and the sensor covered about 0.68 m2 ground area. To improve the accuracy of
measurement, each ground point was repeatedly measured (ten times), and then the average value was
taken. The spectroradiometer was calibrated every 10 min to reduce the interference of weather change
on the spectrum measurement. Considering the small area, similar vegetation species, and relatively
uniform ground surface in the study area, a total of eight ground points were selected (Figure 1).
These points were selected randomly. Finally, according to Equation (1), the radiance of the ground
object was converted into reflectance using the calibration coefficient provided by the reference plate.

Ri =

λimax∫
λimin

RλCλdλ

λimax∫
λimin

Cλdλ

(1)

where Ri is the reflectance of band i (i = 1, 2, 3, 4), λimax and λimin are the maximum and minimum values
of wavelength i, Cλ is the transmittance of wavelength, and Rλ is the reflectance of wavelength λ.

The reflectance data can be used to calculate the true NDVI of the ground point (ASD-NDVI).
The area of each ground point is about 0.68 m2. Therefore, when comparing the NDVI obtained by
the two sensors with the true NDVI (ASD-NDVI), 272 pixels were selected and the average NDVI
was taken from the 5 cm resolution image. Similarly, when comparing the NDVI obtained by the
two sensors with the true NDVI (ASD-NDVI), 68 pixels were selected and the average NDVI was taken
from the 10 cm resolution image.

2.3.3. GCP

Five ground control points (GCPs) were evenly established on the field using printed white crosses
to ensure the overlap between the Sequoia and P4M imagery at different times (Figure 1). The GCP
and ASD coordinates were measured with 0.025 m horizontal accuracy and 0.035 m vertical accuracy.
A geodetic dual-frequency global navigation satellite system (GNSS) receiver was used in a rapid-static
manner (approximately 4 min for each measurement) using the relative positioning approach from a
master station located at a point with known coordinates.

2.4. Methodology

This research methodology involved data acquisition (Section 2.3), preprocessing (Section 2.4),
VI selection (Section 2.4), ROI selection (Section 2.4), and analysis (Section 3). The details are described
after methodology chart (Figure 4).
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Figure 4. Methodological flowchart of the research.

2.4.1. Image Resampling

To standardize the spatial resolution of images acquired by different sensors, it is necessary
to resample images that are very suitable for experimental comparison [46]. In order to avoid the
contingency of the experimental results and to ensure the maneuverability of the UAV flight process,
we compared the images of Sequoia and P4M with different spatial resolutions (5 and 10 cm). Therefore,
we used ENVI software to resample the P4M images with the spatial resolution of 5 cm to obtain
images with the spatial resolution of 10 cm. The pixel aggregate method was adopted in the resampling
process [47].

2.4.2. Image Preprocessing

For preprocessing, Sequoia and P4M images were imported into Pix4D mapper [48] and DJI
Terra software, respectively. Different steps of initial processing were followed, including point cloud
processing, 3D model construction, feature extraction, feature construction, and orthophoto generation.
As the Sequoia images can be used to directly obtain the reflectance data of the study area after
processing, the VIs were calculated using reflectance data from VI equations. As the P4M images can
be used to directly obtain the VIs, there was no need to get reflectance data for these images. Then,
the processed images were imported into ENVI software to clip, match, and select different ROIs in a
single band for comparison.

Figure 5 shows the processed 5 cm spatial resolution image. From Figure 5, it can be seen that
there is a slight difference between a and b. For example, the building in the bottom left corner appears
white in the P4M image but red in Sequoia, the stones on the right are white in P4M but red in Sequoia,
and some roads which are white in P4M are yellow in Sequoia. These differences may be caused by the
saturation of the red band in the Sequoia sensor. There are also some small differences between c and d.
The Sequoia-derived NDVI (Sequoia-NDVI) is greater than the P4M-derived NDVI (P4M-NDVI);
the range of Sequoia-NDVI is −0.19 to 0.93, and the range of P4M-NDVI is −0.43 to 0.85. There are
some errors of Sequoia-NDVI in the visual range: Some buildings in the bottom left corner have the
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NDVI of about 0.7 (yellow part), but the building does not correspond to such a large NDVI value
in reality.

Figure 5. Image pairs of Sequoia and P4M (5 cm) after data processing: (a,b) two false color composites
formed by the combination of near-infrared, red, and green bands; (c,d) normalized difference
vegetation index (NDVI) products of the two sensors. The left side corresponds to the Sequoia
camera, and the right side corresponds to the P4M camera. The yellow squares indicate the difference
between Sequoia-derived RGB and P4M-derived RGB; the black squares indicate the difference between
Sequoia-NDVI and P4M-NDVI.

Figure 6 shows the processed 10 cm spatial resolution images of Sequoia. Compared with the 5 cm
spatial resolution results, both the false color RGB images (Figure 5a) and NDVI products (Figure 5c)
are different. In the 10 cm resolution RGB image, the red part of the building in the bottom left corner
still exists, but it is significantly smaller than in the 5 cm resolution image; the stones on the right are
shown in white instead of red, and the road is shown in white instead of yellow. The problem of red
band saturation does not seem to be obvious in 10 cm resolution images. Similarly, the NDVI value of
the building in the bottom left corner seems normal.

Figure 6. Image pairs of Sequoia (10 cm) after data processing: (a) the false color composite formed by
the combination of near-infrared, red, and green bands; (b) normalized difference vegetation index
(NDVI) product of Sequoia.

2.4.3. ROI Selection

For the comparison of different sensors, the most common method is to compare the spectrum
information or VI of each corresponding band by statistical regression [49]. In this experiment,
four commonly used VIs were compared between Sequoia and P4M. In the spectrum information
comparison, the reflectance of Sequoia cannot be directly compared with the DN value of P4M,
so we used linear regression to characterize the spectral difference of these two sensors. Additionally,
eight ground points were also measured by ASD, but the number of points was too limited to establish
a fitting relationship between the ASD and the sensor. Therefore, we compared the NDVI between ASD
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and sensor point by point. For this experiment, we selected some ROIs in the same location (between
images of two sensors) and then compared the average value in each ROI [50]. The images of the
study area were divided into 10 × 8 grids on average, and a ROI was selected from each grid. A total
of 80 homogeneous ROIs (including vegetation and nonvegetation) were selected in the experiment.
The selected ROIs were in flat terrain, properly sized, homogeneous, and almost identical (no other
object features were included) [51]. The relation function between Sequoia and P4M was fitted using
ordinary least square (OLS) regression. The goodness of fit was defined by the correlation coefficient
(also written as R2) [52]. Root-mean-square error (RMSE) was used to measure the deviation degree
between the Sequoia-NDVI or P4M-NDVI and ASD-NDVI, as shown in Equation (2).

RMSE =

√√√√ n∑
i
(yi − yi′)2

n
(2)

where yi is the ASD-NDVI, yi
′ is the average Sequoia-NDVI or P4M-NDVI, and n is the total number

of ground points (n = 8).

2.4.4. VI Selection

VIs can reflect the growth status of vegetation. Different VIs may have certain differences in
reflecting vegetation characteristics [53]. In vegetation studies, among all the possible existent VIs,
NDVI, green normalized difference vegetation index (GNDVI), optimal soil-adjusted vegetation index
(OSAVI), and leaf chlorophyll index (LCI) are commonly used. These four VIs were compared in this
experiment, as shown in Table 3. NDVI is currently the most widely used VI in the world. In agriculture,
NDVI is one of the most important tools for crop yield estimation, biomass estimation, and so on [54].
Using the unique response characteristics of vegetation in the near-infrared band, NDVI combines
the spectral values of the red band and near-infrared band to quantitatively describe the vegetation
coverage in the study area.

Table 3. Four vegetation indices (VIs) used for the research.

VI Formula Reference

Normalized Difference Vegetation Index (NIR − R)/(NIR + R) [57]
Green Normalized Difference Vegetation Index (NIR − G)/(NIR + G) [55]

Optimal Soil-Adjusted Vegetation Index (NIR − R)/(NIR + R + 0.16) [58]
Leaf Chlorophyll Index (NIR − RE)/(NIR + R) [56]

NIR, R, G, RE: Reflectance of near-infrared, red, green, and red edge bands.

Compared with NDVI, GNDVI is more sensitive to the change in vegetation chlorophyll
content [55]. It combines the spectral values of the green band and the near-infrared band. OSAVI can
reduce the interference of soil and vegetation canopy [15]. It also combines the spectral values of the
red band and the near-infrared band. LCI is a sensitive indicator of chlorophyll content in leaves and is
less affected by scattering from the leaf surface and internal structure variation [56]. It combines the
spectral values of the red band, red edge band, and the near-infrared band. Different VIs were selected
so that their VI equations contained different bands (Figure 3).

3. Results

3.1. Consistency of Spectral Values

In order to get better experiment results, we compared the images with 5 and 10 cm spatial
resolution using the scatter plots of the Sequoia and P4M spectral values for the approximately
equivalent spectral bands (green, red, red edge, and near-infrared). In the experiment, Sequoia used
the spectral reflectance and P4M used the DN value of the image.
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In the first experiment (5 cm spatial resolution), the spectral values of Sequoia and P4M were
highly correlated (Figure 7). The two sensors showed a high correlation in the approximately equivalent
four bands, and the correlation coefficient of the fitting function was not less than 0.90. The two sensors
had the highest correlation in the red band (R2 = 0.9709), followed by the green band (R2 = 0.9699)
and the red edge band (R2 = 0.9208); the correlation for the near-infrared band was lower than those
of the other three bands (R2 = 0.9042). It was seen that the spectral values of Sequoia and P4M had
an excellent correlation in the green and red bands, and the R2 was greater than 0.96. Meanwhile,
the correlation was low in the red edge and the near-infrared bands, and the R2 was slightly less
than 0.92. Thus, these results showed that spectral values of these two sensors had a high correlation
in the green and red bands and a low correlation in the red edge and near-infrared bands.

Figure 7. Scatter plots of Sequoia and P4M spectral values (5 cm) in the green band (a), red band (b),
red edge band (c) and near infrared band (d). The solid lines show OLS regression of the Sequoia and
the P4M data, and the dotted lines are 1:1 lines for reference.

In the second experiment (10 cm spatial resolution), the spectral values of Sequoia and P4M
were also well correlated (Figure 8). In the four bands of these sensors, the correlation coefficient
of the fitting equation was not less than 0.91, showing a strong correlation. As seen in the 5 cm
spatial resolution results, the two sensors had the highest correlation in the red band (R2 = 0.9793),
followed by the green band (R2 = 0.9727) and the red edge band (R2 = 0.9436); the correlation for the
near-infrared band was lower than those of the other three bands (R2 = 0.9199). The spectral values of
Sequoia and P4M were highly correlated in the green and red bands, and the R2 was greater than 0.97.
Similarly, the correlations between the two sensors in the red edge and the near-infrared bands were
low, and the R2 was slightly less than 0.94. These results also showed that spectral values of these
two sensors had a high correlation in the green and red bands and a weak correlation in the red edge
and near-infrared bands.
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Figure 8. Scatter plots of Sequoia and P4M spectral values (10 cm) in the green band (a), red band (b),
red edge band (c) and near infrared band (d).

In short, the spectral values of Sequoia and P4M were highly correlated in both the green and
red bands (R2 > 0.96), but the correlation was slightly lower in the red edge and the near-infrared
bands (R2 < 0.96). The correlation of spectral values for the two sensors at 10 cm spatial resolution
was slightly higher than that of 5 cm. Thus, if we are interested in using both images at the same
time, the 10 cm spatial resolution image may be the better choice. Although these two sensors were
highly correlated, there was also a slight difference, which may be caused by a variety of mixing
factors, including the difference in spectral response function (Figure 3). Among the compared bands,
the center wavelength and the wave width of these two sensors were both close in the green and red
bands. Although the center wavelength of these two sensors was close in the red edge band, there was
a big difference in the wave width. In the near-infrared band, the center wavelength and the wave
width of the two sensors were significantly different. This explains how the spectral values differ
between Sequoia and P4M.

3.2. Consistency of VI Products

The VI products of Sequoia and P4M were highly correlated (Figure 9). Four VIs were compared
in this paper, namely NDVI, GNDVI, OSAVI, and LCI, as shown in Figure 9. The results on the left
were obtained with 5 cm spatial resolution image, and those on the right were obtained with 10 cm
spatial resolution. The black dotted lines are the 1:1 reference lines, and the solid lines are the fitting
functions of these sensor-derived VIs (using OLS regression).

Among the four VIs, NDVI had the highest correlation, followed by OSAVI, GNDVI, and LCI.
In the comparison of 5 cm spatial resolution images, the correlation of NDVI was the highest
(R2 = 0.9863), followed by OSAVI (R2 = 0.9859), while GNDVI and LCI were lower (GNDVI: R2 = 0.9595;
LCI: R2 = 0.9516). In the comparison of 10 cm spatial resolution images, the correlation of NDVI was
still the highest (R2 = 0.9842), followed by OSAVI (R2 = 0.9806), while GNDVI and LCI were lower
(GNDVI: R2 = 0.9518; LCI: R2 = 0.9546).
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Figure 9. Scatter plots of Sequoia and P4M vegetation indices, which corresponded to the NDVI,
GNDVI, OSAVI and LCI with 5cm spatial resolution (a, c, e and g) and 10cm (b, d, f and h).

Sequoia-NDVI had better result than P4M-NDVI (most of the scattered points were distributed
above the 1:1 line, and a very small part of the scattered points were located on or below the 1:1 line).
The legend in Figure 5 also shows that Sequoia-NDVI was slightly higher than P4M-NDVI; the fitting
results of GNDVI and LCI were similar to NDVI, and there were also some differences. In both
resolutions, Sequoia-GNDVI was higher than P4M-GNDVI (all scattered points were distributed above
the 1:1 line), but the distributions of points were more dispersed than those of NDVI. The fitting result
of OSAVI was different from those of the previous three indices. In both resolutions, Sequoia-OSAVI
was only partially higher than P4M-OSAVI (the scattered points were evenly distributed above, below,
and on the 1:1 line).
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Table 4 shows Sequoia and P4M VI transformation functions derived by OLS regression of the
data shown in Figure 9. The transformation functions for the 5 and 10 cm spatial resolution images are
listed separately, where S represents the VI of Sequoia and P represents the VI of P4M. Both sensors
had good consistency in those four indices.

Table 4. Sequoia and P4M VI transformation functions derived by OLS regression of the data illustrated
in Figure 9.

5 cm 10 cm

VIs N Function R2 Function R2

NDVI 80 S = 1.1211 × P + 0.0579 0.9863 S = 1.1234 × P + 0.0645 0.9842
GNDVI 80 S = 0.9693 × P + 0.1599 0.9595 S = 0.9721 × P + 0.1612 0.9518
OSAVI 80 S = 0.8322 × P + 0.0444 0.9859 S = 0.8182 × P + 0.0528 0.9806

LCI 80 S = 0.8221 × P + 0.0596 0.9516 S = 0.8330 × P + 0.0589 0.9546

S: Sequoia, P: P4M.

NDVI, GNDVI, OSAVI, and LCI were used for different combinations of surface reflectivity,
so their values were partly determined by the reflectance of the green, red, red edge, and near-infrared
bands. There was a certain difference in the spectral response functions of the sensors, which led to
slight differences between the VI products. Although users cannot directly obtain the reflectance from
P4M image, they can still obtain high-quality VI products. It was seen that P4M, which integrates
aircraft, cameras, and data processing software, optimizes the user’s experience and improves the
working efficiency by providing good VI products.

3.3. Accuracy of NDVI

Both the Sequoia-NDVI and P4M-NDVI had high accuracy, not only with a small deviation from
ASD-NDVI but also with a good correlation (Figure 10). Two sets of spatial resolution data (5 and
10 cm) are compared in Figure 10: the left part shows the fitting scattered points of Sequoia-NDVI
and ASD-NDVI, while the right part shows the fitting scattered points of P4M-NDVI and ASD-NDVI
(blue dots correspond to 5 cm resolution and orange triangles correspond to 10 cm resolution).
The Sequoia-NDVI was highly consistent with ASD-NDVI, and the correlation was high. In the
comparative study of 5 cm spatial resolution images, RMSE = 0.0622 and R2 = 0.8523; in 10 cm spatial
resolution images, RMSE = 0.0684 ad R2 = 0.8497. Similar to Sequoia, P4M-NDVI was also highly
consistent with ASD-NDVI, maintaining a good correlation. In the comparative study, RMSE = 0.0886
and R2 = 0.8785 for 5 cm spatial resolution images, while RMSE = 0.0842 and R2 = 0.8785 for 10 cm
spatial resolution images. This indicates that both Sequoia and P4M can provide NDVI products
with high accuracy. Furthermore there was no big difference between the VI products obtained from
these sensors.

Figure 10. Scatter plots of Sequoia-NDVI (a) and P4M-NDVI (b) with ASD-NDVI. The blue dotted
lines show OLS regression of Sequoia-NDVI (P4M-NDVI) and ASD-NDVI data with 5 cm resolution.
The orange dotted lines show OLS regression of Sequoia-NDVI (P4M-NDVI) and ASD-NDVI data with
10 cm resolution.
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4. Discussion

4.1. Differences between Sequoia and P4M

Different sensors may have different spectral response functions [59], and such differences will
cause systematic deviations in the spectral values of the images. The consistency of spectral values
between the two sensors studied showed a clear difference in the near-infrared band (Figures 7 and 8).
The reason for this might be due to their different spectral response functions (Figure 3). Compared
with the spectral response function of Sequoia, the spectral range of P4M in the near-infrared band was
wider than that of Sequoia (Sequoia: 40 nm; P4M: 52 nm), and the positions of center wavelength in the
near-infrared band were also different (Sequoia: 790 nm; P4M: 840 nm). The results also showed that
there was some difference in the red edge band. Although the center wavelengths of these two sensors
were close in the red edge band (Sequoia: 735 nm; P4M: 730 nm), there were big differences in the
wave width (Sequoia: 10 nm; P4M: 32 nm). In contrast, the center wavelength and the wave width of
these two sensors were both close in the green (Sequoia: 550 nm and 40 nm; P4M: 560 nm and 32 nm)
and red bands (Sequoia: 660 nm and 40 nm; P4M: 650 nm and 32 nm). The different spectral response
functions may explain the difference in the spectral values between Sequoia and P4M.

In addition, other factors such as the spectral reflection characteristics of the ground object,
the nonuniformity of the ground surface, the observation time, and the solar elevation angle also
increased the randomness and uncertainty of this systematic deviation [60–62]. In this experiment,
the ground surface of the study area was uniform, and the observation time was similar for both
sensors, as was the solar elevation angle. Therefore, the reason for the difference in spectral values
was probably related to the reflection characteristics of ground target features. The spectral value of a
single pixel may be influenced by both the spectral response function and the reflection characteristics
of the target feature. Therefore, some objects in the image having high reflection characteristics in a
specific spectral band may often be more affected by the difference in spectral response function.

The acquisition of the VI usually requires a series of conversion processes on the spectral values;
thus, if there is a deviation in the spectral values, the VI may also be affected. In analysis of the
consistency of the VIs between the two sensors, the four VI products of Sequoia and P4M were
found to be highly correlated, but there were still some differences. These differences may have a
great relationship with the differences in spectral values between the sensors. The reason for this
difference in spectral values is also the same as explained above (due to spectral response function).
Therefore, this difference between VIs may be caused by the spectral response function and the
reflection characteristics of the target features. As we know, the VI is obtained by combining the
spectral values of different bands, so using different combination methods of spectral values may also
affect the quality of the VI.

4.2. Sensitivity of VIs to Spectral Deviation

The calculation of the VI involved spectral values of different spectral bands. NDVI, GNDVI,
OSAVI, and LCI were compared in this study, and their calculation included the spectral values of red,
green, red edge, and near-infrared bands. Therefore, small changes in the spectral values of each band
may have a relatively big impact on the VI results. In addition, the band combination method may
also change the sensitivity of the VI to small changes in the spectral values. The experimental results
showed that although the spectral values of the Sequoia and P4M were significantly different in the
near-infrared band, this difference did not show a significant impact on the VI products. The correlation
coefficients of the VI products obtained by these two sensors were greater than 0.95. The NDVI products
of the two sensors were also compared with the ASD-NDVI. The results showed that Sequoia-NDVI
and P4M-NDVI both have high accuracy. The normalized calculation method of VI eliminated the
influence of the difference in spectral values to a certain extent, thus reducing the sensitivity of the VI
to such spectral deviations [63].

158



Remote Sens. 2020, 12, 2542

Poncet et al. [64] found that the error of VIs was correlated with different radiometric calibration
methods. In this experiment, for Sequoia, we used a calibration target provided by the manufacturer
to perform radiometric calibration in postprocessing. The calibration method might have affected the
reflectance, which would have affected the VI.

4.3. Selection of Optimal Spatial Scale

The pixel is the smallest unit that constitutes the remote sensing digital image. It is an important
symbol to reflect the features of the image and can be used to characterize the ground conditions
in the study area. The pixel size determines the spatial resolution of a digital image and amount of
information it can contain. After resampling from high spatial resolution to low resolution, the resultant
image (low spatial resolution) will lose spectral information and spectral variation [65]. With the
increase of remote sensing image scale, the spectral features of several different ground objects may
appear simultaneously in a single pixel, resulting in the generation of a mixed pixel. At this time,
the signal intensity of the ground object features in the pixel tends to be stable, and the pixel signals
received by different sensors will tend to be similar.

The correlation between the spectral values of Sequoia and P4M in each band (green, red, red edge,
and near-infrared) seemed to have a certain relationship with the image scale. When the image scale
was small (5 cm), the correlation was low; when the image scale was large (10 cm), the correlation
was high (Table 5). Fawcett et al. [66] found that the NDVI consistency of a multispectral sensor was
similar at different spatial resolutions. Our results also show that the NDVI consistencies of Sequoia
and P4M at 5 and 10 cm resolutions are similar (5 cm: R2 = 0.9863; 10 cm: R2 = 0.9863).

Table 5. Sequoia and P4M spectral value transformation functions and the values of their correlation
coefficients (R2).

5 cm 10 cm

Band Function R2 Function R2

green S = 0.8869 × P − 0.0111 0.9699 S = 0.9242 × P − 0.0154 0.9727
red S = 1.1867 × P − 0.0355 0.9709 S = 1.2294 × P − 0.0390 0.9793

red edge S = 0.9868 × P + 0.0359 0.9208 S = 1.0345 × P + 0.0237 0.9436
near-infrared S = 0.7468 × P + 0.0339 0.9042 S = 1.2405 × P − 0.0159 0.9199

S: Sequoia, P: P4M.

4.4. Limitations

The study was carried out on a single date in a single study area with uniform vegetation species;
it would be better if different study areas with different vegetation species in different periods were
used. When assessing the suitability of UAV sensors in determining VIs, it would be important to
include agricultural land, preferably with different nutrient treatments or crop species. Thus, in the
future, it would be better to include agricultural land with crop species while doing VI-related research.
Similarly, to assess the accuracy of NDVI, eight ASD points were used, as the terrain was uniform; still,
better results could be obtained if more points were used. The use of more than two multispectral
minisensors could be more meaningful to analyze the consistency of spectral values, consistency of
VI products, and accuracy of NDVI. Therefore, detailed research is needed in the future to obtain
improved results and conclusions.

5. Conclusions

Different UAV multispectral minisensors have been developed for applications in various fields,
but their experimental performance and consistency need to be determined before their application.
As a preliminary work towards consistency evaluation, different UAV images from Sequoia and P4M
sensors with multispectral bands were acquired and preprocessed for ROI creation and VI calculation.
The main objective of this research was to experimentally evaluate different UAV multispectral
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minisensors and compare them in terms of consistency. Using a combined method of consistency
of spectral values, consistency of VI products, and accuracy of NDVI, we came to the following
conclusions: First, the data acquisition capability of the Sequoia is similar to that of the P4M; both the
spectral values and VIs of the two sensors have good correlation (R2 > 0.90). Second, the VI products
obtained from both sensors have good precision, and they are suitable for vegetation remote sensing
monitoring. Third, both sensors have similar characteristics, and they may be used interchangeably for
large area coverage with high spatial resolution and for daily time series science and applications.
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Abstract: In Mongolia, the monitoring and estimation of spring wheat yield at the regional and
national levels are key issues for the agricultural policy and food management as well as for the
economy and society as a whole. The remote sensing data and technique have been widely used
for the estimation of crop yield and production in the world. For the current research, nine remote
sensing indices were tested that include normalized difference drought index (NDDI), normalized
difference water index (NDWI), vegetation condition index (VCI), temperature condition index (TCI),
vegetation health index (VHI), normalized multi-band drought index (NMDI), visible and shortwave
infrared drought index (VSDI), and vegetation supply water index (VSWI). These nine indices derived
from MODIS/Terra satellite have so far not been used for crop yield prediction in Mongolia. The
primary objective of this study was to determine the best remote sensing indices in order to develop
an estimation model for spring wheat yield using correlation and regression method. The spring
wheat yield data from the ground measurements of eight meteorological stations in Darkhan and
Selenge provinces from 2000 to 2017 have been used. The data were collected during the period of the
growing season (June–August). Based on the analysis, we constructed six models for spring wheat
yield estimation. The results showed that the range of the root-mean-square error (RMSE) values of
estimated spring wheat yield was between 4.1 (100 kg ha−1) to 4.8 (100 kg ha−1), respectively. The
range of the mean absolute error (MAE) values was between 3.3 to 3.8 and the index of agreement
(d) values was between 0.74 to 0.84, respectively. The conclusion was that the best model would be
(R2 = 0.55) based on NDWI, VSDI, and NDVI out of the nine indices and could serve as the most
effective predictor and reliable remote sensing indices for monitoring the spring wheat yield in the
northern part of Mongolia. Our results showed that the best timing of yield prediction for spring
wheat was around the end of June and the beginning of July, which is the flowering stage of spring
wheat in this study area. This means an accurate yield prediction for spring wheat can be achieved
two months before the harvest time using the regression model.

Keywords: MODIS; northern Mongolia; remote sensing indices; spring wheat; yield estimation

1. Introduction

Food security is an important topic for every country in the world [1]. Accurate and timely estimation
of the spring wheat yield on regional and national scales is becoming absolutely essential for developing
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countries like Mongolia. In particular, crop yield estimation and the monitoring of crop production
can provide fundamental information for crop producers, decision-makers in planning harvest and for
agricultural development overall [2]. The agriculture sector is the second contributor to the Mongolian
economy after mining [3]. However, only 13% of agricultural production is sourced from crops, mostly
spring wheat, the remaining 87% is from the livestock [4] since the Mongolian climate is more suitable for
extensive grazing, which covers more than 80% of the total land area. The spring wheat is below 1% of the
total land area and around 1.35 million hectares of the total land is suitable for crop cultivation [5]. The
northern part of Mongolia has the most favorable natural conditions and a more suitable area for rain-fed
crops [6]. Hence, most of the spring wheat is grown in the northern provinces due to above-average
precipitation. However, precipitation can only support the basic water requirement of spring wheat, and
little variation in precipitation would cause a big fluctuation in crop yield. The vegetation cover, crop yields,
and their growth are highly dependent on the amount of precipitation and the related soil moisture [7,8].
Mongolia has an extreme continental climate, with a short growing season, high evaporation, and low
precipitation, which pose serious limitations for the Mongolian agriculture development. Because of the
high altitude, our country’s climate is much colder than other countries in the same latitude. More than
80% of total spring wheat cultivation is rain-fed and only 5000 hectares is irrigated for spring wheat in
Mongolia [4]. Therefore, agricultural production is particularly sensitive to climate variability and climatic
conditions make agriculture very challenging. Due to the impacts of climate change, more extreme and
continued droughts have occurred in many parts of Mongolia and have directly affected the vegetation
and crop growth, biodiversity and socioeconomics in Mongolia [9]. Nanzad et al. [10] found that about
41–57% of Mongolia has been ravaged by mild to severe droughts for many of the last 17 years. A
consecutive severe drought in 2002, 2005, 2007, 2010, 2013, and 2015 lowered spring wheat production
severely as shown in Figure 1 and spring wheat had to be imported as local production declined due to
weather conditions [4].

Figure 1. Whole Mongolian grain production with study area (National Statistics Office, 2019).

Weather information is normally used to forecast crop yield, but there is a lack of continuous
measurement among others due to cost factors. Using Earth observation satellite imagery for monitoring
temporal and spatial variation, combined with the point observation as a co-monitoring has advantages.
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Furthermore, satellite imagery is produced at a lower cost than the traditional way and is more easily
accessible for use [11,12]. The use of remote sensing data helps to assess crop conditions in different
fields at regional and whole country levels, even in remote areas, as it gives a timely and accurate
measurement. Therefore, there have been many attempts in the applications of remote sensing in
crop yield estimation, monitoring and mapping and most of these work streams indicated that remote
sensing technology was prospective and promising [13–21]. A number of field studies have shown that
models based on remote sensing data enable to estimate crop yield in many countries. Usually, remote
sensing derived indices are connected to crop yield using empirical regression-based models [22,23].
During the past decades, remote sensing has been broadly used in forecasting crop yield. The Advanced
Very-High-Resolution Radiometer (AVHHR) is the most popular sensor, the most widely used in terms
of crop monitoring and yield forecasting since the early 1980s for a large scale [24,25]. In recent years,
satellite-derived data such as Moderate Resolution Imaging Spectroradiometer (MODIS), Landsat, and
Sentinel data were used for the yield prediction and monitoring and meaningful results have been
obtained [11,12,26–28]. Lewis et al., [29] used AVHRR-NDVI data for maize production forecasts and
correlated results showed that forecasts could be obtained one month before the harvest. In Spain,
Vicente-Serrana et al. [30] combined AVHHR-NDVI data and drought indices and were able to predict
wheat and barley yield four months before harvest. Moreover, Peterson [12] found the best timing to
predict crop yield was from two to four months before the harvesting using NDVI, EVI, and NDWI of
MODIS for different crops in Africa. Recently, some remote sensing indices such as the normalized
multiband drought index (NMDI), vegetation supply water index (VSWI), and visible and shortwave
infrared drought index (VSDI) were utilized in a number of studies for drought and crop monitoring
and crop yield estimation according to previous studies [31–34]. The more promising method is using
crop growth modeling that incorporates updated crop biophysical parameters such as leaf area index
(LAI) and a fraction of absorbed photosynthetically active radiation (fPAR) retrieved from satellite
imagery and by using survey information of crops throughout the growing season in local to regional
areas. For example, Huang et al. [35] found that more accurate county-level winter wheat estimation
was obtained using the WOFOST-PROSAIL model. Furthermore, many researchers have developed
crop growth models to estimate crop yields [36–40]. However, the crop growth models require more
specific information, such as daily weather data, soil properties, and crop growth determining factors,
which would make analytical costs excessive. It is obvious that no general indicator can be used to
predict crop yields in all regions. The applicability of the indicator will vary with the region, crop type,
and crop growth stage.

Some recent studies in Mongolia were conducted to monitor the cropland cover changes, to
assess land degradation for the agricultural region. Erdenee et al. [5] have used Landsat TM and ETM
data in the detection of changes cropland over Tsagaannuur, Selenge provinces from 1989 and 2000.
Otgonbayar et al. [41] investigated to prepare a cropland suitability map of Mongolia using Landsat
and MODIS (MOD13, MOD15, and MOD17). Furthermore, Enkhjargal et al. [42] used MODIS and
SPOT time-series remotely sensed data from 2000–2013 to estimate long-term soil moisture content
in agricultural regions of Mongolia. Ariya [43] used Landsat images from 2000 and 2015 to assess
land degradation for the agricultural area of Mongolia. Nevertheless, to date, no studies of crop yield
estimation using remote sensing indicators have been done yet in Mongolia. Recently, remote sensing
indicators are employed to monitor the drought across the pasture lands of Mongolia [44] and provide
valuable information for drought management and reduction. Compared to drought, more attention
should be paid to crop yield, while these indices were not getting enough attention in the field of crop
yield in Mongolia. The small variation of precipitation would cause the big fluctuation of crop yield so
that it is very important to forecast spring wheat yield early for food security in Mongolia. Although
spring wheat accounts for a small proportion of Mongolia’s land area, as the size of the spring wheat
field is large enough that it provides the possibility of predicting spring wheat yields based on remote
sensing technology in Mongolia.
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Therefore, our analysis focuses on Selenge and Darkhan provinces of Mongolia due to the
availability of high-quality spring wheat yield data for those regions. It is the first attempt to estimate
the spring wheat yield using space observation technology in Mongolia. The main objectives of this
study were as follows: (i) to evaluate the potential of using remote sensing nine indices to estimate
spring wheat yield; (ii) to choose the more suitable remote sensing indices for predicting spring wheat
yield; (iii) to identify the best timing and more accurate model to estimate spring wheat yield in
Northern Mongolia.

2. Study Area and Data

2.1. Study Area

Mongolia is divided into five different agro-ecological regions, which reflect distinct geographical
patterns of agricultural production and climate. The study was conducted in Darkhan and Selenge
provinces, which is located in Selenge-Onon agro-ecological region (N48–51 ◦C and E104–108 ◦C)
(Figure 2). Selenge and Darkhan provinces are the principle cropping area for and account for more than
50% of national total grain production (Figure 1). In this region, most of the spring wheat cultivated
area is rain-fed cropland. Thus, determining the fluctuation of spring wheat yield is highly dependent
on the weather condition. The region averages between 90 to 110 frost-free days and has annual mean
precipitation between 250 and 400 mm. In addition, crop growing duration is short (90–140 days) in
this region, and depends on location and altitude. Approximately 90% of the nationwide precipitation
is lost to evapotranspiration, which is associated with a continental climate. The remaining 10% of
the total precipitation has been unable to evaporate, and 37% contribute to soil and underground
reserves and streams, while 63% is surface runoff. In other words, 3–4% of total precipitation becomes
potentially available as a water resource in the form of soil moisture or groundwater [6]. Additionally,
the mean annual temperature is between 0.0 ◦C and 2.5 ◦C with cold temperature in January to –20 ◦C
and warm temperature in July to 19 ◦C. Average elevations in this region have ranged between 1500
and 2000 m [45].

 
Figure 2. Study area: (a) Agro-ecological regions of Mongolia; (b) Digital Elevation Model data (DEM),
Spatial distribution of agrometeorological stations in Selenge and Darkhan provinces and cropland.
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2.2. MODIS Data and Processing

This study applied the use of 1 km spatial resolution, daily intervals MODIS/MOD1B time-series
data to evaluate spring wheat yield. The MODIS data provided a high temporal resolution and wide
coverage areas but a low spatial resolution. MODIS time-series data during the growing season
(June to August) were obtained for the study area from the Atmosphere Archive and Distribution
System (LAADS) of (NASA) for 2000–2017. Available online https://ladsweb.modaps.eosdis.nasa.gov
(accessed on 20-10-2019). The study area covered over three tiles of granules of MODIS data such
as an H24V03, H24V04, and H25V04 (H is horizontal and V is vertical coordinate). All downloaded
MODIS 18 years’ images were re-projected from sinusoidal to the Albers equal area projection. The
reflectance bands (NIR, red, blue, and SWIR) were calculated using MOD021KM level 1b calibrated
data. In the processing section, all the collected images were re-projected, mosaicked and calibrated
for atmospheric and geometric correction using ENVI IDL software. In this study, the nine vegetation
and drought indices (NDVI, NMDI, NDWI, VCI, TCI, VHI, NDDI, VSDI, and VSWI) are calculated
from cloud-free and corrected reflectance bands.

2.3. Crop Data

In this study, we have utilized annual spring wheat yield data for eight agrometeorological
stations from 2000 to 2017 in Northern Mongolia (Table 1). The sowing stage of spring wheat is
generally in the first decade of May. All the crops present an important vegetative development in the
June–August period and spring wheat harvest occurs generally in September. The statistics of spring
wheat yield were obtained from the agrometeorological division of Information and Research Institute
of Meteorology, Hydrology, and Environment (IRIMHE) in Mongolia. Agrometeorological stations
measure the crop phenology stage, growth condition and damage, crop density and height for every
10 days from May to September. Finally, the spring wheat yield sown from sampling surveys at the
end of the growing season was also measured. Spring wheat yield was collected in 50 × 50 cm plots, in
four repeated samplings at each agrometeorological station. From the homologies sample plots, four
samples of spring wheat were taken through crop cutting from a different area at equal distance and
their average was taken to minimize random errors. Before thrashing and weighting the spring wheat
grain yield, the sample plot was placed in the oven for 5–10 min and at 20◦C–25◦C to easily split the
grain yield and the straw. The final spring wheat grain weight of each station was converted to 100kg
ha−1 unit. As shown in (Figure 3), the phenological stages of the normal growth cycle of spring wheat
and mean climate variables in the study area from May to September (2000–2017). In order to obtain
the crop remote sensing indices values correctly, we had to solve image masking for regional spring
wheat yield estimation. Applying a cropland mask to select remote sensing indices values as input to
a crop yield model significantly improves the accuracy of the crop yield estimation [18,46]. A copy
of the crop cover mask was obtained from the land cover map of Mongolia, provided by Elbegjargal
et al. [47], and used to reduce the influence of non-agricultural areas on the remote sensing indices
signal [48]. Finally, all areas with non-agricultural land were masked out and the regional annual yield
was estimated and mapped for only cropland areas yield estimated maps were produced by model
(M4) in the study area from 2000 to 2017.
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Table 1. Information of meteorological stations with location (spring wheat yield available stations).

N Province Name Station Name Station ID Latitude Longitude Crop Type

1 Selenge Tsagaannuur 209 50.0886 105.3252 wheat
2 Selenge Baruunkharaa 241 48.7856 106.2624 wheat
3 Selenge Orkhon 242 49.0039 105.4208 wheat
4 Selenge Eruu 243 49.6842 106.6008 wheat
5 Selenge Orkhontuul 245 48.7208 105.0358 wheat
6 Darkhan Tsaidam 2443 49.3221 105.9826 wheat
7 Darkhan 6th Brigad 2444 49.3602 106.0782 wheat
8 Darkhan Altangadas 2447 49.2328 105.9466 wheat

Figure 3. Growing stage of spring wheat and climate variables distribution in the study area.

3. Methodologies

The purpose of this study is to create a predictive measure of spring wheat yield computed from
satellite data. The methodology has three main parts. Firstly, we calculate the nine remote sensing
indices using MODIS data. Secondly, nine remote sensing indices are used for the relationship between
actual spring wheat yield as input for the testing of the estimation model of spring wheat yield. Thirdly,
we develop spring wheat yield regression models and map estimated spring wheat yield for the
regional level to the 18 years. The general flowchart of this research, the processing method, and the
individual steps are illustrated in Figure 4.
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Figure 4. Flowchart of processing method.

3.1. Calculation of Remote Sensing Nine Indices:

Crop yield is markedly influenced by the growth conditions in each crop stage. Nine typical
vegetation and drought indices were computed and compared with spring wheat yield. These indices
are commonly used for crop yield estimation, drought monitoring, and only require optical spectral
bands for calculation. For example, the NDVI has been most commonly used for vegetation monitoring,
crop yield assessment and forecasting [27,49,50]. Kogan [51] has been developed the VCI to study
the response of vegetation to drought conditions worldwide. Unganai et al. [52] conducted that the
vegetation condition index (VCI) derived from AVHHR-NDVI correlated significantly with maize
yield in Zimbabwe. The growth condition and crop yield are strongly correlated at the pixel level. Each
pixel’s value of remote sensing indices was directly taken at point locations of the eight stations. We
examined the relationship between NDVI, NDWI, NMDI, TCI, VCI, VHI, NDDI, VSDI, and VSWI with
actual spring wheat yield during the growing season (June–August) for 2000–2017 across Northern
Mongolia. The 10 day and monthly nine remote sensing indices (NDVI, NMDI, NDWI, VCI, TCI,
VHI, NDDI, VSDI, and VSWI), which are derived from transformations of the red, NIR, blue, and
SWIR spectral bands, was used to continuous time series of data the represented the spring wheat
growth indices temporal curve for each pixel in the study area. We used Table 2 for remote sensing
indices calculation. Active plants are intensely absorbed by red and blue bands and reflected by the
near-infrared band (NIR) [53]. Depending on the type of plant and the crop yield stage, the absorption
of red and blue bands and the degree of the NIR band is different. When vegetation is stressed by
lack of water, and also at the end of the growing period, the chlorophyll absorption declines and the
ratio of NIR to RED or visible reflectance decreases. Therefore, vegetation index can be defined as
the difference between RED and NIR bands reflections measured from satellites. The SWIR-1 and
SWIR-2 bands are sensitive to the soil and vegetation moisture content. Hence, we calculated nine
remote sensing indices utilized NIR, red, blue, and SWIR bands for spring wheat yield monitoring.
Furthermore, we determined which indices from nine remotely sensed indices were more suitable
to estimate spring wheat yields. To reduce the impact of atmosphere and cloud, the 10-day remote
sensing-based indices derived from the daily data using maximum value composition (MVC) [54] were
considered. Besides, we have retrieved monthly remote sensing indices from 10 days MVC indices by
a simple moving average method. Particularly, each monthly remote sensing index was calculated by
averaging three temporally 10 days MVC indices.
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Table 2. Equations of tested nine remote sensing indices.

N Remote Sensing Based Indices Equation References

1 Normalized Difference Vegetation Index NDVI = NIR−RED
NIR+RED [55]

2 Normalized Difference Water Index NDWI = NIR−SWIR
NIR+SWIR [56]

3 Vegetation Condition Index VCI = (NDVIj−NDVImin)
(NDVImax+NDVImin) × 100% [57]

4 Temperature Condition Index TCI = Tmax−Tj
Tmax−Tmin × 100% [57]

5 Vegetation Health Index VHI = a×VCI + (1− a) × TCI [57]
6 Normalized Multi-Band Drought Index NMDI = NIR−(SWIR1−SWIR2)

NIR−(SWIR1+SWIR2)
[34]

7 Vegetation Supply Water Index VSWI = Ts/NDVI [58]
8 Normalized Difference Drought Index NDDI = (NDVI−NDWI)

(NDVI+NDWI)
[59]

9 Visible and Shortwave Infrared Drought Index VSDI = 1− [(SWIR− BLUE) + (RED− BLUE)] [33]

NIR-near-infrared band, Band2 (841–876 nm); RED-red band, Band1 (620–670 nm); SWIR1 - shortwave infrared
band, Band6 (1628–1652 nm); SWIR2-shortwave infrared band, Band7 (2105–2155 nm); Blue–Band 3 (459–479 nm);
Tj, Tmax and Tmin–surface temperature (current, maximum, and minimum).

3.2. Sensitive Analysis between Remote Sensing Indicators and Crop Yield

In this study, Pearson’s correlation coefficient (R) between remote sensing indices and spring
wheat yield was calculated for every 10 days and every month of the growing season from June to
August for the northern part of Mongolia for 2000–2017 using following (Equation (1)). Pearson’s
correlation coefficient (R) represents the degree and direction of the linear regression between two
continuous variables that are measured on the equal interval. The range of values for the R is from −1
to 1 (R > 0 it is a positive linear relationship, R = 0 it is indicated that there is no relationship and R < 0
it is a negative linear relationship).

R =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2∑n
i=1(yi − y)2

, (1)

where xi and yi presents remote sensing indices and the value of spring wheat yield at different time
periods, n is the number of samples, x and y are the average values of xi and yi.

3.2.1. Crop Yield Estimation Model

The process of crop production is directly influenced by many biological, physiological and
biophysical laws that are directly responsible for plants, and theoretically, it is possible to model the
whole process of vegetative growth by mathematically describing the physical processes of these
processes. Nowadays, dynamic modeling techniques are based on simple statistical equations, based on
complex differential equations systems, in modeling the events of agroecosystems. In this study, using
the remote sensing nine indices, we tested and attempted to develop the spring wheat yield estimation
model. The relationship between spring wheat yield and remote sensing indices was observed through
the linear regression model, where the independent variable was represented by remote sensing nine
indices and the dependent variable was spring wheat. The estimation model is multilinear and includes
slope and an interception constant coefficient. The empirical regression methods based on spectral
indices have commonly used for modeling crop yield in many studies [49,60,61]. Bolton et al. [62]
found a good linear correlation between different crop yields with MODIS-NDVI, EVI, and NDWI
data at the county levels. Sui et al. [11] developed the estimation model for winter wheat production
based on the environmental factors derived from satellite at a regional level, with errors of <12% for
winter wheat yield, respectively. To determine when the correlation between remote sensing indices
and spring wheat yield is strongest, we estimated the coefficient of determination (R2) using data from
every 10 days and monthly in the growing period of spring wheat. In order to make the final predicted
results more accurate and stable, we considered it necessary to select the critical growth stage and
remote sensing indices from all indices. We used a stepwise regression model in order to select the best
candidate indices for yield estimation using SPSS 12 software. Stepwise regression provides a strong
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mean between the one or more independent variables and a dependent variable that conforms to the
general equation for a multidimensional flat.

Ŷ = b0 + b1X1 + b2X2 + . . .+ bnXn, (2)

where, Ŷ is the dependent variable and predicted spring wheat yield, X1, X2... Xn are the independent
variables and MODIS remote sensing indices, and b0, b1, b2 . . . bn are the regression coefficients and n
is the number of independent variables.

3.2.2. Model Performance Evaluation

Then we selected the month that produced the highest coefficients to the determination to develop
multilinear regression models based on all 18 years of data. Generally, the comprehensive method to
validate models is to correlate the measured values against the predicted values [48]. We used model
fitting and performance statistics such as the coefficient of determination (R2), root mean square error
(RMSE), mean absolute error (MAE), bias and an index of agreement (d) agreement.

RMSE =

√∑n
i=1

(
Ŷ−Y

)2
n

, (3)

MAE =
1
n

n∑
i=1

∣∣∣Ŷ−Y
∣∣∣, (4)

d = 1−
∑n

i=1

(
Yi − Ŷi

)2
∑n

i=1

(∣∣∣Ŷi −Y
∣∣∣+ ∣∣∣Yi −Y

∣∣∣ )2 , (5)

where Y is observed values, Ŷ is modeled values, Y is an average of observed values, and n is a number
of yield and RS data.

4. Results

4.1. Temporal Climate Variables and Remote Sensing Indices Profiles for Spring Wheat

Figure 5 describes annual spring wheat yield with the amount of precipitation and average
temperature throughout each growing season from 2000 to 2017. The temperature change, precipitation,
and soil moisture have a significant impact on wheat yield. Mainly in the period May–September
which accounts for 85% of annual precipitation. Especially in June–August, about 50%–60% of the
annual precipitation occurs in Mongolia [63]. According to the [64] results show that the break of
rainy season caused a similar reduction in soil moisture around mid-July in Mongolia. The highest
mean precipitation of the growing months at the eight meteorological stations was 352 mm in 2013,
309 mm in 2009, 293 mm in 2008, 290 mm in 2012 and lowest annual precipitation occurred in 143
mm in 2002, 172 mm in 2001, and 199 mm in 2005 for the study area. In summer, especially growing
season temperature and precipitation were negatively correlated. From (Figure 5) the lowest yield of
spring wheat harvested in 2002(4.2kg ha−1) and the highest yield in 2014(21.9kg ha−1) in these two
provinces. The main reason is that high temperatures and low precipitation led to soil moisture deficits,
which is a significant impact on wheat yield. The climate of Mongolia is dry and semi-arid, and the
growing vegetation cover and crop yields and development are highly dependent on the amount of
precipitation and the related soil moisture [7,8].

Processed growing season (June–August) Moderate Resolution Imaging Spectroradiometer
(MODIS-Terra) daily reflectance bands for study area for the years to 2000 to 2017. Based on the
corrected surface reflectance NIR, red, blue, SWIR bands and LST of MODIS data, we have computed
nine remote sensing indices and listed in (Table 2). We extracted time series values of NDVI, NDVI,
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NMDI, NDWI, VCI, TCI, VHI, NDDI, VSDI, and VSWI interpolated 10 day and monthly intervals
in growing season (June–August) from 2000 to 2017. As shown in (Figure 6), the long-term annual
remote sensing nine indices variables for spring wheat yield in Northern Mongolia.

Figure 5. Long-term trend of average spring wheat yield and climate variables (2000–2017).

4.2. Sensitivity Analysis between Remote Sensing Indicators and Crop Yield

The Pearson’s correlation analysis examined between multi-year spring wheat yield data of eight
stations and NDVI, NMDI, NDWI, TCI, VCI, VHI, NDDI, VSDI, and VSWI for June-August from
2000 to 2017, for a total of about 135 data points. To test the regional effectiveness of remote sensing
indices and determine the best index during the growing period (June to August) for spring wheat
yield estimation, we compared the 10 days and monthly remote sensing indices with the spring wheat
yield. In general, in terms of the sown stage in the middle of May, emergency in early June, flowering
in late June and early July, milk, and dough in August, maturity in early September, and harvesting
in late September in the study area (each growing stage shown in Figure 3). For each of the remote
sensing indices, the correlation values and significant p-values were produced by eight stations from
2000 to 2017 (Table 3).

The results show that most of the indices had found a higher correlation with spring wheat yield
in June and July. This period covers the heading and flowering phenological stage of spring wheat. To
see all of the correlations between June remote sensing indices and spring wheat yield in more detail,
refer to Figure 7. About 50–60% of the annual precipitation occurred in the growing period, especially
most of the precipitation occurred in June and the beginning of July. Because of that reason, there is
sufficient moisture and suitable weather condition. Slightly lower correlation was found in August
since crops are harvested in September. We can see that results of correlation (R) among the nine
indices, NDDI, VSDI, VSWI, and crop yield were negatively correlated with spring wheat yield, while
other NDVI, VCI, TCI, VHI, NDWI, and NMDI were positively correlated. The highest correlation
coefficient (R) values of between 10 day remote sensing 9 indices with spring wheat yield were NDVI
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(0.51) in first 10 days of July, NMDI (0.18) in first 10 days of August, NDWI (0.48) in first 10 days of
June, TCI (0.57) in third 10 days of June, VCI (0.31) in first 10 days of July, VHI (0.46) in third 10 days of
June, NDDI (−0.38) in second 10 days of July, VSDI (−0.56) in first 10 days of July and August, and
VSWI (−0.36) in first 10 days of June, respectively. These were statistically significant values with a
yield of p < 0.05. Indices including NDDI, VSDI, and VSWI were negatively correlated with spring
wheat yield, this implies when the values of these indices increase, the spring wheat yield decreased.

Figure 6. Annual growth season (June–August) average VSWI (a), VSDI (b), NDDI (c), VHI (d), VCI
(e), TCI (f), NDWI (g), NMDI (h), NDVI (i), and Spring wheat yield (j).
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Table 3. Multi-year correlation between 10-day indices and spring wheat yield in June to August
(2000–2017).

Month Decade
Index

NDVI NMDI NDWI TCI VCI VHI NDDI VSDI VSWI

June
First 10 days 0.29 0.05 0.48 0.31 0.2 0.34 −0.36 −0.51 −0.36

Second 10 days 0.32 0.13 0.4 0.24 0.16 0.32 −0.23 −0.44 −0.31
Third 10 days 0.31 0.02 0.46 0.57 0.06 0.46 −0.27 −0.52 −0.22

July
First 10 days 0.51 0.01 0.39 0.25 0.31 0.41 −0.26 −0.56 −0.33

Second 10 days 0.3 0.18 0.39 0.24 0.24 0.32 −0.38 −0.52 −0.3
Third 10 days 0.27 0.1 0.34 0.18 0.27 0.21 −0.35 −0.54 −0.21

August
First 10 days 0.16 0.18 0.28 0.01 0.17 0.12 −0.37 −0.56 −0.13

Second 10 days 0.31 0.17 0.27 0.08 0.25 0.35 −0.14 −0.14 −0.22
Third 10 days 0.3 -0.07 0.42 0.26 0.28 0.35 −0.33 −0.11 −0.35

Significant at highlighted values = p < 0.05, Number of samples = 126 − 134 ((Due to the clouds or error data of
satellite images there were some 10days of some indices are missed).

 
Figure 7. The correlations between spring wheat yield with June (a) NDVI, (b) NDWI, (c) NMDI, (d)
TCI, (e) VCI, (f) VHI, (g) NDDI, (h) VSDI, and (i)VSWI. Number of samples N = 135.

Also, we did a correlation between monthly nine remote sensing indices and spring wheat yield
at each station in the monitoring period. The results show that the absolute value of correlation
coefficients (R) of each month as shown in Table 4. These were statistically significant p < 0.01 with
yield, except NMDI.

176



Remote Sens. 2019, 11, 2568

Table 4. Multi-year correlation between monthly indices and spring wheat yield in June- August
(2000–2017).

N
Index

NDVI NMDI NDWI TCI VCI VHI NDDI VSDI VSWI

June 0.38*** 0.1 0.51*** 0.47*** 0.31*** 0.45*** −0.33*** -0.51*** −0.38***
July 0.47*** 0.12 0.4*** 0.29*** 0.35*** 0.35*** −0.39*** -0.57*** −0.3***

August 0.28*** 0.15 0.35*** 0.17* 0.38*** 0.32*** −0.37*** -0.33*** −0.25**

Significant at *= p < 0.05, ** = p < 0.01, *** = p < 0.001; Number of samples=134.

The relationship between NMDI and spring wheat yield showed was the lowest results (0.10–0.15),
which is indicating that this index not suitable for spring wheat yield estimation in this region. From
Table 4 we can see that monthly NDWI was the highest correlated indices with yield in June (0.51)
and monthly VSDI was the highest correlated with yield in July (−0.57) and these were statistically
significant p < 0.001, respectively. It indicates the soil and crops moisture and water content are most
important for crop yield.

4.3. Yield Estimation Model

In this study, we tested nine remote sensing indices to develop the best and most accurate
estimation models for spring wheat yield for Northern Mongolia. The yield was estimated at station
level based on remote sensing indices for the spring wheat-growing season (June to August) and
ground crop yield data. Each model has used eight stations crop yield data and nine remote sensing
indices (10 daily and monthly) from 2000 to 2017. We used stepwise regression as a technique for
choosing independent nine remote sensing indices for a multiple linear regression equation from a
list of candidate indices. The results of regression analysis and best-fitted models are summarized in
(Table 5).

Table 5. Best-fit estimation models for spring wheat yield during the growing period (June–August).

Month Model Equations R2 SEM p-Value

June Model 1 y = 44.837 − 41.661 × VSDI63 + 37.745 ×
NDWI6

0.53 4.6 <0.001

Model 2 y = 35.041 − 36.358 × VSDI63 + 24.621*NDWI6
+ 13.668 × VHI63

0.57 4.3 <0.001

July Model 3 y = 44.721 − 39.502*VSDI7 + 21.296 × NDWI71 0.44 4.6 <0.001

Model 4 y = 34.492 − 37.189 × VSDI63 + 28.571 ×
NDWI6 + 19.61 × NDVI71

0.55 4.3 <0.001

August Model 5 y = 52.224 + 12.774 × NDWI81 − 46.207 ×
VSDI81

0.39 4.9 <0.001

Model 6 y = 62.527 + 25.492 × NDWI81 - 50.254 ×
VSDI81 − 23.552 × NDVI81

0.44 4.8 <0.001

Number of samples (N = 135), VSDI63-third 10 days of June, VSDI; NDWI6–June, NDWI; VSDI7–July, VSDI;
NDVI71-first 10 days, NDVI; VSDI81, NDWI81, and NDVI81- first 10 days of August, VSDI, NDWI, and NDVI.

The models had R2 values ranging from 0.39 to 0.57 and all models had statistically significant p <
0.001, respectively. The models with high R2 values, low RMSE, and MAE values indicate the best
model for spring wheat yield estimation. The highest R2 values were 0.57 in June and 0.55 in July. Final
all models include NDWI and VSDI (VHI and NDVI in some models) from June to August were good
predictors of spring wheat yield.

In order to test the estimate performance of the method, we used the coefficient of determination
(R2), root means square error (RMSE), mean absolute error (MAE), bias and index of agreement (d) to
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evaluate the estimated spring wheat yield in regional level. We compared the predicted yield with the
actual yield of eight stations for 2000–2017, the results showed in (Figure 8).

Figure 8. Comparison between actual spring wheat yield with estimated spring wheat yield for each
model; model 1 (a), model 2 (b), model 3 (c), model 4 (d), model 5 (e), model 6 (f). Each point indicates
the estimated yield versus the actual yield for a single station and year.

The best timing and more accurate model for spring wheat yield estimation was found at the end
of June and beginning of July. Model 4 was selected as the best estimation model for spring wheat
in Northern Mongolia. Model 4 has combined variables of VSDI, NDWI, and NDVI, and index of
agreement (d) value was 0.84, the relationship between estimated and actual yield was R2 = 0.55, mean
absolute error was MAE = 3.3 and root mean square error was RMSE = 4.1(100 kg ha−1), respectively.

4.4. Evaluation of Spring Wheat Yield at the Regional Scale

Using a cropland mask, the calibrated model was applied in the study area. The spring wheat
yield was evaluated based on the best model 4 from 2000 to 2017 in the Northern part of Mongolia
(Selenge and Darkhan provinces) and the results are shown in (Figure 9). The temporal and spatial
spring wheat yield maps produced based on the best model using NDWI (June), VSDI (third decade of
June), and NDVI (first decade of July) indices, at the regional level have been generated in cropland area
from 2000 to 2017. The spatial patterns of estimated spring wheat yield ranged from 1.3–35(100kg ha−1).
In generated spring wheat yield maps, green colors indicating the normal and favorable condition and
highest values of crop yield; red color shows unfavorable conditions and less amount of crop yield,
respectively. From this result, we can see that spring wheat yield was low in drought years (2000–2002,
2005, 2006, 2015, and 2017). The irrigation system is limited in Mongolia, most of the spring crops
at their vegetative and reproductive stages suffer water stress due to recurrent drought. Drought
stress influences the water supply to vegetation and reduces accumulated biomass and production of
crops [65].

178



Remote Sens. 2019, 11, 2568

Figure 9. Estimated temporal and spatial spring wheat yield map at the regional level.
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5. Discussions

The study paves a new way for crop monitoring in Northern Mongolia. We have explored
nine remote sensing indices in decade and month intervals. We found that there are 4 indices (VHI,
VSDI, NDWI, and NDVI) that are more relevant than other indices for spring wheat yield estimation.
This study has found that the NDWI and VSDI are the best indices for Mongolian crop monitoring.
The NDWI was mainly indicated as an effective tool for water stress, soil, and vegetation moisture
conditions and water content in vegetative areas, which was determined by the NIR and SWIR
bands [11,12,33,48,62]. The supply of moisture to the north-central cropping region of Mongolia comes
out as the main factor that clearly demonstrates the results of findings [66]. Water deficiency causes a
physiological disorder that can inhibit cell division and differentiation, leading to the reduction of plant
size and yield [67]. Our best results were obtained through Model 4 that showed R2 = 0.55, respectively.
The results of the relationship between indices showed that MSAVI obtained the best wheat yield
estimation model (R2 = 0.63), which was slightly higher than our result. Indices (SAVI, MSAVI, NDVI,
and EVI) selected for wheat yield estimation in irrigated Indus Basin of Pakistan [68] are the difference
from ours, because at, irrigation area, water is not stress issue. Water is a stressed factor in rainfed
spring wheat in Mongolia. Dempewolf et al. [49] developed the wheat yield forecasting model in
Punjab province of Pakistan using time-series MODIS and Landsat derived vegetation indices (NDVI,
WDRVI, EVI2, SANDVI). The final results show that a forecasted wheat yield was within 0.2% and
11.5% of actual values, which was lower than our result. Bolton and Friedl et al. [62] compared the
accuracy of different indices (EVI2, NDVI, and NDWI) in different zones for maize and soybean yield
in the Central United States, and the EVI2 obtained best accuracy result with R2 = 0.73, respectively.
This result was higher than our result.

We also find the highest correlation between indices with spring wheat yield and peaked at the
flowering stage. The peak period of vegetative for spring wheat yield is June and July in this region.
This implies that vegetation has its strongest response to moisture availability during this period. The
growth condition of spring wheat during flowering stage might have more yield information than
other stages at all growth stages, which means the developed regression model can be predicted two
months before harvesting the crop and the correlation of estimated and actual yield from heading
to flowering periods is higher than other crop growth stages. These results are in agreement with
previous studies showing this to be the most suitable time to predict yield [27,48,60,61,69].

Furthermore, we find that later June is the most critical time for spring wheat yield formation.
Indices in later June are used in every equation. We examined the relationship between actual
spring wheat yield with 10 days and monthly indices for the regression model in the growing period
(June–August). Similarly, we tried out the relationship between accumulated and relative values
of nine indices with spring wheat yield from 2000 to 2017. The results of the correlation between
accumulated and relative values of remote sensing nine indices with actual yield were lower than 10
day and monthly indices value. Juan Sui et al. [11] developed the dry aboveground mass and wheat
yield estimation model using several remote sensing indices derived from MODIS and Himawari-8
sensor. A dry aboveground mass and yield errors of <10% and 12% were reported in Hengshui city of
Hebei province, which was slightly lower than our results. Lopresti et al. [27] performed based on
time-series MODIS-NDVI data for wheat yield estimation model obtained a higher correlation with
estimated and actual yield (R2 = 0.75), which was higher than our results. Also, several regression
models for crop yield estimation based on MODIS, NDVI, are presented [18,48,61]. Moriondo et al. [61]
have carried out the NDVI data to estimate wheat yield in the Grosseto and Foggia provinces of Italy.
The results of the correlation coefficient between simulated and actual yield were 0.73–0.77, with
corresponding RMSE were 0.44Mg/ha and 0.47Mg/ha, respectively.

The impacts of global warming are already confronted in Mongolia, visible from records between
1940 and 2013 from 48 meteorological stations. According to Dagvadorj et al. [70], the temperature
has increased by 2.07◦C compare to mean. Due to the impacts of climate change, more extreme
and continued droughts have occurred in many parts of Mongolia and which directly affect the
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vegetation and crop growth, biodiversity and socioeconomics in Mongolia [9]. Reportedly, [10,44,71]
2000–2002, 2004, 2005, 2007, and 2009 years were extremely affected by mild to severe drought and
slight drought-hit Mongolia in 2003 and 2011. An additional notable finding of this study is that the
spatial regional spring wheat yield distributions shown that the spring wheat yield was high in 2011,
2012, 2013, and 2016 and was low from 2000 to 2003 and 2015. It was statistically significant (p < 0.001),
respectively and confirmed our result that during the drought years’ spring wheat yield was low.
Perhaps, in the year 2003, we had the highest precipitation in our monitoring period. The amount
of precipitation, soil type, soil moisture, and changes in air temperature have a significant impact on
wheat yield. Particularly, drought and soil moisture deficit influence the most reduced crop yield and
vegetation size [72]. Thus, from our results, we recommend developing an irrigation system for spring
wheat cultivation and increase the number of crop yield observation samples in this region. These
results obviously show the promising application of NDWI and VSDI data in crop yield assessment at
relatively cheap cost and timely.

6. Conclusions

In Mongolia, the application of remote sensing methodology in agricultural policy and practices is
in its nascent stage. This was the first time a multi-regression model based on remote sensing indicators
was used to estimate crop yield in Northern Mongolia which is the main spring wheat-producing
region. For this purpose, the best and most suitable indices were first defined through the testing of
correlations between the nine indices and the actual spring wheat yield. Our results show that NDVI,
NDWI, VCI, TCI, VHI, and NMDI indices with spring wheat yield were positively correlated (0.47,
0.51, 0.38, 0.47, 0.45, and 0.15), respectively and NDDI, VSWI, and VSDI with spring wheat yield were
negatively correlated (−0.39, −0.57, and −0.38), respectively. Furthermore, the results confirmed the
importance of the integration of both satellite and ground data for crop yield estimation. Consequently,
we selected the NDWI, VSDI, and NDVI as the most suitable indices out of the nine indices, which are
NDVI, NDWI, VCI, TCI, VHI, and NMDI. The highest negatively and positively correlated indices
are a combination of NIR, red, blue, and SWIR bands. SWIR and red bands are found more sensitive
to moisture variation and water stress of crops and soils [33]. Among nine indices, NDWI (0.51) in
June and VSDI (−0.57) in July show the highest correlated indices with actual spring wheat yield,
which indicates that the soil and crop moisture, as well as water content, are very important factors for
crop yield.

As next step, we refined and developed the regression model using the above three selected
indices in order to estimate crop yield. In total, six models were elaborated to be used for the growing
period which is June to August. Timeline observation showed a higher correlation between indices and
spring wheat yield during the flowering stage in June and July. Therefore, it is suggested that a suitable
time to estimate spring wheat yield is at this stage of one to two months before the harvest. Whereas
the results for the month of August showed a lower correlation indicating the lateness to estimate. The
best results were obtained through Model 4 that used a combination of indicators from the period of
third 10 days of June of VSDI, average of June NDWI and first 10 days of July of NDVI. Therefore, the
Model 4 is the most effective predictor for crop yield monitoring in the northern part of Mongolia.

In this paper, we could estimate only 74% of the actual yield. This was due to several reasons
that possibly could be ascribed to the different spatial resolution between MODIS data (1 km) and the
ground measured spring wheat yield data (station-based measurements). Also, phenomena such as
the different soil structures and the amount of precipitation have a big influence on the yield. However,
the application of remote sensing regression model results enormously enrich the ground station
collected data by providing large scale, region-wide data for the decision-makers to better manage
food security challenges. In the future, work needs to be carried out to apply more consistently
high-resolution images, such as Landsat and Sentinel for more accurate estimation of crop yield. In
general, a comprehensive and systematic use of remote sensing technology in the agriculture sector of
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Mongolia is to be considered, including broader policy for research and development, the introduction
of the latest technology and equipment and targeted capacity-building activities.
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Abstract: The onus for monitoring crop growth from space is its ability to be applied anytime
and anywhere, to produce crop yield estimates that are consistent at both the subfield scale for
farming management strategies and the country level for national crop yield assessment. Historically,
the requirements for satellites to successfully monitor crop growth and yield differed depending
on the extent of the area being monitored. Diverging imaging capabilities can be reconciled by
blending images from high-temporal-frequency (HTF) and high-spatial-resolution (HSR) sensors to
produce images that possess both HTF and HSR characteristics across large areas. We evaluated
the relative performance of Moderate Resolution Imaging Spectroradiometer (MODIS), Landsat,
and blended imagery for crop yield estimates (2009–2015) using a carbon-turnover yield model
deployed across the Australian cropping area. Based on the fraction of missing Landsat observations,
we further developed a parsimonious framework to inform when and where blending is beneficial
for nationwide crop yield prediction at a finer scale (i.e., the 25-m pixel resolution). Landsat provided
the best yield predictions when no observations were missing, which occurred in 17% of the cropping
area of Australia. Blending was preferred when <42% of Landsat observations were missing, which
occurred in 33% of the cropping area of Australia. MODIS produced a lower prediction error when
≥42% of the Landsat images were missing (~50% of the cropping area). By identifying when and
where blending outperforms predictions from either Landsat or MODIS, the proposed framework
enables more accurate monitoring of biophysical processes and yields, while keeping computational
costs low.

Keywords: MODIS; Landsat; data blending; crop yield prediction; gap-filling

1. Introduction

The world’s human population is projected to increase by more than 35% by 2050 [1]. To contribute
to improved global food security, the next generation of crop models and agricultural decision support
tools needs to efficiently and consistently operate across various scales [2]. Accurate nationwide
crop yield forecasts may ensure food security to the citizens. More accurate crop yield prediction
at the subfield scale can provide farmers with more detailed information for guiding, within the
growing season, in-field variable rate applications of fertilizer, herbicides, and pesticides. An efficient
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approach to monitor crop growth uses satellite observations providing repeated synoptic regional
assessments [3–6]. High-temporal-frequency (HTF) observations are required to accurately track crop
development [7] and predict yield [8], and high-spatial-resolution (HSR) observations are necessary to
capture within-field heterogeneity [9].

There is a trade-off between temporal frequency and spatial resolution [10–12] as no single sensor
can regularly image vast areas of the Earth used for nation-wide dryland cropping at a high spatial
resolution. Commercial options of products combine HTF and HSR images achieved by increasing
the number of satellites in orbit, such as PlanetScope; however, such commercial options are not
affordable for national-scale monitoring, especially in a country as large as Australia (7.7 million km2),
with the southern Australian cereal-based agricultural system notionally covering 530,000 km2 [13].
The Moderate Resolution Imaging Spectroradiometer (MODIS) provides complete coverage of the globe
every day at a 250-m spatial resolution from red and near-infrared bands. This resolution constrains
the capacity of describing cropping systems, crop growth, and field heterogeneities, especially when
fields are small-to-moderate sized and landscapes are fragmented [14,15]. Sensors with higher spatial
resolution, such as Sentinel-2 or Landsat, are more suitable for these smaller fields/management units,
but their lower temporal frequencies limit their ability to capture rapidly evolving crop processes,
especially when factoring in the potential clouds [16]. Lobell et al. [17] used valid Landsat observations
(cloud cover <10%) during the growing season to generate optical-based vegetation indices (Vis) and
then fitted a multilinear regression between these VIs and a large number of Agricultural Production
Systems Simulator (APSIM) simulations for yield prediction. In a country like Australia, most of the
arable non-irrigated land grows winter wheat, barley, oats, and canola, and their growth depends on
the in-season rainfall; therefore, totally cloud-free time-series observations for their entire growing
season are infrequent.

To overcome these challenges, various methods for spatial filtering [18], temporal
gap-filling [19–21], and data fusion [22–24] were devised with a varying degree of success. As spatial
filtering and temporal gap-filling disregard the spatial and temporal correlation of a pixel, they are highly
sensitive to the choice of size/length of the spatial/temporal window [20,25]. Data fusion techniques,
on which this article focuses, were shown to improve the temporal resolution of fine-spatial-resolution
data by blending observations from sensors with different spatial and temporal characteristics.
Prominent examples are the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM;
Gao et al. [12]) and the Enhanced STARFM (ESTARFM; Zhu et al. [11]). However, blending is no
“silver bullet”, as it often introduces unforeseen spatial and temporal variances [10]. Therefore, it is
critical to systematically evaluate the benefits of blending and identify where and when blending helps
to improve monitoring.

Blending satellite data with complementary frequency and spatial resolution characteristics,
such as MODIS (herein considered as an HTF and low-spatial-resolution (LSR) sensor) and Landsat
(herein considered as a low-temporal-frequency (LTF) and HSR sensor), provides a solution of synthetic
imagery that is both HTF and HSR [26]. Current literature such as Dong et al. [27] found that using
Landsat images provides a higher crop yield prediction accuracy for field scales over MODIS images,
and a further improvement can be achieved by combining Landsat and MODIS (L–M) blended data
with the incomplete Landsat series. To date, the utility of blended output is not yet tested for regional
and national crop yield mapping [28–35] (Table 1); this study fills that niche.

This study quantifies and evaluates the benefits of blending satellite data of different temporal
frequencies and spatial resolutions for crop yield prediction. The specific objectives of this study
are to (i) estimate yields using MODIS, Landsat, and L–M blended data and then compare the yield
prediction at both pixel and field scales, (ii) identify the fraction of missing Landsat data during a
growing season considering the 16-day acquisition cycle to determine a threshold where the blended
data can improve the prediction, and (iii) quantify the improvements in the yield prediction accuracy
based on the threshold.
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2. Study Area and Data

2.1. Study Area

The southern Australian agricultural system is dominated by dryland agriculture where
cereals (e.g., wheat, barley, and oats), oilseeds (e.g., canola), and legumes (e.g., lupins, chickpeas,
field peas, and soybeans) are planted, often in rotation with annual pastures and fallows. Australian
wheatbelt (Figure 1) spans an extremely variable agroecological environment with respect to the
climate across the continent, leading to the high spatial variability in Australian grain production.
The precipitation varies enormously across the country (Figure S1, Supplementary Materials); winter
(June–August) precipitations are dominant in Western Australia and South Australia, while summer
(December–February) precipitations are dominant in Queensland and northern New South Wales.
In southern New South Wales and Victoria, total precipitation is more uniformly distributed throughout
the seasons where summer precipitation is more intense indicating that winter precipitation is more
frequent [36]. Long-term average monthly accumulated precipitation records strongly correlate with
the average number of rainy days (Figure S1, Supplementary Materials).

Figure 1. Study sites and the crop growing season (April–October) average accumulated precipitation
(mm for the years 2009–2015) across the Australian wheatbelt (~53 million ha) [13]. The precipitation
data are sourced from Jeffrey et al. [37].

2.2. Data

2.2.1. Satellite Images and L–M Blended Data

Time series of Landsat-5 Thematic Mapper (TM), Landsat-7 Enhanced Thematic Mapper (ETM)+,
and Landsat-8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) standardized
surface reflectance data are sourced from Geoscience Australia (http://geoscienceaustralia.github.io/
digitalearthau/index.html), which contains 239 scenes covering the Australian wheatbelt across seven
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years (2009–2015). These images are nadir-corrected, adjusted for bidirectional reflectance distribution
function, and topographically corrected followed by Li et al.’s methods [38], resulting in a 25-m pixel
resolution. This is as, in Geoscience Australia’s processing stream, they oversample the Landsat
imagery to 25 m to allow easier integration with other remote sensing data sources. Time series of
normalized difference vegetation index (NDVI) are then computed using the red and near-infrared
bands [39]. The 16-day composite of MODIS NDVI (MOD13Q1 v006) data are used due to the low
clouds, low view angle, and the highest NDVI value at 250-m spatial resolution. The MODIS data are
sourced from United States Geological Survey for the corresponding periods and area (16 tiles) and are
then downscaled to 25 m by 25 m spatial resolution using nearest neighbor interpolation [40] for input
to the blending algorithm and for consistency to enable further analysis.

The inter-annual variability of precipitation (Figure 2b) illustrates that the probability of rain days
is higher during June–August (i.e., tillering to flowering phase), which is a critical period for crop yield
prediction [41,42]. Figure 2b also shows the value of 0.58 in July at the 75th quartile, which indicates
that the probability of cloud-free Landsat images could be lower than 42% in most areas. Here, 75% of
field-scale Landsat missing data occur during the growing season (i.e., 113–289 days of the year (DOY)),
and only 25% of the Landsat data are complete sequences (Figure 3).

Figure 2. Box–whisker plots of 1901 to 2018 averaged (a) monthly accumulated precipitation
(mm/month) across the Australian wheatbelt (see Figure 1) and (b) monthly probability of rain
days (bottom). For both parts, the horizontal line represents the median of the data, the box spans from
25th to 75th quartiles of the data, and the circles past the end of the whiskers are outliers, while the rain
day threshold is 0 mm/day.
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Figure 3. The quantile of Landsat missing pixels in the fields for which observed yield data are available
(2009 to 2015).

To blend MODIS and Landsat NDVI data and create the 16-day time series of gap-filled Landsat-like
images, we applied ESTARFM [11], which is superior when the spatial variance is dominant [10].
We follow Jarihani et al.’s [22] recommendation to “index then blend”, as it yields more accurate
results and provides higher computational efficiency than the “blend then index” approach. Figure S2
(Supplementary Materials) illustrates the blending process and the resulting Landsat-like image. As a
result of data blending, each pixel is described by 22 observations across the calendar year. For more
details about ESTARFM see [11,43].

2.2.2. Yield Data

Australia’s major dryland crops are selected for yield estimates and validation, including 35 fields
of canola, 123 fields of wheat, and 52 fields of barley (Table S1, Supplementary Materials). The average
area of these fields is ~112 ha with a standard deviation of ~69 ha. Using various yield monitoring
systems mounted on grain harvesters operated by farmers, these observed data were collected at these
sites across the country from 2009 to 2015 (Figure 1). The data obtained by these commercially available
yield monitors were used to construct a yield data image at 5-m resolution [44], which was upscaled to
25 m and 250 m to match the Landsat and MODIS resolutions, respectively.

2.2.3. Climate Data

Climate data were sourced from Science Information for Land Owners (SILO) which provides
nationwide meteorological variables (e.g., maximum and minimum air temperature, and precipitation)
at daily temporal frequencies by interpolating observations made by the Australian Bureau of
Meteorology onto a 0.05◦ by 0.05◦ grid [37].

3. Methods

3.1. Yield Prediction

We use a semi-empirical model [C-Crop; 6]) because of its low data requirements for calibration
across large areas. C-Crop correlates actual grain weight (t/ha) to end-of-season above-ground plant
carbon mass (C), and the estimation of C is based on biophysical principles of plant photosynthesis [6].
Ci is estimated using the carbon mass (Ci−1) from the previous time step and the current period’s
allocated net assimilation flux Ni (gCm−2) minus the dead biomass that enters the litter store, and i
(1–22) is the model time step (every 16 days in a calendar year).

Ci = (1− ρ)(Ci−1 + Ni) (1)

where ρ (periods−1) is the reciprocal of carbon longevity (i.e., the turn-over rate of plant live carbon
into senesced tissue per time step i).
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3.1.1. Net Primary Productivity

Net primary productivity (NPP) is the rate of carbon assimilation from atmospheric CO2 to
organic material (biomass) for a given area while accounting for the energy loss due to autotrophic
respiration [6,45].

Ni = 0.75
(
Gi

f PARi

0.95
− 16r10

Ci−1

cn
σi

)
(2)

where
fPARi
0.95 is the fraction of total assimilation flux Gi allocated to the above-ground plant biomass

(gCm−2) at time step i. The plant maintenance respiration is calculated as a function of leaf nitrogen,
air temperature, and previous biomass Ci−1. r10 is the plant tissue respiration rate at 10 ◦C; cn stands
for plant carbon-to-nitrogen ratio; σi is a scalar that modifies the respiration rate according to the daily
air temperature [46].

3.1.2. Gross Primary Productivity

The total assimilation flux Gi,= also known as the gross primary productivity (GPP) (gCm−2·day−1),
can be calculated using the remote sensing-based plant light use efficiency (LUE) approach.
The chloroplasts use incoming solar radiation with a spectral range between 400 nm and 700 nm in
photosynthesis [47].

Gi = PARi × f PARi ×RUEi (3)

PAR = 2.3(RO × τ∂)ρsw (4)

where (RO × τ∂)ρsw represents the shortwave irradiance (Rs), RO is daily top-of-atmosphere shortwave
irradiance (J/m2/day) [48,49], τ∂ is atmospheric transmissivity calculated using the Bristow–Campbell
relationship [50,51] calibrated for Australia, and ρsw is the ratio of shortwave irradiance at a sloping
surface to that at a horizontal surface [52].

fPAR is the portion of PAR that is absorbed by a photosynthetic organism, and it is estimated using
a linear relation between fPAR and rescaled NDVI by thresholds (i.e., local minimum and crop-specific
maximum NDVIs) [53,54]. LUE is highly linearly related to a diffuse fraction (fD) and photosynthetic
carbon flux [55].

LUEi = 0.024× fDi + 0.00061Ax (5)

where Ax is the maximum photosynthetic capacity (μmolCm−2·s−1), which is a crop-specific parameter;
is 23, 40, and 45 for barley [56], canola [57], and wheat [57], respectively; fD is the ratio of diffused to
total solar irradiance varying from 0.2 (under clear skies) to 1.0 (under overcast skies) [48]. For a full
description of C-Crop, see Donohue et al. [6].

3.2. Validation

Two sets of data are used for validation and further analysis, depending on the pixel-level
completeness of time-series Landsat NDVIs at 25-m pixel resolution across the growing season (i: 8–19)
between April (DOY 113) and October (DOY 304) (Figure S3, Supplementary Materials). Firstly,
the coordinates of complete time-series Landsat pixels are used to obtain the resampled MODIS, L–M
blended, and observed yield data for validation at the 25-m resolution as the first dataset. Secondly,
these complete time-series Landsat pixels are upscaled at 250 m pixel size to extract the MODIS and
the L–M blended data with the same pixel size for the validation at the moderate resolution. Thirdly,
the pixel-level yield predictions are aggregated for each respective field by averaging the yield values
of the pixels within, for field-level validation. Fourthly, and finally, the predicted yields are evaluated
using the model coefficient of determination (R2), the root-mean-square error (RMSE), and the mean
bias error (MBE). The R2 describes the proportion of the response variable that can be explained by the
model. RMSE gives more weight to the largest errors, and the MBE indicates the systematic error of
the model to under or overestimate. These procedures are then repeated for the second dataset created
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according to the coordinates of incomplete time-series Landsat NDVIs at the 25-m pixel resolution.
As C-Crop requires a time series of NDVI, the results are assessed without the incomplete time-series
pixels of Landsat.

3.3. Identification of Threshold for When to Blend

The incomplete time-series pixels of Landsat are gap-filled with the L–M blended pixels (LLM).
The threshold to indicate when blending is beneficial is identified by quantifying the impact of the
fraction of missing data on the prediction accuracy at 25 m. Firstly, we group MODIS and LLM time
series in eight groups, based on the fraction of Landsat missing data (<10%, 10–20%, 20–30%, 30–40%,
40–50%, 50–60%, 60–70%, and 70–80%). Then, the accuracy of each group is analyzed by calculating
the R2 and the RMSE. The performance of C-Crop using MODIS and LLM is compared by the fraction
of missing data in Landsat across time. The threshold can be identified, when the model provides the
same R2 and RMSE using LLM as with MODIS (Figure S3, Supplementary Materials). This threshold
determines when, where, or how much L–M blended data improves crop yield prediction when the
fraction of missing data in Landsat is lower than the identified threshold.

3.4. Evaluation of the Improvement in Yield Prediction Accuracy

The improvement in prediction accuracy using the identified threshold for multiple spatio-temporal
data selection is statistically quantified. More specifically, the threshold is applied to the Landsat
observations (2000–2018). Firstly, we compute the temporal probability of optimally using MODIS,
Landsat, and LLM images for nationwide crop yield predictions during the past two decades, and then
map the results to illustrate the spatial variability of multi-sensor data selection for 25-m pixel-level
yield prediction across the wheatbelt. We then evaluate the area percentage of the data sources on
a yearly basis and analyze their potential correlation to the annual precipitation (mm/year). Finally,
the improvement in the accuracy of predicted yields is evaluated on the field level using MODIS and
LLM for Western and eastern Australia, against the reported data [58]. The growing season of 2015
is selected due to the availability of a larger quantity of observed yield data. The incomplete 2015
Landsat series are gap-filled with the blended values corresponding to the threshold value.

4. Results

4.1. Yield Prediction

Exactly 66% of the observed fields have a complete time series of Landsat NDVIs at the pixel level
across the growing season. For this dataset, C-Crop performs the best with Landsat images at field
(R2 = 0.68; Figure 4a), 250-m (R2 = 0.85; Figure 4d), and 25-m (R2 = 0.48; Figure 4g) pixel resolutions
for yield prediction pooled for wheat, barley, and canola. MODIS-based model yields were at least 10%
less in terms of the R2 than when using complete time-series Landsat data. The model performs almost
identically when using MODIS and L–M blended data for the predictions at both field and pixel scales.
However, it produces the lowest bias for field (MBE = −0.32 t/ha; Figure 4c), 250-m (MBE = −0.23;
Figure 4f), and 25-m (MBE = −0.21; Figure 4i) pixels when using the L–M blended data.
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Figure 4. Validation of C-Crop-predicted yield pooled for wheat, barley, and canola using Landsat,
MODIS, and L–M blended data where the complete Landsat time series are observed (the fraction
of missing Landsat series = 0). From top to bottom, the first (a–c), second (d–f), and third (g–i) rows
show the comparison between observed (x-axis) and model-predicted yields (y-axis) on the field scale
(n = 139), 250-m pixel level (n = 2367), and 25-m pixel level (n = 113,329), respectively, where n is the
sample size. From left to right, the first (a,d,g), second (b,e,h), and third (c,f,i) columns delineate the
validation using Landsat, MODIS, and L–M blended data, respectively. The solid black line is the line
of best fit, the purple and the yellow lines represent the upper and lower bounds of the prediction
confidence intervals (i.e., p = 0.01 and p = 0.05), and the black dashed line is the 1:1 line.

Figure 5 shows that 210 fields have incomplete time-series Landsat pixels during the growing
season. These series are incomplete due to clouds in some of the Landsat images acquired in
the specific growing season when the yield data are observed. Using this set of data, the L–M
blended data-based model performs the same as the MODIS-based model when aggregating to 250-m
(R2 = 0.86, RMSE = 0.52 t/ha, MBE = −0.40 t/ha; Figure 5c,d) and field (R2 = 0.66, RMSE = 0.82 t/ha,
MBE = −0.49 t/ha; Figure 5a,b) scales. The L–M blended data-based model shows its advantages at the
25-m pixel level, which explains an extra 7% of the variability in the observed yields when the Landsat
time-series pixels are incomplete (Figure 5e,f).
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Figure 5. Validation of C-Crop-predicted yield pooled for wheat, barley, and canola using MODIS and
L–M blended data when the complete Landsat time series are not available (the fraction of missing
Landsat series ≥0.083). From top to bottom, the first (a,b), second (c,d), and third (e,f) rows show the
comparison between observed (x-axis) and model-predicted yields (y-axis) on the field scale (n = 210),
250-m pixel level (n = 3978), and 25-m pixel level (n = 231,667), respectively, where n is the sample size.
From left to right, the first (a,c,e) and second (b,d,f) columns delineate the validation using MODIS and
L–M blended data, respectively. The solid black line is the line of best fit, the purple and the yellow
lines represent the upper and lower bounds of the prediction confidence intervals (i.e., p = 0.01 and
p = 0.05), and the black dashed line is the 1:1 line.

4.2. Identification of the Threshold

Figure 6a shows that the 25-m pixel-level yield prediction accuracy fluctuates between 0.35
and 0.75 using MODIS and LLM data in time and space, where time-series Landsat observations are
incomplete. The R2 derived from MODIS is steady (between 0.4 and 0.5) where the fraction of missing
Landsat data ranged between 0.05 and 0.42, which is lower than the R2 (0.62–0.5) derived from LLM
data. The RMSE derived from both data sources remains approximately 0.9 t/ha for the same fraction
of missing Landsat data (Figure 6b). When more incomplete time-series Landsat data are observed
(from 0.42 to 0.75 on both Figure 6a,b), the R2 based on MODIS increases to around 0.7 and the RMSE
decreases to 0.4 t/ha (as MODIS is not as cloud-affected as Landsat due to imagery being acquired
on more days), whereas the R2 derived from the LLM fluctuates between 0.6 and 0.4 and the RMSE
changes between 1.3 and 0.8 t/ha (Figure 6). Given this, up to 42% of missing Landsat data in the
growing season is defined as the threshold for when L–M blending is optimal to implement. That is,
the 25-m pixel-level yield prediction accuracy can be improved using LLM when the fraction of missing
Landsat data at the coordinates is below this threshold. For instance, the LLM-based model increases
R2 by up to 20% when the fraction of the missing Landsat data is below 42% (Figure 6a).
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Figure 6. The statistical analysis of missing data in Landsat for 25-m pixel-level yield prediction,
by evaluating (a) R2 and (b) RMSE against the fraction of Landsat missing data during the growing
season. L–M blended data were used to fill the gaps (LLM) in the incomplete Landsat series.

4.3. Evaluation of the Improvement in Yield Prediction Accuracy

Given the availability of cloud-free Landsat and MODIS data across the wheatbelt (2000–2018),
in concert with the previously determined threshold (Figure 6) and finding (Figure 5), we can
demonstrate which imagery (i.e., either MODIS, Landsat, and LLM) is best suitable for 25-m pixel-level
crop yield prediction (Figure 7). Figure 7 shows the selection when using multiple satellite products
for crop yield estimates across the wheatbelt over the past two decades. For the wheatbelt north of 35◦
south (S), there is a higher probability of obtaining complete cloud-free Landsat observations over
the growing season in the east–west overlapping areas of adjacent Landsat Path-Rows, whilst LLM is
optimal elsewhere north of 35◦ S. South of 35◦ S, MODIS is optimal, with LLM being optimal in the
east–west overlapping areas of adjacent Landsat Path-Rows (in Figure 7).

 

Figure 7. Multi-sensor optimal data selection across the wheatbelt (2000–2018) for 25-m pixel-level
crop yield prediction, using the probability of MODIS, Landsat, and LLM images. Blue denotes regions
where incomplete Landsat series have a fraction of missing data exceeding 42%, thus indicating where
MODIS should be used for yield estimates because it provides more frequent observations than Landsat.
Green areas show where adjacent Landsat orbits overlap and, thus, where a complete once every 16-day
Landsat series over the whole growing season is available. Areas colored red are those where the
fraction of Landsat missing data is below the 0.42 threshold identified previously in Figure 6 when
L–M blended data improve the yield prediction accuracy.
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For 25-m pixel-level yield prediction, blended data should be preferred on average for 33% of the
Australian wheatbelt area (Figure 8a). MODIS and Landsat data remain the preferred data sources in
50% and 17% of cases, respectively. Figure 8b shows that the area percentage is positively correlated
with annual precipitation for MODIS and negatively correlated for Landsat and the L-M blended data.
MODIS has a larger scatter when annual precipitation is greater than 400 mm/year.

 
 

 
Figure 8. Yearly analysis of multi-sensor data selection for 25-m pixel-level crop yield prediction
(2000–2018) by evaluating (a) the area percentage and (b) its correlation with the annual precipitation
(mm/year). The white dashed line shows that the area percentage is 50. μ: mean of population values;
σ: standard deviation; r: correlation coefficient. The symbols in (b) are labeled with the last two digits
of the year.

Of the 53-million-ha Australia wheatbelt, complete Landsat time series were suitable for 28.6% of
that area, MODIS for 31.5%, and LLM for 39.9% during the 2015 growing season (Figure 8a). In this
season, there are 104 fields available for assessing the accuracy improvement in yield prediction
accuracy for nationwide crop yield prediction (Table S1, Supplementary Materials). Within these
observed yield data, 69 fields are located where L–M blended images can improve the prediction
accuracy according to the previously defined (see Figure 6) 42% Landsat missing data threshold.
Figure 9 shows the predicted yields against the observed values for 63 fields in Western Australia
(i.e., WA), and six fields in eastern Australia (i.e., Queensland (QLD), New south Wales (NSW),
Victoria (VIC), and South Australia (SA)).
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Figure 9. Scattergram for C-Crop-predicted yield against observed values for 2015 at the field level
for (a) Western Australia (n = 63) and (b) eastern Australia (n = 6) wheatbelt using MODIS and L–M
blended data for gap-filling Landsat (LLM) when the fraction of incomplete Landsat series is below 42%
for the growing season. The RMSE statistics have units of t/ha.

In these areas (see Figure 9), when the fraction of incomplete Landsat series across the growing
season of 2015 falls below 42%, using LLM reduced the field-level yield prediction errors by 0.15 t/ha
for Western Australia and 0.28 t/ha for eastern Australia. More specifically, the bias of 598 kilotons in
grain production over the cropping area of 39,882 km2 in Western Australia and of 1672 kilotons in
grain production over the cropping area of 59,716 km2 in eastern Australia can be decreased when
using the threshold determined herein to decide the areas where the blended data can improve the
prediction accuracy.

5. Discussion

Globally, wheat-growing regions are distributed within areas that experience a relatively high
frequency of clouds [59]. Persistent cloud cover limits the use of HSR sensors over large spatial extents
due to the low frequency of the observations, whereas the other sensors that have HTF are constrained
by the LSR. Although blending improves the monitoring of rapidly changing processes such as crop
growth, it may introduce unforeseen spatial and temporal variances in the blended images when
images are often not observed concurrently [10], and implementing the current suite of algorithms
across large areas is currently computationally expensive. Therefore, it is important to systematically
quantify and evaluate the utility of blending imagery across time and space before embarking on the
development of nationwide blending capabilities.

This study developed a parsimonious approach to identify when and where blending is beneficial
for crop yield prediction at the 25-m pixel resolution. When incomplete Landsat series falls below
42% of the possible imagery in the growing season, blending is recommended because it improves
the accuracy of the yield estimates. When incomplete Landsat series exceeds 42% of data, the use of
HTF LSR data (e.g., MODIS) for the 25-m pixel-level yield prediction is recommended, reducing the
computational need for blending. LTF HSR data show benefits, for example, in providing detailed
information on plant photosynthesis across space; thus, they should be solely used for crop yield
prediction when enough cloud-free images are available throughout the growing season.

Annual precipitation, which is strongly associated with cloudiness [60,61] and, thus, partly
governs the amount of missing Landsat data, indicates which data sources should be preferably
used (Figure 8). For instance, MODIS should be used for the prediction for greater than 50% of the
wheatbelt during wet years (e.g., 2003, 2010, 2011, and 2016). During dry years (e.g., 2006 and 2018),
the proportion of the wheatbelt where Landsat is suitable for yield prediction increases by >10%
compared to the average proportion (17%). For crop yield prediction, blended data can be optimally
applied across approximately 33% of the wheatbelt during dry to normal years.
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Crop production fluctuates from year to year due to the rapidly changing patterns of precipitation
and temperature [42,62,63]. Over the last 50 years, the amount of precipitation received by the
Australian wheatbelt declined [64]. Based on model projections, it was also suggested that the changing
climatic conditions will affect both the frequency and intensity of the extreme events such as floods,
heatwaves, and droughts, which will impact agricultural production [65,66]. Within the context of the
present study, an increase in the number of clear sky days can be beneficial for the use of RS in crop
yield forecasting. Moreover, a decline in the number of rain days in recent decades within the wheatbelt
area can also be noted (see Figure S4, Supplementary Materials). Here, this decline in the number of
rain days is assumed to correlate with the increase in the number of days with clear skies. However,
a decrease in the number of rain days does not necessarily imply an absence of clouds, as there could be
non-precipitating clouds. However, studies such as Norris et al. [67], using observations and Coupled
Model Intercomparison Project Phase 5 (CMIP5) model outputs, showed that, on average, there is a
decline in cloud amount across the region from 60◦ S–60◦ north (N). This decline was attributed to the
poleward shift of mid-latitude storm tracks, among others.

The potential influence of climate change on grain production suggests a decline in world
food supply [68] and an increase in the level of exposure of the global population to the risk of
hunger [69]. It is, therefore, important to ensure the accuracy and efficiency of yield prediction at
anytime, anywhere, and at any scale. A more precise description of grain weight patterns in time
and space provides more accurate information for precision agriculture to improve its production
and sustainability. The semi-empirical carbon turn-over model used for crop yield prediction is based
on historical yield data, and, in the future, relevant drivers (e.g., precipitation and temperature) and
their interactions may change under climate change, thus requiring model re-calibration [4,6,70,71].
Our approach was tested with C-Crop but could be extended to other semi-empirical models [72] and
models based on machine learning [73].

Development of a national-scale yield prediction system requires time series of HSR and HTF
imagery to describe the crop growth; therefore, next-generation HSR and HTF satellite data like
Sentinel-2 [74,75] should be tested for nationwide yield estimates post the growing season of 2015.
Harmonized Landsat and Sentinel-2 surface reflectance products should be tested for national-scale
crop yield prediction [76] when observed yield data for more recent years are available. However,
spatio-temporal fusion of MODIS and Landsat data is still necessary for long-term studies that involve
historical satellite images collected before 2015 (back to the year 2000, when MODIS was launched).
Future studies should also focus on using active RS technologies, such as radio detecting and ranging
(Radar) [77,78] and light detection and ranging (LiDAR) [79], for a national yield estimation because
of their ability to penetrate clouds and detect a plant’s three-dimensional structural characteristics.
Data blending between HSR optical imagery and active RS data (e.g., Radar and LiDAR) [80] warrants
further study.

6. Conclusions

Sparse time series of satellite remote sensing, due to LTF and/or cloud contamination, represent
one of the main barriers limiting accurate crop yield estimation at regional to national scales. Blending
of HSR but LTF images with LSR but HTF images was proposed to increase the temporal resolution
and maintain spatial details. In this study, the benefits of blending were tested for crop yield prediction
across the Australian wheatbelt. We found that, when time series are gap-free, yield prediction
from Landsat is the most accurate on both field and pixel scales. When Landsat time series contain
<42% missing values during the growing season, blending is recommended for nationwide crop
yield prediction at the 25-m pixel resolution. When Landsat time series contain ≥42% missing
observations, MODIS outperforms blending. Across Australia, these recommendations would improve
yield estimates by 0.15 t/ha for Western Australia and 0.28 t/ha for eastern Australia on average.
By identifying where and when to blend, this work paves the way to more accurate monitoring of
biophysical processes and yields, while keeping computational costs low.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/10/1653/s1,
Table S1: Summary of observed data (the number of field-years) used herein; Figure S1. Long-term (1901–2018)
average monthly accumulated precipitation (mm/month) (left) and the long-term average rain days (right) across
the wheatbelt for (a, b) Queensland, (c, d) New South Wales, (e, f) Victoria, (g, h) South Australia, (i, j) Western
Australia, and (k, l) Tasmania. The precipitation data are sourced from Jeffrey et al. [37], and the wheat belt mask
was resampled from native 2-km2 horizontal resolution onto the precipitation data grid with 5-km2 horizontal
resolution using nearest neighbor [40]. The vertical black lines (a–f) represent one standard deviation of the
monthly wheatbelt specific precipitation for each state. The horizontal line (g–l) represents the median of the
data, the box spans from 25th to 75th quartiles of the data, and the rain day threshold is 0 mm/day. It should be
noted that Northern Territory is not included in the analysis due to its small cropping area; Figure S2. An example
of MODIS and Landsat blended NDVI using ESTARFM. The x-axis and y-axis are time (t, DOY) and spatial
resolution (m), respectively. Both MODIS and Landsat have valid observations at t1 and t2. The image at the
center of the top row is a valid observation of MODIS at ts, and that at the center of the bottom row is Landsat-like
blended data at ts created using the 16-day MODIS composite images on the DOYs 257, 273, and 289, as well as
the Landsat images acquired on the DOYs 257 and 289; Figure S3: The implementation flowchart of validation
and identification of threshold for when to blend. The shaded areas indicate the original data sources; Figure S4:
Long-term (1900–2018) average monthly accumulated precipitation (mm/month) across (a) eastern Australian,
(b) Western Australia, and (c) the wheatbelt. The precipitation data are sourced from Jeffrey et al. [37].
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